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Preface

The purpose of this monograph is to provide an introduction to modern tokamak
physics, as an extension of our review paper “Steady State Tokamak Research—
Core Physics” published in Reviews of Modern Physics (2012). This monograph
is for graduate students and young researchers in the field of controlled fusion
research, while the previous book Frontier in Fusion Research I—Physics and
Fusion (2011) was intended for more general physics students who may be
interested in fusion plasma physics. This monograph is an introduction of modern
tokamak physics, and we show some derivations of key equations but some are left
for your investigation of the original papers. We introduce Tokamak fusion reactor
concepts such as the SSTR (Steady State Tokamak Reactor) (see Fig. 1) in Chap. 1
and some technological background in Chap. 9. Other chapters are devoted to the
description of the physics of the Tokamak confinement.

Chapter 2 introduces the magnetic field structure in tokamak, tokamak equilibria,
and 1.5D transport equations. Chapter 3 introduces the tokamak operating regimes
and the long pulse operation. Chapter 4 introduces the transport process due to
Coulomb collision. Chapter 5 gives an introduction to key collective motions in
tokamak. Chapter 6 gives fundamentals of ballooning transform and the WKBJ
theory of 2D eigenmode problem. Chapter 7 gives an introduction of turbulent
transport in tokamak and briefly the plasma confinement scaling. Chapter 8 includes
ideal, resistive, and kinetic MHD stabilities. In this book, the divertor and the
plasma–wall interaction are omitted except a small introduction in Chap. 3.

Mito, Japan Mitsuru Kikuchi
Tokyo, Japan Masafumi Azumi
March 2015
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Fig. 1 Bird’s eye view of the steady state tokamak reactor. Modified from Kikuchi [433]
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Chapter 1
Tokamak Fusion Reactor

Abstract The goal of the fusion research is the realization of the fusion power
plant, which produces the fusion energy in a useful form (the electricity and/or the
hydrogen). Tokamak is the leading concept of the magnetic confinement fusion.
The concepts of fusion power stations based on tokamak concept is introduced in
this chapter, especially with continuous operation, called the Steady State Tokamak
Reactor (SSTR). After the introduction of fusion reaction in Sect. 1.1, tokamak
fusion reactor designs based on pulsed and steady state operations are introduced
in Sect. 1.2. Basic design features of the SSTR are introduced in Sects. 1.3 and 1.4.
Power balance of the tokamak fusion reactor is introduced in Sect. 1.5. Salon 1-1 and
1-2 gives some historical activities such as International school of plasma physics
and IAEA fusion energy conferences.

Further Reading:
Books: For quantum mechanics, you may read Schiff [669], Landau [494]. Theory
of Atomic Collision by Mott-Massey [563] is quite comprehensive text on Nuclear
Physics. Kikuchi [443] Chaps. 1 and 2 are useful for fusion and nuclear physics.
Asimov (1991) [30] is well written book on nuclear physics without equations.
There are no up-to date good textbook for fusion reactor design but you may find
some interests in the text by Gross (1984) [268].

Review Papers: Kikuchi-Conn et al. [432] and Kikuchi [437] are basic papers on
tokamak reactor design. IAEA booklet [359] is a good brief summary of 50 years
of fusion research.

Design Reports and Home Pages: For fusion reactor design report, you may read
SSTR design report at http://jolissrch-inter.tokai-sc.jaea.go.jp.pdfdata/JAERIM-91-
081.pdf. You may visit ARIES Program Home Page (http://aries.ucsd.edu/ARIES/).
The FIRE place Home Page (http://fire.pppl.gov/) has many informations on fusion.
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M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
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1.1 D-T Fusion Reaction

The fusion reaction for current fusion research is the reaction of deuterium and
tritium. When they get close enough to each other for the nuclear force to operate
beyond the Coulomb barrier, the distance is less than 3Fermi (1Fermi D 10�15 m).
The barrier height for charged particles, Umax � 0:48MeV. Fusion will occur
if the relative energy of deuterium and tritium is larger than 0:48MeV, but it is
difficult to raise the temperature to this level. However, the tunnel effect enables
fusion can occur at low energy (several 10 keV) by penetrating the Coulomb barrier.
Scattering and penetration of the particle beam can be investigated by solving the
Schrödinger equation Œ�.„2=2m/@2=@x2 C V.x/� D i„@ =@t under the Coulomb
field [669]. This Schrödinger equation was first derived by Austrian physicist Erwin
Schrödinger (1887–1961) who was awarded the 1933 Nobel Prize in physics.

The deuterium consists of one proton and one neutron. Deuterium was discov-
ered in 1932 by American chemist H.C. Urey (1893–1981), who showed that 1 of
every 7000 hydrogen atoms is deuterium. Urey was awarded the 1934 Nobel Prize in
Chemistry. Heavy water (chemical symbol D2O, chemically bonded two deuterium
and one oxygen) exists at about 158 ppm in seawater and 140 ppm in the freshwater.
Deuterium chemistry is introduced in Sect. 9.5.

Hydrogen with mass number 3 is called tritium. The word tritium comes from
the Greek word meaning third. The nucleus of tritium consists of one proton and
two neutrons. Tritium rarely exists in nature, and is made only in the atmosphere by
cosmic rays. This element decays into helium-3 by emitting a high-energy electron
beam. This is called beta decay and has a half-life of 12:26 years. Tritium was
first produced in the laboratory by Australian physicist M. Oliphant (1901–2000)
in 1934 by colliding deuterium. Tritium as fuel of DT fusion is generated by the
nuclear reaction of neutron with lithium. The DT fusion produces neutrons and these
neutrons can be used to generate tritium by the reaction with lithium. Therefore,
high temperature plasma is covered with a device called a blanket containing
lithium to generate tritium. Lithium has two isotopes (6Li and 7Li) and the abundance
of 6Li and 7Li in natural Li is 7:4 and 92:4%, respectively. Tritium is created by
neutron absorption reactions, 6Li reaction 6Li C n !3 T C4 He C 4:78MeV is an
exothermic reaction, while the 7Li reaction 7Li C n !3 T C4 He C n � 2:47MeV is
an endothermic reaction.

The tokamak system has excellent plasma confinement capability with its
symmetry in the toroidal direction and will demonstrate fusion energy production
of �500MW by the ITER project (https://www.iter.org/).

https://www.iter.org/


1.2 Tokamak Operation 3

1.2 Tokamak Operation

Tokamak has geometrical symmetry in the toroidal direction and this symmetry
provides robustness in maintaining a nested flux surface against various parametrical
changes leading this configuration to be a front-runner in fusion research [443].

Tokamak achieved equivalent break-even conditions in large tokamaks such
as JT-60U [458] and JET [424] or produced significant fusion power (>10MW)
in TFTR [301] and JET, while other magnetic confinement fusion experiments
remained much lower. Geometrical symmetry provides good confinement of ener-
getic charged particles as well as thermal plasmas. This is a reason why the tokamak
concept was selected for ITER.

However, this configuration requires a net toroidal plasma current, which is
driven mainly by inductive means. This method is quite effective since the electrical
conductivity of 10 keV plasma is 20 times higher than that of Cu at the room
temperature. But the induction of the toroidal electric field is limited to a finite
pulse length (300–500 s in ITER at the nominal plasma current) due to the current
limits in the transformer. The tokamak reactor design based on inductive operation
was first made in UWMAK studies in 1976 by R. Conn [137], whose cutaway view
is shown in Fig. 1.1. This reactor will operate with a pulse length of 1 h but will
provide average electric output of �2GWe.

This means that a tokamak fusion power station may be pulsed as shown in
Fig. 1.2 subject to cyclic loads and it requires large energy reservoir to deliver the
electric power continuously. Since present power sources such as oil/coal/natural

Parameter Value

Plasma current 15.8MA

Toroidal 4.05T

Thermal power 5GW

Electric power(av) 1.985GW

Burn time 1800s

Coolant He & Li

41.9%

Major radius 8.1m

Minor radius 2.7m

UWMAK III parameter list
10

5

0

Lithium manifold

RF heating system

Toroidal

Shield

Blanket
Graphite

Plasma

Separatrix

Fig. 1.1 Poloidal cross section of UWMAK-III tokamak fusion reactor and major parameters of
UWMAK III pulsed tokamak reactor. Reproduced with permission from Conn [137]. Copyright
IAEA Vienna
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Fig. 1.2 Schematics of the
inductive operation of
tokamak

Plasma current

Primary
current

time

time

time

Fusion power

Parameter Value

Plasma current 10MA

Toroidal field 5.8T

Thermal power 4GW

Net electric power 1.2GWe

Burn time continuous

Coolant H2O

Plant efficiency 30%

Major radius 7m

Minor radius 1.94m

STARFIRE parameter list
WATER COOLANT
INLET & OUTLET

SEGMENTED
COPPER EF COILS

SHIELD

SUPERCONDUCTING
EF COILS

CENTER POST

VACCUM PUMPS

TF COILS

RF DUCT

BLANKET SECTOR

SHIELD
ACCESS
DOOR

ANTI-
TORQUE
PANEL

Fig. 1.3 Birds eye view of STARFIRE fusion reactor and its parameters. Reproduced with
permission from Abdou [1]. Copyright IAEA Vienna

gas fired plants and fission plants operate continuously, it is highly desirable for a
tokamak reactor to be a steady-state power station.

To achieve continuous operation in a tokamak, a non-inductive current drive is
essential. After the theoretical development of a current drive using lower hybrid
wave by N.J. Fisch [204] and subsequent experimental demonstration in the JFT-2
by T. Yamamoto [841], the STARFIRE design led by C. Baker and M.A. Abdou
[1, 40] was made to realize continuous fusion power production whose schematic
view is shown in Fig. 1.3. However, the required power to sustain the plasma current
becomes huge if we include effect of trapped electron and also lower hybrid wave
absorption due to ˛ particles.
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1.3 Steady State Tokamak Reactors

Nature blesses human being by providing a self-generation mechanism of the
plasma current called the bootstrap current [65] (see Chap. 4, especially Sect. 4.4.3).
The bootstrap current is driven by the pressure gradient in a rare collision regime
(called the collisionless plasma), which is a kind of thermo EMF that drives the
plasma current in a toroidal direction.

Observation of a large bootstrap current fraction up to 80 % in JT-60 high ˇp

discharges by Kikuchi [431] immediately stimulated the concept development of
the Steady State Tokamak Reactor (SSTR) by Kikuchi [430] and H. Kishimoto (see
Fig. 3.1) decided the development of the conceptual design of SSTR [236, 433, 675]
with the strong involvement of Japanese industries aiming to show scientific and
technical capability of sustained electric power generation by tokamak concept with
minimum extrapolation from the knowledge in those days. The bird’s eye view of
the SSTR plant is shown in Fig. 1 of preface. The side view of main building and a
part of the auxiliary building is shown in Fig. 1.4 showing tokamak, four set of steam
generator (SG) for the power generation, divertor maintenance rooms, replaceable
blanket cask for the vertical maintenance, vacuum pumping system, and polar crane
and part of the negative ion based neutral beam injection (N-NBI) system with
inverter and convertor power supplies.

Figure 1.5 shows plan view of the main reactor building where tokamak reactor
locates at the center and two sets of neutral beam injection lines, two sets of remote
maintenance system, four sets of steam generator (SG) for power generation, ECH

4 sets of SG for power generation

Power
Supplies
for NBI

Divertor
maintenance
rooms

Vacuum
Pumping
System/room

56m

Convertor

Invertor

Cockcroft Walton
2Mev accelerator

50
m

94
m

Tokamak

Steam Generator

Replaceable
Blanket Cask

Replaceable Blanket Cask
(Vertical maintenance)

ACTOR HALL

Polar Crane

Fig. 1.4 Side view of the SSTR building. SG: steam generator. Modified from Kikuchi [432]
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4 sets of SG for power generation

4 sets of SG for power generation

2 sets of Remote Maintenance

2 sets of Remote Maintenance

2 sets of Neutral Beam lines

ECH for pre-ionization

Pellet for fuelling

Fig. 1.5 Plan view of the SSTR building. Modified from Kikuchi [432]

for pre-ionization and neoclassical tearing mode (NTM) control, and pellet fueling
system are arranged around the tokamak device.

R. Conn et al. [139] also developed another independent power reactor study with
more aggressive technical provisions, ARIES-I. When SSTR and ARIES-I concepts
are proposed in 1990, world fusion research was directed to increase the plasma
current to improve the energy confinement, typically represented by the design
change from a plasma current Ip D 6MA in INTOR (International tokamak reactor)
to Ip D 21MA in ITER-CDA (CDA: conceptual design activity). Also the research
frontier was directed to achieve a high toroidal beta close to 10% with the high
normalized-current Ip=apBt in DIII-D [201]. If we look for the steady state tokamak
reactor, it is evident that we have to change our research direction from low q and
high ˇt research to high q and high ˇp research.

“Change” in research direction was proposed by Kikuchi, Conn, Najmabadi,
and Seki [432] as a joint work of SSTR and ARIES-I. Russian design given by Y.
Sokolov [708] also supports this direction. The SSTR design is based on the current
profile control with an elevated central q (q0) to suppress the sawtooth and improve
the stability against the ballooning modes and the wall stabilization against Kink
modes, while ARIES-I optimizes the current profile without the wall stabilization,
resulting in modest enhancement of q0. These are jointly called the weak shear (WS)
scenario. Here, (magnetic) shear is given by s D Rdq=dr=q.

While weak shear (WS) operation is proposed for the steady state tokamak
reactor by Kikuchi [432], an active use of hollow current profile (which is a natural
profile for the bootstrap current) for the steady state tokamak reactor is proposed by
Ozeki [596], and later by Kessel [427] is called the negative-shear (NS) scenario.
Tokamak reactor concepts based on NS scenarios are developed such as ARIES-RS
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[571] in the United States, and CREST [589] in Japan. These operation scenarios
are discussed in Chap. 3.

Salon 1-1: Pioneer and Alliances of Fusion Reactor Design

(a) R. Conn is the pioneer of fusion reactor study and formed a team to study
series of fusion reactor studies called “ARIES”. He is the President of The
Kavli Foundation and Zable Professor and Dean, Emeritus, of the Jacobs
School of Engineering at UC San Diego as of 2014 (courtesy of R. Conn).

(b) International school of plasma physics (Piero Caldirola) is a long-standing
school activity near Como lake in Italy. Group photo of this school
in 1994 to discuss steady state operation of tokamak [54] including
R. Bickerton (UKAEA, see Fig. 4.5), D. Robinson (UKAEA), R.
Conn (UCSD), J. Wesson (UKAEA) who is famous in his text-
book on tokamak, F. Romanelli (ENEA and JET), K. Lackner (Max
Planck Institute for plasma physics), H. Zohm (Max Planck Institute
for plasma physics), T. Taylor (General Atomics), N. Sauthoff (US
ITER), V. Chan (General Atomics), R. Andreani (ENEA), H. Ninomiya
(JAEA), D. Stork (UKAEA), S. Jardin (Princeton plasma physics labora-
tory), M. Okabayashi (Princeton plasma physics laboratory), W. Nevins
(Lawrence Livermore National Laboratory), S. Sabbagh (Columbia uni-
versity), S. Eckstrand (DOE), S. Bernabei (Princeton plasma physics
laboratory), M. Kikuchi (author). With kind permission by Dr. E. Sindoni.



8 1 Tokamak Fusion Reactor

1.4 Major Features of SSTR

Among many important parameters, plasma pressure limit is an important constraint
for the reactor design. The plasma pressure hpi required for a fusion reactor is in a
range of 10 atm. This must be confined by the magnetic field ( namely, J � B force).
The magnetic field has its pressure B2=2�0 and the ratio of plasma pressure to the
magnetic field pressure is called ‘beta’. This beta can be defined for the toroidal
field and the poloidal field, called the toroidal beta (ˇt � hpi=.B2t =2�0/) and the
poloidal beta (ˇp � hpi=.B2p=2�0/), respectively.

As we increase the beta, plasma becomes unstable to kink modes or ballooning
modes at some value, called the beta limit. The parametric dependences of this
beta limit has been extensively investigated during 1980 decade. Swiss physicist
F. Troyon [772] identified essential parametric dependences called Troyon scaling
theoretically as follows,

ˇt D ˇN
IpŒMA�

apŒm�BtŒT�
; (1.1)

where Ip is plasma current, ap is plasma horizontal minor radius, Bt is toroidal
magnetic field, ˇN is a constant named the ‘normalized beta’. The proportionality of
ˇt to Ip=apBt is confirmed in DIII-D [201] and also hpi � IpBt=ap in JT-60U [439]
as seen in Fig. 1.6. MHD stability is described in detail in Chap. 8.
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Fig. 1.6 (a) Experimental confirmation of Troyon scaling in DIII-D. Reproduced with permission
from Ferron [201]. Copyright 1999 AIP Publishing LLC. (b) Experimental average plasma
pressure hpi in proportion to IpBt=ap . Reproduced with permission from Kikuchi [439]. Copyright
IAEA Vienna
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Fig. 1.7 (a) Experimental demonstration of ˇt D C=ˇp in the Doublet III. Reproduced with
permission from Stambaugh [714]. Copyright IAEA Vienna. (b) (ˇt, ˇp) diagram

Combination of this Troyon scaling with the definition of poloidal beta ˇp D
4
R

pdV=.�0I2pRp/ gives relation between ˇt and ˇp as,

ˇtˇp D �
ˇ2N
4
; (1.2)

where � is the vertical plasma elongation. This scaling is confirmed in DIII-D [714]
as shown in Fig. 1.7a.

The major feature of SSTR [430] is the maximum utilization of the bootstrap
current for the efficient steady state operation. The bootstrap current fraction (fboot)
is known to be proportional to the poloidal beta (a ratio of plasma pressure to the
magnetic pressure of poloidal magnetic field produced by the plasma current).

While the theory of the bootstrap current is given later in Chap. 4, a simple
expression of the bootstrap current fraction is given by Cordey [149] as follows,

fboot D c1.a=R/0:5ˇp; (1.3)

where ˇp D 4

Z
PdV=.�0I

2
pRp/ � hPi=.B2p=2�0/ (1.4)

Here, a is the horizontal plasma minor radius and R is the plasma major radius,
and .a=R/0:5 is proportional to the trapped particle fraction. Cordey [149] gives
c1 D 0:67. Therefore, the reactor should operate in the high ˇp � 2 � 3 regime
if the major fraction of the plasma current is driven by the bootstrap current.

Figure 1.7b shows the (ˇt, ˇp) diagram in which the solid curve corresponds to
ˇN D 3:5 and � D 1:8, in which the steady-state fusion power concepts SSTR and
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ARIES-1 (ˇp D 2� 2:1) as well as the current ITER steady state design (ˇp � 1:5)
adopt high ˇp operation to increase bootstrap current fraction. Since ˇp � 1=ˇt for
fixed ˇN and �, the steady state tokamak reactor should sacrifice ˇt to achieve high
ˇp and hence a high bootstrap current fraction.

If we want to have 75% of the plasma current carried by the bootstrap current,
we have to operate at .a=R/0:5ˇp D 1:12. Required ˇp increases weakly with the
aspect ratio, A D R=a.

The rest of the plasma current has to be driven by the non-inductive means such
as NBCD (neutral beam current drive) and/or RFCD (radio frequency current drive).

If we choose an appropriate value for the normalized beta ˇN with some margin
from the beta limit, ˇt value will be given by Eq. (1.2).

Once the toroidal beta ˇt is fixed, the fusion power density can be calculated
by the relation Pf � c2ˇ2t B4t � hniTii2, while much more precise formula can
be available in the literatures. Here, the toroidal magnetic field Bt has following
geometrical constraint,

Bt D Bmax.Rp � ap ��/=Rp; (1.5)

where � is a distance between the inner plasma surface and the major radius
of the maximum magnetic field on the toroidal field conductor and Bmax is the
maximum magnetic field specified by the superconductor (Bmax � 12T for Nb3Sn).
The distance � is in the range of 1.3–1.5 m. Then, the plasma current Ip is
determined from the Troyon scaling.

The efficiency of the current drive is measured by the current drive efficiency.

�CD � neIpCDRp

Pabs
; (1.6)

which is typically 0.2–0.5�A/m2W depending on the driver choice. For a given
�CD, we can calculate power required for the current drive to supplement bootstrap
current. For a set of machine parameters, the required confinement enhancement
factor over the L-mode energy confinement scaling law can be obtained. Physics
basis for a tokamak fusion power plant are summarized by Jardin [395] based on
five different operation modes studied in ARIES program [140]. Aspect ratio (ratio
of major radius and horizontal minor radius) is one of key parameters in the tokamak
reactor design. Wong [831] showed dependence on the aspect ratio.

1.5 Reactor Power Balance

According to the basic procedures in the last section, we may arrive at a set of
machine parameters. In case of the SSTR [432], the power balance in the fusion
reactor can be illustrated in Fig. 1.8.

Reactor power balance is an important aspect in the steady state tokamak reactor.
The general power flow diagram is shown in Fig. 1.9. Here, Pf is fusion power from
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Fig. 1.8 Power flow diagram of SSTR fusion reactor. “Utility” means auxiliary equipments in
Fig. 1.9. After Kikuchi [443]
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Pf+PCD

Generator ( th)

Auxiliary Equipments

CD system ( CD)
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PCD/ CD
PCD
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Fig. 1.9 Energy flow diagram of steady state tokamak reactor. The plant efficiency �Plant.D
PNet=Pth/, the ratio of net electric power output to thermal power output, is given by �Plant D
�th � �aux � 1=.�CD�BD.1C Q//. After Kikuchi [444]

plasma, PCD is heating and current drive (CD) power, Q is energy gain of confined
plasma Q D Pf =PCD; �BD is energy multiplication factor in the blanket-divertor
system, PGe is gross electric power, PNet is net electric power to the grid, rPGe

is re-circulating power (r is re-circulating power fraction), �CD is overall system
efficiency of CD system, �auxPth is power required for auxiliary equipments. Here,
thermal conversion efficiency �th is 0.345 for water cooling in fission light water
reactor, while it is 0.49 for advanced high temperature He cooling system. �aux is
reduction of plant efficiency due to auxiliary equipments in a range of 0.03–0.06
depending on coolant.

The .�plant;Q/ diagram is shown in Fig. 1.10 for a pressurized-water cooling and
a high temperature helium gas cooling. It must be noted that �plant depends weakly
on Q around Q D 30–50, �plant � 0:3 for pressurized water and �plant � 0:4 for
high temperature helium.
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Fig. 1.10 The plant
efficiency (�plant) as a
function of plasma energy
gain (Q) for He-cooled and
water cooled systems in the
steady-state tokamak reactor.
After Kikuchi [444]
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Current drive by non-inductive means such as neutral beam current drive
(NBCD), electron cyclotron current drive (ECCD), lower hybrid current drive
(LHCD), and fast wave current drive (FWCD) are developed as reviewed by
Fisch [204]. Efficiency of the non-inductive CD is expressed by the current drive
efficiency �CD defined by �CD D ICD

p Rphnei=PCD and has certain limit �CD �
5 � 1019 A/Wm2 for N-NBI (negative-ion based NBI) at hTei D 17 keV and
Ebeam D 2MeV, which is much less than the efficiency of inductive current drive.
It is difficult to achieve required Q level of Q D 30–50 by only using non-inductive
current drive by external means (e.g. 3GW=30 D 100MW can drive only 4MA for
R D 7m, hnei D 1020 m�3, �CD D 3 � 1019 A/W/m2). This is a fundamental reason
why we have to utilize bootstrap current to realize efficient steady state operation of
tokamak reactor.

EU approach to the DEMO design is started from safety assessment called
SEAFP project reported by Raeder [620] and the recent approach emphasize
comparative studies among several options called PPCS (power plant conceptual
study) [531]. In 2012, EFDA (European Fusion Development Agreement) published
a roadmap which outlines how to supply fusion electricity to the grid by 2050
[186]. EUROfusion formed in 2014 for coordination of European fusion research
as successor of EFDA. Strategic plan has been developed in Korea for the fusion
energy development beyond ITER by Kwon [484]. China is timely to design a
next step device called CFETR (2012) led by Y.X. Wan, Jiangang Li, and Liu
Yong by addressing fusion fuel cycle demonstration to supplement ITER towards
DEMO [801].

Salon 1-2: IAEA Fusion Energy Conferences [359]
After the world-war II, peaceful use of the atomic energy is pursued. The
United Nations (UN) organized the first conference on the “Peaceful Uses of
Atomic Energy” in Geneva. The president of the first conference is Homi

(continued)
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Bhabha. In the opening address, he mentioned that ‘It is well known that
atomic energy can be obtained by fusion processes as in the H-bomb and
there is no basic scientific knowledge in our possession today to show that
it is impossible for us to obtain this energy from the fusion process in
a controlled manner. The technological problems are formidable, but one
should remember that it is not yet fifteen years since atomic energy was
released in an atomic pile for the first time by Fermi. I venture to predict that
a method will be found for liberating fusion energy in a controlled manner
within the next two decades. When that happens the energy problem of the
world will truly have been solved forever for the fuel will be as plentiful as
the heavy hydrogen in the oceans.’

The second UN Conference on Peaceful Uses of Atomic Energy is held at
Geneva Palais des Nations in 1–13 September 1958, in which about 5000
delegates, observers and guests discussed over 2150 papers in which 105
covers fusion topics (US 65, USSR 14, UK 9, France 4, Sweden 4, Japan
2, Denmark 1, Germany 1, Poland 1, Romania 1, Switzerland 1), “Monster
Conference” Time Magazine 15 September 1958. In spite of smaller number
of papers, fusion and its declassification were the focus of this conference with
many fusion exhibitions of actual magnetic confinement fusion machines and
press conferences.

Academician L.A. Artsimovich in his overview paper (1958) [27] from
the Soviet Union says “For the first time, these results will be discussed on
the international scale, and this is probably the most important step that has
been made towards the solution of this problem”. He also mentioned in his
paper that “The solution of the problem of thermonuclear fusion will require
a maximum concentration of intellectual effort and the mobilization of very
appreciable material facilities and complex apparatus”.

Edward Teller [760] made his famous comparison with flying “I think we
are at a stage similar to the stage at which flying was about one hundred
years ago. At that time the question was to understand a very difficult subject,
namely the subject of hydrodynamics and in particular the subject of turbulent
hydrodynamics. We are now similarly trying to understand the subject of
magnetohydrodynamics. . . ”.

IAEA booklet [359] says that at least when the conference ended, the
situation had become clear: No matter how long it might take, the ‘unwritten
chapter’ on plasma physics had to be written.

Since then, there are number of international conference on plasma physics
and controlled fusion research held under the auspice of IAEA, at Saltzburg
(1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974),
Berchtesgaden (1976), Innsbruck (1978), Brussels (1980), Baltimore (1982),
London (1984), Kyoto (1986), Nice (1988), Washington (1990), Würzburg
(1992), Seville (1994), Montreal (1996), Yokohama (1998), Sorrento (2000),

(continued)
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Lyon (2002), Vilamoura (2004), Chengdu (2006), Geneva (2008), Daejeon
(2010), San Diego (2012), St Petersburg (2014) and Kyoto (2016). The
conferences are called “Fusion Energy Conference” after Yokohama.

The 22nd Fusion Energy Conference was an anniversary conference to
celebrate 50 years of magnetic confinement fusion research. Figure 1.11
shows an opening ceremony on October 13, 2008 when Prof. Tran gives
opening address. V.P. Smirnov [698] gave a lecture “Tokamak foundation in
USSR/Russia 1950–1990”. Jean Jacquinot [390] and Dale Meade [548] gave
lectures “Fifty years in fusion and the way forward” and “50 years of fusion
research”, respectively. Kaname Ikeda [371] gave a plenary “ITER on the road
to fusion energy”.

Fig. 1.11 Opening ceremony of 22nd Fusion Energy Conference (2008) at Palais des Nations,
Geneva, Switzerland cerebrating 50 years of fusion research. From left, M.Q. Tran (President of
local organizing committee), M. Kikuchi (Chair of international program committee), Y. Sokolov
(IAEA Deputy Director General), J. Beagle (Deputy Director-General of the United Nations Office
in Geneva), Z. Stancic (EU DG Research), G.S. Lee (Chair of International Fusion Research
Council, right end on the desk), far right end Dr. G. Mank (Head of physics section as conference
secretary)
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Exercise 1.1. Derive Schrödinger equation Œ�.„2=2m/@2=@x2 C V.x/� D
i„@ =@t from the energy conservation law p2=2m C V.x/ D E, the Einstein’s
relation E D „! and the de Broglie relation p D „k.

Answer. Substituting the Einstein and de Broglie relations into energy conservation
relation, we have „2k2=2m C V.x/ D „!. The wave function with the angular
frequency ! and the wave number k is given by  D exp.ik � x � i!t/ and the
relations @ =@x D ik and @ =@t D �i! holds. This means ik ! @=@x and
�i! ! @=@t. Substituting these relations into „2k2=2m C V.x/ D „!, we have
relation of differential operator, �.„2=2m/@2=@x2 C V.x/ D i„@=@t. Operating the
wave function from right, we have Schrödinger equation.

Exercise 1.2. Derive Einstein’s relation E D mc2 from the variational principle
with the action integral S D �m0c2

R 2
1 d� , where � D t.1 � .dx=cdt/2/1=2 is the

proper time.

Answer. Substituting the expression of � into the action integral, we have S DR
Ldt D �m0c2

R p
1 � .dx=cdt/2dt, i.e. L D �m0c2

p
1 � .dx=cdt/2. Defining the

canonical momentum p � @L=@Px D m0vvv=
p
1� v2=c2, we have expression for the

Hamiltonian H D p � Px � L, which is an expression for the energy E.

E D m0c2p
1 � v2=c2

See [443] for detail.

Exercise 1.3. Derive Yukawa’s meson equation from the relativistic momentum
balance equation, �p2 � m2

0c
2 C .E=c/2 D 0.

�
�

„2 @
2

@x2
� m2

0c
2 � „2

c2
@2

@t2

�

U D 0

Answer. See [443] Sect. 2.2.

Exercise 1.4. Explain why 4He has large binding energy, Eb � 7MeV.

Answer. See [443] Sect. 2.5.

Exercise 1.5. Calculate the gravitational energy of the Sun Eg D GM2=RSun, using
G D 6:67 � 10�11 m3/kg s2, M D 2 � 1030 kg, RSun D 70 � 104 km. Using the
luminosity of the Sun L D 3:86 � 1026 W, calculate decay time of the gravitational
energy by radiation if there is no fusion reaction in the Sun.

Answer. Substituting parameters, we have Eg D 3:8 � 1041 J. The time constant �
is � D 3:8 � 1041 J=3:86 � 1026 W � 1015 s �D 32M years.

Exercise 1.5. While abundance of 7Li which absorb energy by nuclear reaction
(endothermic) is much larger than that of 6Li which can produce energy by nuclear
reaction (exothermic), why blanket can produce additional energy?
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Answer. It is because nuclear cross section for 6Li is much larger than that for 7Li.
See Sect. 9.3.

Exercise 1.6. Compare Gamov’s tunnel factor P.E=Ec/ D p
Ec=Ee�p

Ec=E with
exact Mott-Massey formula P.E=Ec/ D p

Ec=E=.e
p

Ec=E �1/ as a function of E=Ec.

Answer. Plot by yourself. They are close if E=Ec < 1 and different if E=Ec > 1.

Exercise 1.7. Plot D � T fusion cross section given by the following formula from
Li [503]. Here El is the deuterium energy in keV in the laboratory frame. Ad and At

are mass number of deuterium and tritium, respectively.

	r.El/.barn/ D �16389C3.1C Ad=At/
2AdElŒe31:40

p
Ad=El � 1�

.C1 C C2El/2 C .C3 � 2
=e31:40
p

Ad=El/2

C1 D �0:5405; C2 D 0:005546; C3 D �0:3909

Answer. See Li [503] Fig. 2.



Chapter 2
Plasma Equilibrium in Tokamak

Abstract Plasma equilibrium is the state of force balance and is fundamental to
understand charged particle orbit and the neoclassical transport, collective phenom-
ena and MHD stability in the toroidal plasma. After introduction of topology of the
magnetic confinement bottle in Sect. 2.1, the Hamilton structure of the magnetic
field and the flux coordinates in general toroidal equilibrium in Sect. 2.2. Then
so-called Grad-Shafranov equation for the axisymmetric Tokamak equilibrium,
Current Hole equilibrium, and the modified Grad-Shafranov equation including the
anisotropic pressure and the toroidal flow, general tensor equilibrium relations are
introduced in Sect. 2.3. A set of the evolution equation for the plasma equilibrium
called 1.5 D transport equations is introduced in Sect. 2.4 including energy and
particle conservation equations, magnetic diffusion equation, and the equilibrium
equation, and the FCT equilibrium. Salon includes Activity of International Center
for Theoretical Physics (ICTP) related to plasma physics.

Further Reading:
Books: Freidberg [211], Hazeltine-Meiss [308], White [818] and Kikuchi [443]
are useful for basic understanding of the magnetic field structure in tokamak.
Lichtenberg [508] is quite comprehensive in Hamilton structure of magnetic
field. Jardin (2010) [394] provides methods to calculate time evolution of 1.5D
tokamak equilibrium and transport. Shafranov [677] and Miyamoto [552] are still
good introductory textbooks. Landau-Lifshitz [495] is useful to understand fluid
equations. For Hamilton mechanics, you may read Arnolds [26].

Review Papers: Boozer review [73] is an useful article. Some part of Hinton-
Hazeltine review [321] provides good description of 1.5D transport equations. For
topology of magnetic fields, you may read Woltjer [828] and Moffatt [557].

2.1 Topology of Magnetic Confinement

Topologies of 2 dimensional manifold are identified as sphere, torus, two hole torus,
etc. as shown in Fig. 2.1a. The “Sun” is a natural fusion reactor. Dense and hot

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_2
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Fig. 2.1 (a) Topologies of 2
dimensional closed surface
(sphere, torus (doughnut),
two-hole torus (pretzel), etc.),
(b) Torus—topology which
can be covered with non-zero
vector field

plasmas are confined with the gravitational field. Characteristic of this force is that
it is a central force and the force acts in the direction of field line. For this reason,
the confinement bottle has a topology of Sphere.

In the man-made fusion reactor, a high temperature plasma is confined by
trapping charged particles with the Lorentz force in the magnetic field to sustain
reaction with a small dimension of 100 millionth of the Sun. Characteristic of this
force is that the force acts in the direction perpendicular to the field line. For this
reason, the confinement bottle has a topology of Torus. The force balance is,

j � B D rp (2.1)

French mathematician Henri Poincare proved a theorem “Closed surface that
can be covered with the vector field without fixed point (null point) is restricted to
a torus”, which is called “Poincare theorem” (see Kikuchi [443] for the proof of
this theorem). Meaning of Poincare theorem is important for the fusion research.
Consider the boundary surface of the magnetically confined plasma, the plasma
will leak from the zero point of magnetic field vector. The surface must be covered
by non-zero magnetic field to confine the hot plasma. This is why we use toroidal
geometry for magnetic confinement. In the magnetic confinement system, the
toroidal plasma equilibrium is formed by the infinite set of nested toroidal surface,
each of which is characterized by a constant plasma pressure. Each toroidal surface
is densely covered by the helically wounded magnetic field as shown in Fig. 2.1b.

Topology of magnetic flux tube in the ideal MHD fluid is also of particular
importance as manifested by the Woltjer’s helicity conservation (1958) [828] and
Moffatt’s invariant in the linked flux tube (1990) [557]. J.B. Taylor’s famous “Taylor
relaxation state” [756] comes from the Woltjer’s helicity conservation law.
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2.2 Magnetic Field Structure of Tokamak

2.2.1 Hamilton Structure of the Magnetic Field B

Since B is incompressible flow, B has vector potential. Consider the toroidal
geometry characterized by arbitrary poloidal and toroidal angles � and �. The vector
potential A is given by,

A D 
r� �  r� C rG; (2.2)

where G is the “gauge term” (see Exercise 2.1 for its proof). Then, B is given by,

B D r
 � r� � r � r� (2.3)

This is called the “symplectic form” of the magnetic field and 
 and  are called
Clebsch potentials. Magnetic field line trajectory along the toroidal direction � is,

d�

d�
D @ 

@

,

d


d�
D �@ 

@�
(2.4)

This is the Hamilton equation by regarding � as “time”,  as “Hamiltonian”,
� as “canonical coordinate”, 
 as “canonical momentum” conjugate to � (see
Exercises 2.2 and 2.3 for its proof).

Variational principle of field line is given by the analogy to Hamilton action
integral (see Appendix B.3), S D R

Ldt D R
Œp � dx=dt � H�dt. Substituting

relationship p ! 
, dx=dt ! d�=d�, H !  , t ! �, we have S D R
Œ
d�=d� � �

d� D R
AAA � dxxx. Thus the Hamilton equation of the magnetic field line trajectory (2.4)

is given by a following variational principle (see Exercise 2.4 for its direct proof).

ı

Z
AAA � dxxx D 0 (2.5)

In case we need to obtain approximate magnetic field structure B1, the incom-
pressibility is not guaranteed if we make an approximation directly to B. If we make
an approximation to the vector potential A, the incompressibility of the magnetic
field is always guaranteed. It may be important to note that R. White showed that
ideal MHD perturbation B1 D r �.� �B/ do not conserve magnetic topology while
it satisfy the incompressibility condition [820].

The curvature of the magnetic field � is defined as � � b � rb has following
relations and is perpendicular to B .b � � D 0) (see Exercise 2.5 for its proof).

� � b � rb D �b � .r � b/ (2.6)

r � b D b � � C .b � r � b/b (b� (2.6)) (2.7)
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2.2.2 Magnetic Field in Flux Coordinates

The magnetic field in the symplectic form B D r
 � r� � r � r� (2.2) has two
cross products of gradient vectors to describe incompressible flow. But the magnetic
field in plasma equilibrium J � B D rP is more constrained to ensure the magnetic
field on the flux surface (B � r D 0) given by B D r � r˛ where ˛ D q�m � �.
This form is called the “Clebsch form”.

Let u as the flux surface label, and � and � as poloidal and toroidal angle
variables, respectively. Since the magnetic field lies on the flux surface in plasma
equilibrium, it is given by the linear combination of two tangent vectors: B D
c1@x=@� C c2@x=@�. Using the dual relation @x=@� D Jr� � ru and @x=@� D
Jru � r� (A.67), we may write the magnetic field B D b1r� � ru C b2ru � r� .
Substituting this into r � B D 0, we have @b1=@� C @b2=@� D 0. This leads
to the existence of the stream function h to satisfy b1 D �@h=@�; b2 D @h=@� .
Thus, the magnetic field is given in the Clebsch form: B D ru � rh. The
periodicity requirement for b1 and b2 in .�; �/ leads to the expression h D h1.u/�C
h2.u/� C Qh.u; �; �/, where Qh is periodic function in .�; �/. If we make a coordinate
transformation �m � �C Qh=h1, the stream function is give by h D h1.u/�m Ch2.u/�.

Considering the geometry in Fig. 2.2, we define the toroidal flux 
 and the
poloidal flux  enclosed by a flux surface as follows,


 D 1

2


Z
B � da� ,  D �1

2


Z
B � da� (2.8)

These fluxes are related to the stream function as d
=du D h1.u/ and d =du D
�h2.u/. If we take u D 
 or u D  , B and stream function are given as follows.

B D r
 � rh , h D �m � �=q.
/ (2.9)

B D r � r˛ , ˛ D q. /�m � � (2.10)

Fig. 2.2 Toroidal coordinates
.
; �; �/ in a plasma
equilibrium and toroidal and
poloidal fluxes
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Here q.
/ � d
=d D q. /. The coordinates .
; �m; �/ (or . ; �m; �/) are called
flux coordinates. In this coordinates, the magnetic field line becomes straight and is
also called “straight field line coordinates”. This coordinate has a simple meaning
that we can construct a coordinates in which the magnetic field becomes a straight
field in .�m; �/ plane on the flux surface by an appropriate choice of � to �m. The
toroidal angle � in (2.9) or (2.10) is arbitrary.

For the flux coordinates, we may replace 
 or  to any kind of flux label such as
volume inside the flux surface, V or normalized radius � defined in Sect. 2.4.

Specific choices of � produce important coordinates such as the Hamada
coordinates [282] and the Boozer coordinates [71]. In the Hamada coordinates, the
toroidal angle � is chosen so that j as well as B becomes straight on the flux surface.
You may read previous publication Kikuchi [443] for the detail.

The normal vector n is defined as a unit vector normal to the flux surface: n D
r =jr j. The bi-normal vector s is the defined as s D b � n. The set of unit vector
.b;n; s/ forms the right-handed orthogonal set on the flux surface.

b D B=B , n D r =jr j , s D b � n (2.11)

In the general flux coordinates, the differential operator parallel to B is given by,

B � r D J�1
�
@

@�m
C q. /

@

@�

�

; (2.12)

where J is the Jacobian:

J � @x
@ 

� @x
@�m

� @x
@�

D 1

r � r�m � r� D p
g D 1

B � r� (2.13)

Choice of � as a symmetric coordinate gives,

B � r D J�1@=@�m (2.14)

The flux surface average of a function f is defined as the volume average between
the flux surface  and  C d .

< f >D
R

fdV
R

dV
D
H

d� f=B � r�
H

d�=B � r� D
H

fdlp=BpH
dlp=Bp

(2.15)

The flux surface average is annihilator of this differential operator B � r.

hB � rf i D 0 (2.16)
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In Chap. 4, you will see following type of differential equation along the
magnetic field called the “magnetic differential equation” by Newcomb.

B � rf D S (2.17)

Because the flux surface average hi is annihilator of B � r, we have a constraint for
the source function S, which is called the ‘solvability condition’ of f .

hSi D 0 , or
Z 2


0

Sd�

B � r� D 0 (2.18)

Fig. 2.3 (a) Abdus Salam is the 1979 Nobel Laureate in physics and also a founder of ICTP
(International center for theoretical physics). (b) Trieste from the hill. (c) Plasma school held at
ICTP in 2012 organized by ICTP/IAEA. Headmasters of this school are S. Mahajan and Z. Yoshida
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Salon 2-1: Abdus Salam and ICTP
Abdus Salam (1926–1996) (Fig. 2.3a) is a Pakistani theoretical physicist who
received 1979 Nobel Prize in physics with Steven Weinberg and Sheldon
Lee Glashow for their contribution to electroweak unification. In 1964, he
established the Abdus Salam International Centre for Theoretical Physics
(ICTP) at Trieste in Italy. ICTP has been a driving force to advance scientific
expertise in the developing world for more than 50 years. There are many
leading plasma physicists assigned at ICTP in the past such as M. Rosenbluth.
In 2012, the author joined Joint ICTP-IAEA College on Plasma Physics
(Fig. 2.3c) to give a lecture on Hamilton mechanics of magnetic field lines.

2.3 Tokamak Equilibrium

2.3.1 Grad-Shafranov Equilibrium

Tokamak is one of axisymmetric toroidal equilibrium configurations. Other con-
figurations are such as the Spherical Torus (ST) and the Reversed Field Pinch
(RFP). The tokamak is characterized by its high toroidal magnetic field .Bt/ for the
plasma stability. Tokamak has geometrical symmetry in toroidal direction ensuring
the existence of flux surface under wide operating conditions. The force balance
equation in axisymmetric torus leads to so-called Grad-Shafranov (GS) equation
[677], which is nothing but a � component of the Ampere’s law (B.13) with @=@t D 0

and the constraints to J� from the equilibrium condition.
We will derive the Grad-Shafranov equation. Taking the � component of the static

Ampere’s law, r2A D ��0J, and using Eq. (A.54) and the axisymmetry (@=@� D
0), we have following equation for  D RA� .

�
@2

@R2
� 1

R

@

@R
C @2

@Z2

�

 D ��0RJ� (2.19)

Now the important point is what kind of constraints are imposed for the toroidal
plasma current density J� from the equilibrium force balance equation, J �B D rp.

From B D r � A and �0J D r � B and the axisymmetry (@=@� D 0), we have

BR D � 1
R

@ 

@Z
, BZ D 1

R

@ 

@R
in vector form: Bp D r� � r (2.20)

�0JR D � 1
R

@F

@Z
, �0JZ D 1

R

@F

@R
in vector form: �0Jp D r� � rF; (2.21)
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where F D RB� . We obtain following relations by substitution of above equa-
tions (2.20) and (2.21) into B � rp D 0 and J � rp D 0, which results from the
equilibrium force balance equation J � B D rp.

@ 

@R

@p

@Z
� @ 

@Z

@p

@R
D @. ; p/

@.R;Z/
D 0 i.e, p D p. / (2.22)

@F

@R

@p

@Z
� @F

@Z

@p

@R
D @.F; p/

@.R;Z/
D 0 i.e., F D F.p/ D F. / (2.23)

Thus, B in tokamak is given by B D r� � r C F. /r�. Substitution of
B D Bp C Fr� and J D Jp C RJ�r� into J � B D rp, we have,

Jp � Fr� C RJ�r� � Bp D rp (2.24)

Substituting Bp D r� � r and �0Jp D r� � rF and noting p D p. / and
F D F. /, we obtain following expression for the toroidal current density J� .

�0RJ� D �0R
2 dp

d 
C F

dF

d 
(2.25)

Combination of (2.19) and (2.25) gives so-called Grad-Shafranov equation.

�
@2

@R2
� 1

R

@

@R
C @2

@Z2

�

 D ��0R2 dp

d 
� F

dF

d 
(2.26)

Grad [261] further studied the adiabatic evolution of this Grad-Shafranov equa-
tion showing that adiabatic equilibrium evolution is characterized as a generalized
differential equation (GDE) such that this equation is the elliptic partial differential
equation (PDE) seeing from left and is an ordinary differential equation (ODE) seen
from right.

Typical equilibrium solution of this GS equation is shown in Fig. 2.4, which has
nested flux surfaces. Tokamak system usually operate with the divertor, where the
plasma is bounded by the separatrix. Region outside of the separatrix is called SOL
(scrape-off-layer), which is an open field line geometry to the diverter plate. The
magnetic field is helically wounded on the flux surface around the torus and the
safety factor is defined as q D ��=2
 , where �� is the change in the toroidal
angle when the magnetic field line returned to the same poloidal angle. The safety
factor is given in a different form as q D d
=d , where 
 D .2
/�1

R
B�dS� is the

normalized toroidal flux inside the flux surface.
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ψ=constant flux surface
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Fig. 2.4 Solution of Grad-Shafranov equation showing an equi-contour plot of the poloidal flux
function with a divertor. Photos of Prof. Halold Grad and Academician Vitaly D. Shafranov
(courtesy of Kurchatov institute)

2.3.2 Current Hole Equilibrium

In 2001, tokamak equilibria with almost zero current region in the plasma center is
discovered during the advanced tokamak research (see Chap. 3) in JT-60U by Fujita
[227], and in JET by Hawkes [300], called the Current Hole (CH), which is shown
in Fig 2.5a. This state exists stably without clear evidence of MHD instabilities
[227]. This CH is explained by an equilibrium bifurcation from nested to non-nested
(or multi-island) equilibrium (Fig. 2.5b) [742].

The dynamics of the CH operation is that it is created by strong heating during
current ramp, leading to build up of large bootstrap current [227] or non-inductive
CD [300] associated with negative ohmic current with negative E� . This negative
E� penetrates to the plasma center and central J� goes to very low but can not
be negative due to loss of equilibrium with nested flux surface but Axisymmetric
Multi-Magnetic Island (AMMI) equilibrium with slightly negative J� can exist for
CH operation. The reason for the current clamp [228] to small negative value is
also attributed to the loss of MHD equilibrium by the high �ˇp at the current hole
region. Number of investigations of AMMI equilibrium has been published since
then [125, 634, 804]. Rodrigues [634] in particular showed excellent agreement with
JT-60U experimental data as shown in Fig. 2.6.
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c) Reconstructed Jφ contour
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b) Multi-magnetic island
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Fig. 2.5 (a) Current Hole equilibrium, (b) schematics of AMMI equilibrium. After Takizuka
[742], and (c) reconstructed tri-magnetic Island equilibrium. Reproduced with permission from
Rodrigues [634]. Copyright American Physical Society
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Fig. 2.6 (a) Comparison of poloidal field in JT-60U CH and numerical profile of Bp=Bt.
(b) Reconstructed J� profile showing slightly negative region in the plasma center. Reproduced
with permission from Rodrigues [634]. Copyright American Physical Society

2.3.3 Anisotropic Pressure Equilibrium

In high temperature tokamak plasma, plasma becomes highly collisionless and the
conservation of the magnetic moment produces pressure anisotropy (see Chap. 4).
Effect of pressure anisotropy on the toroidal equilibrium is investigated by [260,
711, 738]. Such anisotropy may be important to investigate kinetic MHD stability
with energetic particles [119]. Basic equations for the tokamak may be given as,

J � B D r � P; (2.27)
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where the pressure tensor P is given by the following Chew-Goldberger-Low (CGL)
form in the magnetized plasma [121],

P D p?I � .p? � pk/bb (2.28)

Noting b �r � .p?I/ D bi@j.p?ıji/ D bi@ip? D b �rp?, and b �r � Œ.pk �p?/bb� D
bi@jŒ.pk � p?/bjbi� D bi.pk � p?/bj@jbi C bibi@jŒ.pk � p?/bj� D .pk � p?/b �
.b � rb/ C r � Œ.pk � p?/B=B�. As we see in (2.6), the curvature is perpendicular
to the magnetic field: b � .b � rb/ D b � � D 0 and using r � B D 0, we have
b � r � Œ.pk � p?/bb� D B � rŒ.pk � p?/=B� D b � r.pk � p?/� Œ.pk � p?/=B�b � rB.
The inner product b�(2.27) reads B@pk=@sC.p? �pk/@B=@s D 0 where @=@s D b �r
as given by J.B. Taylor [754]. It is convenient to express p? and pk in terms of . ;B/
and define 	 , � and K as follows.

	 � 1 � �0

B

@pk
@B

ˇ
ˇ
 

, � � 1C �0

B

@p?
@B

ˇ
ˇ
 

, K � 1

�0
r � .	B/ (2.29)

Then the tensor force balance equation (2.27) is reduced to,

K � B D @pk
@ 

ˇ
ˇ
Br (2.30)

�0

B

@pk
@B

ˇ
ˇ
 

D 1 � 	 D �0.pk � p?/
B2

(2.31)

Using the expression of the magnetic field in tokamak B D r� � r C Fr�,
r� component of (2.30) reads K � r D 0.

Using (2.29), we find I D 	F is a flux function. Taking the r component of
Eq. (2.30) and using the relations between J;B;K, we obtain the anisotropic Grad-
Shafranov equation derived by H. Grad [260].

L C r � rln	 D ��0R
2

	

@pk
@ 

ˇ
ˇ
B

� 1

	2
I

dI

d 
(2.32)

L �
�
@2

@R2
� 1

R

@

@R
C @2

@Z2

�

Important observation here is that the current density vector J does not lie on the
flux surface. Instead, the vector K lies on the flux surface.
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2.3.4 Equilibrium with Flow

Due to the toroidal symmetry, the tokamak plasma can rotate easily in the toroidal
direction up to an order of sound velocity but is more difficult to rotate poloidally
(see Sect. 4.5.1). Toroidal flow can be driven by the external torque, symmetry
breaking in neoclassical flow (see Chap. 4) or in plasma turbulence (see Chap. 7).
Even small toroidal rotation can affect stability of the resistive wall mode (see
Chap. 8).

Effect of flow on the toroidal equilibrium is investigated by Hameiri [286],
Takeda and Tokuda [738]. Toroidal flow is important to stabilize resistive wall mode
and also modifies energy principle as discussed in Chap. 8. Basic equations for the
tokamak may be given as,

�u � ru C rP D J � B (2.33)

r � .u � B/ D 0 (2.34)

B D r� � r C Fr� (2.35)

Taking r� (2.35) and using L defined in (2.32), we have

�0J D .L /r� C rF � r� (2.36)

From Eq. (2.34), we have u � B D �r˚ . This means B � r˚ D 0 and the ˚
is a flux function. Therefore, we may write r˚ D ˝. /r . For purely toroidal
rotation, we have u D R2˝r� by using (2.35). Substituting u D R2˝r� into
Eq. (2.33), we have

rP D J � B C �R˝2rR (2.37)

The second term of the RHS is the centrifugal force due to the plasma toroidal
rotation. Due to this term, plasma pressure can not be a flux function. We use
a curvilinear coordinates .R; �;  / instead of cylindrical coordinates .R; �;Z/. We
use the orthogonal relation (A.66): rui � .@x=@uj/ D ıij. Taking the toroidal
component (2.37)�r�, we have .J � B/ � r� D 0. Substituting (2.36) and (2.35),
we have .r � rF/ � r� D 0, i.e. F D F. /.

J � B D �FF0. /C L 

�0R2
r (2.38)

Thus, J � B force is still perpendicular to the flux surface  , while rP force is not.
Taking the radial component (2.37)�.@x=@R/ and using the orthogonal relations

rR � @x=@R D 1 and r � @x=@R D 0, we have

@P. ;R/=@R D �R˝. /2 (2.39)
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Taking (2.37)�@x=@ and noting orthogonal relations r � @x=@ D 1 and rR �
@x=@ D 0, we have following modified Grad-Shafravov equation,

L D ��0R2 @P. ;R/

@ 
� F

dF. /

d 
(2.40)

2.3.5 General Tensor Equilibrium

In case plasma equilibrium has both the plasma flow and the pressure anisotropy,
we have to include both effect. Moreover, if we apply non-axisymmetric field to
tokamak, we have 3 dimensional plasma equilibrium. The equilibrium in this case
is governed by most general tensor equilibrium relation as follows,

�.uuu � r/uuu D J � B � r � P; (2.41)

where the pressure tensor P is given by the CGL form (2.28). The J �B force can be
expressed by the Maxwell tensor in (B.19) and the convective derivative .uuu �r/uuu can
be given by the Reynolds stress in the Note. Then the equilibrium is expressed as,

@˘ij

@xi
D 0 , or r � ˘ D 0 (2.42)

˘ij D .p? C B2

2�0
/ıij �

�

1C �0.p? � pk/
B2

�
BiBj

�0
C �uiuj; (2.43)

where ˘ij may be called the ‘generalized pressure tensor’ or the “momentum flux
density” (see Column 2-1). The generalized pressure tensor ˘ij is a symmetric
tensor.

˘ij D ˘ji (2.44)

Using the tensor identity, @.xk˘ij/=@xi D ˘ijıki C xk@˘ij=@xi and noting second
term of RHS (right hand side) vanishes at equilibrium by the relation (2.42), we
have following integral relation.

I
xk˘ijdSj D

Z
˘ijıkjdV; (2.45)

where we used Gauss’s theorem to change volume integral to surface integral for the
LHS (left hand side). Using explicit expression for ˘ij, we have following general
‘Virial theorem’ by S. Chandrasekhar [103] and S. Yoshikawa [848] .
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I
xk

�

.p C B2

2�0
/ıij � BiBj

�0
C �uiuj

�

dSj

D
Z �

.p C B2

2�0
/ıij � BiBj

�0
C �uiuj

�

ıkjdV (2.46)

Taking the trace (k D j D i D 1; 3), we have following form by V. Shafranov [677].

I ��

p C B2

2�0

�

x � dS � .B � x/.B � dS/
�0

C �.u � x/.u � dS/
�

D
Z �

3p C B2

2�0
C �u2

�

dV (2.47)

Column 2-1: Momentum Flux Density in Ideal Neutral Fluid
In ideal neutral fluid, the continuity equation and the Euler equation are:

@�

@t
C @�ui

@xi
D 0

�

�
@ui

@t
C uj

@ui

@xj

�

D � @p

@xi
(2.48)

This Euler equation can be converted to following conservative form.

@�ui

@t
D �@˘ik

@xk
; (2.49)

where ˘ik D pıik C �uiuk

Here, ˘ki is called the “momentum flux density” and is a symmetric tensor
(see Landau-Lifschitz [495]). Here �uiuj is called the “Reynolds stress”.
Integrating in volume and using the Green’s theorem, we have:

@=@t
Z
�uidV D �

I
˘ikdSk (2.50)

The ˘ikdSk is the i-th component of the momentum flowing out from the
volume through the surface dS.

Column 2-2: Helicity and Kelvin’s Circulation Theorem
The Euler equation (2.48) has eight global conserved quantities (the kinetic
energy K D R

1
2
�u2dV , the helicity H D R

u � !dV , the momentum P DR
�udV , and the angular momentum M D R

x � udV), and infinite number of

(continued)
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Fig. 2.7 William Thomson
(Lord Kelvin) (1824–1907).
England Physicist. He is
famous for introduction of
absolute temperature,
Joule-Thomson effect,
Kelvin’s circulation theorem,
etc.

local conserved quantities. The circulation � is defined as,

� D
I

u � dl �
I

u � ıx (2.51)

The last equation is just to separate differential operator and integration. The
time derivative of the circulation is given by,

d�

dt
D d

dt

I
u � ıx D

I
du
dt

� ıx C
I

u � dıx
dt

The second term becomes total differential ıu2=2 and its closed integral is
zero. In case of isentropic system where � D �.p/, Euler equation can be
expressed as du=dt D �r˚ , where d˚ D dp=�. Applying the Stokes
theorem, we have conservation of the circulation using r � r˚ � 0, called
Kelvin’s circulation theorem.

d

dt

I
uuu � dl D 0 (2.52)

2.4 1.5D Transport Equations in Tokamak

Basic equations for the time evolution of the tokamak equilibrium and transport
are given in this section based on the development of TOPICS code at JAEA.
These equation are used in the time dependent current diffusion analysis to identify
bootstrap current (Fig. 4.4), for example.
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In this section, the moving coordinates .�; �; �/ is employed, where � is a flux
surface label, � is the poloidal angle, � is the toroidal angle (ignorable coordinate).
For moving coordinates, try two exercises 2.10 and 2.11 and also read [321] for the
details.

2.4.1 Integral Relations

A volume integral of a function f inside the flux label � is given by,
Z

fd� D
Z �

0

d�

�Z
fJd�d�

�

; (2.53)

where d� D Jd�d�d� is a volume element and J D 1=r� � .r� � r�/ is the
Jacobian. Let V is volume inside �, we have

@V

@�
D
Z

Jd�d� (2.54)

The surface average of f is

Z
fJd�d� D @V

@�
< f > (2.55)

For the surface integral of a vector f on the flux surface �, we have

I
f � dS� D

I
f � r�Jd�d� D @V

@�
< f � r� > (2.56)

The moving coordinate � D �. ; t/ moves with a speed of u�, i.e., d�=dt D
@�=@t C u� � r� D 0. Using this equation, the temporal evolution of the surface
quantity @f=@t in the real coordinate is expressed in the moving coordinate � as.

@f

@t

ˇ
ˇ
ˇ
x

D @f

@t

ˇ
ˇ
ˇ
�

C @�

@t

@f

@�

ˇ
ˇ
ˇ
x

D @f

@t

ˇ
ˇ
ˇ
�

� u� � r� @f

@�

ˇ
ˇ
ˇ
x

(2.57)

In the moving coordinate �, we have following integral relation.

@

@t

Z �

fd� D
Z � @f

@t
d� C

I
f u� � dS�; (2.58)

where the volume integral is taking inside the � surface.
In the following, we derive the temporal evolution of plasma parameters and

magnetic fluxes in the moving coordinate �.
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2.4.2 Energy and Particle Conservation Equations

We start from the derivation of a reduced set of the transport equations in the
direction of � for the particle and the energy in the time-varying 2 dimensional
equilibrium. The derivation from the kinetic equation can be seen in the beginning
of Chap. 4.

2.4.2.1 Particle Conservation Equation

The particle conservation equation can be expressed in a following form.

@na

@t
C r � .naua/ D Sa; (2.59)

where ‘a’ represents species a and Sa is a particle source density.
Taking the volume integration inside the flux surface � and considering � is

moving (d�=dt D @�=@t C u� � r� D 0), we obtain

@

@t

Z �

nad�
ˇ
ˇ
ˇ
�

D
Z � @na

@t
d� C

I �

nau� � dS�

D �
I

na.ua � u�/ � dS� C
Z

Sad� (2.60)

Taking the � derivative of the above equation and using Eqs. (2.55), (2.56), we
have

@

@t

�

hnai @V

@�

�

C @

@�

�
˝
na.ua � u�/ � r�˛ @V

@�

�

D hSai @V

@�
(2.61)

We simplify the symbol na D hnai. We also use the following diffusion
approximation, which is not always true.

˝
na.ua � u�/ � r�˛ D hDarna � r�i D Da

˝jr�j2˛ @na

@�
; (2.62)

We have following particle diffusion equation.

1

V 0
@

@t

�hnai V 0�C 1

V 0
@

@�

�

V 0Da
˝jr�j2˛ @na

@�

�

D hSai ; V 0 � @V

@�
(2.63)

2.4.2.2 Energy Conservation Equation

We derive a reduced equation for the following simple energy balance equation.

3

2

@Pa

@t
C 3

2
r � .Paua/C Par � ua D �r � qa C Qa (2.64)
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Taking the volume integration inside the flux surface �, we obtain

3

2

@

@t

Z �

Pad�
ˇ
ˇ
ˇ
�

D �3
2

Z �

Pa.ua � u�/ � dS� �
Z

par � uad� �
Z �

qa � dS� C
Z �

Qad�

D �
Z � �5

2
Pa.ua � u�/C qa

�

� dS�

C
Z �

.ua � u�/ � rPad� �
Z

Par � u�d� C
Z

Qad� (2.65)

Taking the � derivative of the above equation and using Eqs. (2.55), (2.56), we
have

3

2

@

@t

�

Pa
@V

@�

�

C @

@�

�
@V

@�

�
5

2

˝
Pa.ua � u�/ � r�˛C hq � r�i

��

� ˝.ua � u�/ � rPa
˛ @V

@�
C ˝

Par � u�
˛ @V

@�
D hQai @V

@�
(2.66)

To derive a final form, we use following approximation.

˝
Pa.ua � u�/ � r�˛ D Ta

˝
na.ua � u�/ � r�˛ D Da

˝jr�j2˛ Ta
@na

@�
(2.67)

hqa � r�i D h�rTa � r�i D �
˝jr�j2˛ @Ta

@�
(2.68)

˝
.ua � u�/ � rPa

˛ D ˝
.ua � u�/ � r�˛ @Pa

@�
D Da

˝jr�j2˛ 1
na

@na

@�

@Pa

@�
(2.69)

˝
Par � u�

˛ @V

@�
D Pa

˝r � u�
˛ @V

@�
D Pa

@

@�

Z
u� � dS� D Pa

@

@t

�
@V

@�

�

(2.70)

The final form of the energy conservation equation is given by,

1

.V 0/5=3
@

@t

�
Pa.V

0/5=3
� C 1
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@
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�

V 0 ˝jr�j2˛
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@na

@�
C �
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� Da
˝jr�j2˛ 1

na

@na

@�

@Pa

@�
D hQai (2.71)



2.4 1.5D Transport Equations in Tokamak 35

2.4.3 Magnetic Diffusion Equation

We derive equations of magnetic flux from following Faraday’s law.

@B
@t

D �r � E (2.72)

B D Fr� C r� � r (2.73)

E� D E C u � B (2.74)

Taking r� (2.73) and using�� D R2r � .R�2r /, we obtain

�0J D r � B D r � .Fr� C r� � r / D rF � r� C�� r� (2.75)

2.4.3.1 Poloidal Flux Diffusion Equation

Taking r�� (2.72) and using the vector formula a � .b � c/ D b.a � c/ � c.a � b/,

@

@t

r 
R2

D r� � .r � E/ (2.76)

Using the formula r.a � b/ D .b � r/a C b � .r � a/C .a � r/b C a � .r � b/,

r� � .r � E/ D r.E � r�/� .r� � r/E � .E � r/r�

D r
�

E�
R

�

C �ERe� C E�eR

R2
C ERe� C E�eR

R2

D r
�

E�
R

�

C 2E�
R2

eR D 1

R2
r.RE�/; (2.77)

where eR and e� are unit vector in R and � directions, respectively. Substituting this
into (2.76) gives R�2rŒ@ =@t � RE�� D 0 and integration in space gives,

@ 

@t
D RE� C c.t/ (2.78)

Taking r��(2.73), we have .E�
� � E�/=R D r� � u � .r� � r / D u � r =R2.

Therefore, we have RE� D �u � r C RE�
� . Substituting this equation to (2.74),

@ 

@t
C u � r D RE�

� C c.t/ (2.79)
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Substitution of (2.57) to (2.79) gives following relations.

@ 

@t

ˇ
ˇ
ˇ
�

C .u � up/ � r�@ 
@�

D RE�
� C c.t/ (2.80)

Finally, by surface-averaging, the following equation is obtained.

@ 

@t

ˇ
ˇ
ˇ
�

C U
@ 

@�
D< RE�

� > Cc.t/ (2.81)

U �< .u � up/ � r� > (2.82)

For the next subsection, another expression of  is

@ 

@t

ˇ
ˇ
ˇ
�

C .< u � up/ � r�=R2 >

< 1=R2 >

@ 

@�
D < E�

� =R >

< 1=R2 >
C c.t/ (2.83)

2.4.3.2 Toroidal Flux Diffusion Equation

Taking r��(2.72) and using the vector formula r � .a�b/ D b � .r �a/�a � .r �b/,

@

@t

F

R2
D �r� � r � E D r � .r� � E/ (2.84)

Taking r�� (2.74) and using the vector formula a � .b � c/ D b.a � c/� c.a � b/,

r� � E D .u � r�/B � F

R2
u C r� � E� (2.85)

Substituting this into (2.84), we obtain

@

@t

F

R2
D r �

�

.u � r�/B � F

R2
u C r� � E�

�

(2.86)

Taking this volume integration inside the � surface and using Gauss’s theorem
and noting B � dS� D 0 since � is also a flux label, we obtain

Z � @

@t

F

R2
d� D

I �

� F

R2
u C r� � E�

�

� dS� (2.87)

Substituting f D F=R2 in the integral relation (2.58) in the moving coordinates,

@

@t

Z � F

R2
d� D

I �

� F

R2
.u � u�/C r� � E�

�

� dS� (2.88)
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The toroidal flux function �.�/ is introduced as

�.�/ D 2


Z
B � dS� D 2


Z V F. /

R2
JdVd� D

Z V F. /

R2
d� (2.89)

@�

@V
D @

@V

Z V F

R2
d� D F < 1=R2 > (2.90)

By using these relations between F and �, the equation of toroidal flux evolution is

@�

@t

ˇ
ˇ
ˇ
�

D �@�
@�

< .u � u�/ � r�=R2 >

< 1=R2 >
� < � � r� � E� >

@V

@�
(2.91)

Using Eqs. (2.81), (2.83),

< .u � up/ � r�=R2 >

< 1=R2 >
D< .u � up/ � r� > C 1

@ =@�

"
< E�

� =R >

< 1=R2 >
� < RE�

� >

#

(2.92)

we have

@�

@t

ˇ
ˇ
ˇ
�

C U
@�

@�
D � @V

@ 
< B � E� > C @�

@ 
< RE�

� > (2.93)

2.4.3.3 Magnetic Pitch Diffusion Equation

Let define a quantity proportional to pitch of the magnetic field.

� � @ 

@�
D 1

4
2q
(2.94)

Using @ =@� D �@�=@�, the time derivative of � is given as,

@�

@t
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�

D @
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D @�
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@t

�

�

#

(2.95)

Using (2.82) and (2.94) and noting @2 =@�2 D .@�=@�/.@�=@�/C �.@2�=@�2/, we
have,

@�

@t

ˇ
ˇ
ˇ
�

D @�

@t

ˇ
ˇ
ˇ
�

@�

@�
C @

@�

�
@V

@�
< B � E� >

�

(2.96)
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Since
@�

@t
j� D @�

@t
j� C @�

@�

@�

@t
j� for � D �.�.�; t/; t/, we have

@�

@t

ˇ
ˇ
ˇ
�

D @

@�

�
@V

@�
< B � E� >

�

(2.97)

Note that the equation does not have the velocity U of the radial coordinate �,
appeared in Eqs. (2.81) and (2.93). This helps the definition of the radial coordinate
�. In tokamaks, the toroidal magnetic file is almost constant, which means the
toroidal magnetic flux can be used as the radial coordinate. We define the radial
coordinate � by

�.�/ D �a.�=�a/
2 (2.98)

Then, the equation of � evolution is

@�

@t

ˇ
ˇ
ˇ
�

D � �2a
2�a

	2 1

�

@

@�

�
V 0

�
< B � E� >

�

(2.99)

Additional equations for magnetic fluxes .�;  / are

@�

@t

ˇ
ˇ
ˇ
�
D 0 ;  D 2�a

�2a

Z �

0

��d� (2.100)

2.4.3.4 Generalized Ohm’s Law

In order to close the diffusion equations of magnetic fluxes (2.103), we use the
generalized Ohm’s law to express < B � E� > in terms of the resistivity and the
current. The generalized Ohm’s law is :

E� D �kJk C �?J? D �kJ C .�? � �k/J?; (2.101)

where �k and �? are plasma resistivity parallel and perpendicular to the magnetic
field, respectively and Jk, J? are parallel current, and perpendicular current to the
magnetic field, respectively. The effect of non-inductive current (just to change J to
J � Jni) is taken into account at the end, where the non-inductive current consists of
the bootstrap current, beam driven current, RF driven current etc.

For the pitch time evolution, we derive following expression for < B � E� > by
using the expressions for B (2.68), J (2.70) and< r �.r =R2/ >D @Œ< jrV=Rj2 >
.@ =@V/�=@V .
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< B � E� > D �k < B � J >

D �k
�0

< .Fr�/ � .�� r�/C .r� � r / � .rF � r�/ >

D �k
�0
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(2.102)

Then the explicit form of < B � E� > in the � coordinate is given by

< B � E� >D �k
�0

� 2�a�=�
2
a

V 0 < 1=R2 >


2 1

V 0
@

@�

�
� < 1=R2 >< jrV=Rj2 >



(2.103)

2.4.4 Equilibrium Equation

The radial coordinate � moves in time due to the change of MHD equilibrium, and
the surface averaged equilibrium quantities do change also. On the other hand, the
surface averaged transport equations described above give the constraints on MHD
equilibrium; that is, the toroidal flux function at the plasma surface � D �a has to
keep the prescribed value of �a, and the number of plasma particle, internal energy
and magnetic pitch have to be conserved. This means that, for the MHD equilibrium
consistent with surfed averaged plasma transport equations, .�.�/;�.�// have to be
conserved in solving the equilibrium equation, where

�.�/ D P.�/.V 0/5=3 ; P.�/ D
X

k

pk.�/; F.�/ D 2�a�=�
2
a

V 0 < 1=R2 >

Under these constraints, 2D dimensional MHD equilibrium equation is expressed as

L .R;Z/ D � R2

2�a�

d

d�

h
�.V 0/�5=3

i
� �a

�2a�

d

d�

h �

V 0 < 1=R2 >

i2
(2.104)

This equation is the generalized differential equation, introduced by Grad, that is,
the lhs is the partial differential equation of (R,Z),while the rhs is the ordinary
differential equation of �. Note that .�.�/;�.�// are the function of �. Then for
the calculation of the r.h.s of Eq. (2.104), the relation between � and the equilibrium
quantity, say the plasma volume profile V , is required. This relation is calculated by
solving the following the surfaced averaged equilibrium equation
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h
�2 < jrV

R
j2 > C 1

< 1=R2 >
C 5

3
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id2�
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C d

dV
.
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< 1=R2 >
/C d�
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.
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/�1=3

id�

dV
D 0 (2.105)

Here, the toroidal flux function �.V/ is used as the variable instead of �, and is
solved under the boundary condition of �.V D 0/ D 0 and �.Va/ D �a. The
solution of this equation gives the relation between the radial coordinate � and the
surface average equilibrium quantities.

2.4.5 Summary of 1.5D Transport Equations

The 1.5D transport equations are summarized in the following

particle transport equation
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energy transport equation
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magnetic pitch equation
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1D surface averaged equilibrium equation

h
�2 < jrV

R
j2 > C 1

< 1=R2 >
C 5
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/�1=3
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dV2

C d
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id�

dV
D 0

2.4.6 Flux Conserving Tokamak Equilibrium

It is well known that tokamak equilibrium is not necessarily a nested equilibrium
with single axis. As poloidal beta value (ˇp (1.4)) increases, there is a possible
equilibrium with the internal separatrix shown by Artsimovich [28] and Callen [91]
as shown in Fig. 2.8. The internal separatrix is associated with appearance of region
of reversed current (Fig. 2.8c).

The appearance of this internal separatrix can be suppressed if the plasma is
rapidly heated up and the dissipation of magnetic flux is negligible. One of this
process is the adiabatic compression of a tokamak and another one is the so-called
FCT (Flux Conserving Tokamak) equilibria shown by Clarke [130] and Dory [174]
as shown in Fig. 2.9. When the magnetic flux conserves, the magnetic topology does
not change, which means that FCT equilibria do not produce any internal separatrix
though they produces large Shafranov shift (up to a half of the minor plasma
radius) and the current density profile is more shifted to outboard surface area. This

P(ψ)

Δ

BT

a b c

bP ~ A−1 << 1 bP ~ A >> 1bP ~ 1

JT

JT

R−1

Fig. 2.8 Tokamak equilibria with ˇp to see appearance of internal separatrix. Reproduced with
permission from Callen [91]. Copyright AIP Publishing LLC
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15

10

Z

R R

a b c

R

CURRENT DENSITY

a) 1.2%, 1.08

4.2%, 2.87

b) 10.7 %, 4.75

c) b,bp = 18.8%, 5.83

5

0
R0-a R0+aR0

Fig. 2.9 Flux Conserving Tokamak Equilibria and their current profiles. Reproduced with permis-
sion from Dory [174]. Copyright IAEA Vienna

evolution can be simulated by a set of 1.5D transport equations in Sect. 2.4.5. These
FCT equilibria implies there is no practical equilibrium beta limit.

Exercise 2.1. Derive Eq. (2.2): AAA D 
r� �  r� C rG.

Answer. In the general curvilinear coordinates .u; �; �/, any vector field A can be
expressed as A D AuruCA�r�CA�r�. Let define G D R

Audu, i.e. dG=du D Au.
We have rG D @G=@uruC@G=@�r�C@G=@�r�. Then, we have A D rGC.A��
@G=@�/r�C.A��@G=@�/r�. If we define 
 D A��@G=@� and D �A�C@G=@�,
we have the expression.

Exercise 2.2. Show the magnetic field line equation: dui=ds D b �rui. Here s is the
length along the magnetic field line and fuig.i D 1; 3/ is the curvilinear coordinates.

Answer. Let x is the position vector in the cartesian coordinates. The magnetic
field line is given as dx=ds D b where b � B=B is the unit vector along the
magnetic field. Taking the inner product .dx=ds D b/ � rui and substituting the
relation dx=ds D P

.@x=@ui/dui=ds, we have the expression using the orthogonal
relation (A.66).
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Exercise 2.3. Derive Eq. (2.4): d�=d� D @ =@
, d
=d� D �@ =@� .

Answer. The magnetic field line is given as d
=ds D b � r
, d�=ds D b � r� ,
d�=ds D b � r� in the curvilinear coordinates .
; �; �/ using Exercise 2.2. Since
d
=d� D .d
=ds/=.d�=ds/, we have d
=d� D b � r
=b � r� D B � r
=B � r�.
Substituting the symplectic form B D r
 � r� � r � r� and expanding r D
.@ =@
/r
 C .@ =@�/r� C .@ =@�/r�, we have d
=d� D �@ =@� . Similarly,
we have d�=d� D B � r�=B � r�. Substituting the symplectic form B, we have
d�=d� D @ =@
.

Exercise 2.4. Show that magnetic field line Hamilton equation can be given by the
variational principle ıS D 0, where S D R

AAA � dxxx.

Answer. Substituting (2.2) into this action integral, we have S D R
.
.d�=d�/d� �

 d� C dG/. The gauge term
R

dG D G.2/ � G.1/ is the difference of start and
end point. Since the variational principle is formulated with fixed value at the start
and end points, ı

R
dG D 0. The variation ıS is given as ıS D R

.ı
d�=d� C

dı�=d� � ı /d�. Expanding ı D .@ =@
/ı
 C .@ =@�/ı� C .@ =@�/ı� and
making partial integration for dı�=d�, we have following relation:

ıS.�; 
/ D R h�
d�
d� � @ 

@




ı
 �

�
d

d� C @ 

@�



ı� C d.
ı�/

d�

i
d�. Since the third term is

total derivative like the gauge term, the variation is zero. Thus we obtain Hamilton
form of the magnetic field line.

Exercise 2.5. Prove the magnetic curvature relation � � b � rb D �b � .r � b/.

Answer. Substituting the vector formula (A.12): r.a � b/ D .b � r/a C b �
.r � a/ C .a � r/b C a � .r � b/ into the relation r.b � b/ D 0, we obtain this
relation.

Exercise 2.6. Derive so-called axisymmetric relation : b�r D F. /b�R2Br�.

Answer. Use the magnetic field expression in tokamak B D r � r C Fr� and
calculate r �B and use jr j2 D R2.B2�B2�/, we have this axisymmetric relation.

Exercise 2.7. Derive Grad-Shafranov equation in the axisymmetric equilibrium
using orthogonal relation in .R; �;  / coordinates.

Answer. Use .J � B/ � r� D rP � r� D 0. Substitute expressions of B D r� �
r C Fr� and �0J D .L /r� C rF � r� into this equation, we have .r �
rF/ � r� D 0, i.e. F D F. /. Also we have J � B D �..FF0 C L. //=�0R2/r .
Taking .J � B � rP D 0/ � .@x=@R/, we have @P. ;R/=@R D 0, i.e. P D P. /.
Taking .J � B � rP D 0/ � .@x=@ /, we have the Grad-Shafranov equation, L D
��0R2.dP. /=d / � FdF. /=d . Here, we use rui � @x=@uj D ıij.

Exercise 2.8. Show that there exits a selection of coordinates .�; �/ in which both
B and J can be expressed by the straight field lines.

Answer. Since B and J are integrable (stay on the flux surface), there exist stream
functions b D b1.
/� C b2.
/� C Qb.
; �; �/ and j D j1.
/� C j2.
/� C Qj.
; �; �/
so that B D r
 � rb and J D r
 � rj. Here Qj and Qb are periodic function of �
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and �. Consider the coordinate transformation to remove these periodic functions
by �h D � C �1 and �h D � C �1. We obtain �1 D .Qbj2 � Qjb2/=.b1j2 � b2j1/ and
�1 D .�Qbj1CQjb1/=.b1j2� b2j1/. The magnetic field and current density are given as
B D r
 � r.b1.
/�h C b2.
/�h/ and J D r
 � r.j1.
/�h C j2.
/�h/. This means
both are straight lines in .�h; �h/ coordinates, which is named Hamada coordinates.

Exercise 2.9. Show that there exits a coordinates .�; �/ in which B can be expressed
as B D g.
/r�b C f .
/r�b C ˇ�r
 also Clebsch form B D r
 � r.�m � �=q/.

Answer. We start from flux coordinates .
; �m; �/ in which B D r
�r.�m ��=q/.
Using the answer of the previous exercise, let express �0J D r.f 0.
/� C g0.
/� �
�.
; �; �// � r
, where �0j1 D �f 0.
/, �0j2 D �g0.
/, and �0Qj D �. Using the
vector formula (A.8): r � .f a/ D rf � a C f r � a and noting r � rf D 0, we have
r.f 0.
/�/� r
 D r� � rf .
/ D r � .f r�/. Noting r � .��r
/ D �r�� r
,
we obtain �0J D r � Œf .
/r� C g.
/r�/ � �.
; �; �/r
�. Since we have gauge
arbitrariness, we have B D f .
/r� C g.
/r�/� �.
; �; �/r
C rG. Boozer [70]
found a coordinate transform .�b; �b/ D .�m C �; � C q.
/�/ to eliminate the gauge
term rG. For � D G=.gq C f /, we have B D g.
/r�b C f .
/r�b C ˇ�r
 where
ˇ� D �� C �.qg0.
/C f 0.
//.

Exercise 2.10. Derive the time derivative relation .@ =@t/
 D �.@
=@t/ =q.

Answer. Substituting the relation .@
=@t/
 D .@
=@t/ C .@
=@ /.@ =@t/
 into
the identity .@
=@t/
 � 0 and using .@
=@ / D q, we have this relation.

Exercise 2.11. Derive the relation 2
.@
=@t/ D �hEkBi.@V=@ /.

Answer. Substituting � D  and f D B � r� into (2.58), we have 2
.@
=@t/ DR
.@B=@t/ � r�d� C H

.B � r�/.u � r /dS =jr j. Here, dS D .dS =jr j/r 
is used. By definition, we have u � r � �.@ =@t/x D �RE� . Taking the (2.72)
�r�, we have .@B=@t/ � r� D �r � .E � r�/. Integration over the volume enclosed
by the surface  , we have

R
.@B=@t/ � r�d� D � H E � BpdS =jr j. Combining

these equations, we have 2
.@
=@t/ D � H E � BdS =jr j. Using the definition
of the surface average, we have 2
.@
=@t/ D �hEkBi.@V=@ /.



Chapter 3
Advanced Tokamak Regime

Abstract For the efficient steady state operation, an operation at a high bootstrap
current fraction is essential. The bootstrap current is hollow in the radial direction,
which tends to be unstable to the MHD modes. But there is certain operating
regime, which is stable to MHD modes and has excellent energy and particle
confinement property. This regime is called advanced tokamak regime. After some
introduction of advanced tokamak research in Sect. 3.1, operation regimes in .q; li/
and .ne; Ip=
a2/ are shown in Sect. 3.2. Characteristics and ideal MHD stability
of the weak shear operation scenario are introduced in Sect. 3.3. Characteristics and
ideal MHD stability of the negative shear and current hole operations are introduced
in Sects. 3.4 and 3.5, respectively. We also briefly describe the status and issues
of the long pulse operation as an important research direction in Sect. 3.6. New
advanced tokamak devices are introduced in Sect. 3.7 and representative data of
tokamak and helical device LHD are shown in Sect. 3.8. Activity of IAE Large
Tokamak agreement is introduced in a Salon.

Further Reading:
Books: For basic understanding of MHD modes, you may read Freidberg (1987)
[211] and Bateman (1978)[45].

Review Papers: You may read review papers related advanced tokamak research
such as Kikuchi-Azumi [444], Kikuchi [442], Kishimoto [458], Taylor [759],
Goldston [252], Kikuchi [437]. For current hole operation, you may read Fujita
[229]. Many of DIII-D research papers are relevant for advanced tokamak research.

As for the International Tokamak Physics Activity (ITPA), you may read Special
issue in Nuclear Fusion volume 39, Number 12, 1999 (http://iopscience.iop.org/
0029-5515/39/12) and Special issue in Nuclear Fusion volume 47, Number 6,
2007 (http://iopscience.iop.org/0029-5515/47/6). Many of DIII-D research papers
are relevant for advanced tokamak research.

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_3
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3.1 Introduction

For the advanced tokamak operation, the control of the current profile is important
since the profile of the bootstrap current (Jbs � p

r=R.dP=dr/=Bp) is hollow. All
advanced tokamak operations suppress sawtooth instability by tayloring q.0/ > 1

and a hollow q profile called negative shear (NS) operation is actively exploited.
There is certain stable operating regime in hollow current profile. The current profile
is difficult to change at high plasma temperature and current profile control before
intensive auxiliary heating is important from the operational point of view.

Kishimoto [458] shows the schematics of the steady state operation regime at
high bootstrap current fraction and the access to this regime from the low bootstrap
current fraction plasma (Fig. 3.1a). Optimization of q profile at high bootstrap
current fraction and approach from Ohmic phase (OH) are key research element.

In 1993, the first comprehensive review on the prospects of the steady state toka-
mak reactor was given by Kikuchi [437], which covered the physics requirements of
the high bootstrap current fraction, the confinement enhancement factors, the non-
inductive current drive, the MHD stability including the disruption probability, the
power and particle control and the need for new research directions was stressed,
in addition to some engineering features of the magnet, neutral beam, coolant
and material selection. The steady state tokamak research is called by the name
of the Advanced Tokamak Research. Research directions have shifted to the
demonstration of a high bootstrap high normalized-beta regime since the appearance
of the SSTR concept.

First systematic experimental studies addressing the steady state tokamak
regimes are given from JT-60U by Kikuchi [439] and from DIII-D by R. Stambaugh
[715]. Reviews of the advanced tokamak research are given by R. Goldston [252],
by T. Taylor [759] and the advanced tokamak research on JT-60 is summarized by
H. Kishimoto [458].
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Fig. 3.1 (a) Approach to advanced tokamak operation in (bootstrap current fraction, q pro-
file) space. Reproduced with permission from Kishimoto [458]. Copyright IAEA Vienna.
(b) H. Kishimoto (1942–2005), who took a leadership in JT-60 project and ITER negotiation
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3.2 Current Profile and Density Limit

In the standard tokamak operation, the current profile is peaked at the plasma
center and the safety factor profile is monotonically increasing in the minor radius
direction. If the safety factor at the plasma center q.0/ � 1, sawtooth instability may
be excited as observed by Von Goeler [789] which has many puzzling phenomena
[604, 605, 850]. At the low order rational surface such as q.rs/ D m=n D 2=1,
so-called tearing mode [232] may be unstable to form a magnetic island and
the radial width of the magnetic island evolves nonlinearly according to the so-
called Rutherford equation. If the island size becomes sufficiently large or magnetic
islands of different modes overlaps, the magnetic field line becomes stochastic
and the plasma may terminate. The current profile is characterized by the ‘internal
inductance’, li as a ratio of volume-averaged poloidal field energy density and that

at the surface defined as li D
R

B2pdV=Vp

.�0Ip=
R

dl/2
, where dl is a differential poloidal length

and dV is differential volume.
The .q; li/ diagram (Fig. 3.2a) is one of important operational diagrams of a

tokamak [118]. The lower li boundary is limited by the surface kink modes or locked
mode while the upper li boundary is limited by the tearing modes. Between upper
and lower boundaries, we have stable operation regime, in which we have sawtooth
boundary shown by the dotted line in Fig. 3.2a. During the tokamak start up phase,
the appearance of the hollow current profile is expected due to the skin effect, which
may result in the current profile re-distribution or plasma termination (called major
disruption) by the double tearing mode [355, 718]. To eliminate hollow current
profile during the current ramp up phase, plasma minor radius expansion is effective
especially by using so-called ‘constant qa operation’ [429]. Weak and negative shear
regimes are below the sawtooth boundary.

Another important operation boundary is the density limit discovered by Green-
wald [264] as nG D Ip=
a2 (Fig. 3.2b). Here nG, Ip, a are density limit in 1020 m�3,
plasma current in MA, horizontal minor radius in m, respectively. This scaling

Fig. 3.2 (a) Schematic operating diagram in .q95; li/ plane. (b) Density operation regime. Here
nG D Ip=
a2. Reproduced with permission from Greenwald [265]. Copyright IOP Publishing
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correctly incorporates effect of plasma elongation through the increase in plasma
current. When the density profile is peaked, the density limit is increased implying
that the density limit is the edge phenomena and correlated with the edge density.

3.3 Weak Shear Operation

The radial profile of the bootstrap current is hollow. To obtain a monotonic q profile,
an active central current drive has to be applied to compensate this hollow bootstrap
current profile. Central active current drive can be made either by NBCD (neutral
beam current drive) and ECCD (electron cyclotron current drive).

Figure 3.3 shows WS profile and stability calculation using central NBCD for
the SSTR. By keeping q.0/ > 1, the sawtooth instability is suppressed. The
ballooning mode becomes stable when q.0/ becomes higher than 2. Ideal MHD
stability calculation using the ERATO-J code shows that n D 1; 2; 3 and 1 ideal
MHD modes also become stable when q.0/ > 2 if the wall stabilization is effective
at rwall=a D 1:2. While WS scenario with q.0/ > 2 is effective in enhancing beta
limit with wall stabilization, ideal MHD stability limit without wall stabilization is
reduces with q.0/ (ˇN � 1=q.0/) shown by Ramos [621]. So, it is important to
have a wall stabilization. The effectiveness of this wall stabilization is discussed
in Sect. 8.8.

To keep ideal MHD stability without the wall stabilization, Manickham [537]
gives this scenario at q.0/ � 1 under vanishing edge bootstrap current as shown
in Fig. 3.4. With wall stabilization, the stability limit is determined by the n D 1
ballooning mode as ˇN � 4, while it is determined by the n D 1 kink-ballooning
mode as ˇN � 3:5 without wall stabilization.

Further profile optimization without the wall stabilization has been made by Lin-
Liu [514] with a finite edge bootstrap current. He showed stable high ˇN D 4:0

and high bootstrap current fraction fbs � 70% equilibrium with relatively high
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li � 0:92 with the aspect ratio A D Rp=ap D 2:83 (Fig. 3.5). He calculated only
n D 1 and n D 1 while stability against some infernal modes (see Sect. 8.4.3) in
the intermediate n has to be checked. All these scenarios are based on the smooth
pressure profiles without the local transport barrier. Formation of the edge and the
internal transport barriers bring other issues associated with the excitation of the
localized bootstrap current to be discussed in Chap. 8 as well.

This WS regime has been investigated in many tokamaks and called in different
names such as the ‘high ˇp regime’ [376] and the ‘high ˇp H-mode regime’ [463]
in JT-60, the ‘supershot regime’ in TFTR [719], the ‘improved H-mode’ in ASDEX
Upgrade [696], ‘optimized shear regime’ in JET [258], ‘hybrid regime’ in DIII-
D [527]. In these regimes, improved core confinement is observed with sawtooth
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Fig. 3.6 Enhanced confinement regime with the ITB in WS plasma. (a) The ion temperature Ti

in excess of 30 keV is achieved with ITB near r=a � 0:7, which is relaxed to excite H-mode.
(b) Strong sheared toroidal rotation (Vt) is formed in the ITB. (c) Time evolution of the effective
thermal diffusivity ��

eff .0:7a/. The formation of the ITB reduces ��

eff .0:7a/. Reproduced with
permission from Koide [463]. Copyright American Physical Society

suppression. Figure 3.6 shows typical time evolution of enhanced confinement
regime in WS plasma (called high ˇp H-mode). The improved core confinement
is associated with the internal transport barrier (ITB) named by Koide in
1994 [463]. It is also interesting that ITB is associated with large flow shear in
the toroidal rotation.

3.4 Negative Shear Operation

Ozeki in 1992 [596] showed that a hollow current profile with a reduced pressure
gradient near qmin can be stable to ideal MHD modes, called NS operation. Since
bootstrap current profile is hollow, it is much easier to use hollow current profile
to minimize the active current drive. Since magnetic shear plays an important role
in stabilizing pressure driven ideal MHD modes, reduced pressure gradient near
qmin (low shear region) is important for NS scenario. A low pressure gradient
near qmin means that the bootstrap current is low. So, it becomes essential to drive
plasma current non inductively near the pitch minimum location. They proposed to
use off-axis NBCD to realize a negative shear profile, as shown in Fig. 3.7.

Ideal MHD stability of NS scenario has been studied by Manickam [537], which
shows that the beta limit is quite high ˇN D 5with the wall stabilization but becomes
fairly lower ˇN D 2 without the wall stabilization determined by n D 1 modes, as
shown in Fig. 3.8. The reason for this is quite simple that wall stabilization is easier if
the current is closer to the wall, but such a surface current is unstable if the wall is not
effective. This results implies that wall stabilization should be securely maintained
in reactor by a combination of rotational stabilization and the feedback stabilization.

Turnbull [779] made a systematic parametric scans on shaping, pressure peaking
and wall stabilization on ideal n D 1 mode for NS plasma as shown in Fig. 3.9.
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Fig. 3.7 NS scenario for the SSTR, where off-axis NBCD is used to form NS. Reproduced with
permission from Ozeki [596]. Copyright IAEA Vienna
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The ˇN limit increases with reduced pressure peaking factor for both circular and
D-shaped plasmas. But the improvement in D-shaped plasma is much higher than
that in the circular plasma. Effect of wall stabilization to increase the ˇN limit is
also much stronger for D-shaped plasma. This NS regime has been investigated
in many tokamaks such as enhanced reversed shear (ERS) regime in TFTR [502],
negative central shear (NCS) regime in DIII-D [720], reversed shear regime in
JT-60 [223, 224] and stationary magnetic shear reversal regime in Tore Supra [517].
Figure 3.10 shows NS plasma profiles in TFTR and D-III-D. In these regimes, very
high confinement is observed with strong ITB. Key issue is control of transport
to match optimum pressure profile stable to high ˇN operation. Access to stable
high ˇN in current ramp up phase is also an important issue, especially when qmin

passes low m=n rational value to avoid kink-ballooning and double tearing modes
(see Sect. 8.5.3).
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Fig. 3.9 (a) ˇN limit as a function of pressure peaking factor hp2i1=2=hpi for circular and
D-shaped plasmas and q0 D 3:9; 2:5. (b) ˇN limit as a function of wall location Rwall=Rplasma for
circular and D-shaped plasmas and p0=hpi D 2:4; 4:8. Reproduced with permission from Turnbull
[779]. Copyright AIP Publisher LLC

Fig. 3.10 (a) NS regime (called ERS) in TFTR. (b) NS regime (called NCS) in DIII-D.
Reproduced with permission from Levinton [502] and Strait [720]. Copyright American Physical
Society
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Fig. 3.11 (a) Current hole equilibrium in JT-60U, (b) poloidal field measurement by MSE
(Motional Stark Emission) spectroscopy, (c) deduced toroidal current density profile. Reproduced
with permission from Fujita [227]. Copyright American Physical Society

3.5 Current Hole Operation

As extreme situation in NS configuration, equilibrium with zero plasma current in
the central regime called ‘Current Hole (CH)’ (Fig. 3.11) was formed in JT-60U
[227] and JET [300]. Current Hole is an interesting structure formation in tokamak
magnetic configuration, which is robust against perturbation.

Key mechanism for the CH formation involves the bootstrap current. During
the current ramp up phase, strong auxiliary heating powers such as NBI and ECRF
are applied to form a hollow current profile through skin effect. The early current
profile shows positive current density in the plasma center. But a formation of
hollow q profile leads to a formation of ITB (internal transport barrier) and this
ITB excites large bootstrap current at � � 0.4–0.8. When the local bootstrap current
density exceed total current density, the negative toroidal electric field .E� < 0/

is induced. This negative electric field diffuses into the central region and reduces
the central current density down to zero. When the current density goes to negative,
nested flux surfaces in the central region are changed to the multi magnetic island
(MMI) equilibrium discussed in Sect. 2.3.2.

High central ion and electron temperatures are supported at the ITB region
.� � 0.5–0.7) as shown in Fig. 3.12. Temperature and density profiles are flat in
the CH region consistent with the absence of confining poloidal magnetic field. Such
flat temperature regions are observed in high performance NS discharges [225, 378],
implying these are also in the CH regime.

Time evolution of the CH is quite interesting that ITB is formed near the plasma
center and moves outward. Figure 3.13 shows time evolution of ion temperature
profile in the CH discharge. The radius of qmin is also moving outward and stagnates
at � � 0:8, while radius of ion ITB foot stays slightly inside of qmin radius. Although
the core confinement inside the CH is poor (almost no confinement), an ITB is
formed just outside of the CH showing good confinement close to ion neoclassical
transport [305, 743]. As a whole global energy confinement is quite good up to
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Fig. 3.12 (a) Safety factor (q) profile (shaded area gives uncertainty). (b) Ion .Ti/ and electron
.Te/ temperature profiles, (c) electron density profile. Reproduced with permission from Fujita
[227]. Copyright American Physical Society
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HHy2 D 1:45 in JT-60U [227]. Here HHy2 is defined as an enhancement factor of
plasma energy confinement time over the ITER IPB98(y,2) H-mode scaling [387]
and HHy2 D 1 corresponds to ITER standard operation.

One of important Current Hole characteristics is current clamp to J� � 0

shown by Fujita [228]. Huysmans solved following time dependent reduced MHD
equations (see Sect. 8.5.3) for the electrostatic potential 
, the poloidal flux  , and
the pressure p in the quasi cylindrical geometry [356]. It is found that central current
density is clamped to nearly zero due to n D 0 low m resistive instabilities in case
negative current density is expected without taking into account of these modes as
shown in Fig. 3.14. The growth rate is largest fo m D 1 and scales as � � �1=3 (same
as internal kink mode), while � � �3=5 for m D 2 mode (same as tearing mode).

This CH regime can be stably sustained for several seconds. This regime is
interesting from the control viewpoint that it has low li and is easier to get
positionally stable elongated plasma and also is easier to get high bootstrap current
fraction. On the other hand, CH regime is subject to higher ripple loss of ˛ particles
in future reactors and sets tight constraints on maximum toroidal field ripple as well
as low no-wall beta limit similar to NS regime.

While there is no confinement inside the CH, it is possible to sustain high plasma
pressure by dP=dr outside the CH. In fact, it was found that the stability limit is
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not so different between a strong reversed shear case with q.0/=qmin D 20 (model
equilibrium of CH since there is no equilibrium solution for q.0/ D 1) and a
moderate reversed shear case with q.0/=qmin D 2 [599]. Standard ideal MHD
stability calculation for CH by Ozeki [600] showed beta limit could be ˇN � 5.

One of interesting observation in the ideal MHD potential energy of CH is that
plasma behaves as if it were bordered by an extra internal vacuum region as shown
by Chu [126].

3.6 Long Pulse Operation

Even if steady state tokamak operation becomes possible utilizing the bootstrap
current mechanism, demonstration of long pulse operation is essential for future
advanced tokamak research.

The power system should operate reliably so that off-normal event should be less
than once a year. This requires very reliable operation with NTM suppression by
ECCD, RWM suppression by rotation, ELM suppression, control of the divertor
detachment and particle exhaust. In case of off-normal event, effect of plasma shut
down should be significantly reduced on current and thermal quenches in tokamak.

Sputtering of the first wall by fast neutral hydrogen atoms is another important
issue. Evaluation of energy spectrum of neutral flux to the 1st wall is important to
evaluate possible 1st wall damage due to energetic neutral.

Figure 3.14 shows neutral calculation using DEGAS [315] for the JT-60U
equilibrium shown in Fig. 3.14a. Figure 3.14b shows the estimated average energy
and neutral flux to the 1st wall and Fig. 3.14c shows the energy distribution of
neutrals under the saturated wall condition (E44020) [441]. Average energy of
neutrals at the 1st wall is 100 eV and flux of a few �1019 particles/s/m2 are
estimated. Figure 3.14c shows the distribution of particle fluxes for energy range
of 1–1000 eV. It was found that there is non-negligible population of high-energy
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(a few 100 eV–1 keV) neutrals. Existence of such energetic neutrals as well as the
existence of the second SOL observed by Asakura [29] is of concern for future long
pulse operation of fusion reactor [441] and left for future studies.

For long pulse operation, the fuel circulation is also an important subject since
the tritium retention in the first wall has big effect for the tritium self-sufficiency.
Figure 3.15a is an example of fuel circulation in a tokamak reactor. In case of 3GW
fusion power station, DT burn rate is 2:0 � 1021/s (see for example, SSTR [236]).
For a particle confinement time �p D 0:5 s, the particle out flux from the separatrix
is �p D 2 � 1023 s�1. If we assume total DT fuel circulation is this particle out flux
from the separatrix, namely �c D �p, �c is 100 times the DT burn rate.

If we include strong DT gas puff required to reduce plasma temperature in front
of the divertor plate estimated in SSTR design [432], total fuel circulation may go
up to 1000 times the fuel burn up rate, �c � 2 � 1024 s�1.

Thus, the burning efficiency (ratio of fuel burn rate to fuel circulation rate)
in magnetic confinement is fairly low at 0.1–1 %. For a burning efficiency of
0.1–1 %, total circulating fuel amounts to 1000–100 times of the burn rate. Even
if the tritium breeding ration (TBR) is 1.2, produced tritium is just 1:2. Deuterium
supply is not a issue since we have enough external D supply. Adding external D of
1.2, we can add to the recovered D and T. We define retention factor by retention
rate over the fueling rate. To have fuel balance, the retention factor must be less
than 0:02–0:2%. The experimentally observed retention factor is up to 50 % in Tore
Supra.

Key issue here is that we have not observed reduction of retention rate to zero,
while we have some evidence of transient desorption [575]. The local wall saturation
time estimated by Takenaga [741] is less than 1 s at the divertor plates and the
divertor dome and 10 s at the lower half of the baffle plates and 100 s at the main
chamber wall. The formation of the redeposited layers on plasma facing surfaces
significantly increases the retention rate as indicated from JT-60U experiment (see
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Fig. 3.16 Fusion product .ni.0/Ti.0/�E; t/ from tokamak and helical devices. See individual data
in the Appendix of the chapter

Fig. 3.15b) by Yoshida [847], and Tanabe [747]. They show that the retention rate
changes in the time scale of One Day for carbon. While W divertor is actively
pursued, the formation of W nano-structure [410] implies W may not be free from
enhanced retention in addition to the DBTT and re-crystallization issues for the W.

Unfortunately, there is no tokamak operating in this time frame nor there is no
technical proposal to continuously recover retention tritium from the wall, while
recovery of tritium from breeding blanket is designed and validated as discussed in
Chap. 9. It should also be remembered that even if there is no other loss, the tritium
decays with a half life of 12.323 year (decay of 5 %/year).

Figure 3.16 shows present status and future operation points of ITER and DEMO
on fusion triple product as a function of sustained duration. DEMO such as SSTR
has to operate almost year-long. The ITER under construction is expected to achieve
DEMO relevant fusion triple product. While ITER equips with full superconducting
magnets, the pulse length is limited less than 1 h. Large tokamaks such as JT-
60U and JET uses normal conductor for the magnet and are limited to short pulse
length less than a few tens seconds. Longest pulse length in tokamaks and magnetic
confinement system is the record data from TRIAM-1M. S. Itoh and TRIAM-1M
team demonstrated the longest operation up to 2 h in TRIAM-1M by Itoh [386], Itoh
[388] and subsequent extension to 3 h by Zushi [872] and 5 h Zushi [873] is still a
world record of plasma discharge duration in fusion experiments. TRIAM-1M also
reported high ion temperature (T.0/ � 3:5 keV) by Zushi [869], enhanced current
drive (ECD) by Zushi [870, 871] and existence of multiple recycling time constant
by Sakamoto [650].

Both Tore Supra and LHD operated up to 300 s. Tore Supra equips with
superconducting toroidal magnet and its initial operation is reported in 1988 by
Aymar [32]. Saint-Laurent reported demonstration of high power long-pulse full
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non inductive current drive up to 120 s (2 min) [647]. Houtte [787] reported a
demonstration of 6 min and 1 GJ by full non inductive operation using LHCD.
Further progress has been reported by Colas [135], Chatelier [107], Joffrin [404],
Giruzzi [248], Saoutic [657]. Sudden occurrence of the operational limit through
MARFE phenomena from re-deposition layer is shown by Ekedahl [183]. The Tore
Supra will be modified to a divertor tokamak named WEST [84, 262].

Both EAST [504, 505, 800] and KSTAR [3, 483, 485, 497, 498, 843] are equipped
with full superconducting coils. It is a merit of medium size superconducting
tokamaks the power required for long pulse is much smaller than ITER or JT-60SA
[379, 414]. Li (2013) showed that the EAST tokamak established LHCD H-mode
operation with reduced ELM activities and Wan showed the extended pulse length
to 400 s [802]. Long pulse operation of heating system is progressing in KSTAR
[482]. Some of the representative data from JET, JT-60U, Tore supra, LHD are in
Table 3.1.

As seen from Fig. 3.15b, shortest time scale by re-deposition for carbon wall
is order of DAY near the divertor and may be much longer for other areas of
the first wall. The problem of carbon wall is that it forms hydro-carbon. Thus the
large tritium inventory is expected even for ITER. Thus, the tungsten is adopted
for the divertor material. Shu [694] showed that the retention rate for the tungsten
is � 10�5. The deuterium induced blistering by Shu [695] is also an issue for the
use of tungsten in the divertor. To clarify issues and countermeasures for DEMO
relevant long pulse operation, it may be important to explore Month-long operation
at least in the medium tokamaks such as EAST [504] in China, and KSTAR [485] in
Korea as well as small superconducting tokamak, such as SST-1 [667] in India. Key
is to see whether retention can be stopped even with accumulation of re-deposition
layers and find countermeasures if not as well as how small ELM is necessary for
such a long pulse operation.

3.7 New Tokamaks for Advanced Tokamak Research

During the 1990 decade, large tokamaks such as JT-60U, JET, TFTR, DIII-D
played important role in advancing tokamak physics. In the 2000 decades, joint
effort among various sized tokamak played key role to extrapolate to ITER. This
activities is called ITPA (International tokamak physics activity) whose initial legal
framework has been provided by the IEA Large Tokamak Agreement (see Salon).

Tokamak research toward fusion energy development still needs a lot of efforts
to understand physics and technologies for fusion energy. New machines such
as JT-60SA (Ishida [379], Kamada [414], Barabaschi [43]) located in Japan
(Fig. 3.17a) and HL-2M (Li [506]) in China (Fig. 3.17b) are under construction as
of 2015.

Major scientific challenges are the power and particle control for long pulse
operation, efficient continuous operation with high bootstrap current fraction and
control and sustainment of high pressure plasma to increase fusion power density.



Salon: IEA Large Tokamak Agreement and ITPA
IEA (International Energy Agency:http://www.iea.org/) is an autonomous
organization to coordinate actions to ensure reliable, affordable and clean
energy for member countries and beyond. IEA also provides legal framework
on cooperation in Fusion research. IEA implementing agreement (IA) on
cooperation on large tokamak facilities was one of major IAs under IEA. This
IA is initiated on February 19, 1986 as the cooperation among the three large
tokamak facilities (JET, JT-60 and TFTR). This implementing agreement
works very well to enhance cooperation and competition among three large
tokamaks. Especially in case of JT-60, personal exchanges under this IA are
extremely helpful to learn from US and EU physicist and engineers. One of
the author (MK) stayed for 6 months in Princeton to join TFTR experiments
learned a lot from leading scientists. There are many visitors from JET
and TFTR to JT-60. Learning from two fusion institutions led to the early
modification of the original JT-60 to JT-60U by which we made a significant
advances in fusion plasma performance to have many world records [458].

After the shut down of TFTR in 1997, this IA is renewed as IEA
Large Tokamak Agreement. Under this IA, various Tasks (transport physics,
confinement database and modeling, MHD, disruption and Control, Edge
and pedestal physics, SOL and divertor physics, energetic particles and
steady state operation, tritium and remote-handling technologies, and others),
Workshops (examples are Plasma Shaping, Real Time Control of ITB,
Electron Transport, Management of Waste from Fusion Facilities, High Beta
Steady State Tokamak, Physics of Current Hole, Long Pulse, Burning Plasma
Physics and Simulation, Implementation of the ITPA Coordinated Research
Recommendations, etc.), Personal Assignments (short and long term visit)
has been implemented and reported to the FPCC (Fusion Power Coordinating
Committee).

ITPA (International Tokamak Physics Activity) is an valuable activities to
resolve critical physics issues relevant for ITER. This IAE-IA in cooperation
with other Fusion IAs (poloidal divertor IA and TEXTOR IA) provided
a legal framework for implementation of ITPA (International Tokamak
Physics Activity). The first planning meeting for this ITPA/IEA Coordination
was held at MIT (W52) in November 2002, the second (W54) at Naka
in November 2003 and the third meeting (W58) took place near Oxford
in December 2004. In case of W58 workshop, the organizing committee
invited leaders of medium-sized and large-sized tokamaks in EU, Japan, US,
Russian Federation and China (JET, JT-60U, DIII-D, ASDEX-U, C-MOD,
NSTX, FTU, MAST, JFT-2M, TRIAM-1M, TEXTOR, TCV, Tore Supra,
T-10, T-11M, Globus-M,Tuman-3M, FT-2, HL2A, HT-7) to consider the
implementation of ITPA joint experiments in their research programs.

Figure 3.18a shows a group photo of this workshop at the Eynshaw Hall,
which was previously a manor house in the eighteenth century and Fig. 3.18b
at NAKA.

Most of the scientific career of one of the authors (MK) is spent for the
research and management of this large tokamak experiment.

http://www.iea.org/
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Fig. 3.17 (a) Birds eye views of JT-60SA. Rp � 3m;Vp � 130m3; Ip D 5:5MA;Bt D 2:25T.
This machine is constructed under the EU-Japan broader approach agreement. After Kamada [414]
with the permission of IAEA. (b) Birds eye views of HL-2M. Rp � 1:78m; ap � 0:65m; Ip D
2:5.3/MA;Bt D 2:2.3/ T. This machine is capable of flexible shaping and may reach an equivalent
break even plasma regime. Courtesy of X. Duan (SWIP, China)

3.8 Appendix: Tokamak/Helical Representative Data

Representative data from JT-60U, JET, Tore Supra, LHD are shown. Data provided
by JT-60U (Drs Y. Kamada, S. Ide), JET (Dr. G. Sips), Tore Supra (Drs X.
Litaudon, G.T. Hoang), and LHD (Prof. T. Mutoh; *; [566], private communication)
(Table 3.1).
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Fig. 3.18 (a) IEA Large Tokamak workshop W58 “Implementation of the ITPA coordinated
research recommendations” in December 2004 held at Eynshaw Hall (eighteenth century manor
house transformed into a conference center), Witney near Oxford, UK. (b) IEA Large Tokamak
Workshop W65 “Implementation of the ITPA coordinated research recommendations” in Decem-
ber 2006 held at Naka, Japan
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Table 3.1 Representative short and long pulse data from JT-60U, JET, Tore Supra (TS) and LHD
[ni.0/�ETi.0/ in 1021 keV s m�3, ni.0/ in 1019 m�3]

Device Type Shot no. Dur. (s) ni.0/ Ti.0/ (keV) �E (s) ni.0/�ETi.0/ Ref.

JT-60U Record Ti 26939 0.1 4.53 45 0.75 1.53 [377]

JT-60U Record Qequ:
DT 31872 0.1 4.8 16.8 1.07 0.86 [226, 378]

JT-60U RS 40259 0.55 4.4 18.3 0.72 0.58 [413]

JT-60U High ˇp H 21140 0.62 5.6 30 0.31 0.51 [413]

JT-60U High ˇp H 21143 0.87 5.0 29 0.28 0.40 [413]

JT-60U RS 34292 0.8 3.6 12.9 0.89 0.42 [413]

JT-60U High ˇp H 21282 1.55 4.6 32 0.30 0.44 [413]

JT-60U High ˇp H 30006 4.5 4.5 11 0.32 0.16 [413]

JT-60U RS full CD 43046 7.4 2.3 8.7 0.45 0.089 [652]

JT-60U High ˇp H 29941 8.5 4.1 8.8 0.18 0.065 [413]

JT-60U High ˇp H 48158 25 1.35 7.1 0.22 0.021 [594]

JET Record DT 42976 0.2 3.4 28 0.92 0.87 [423]

JET ˛ heating 42847 1 3.3 17.7 1.0 0.6 [423]

JET DT H-mode 42982 5 6.6 8 0.45 0.23 [423]

JET 20 s H-mode 62065 20 3 8 0.2 0.05 [403]

JET 60 s pulse 56552 60 1.6 5 0.32 0.025 [403]

TS Improved L 23419 3 7.5 3.1 0.13 0.03 [332]

TS IC+LH 33898 21 5.5 3 0.043 0.007 [335]

TS IC+LH 34181 65 4.5 2.7 0.045 0.0055 [335]

TS LH 19980 87 2.3 1.5 0.06 0.002 [786]

TS LH 46596 150 3.6 2.5 0.06 0.005 [179]

TS IC+LH 47979 150 4.2 2.6 0.06 0.006 [179]

TS LH 31917 173 2.7 1.5 0.06 0.002 [389]

TS LH 32299 365 2.8 1.6 0.06 0.003 [787]

LHD IC+ECH 124617 233 1.5 2.5 0.13 0.005 *

LHD IC+ECH 124612 1713 1.2 2.1 0.15 0.0038 *

LHD IC+ECH 124530 2223 1.2 1.4 0.17 0.0027 *

LHD IC+ECH 124576 2673 1.2 1.5 0.16 0.0028 *

LHD IC+ECH 124579 2859 1.2 2.0 0.15 0.0035 *



Chapter 4
Collisional Transport in Tokamak

Abstract Collisional parallel transport physics plays an essential role in current
and rotation drives for the steady state tokamak reactor and is discussed here. The
moment equations is derived from Vlasov Fokker-Planck equation and the flux-
surface averaged parallel momentum and heat flow balance equation is derived in
Sect. 4.1. The characteristics of Coulomb collision operator is discussed in Sect. 4.2.
The drift kinetic equation is derived and the parallel friction and viscosity are
derived from the drift kinetic equation in Sect. 4.3. In Sect. 4.4, we describe the
generalized Ohm’s laws including the electrical conductivity, the bootstrap current,
neutral beam current drive, and EC current drive. Neoclassical rotation in tokamak
including offset toroidal rotation due to symmetry breaking is discussed in Sect. 4.5.
Fluid viscosity, gyro-viscosity, guiding center velocity are introduced as columns.

Further Reading:
Books: Braginskii [76] is well written classical text on the derivation of moment
equations. Helander-Sigmar [317] is a well-written textbook on Coulomb collision,
solution of the drift kinetic equation. Hazeltine-Waelbloeck [309] is also useful for
introduction to the basic kinetic equation. For the neoclassical cross field transports
based on moment equation approach skipped in this monograph, see Chap. 8 of
Kikuchi [443]. For the neutral beam current drive, you may read Chap. 5 of Kikuchi-
Lackner-Tran [445].

Review Papers: You may read Hirshman and Sigmar [330] and Hinton-Hazeltine
[321] for neoclassical transport. For the basic current drive physics, you may read
Fisch [204]. As for the bootstrap current, you may read Kikuchi-Azumi [440] and
Kikuchi-Azumi [444].

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_4
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4.1 Moment Equations in Tokamak

4.1.1 Moment Equations

The kinetic equation to describe the time evolution of the distribution function fa of
a species a under Coulomb collision in a multiple ion species plasma is the Vlasov
Fokker-Planck equation given by,

@fa
@t

C vvv � @fa
@x

C ea

ma
.E C vvv � B/ � @fa

@vvv
D Ca.fa/C Sa (4.1)

where Sa is an external particle source term and Ca is the Coulomb collision operator
which is given by a summation of collisions with each particle species including self
collision: Ca D P

b Cab. We describe derivation of moment equation for na, uai, pa,
qai given in Braginskii [76] and Hirshman-Sigmar [330].

For an arbitrary physical quantity A D A.x;vvv; t/, we can define the velocity
average hAiv � R

Afadvvv=
R

fadvvv D R
Afadvvv=na. We have general moment relation

by multiplying A to the Vlasov equation:
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Here we note
R

A@fa=@tdvvv D @.nhAiv/=@t � na@hAiv=@t,
R

Avj@fa=@xjdvvv D
@.nhvjAiv/=@xj � na@hvjAiv=@xj, and

R
AFj@fa=@vjdvvv D �nah@AFj=@vjiv after

the partial integration. Here Fj D ea.E C vvv � B/j satisfies @Fj=@vj D 0 andR
AFj@fa=@vjdvvv D �nahFj@A=@vjiv. In case of velocity moments (A D A.vvv/), we

have @A=@t D 0 and @vjA=@xj D 0 and we have following general velocity moment
relation [637]:
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A.Ca C Sa/dvvv (4.2)

Using the general moment relation (4.2), we can obtain a set of moment equation
using velocity average hAi � R

Afadvvv=
R

fadvvv, where we drop subscript “v” for
simplicity. We use the Einstein’s summation convention rule hereafter.

The velocity moment .1/ of Vlasov equation (4.1) gives the particle conservation
equation.

@na

@t
C r � .naua/ D Sna (4.3)

This is obtained by substituting A D 1 into the general velocity moment rela-
tion (4.2) noting @1=@vj D 0 as @na=@t C @nauai=@xi D Sna. Here, na D R

fadvvv
is density, uai D R

vifadvvv=na D hvii is the flow velocity, and Sna D R
Sadvvv is the

particle source. We note a relation
R

Cadvvv D 0.
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The velocity moment .mavvv/ of (4.1) gives the momentum balance equation.

mana
dua

dt
D eana.E C u � B/� rpa � r � �a C Fa1 C Sua (4.4)

pa D
Z
1

3
mana.vvv � ua/

2fadvvv , �a D
Z

mana..vvv � ua/.vvv � ua/

� 1

3
.vvv � ua/

2I/fadvvv

Fa1 �
Z

ma.vvv � ua/Ca.fa/dvvv , Sua D
Z

ma.vvv � ua/Sadvvv

To obtain this, firstly we substitute A D mavi into (4.2). A moment relation:
ma@nahvii=@t C ma@nahvivji=@xj � eana.E C .u � B//i D R

mavi.Ca C Sa/dvvv is
obtained noting @vi=@vj D ıij. Using the random velocity variable v0

j D vj � uaj,
we decompose hvivji D uaiuaj C hv0

iv
0
ji D uaiuaj C hv02iıij=3C .hv0

iv
0
j � v02ıij=3i/.

If we define the pressure by pa D manahv02i=3 and the viscous stress tensor by

aij D manahv0

iv
0
j � v02ıij=3i, we have the expression for the stress tensor Paij �

manahvivji D manauaiuaj C paıij C 
aij. Substituting @na=@t D Sna � @nauai=@xi

into the above moment relation, we obtain manaduai=dt D eana.Ei C .u � B/i/ �
@pa=@xi �@
aij=@xj CFa1i CSuai, where Fa1i � R

ma.vi �uai/Ca.fa/dvvv is the friction
force and Suai D R

ma.vi � uai/Sadvvv is the momentum source.
The viscous stress tensor �a in a magnetized plasma is different from that in the

neutral fluid shown in Column 4–1 and �a in tokamak is dominated by the parallel
viscous stress tensor �ak originating from the difference in hv2ki and hv2?i due to the
conservation of the magnetic moment under spatially varying magnetic field. There
is also a gyro viscous stress tensor �ag originating from the gyro motion as given
in the Column 4–2. This gyro viscosity is sometimes called as magneto viscosity.
This gyro viscosity plays some role in the drift wave dynamics.

The velocity moment . 1
2
mav

2/ of (4.1) gives the energy balance equation.
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2
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2Sadvvv

To obtain this, firstly we substitute A D 1
2
mav

2 into (4.2). A moment relation:
1
2
ma@nahv2i=@t C 1

2
ma@nahv2vii=@xi � eanaE � u D R

1
2
mav

2.Ca C Sa/dvvv is obtained
noting .vvv�B/jvj D 0. We decompose hv2vii D hv02v0

iiChv02iuaiC2uajhv0
jv

0
iiCu2auai.

If we define the total energy flux by Qai D 1
2
manahv2vii and the conduction

heat flux by qai D 1
2
manahv02v0

ii and use the definitions of pa and 
aij, we have
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Qai D qai C 5
2
pauai C uaj
aji C 1

2
manau2auai. Using this decomposition and noting

1
2
mahv2i D 1

2
mahv02iC 1

2
mau2a and

R
1
2
mav

2Cadvvv D R
1
2
mav

02CadvvvCua�R mavvv
0Cadvvv

(since
R

Cadvvv D 0), the moment relation is converted to:
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where Qa D R
1
2
mav

02Cadvvv is the collisional heat generation rate, SEa DR
1
2
mav

2Sadvvv is the energy source rate. If we subtract (4.5)�ua and (4.3)�mau2a=2
from above, we have: 3

2
@pa=@tC@.qaiC 5

2
pauai/=@xi D �
aij@uai=@xjCuai@pa=@xiC

Qa C Spa, where Spa D SEa � ua � Sua � .mau2a=2/Sna and using the definition of the
double dot product, 
aij@uai=@xj D �a W rua.

The velocity moment . 1
2
mav

2vvv/ of (4.1) gives energy flow equation.
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To obtain this, we substitute A D 1
2
mav

2vi into (4.2) to obtain a moment relation:
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Here, we note @A
@vj

D 1
2
mav

2ıij Cmavivj. As for the electric field term, we decompose

nah 1
2
mav

2ıij C mavjvii D . 3
2
pa C 1

2
manau2a/ıij C Paji. As for the Lorentz force term,

we note .vvv � B/jvj D .vvv � B/ � vvv D 0 and h 1
2
mav

2vvvi D Qa. Therefore, we have:
@Qai=@tC@Raji=@xj D ea

ma
Œ. 3
2
pa Cmanau2a/Ei CEjPaji C.Qa �B/i CGai�CSQai. Here,

Qai D 1
2
manahv2vii is the total energy flux and Raij D 1

2
manahv2vivji is the energy

weighted total stress tensor, Gai D R
1
2
mav

2viCadvvv is the collisional heat generation
rate. If we neglect the inertial term manau2a in the right hand side of (4.6), we have
the same result with Hinton-Hazeltine [321] and Hirshman-Sigmar [330].

For strongly magnetized plasma such as tokamak plasmas, the pressure tensor
pa � manahvvv0vvv0i and the energy weighted stress tensor ra � 1

2
manahv02vvv0vvv0i have

anisotropy given in the Chew-Goldberg-Low (CGL) form [121].
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pa D paI C .pka � p?a/.bb � 1
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where small perpendicular flow term is neglected for p?a and r?a. Here ra �
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�ka D
Z

mav
2
k.x

2
a � 5

2
/fadvvv , �?a D

Z
1

2
mav

2?.x2a � 5

2
/fadvvv (4.9)

The collisional heat generation rate Ga in (4.6) can be decomposed similarly.

Ga D Ta

ma

�
5

2
Fa1 C Fa2

�

Fa2 D
Z

mavvv.x
2
a � 5

2
/Ca.fa/dvvv (4.10)

where Fa1 is friction force defined in (4.4) and Fa2 is called the heat friction force.
From now on, we assume flow ua is much smaller than the thermal speed vTa Dp
2Ta=ma, namely �u D ua=vTa 	 1. In this case, we have Qa D qa C 5

2
paua C

O.�2u/ and Ra D ra C O.�2u/, where ra � 1
2
manahv02vvv0vvv0i is the energy weighted

stress tensor. Using �u D ua=vTa 	 1 approximation for the first term of (4.6) and
using (4.4) and (4.5) to eliminate @ua

@t and @pa
@t , we have @Qai

@t � @qai
@t C 5ea

2ma
pa.E C u �

B/i � 5Ta
2ma

@paji

@xj
C 5Ta

2ma
Fa1i, where we neglected terms O.�2u/ as well as a second order

term in flow � 5
3
uai

@qaj

@xj
. Similar algebra gives @Raji

@xj
� @raji

@xj
D @

@xj
. 5Ta
2ma

paji C Ta
ma
�aji/ �

5Ta
2ma

@paji

@xj
C 5pa

2ma

@Ta
@xi

C Ta
ma

@�aji

@xj
, where we used pa 
 
aji; �aji. The right hand side of

Eq. (4.6) is given as ea
ma
Œ 5
2
pa.E C u � B/i C .qa � B/i C Ta

ma
. 5
2
Fa1i C Fa2i/� under this

approximation. Thus we obtain following equation for the heat flow qa.
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ma

Ta

@qa

@t
D ea

Ta
qa � B � 5

2
narTa � r � �a C Fa2

�a D
Z

ma

�

vvv0vvv0 � v02

3
I
�

.x2a � 5

2
/fadvvv , Fa2 D

Z
mavvv.x

2
a � 5

2
/Ca.fa/dvvv

(4.11)

If we add external momentum and heat flow sources Ma and Qa in the right hand
side of (4.4) and (4.11), we have following set of flow equations.

mana
dua

dt
D eana .E C ua � B/ � rpa � r � �a C Fa1 C Ma (4.12)

ma

Ta

@qa

@t
D ea

Ta
qa � B � 5

2
narTa � r � �a C Fa2 C Qa (4.13)

Total viscous stress tensor ˘ a is defined and related to viscous stress tensor �a as,

˘aij �< ma.vivj � 1

3
v2ıij/fa >vD 
aij C manauaiuaj (4.14)

If the flow is subsonic, there is only O.�2uvTa/ difference between ˘ a and �a and we
will make no distinction between them unless otherwise specified. Hirshman and
Sigmar in Fig. 4.1 developed a moment approach to collisional transport.

Fig. 4.1 (a) Steven P. Hirshman and (b) Dieter Sigmar, who developed moment approach and
analytical friction and viscosity coefficients for the neoclassical transport. Courtesy of S. P.
Hirshman and MIT plasma science and fusion center



4.1 Moment Equations in Tokamak 69

Column 4-1: Fluid Viscosity; Landau-Lifschitz [495], Tani [751]
In ideal neutral fluid, the continuity equation and the Euler equation are:

@�

@t
C @�ui

@xi
D 0 , and �

�
@ui

@t
C uj

@ui

@xj

�

D � @p

@xi
(4.15)

This Euler equation can be converted to following conservative form.

@�ui

@t
D �@˘ik

@xk
, where˘ik D pıik C �uiuk (4.16)

Here, ˘ki is called the momentum flux density and is a symmetric tensor
(Landau-Lifschitz [495]). Integrating in volume and using the Gauss’s theo-
rem, we have: @=@t

R
�uidV D � H ˘ikdSk. The ˘ikdSk is the i-th component

of the momentum flowing out from the volume through the surface dSk.
In the viscous fluids, there is another source of momentum flux through the

surface element through the collisions between gas molecules and interaction
in liquid molecules, called the viscous momentum flux density (
 D ��),
where � is called the viscous stress. If 
 is proportional to the velocity
gradient (
xy D ��dux=dy), this fluid is called the “Newtonian fluid”
originating from Isaac Newton (1687). This viscous momentum flux becomes
tensor in general geometry (viscous stress tensor). We note that velocity
differential can be decomposed as the sum of the rotation and the rate-of-
strain as follows.

dui D @ui

@xj
dxj D 1

2
.!ij C sij/dxj (4.17)

!ij D 1

2

�
@ui

@xj
� @uj

@xi

�

, sij D 1

2

�
@ui

@xj
C @uj

@xi

�

; (4.18)

where !ij is called the vorticity tensor and sij is called the rate-of-strain tensor
[428, 751]. The vorticity tensor !ij and the vorticity ! D r � u are related
as !i D �ijk!jk, !ij D �ijk!k=2, where �ijk D .ei � ej/ � ek is the Eddington �
(or Levi-Civita symbol), !i is i-th component of the vorticity.

The viscous momentum flux is proportional to the rate-of-strain tensor
since the rotation do not contribute to the viscous momentum flux. The
viscous momentum flux in the Newtonian incompressible flow is given as

ij D �2�sij. In case of incompressible fluid, this is traceless. In the general
compressible fluid, Tracefsijg D r�u and we define the traceless rate-of-strain
tensor Sij as follows (factor 2 is to match Braginskii definition).

(continued)
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Sij D @ui

@xj
C @uj

@xi
� 2

3
r � uıij (4.19)

The momentum flux density is given by adding a term proportional to r �u as:
˘ij D pıij ��Sij C�vr � uıij C �uiuj, where �v is called the bulk viscosity.

Column 4-2: Gyro Viscosity; Kaufman [419], Braginskii [76]
In the magnetized plasma, the physical mechanism to produce viscous force
is quite different. The lowest order velocity distribution function f0, which is
a solution of the drift kinetic equation vkrkf0 C vvvd � rf0 D C.f0/, depends
on guiding center position X rather than the particle position r D X C �.
Therefore, the distribution function at r is f .r/ � f0.X/ � f0.r/ � � � rf0.r/.
The term �� � rf0.r/ produces the diamagnetic flow, diamagnetic heat flow,
and the momentum flux. The gyro viscosity �g is given by:

�g D �
Z

ma.vvv
0vvv0 � .v02=3/I/� � rf0.r/d3vvv (4.20)

The relation between viscous stress tensor 
ij and the rate of strain tensor
Sij is simple in the absence of the magnetic field similar to the case of a neutral
fluid (
ij � ��Sij) as given by Chapman-Cowling [105] and refined by
Braginskii [76] (�i D 1:36niTi�ii for ion and �e D 0:733neTe�ei for electron).
Here, Sij is the trace-less rate of strain tensor defined in (4.19).

The presence of the magnetic field (we assume B D Bez) leads to
a complicated relation between 
ij and Sij. This gyro viscous tensor is a
traceless symmetric tensor having five independent components, 
zz, 
xy, 
xz,

yz, 
xx � 
yy, which are to be expressed in terms of the invariant set of rate
of strain components against rotation around the z axis, Szz, Sxy, Sxz, Syz, and
Sxx � Syy.

The viscous stress component 
zz D ��Szz is same as in the absence of
the magnetic field. The traceless condition gives 
xx C 
yy D �
zz. In the
strongly magnetized plasma (˝a�a 
 1), part of the viscous stress goes to
zero as ˝a�a ! 1 but there are some remaining term 
ij � pa=˝a as seen
from Chapman-Cowling formula [105, p. 378].

Physical account is given by Kaufman [419]. The viscous stress tensor
from dux=dy associated with dEy=dy is obtained by solving the equation of
motion as hPx2i D 1

2
�2a.˝

2
a � 2˝a

@ux
@y / and hPy2i D 1

2
�2a.˝

2
a � ˝a

@ux
@y /. This

gives rise to the stress tensor component, 
xx � 
yy D �.pa?=˝a/
@ux
@y . In

terms of the rate of strain tensor Sij, we have 
xx � 
yy D �Sxypa?=˝a.

(continued)
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The viscous stress tensor from @ux=@z associated with dEy=dz is obtained
noting dz

dt D vk. When dEy=dz ¤ 0, we have an acceleration dux
dt D @ux

@z vk.

This gives rise to an additional force drift uy D dux
dt =˝a D @ux

@z vk=˝a in the y-
direction. This gives rise to the stress tenser component,
yz1 D manahuyvki D
.pak=˝a/

@ux
@z . Similarly, the viscous stress tensor from @uz=@x is obtained as


yz2 D .pa=˝a/
duz
dx . Summation gives rise to 
yz D 
yz1 C 
yz2 D Sxz.pka C

p?a/=˝a C !xz.pka � p?a/=˝a, where !ij is the vorticity tensor.
Kaufman [419] noted that the stress tensor can be driven by the vorticity

for the anisotropic pressure plasma.

4.1.2 Flux-Surface Averaged Moment Equations

We define the flux surface average operator hi by,

hAi �
R 2

0

p
gAd�

R 2

0

p
gd�

D
R 2

0

d�A=B � r�
R 2

0

d�=B � r�
(4.21)

This flux surface average is an annihilator of B � r D .1=
p

g/@=@� as hB � rAi D 0.
The flux surface averaged parallel momentum and heat flux balance equations

for thermal electron(e), ion(i), and impurity(I) in transport time scale (@=@t � 0) are
obtained by taking the flux surface average of B�(4.12) and B�(4.13) as follows,

hB � r � ˘ ai D hB � Fa1i C eanahB � Ei C hB � Mai (4.22)

hB � r � �ai D hB � Fa2i C hB � Qai (4.23)

The first order flows of species a are decomposed to parallel (ukab and qkab) and

perpendicular (u.1/?a and q.1/?a) components to the magnetic field as,

u.1/a D ukab C u.1/?a; q
.1/
a D qkab C q.1/?a (4.24)

The perpendicular flows are given by taking b� (4.12) and (4.13) by setting @=@t D
0 and neglecting higher order terms such as �a;�a, Fa1;Fa2, Ma;Qa as:

u.1/?a D BV1a

F

r � b
B

, q.1/?a D 5Pa

2

BV2a

F

r � b
B

(4.25)

Here BV1a D �F Œd˚=d C .1=eana/dPa=d � and BV2a D �.F=ea/dTa=d are
thermodynamic forces and F. / D RB� . Considering the poloidal flow in unit flux
tube, we have following relation.
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ua� . / D u.1/a � r�
B � r� ; qa� . / D q.1/a � r�

B � r� (4.26)

Here we note that ua� . / and qa� . / do not have a dimension of flow.
From the scalar product (4.24)�r� , we obtain following relations:

B2ua� . / D Buka � BV1a , B2
2qa�. /

5Pa
D B

2qka

5Pa
� BV2a (4.27)

Substituting axisymmetric relation b � r D Fb � R2Br� (see Exercise ??)
into (4.25), first order flow relation (4.24) is transformed by using (4.27) as follows.

u.1/a D ua� . /B C BV1a

F
R2r� , q.1/a D qa� . /B C 5Pa

2

BV2a

F
R2r� (4.28)

Taking the toroidal (�) component of (4.28) and using the flux surface average
of (4.27), we obtain following equations for the toroidal flows,

u.1/a� D B�
hB2ihBukai C

"

1 � B2�
hB2i

#
BV1a

B�
(4.29)

Here, second terms of the right-hand-side are called Pfirsch-Schlüter terms. Flux
surface averaged parallel viscous forces hB � r � ˘ ai; hB � r � �ai and friction forces
hB � Fa1i; hB � Fa2i are related to first order flows. Friction forces are given as:

�hB � Fa1i
hB � Fa2i

�

D mana

�aa

X

b

� Olab
11 �Olab

12

�Olab
21

Olab
22

�
2

4
hBukai
2hBqkai
5Pa

3

5 (4.30)

Here Olab
ij D .�aa=mana/lab

ij is the normalized friction coefficient. The lab
ij for thermal

species and those between fast ion and thermal species are given in Sect. 4.3.1.
The parallel viscous force is related to the poloidal flow since viscous force

operates when the particle moves poloidally in response to the variation of the
toroidal magnetic field [327, 329].

�hB � r � ˘ ai
hB � r � �ai

�

D manahB2i
�aa

� O�a1 O�a2

O�a2 O�a3

�"
ua�
2qa�
5Pa

#

(4.31)

Here O�ai D .�aa=mana/�ai is the normalized viscosity coefficient. The same
O�a2 appears in two places in off-diagonal part of the viscosity matrix, which is the
special example of the Onsager symmetry and comes from the self-adjointness of
the Coulomb collision operator. It is also important to note that the viscous force
is related only to its own flow fields, which comes from the dominance of the test
particle portion of the Coulomb collision operator [330].
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While the variational method is effective to obtain transport coefficients numer-
ically [321], a novel method is developed by Tsang-Callen [774] using model
Coulomb collision operator. Basic idea is to divide velocity space into Pfirsch-
Schlüter, plateau, banana, and boundary layer to obtain transport coefficients so
that transport coefficients are given by a velocity space integral. This method
is further improved by Hirshman [327], Shaing [679], Houlberg [349] using
approximate Coulomb collision operator which conserves energy and momentum
[325]. Substituting these formulas for viscosity and friction coefficients into (4.22)
and (4.23) and using (4.27), following balance equations of friction and viscous
forces are obtained.

� O�a1 O�a2

O�a2 O�a3

�" hBukbi � BV1a

hB
2q

kb

5Pb
i � BV2a

#

D
X

b

� Olab
11 �Olab

12

�Olab
21

Olab
22

�" hBukbi
hB

2q
kb

5Pb
i

#

Cea�aa

mana

�hB.Mka C naEk/i
hBQkai

�

(4.32)

Here, Mka;Qka are parallel momentum source and parallel heat source, respec-
tively. If we write Eq. (4.32) for electron, ion, impurity and fast ion (only momentum
balance is considered for fast ion since heat flow by fast ion is comparatively small),
we obtain following system of linear equations.

OM �
Uk � V?

	 D OLUk C OE C OSk (4.33)

where
OM: normalized viscosity matrix, OL: normalized friction matrix

Uk: parallel flow vector, V?: thermodynamic force vector
OE: electric field acceleration vector, OSk: parallel source vector
Using (4.33), we obtain following expressions for parallel flow.

hB � uai D
4X

bD1

eb�bb Ocab

mb
hB � Ei C

7X

bD1

�

ǪabV?b C �bb Ocab

mbnb

OSkb

�

(4.34)

Ǫ D . OM � OL/�1 OM , Oc D . OM � OL/�1 (4.35)

Before we go into the details of kinetic theory to calculate the parallel friction and
viscous coefficients in the following sections, we show the relation of the moment
variables and expansion of velocity distribution function [449].

The moment equations (4.12) and (4.13) has 18 variables .na;Ta;ua; qa;˘ a;�a/.
These variables are related to the structure of the velocity distribution function in
the velocity coordinates .v; �; '/. Using the orthogonality of Legendre polynomials
in pitch angle � and the Sonnine polynomials in v, we have following expansion.
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fa D faM C f .1/a1 C f .2/a1 (4.36)

f .1/a1 D 2vvv

v2Ta

�
h
ua0L

.3=2/
0 C ua1L

.3=2/
1 C ua2L

.3=2/
2 C ��

i
faM

f .2/a1 D 2
vvvvvv � .v2=3/I

manav
4
Ta

W
�

˘ aL.5=2/0 C 2

7
.�a C ˘ a/L

.5=2/
1 C ��

�

faM

Here, the upper subscript of f .1/a1 and f .2/a1 implies Legendre harmonics, P1.cos�/ and
P2.cos�/. The gyro phase average of the distribution function is obtained noting
that vk D vcos� and 2v2k � v2? D .3cos2� � 1/v2 D 2P2.cos�/v2 and following
gyro-phase average relation:

hvvvvvvi D v2?
2
.I � bb/C v2kbb (4.37)

The gyro phase average of the distribution function is then given by:

f .1/a1 D 2vk
v2Ta

�
�

uak � 2qak
5pa

�
5

2
� x2a

�

C ua2kL.3=2/2 C ��
�

faM (4.38)

f .2/a1 D 2v2k � v2?
manav

4
Ta

�

bb � 1

3
I
�

W
�

˘ a C .�a C ˘ a/

�

1 � 2x2a
7

�

C ��
�

faM

(4.39)

4.2 Coulomb Collision

4.2.1 Collision Operator

Coulomb collision operator given by L.D. Landau [492] from Boltzman form is,

Cab D �e2ae2bln�

8
"20ma

X

k;i

@

@vk

Z
Uki

�
fa.vvv/

mb

@fb.vvvb/

@vbi
� fb.vvvb/

ma

@fa.vvv/

@vi

�

dvvvb; (4.40)

where Uki is given as a function of the relative velocity u D vvva � vvvb by,

Uki � u2ıki � ukui

u3

Since the Boltzmann’s collision integral is derived for short range force, Rosen-
bluth derived the Coulomb collision term which eventually agrees with Landau form
using Markov process formulation [638] written in a Fokker-Planck form as,
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Cab.fa; fb/ D �@ h�vk=�ti fa
@vk

C @2 h�vk�vi=2�ti fa
@vk@vi

; (4.41)

where h�vk=�ti and h�vk�vi=2�ti are the average change of�vk and�vk�vi per
unit time due to the collision and are called the dynamical friction coefficient and
the diffusion tensor, respectively.

Cab D e2ae2bln�

4
m2
a"
2
0

X

k;i

�

� @

@vk

�
@hab

@vk
fa

�

C 1

2

@2

@vk@vi

�
@2gab

@vk@vi
fa

��

; (4.42)

where hab and gab are called Rosenbluth potentials:

hab.vvv/ D
�

1C ma

mb

�Z
fb.vvvb/

u
dvvvb (4.43)

gab.vvv/ D
Z

ufb.vvvb/dvvvb (4.44)

If the background species b has the isotropic velocity distribution function,
the Rosenbluth potentials hab; gab only depends on the speed v in the spherical
velocity coordinates .v; �; '/. If we write this Fokker-Planck equation as Cab.fa/ D
@=@vkŒAab

k faC@.Dab
ki fa/=@vi�, Aab

k and Dab
ki are called the dynamical friction coefficient

and the diffusion tensor, respectively. If we define Jab
k D Aab

k fa C @.Dab
ki fa/=@vi,

Jab D fJab
k g is a particle density flux in the a species velocity space as discussed by

Sivukhin [697]. Taking the first velocity coordinate as the relative velocity direction,
we find following non-zero components.

Aab
1 D v�ab

s , Dab
11 D .v2=2/�ab

k ;D
ab
22 D Dab

33 D .v2=2/�ab
D ; (4.45)

where the slowing down frequency �ab
s .v/, the deflection frequency �ab

D .v/, and the
parallel velocity diffusion frequency �ab

k are defined as:

�ab
s .v/ D �e2ae2bln�

4
m2
a"
2
0

h0
ab.v/

v
(4.46)

�ab
D .v/ D e2ae2bln�

4
m2
a"
2
0

g0
ab.v/

v3
(4.47)

�ab
k .v/ D e2ae2bln�

4
m2
a"
2
0

g00
ab.v/

v2
(4.48)

Using these quantities, the Fokker-Planck collision operator can be written as,

Cab.fa; fb/ D �ab
D L .fa/C 1

v2
@

@v

�

v3
�

�ab
s

1C mb=ma
fa C 1

2
�ab

k v
@fa
@v

��

(4.49)
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Here L .fa/ is the Lorentz scattering operator defined by,

L .fa/ D 1

2

�
1

sin�

@

@�

�

sin�
@fa
@�

�

C 1

sin2�

@2fa
@'2

�

(4.50)

Usually, the azimuthal dependence is absent and the Lorentz scattering operator can
be given as follows by using � D cos� .

L .fa/ D 1

2

1

sin�

@

@�

�

sin�
@fa
@�

�

D 1

2

@

@�

�

.1 � �2/@fa
@�

�

(4.51)

In case background species b is the Maxwellian velocity distribution with the
temperature Tb, the velocity distribution function fb.vvv/ is given as,

fb.vvv/ D nb


3=2v3Tb

e�x2b where, vTb D
�
2Tb

mb

�1=2
, xb D v

vTb
; (4.52)

the Rosenbluth potentials hab and gab are just functions of speed v.

hab.vvv/ D hab.v/ D
�

1C ma

mb

�
nb

vTb

˚err.xb/

xb
(4.53)

gab.vvv/ D gab.v/ D nbvTb

2xb

�
.1C 2x2b/˚err.xb/C xb˚

0
err.xb/

�
; (4.54)

where ˚err.x/ is the error function.

˚err.x/ D 2p



Z x

0

e�y2dy , ˚ 0
err.x/ D 2p



e�x2 (4.55)

Substitution of (4.53), (4.54) into Eqs. (4.46)–(4.48) gives following formula for
three frequencies.

�ab
D D �ab

˚err.xb/ � G.xb/

2x3a
(4.56)

�ab
s D �ab

2Ta

Tb

�

1C mb

ma

�
G.xb/

xa
(4.57)

�ab
k D 2�ab

G.xb/

x3a
(4.58)

G.x/ D ˚err.x/ � x˚ 0
err.x/

2x2
, �ab D e2ae2bnbln�

4
"20m
2
av
3
Ta

; (4.59)

where G.x/ is called the Chandrasekar function Chandrasekar [102]. The �ab has a
dimension of frequency and is used as the collision time by Trubnikov [773] and
early publications.
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G.x/ � 2x

3
p



for x 	 1, G.x/ � 1

2x2
for x 
 1 (4.60)

Since the ion and impurity thermal speed is much smaller than the electron
thermal speed, vTI < vTi 	 vTe, the ion and impurity velocity distribution functions
fi.vvv/ seen from the electron can be approximated by the delta function, fi.vvv/ D
niı.vvv � ui/, and fI.vvv/ D nIı.vvv � uI/. Using this approximation and xe D v=vTe, the
electron-ion/impurity collision operator Cej.fe/ .j D i; I/ becomes,

Cej.fe/ D �ej.xe/

�

L .fe/C mevvv � uj

Te
feM

�

; j D i; I (4.61)

where, �ej.xe/ � �ej=x3e i.e. �ej.1/ D �ej. Since any ion behaves as if it has 1 mass
for the collision with the electron, the electron-ion collision operator do not have
any ion mass dependence. If all ion flows are negligible uj D 0 .j D i; I/, the total
electron-ion collision operator can be written as,

X

jDi;I

Ceb.fe/ D �ej.xe/ZeffL .fe/ , Zeff D 1

ne

X

jDi;I

njZ
2
j (4.62)

Here, Zeff is called the “effective charge”.
For the ion-electron collision, the ion are collided by the light and fast moving

electrons and its motion is similar to the Brownian motion. Using this approxima-
tion, the ion-electron collision operator becomes,

Cie.fi/ D Rei

nimi
� @fi
@vvv

C me

mi

ne

ni�ei

@

@vvv
�
�

.vvv � ui/fi C Te

mi

@fi
@vvv

�

; (4.63)

where Rei is the collisional friction on the electron from the ion.

4.2.2 Linearized Collision Operator

While the full Coulomb collision operator is bi-linear in fa and fb and is nonlinear
for the self collision. If the system is close to thermodynamic equilibrium (namely
close to Maxwellian), the distribution function can be divided into fa D faM C fa1,
where fa1 	 faM . The linearized collision operator Ca1;Cab1 are defined by,

Ca1.fa1/ �
X

b

Cab1.fa1; fb1/ �
X

b

Cab.fa1; fbM/C Cab.faM; fb1/ (4.64)

This linearized collision operator for different species, Cab1 are used to calculate the
collisional friction Rab and the energy exchange rate Qab between a and b.
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Rab D
Z

mavvvCab1dvvv (4.65)

Qab D
Z
1

2
mav

2Cab1dvvv (4.66)

These quantities can be expressed by using the momentum conservation law and
the energy conservation law as,

Rab D �
Z

vvvŒma�
ab
s fa1 C mb�

ba
s fb1�dvvv (4.67)

Qab D �
Z
1

2
v2Œma�

ab
E fa1 C mb�

ba
E fb1�dvvv; (4.68)

where �ab
E is the energy exchange frequency as defined by,

�ab
E D 2�ab

s � 2�ab
D � �ab

k (4.69)

The approximate linearized collision operator given by Hirshman [325] is:

Ca1.fa1/ D
X

b

�

�ab
D L .fa1/C Œ�ab

D � �ab
s �

vkua1.v/

v2
faM C 2vkrba

v2Ta

�ab
s faM

�

(4.70)

where, rba D 3

2

Z
mbvvv�

ba
s fb1dvvv=

Z
max2a�

ab
s faMdvvv (4.71)

na1.v/ D
Z

d˝

4


fa1
faM

, ua1.v/ D
Z
3d˝

4

vvv

fa1
faM

(4.72)

Here, L is the Lorentz collision operator given by (4.50) and �ab
D and �ab

s are
given in (4.56) and (4.57), respectively.

This linearized Coulomb collision operator satisfies self-adjointness for identical
particles and H-theorem and conserves particle, momentum and energy. But it does
not satisfy self-adjointness for collision between different species with different
temperatures. The linearized collision operator with accurate energy diffusion
relevant for gyrokinetic simulation is given by Sugama [722].

4.2.3 Collisionality Regimes in Tokamaks

We use a standard definition of the collision frequency of the species a with the
species b, �ab; and the collision time, �ab as,
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�ab.s
�1/ D 1

�ab
D e2ae2bnbln�

6

p
2
"20m

1=2
a T3=2a

D e2ae2bnbln�

3
3=2"20m
2
av
3
Ta

; (4.73)

where ln� is Coulomb logarithm.
If we go back to the original papers and early textbooks, you may find different

definitions of collision frequencies. Key differences are not only difference in units
(SI units in this text and CGS units in many papers) but also some difference in the
coefficients. This definition of collision frequency originates from Braginskii [76].

The collisional transport depends on the relative magnitude of the collision
frequency �aa and the transit frequency !ta D vTa=qR. We define the Pfirsch-
Schlüter regime (or collisional regime) by �aa=!ta 
 1. In the Pfirsch-Schlüter
regime, the smallness parameter is � D !ta=�aa. The opposite regime �aa=!ta 	 1

is called banana-plateau regime. If the aspect ratio is large A D Rp=ap 
 1, the
banana-plateau regime is divided into plateau and banana regimes. The plateau
regime is defined by �3=2 	 �aa=!ta 	 1 and the banana regime is defined by
�aa=!ta 	 �3=2. The collisionality of the plasma is defined by,

�a� D �aa=�

!b
D �aa

�3=2!ta
; (4.74)

where �aa=� is the effective de-trapping frequency and !b D �1=2!ta is the bounce
frequency of the trapped particle.

Since �ee=�ii � vTe=vTi, it is similar for both electron and ion if the temperatures
are similar. But the impurity can be more collisional than electron and main ions.

Figure 4.2 shows the collisionality dependence of the normalized neoclassical
diffusion coefficient for a very small � (say � � 10�4) and � D 0:2. We can see that
we have only two regimes except for the plasma center and the concept of “plateau”
is quite vague. But the theory is developed by dividing into three regime and then
connected by interpolation.

Fig. 4.2 Collisionality
dependence of neoclassical
diffusion coefficient for
� D 0:2 and � � 0. Modified
from Hinton [321]
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Column 4-3: Collision Times and Coulomb Logarithm
Collision time �ab is defined as collision time of species a with species b.
Electron-electron collision time �ee, electron-ion collision time �ei, ion-
electron collision time �ie, and ion-ion collision time �ii are given as follows,

�ab.s/ D 6

p
2
ma"

2
0T

3
2

a

nbe2ae2bln�
D 4:67 � 1017A1=2a Ta.keV/3=2

na.m�3/Z2aZ2b ln�
(4.75)

�ee.s/ D 6

p
2
me"

2
0T

3=2
e

nee4ln�
D 1:09 � 1016Te.keV/3=2

ne.m�3/ln�
(4.76)

�ei.s/ D 6

p
2
me"

2
0T

3=2
e

niZ2i e4ln�
D 1:09 � 1016Te.keV/3=2

ni.m�3/Z2i ln�
(4.77)

�ie.s/ D 6

p
2
mi"

2
0T

3=2
i

neZ2i e4ln�
D 4:67 � 1017A1=2i Ti.keV/3=2

ni.m�3/Z2i ln�
(4.78)

�ii.s/ D 6

p
2
mi"

2
0T

3=2
i

neZ2i e4ln�
D 4:67 � 1017A1=2i Ti.keV/3=2

ni.m�3/Z4i ln�
(4.79)

The Coulomb logarithm is defined by ln� � ln.9N/ D ln.bmax=bmin/,
where N is the number of particles in a spree of Debye length �D and bmax

and bmin are the maximum and minimum values of the impact parameter of
the classical particle moving with the thermal speed. Braginskii [76] gives,

ln� D 18:4 � 1:15log10nŒm
�3�C 2:30log10TeŒeV� (Te > 50eV) (4.80)

ln� D 16:5� 1:15log10nŒm
�3�C 3:45log10TeŒeV� (Te < 50eV) (4.81)

Sivukhin [697] give the Coulomb logarithm for different species collision
assuming Debye shielding is dominated by electron. Honda [337] gives
refined Coulomb logarithm formulae for collision between species with
different temperatures.

4.3 Parallel Friction and Viscosity in Tokamak

4.3.1 Drift Kinetic Equation

We start from general kinetic equation in phase space canonical variables z D .x; p/,

@fa
@t

C @

@z
� ŒPzfa� D C.fa/ (4.82)
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Since the phase space flow is incompressible from the Hamilton equation i.e.
@Pz=@z D 0, above equation is reduced to,

@fa
@t

C Pz � @fa
@z

D C.fa/ (4.83)

Noting Pzi@fa=@zi D .@zi=@Zj/ PZj.@fa=@Zk/.@Zk=@zi/ D ıjk PZj.@fa=@Zk/, this form
of kinetic equation is independent of our choice of phase space variables including
non canonical variables. For the drift kinetic equation, we use guiding center phase
space (non-canonical) variables Z D .X;E; �; '/:

@fa
@t

C PX � @fa
@X

C PE@fa
@E

C P�@fa
@�

C P' @fa
@'

D C.fa/; (4.84)

where E D mav
2=2C ea˚ , � is the magnetic moment and ' is the gyro phase. We

use the guiding center velocity in the Note ( PX D vvvg; P� D 0; P' D �˝a) to see,

@fa
@t

C vvvg � @fa
@X

C PE@fa
@E

�˝a
@fa
@'

D C.fa/ (4.85)

The last term of the left hand side of equation is largest and can be annihilated by
taking the gyro phase average. We define the gyro phase average of A.X;E; �; '; t/:

NA.X;E; �; t/ D
I

d'

2

A.x;E; �; '; t/ (4.86)

Taking the gyro phase average of (4.85), we obtain,

@Nfa
@t

C vvvg � @
Nfa
@X

C PE@
Nfa
@E

D C.fa/; (4.87)

where PE D �@B=@t C ea@˚=@t � eavk@Ak=@t (Eq. (196) in [73]). Equation (4.87) is
called drift kinetic equation (DKE). Use of gyro averaged Lagrangian significantly
simplifies the algebra having self consistent gyro radius ordering. If we use
Lagrangian accurate for higher order in gyro radius expansion, we can obtain refined
drift kinetic equation. When we take the leading order terms in guiding center
equation, we obtain following familiar drift kinetic equation using EA

k D �@Ak=@t.

@Nfa
@t

C .vkb C vvvd/ � @Nfa
@X

C eavkEA
k
@Nfa
@E

D C.fa/ (4.88)
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Column 4-4: Guiding Center Velocity
The guiding center drift velocity vvvg is given by Alfven [9] as,

vvvg D vkb C E � B
B2

C mav
2?

2eaB2
b � rB C mav

2
k

eaB
b � � C mavk

eaB
b � @b

@t
;

(4.89)

where � is the curvature vector (2.6) and the last (@b=@t) term is usually
negligibly small. For a static field (@A=@t D 0), the guiding center velocity vvvg

is given by

vvvg D vkb C vvvd , vvvd D b
eaB

� Œear˚ C �rB C mav
2
k�� (4.90)

or in a simple form given by Morozov-Solovev [562],

vvvg D vk
B

r � .A C �kB/ (4.91)

vk D ˙
p
2.E � �B � ea˚/=ma , �k D mavk=eaB; (4.92)

where A� � A C�kB is called the modified vector potential. Using the vector
formula (A.8), the charged particle drift (4.91) is expressed as,

vvvg D vkb C vkr�k � b C vk�k
B
�0j (4.93)

Using (2.35) and (4.91), the drift across the magnetic surface is given by,

vvvg � r D vvvd � r D vkb � r.�kF/ D vkF. /rk�k (4.94)

The time required for a particle to complete its poloidal orbit is called the
bounce time (its inverse is called bounce frequency) and is given by,

�b D 1

!b
D
I

d�

vkb � r� (4.95)

The toroidal drift velocity vvvd is given by,

vvvd D hvvv �
�
@.b=˝a/

@x
� vvv

�

� .bb � I/i D b �
"
vvv2?
2˝a

rlnB C v2k
˝a

b � rb

#

(4.96)
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4.3.2 Parallel Friction from Drift Kinetic Equation

As we see in Sect. 4.1, moment approach is very effective to analyze neoclassical
transport. To close the moment equations, it is essential to find the friction coeffi-
cients and the parallel viscosity coefficients by solving DKE in various collisionality
regime. If we find these coefficients, most of the neoclassical transport can be
understood from the moment equations.

The DKE (4.88) in the transport time scale (@=@t � 0) is given as [330],

vkrkfa C vvvd � rfa C eavkEA
k
@fa
@E

D Ca.fa/; (4.97)

where rk D b � r, vk is the parallel velocity, EA
k is the inductive parallel electric

field, E D mav
2=2C ea˚ is the total energy. Here, we dropped over-bar of fa as an

gyro phase average, for simplicity. Since Ca.faM/ D 0, we expand fa D faM C fa1.
Considering vk � vta 
 vd, we seek a solution to satisfy following DKE.

vkrkfaM C eavkEA
k
@faM

@E
D Ca1.fa1/ (4.98)

Here, the Maxwell distribution function faM is given by,

faM D na

.2
/3=2v3Ta

e�mav
2=2Ta D na

.2
/3=2v3Ta

e�.E�ea˚/=Ta (4.99)

Using rkfaM D .rkna=na � 3rkTa=2Ta C mav
2rkTa=2T2a C eark˚=Ta/faM , we

obtain following classical Spitzer equation [326].

�rkpa

pa
� eaEk

Ta
�
�
5

2
� mav

2

2Ta

� rkTa

Ta

�

vkfaM D Ca1.fa1/; (4.100)

where Ek D EA
k � eark˚ . We note that faM � e�mav

2=2Ta , and not faM � e�E=Ta .

We observe that L.3=2/0 D 1 and .5=2� mav
2=2Ta/ D 5=2 � x2a D L.3=2/1 .x2a/ where

L.3=2/k is the Sonnine polynomial (generalized Laguerre polynomial) of order .3=2/.
The definition of the Sonnine polynomials is shown in Appendix A.6.

Multiplying Eq. (4.100) by mavkL.3=2/k and integrating over velocity space and
using the orthogonal relation (A.99), we have,

paA1aı0k � 3

2
paA2aı1k D

Z
mavkL.3=2/k Ca1dvvv; (4.101)

where A1a D rklnpa � .ea=Ta/Ek, and A2a D rklnTa are generalized thermo
dynamic forces. We define parallel friction and heat friction forces by,
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Fa1k D
Z

mavkCa1.fa1/dvvv (4.102)

Fa2k D
Z

mavk
�

x2a � 5

2

�

Ca1.fa1/dvvv (4.103)

Using these quantities, we obtain classical parallel momentum and heat flow
balance equations.

rkpa � eanaEk D Fa1k ,
3

2
narkTa D Fa2k (4.104)

Z
mavkL.3=2/k Ca1.fa1/dvvv D 0 , k � 2 (4.105)

Now it is clear that it is useful to expand fa1 in a Sonnine polynomials.

fa1 D
X

j

fa1j D 2vk
v2Ta

h
uka0L

.3=2/
0 C uka1L

.3=2/
1 C ua2kL.3=2/2 C ��

i
faM

D 2vk
v2Ta

�

uka � 2

5

qka

pa

�
5

2
� x2a

�

C ua2kL.3=2/2 C ��
�

faM (4.106)

Using the orthogonality relation of Sonnine polynomials, we have

uakk D 3
R

L.3=2/k .x2a/vkfa1dvvv

2
R

x2a
h
L.3=2/k .x2a/

i2
faMdvvv

,where (4.107)

L.3=2/0 .x2a/ D 1 , L.3=2/1 .x2a/ D 5

2
� x2a , L.3=2/2 .x2a/ D 35

8
� 7

2
x2a C 1

2
x4a (4.108)

It is straight forward to show

ua0k D uak , ua1k D �2qak
5pa

, ua2k D 3
R

L.3=2/2 .x2a/vkfa1dvvv

2
R

x2a
h
L.3=2/2 .x2a/

i2
faMdvvv

(4.109)

where uak and qak are the parallel flow speed and the parallel heat flux, respectively.

uak D 1

na

Z
vkfa1dvvv , qak D

Z �
1

2
mav

2 � 5

2
Ta

�

vkfa1dvvv (4.110)

Substituting (4.106) into (4.102) and (4.103), we arrive at following linear
friction-flow relation considering that the linearized collision operator Ca1.fa1/ is
linearly proportional to fa1.
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Fa1k D
X

b

�

lab
11ubk � lab

12

2qbk
5pb

C lab
13ub2k

�

, (4.111)

Fa2k D
X

b

�

�lab
21ubk C lab

22

2qbk
5pb

� lab
23ub2k

�

; (4.112)

where lab
ij is called the friction coefficient defined by,

lab
ij D

"
X

k

nama

�ak
Mi�1;j�1

ak

#

ıab C nama

�ab
Ni�1;j�1

ab (4.113)

Here, the matrix elements Mij
ab and Nij

ab are the moments of the linearized collision

operator for the Sonnine polynomial L.3=2/j part of the perturbed distribution

function, fa1j D .2vk=v2Ta/L
.3=2/
j .x2a/faM .

Mij
ab D �ab

na

Z
vkL.3=2/i .x2a/Cab.fa1j; fbM/dvvv (4.114)

Nij
ab D �ab

na

Z
vkL.3=2/i .x2a/Cab.faM; fb1j/dvvv (4.115)

Self-adjointness of the Cab results in the following symmetry property.

Mij
ab D Mji

ab , .TavTa/
�1Nij

ab D .TbvTb/
�1Nji

ba; (4.116)

hence, lab
ij D lba

ji (4.117)

The momentum conservation law gives rise to the following relation.

Mj0
ab C Nj0

ab D 0 (4.118)

This relation guarantee the Galilean invariance of the friction force (i.e. Fajk only
depends on relative flow). Explicit expressions for Mji

ab and Nij
ab are as follows, with

xab � vTb=vTa:

M00
ab D �N00

ab D �.1C ma

mb
/.1C x2ab/

�3=2 (4.119)

M01
ab D M10

ab D �N10
ab D �3

2
.1C ma

mb
/.1C x2ab/

�5=2 (4.120)

M11
ab D �.13

4
C 4x2ab C 15

2
x4ab/.1C x2ab/

�5=2 (4.121)

N11
ab D 27

4

Ta

Tb
x2ab.1C x2ab/

�5=2 (4.122)
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M02
ab D �xbaN02

ba D �15
8
.1C ma

mb
/.1C x2ab/

�7=2 (4.123)

M12
ab D �.69

16
C 6x2ab C 63

4
x4ab/.1C x2ab/

�7=2 (4.124)

N12
ab D 225

16

Ta

Tb
x4ab.1C x2ab/

�7=2 (4.125)

While we usually neglect ub2k and qb2k, Hirshman-Sigmar [330] give renor-
malized friction coefficient f ab

ij to include finite lab
13 since their effect is not always

negligible. Recently Honda [338] showed it is important for the multiple hydrogenic
ions or impurities with similar light masses.

4.3.3 Parallel Viscosity from Drift Kinetic Equation

The gyro-phase averaged perturbed velocity distribution function fa1 in the previous
section is the l D 1 spherical harmonics of the velocity distribution function f .1/a1 in
Eq. (4.36), which is proportional to Legendre polynomial P1.cos�/ D cos� , where
� � cos� D vk=v. This gives rise to the first order flows.

Because of the conservation of the magnetic moment � in the non-uniform
magnetic field, the l D 2 spherical harmonics of the velocity distribution function
f .2/a1 in Eq. (4.36) appears, which is proportional to P2.�/ D 3

2
�2 � 1

2
. This gives rise

to the pressure anisotropy in tokamak.
The collisional transport theory solves this equation in three collisionality

regimes; Pfirsch-Schlüter regime, plateau regime and banana regime.
The parallel viscous force is proportional to the pressure anisotropy as follows,

hB � r � ˘ ai D ˝
.p?a � pka/rkB

˛
(4.126)

hB � r � �ai D ˝
.�?a ��ka/rkB

˛
; (4.127)

where we use following relation for any scalar F noting � � b D 0 and hB � rFi D 0.

B � r �
�

F

�

bb � 1

3
I
��

D Bi@j.Fbibj/� Bi@iF=3 D Bibi@j.Fbj/C BibjF@jbi � Bi@iF=3

D Br �
�

FB
B

�

C FB � � � BrkF=3 D 2BrkF=3� FrkB (4.128)

Here, pka � p?a and �?a � �ka are written using the Legendre polynomial P2 D
.3�2 � 1/=2 and Sonnine polynomial L.3=2/1 D 5=2� x2a as,
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pka � p?a D
Z

mav
2P2.�/fadvvv (4.129)

�ka ��?a D ma

Ta
.rka � r?a/ � 5

2
.pka � p?a/ D

Z
mav

2L.3=2/1 P2.�/fadvvv

(4.130)

4.3.3.1 Pfirsch-Schlüter Regime

In the collisional (Pfirsch-Schlüter) regime, there are two smallness parameters: one
is � � !ta=�aa 	 1 and the other is ı � �a=a. In the collisional regime, the
dominant term of the DKE is the right hand side of (4.98). Since Ca.faM/ D 0, we
expand fa D faM C fa1 C ��, where fa1 D O.�/. Noting @faM=@E D �faM=Ta and
the ratio of the drift velocity to the parallel velocity vd=vk D O.ı/, the first order
DKE (O.�/) is given by,

vkrk.fa1 C faM/C vvvd � rfaM � eavkEA
k

Ta
faM D Ca1.fa1/ (4.131)

Neglecting smaller terms vkrkfa1;vvvd � rfaM , we obtain following classical Spitzer
equation using rkfaM D .rkna=na�3rkTa=2TaCmav

2rkTa=2T2a Ceark˚=Ta/faM .

�rkpa

pa
� eaEk

Ta
C
�

mav
2

2Ta
� 5

2

� rkTa

Ta

�

vkfaM D Ca1.fa1/; (4.132)

where Ek D EA
k � eark˚ . We note that faM � e�mav

2=2Ta , and not faM � e�E=Ta .
In the toroidal plasma, we expand fa1 in power of small gyro radius parameter ı

as fa1 D f .0/a1 C f .1/a1 C �, where f .0/a1 D O.ı0/ and f .1/a1 D O.ı/. This means the first
and second order equations are,

ı0�1 order : vkrkfaM D Ca1.f
.0/
a1 / (4.133)

ı1�1 order : vkrkf .0/a1 C vvvd � r @faM

@ 
� eavkEA

k
Ta

faM D Ca1.f
.1/
a1 / (4.134)

The first equation (4.133) has a form of the Spitzer problem just mentioned above
and will give a solution proportional to the Legendre polynomial P1.�/ D vk=v and

the solution f .0/a1 does not contribute to the parallel viscosity. The parallel electric
field term in the second equation can be neglected since it does not contribute to the
parallel viscosity. Noting the relation (4.94): vvvd � r D vkrk.�kF/ and rkfaM D 0

at the lowest order (�k � mavk=eaB, F � RB�), the second equation (4.134) is:
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Ca1.f
.1/
a1 / D vkrk.f .0/a1 � Fa/ � vkrkga (4.135)

Here, Ca1.f
.1/
a1 / is given by (4.64) and/or (4.70). Fa is given by,

Fa D ��kF
dfaM

d 
D ��kF

�
dlnpa

d 
C ea

Ta

d˚

d 
C
�

mav
2

2Ta
� 5

2

�
dlnTa

d 

�

(4.136)

We expand ga in Sonnine polynomials as follows,

ga D faM
mavk

Ta

1X

jD0
uajL

3=2
j .x2/ (4.137)

Using the relations ua0 D ua� . /B and ua1 D �.2qa� . /=5pa/B, we have:

vkrkga D faM
mavk

Ta
rk.vkB/

�

ua�L.3=2/0 � 2qa�

5pa
L.3=2/1 C ��

�

D faM
mav

2

Ta
P2.�/

�

ua�L.3=2/0 � 2qa�

5pa
L.3=2/1 C ��

�

rkB (4.138)

Here, the gradient rk is taken at constant magnetic moment and we have the relation,
vkrk.vkB/ D .v2k �v2?=2/rkB D v2P2.�/rkB using vkrkvk D �.�=ma/rkB while

we keep E and � constant. Here, P2.�/ D 3�2=2� 1=2.
Using (4.126) to (4.127), we have following expression for the parallel viscosity.

hB � r � ˘ ai D �h.rkB/
Z

mav
2P2.�/f

.1/
a1 d3vi (4.139)

hB � r � �ai D �h.rkB/
Z

mav
2L.3=2/1 P2.�/f

.1/
a1 d3vi (4.140)

Hirshman-Sigmar [330] solved the drift kinetic equation in three ways. Firstly,
they solved exactly through conversion to the variational quadratic form as in Robin-
son [632]. Secondly, they solved (4.135) by using approximate Krook collision term.
Thirdly, they solved analytically by neglecting field particle perturbation term. Here,
we shows Krook collision term case: Ca1.f

.1/
a1 / D ��a

T.v/f
.1/
a1 . We define following

velocity-space average.

fF.v/g �
Z

F
mav

2
k

naTa
faMd3v D 8

3
p



Z 1

0

F.x/e�x2x4dx (4.141)

By expanding f .1/a1 into Sonnine polynomials, we have:

hB � r � ˘ ai � 6pa

5
h.rkB/2i

�
x2

�a
T

�

ua�L.3=2/0 � 2qa�

5pa
L.3=2/1

��

(4.142)
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hB � r � �ai � 6pa

5
h.rkB/2i

(
x2.x2 � 5

2
/

�a
T

�

ua�L.3=2/0 � 2qa�

5pa
L.3=2/1

�)

(4.143)

The normalized parallel viscosity coefficients O�aj defined in (4.31) are expressed

in the following formula noting L.3=2/0 .x/ D 1 and L.3=2/1 .x/ D 5=2� x2.

O�ak D 3h.rkB/2iv2Ta�aa

5hB2i

(
x2

�a
T.x/

�

x2 � 5

2

�k�1)
(4.144)

4.3.3.2 Banana Regime

We follows the method given by Helander-Sigmar [317]. More direct derivation of
banana regime parallel viscosity is given in Appendix C.1. Similarly, derivation
of parallel viscosity for fast ion in Appendix C.2. Linearizing the drift kinetic
equation (4.97), we have:

vkrkfa1 C vvvd � r @faM

@ 
C eavkEA

k
@faM

@E
D Ca1.fa1/ (4.145)

Ca1.fa1/ D
X

b

Cab.fa1; fbM/C Cab.faM; fb1/

The source of pressure anisotropy is vvvd � rfaM D .vvvd � r /@faM=@ . Using the
guiding center relation (4.94) vvvd � r D vkrk.F. /�k/, the linearized drift kinetic
equation in first order in gyro radius expansion can be written as:

vkrk
�

fa1 C F�k
@faM

@ 

�

C eavkEA
k
@faM

@E
D Ca1.fa1/ (4.146)

The collision less plasma in tokamak is characterized by the collisionality (4.74)
��

a 	 1. Defining ga.E; �;  / D fa1 C Fa, the relevant DKE is:

vkrkga D Ca1.fa1/ (4.147)

Here, we consider the case of EA
k D 0 and no momentum sources. The solvability

condition for ga (see (2.18)) can be applied for the circulating particles as:



B

vk
Ca1.fa1/

�

D 0 (4.148)

For the trapped particle, ga D 0. For the collision integral in the solvability
condition, we use the Coulomb collision operator (4.70) given by Hirshman as
follows,
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Ca1.fa1/ D
X

b

�

�ab
D L .fa1/C Œ�ab

D � �ab
s �

vkua1.v/

v2
faM C 2vkrba

v2Ta

�ab
s faM

�

� �a
DŒL .ga/C vkXa.v;  ; �/faM � (4.149)

Here, we use the fact that Fa do not have pitch angle dependence.
We define a pitch angle variable � D �B0=.E � ea˚/ D hv2?=v2, h � B0=B and

B0 D hB2i1=2. Then, the Lorentz operator is given by,

L D 2hvk
v2

@

@�
�vk

@

@�
(4.150)

Then the solvability condition (4.148) is converted to the following equation for
the perturbed distribution function ga for the passing particle.

@

@�
�hvki@ga

@�
D �v2

2
hXa=hifaM (4.151)

The solution can be given using the Heaviside function H as:

ga D H.�c � �/Vk.�; v/hXa=hifaM (4.152)

Vk.�; v/ D ˙v

2

Z �c

�

d�0

hp1 � �0=h.�/i (4.153)

To calculate parallel viscosities, we use the relations (4.22) and (4.23).

hB � r � ˘ ai D hB � Fa1i D



B
Z

mavkCa1.fa1/dvvv

�

(4.154)

hB � r � �ai D hB � Fa2i D



B
Z

mavk
�

x2a � 5

2

�

Ca1.fa1/dvvv

�

(4.155)

for Ek D Mak D Qak D 0. Substituting (4.151) and using the self adjointness of the
Lorentz operator (

R
vvvL .ga/dvvv D R

gaL .vvv/dvvv D � R gavvvdvvv) [317], we have:

hB � r � ˘ ai D



B
Z

mavk�a
D.vkXafaM � ga/dvvv

�

D B0


Z
mavk�a

DhXa=hi.vk � HVk=h/faMdvvv

�

(4.156)

hB � r � �ai D
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2
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�a
D.vkXafaM � ga/dvvv
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D B0


Z
mavk�a

DhXa=hi
�

x2a � 5

2

�

.vk � HVk=h/faMdvvv

�

(4.157)
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Now, we use following relation for an arbitrary function A by Helander [317].

Z

A.v/
mavk

Ta
.vk � HVk=h/faMdvvv

�

D ftnafAg (4.158)

Then, we have:

hB � r � ˘ ai D ftB0pa f�a
DhXa=hig D ftB0pa

�
�a

Dga

HVkfaM

�

(4.159)

hB � r � �ai D ftB0paf�a
DhXa=hi.x2a � 5

2
/g D ftB0pa

�
�a

Dga.x2a � 5
2
/

HVkfaM

�

(4.160)

Here, we used Eq. (4.152). We expand this ga in Sonnine polynomials as:

ga D maHVk
Ta

B0
fc

�

ua� � 2qa�

5pa
L.3=2/1 .x2/C �

�

faM; (4.161)

where fc is the passing particle fraction given by:

fc D 3

4

Z �c

0

�d�
Dp
1 � �=h

E (4.162)

Substitution of (4.161) into (4.159) and (4.160), we have:

O�ak D ft
fc

(

�a
D�aa

�

x2 � 5

2

�k�1)
(4.163)

Here ft D 1 � fc is the trapped particle fraction.

4.3.3.3 Velocity-Space Partitioned Parallel Viscosity

If we compare (4.144) and (4.163), we come to the concept of velocity-space
partitioning of total collision frequency �a

tot.v/, which becomes � �a
D.v/ in collision

less limit and � 1=�a
T.v/ in Pfirsch-Schlüter regime. Hirshman-Sigmar [330] gives

following form of total collision frequency for the parallel viscosity coefficient.

O�ak D ft
fc

(

�a
tot.v/�aa

�

x2 � 5

2

�k�1)
(4.164)

�a
tot.v/ D �a

D.v/

�

1C N��a�
a
D.v/�aa

xa

��1 �
1C 5
�a

T.v/

8xa!Ta

��1
(4.165)
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N��a � 8

3


ft
fc

!TahB2i
v2Tah.rkB/2i

1

�aa
(corrected from [330](4.74)) (4.166)

!Ta D vTa=L�
c (4.167)

L�
c � Rq; (4.168)

where !Ta is the surface averaged transit frequency and exact form of the effective
connection length L�

c is given in [330], N��a is the re-normalized collisionality related
to the collisionality ��a asymptotically matches to Eq. (4.174) as follows [446].

N��a D .
8

3

� 2 � 1:46/��a D 2:48��a (4.169)

��a D 1

1:46

ft
fc

!ta

v2Ta�aa

hB2i
2h.rkB/2i (4.170)

This collisionality becomes well known form of ��a ! 1=�3=2!ta�aa in the large
aspect ratio limit. This form of total collision frequency incorporates the transition
from banana to plateau regimes by 2:48��a�

a
D�aa=xa D 1 and the transition from

plateau to Pfirsch-Schlüter regimes by .5
=8/�a
T=xa!ta D 1 but may not be accurate

enough in Pfirsch-Schlüter regime since it uses simple Krook collision operator.

4.4 Ohm’s Law in Tokamak

4.4.1 Generalized Ohm’s Law

Using Eq. (4.34), we can calculate flux surface averaged parallel current density as
follows,

hB � Ji D
X

a

eanahB � uai D hB � Jioh C hB � Jibs C hB � Jini; (4.171)

where “oh” , “bs” and “ni” are abbreviations of ohmic current, bootstrap current,
non-inductive current, respectively.

hB � Jioh D
4X

a;bD1

naeaeb�bb

mb
OcabhB � Ei (4.172)

hB � Jibs D
4X

aD1
eana

7X

bD1
ǪabV?b (4.173)
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hB � Jini D
4X

aD1

7X

bD1

naea�bb

mbnb
Ocab OSkb (4.174)

Equation (4.171) is called Generalized Ohm’s law. Using Eq. (4.29), local
toroidal current density is given by,

J� D B�
hB2ihBJki C

"

1 � B2�
hB2i

#

R
dP

d 
(4.175)

Then, flux surface averaged toroidal current density J�.�/ D hJ�=Ri=h1=Ri is
given by,

J�.�/ D J�oh C J�bs C J�ni C J�rP (4.176)

J�s D hB�=Ri
hB2ih 1R i hB � Jis (s = oh, bs, ni) (4.177)

J�rP D �
hB2�i dP

d 

hB2ih 1R i (4.178)

Here, we used B2 D B2� C B2� . The new term J�rP comes from Pfirsch-Schlüter term
(last term of right hand side of Eq. (4.175)) and is important for low aspect ratio
tokamaks where poloidal field becomes comparable to toroidal field.

4.4.2 Electrical Conductivity

The generalized Ohm’s law (4.171) includes current induced by the parallel electric
field (4.172). Theoretical expression for the electrical conductivity in fully ionized
plasma has been obtained by Spitzer-Härm [712], called “Spitzer conductivity”.
Key observation is importance of electron-electron collision as well as electron-ion
collision to almost double the electrical conductivity. In high temperature plasma
like Tokamak, important modification to electrical conductivity happens due to
parallel viscosity (trapped particle effect). From Eq. (4.172), we obtain following
form of electrical conductivity in tokamak geometry, called neoclassical (NC)
electrical conductivity.

	NC
k D

4X

a;bD1

naeaeb�bb

mb
. OM � OL/�1ab (4.179)

Here, OL represents the collisional friction forces among various species, and OM
represents effect of trapped particle.
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Fig. 4.3 Comparison of
experimental and simulated
surface voltages with and
without trapped particle
correction. Time symbol, open
circle, closed circle
correspond to different
analysis method and plasma
species. Reproduced with
permission from Zarnstorff
[855]. Copyright AIP
Publishing LLC
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This summation is dominated by the electron term due to 1=
p

mb mass depen-
dence of �bb=mb. If there is no trapped particles, the viscosity matrix OM D 0 and
conductivity 	 is given in this case as follows,

	
Spitzer
k D �

4X

a;bD1

naeaeb�bb

mb

OL�1
ab (4.180)

Equation (4.180) corresponds to Spitzer conductivity. The electrical conductiv-
ity (4.179) is reduced due to viscosity OM, which becomes significant in collisionless
regime. In large tokamaks such as JT-60 [458], JET [424], TFTR [301], it is possible
to produce collisionless plasma even in ohmically heated plasma.

Experimental resistive loop voltage or surface voltage are consistent with
electrical conductivity including trapped particle correction as shown by Kikuchi
[431] and Zarnstorff [855]. Typical experimental result from TFTR is shown in
Fig. 4.3.

Further verification of electrical conductivity in tokamak was done in TFTR by
Batha [47] and in JET by Kelliher [425] showing that measured time variation
of local poloidal field by motional stark emission (MSE) spectroscopy is better
described by the time dependent simulation using neoclassical conductivity as
shown in Fig. 4.4. The trapped particles does not contribute to the current. It creates
a frictional force by the relative velocity to circulating electrons. If the plasma is
not collisionless enough, the difference in loop voltages calculated with NC and
Spitzer conductivity is small. So, small and medium sized tokamak experiments
are controversial in identifying viscosity effect (trapped particle correction) to the
electrical conductivity.
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Fig. 4.4 Comparison of experimental and simulated local poloidal field with and without trapped
particle correction in TFTR. Better agreement with experiment is obtained using neoclassical
resistivity. Reproduced with permission from Batha [47]. Copyright AIP Publishing LLC

4.4.3 Bootstrap Current

The bootstrap current was predicted theoretically by Galeev [237] (see also
Sagdeev-Galeev [646]) and its importance for the steady state operation of tokamak
was first noted by Bickerton-Connor-Taylor [65] (see Fig. 4.5).

The generalized Ohm’s law in (4.171) includes current driven by the thermody-
namic forces V1a and V2a as hB � Jibs D P4

aD1
P7

bD1 eana ǪabV?b. Here Ǫab is the
matrix element of Ǫ D . OM � OL/�1 OM. Substituting expressions for thermodynamic
forces (V1a, V2a) into (4.173), we obtain following form for the bootstrap current.

hB � Jibs D �
4X

aD1

Fne

jZaj
�

La
31

1

na

dPa

d 
C La

32

dTa

d 

�

(4.181)

La
31 D

4X

bD1

jZaj
Za

Zbnb

ne
Ǫab , La

32 D
3X

bD1

jZaj
Za

Zbnb

ne
Ǫa;bC4 (4.182)

Although V1a includes electrostatic potential term, this term (J � Œ
P

Zbnb Ǫab�F d˚
d )

vanishes for the axisymmetric plasma due to charge neutrality. Sauter [663] gives
more accurate fitted formula for electrical conductivity and bootstrap current
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Fig. 4.5 From left, Dr. Roy Bickerton (by permission of his family), Prof. Roald Sagdeev (by
permission of himself), and Prof. Albert A. Galeev (by permission of his family), who made
original contribution to the theory of bootstrap current. The prediction of the bootstrap current
is said to be an important triumph of neoclassical theory

coefficients using full Fokker-Planck operator since Hirshman-Sigmar [330] and
Shaing [679] viscosity uses approximate Coulomb collision operator.

First observation of bootstrap current was made in multipole by Zarnstorff [852]
and subsequently in tokamak [853] by driving � 1=3 of plasma current by bootstrap
current. Later, up to 80 % of the plasma current was driven by the bootstrap current
in JT-60 by Kikuchi [431]. Time evolution of the surface voltage is measured during
the high power perpendicular neutral beam injection with almost no beam driven
current and is compared with the numerical simulation using the time dependent
1.5D transport equations in Sect. 2.4 results with and without the bootstrap current.
The measured surface voltage is consistent with the existence of the bootstrap
current as shown in Fig. 4.6. Time evolution of the internal inductance li is also
measured through magnetic fitting analysis and agrees with numerical simulation.

Figure 4.7 [440] shows experimental and numerical bootstrap current fractions
as a function of poloidal beta. This clearly showed the bootstrap current fraction is
proportional to poloidal beta fboot � ˇp. This opened good prospect towards efficient
steady-state operation of tokamak reactor [430, 432].

In the H-mode [794], steep pressure gradient is formed near the plasma edge,
called edge transport barrier (ETB). This ETB induces edge bootstrap current if
the edge is deeply collisionless. The excitation of edge bootstrap current sensitively
affects time evolution of parallel electric field at ETB, Ek D hB2
i.@ =@�/=F. In
the H-mode, comparison of measured surface voltage with simulation including
bootstrap current was done in JET [402] and in more detailed comparison of time
evolution of edge parallel electric field with theoretical prediction by Wade [791]
consistent with existence of edge bootstrap current.

Direct comparison of measured and numerical local bootstrap current densities
is made by using bootstrap current dominated discharges in JT-60U by Sakamoto
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Fig. 4.6 Time evolution of surface voltage (a), bootstrap fraction (b), and internal inductance
(c) from measurement and calculation. High power neutral beam injection (NBI) heating power
is injected perpendicularly so that NBI do not drive significant beam-driven current. Measured
surface loop voltage is consistent with 80 % bootstrap current faction. Reproduced with permission
from Kikuchi [440]. Copyright IOP Publishing

[652] as shown in Fig. 4.8. Measured current profile is consistent with prediction of
collisional transport theory including the edge region (0:8 < �=a < 1).

Conventional neoclassical theory predicts zero bootstrap current density at the
plasma center and requires seed current to sustain bootstrap current in the plasma
center [330]. Shaing [680] showed that the bootstrap current can be sustained
without seed current since so-called potato particle can drive viscous force to
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Fig. 4.7 Comparison of
experimental and numerical
bootstrap current fractions as
a function of poloidal beta.
Reproduced with permission
from Kikuchi [440].
Copyright IOP Publishing

Fig. 4.8 Comparison of
measured and calculated
current profile in bootstrap
current dominated JT-60U
discharge. Reproduced with
permission from Sakamoto
[652]. Copyright IAEA
Vienna
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passing particle at the plasma center providing finite source current to form poloidal
magnetic field. Actually, plasma discharge fully driven by bootstrap current was
produced in JT-60U by Takase [735] and more recently for longer time scale of
several current diffusion time in TCV by Coda [132].

4.4.4 Neutral Beam Current Drive

Fisch [204] reviewed early experimental results of DITE NBCD [129] (Te.0/ �
0:6 keV, Eb D 24 keV) noting that trapped electron plays a negligible role.
Key parameters of NBCD are beam energy Eb and the electron temperature Te.
Since then, both central electron temperature and the beam energy are extended to
a reactor relevant regime, especially in JT-60 (Te.0/ � 15 keV, Eb D 350 keV) by
using N-NBI [585, 586].
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When fast neutral beam is injected tangent to the torus, circulating fast ion
produces fast ion current (Jfast) by multiple circulations around the torus. Collision
with bulk electrons produces shielding current (Jshield) by the induced drift in
the same direction as the fast ion. This shielding is not perfect due to existence
of trapped electron and impurities. Sum of fast ion and shielding currents are
called beam-driven current Jbd.D Jfast C Jshield/. Since fast ion velocity distribution
function deviates strongly from Maxwellian, Jfast has to be obtained from Fokker-
Planck equation.

The flux surface averaged fast ion current hB � Jifast is obtained from the velocity
distribution function of fast ions f as a solution of the Fokker-Planck equation valid
for vTi 	 v 	 vTe as given by Cordey [148].

�se
@f

@t
D 1

v2
@

@v

�
.v3c C v3/f

�C ˇv3c
v3�hv=vki

@

@�

�
1 � �2
�

Dvk
v

E @f

@�

�
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(4.183)
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where � D .1 � �Bmin=E/1=2 is vk=v at B D Bmin, S.v; �/ is the bounce averaged
fast ion source rate per unit volume, �se is beam-electron slowing down time, vc is
critical velocity, Zeff is the effective charge, K and E are complete elliptic integrals
of first and second kind, respectively. For more explanation, see [445].

In the framework of moment equation, we only use momentum source term from
the fast ion OSkf for the neutral beam current drive. The flux surface averaged beam
driven current may be decomposed as [443], [440],

hB � Jibd D hB � Jifast C hB � Jishield (4.187)

hB � Jifast D ef nf . OM � OL/�1ff Skf (4.188)

hB � Jishield D
X

aDe;i;I

eana. OM � OL/�1af Skf (4.189)

Here Skf D �ee OSkf=mene. While expression for the fast ion current (4.188) is not
accurate enough, the ratio of beam driven current Jbd over the fast ion current Jfast,
shielding factor F D Jbd=Jfast can be accurately as follows,
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F D hB � Jibd

hB � Jifast
D 1C

X

aDe;i;I

Zana

Zf nf

. OM � OL/�1af

. OM � OL/�1ff

(4.190)

Above equation is valid for all aspect ratio, multi-species and all collisionalities.
Start-Cordey [716] calculated this shielding factor F assuming zero collisionalities
to see parametric dependences on Zeff and � in arbitrary aspect ratio ( 0 � � � 1).
Calculation by Eq. (4.190) under ��

a D 0 agrees well with Start-Cordey calculation
as shown in Fig. 4.9.

Lin-Liu [513] found this shielding factor is related to bootstrap coefficient Le
31

and gave an analytic expression in the collisionless limit. Finite collisionality has
an important effect on shielding factor as calculated recently by Honda [336]
using above formula (4.190) as well as Sauter’s Le

31 formula [663] valid for all
collisionality regime as shown in Fig. 4.10. Deviation from collisionless limit starts
at ��e � 10�2 depending on the model but also indicating needs for re-assessment
of some comparison between measured and calculated NBCD efficiency [731].

Beam ionization by various atomic processes is one of important process to
determine the neutral beam driven current profile. Since a historical review of atomic
data by Riviere [631], significant efforts are placed to compile ionization cross
section and rate coefficients especially under the auspice of IAEA [393]. Those
from ground state (Fig. 4.11a) are refined for charge-exchange with bulk ion (p.
78 in [393]), ionization by ion impact (p. 68 in [393]), ionization by impurity
(Eq. (15) in [392]) and ionization by electron impact (reaction 2.1.5 of p. 258 in
[391]). But, there are number of processes from excited states (Fig. 4.11b). And
the process becomes multi-step including excitation from ground state, called multi
step ionization (MSI) as noted by Janev [392]. The MSI processes are refined by
Suzuki [728] and enhancement of the stopping cross section due to MSI becomes
as much as 20–40 % for the beam energy Eb D 0:1 � 1MeV and a good agreement
of shine-through rate was obtained between experiments and calculation in JT-60.

Fig. 4.9 Comparison of
shielding factors between
Start-Cordey [716]
calculation and Eq. (5.39)
with ��

a D 0. Reproduced
with permission from
Kikuchi [440]. Copyright IOP
Publishing
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Fig. 4.10 Collisionality dependence of shielding factor by Eq. (5.39) and Sauter’s fitted L31.
Reproduced with permission from Honda [336]. Copyright IAEA Vienna
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Fig. 4.11 (a) Ionization cross sections from ground states. (b) Ionization cross sections from
ground and excited states. Reproduced with permission from Kikuchi [445]. Copyright IAEA,
Vienna

This MSI process is important for the evaluation of local driven current density
since deposition profile of fast ions is changed significantly. Various numerical
codes such as ACCOME [752], ASTRA [609], NFREYA [208], NUBEAM [602]
are developed to calculate beam driven current.

For a quantitative comparison of driven current density with calculation, impor-
tant development to “measure” non-inductive local current density was developed
by Forest [207]. In generalized Ohm’s law (4.189), inductive electric field is
given by,

hE � Bi D hB2�i
F

@ 

@t
j
 (4.191)
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Fig. 4.12 (a) Comparison of experimentally measured NBCD current profile with calculations
with and without multi-step ionization. After Gormezano [259] with the permission of IAEA.
(b) Neutral beam current drive efficiency �CD D NneRICD

p =PCD on central electron temperature
Te.0/. Reproduced with permission from Oikawa [586]. Copyright IAEA Vienna

Here, partial time derivative is taken with fixed toroidal flux, 
. The time evolution
of the poloidal flux .�; t/ and the total local current density hB�Ji can be measured
by the MSE diagnostics. With profile measurement of density, temperature and
effective charge, we can calculate electrical conductivity 	NC

k and the non inductive
current profile hB � Jini can be “measured” from the relation, hB � Jini D hB � Ji �
	NC

k hE � Bi.
Figure 4.12a shows experimentally “measured” NBCD current profile (thick

black line) compared with calculations with (red dotted line) and without (blue
dotted line) MSI process [259]. It is shown that calculation with MSI agrees with
the measurement.

In addition to such local measurements, systematic comparison between theory
and experiments is carried out in JT-60 as shown in Fig. 4.12b showing good
agreement if there is no significant MHD activities. The dependence of neutral beam
current drive efficiency �CD D NneRICD

p =PCD on the central electron temperature
Te.0/ is also verified showing that efficiency increases with Te.0/ as shown in
Fig. 4.12b [586].

4.4.5 EC Current Drive

After the comprehensive review by Fisch in 1987 [204], significant progresses are
made in various RF fields. Here, recent progresses on ECCD are described due
to its better accessibility to reactor plasma and its importance in stabilization of
neoclassical tearing modes. A recent review by Prater [615] provided good summary
of recent progress.
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There are some advantages of ECRF application in reactor environment. First
is the absence of accessibility problem and robust coupling irrespective of plasma
conditions. Second is the high power density enabling smaller port penetration with
low neutron back-streaming and tritium. Third is good controllability of local power
deposition and parallel n index with steerable launcher. Fourth is availability of
efficient high power Gyrotron by recent innovation [653] (see also Chap. 9).

Momentum input to electron is primary perpendicular to magnetic field by
electron cyclotron damping (resonance condition given by .! � l˝e/=kk D vk)
of 1st or 2nd harmonic electron cyclotron waves (l D 1; 2). There are two types
of ECRF waves for CD, O-mode and X-mode, where wave electric field is parallel
and perpendicular to magnetic field B, respectively [717]. The wave propagation is
governed by Hamilton (or ray tracing) equation,

dx
dt

D @˝

@k
jx;

dk
dt

D �@˝
@x

jk (4.192)

Here ! D ˝.k; x; t/ is the local dispersion relation. We expand electron velocity
distribution function as fe D feM C fe1 (feM is Maxwellian) and its drift kinetic
equation in the toroidal geometry for a given wave amplitude is given by,

uk
�

b � @fe1
@x

� C.fe1/ D � @

@u
� Sw (4.193)

Here, b is unit vector along the magnetic field, u D p=me D �v is momentum per
unit mass, � D .1C u2=c2/1=2;C.fe1/ is the linearized electron collision term, Sw D
DQL �@fe1=@u is wave-induced flux in velocity space due to quasi-linear diffusion via
wave-particle interaction, respectively. Wave induced flux (Sw) is given by Kennel-
Engelmann [426] for Landau damping (l D 0) and electron cyclotron damping
(l ¤ 0) as follows,

DQL D
1X

nD�1




2

�
e

me

�2
ı.�! � kkvk � l˝e/a�

n an (4.194)

an D �n

�

.1 � kkuk
�!

/ Ou? C kku?
�!

Ouk
�

; (4.195)

�n D EwCJn�1 C Ew�JnC1p
2

C uk
u?

JnEwk (4.196)

Here, ˝e D �eB=me, � means complex conjugate, Ouk and Ou? are unit vectors
in perpendicular and parallel directions, Jn is the nth order Bessel function with
its argument k?v?=˝e. EwC and Ew� are left and right handed components of
Ew, respectively and Ewk is parallel component of Ew. Instead of solving equa-
tion (4.193), Antonsen-Chu [23] and Taguchi [732] realized that RF induced current
can be obtained by using a solution of the following adjoint equation originally used
by Spitzer-Härm to obtain electrical conductivity,
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Fig. 4.13 Schematics of (a) Fisch-Boozer mechanism and (b) Ohkawa mechanism. (c) and (d) are
numerical simulations of (a) and (b), respectively. Reproduced with permission from Prater [615].
Copyright AIP Publishing LLC

uk
�

b � @�
@x

C 1

feM
C.�feM/ D � eukB

�hB2i (4.197)

It is easy to show following formula for the generated current and the dissipated
power by using Eqs. (4.193) and (4.197), and partial integration:

hJ � Bi D hB2ih
Z

d3uSw � @�
@u

i (4.198)

Pd D h
Z

d3uSw � @�
@u

i (4.199)

Here � D �mec2 is the electron energy, and @�=@u D meu=� . The solution of adjoint
equation (4.197) is � D 0 for � > �c and that for � < �c is given as [733]:

�.u; �/ D hB2i
2fc

	K.u/
Z �c

�

d�

hp1� �Bi (4.200)

Here, � D .u?=uk/2=B; �c D 1=Bmax; 	 D uk=jukj and K is a solution of 1
dimensional integro-differential equation, which could be obtained using Sonnine
expansion [733] or numerically using exact relativistic collision term [284].

There are two mechanisms responsible for EC current drive. One is Fisch-Boozer
mechanism [202] to create asymmetry in parallel resistivity via wave-induced
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Fig. 4.14 Comparison of
measured and calculated EC
driven current. Reproduced
with permission from Petty
[610]. Copyright IAEA
Vienna

velocity space diffusion. Other is Ohkawa mechanism [584] to create untrapped-
trapped transition since trapped electron can not contribute to the toroidal current as
shown in Fig. 4.13.

Comparison of experimental and theoretical expectation of the ECCD has been
done in DIII-D [610] as shown in Fig. 4.14. The ECCD of 0.74MA is demonstrated
in high electron temperature (Te.0/ D 23 keV) plasma in JT-60U by taking Ek effect
[170] into account [730]. Existence of trapped electron reduces net driven current
and its effect is more significant for outboard EC injection [134] and confirmed
experimentally by Petty in DIII-D [611] and by Suzuki in JT-60U [729]. Figure 4.15
shows calculation and experimental results. Here � D e3�CD=�

2
0kTe is normalized

EC current drive efficiency [515]. Experiments on TCV ECCD demonstrated that
full CD plasma can be obtained [664].

4.5 Plasma Rotation in Tokamak

Toroidal rotation physics is now very important for the role of rotation shear
on confinement improvement, rotational stabilization of MHD modes, and also
observation of intrinsic toroidal rotation. Here we introduce neoclassical effect on
rotation.

4.5.1 Neoclassical Rotations

Equation (4.34) govern the parallel flows in tokamak. Kim derived an analytic
expression for the poloidal and toroidal rotations assuming impurity is in Pfirsch-
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Schlüter regime and large mass ratio (mi=mI 	 1) [446], while Kikuchi-Azumi
solved moment equation to analyze toroidal and poloidal rotations in JT-60U [434].
The general flow balance equation (4.33) allows us to derive an expression for the
toroidal flows of electrons, ions, and impurities. Here, we concentrate on effect of
thermodynamic force on toroidal rotation assuming Ek D OSk D 0 and neglect fast
ion component, for simplicity. From Eq. (4.29), the local toroidal flow for species a
is the summation of flux surface averaged parallel flow and Pfirsch-Schlüter flow as
follows,

u.1/a� D B�hBukai
hB2i �

"

1 � B2�
hB2i

#

R

�

˚ 0 C P0
a

eana

�

(4.201)

Here, 0 denotes derivative with respect to  . From Eq. (4.34), we obtain following
expression of flux surface averaged parallel flows,

hBukai D �F
3X

bD1

�

˛ab

�

˚ 0 C P0
b

ebnb

�

C ˛a;bC3
eb

T 0
b

�

(4.202)

The impurity (for example, Carbon) toroidal rotation can be measured by
the charge exchange recombination spectroscopy (CXRS), which can be used to
determine radial electric field using (4.201) if density and temperature profiles are
known as follows,

d˚

d 
D � 1

P

b
˛�

Ib

"
hB2iu�I

RB2�
C

3X

bD1

�
˛�

IbP0
b

ebnb
C ˛I;bC3T 0

b

eb

�#

(4.203)
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Here, ˛�
Ib D ˛Ib C .hB2i=B2� � 1/ıab. This radial electric field profile can be used

to discuss effect of radial electric field shear on transport reduction discussed in
Sect. 7.4. Once radial electric field is known, we can calculate parallel flows of
electron, ion, impurity from Eq. (4.201). If we calculate these flows for typical high
temperature plasma, we find significant difference between ion and impurity toroidal
rotations of several 10 km/s in high ˇp plasma as shown by Kikuchi [434].

Toroidal and poloidal rotations of ion and impurity are analyzed analytically by
Kim [446]. Since electron inertia is small, electron contribution to ion and impurity
momentum balance can be neglected and flow relations of ion and impurity are
given as follows.

O�I � uI
� D OLII � uI

k C OLIi � ui
k (4.204)

O�i � ui
� D OLiI � uI

k C OLii � ui
k (4.205)

Oua
� D ua

k � Va; (4.206)

where last equation for Oua
� is obtained from Eq. (4.27) and Oua

� , ua
k, Va, O�a, OLab are

defined as follows,

Oua
� D

"
hB2iOua�
2hB2iOqa�
5Pa

#

;ua
k D

"
hBukai
2hBq

kai
5Pa

#

;Va D
�

BV1a

BV2a

�

(4.207)

O�a D
� O�a1 O�a2

O�a2 O�a3

�

; OLab D
� Olab

11 �Olab
12

�Olab
21

Olab
22

�

(4.208)

Since impurity collisionality is given as ��
I D .nIZ4I =niZ4i /�

�
i considering fast

equipartition between ion and impurity (Ti � TI), impurity may be in the Pfirsch-
Schlüter regime (negligible impurity viscous force: O�I � uI

� � 0) while bulk ion
is deeply collisionless regime, ��

I 
 ��
i . Therefore, impurity parallel flow can be

given as uI
k D � OL�1

II
OLIi � ui

k. Using large impurity mass approximation mI 
 mi,
substitution into (4.205) gives following ion momentum balance equation.

O�i � Oui
� D �

�
0 0

0 �

�

� ui
k (4.209)

Here, � D p
2 C ˛, ˛ D nIZ2I =niZ2i (Here ˇ D O..mi=mI/

2/ term of [446] is
neglected). Using the relation ui

k D Oui
� C Vi, we obtain following expression.

� O�i1 O�i2

O�i2 O�i3 C �

�

Oui
� D �

�
0 0

0 �

�

Vi (4.210)

This equation indicates that Ou� -driven ion viscous force is balanced against Oq� -
driven ion viscous force so that total parallel ion viscous force becomes zero.
But, the ion poloidal heat flow is driven by the thermal force (dTi=dr) through the
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parallel heat friction. Equation (4.210) leads to following analytic expressions for
Oui
� ;u

i
k;u

I
k; OuI

� .

Oui
� D

"
0 K1
0 � O�i1

O�i2
K1

#

Vi;ui
k D

�
1 K1
0 K2

�

Vi (4.211)

uI
k D

�
1 K1 C 1:5K2
0 0

�

Vi; OuI
� D uI

k � VI (4.212)

K1 D � O�i2

D
;K2 D O�i1 O�i3 � O�2i2

D
;D D O�i1. O�i3 C �/� O�2i2 (4.213)

If we use tokamak ordering B � B� and Oua� � u�=B� by neglecting poloidal
variation, we obtain following form of uki; ukI; u� i; u� I .

uki � �1
B�

�
d˚

dr
C 1

eZini

dPi

dr
C K1

eZi

dTi

dr

�

(4.214)

ukI � �1
B�

�
d˚

dr
C 1

eZini

dPi

dr
C K1 C 1:5K2

eZi

dTi

dr

�

(4.215)

u� i � � K1
eZiB�

dTi

dr
(4.216)

u� I � �K1 C 1:5K2
eZiB�

dTi

dr
� 1

eZInIB�

dPI

dr
C 1

eZiniB�

dPi

dr
(4.217)

All terms proportional to dTi=dr in above 4 equations originates from heat flow
balance equation.

If we neglect these terms,we see u� i � 0 due to strong viscous damping of
poloidal rotation. The uki is determined to satisfy u� i � 0 (poloidal component of
parallel flow must compensate poloidal component of Er � B and ion diamagnetic
flows). Also, uki � ukI due to negligible impurity parallel viscous force. Then
impurity parallel flow cancels poloidal component of Er � B and ion (not impurity)
diamagnetic flows. Then, impurity poloidal flow is difference of impurity and ion
diamagnetic flows (u� I � Œ.dPi=dr/=.Zini/� .dPI=dr/=.ZInI/�=.eB�/).

Retaining dTi=dr terms, we see ion and impurity toroidal rotation proportional to
dTi=dr and 1=B� (large at high ˇp).

�uk D ukI � uki D �1:5K2
eZiB�

dTi

dr
(4.218)

If the total toroidal momentum is zero (nimiuki C nImIukI D 0), this equation
together with (4.218) implies positive toroidal rotation for ion and negative toroidal
rotation for impurity as follows,

ukI D � nimi

nImI
uki D �nimi

nimi C nImI

1:5K2
eZiB�

dTi

dr
(4.219)
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Since nimi=nImI 
 1 holds in most case, impurity rotates strongly in counter
direction and bulk ion rotates weakly in co direction (jukIj 
 jukij) if total toroidal
momentum is zero. Since there is very little expected momentum source, Ohmically
heated plasma is ideal to test strong counter impurity rotation. In 1991 Sherwood
conference, Kim discussed the impurity toroidal rotation (nearly parallel flow)
in Ohmically heated plasma in JFT-2M implying that its value of �12:5 km/s is
consistent with this temperature gradient-driven counter impurity toroidal rotation
from Eq. (4.227). This suggests that there is no significant hidden torque drive
in Ohmically heated plasma. But later many experiments showed strong intrinsic
rotation driven by the hidden torque as will be discussed in Sect. 7.6.

4.5.2 Neoclassical Toroidal Viscosity

One important property of axisymmetric system is the conservation of total toroidal
momentum. Total toroidal angular momentum balance equation is given as follows,

X

a

mahnaR
dua�

dt
i D

X

a

˝
R2r� � .r � ˘ a C Ma/

˛
(4.220)

Noting viscous tensor ˘ a is a symmetric tensor for axisymmetric plasma and
r.R2r�/ is antisymmetric tensor [328], flux surface average of toroidal viscous
force is shown to be zero, namely hR2r� �r �˘ ai D 0. This means that toroidal drag
force by magnetic field variation is zero for axisymmetric system. When symmetry
is broken by the application of non-axisymmetric field, hR2r� � r � ˘ ai becomes
non zero. This drag force is called Neoclassical Toroidal Viscosity (NTV). The
symmetry breaking produces offset toroidal rotation and the force.

We first describe the offset toroidal rotation. The 0th order ion radial force
balance is:

0 D eZini.E C ui � B/� rPi (4.221)

In the flux coordinates . ; �; �/, the magnetic field is expressed as B D r �
r.q� � �/. The radial component of above equation can be obtained by taking inner
product with tangent vector @x=@ and using the identity @x=@ � r D 1, where
x is position vector.

ui � r� D �
�

d˚

d 
C 1

eZini

dPi

d 

�

C qui � r� (4.222)

In the tokamak plasma with symmetry breaking, the electrostatic potential ˚
is determined so that non-ambipolar flux h� na � rVi becomes zero. In Hamada
coordinates, the non-ambipolar flux h� na � rVi is related to toroidal viscous force
as h� na � rVi D .V 0. /2=eaq/hBt � r � ˘ ai [678]. In the collisionless regime, ion
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viscous force is larger than that for electron by a factor of .mi=me/
1=2. The zero non-

ambipolar flux condition is then given by hBt � r � ˘ ii D 0 for electron ion plasma.
Shaing [681] derived following relation for the ion in collisionless regime,

d˚

d 
C 1

eZini

dPi

d 
D � �2

eZi�1

dTi

d 
(4.223)

Here �1 and �2 are numerical constants in [681]. Even if we include impurity, we
may be able to assume impurity is in a Pfirsch-Schlüter regime (namely impurity
parallel viscosity is small) while ion is deeply in collisionless regime as in previous
section. Then (4.223) is still zero non-ambipolar flux condition. Substituting (4.223)
into (4.222), we obtain following expression of offset toroidal rotation,

ui0 � r� D �2

eZi�1

dTi

d 
C qui0 � r�; (4.224)

where offset poloidal rotation ui0 � r� is given by,

ui0 � r� D �K1F.B � r�/
eZihB2i

dTi

d 
(4.225)

Since measurement of toroidal rotation is made using impurity toroidal rota-
tion, actual measurement of offset toroidal rotation of the impurity is given by
Kikuchi [444]. In the cylindrical coordinates, offset toroidal rotations of ion and
impurity are:

ui�0 D 3:54 � K1
eZiB�

dTi

dr
(4.226)

uI�0 D 3:54� 1:5K2 � K1
eZiB�

dTi

dr
(4.227)

The offset rotation is confirmed experimentally in DIII-D [246] as shown in
Fig. 4.16b. Since K1 and K2 are order of 0.3–1.2 in collisionless tokamak plasma as
given by Kim [446], agreement with collisionless ion (1=�) regime becomes better
when we include finite poloidal flow correction and impurity effect.

Now we discuss drag force due to neoclassical toroidal viscosity. The 3D non-
resonant field can cause increased radial excursion of ions, which produces NTV
torque. This can be enhanced when the toroidal rotation frequency resonates with
natural frequency of the ions. If the rotation frequency is much lower than the
ion bounce frequency, the Er=Bp toroidal precession drift (PD) play the key role,
which is relatively small, for example, less than several kHz. At higher toroidal
rotation frequency regime, the toroidal rotation frequency can resonate with ion
bounce frequency. The NTV resonate with trapped ion bounce motion may be called
BH-NTV. The resonance condition is given by `!b � n!E, where !b is bounce
frequency, !E � Er=Bp=R is the electric field-induced precession drift frequency,
and `; n are integers.
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Fig. 4.16 (a) Observation of neoclassical toroidal viscosity (NTV) in NSTX [860]. (b) Observa-
tion of offset toroidal rotation due to NTV in DIII-D [246]. Reproduced with permission from Zhu
[860] and Garofalo [246]. Copyright American Physical Society

The NTV has parametric dependences on the collisionality �, and the toroidal
precession drift Er=Bp � R!E. Collisionality dependence includes well-known 1=�
regime as clarified by Shaing [681] in relatively high collisionality regime and

p
�

regime in very low collisionality regime also by Shaing [682] while it can have �
dependence if !E � 0.

The NTV drag in 1=� regime is first observed by W. Zhu in NSTX [860] as shown
in Fig. 4.16a. The observed torque is consistent with the calculation including the
resonant field amplification (RFA) effect identified by Boozer [72]. Sun [724] gives
general solution of NTV torque by non-axisymmetric perturbation in the collision
less regime and showed peaking against the toroidal rotation frequency whose result
can be given as shown in Fig. 4.17. Since the NTV in low toroidal rotation resonates
with ion precession drift, it should have some peaking against the rotation frequency.
Cole [136] showed that the observed NTV at low toroidal rotation frequency in DIII-
D has a peak in toroidal rotation consistent with Sun’s result. Satake [659] developed
a ıf Monte Carlo simulation code to check 1=� dependence. Sun [725] showed the
1=� dependence in the JET experiment.

Kim [451] shows that the toroidal rotation frequency (!p) can have a bounce
harmonic resonance (l!b D n!p), where strong breaking occurs if the plasma
rotation resonates !p � l!b=n. J.K. Park [606] gives an satisfactory agreement
between numerical computations and experiments in KSTAR.

Shaing [683] gives an analytical connection formula of NTV torque with
appropriate boundary condition in the super-banana plateau regime valid for all
collisionality regime, which has been refined by Sun [726].

The NTV can be induced also by exciting the internal kink mode. Seol [676]
reported that central ECH can destabilize the internal kink mode and can break the
toroidal rotation in KSTAR.
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Fig. 4.17 Dependence of NTV torque density �TNTV on the toroidal rotation frequency !
 .
Plotted from Sun [724] (courtesy of Sun)

Column 4-5: Some Basic Quantities

Frequencies: Basic frequencies in plasma physics are given as follows, while
ne20 is electron density in 1020m�3 and ni20 is ion density in 1020m�3.
Electron cyclotron freq.:˝e.s�1/ D eB

me
D 1:76 � 1011B.T/

Ion cyclotron freq.:˝i.s�1/ D eZiB
mi

D 9:55 � 107 ZiB.T/
Ai

Electron plasma freq.: !pe.s�1/ D
q

nee2

me"0
D 5:64 � 1011pne20

Ion plasma freq.: !pi.s�1/ D
q

niZ
2
i e2

mi"0
D 1:32 � 1010Zi

q
ni20
Ai

Drift frequency: !�a.s�1/ D k?Ta
eaBna

dna
dr

Thermal drift frequency: !�Ta.s�1/ D k?

eaB
dTa
dr

Diamagnetic frequency: !�pa.s�1/ D k?

eaBna

dpa
dr

Toroidal drift frequency: !Da.s�1/ D k � vvvDa D �2k?Ta
eaBR

Speed: Basic speeds in plasma physics are given as follows,

Electron thermal speed: vTe.m=s/ D
q

2Te
me

D 5:9 � 105pTe.eV/

(continued)
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Ion thermal speed: vTi.m=s/ D
q

2Ti
mi

D �104pTi.eV/

Alfven speed: vA.m=s/ D Bp
�0�

D 2:18 � 106 B.T/p
Aini20

E � B drift speed: vE.m=s/ D E
B D E.V=m/

B.T/

Polarization drift speed: vp.m=s/ D ma
eZaB2

dE
dt

Lengths: Basic lengths of plasma physics are given as follows.

Debye length: �D.m/ D p
"0Te=nee2 D 2:35 � 105pTe.keV/=ne.m�3/

Larmor radius (e, th.): �Te.m/ D
p
2meTe
eB D 1:07 � 10�4p

Te.keV/
B.T/

Larmor radius (ion, th.): �Ti.m/ D
p
2miTi

eZiB
D 4:57 � 10�3p

AiTi.keV/
ZiB.T/

Electron mean free path: �e D vTe�e D 1:44 � 1923 Te.keV/2

ne.m�3/ln�

Dimensionless parameters

Collisionality: ��
i D Rq

"1:5vTi�ii
D 4:9 � 10�12 Rqni.m�3/Z4i ln�

"1:5Ti.keV/2

Normalized gyro: ��
i D �i

a D
p
2miTi

eZiB
D 4:57 � 10�3p

AiTi.keV/
ZiB.T/

Toroidal beta: ˇ D nT
B2=2�0

D 4:03 � 10�2 Ti.keV/n.1020m�3/

B.T/2

Exercise 4.1. Show that the cross field particle and heat fluxes can be decomposed
into classical and neoclassical fluxes as:

� hnaua? � r i
hqa? � r =Tai

�

D
�
� cl

a C � NC
a

.qcl
a C qNC

a /=Ta

�

(4.228)

where,

�
� cl

a

qcl
a =Ta

�

D
�h.B � r / � Fa1=eaB2i
h.B � r / � Fa2=eaB2i

�

�
� NC

a

qNC
a =Ta

�

D
�h.B � r / � .rPa C r � ˘ a � eanaE/=eaB2i

h.B � r / � ..5=2/narTa C r � �a/=eaB2i
�

Answer. See Kikuchi [443].

Exercise 4.2. Show that the neoclassical particle flux is decomposed into Pfirsch-
Schlüter, banana-plateau, and electric fluxes as:

�
� NC

a

qNC
a =Ta

�

D
�
� ps

a C � bp
a C � E

a

.qps
a C qbp

a /=Ta

�

(4.229)

where,

�
� ps

a

qps
a =Ta

�

D �F. /

ea


�
1

B2
� 1

hB2i
��

B � F1a

B � F1a

��
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�
� bp

a

qbp
a =Ta

�

D �F. /

ea

�hB � r � ˘ ai
hB � r � �ai

�

� E
a D hnaB � EiF. /=hB2i C hR2r� � na@A=@ti

Answer. See Kikuchi [443].

Exercise 4.3. Let define radial coordinate � D .
=
a/
1=2a. Show that the summa-

tion of classical and Pfirsch-Schlüter fluxes are given by,

�
� cl

a C � ps
a

.qcl
a C qps

a /=Ta

�

D hR2i � F2=hB2i
 0.�/�aa

X

b

mana

eaeb

� Olab
11 �Olab

12

�Olab
21

Olab
22

� �
P0

b.�/=nb

T 0
b.�/

�

(4.230)

Answer. See Kikuchi [443].

Exercise 4.4. Show that the banana-plateau fluxes are given by,

�
� bp

a

qbp
a =Ta

�

D �
X

b

�
Kab
11 Kab

12

Kab
21 Kab

22

� �
P0

b.�/=nb

T 0
b.�/

�

C
�

g1a

g2a

�

hBEki (4.231)

Answer. See Kikuchi [443].

Exercise 4.5. Derive (4.183) from the following � dependent FP equation.
@f
@t � B�vk

rB�
@f
@�

D 1
�se
Œ 1
v2

@
@v f.v3c C v3/f g C ˇBmin

B
v3c
v3

jv
k
j

�v
@
@�

f.1 � �2/ jv
k
j

�v
@f
@�

g�C S.

Hint: Use expansion f D f0C f1 in power of �B=�se and apply solvability condition,
where �B is the bounce period of fast ion. For detail, see Cordey [148].

Exercise 4.6. Derive the relation (4.158).

Answer. Read Helander-Sigmar Sect. 11.2 to reach [317](11.23).



Chapter 5
Low Frequency Collective Motions in Tokamak

Abstract Low frequency collective motions play major roles in turbulent transport
and also MHD instabilities in tokamaks. In this chapter, we introduce drift waves,
shear Alfven waves, wave-particle interactions using fluid and gyro kinetic equa-
tions as important collective motions in tokamak. Electrostatic drift waves such
as slab drift wave including ion temperature gradient (ITG) drift instability, and
toroidal drift waves including ITG and trapped electron mode (TEM) instabilities
are introduced in Sect. 5.1. The shear Alfven wave, kinetic Alfven wave and drift
Alfven wave are introduced in Sect. 5.2. Classical and modern gyrokinetic theories
are introduced in Sect. 5.3. Numerical calculations of toroidal ITG mode, TEM and
the electron temperature gradient (ETG) mode based on gyrokinetic theories are
described in Sect. 5.4. Columns includes derivation of guiding center Lagrangian,
Non-canonical mechanics, Lagrange tensor, and Lie transformation.

Further Readings:

Book: Kadomtsev (1976) [409] is nice book on collective phenomena in plasmas.
Kadomtsev (1965) includes some of important analysis on drift Alfven waves. Chen
(1987) [110] is well written to understand classical gyro kinetic equation. Hazeltine-
Waelbloeck (2004) [309] is useful for basic drift wave. Weiland (2000) [815] is
useful to understand fluid views of drift waves. You may read Flanders (1989) [206],
Arnolds (1978) [26], Frankel (2004) [209] for mathematical bases.

Review: Kadomtsev-Pogutse [408] is useful as introduction to trapped particle
dynamics. Horton (1999) [341] is good survey of fundamentals of drift waves. Cary-
Littlejohn [99] is nice paper on introduction of Lie transform. Brizard-Hahm (2007)
[82] is comprehensive report on modern gyrokinetic theory. Cary-Brizard (2009)
[100] is useful to understand Lie transform.

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_5
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5.1 Electrostatic Drift Waves

5.1.1 Density Gradient Drift Waves

We first discuss a drift wave in a simple geometry shown in Fig. 5.1a. The density
gradient is in the negative x direction (dn=dx < 0) and the magnetic field is in the
z direction. We assume uniform temperature, i.e. dT=dx D 0. We consider the drift
wave driven by the density gradient dn=dx. The @ Q̊ =@y produces E � B drift motion
in the x direction (QuEx D QEy=B D �.@ Q̊ =@y/=B). This QuEx produces the ion density
fluctuation Qni. Taking finite kk (@=@z ¤ 0) in the parallel ion motion to include sound
wave dynamics, the ion continuity equation (@ni=@t C r.niui/ D 0) and the parallel
ion momentum balance equation is given as follows,

@Qni

@t
C ni

@Quki

@z
C QuEx

dni

dx
D 0 (5.1)

mini
@Quki

@t
D �@Qpi

@z
� eini

@ Q̊
@z

(5.2)

We note r � QuE D �r � �r Q̊ � B=B2
	 D 0 in uniform B. For � e�i!tCikyyCik

k
z,

QuEx.dni=dx/ D ini!�e.e Q̊ =Te/, where ei D eZi, !�e D kyTe=eLnB, Ln D �ne=

.dne=dx/ and Eqs. (5.2) and (5.3) becomes:

Qni

ni
D !�e

!

e Q̊
Te

C kk Quki

!
(5.3)

Quki D kk
!

Qpi C eini Q̊
mini

(5.4)

The adiabatic ion response is given by d.pin
��i
i /=dt D 0 (�i D 5=3), which gives

Qpi D �iTi Qni. Eliminating Quiz and assuming ion adiabatic response, we obtain:

Qni

ni
D !!�e C k2kc2se

!2 � k2kc2si

e Q̊
Te

(5.5)

Here, c2se D ZiTe=mi, c2si D �iTi=mi and !�e is the electron diamagnetic frequency.
The electron dynamics is dominated by the parallel momentum balance as

meduke=dt D e@˚=@z�@pe=ne@z. For low frequency phenomena (! 	 ˝i), we can
neglect small electron mass. Since parallel electron heat conduction is sufficiently
high, we can also assume isothermal electron (@Te=@z D 0) so that e@˚=@z�.Te=ne/

.@ne=@z/ D 0. This gives Boltzmann relation, ne=ne0 D expŒe˚=Te�. Expanding
ne D ne0 C Qne and ˚ D ˚0 C Q̊ , we have electron Boltzmann response:

Qne=ne0 D e Q̊ =Te (5.6)
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1

2

-1

1 2 3
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k//cs/ *e

u*e

ω/ω∗e

a b

Fig. 5.1 (a) Geometry of the drift wave. Modified from F.F. Chen [108]. (b) Dispersion relation
of the electrostatic drift wave

Substitution of above equation and Boltzmann relation (Qne=ne D e Q̊ =Te) to
charge neutrality condition (Qne=ne D Qni=ni) gives following dispersion relation.

!2 D !!�e C k2kc2s (5.7)

Here, c2s D .�iTi CZiTe/=mi and cs is a sound speed. The dispersion relation ! D !

.kk/ is shown in Fig. 5.1b. Upper branch is a drift wave propagating in the electron
diamagnetic drift direction. Even at kk D 0, the dispersion relation ! D !�e implies
that the phase velocity uph D !=k? D u�e. At finite kk, it couples to sound wave.
Lower branch is a drift wave propagating in the ion diamagnetic drift direction. The
dispersion relation at low kk is approximately given by ! D �k2kc2s=!�e. This mode
does not have real frequency at kk D 0 (!.0/ D 0), i.e. it is the convective cell,
which can be destabilized by the free energy from the ion temperature gradient.

Due to large ion inertia, the polarization drift slightly modifies the dispersion
relation (5.7). The ion polarization drift upi D .mi=eiB2/.dE=dt/ is given by,

Qupiy D �mi!k?
eiB2

Q̊ (5.8)

Since r � upi � @upiy

@y ¤ 0, ion continuity equation may be modified as,

@Qni

@t
C ni

�
@Quiz

@z
C @Qupiy

@y

�

C QvEx
dni

dx
D 0 (5.9)

or,
Qni

ni
D
h!�e

!
� k2?�

2
s

i e Q̊
Te

C kk Quki

!
(5.10)
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Here, �2s D c2se=˝
2
i . Together with the ion equation of motion (5.4) and the electron

response is Boltzmann (5.6) and using ion adiabatic law Qpi D �iTi Qni, the charge
neutrality condition Qne=ne D Qni=ni gives modified drift wave dispersion relation.

!2.1C k2?�2s / D !!�e C k2kc2s (5.11)

Here c2s D .�iTi CZiTe/=mi is a sound speed. The effect of polarization drift appears
as k2y�

2
s , which is related to the finite Larmor radius effect.

5.1.2 Slab ITG Mode

The drift wave driven by dn=dx is stable but can be destabilized by the dTi=dx
called the Ion Temperature Gradient (ITG) mode even in a uniform magnetic field.
We concentrate on ion response since electron response is Boltzmann relation,
Qne=ne D e Q̊ =Te. Eliminating Quki from (5.3) and (5.4) with � e�i!tCikyyCik

k
z,

QuEx D �iky Q̊ =B:

Qni

ni
� !�e

!

e Q̊
Te

D Tik2k
mi!2

 
Qpi

pi
C ei Q̊

Ti

!

(5.12)

Instead of the ion adiabatic law Qpi D �iTi Qni, we use ion energy balance equation,
3
2

�
@
@t C ui � r	 pi C 5

2
pir �ui D �r �qi where ui D uki Cu�i CuE and qi D q�i Cqki.

In an uniform B plasma, we have r�uE D 0 , r�q�iC 5
2
pir�u�i D 0, and u�i�rpi D 0

from (5.37). Neglecting qki, we have 3
2
.
@pi
@t C uE � rpi/C 5

2
pi
@u

ki

@z D 0. Using (5.3),

Qpi

pi
C !�pi

!

ei Q̊
Ti

D 5

3

 
Qni

ni
� !�e

!

e Q̊
Te

!

(5.13)

where !�pi D ky.dPi=dx/=einiB. Eliminating Qpi=pi from (5.12) and (5.13), we have:

Qni

ni
D
"
!�e

!
C .1 � !�pi

!
/k2kc2se

!2 � k2kc2si

#
e Q̊
Te

D !!�e C k2kc2se

�
1 � !�i

!
.�i � 2

3
/
�

!2 � k2kc2si

e Q̊
Te

(5.14)

Here, we used !�pi D !�i.1C �i/, !�i D �kyTi=eiLnB D �!�e=�eZi, �i D Ln=LTi,
LTi D �Ti=.dTi=dx/, and �e D Te=Ti D 1=�i. Using the Boltzmann relation for the
electron Qne=ne D e Q̊ =Te, we have following ion temperature gradient (ITG) mode
dispersion relation from the charge neutrality condition Qni=ni D Qne=ne.

!.! � !�e/ D Œ1C .5=3Zi�e/ � .!�i=!/.�i � 2=3/� k2kc2se (5.15)
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This cubic equation is obtained by Horton in 1972 [340] and has one real solution
!.kk/ corresponds to drift wave and two complex conjugate convective cell/sound
wave solution. The latter solution becomes unstable when jdTi=drj is sufficiently
large. The instability appears at ! 	 j!�ej; j!�ij. The dispersion relation becomes,

!2 D �.k2kc2se=�eZi/ .�i � 2=3/ (5.16)

Therefore, electrostatic ITG mode in uniform magnetic field becomes unstable when
�i >

2
3
. In the limit of flat density dn=dx D 0, Eq. (5.15) leads to,

!2 D k2kc2se Œ1C 5=3�eZi � !�Ti=!� (5.17)

Here, !�Ti D ky.dTi=dx/=eiB. This cubic equation in ! gives instability (A.108):

j!�Tij � 2Œ.1C 5=3�eZi/=3�
3=2kkcse (5.18)

5.1.3 Toroidal ITG and ETG Modes

Fluid equation of motion for species a is given by,

mana
dua

dt
D eana .E C ua � B/ � rpa C r � �a C Fa; (5.19)

where d=dt D @=@t C ua � r is the total derivative, �a is stress tensor, Fa is force
acting on fluid a including the friction force. The stress tensor �a has parallel and
perpendicular components. We use the electrostatic approximation in this section.

Taking the cross product b� (5.19) with b D B=B, we obtain following equation
for perpendicular drifts.

u?a D uE C u�a C u
a C uFa C upa (5.20)

where, uE, u�a, u
a, uFa, upa are called E � B drift, diamagnetic drift, stress tensor
drift, force drift, and polarization drift respectively, and are given as follows,

uE D .E � b/=B D .b � r˚/=B (5.21)

u�a D .b � rpa/=eanaB (5.22)

u
a D .b � r � �a/=eanaB (5.23)

uFa D �.b � Fa/=eanaB (5.24)

upa D mab � .dua=dt/=eaB (5.25)
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Since polarization drift is proportional to mass, electron polarization is negligible
(upe � 0) and the ion polarization drift (upi) is finite. But, the ion polarization drift
upi is order down in !=˝i compared with E � B and diamagnetic drifts noting
!=˝i 	 1 as seen from Eq. (5.25). Force drift is neglected below for simplicity
unless otherwise specified. Continuity equation for species a is given by,

@na

@t
C r � .naua/ D 0 (5.26)

Using the expression for perpendicular flow (5.20) and including parallel flow
term, continuity equation for species a is given as follows,

@na

@t
C r � Œna.uE C u�a C u
a C upa C uka/� D 0 (5.27)

where, uE, u�a, u
a, upa, uka are E � B drift, diamagnetic drift, stress tensor drift,
polarization drift, and parallel flow, respectively. For electron continuity equation,
it is noted that electron polarization drift and stress tensor drift are negligible.

Neglecting stress tensor and heat source terms, the energy balance equation is:

3

2

�
@

@t
C ua � r

�

pa C 5

2
par � ua D �r � qa (5.28)

where qa is random heat flux.
The divergence of drift appears in many cases, such as above continuity

equations. We have following relations, called the curvature relations [815].

r � uE D ea

Ta
uda � r˚ (5.29)

r � .nau�a/ D 1

Ta
uda � rpa (5.30)

r � q�a D 5

2
na.uda � u�a/ � rTa (5.31)

where, uda D .Ta=eaB/b � �2 , �2 � � C rlnB (5.32)

Here, � � .b � r/b is the curvature of the magnetic field defined in (2.6).
Considering r � .b � r˚/ D r˚ � r � b and .b � r˚/ � r.1=B/ D .1=B/r˚ �

.b � rlnB/, the divergence of uE D �r˚ � b=B drift is given by,

r � uE D 1

B
r � .b � r˚/C .b � r˚/ � r 1

B
D 1

B
r˚ � .r � b C b � rlnB/

(5.33)

Using Eq. (2.7), we have,

r � uE D ��2 � uE C .b � r˚/.b � r � b/
B

D ��2 � uE C �0Jkb � r˚
B2

; (5.34)
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where we use b � r � b D b � r � .B=B/ D �0Jk=B. The last term of RHS is
negligible since it is O.kk=k?qA/, where q and A D R=a are safety factor and aspect
ratio, respectively. Substituting uE D �r˚ � b=B, we arrive at (5.29).

For diamagnetic drift, we have similar procedures to show following formula.

r � .nau�a/ D ��2 � .nau�a/C �0Jk
eaB2

b � rpa (5.35)

If we neglect second term of RHS, we arrive at (5.30). The drift uda � �2Ta=eaBR
is a toroidal drift velocity of component a. The perpendicular heat flow q?a is a
diamagnetic thermal flow given by,

q?a D 5

2

pa

eaB
b � rTa � q�a (5.36)

Similarly, we arrive at (5.31) for the divergence of q�a.
In the uniform magnetic field, the toroidal drift disappears and we have:

r � uE D 0 , r � .nau�a/ D 0 , r � q�a D �5
2

nau�a � rTa (5.37)

To understand the toroidal ITG dynamics, we start from the perturbed ion
continuity equation is:

@Qni=@t C nir � QuE C QuE � rni C r � ı.niu�i/C nir � Quki D 0 (5.38)

Here, we neglected stress tensor drift and polarization drift and using the curvature
relations (5.29) and (5.30), we have r � QuE D �ie!de Q̊ =Te, r � ı.niu�i/ D i!di Qpi=Ti,
where !di D udi � k. In the strong ballooning limit where the mode is localized
in the bad curvature region, we may approximate !di D udik?, while udi is in the
vertical direction. This approximation is called the strong ballooning limit. Then,
we have !di D �2k?Ti=eiBR and !de D 2k?Te=eBR D ��eZi!di. The perturbed
ion continuity equation is:

!
Qni

ni
D �!de

e Q̊
Te

C !�e
e Q̊
Te

C !di
Qpi

pi
C kk Quki (5.39)

Taking b� (5.19) gives (5.4). Eliminating Quki from (5.4) and (5.39), we have:

Qni

ni
� !�e � !de

!

e Q̊
Te

D Tik2k
mi!2

 
Qpi

pi
C ei Q̊

Ti

!

C !di

!

Qpi

pi
; (5.40)

which agrees with (5.12) in !di; !de ! 0 limit.
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Before discussion of the toroidal ITG, we first consider the stable drift wave with
uniform temperature plasma and assume the ion adiabatic response, Qpi D �iTi Qni. In
this case, we have:

Qni

ni
D !.!�e � !de/C k2kc2se

!.! � �i!di/ � k2kc2si

e Q̊
Te

(5.41)

This ion response has a correct asymptotic form (5.5) with !di; !de ! 0. If
we assume Boltzmann relation for electron, Qne=ne D e Q̊ =Te, we have following
dispersion relation.

!Œ! � .!�e � !de C �i!di/� D k2kc2s (5.42)

Thus, the toroidal effect simply shifts the electron diamagnetic frequency and the
drift wave and convective cell is stable with dTi=dr D 0.

Now, we consider dTi=dr ¤ 0 ITG drift wave and we use ion pressure
balance equation (5.28) instead of the ion adiabatic law. Substituting the curvature
relation (5.31) into (5.28) and retaining only uE, u�i and uki as flow components
and neglecting r � qki, we have following leading order equation (we neglect
5=3pir � .u
 i C upi/).

@pi

@t
C uE � rpi C 5

3
pir � .uE C u�i C uki/C 5

3
ni.udi � u�i/ � rTi D 0 (5.43)

Here, we used u�i � rpi D 0. Using u�i � rpi D 0, we also have

pir � u�i � niu�i � rTi D Tir � .niu�i/ D udi � rpi (5.44)

since niudi � rTi D udi � rpi � Tiudi � rni, we have

@pi

@t
C uE � rpi C 5

3
pir � uki C 5

3
udi � Œeinir˚ C 2rpi � Tirni� D 0 (5.45)

Equation (5.4) is still valid, and the linearized equation for Qpi is obtained as,

Qpi

pi
C !di

!

ei Q̊
Ti

D k2kc2si

!2

 
Qpi

pi
C ei Q̊

Ti

!

C 5!di

3!

 
ei Q̊
Ti

C 2
Qpi

pi
� Qni

ni

!

(5.46)

Eliminating Qpi=pi from (5.40) and (5.46), we obtain:

Qni

ni
D !.!�e � !de/C .�i � 7

3
C 10

3
�n/!di!�e C k2kc2seŒ1 � !�i

!
.�i C 10

3
�n � 2

3
/�

!2 � 10
3
!!di C 5

3
!2di � k2kc2si.1 � !di

!
/

e Q̊
Te

(5.47)
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Here, we used �n � !di=2!�i D Ln=R and !�e D ��eZi!�i. This ion density
response has following correct asymptotic forms.

Qni

ni
D
8
<

:

� ei Q̊
Ti
.!di; !de ! 1/

!!�eCk2
k

c2seŒ1� !�i
! .�i� 2

3 /�
!2�k2

k
c2si

e Q̊
Te
.!di; !de ! 0/

(5.48)

Assuming Qne=ne D e Q̊ =Te, we obtain following toroidal ITG dispersion relation.

!2 � c1!�e! C c2!
2�e D

�
c3 � !�i

!
c4



k2kc2se (5.49)

c1 D 1 � 2�n

�

1C 10

3�eZi

�

, c2 D 2�n

�eZi

�

�i � 7

3
C 10

3
�n

�

1C 1

�eZi

��

(5.50)

c3 D 1C 5

3�eZi
, c4 D �i � 2

3
C 10

3
�n C 20

3�2e Z2i
�2n (5.51)

This dispersion relation agrees with (5.15) asymptotically �n ! 0. At finite �n, the
toroidal ITG mode can be unstable even at kk D 0, while the ITG mode in the
uniform magnetic field can be unstable only at finite kk. The instability threshold
condition for the toroidal ITG is given using (A.108) at kk D 0 as:

�ic D 3

2
� �eZi

2
C �eZi

8�n
C �n

�
�eZi

2
C 20

9�eZi

�

(5.52)

The electron temperature gradient can also drive an instability called the electron
temperature gradient (ETG) mode similar to ITG mode. The mode is characterized
by its short wavelength �e 	 � 	 �i. The mode frequency ! satisfies ˝i <

! 	 ˝e and ions are unmagnetized. The ion may reach thermal equilibrium by the
perpendicular motion to satisfy Boltzmann relation, Qni=ni D �ei Q̊ =Ti.

5.1.4 Trapped Electron Mode/ITG

Until now, we consider the simple Boltzmann response for electrons, Qne=ne D
e Q̊ =Te. In tokamak, we have circulating and trapped electrons, which behave dif-
ferently to the electrostatic potential perturbation. The electron density perturbation
may be expressed as a summation of trapped electron response (Qnet) and circulating
electron response (Qnec).

Qne

ne
D ft

Qnet

net
C fc

Qnec

nec
(5.53)

Here, ft is trapped particle fraction of electron and fc D 1 � ft is circulating fraction
of electron. Since trapped electron can not move parallel to magnetic field, we can
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neglect parallel motion (kk terms). Then, trapped electron response Qnet may be given
by (5.47) by exchanging ion to electron.

Qnet

net
D !.!�e � !de/C .�e � 7

3
� 10

3
�n/!de!�e

!2 � 10
3
!!de C 5

3
!2de

e Q̊
Te

(5.54)

Considering the circulating electron may follow Boltzmann relation, we have,

Qne

ne
D
"
!.!�e � !de/C .�e � 7

3
� 10

3
�n/!de!�e

!2 � 10
3
!!de C 5

3
!2de

ft C fc

#
e Q̊
Te

(5.55)

Using Eq. (5.47), the normalized ion density perturbation neglecting the parallel
sound wave contribution is given by,

Qni

ni
D !.!�e � !de/C .�i � 7

3
C 10

3
�n/!di!�e

!2 � 10
3
!!di C 5

3
!2di

e Q̊
Te

(5.56)

The charge neutrality condition (Qne=ne D Qni=ni) gives following dispersion
relation for ITG and trapped electron mode (TEM).

!.!�e � !de/C .�i � 7
3

C 10
3
�n/!di!�e

!2 � 10
3
!!di C 5

3
!2di

D !.!�e � !de/C .�e � 7
3

� 10
3
�n/!de!�e

!2 � 10
3
!!de C 5

3
!2de

ft C fc (5.57)

Weiland [814, 815] derived the dispersion relation including the finite Larmor
radius correction as follows,

!.!�e � !de/C .�i � 7
3

C 10
3
�n/!di!�e C FL

!2 � 10
3
!!di C 5

3
!2di

D !.!�e � !de/C .�e � 7
3

� 10
3
�n/!de!�e

!2 � 10
3
!!de C 5

3
!2de

ft C fc

FL D k2?�2i Œ! � !�i.1C �i/�

�
!

!�e
C 10�n

3�eZi

�

(5.58)

This dispersion relation is useful to see qualitative picture of ITG/TEM mode
diagram. Figure 5.2 shows typical result given by Garbet [243].

In the peaked density regime, the Trapped Electron Mode (TEM) can be
unstable. This TEM is first predicted by Kadomtsev as candidate instability to
explain anomalous electron transport [408]. And TEM can give a scaling of energy
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Fig. 5.2 Stability diagram in
.R=Ln;R=LT/ for the
ITG/TEM modes under
Te.r/ D Ti.r/, trapped
electron fraction of 0:3,
collisionless limit (�� D 0)
calculated using Weiland
fluid model. Reproduced with
permission from Garbet
[243]. Copyright IOP
Publishing

confinement similar to Neo-Alcator scaling (�E � R2a). The collisionless TEM has
wave length closer to ITG mode k?�i � 0:3.

In the flat density regime (R=Ln < 2), ITG mode can be unstable if there is
sufficient free energy from ion temperature gradient dTi=dr, where inward particle
flux is expected. For sufficiently high R=LT , ITG and TEM can be unstable where
outward particle flux is expected. We summarize drift wave fluid quantities as
follows,

!�a D k?Ta

eaBna

dna

dr
; !�Ta D k?

eaB

dTa

dr
; !�pa D k?

eaBna

dpa

dr
; !da D �2k?Ta

eaBR

(5.59)

c2se D ZiTe

mi
; c2si D �iTi

mi
; u�a D Ta

eaBna

dna

dr
; uDa D � 2Ta

eaBR
(5.60)

�i D 5

3
; c2s D �iTi C ZiTi

mi
; �e D Te

Ti
; �i D Ti

Te
(5.61)

Lna D � r

na

dna

dr
; LTa D � r

Ta

dTa

dr
; �n D Ln

R
; �a D Lna

LTa
(5.62)
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5.2 Alfven Waves

5.2.1 Shear Alfven Wave

The Alfven wave is one of most important waves in plasma physics originated from
Nobel laureate Hannes Alfven (1908–1995) [10]. We show the dispersion relation
of the shear Alfven wave.

Linearized MHD equation can be given as,

�
@vvv

@t
D �r

�

p1 C B � B1
�0

�

C 1

�0
B � rB1 (5.63)

@B1
@t

D r � .vvv � B/ D B � rvvv � vvv � rB � Br � vvv (5.64)

If we consider the divergence-free .r � vvv D 0/ shear flow .vvv ? B/ propagating
parallel to the magnetic field .r k B/, we have

�
@vvv

@t
D 1

�0
B � rB1 ,

@B1
@t

D B � rvvv (5.65)

If we let z a coordinate along B, we have

@2vvv

@t2
D B2

�0�

@2vvv

@z2
(5.66)

This is a wave equation with a phase velocity vA D B=
p
�0�, which is called Alfven

wave. This wave is called the shear Alfven wave. If we assume e�i!tCik
k

z, we have
following dispersion relation of the shear Alfven wave.

!2 D k2kv
2
A (5.67)

Another way to derive shear Alfven wave dispersion relation uses

r � j D ikkjk C ik?j? D 0 (5.68)

Since Ek D 0 for ideal plasma, we have Ak D .kk=!/˚ . Using the Ampere’s law
k2?Ak D �0jk, we have

�0jk D .k2?kk=!/˚ (5.69)

Using the ion polarization current .jp D eini.@E=@t/mi=eiB2/ for the perpendicular
current, we have

j? D jp D �mini!k?˚=B2 (5.70)
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Fig. 5.3 From left, H. Alfven, A. Hasegawa, Liu Chen. AH and LC are recipients of APS J.C.
Maxwell Prize and EPS H. Alfven Prize due to their outstanding contribution to the plasma physics

The r � j D 0 gives the shear Alfven wave dispersion relation !2 D k2kv
2
A.

It is important to note that the ion polarization drift plays an essential role in the
dynamics and the dispersion relation of the shear Alfven wave.

5.2.2 Kinetic Alfven Wave

We now introduce an important kinetic MHD wave called kinetic Alfven wave
originated from A. Hasegawa and L. Chen [293, 294] (Fig. 5.3).

In the low beta plasma such as tokamak plasma, we consider the bending of
the magnetic field as the electromagnetic effect and can neglect the compressional
Alfven wave (magneto sonic wave), QBk D .r � QA/k D @ QAy=@x � @ QAx=@y D 0. This
means QA? has a scalar potential, QA? D r? QG. Then, the electric field QE is given as,

QE D �r Q̊ � @ QA
@t

D �r? Q
 � @ Q 
@z

ez D �r Q
 C @. Q
 � Q /
@z

ez (5.71)

Q
 D Q̊ C @ QG=@t , Q D Q̊ C
Z
.@ QAk=@t/dz (5.72)

According to Kadomtsev [407, p. 82], Q
 and Q are called perpendicular and parallel
potentials, respectively. The Maxwell’s induction law @B=@t D �r � E can be
expressed in terms of these scalar potentials as,

@ QB
@t

D .ez � r?/
@

@z
. Q
 � Q / (5.73)

Assuming e�i!tCik
k

zCik?y, k? D ky and kx D 0, we have ! QBx D �ikykk. Q
 � Q /.
The relation between Q
 and Q can be obtained by r � Qj D 0. We can obtain

expression for Qjk by using ! QBx D �ikykk. Q
� Q / and �0Qjk D �iky QBx (�0j D r � B)
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and that for the perpendicular current Qj? by the polarization current (5.70) with
˚ ! Q
.

Qjk D �kkk2?
�0!

. Q
 � Q / , Qj? D Qjp D mini!k?
B2

Q
 (5.74)

Substituting these expressions into kkQjk C k?Qj? D 0, we obtain:

.k2kv
2
A � !2/ Q
 D k2kv

2
A

Q (5.75)

We consider the electron parallel response in an uniform plasma. Obviously, the
electron should follow the Boltzmann response against parallel potential Q .

Qne

ne
D e Q 

Te
(5.76)

Similar to (5.10), the ion continuity equation including polarization drift is
expressed in a uniform plasma using the perpendicular potential Q
 as,

Qni

ni
D �k2?�

2
s

e Q

Te

C kk Quki

!
; (5.77)

where �s D cse=˝i.
Similar to (5.4), the parallel ion flow is expressed using parallel potential Q as,

Quki D kk
!

Qpi C eini Q 
mini

(5.78)

Using the adiabatic response Qpi D �iTi Qni, we have

Qni

ni
D �k2?�2s!2

!2 � k2kc2si

e Q

Te

C k2kc2se

!2 � k2kc2si

e Q 
Te

(5.79)

Using (5.75), we have:

Qni

ni
D �k2kv

2
Ak2?�2s!2 C k2kc2se.k

2
kv
2
A � !2/

.!2 � k2kc2si/.k
2
kv
2
A � !2/

e Q 
Te

(5.80)

The charge neutrality condition Qne=ne D Qni=ni gives following dispersion
relation.

.!2 � k2kc2s /.k
2
kv
2
A � !2/ D �k2kv

2
Ak2?�2s!2; (5.81)

where c2s D c2se C c2si is the sound speed.
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This dispersion relation shows that the shear Alfven wave can couple to the slow
ion sound wave due to finite Larmor radius effect. For ˇ D c2s=v

2
A 	 1, we find the

slow ion sound wave dispersion relation as !2 D k2kc2s=.1 C k2?�2s /. On the other
hand, for the Shear Alfven wave, we find

!2 D k2kv
2
A.1C k2?�

2
s / (5.82)

This finite Larmor radius correction to the shear Alfven wave plays an essential
role near the shear Alfven resonance and is called the Kinetic Alfven Wave (KAW).

A. Hasegawa and L. Chen [294] derived the dispersion relation of the kinetic
Alfven wave from kinetic equation as !2 D k2kv

2
AŒk

2?�2i =.1 � I0.k2?�2i /e
�k2

?
�2i / C

k2?�2i �e�. This dispersion relation is reduced to !2 D k2kv
2
AŒ1C k2?�2i .Te=Ti C 3=4/�

when k2?�2i 	 1 and to !2 D k2kv
2
Ak2?�2i .1C �e/ when k2?�2i 
 1.

5.2.3 Drift Alfven Wave

The drift wave introduced in Sect. 5.1.1 can be coupled to the shear Alfven wave
in medium beta .me=mi 	 ˇ 	 1/ and to the compressional Alfven wave at high
beta .ˇ � 1/. Since the parallel phase velocity of the shear Alfven wave !=kk D
vA D B=

p
�0mini D vTe.me=miˇe/

1=2 in hydrogen plasmas, parallel phase velocity
becomes comparable to the electron thermal speed at ˇe � me=mi. When ˇe �
.me=mi/

1=2, the phase velocity of the shear Alfven wave satisfies vTi 	 !=kk 	 vTe,
where the drift wave becomes important. Tokamak operates at medium beta and the
coupling to the shear Alfven wave is important.

We consider the same configuration in Fig. 5.1a to consider the coupling of the
density gradient drift wave to the shear Alfven wave (i.e. dTi=dr D 0).

At first, we consider the relation between Q and Q
 to include diamagnetic current.
The fluid equation of motion is given by,

mini
du
dt

D �rp C j � B (5.83)

This gives the perpendicular current as a combination of the diamagnetic and
polarization current for uniform magnetic field (b D ez).

j? D j� C jp, where j� D ez

B
� rp , jp D mini

B
ez � du?

dt
(5.84)

The perturbed parallel current Qjk is given by (5.74). Using the vector formula (A.11),
we find r � j� D 0. Using du?=dt � @u?=@t C .u�i � r/u? and !�i D k?u�i, the
polarization current is given by,

jp D � i.! � !�i/

�0v
2
A

Bez � u? D .! � !�i/k?
�0v

2
A

Q
ex (5.85)
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Substituting these expressions into r � j D 0 (kkQjk C k?Qj? D 0), we obtain:

.k2kv
2
A � !.! � !�i// Q
 D k2kv

2
A

Q (5.86)

The isothermal electron parallel equation of motion at low frequency ! 	 ˝i is:

0 D �ene QEk � ikkTe Qne C eneu�e QBx (5.87)

Substituting Ek D �ikk Q and QBx D .ikkk?=!/. Q
 � Q /, we have

Qne

ne
D e

Te

h Q C !�e

!
. Q
 � Q /

i
(5.88)

Similar to (5.10), the ion continuity equation including polarization drift is
expressed using the perpendicular potential Q
.

Qni

ni
D
h!�e

!
� k2?�2s

i e Q

Te

C kk Quki

!
(5.89)

From the ion parallel equation of motion, �i!mini Qui D einiEk � ikk Qpi � einiu�i QBx:

Quki D kk
!

Qpi C eini Q C eini
!�i
!
. Q
 � Q /

mini
(5.90)

Substituting (5.90) into (5.89) and assuming adiabatic response Qpi D �iTi Qni:

.!2 � k2kc2si/
Qni

ni
D
�
!!�e � k2?�2s!2 C k2kc2se

!�i

!


 e Q

Te

C k2kc2se.1 � !�i

!
/
e Q 
Te

(5.91)

Using the charge neutrality condition Qne=ne D Qni=ni and (5.88), we have

.!2 � k2kc2si/
h Q C !�e

!
. Q
 � Q /

i
D
�
!!�e � k2?�2s!2 C k2kc2se

!�i

!


 Q


Ck2kc2se.1 � !�i

!
/ Q 

Using c2si!�e D �c2se!�i, we have

Œ!.! � !�e/� k2kc2s � Q D �k2?�2s!2 Q
 (5.92)

.k2kv
2
A � !.! � !�i// Q
 D k2kv

2
A

Q ; : (5.86)

where c2s D c2se C c2si. Combining Eqs. (5.86) and (5.92), we have following
dispersion relation of the drift Alfven wave.



5.3 Gyro Kinetic Theory of Drift Waves 131

Fig. 5.4 The dispersion
relation of drift Alfven wave

*e

*i

=k//vA

=k//cs

=-k//cs

=-k//vA

k//

0

h
!.! � !�e/� k2kc2s

i h
!.! � !�i/� k2kv

2
A

i
D k2?�

2
s k2kv

2
A!

2 (5.93)

More detailed kinetic calculation of the drift Alfven wave gives!2 ! !.!�!�i/

in the right hand side. This electromagnetic drift wave has four branches. Shape of
this dispersion relation is given in Fig. 5.4 for a case of vA > cs. The parallel phase
speed vkph D !=kk may reach Alfven speed vA and the condition vkph < vthe implies
vA < vthe. The condition vA < vthe is equivalent to ˇ > me=mi.

5.3 Gyro Kinetic Theory of Drift Waves

5.3.1 Classical Gyrokinetic Theory

Classical gyrokinetic theory by the direct averaging of Vlasov-Maxwell equation
over the gyro motion is developed by Rutherford-Frieman [642], Taylor-Hastie
[755], Catto [101], Antonsen-Lane [22], and by Frieman-Chen [213].

5.3.1.1 Linear Gyrokinetic Theory

The basic equation is Vlasov-FP equation (4.1). Using smallness parameter � D
�i=a 	 1, we use the gyro kinetic ordering: !=˝i � �, kk�i � �, k?�i � �0. We
derive electrostatic linearized Gyrokinetic equation neglecting the collision term.
Expanding fa D faM C fa1, we have:

dfa1
dt

�
�
@

@t
C vvv � @

@x
C ea

ma
vvv � B � @

@vvv

�

fa1 D ea

ma
r Q̊ � @faM

@vvv
(5.94)
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Here d=dt is the total time derivative along the unperturbed trajectories of the
charged particles. In the guiding center coordinates .r;K; �; '/ where the particle
position x is given by the summation of the guiding center position r and the gyration
vector �a as x D r C �a and d=dt is given by:

d

dt
D @

@t
C vvvg � @

@r
�˝a

@

@'
(5.95)

Here, we used P� D 0; PK D 0 for the unperturbed orbit assuming zero
equilibrium electrostatic potential ˚0 D 0. Transformation formula from particle
phase space .x;vvv/ to the guiding center coordinates .r;K; �; '/ is given in Column
5-1. Substituting (5.111)–(5.113) into (5.94), we have

dfa1
dt

D ea
@ Q̊
@r

�
�

vvv
@

@K
C b
˝a

� @

@r

�

faM; (5.96)

where the zero order distribution function faM is a constant of motion and is given
by the canonical Maxwellian satisfying @faM=@' D @faM=@� D 0.

faM D na. c/

.2
Ta. c/=ma/3=2
e�K=Ta. c/; (5.97)

where  c D  C maRv�=ea is the normalized canonical angular momentum.
Since Q̊ is independent of vvv, we have @ Q̊ =@vvv D 0. Using (5.113), we have

�

vvv
@

@K
C vvv?

@

B@�
C b � vvv?

v2?

@

@'
C b
˝a

� @

@r

�
Q̊ D 0 (5.98)

Taking b � vvv?=v? component of Eq. (5.98) and using the vector formula .a � b/ �
.c � d/ D .a � c/.b � d/� .a � d/.b � c/ (A.3), we have

vvv? � @
Q̊
@r

D �˝a
@ Q̊
@'

Substituting this expression into (5.96), we have:

dfa1
dt

D ea

"

vkb � @
Q̊
@r

@

@K
�˝a

@ Q̊
@'

@

@K
C r Q̊ � b

˝a
� @

@r

#

faM (5.99)

Here, we used @faM=@� D 0 for the isotropic distribution function (5.97). We divide
fa1 into adiabatic and non-adiabatic parts as follows,
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fa1 D ea Q̊ @faM

@K
C ga (5.100)

Total time derivative of the adiabatic part ea Q̊ @faM=@K is calculated as,

ea

�
@

@t
C vvvg � @

@r
�˝a

@

@'

�
Q̊ @faM

@K
D ea

"
@ Q̊
@t

C vkb � @
Q̊
@r

�˝a
@ Q̊
@'

#
@faM

@K
;

where we neglected higher order term vvvd � @ Q̊ =@r as compared with @ Q̊ =@t.
The linearized Vlasov equation for non-adiabatic part ga is given as follows,

�
@

@t
C vvvg � @

@r
�˝a

@

@'

�

ga D ea

"

�@faM

@K

@ Q̊
@t

C @ Q̊
@r

� b
˝a

� @faM

@r

#

(5.101)

We define the gyro phase average of A.x;E; �; '; t/:

< A >D
I

d'

2

A.x;E; �; '; t/; (5.102)

where E D K C ea˚ . Taking the gyro phase average of (5.101), we obtain:

�
@

@t
C vvvg � @

@r

�

hgai D ea

"

�@faM

@K

@h Q̊ i
@t

C @h Q̊ i
@r

� b
˝a

� @faM

@r

#

(5.103)

We use following eikonal approximation perpendicular to the magnetic field.

hgai D Ogaexp

�

i
Z r?

k? � dr? � i!t

�

We define the normal vector as n D r =jr j and the bi-normal vector by
s D b � n so that .b;n; s/ forms the right-handed orthogonal set. The bi-normal
vector s D b � n is a unit vector on the flux surface perpendicular to the magnetic
field.

Since the driving force @faM=@r is mainly directed to n D r =jr j, we may
approximate b �@faM=@r � .b � n/.n � @faM=@r/ D s.n � @faM=@r/. Using the eikonal
expression, we define wave number in the bi-normal direction ks by iks D s � @=@r.
Using these definition, we define !�a as follows,

!�a D maTaks

eaB

�

n � @lnfaM

@r

�

D !n

�

1C �a

�
K

Ta
� 3

2

��

(5.104)

!n D .Taks=eaB/n � rlnna , �a D dlnna

dlnTa
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Using these quantities, the gyro-phase averaged linearized kinetic equa-
tion (5.103) in the eikonal approximation is given as follows.

�

�i! C vk
@

@rk
C ik? � vvvd

�

Oga D �i
ea

Ta
faM.! � !�/ O̊ (5.105)

Now we calculate gyro phase averaged electrostatic potential in the eikonal
form, O̊ . Consider the Fourier representation of Q̊ in space perpendicular to the
magnetic field.

Q̊ .x/ D
Z

dk?eik?�x˚.k?/ D
Z

dk?eik?�.rC�a/˚.k?/ (5.106)

The gyro phase average is given by,

h Q̊ .x/i D
Z

dk?eik?�r˚.k?/heik?��ai D
Z

dk?eik?�r˚.k?/J0.k?�a/

where we use: heik��ai D
Z 2


0

d'

2

eik?�asin' D J0.k?�a/ (5.107)

Since we are using eikonal form h Q̊ i D O̊ exp
�
i
R r? k? � dr? � i!t

�
, we have

O̊ D ˚.k?/J0.k?�a/

Thus, we obtain following classical linear gyrokinetic equation.

�

�i! C vk
@

@rk
C ik? � vvvd

�

Oga D �i
ea

Ta
faM.! � !�/˚.k?/J0.k?�a/ (5.108)

Column 5-1: Guiding Center Coordinate Transformation
In both drift and gyro kinetic theories, coordinate transformation from the
particle coordinates .x;vvv/ to the guiding center coordinates .r;K; �; '/ is
necessary. Here we give a formula given by Catto [101]. Here K D mav

2=2 is
the kinetic energy, � D mav

2?=2B is the magnetic moment, and ' is the gyro
phase. Some papers use E D K C ea˚ instead of K.

r D x C˝�1
a vvv � b (5.109)

vvv D v?.ncos' C ssin'/C vkb (5.110)

Here, b D B=B, n D r =jr j, and s D b�n. The coordinate transformation
is given by,

(continued)
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@

@t
! @

@t
(5.111)

@

@x
! @

@r
�
�
@.b=˝a/

@x
� vvv

�

� @
@r

C @�

@x
@

@�
C @'

@x
@

@'
(5.112)

@

@vvv
! mavvv

@

@K
C mavvv?

B

@

@�
C b � vvv?

v2?

@

@'
C b
˝a

� @

@r
(5.113)

We define the phase angle ' in the .n; s/ plane perpendicular to the
magnetic field by vvv? D v?Œncos' C ssin'�, which leads to n � vvv D v?cos'
and s � vvv D v?sin'.

@'

@x
D vk

v?
@b
@x

� .�scos' C nsin'/C
�
@

@x
s
�

� n (5.114)

@�

@x
D ��

B

@B

@x
� vk

B

@b
@x

� vvv? (5.115)

We also note

eavvv � B
ma

� @
@vvv

D �˝a
@

@'
(5.116)

.˝avvv � b/ �
�

˝�1
a b � @

@r

�

D �vvv? � @
@r

(5.117)

Then, we have following transformation for the Vlasov propagator.

@

@t
C vvv � @

@x
C eavvv � B

ma
� @
@vvv

D @

@t
�˝a

@

@'
C vkb � @

@r

Cvvv �
�
@'

@x
@

@'
C @�

@x
@

@�
�
�
@

@x

�
˝�1

a b
	
�

�
�

vvv � @

@r

��

(5.118)

Exercise 5.1. Derive relations @r=@xjvvv D 1 � @.b=˝a/=@x � vvv, @K=@vvvjx D mavvv,
@�=@mavvvjx D vvv?=B, .@r=@vvv/@=@r D .b=˝a/ � @=@r.

Answer. Use (5.109), K D mav
2=2, � D mav

2
?=2B.

5.3.1.2 Bounce-Averaged Drift Kinetic Equation

While we have to solve the gyro kinetic equation (5.108) to include finite Larmor
radius (FLR) effect for the ion dynamics, we can simplify the gyro kinetic
equation (5.108) for the electron dynamics by neglecting FLR effect.
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If the drift wave frequency ! is much smaller than the bounce frequency of the
trapped electron !be: .! � !�e � O..me=mi/

1=2!be/, we can use an averaged drift
kinetic equation over the bounce motion, which is called the bounce-averaged drift
kinetic equation. We show its derivation in this section.

Our starting point is a linearized gyro kinetic equation in the k?�e ! 0 for a
perturbations of the form e�i!tCin� as follows,

�
@

@t
C vvvg � @

@r

�

ge D i
e

Te
feM.! � !�/ Q̊ (5.119)

!� D !n

�

1C �

�
K

Te
� 3

2

��

, !n D Tek�
eBp

n � rlnne (5.120)

Here � is a toroidal angle and hi for gyro-phase average is suppressed and the
toroidal wave number k� D n=R is approximated by the toroidal projection of the
bi-normal wave number ks as k� D �ksBp=B. Averaging over the trapped electron
bounce motion, remaining motion is a slow toroidal drift, called as the toroidal
precession drift, whose toroidal precession frequency h P�ib is give in [443],

h P�ib D 1

ea

@J=@ 

@J=@K
; (5.121)

where J D R
mavkdlk,  and K are longitudinal adiabatic invariant, poloidal flux,

and particle kinetic energy, respectively. This means hvvvg �@=@rib D hP�ib@=@�, where
hAib is the bounce average of A.

The bounce-average of the drift kinetic equation (5.119) is given as,

�
@

@t
C hP�ib

@

@�

�

hgeib D i
e

Te
feM.! � !�/h Q̊ ib (5.122)

If we take the difference (5.119)-(5.122), the 0-th order drift kinetic equation is

given by
h
vvvg � .@=@r/� hP�ib.@=@�/

i
ge0 D 0.

This equation simply means that ge0 is constant along the bounce banana orbit
subtracting slow precession drift. The first order equation is given by,

�

vvvg � @
@r

� hP�ib
@

@�

�

ge1 � i.! � nh P�ib/ge0 D i
e

Te
feM.! � !�/ Q̊ (5.123)

Taking the bounce average of above equation, we obtain the solution of ge0.

ge0 D �eh Q̊ ib

Te

! � !�
! � !De

feM (5.124)

Here, h Q̊ ib is the bounce average of the electrostatic potential, and !De D nh P�ib is
a toroidal precession drift frequency, n is the toroidal mode number.



5.3 Gyro Kinetic Theory of Drift Waves 137

5.3.2 Modern Gyro Kinetic Theory

Classical Gyrokinetic theory using Bessel function is relatively easy to understand
but do not have exact conservation properties required from Liouville theorem.
Modern gyrokinetic theory [82] provides such a framework by using Lagrangian
approach. Use of Lagrangian guarantees the Liouville theorem in the gyro center
phase space. Cary-Littlejohn [99] provides a good guidance to the Lie transforma-
tion. Here, we note that gyro-phase averaged Lagrangian can be obtained by the
direct averaging of the charged particle Lagrangian (see Column 5-2).

Column 5-2: Guiding Center Lagrangian; Kikuchi [443]
The single particle Lagrangian in non-canonical coordinates z D .x;vvv/ is:

L.x;vvv; t/ D .eaA C mavvv/ � Px � h.x;vvv; t/ (5.125)

h.x;vvv; t/ D 1

2
mav

2 C ea˚.x; t/ (5.126)

Let x, r and �a D �a.excos' C eysin'/ are the charged particle position,
the guiding center positions and the gyration vector, respectively. Here, �a D
v?=˝a is the Larmor radius, ' is a gyro phase, and vectors ex; ey are the
orthogonal unit vectors perpendicular to the magnetic field, which comprises
right handed coordinate system by .ex; ey; b/. We have x D r C �a and vvv D
vkb C v?.exsin' � eycos'/. We expand A.x/ � Px as:

A.x/ � Px �
�

A.r/C @A
@x
�acos' C @A

@y
�asin'

�

� ŒPr C �a P'.�exsin' C eycos'/�

(5.127)

Taking the gyro-phase average hi and using @Ay

@x � @Ax
@y D B, we have

hA � Pxi � A.r/ � Pr C 1

2
B�2a P' (5.128)

Since vvv � Px D .vkb C v?.exsin' � eycos'//.Pr C �a P'.�exsin' C eycos'//,

hvvv � Pxi D vkb � Pr � v?�a P' (5.129)

The gyro-phase average of the Hamiltonian h is simply given by,

h.r; vk; �; t/ D 1

2
mav

2
k C �B.r/C ea˚.r/ , � D mav

2?
2B

(5.130)

(continued)
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Fig. 5.5 (a) Sophus Lie
(1842–1899), (b) T.S. Hahm.
TSH is a professor at Seoul
National University and
formerly worked at Princeton
Plasma Physics Laboratory,
who made number of
significant theoretical works
including gyro kinetic theory

Therefore, the guiding center Lagrangian is given by,

L D .eaA.r; t/C mavkb/ � Pr � .ea�=ma/ P' � h.r; vk; �; t/ (5.131)

This form of the gyro-phase averaged Lagrangian is derived by R. Little-
john using Lie transformation in a series of paper by R. Littlejohn [518–522].

Modern gyrokinetic theory in the turbulent toroidal plasma is developed by
T.S. Hahm [275, 276] (Fig. 5.5) using the non-canonical mechanics and Lie trans-
formation. Its application to nonlinear ITG simulation is given by Parker [607].
In the turbulent plasma, the drift wave fluctuation with k?�i � 1 breaks the
conservation of the magnetic moment and the Lie transformation is effective to
recover its conservation property as shown in the earlier work in slab geometry
[178]. Fundamentals of the modern gyrokinetic theory can be seen in Brizard-Hahm
[82] and Cary-Brizard [100]. Column 5-3 gives short summary of the non-canonical
mechanics.

Column 5-3: Non-canonical Mechanics; Kikuchi [443]
While Hamilton mechanics is powerful, the set of transformation is restricted
to canonical transformation. To analyze gyro motion, it is useful to use non
canonical coordinates. The guiding center coordinates .R;E; �; '/ discussed
in Sect. 4.2 is such an example of useful non-canonical coordinates. Consider
6 dimensional non-canonical variables z is given as z D z.q; p/. When the
Lagrangian L is given as L D p � Pq�H.q; p/ in canonical form, the Lagrangian
in non-canonical form is given as,

(continued)
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L.z; Pz; t/ D
6X

iD1
�iPzi � h (5.132)

�i.z; t/ D p � @q
@zi

, h.z; t/ D H.q.z; t/; p.z; t/; t/ � p � @q
@t

(5.133)

Due to the coordinate invariance of the variational principle, the variational
principle to give the equation of motion is given by,

ıS D ı

Z
L.z; Pz; t/dt D 0 (5.134)

Addition of gauge term dG=dt to Lagrangian L does not change the
equation of motion, but transform �i ! �i C @G=@zi and h ! h � @G=@t.

The Euler-Lagrange equation to extremize the action integral S is given by,

d

dt

�
@L

@ Pzi

�

� @L

@zi
D 0 (5.135)

This leads to following equation of motion.

!ij
dzj

dt
D @h

@zi
C @�i

@t
(5.136)

where !ij is called the Lagrange tensor defined as:

!ij D @�j

@zi
� @�i

@zj
D @.p � @q

@zj /

@zi
� @.p � @q

@zi /

@zj
D @p
@zi

� @q
@zj

� @p
@zj

� @q
@zi

(5.137)

The non-canonical mechanics in Column 5-3 can be described by using the
language of differential form given in Appendix A.4. The one form � D Ldt D
p � dq � hdt is called the fundamental one-form of Poincare-Cartan. We use the
terminology of “Lagrangian one form” or “one form” in short.

Single particle Lagrangian is given by L D p � Pq � h.q; p/, where h is
the Hamiltonian. Let z D z.q; p; t/ is a non-canonical coordinate system. The
Lagrangian one form � D Ldt in the non-canonical coordinates z is given by,

� D ��dz� D �idzi � hdt , (� D 0; 6; i D 1; 6); (5.138)

where �0 D �h and dz0 D dt and �i and h are given by (5.133).
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The Euler-Lagrange equation for the non-canonical coordinate zj is given by
d� D 0 (equivalent to the variational principle ı

R
Ldt D 0). Using the algebra

of the differential form, we obtain:

0 D d� D d.�idzi � hdt/ D
�
@�j

@zi
� @�i

@zj

�

dzidzj �
�
@h

@zi
C @�i

@t

�

dzidt (5.139)

Using the Lagrange tensor !ij D @�j=@zi � @�i=@zj, we have:

!ij
dzj

dt
D @h

@zi
C @�i

@t
(5.140)

In the standard gyrokinetic ordering, we use the ordering: !=˝i � kk=k? �
e˚=Te � �i=Ln D O.�/. Under this ordering, we can use gyro-phase averaged
Lagrangian (5.131) as a 0-th order Lagrangian. Then the Lagrangian one-form in
the guiding center coordinates .r; vk;M0; '/ is given by

�0 D .eaA.r/C mavkb/ � dr � M0d' � h0.r; vk;M0/dt (5.141)

h0 D 1

2
mav

2
k C �B (5.142)

Here, M0 D ea�=ma is used instead of �, b D B=B and we assume no 0-th order
electrostatic potential and the equilibrium field has no explicit time dependence.

We define the non-canonical coordinates z D .t; r1; r2; r3; vk;M0; '/. While �0 is
independent of gyro phase ', the electrostatic perturbation ˚ due to the drift wave
adds 1st order perturbation to the one-form, by which � depends on '.

The perturbed one-form �1 is given by,

�1 D �ea˚.r C �/dt; (5.143)

which means �1t D �ea˚ , �1i D 0 .i D 1; 6/ and we can assume �2 D 0. This
results in the breakdown of conservation of the magnetic moment� (and hence M0).

Modern gyrokinetic theory tries to recover the conservation of the magnetic
moment through coordinate transformation, z ! Z. In our case,

z D .t; r; vk;M0; '/ ! Z D .t;R;U;M; N'/ (5.144)

We try to find the Lagrangian one form in the new coordinates to have following
gyro-phase independent form.

� D �i.Z/dZi � H.Z/dt C dS.Z/ , in Z D .t;Zi/

We consider the new coordinate system Z D Z.z/ (we do not transform ‘t’).
Under this coordinate transform, we have � D ��dz� D ��dZ�. This means,
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�� D ��
@z�

@Z�
(5.145)

Using the Lie transform formula shown in Column 5-5, the 1st order one-form
�1 is related as (5.206).

�1 D dS1 � L1�0 C �1 (5.146)

To remove gyro phase dependence in new coordinates Z, we consider simple
form �1 D �1tdt, i.e. �1i D 0 .i D 1; 6/. Taking the i-th component of (5.146):

0 D .dS1/i � .L1�0/i C 0 (5.147)

Using (5.204) and the definition of the Lagrange bracket (5.137), we have

.L1�0/i D gj
1

�
@�0i

@zj
� @�0j

@zi

�

D gj
1!ji D �!ijg

j
1 (5.148)

!ij D Œzi; zj� � @p
@zi

� @q
@zj

� @p
@zj

� @q
@zi

(5.149)

Since .dS1/i D @S1=@zi, (5.147) gives

!ijg
j
1 D �@S1

@zi
(5.150)

The inverse matrix of the Lagrange tensor !�1
ij � Jij is called the Poisson tensor.

Jij D fzi; zjg � @zi

@q
� @zj

@p
� @zj

@q
� @zi

@p
(5.151)

Therefore, we obtain following formula for the generating function.

gi
1 D �Jij

@S1
@zj

D �fzi; zjg@S1
@zj

D fS1; z
ig (5.152)

Taking the t component of (5.146), we have

�1t D @S1
@t

� .L1�0/t C �1t (5.153)

Noting that t is not transformed .g01 D 0/ and the equilibrium field is stationary
(@�0j=@t D 0), we have

.L1�0/t D gj
1

�
@�0t

@zj
� @�0j

@t

�

D �fS1; z
jg@h0
@zj

D �fS1; h0g (5.154)
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Here we use (5.152). Substituting this equation and using �1t D �H1, �1t D �h1 D
�ea˚ , Eq. (5.153) reads

�H1 D @S1
@t

C fS1; h0g � ea˚ D dS1
dt

� ea˚ (5.155)

Since we are looking for a solution where �1t D �H1 do not have any gyro-phase
dependence, we take a gyro-phase average h(5.155)i to obtain:

H1 D hea˚i (5.156)

Here, we intend to absorb gyro-phase dependent part by S1. Defining Q̊ D ˚ �
h˚i, we have following equation to determine S1.

dS1
dt

D @S1
@t

C fS1; h0g D ea Q̊ (5.157)

Using the ordering fS1; h0g � ˝a@S1=@' and @S1=@t � O.!=˝a/, we have

S1 D �ea

Z
Q̊ dt � � ea

˝a

Z
Q̊ d' (5.158)

The second order differential one-form �2 is related as (5.207),

�2 D dS2 � L2�0 C �2 � L1�1 C 1

2
L21�0 (5.159)

The i-th component of Eq. (5.159) is given as,

�2i D .dS2/i � .L2�0/i C �2i � .L1�1/i C 1

2
.L1ŒdS1 C �1 � �1�/i (5.160)

We can make procedures similar to gi
1 noting L1dS1 � 0, �2i D �1i D �2i D �1i D 0

(i D 1; 6) to obtain following expression for gi
2:

gi
2 D fS2; z

ig (5.161)

The t-th component of Eq. (5.159) is given as,

�2t D .dS2/t � .L2�0/t C �2t � .L1�1/t C 1

2
.L1ŒdS1 C �1 � �1�/t (5.162)

Noting �1t D �ea˚ , �2t D �h2 D 0, we have

�H2 D @S2
@t

C fS2; h0g C 1

2
fS1; h1g C 1

2
fS1;H1g (5.163)
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We can make H2 to be gyro-phase independent by the appropriate choice of S2
similar to S1 in the first order relation and H2 can be given as follows by noting that
H1 has no gyro-phase dependence.

H2 D �1
2

hfS1; h1gi (5.164)

The actual form of H2 in terms of ˚ is given by Dubin [178] as follows.

H2 D � e2a
2˝a

"
@h Q̊ 2i
@M0

C 1

˝a
h@ 1
@r

� b � @ Q̊
@r

i
#

(5.165)

where,  1 D
Z ' Q̊ d'

Adding �1 D �H1 and �2 D �H2 to the Lagrangian differential one-form,
we have

� D ŒeaA.R/C maUb.R/� � dR C Md N' � Hdt (5.166)

H D 1

2
maU2 C M˝a.R/C H� (5.167)

Here H� D H1 C H2.
Then the Euler-Lagrange equation in new coordinates Z (to be obtained from

d� D 0) can be obtained using the Lagrange tensor form in Column 5-4:

dM

dt
D 0 (5.168)

d N'
dt

D ˝a C @H�
@M

(5.169)

b � dR
dt

D U (5.170)

dR
dt

D Ub C b�
eaB�

�

M
@˝a

@R
C maU2b � @

@R
b C @H�

@R

�

(5.171)

ma
dU

dt
D � 1

B� B� �
�

M
@˝a

@R
C @H�

@R

�

; (5.172)

where eaB� D eaB C maU@=@R � b and B� D b � B�.
These equations are almost same with the guiding center equation of motion

using the Littlejohn’s variational principle [443] in new coordinates Z except some
corrections to the Hamiltonian.

Then, the Gyrokinetic Vlasov-Poisson equations for the velocity distribution
function in the gyro center coordinates F.Z/ can be written as [275]:
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dF

dt
C dU

dt

@F

@U
C dR

dt
� @F

@R
D 0 (5.173)

r2˚.x; t/ D � ei

�0

Z �

F.Z/C ei

˝i

�
Q̊ @F

@M
C 1

˝i

@ 1

@R
� b � @F

@R

��

�ı.R C �R � x/d6Z � ene; (5.174)

where d6Z D B�d3RdUdMd N' and B� is the Jacobian. The terms in ./ is called the
polarization density and ne may be calculated by the drift kinetic equation since
finite Larmor radius effect is very small for the electron.

Since Jacobian B� gives the density of the phase space volume element, Liouville
theorem in phase space may be expressed as:

@B�

@t
C @

@Zi
.B� PZi/ D 0 (5.175)

Using this equation, the Vlasov equation can be written in the following
conservation form [275].

@FB�

@t
C @

@R
�
�

F

�

UB� C Mb
ei

� @˝i

@R
C b

ei
� @H�
@R

��

� 1

mi

@

@U

�

FB� �
�

M
@˝i

@R
C @H�

@R

��

D 0 (5.176)

Column 5-4: Non-vanishing Components of Lagrange Tensor; Hahm
[275]
The Lagrange tensor !ij in Lie transformed coordinates Z D .R;U;M; N'/ is
defined as:

!ij D @�j

@Zi
� @�i

@Zj
(5.177)

The non-vanishing components of the Lagrange tensor are:

!RiRj D ea�ijkB�
k (5.178)

!RU D �mab (5.179)

!tM D ˝a C @H�
@M

(5.180)

!tU D maU (5.181)

!tR D M
@˝a

@R
C @H�

@R
(5.182)

(continued)
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!'M D �1; (5.183)

where

H� D H1 C H2 D eah˚i � e2a
2˝a

"
@h Q̊ i
@M

C 1

˝a
h@ 1
@r

� b � @ Q̊
@r

i
#

(5.184)

 1 D
Z '

˚d' (5.185)

Column 5-5: Lie Transformation; Cary-Littlejohn [99]
We consider a near-identity coordinate transformation from z D fz�g to Z D
fZ�g.

Z� D Z�.z; �/ D z� C �Z�1 C �2Z�2 C ��; (5.186)

where � is a smallness parameter and Z�.z; � D 0/ D z�. Lie transformation
is a special coordinate transformation specified by the generating function g�:

@Z�.z; �/=@� D g�.Z/; (5.187)

where g� depends on Z and does not explicitly depend on �. Using the inverse
transformation z D z.Z; �/, we have following identity transformation,

z�.Z.z; �/; �/ D z� (5.188)

Taking the partial derivative @=@� and using (5.187), we have

@z�

@Z�
@Z�

@�
C @z�

@�
D 0 , i.e.

@z�

@�
D �g�

@z�

@Z�
(5.189)

If the scalar s.z/ at z is expressed as S.Z/ at Z, S have epsilon dependence
due to coordinate transformation as S.Z; �/. The scalar conserve its value as
s.z/ D S.Z; �/. Taking @=@�, we obtain

@S.Z; �/
@�

D �g�.Z/
@S.Z; �/
@Z�

(5.190)

(continued)
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For the scalar, we define an differential operator L as,

L � g�
@

@y�
, where y� D z� or Z� (5.191)

Equation (5.190) is expressed as

@S.y; �/
@�

D �LS.y; �/ (5.192)

Considering the Taylor expansion of S.y; �/, we find following relation.

S.y; �/ D S.y; 0/C
1X

nD1

@nS.y; � D 0/

nŠ@�n
�n D

1X

nD0

�n.�L/n

nŠ
s.y/ D e��Ls.y/

(5.193)

Using this exponential operator e��L, we have following coordinate transfor-
mation.

z� D e��LZ� , Z� D e�Lz� (5.194)

It should be noted that the transformation law of the scalar S.y; �/ D
e��Ls.y/ is opposite to this coordinate transformation.

We now consider the Lie transformation of the differential one form � D
��dz�. This differential one-form may be expressed in the new coordinates
Z� D Z�.z/ as ��dz� D ��dZ�. This gives rise to a following transformation
law for the � component of the differential one-form � ,

��.Z; �/ D @z�

@Z�
��.z.Z; �// (5.195)

Taking the partial derivative @=@� of above equation and using @z�=@� D
�g�@z�=@Z� , we have

@��

@�
D
�
@

@�

@z�

@Z�

�

�� C @z�

@Z�
@

@�
��

D �
�
@

@Z�
Œg�

@z�

@Z�
�

�

�� � g�
@z�

@Z�
@��

@Z�

D � @

@Z�

�

g�
@z�

@Z�
��

�

� g�
�
@z�

@Z�
@��

@Z�
� @z�

@Z�
@��

@Z�

�

(continued)
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D � @

@Z�
Œg���� � g�

�
@

@Z�
.
@z�

@Z�
��/� @

@Z�
.
@z�

@Z�
��/

�

D � @

@Z�
Œg���� � g�

�
@��

@Z�
� @��

@Z�

�

(5.196)

We define the differential operator L and g as,

L�� D g�
�
@��

@y�
� @��

@y�

�

, g D g�
@

@Z�
(5.197)

Using the internal product relation (see A.4), g � � D g� @

@Z�
� ��dZ� D g���,

following one form relation is obtained from (5.196).

@��

@�
dZ� D �@.g � � /

@Z�
dZ� � L��dZ�; (5.198)

which can be expressed as:

@�

@�
D �d.g � � / � L� (5.199)

The first term is a total derivative (or Gauge term). Noting that product of
two operator is always vanish, i.e. Ld D 0; dL D 0, we have

@n�

@�n
D .�dg/n � � C .�L/n� (5.200)

Noting that � .� D 0/ D � , we have

� D
1X

nD0

@n�

@�n

ˇ
ˇ
ˇ
"D0

�n

nŠ
D

1X

nD0
.�L/n

�n

nŠ
� C dS D e��L� C dS (5.201)

If we define Tn D e��nLn and multiple transformation as T D � � T3T2T1:

� D T� C dS (5.202)

The Lie transformation (5.188) is written as Z� D T�1z�, where T D
� � T3T2T1 is a sequence of Lie transforms. Each Lie transform Tn is given
by Tn D e��nLn and,

For scalar, Ln � g�n
@

@z�
(5.203)

(continued)
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For one-form, ŒLn��� D
6X

�D0
g�n

�
@��

@z�
� @��

@z�

�

(5.204)

where g�n is generation function of the Lie transform Tn and satisfy the relation
@Z�=@�n D g�n .Z/. With this Lie transform, scalar s is transformed as S D Ts.

In case of Lie transform of differential 1 form, � D ��dz� transforms
to � D ��dZ� as � D T� C dS, where dS is the gauge term and T D
� � T3T2T1.

Expanding� , � , T D �e��2L2e��L1 and dS as � D �0C��1C�2�2C��,
� D �0 C ��1 C �2�2 C ��, T D 1 � �L1 C �2

�
1
2
L21 � L2

	 C ��, dS D
dS0 C �dS1 C �2dS2 C ��, we obtain following relations in each order of �.

�0 D dS0 C �0 (5.205)

�1 D dS1 � L1�0 C �1 (5.206)

�2 D dS2 � L2�0 C �2 � L1�1 C 1

2
L21�0 (5.207)

We also have approximate relation between two coordinates z and Z using
the generating function as follows,

Zi D zi C �
@Zi

@�
j�D0 C O.�2/ D zi C �gi

1.z
i/C O.�2/ (5.208)

Notice: In the exponential operator in general, we observe eL1eL2 ¤
e.L1CL2/. The Lie group and Lie algebra appears to describe the difference.
For smallness parameter �, exponential operator has a relation e�Xe�Y D
e�.XCY/C 1

2 �
2ŒX;Y�CO.�3/, where ŒX;Y� � XY � YX is a commutator of operators.

5.4 Linear Gyrokinetics of Drift Waves

5.4.1 Global Structure of ITG/TEM

The structure of the toroidal drift waves such as ITG/TEM and ETG are of semi-
global nature. The global linear mode structure of toroidal drift wave using linear
gyro kinetic equation (5.103) has been solved by Brunner [83] and the procedures
are sketched in this section. For the electrostatic drift waves, eigenmode structure
can be determined using the charge neutrality condition

P
a ea Qna D 0, where the

perturbed density Qna can be determined from the perturbed distribution function
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fa1 D �ea Q̊ faM=Ta C ga. Using (5.103), we may obtain hgai by the integration
along the unperturbed orbit:

hgai D ea

Z t

�1
dt0
"

�@faM

@K

@h Q̊ i
@t

C @h Q̊ i
@r

� b
˝a

� @faM

@r

#

(5.209)

The density perturbation Qna is given as:

Qna D �ea Q̊
Ta

na C
Z

gadvvv; (5.210)

where the first term in the right hand side represents Boltzmann response, which is
the reason why �ea Q̊ faM=Ta is called ‘adiabatic’.

The Fourier spectrum of the density perturbation in space having the wave
number vector k may be written as:

Qna.!; k/ D
Z

dxe�ik�x Qna.!; x/ D
Z

dk0Ma.!; k; k0/ Q̊ .k0/; (5.211)

where Ma.!; k; k0/ is the density response function from the electrostatic potential
perturbation Q̊ .k0/. In the toroidal geometry with coordinates .r; �; �/, we may use
k D .2
k=�r/rrCmr�Cnr�, where�r is radial width of the mode and .k;m; n/
are integers. The charge neutrality condition gives rise to the linear eigen mode
equations:

P
k0

P
a Ma.!; k; k0/ Q̊ .k0/ D 0. Therefore, the dispersion relation is:

detM.!; k/ D 0 , where Mk0;m0;n0 D
X

a

Ma.!; k; k0/ (5.212)

The density response functions for trapped and passing ions Mi.!; k; k0/ are
separately calculated while that for the electron is calculated using Eq. (5.122)
for non-adiabatic electron response due to trapped electron. Obviously the non-
adiabatic response for the passing electron is assumed to be zero.

Based on the fact that all higher radial mode numbers are averaged out due to
the FLR effect, the maximum radial mode number is given by kmax D ��=2
�i

so that only jkj � kmax are considered. For a fixed toroidal mode number n,
many poloidal modes are coupled each other and their range is determined by the
analytical estimate by Connor-Wilson [146].

The solution of Eq. (5.212) is searched in the complex ! plane using the Davies
algorithm [152] (higher order Nyquist algorithm in which the contour integral
path is chosen from the estimated position of zero’s from the equi-contour plot of
jM.!/j).

Eigenmode characteristics of the linear gyro kinetic drift waves are calculated
and discussed in detail for a circular large tokamak (maximum �i D 4:0 at q D
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Fig. 5.6 Global linear eigenmode structures of toroidal ITG and TEM modes. Reproduced with
permission from Brunner [83]. Copyright AIP Publishing LLC. (a) n D 64 ITG. (b) n D 64 TEM

1:5; s D 0:6;Te=Ti D 1; �n D Ln=R D 0:29; � D 0:11) with trapped electron
dynamics [83]. A typical linear eigenmode structures of toroidal ITG and TEM are
shown in Fig. 5.6. The mode structure is radially elongated and poloidally tilted due
to dense overup of poloidal harmonics. This mode structure is closely related to
the ideal MHD ballooning mode structure first developed by Connor-Hastie-Taylor
[141]. The real frequency and the growth rate for the toroidal mode number scan are
also shown in Fig. 5.7. The ITG rotates in the ion diamagnetic drift direction and the
TEM in the electron diamagnetic drift direction. The ITG modes are unstable for a
broad range of toroidal number n � 4–100 and the growth rate is highest n D 50–
60 and higher modes have lower growth rate due to the averaging of fluctuating
electrostatic potential by the finite Larmor radius effect. The ITG growth rate is
strongly enhanced by including trapped electron dynamics.

Magnetic shear has an important effect on the eigenmode characteristics of the
linear gyro kinetic drift waves, which is calculated for a circular large tokamak for
a fixed toroidal mode number n D 10 which corresponds to k��i D 0:35 at q D 1:5

(maximum �i D 2:5 at q D 1:5;Te=Ti D 1; �n D Ln=R D 0:25; � D r=R D 0:11)
as shown in Figs. 5.8 and 5.9 [83].

There are several modes such as three ITGs (modes 1; 2; 3) and two TEMs
(modes 4; 5) in case of positive shear s D 1 (Fig. 5.8). The growth rate of most
unstable ITG (mode 1) is largest at s � 0:5 and stabilized at sufficiently negative
magnetic shear after transition to the TEM, while other two ITG modes remain
unstable with much lower growth rates (1=4 of value at s � 0:5).

Two TEMs (modes 4; 5) are also stabilized for strongly negative magnetic shear.
This stabilization of TEMs is explained by the decrease of the average amplitude of
the toroidal precession drift which is an instability drive of TEMs.
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Fig. 5.7 The real frequency and the growth rate as a function of toroidal mode number for toroidal
ITG (with and without trapped electron dynamics) and TEM. Reproduced with permission from
Brunner [83]. Copyright AIP Publishing LLC. (a) Real frequency/¨norm. (b) Growth rate/¨norm
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Fig. 5.8 The real frequency and the growth rates as a function of the magnetic shear. Reproduced
with permission from Brunner [83]. Copyright AIP Publishing LLC

Figure 5.10 shows 2D eigenmode structure of toroidal ITG drift wave and
its decomposition in poloidal harmonics from the linear gyrokinetic simulation
by Idomura [366]. While mode is radially elongated, there is a poloidal angle
� D �0where the electrostatic potential is purely radially elongated. When the 2D
mode structure is Fourier decomposed in poloidal harmonics, mode amplitudes are
peaked at respective resonant surface and the each mode has relatively small radial
envelope while overall envelope is much wider.

In the axisymmetric system, the electrostatic potential Q̊ can be expressed as a
summation of poloidal harmonics with harmonic amplitude Q̊ l.q/ constructed by the
eigenfunction for l D 0, Q̊

0.nq � m/ peaked at q D m=n and assuming translational
symmetry similar to Bloch function in crystal lattice [459, 851].
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Q̊ .r; �; �/ D
C1X

lD�1
Q̊ l.q/e

i.mCl/�e�in� (5.213)

Q̊ l.q/ D a.�q/ Q̊
0.nq � m � l/ (5.214)

where, each harmonics is located in the region where q D .mCl/=n. Here, q is safety
factor used as radial coordinate, �q D l=n, a.�q/ is slowly varying amplitude
corresponding to envelope of modes in Fig. 5.10. This is called Ballooning eigen-
function, originally developed for ideal MHD Ballooning mode. This translational
symmetry holds except the mode edge. This translational symmetry comes from the
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dense overlap of poloidal harmonics and breaks down in case magnetic shear is very
weak, similar to infernal mode discussed in Sect. 8.4.3.

5.4.2 Electron Temperature Gradient (ETG) Mode

In this section, we show some calculations based on the modern gyrokinetic theory.
The gyro kinetic Vlasov-Poisson system for slab ITG/ETG in the gyro-averaged

coordinates Z D .t;R; vk; �; �/ is derived by treating the magnetic shear as a
perturbation by Idomura [365] (hi stands for gyro-phase average):

@Fa

@t
C
�

�@h˚i
@R

� b
B

C vk
B

hBi
�

� @Fa

@R
� ea

maB
hBi � @h˚i

@R
@Fa

@vk
D 0 (5.215)

The distribution function Fa and the electrostatic potential h˚i are Fourier
expanded as e�i!tCik�R. After velocity space integration, density perturbation is
expressed in terms of the Fourier series of potential perturbation and the charge
neutrality condition gives following equation.

X

kl

Lkm;kl.!/˚kl D 0; (5.216)

where Lkm;kl is the element of the complex matrix L.!/ similar to M in previous
section. The dispersion relation is given by detL D 0, which is solved using Davies
method as well. Figure 5.11 shows a comparison of linear growth rates of slab ITG
and ETG [365].

In the typical fusion relevant tokamak plasmas, the electron gyro radius �e

can be smaller than the Debye length �e, i.e. �2De=�
2
te.� B2=ne/ � 1. So the

Debye shielding effect significantly modify the ETG mode structure. So the shift
of unstable region in ky�ti from ITG to ETG may not scale by �ti=�te but by �ti=�De

as shown for the normal shear case in Fig. 5.11, while negative shear case is more
complex.

While ETG has a finer spatial scale than ITG, ETG can play a significant role in
the electron heat transport due to radially elongated structure and also due to high
threshold for the E � B shear stabilization.

The Gyrokinetic Vlasov-Poisson equation for toroidal ETG in the gyro-averaged
coordinates, Z D .tI R; vk; �/ is given as [367]:

@Fa

@t
C dR

dt
� @Fa

@R
C dvk

dt

@Fa

@vk
D 0 (5.217)

dR
dt

D vkb C 1

eaB� b �
�

ea
@h˚i
@R

C mav
2
kb � @

@R
b C �B

@lnB

@R

�

(5.218)
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Fig. 5.11 The growth rates
of slab ITG and ETG as a
function of k?�i. ‘Double’
means there are two resonant
surfaces. ‘Non-resonant’
means there is no resonant
surface. Shift in ky�ti from
ITG to ETG unstable region
is � �ti=�De � 24 for normal
shear case. Reproduced with
permission from Idomura
[365]. Copyright IAEA
Vienna

dvk
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D � B�

maB� �
�
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(5.219)

ına D
Z
ıfa.R; vk

; �; t/ı.R C �a � x/d6Z � eana

Ta

X
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h
1 � I0.k
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�2ta/e

�k2
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�2ta

i
˚keik�x

(5.220)

�r2˚ D 1

�0

X

a

eaına.x/ (5.221)

Here, ıfa D Fa �Fa0 is the perturbed distribution function and Fa0 is an equilibrium
distribution function.

The ETG mode is characterized by a short wavelength, k��te � 1 and k��ti 
 1,
where k� is the poloidal wave number. In this mode, kinetic ion response vanishes
and the ion response becomes adiabatic [365, 399].

In order to calculate accurate eigenmodes efficiently, Idomura developed quasi-
ballooning mode representation and applied to both ITG [366] and ETG [367] mode
analyses. This quasi-ballooning mode representation is originally developed for
linear MHD solver by Grüber [269] and is applicable not only to high n modes
but also medium n modes without any approximation. In the quasi-ballooning mode
representation, ˚ is expressed as,

˚.r; �; �/ D
X

n

˚n.r; �/e
�in�CiS.�/ (5.222)

S.�/ D nq.rs/�.�/ (5.223)

�.�/ D 1

q.rs/

Z �

0

B � r�
B � r� 0 jrDrsd�

0 (5.224)
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Fig. 5.12 (a) Linear eigenmode structure of Toroidal ETG mode showing typical ballooning mode
structure. (b) The envelope function ˚n.r; �/, which has jump at � D 0 but the real eigen function
do not have such gap. Reproduced with permission from Idomura [367]. Copyright IAEA Vienna

Here, ˚n.r; �/ becomes a slowly varying function, and q is safety factor, � is
poloidal straight field line angle at r D rs and rs is radius of reference magnetic
surface where drift waves may be most unstable (namely, radius where dT=dr is
largest). In order to satisfy periodic boundary condition in the poloidal direction,
˚n.r; �/ is solved under the boundary condition of ˚n.r; 0/ D ˚n.r; 2
/eiS.2
/.

The use of quasi-ballooning mode representation for electrostatic potential ˚
becomes essential for the ETG mode. Figure 5.12 shows typical linear eigenmode
structure of toroidal ETG in the poloidal cross section. Mode shows ballooning
character having large amplitude in the outboard and has radially elongated structure
similar to eigenfunction of toroidal ITG but is much finer in poloidal direction with
typical radial length � 100�e.

This radially elongated mode structure is coming from strong mode over up in
the radial direction as a typical characteristics of ballooning mode, which is found
originally in the MHD ballooning mode theory by Connor-Hastie-Taylor [141] and
Zakharov [851] (see Chap. 6).

Figure 5.13 shows safety factor q and the magnetic shear s D rdq=dr=q profiles
used in the Gyrokinetic calculation of ETG modes by Idomura [367] and the radial
mode over up of poloidal harmonics for positive shear and negative shear cases. As
we expected, poloidal harmonics densely overlap radially for the positive magnetic
shear case. In the negative magnetic shear case, however, only a few poloidal
harmonics are destabilized near the qmin surface. But non-resonant mode, which do
not have resonant surface in the plasma can be excited and plays an important role
as observed numerically by Candy [97]. Guttenfelder [274] showed ETG accounts
for NSTX electron transport.
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Fig. 5.13 (a) Safety factor q and the magnetic shear s D rdq=dr=q profiles in positive shear and
negative shear cases. (b) Amplitude profiles of various poloidal modes of toroidal ETG for positive
magnetic shear case (a D 2046�te). (c) Amplitude profiles of various poloidal modes of toroidal
ETG for negative magnetic shear case (a D 2046�te). Reproduced with permission from Idomura
[367]. Copyright IAEA Vienna



Chapter 6
Fundamentals of Ballooning Modes in Tokamak

Abstract Tokamak flux surfaces are dominated by irrational surfaces, which
brings the mathematical problem how to satisfy double periodicity in toroidal and
poloidal angles for flute like perturbation expressed by the eikonal form. Ballooning
transform is essential method to analyze 2D mode structure in toroidal geometry
not only to ideal Ballooning mode, but also for high n toroidal drift waves and
Alfven eigenmodes. Fundamentals of ballooning mode structure in toroidal plasma
is discussed for the application to MHD instabilities and toroidal drift waves. After
an introduction of ballooning transform from real geometry to covering space
in section 6.1, the method to satisfy double periodicity flute like perturbation is
discussed using the eikonal form in the flux coordinates using Poisson sum and its
relation to translational symmetry in 6.2. The 2D hallooning transform and twisted
radial Fourier transform are discussed in 6.3. Trapped and passing mode structures
in 2D wave equation are discussed using the WKBJ formulation in 6.4. Poisson
sum, Bloch theorem and WKBJ solutions are given as Columns.

Further Readings:
Books: White (2006) [818] includes ballooning mode theory in the flux coordinates.
Kikuchi (2011) [443] gives formulation using flux coordinates on ballooning
transform and its relation to translational symmetry. For WKBJ method, you may
read Jeffreys (1962) [397], Heading (2013) [311], White (2010) [819].

Key Papers: Connor-Hastie-Taylor (1978, 1979) [141], [142] is fundamental papers
on ballooning transform. Translational symmetry is discussed by Lee-Van Dam
(1977) [496] and Zakharov (1979) [851]. Dewar (1979, 1981) [156], [157] gives
transparent ballooning formulation in the covering space using the flux coordinates
and trapped and passing modes in 2D wave equations.

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_6
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6.1 Double Periodicity and Ballooning Mode

In this section, we gives an analytical theory of high-n wave equation using
ballooning formalism originally developed for ideal MHD ballooning mode by
Connor et al., (Fig. 6.1) [141, 142]. Here we use the flux coordinates (straight field
line coordinates: .r; �; �/) where B D r˛ � r , ˛ D � � q� , and the radius r
is defined using the toroidal flux 
 as r D a.
=
a/

1=2. Since tokamak has toroidal
symmetry, the toroidal mode number n is separable ('.r; �; �; t/ D e�i!t�in�'.r; �/)
while the poloidal mode number m is not. Thus we have to solve following 2-D
eigenmode equation in .r; �/ plane where � 2 .�
;C
/.

L.r; �/'.r; �/ D �'.r; �/ (6.1)

where r is the flux label and � is the poloidal angle to make magnetic field line to
be a straight line. The differential operator L and the eigen function ' are periodic
in � so that we express ' in the following form called the “Ballooning Transform”.

'.r; �/ D
C1X

mD�1
eim�

Z C1

�1
e�im� O'.r; �/d� (6.2)

Here am � R
e�im� O'.r; �/d� is Fourier coefficient represented by the Fourier

integral and O' is a solution of the following equation in the domain � 2 .�1;1/

Fig. 6.1 (a) Joseph Fourier (1768–1830) is a French mathematician and physicist who invented
Fourier analysis. (b) Dr. Jack W. Connor. (c) Dr. John Bryan Taylor in 1965. JBT and JWC are
outstanding theoreticians in plasma physics with many discoveries. JBT is recipient of Alfven and
Maxwell Prizes and is well-known by the Taylor relaxation state of the reversed field pinch (RFP).
JWC is recipient of Alfven Prize and is a lead author of Ballooning transformation and invariant
principle. They have many publications with Dr. R.J. Hastie (Alfven Prize winner as well)
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a) Ballooning mode structure b) Poisson sum of quasi-mode to satisfy -periodicity

 (poloidal angle)
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Fig. 6.2 (a) Ballooning mode structure of low frequency toroidal drift wave. (b) Quasi mode in
the covering space .�1;C1/. (c) Tilting of wave number vector k? in the covering space for
�0 D 0

called the “covering space” and the � is an angle variable in the covering space.

L.r; �/ O'.r; �/ D � O'.r; �/ (6.3)

By using the delta function formula for
P

eim.���/ (Column 6-1), we can show
'.r; �/ D PC1

jD�1 O'.r; � C 2
j/. The ballooning transformation is a mapping
.�
; 
/ ! .�1;C1/.

6.2 1D Ballooning Transform

In this section, we introduce a special case of ballooning transform, here we call “1D
Ballooning transform”, for the high n flute like perturbation given by the Eikonal
form eiS, which has been formulated by Lee-Van Dam [496] and Zakharov [851]
including the arbitrary phase shift.

6.2.1 Eikonal Formulation

So-called high-n toroidal flute-like mode is characterized by a long wave length
along the magnetic field �k � qR and short perpendicular wave length �? � a=n
where n is the toroidal mode number (Fig. 6.2a). Since the magnetic field line winds
infinitely around the torus except rational surfaces (whose measure is zero), the
perturbation also winds infinitely in the Riemann sheets and does not satisfy periodic
condition in � . This implied that the mode is better given in the covering space
� 2 .�1;C1/ for the poloidal angle.
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Consider the electrostatic potential in the Eikonal form in the weakly inhomo-
geneous system by separating rapidly changing part by eiS where S is called the
eikonal. Since the variation along the magnetic field is weak, S only depends on
.r; ˛/. Here ˛ D � � q� ! � � q�. Thus we have:

O'.r; �; �/ � u.r; �/eiS.r;˛/ (6.4)

Here u represents the slow spatial variation of the wave. The perpendicular wave
number is related to the eikonal as k? D rS.r; ˛/. Toroidal symmetry of tokamak
implies that O' should be proportional to e�in� . This leads to S � �n�. Thus
functional form of S to satisfy this condition is S D �n.˛ C ˛0.r//. The k? is
then expressed as [156, 157]:

k? D �n .r˛ C �krq/ D n Œ�r� C qr�C .�� �k/rq� (6.5)

Here, �k � ˛0
0.r/=q0.r/ is a measure of radial wave number and integration gives

˛0.r/ D R
�kdq. The radial wave number kr D n.� � �k/q0.r/ goes to ˙1 as

� ! ˙1 for finite magnetic shear .dq=dr ¤ 0/ (Fig. 6.2c) [158]. The eikonal
solution is:

O'.r; �; �/ D O'0.r; �; �/ � u.r; �/expŒ�in.� � q�C
Z q

0

�kdq/� (6.6)

From this eigenfunction, we can construct an infinite set of solutions called the
“quasi modes” by shifting � ! � C 2
j; O'j.r; �; �/ D O'0.r; � C 2
j; �/ if the
governing linear differential equation for ' is periodic by 2
 (Fig. 6.2b).

O'j.r; �; �/ D u.r; �C 2
j/expŒ�in.� � q�C
Z q

0

.�k � 2
j/dq/� (6.7)

The periodic solution in � can be constructed by the summation of the quasi-modes.

'.r; �; �/ D e�in�
C1X

jD�1
u.r; � C 2
j/expŒin.q� �

Z q

0

.�k � 2
j/dq/� (6.8)

This expression is a fundamental form of flute-like mode structure in the toroidal
sheared magnetic geometry. We may call this the 1D Ballooning transform.

We define a phase shift �0.r/ [308] as:

q.r/�0.r/ �
Z
�kdq (6.9)

Then, Eq. (6.8) is rewritten as:

'.r; �; �/ D e�in�
C1X

jD�1
u.r; � C 2
j/einq.���0C2
 j/ (6.10)
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Column 6-1: S.D. Poisson and Poisson Summation Formula
Simeon Denis Poisson (1781–1840, Fig. 6.4) is a French Mathematician
known by Poisson distribution and Poisson equation. He also found that
infinite sum of function f .n/ is related to its Fourier transform Of .k/
(Appendix A.8). Poisson summation formula is equivalent to following delta
function formula.

C1X

mD�1
eimx D 2


C1X

jD�1
ı.x � 2
j/ (6.11)

6.2.2 Translational Symmetry in Ballooning Mode

In this subsection, we analyze '.r; �; �/ � '.r; �/e�in� from the view point of the
translational symmetry by writing (6.10) using the delta function as:

'.r; �/ D
C1X

jD�1
u.r; � C 2
j/einq.���0C2
 j/

D
C1X

jD�1

Z C1

�1
d�u.r; �C �0/ı.�� .� � �0 C 2
j//einq� (6.12)

We apply the delta function formula, 2

C1X

jD�1
ı.x � 2
j/ D

C1X

mD�1
e�imx.

'.r; �/ D
C1X

mD�1

Z C1

�1
d�

2

u.r; �C �0/e

i.nq�m/�eim.���0/ (6.13)

Defining �0 D �C �0, we have:

'.r; �/ D
C1X

mD�1

Z C1

�1
d�0

2

u.r; �0/ei.nq�m/�0

e�inq�0eim� (6.14)

We define '0.r; nq � m/ by the following radial Fourier integral.

'0.r; nq � m/ D
Z C1

�1
d�

2

u.r; �/ei.nq�m/� (6.15)
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Here, we have the radial scale separation r as slow variable and nq � m as fast
variable. Then, we have following Fourier expansion in � from (6.14).

'.r; �/ D
C1X

mD�1
'm.r; nq/eim� ; (6.16)

where 'm.r; nq/ D '0.r; nq � m/exp

�

�i
Z nq

0

�kd.nq/

�

(6.17)

In this Fourier series expansion in � , the 'm resonates at different rational
surfaces q.rm/ D m=n as m varies. Namely 'm.r; nq/ is a resonant mode at the
rational surface rm. The function '0.r; nq � m/ represents a localized eigenfunction
near the rational surface q.rm/ D m=n having translational symmetry as shown
schematically in Fig. 6.3a. For a different m, the radial location of the peak given by
nq moves as m�1;m;mC1;��. This translational symmetry includes a phase factor
expected from the “Bloch theorem” (Column 6-2) given by expŒ�in

R
�kd.nq/�.

Since this integral at the rational surface q.rm/ D m=n can be approximated as:

Z nq

0

�kd.nq/ �
mX

jD1
�k;j�.nq/ D

mX

jD1
�k;j (6.18)

We find the phase factor between m and m � 1 is e�i�k;m . Thus the �k corresponds to
the “Bloch angle” in the crystal lattice. From (6.17) and (6.16),

'.r; �/ �
C1X

mD�1
'0.r; nq � m/eim.���0/ (6.19)

since m�1 R nq
0
�kd.nq/.rm/ D �0. The �0 D q�1 R �kdq is the phase aligned angle

of Fourier harmonics so that the phase of the Fourier modes becomes zero at
� D �0 (6.10) schematically shown in Fig. 6.3b. We should be careful that constant
� line is not a straight line in the actual flux coordinates .q; �; �/ (Fig. 6.3c).

Column 6-2: Bloch Theorem in Solid State Physics
Felix Bloch (1905–1983) is Swiss physicist who received 1952 Nobel Prize
in physics with E.M. Purcell for their development of nuclear magnetic
resonance (NMR). He derived the Bloch Theorem in 1928.

We consider the electron dynamics in crystal lattice with a lattice con-
stant a. Since the crystal lattice has translational symmetry, the potential
energy of the electron satisfy periodicity V.r/ D V.r C R/. The solution of
the Schrödinger equation  .r/ in the periodic potential V.r/ D V.r C R/ will

(continued)
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nq(r) m m+1 m+2m-1

b) Phase shift of each harmonics

nq(r) 

k,m k,m+1 k,m+2

m m+1 m+2m-1

a) Radial mode structure and translational symmetry c) Flux label and constant  contour 

r=a

r=rs

R

Z

0

Fig. 6.3 (a) Schematics of radial mode structure and translational symmetry. (b) Geometrical
meaning of phase shift �0. (c) Schematics of flux coordinates .r; �; �/. Modified from Green [263]

satisfy  .r C R/ D eik�R .r/ (see Kittel [459] for proof in one dimensional
problem). Here, R is called the lattice vector and k is the crystal wave vector.

The solution to satisfy (6.15) is called the Bloch wave and is given by,

 k.r/ D eik�ruk.r/ where, uk.r C R/ D uk.r/

If we define the operator T to make a translation r ! r C R, the phase
factor eik�R is the eigenvalue of T. Namely T k.r/ D  k.r C R/ D eik�R k.r/.
This phase factor is determined sometimes in solid state physics by using a
boundary condition that TN D I so that T D ei2
=NI.

6.3 2D Ballooning Transform

In this section, we introduce different formulation of Ballooning transform, specifi-
cally called “2D Ballooning transform”. The periodicity problem associated with the
flute-like perturbation in the toroidal geometry comes from the einq.���0/ dependence
of O'.

Dewar (Fig. 6.4) [160] showed general method to satisfy � periodicity by
changing Poisson sum in (6.10) to Fourier transform called the twisted radial Fourier
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transform (TRFT). Zhang-Mahajan [857] also obtained an equivalent formula called
the 2D ballooning transform. We adopt latter terminology for this transform.

Here we formulate slightly different way using � � � � �0 as variable. We may
write the general 2D flute-like perturbation as:

'.r; �/ D
Z C1

�1
d�

2

O'.�; �/einq.r/� (6.20)

It is trivial that '.r; �/ can satisfy � periodicity if O'.�; �/ is periodic in � .

O'.�; � C 2
/ D O'.�; �/ (6.21)

The inverse transform is given by:

O'.�; �/ D
Z C1

�1
d.nq/'.r.nq/; �/e�inq� (6.22)

We expand '.r; �/ in Fourier series using nq as a variable rather than r:

'.r; �/ D
C1X

mD�1
'm.nq/eim� (6.23)

Using the orthogonality of Fourier harmonics, 'm.nq/ is obtained as:

'm.nq/ D
Z 2


0

d�

2

'.r; �/e�im� (6.24)

Substitution of (6.20) into (6.24) gives:

'm.nq/ D
Z 2


0

d�

2


Z C1

�1
d�

2

O'.�; �/einq�e�im� (6.25)

The 1D ballooning transform in Sect. 6.2 corresponds to a special O'.�; �/ using
the delta function, in which the spectrum of Fourier transform is localized at some
extended poloidal angle � D � � �0 C 2
j.

O'.�; �/ D 2
u.�C �0/

C1X

jD�1
ı.�� � C �0 � 2
j/ (6.26)

We note that this form satisfies the periodicity condition in � . Substituting this
into (6.20), we obtain an equation identical to (6.10).

If we substitute � ! � � �0 and d� ! �d�0 into (6.20), we have transform by
Dewar (twisted radial Fourier transform [160]).
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Fig. 6.4 (a) S.D. Poisson (1781–1840), (b) Harold Jeffreys (1891–1989) is Plumian Professor
of Astronomy at University of Cambridge and made significant contribution to the approximate
solution of linear second order differential equation now called WKBJ method. He also made
important work on Bayesian approach to probability. (c) Dr. Robert Dewar. Prof. Em. of Australian
National University who made a significant contribution to the mathematical plasma physics
including 2-D ballooning transformation and WKB-J solution

'.r; �/ D
Z C1

�1
d�0
2


'D.�; �0/e
inq.r/.���0/ (6.27)

Here 'D.�; �0/ � O'.� � �0; �/, which satisfy 'D.� C 2
; �0 C 2
/ D 'D.�; �0/.
If we replaced � to �0 using � D � C �0 in (6.25), we have an expression by

Zhang-Mahajan [857] (Fig. 6.4).

'm.nq/ D
Z 2


0

d�0
2


Z C1

�1
d�

2

'Z.�; �0/e

i.nq�m/�e�im�0 (6.28)

Here 'Z.�; �0/ D O'.�; �C �0/, which satisfies 'Z.�; �0 C 2
/ D 'Z.��0/.

Salon 6-1: Jeffreys-Rayleigh-Liouville and WKB [311]
The WKB (Wentzel-Kramers-Brillouin) method (1926) [81, 476, 812] or
“WKBJ (Wentzel-Kramers-Brillouin-Jeffreys) method” is the well-known
method to solve approximate solution in the quantum mechanics. Historically,
“first order WKB solution” is already found by J. Liouville [516] and
Rayleigh [622] for a heat conduction problem and the wave solutions and
Jeffreys [396] gives the connection formula associated with the turning
point. Actually, Mott-Massey (Theory of Atomic Collision) [563] cite this
as “Jeffrey method” instead of “WKB method”.
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6.4 WKBJ Solution of 2D Wave Equation

In this section, we discuss the WKBJ solution using the local dispersion relation
of general two dimensional wave equation in slowly varying media with particular
application to ideal MHD and toroidal drift waves.

Since this method is originally developed by Dewar, we start from the application
to the ideal MHD modes by Dewar [156, 157]. The equation of motion for � �
� � r is expressed as .�!2 C F/� D 0, where F is an operator F D F.q; �; @� �
inq;�in�1@� ;�in�1q0@q/, whose precise form can be found in [157]. Here we use q
as radial variable and @� � inq comes from kk D .nq C i@� /=qR.

We start from the eikonal form for the plasma displacement, which is also
called WKBJ form given by � D O�e�i!t�in.��q�CR �kdq/. The equation of motion
is converted to .�!2 C OF/ O� D 0 where OF D F.q; �; @� ; q � in�1@� ; q0.� � �k �
in�1q0@q//. Here 0 D d=dr and we use @.0/r D inq0.� � �k/ from eikonal part and

@
.1/
r D q0@q from slowly varying part.

The lowest order operator OF in 1=n expansion is OF.0/ � F.q; �; @� ; q; q0.� � �k//

only including @� . So the lowest order equation of motion .�!2 C OF.0// O�.0/ D 0

becomes an ordinary differential equation in � defined at the covering space
� 2 .�1;C1/. Here O�.0/ is lowest order O� . Solution with appropriate boundary
condition ( O� decays faster than j� j�1=2 as � ! ˙1) will give a local dispersion
relation.

!2 D �.q; �k/ (6.29)

Since �k appears only in the combination ���k, � is a periodic function of �k with
2
 period. This leads to infinite solutions �k D �k̇ C2
j, where j D 0;˙1;˙2;��.
Depending on parameters, we find topologically different two types of �.q; �k/

contour called the “trapped mode” and “passing mode”.

6.4.1 Trapped Mode

The �.q; �k/ contour can have an extreme so that @�=@q D @�=@�k D 0 at some
point .q0; �k0/. Usually �k0 D 0 in the ideal MHD and typical contour is shown
in Fig. 6.5a where dotted areas are unstable regions (� < 0). The �.q; �k/ contour
becomes up-down symmetric for up-down symmetric tokamak equilibrium.

The local dispersion relation implies �k D �k.!; q/ where ! is an eigenvalue
of the global mode. We consider the case of � D ��2 as shown in Fig. 6.5a. The
contour is bounded by two turning points .q1; 0/ and .q2; 0/.

The trajectory in the !2 D �.q; �k/ contour (arrow in Fig. 6.5a) is obtained by
the following Hamilton (or Ray) equation by introducing a “time-like” variable tk.
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dq

dtk
D @�

@�k
,
d�k

dtk
D �@�

@q
(6.30)

Integration of above Hamilton equation gives the phase parameter ˛0.r/ DR
�k

dq
dtk

dtk. For fixed q value in .q1; q2/, we have two solutions �k D �C
k and �k D ��

k

in .�
;C
/ so that �C � e�in˛C

0 .r/ D e�in
R
�

C

k dq and �� � e�in˛�

0 .r/ D e�in
R
��

k dq.
Since the radial phase velocity at � D 0 is given by vph

r D kr=! D �n�kq0.r/=!, �C
k

solution propagates radially inward and ��
k outward. In q < q1 and q2 < q regions,

we have damping solutions as shown in Fig. 6.5b.
At the turning points (dq=dtk D @�=@�k D 0), eikonal approximation break

down and we have a situation similar to Jeffrey connection rule in Column 6-3. If
the mode is localized near � D 0 region, we have a standing wave if the following
Bohr-Sommerfeld condition is satisfied.

n
Z q2

q1

.�C
k � ��

k /dq D 2
.N C 1

2
/ or n

I
�kdq D 2
.N C 1

2
/ (6.31)

While the radial wave number of eikonal form (WKBJ solution) kr.�/ D n.� �
�k/q0.r/ (6.5) changes with the extended poloidal angle � in the covering space
.�1;C1/, the 2
 shift in each extended cell .�
 C 2
j;C
 C 2
j/ cancels out
and this condition holds exactly. Here we note that

H
�kdq is the area enclosed by the

!2 D � contour. Similar to the quantum mechanics, N D 0 gives the ground state
which corresponds to the most unstable mode in ideal MHD. Thus Dewar [157]
obtained an approximate formula of most unstable mode n as,

nc D 
=

I
�kdq (6.32)

In the ˇ scan for a particular equilibrium series, Dewar found good agreement
between nc variation with ˇ consistent with the numerical calculation n D n.ˇ/
by the PEST-II code (see Fig. 8.16a) demonstrating the validity of this WKB
theory. This WKBJ theory is extended to non-axisymmetric system by Dewar-
Glasser [158].

6.4.2 Passing Mode

When the magnetic shear is low, Dewar find a separatrix is introduced inside the
unstable region (shown in dotted line in Fig. 6.6a) [156]. Outside the separatrix,
equi-� contour do not close in �k 2 .�
; 
/ and extends to �k 2 .�1;C1/,
which implies that �0 � O�e�in

R
�kdq is an infinitely multi-valued function.

If we consider the case shown in Fig. 6.7b where d�k=dtk < 0,we can construct
the solution �0.q; �/ as an infinite summation of quasi-mode similar to (6.8).
Let �0;j.q; �/ is a quasi mode solution in .�
 C 2
j;C
 C 2
j/, we have basic
solution in .�
;C
/ as:
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Fig. 6.5 (a) Contour plot of � for unstable up-down symmetric tokamak equilibrium with closed
contour. (b) Schematics of radial wave structure bounded by two turning points. The wave solutions
outside the turning points (region I and III) are decaying solutions
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Fig. 6.6 (a) �.!; q; �k/ D 0 contour in .q; �k/ plane including trapped and passing modes.
Modified from Dewar [156]. (b) Passing mode trajectory in .q; �k/ plane. Thin dotted line
corresponds to separatrix in Fig. 6.7a. Area of the dotted region is A. Modified from Taylor [757]

�0;0.q; �/ D O�C.q; �/expŒ�in
Z q

q1

�C
k dq�C O��.q; �/expŒ�in

Z q

q2

��
k dq� (6.33)

The quasi-mode �0;�1.q; �/ in .�2
;�
/ can be constructed using �0;0.q; �/ as:

�0;�1.q; �/ D �0;0.q; � � 2
/exp.�inq��0/ (6.34)

where q��0 is given by the integration between two closed dots at q in Fig. 6.6b:

q��0 D
Z .q;�C

k �2
/

.q;�C

k /

�k
dq

dtk
dtk (6.35)

We note that q��0 is the area of the dotted region in .q; q2/minus area B in Fig. 6.6b.
Thus the total solution is given by,
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�.q; �; �/ D e�i!t�in�
C1X

jD�1
�0;0.q; � C 2
j/einq.�C��0j/ (6.36)

Since �.q; � C 2
/ D e�i!t�in�
P
�0;0.q; � C 2
.j C 1//einq.�C��0.jC1//Cinq.2
���0/,

the periodicity �.q; �C2
/ D �.q; �/ gives nq.2
���0/ D 2
N. Let A is the area
bounded by !2 D �, �k D ˙
 , and q D 0, A D q.2
 � ��0/ which corresponds
to a dotted area in Fig. 6.6b. The periodicity yields the condition nA D 2
N. If we
solve !2 D �.q; �k/ as q D q.!; �k/, this condition can be expressed as [161]:

n
Z C


�

q.!; �k/d�k D 2
N (6.37)

Column 6-3: WKBJ Solution and Jeffrey Connection Rule
We consider the following standard second order ordinary differential equa-
tion (U.x/ D 2m.V.x/� E/=„2 in quantum mechanics).

d2 =dx2 � U.x/ D 0

Consider a potential U.x/ having two zero points (x1 and x2) as shown in
Fig. 6.7. Under the condition j.dU=dx/=U3=2j 	 1, approximate solutions at
x > x1 and x < x1 can be expressed as follows by using � D U.x/1=2 for
U.x/ > 0 and k D .�U.x//1=2 for U.x/ < 0.

 I.x/ � ��1=2exp.�
Z x1

x
�dx/;  II.x/ � k�1=2cos.

Z x

x1

kdx C �1/

The condition for these solutions breaks at x D x1 since U.x1/ D 0. Jeffrey
[396] gives a connection formula across U D 0 that �1 D �
=4. This
condition assures the exponential damping in region I. Similar solution for
x D x2 are:

 II.x/ � k�1=2cos.
Z x2

x
kdx C �2/;  III.x/ � ��1=2exp.�

Z x

x2

�dx/

Apparently, �2 D �
=4. Since the solution  II of (8.43) can be written as
 II.x/ � k�1=2cos.

R x
x1

kdx � R x2
x1

kdx C 
=4/ and should be the same with  II

in (8.34). Therefore, phase difference between two solutions should be n
 .

Z x2

x1

kdx D
�

n C 1

2

�




In quantum mechanics, it is called the Bohr-Sommerfeld’s quantization rule.
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Fig. 6.7 Behavior of WKBJ
solution in a potential well
with two turning points
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Fig. 6.8 (a) Radial variation of the local dispersion relation �.!; q; �0/ shown by solid line and its
harmonic approximation by dotted line. (b) The contour plot of � for various ! in the phase space
.q; �k/. Modified from Zonca [867]

6.5 Local Dispersion Relation

Following the Dewar formulation, Zonca-Chen [866] developed a WKBJ theory
of high n Toroidal Alfven eigenmode (TAE). Connor-Taylor-Wilson [145] and
Romanelli-Zonca [636] developed a WKBJ theory of high n Ion Temperature
Gradient (ITG) mode. Let the local dispersion relation of WKBJ (eikonal) solution
for TAE or ITG (or TEM or ETG) is given by a following form similar to the local
dispersion relation of ideal MHD equation (6.29).

�.!; q; �k/ D 0 (6.38)

Here ! is the eigenvalue of the global mode. If we solve this equation for �k or q,
we have �k D �k.!; q/ or q D q.!; �k/, respectively. The equip contour plot of
�.!; q; �k/ D 0 for different ! is illustrated in Fig. 6.8.

We have trapped and passing modes both of which has discrete spectrum
determined by (6.39) and (6.43), respectively.

6.5.1 Trapped Mode

If �.!; q; �k/ has an extreme at .q0; �k0/, we may expand in a quadratic form as:

��0 C 1

2
Œ�qq.q � q0/

2 C ��k�k.�k � �k0/
2� D 0 (6.39)
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Here, �0 D ��.!; q0; �k0/. The equip contour surface becomes elliptic as shown in
thick line in Fig. 6.8b. This gives two branches �C

k .!; q/ and ��
k .!; q/ as:

�k̇ .!; q/ D �k0 ˙
q
�qq=��k�k

p
a2 � .q � q0/2 (6.40)

Here a2 D 2�0=�qq D .q2 � q1/2=4 since the difference between two turning points
.q1; �k0/ and .q2; �k0/ is given by q2 � q1 D 2

p
2�0=�qq. The WKBJ solutions are:

exp.�in
Z q

�k̇ dq/ (6.41)

Similar to MHD WKBJ theory, right and left traveling waves produces a standing
wave if the following Bohr-Sommerfeld condition is met [145, 636].

n
Z q2

q1

.�C
k � ��

k /dq D 2
.N C 1

2
/ (6.42)

Substituting (6.40) into (6.42) with N D 0 and defining q � q0 D asiny, the
Bohr-Sommerfeld condition reads:

q2 � q1 D 2p
n

�
��k�k

�qq

�1=4
(6.43)

Or, we have following equation for the eigenvalue !.

��k�k.!; q0; �k0/ D n2.q2 � q1/4

16
�qq.!; q0; �k0/ (6.44)

The radial extent of this “trapped mode” is essentially q1 � q � q2.

6.5.2 Passing Mode

If �.!; q; �k/ D 0 do not have extreme at .q0; �k0/, we may expand � in the radial
direction as follows.

�.!; q; �k/ D �.!; q0; �k/C �q.!; q0; �k/.q � q0/ D 0 (6.45)

Similar to MHD spectrum for passing mode (6.37), we have following Bohr-
Sommerfeld quantization condition.

n
Z C


�

q.!; �k/d�k D 2
N (6.46)
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Using Eq. (6.45), we have following expression [758]:

n
Z C


�


�

q0 � �.!; q0; �k/

�q.!; q0; �k/

�

d�k D 2
N (6.47)

Radial extent of this passing mode has been given by Kim [448]. We write the
local dispersion relation as:

! D ˝.r; �k/ (6.48)

We assume mode amplitude is peak at qm D m=n and we express Eq. (6.16) in a
following form by replacing m ! m C j.

'.q; �/ D eim�
C1X

jD�1
'j.nq � m/eij�

D eim�
C1X

jD�1
'0.nq � m � j/e�in

R
�kdqeij� (6.49)

We expand �k in Taylor expansion as �k.r � rm/ D �k.0/C � 0
k.0/.r � rm/C ��.

We assume �k.0/ is real and � 0
k.0/ may have real and imaginary part. The real

part will contribute tilting of Bloch angle and the imaginary part will characterize
envelope of the amplitude. The amplitude modulation can be given by:

A.r � rm/ D exp

�

n
Z

ImŒ�k�dq

�

D e�˛.r�rm/
2

(6.50)

Here we define ˛ by ImŒ� 0
k.0/�nq0.rm/ D �2˛.

The ˛ can be determined by the local dispersion relation. If we take the radial
derivative of the local dispersion relation (6.48) considering ! is the eigenvalue of
the global mode and �k can be expressed as �k.r; !/, we have:

.@r˝/C .@�k˝/�
0
k.0/ D 0 (6.51)

Taking the real part of the above equation, we have:

ImŒ� 0
k.0/� D ReŒ@r˝�

ImŒ@�k˝�
(6.52)

Here we assumed ReŒ@�k˝� D 0. We have following expression for ˛.

˛ D �nq0.rm/ImŒ� 0
k.0/�

2
D �nq0.rm/ReŒ@r˝�

2ImŒ@�k˝�
(6.53)
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Exercise 6.1. Show that Eq. (6.2) is an infinite summation of the quasi-modes
'.r; �/ D PC1

jD�1 O'.r; � C 2
j/.

Answer. We rewrite Eq. (6.2) as:

'.r; �/ D
Z C1

�1
d�

2


C1X

mD�1
eim.���/ O'.r; �/ (6.54)

We apply delta function formula (or Poisson sum rule) in the Column 6-1, we have:

'.r; �/ D
C1X

jD�1
O'.r; � C 2
j/ (6.55)



Chapter 7
Turbulent Transport in Tokamak

Abstract Drift waves in Chap. 5 is most likely candidates of turbulent transport in
tokamak and flow shear is key to reduction of turbulent transport. The turbulence
itself can produce flow and flow shear through zonal flow and mean flow, which
plays essential role for realizing fusion burn in ITER. MHD stability physics of
advanced tokamak tells us plasma pressure profile must be controlled to avoid ideal
and resistive MHD modes to realize tokamak fusion power. Control of temperature
and density profiles requires basic understanding of transport processes across flux
surface and to identify key parameters. Turbulent transport is discussed related to
its critical temperature gradient transport and the self-organized criticality in Sect.
7.1, flow shear suppression of turbulence in Sect. 7.2, Hasegawa-Mima equation
and zonal flow in Sect. 7.3, transport bifurcation to ITB (Internal Transport Barrier)
and ETB (Edge Transport Barrier) in Sect. 7.4 and the status of the electromagnetic
turbulence in Sect. 7.5 and turbulent momentum transport in Sect. 7.6 in brief.

Further Reading:
Textbooks: Diamond (2010) [168] shows their original approaches to turbulent
transport. Balescu (2005) [41] provides comprehensive framework of anomalous
transport theories. Textbooks on the fluid turbulence are quite useful for plasma
physics as well such as Landau (1987) [495], Kida (1999) [428] and Frisch
(1995) [215]. Stringer (1993) [721] is a nice short introduction to basic concepts.
Kadomtsev (1965) [407] includes some of fundamentals still useful for tokamak
plasma turbulence. Kadomtsev (1976) [409] is well-written book on collective
motions behind plasma turbulence.

Review papers: Diamond (2005) [166] is well-written review for zonal flow
dynamics. Fujisawa [222] is good review paper on zonal flow experiments.
Kadomsev-Pogutse [408] is good introduction to trapped particle instabilities in
tokamak. Terry (2000) [764] is useful to understand turbulent decorrelation. Dupree
(1972) [181] is a pioneering paper on two point correlation theory which is essential
for turbulent decorrelation theory.

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_7
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7.1 Critical Temperature Gradient Transport

7.1.1 Structure Formation in Non-equilibrium Open System

Plasma confinement system is a non-equilibrium open system. In the open system,
the system can maintain a dynamical state far from thermodynamical equilibrium if
the system has thermodynamic forces.

S. Chandrasekhar (Fig. 7.4a) [103] studied the Benard cell problem extensively
as a typical example of the hydrodynamic thermal stability due to critical temper-
ature gradient. If we place viscous fluid such as water or oil between two parallel
plates and heat the lower plate to produce a temperature difference �T, heat is
transferred by the thermal conduction if the temperature difference is small. But
a convective cell called the Benard cell appears when the dimensionless quantity
the Rayleigh number R D .g˛d4=��/j .T1 � T2/=dj exceeds some critical value,
where g is the gravitational constant, ˛ is the thermal expansion coefficient, � is
the thermal conductivity, � is the kinematic viscosity, d is the distance between two
plates, T1 and T2 are temperatures at lower and upper plates. Appearance of this
convective cell from uniform fluid is the manifestation of the symmetry breaking.
The quantity .T1 � T2/=d is the temperature gradient and there exists a critical
temperature gradient for the structure formation.

Ilya Prigogine [582] called states and motions maintained by the thermodynamic
forces in the open as Dissipative Structure. They shows Benard cell (Fig. 7.1a) as
a typical example of the dissipative structure whose driving force is gravity and
the dissipation plays an essential role in the structure formation. This dissipative
structure can be seen on the surface of the Sun.

Per Bak [39] discussed the sand avalanche in the sand hill as a typical example
of critical phenomena and find the system tends to maintain the critical state as
shown in Fig. 7.1b. Because of this characteristics, he named it as Self-Organized
Criticality (SOC). The probability distribution of the size of the sand collapse

Fig. 7.1 Examples of self-organization. (a) Benard cell as a typical dissipative structure. (b) Sand
collapse in the sand hill as a typical self-organized criticality
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Void
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T(r)
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Larger dT/dr

Larger dT/dr

Smaller dT/dr

Fig. 7.2 Bump and void avalanches near marginal stability predicted by Diamond and Hahm
[163]. Near critical gradient, a void perturbation produces larger dT=dr exceeding instability
threshold at upper front leading to uphill propagation of void. Similarly bump gives downhill
propagation

follows power law. Such a system can be seen also in earthquake dynamics, called
Gutenberg-Richter scaling.

7.1.2 Self-organized Criticality in Tokamak Transport

Heat and particle transports in tokamaks are governed by turbulent transport due
to drift waves. Stiffness of temperature profile is observed in the L-mode, which is
closely related to the self-organized criticality. The free energy is coming from the
temperature and density gradients. The existence of critical temperature gradient
in the toroidal ITG/TEM and ETG modes above which drift waves are strongly
destabilized and large turbulent heat transport is expected as a form of avalanche
which is analogous to the avalanche dynamics in the sand hill.

Diamond-Hahm (Fig. 7.4c) [163] clarified dynamics of turbulent plasma trans-
port near marginal stability. If initial dT0=dr profile (shown by dotted line in
Fig. 7.2) is close to critical temperature gradient dT=drjc, superposition of void
(ıT < 0) gives strong destabilization of the critical temperature gradient instabilities
in the inner front leading to the inward propagation of void. In case bump (ıT >

0) is superposed, dT=dr in the outer front becomes larger leading to outward
propagation of bump. They noticed the heat flux q must be invariant under the
dual transformations x ! �x and ıT ! �ıT, called joint reflection symmetry
by Hwa [357]. Existence of avalanche is first shown by the flux-driven gyrofluid
simulation [239].

The first gyrokinetic full-f Vlasov simulation of heat flux driven toroidal
ITG turbulence by Idomura gives features of self-organized criticality [369].
As will be discussed in Sect. 7.2, the avalanche characteristics in the critical
temperature gradient transport in tokamaks is strongly influenced by the flow
component Er.nD0/. Therefore, it is Important to see the case without Er.n D 0/.
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Fig. 7.3 (a) Spatio-temporal evolution of �i without Er.n D 0/. (b) Probability distribution
function (PDF) of dT=dr. After Idomura (private communication)

Fig. 7.4 (a) S. Chandrasekhar (1910–1995) is Nobel Prize winner in physics for his theoretical
prediction of black hole. He is also famous for his works on hydrodynamic and hydromagnetic
stability, in which the Benard cell is discussed in detail. (b) O. Reynolds (1842–1912) is Professor
of Engineering at University of Manchester and made significant contribution to fluid mechanics
including Reynolds stress to produce mean flow, similarity law in fluid dynamics. (c) Patrick
Diamond. Fusion plasma is an object of typical non-equilibrium thermodynamics. PD is a
distinguished professor in the field of turbulent transport who pinned up key physics processes
in the complex plasma systems such as avalanche dynamics of turbulent transport, Predator-Prey
model using Reynolds stress for turbulence-flow interaction, who received the Alfven prize

Spatio-temporal evolution of the thermal diffusivity �i in Fig. 7.3a (Y. Idomura,
private communication) shows the inward and outward propagating avalanche
structures. These avalanches follows the Hwa’s joint reflection symmetry, namely
the voids propagate in the up-hill, while bumps propagate down-hill. The probability
distribution function (PDF) is symmetric around the critical temperature gradient.
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7.1.3 Observations of Critical Gradients

7.1.3.1 Critical Electron Temperature Gradient

Significant departure of the electron heat transport from the neoclassical theory
has been observed since its early experiments in Russia led by Artsimovich [28].
Possible candidates of turbulent electron transport are Trapped Electron Mode
(TEM) by Kadomtsev [408] (k?�i � 1 in TEM) and toroidal ETG (Electron
Temperature Gradient) mode, (k?�e � 1 in ETG). While ITG turbulence produces
turbulent electron heat transport as well as ion heat transport, it is too small to
explain measured electron heat transport. Turbulent transport by ETG is thought to
be much smaller than that by ITG due to its small scale k��e � 1 until FY2000.
Jenko [398] and Dorland [173] showed large level of ETG turbulent transport
(60� Gyro-Bohm) associated with radially elongated streamer.

First report on existence of critical temperature gradient dTe=drjc for electron
transport is reported in 2001 by Hoang [333] in Tore Supra as shown in Fig. 7.5a
and also showed dependence of dTe=drjc on magnetic shear as R=LT D 5C10jsj=q,
where s D rdq=dr=q is magnetic shear.

Jenko showed that following theoretical critical temperature gradient dTec=dr in
toroidal ETG is consistent with this measurement as shown in Fig. 7.5b [400].

�
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Fig. 7.5 (a) Electron heat flux as a function of R=LT showing the existence of critical electron
temperature gradient. Symbols open circle, open triangle, correspond to r=a D 0:2; 0:4; 0:6,
respectively, and full symbols correspond to another series of discharges [333]. (b) Comparison
of radial profile of .R=LTe /crit between experimental value and theoretical value [400]. Reproduced
with permission from Hoang [333] and Jenko [400]. Copyright American Physical Society
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Fig. 7.6 Normalized heat
flux qe=ne as a function of
R=LTe . Model calculations
assumes �e D q3=2.Te=eB/
.�s=R/Œ�s.R=LTe �
R=LTec /

˛ C �0�. Reproduced
with permission from Ryter
[644]. Copyright American
Physical Society

where �e D Zeff Te=Ti, s and q are magnetic shear and safety factor, respectively. This
formula is closely related analytical calculations for the toroidal ITG by Romanelli
[635] and the slab ITG by Hahm-Tang [277].

Above ETG threshold formula indicates that for usual tokamak plasma param-
eters, the ETG becomes unstable if Te is close to or lower than Ti. In collision
less plasmas with dominant electron heating provided by electron cyclotron heating
(ECH) having Te > Ti, the ETG modes are stable while the TEM can be dominant.

Ryter [644] showed the existence of critical temperature gradient in the ECRF
heated plasma in ASDEX-U tokamak. Use of the localized heating by ECRF enables
the observation of the heat flux below the critical temperature gradient as shown in
Fig. 7.6. Observed critical temperature gradient is shown to be consistent with the
TEM calculated by using GS2 [471].

7.1.3.2 Critical Ion Temperature Gradient

While earlier experimental works reported by Artsimovich [28] and Murakami
[565] indicated ion thermal transport is close to neoclassical, anomalous ion
thermal transport is observed in DIII in 1986 by Groebner [267] and followed
by large tokamak experiments such as in TFTR supershot by Zarnstorff [854].
JET experiments by Mantica in 2009 [539, 540] showed clear evidence of critical
temperature gradient in ion transport as shown in Fig. 7.7a.

Theoretical works to determine dTi=dr threshold starts from earlier work by
Horton in 1972 [340] in slab geometry. Toroidal effect completely changes the
nature of the ITG as discussed in Chap. 5. Rigorously speaking, stability to drift
wave must be analyzed using the Gyrokinetic equation (5.174) to accurately include
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Fig. 7.7 (a) Experimental evidence of critical ion temperature gradient in tokamak and depen-
dence of the stiffness on toroidal rotation. Normalized ion heat flux as a function of R=LTi for
different toroidal rotations. Recent EM simulation [128] shows that fast ion pressure gradient may
be a cause of de-stiffening instead of rotation. Reproduced with permission from Mantica [540].
Copyright American Physical Society. (b) Linear stability of toroidal ITG mode to show existence
of two different stability boundaries. Reproduced with permission from Biglari [66]. Copyright
AIP Publishing LLC

the kinetic effect. Biglari-Diamond-Rosenbluth in 1989 [66] gives a comprehensive
analysis of ITG stability threshold using Gyrokinetic equation (5.108) showing
that instability condition is given by �i D dlnn=dlnTi D 2=3 for peaked density
profile and LTi=R D 0:35 for flat density shown in Fig. 7.7a. Romanelli in 1989
solved ion Gyrokinetic equation using ballooning transformation and derived an
approximate expression of dTic=dr in terms of LTi D Ti=.dTic=dr/ for flat density
regime R=Ln < 2.1 C Ti=Te/ (Ln D n=.dn=dr/) in circular plasma and showed
that observed dTi=dr in DIII-D [267] is close to the theoretical dTic=dr given by
R=LTi D 4

3
.1C Ti=Te/[635].

Guo-Romanelli [270] proposed combined formula including Hahm-Tang slab
ITG threshold R=LTi D .3=2/.
=2/0:5.1 C Ti=Te/s=q [277], which does not quite
reproduce slab ITG threshold. More refined formula for critical temperature gradient
can be expressed by just adding two formula including impurity effect implied from
ETG formula (7.1) as

R=LTi D .1C �i/.1:33C 1:91s=q/; (7.2)

where �i D Ti=TeZeff , s and q are magnetic shear and safety factor, respectively.
While the theoretical critical temperature gradient do not have any mass depen-
dence, Urano [784] shows interesting difference in the heat diffusivity �i as a
function of rTi=Ti between hydrogen and deuterium, while mass dependence of
R=LTi jc is still not clear. Some of earlier historical notes can be seen in a review
paper by Connor-Wilson in 1994 [146].
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7.1.4 Particle Transport and ITG/TEM Transition

At first, we discuss importance of phase difference between density and potential
fluctuation by an elementary procedure. Let Qn and Q
 are density and potential
fluctuation and has a phase difference�'.

Qne D n1sin.!t C kyy/ (7.3)

Q
 D 
1sin.!t C kyy C�'/ (7.4)

The particle flux �e due to E � B convection is given by �e D hQne QEyi=B is given by,

�e D kysin�'

2

n1
1
B

(7.5)

This means that the phase difference is a key parameter for the turbulent convection.
The gyrokinetic equation for the non-adiabatic part of the perturbed distribution

function Oga (5.108) with a simple Krook collision operator in Fourier space is given
by,

�
! � kkvk � k � vvvd C i�ei.v/

� Oga D ea

Ta
faM.! � !�/J0.k?�a/˚.k/ (7.6)

!� D !n

�

1C �a

�
K

Ta
� 3

2

��

, !n D ksTa

eaB
n � rlnna , �ei.v/ D �ei

v3te
v3

(7.7)

�a D n � rlnTa

n � rlnna
, n D r 

jr j , ks D k � s , s D b � n , K D 1

2
mav

2; (7.8)

where �ei is the electron-ion thermal collision frequency (4.73).
For the particle transport, we use the equation for the electron, which is

essentially drift kinetic equation but is written in the circular shifted plasma as [19]:

.! � !G C i�ei.v//Oga D
�

!D.
R

Ln
C .

K

Te
� 3

2
/

R

LTe

/ � !
�

feMJ0.k?�s/ O
k; (7.9)

where !G D kkvk C!d , !d D !DŒ.v
2
k Cv2?=2/=v2Te�Œcos�C.s� �˛sin�/sin��, O
k D

e˚.k/=Te, !D D ky�scs=R, cs D p
Te=mi; �s D cs=˝i, ˛ D �2�0q2R.dP=dr/=B2,

s D r.dq=dr/=q, vTe D p
2Te=me, and � is the extended ballooning angle.

The quasi-linear particle flux �QL produced by the fluctuating E � B drift QvE is
hQne QvEi , where hi is the flux surface average. The quasi-linear cross field particle
flux is closely related to the phase difference between Qne and O
k and is zero if the
phase difference is zero. The �QL is given by:
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�QL D
X

k



kyc2s
˝i

Z
d3vCkfMJ0.k?�s/

2j O
kj2
�

 

where, Ck D . O�k C O�k/ŒR=Ln C .K=Te � 3=2/R=LTe� � O�k O!Gk C O!rk O�k

. O!rk C O!Gk/2 C . O�k C O�k/2
; (7.10)

where O�k D �k=!D and O!rk D !rk=!D are the linear growth rate and the real
frequency of the unstable mode normalized to !D D ky�scs=R and O!Gk D !Gk=!D

and O�k D �ei.vte=v/
3=!D. Equation (7.10) implies following form of the quasi linear

particle flux.

R�QL

ne
D D

R

Ln
C DT

R

LTe

C RVp (7.11)

Here three terms in RHS are the diffusive flux, the thermo-diffusion and the pure
convective term, respectively. In the collision less plasma, the pure convective term
is proportional to the toroidal drift !d , which is called the “curvature pinch”.

From (7.11), stationary density scale length parameter R=Lstat
n is given by:

R=Lstat
n D �CT R=LT � Cp; (7.12)

where CT D DT=D and Cp D RVp=D. There are complicated parametric
dependences on the effective collisionality �eff , the temperature ratio Te=Ti, the
magnetic shear s D rq0.r/=q, the scale length ratio LTi=LTe , and R=LTi .

The most important to explain the density peaking is the trapped electron
contribution to CT and Cp called the trapped electron pinch. As seen from the
numerator K=Te �3=2 of CT (7.10), the low energy trapped electrons diffuse inward
and the high energy trapped electrons diffuse outward. Which one is dominant,
depends on the denominator, which has resonance at ! � !d. For !d > 0, the
low energy electron has resonance for the ITG mode (! < 0) leading to the inward
convection (CT < 0). The curvature pinch term has two terms, one proportional to
!d and one proportional to �. Curvature pinch is inward (Cp < 0) at collision less
limit but outward flux increases with collision as will be seen in Fig. 7.10.

Dominance of the trapped electron pinch is seen from the collision less GK
calculation by Fable-Angioni-Sauter in 2008 [194], which solved the linearized
electrostatic collisionless gyrokinetic equation to obtain analytical form of CT

and Cp.

CT D
R C1
0 d�

p
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Cp D � !d

ky�i

R C1
0

d�
p
�e�� ft��=2

�2C.!��!d=2/2
� .1�ft/!



R C1
0

d�
p
�e�� ft�

�2C.!��!d=2/2
� .1�ft/!d




; (7.14)

where � D K=Te.
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In case of ETG regime (ky�i 
 1, !d goes up as well), the trapped particle pinch
goes to zero and the passing particle contribution to the pinch dominates to have
CT D �1=2 and Cp D !=ky�i as seen from above formula.

In case of ITG/TEM regime (ky�i � 1), the trapped particle contribution
dominates over the passing particle contribution (�1=kkvte) for CT and Cp since
kkvte 
 ! except kk � 0 in slab like situation at s � 0.

An important transition in the ion scale drift wave turbulence is the ITG to TEM
transition. While ITG rotates in the ion diamagnetic drift direction, TEM rotates in
the electron diamagnetic drift direction. Particle transport property is quite different
between ITG and TEM, which can be used to identify the mode transition.

In tokamaks, the particle convection by the ITG is inward and that by the TEM
is outward due to thermo-diffusion. Recent modulation experiments in Tore Supra
tokamak show change of the direction of the convective speed across the stability
boundary between ITG and ITG+TEM, which is in good agreement with the
numerical calculation of the quasi-linear gyrokinetic code as shown in Fig. 7.8. The
stability diagram is close to Fig. 5.2 of Weiland fluid mode. The ITG - (ITGCTEM)
boundary is a stable solution against the perturbation.

Thermo-diffusion is the off-diagonal turbulent particle flux driven by dT=dr
originating from Coppi [147]. Thermo-diffusion is first reported by Nagashima
[569] using ECRH in 1995. There is also an off-diagonal turbulent particle flux
proportional to rB, called “curvature pinch”, also called “turbulent equipartition”
(TEP) by Yankov [842]. Garbet [242] showed existence of both particle pinches
in gyro fluid simulation of ITG/TEM turbulence. Hoang [334] reported existence
of strong particle pinch in full CD plasma in Tore Supra, where Ware pinch [810]
vanishes.

Angioni made a systematic comparison of density profile shape between theory
and experiments [13, 15, 19]. This density peaking is found to be related to low

Fig. 7.8 (a) Stability diagram of ITG/TEM with experimental data of convection direction.
(b) Diffusive particle flux v.s. ITG/TEM boundary parameter �. (c) Convective speed v.s. ITG/TEM
boundary parameter �. Reproduced with permission from Zhong [859]. Copyright American
Physical Society
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collisionality [13] and are confirmed in many tokamaks as shown in Fig. 7.9a.
Maslov [542] shows a good agreement of R=Ln between theory and experiments
as shown in Fig. 7.9b. Fable-Angioni-Sauter [195] made a systematic analysis
to identify key physics behind the density profile using quasi-linear gyrokinetic
simulation.

Figure 7.10 shows a typical �eff dependence of !QL
R , R=Lstat

n , CT , Cp. The real
frequency !QL

R is negative, which means the mode is ITG. In this case, the thermo-
diffusion parameter CT does not change much but the curvature pinch parameter Cp

changes from minus to a large positive value. Hence, the density peaking parameter
R=Lstat

n strongly depends on �eff .
Density profile control is one of important subjects for steady state tokamak

operation since dn=dr drive bootstrap current more strongly and also fusion power
density Pf / n2. With the increased experimental evidence for the ITG/TEM
transition, it become more important to investigate possibility of density peaking
by changing TEM stability through shaping control.

Fig. 7.9 (a) Experimental density peaking factor as a function of effective collisionality[19].
(b) A comparison of R=Ln between simulation (un-filled symbol) and measurement (filled symbol)
in JET[542]. Reproduced with permission from Angioni [19] and Maslov [542]. Copyright IAEA
Vienna

Fig. 7.10 The real frequency !
QL
R , the stationary density scale length parameter R=Lstat

n , the
thermo-diffusion parameter CT and the curvature pinch parameter Cp as a function of effective
collisionality under the parameter set of s D 0:8, q D 1:4, � D 0:12, R=LTe D R=LTi D 9,
Te=Ti D 1:1. Reproduced with permission from Fable [195]. Copyright IOP Publishing
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Salon 7-1 : Nuclear Fusion Prize for Turbulent Transport
Nuclear Fusion journal is the acknowledged world-leading journal which
publishes significant original works in the field of fusion research. IAEA
awarding excellent 10 papers as Nuclear Fusion Prize nominees and among
which one paper is selected to be a winner of Nuclear Fusion prize. Paper
led by T. Luce (2006) received the first Nuclear Fusion prize by the enhanced
confinement regime relevant for ITER hybrid mode [527]. The top author of
Nuclear Fusion Prize papers in turbulent transport are C. Angioni [15] on
particle transport, J.E. Rice [628] on intrinsic rotation, H. Urano [783] for
pedestal transport, P. Diamond [167] (see Fig. 7.4) for momentum transport
theory, D.G. Whyte [822] for I-mode discovery.

In 2007, the paper led by Clemento Angioni concerning the particle
transport studies is selected. He continued to produce many more excellent
works even after. Below from left, Prof. W. Burkart (IAEA Deputy Director
General), Dr. C. Angioni (Max Planck Institute for Plasma Physics, Garch-
ing), and M. Kikuchi (Chairman of Nuclear Fusion board of editors). He
wrote a series of original papers [13–18, 20] and also review papers on particle
transport [19, 21].
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7.2 Flow Shear Suppression of Turbulence

7.2.1 Turbulence-Flow Paradigm

The turbulence can be affected by the flow shear. Flow shear suppression of turbu-
lent transport is uncovered by Biglari-Diamond-Terry [67]. The theory shows that
the turbulent suppression by the poloidal flow shear can be given by Q�!s=

Q�!sD0 /
.�!T=!s/

2=3, where !s D .�r=��/@.V�=r/=@r is the shearing rate, �!T is the
random scattering rate of the ambient turbulence, and V� is the poloidal E � B flow.

The theory stems from the pioneering work on two-point correlation theory of
Dupree [75, 181]. Key element of his theory is that if we define x˙ D .x1 ˙ x2/=2,
we can neglect .xC; vC/ dependence for the relative evolution operator T12 to
hıf .1/ıf .2/i since @=@x� 
 @=@xC and @=@v� 
 @=@vC. Here the two-point
equation can be written as .@t C T12/hıf .1/ıf .2/i D S and the T12 can be
approximated as T12 � v� @

@x�

� @
@v�

D� @
@v�

.
The physical picture of the effect of the flow shear on the turbulent convective cell

is shown in Fig. 7.11a. There are two sources of flow shear (dvE=dr) in tokamaks.
First one is the mean flow shear determined by the radial force balance. Second one
is the zonal flow shear driven by turbulence itself [290] as shown in Fig. 7.11b.

Hahm [278], Hahm-Burrel [279] gives a condition for flow shear induced
fluctuation suppression in the toroidal plasma as follows,

�!T � !E D j� 
��

d2˚. /

d 2
j D �r

�L?
R2B2�

B

d2˚

d 2
(7.15)

where �!T is the de-correlation rate of the ambient turbulence and !E is the
shearing rate due to flow shear, �r D � =RB� is the radial correlation length
of turbulence, and R�� is the toroidal correlation length which is related to the
perpendicular correlation length, �L? as �L? D RB���=B.

We sketch here how to arrive at Eq. (7.15). Consider a standard nonlinear fluid
equation .@t C u0 � r C �/ıH D �QuE � ıH C S, where ıH is a fluctuating field,
u0 D uE Cukb, and uE D Er �B=B2, � is the dissipation term to ensure finiteness of
the two-point correlation function at zero separation, and the right hand side consists

Fig. 7.11 (a) Schematics of
effect of Er � B drift shear on
turbulent convective cell.
Flow shear produces
elongation and tearing of
convective cell. (b) Two types
of vE shear. Upper vE shear
comes from global force
balance and lower vE shear is
Zonal flow produced by the
turbulence

a b

ErB

vE

vE

vE



188 7 Turbulent Transport in Tokamak

of E�B nonlinearity and the driving force of the turbulence, S. In toroidal geometry,
high m modes are decomposed by the ballooning formalism as ıH.�; �; r/ DP

n e�in�
P

m eim�
R

d�e�i.m�nq/�ıHn.�; r/ where � is the toroidal angle and � is the
ballooning coordinate. The equilibrium flow u0 does not include the diamagnetic
flow and the convective derivative is given by, u0 � r D �.uEq=r/@� � .uk=qR/@�.

Two-point correlation equation is derived by multiplying the fluid equation
for ıH.�1; �1; r1/ by ıH.�2; �2; r2/ as .@t C T12/hıH.1/ıH.2/i D S0, where hi
is ensemble average and T12 D �r�.!0?@=@�� C !0

k@=@��/ � .q=r/2D�@2=@�2�.
Here !0? D @.uEq=r/=@r and !0

k D @.uk=qR/=@r. If we take the diffusion
approximation for the E � B nonlinearity[763], the relative diffusion is given by
D� D 2D�Œ.��=��/2 C .��=��/2 C .r�=�r0/2�. Here Rq��, R��, and �r0
are the correlation lengths of the ambient turbulence in the parallel, toroidal, and
radial directions, respectively, and D� is the diffusion coefficient at large separation.
Taking various moments, Hahm obtained the square ratio of radial correlation length
with and without flow shear is given by .�rt=�r0/2 D �!2T=.�!

2
T C !2s /, where

�!T D 4D�=.r��=q/2 is the random scattering rate of the ambient turbulence
defined with respect to the poloidal correlation length �L� D r��=q. The shearing
rate is given as !2s D �r20Œ.!

0?=��/2 C .!0
k=��/

2� in which the first term of the
right hand side is dominant for flute like fluctuations.

Generalization to arbitrary shaped finite aspect ratio tokamak has been described
in Hahm [279] to arrive at Eq. (7.15).

Perpendicular correlation length �L? may be estimated as .�L?/�1 � m=r D
nq=R � B�=B���R. If we use �r � �L? [797] and the linear growth rate �L for
the de-correlation rate, we have following crude flow shear stabilization condition:

�L � !E D R2B2�
B

d2˚

d 2
(7.16)

The discovery of flow shear suppression of turbulence gives rise to a paradigm
shift in the turbulent transport physics.

Early day’s view of the profile regulation was relatively simple. Gradients of
plasma profiles such as pressure, temperature and beta produces the free energy to
drive drift wave micro fluctuations such as ITG/TEM, ETG and micro-tearing as
shown in Fig. 7.12a. While these micro fluctuations have their nonlinear regulation
processes, the enhanced transport due to micro fluctuation reduces gradient to reach
regulated profiles.

Refined understanding of profile regulation shown in Fig. 7.12b consists of two
level of regulations. One is regulation by transport same in Fig. 7.12a. Another
important level is the regulation of the micro fluctuations by the flow shear, which
comes from both the mean flow and the zonal flow. Here, the mean flow shear is
strongly constrained by the 0-th order radial ion force balance equation and the
zonal flow is produced by the turbulence itself, either by the inverse cascade of the
2D turbulence or the modulational instability.
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Fig. 7.12 (a) Early day’s
understanding of the profile
regulation by the turbulent
transport, where free energy
from gradients produces
turbulence, which regulates
gradients due to enhanced
turbulent transport. (b)
Refined understanding of the
profile regulation, where the
flow structure plays another
important role in the
regulation of turbulence and
flow shear comes from both
the mean flow from the
profile structure and the zonal
flow from the turbulence itself
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7.2.2 Mean Flow and Avalanche Dynamics

First, we discuss the mean flow effect on turbulent regulation and its effect on the
avalanche dynamics. The 0th order radial force balance equation (4.222) combined
with neoclassical residual poloidal flow (4.225) is robust in turbulent plasma [369].

ui � r� D �
�

d˚

d 
C 1

eZini

dPi

d 

�

� qK1F.B � r�/
eZihB2i

dTi

d 

This constraint plays an important role in the shearing rate !E in tokamaks as
positive feedback effect of turbulent transport suppression by flow shear (Fig. 7.13).
In the cylindrical coordinates, this may be written as:

Er D 1

eZini

dPi

dr
C K1

eZi

dTi

dr
C u�iB� (7.17)
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Fig. 7.13 Schematic diagram
of positive feedback effect on
Er from dPi=dr and dTi=dr,
and u�i. K1 is the neoclassical
coefficient of residual
poloidal flow and is given
by (4.221)

E x B shear 
stabilization 
of turbulence

Pressure build up 

E x B shear 
stabilization 
of turbulence

Temperature build up

External and intrinsic toroidal rotation drive

Radial electric field build up

When the transport reduction occurs at some region, both dPi=dr and dTi=dr
increases. If there is no change in external toroidal rotation drive, the radial electric
field Er build up in response to dPi=dr and dTi=dr. Therefore, Er shear is enhanced
when pressure curvature d2Pi=dr2 and/or temperature curvature d2Ti=dr2 is formed.

Once Er shear is enhanced, further turbulence de-correlation occurs to enhance
the transport reduction. This positive feedback effect may lead to formation of
localized steep pressure gradient region unstable to MHD instability. Toroidal
angular flow !t D ui � r� driven either by external torque or intrinsic torque (by
residual stress and turbulence spreading) further produces radial electric field. The
toroidal angular flow shear d!t=dr enters into the dynamics of positive feedback
loop in the transport reduction.

This feature has profound influence in the dynamics of the sand collapses in the
sand hill discussed in Sect. 7.1.2. While we may expect that sand collapses in sand
pile exhibit equal probabilities of bump and void propagations, some of bump and
void propagations are prohibited due to this radial force balance constraint.

The radial force balance means that Er will be balance with other two terms in the
right hand side as long as there is no toroidal rotation drive (u�i is determined by the
toroidal momentum balance equation). Therefore, important additional constraint
for plasma turbulence is that Er shear build up in proportion to temperature curvature
during Void and Bump propagation, namely dEr=dr � cd2Ti=dr2, where c > 0 is
constant. Since void has positive temperature curvature (d2Ti=dr2 > 0) and bump
has negative temperature curvature (d2Ti=dr2 < 0), Er shear structure with void
and bump for positive and negative background dEr0=dr cases becomes as shown
schematically in Fig. 7.14. Selective avalanche occurs in cases weakening jdEr=drj
by void and bump.

This symmetry breaking is observed in the Gyrokinetic full f simulation of
the toroidal ITG turbulence [369]. First, two kinds of heat flux propagation are
identified, which is a manifestation of joint reflection symmetry. But, this symmetry
breaks down when there is dEr=dr in the plasma as described above and selective
avalanches occur. When the background dEr=dr > 0, simulation observes only
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Fig. 7.14 (a) Symmetry breaking of void/bump avalanche by dEr shear. (a-1) E0

r0 > 0 case
where bump reduces jE0

rj. (a-2) E0

r0 < 0 case where void reduces jE0

rj. After Kikuchi [444]. (b)
Gyrokinetic full-f simulation of toroidal ITG turbulence, showing outward propagation of bump
where dEr=dr > 0 and inward propagation of void where dEr=dr < 0. Modified from Idomura
[369]

downhill bump propagation and the uphill void propagation is prohibited. When
the background dEr=dr < 0, simulation observes only uphill void propagation and
the downhill bump propagation is prohibited as shown in Fig. 7.14.

7.3 Turbulence and Zonal Flow

In this section, we only introduce so-called Hasegawa-Mima equation and some
features of zonal flow and do not go into the details of 3D turbulence. Hasegawa-
Mima equation is fundamental equation for dissipation-less 2D turbulence which
has marked difference with the 3D turbulence with respect to the direction of
cascades.

7.3.1 Hasegawa-Mima Equation

Turbulence in strongly magnetized plasma may exhibit two dimensional structure
perpendicular to the magnetic field. This is especially true in uniform magnetic
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field. Hasegawa and Mima in 1977 derived the governing equation called Hasegawa-
Mima equation [288]. We show the basic derivation in two ways.

The first derivation focusses the importance of the polarization nonlinearity and
the other uses generalized vorticity in the magnetized plasma.

7.3.1.1 Hasegawa-Mima Equation from the Polarization Nonlinearity

We assume turbulence is electrostatic (E D �r
), and B and Te are uniform and
the ion is cold (Ti � 0), and the electron density perturbation follows the Boltzmann
relation (Qne=ne D e
=Te: (5.6)) which comes from the parallel electron force
balance with isothermal electron. We consider the low frequency (@=˝i@t D O.�/)
and the small electrostatic perturbation (e
=Te D O.�/). The perturbed ion density
Qni is obtained from the ion continuity equation (@ni=@t C r � .niu?/ D 0).

@

@t

Qni

ni
C u? � rni

ni
C r � u? C 1

ni
r � .Qniu?/ D 0 (7.18)

Here, the perpendicular flow is composed of E � B drift and the polarization drift,
u? D uE C upi. The second term in the LHS: we include only uE since the
polarization drift upi is much smaller than uE. The third term: the polarization term
is kept since r � upi ¤ 0 while r � uE D 0 in the uniform magnetic field. The last
term: the E � B nonlinearity r? � .QnuE/ D 0 since r? � .
r?
 � z/ D 0 and second
order polarization term r? � .Qnupi/ D O.�3/ is negligible.

Using the leading order expression d=dt D @=@t C uE � r?, we express upi as:

upi D � mi

eB2

�
@

@t
r?
 C .uE � r?/r?


�

(7.19)

Using the charge neutrality condition Qne=ne D Qni=ni, we obtain following
equation for the electrostatic potential.

@

@t

e


Te
� r?
 � b

B
� rni

ni

Cr? �
�

�r?
 � b
B

� mi

eB2

�
@

@t
r?
 C

�r?
 � b
B

� r?
�

r?

��

D 0

The last term in the r � u? is the E � B convection of the polarization drift, which is
the essential nonlinearity in the Hasegawa-Mima equation. We define cs D p

Te=mi,
�s D cs=˝i, ude D �Ten0

e.x/=eBne, and O
 D e
=Te, above equation reads:

�
1 � �2s r2?

� @ O

@t

C ude
@ O

@y

C �3s csr? �
h
.r? O
 � b � r?/r? O


i
D 0 (7.20)
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Since r? �
h
.r? O
 � b � r?/r? O


i
D r? O
 � b � r?r2? O
 in the two dimensional

system, this equation is reduced to following Hasegawa-Mima (HM) equation:

�
1� �2s r2?

� @ O

@t

C ude
@ O

@y

C �3s csr? O
 � b � r?r2? O
 D 0 (7.21)

If we normalize x=�s ! x, ˝it ! t, ni=n0 ! ni, we obtain following equation.

@

@t
.r2? O
 � O
/C b � r?
 � r?.r2? O
 C lnni/ D 0 (7.22)

Salon 7-1: Vorticity
The vorticity of the neutral fluid is defined by ! D r � u. Vortex motion is a
visualization of vorticity and are seen in the river side. In the rest frame shown
in the below figure (a), flow lines may be seen in the mid river, while vortex
motion may be seen near the edge. In the moving frame with u of mid river,
vortex motion may be seen in the mid river as shown in the below figure (b).
To see the net vortex motion, it is important to eliminate directional flow.

u

Rest frame (u=0)(a)

-u

u
Moving frame(b)

7.3.1.2 Hasegawa-Mima Equation from Generalized Vorticity

Above derivation of the Hasegawa-Mima equation is based on the ion polarization
drift. This Hasegawa-Mima equation can be derived using the generalized vorticity.
The canonical momentum per unit mass of the magnetized fluid is defined as p D
u C .ei=mi/A. We define the generalized vorticity ˝ as:

˝ D r � p D r � u C ei

mi
r � A D ! C ei

mi
B D ! C ˝ i; (7.23)

where ! D r � u, ˝ i D eiB=mi D ˝iz. The generalized vorticity is a summation
of the fluid vorticity and the cyclotron frequency. We note ˝ is divergence free,
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r �˝ D 0. Using the relation u �ru D 1
2
ru2�u � .r �u/, the equation of motion,

du=dt D .ei=mi/.E C u � B/ � .1=mini/rp can be given as:

@u
@t

D ei

mi
E C u � ˝ � 1

2
ru2 � 1

mini
rP (7.24)

We can eliminate above potential terms by taking the rotation (r�).

@!

@t
D � ei

mi

@B
@t

C r � .u � ˝/C 1

min2i
rni � rP (7.25)

Considering r � .u � ˝/ D ur � ˝ � ˝r � u C .˝ � r/u � .u � r/˝ and
r � ˝ D 0, we obtain following generalized vorticity equation.

d˝=dt C ˝r � u D .˝ � r/u (7.26)

Here, we used rni � rP � 0. The term .˝ � r/u is called the generalized vortex
tube stretching, which is an extension of vertex tube stretching in the neutral fluid
as shown in the Column 7-1.

In the two dimensional turbulence, the generalized vorticity has only
z-component, ˝ D ˝z D .! C ˝i/z and the generalized vortex tube stretching
is absent since all physical quantities are uniform in the direction of the magnetic
field. Therefore, time evolution of the generalized vorticity ˝ in two dimensional
magnetized plasma turbulence is given by,

d˝=dt C ˝r � u D 0 (7.27)

Absence of the vortex tube stretching in the two dimensional turbulence changes the
energy flow direction in wave number space and makes it possible to have inverse
energy cascade to form the zonal flow. The fluid vorticity is:

! D ! � z � r? � uE � z D �
�

r? � r?
 � z
B

�

� z D 1

B
r2?
 (7.28)

Therefore, the time derivative of the fluid vorticity is given by:

d!

dt
D @!

@t
C r?
 � z

B
� r?! D �2s˝i

�
@

@t
r2? O
 C �scs.r? O
 � z � r?/r2? O


�

(7.29)

Using the continuity equation (r � u D �dlnni=dt), we have

˝r � u D �.! C˝i/dlnni=dt � �˝idlnni=dt � �˝i

h
@ O
=@t C uE � r?lnni

i
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2
1

1<< 2
u1 u2

Fig. 7.15 Vortex tube stretching in the wind tunnel. As the flow moves from large diameter to
small diameter region in the wind tunnel, the speed u and the vorticity ! increases. This increase
in vorticity is related to the conservation of the angular momentum of the vortex and is called
“vortex tube stretching”

Thus, we obtain

˝r � u D �˝i

h
@ O
=@t C ude.@ O
=@y/

i
(7.30)

Substituting (7.29) and (7.30) into (7.27) and using d˝i=dt D 0, we have
Hasegawa-Mima equation (7.21).

Column 7-1 : Vortex Tube Stretching in 3-D Fluid System
In the fluid turbulence, the vorticity ! D r � u plays an important role. If �
is constant in space, the Navier-Stokes equation can be expressed as,

@u
@t

D �r
�

p

�
C 1

2
u2
�

C u � ! � �r � ! (7.31)

Taking r� (7.31), we obtain following vorticity equation.

@!

@t
C u � r! D .! � r/u C �r2! (7.32)

The appearance of .! �r/u term above implies that the vorticity is produced if
the flow u changes in the direction of !, by which the vortex tube is stretched
or squeezed. This term is called the “vortex tube stretching” (Fig. 7.15).

If we write @ui=@xk D ski C rki, where ski D .@uk=@xi C @ui=@xk/=2 (rate
of strain tensor, see Column 4-1) and !ki D .@uk=@xi � @ui=@xk/=2 (vorticity
tensor), we obtain following relation for this vortex tube stretching.

.! � r/u D ! � s; (7.33)

where s is a symmetric tensor having .k; i/ component, ski.
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7.3.1.3 Conserved Quantities of Hasegawa-Mima Equation

This HM equation has following two conserved quantities similar to the two
dimensional Navier-Stokes equation as shown by Hasegawa-Mima [289].

E D 1

2
h.r?
/2 C 
2i , W D 1

2
h.r2

?
/
2 C .r?
/2i; (7.34)

where hAi is the volume average of A. Here E corresponds to the total energy and
W corresponds to the potential enstrophy. Here the enstrophy is the volume integral
of half of square vorticity, !2=2 and is a conserved quantity (Column 7-2).

Zonal flow in drift wave turbulence is first predicted by Hasegawa in 1979 from
energy cascade of Hasegawa-Mima equation [288] and its similarity to geostrophic
vortex equation (Charney equation) of Jobian atmosphere is discussed in [290].

Column 7-2 : Enstrophy Conservation in 2-D Turbulence
In case of ideal two dimensional fluid turbulence (� D 0), the vorticity is
conserved along the fluid motion,

d!

dt
D @!

@t
C u � r! D 0 (7.35)

Considering the vector formula ! � .u � r/! D �! � .u � .r � !// D
u � .! � .r � !// D u � r.u2=2/, multiplication of !� to d!=dt D 0 gives:

@

@t

�
!2

2

�

C r �
�

!2

2
u
�

D 0 (7.36)

If we take an integral inside the volume bounded by a rigid body, where
u � dS D 0, we arrive at a law of enstrophy conservation, U.

@U

@t
� @

@t

Z
!2

2
dV D 0 (7.37)

We note that enstrophy conservation holds only for two dimensional ideal
fluid turbulence and is closely related to the absence of vortex tube stretching,
! � ru D 0 [472].

Conservation of enstrophy is one of important properties of Hasegawa-
Mima equation in the two dimensional turbulence in magnetized plasma.

For more detail, see Hasegawa [291] and Sect. 2.3.1 of Diamond’s textbook
[168].



7.3 Turbulence and Zonal Flow 197

7.3.1.4 Dual Cascades of Turbulent Spectrum

Hasegawa [289] clarified that the turbulent cascade in two dimensional drift wave
turbulence (HM equation) is a dual cascade similar to the two dimensional fluid
turbulence [472]. Namely, the energy flux in k space is directed to lower k (inverse
energy cascade) to form a zonal flow and the enstrophy flux in k space is directed to
higher k (forward enstrophy cascade). Energy spectrum in the inertial range of the
wave number space can be obtained assuming the stationary flow in k space. If ks is
the wave number of the source, energy spectrum in k < ks and k > ks are given by:

W.k/ D C1k
�5=3 for k < ks (7.38)

W.k/ D C2k
�3 for k > ks (7.39)

In the atmospheric dynamics, the Rossby wave [541] plays similar behavior,
where Lorentz force is replaced to Coriolis force and the E � B flow uE is replaced
to geostrophic flow ug D ez � rp=.f�/, where f is the Coriolis parameter. This
similarity corresponds to the equation ECu�B D 0 in plasma and rpCf�ez�u D 0

in Westerlies (Jet Stream) dynamics. The reason why Rossby wave behave as two
dimensional system is that atmospheric layer is so thin compared with the radius of
the Earth.

7.3.1.5 Electron Hasegawa-Mima Equation

The Hasegawa-Mima (HM) equation is derived for the ion scale turbulence based on
the ion polarization drift. But it is also important for the electron scale turbulence as
discussed by Idomura in 2006 [368]. The electrostatic gyrokinetic Vlasov-Poisson
system with gyrokinetic electron and adiabatic ion in the limit of kk ! 0 gives
Hasegawa-Mima type equation for electron dynamics [368].

@

@t
.�2s r2?
 � �
/C b � r?
 � r?.�2s r2?
 C lnn0/ D 0 (7.40)

where normalization x=�te ! x, t˝e ! t, e
=Te ! 
, n0=hn0i ! n0 are taken
and �2s D 1 C �2De=�

2
te and � D Te=Ti, respectively. Here, it is important to note

that main nonlinearity in original HM equation comes from E � B convection of
ion polarization drift, nonlinearity for this electron HM (e-HM) equation comes
from Debye shielding effect and electron polarization/ finite electron Larmor radius
effect.

This e-HM equation also conserves the energy E D 1
2
h�2s hr?
/2C�
2i, and the

potential enstrophy W D 1
2
h�2s .r2?
/2 C �.r?
/2i. The nonlinear term b � r?
 �

�2s r2?
 leads to inverse energy cascade. Balancing with linear dn0=dx term gives
critical radial wave number for energy condensation kx � kˇ (kˇ D ��1

s

p
ˇ=2U,

ˇ D jdlnn0=dxj, U D p
2�, � D 1

2
h.r?
/2i), equivalent to Rhines scale length
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Fig. 7.16 (a) Contour plot of 
 in the electron turbulence. (a1) Uniform density. (a2) Ln D
1462�te to excite zonal flow. (b) Normalized zonal flow wave length kZF�

1=4 v.s. L�1=2
n from

the gyrokinetic electron turbulence simulation. Reproduced with permission from Idomura [368].
Copyright AIP Publishing LLC

[625] in the ˇ-plane turbulence. The inverse energy cascade occurs from high kx to
kˇ to form zonal flow in shear-less ETG turbulence with radial wave number � kˇ .

Figure 7.16a shows the contour plot of the electrostatic potential 
 for uniform
density case (a1) and for density gradient case (a2). In case of uniform density,
turbulence has isolated coherent vortices. In case of non-zero density gradient (a2),
zonal flows are produced and the turbulence becomes anisotropic. The normalized
average wave number of zonal flow kZF�

1=4 is inversely proportional to the square
root of density scale length, kZF�

1=4 � L�1=2
n as shown in Fig. 7.16b.

7.3.2 Zonal Flow by Modulational Instability

The zonal flow is E � B flow symmetric toroidally .n D 0/ and poloidally .m D 0/

but is a radially varying electric potential fluctuation with nearly zero frequency.
The zonal flow in the sheared magnetic field is excited through the modulational

instability first discussed by Diamond [164]. Chen-Lin-White [112] refine this
idea in the toroidal geometry using the ballooning formulation and obtain the
quantitative agreement with the numerical simulation. In the axisymmetric system,
the electrostatic potential of the pump drift wave Q̊ p can be expressed as a
summation of poloidal harmonics with harmonic amplitude Q̊ l.q/, where safety
factor q is used as a radial coordinate instead of r. The harmonic amplitude Q̊ l.q/
can be constructed by the eigenfunction for l D 0, Q̊

0.nq � m/ peaked at q D m=n
and assuming translational symmetry similar to Bloch function in crystal lattice
[459, 851].
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Q̊ p.r; �; �/ D
C1X

lD�1
Q̊ l.q/e

i.mCl/�e�in� (7.41)

Q̊ l.q/ D a.�q/ Q̊
0.nq � m � l/ (7.42)

where, each harmonics is located in the region where q D .mCl/=n. Here,�q D l=n
and a.�q/ is slowly varying amplitude corresponding to envelope of modes. This
is called Ballooning eigenfunction, originally developed for ideal MHD Ballooning
mode by Connor-Hastie-Taylor [141]. For high n modes, this translational symmetry
holds and can be assumed a constant (a.�q/ D 1). This translational symmetry
comes from the dense overlap of poloidal harmonics, where all physical quantities
are the same for all harmonics.

Three wave parametric excitation of the zonal flow does not work due to wave
number and frequency matching constraints. The zonal flow is excited by the
modulational instability by four wave interaction, i.e. pump wave, zonal flow, and
two sideband waves. The pump drift wave . Q̊ p/ is the toroidal ITG with single
n-value consists of a set of poloidal harmonics oscillating together with a fixed phase
relation given by Eq. (7.42). This pump drift wave with wave number kd couples to
the modulating zonal flow with the radial wave number kr and frequency ˝ and
induces two side-band drift waves (denoted by Q̊ ˙) having wave numbers:

kC D kd C kr , and , k� D kd � kr (7.43)

The zonal flow, the pump wave and sidebands can be expressed using the
ballooning eigen function as follows,

Q̊ Z D Q̊ Z
0 .nq � m/eikrr�i˝t C c:c: (7.44)

Q̊ p D e�i.n�C!0t/
C1X

mD�1
Q̊ p
0 .nq � m/eim� C c:c: (7.45)

Q̊ ˙ D ei.�.n�C!0t/Ckrr�˝t/
C1X

mD�1
Q̊
0̇ .nq � m/eim� C c:c: (7.46)

Here, kr D nq0�k and 0 � �k � 
 is called the Bloch angle. The pump wave is in
general a most unstable mode, while side bands are linearly stable modes.

The zonal flow generation by the coupling to pump and sidebands is described
by Hasegawa-Mima type equation and Chen [112, 113] gives following dispersion
relation.

.�z C �z/.�z C �d/ D �2M (7.47)
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Fig. 7.17 Growth rate of
zonal flow normalized to ITG
growth rate v.s. normalized
ITG amplitude. Solid line
is (7.48) and C is gyrokinetic
simulation. Reproduced with
permission from
Chen-Lin-White [112].
Copyright AIP Publishing
LLC
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This dispersion relation gives the growth rate of the zonal flow as:

�z D �.�d C �z/=2C
q
�2M C .�d � �z/2=4; (7.48)

where �d is the damping rate of sideband, �z D 1=1:5��ii is the zonal flow damping
rate due to ion-ion collision, and �M is the characteristic growth rate of modulational
instability inversely proportional to the neoclassical polarization (see Diamond
[166] for more explanation).

The growth rate of zonal flow normalized to ITG growth rate �0 is plotted as a
function of the ITG potential amplitude as shown in Fig. 7.17 and the growth rate of
zonal flow �z is in good agreement with gyrokinetic simulation.

In the toroidal geometry, the zonal flow couples to the geodesic acoustic mode
and may damp through the Landau damping. Rosenbluth-Hinton showed that this
zonal flow can have a undamped component due to neoclassical effect, which is
found to be an important mechanism to regulate saturation level of turbulence and
associated radial heat transport [640]. We show key physics of this residual zonal
flow and the dynamics of zonal flow in the following subsections.

7.3.3 Residual Zonal Flow

Polarization plays an important role in the toroidal plasma. In the case of solid
state physics, polarization appears even at ! D 0. In the case of plasma, however,
polarization drift can only exist transiently as,

vvvpa D ma

eaB2
dE
dt

(7.49)
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This polarization drift change sign for ion and electron (negligibly small). This
gives rise to the current, called polarization current jcl

p .

jcl
p D

X

a

eanavvvpa D mini

B2
dE
dt

D �0�
cl
p

dE
dt
; (7.50)

where �cl
p D mini=�0B2 D .!pi=˝i/

2 D .kDi�i/
2 
 1, where !pi and kDi are

ion plasma frequency and ion Debye wave number, respectively. This polarization
current originates from delayed ion gyro motion from time varying electric field
and �cl

p is called classical polarization, which is a low frequency dielectric constant
perpendicular to the magnetic field (note: vacuum has extra contribution of 1).

In tokamak, some fraction of charged particles (ft � p
�; � � r=R) are trapped

by the magnetic mirror and the radial excursion of trapped particles (�t) is larger
than that of passing particles (�p D q�i) given by,

�t D p
��pi D q�ip

�
(7.51)

During this trapped particle orbit motion, we also expect similar polarization
effect if we have radial electric field Er,

jnc
pr D �0�

nc
p

dEr

dt
(7.52)

�nc
p D p

�k2Di�
2
t D q2p

�
�cl

p ; (7.53)

where �nc
p is called neoclassical polarization. Radial excursion of passing particle

also have some polarization effect. Summation of classical and neoclassical polar-
ization is total polarization, �p D �cl

p C�nc
p , which is a dielectric constant in the radial

direction. The continuity equation of the polarization current is given by,

@�p

@t
C r � jp D S; (7.54)

where �p is the polarization charge density, Sk is the external source density. Taking
the flux surface average ( hi) and Fourier expansion in space, we have

@

@t
h�p.k/i C hik? � jp.k/i D hS.k/i (7.55)

Polarization current jp is given by,

jp D �0�p
dE
dt

(7.56)
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For the electrostatic perturbation (E D �ik˚k), above two equations lead to

�0�phk2?i˚k D h�pi �
Z

hS.k/idt (7.57)

Hinton-Rosenbluth 1999 (Instead of polarization, they uses the dielectric suscepti-
bility Q�k D .hk2?i�2i ˝2

i /=!
2
pi/�p.) gave an expression for this polarization as,

�p D !2pi

˝2
i

�

1C 1:6q2p
�

�

; (7.58)

where first and second terms of RHS are classical and neoclassical polarization,
respectively. The factor “1.6” comes from detailed kinetic calculation including
passing particle contribution.

Consider an initial source perturbation hS.k/i D ınk.0/ı.t/, build up of the
electrostatic potential is determined by the classical polarization shielding for a time
scale of a few gyro motion but much shorter than the bounce time of trapped particle.
Then, we have,

�0�
cl
p hk2?i˚k.t D C0/ D �eiınk.0/ (7.59)

At longer than the bounce time of trapped particles, the electrostatic potential is
further shielded by the addition of the neoclassical polarization �nc

p to have,

�0.�
cl
p C �nc

p /hk2?i˚k.t D C1/ D �eiınk.0/ (7.60)

Therefore, the ratio of the long term zonal flow potential to the initial zonal flow
potential is given by,

˚k.t D 1/

˚k.t D 0/
D �cl

p

�cl
p C �nc

p

(7.61)

Using Hinton formula (7.58), we have

˚k.t D 1/

˚k.t D 0/
D 1

1C 1:6q2=
p
�

(7.62)

The damping of zonal flow to this residual zonal flow has been confirmed
in the nonlinear gyrokinetic simulations such as by Idomura [366]. Kinetic
equilibrium of tokamak is characterized by canonical Maxwellian distribution,
fCM.P
; �; �/ D CCM.P
/expŒ��=Ta.P
/�, where P
 , � and � are canonical
angular momentum, kinetic energy, and magnetic moment, respectively. Use of
this canonical Maxwellian is important in delta-f simulation to eliminate spurious
growth of zonal flow.
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Fig. 7.18 (a) Toroidal ITG eigenmode structure in poloidal cross section. (b) Radial harmonic
structure of toroidal ITG with n D 15 and a=�i D 324. (c) Comparison of the damping of the zonal
flow using local and canonical Maxwellian. Reproduced with permission from Idomura [366].
Copyright IAEA Vienna

Fig. 7.19 Velocity space profiles of real part of the perturbed distribution function at � D 0 for
different time steps (t=0, 20, 50) of simulation. Positive and negative perturbations are shown in
red and green, respectively. Reproduced with permission from Watanabe [811]. Copyright IAEA
Vienna

Figure 7.18 shows the gyrokinetic simulation of the toroidal ITG mode structure
and the damping of the zonal flow to the residual zonal flow. The zonal flows are
coupled to m ¤ 0 components through geodesic coupling to the acoustic mode and
the zonal flow coupled to m ¤ 0 is called the Geodesic Acoustic Mode (GAM).
This GAM has an oscillating solution, which damps by the Landau damping.

The study of the velocity space structure during the zonal flow (GAM) damping
by Watanabe [811] clearly shows that the damping of the electrostatic potential
occurs through the phase mixing as time goes and the residual negative perturbed
distribution function are seen locally at the trapped particle region as seen in
Fig. 7.19.

7.3.4 Zonal Flow Dynamics

7.3.4.1 Diamond’s Predator-Prey Model

While the zonal flow is produced by the turbulence, the zonal flow can regulate
turbulence through its shear flow. Diamond proposes a self-regulation model of
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the turbulence, called Predator-Prey model [166]. In this model, the wave kinetic
equations for drift wave (prey) and zonal flow (predator) are:

.@=@t � �L C �NL/ hNi D �˛hUi2hNi (7.63)
�
@=@t C �damp

	 hUi2 D ˛hUi2hNi; (7.64)

where hNi D P
k Nk is the drift wave intensity, U D @VZF=@r is the vorticity of the

zonal flow, and hUi2 corresponds to the zonal flow energy, �L is the linear growth
rate of the drift wave, �NL is the nonlinear damping rate of the drift wave, which
may be given in lowest order as �NL D �2hNi. Right hand sides are energy transfer
terms between the drift wave and the zonal flow.

Basic idea behind this Predator-Prey model originated from the Reynolds
equation in the fluid turbulence [162], the average flow can be produced by the
Reynolds stress (see Column 7-3) and stabilize turbulence. Noting that the E � B
poloidal flow shear suppression of the turbulence is important, the poloidal flow
profile evolution equation is derived by taking the flux surface average of the
momentum balance equation.

@hV� i
@t

D � @

@r
h QVr QV�i � �hV�i (7.65)

We use the approximationhV�i � hVEi noting that the diamagnetic flow do not
contribute the suppression of the turbulence. Taking @=@r� (7.65) and multiplying
by h@VE=@ri and considering @2h QVr QV� i=@r2 � h@VE=@rihNi, we have (7.64).

This Predator-Prey system has a stable fixed point in the .hUi2; hNi/ space if all
coefficients (�L, �damp, ˛, �2) are non-negative [166].

This Predator-Prey system gives periodic bursts (limit cycle oscillation: LOC)
of the wave and flow if the nonlinear self-stabilization is absent. This LCO rotates
clock-wise in .hUi2; hNi/ plane. Namely, the turbulent fluctuation increases first
and then the zonal flow grows and suppress turbulence. Suppression of turbulent
fluctuation reduces zonal flow generation and the zonal flow damps to return to the
original state.

If we include mean flow shear, the system becomes two Predator- one Prey
system given by Kim-Diamond [450]. The system equations for the amplitude of
turbulence �, zonal flow shear VZF � @ QVE=@r, mean flow shear V � @hVEi=@r, and
the ion pressure gradient N � @pi=@r:

@�=@t D �N � a1�
2 � a2V

2� � a3V
2
ZF� (7.66)

@VZF=@t D b1
�VZF

1C b2V2
� b3VZF (7.67)

@N=@t D �c1�N � c2N C Q (7.68)
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Right hand side terms of (7.66) are linear growth, nonlinear saturation, mean
flow and zonal flow suppression. Right hand side terms of (7.67) are zonal flow
generation by the Reynolds stress and damping. Here suppression of zonal flow
generation by the mean flow is modeled as 1=.1Cb1V2/. Right hand terms of (7.68)
are turbulent and neoclassical reductions of pressure gradient and the input power.
The characteristics of dynamical behavior is discussed in Sect. 7.4.

Column 7-3 : Reynolds Equation
In ideal neutral fluid, the continuity equation and the Euler equation are:

@�

@t
C @�ui

@xi
D 0 , and �

�
@ui

@t
C uj

@ui

@xj

�

D � @p

@xi
(7.69)

This Euler equation can be converted to following conservative form.

@�ui

@t
D �@˘ik

@xk
, where˘ik D pıik C �uiuk (7.70)

Here, ˘ki is called the momentum flux density and is a symmetric tensor
(see Landau-Lifschitz [495]). Integrating in volume and using the Gauss’s
theorem, we have: @=@t

R
�uidV D � H ˘ikdSk. The ˘ikdSk is the i-th

component of the momentum flowing out from the volume through the surface
dS. We derive so-called Reynolds equation assuming constant � for simplicity.
This means fluid flow is incompressible as well. Let Qu is the random velocity
fluctuation in the fluid turbulence. This fluctuating velocity field produces the
momentum transport. Navier-Stokes equation in this case is given by,

@ui

@t
D �1

�

@˘ki

@xk
, where ˘ki D pıki C �ukui � �. @ui

@xk
C @uk

@xi
/ (7.71)

We divide velocity to mean and fluctuating flows as ui D Ui C Qui and
substitute into the Navier-Stokes equation, (7.71). The time derivative is
divided into slow and fast time variations and take the fast time average of
a quantity A denoted by hAi. We obtain following Reynolds equation for the
average flow.

@Ui

@t
D �1

�

@˘ki

@xk
(7.72)

˘ki D pıki C �UkUi � �.
@Ui

@xk
C @Uk

@xi
/C �hQuk Quii (7.73)

(continued)



206 7 Turbulent Transport in Tokamak

Here, ˘ki is the average momentum flux tensor and Rki � ��hQuk Quii is called
Reynolds stress tensor (sometimes, Rij D hQuk Quii is called Reynolds stress
as in Sect. 7.6). This Reynolds stress tensor is a symmetric tensor to satisfy
Rki D Rik. While its diagonal elements �hQu21i; �hQu22i; �hQu22i are perpendicular
stress (i.e. pressure) and are negligible, the off-diagonal elements are shear
stress and can be significant for the momentum transport. If hQuk Quii ¤ 0,
Quk and Qui are said to have correlation and if hQuk Quii D 0, Quk and Qui are
said to have no correlation. Degree of the correlation is characterized by
a correlation coefficient, cki � hQuk Quii=.hQu2ki1=2hQu2i i1=2/. In Landau-Lifschitz
fluid mechanics [495], Reynolds stress are defined as Rij D �hQuk Quii and
some papers uses this definition. The equation for Rij is called Reynolds stress
equation and include < uiujuk >, whose equation also includes< uiujukul >.

7.3.4.2 Dimits Shift

Direct numerical gyrokinetic simulation of ITG turbulence showed that near the
linear stability boundary, ITG mode is completely stabilized. In the slightly unstable
regime, ITG grows initially but is quenched by the induced zonal flow. This zonal
flow is strong enough to reduce ion thermal transport to neoclassical level [169].
This dynamics between zonal flow and turbulence upshifts the critical temperature
gradient from critical temperature gradient for linear stability, R=LTclin to R=LTclin C
�R=LTc as shown in Fig. 7.20 and�R=LTc is called Dimits shift [169]. In the Dimits
shift regime (R=LTc;lin < R=LT < R=LTc;lin C �R=LTc), free energy from dT=dr is
transferred mainly to zonal flow and not to ITG turbulence.

Miki [551] showed interesting transient dynamical interplay between GAM
and ambient turbulence in Dimits shift regime by Landau-fluid simulation with
fixed profiles, which produces intermittent transport called GAM intermittency as
shown in Fig. 7.20b, c. In the Dimits shift regime, zonal flow energy increases
with time while m D 1 and turbulence energies reduced and quenched. On the
other hand, GAM oscillation persists above the Dimits shift regime giving quasi
steady intermittent transport driven by GAM. This behavior is consistent with the
prediction of Diamond’s Predator-Prey model.

7.3.4.3 Geodesic Acoustic Mode

Toroidal effect (especially at high q) sometimes inhibits this zero frequency zonal
flow (hereafter, called zonal flow) and produces so-called Geodesic Acoustic Mode
(GAM), which is an oscillating zonal flow (m D n D 0 electrostatic potential)
through geodesic coupling to m D 1; n D 0 pressure perturbation, first predicted
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Fig. 7.20 (a) Normalized ion thermal diffusivity as a function of R=LT from gyrokinetic simu-
lation showing Dimits shift as compared with ‘94 IFS/PPPL gyrofluid simulation. Reproduced
with permission from Dimits [169]. Copyright IAEA Vienna. (b) Intermittent transport coefficient
induced by GAM-turbulence interaction in the Dimits shift regime and temporal evolution of
turbulence, zonal and geodesic energies at R=LT D 4:05. (c) Temporal evolution of Eturb:, EZF ,
and Ep10 (p10 D< psin� >) for R=LT D 4:05. Reproduced with permission from Miki [551].
Copyright American Physical Society

by Winsor [826] and revisited by Hallatschek [281]. Zonal/GAM flow vE is larger
on the outside of the torus and smaller on the inside due to B / 1=R. This leads to
density perturbation Qn proportional to �r �vvv? D .E�B/ �rB2=B4, which produces
parallel pressure perturbation, p. Coupled evolution equations for vE (zonal/GAM
flow) and perturbed pressure p in toroidal plasma with circular cross section are give
in [554] as,

@hvEi
@t

D 1

r2
@

@r
r2h QvEr QvE� i C �0ˇ

neq

1

r2
@

@r
r2h QBr QB� i � 2

neq

a

R
hp sin �i (7.74)

@

@t
hp sin �i D �hŒ Q
; Qp� sin �i C .� C �/peq

a

qR
hv cos �i C .� C �/

a

R
peqhvEi

(7.75)

Here, h�i is flux surface average, hvEi D @
0=@r is GAM flow, QvEr D
�.1=r/.@ Q
=@�/ and QvE� D .@ Q
=@r/ are turbulent E � B drift velocities in radial and
poloidal directions, respectively, hp sin �i is .m; n/ D .1; 0/ pressure perturbation,
neq is equilibrium density, ˇ is beta value, Œf ; g� is Poisson bracket, � D 5=3,
� D Te=Ti, peq is equilibrium pressure. Three terms in the right hand side of
Eq. (7.74) are Reynolds stress and Maxwell stress, and geodesic transfer term,
respectively. Three terms in the right hand side of (7.75) are nonlinear coupling of
pressure perturbation to turbulence, sound wave, and zonal flow terms, respectively.
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Fig. 7.21 (a) Radial variation of normalized zonal flow frequency (f Œvi=a�) with normalized pure
GAM frequency fGAM D p

2.� C �/Teq.a=2
R/ and normalized sound wave frequency fsound Dp
.� C �/Teq.a=2
qR/. (b) Radial variation of time averaged E � B zonal flow energy drives.

Reproduced with permission from Miyato [555]. Copyright IAEA Vienna

Global electromagnetic Landau-fluid ITG simulation by Miyato [555] clarified
basic properties of GAM. While strong zonal flow dominates in low q regime, zonal
flow is weak and GAM is dominant in high q regime (Fig. 7.21a). Zonal flow energy
is supplied from Reynolds stress drive (�hQvErr2 Q
ihvEi) at low ˇ and zonal flow
energy is transferred to (1,0) pressure perturbation through geodesic transfer for
both zonal flow and GAM (Fig. 7.21b). The energy supply for hp sin �i is from
zonal/GAM flows and this energy is transferred mainly to sound wave term hv cos �i
in case of zonal flow, while it is transferred to turbulence through nonlinear coupling
between electrostatic potential and pressure perturbation in case of GAM. The GAM
frequency is almost spatially uniform and different from local GAM frequency fGAM

(Fig. 7.21a).
Radial uniformity of GAM frequency is also observed experimentally by Ido

[363] and they showed that GAM is a radially propagating wave. This is because
the GAM has global mode structure and the ! is determined as an eigenvalue.
Sasaki [658] derived the radial eigenmode equation of GAM from the dispersion
relation ! D !GAM.1 C ck2r�

2
s / � i�GAM as ˛�2s!GAM.r/d2
GAM=dr2 C .! �

!GAM.r/ C i�GAM.r//
GAM D 0 and showed the radial structure of GAM. Here
!GAM D 2
fGAM, �GAM is the local growth rate of GAM and ˛ is a constant.
They also show the analytical expression of GAM frequency by solving the radial
eigenmode equation via WKBJ method.

Ido [363, 364] showed experimentally in JFT-2M that GAM-turbulence inter-
action can produce intermittent transport and have high coherence between GAM
oscillation and density fluctuation as shown in Fig. 7.22a. This behavior is consistent
with theoretical predictions such as by Miki shown in Fig. 7.22b.

B. Scott [671] showed that while turbulent Reynolds stress always transfer energy
from small eddies to the larger scale zonal flows, the geodesic curvature couples the
zonal flows to finite kk pressure sidebands, by which the nonlinear E � B pressure
advection (vE � r Qpe) quickly delivers the free energy in the zonal flow/side bands



7.3 Turbulence and Zonal Flow 209

Fig. 7.22 (a) Correlation of GAM oscillation and density fluctuation in JFT-2M. Reproduced
with permission from Ido [363]. Copyright IOP Publishing. (b) GAM-turbulence intermittency
just above the Dimits shift regime R=LT D 4:47. Reproduced with permission from Miki [551].
Copyright American Physical Society

back to the turbulence and growth of zonal flow amplitude is limited (geodesic
transfer effect). The energy transfer among turbulence, zonal flow and GAM is
measured in fusion relevant plasma for the first time by M. Xu [839] in HL-2A.

The existence of Zonal flow/GAM is confirmed experimentally by G.S. Xu [837]
in HT-7U, Fujisawa [221] in CHS, Hamada [283] in JIPP T-IIU, and Zhao [858] in
HL-2A. The modulation of GAM by low frequency Zonal flow in HL-2A is reported
by Liu [512].

7.3.4.4 Streamer and Zonal Flows in ETG Turbulence

Zonal flow is one form of convective cell, which is toroidally symmetric and do not
produce cross field transport. There is another form of the convective cell, called
the “streamer”. The streamer is radially elongated convective cell, which produces
significant cross field transport.

In toroidal geometry, both zonal flows and streamers can appear depending on
the magnetic shear. We show an example of toroidal ETG turbulence simulation
of negative shear plasma which produce the zonal flows near shear less region and
streamer in the positive shear region. Gyrokinetic simulation of ETG turbulence
using quasi-ballooning formalism and consistent profile evolution (but not flux-
driven) by Idomura [367] showed that saturation of ETG turbulence is determined
by the quasi-linear modification of dTe=dr close to dTe=drjc.

In the NS configuration, ETG shows two different structures, streamer and
zonal flow. Figure 7.23 shows toroidal ETG simulation in NS plasma [367]. In the
positive shear region, nonlinear toroidal ETG turbulence produces streamer through
coupling among poloidal harmonics, which exhibits 3D character of turbulence.
While zonal flow is excited in ITG turbulence by the modulational instability in
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Fig. 7.23 ETG turbulence structures of zonal flow and streamer in toroidal NS plasma. Modified
from Idomura [367]

positive shear tokamak, zonal flow generation is weak for ETG turbulence in case
of positive shear. However,near the qmin in the NS plasma, nonlinear ETG turbulence
is dominated by a single poloidal mode, which produces zonal flow through inverse
energy cascade in 2D turbulence. When the distance between neighboring mode
rational surfaces is much larger than electron gyroradius, �r � �te=s 
 �te, ETG
turbulent structure becomes 2 dimensional (2D turbulence).

7.4 Edge and Internal Transport Barriers

7.4.1 Edge Transport Barrier

Formation of Edge Transport Barrier (ETB) is associated with H-mode [794]. The
H-mode is a standard operation scenario of ITER and the physics basis of H-mode
is discussed in detail in the ITER physics basis [175, 387].
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Fig. 7.24 (a) Kim-Diamond model of L-I-H transition. Input power Q D 0:01t is used as
horizontal axis. Solid line is the amplitude of turbulence �, dotted line is zonal flow shear VZF ,
and dashed line is ion pressure gradient N=5. A limit cycle oscillation (called I-phase recently)
occurs between L-mode and H-mode [450]. (b) ASDEX observation of limit cycle oscillation in I-
phase [138]. Reproduced with permission from Kim-Diamond [450] and Conway [138]. Copyright
American Physical Society

7.4.1.1 L-H Transition

The H-mode is associated with L to H mode transition [795] but the transition can
be also transition less [436] or complex multi stage [415]. Measurement of main
ion and impurity ions in DIII-D [447] shows that the main ion is rotating in the
ion diamagnetic drift direction and the impurity ions are rotating in the electron
diamagnetic direction to give Er < 0 near the edge region.

The L to H-mode transition is explained by the flow shear regulation of the
micro fluctuation leading to the bifurcation of transport states [322, 323, 713].
The bifurcation theory called Predator-Prey model based on the development of
Reynolds stress is first developed by Diamond [162] (Sect. 7.3.4). Diamond [165]
reformulates zonal flow excitation via wave kinetic equation and showed that
Reynolds stress driven flow can play an important role in the edge region.

Most likely L-H transition physics is Kim-Diamond [450] two Predator-one Prey
system described in Sect. 7.3.4. Using the set of Eqs. (7.66)–(7.68) and assuming the
mean flow shear relation to the pressure gradient (V � N2), dynamics similar to L-H
transition is observed by increasing input power with time (Q D 0:01t). As the input
power Q increases, the amplitude of turbulence � increases while the zonal flow VZF

can not develop due to strong damping until Q � 0:6. When � � b3.1C b2V2/=b1,
zonal flow generation by Reynolds stress overwhelms the zonal flow damping and
the amplitude of turbulence � reduces. In this period of time, the LOC (limit cycle
oscillation) can be seen as discussed in Sect. 7.3.4. For sufficiently high input power
Q, this self-regulation turns off the turbulence � and the ion pressure gradient N
becomes sufficiently large enough to produce strong mean flow V � N2 and the
quenched state of turbulence can be maintained without the zonal flow (Fig. 7.24a).

Conway [138] showed that the mean and GAM flows and the turbulence
interaction is important in the I-phase as an intermediate state between L and H
mode (Fig. 7.24b) in the ASDEX-U. Cheng [120] identified two types of limit cycle
oscillations (type-Y and -J) during L-I-H transition in HL-2A. While type-Y is the
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clock-wise LOC similar to the Predator-Prey system, type-J is counter clock-wise
LCO. Origin of the initial flow generation needs to be understood for the latter case.

There are number of important works on zonal flow/GAM studies related to L-H
transition. Signature of zonal flow is detected in DIII-D edge region by Coda [133]
using phase-contrast-imaging technique (PCI) and Moyer [564] found that nonlinear
coupling between turbulence and low frequency fluctuations increase during L-H
transition in DIII-D. Nagashima [570] also reported nonlinear coupling between
small poloidal wave number and turbulent fluctuations in JFT-2M. Role of zonal
flow in the L-H transition is first measured by G.S. Xu [838] in the EAST tokamak.
Role of zonal flow Pradator-Prey oscillation in triggering H-mode transition is
reported by Schmitz [670] in DIII-D, while Kobayshi [461] shows LCO without
zonal flow signature.

7.4.1.2 Pedestal Width and Height

Wider ETB width is preferable to support large plasma energy by the pedestal part.
During the early-day’s JT-60U experiments, pedestal width �ped is nearly propor-
tional to 1=Bp [436, 438]. Further study in JT-60U showed �ped is proportional top

Ti to find �ped � 3:3�0:5�pi [297]. Later analysis showed the weaker dependence
on �pi [298]. In the DIII-D tokamak,�ped / �0:66pi or�ped / ˇ0:4p are reported [592],
where ˇp / nT=I2p denotes the ratio of the edge kinetic pressure to the local poloidal
magnetic pressure. JET tokamak also reported somewhat weaker �pi dependence
[511]. Urano [783] concluded by comparing hydrogen and deuterium H-mode that
the scaling of ETB width follows �ped / a� �0:2pol ˇ

0:5
p , where ��pol D �pol=a.

Pedestal height is characterized by the pressure at the top of the edge transport
barrier (ETB) and is a key factor of the tokamak performance. Snyder made an
extensive modeling study based on DIII-D experimental data and also using multi-
machine database [706] showing the pedestal height .Pped/ and width .� N/ are
determined by the peeling/ballooning mode stability and the prediction of width
scaling based on the onset condition of the kinetic ballooning mode [705].This
model is called EPED1 and EPED1.6 [707], which can reproduce experimental
results well.

Pedestals in many tokamaks (DIII-D, NSTX, etc.) start from narrow edge
transport barrier in which the pressure gradient is limited by the KBM (Kinetic
Ballooning Mode) much lower than the ideal ballooning limit and then the pedestal
width increases with time keeping the pressure gradient stays nearly that of
KBM limit. As pedestal broadens, the drive of low n mode increases and the
peeling/ballooning mode becomes unstable, which is ELM.
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Fig. 7.25 (a) Spatio-temporal evolution of the ion temperature during the ITB formation (I) and
transition to the H-mode phase (II). (b) Time evolution of �eff .07a/. (c, d) Ion temperature and
toroidal rotation profiles at t D 5.5, 5.6, 5.75, 6.0 s. Reproduced with permission from Koide [463].
Copyright American Physical Society

7.4.2 Internal Transport Barrier

Internal Transport Barrier (ITB) is first discovered by Koide [463] associated
with core improved confinement with positive magnetic shear as shown in
Fig. 7.25. Intensive central NBI heating produces high central ion temperature
above 10 keV and the initial ITB is formed around r=a � 0:5–0:6 and moves
outward r=a �0.7–0:8. The ITB in the final stage is associated with strong counter
toroidal rotation while the counter rotation does not appear for the initial ITB. After
the steep ITB formation, MHD burst of m=3 mode occurs near the ITB leading to
the formation of the edge transport barrier (H-mode). The characteristics of ITB
in WS has been discussed in [464] and compared with NS in [465]. Sometimes
improved confinement inside q D 1 surface by Kamada [411] and by Hugon [354]
is also called ITB.

Figure 7.26a is typical Ti, Te and ne profiles with ITB in NS plasma. Figure 7.26b
shows both the ion thermal diffusivity�e and the electron thermal diffusivity�i from
transport analysis and Er profiles using the radial electric field expression (4.203).
The E � B shearing rate is order of !E � 105 s�1 as compared with vti=R �
2:7 � 105 s�1 and �i inside the ITB is close to the ion neoclassical one and �e is
also significantly reduced [691, 692]. Here “neoclassical” means formula obtained
from moment equation ((8.134) in [443]). This steep ITB is associated with jump
in Er shear (also [651]) due to temperature curvature formation later discussed as
curvature transition by Ida [362]. Koide-Burrell [466] gives a comparison of ITB
characteristics between JT-60U and DIII-D. Figure 7.26c shows a comparison of
�i profiles in co, counter and balanced NBI in NS plasmas by Sakamoto [649].
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Fig. 7.26 (a) Profiles of q, Ti, Te and ne for NS plasma [691]. (b) Profiles of �i, �e, Er and �NC

for (a) [691]. (c) Difference in �i of ITBs in balanced, co and counter NB injection in NS plasma
[649]. (a)–(c) reproduced with permission from Shirai[691] and Sakamoto[649]. Copyright IAEA
Vienna. (d) Time evolution of the density ITB in NS discharge. Modified from Nazikian [579]

A steeper ITB tends to be formed in balanced neutral injection, while wider and
weaker ITB is formed in co- and counter NB injection cases in Fig. 7.26c [649].
Since too strong ITB tends to trigger plasma disruption, control of ITB strength
through the toroidal rotation drive has been pursued [652].

Figure 7.26d shows time evolution of the density ITB in NS plasma in JT-60U.
Radial correlation measurement using correlation reflectometer during the density
ITB formation by Nazikian [579] showed long correlation length Lr � 20 cm in
L-mode phase and Lr � 4mm in ITB. These characteristics seems to be consistent
with theoretical understanding of avalanche/streamer in L-mode and E�B flow shear
turbulence de-correlation discussed above. Xiao [835] showed that the density ITB
can also be formed in Ohmically heated plasma with a coincidence with TEM-ITG
transition in HL-2A tokamak.

Magnetic shear dependence of ITG heat transport by Waltz [798] showed no
particular role of qmin but showed reduced transport with negative shear. Breakup
of eigenmode across qmin surface is discussed as possible cause of ITB formation
in NS plasma by Kishimoto [457] and flux driven gyro fluid simulations of ITG
turbulence by Garbet [240, 241] but it may not be relevant due to omission of non-
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resonant mode [97]. Miyato [556] indicates stronger zonal flow excitation at low
qmin as alternative candidate for ITB formation.

Formation of ITB starts at central region and propagates outward as shown by
Koide [464] for WS plasma and by Fujita [225] for NS plasma. These observations
may be consistent with prediction by Lebedev-Diamond [501] with density ITB.
At present, there is no quantitative explanation of ITB formation by Gyrofluid and
Gyrokinetic simulations.

7.5 Electromagnetic Turbulence

Understanding of electromagnetic turbulence is still not matured and needs further
development for the quantitative understanding of ˇ degradation of thermal confine-
ment. Thus, this section is more descriptive on status of development.

The efficient steady state tokamak reactor may operate at high normalized
beta. The thermal energy confinement time in the saturated-Ohmic and NB-heated
L-mode showed strong degradation with ˇ, �Eth / ˇ�7=12 [437]. The empirical
thermal H-mode confinement also follows strong degradation with beta as shown by
Urano [782] in JT-60U and by Vermale [788] in AUG close to IPB98(y,2) scaling
of B�Eth / ˇ�0:9 [387]. Thus it is important to clarify physics of turbulent transport
with beta.

7.5.1 ITG/TEM/KBM Turbulence

As plasma beta increases, plasma turbulence exhibits electromagnetic (EM) feature,
which modifies especially ITG turbulence. There are two candidates as EM
turbulence, kinetic ballooning mode (KBM) by W. Tang [749] and micro tearing
mode by J. Drake [176]. In the electromagnetic ITG/TEM and the kinetic ballooning
mode, the perturbed vector potential Ak.z; t/ has the odd parity along the magnetic
field. On the other hand, Ak.z; t/ has even parity along the magnetic field in the
micro tearing mode and has strong resonant component (Fig. 7.27).

The parallel electron heat flux is given by:

Qqek D �ne0�ek

 
d QTe

dz
C QBx

B0

d QTek
dx

C QBx

B0

dTe0

dx

!

; (7.76)

where QBx is the radial component of the magnetic field fluctuation. The odd parity
(ITG/TEM,KBM) modes contribute through the first term. The third term is related
to the field line diffusivity DM and gives the heat transport due to streaming along
the stochastic field lines which comes from the even parity (micro tearing) modes.
The second term of the heat flux is nonlinear term.
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Fig. 7.27 Typical odd and even parity mode structures of Ak. Electromagnetic ITG/TEM and
KBM has odd parity and the micro tearing has even parity. Reproduced with permission from
Hatch [299]. Copyright American Physical Society

Fig. 7.28 Linear stability analysis of the electromagnetic drift wave turbulence using GS2 and
GENE codes. (a) Growth rate. (b) Real frequency, as a function of ˇ. Reproduced with permission
from Pueschel [617]. Copyright AIP Publishing LLC

Linear stability of KBM with ideal ballooning mode is analyzed by Hong [339],
and its gyro fluid turbulence simulation is given by Snyder [702]. Pueschel [617]
showed that depending on parameters, growth rate of ITG is reduced as plasma beta
increases and ITG-TEM transition occurs (say, at ˇ � 1%) and finally transition to
KBM occurs (say, at ˇ � 1:3%) as shown in Fig. 7.28.

Nonlinear turbulent simulation of finite ˇ ITG turbulence is started by Pueschel-
Jenko [618], showing that Dimits shift due to zonal flow becomes larger with ˇ
and stabilize ITG mode over a wide range of ˇ. This tendency is opposite to the
experimental observation of strong transport enhancement with ˇ.

Waltz in 2010 [799] showed that saturation level in the electromagnetic
ITG/TEM turbulence takes long time in the simulation and can excite non-linear
sub-critical drift Alfven wave to enhance turbulent transport rate, which is closely
related to the non-linear sub-critical excitation of the kinetic ballooning mode by
Waltz in 1985 [796] (Column 7-4). Recent publication by Pueschel [619] addressed
this issue and shows that such a runaway phenomena occurs in electromagnetic
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Fig. 7.29 Transport coefficients hDEi D hP Q
�

k ikyQpki due to subcritical turbulence for marginal
stability �m D 0 and damping case �m > 0. Here �m and �0 are parameters characterize �d

k .
Reproduced with permission from Waltz [796]. Copyright American Physical Society

ITG/TEM turbulence. The saturation mechanism of EM ITG/TEM turbulence is
still an open issue.

Column 7-4 : Electromagnetic Subcritical Turbulence
Self-sustained turbulent motion having a parameter below the onset of the
linear instability is said to be a “subcritical turbulence”. Subcritical turbulence
is a well-known feature of hydrodynamic flows such as Poiseuille pipe flow
shown by Orszag-Kells [591].

Waltz in 1985 [796] showed occurrence of the subcritical turbulence in
the ideal 2D MHD turbulence using the model normalized equations for the
perturbed electrostatic potential Q
k, the parallel vector potential QAk, and the
perturbed pressure Qpk.

d

dt
k2? Q
k D ig!� Qpk � Qrk.k2? QAk/� �



k k2? Q
k (7.77)

@

@t
QAk D � 1

ˇ
Qrk Q
k � �A

k
QAk (7.78)

d

dt
Qpk D �i!� Q
k � �p

k Qpk (7.79)

Here nonlinear mode couplings are contained in the QE � B convective time
derivative (@=@t C QuE � r?) and the magnetic flutter of the parallel gradient
(rk C QB?=B0 � r?).

For ˇ > ˇcritical D k2k=g D Lp=Rq2, the curvature drive g exceeds the
resistance to field-line bending and all modes with kx D 0 becomes unstable.

(continued)
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Assuming a model damping rates �
k D �A
k D �

p
k D �d

k , he obtained a
enhance transport rate of the pressure flux hQuE Qpi due to subcritical turbulence
at 1

2
ˇcritical < ˇ < ˇcritical as shown in Fig. 7.29.

7.5.2 Micro Tearing Mode Turbulence

Recently, micro tearing mode is also thought to be an important candidate for the
electron transport as shown by Guttenfelder [274] for ST and Doerk [171] for
standard tokamak. The details of the fundamentals of micro tearing modes will be
postponed to the future publication and we only show some historical background
[144].

The resistive tearing mode is developed by Furth-Killeen-Rosenbluth [232].
Kinetic theory of tearing mode is first developed by Hazeltine [310], where a
dispersion relation for the kinetic tearing mode is derived in the collision less regime
and clarified importance of dTe=dr for the stability of tearing mode. Drake [176]
studied micro-tearing mode driven by dT=dr in collisional/semi-collisional regime.
Drake in 1980 [177] also shows that nonlinear saturation of the micro tearing mode
is given by QBx=B0 � �e=LTe and the micro tearing mode can be a potential candidate
for electron anomalous transport due to Rechester-Rosenbluth mechanism [630].
Here Richester-Rosenbluth heat transport is given as �e D DMvTe, where the DM is
a magnetic field diffusivity given by, DM D R .ıB=B/2. Using the saturation level
ıB=B D �Te=LT , we have:

�e D RvTe

�
�Te

LT

�2
(7.80)

Wong [832, 833] showed experimental electron thermal diffusivity is close
to the expected value of the micro tearing mode. Guttenfelder [274] showed
nonlinear gyrokinetic micro tearing mode simulation gives transport comparable
to experimental results from NSTX as shown in Fig. 7.30a.

Doerk [171] also showed through gyrokinetic micro tearing mode simulation that
electron heat transport by micro tearing mode follows Richester-Rosenbluth formula
and can be important in standard tokamak. Figure 7.30b shows the Poincare plots of
magnetic field structure for R=LTe D 2:5 and R=LTe D 3:5 to show how the magnetic
field becomes stochastic with the increase of R=LTe.

Magnetic field structure under perturbation is still an active field of research as
recently discovered by White [820] that the simple perturbation of the ideal MHD
equation do not preserve its topology and the Lagrangian approach is necessary to
formulate correct magnetic perturbation in ideal MHD similar to the Hamiltonian
guiding center theory [821].
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Fig. 7.30 (a) Normalized electron thermal diffusivity versus a=LTe from gyrokinetic simulation
compared with experiment. After Guttenfelder [274]. (b) Poincare plot of magnetic field under
micro-tearing turbulence for R=LT D 2:5 and R=LT D 3:5. Reproduced with permission from
Doerk [171]. Copyright American Physical Society

7.6 Turbulent Momentum Transport

Momentum transport has long been a subject of interest. This field is active and not
matured yet and we introduce this topics, briefly.

Existence of non-diffusive toroidal momentum flux is first observed by
Nagashima [568] using modulation technique in JT-60U. Off-diagonal contribution
to the momentum flux is also shown in JFT-2M by Ida [361].

Rice showed that the plasma can spin in the toroidal direction without external
torque input and this phenomena is called the Intrinsic Rotation.

Observation of intrinsic rotation [627] in Alcator C-Mod, and inter-machine
comparison by Rice [628] clarified parametric dependence of intrinsic rotation
�v
 � �W=Ip and has a significant impact for the momentum transport studies to
find hidden torque input (see Fig. 7.31a). Scarabosio [668] found slightly different
scaling �v
 � Ti=Ip.

Existence of intrinsic torque is shown in DIII-D by Solomon [709]. Parametric
dependence of intrinsic rotation has been investigated by Yoshida [845] (v
 /
dP=dr), Rice [629] (v
 / dT=dr), and Angioni [20] (dv
=dr / dn=dr). Shi [685]
observed spontaneous co-toroidal rotation during LHCD in EAST tokamak. Yoshida
[846] also showed that co-intrinsic rotation inside of the local ECRH deposition
layer and counter-intrinsic rotation outside of the local ECRH deposition layer.

On theoretical front, Dominguez [172] is first to calculate residual stress for
intrinsic rotation. Garbet [240] gives first numerical Gyrofluid ITG simulation to
show toroidal flow generation by the Reynolds stress ˘rk D hvErvEki (Fig. 7.31b).

The momentum flux density ˘kj and the Reynolds stress are important physical
quantities in the turbulent momentum transport originating from the Reynolds
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Fig. 7.31 (a) Observed intrinsic rotations from 3 tokamaks in proportional to�W=Ip. Reproduced
with permission from Rice [628]. Copyright IAEA Vienna. (b) Intrinsic rotation by Reynolds stress
in ITG turbulence. Reproduced with permission from Garbet [240]. Copyright AIP Publishing LLC

equation in fluid mechanics (see Column 7-3). In the fluid mechanics, force is given
as a divergence of the momentum flux density (or Reynolds stress).

Diamond [167] clarified basic mechanism of turbulent momentum transport.
Mean field momentum flux driven by electrostatic turbulence ˘r;
 is given by
Reynolds stress h Qvr Qv
i as˘r;
 D hnih Qvr Qv
i by neglecting convective flux h Qvr Qnihv
i
and 3rd order flux hQn Qvr Qv
i and h Qvr Qv
i is further decomposed as follows,

h Qvr Qv
i D ��
 @hv
i
@r

C Vhv
i C˘R
r;
 (7.81)

Here, �
 is the turbulent viscosity, V is the convective velocity and ˘R
r;
 is called

the residual stress. The turbulent viscosity is closely related to turbulent ion thermal
diffusivity and the ratio is called Prandtl number (Pr D �
=�i). The residual stress
˘R

r;
 is defined as momentum flux other than diffusive and convective fluxes [272]
and is proportional to @hni=@r and/or @hTi=@r.

Residual stress originating from resonant and non-resonant wave-particle interac-
tion is given by˘wave

r;
 D R
dkvgrkkıN. Using the solution of wave kinetic equation,

quasi particle density is given as ıN D �cŒk�V 0
E@hNi=@kr � vgr@hNi=@r�. Here, V 0

E
and �c are electric field shear and correlation time of ıN response, respectively.
First and second terms of ıN are related to kk symmetry breaking and radial
inhomogeneity of turbulent amplitude,respectively as clarified by Gurcan-Diamond
[271]. Figure 7.32 shows schematics of two mechanism of intrinsic rotation.

Peeters [608] showed Coriolis drift can drive momentum pinch for long wave
length ITG (k?�i 	 1) and Hahm [280] gives more general theory of momentum
pinch due to symmetry breaking due to magnetic curvature. Camenen [93] showed
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Fig. 7.32 (a) Turbulent parallel force by kk symmetry breaking. Sheared flow changes the
population density of waves in one direction relative to the other [271]. (b) Turbulent parallel force
by the fluctuation intensity gradient. Left from the peak of the eigenmode has kk > 0 and right
has kk < 0 as shown in the figure (C;�). Intensity gradient produces symmetry breaking as well
[273]. Reproduced with permission from Gurcan-Diamond[271, 273]. Copyright AIP Publishing
LLC

existence of momentum pinch due to up-down asymmetry theoretically and [94]
also confirmed it experimentally. Wang [805] studies parametric dependence of
intrinsic rotation by gyrokinetic simulation of ITG and trapped electron mode
(TEM) turbulences and reported that intrinsic rotation by ITG is proportional to
dTi=dr and, while intrinsic rotation by collisionless trapped electron mode (TEM)
increases with both dTe=dr and dne=dr [806]. Angioni [20] reported reversal of
intrinsic rotation from co to counter correlates with large density gradient at TEM-
dominant regime or ITG-TEM transition. Wang also reported that enhanced kk
symmetry breaking due to larger q variation at lower plasma current is consistent
with Ip part of the Rice scaling, �v
 � 1=Ip. Bortolon [74] showed that direction
of intrinsic toroidal rotation can be reversed at critical density. Gyrokinetic full f
Vlasov simulation of toroidal ITG turbulent momentum transport with consistent
momentum conservation properties (see discussion by Scott [672]) by Idomura
[369] showed build up of intrinsic co and counter rotations in a time scale of �ii.

While Reynolds stress plays an essential role in the fluid picture, the gyrokinetic
theories by Wang-Diamond [808] and Garbet [244] showed existence of turbu-
lent parallel acceleration mechanism, which can not given by the divergence of
momentum flux density. This is purely a kinetic effect and is called the Turbulent
Acceleration.

Boundary condition at separatrix is important since so-called no-slip condition is
usually used for the turbulent simulation studies. Concerning this topics, Bombard
[486] showed in C-Mod that strong ballooning character of transport leads to a net
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Fig. 7.33 Excitation of
toroidal flow by different
divertor geometries.
Reproduced with permission
from Bombard [486].
Copyright IAEA Vienna

scrape off layer (SOL) toroidal momentum whose sign is dependent on the X-point
location. In case B � rB is toward (away from) the X-point, positive (negative)
increment in co-current rotation is observed (Fig. 7.31).

This implies some neoclassical effect can play a role to exhaust momentum to
the SOL flow. Takizuka [744, 745] shows that neoclassical orbit excursion from
pedestal to SOL can be a mechanism to transfer momentum to SOL ion (Fig. 7.33).

One important question is the effect of the intrinsic torque on generalized Ohm’s
law as well as its relation to experimental observation.

7.7 Plasma Confinement in Tokamak

Plasma confinement study relies on dimensional analysis of empirical data. In this
chapter, we introduce dimensional analysis in neutral fluid originated from Reynolds
and the invariant principle originated from J. Connor.

7.7.1 Similarity Law in Fluid Mechanics and Invariant
Principle

Osborne Reynolds (1842–1912) shown in Fig. 7.4b is an outstanding physicist and
also great engineer in fluid mechanics. His most famous work is the experimental
study of the transition condition from the laminar to turbulent flow in fluid flow
inside the pile. From these experiments, he derived the dimensionless quantity called
Reynolds number for the dynamical similarity.

Since then, fluid mechanics made a significant progress in understanding laminar
and turbulent flows in the fluid mechanics [491]. There are many dimensionless
quantities in the fluid mechanics, such as Prandtl number, Nusselt number, Rayleigh
number. Using these numbers, we can normalize dynamics of fluid flow and heat
transport or formation of the convective cell. The viscous fluid dynamics is governed
by the following Navier-Stokes equation.
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@u
@t

C u � ru D �1
�

rp C �r2u (7.82)

Physical quantities here are the velocity u, time t, length x, mass density �,
pressure p, and the kinematic viscosity �.

Since any physical quantities can be normalized using three different physical
quantities in mechanics, we normalize this equation using typical scale length L,
typical speed U and mass density � as Or D Lr, Ot D Ut=L, Op D p=�U2, and
Ou D u=U to obtain,

@ Ou
@Ot C Ou � Or Ou D � Or Op C 1

Re

Or2 Ou; (7.83)

where Re D UL=� is called the Reynolds number. The flows in the geometrically
similar systems are also mechanically similar if the Reynolds numbers Re are same.
Physically, the Reynolds number is the ratio of the inertial term to the viscous term,
Re � u � ru=�r2u.

Consider a drag force F on a body of characteristic size aŒL� moving with a
velocity uŒL=T� through a fluid of mass density �ŒM=L3� and a kinematic viscosity
�ŒL2=T�. Dimensional analysis is able to find powers of only 3 variables. Above
drag force may be expressed as F � �iuj�kal, while F should have a dimension of
ŒML=T2�. Dimensional analysis gives F D .�u2a2/.ua=�/�k, i.e. F D .�u2a2/f .Re/,
where f .x/ is a function of x and Re is the Reynolds number. The dimensionless
quantity ua=� is the Reynolds number and the form of f .Re/ can be determined by
the experiment.

Dimensional analysis is closely related to the invariant property of the system
equation under scale transformation. Connor [143] reformulated Lamb’s discussion
on the similarity law [491] as ‘Invariant Principle’. For the Navier-Stokes equation,
there are six physical quantities u; t; x; �; p; �. If we consider scale transformations
on these six quantities, invariance conditions for scale transformation gives three
(6 � 3 D 3) relations since Navier-Stokes equation has four terms. If we choose
u; x; � as leading variables, we find following invariant scale transformations.

u ! ˛u , t ! ˛�1t , p ! ˛2p , � ! ˛� (7.84)

x ! ˇx , t ! ˇt , � ! ˇ� (7.85)

� ! �� , p ! �p (7.86)

To show (7.84), for example, u ! ˛u leads to t ! ˛�1t by a invariant condition
between @u=@t and u � ru. Transformation laws p ! ˛2p and � ! ˛� are obtained
by the invariant condition with two terms in the RHS of the Navier-Stokes equation.

The drag force F � �ux3=t on a body of characteristic size aŒL� moving
with a velocity uŒL=T� through a fluid of mass density �ŒM=L3� and a kinematic
viscosity �ŒL2=T� to be given by a power law F � �iuj�kal. Substitution of
the scale transformation (7.84), we obtain F ! ˛2�ux3=t � ˛jCk�iuj�kal, thus
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we have 2 D j C k. From (7.85), we have F ! ˇ2�ux3=t � ˇkCl�iuj�kal, thus we
have 2 D k C l. From (7.86), we have F ! ��ux3=t � � i�iuj�kal, thus we have
1 D i. In the end, we have F � �u2a2.ua=�/�k.

We can not determine k by the dimensional analysis, i.e. F D �u2a2f .Re/. Thus
Connor’s invariant principle is equivalent to the dimensional analysis and provides
a systematic way to find relevant dimensionless quantities.

7.7.2 Invariant Principle of Plasma Confinement

Plasma transport across the magnetic surface (particle diffusion, thermal conduction
and convection) is a complex nonlinear phenomena and to accurately predict the
theoretical transport coefficients is a difficult challenge. Therefore, the prediction
of the plasma confinement is usually performed by an extrapolation based on the
experimental data. The most useful method is a dimensional analysis that has been
used in the fluid mechanics.

Most general equations on the plasma confinement are Vlasov equation,
Maxwell’s equation and the charge neutrality condition.

@fa
@t

C vvv � @fa
@x

C ea

ma
.E C vvv � B/ � @fa

@vvv
D Ca.fa/ (7.87)

r � E D �@B
@t

(7.88)

r � B D �0J (7.89)

J D
X

a

Z
eavvvfadvvv (7.90)

X

a

ea

Z
fadvvv D 0 (7.91)

Here, fa is a distribution function of the species a, vvv is the velocity variable, x is
the position, E is the electric field, B is the magnetic field, and Ca.fa/ is a bi-
linear collision term. We follow the Connor’s invariant scale transformation method.
The above set of equations has seven physical quantities, fa;vvv; x; t;E;B; J. Invariant
condition of Eqs. (7.87)–(7.91) provides seven relations of which one is degenerated
and (7.91) does not give any relation. Therefore, only one (7�6 D 1) invariant scale
transformation exists. If we take vvv as leading variable, we obtain following relation.

fa ! ˛5fa;vvv ! ˛vvv; x ! ˛�4x;B ! ˛5B; t ! ˛�5t;E ! ˛6E; J ! ˛9J
(7.92)
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To derive this, we start with scale transformation vvv ! ˛vvv; fa ! ˛ifa; x !
˛jx;B ! ˛kB; t ! ˛lt;E ! ˛mE, and J ! ˛nJ. Scale invariance of all terms in
the Vlasov-FP equation (7.87) gives i � l D 1C i � j D i C k D 2i and k C 1 D m.
Other equations (7.88)–(7.90) give m � j D k � l; k � j D n; n D 4C i. From these
equations, we obtain i D 5; j D �4; k D 5; l D �5;m D 6; n D 9, which leads to
the invariant transformation (7.92).

Under this transformation, heat flux qar is expressed and transformed as.

qar �
Z
.vvv � ua/r

ma

2
jvvv � uaj2fadvvv ! ˛11qar (7.93)

Assuming these heat and particle fluxes are functions of the density (n), the
temperature (T), the magnetic field (B) and the plasma minor radius (a) and the
inverse aspect ratio (a=R), the safety factor (q), the vertical elongation (�), and
the triangularity(ı), we expand qar as Taylor series on na, Ta, B, and a as follows,

qar D
X

Dpqrs.a=R; q; �; ı/np
aTq

a Bras (7.94)

Under the invariant transformation (7.92), qar are transformed as,

qar D
X

Dpqrs˛
8pC2qC5r�4snp

aTq
a Bras (7.95)

This Taylor expansion expression of heat flux must agree with Eq. (7.93), leading
to following relations.

8p C 2q C 5r � 4s D 11 (7.96)

We can eliminate s using (7.96) to obtain,

qar D a�11=4X

p;q;r

Dpqrs.naa2/p.Taa0:5/q.Ba1:25/r (7.97)

The energy confinement time �E is defined as

�E D 1:5
R

naTadV

Ploss
� naTaV

qarS
� .naa2/.Taa0:5/a1:25
P

p;q;r Dp;q;r.naa2/p.Taa0:5/q.Ba1:25/r
(7.98)

Therefore, B�E is a function of naa2;Taa0:5;Ba1:25, while �E is not, as follows,

B�E D f .a=R; q; �; ı; naa2;Taa0:5;Ba1:25/ (7.99)

Instead of using three dimensional parameters naa2;Taa0:5;Ba1:25, we can use
three dimensionless quantities, the toroidal beta ˇ � naTa=B2, the normalized
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Larmor radius ��
a � T0:5a =aB, and the normalized collision frequency ��

a � naa=T2a
as follows,

B�E D f .a=R; q; �; ı; ˇ; ��
a ; �

�
a /; (7.100)

where we have following formula for the ion.

ˇ D nT

B2=2�0
D 4:03 � 10�2Ti.keV/n.1020m�3/

B.T/2
(7.101)

�� D �i

a
D

p
2miTi

eZiB
D 4:57 � 10�3

p
AiTi.keV/

ZiB.T/
(7.102)

��
i D Rq

"1:5vTi�ii
D 4:9 � 10�12 RqniZ4i ln�

"1:5Ti.keV/2
(7.103)

If we replace charge neutrality equation (7.91) to the Poisson equation, B�E

dependence on �D=a recovers.

B�E D F.a=R; q; �; ı; ˇ; ��
a ; �

�
a ; �D=a/ (7.104)

Here, �D D ."0T=e2n/0:5 is Debye length. The charge neutrality is usually satis-
fied in the plasma confinement devices and the dependence on �D=a disappears in
this case. While the coulomb collision plays an essential role in plasma confinement
in the neoclassical transport, the collision may not play key role in the turbulent
transport in collision less plasmas. In this case, the invariance condition for the scale
transformation to collision term disappears and we have five independent relations.
Since we have seven variables, we have two independent transformations to keep
system equations invariant. We show the results using vvv; x as leading variables and
proof is left for the exercise.

fa ! ˛�3fa;vvv ! ˛vvv;B ! ˛B; t ! ˛�1t;E ! ˛2E; J ! ˛J (7.105)

fa ! ˇ�2fa; x ! ˇx;B ! ˇ�1B; t ! ˇt;E ! ˇ�1E; J ! ˇ�2J (7.106)

In this collision less case, the dependence is reduced to

B�E D f .na2;T=a2B2/ D F.ˇ; �i=a/ (7.107)

Let consider a power law scaling B�E D .na2/p.T=a2B2/q and combine with
energy balance equation nTa3 � �EPext, we obtain following scaling.

�E � n
p�q
1�q B

1C3q
1�q P

q
1�q
ext a

2p�5q
1�q (7.108)
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Fig. 7.34 A comparison of experimental data from FTU, ASDEX, JT-60, JT-60LX, JT-60U with
the scaling (7.109). Modified from Kikuchi [437]

The confinement database of JT-60 [435] gives �E � .nIp/
0:5P�2=3

ext [437] to obtain
p D �0:5, and q D �2. An important point here is that density and power (or
temperature) dependences in one machine gives a constraints on size scaling (but
the " dependence must be based on inter-machine database). Figure 7.34 shows a
scaling of thermal plasma energy Wth in relation to the scaling of the thermal energy
confinement time �Eth D Wth=Pext. Medium size tokamak data such as ASDEX
agrees with this scaling.

Wth D 0:026A0:3i �0:875I0:5p B7=18t Nn0:5e R1:44p a0:92p P1=3ext ; (7.109)

where Wth; Ip;Bt; ne;Rp; ap;Pext are given in [MJ, MA, T, 1019m�3, m, m, MW]. If
we use �th D Wth=Pext D a2=4�eff , we have

�eff � T

eBt
.��

i /
0:5ˇ7=12.��/�1=12q1:5 (7.110)

This thermal diffusivity scaling has temperature and density dependence,
� � T2n0:5 in agreement with Efthimion’s TFTR result � � T2˙0:5 [182].

The �� power is particularly important and ��0 is called Bohm transport and ��1
is called gyro-Bohm transport. Above example ��0:5 is called weak gyro-Bohm.



Chapter 8
MHD Stability

Abstract Ideal, resistive and kinetic MHD instabilities are described. Since the
birth of steady state tokamak research in 1990, there are number of important
understandings of MHD modes related to steady state tokamak. In Sect. 8.1, we
introduce the spectral property of MHD operator such as continuous spectrum
and spectral gap, in brief. Marginal stability is discussed using the Newcomb
equation in Sect. 8.2. Section 8.3 deals with flow effect on ideal MHD based
on the Frieman-Rotenberg equation briefly. Localized MHD instabilities such as
ELM, peeling/ballooning modes, infernal and barrier localized modes are discussed
in Sect. 8.4. In Sect. 8.5, we introduce progress of resistive MHD such as the
classical tearing mode (TM), the neoclassical tearing mode (NTM), the double
tearing mode (DTM). Kinetic MHD equation is introduced in Sect. 8.6. In Sect. 8.7,
Alfven eigenmode (AE) is introduced extensively. An important resistive/kinetic
instability called the resistive wall mode (RWM) is introduced in Sect. 8.8. Control
of ideal, resistive and kinetic MHD is essential element of fusion research. For
three types of advanced tokamak operation (WS, NS, CH) to realize efficient
steady state operation, ideal MHD modes such as peeling/ballooning modes for
edge plasma, infernal modes for core plasma and BLM for ITB, resistive MHD
modes such as NTM, DTM, RWM, kinetic MHD modes such as TAE, RSAE
are understood well including control knob, while some kinetic MHD are still in
progress in understanding. Key issue is that plasma profile does not match optimum
profile for high beta advanced tokamak operation since profile is determined by the
turbulent transport. Hence, combined understanding of MHD and turbulent transport
is essential to optimize operation scenario for steady state tokamak operation.

Further Readings:
Textbooks: Freidberg [211] is an excellent introductory text on ideal MHD theory
including original cylindrical resistive wall mode theory. Biskamp [68], [69] are
good textbook on nonlinear MHD phenomenas and the magnetic reconnections.
Hazeltine-Meiss [308] gives excellent introduction of fluid theory. Miyamoto [566]
gives some introduction of Alfven eigenmode theory. Kikuchi-Lackner-Tran [445]
Chap. 2 by K. Lackner et al. is useful to understand MHD instabilities in Tokamak.

Reviews: For the RWM, Chu-Okabayashi [127] is useful. As for the Alfven
eigenmode, readers are encouraged to read review papers such as by Gorelenkov
[256].

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
DOI 10.1007/978-3-319-18905-5_8
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8.1 Spectral Property of MHD Operator

Plasma stability is one of important long-standing subjects in plasma physics.
The linear stability relies on functional theory in the infinite dimensional (square
integrable) functional space called the Hilbert space [468].

The continuous spectrum of ideal MHD has significant importance not only in
ideal MHD stability but also in stabilizing resistive wall mode and as damping
mechanism of Alfven eigenmodes. The linearized ideal MHD equation is given by,

���!2 � F
�

� D 0; (8.1)

where F is self-adjoint linear force operator and �, !, � are mass density, eigen
frequency, and plasma displacement vector, respectively. Actual form of F is
obtained by the following linearized ideal single-fluid MHD equations by Bernstein
et al [62] and its energy integral is given in the Column 8-1.

�
@2�

@t2
C rp1 C 1

�0
ŒB1 � .r � B/C B � .r � B1/� D 0 (8.2)

p1 D �� � rp � �pr � � (8.3)

B1 D �r � .B � �/; (8.4)

where � is the ratio of specific heat and subscript 0 is suppressed for simplicity.
Due to this self-adjointness, spectrum of F is either discrete spectrum or

continuous spectrum and no resolvent spectrum in the linear MHD equation (8.1)
[443] (see Appendix A.5). If some !2 gives non trivial � to satisfy (8.1), the
spectrum is called discrete spectrum (in this case,

���!2 � F
��1

does not exist).
The continuous spectrum is characterized by the existence of the inverse operator
���!2 � F

��1
and unbounded non-square integrable eigenfunction.

Well-known linear operator having continuous spectrum is .x � �/f D 0, whose
unbounded (non-square integrable) eigenfunction is delta function, f D cı.x � �/,
which appears in linearized Vlasov equation to produce Landau damping.

In linear ideal MHD equation, linear force operator has singular local eigen-
function such as logarithmic singularity � � ln.r � rs/.D

R
dr=.r � rs// or the

large solution .r � rs/
�n.n > 1/, which are also non-square integrable. This type

of eigenfunction to produce continuous spectrum is found for the first time in
electrostatic wave in non-uniform plasma by Barston in 1964 [46] and analyzed
by Sedlacek in 1971 [673] and applied to MHD modes by Uberoi in 1972 [780].

In plasma physics, both discrete spectrum and continuous spectrum exists similar
to the quantum mechanics (Fig. 8.1a). Continuous spectrum in velocity space
produces so-called Landau damping [493] through phase mixing (Fig. 8.1b) and
the continuous spectrum in real space produces various damping including shear
Alfven continuum damping at the shear Alfven resonance (Fig. 8.1c). In shear
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Continuous spectrum

Discrete spectrum

Kinetic Alfven Wave

v= A/k : resonance

Plasma density

a Quantum mechanics b Landau damping
(by velocity space continuous spectrum)

c Shear Alfven damping
(by real space continuous spectrum)

Fig. 8.1 (a) Discrete and continuous spectrums in quantum mechanics. (b) Landau damping by
velocity space continuous spectrum. (c) Alfven continuum damping by real space continuous
spectrum

Alfven continuum damping, inclusion of the kinetic effect implies damping occurs
due to mode conversion to the kinetic Alfven wave (KAW) introduced in Sect. 5.2.2,
which is discovered by Hasegawa and Chen in 1975 [293].

The shear Alfven resonance can be seen from the cold wave resonance. The cold
wave dispersion relation is given as in Stix [717].

n2? D .R � n2k/.L � n2k/
S � n2k

(8.5)

For low frequency! 	 ˝i, S � c2=v2A and the low frequency resonance .n? ! 1/

is given by ! D kkvA. This shear Alfven resonance appears as one of regular
singular points of Hain-Lüst equation to be discussed in the next subsection.

As discussed in Sect. 5.2.2, this shear Alfven wave dispersion relation is modified
by the finite Larmor radius effect to a kinetic Alfven wave using ˛ D Te=Ti C 3=4

as !2 D k2kv
2
AŒ1C ˛k2?�2i �.

Damping of the KAW occurs mainly through electron Landau damping for low
beta plasma [294]. Mode conversion of shear Alfven wave to KAW and its damping
was confirmed by Weisen [816] by excitation of shear Alfven wave using external
antenna structure in TCA tokamak in 1989.

The spectral property of resistive MHD equation is still under development.
Dewar [159] is the first to study spectral property of resistive Aflven wave spectrum
showing some important characteristics. When the finite resistivity is included,
van der Holst [785] showed that the ideal continua disappear and are replaced by
damped global waves located on specific curves in the complex frequency plane. It
is also shown that for very small toroidicity the topology of the resistive spectrum
is completely different from the cylindrical one. Matsumoto-Tokuda [543] also
investigate the spectrum of resistive reduced MHD equation.
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Column 8-1: Energy Integral in Ideal MHD
The linearized ideal MHD equation is given by:

�@2�=@t2 D F.�/ D J � B1 C J1 � B � rp1; (8.6)

where p1 D ��pr�����rp, B1 D r�.��B/,�0J1 D r�B1. Here this force
operator F.�/ satisfies the self-adjoint condition,

R
	�F.�/dV D R

� �F.	/dV
and F.�/ is called the Hermite operator. Using this property, following energy
conservation relation is obtained from above equation of motion.

1

2

Z

PCV
� .@�=@t/2 dV D 1

2

Z

PCV
� � F.�/dV; (8.7)

where subscript “P” stands for plasma and “V” stands for vacuum. Thus
ıW D �.1=2/ RPCV � � F.�/dV is a potential energy for the plasma
displacement. Assuming e�i!t dependence, we have !2 D ıW=K, K D
.1=2/

R
PCV �j�j2dV . Consider a plasma surrounded by the vacuum region and

the ideal wall at rw. The distorted plasma surface is given by rs D rp C �,
where rp is unperturbed surface. Let n is the unit normal vector to ideal wall,
the boundary conditions are:

n � B1jrw D 0; where, n � B1jrp D n � r � .�? � B/jrp (8.8)
�
p1 C B � B1=�0 C � � r �p C B2=2�0

	�
rp

D �
B � B1=�0 C � � r �B2=2�0

	�
rp
;

(8.9)

The energy integral ıWp is given as:

ıWp D �1
2

Z

P
� �
�
.r � B1/ � B C .r � B/ � B1

�0
C r.�pr � � C � � rp/

�

dV

(8.10)

Taking the partial integration of � � r.�pr � � C � � rp/, � � .r � B1/� B and
after some algebra (see Miyamoto [552], for example), we have:

ıW D ıWP C ıWV (8.11)

ıWP D 1

2

Z

P

"
B21
�0

� 1

�0
� � .r � B/ � B1 C .�pr � � C � � rp/r � �

#

dV

(8.12)

ıWV D .2�0/
�1
Z

V
.r � A1/2dV D

Z

V
B21=2�0dV (8.13)

(continued)
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Here we assumed no surface current proportional � ı.r � rs/. According
to Furth [233], the energy integral ıWp can be rewritten as:

ıWP D
Z

P
dVŒıWSA C ıWMS C ıWSW C ıWIC C ıWKI� (8.14)

Here, ıWSA D B21=2�0, ıWMS D B2.r � �? C 2�? � �/2=2�0,
ıWSW D �p.r � �/2=2, ıWIC D .�? � rp/.�? � �/=2, ıWKI D �Jkb �
.B1?��?/=2. Here, ıWSA; ıWMS; ııWSW ; ıWIC; ıWKI are energies from shear
Alfven wave, magneto sonic wave, sound wave, interchange, and kink terms.

8.1.1 MHD Spectrum of the Cylindrical Plasma

8.1.1.1 Shear Alfven and Sound Wave Singularities

In the cylindrical .r; �; z/ plasma, pressure balance equation is given by,

d

dr

 

P C B2z
2�0

!

C B2�
�0r

D 0 (8.15)

Using Fourier decomposition (ei.kzCm��!t/) and eliminating �� , �z, and B1, Appert
[24] in 1974 derived following 1-st order ordinary differential equations for radial
displacement X � r�r and the perturbed total pressure P1 D p1 C B1 � B=�0,

D
dX

dr
D C1X � rC2P1 (8.16)

D
dP1
dr

D C3
r

X � C1P1 (8.17)

Here,

D D
�

�!2 � F2

�0

� �

�!2
�

�p C B2

�0

�

� �pF2

�0

�

(8.18)

C1 D 2B�
�0r

�

�2!4B� � mF

r

�

�!2
�

�p C B2

�0

�

� �p
F2

�0

��

(8.19)

C2 D �2!4 �
�

k2 C m2

r2

��

�!2
�

�p C B2

�0

�

� �p
F2

�0

�

(8.20)
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C3 D D

�

�!2 � F2

�0
C 2B�

�0

d

dr

�
B�
r

��

C �!2
�

�!2 � F2

�0

��
2B2�
�0r

�2

�
"

�p

�

�!2 � F2

�0

�

C �!2
B2z
�0

#�
2B�F

�0r

�2
(8.21)

where, F D mB�=r C kBz and k D �n=R. If C2 ¤ 0, we have P1 D .C1X �
DdX=dr/=rC2 from (8.16) and we have following second order ordinary differential
equation (called Hain-Lüst equation) by substituting this into (8.17).

d

dr

�

f
dX

dr

�

C gX D 0; (8.22)

where f D D

rC2
, g D C2C3 � C2

1

rC2D
� d

dr

�
C1
rC2

�

(8.23)

While C2 D 0 looks like a singular point, nothing will brow up for (8.16) and (8.17).
So, it is not a real singularity. Radial positions satisfying D.r/ D 0 however produce
singular solution divergent at this positions and are called singular points. Zeros of
first and second bracket of D are called shear Alfven and sound wave singularities.

Shear Alfven singularity: �0�!
2 D F2 (8.24)

Sound Wave singularity: �!2.�0�p C B2/ D �pF2 (8.25)

The method of Frobenius series to obtain singular solution of second order
ordinary differential equation (see Column 8-2) is well developed (see for example,
Ince [372]). These singularities (resonances) produce the continuous spectrum of the
ideal MHD force operator F similar to the case of Landau damping. For a low beta
plasma, these singularities (resonances) are approximately given by !2 D k2kV2

A �
!2A (shear Alfven resonance) and !2 D k2kC2

s � !2s (sound wave resonance),

where VA D B=
p
�0� is the Alfven velocity, Cs D p

�p=� � p
�.Ti C Te/=mi

is the sound velocity, and kk D .n � m=q/=R is the parallel wave number, where
q D BzR=B�r is the cylindrical safety factor.

Radial profiles of !2A and !2s are schematically shown in Fig. 8.2a in the next
section, which are well separated and we can discuss for a single singularity,
say concentrate on !2A. Different type of singularities appears for d!A=dr ¤ 0

(everywhere) and d!A=dr D 0 at some radius r0.

(a) Monotonic !2A profile:
Let !2A spans !2A.r1/ � !2A � !2A.r2/. Any choice of !2 2 Œ!2A.r1/; !

2
A.r2/�

leads to the singularity. Let r D r0 satisfies !2 D !2A.r0/, we have !2 � !2A �
�.!2A/00.r � r0/. Then, f � r � r0 � x. The eigenmode equation near singular
point becomes:
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0 D d2X

dx2
C f 0

f

dX

dx
C g

f
X � d2X

dx2
C 1C b1x C �

x

dX

dx
C c1x C c2x2 C �

x2
X

(8.26)

In this case, indicial equation becomes �2 D 0 leading to a logarithmic
singular solution X � A1.x/lnjxj (see Column 8-2).

The case for a sound wave resonance can be discussed similarly. Due to
radial inhomogeneity, eigenvalue !2 can be a band of values of !2A and !2s ,
which constitutes the continuous spectrum.

(b) Non-monotonic !2A profile:
If the profile of !2A has a local minimum at r D r0, we have d!A.r0/=dr D 0

and !2�!2A � � 1
2
.!2A/

00
0.r � r0/2. Then, f � .r � r0/2. The eigenmode equation

near singular point becomes:

0 D d2X

dx2
C f 0

f

dX

dx
C g

f
X � d2X

dx2
C 2C b1x C �

x

dX

dx
C c0 C c1x C �

x2
X

(8.27)

In this case, indicial equation becomes �2C�Cc0 D 0 leading to an algebraic
singular solution X � Ai.x/x�i (i D 1; 2), where �1;2 D .�1 ˙ p

1 � 4c0/=2 if
�1 � �2 is not integer (see Column 8-2).

The value !2 D !2A.r0/ is a minimum of the continuous spectrum and may
also be a cluster point of the discrete spectrum. The case for a sound wave
resonance can be discussed similarly except the value is a maximum of the
continuous spectrum and the discrete spectrum may appear above the sound
wave continuum.

The connection between the singular solution and the continuous spectrum
originates from the fact that a jump of the solution becomes possible at the
singular point, which effectively increases the freedom of the eigen function to
allow !2 to take any value.

Column 8-2: Regular Singular Points in 2nd Order ODE Tenenbaum
[761], Ince [372]
We introduce the basic property of the ordinary differential equation (ODE).
We consider following second order ODE.

y00 C F1.x/y
0 C F2.x/y D 0 (8.28)

Here 0 � d=dx. A point x D x0 (we set x0 D 0 without loss of generality) is
called an ordinary point of (8.28) if F1 and F2 are analytic. Here, analytic
means that each function has a Taylor series expansion (a0Ca1xCa2x2C��)
near x D 0. A point x D 0 is called a singularity of (8.28) if one or more of
F1 and F2 are not analytic at x D 0.

(continued)
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The singularity can be categorized into regular and irregular singularity. If
x D 0 is a singularity and if one or both xF1.x/ and x2F2.x/ are not analytic
at x D 0, the point x D 0 is called a irregular singular point. For example,
x D 0; 1 are irregular singular points of x2.x�1/2y00 Cy0 C2x2y D 0. If x D 0

is a singularity and if both xF1.x/ and x2F2.x/ are analytic at x D 0, the point
x D 0 is called a regular singular point. For example, x D 0; 1 are regular
singular points of x.x � 1/y00 C y0 C 2xy D 0.

J. Fuchs gives a theorem on a necessary and sufficient condition of regular
singular point (Sect. 15.3 of [372]). If x D 0 is a regular singular point, F1
and F2 can be expanded as F1.x/ D .b0 C b1x C b2x2 C �/=x, F2.x/ D
.c0Cc1xCc2x2C��/=x2. The solution is given by the method of Frobenius
series.

y.x/ D x�A.x/ � x�.a0 C a1x C a2x
2 C ��/; .a0 ¤ 0/ (8.29)

If � D 0 or positive integer, the series becomes the Taylor series. However, for
negative values of � or non-integral positive values of �, (8.29) is not a Taylor
series. Substituting these expressions into (8.28), we find � should satisfy the
indicial equation, �2 � �C b0�C c0 D 0 from lowest order equation. Let �1
and �2 are solutions (�1 > �2). If �1��2 is not integer, we have two solutions:

y1.x/ D x�1A1.x/; y2.x/ D x�2A2.x/; (8.30)

where all a1i; a2i.i D 1; 2;��/ can be determined from higher order
equations. If �1 � �2 is integer or zero, we have different solutions:

y1.x/ D x�1A1.x/; y2.x/ D x�1A1.x/lnx C A2.x/x
�2 ; x > 0 (8.31)

For both cases, the first solution y1 is called the Small solution and the second
solution y2 is called the Large solution, both of which appear in the linear
MHD theories in both 1 and 2 dimensions.

In this book, the solution (8.30) appears in Sect. 8.2 and the solution (8.31)
including the logarithmic solution appears in Sects. 8.5, 8.6 as well.

8.1.1.2 Discrete Spectrum and Cluster Point: GAE

We note that the Alfven velocity is concave and the sound velocity is convex in
the radial direction if the density and temperature profiles are centrally peaked.
Schematic radial profiles of the !2A and !2s are given for fixed n;m in Fig. 8.2a.

Due to radial inhomogeneity, eigenvalue !2 can be a band of values shown by
!2A and !2s and the eigenfunction is divergent at the resonance points. Below this
continuum, there are some discrete spectrum, which is called GAE (Global Alfven
Eigenmode).
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Fig. 8.2 (a) Schematic diagram of discrete and continuous spectrum in the cylindrical plasma.
Red lines are continuous spectrum and red times symbol are discrete spectrum. (b) Discrete and
continuous spectrum in quantum mechanics

In the quantum mechanics, it is well know that the Schrödinger equation
has point and continuous spectrum. In this case, situation is much simpler than
plasma physics. Figure 8.2b shows a nuclear potential and the energy spectrum
E D „!. The energy states are discrete spectrum inside the nuclear potential and
are continuous spectrum in the free space. The transition from discrete to continuous
occurs due to the loss of the boundary condition at finite potential boundary.

Conditions for the existence of GAE are investigated by Appert [25], Mahajan
[528], and Goedbloed [250]. From the classification of singularities in previous
section, the discrete spectrum occurs when following condition is satisfied inside
the plasma, by which either the shear Alfven continuum has local minimum or the
sound wave continuum has the local maximum.

d!A

dr
D 0 or

d!S

dr
D 0 (8.32)

Appert [25] analyzed the characteristics of discrete spectrum including higher order
case such as !2 � !2A � .r � r0/4. Conditions for the existence of GAE can be
discussed using the method of Frobenius series [251]. As discussed in the previous
section, the indicial equation becomes �2 C � C c0 D 0. If 1 � 4c0 < 0, these
indices become complex and the sequence of discrete shear Alfven modes appears
clustering at the lower end of the shear Alfven continuum.

Since c0 D .x2g=f /x!0 from (8.27), condition of the appearance of the cluster
point at the minimum of the shear Alfven continuum is given by Goedbloed [250],

0 <
�0�

8

d2

dr2
!2A < A (8.33)
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A D
�
2kB�

r

�2 �
1 � �0�p

B2



�
�

G

B

�2
r

d

dr

�
B2�
r2

C 2kB�B2

r2G

�

(8.34)

G D .k � B/r D mBz

r
� kB� (8.35)

Similarly, the condition for the appearance of the cluster point at the maximum
of the sound wave continuum are given by Goedbloed [250],

0 <
�0�

8

d2

dr2
!2S < S (8.36)

S D � .�0�p/2F4

.�0�p C B2/3
� .�0�p/2rF2.B2�=r2/0

B2.�0�p C B2/2
C 4k2B2� .�0�p/2

r2B2.�0�p C B2/
(8.37)

Approximate eigen frequency of discrete spectrum is obtained by Appert,
Mahajan, and Goedbloed using the WKBJ solution (see Column 6-3) near the local
minimum of the shear Alfven continuum and the local maximum of the sound wave
continuum.

If we define  D p
f .r/X.r/, Eq. (8.22) can be converted as:

d2 

dr2
� U.r/ .r/ D 0 (8.38)

where, U.r/ D 1
p

f .r/

d2
p

f .r/

dr2
� g.r/

f .r/
(8.39)

We assume eikonal approximation k2r L2 
 1 where L is a characteristics scale
length of equilibrium quantity. In this case, the first term of RHS of (8.39) can be
neglected and U.r/ � �g.r/=f .r/. The WKBJ solution (under jU0.r/=U.r/3=2j 	 1

condition) is given by,

X.r/ � .fg/�1=4exp.i
Z

krdr/ kr D p
g=f (8.40)

Here f and g are given in (8.23). The equation kr D p
g=f gives an approximate

dispersion relation of the discrete spectrum below the continuum and approxi-
mately given by Appert[25]: �0�!2 D F2 � A1=k2r , where A1 D .2kB�=r/2 �
.G=B/2rd.B2�=r2/=dr. This GAE is produced by the magnetic field line curvature
(or B� effect) [250].

Another important explanation of the occurrence of discrete spectrum below the
shear Alfven continuum (GAE) is given by Mahajan [529]. He converted MHD
equation into the Schrödinger type equation in Fourier space, by which he derived
an effective potential. By looking at structure of the effective potential, it is clearly
shown that the discrete spectrum appears when the effective potential is convex
enough as shown in Fig. 8.3a. He also showed that the inclusion of kinetic Alfven
wave further increases the potential well structure as shown in Fig. 8.3b implying
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Fig. 8.3 (a) Effective potential structure for ideal cylindrical MHD equation in Fourier space.
(b) Effective potential structure for kinetic cylindrical MHD equation including the kinetic Alfven
wave in Fourier space. Modified from Mahajan [529]

that inclusion of kinetic effect changes the continuous spectrum to the discrete
spectrum.

TCA tokamak experiment by de Chambrier showed large loading resistance
just below the shear Alfven continuum (1982) [153]. The discrete spectrum below
the shear Alfven continuum is found by Ross [641] numerically and investigated
theoretically by Appert [25], Mahajan [528] and Goedbloed [250]. This mode is
named Global Alfven Eigenmodes (GAE). This GAE is confirmed experimentally
by Evans [187].

8.1.2 Spectrum Gap in the Periodic Potential

The Schrödinger equation in the periodic crystal lattice takes a form of Mathieu
equation (see Column 8-3) and the energy spectrum takes a band structure whose
forbidden band width becomes larger when the potential depth (� h) is bigger.

Figure 8.4a, b shows the structure of crystal lattice and the change of the electron
energy spectral characteristics in P-type semi-conductor as a function of the lattice
constant d. When d is infinity, the electron energy spectrum has only discrete
spectrum bounded by a single potential well. As d reduces, it allows energy band
and the electron is shared in the periodic potential. The coupling energy mainly
comes from adjacent lattices and the band width is determined by this coupling
energy. When the energy bands from different energy states intersect, there appears
a forbidden band below which is valence band and above which is conduction band.
In case of P-type semi-conductor, excess electron behaves as hydrogen like atom to
produce discrete spectrum just below conduction band.

In tokamak, poloidal variation produces periodic potential structure for the shear
Alfven (and sound) waves. So, it is natural to see semi-Mathieu-type equation in the
MHD eigenmode equation. The wave equation in the periodic potential will have
band structure in the continuum and a perturbation can produce discrete spectrum.
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conductor as a function of lattice constant d. An impurity driven discrete spectrum is possible
inside the forbidden band

High n shear Alfven wave is radially localized and the governing equation is
given as a semi-Mathieu type equation by Cheng-Chen-Chance as [116]:

d2 

d�2
C Œ˝2.1C 4�cos�/� F.�/� D 0 (8.41)

where  D p
1C s2�2˚ , and ˚ is the electrostatic potential after ballooning

transformation in the covering space Œ�1;C1� of the poloidal angle � , � D r=R
and F D s2=.1C s2�2/ is a function for a case of low beta and circular plasma. We
note that F ! 0 as � ! 1 and Eq. (8.41) becomes a Mathieu equation. Details of
the high-n TAE will be described in Sect. 8.7.

The cylindrical plasma has symmetry in the axial and poloidal directions. This
provides a property that toroidal and poloidal mode numbers n and m are good
quantum numbers. Tokamak is an axisymmetric system but the poloidal symmetry
can easily break by the introduction of the toroidicity, the elongation, and the higher
shaping. However, periodicity in the poloidal direction still holds and the resonant
reflection of waves in the periodic potential give rise to the spectrum gap.

Historically speaking, the gap structure in the continuous MHD spectrum is first
shown for the elongated plasma by Dewar in 1974 [155] as shown in Fig. 8.5a.
If we define elliptic tokamak equilibrium by  D  0.r/ C  1cos2� , we define
the elliptic deformation �.r/ D � 1.r/=.d 0.r/=dr/. The shear Alfven wave
dispersion relation is given by the coupling of m.kkm D .n � m=q/=R/ and
mC2.kkmC2 D .n�.mC2/=1/=R/modes with mode coupling constant ı � �0.r/ as,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

!2

v2A
� k2km ı !

2

v2A

ı !
2

v2A

!2

v2A
� k2kmC2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0 (8.42)
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Fig. 8.5 (a) Shear Alfven gap spectrum due to elongation coupling. Modified from Dewar [155].
(b) Simple explanation of gap formation in toroidal shear Alfven resonance

In toroidal geometry where in-out inhomogeneity B � B0=.1 C �cos�/ exists,
Shear Alfven Resonance condition is given by a coupling of m.kkm D .n�m=q/=R/
and m C 1.kkmC1 D .n � .m C 1/=q/=R/modes with mode coupling constant � as,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

!2

v2A
� k2km � !

2

v2A

� !
2

v2A

!2

v2A
� k2kmC1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0 (8.43)

This gives the spectrum gap (forbidden band) of ! for the shear Alfven
continuum as shown in Fig. 8.5b.

Column 8-3: Mathieu Equation
If the system has periodicity, the relevant ODE may contain trigonometric
function. Typical example is the following Mathieu equation.

d2y

dx2
C .� � hcos2x/y D 0 (8.44)

Mathieu equation do not have finite singular points.
This Mathieu equation is obtained in the periodic crystal lattice (see

Fig. 8.4a). Consider the one-dimensional Schrödinger equation.

� „2
2m

d2 

dz2
C V.x/ D E (8.45)

(continued)
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Fig. 8.6 Allowable
eigenvalue spectrum of
Mathieu function in .�; h/
space. Hatched region is the
allowable spectrum and all
� > 0 region becomes
possible for no periodic
potential (h D 0)
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For a lattice constant d, we have V D V0cos.2
z=d/. Defining x D 
z=d,
� D 2md2E=
2„2, and h D 2md2=
2„2, we have following Mathieu
equation.

d2 

dx2
C .� � hcos2x/ D 0; (8.46)

where � is the normalized eigenvalue and h is the normalized height of
the periodic potential. Allowable eigenvalue forms a continuous spectrum as
shown in Fig. 8.6. For h D 0, allowable � spectrum is continuous spectrum in
� � 0. For a finite periodic potential height, this continuous spectrum break
up to include forbidden bands.

There are four types of solutions in the Mathieu equation,
ce2m.xI h2/; ce2mC1.xI h2/; se2m.xI h2/; se2mC1.xI h2/ where cen.x; h2 !
0/ D cosnx (n � 2) and sen.x; h2 ! 0/ D sinnx (n � 2) (see Wittaker-
Watson [827] or Ince [372].

8.2 Newcomb Equation

It is very important to identify stability boundary (or marginal stability point) of
tokamak operation. Existence of continuous spectrum makes it difficult to accurately
calculate !2 from linear MHD equation in 1D ((8.6), (8.7)) or 2D ((8.105), (8.106)
in Sect. 8.7) near marginal stability.

Marginal stability calculation is improved in the PEST-2 code [266], and
similarly in KINX code [154] but is limited to positive Mercier index case.
So, it is essential to separate out the non-square integrable eigenfunction from
the eigenmode equation to evaluate discrete spectrum. Pletzer [612] introduced
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bell-shaped localization function H.r/ (H D 1 for jr � r0j < � and H D 0 for
jr � r0j > ı) to eliminate big solution part of the eigenfunction.

The marginal stability is described by the Newcomb equation to minimize
Bernstein’s energy integral. It is called 1D Newcomb equation in cylindrical plasma
by Newcomb [580] and 2D Newcomb equation for axisymmetric plasma by Tokuda
[770].

In Newcomb equation, singular surface is always rational surface for concerned
mode, while singular surface changes with ! in the linear MHD equation and is
different from rational surface, in general.

8.2.1 1D Newcomb Equation

For marginal stability, the 1D Newcomb equation with single regular singular point
in r 2 Œ0; a� is given by Newcomb [580],

L.�/ D d

dr

�

f .r/
d�

dr

�

� g.r/� D 0; (8.47)

where f .r/ D f0.r � r0/2 C ��, f0 > 0, g.r/ D g0 C ��, g0 ¤ 0. The r D r0 is a regular
singular point (see Column 8-2). The solution comprises “small” (square integrable
with power of r�0:5C� ) and “big” (non-square integrable with power of r�0:5��
) solutions, where � D p

1=4C g0=f0 and 1=4 C g0=f0 > 0 is Suydam stability
criterion.

Tokuda [769] converted this marginal stability problem to the eigenvalue problem
by keeping the behavior of eigenfunction near the regular singular point as follows,

L.�/ D ����; � D �0.r � r0/
2 (8.48)

This equation is similar to the Stürm-Liouville equation (see Appendix A.6) for
string vibration (f (� elastic modulus) > 0) [150]. But f can be zero or positive in
our case. So, this equation is not Stürm-Liouville equation in exact sense.

Choice of this functional form for � does not change leading singularity of
eigenfunction near the regular singular point (� does not change since �.r0/ D 0)
and this equation coincide with Newcomb equation at marginal stability (� D 0).
This makes it very efficient to find stability boundary to ideal MHD.

8.2.2 2D Newcomb Equation

As in the case of cylindrical plasma, the energy integral inside the plasma is
minimized under the incompressibility condition r � � D 0 in case of axisymmetric
torus.
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By using X D � �rr and V D r� �r.���=q/ in the flux coordinates .r; �; �/ with
r D Œ2R0

R  
0
.q=F/d �1=2, the energy integral Wp can be expressed in a following

form [770].

Wp D 


2�0

Z 1

0

dx
Z 2


0

d�L

�

X;
@X

@�
;
@X

@x
;V;

@V

@�

�

(8.49)

Here, x � r=a D 1 is the plasma surface and L is Lagrangian as given in detail
in [770]. Absence of @V=@x term in L leads to following Euler-Lagrange equation
for V ,

@

@�

�
@L

@.@V=@�/

�

� @L

@V
D 0 (8.50)

Integration of above equation in � D Œ0; 2
� leads to following solvable
condition.

Z 2


0

@L

@V
d� D 0 (8.51)

Fourier expansion of X and V for � are defined as X.x; �/ D P
Xm.x/eim� ,

V.x; �/ D �i
P

Vm.x/eim� . Substitution of these equations into equations (8.50)
and (8.51) gives linear equations for Vm. And the solution is substituted into
energy integral. The energy integral is now given by Y D xX;X D .��;X�2;
X�1;X0;X1;X2; ��/t (t: transposed) in a following form.

WpŒY� D
Z 1

0

OL.Y; dY
dx
/dx (8.52)

This leads to the following Euler-Lagrange equation to minimize energy integral.

d

dx

@ OL
@.dY=dx/

� @ OL
@Y

D 0 (8.53)

Since OL is given by a quadratic form of Y and dY=dx, the Euler-Lagrange equation
is reduced to following form of 2nd order ordinary differential equation.

N.Y/ � d

dx
f

dY
dx

C g
dY
dx

C hY D 0; (8.54)

where f ; g;h are constant .2M C 1/ � .2M C 1/ matrices. Here M is number of
Fourier harmonics. This is called “two-dimensional Newcomb equation”. Diagonal
elements of f have .n=m � 1=q/2 dependence similar to one-dimensional Newcomb
equation and the radius of q=m/n is the regular singular point. Small and big solution
exists near the singular point and Mercier condition is derived as local stability
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condition. Once Mercier condition is met, Kink and Peeling modes can be studied
using this two-dimensional Newcomb equation. Tokuda [770] converted this 2D
Newcomb equation into eigenvalue equation by adding an artificial kinetic energy
integral term similar to the 1D Newcomb equation as follows,

WŒY� D Wp � �Wk (8.55)

Wk D 2
2
Z X

m

�m.Or/jYl.Or/j2dx (8.56)

�m.x/ D
(

F2.m
q � n/ m D nq.r0/

F2 m ¤ nq.r0/
(8.57)

This choice of �m conserves leading singularity of eigenfunction at the singular
radius. The Euler-Lagrange equation to minimize energy integral WŒY� is given as
follows,

N�Y D ŒN C �Diag.�m.x//�Y D 0 (8.58)

The linear operator N� is related to 2D Newcomb operator as N� D N C �

Diag.�m.x//. Here, Diag.�m.x// is diagonal matrix having �m.x/ as .m;m/ com-
ponent. This equation is quasi Sturm-Liouville equation similar to the 1D case.

MARG2D [770] solves Eq. (8.58) to identify stability boundary. The code is
extended to free boundary mode by inclusion of vacuum solution by Aiba et al. [4].
Figure 8.7 shows comparison of MARG2D and ERATO-J [33] to identify critical
ˇp value for stability. While stability boundary is not quite sharp in ERATO-J,
MARG2D can determine sharp stability boundary.

Fig. 8.7 Comparison of
ERATO-J and MARG2D to
identify stability boundary.
Modified from Aiba [4] 0 0

n=5, qa=4.35, b/a=1.25
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8.3 Frieman-Rotenberg Equation

Active use of plasma flow to stabilize global MHD modes (especially RWM
in Sect. 8.8) is important for all advanced tokamak regimes (WS, NS and CH). But
inclusion of flow bring quite rich physics to ideal MHD stability theory.

The linearized equation of motion with mass flow is given by Frieman and
Rotenberg [212] and is called Frieman-Rotenberg equation (see Column 8-4).

�
@2�

@t2
C 2�.u � r/@�

@t
D F.�/ (8.59)

F D Fs.�/C Fd.�/ (8.60)

Fs.�/ D rŒ� � rP C �Pr � ��C .r � B1/ � B=�0 C J � B1

Fd.�/ D r � Œ��.u � r/u � �u.u � r/��
B1 D r � .� � B/

Both Fs and Fd are Hermite operators but the convective term 2�.u�r/@�=@t is anti-
Hermitian operator. And the system as a whole is not self-adjoint. While ! spectrum
of Hermite MHD operator lies on real or imaginary axis, spectrum of Frieman-
Rotenberg (FR) equation spreads in complex plane bringing some difficulty in
searching eigenvalue. Moreover, eigenvalue analysis may fail to identify most
unstable solution when time evolution of this solution is no longer exp.�t/. MHD
stability codes treating toroidal flow have been developed during 1990 decade such
as MARS by Chu et al. [124] and more recently MINERVA by Aiba et al. [7] and
CASTOR-FLOW by Chapman et al. [106]. In case we can assume � D O�exp.�t/,
eigen value � D � C in! (� is growth rate, ! is real frequency, n is toroidal mode
number) including toroidal and poloidal flows can be expressed as follows [7, 124],

�2 D �ıWp

ıK
� n2!2; in ! D �ıWc

ıK
(8.61)

ıK D hO�j�j O�i (8.62)

ıWp D �hO�jF. O�/i (8.63)

ıWc D hO�j�.u � r/j O�i (8.64)

Spectral and singular structures of this equation has been investigated in depth
by Hirota [324]. He extended definition of wave energy in the bounded plasma
including continuous spectrum using action-angle formulation, where wave energy
is given by !n�n for discrete mode and by

R
!�.!/d! for continuous mode.

The energy integral in the ideal MHD theory is represented by the sum of these
wave energy. In the flowing plasma, these wave energy can be negative and its
interaction with positive dissipation at the wall can destabilize the mode. Also
resonance causes continuum damping if wave energies of continuous and discrete
modes are same sign, while resonant instability occurs if they have different sign.
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Column 8-4: Derivation of Frieman-Rotenberg Equation and Eigenvalue
In order to derive the Frieman-Rotenberg equation, we use following Eulerian
expression of the perturbed quantities in the flowing ideal MHD plasma.

�1 D �r � .�0�/ (8.65)

p1 D ��p0r � � � � � rp0 (8.66)

B1 D r � .� � B0/ (8.67)

vvv1 D @�=@t C .u � r/� � .� � r/u (8.68)

�0 j1 D r � B1 (8.69)

where u is the slow equilibrium flow to which we have r � .�0u/ D 0.
According to Frieman [212], we can prove these relations using the relation
between Lagrangian and Eulerian perturbations. Let �A as Lagrangian
perturbation of a physical quantity A, and A1 as Eulerian perturbation, we
have following general relation.

�A D A1 C .� � r/A (8.70)

Let x D x0 C �, where x0 is the Eulerian fixed coordinates and x is the
Lagrangian moving coordinates. The Jacobian of coordinate transformation
J � @.x1; x2; x3/=@.x01; x

0
2; x

0
3/ D det.ICr0�/ � 1Cr0 ��. Here r0 � @=@x0.

Proof of (8.65): Mass conservation law during the perturbation is given by
�dV D �0dV0 where dV is the volume element in the moving Lagrangian
coordinates and dV0 is that in fixed Eulerian coordinates. This leads to
� D J�1�0 � �0.1 � r0 � �i/and the Lagrangian perturbation is given by
�� D ��0r0 � �. Using (8.70), we have �1 D ��0r0 � � � .� � r0/�0 D
�r0 � .�0�/ to reach equation (8.65).
Proof of (8.66): By using the thermodynamic equation of state p��� D C,
we have p��� D p0�

��
0 . This leads to p D p0=J� D p0.1 � �r0 � �/ and the

Lagrangian perturbation is given by�p D ��p0r0 � �. Using (8.70), we have
p1 D ��p0r0 � � � .� � r0/p0 to reach equation (8.66).
Proof of (8.67): Using the induction law, @B=@t D r � .vvv � B/ and assuming
the strong magnetic field and flow is small, we can directly integrate in time
at fixed position x0 to reach B1 D r0 � .��� � B0/. Proof of (8.69) is trivial.
Proof of (8.68) (Newcomb [581]): Let vvv.x; t/ is the Eulerian velocity
expressed in the Lagrangian coordinates .x; t/ and Px.x0; t/ is the Lagrangian
velocity expressed in the Eulerian coordinates .x0; t/, we have vvv.x; t/ D
Px.x0; t/. Similarly, the Eulerian displacement �.x; t/ in the Lagrangian coor-
dinates is the Lagrangian displacement x1.x0; t/ in the Eulerian coordinates;
�.x; t/ D x1.x0; t/. We have following equations for i-th component.

(continued)
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vi.x; t/ D Pxi.x0; t/

�i.x; t/ D xi1.x0; t/

If we take an Eulerian perturbation of 1st equation and the time derivative
of 2nd equation and take a leading order vi ! ui, we have:

vi1.x0; t/C �j
@ui

@xj
D Pxi1.x0; t/;

@�i

@t
.x0; t/C uj

@�i

@xj
D Pxi1.x0; t/

If we eliminate Pxi1.x0; t/ from above equations, we have equation (8.68).
Having these relations in mind, we linearize the MHD fluid equation of

motion �.@vvv=@t C vvv � r/vvv D j � B � rp as:

�1u � ru C �0

�
@vvv1

@t
C .u � r/vvv1 C .vvv1 � r/u

�

D j0 � B1 C j1 � B0 � rp1 (8.71)

Substituting (8.65) – (8.69) into (8.71), we have:

�0.
@2�

@t2
C .u � r/@�

@t
� .@�

@t
� r/u//C �0.u � r/@�

@t
C �0.

@�

@t
� r/u

C�0.u � r/ Œ.u � r/� � .� � r/u�C �0.Œ.u � r/� � .� � r/u� � r/u
D j0 � B1 C j1 � B0 � rp1 C .u � ru/r � .�0�/ (8.72)

If we define R D .u � r/� � .� � r/u, we have:

�0@
2�=@t2 C 2�0.u � r/@�=@t D j0 � B1 C j1 � B0 � rp1 C Fd.�/ (8.73)

Fd.�/ D Œr � .�0�/�.u � ru/� �0.u � r/R � �0.R � r/u (8.74)

Noting a following relation (see exercise), we can rewrite Fd.�/.

�.u � r/R � .R � r/u D � � rŒ.u � r/u� � u � rŒ.u � r/��

Fd.�/ D Œr � .�0�/�.u � r/u C �0� � rŒ.u � r/u� � �0u � rŒ.u � r/��
(8.75)

(continued)
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Using r � .�0u/ D 0 and suppressing 0, we have:

Fd.�/ D r � Œ.��/.u � r/u � �u.u � r/�� � r � Œ��u � ru � �uu � r��

(8.76)

Thus, we obtain following Frieman-Rotenberg equation [212].

�
@2�

@t2
C 2�.u � r/@�

@t
D F.�/ (8.77)

F D Fs.�/C Fu.�/ ; B1 D r � .� � B/

Fs.�/ D rŒ� � rP C �Pr � ��C .r � B1/ � B=�0 C J � B1

Fd.�/ D r � Œ��.u � r/u � �u.u � r/��

Eigenvaue of this Frieman-Rotenberg equation is discussed by Chu [124]
and Aiba [6]. If the flow is relatively small, the displacement � can be
approximated by the eigenmode with the complex eigenvalue � D � C i!;
� D O�e�t. We define a volume integral h O�jAj O�i � R O�� � A � O�dV . Multiplying
O��

from the left of (8.77) and integrating over the volume, we have following
cubic equation for the eigenvalue �.

ıK�2 C 2ıWc�C ıWp D 0 (8.78)

ıK D hO�j�j O�i ; ıWc D hO�j�.u � r/j O�i ; ıWp D �hO�jF. O�/i

For known eigenvector O�, we can obtain the eigenvalue as:

� D �ıWc ˙p
ıW2

c � ıKıWp

ıK
(8.79)

Since the operator � and F are Hermitian and �.u � r/ is anti-Hermitian,
ıK and ıWp are real and ıWc is imaginary. We have unstable modes in case
ıW2

c � ıKıWp � 0, and stable modes in case ıW2
c � ıKıWp < 0.

in! D �ıWc

ıK
,� D ˙

p
ıW2

c � ıKıWp

ıK
( if ıW2

c � ıKıWp � 0 ) (8.80)

in! D �ıWc ˙p
ıW2

c � ıKıWp

ıK
, � D 0 ( if ıW2

c � ıKıWp < 0 ) (8.81)

(continued)
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Consider the unstable case. From (8.80), we have:

in! D �ıWc=ıK , �2 D �n2!2 � ıWp=ıK (8.82)

Exercise. Show following relation used in deriving Frieman-Rotenberg equation.
�.u �r/R�.R �r/u D � �rŒ.u �r/u��u �rŒ.u �r/��; where R D .u �r/� �.� �r/u
Answer :
�.u � r/R � .R � r/u D �ui@iŒuj@j�k � �j@juk� � Œui@i�j � �i@iuj�@juk

D �i@i.uj@juk/� ui@i.uj@j�k/C ui@i.�j@juk/ � ui.@i�j/.@juk/ � �iuj@i@juk

D �i@i.uj@juk/� ui@i.uj@j�k/ D � � rŒ.u � r/u� � u � rŒ.u � r/��

8.4 Ideal Localized Modes

8.4.1 Edge Localized Modes

The steady state tokamak reactor will operate at high q (safety factor) and high
ˇp (poloidal beta) regime. Exploration of small or minute ELM in this regime is
crucial for the feasibility of divertor power handling. The high pressure gradient at
ETB produces Edge Localized Modes (ELM) as shown in Fig 8.8a. Urano [781]
showed that the inter ELM transport is close to ion neoclassical transport.

Plasma 
Pressure

Pedestal
H-mode

fELM ~ 1Hz

0 1

L-mode

Pedestal

Plasma Current

Normalized Radius (r/a)
0.9            0.95            1.0

Plasma  
Pressure

Low *   

High *   

Normalized Radius (r/a)

a b

Fig. 8.8 (a) Schematics of L-mode and H-mode pressure profiles and the pressure collapse near
the edge region due to ELM (Edge Localized Mode). (b) Edge pedestal and the build up of the
edge bootstrap current with lowering edge collisionality
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Fig. 8.9 (a) ELM energy loss �WELM over the pedestal stored energy Wped as a function of
pedestal collisionality from various tokamaks. Reproduced with permission from Loarte [524].
Copyright IOP Publishing. (b) Integrated simulation of ELM energy fraction qualitatively in
agreement with the experiment. Reproduced with permission from Hayashi [307]. Copyright IAEA
Vienna

Experimentally, the ELM energy loss �WELM increases with decreasing edge
collisionality as reported by Loarte in 2003 as shown in Fig. 8.9a [524]. The increase
of ELM energy loss at low collisionality is attributed to the increase of the edge
bootstrap current (Fig. 8.8b). The increase of the surface current (i.e. edge bootstrap
current) destabilize lower n (toroidal mode number) peeling mode, which has larger
radial extent as shown by Hayashi [307] through the integrated simulation of 1.5D
transport equations with MARG2D calculation shown in Fig. 8.9b.

This ELM energy loss �WELM over the pedestal plasma stored energy (energy
between green and red line in Fig. 8.8a) depends on the edge collisionality
�� [524]. Edge plasma of ITER and beyond is collisionless and we may
expect �WELM=Wped D 0:2 for the edge collisionality expected in ITER. If
�WELM=Wped D 0:2 happens for the ITER, �WELM � 21MJ for Wped D 0:3Wth,
Wth D 350MJ. The effect of this ELM energy loss can be imagined since this
energy loss is comparable to the total plasma energy of large tokamaks such as
JT-60U [458]. For a ELM interaction surface area 3m2, ITER ELM energy density
is �7MJ=m2. Such a high transient energy deposition is quite damaging for divertor
plate and reduction of ELM energy loss to �0:5MJ=m2 is envisaged to reach �300
full power discharges having �105 ELMs within a divertor lifetime. This requires
14 times reduction. Assuming ELM frequency � 1Hz, DEMO operating for 300
days has 25;920;000 ELMs. Development of DEMO relevant ELM mitigation
techniques is still a horizon after the ITER success.

Since this ELM heat flux may become a serious problem to shorten divertor
lifetime of ITER [302], mitigation of ELM becomes an important issue for the
reliable operation of ITER. Evans [190], [193] reported successful mitigation
of Type I ELM in ITER like discharge with reduced pressure gradient by the
Resonant Magnetic Perturbation (RMP) technique as shown in Fig. 8.10. Snyder
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Fig. 8.10 Suppression of ELM by the Magnetic Perturbation. Reproduced with permission from
Evans [190]. Copyright IAEA Vienna

[704] explained this suppression of Type-I ELM is due to the lowering the pressure
gradient below peeling/ballooning limit through field line stochastization. While
Evans [190] uses n D 3 magnetic perturbation, ELM suppression using lower n is
actively pursued in many tokamaks. Liang [507] showed effectiveness of n D 1 in
mitigating ELM in JET and Jeon [401] showed the complete suppression of ELM
using n D 1 MP coils in KSTAR. Suttrop [727] also reported stabilization of ELM
by using n D 2 in ASDEX-U, respectively. J-TEXT recently rebuilt in Huazhong
University of Science and Technology (HUST) [863] also investigates effect of RMP
on MHD and also particle transport [352].

The RMP application for H-mode ELM suppression in the divertor tokamak JFT-
2M is first presented by Mori [559] and the response to the external rotating RMP is
reported by Oasa [583]. Excitation of edge bootstrap current in collisionless plasma
(see Fig. 8.8b) is problematic for the edge MHD stability. Active reduction of edge
bootstrap current is an important subject for future tokamak research. To improve
edge stability, we have to control edge bootstrap current which might be possible by
methods proposed by Fisch [203] and Helander [316, 318].

While ELM suppression by RMP is successful, the non axisymmetric per-
turbation can have enhanced effect on the X-point. The magnetic separatrix in
the tokamaks is a relatively fragile structure that is easily split into a pair of
intersecting invariant manifolds by small non-axisymmetric magnetic perturbations,
called the homoclinic tangles first implied DIII-D VH mode [188] and further
discussed by Evans (2004: Homoclinic tangles, bifurcations and edge stochasticity
in diverted tokamaks) [189], and the experimental signatures are also discussed
by Evans [191]. Wingen (2009) analyzed the existence of laminar flux tubes with
short connection lengths numerically. Stable (dashed line) and unstable (solid line)
separatrix manifolds are shown in Fig. 8.11b. Similar to the homoclinic tangles in
dynamical system, the manifolds start oscillating as they approach the X-point. It is
shown that the unstable manifolds intersects with the inner divertor target and the
stable manifolds intersect with the outer divertor target. Kirk [456] observed lobes
of the homoclinic tangles near the X-point in the RMP experiments in MAST.
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Fig. 8.11 (a) French Mathematician H. Poincare (1854–1912). (b) Homoclinic tangles near the
separatrix in DIII-D by the application of the non-axisymmetric field. Reproduced with permission
from Wingen [825]. Copyright IAEA Vienna

Salon 8-1: H. Poincare and Homoclinic Tangles
From the magnetic field line Hamilton equation (2.4), we understand that
separatrix line for a single null is a homoclinic orbit. If we start from X-
point, the time (“time” is integrated toroidal angle for the magnetic field line
Hamilton mechanics) required to return to X-point is infinity and will stop
there since the poloidal field at the X-point is zero. The concept of homoclinic
orbit and homoclinic tangle originates from H. Poincare’s textbook on the
Celestial Mechanics [613]. See Lichtenberg-Lieberman [508] for details.

Salon 8-2: Nuclear Fusion Prize for MHD Stability
Nuclear Fusion journal is the acknowledged world-leading journal which
publishes significant original works in the field of fusion research. IAEA
awarding excellent 10 papers as Nuclear Fusion Prize nominees and among
which one paper is selected to be a winner of Nuclear Fusion prize. The top
author of Nuclear Fusion Prize papers in MHD stability are T. Evavs [190]
on ELM suppression by resonant magnetic perturbation, S. Sabbagh [645] on
the resistive wall stabilization in rotating high ˇ plasma, P.B. Snyder [707]
for pedestal theory. Steve Sabbagh (see Salon 1-1) is an adjunct professor of

(continued)
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Columbia university and senior research scientist at PPPL. He is an expert in
MHD and confinement but also NTV studies [860] as well. Phillip Benjamin
Snyder started his career from the study of the kinetic ballooning mode based
on the gyrofluid theory and simulation [701, 702] and later concentrated on
ELM and peeling/ballooning mode [703, 704, 706, 707]. Combination of
KBM and the peeling/ballooning mode theory gives rise to the EPED model.

In 2008, the paper led by Todd Evans concerning the ELM suppression
is selected. Below from left is Prof. W. Burkart (IAEA Deputy Director
General), Dr. T. Evans (General Atomics), and M. Kikuchi (Chairman of
Nuclear Fusion board of editors). He has made the experimental confirmation
of GAE [187], and series of RMP studies [188, 189, 193]. He is also an expert
on Chaos, Complexity and Transport including the Homoclinic tangle [192].

8.4.2 Ballooning and Peeling Modes

Ballooning mode is a pressure driven local ideal MHD mode with long wave length
along B and short wave length perpendicular to B [141] (see Column 8-5 for details
if not familiar).

Peeling mode is an external mode localized near the plasma edge driven by the
finite edge current [536]. This mode can be coupled to the ballooning mode and
thought to be a cause of ELM in tokamak.
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The growth rate of medium n peeling mode is rather low compared with violent
low n kink instability and care must be taken to identify stability boundary as
discussed in Sect. 5.1.2 and special codes are developed such as MARG2D [4, 770]
and ELITE [824]. While ELITE code is specifically developed for n � 5 using 1=n
expansion, MARG2D code can analyze stability boundary for any toroidal mode
number n efficiently, due to its special eigenvalue treatment. Effect of toroidal flow
is also implemented in MARG2D code using the Frieman-Rotenberg equation with
self-consistent flow equilibrium solution.

The stability of peeling mode is well characterized by the pedestal current density
jped and the normalized pressure gradient ˛ D �2�0q2R.dP=dr/=B2. Figure 8.12
shows stability of ideal MHD modes (n D 1; 2; 3 � �; 18) for low q (q95 D 3:7)
and high q (q95 D 7:3) operation in (˛; jped) diagram including the effect of toroidal
plasma rotation [5]. The stable region against ideal MHD modes in high q regime
is much wider than in low q (q95 � 3) regime. The edge ballooning mode becomes
stabilized with small jped > 0:1 in high q operation, while not in low q operation.
Finite n (n D 3 � 18) peeling-ballooning modes become most unstable when ˛
reaches critical value (˛c � 6 � 8) for jped � 0:4 � 0:7. When the pedestal current
density jped > 0:8, plasma becomes unstable to n D 1 mode. Excitation of large
edge bootstrap current in collisionless edge plasma with jped > 0:8 will lead to
n D 1 or low n global mode (depending on the proximity of stabilizing wall) and
control of edge bootstrap current to the stable region is important.

Kamada [412] identified ELM regimes of Type I and grassy ELM (or Type II
ELM) by varying plasma triangularity and safety factor as shown in Fig. 8.13a.
Grassy ELM has been found at high q95 D 6 and high triangularity ı D 0:5 with

Fig. 8.12 (a) Stability diagram of the low-q (q95 D 3:7) equilibrium in (jped; ˛96) plane. (b)
Stability diagram of the high-q (q95 D 7:3) equilibria in (jped; ˛96) plane. Both calculation include
effect of toroidal rotation by solving the Frieman-Rotenberg equation, in which toroidal rotation
weakly destabilize the peeling-ballooning modes. Reproduced with permission from Aiba [5].
Copyright IAEA Vienna
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Fig. 8.13 (a) Grassy and Type I ELM regimes in .q; ı/ plane. (b) Typical equilibrium shape
with grassy ELM in JT-60U. (c) Effect of toroidal rotation on ELM frequency. Reproduced with
permission from Oyama [595]. Copyright IAEA Vienna

low vertical elongation as shown in Fig. 8.13b. Significant modification of ELM
characteristics by co and counter toroidal rotation is also reported by Oyama [593]
as shown in Fig. 8.13c. With more counter toroidal rotation, discharges exhibit high
frequency grassy ELMs with comparable pedestal pressure with Type I ELMs.

It seems that kinetic effect is important to explain these grassy ELM character-
istics since the growth rate is small in such a localized mode to reach diamagnetic
drift frequency. It is also true that co and counter asymmetry will not appear in the
ideal MHD. Azumi [33] in 1980 shows that diamagnetic drift or finite Larmor radius
effect becomes important for the ballooning modes and ��2 has to be replaced to
!.! C !�/. The !�i effect implies � < !�i=2 may be stabilized. He also included
WKBJ solution by Dewar [156] to give the growth rate �.n/ as:

�2.n/ D �21 � �2fn � !2�i=4 (8.83)

Here �2fn � n�1 and !2�i=4 � n2 and the growth rate is maximum at intermediate n.
The !�i effect, i.e. !2 ! !.! C !�i/, is also discussed in 1982 by Tang [750].

Hastie [296] includes the sound wave for high n modes to give following
dispersion relation when it is unstable to an ideal mode with a growth rate �I .

�!.! � !�i/Œ.1C 2q2/!2s � !.! � !�e/� D .1C 2q2/�2I Œ!
2
s � !.! � !�e/�

(8.84)

where q is the safety factor, !s D cs=Rq is a sound wave frequency for the
connection length of ballooning mode, c2s D .Te C Ti/=mi, !�e D .n=ene/.dpe=d /
while n is the toroidal mode number.
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Fig. 8.14 Stability diagram
in .˛93; s93/ plane for ideal
(red broken line), !�

corrected (blue dashed line),
Hastie theory (black line).
Arrow shows trace of the
experiment. Modified from
Aiba [8]
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Aiba [8] discussed the physics behind the grassy ELM of JT-60U [412] using
this Hastie formulation. Figure 8.14 shows the stability diagram for the peel-
ing/ballooning modes corresponding to the JT-60U grassy ELM plasma condition.
Experimental trace is given by the transparent arrow. Red broken line gives the
stability boundary of ideal MHD modes, the blue broken line gives that with !�i

effect, and the black line gives that for Hastie theory. Sound wave modification on
the stability boundary is important for higher n modes but has small effect on low
n modes. He showed grassy ELM may be due to the high n ballooning modes with
n � 120. While n � 12 mode has peeling character (eigenmode is not zero at the
surface), n D 120mode has ballooning character (eigenmode is zero at the surface).
Understanding of the physics behind the different ELM behavior for co and counter
toroidal rotations is still an open question.

While we can obtain much higher beta (or ˛) by increasing the elongation, this
leads to the situation that beta is limited by the low n ideal modes through the second
stability access with high edge bootstrap current. In such case, ELM becomes a
violent instability in reactor relevant plasmas with low toroidal mode number n.

There are another type of H-mode called Quiescent H-mode (QH mode) observed
in DIII-D tokamak [86–88], [89]. This mode is ELM free but has small MHD
activity called the “Edge Harmonic Oscillation” (EHO). New QH mode with high
frequency EHO is observed in EAST tokamak [809]. SMBI (supersonic molecular
beam injection) can also mitigate ELM [836].

The nonlinear behavior of ELM is an active field of research. Kirk [455]
observed filament structures persisting �200�s during ELM in the MAST. Zhu
[861] identified three major nonlinear effects (radial convection, line vending, and
magneto sonic coupling) involved in the ballooning filament. Yun [849] observed
detailed growth and bursts of ELM filaments using 2 dimensional ECE imaging
system in the KSTAR tokamak. Nonlinear NIMROD calculation of ELM filament
shows stabilizing influence of edge bootstrap current by Zhu [862].
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Column 8-5: Ballooning Mode Equation [443]
Ballooning mode is characterized by a long wave length parallel to the
magnetic field �k � Rq and very short wave length perpendicular to the
magnetic field as discussed in Chap. 6. The expression of the equilibrium
magnetic field in the flux coordinates is given by B D r˛ � r , where
˛ D � � q� . The perpendicular displacement �? is given by the eikonal form
using the electrostatic potential ' as:

�? D B � r'
B2

; '.r; �; �/ / eiS.r;˛/ (8.85)

Here S.r; ˛/ D �n.˛C ˛0.r// is the eikonal and the radius r is defined using
the toroidal flux 
 as r D a.
=
a/

1=2. Solution to satisfy periodicity in � is
the infinite summation of quasi-modes given by Eq. (6.10).

'.r; �; �/ D
1X

jD�1
u.r; � C 2
j/e�in.˛Cq�0C2
qj/ � F.r; �/e�in˛ (8.86)

Here, F.r; �/ D P
u.r; � C 2
j/einq.�C2
 j��0/ D P

F1.� C 2
j/.
For the Ballooning type localized perturbation, the energy integral ıW is

dominated by the shear Alfven term ıWSA and the interchange term ıWIC

defined in Column 8-1. Those energy integrals can be given in terms of a
slowly varying function F.r; �/ and the eikonal ˛ as:

ıW D 1

2�0

Z � jr˛j2
B2

.b � rF/2 � 2�0p0. /�wF2
�

dV (8.87)

Here, �w D .b � r˛/ � �=B is weird component of the curvature. Using the
formula B � r D J�1@=@� in the Clebsch coordinates . ; �; ˛/, the Euler-
Lagrange equation to minimize this energy integral is given by,

1

J

@

@�

� jr˛j2
JB2

@F

@�

�

C �0p
0. /�wF D 0 (8.88)

This is the Ballooning mode equation for marginal stability. Since (8.88) is
linear equation, the solution can be constructed from the solution of following
equation in the covering space .�1;C1/.

1

J

@

@�

� jr˛j2
JB2

@F1
@�

�

C �0p
0. /�wF1 D 0 (8.89)
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8.4.3 Infernal Mode and Barrier Localized Mode

8.4.3.1 Infernal Modes

Advanced tokamak operation in WS and NS plasmas are associated with core
improved confinement. Large pressure gradients in core weak shear regime in WS
and pitch minimum regime in NS leads to the loss of magnetic shear stabilization of
pressure driven ideal MHD modes. In these regimes, both n D 1 and intermediate n
modes become most unstable in some cases.

Ballooning mode theory including finite n correction has been developed using
WKBJ formalism by Dewar [156] (equation (6.32)) and agreed with PEST calcula-
tion down to n D 5 as shown by Dewar-Manickam [157]. This theory predicts that
the largest n modes are most unstable within the ballooning formalism. But it also
showed interesting oscillatory behavior of beta limit in the intermediate n regime as
a function of 1=n if it is treated as continuous variable as shown in Fig. 8.15a.

Hastie-Taylor [295] showed this oscillatory behavior can be expected by the
breakdown of radial dense-coupled ballooning mode structure. If the magnetic shear
is finite, radial coupling of various resonant MHD modes (m;m ˙ 1;m ˙ 2;m ˙
3;��) becomes strong for high n modes since radial separation between modes is
small. However, if the magnetic shear is very low, s � 0, radial mode separation
becomes larger and the Connor’s standard ballooning mode theory [141] based on
dense radial mode coupling breaks down.

Manickam [535] showed that when the magnetic shear is sufficiently weak, this
oscillation can result in bands of unstable n values, where the ballooning mode
theory predicts complete stability. This mode is called the infernal mode.

Improved core confinement regimes in TFTR [301] and JT-60U [458] are
associated with fast internal disruption or major disruption, where the beta limit

Fig. 8.15 (a) n-Dependence of beta limit showing good agreement between WKB ballooning
theory and PEST in high n regime and unique oscillatory behavior in low to intermediate n
regime by treating n as continuous variable [157]. (b) Pressure and current profiles for the stability
calculation. A: dp=d � 0:3.1 �  /0:5 C 0:7, to C: dp=d � .1�  /2, D: dp=d � .1�  /5.
(c) Stability boundaries in (�ˇp, g), where g is normalized beta, ˇN . Oscillating region in c
shows region of observed ˇp collapses in high ˇp experiments in JT-60U [598]. Reproduced with
permission from Dewar [157] and Ozeki [598]. Copyright IAEA Vienna
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deviates from Troyon scaling and limited by �ˇp [546] called ˇp collapse [376] .
Ideal MHD stability of core improved confinement has been analyzed by Ozeki-
Azumi et al. [597, 598]. For the current and pressure profiles in Fig. 8.15b, c shows
stability diagram in (�ˇp, ˇN) for various pressure profiles (A-D) in WS plasma
(magnetic shear � 0 in the central region) without wall stabilization and slightly
high internal inductance li D 1:2 with qs=q0 D 4 given in Fig. 8.15b [598].
Intensive central heating produces peaked pressure profile and observedˇp collapses
is consistent with region of �ˇp D 0:2 � 0:6 for pressure profile C. Region of
�ˇp D 0:2 � 0:4 is characterized with low q0 and intermediate n D 2 � 5 infernal
modes becomes most unstable. While broader pressure profile give rise to much
higher stable ˇN � 5.li � 1:2/ without wall stabilization [598], or ˇN � 5:8.li � 1/

with moderately far wall rwall=a D 1:5 by Howl [350], resultant broader bootstrap
current seems not consistent with moderately high internal inductance for the Steady
State Tokamak operation.

Ozeki-Azumi et al. [597] analyzed ideal MHD stability of weakly negative
shear (WNS) plasma in circular plasma with R=a D 3 showing that significant
improvement in �ˇp limit can be obtained by modification of pressure profile as
shown in Fig. 8.16. Pressure profile (B) has much higher �ˇp limit than that for
pressure profile (A). While experimentally achievable �ˇp is � 0:6, tayloring of
pressure profile in negative shear regime and reduction of pressure gradient near
qmin improves stability against low n D 1–5 internal modes. Again, importance of
relative location of ITB and qmin radius is stressed.

Improved confinement regimes in NS plasma has been explored since their
discoveries by Strait in DIII-D [720], by Levinton in TFTR [502] and by Fujita in
JT-60U [224] as well as early experiments in JET [354]. The NS plasma terminated
mostly with ideal n D 1 kink-ballooning mode and sometimes with infernal mode
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near the ideal beta limit as discussed by Taylor [759] or Ishii [380]. But it sometimes
terminated with precursor oscillation possibly due to Rutherford regime in DTM as
discussed in Sect. 8.5.3.

8.4.3.2 Barrier Localized Mode

Barrier localized mode (BLM) is an ideal MHD instability driven by the large local
pressure gradient at the ITB, in both WS [463, 739] and NS [538] plasmas and leads
to relaxation of ITB without major disruption. Figure 8.17 shows time slices of
WS discharge profile in JT-60U [463]. After the formation of ITB, BLM becomes
unstable and the ITB relaxation led to the formation of H-mode edge. This BLM
is estimated as m=n D 3=1 associated with steep ITB near q D 3 surface. In case
ITB is recoverable after BLM, quasi steady-state ITB is possible but may end with
termination of ITB as shown by Koide [464].

On the appearance of m=n D 3=1 mode, Takeji showed that n D 1 mode can
be most unstable under the situation that the bootstrap current driven by the steep
pressure gradient reduces the local magnetic shear (s � 0), while n D 2 mode is
most unstable if the local shear is not weak [739]. While intermediate n peeling
modes are responsible to ELM, n D 1 or n D 2 semi global modes are responsible
for the BLM. BLM in NS plasma is analyzed by Manickam [538] for both JT-
60U and TFTR. JT-60U achieved wider ITB radius and steeper ITB is formed for
balanced or perpendicular neutral beam injection and more frequently observed in
JT-60U than other tokamaks such as TFTR. Softening of BLM and long sustainment
of quasi steady-state improved confinement with ITB requires further investigation.

Integrated demonstration of fully non-inductive operation with large bootstrap
current fraction .fBS/ is primary importance to realize steady state tokamak reactor.
The pulse length of fBS discharge is still limited [652] as shown in Fig. 8.18a.
Sustainment at reactor relevant q95 regime (Fig. 8.20b) is faced by ITB induced
disruption [654] and further understanding of ITB transport physics is required.

Fig. 8.17 (a) Relaxation of the ITB associated with the barrier localized mode (BLM) shown by
the ECE temperature perturbation. (b) Relaxation of toroidal rotation dip associated with BLM.
Reproduced with permission from Koide [463]. Copyright American Physical Society
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Fig. 8.18 (a) Extended high fBS discharge duration by rotation control [652]. (b) Attainment of
reactor relevant moderate q95 high fBS discharge with wall stabilization shown in red symbol,
which is terminated by disruption [654]. Reproduced with permission from Sakamoto [652, 654].
Copyright IAEA Vienna

8.5 Resistive MHD Modes

8.5.1 Classical Tearing Mode

The tearing mode (TM) is an important resistive instability associated with the
reconnection of magnetic field at the resonant rational surface r D rs. This
mode is de-stabilized by changing the topology of the magnetic field, while it
is stable within the ideal MHD context. Furth-Killeen-Rosenbluth [232] analyzes
the resistive instabilities in a sheet pinch and gives the growth rate of the tearing
mode as � � �3=5 (or � � S�3=5, where S D �0aVA=� D �R=�A is Lundquist
number, �R D �0a2=� resistive diffusion time, �A D a=VA Alfven transit time, and
VA D B=

p
�0nimi is Alfven velocity).

8.5.1.1 Linear Tearing Modes

The linear stability of the tearing mode is further discussed in the cylindrical
tokamak by Furth [234]. The resistivity is only important close to the singular radius
rs defined by F D k � B D kzBz C k�B� D 0, where more accurate fourth order
ordinary differential equation must be solved. The perturbed radial magnetic field
Br1 has a form of i .r/exp.� t C ikz C im�/, which is determined by the following
second order ordinary differential equation except close to the singular surface.

d
dr

�
H d 

dr



� � g

F2
C F�1 d

dr

�
H dF

dr

	�
 D 0 (8.90)

g D .m2�1/F2
r.k2z Ck2� /

C k2z
k2z Ck2�

�
2�0

dP
dr C rF2 C 2F.kzBz�k�B� /

r.k2z Ck2� /



; (8.91)



8.5 Resistive MHD Modes 263

where k� D m=r, kz D �n=R, H D r=.k2z C k2� /. If the rs falls within the
plasma .rs < a), the marginally stable kink mode with a boundary condition solution
 .rs/ D 0 is a solution of the equation (8.90). Since Br1 � F.r/�r, �r is finite at
the singular surface. In the case of the tearing mode, on the other hand, �r1 tends
to diverge as r ! rs without including more exact fourth order finite resistivity
equation. while �r ! 1,  rs � Br1 remain finite. We consider the current driven
tearing instability for the simplest case of zero pressure gradient, dP=dr � 0. To
determine tearing-mode stability, we solve (8.90) to obtain  1.r/ at 0 < r < rs with
 1 ! rm�1 at r D 0, and  2.r/ at rs < r < b with  2.rs/ D  1.rs/ and  2.b/ D 0

at ideal wall at r D b. While  is continuous across the singular radius rs, d =dr
has jump across the rs. An important quantity�0 is defined for this jump.

�0 � d. 2 �  1/=drjrs= .rs/ (8.92)

Furth-Killeen-Rosenbluth [232] showed that the condition for the tearing mode
instability is �0 > 0 by the finite resistivity analysis near the singular radius.

Near the singular radius rs, (8.90) can be approximated as:

d2 

dx2
� �

x
 D 0; where � D

�
g

F
C d

dr

�

H
dF

dr

��

rs

a

HdF=drjrs

; (8.93)

where x D .r � rs/=a. The point x D 0 is a regular singular point and its indicial
equation is ˛2 � ˛ D 0. Thus the solution has analytic and logarithmic function as
discussed in the section Column 8-2. Let  1.x/ is solution in x < 0 .r < rs/ and
 2.x/ is a solution in x > 0 .r > rs/. They are given as follows.

 1.x/ D  .rs/
s.x/C A1
n.x/;  2.x/ D  .rs/
s.x/C A2
n.x/ (8.94)


s.x/ D 1C �xlnjxj C 1

2
�2x2lnjxj � 3

4
�2x2 C �� (8.95)


n.x/ D x C 1

2
�x2 C 1

12
�2x3 C �� (8.96)

Then, stability parameter for the tearing mode is given as �0 D .A2 � A1/=a .rs/.

8.5.1.2 Rutherford Regime

The linear phase of the tearing mode is very short for strongly magnetized high
temperature plasma and the mode goes into the nonlinear region, called Rutherford
regime. The growth of the perturbed magnetic field in the Rutherford regime
follows Br1 �  1 � t2. This means magnetic island width w evolves as w � t.
This nonlinear regime is called the Rutherford regime according to Rutherford’s
pioneering work [643] under constant  approximation (i.e. 1st order perturbed
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flux function  1.rs/ ¤ 0 ). The evolution equation is improved by Biskamp [68] as
follows,

dw

dt
D 1:22�

�0
�

0

.w/; where w D 4

q
 1.rs/= 

00

0 .rs/ (8.97)

with �
0

.w/ D Œ 
0

1.rs C w=2/ �  
0

1.rs � w=2/�= 1.rs/. For the derivation of above
equation and the details of nonlinear tearing mode theory, see Biskamp [68].

Island structure of tearing mode is observed using soft X-ray tomography by
Sauthoff [666] as shown in Fig. 8.19a and radial phase inversion of tearing mode
B� is measured by Robinson-McGuire [633] as shown in Fig. 8.19b. This mode is
important for all tokamak regimes including advanced tokamak operation.

Suppression of m=n D 2=1 tearing mode using direct island heating is shown for
the first time in 1992 by Hoshino [342] in JFT-2M. Since island formation produces
temperature flattening by the short-circuit effect of magnetic island, heating near the
magnetic island, especially O-point, has a stabilizing effect as shown by Yoshioka
[844] and shown in the reduced resistive MHD simulation by Kurita [478]. The
heating effect on Rutherford equation is expressed by adding additional term to
equation (8.97) as follows,

dw

dt
D 1:22�

�0
�

0

.w/C C2
J0
Q m

Z w=2

�w=2
Q�mdr; (8.98)

where C2; J0; Q�m; Q m are constant of order 1, equilibrium current density, perturbed
resistivity, and perturbed poloidal flux function, respectively. Since Q�m < 0 with
ECH, second term in RHS is stabilizing.
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Fig. 8.19 (a) Tomographic reconstruction of m=n D 2=1 tearing mode [666]. (b) Eigenmode
structures of tearing mode Br1 and B�1 [633]. Reproduced with permission from Sauthoff [666]
and Robinson [633]. Copyright IAEA Vienna
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8.5.2 Neoclassical Tearing Mode

Efficient steady-state operation of tokamak relies on the maximum utilization of the
bootstrap current. But, this leads to an important new instability, called neoclassical
tearing mode (NTM) [98].

Since the bootstrap current is proportional to pressure gradient (Jbs � dP=dr),
local fattening of the pressure gradient near the magnetic island produced negative
perturbed helical current, which enhances magnetic island and destabilize tearing
mode in positive shear regime, while this negative perturbed helical current reduce
magnetic island size and is stabilizing in negative shear regime [443]. Therefore, this
NTM is important for all advanced tokamak operating regimes (WS, NS, CH) except
regions of negative shear. While the destabilization of NTM by loss of bootstrap
current is inversely proportional to island width (1=w), there is another important
mechanism to stabilize NTM by the excitation of parallel current Jk due to NC
polarization current J?p (rkJk C r? � J?p D 0)) inversely proportional to cubic of
island width (1=w3) in both collisional regime [699] and collisionless regime [823].
This gives rise to the NTM is linearly stable but has some threshold island width
above which NTM becomes unstable in case of positive shear. In case of negative
shear, the parallel current Jk induced by the polarization current changes sign and
stays stabilizing.

This NTM is observed for the first time by Chang-Callen in TFTR in 1995
[104] as shown in Fig. 8.20 and explained well by the Rutherford equation including
bootsrap destabilization term but can not be explained without including bootstrap
current destabilization term. The loss of bootstrap current inside the magnetic island
is essential for the NTM and this loss of bootstrap current inside the magnetic island
is confirmed using MSE diagnostics in JT-60U by Oikawa [587, 588].

Localized ECCD inside magnetic island can compensate lost bootstrap current
to stabilize NTM. First complete NTM stabilization is demonstrated in ASDEX-
U using 2nd harmonic X-mode ECCD by Gantenbein [238] and in JT-60U using
fundamental O-mode ECCD by Isayama [374] as shown in Fig. 8.21a–c.

Fig. 8.20 Observation of
m=n D 3=2 NTM in TFTR.
a: Measured evolution of
island width, b: calculated
island width using modified
Rutherford equation, c:
calculated with fixed
parameters
(�;wc � �1=2Lqˇp=Lp; �

0).
Reproduced with permission
from Chang [104]. Copyright
American Physical Society
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Fig. 8.21 (a)–(c) Stabilization of NTM for fundamental O-mode ECCD. (a) NB and EC injection
power, (b) PB for n D 2 mode. (c) Frequency of n D 2 mode. Reproduced with permission from
Isayama [374]. Copyright IOP Publishing. (d)–(e) Comparison of measurement and numerical
calculation based on modified Rutherford equation in JT-60U. Reproduced with permission from
Isayama [375]. Copyright IAEA Vienna

The Rutherford equation including this bootstrap current destabilization effect
and polarization current stabilizing effect (or neoclassical polarization effect wpol �
�pi) [793] and finite perpendicular transport (wd � .�?=�k/1=4) effect [205] is given
as [487],

dw

dt
D 1:22�

�0

"

�
0

.w/C �1=2
Lq

Lp

ˇp

w

 
w2

w2 C w2d
� Lq

Lp

��2�i

w2

!#

; (8.99)

where � D r=R, Lq D q=.dq=dr/, Lp D p=.dp=dr/, and ˇp is poloidal beta value.
The characteristic transport effect island width is given by Fitzpatrick [205]

as wd D 5:1.qLq=�k� /1=2.�?=�k/1=4, where poloidal wave number k� D m=r,
�? and �k are perpendicular and parallel heat diffusivities, respectively. The
characteristics threshold island width for nonlinear excitation of NTM is given
as, wpol D jLq=Lpj1=2�1=2��i . More sophisticated formula with non-divergent
polarization term at w D 0 and other terms is summarized for example by Sauter
[665]. Even if the equilibrium is stable to classical tearing mode �

0

.0/ � 0, the
NTM can be destabilized at finite island width w � wcrit. So, we need seed island
to destabilize NTM. Benchmarking of modified Rutherford equation for ECCD
stabilization of NTM is important for its extrapolation to ITER control [662]. Efforts
are successful in calibrating coefficients [303] and the result is successfully applied
to radial scanning experiments [375] as shown in Fig. 8.21d–e and provide power
requirement [304] in ITER.

Magnetic island can be distorted by the viscous drag of shear flow as shown in
Fig. 8.22a and has a stabilizing effect on classical tearing mode and NTM [700].

Magnetic island is identified by the 180 degree phase shift of the temperature
fluctuations across the magnetic island. Ren [624] and Chu [124] showed that this
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phase shift can be changed due to the viscous force on the magnetic island as
illustrated in Fig. 8.22a. In the two dimensional geometry, the magnetic field is
given by B D ez � r C Bzez and the flow velocity is given by u D ez � rU.
The two dimensional plasma equilibrium equation for the flux function is given by
Ren et al. [624],

� C F. / � �0�U0�U D �0�
r � ez � r�U

.r /2 (8.100)

Here F. / D BzB0
zC�0H0 with H being the enthalpy function and � is the kinematic

viscosity. An analytical estimate of the phase shift is give as �
 D 8k� dV
dr
!�0G
ıB2

,
where k is the wave length of the magnetic perturbation along the lengthwise
direction of the magnetic island, w is the width of the magnetic island, dV=dr is the
radiant of the flow on the island separatrix and G � 1 is a constant. This equation
gives quantitative agreement of the phase shift reduction shown in Fig. 8.22b.

Except JT-60U, most medium to large tokamaks uses tangential neutral beam
injection, which drives co-toroidal rotation. After the reorientation of tangential
NBI, Buttery [90] and La Haye [488] showed that NTM is ‘destabilized’ with
reduced toroidal rotation using Co/Counter NB injection capability. La Haye [489]
showed that NTM onset ˇN reduces with reduced co rotation associated with weaker
absolute negative rotation shear (d˝�=dr < 0), where˝� D ui0 � r� and correlates
with normalized flow shear nFS D �Ls�Ad˝�=dr, where Ls D qLq=�.

8.5.3 Double Tearing Mode

Two rational surfaces can exist for hollow current profile in tokamak, which may be
unstable to double tearing mode (DTM).
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8.5.3.1 Reduced MHD Equation

Instead of solving full MHD equation, it is useful to solve so-called Reduced MHD
equation for strongly magnetized plasma [68]. Consider the plasma in a strong axial
magnetic field Bzez (and hence Bz is constant in lowest order) and poloidal field
given by the axial vector potential Az D � as,

B D ez � r C Bzez (8.101)

Integration of the Faraday’s law @B=@t D r � .u � B/ gives,

@A
@t

D u � B � rG; (8.102)

where G is a scalar potential. Neglecting A?, the perpendicular flow u? can be given
by using stream function 
 D G=Bz as follows.

.u � B/? D r?G , or, u? D ez � r
 (8.103)

From the z component of the (8.102), we have @ =@t C u � r D Bz.@
=@z/, or:

@ 

@t
� B � r
 D 0 (8.104)

Assuming the uniform density � D constant and taking the axial component of
the vorticity equation r � Œ�.@u=@t C u � ru/ D �rp C j � B�, the equation for the
stream function 
 is obtained using the vorticity ! D r2?
:

@!

@t
C u � r! D 1

�
B � rjz (8.105)

Equations (8.104) and (8.105) for two stream functions are called the lowest
order reduced MHD equations.

If we include dissipation mechanisms such as the resistivity � and the kinematic
viscosity �, we have following set of reduced MHD equation.

@ 

@t
� B � r
 D �jz � Ez (8.106)

@!

@t
C u � r! � 1

�
B � rjz D �r2! (8.107)

Jz D ��1
0 r2? ;! D r2?
;B D ez � r C ezBz;u D ez � r
 (8.108)

Column 8-6: Reduced MHD Equation
A set of the reduced MHD equations in a low ˇ cylindrical tokamak geometry
.r; �; �/ with periodicity of 2
R0 (� D z=2
R0) assuming � D 1 is given as
follows [381],

(continued)
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Here  is the poloidal flux function, 
 is the stream function, � is the
resistivity, � is the kinematic viscosity, j is the toroidal current density, !
is the vorticity, E is the electric field. B0 is the toroidal magnetic field, R0
is the major radius, time is normalized to the poloidal Alfven transit time
�pa D p

�0�a=B�.a/ and the uniform density is assumed. The resistivity � is
normalized to � D �pa=��, where �� D �0a2=�. The poloidal flux  is related
to the magnetic field as B D B0e� C r � e� and the stream function 
 is
related to the velocity field as u D r
 � e� .

The reduced MHD equation in toroidal geometry is given as follows [383],
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Here, grr; gr� ; g�� are the contravariant components of the metrics of the flux
coordinates (straight field line coordinates) system .r; �; �/.
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8.5.3.2 Linear Stability

Stability of DTM is analyzed in 1973 for cylindrical tokamak by Furth et al. [234].
DTM is a possible cause of rapid current penetration and disruptive instability
during current ramp [718]. Formation of hollow current profile and its rapid
relaxation associated with m=n D 4=1 mode is observed by Hutchinson [355].

While negative shear (NS) operation showed excellent plasma confinement to
exceed Qeq

DT D 1 in JT-60U [378], plasma is disrupted by ideal and resistive MHD
modes. While NS can be stable to ideal MHD if pressure profile is optimized, strong
ITB (Internal Transport Barrier) near qmin may destabilize ideal MHD instabilities.
This mode of operation can also be unstable to the DTM.

Linear eigenmode structure of DTM can be obtained using (8.90) as well in
the cylindrical tokamak. The radial proximity of two rational surface �rs=2a is
an important parameter for DTM, where eigenfunctions of inner and outer tearing
mode are coupled to form DTM if �rs=2a is sufficiently small.

Figure 8.23 shows linear eigenmode structures for three values of �rs=2a given
by Ishii-Azumi [381]. In case �r < 0:15, strong mode coupling occurs and the
growth rate follows m D 1 internal resistive tearing scaling � � �1=3. If the radial
separation �rs=2a is large, modes in two rational surfaces are decoupled and the
linear growth rate of the mode follows tearing mode scaling � � �3=5. The regime
0:15 < �r < 0:32 is called intermediate regime.

Pritchett [616] derived the dispersion relation for the DTM in sheet pinch:

O�5=4 O�h� Œ. O�3=2 � 1/=4�=� Œ. O�3=2 C 5/=4� D 8 (8.109)

O� D ��h.S=˛
2.dB0=dx/2/1=3; O�h D �h�h.S=˛

2.dB0=dx/2/1=3; (8.110)

where the scaled resistive growth rate O� and the ideal MHD driving energy O�h.
Pritchett [616] also derived a coupling condition as a DTM given by �rs=2a <

.ma=rs/
�7=9S�1=9, where S is Lundquist number. Flow and flow shear effect on

linear DTM is studied by Wei [813] and Wang [807] showing strong stabilizing
effect through decoupling between two rational surfaces.

Fig. 8.23 Comparison of linear radial eigenmode structures among (a) small (strong coupling),
(b) intermediate and (c) large (weak coupling) �r. Modified from Ishii [381]
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8.5.3.3 Nonlinear Stability

Nonlinear behavior of DTM can be analyzed using the reduced MHD equations
introduced in Sect. 8.5.3.1. More refined reduced equations in the cylindrical
tokamak and with toroidal correction are given in Column 8-6. Figure 8.24 shows
nonlinear DTM time evolution of kinetic energies of various m/n modes. In case
of small �r, mode grows exponentially until the collapse. In case of large �r,
mode just goes into Rutherford regime and saturates. On the other hand, non-linear
destabilization of DTM is found in the intermediate regime, which is attributed to
new type of reconnection discussed later.

Takeji [740] identified two types of resistive instabilities in JT-60U NS plasma.
One is non-disruptive resistive interchange mode and other is disruptive tearing
mode shown in Fig. 8.25. In the former case, temperature fluctuation was observed
only near the inner rational surface (typically q=3) showing no phase inversion
across the rational surface and the stability criterion of the resistive interchange
mode DR [249] is violated (DR > 0). These observations are consistent with resistive
interchange mode. The observation of resistive interchange mode is first reported in
DIII-D by Chu [123] at ˇN D 1:5 resulted in disruption showing importance of
pressure peaking factor, while this resistive interchange mode in JT-60U at ˇN < 1

does not lead to disruption.
For the latter case, precursor oscillation is observed before thermal collapse. The

temperature perturbation eTe just before the 1st thermal collapse show clear phase
inversion near the outer q D 3 surface with a growth time of ��1 � 0:5ms indicating
tearing mode and do not have any fluctuation near the inner q D 3 surface [740].

Ishii-Azumi [383] investigated resistive instability in toroidal geometry under
the condition of DR > 0 near the inner q D 3 surface, showing that mode structure
is not interchange but is DTM and they concluded existence of Rutherford regime
may cause precursor oscillation and nonlinearly destabilized DTM [381] later go to
thermal quench by the explosive instability. Ishii-Smolyakov further investigated
effect of toroidal flow and external magnetic perturbation [384] showing that
inner magnetic island may disappears. Other important effect is loss of bootstrap
current inside the magnetic island [98] on DTM since loss of bootstrap current has
stabilizing effect in negative shear (s < 0) regime and destabilizing effect in positive
shear (s > 0) regime [443], which may lead to single tearing mode at rational surface
in positive shear region. This is still left for future study.

Fig. 8.24 Comparison of nonlinear evolutions of DTMs among (a) small (strong coupling), (b)
intermediate and (c) large (weak coupling) �r. Modified from Ishii [381]
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Fig. 8.25 Time evolution of disruptive tearing mode in NS discharge. Reproduced with permission
from Takeji [740]. Copyright IAEA Vienna

8.5.3.4 Fast Reconnection

Magnetic reconnection is one of most important physics subjects in plasma physics.
Fast reconnection observed in solar flare is one of mysteries in plasma physics since
usual Sweet-Parker sheet reconnection do not have fast reconnection time [69].

As shown in Fig. 8.26, for sufficiently low resistivity �, a slowly growing
Rutherford regime-like phase is seen after the initial linear growth and it changes to
an explosive growth phase. The period of Rutherford regime increases with lower
resistivity �. The magnetic reconnection process in this nonlinearly destabilized
DTM has marked differences with usual Sweet-Parker sheet reconnection. The
growth rate of above nonlinearly destabilized DTM do not have any dependence
on plasma resistivity � in the final stage as shown in Fig. 8.27a. The peak current
associated with magnetic island increases with reduced plasma resistivity so that
�j D constant (Fig. 8.27b). Ishii [382] showed that the magnetic island becomes
more triangular shape and the current distribution associated with magnetic island is
concentrated in both poloidally and radially (point current) as shown in Fig. 8.28a in
case of nonlinearly destabilized DTM. On the other hand, standard strongly coupled



8.5 Resistive MHD Modes 273

Fig. 8.26 Time evolution of non-linear DTM for intermediate �r for different resistivity �. ME
and KE are magnetic energy and kinetic energy, respectively. Modified from Ishii [381]

Fig. 8.27 (a) Time evolution of 3/1 magnetic energy in nonlinearly destabilized DTM for various
plasma resistivity �. (b) Current distributions for various �. Modified from Ishii [382]
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Fig. 8.28 (a) Contour plot of current distribution for nonlinearly destabilized DTM (point
current). (b) That for standard DTM (sheet current). Modified from Ishii [382]

DTM (Fig. 8.28b) has sheet current distribution during explosive growth similar to
Sweet-Parker reconnection.

8.6 Kinetic MHD Equation

In tokamak, MHD modes such as Alfven Eigenmode (AE) and the Resistive Wall
mode (RWM) are strongly affected by the kinetic effects. In this section, we
introduce kinetic MHD equation following Cheng [119].

We consider an axisymmetric toroidal plasma with isotropic thermal and
anisotropic hot components with nh 	 nth, Th 
 Tth and ˇh 	 ˇth. The linearized
momentum balance equation is given by,

!2�� D r � p1 C B1 � .r � B/=�0 C B � .r � B1/=�0; (8.111)

where p1 is the perturbed plasma pressure tensor. For the perturbed magnetic and
electric fields, following ideal MHD relation holds.

B1 D r � .� � B/ (8.112)

E1 D i!� � B (8.113)

Also the thermal plasma pressure may follow adiabatic response.

p1th C � � rpth C �pthr � � D 0 (8.114)
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The perturbed plasma pressure tensor p1 can be given by following CGL form.

p1 D p1?I C .p1k � p1?/bb (8.115)

The parallel and perpendicular pressures p1k and p1? are given using the
perturbed velocity distribution function f1a by,

�
p1k
p1?

�

D
X

a

Z
d3vf1a

�
2."� �B/

�B

�

; (8.116)

where " D mav
2=2 is the particle kinetic energy and � D mav

2?=2B is the magnetic
moment.

The velocity space integral can be expressed in terms of the velocity coordinates
."; �; 	/ as follows,

Z
dv3 D

X

	

p
2


m3=2
a

Z 1

0

d"
p
"

Z h. ;�/

0

d�

h
p
1 � �=h

; (8.117)

where � D �B0=" is the pitch angle, B0 is the vacuum magnetic field at the tokamak
major radius Rp, h D B0=B. ; �/, and 	 D ˙1 is the direction of particle parallel
velocity. On a flux surface, the circulating particles correspond to 0 � � � hmin,
and the trapped particles correspond to hmin � � � h at a given � , where hmin D
MinŒh. ; �/� on the  surface.

The perturbed distribution function f1a can be given by a summation of the
adiabatic and non-adiabatic parts as follows,

f1a D e˚1
@Fa

@"
� �B1k

B

@Fa

@�
C ga; (8.118)

where ˚1 is the perturbed electrostatic potential, B1k is the perturbed parallel
magnetic field, Fa is the unperturbed distribution function, and the non-adiabatic
distribution function ga is governed by the following drift kinetic equation,

@ga

@t
C .vkb C vvvd/ � rga D � iFa

Ta

� Q! � !T�
	 �

e˚1 � evkA1k C �B1k
	
; (8.119)

where Q! D �Th!@lnFa=@K, and !T� D �i.Th=˝h/b � .rFa/ � r only operates on
the perturbed quantities, vvvd D .b=˝h/� .r.�B C�v2k/ is the toroidal drift velocity,
Th is the average temperature of the hot particle, ˝h is the cyclotron frequency of
the hot particle, and A1k is the perturbed parallel vector potential.

Since we are interested in MHD-type modes, we have E1k D 0 from Eq. (8.113)
to find following relation.

i!A1k D b � r˚1 (8.120)
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For low beta toroidal plasma, we may neglect perpendicular component of the
perturbed vector potential A1? to the E1? to find E1? � �r?˚1. Then,

˚1 � vkA1k D i

!

�
d˚1
dt

C vvvd � E1?
�

(8.121)

The drift kinetic equation (8.119) can be solved the method of characteristics
through the integration along the unperturbed guiding center trajectory.

ga D eFa

Ta

Q! � !T�
!

˚1 C g1a (8.122)

Assuming dŒFa. Q! � !T�/�=dt � 0, we have following expression for g1a.

g1a D
Z t

�1
dt0

�ieFa

Ta
. Q! � !T� /

�
ivvvd � E1?

!
C mh�B1k

e

�

(8.123)

Substituting (8.122) into (8.118) and noting the following relation

eFa

Ta

Q! � !T�
!

˚1 D ��? � rFa � e˚1
@Fa

@"
; (8.124)

the perturbed distribution function f1a can be given by

f1a D ��? � rFa � �B1k
B

@Fa

@�
C g1a (8.125)

The expressions for g1a are obtained for trapped and passing particles to obtain
perturbed parallel and perpendicular pressures, p1k; p1?. Linearized kinetic MHD
equations can be obtained from the momentum balance equation (8.111) and
the induction equation (8.113). But the system are now non-Hermitian integro-
differential eigenmode equations.

Taking an inner product of equation (8.111) with �� and integrating over the
plasma volume with an assumption of a fixed conducting boundary, we obtain
following quadratic form.

D.!/ D ıWf C ıWk � ıK D 0; (8.126)

where ıK is the fluid kinetic energy, ıWk is the potential energy of energetic
particles, and ıWf is the potential energy of MHD fluid as follows,

ıK D !2
Z

dV�j�j2 (8.127)

ıWk D �
Z

dVŒr � ��p0
1? C .p0

1? � p0
1k/.� � ��? � b � r��

k /� (8.128)
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ıWf D
Z

dVŒ�pthjr � �j2 C jB1j2=�0 C jr � �? C 2� � �?j2B2=�0

CJ � B
B2

.B1 � B/ � ��? � 2.� � ��?/.J � B/ � �?� (8.129)

Here p0
1k and p0

1? are given by,
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(8.130)

8.7 Alfven Eigen Modes

8.7.1 Global MHD Spectrum in Axisymmetric Tokamak

The linearized equations of ideal single-fluid MHD are given by (8.2)–(8.4). We
decompose the plasma displacement � and the perturbed magnetic field B1 in three
orthogonal directions r =jr j, b � r =jb � r j and b as follows.

� D � 

jr j2r C �s

B2
.B � r /C �b

B2
B (8.131)

B1 D Q 

jr j2r C Qs

jr j2 .B � r /C Qb

B2
B (8.132)

so that,

� D � � r ; �s D � � B � r 
jr j2 ; �b D � � B (8.133)

Q D B1 � r ;Qs D B1 � B � r 
jr j2 ;Qb D B1 � B (8.134)

The three components of the induction equation (8.4) can be written as,

Q D B � r� ;Qs D jr j2
B2

.B � r�s � S� / (8.135)

Qb D B2B � r �b

B2
� B2r � � � 2� � .B � r /�s � 2.� � r /B2

jr j2 �s C �0P
0� ;

(8.136)

where � D b � rb is the magnetic curvature, P0 D dP=d , and S is the negative
local magnetic shear defined as follows,

S D B � r 
jr j2 � r �

�
B � r 
jr j2

�

(8.137)
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Similarly, the momentum equation (8.2) can be decomposed as,

�0!
2�� D�0r � rP1 � jr j2B � r B � � 

jr j2 � .jr j2S � �0B � J/Qs � 2.� � r /Qb

(8.138)

�0!
2�jr j2�s D �0.B � r / � rP1 � �0.B � J/.B � r� / � B2B � rQs

�2� � .B � r /Qb (8.139)

!2��b D B � r.p1 C P0� /; (8.140)

where P1 D p1 C B1 � B=�0 is the perturbed total pressure. The r � � can express as:

r � � D r � r� 
jr j2 C � r � r 

jr j2 C .B � r / � r�s

B2
� 2� � .B � r /�s C B � r �b

B2

(8.141)

Using Eqs. (8.135)–(8.136) and (8.140), we can eliminate Q , Qs, Qb, and �b.
From (8.3), (8.138), (8.139) and (8.141), we obtain following linearized ideal MHD
eigenmode equation.

r � r
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�

(8.142)

where, C, D, E, F are .2 � 2/ matrix operators involving surface derivatives B � r
and .B � r / � r as follows,

C D
2

4
2� C12

0 �jr j2r �
� r 

jr j2



3

5 ; F D
2

4
��s C .B�r /

B2
� r F12

��0
B2

� � 

jr j2

3

5 (8.143)

D D
2

4
.jr j2S=�0 � B � J/ jr j2

B2
B � r �sP� 

jr j2
h
�s � B�r 

B2
� r
i

jr j2
h
1C �sPB�r

!2�

�B�r
B2

	i

3

5 (8.144)

E D
2

4
!2�jr j2

B2
C B � r

� jr j2B�r
�0B2



2�P�s

2�s
��0PCB2

B2
C �P

!2�
B � r �B�r

B2

	

3

5 ; (8.145)

where

C12 D !2� C P0� C jr j2B � r B � r
�0jr j2 C .B � J � Sjr j2=�0/Sjr j2

B2

(8.146)
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Fig. 8.29 (a) Shear Alfven gap spectrum due to toroidal coupling of m D 1 and m D 2 modes.
Reproduced with permission from Cheng [116]. Copyright AIP Publishing LLC. (b) C.Z. (Frank)
Cheng, who made a significant contribution to TAE theories and experiments

F12 D B � r jr j2
�0B2

S � J � B
B2

B � r � P0�s (8.147)

� D 2� � r ; �s D 2� � .B � r /=B2 (8.148)

r � r D jr j2 @
@ 

C .r � r�/ @
@�

C .r � r�/ @
@�

(8.149)

For a given plasma equilibrium, we may solve �s and r � � in terms of P1 and � 
from the 2nd equation of (8.142). If E�1 exists, solution of �s and r �� is substituted
into the 1st equation of (8.142) and P1 and � can be obtained. This procedures
fails if the inverse of E does not exist for a given ! at some surface  . If the
inverse operator E�1 does not exist, only non square integrable solution is possible
as eigenfunction of (8.142). Such situation can be found by,

E

�
�s

r � �

�

D 0 (8.150)

Then corresponding set of eigenvalue !2 forms continuous spectrum, which is the
toroidal generalization of D D 0 in Eq. (8.18). Typical solution of (8.150) is shown
in Fig. 8.29a. The shear Alfven and sound wave continuum .!=!A/

2 is given as a
function of the flux label  , where we can see spectrum gap.

Exercise: Derive (8.140) from (8.111).
Hint: Use J � B D rP and the vector formula b � .r � a/ D r � .a� b C a � .r � b/.
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8.7.2 High-n Alfven Eigenmodes

8.7.2.1 Reduced MHD Equation

A reduced MHD equation for the electrostatic potential ˚ for a medium n shear
Alfven eigenmode is given by Rosenbluth [639] (see Column 8-7 for proof):

.b � r/Œr2.b � r/˚�C r � �.!2=v2A/r˚
� D 0 (8.151)

Here, b D B=B is a unit vector along the magnetic field, ! is a wave angular
frequency, vA D B=

p
�0� is the Alfven velocity.

Consider a low beta plasma (ˇ D 2�0p=B2 	 1) in a large aspect ration tokamak
.a 	 R/ with a circular cross section. We expand ˚ in the Fourier decomposition
in poloidal and toroidal harmonics as:

˚.r; �; �; t/ D
X

m

˚m.r/exp.�im� C in� � i!t/ (8.152)

In this cylindrical coordinates, b � r˚ ! ikkm˚m, where

kkm.r/ D 1

R

�

n � m

q.r/

�

(8.153)

Here, q.r/ D rB�=RB� is a cylindrical safety factor. In the toroidal geometry, the
magnetic field strength is B � B0Œ1��cos��where � D r=R. This leads to a coupling
among poloidal harmonics. We assume the ordering kkmr 	 1 and m 
 1.

The lowest order form of equation (8.151) can be obtained neglecting the toroidal
effect. We obtain following uncoupled equation for the poloidal harmonic˚m for the
shear Alfven mode in the cylindrical plasma.

d

dr

��
!2

v2A
� k2km

�
d˚m

dr

�

� m2

r2

�
!2

v2A
� k2km

�

˚m D 0 (8.154)

This equation exhibits singular structure at r D rs defined by the shear Alfven
resonance condition ! D kkmvA.rs/ as given by (8.24). Apparently, sound wave
resonance is neglected in this reduced MHD treatment. This singularity is a regular
singular point, where non square-integrable solution becomes possible leading to
the appearance of continuous spectrum. At the singular point, collisionless wave
absorption occurs due to phase mixing process of continuous spectrum. If the shear
Alfven continuum has off-axis minimum in !2, discrete spectrum called GAE
appears just below the continuum as discussed in Sect. 8.1.

To a lowest order in the toroidal effect, ˚m couples only to the neighboring side
bands, ˚m˙1. Using (8.151), we obtain following system of coupled equations.
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Fig. 8.30 The Alfven
continuum resonance curves
for the normalized frequency
!R=vA for n D 5 in the
circular tokamak with
q.0/ D 1:05, q.a/ D 2:5, and
a=R D 0:25. Modified from
Rosenbluth [639]
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(8.155)

Here �c is a toroidicity coupling constant originally obtained by Fu [216] and refined
by Berk [55] as �c D 2.�0.r/C �/ � 5�=2.

The precise condition of singularity in this coupled equations is the vanishing of
the determinant whose elements are the coefficients of the terms with the highest
derivatives of the 
m as follows.
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D 0 (8.156)

Solving Eq. (8.156), the Alfven continuum resonance curves for the normalized
frequency !R=vA can be obtained as shown in Fig. 8.30.

As shown in Fig. 8.30, spectrum gap naturally produces minimum and maximum
in shear Alfven continuum in !2 at around nq D m C 1=2, where kkm D �kkmC1
is satisfied. Two cylindrical shear Alfven waves with poloidal mode numbers m and
m C 1 having same frequency ! D vA.nq D m/=.2qmR/ (qm D .m � 1=2/=n)
propagate in opposite directions along the magnetic field since kkm D �kkmC1.
Their beating forms a standing wave which is localized into a bound state to form a
discrete spectrum.
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8.7.2.2 High n Ballooning Mode Equation

For sufficiently high n mode Alfven Eigenmode, we can start from the ideal
ballooning mode equation given in (8.89) by adding inertial term from kinetic
energy integral

R
1
2
�!2j�j2dV under the approximation of r � � D 0.

1

J

d

d�

� jr˛j2
JB2

d˚

d�

�

C �!2

B2
jr˛j2˚ C 2�0p

0. /�w˚ D 0 (8.157)

In the large aspect ratio and low beta circular tokamak, this equation becomes:

d

d�

�

f .�/
d˚

d�

�

C g.�/˚ C˝2f .�/.1C 4�cos�/˚ D 0 (8.158)

where � D r=R, ˝2 D !2=!2A, !A D vA=qR, f .�/ D .1 C 2�0cos�/.1 C h2.�//,
h.�/ D s� � ˛psin� , s D rq0.r/=q is the magnetic shear, ˛p D �2�0q2Rp0.r/=B2,
�0 is a radial derivative of Shafranov shift, g.�/ D 2�0p0.r/rq�w D ˛pŒcos� C
h.�/sin�� [116, 218]. If we define  D p

f .�/˚ , this ballooning mode equation
leads to the Mathieu like equation in Sect. 8.1, (8.41).

d2 

d�2
C Œ˝2.1C 4�cos�/� F.�/� D 0 (8.159)

where, F.�/ D 1
p

f .�/

d2
p

f .�/

d�2
� g.�/

f .�/
(8.160)

If we neglect toroidal effect � ! 0, pressure gradient and Shafranov shift, the
ballooning mode equation (8.158) becomes:

d

d�

�

.1C s2�2/
d˚

d�

�

C˝2.1C s2�2/˚ D 0 (8.161)

This equation is equivalent to the cylindrical high n reduced MHD equation
(8.154) in the n ! 1 limit. Consider the quasi-mode expansion of ˚m with the
eigenmode expressed in the Fourier transform in the radial direction:

˚m D 1

2


1X

kD�1
ei.k��n�/

Z 1

�1
Q̊ .nq � k/.�/ei�.nq�k/d� (8.162)

This leads to the following transformations to produce (8.161) from (8.154).

d˚

dr
D dq

dr

d˚

dq
! inqs�

r
Q̊ ; kk˚ ! i

Rq

d Q̊
d�

(8.163)

Here s D r.dq=dr/=q is magnetic shear.
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If we retain the toroidal effect � and neglect pressure gradient and Shafranov
shift, the ballooning mode equation (8.158) becomes:

d

d�

�

.1C s2�2/
d˚

d�

�

C˝2.1C s2�2/.1C 4�cos�/˚ D 0 (8.164)

If we define  � p
1C s2�2˚ and F D s2=.1C s2�2/, we obtain semi-Mathieu

equation (8.41): d2 =d�2 C Œ˝2.1 C 4�cos�/ � F.�/� D 0. We can solve this
equation by the two-scale asymptotic matching method using � 	 1 as a small
parameter [115]. Since the lowest eigenvalue � of Mathieu equation (8.44) for small
h is � � 1, we obtain a lowest eigenvalue given as˝2 D 1=4. Thus the lowest order
solution becomes �  ccos˝�C ssin˝� �  ccos.�=2/C ssin.�=2/. Including
slow � dependence for c and s, we will get equation for c.�/ and s.�/. Cheng-
Chen-Chance solved this equation analytically to obtain TAE discrete spectrum
inside the gap for even parity and no discrete spectrum for the odd parity. As is
clear from the following equations, high n TAE frequency lies lower region of the
gap for low magnetic shear .s 	 1/ and it goes up to the upper region of the gap as
it increases .s 
 1/.

˝2 � 1

4

1

1C 4�.1 � s2
2=8/
(for s 	 1/ (8.165)

˝2 � 1

4

1

1 � 4�.1 � 
2=72s4/
(for s 
 1/ (8.166)

Column 8-7: Derivation of High-n Reduced MHD Equation
In the ideal MHD theory, the perturbed parallel electric field vanishes, i.e.
Ek D �b �r
�@Ak=@t D 0. This leads to a relation between the electrostatic
potential 
 and the parallel vector potential Ak.

�b � r
 C i!Ak D 0 (8.167)

The charge neutrality condition is given by the divergence free condition for
the current density, i.e. r � j D 0.

b � rjk C r � j? D 0; (8.168)

where jk is the parallel current density governed by Faraday’s law.

�0jk D �r2Ak D �r2.b � r
/=i! (8.169)

(continued)
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The perpendicular current is given by the polarization current, j? D einiupi,
where upi is the ion polarization drift given by (5.25). Using the fluid velocity
ui D E � B=B2 D �r
 � b=B and � D eini, we have

j? D b � �.@ui=@t/

B
D i!�r?


B2
(8.170)

Substituting expressions for jk and j? into the charge neutrality condition, we
have (8.151).

8.7.3 Categories of AE Modes

Large number of Alfven eigenmodes (AEs) are identified theoretically and exper-
imentally such as GAE (Global Alfven Eigenmode), TAE (Toroidicity induced
Alfven Eigenmode), EAE (Ellipticity induced Alfven Eigenmodes), NAE (Non-
circular triangularity induced Alfven Eigenmodes), RSAE (Reversed Shear Alfven
Eigenmode), BAE (Beta-induced Alfven Eigenmode), BAAE (Beta-induced Alfven
Acoustic Eigenmode), KTAE (Kinetic Toroidicity-induced Alfven Eigenmode), and
CAE (Compressional Alfven Eigenmode). The radial location and frequency range
of these AEs for standard ITER operation are shown in Fig. 8.31a.

The TAE is formed in the TAE gap by the coupling of m and m C 1 modes,
where m and m C 1 harmonics propagate in opposite directions along the magnetic
field (note: kkmC1 D �kkm and see Fig. 8.31b) and their beat generates a standing
wave and the equilibrium inhomogeneity localizes the standing wave into a bound
state [866]. The nominal frequency of the TAE is !TAE D !A=2, where !A D
VA=qR. TAE is first observed in TFTR by K.L. Wong [829].

Shear Alfven gap is also possible through other coupling mechanisms such as
elongation of the plasma shape or higher shaping both found by Betti-Freidberg,
which are called Ellipticity induced Alfven Eigenmodes (EAE) [63] (!EAE � !A)
and Noncircular triangularity induced Alfven Eigenmodes (NAE) [64] (!NAE �
3!A=2), respectively. EAE is first observed in JET by Fasoli [199] and NAE is first
observed in JT-60U by Kramer [474].

The shear Alfven eigenmode structures of continuum, GAE and gaps excited
by the external means are shown in Fig. 8.32. In the shear Alfven resonance, the
eigenmode structure is singular at the resonance (Fig. 8.32a) while it does not show
any singularity for the discrete modes such as GAE (Fig. 8.32b) and TAE/ EAE
(Fig. 8.32c).
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Fig. 8.31 Alfven continuum gap structure in ITER and AEs such as CAE, GAE, EAE, TAE,
KTAE, RSAE, BAE, BAAE calculated by NOVA [117]. Dashed curves correspond to the coupling
of Alfven and sound waves. Dashed horizontal lines correspond to the eigenmode solutions.
Reproduced with permission from Gorerenkov [256]. Copyright IAEA Vienna

The effect of finite pressure gradient (˛p) to high-n TAE is analyzed by
Fu-Cheng [217]. With the increase in ˛p, TAE frequency is reduced to reach lower
boundary of the frequency gap where strong absorption by continuous spectrum
occurs. Therefore there exists a critical value of ˛p above which TAE is damped.
The condition is given as ˛c D s2=.1C s/ for s < 1 and ˛c D s C 1 � p

2s C 1 for
s 
 1. This condition is broken if he magnetic shear is smaller than the inverse
aspect ratio, s < �. Near the magnetic axis, special two kinds of TAE can be
observed called cTAE (core-localized TAE) if the magnetic shear is small enough to
satisfy s < �. One of the cTAE is first found by Fu [219] giving the ˛c D 3� C 2s2,
where � D r=R and s D rdq=qdr is the magnetic shear. Another cTAE is found
by Berk [56]. These cTAEs are found to induce insignificant ˛ particle loss in the
reactor condition [96].

The kinetic effect such as finite ion Larmor radius and finite electron mass
effects has important effects. Important kinetic theory of toroidicity-induced Alfven
eigenmode is developed by Mett-Mahajan [550]. Inclusion of the kinetic Alfven
wave (KAW, see Sect. 5.2.2) changes the mode structure of TAE localized at
frequency gap to propagate in the outward direction with enhanced parallel electric
field. Outward propagating KAW will be damped more strongly by the electron
Landau damping. This mechanism is called the “radiative damping”.
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Fig. 8.32 Frequency spectrum and eigenmode structures of the plasma displacement in
(a) continuum, (b) single extreme (GAE), and (c) coupled extreme (TAE/EAE). Modified from
Heidbrink [314]

Candy-Rosenbluth [95] clarified kinetic effect to TAE produces new AE mode
called KTAE (Kinetic Toroidicity-induced Alfven Eigenmode), whose frequency
lies just above the TAE gap and propagates to the region between Alfven resonances
and survives locally as shown in Fig. 8.31b. While KTAE is also possible below the
gap, it propagates to outward subject to strong damping.

The eigenmode equation is obtained by adding finite Larmor radius term to
Eq. (8.154).

N�2 d4

dr4
˚m C d

dr

��
!2

v2A
� k2km

�
d˚m

dr

�

� m2

r2

�
!2

v2A
� k2km

�

˚m

C �c
!2

v2A

d2

dr2
.˚m�1 C ˚mC1/ D 0 (8.171)

where N�2 D �2i .3!
2=4v2A C �k2km/ and � D Te=Ti. This KTAE is observed in JET by

Fasoli [200].
GAE (see Sect. 8.1) is characterized by d!A=dr D 0 can also exist in tokamak

which is dominated by a single mode and localized near the extremum of the shear
Alfven continuum.

A special case of d!A=dr D 0 occurs with hollow q profile (NS: negative shear)
and so-called RSAE (Reversed Shear Alfven Eigenmode) can exist. The mode
structure of the RSAE is close to a cylindrical mode with toroidal mode number
n and single poloidal mode number m. RSAE is associated with a minimum of the
safety factor q profile as seen in Fig. 8.33a and produces local extremum of the shear
Alfven continuum similar to the GAE. The mode frequency of RSAE is:
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Fig. 8.33 (a) Eigenmode structure of RSAE [452]. (b) Typical frequency up chirping of RSAE
in JT-60U. Reproduced with permission from Kimura [452] and Kusama [481]. Copyright IAEA
Vienna

! � !A � kkVA D VA.m=qmin � n/=R; (8.172)

where VA is the Alfven velocity and R is major plasma radius. When qmin is rational
number (qmin D m=n), the mode frequency is zero. The TAE gap near qmin is qTAE D
m=n˙1=2n and!TAE D VA=2qTAER. Equation (8.176) implies RSAE may start from
zero frequency at qmin D m=n and chirp up to TAE frequency.

Kramer [475] showed finite pressure effect sets lowest RSAE frequency to a
fraction (0.2–0.4) of TAE frequency according to the beta value (0.25–1 %) in
agreement with JT-60U observations. When qmin decreases from m=n, the mode
frequency chirps up to the TAE frequency as seen in Fig. 8.33b, whose time
evolution is given by d!A=dt � mVAdq�1

min=Rdt. RSAE is sometimes called Alfven
Cascade Mode (ACM) due to this frequency chirping.

Breizman [77] showed that RSAE can exist due to second order in inverse aspect
ratio within the ideal MHD theory as well as other higher order effects such as finite
pressure effect [79, 475].

This RSAE is first observed in JT-60U (1996) by Kimura [452, 453] and is
explained as a special case of GAE mode by Fukuyama [230, 231]. Kusama [481]
showed clear chirping characteristics of RSAE, whose frequency approaches to TAE
frequency as shown in Fig. 8.33b. Berk [59] developed a theory of RSAE to explain
up chirping in RSAE. Nazikian also showed ˛ particle driven AE in WNS TFTR
plasma [577] is RSAE [578]. RSAE mode has been used to determine qmin [684].

Takechi [736] further studied time evolution and structure of RSAE. As qmin

decreases in the range of .mC1=2C�/=n < qmin < .mC1/=n, there are two RSAEs,
HRSAE (Higher frequency RSAE) and LRSAE (Lower frequency RSAE), whose
frequencies are given by fHRSAE � .n�m=qmin/vA=2
R and fLRSAE � ..mC1/=qmin�
n/vA=2
R. When qmin decreases further in the range of m=n < qmin < .m C 1=2C
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Fig. 8.34 Amplification of AE amplitude by RSAE-TAE interaction and RSAE-TAE diagram. As
qmin reduces, there are up chirping RASE (LRSAE) and down chirping RSAE (HRSAE) to collide
to form TAE. Reproduced with permission from Takechi [736]. Copyright IAEA Vienna

Fig. 8.35 (a) Alfven and sound wave continuum in cylindrical tokamak. (b) BAE and BAAE
gap structure by the interaction between Alfven and sound wave resonances. Reproduced with
permission from Gorelenkov [255]. Copyright AIP Publishing LLC

�/=n, TAE gap is formed and TAE frequency is given by fTAE � vA=4
qTAER, where
qTAE D .m � 1=2/=n. Schematic diagram of AE evolution is shown in Fig. 8.34.
Importantly, AE mode amplitude becomes bigger when the transition from RSAE
to TAE mode occurs.

At finite beta, inclusion of compressibility (r � � ¤ 0) in the MHD equation
produces coupling of acoustic wave and the shear Alfven wave. An additional beta
induced gap structure appears below the Alfven continua as seen in Fig. 8.35a.
Inside this beta induced gap, Beta induced Alfven eigenmode (BAE) exists found
by M.S. Chu [122] and A.D. Turnbull [778] numerically and experimentally by
Heidbrink [313]. The BAE mode frequency is roughly half the TAE mode frequency.
The BAE can be destabilized by the energetic electrons as shown by Cheng [120]
in HL-2A. Coupling between shear Alfven continuum and sound wave continuum
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also produces another important gap structure BAAE gap as seen in Fig. 8.35b and
also Beta induced Alfven Acoustic Eigenmode (BAAE) by Gorelenkov [254].

A unique n D 0 chirping mode is observed in JET ICRF experiment, where
energetically inverted ion distribution function is formed in the high field side.
Berk explained it as Global Geodesic Acoustic Mode (GGAM) [60]. The dispersion
relation of GGAM is given by !2 D .�p=�R2/.2C 1=q2/.

There are several damping mechanisms, such as electron Landau damping
by Fu-Van Dam [216], ion Landau damping by Betti-Freidberg [64], collisional
damping of trapped electrons by Fu-Cheng [218] continuum damping by Zonca-
Chen [865] and Berk [55], and radiative damping by Mett-Mahajan [550]. Direct
measurement of the damping rate was made by Fasoli [198]. The balance between
instability drive and damping gives the threshold dˇfast=dr, discussed for burning
plasma experiments in [253]. Not only ˛ particles but also MeV-class N-NBI
fast ion drive Alfven eigenmodes and beam deposition profile should be carefully
considered for the steady state operation scenario. So the off-axis neutral beam
injection current drive (NBCD) scenario is favorable to reduce central dˇfast=dr.
Actually tilting of N-NBI is considered to avoid TAE in ITER [614].

An interim review of Alfven Eigenmodes can be found in Heidbrink [312],
Mahajan [530], Wong [830], Zonca [868], Chen-Zonca [114], Heidbrink [314],
Breizman-Sharapov [78], and Gorelenkov-Pinches-Toi [256].

8.7.4 Energetic Particle Modes (EPM)

The AEs in previous section are normal modes of the background thermal plasma (a
kind of cavity modes). In these modes, the energetic particles (EPs) only contribute
to the imaginary part of the dielectric constant.

L. Chen [111] showed that completely new class of instabilities called Energetic
Particle Modes (EPM) appear when the EP pressure is comparable to the thermal
pressure. Since EPs modify real part of the dielectric constant, mode can be
destabilized where strong continuum damping is expected. The EPM is a type of
beam mode with the background plasma supplying neutralizing charge [314].

Important EPMs are the fishbone instability [109] as an interaction between
internal kink mode and EPs observed in PDX, EGAM (EP driven GAM), where
both the mode frequency and structure are strongly modified by the EP dynamics
[220]. The EWM given in Sect. 8.8.5 may be a kind of EPM.

Following the historical back ground, we start from the Fishbone instability” and
then describe energetic particle mode (EPM).

8.7.4.1 Fishbone Instabilities

The fishbone instability is first observed in PDX by McGuire [545]. L. Chen (1984)
explained this instability as EP driven internal kink mode [109].



290 8 MHD Stability

Fig. 8.36 Time evolution of
energetic trapped particle beta
ˇh and mode amplitude of the
internal kink component in
the fishbone instability.
Reproduced with permission
from L. Chen [109].
Copyright American Physical
Society
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It occur when the plasma is marginally stable to the internal kink mode
(ıWMHD � 0) and is destabilized by the energetic particle contribution to the energy
integral (ıWk > 0). They derived a system of equations for mode amplitude A and
energetic trapped particle beta ˇh to show similar behavior with the experiments as
shown in Fig. 8.36.

The linear gyro kinetic equation for hot particle under electromagnetic perturba-
tion can be derived as shown by Antonsen-Lane [22] similar to the electrostatic one
(5.100) and (5.108).

fh1 D eh

mh

�

˚1
@

@K
� �

˝h
B1k

@

@�

�

fh0 C gh (8.173)

�

vk
@

@l
� i.! � !dh/

�

gh D i
eh

mh
Qı (8.174)

where finite Larmor radius effect is neglected. Here, K D v2=2 and � D v2?=2B
are the kinetic energy and magnetic moment per unit mass, respectively and
˝h D ehB=mh is the cyclotron frequency of hot ion, @=@l � b � r is the
parallel derivative, ı D Q̊ � vkA1k C v2?B1k=2˝h, Q D .!@=@K C O!�h/f0h:
O!�h D �.i=˝h/.b � rlnfh0/ � r, !dh D �ivvvdh � r, vvvdh is the toroidal drift
velocity of the hot ion, and perturbed quantities ˚1 and A1k are related to � as
r˚1 D �i!� � B, and !A1k D �i@˚1=@l from vanishing parallel electric field
condition. Here the bounce average of f is defined as Nf D .

H
fdl=jvkj/=.H dl=jvkj/

and J D .�B=2K/r��?�.1 � 3�B=2K/.�? � �/ and � D b � rb D @b=@l is the
curvature of the magnetic field.

For a frequency ! much smaller than the hot ion transit and bounce frequen-
cies, Eq. (8.182) is solved for trapped .t/ and untapped .u/ particles as gh;u D
�ehQ˚1=mh! and gh;t D �ehQ˚1=mh! C ıgh;t, where ıgh;t D 2QK NJ=.! � N!dh/.

Using these perturbed velocity distribution function for trapped and untrapped
particles, we can evaluate parallel and perpendicular pressure perturbations of fast
particle, p1f ? and p1f k.
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(8.175)

The internal kink instability is close to the marginal stability and has critical
local poloidal beta value (ˇpc) so that ideal fluid energy integral can be modeled
as WMHD � .ˇ2pc � ˇ2ps/, where ˇps is the local poloidal beta at q D 1 singular
surface. From the dispersion relation (8.134), L. Chen derived a model evolution
equation for mode amplitude, A D Br1=B combined with fast particle beta evolution
equation as, dA=dt D � .ˇh �ˇcrit/A, and dˇh=dt D D�AZˇmax�.ˇh �ˇmin/, where
�.ˇh �ˇmin/ is a Heaviside function,� � 1:1�107s�1, ˇcrit � 0:0025, D � 0:5s�1,
Z � 2:5 � 106s�1, ˇmax D ˇcrit=.1 � f=2/, f D 0:4, ˇmin D .1� f /ˇmax.

This theory implies that introduction of the energetic particles produces two
modes, one is discrete MHD mode and the other is energetic particle mode whose
frequency is characteristic energetic particle frequency such as transit, bounce and
precession.

8.7.5 Nonlinear AE Modes

Interaction of AE with energetic particles produces radial transport or loss of fast
ions [180], damage of first wall [817] and reduction of fusion reaction [385, 687].
These processes may become strongly nonlinear. There are typically four nonlinear
attractor behaviors, (1) saturation, (2) limit cycle oscillation, (3) chaotic nonlinear
state, (4) explosive growth with mode frequency sweeping. Type (4) is observed
by Shinohara [687–689] as shown in Fig. 8.37, called the “Fast Sweeping Mode”,
which could be explained by the Berk-Breizman model to be given below. The mode
is associated with the “Abrupt Large Event (ALE)”, which could be explained by
the EPM [80].

So-called Berk-Breizman (BB) model provides a clear view of nonlinear behav-
ior of AE, which naturally explains type (4) instability [57, 58].

Key idea is that the coherent structure with varying frequency represents
nonlinear traveling waves in fast particle phase space. Like the beam modulation
instabilities, the frequency modulation occurs spontaneously as a result of the
resonant particle trapping by the excited wave. The initial modulation matches the
frequency of a plasma eigenmode. frequency shifts from the initial frequency occurs
as the coherent structure evolves similar to the nonlinear Bernstein-Greene-Kruskal
(BGK) mode [61] rather than slow evolution of the linear eigenmode.
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Fig. 8.37 Fast Frequency Sweeping (fast FS) mode observed in JT-60U. Reproduced with
permission from Shinohara [687]. Copyright IAEA Vienna

Column 8-8: BGK Mode [473, 771]
The Bernstein-Greene-Kruskal (BGK) mode [61] is an exact static solution of
Vlasov-Maxwell equations (Fig. 8.38). It can be found by taking @fa=@t D 0

while keeping the finite electrostatic potential ˚ . One dimensional Vlasov-
Poisson equation can be expressed as,

vx
@fa
@x

� ea

ma

@˚

@x

@fa
@vx

D 0 (8.176)

�0
@2˚

@x2
D e

Z
fe.x; vx/dvx � eZi

Z
fi.x; vx/dvx (8.177)

The general solution of (8.180) is fa D fa.mav
2
x=2C ea˚=ma/ .a D e; i/.

This has a simple meaning that any function of the total energy E D mav
2
x=2C

(continued)
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Fig. 8.38 Typical BGK solution showing the phase space vortex. If V.˚/ has a well in the
region of interest, periodic wave solution with a discrete spectrum appears. Interaction of the large
amplitude wave with the wave-trapped particles causes spatial modulation of the wave potential

ea˚ is a solution of this Vlasov equation. Particle motion in the phase space
.x; vx/ is along the constant E surface. If the phase space density (distribution
function) is constant on constant E surface, it can be a steady state solution.

Converting the variable vx to E, the velocity integral is given as follows,

Z C1

�1
fa.vx/dvx D 2

Z 1

ea˚

fa.E/dE
p
2ma.E � ea˚/

(8.178)

Substituting this expression into (8.177), right and side becomes a function
of ˚ denoted by �0G.˚/. The Poisson equation becomes @2˚=@x2 D G.˚/.
Multiplying by @˚=@x and integration by x, we have,

1

2

�
d˚

dx

�2
C V.˚/ D const; where V.˚/ D �

Z ˚

˚0

G.˚/d˚ (8.179)

We obtain following solution for x.˚/.

x � x0 D ˙
Z ˚

˚0

d˚=
p
2.V.˚/ � V.˚0// (8.180)

Each Lagrangian is a summation of free-particle, field-particle, and field
Lagrangian [443]. Simplified Lagrangian is given by assuming adiabatic response
for the background plasma and Lw is approximated by the quadratic form of wave
amplitude [57] and its contribution can be regarded as a part of electric field, QE.

The nonlinear behavior of AE is determined by a competition among drive by
resonant particles, the external damping, the particle relaxation to recover positive
df=dv, and particle trapping to smooth it. Chirping solutions occurs in rare collision
regime when hole and clump structure is formed in phase space and the clump
propagates toward low energy (i.e. low frequency) and hole propagates toward
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Fig. 8.39 (a) Comparison of fast FS mode in JT-60U and (b) simulation using Berk-Breizman
model. Reproduced with permission from Lesur [500]. Copyright IAEA Vienna

high energy (i.e. high frequency). [58]. Lesur [499] developed a code to solve
corresponding full f and delta-f Vlasov equation numerically and explained above
frequency sweeping (FS) as shown in Fig. 8.39 showing the effectiveness of BB
model and also importance of collisional drag and diffusion in velocity space
[500, 509].

Salon: Phase Space Hole in Space Plasma Physics [603]
A quasi-static stationary structure is observed by an high time resolution
electric field probe in 1977 in the auroral ionosphere, later called the
electrostatic solitary wave (ESW). Tetreault [762] implied that the ESW is
caused by the phase-space hole predicted as one of BGK mode. The BGK
hole is associated with localized depletion of phase space densities and they
propagate at thermal speed of the plasma. The observed slowly moving
structure (a few tens km/s) corresponds to ion phase space hole and fast
moving structure (up to 1000 km/s) is electron hole. These holes are also
observed in the plasma sheet boundary layer, magnetosheath, and bow shock.
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8.8 Resistive Wall Modes

8.8.1 RWM in the Cylindrical Tokamak

All advanced tokamak operating regimes (WS, NS, CH) for steady state tokamak
operation require wall stabilization or are benefitted to increase operating plasma
beta value by wall stabilization. As discussed in Sect. 1.5, maximum normalized
beta attainable without wall stabilization is ˇN D 2:8 according to Troyon [772].

The wall stabilization works for short time scale t 	 �w with the resistive wall
time constant �s D �0	bd, where 	 is the electrical conductivity, b is the radius of
wall, d is the thickness of the wall. As discussed in Freidberg [211], the resistive wall
do not stabilize the external kink modes but reduces the growth rate significantly,
where we can assume ! � 0. The mode is called the resistive wall mode (RWM).
Since ! � 0, the mode behavior in the cylindrical plasma is governed by the
marginal stability (Newcomb) equation.

L � d

dr

�

f .r/
d�

dr

�

� g.r/� D 0 (8.181)

Taking �� (8.181) and integrating over the plasma volume, Freidberg gives
following form of energy integrals for the case of wall at infinity (ıW1) and for
the case of ideal wall at r D b (ıWb).

ıW1 D 2
2Rp

�0
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ıWb D ıW1 C 2
2Rp

�0
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jmj
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.�b ��1/�2a (8.183)

�b ��1 D �1
.I0

m.ka/=K0
m.ka//� .Im.ka/=Km.ka//

.I0
m.kb/=K0

m.kb//� .I0
m.ka/=K0

m.ka/
; (8.184)

where �1 D �jmjKm.ka/=kaK0.ka/, F D kBz C mB�=r, OF D kBz � mB�=r, and
k20 D k2 C m2=r2. The resistive wall mode occurs when ıW1 < 0 < ıWb.

Solution of the perturbed magnetic field at two vacuum regions separated by the
thin wall can be expressed by the scalar potential as B1 D r
, where 
 is given
by the modified Bessel functions, Im.kr/ and Km.kr/. With appropriate boundary
conditions at r D b and r D 1, Freidberg obtained following dispersion relation.

��s D k2b2 C m2

k2b2K0
m.kb/I0

m.kb/Œ1 � .I0
m.ka/K0

m.kb/=I0
m.kb/K0

m.ka/�

ıW1
ıWb

(8.185)
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This can be rewrite in a simple form by defining effective wall time constant �w.

��w D �ıW1
ıWb

; (8.186)

where �w D �s.1 � .a=b/2jmj/=2jmj in tokamak ordering (kb 	 1).

8.8.2 RWM in General Tokamak Equilibrium

In this section, we sketch the formulation of the Haney-Freidberg [285] on the RWM
stability in general tokamak equilibrium, which in the end gives same formula for
RWM growth rate, Eq. (8.70). The procedure is surprisingly similar to that for the
cylindrical plasma given in the previous section.

Due to the stabilizing effect of the eddy current in the resistive wall, the plasma
inertial effect in (8.1) is negligible on the time scale of interest. So the relevant
equation is 2D Newcomb equation.

F.�/ D 0; (8.187)

where F is the linear ideal MHD operator. Similar to the cylindrical tokamak case,
we take � � F.�/ and integrate over the plasma volume, we have following equation.

L �
Z

P
� � F.�/dV D 0; (8.188)

which can be put in the following familiar form (see Column 8-1).

L D ıWP C ıWV (8.189)

ıWp D 1

2

Z

P

� jıBj2
�0

� � � .J � B1/� � pjr � �j2 C .� � rp/r � �

�

dV (8.190)

Here we use � for adiabatic constant instead of � to differentiate with the growth
rate. The vacuum energy ıWV can be divided into the vacuum energies inside and
outside of the resistive shell and the surface energy at thin resistive wall, by which
L can be given in the following form.

L D ıWP C ıWVi C ıWVo C 	�d

2

Z

Sb

jn � A1j2dS (8.191)

ıWVi D 1

2�0

Z

Vi

jr � A1ij2dV; ıWVo D 1

2�0

Z

Vo

jr � A1oj2dV (8.192)
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Here, n is outward-facing unit normal vector to shell surface: Sb and 	 is the
electrical conductivity of the resistive wall. The energy integrals for the case of
wall at infinity (ıW1) and of ideal wall at r D b (ıWb).

ıW1 D ıWP C ıW1
V (8.193)

ıW1
V D 1

2

Z

V

jB1
1 j2
�0

dV D 1

2�0

Z
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.n � A1
1 / � n � .n � r � A1

1 /dS (8.194)

ıWb D ıWP C ıWb
V (8.195)

ıWb
V D 1

2

Z

V

jBb
1j2
�0

dV D 1

2�0

Z

Sp

.n � Ab
1/ � n � .n � r � Ab

1/dS (8.196)

Here, no-wall eigenfunction is used commonly for both ıWb and ıW1 and n is
outward-facing unit normal vector to plasma surface: Sp. Expressing the perturbed
vector potentials by a combination of A1

1 and Ab
1, Haney-Freidberg obtained A1i D

.1� c2/A1
1 C c2Ab

1, and A1o D .1� c2/A1
1 , where c2 is a free parameter. They also

give the energy integral L in the following form.

L.c2/ D ıW1 C c22.ıWb � ıW1/C 	�d.1 � c2/2

2

Z

Sb

jn � A1
1 j2dS (8.197)

The free parameter c2 can be determined from @L=@c2 D 0, which is substituted
into L.c2/ D 0. We obtain final form of the growth rate expression as:

��w D �ıW1=ıWb; (8.198)

where �w D �0	d Nb and Nb is given by:

Nb D
Z

Sb

jn � A1
1 j2dS=

Z

Sb

.n � A1
1 / � n � .n � r � Ab

1/dS (8.199)

Hu-Betti [351] consider the mode resonance with particle drifts at the magnetic
precession drift frequencies of trapped particles as a possible damping mechanism.

8.8.3 Ferromagnetic Wall Effect on RWM

Use of ferritic material in fusion DEMO and beyond is closely related to the
choice of blanket structural material. Since reduced activation ferritite/Martensitic
steel (RAF) is a primary candidate for the blanket structural material, effect of
magnetization to RWM is an important subject. Ferromagnetism attracts perturbed
magnetic field to wall and may destabilize RWM. Kurita [479] found that order
of 8 % reduction in beta limit is expected for effective relative permeability
�r D �=�0 D 2.



298 8 MHD Stability
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b
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Fig. 8.40 (a) Schematics of rotating plasma, resistive wall and RWM fixed to the wall.
(b) Discharge trajectories of DIII-D and JT-60U in (VtjqD2,Cˇ) plane. X and green open box show
onsets of RWM. Plasma is stable to RWM for absolute toroidal rotation above 20 km/s. Modified
from Garofalo [245] and Takechi [737]

8.8.4 Stabilization of RWM in Tokamak

In a rotating tokamak, the RWM is fixed to wall and rotating plasma will slip with
respect to the mode as shown in Fig. 8.40a. The plasma in the rotating frame sees
RWM as a traveling wave and experiences resonant wave-particle interaction to
damp this traveling wave by phase mixing of continuum modes (or by Landau
damping of KAW produced by the mode conversion of the shear Alfven wave).

In 2007, both Reimerdes [623] in DIII-D and Takechi [737] in JT-60U showed
that RWM is stabilized with small toroidal rotation as shown in Fig. 8.40b. Both
machine showed that critical rotation speed is rather small at �20 km=s which
is �0:3% of Alfven velocity. This critical velocity to stabilize RWM is close to
the expectation by the continuous damping of shear Alfven wave [623]. Such low
toroidal rotation may be driven by so-called intrinsic rotation [167, 628]. While
“small” toroidal rotation may stabilize RWM in ITER and DEMO, such rotation
may be decelerated due to mode locking. In such case, rotational wall stabilization
may be ineffective. To ensure wall stabilization, active feedback control of RWM
using sector coils is important. Stabilization of RWM in high ˇ, low toroidal rotation
plasma is successfully demonstrated by Sabbagh [645].

8.8.5 Energetic-Particle-Driven Wall Mode

While RWM can be stabilized with toroidal rotation of >0:3% of Alfven velocity,
different bursting MHD instability called Energetic-particle-driven Wall Mode
(EWM) was observed by Matsunaga [544] in beta regime between no-wall beta
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Fig. 8.41 (a) Observation of the Energetic-particle-driven Wall Mode by the perpendicular
Neutral Beam Injection. (b) Observed range of EWM is between no-wall limit and with wall limit.
Reproduced with permission from Matsunaga [544]. Copyright American Physical Society

limit and wall beta limits during the perpendicular neutral beam injection as shown
in Fig. 8.41a. The mode is oscillatory with its real frequency close to the precession
frequency of the trapped energetic beam ion. This mode has been excited by the
interaction of trapped energetic particles with marginally stable mode in the wall-
stabilized high ˇN regime.

This observation is explained as a fishbone like bursting mode (FLM) with
threshold energetic particle beta ˇ�

c D 0:141.ˇ� D ˇh=ˇ/ by Hao [287].
Hao solved the dispersion relation of the RWM .��i!r/�w D �.ıW1CıWMHD;h C
ıWk/=.ıWb C ıWMHD;h C ıWk/ using the approximate expressions for the variables,
��

w D �0	bd.1 � a2m=b2m/=2m, �? D am.r=a/m�1.er C ie� /ei.m��n
/=Œ.m �
nq/a=Rq�.

Quite recently, Shiraishi [693] formulated more exact kinetic energy integral for
the rotation plasma based on the modern gyrokinetic formulation showing that the
growth rate may be much reduced than the simple doppler shifted kinetic treatment.



Chapter 9
Technology Developments for Fusion Power

Abstract Introduction of key fusion technologies such as superconducting magnet,
neutron damage and structural materials, tritium breeding and neutron multiplier
materials, fusion neutronics, tritium and deuterium chemistry, negative ion source
development, Gyrotron development for ECRF are described. Section 9.1 gives
brief survey of superconductivity such as Ginzburg-Landau equation, type I and
II superconductivities, superconducting materials, and the conductors. Section 9.2
gives brief introduction of neutron irradiation processes, and resulting important
damages such as DBTT shift, creep swelling, and introduction of the reduced
activation ferritic/martensitic steel including the optimization of Cr contents against
DBTT shift and possible operation regimes, and the introduction of SiC/SiC com-
posite and its issue, especially the reduction of thermal conductivity due to neutron
irradiation. Section 9.3 introduces solid and liquid tritium breeding materials with
their properties, Li recovery from sea-water, and neutron multipliers such as Be

metal and inter metallic compounds of Be. Section 9.4 introduces neutron slowing
down process and its spectrum, and fusion neutronics calculation and facilities.
Section 9.5 gives physical chemistry of hydrogen, chemical properties of hydrogen
isotopes, isotope separation method based on chemical exchange reaction between
liquid and gas. Section 9.6 and 9.7 are introduction of N-NBI and ECRF system
including ion source and gyrotron operations.

Further reading :
Books: Tinkham (2004)[766] for introduction to superconductivity. Moore (1962)
[558] for physical chemistry. Benedict (1981)[53] for Isotope separation. Souers
(1986) [710] for hydrogen properties.

Reports: Both IAEA-TECDOC-855 and RS-G-1.7 are important to see derived
values of concentration for exemption while giving quite different values.
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9.1 Superconducting Technology for Magnet System

In tokamak, magnetic field is produced by the coil current in the magnet and
the power loss in the magnet becomes an important issue. Therefore, use of
superconducting coils and its technical development becomes essential for fusion
to be an efficient energy system.

9.1.1 Superconductivity

The discovery of superconductivity by K. Onnes (Fig. 9.1a) in 1911 [590] is just
3 years after the development of helium liquefaction technology. Meissner in 1933
[549] discovers the so-called Meissner effect, in which the magnetic field is expelled
from the superconductor if the temperature is less than the critical temperature, Tc.

The superconductor which exhibits full Meissner effect is called type I supercon-
ductor and that exhibits the partial Meissner effect is called type II superconductor.
J.E. Kunzler in 1961 [477] discovered a type II superconducting material Nb3Sn
having the upper critical magnetic field Bc2 more than 10 T. This leads to the
strong interests in the application of superconductivity to the magnet. Large
superconducting coils such as those for ITER are developed along this line.

The type I superconductor becomes superconducting state only below the
critical magnetic field Bc, which is relatively lows and not useful for the practical
application. The type II superconductor has two critical magnetic field Bc1 and Bc2.
For B < Bc1, the magnetic field is completely expelled. For Bc1 < B < Bc2, the
superconductor is in the “vortex state” and the magnetic field is partially expelled.

Phenomenological equation to explain the Meissner effect is given by London
in 1935 [525]. They assumed so-called London equation J D A=�0�2L, where
the current is proportional to the vector potential instead of Ohm’s law J D 	E.
Taking the rotation of the Maxwell equation r � B D �0J and substituting London
equation, we have diffusion type equation, r2B D B=�2?. This equation does not
have a solution of the uniform magnetic field .B D B0/ and also gives J D 0 at
B D 0. The constant �L D c=!pe D .�0mec2=nee2/1=2, where me and ne are mass
and number density of superconducting electrons. This penetration length is called
London’s penetration length and is 1–10�m for pure metals. This is nothing but
a collision less skin depth in plasma physics. Ginzburg-Landau (GL) (Fig. 9.1b,a)
theory in 1950 [247] is the first to explain that superconductivity is the state in which
the quantum effect appears in the macroscopic scale. This theory naturally derives
the London’s penetration length and also leads to the concept of GL coherence
length and explain vortex state in the type II superconductor.

While microscopic state is described by the wave function of quantum mechan-
ics, it is the normal way to think that macroscopic state of the matter with large
number of particles can be expressed by the deterministic parameters such as
the density and the temperature of the matter. Ginzburg (Fig. 9.1b) and Landau
(Fig. 9.1c) changed this view that the quantum mechanical wave function in addition
to the fluid density and the temperature is necessary to describe the macroscopic
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Fig. 9.1 (a) H.K. Onnes (1853–1926). (b) V. Ginzburg (1916–2009), (c) L.D. Landau
(1908–1968)

state of the electron fluid under superconductivity, where the square of the wave
function is assumed to be the electron density and not the probability density.

Let ns.r/ D j .r/j2 is the local density of the superconducting electrons.
The wave function  .r/ can be derived by the variational principle to minimize the
action integral S D R

FsdV , where Fs D FN C ˛j .r/j2 C ˇj .r/j4=2 C mcv
2=2,

where mcv
2=2 D .1=mc/j.�i„r � ecA/ j2 is a kinetic energy of electron and

mc D 2me and ec D 2e are mass and charge of Cooper pair to be discussed later.
The FGL D ˛j .r/j2 C ˇj .r/j4=2 is called Ginzburg-Landau potential, where
˛ D ˛0.T � Tc/=Tc and ˛0 > 0 and ˇ > 0. GL potentials for T > Tc and T < Tc are
shown in Fig. 9.2. The potential difference in case of T < Tc is �FGL D B2c=2�0.
The resulting equation is the following Ginzburg-Landau (GL) equation.

�
1

2mc
.�„r � ecA/2 C ˛ C ˇj j2

�

 D 0 (9.1)

The one dimensional GL equation �.„=2m/d2 =dx2 D ˛ obtained by neglecting
A and the nonlinear term has an oscillatory solution with the characteristic length
(GL coherence length) � D .„2=2m˛/1=2.

The ratio of GL coherence length and London’s penetration length � D �L=�

is called the Ginzburg-Landau parameter. This GL parameter characterizes type I
superconductor .� < 1=

p
2/ and type II superconductor .� > 1=

p
2/.

An important difference of the type I and type II superconductors is the difference
in the mean free path at the normal conducting state. If the mean free path is
short, the coherence length comes short and the penetration length is long, which
leads to the larger � and the type II superconductivity. The vortex state is a mixed
state, in which some regions are in the normal state and are surrounded by the
superconducting regions. Key concepts in type II superconductivity such as the
quantization of the magnetic flux, vortex filament, upper and lower critical fields
are established by Abrikosov [2].
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Fig. 9.2 (a) Ginzburg-Landau potential for T > Tc. (b) Ginzburg-Landau potential for T < Tc

Microscopic theory of superconductivity is established by the BCS (Bardeen,
Cooper, and Schrieffer) theory in 1957 [44]. Absolute square of the quantum
mechanical wave function gives the probability density but this gives the particle
density and the gradient of the phase gives particle flux when the large number
of Boson particles moves simultaneously. The superfluid state of the liquid 4He is a
typical example. In the GL theory, the electrons appear as if they are Boson particles.

Since electrons are Fermions, the Pauli exclusion principle prohibits that the two
electrons take the same motion state. Why macro-scale number of electrons align the
translational motion? The BCS theory gives the answer for this question. The key is
a Cooper pair. The two electrons form a Cooper pair by the attraction between the
electrons. Electron is a Fermi particle but the Cooper pair consisting of two electrons
becomes a Boson.

Since Bosons can occupy in the same state, all Cooper pairs can enter the state
of lowest energy. In this way, the macroscopic number of electron Cooper pairs
fill inside the superconductor. Thus, macro-scale number of Cooper pairs has same
phase leading to the superconducting current. Source of attractive force to create
a Cooper pair is the electron-phonon interaction, where a phonon emitted from an
electron is absorbed by another electron. Near the Fermi energy level, this becomes
the attractive force. Viewing from the BCS theory, GL theory is the quantum
mechanics of the phase-aligned Cooper pairs. Gor’kov in 1959 [257] derived the
Ginzburg-Landau theory from the microscopic BCS theory.

The phase of the macroscopic wave function is the essential quantity to describe
electron motion in a superconductor. Its phase velocity is vph D !=k and the group
velocity is vg D d!=dk, where k is the wave number. Wave number k of the Cooper
pair is given by the canonical momentum as k D .mavvv C eaA/=„.

The essence of the BCS theory is the formation of Cooper pairs via phonon
attraction. Therefore, higher critical temperature may be expected for higher phonon
attraction. But, the cooper pairs becomes smaller in size and becomes two-electron
molecule if the phonon attraction is strong. When the number of two electron
molecules increases in the conductor, this leads to a transition to the insulator.
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Salon 9-1: Higgs Particle and Ginzburg-Landau Potential
In the quantum theory of fields, existence of materials is understood as “field”
instead of “particle”. The “particle” is expressed as the “oscillation” of the
field.

The “photon” is a typical example that the “particle” of light is produced as
the electromagnetic oscillation in the electromagnetic field. Known particles
can be explained by some quantum fields.

Various particles and forces are explained by so-called the “spontaneous
symmetry breaking”. The spontaneous symmetry breaking produce “mass” to
the massless gauge field by assuming the Higgs field immersed in the vacuum.
The oscillation of the Higgs field is called “Higgs particle” [185, 320].

Concept originates from the Nambu’s spontaneous symmetry breaking
of the chiral symmetry to produce most of the hadron mass. To describe
these processes, the Lagrangian having similar structure of Ginzburg-Landau
potential shown in Fig. 9.2 is used. In case of BCS theory, this appears as
sufficient condition to produce cooper-pair.

The potential difference in j j direction becomes an origin of mass and the
massless freedom in azimuthal direction becomes an origin of photon. The
Higgs boson with a mass of 125 GeV has been observed in 2012 at both CMS
[131] and ATLAS [31]. Peter Higgs and Francois Englert received the Nobel
prize in physics in 2013 after their theoretical discovery of Higgs particle.

9.1.2 Superconducting Materials

Superconducting materials for magnet are desired as much as possible to operate
at high field, high current density, and high temperature. In addition, workability
to form a superconducting wire and coiling is required. Furthermore, it must
have sufficient strength to withstand the electromagnetic force (Lorentz force) and
its effect on degradation of superconducting properties must be small. Important
characteristics of superconducting materials are transition temperature Tc, upper
critical field Bc2, and critical current density jc. Table 9.1 shows the characteristics
values of NbTi, Nb3Sn, and Nb3Al developed for large coil.

While NbTi is alloy, both Nb3Al and Nb3Sn are inter-metallic compound. In the
alloy material, it is processed to the form of conductor cable from the solid solution,
and then improves its superconducting properties by the work hardening and age

Table 9.1 Critical
temperature Tc and upper
critical field Bc2 for
NbTi;Nb3Sn and Nb3Al

Superconducting material NbTi Nb3Sn Nb3Al

Critical temperature Tc (K) 10.7 18.3 18.9

Upper critical field Bc2 (T) at 4.2 K 17 22 32
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Fig. 9.3 Critical current
density as a function of the
magnetic field for various
superconducting materials,
NbTi, Nb3Sn, Nb3Al, Bi-2212,
YBCO

precipitation hardening. Since inter-metallic compound has almost no workability,
the raw material is processed into a cable and is transformed into the compound by
the diffusion reaction.

For stability of the superconductor, the superconducting material must be
combined with normal conductor with high electrical conductivity such as Cu.
This is done by carrying out co-processed by hole die drawing. In this case, it is
necessary that the mechanical hardness of a superconducting alloy is close to that
of copper. NbTi meets this requirement and is successful industrialization. High-
purity aluminum has a higher electrical conductivity than copper at low temperature
as used in TRIAM-1M, but it is very soft. Formation of the multi-filament wire is
processed using raw materials for the inter-metallic compound cable.

Strain tolerance characteristics of the superconducting wire varies greatly
between intermetallic compounds and alloys. In the case of NbTi alloy, significant
Ic degradation is not observed even at a strain of 0:5%, and degradation of about
5% for Ic at 1:5%. On the other hand , in the case of Nb3Sn, Ic degradation starts
from 0:1% and causes the degradation in the level of 20% at 0:3%.

Mueller at IBM laboratory in Zurich predicts high critical temperature will be
realized near the transition to the insulator. Bednorz-Muller in 1976 [52] discovered
the oxide high-temperature superconductor made of mixed oxide of copper (Cu),
lanthanum (La) and barium (Ba). They were awarded the Nobel Prize in Physics
in 1989. Since then, various high-temperature superconductors are produced.
Figure 9.3 shows the magnetic field dependence of the critical current density at
4:2K of YBCO and Bi-2212 high-temperature superconductors as compared with
that of NbTi, Nb3Sn, and Nb3Al.
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Fig. 9.4 Bird’s eye view of ITER superconducting magnet system. With kind permission of ITER
Organization (http://www.iter.org/)

9.1.3 Superconducting Magnet

Superconducting magnet for ITER consists of 18 Toroidal Field (TF) coils, a
central solenoid (CS) coil, and 6 poloidal field (PF) coils and correction coils. The
maximum field of TF coil is 11:8T, the magnetic energy of TF coils is �41GJ, and
the total weight is �6000t. The maximum field of CS coil is 13T and total weight
is �950t. The total weight of magnet system is �10;500t. Figure 9.4 shows a Bird’s
eye view of ITER superconducting magnet system.

While Nb3Al compound is a promising material for the magnet system, NbTi
alloy and Nb3Sn compound are used for ITER. NbTi magnet usually operate less
than 8T and Nb3Sn magnet can operate up to 13T. High Tc superconductor such as
BSCCO and YBCO are used for the current leads.

For the magnet use, multi-filament wire (strand) is necessary to reduce hysteresis
loss and improve stability. Major fabrication techniques of multi-filamentary Nb3Sn
strands are bronze process and internal tin diffusion process.

Figure 9.5a shows a cross section of Nb3Sn strand for the ITER TF conductor.
Main specifications of Nb3Sn strand for ITER TF magnet are strand diameter of
0:82˙ 0:005mm, twist pitch of 15˙ 2mm, unit length of � 1000m, Copper ratio
of 1:0 ˙ 0:1, Chrome plate thickness of 2:0 C 0:0= � 1:0 �m critical current at
12 T, 4.2 K of >190A, n-value of > 20, hysteresis loss .˙3T/ of < 500mJ/cm3,
residual resistivity ratio >100 [567]. Figure 9.5b shows a structure of ITER TF
conductor made by bronze process in Japan [734]. The conductor for the ITER TF
magnet composed of 900 Nb3Sn strands, 522 Cu strands, He cooling channel formed

http://www.iter.org/
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Fig. 9.5 (a) Cross sectional view of Nb3Sn strand for ITER TF magnet by Bronze method.
After Nabara [567] with the permission of Cryogenics and Superconductivity Society of Japan.
(b) Nb3Sn cable in conduit conductor for ITER TF coils. Outer diameter of conductor is 43.7 mm.
Reproduced with permission from Takahashi [734]. Copyright IAEA Vienna

Fig. 9.6 (a) A comparison of Jc degradation curve of Nb3Sn and Nb3Al strand. After Ando [11].
(b) Degradation of the Jc with axial intrinsic strain for various temperatures in Nb3Sn strand for
ITER TF magnet. Reproduced with permission from Takahashi [734]. Copyright IAEA Vienna

by central spiral, and a jacket of 43:7mm outer diameter made of ss 316LN. The
strands are divided into 6 sub-cables wounded by the stainless-steel tapes.

Coupling loss is one of important dissipation mechanism in the superconductor.
There are two kinds of coupling loss, coupling loss between filaments and between
strands. To reduce the coupling loss between filaments, strand is twisted with a pitch
of 15 mm for ITER TF strand. In order to reduce the coupling loss between strands,
chromium plating on strand surface is made to increase contact resistance as well as
stainless steel taping on sub-cables.

Nb3Sn compound is more sensitive to the strain than Nb3Al compound as well
as NbTi alloy. Figure 9.6a shows degradation of Jc as a function of axial intrinsic
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Fig. 9.8 (a) Schematics of jacketing processes of superconducting cable for ITER TF magnet.
(b) Jacketing line for ITER TF conductor. Reproduced with permission from Takahashi [734].
Copyright IAEA Vienna

strain for Nb3Sn and Nb3Al. For example, 30% reduction in Jc occurs by 0:4%
axial intrinsic strain. Figure 9.6b shows detailed measurement of Jc degradation as
a function of axial intrinsic strain for ITER Nb3Sn strand. As operating temperature
increases, relative degradation becomes bigger. The degradation occurs by axial
strain and may occur by periodic bending as schematically shown in Fig. 9.7a.
Actual inspection of the model conductor after cyclic testing revealed a large
deflection and bending strain on the lower loading side (not the higher loading side)
by Hemmi [319]. Nb3Sn strand for ITER TF magnet is manufactured to have higher
Jc to compensate such a bending effect as shown in Fig. 9.7b.

The manufacturing process of superconductor is shown in Fig. 9.8a. After
welding the 13ms jacket pipes to form 760m jacket, the cable is inserted into the
jacket. Then the compaction is made to a specified size (43:7mm) and spooled and
final inspection is made. Figure 9.8b shows the jacketing line in Kyushu, Japan.



310 9 Technology Developments for Fusion Power

9.2 Structural Materials for Fusion

9.2.1 Material-Neutron Interaction

The materials used for the fusion are subject to the damage called neutron
irradiation damage through the interaction with 14 MeV neutrons produced by
the D-T fusion reaction [370, 765]. Neutron irradiation is expressed by the
neutron fluence .MWa=m2/, which is the product of neutron flux .MW=m2/ and the
irradiation time in year (a: annual). The energetic neutron produces displacement of
atom in the lattice structure measured by displacement per atom (dpa). In case of
ferrite/martensitic steel, 10MWa/m2 corresponds approximately to 100 dpa.

The dominated energy loss processes of the high energy neutrons are the elastic
collision and the inelastic collision with the atoms of the materials. The atom
displaced from its original position by the elastic scattering becomes an interstitial
atom (IA) and a vacancy is produced at the original position. This pair of vacancy
and the interstitial atom is called the Frenkel Pair.

The displacement energy of the atom is usually Eb � 25 eV for the metal,
while higher energy is required for displacement Ed � 40 eV for Fe and steel.
Atom directly displaced by the neutron is called Primary knock-on atom (PKA).
This PKA can produce secondary and tertiary displacements, which is called
the collisional cascade. The number of displacements by the PKA is called the
displacement damage function, �.Ep/. The time scale for a collision takes only
�10�14 s for 30 eV slow incident particle and the collisional cascade completes in
�10�12 s.

IAs are formed away from the center of the cascade and vacancies are accu-
mulated near the center of the cascade to form a depleted zone. When the free
movement of IAs becomes possible, IAs cluster is formed. The vacancies form the
dislocation loop.

For the neutron energy En < 1MeV, neutron scattering is elastic scattering and
is also isotropic since the de Broglie wave length is much longer than the nuclear
radius. For En > 1MeV, forward scattering increases.

As a result of neutron irradiation damage, material properties change. In fusion
neutron damage, nuclear transmutation produces H and He atoms in the material.
This He induces the lattice defect, the swelling, and the ductile to brittle transition
temperature (DBTT) shift. Under the fusion 14 MeV neutron irradiation, large He
production of 17–30 times that of fission occurs for SS (stainless steel) due to Ni
reaction with the neutron. For the low neutron fluence in ITER (<5 dpa), He effect
is negligible.

For the fusion demonstration reactor (DEMO), the reduced activation fer-
rite/martensitic steel (RAF) is the primary candidate as a blanket structural
material. Due to the absence of Ni, He production is much smaller than SS but
� 10appmHe=dpa occurs due to the nuclear transmutation of Fe and Cr. This He
effect is expected to be important for RAF above 50 dpa. In this range of neutron
fluence, material property can be changed due to the composition change.
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Neutron irradiation changes the mechanical strength such as the radiation
hardening, the embrittlement, and loss of the creep strength. In case of RAF,
embrittlement occurs at T < 450 deg followed by the loss of ductility, the reduction
of rapture toughness, and the increase in DBTT. At T > 450 deg, the softening of
the material and reduction of the creep strength occurs.

Irradiation hardening is caused by the irradiation defects due to neutron irra-
diation. Irradiation defects are categorized into (a) point defects (vacancy and
interstitial), (b) vacancy cluster, (c) dislocation loop, (d) dislocation line, (e)
impurity atoms (nuclear transmutation product), (f) cavity (void, helium bubble),
(g) precipitates, (h) segregation.

Mechanisms of embrittlement by the irradiation defect are, (1) the yield stress
increases closer to the rupture stress and total elongation and elongation at break
reduces. (2) DBTT increases by the increase in yield stress. At high temperatures,
(1) the growth of the cavity near grain boundary leads to embrittlement, (2) helium
bubbles at grain boundary induces embrittlement.

Since irradiation defect occurs in very short 10�12 s, the thermal recovery process
contributes to the material property within � s.

A semiconductor such as SiC=SiC composites as well as metal are also con-
sidered as a structural material of a fusion reactor. But the semiconductor shows
the different response to the neutron irradiation compared with the metal. For
SiC/SiC composites, which is expected as an ultimate structural material, the
thermal conductivity is reduced by the neutron irradiation.

As is well known and given in the standard textbook of the solid state physics
for example by Kittel [459], the electron conduction is responsible for the thermal
conductivity in the case of the metal. But the heat conduction is mainly carried
by the phonon conduction and the contribution of the electron conduction is small
for the semi-conductor, especially for SiC, and this phonon conduction is more
susceptible to the irradiation defects because the phonons are scattered by the
defects.

Column 9-1: Glossary on Mechanical Property and Radiation Defects

Grain boundary: Material is an assembly of many crystalline grains. The
boundary is called grain boundary, where He tends to concentrate.

Fracture toughness: Measure of the energy required to break a material, in
contrast to strength (a measure of the stress required to break a material).

Creep: Time-dependent mechanical deformation under constant stresses
below the ultimate tensile stress.

Dislocation: Line defect which allows propagation of deformation inside
crystalline materials.

DBTT: DBTT is mainly observed for BCC materials (ferritic/martensitic and
ferritic steels, their ODS variants, and the refractory metallic materials).

Embrittlement: Loss of elasticity or deformability of a material.

(continued)
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Segregation: Concentration of some elements can be increased at grain
boundary if the free energy can be reduced, called boundary segregation.

Swelling: Increase in the material volume due to irradiation-induced void.

9.2.2 Reduced Activation Ferrite/Martensitic Steel

Before the design of SSTR (Steady State Tokamak Reactor) in 1990, high-Z material
(Mo and Nb alloy) and improved stainless steel such as (PCM) with FCC (Face
Centered Cubic) structure are thought to be the structural material of a fusion reactor
blanket. In 1988, Japan Atomic Energy Research Institute (JAERI) and Nippon
Kokan (NKK) developed a reduced activation ferritic steel named F82H (may be
better call it a martensitic steel) [746]. This RAF is adopted as a blanket structural
material of SSTR due to its superior properties against neutron irradiation and the
higher thermal conductivity (32W=mK) than that of austenitic steel (16W=mK).
Recent progress is given by Baluk [42].

It is a difficult choice from the fact that at that time, the materials having
ferromagnetism has been avoided in fusion devices as a cause of irregular magnetic
field. The compatibility of high performance plasma and ferrite steel has been tested
in JFT-2M by Kawashima [422], and Tsuzuki [777] and JT-60U by Shinohara
[690] and the result is encouraging to show that high performance plasma can be
maintained in an appropriate environment by suppressing the irregular magnetic
field. Martensitic structure has a BCC (Body Centered Cubic) structure with carbide
and high density of dislocations, which has a large number of point defects and
trapping sites of H and He. This properties lead to an excellent tolerance to fast
neutron irradiation. This martensitic steel is has a specific issue of DBTT at low
temperature, which is a unique problem in martensitic steel with a BCC structure
and is absent in the austenitic steel.

F82H is modified from HT-9 (12Cr-1Mo-V-W) by changing 1Mo C 0:5W to
2W in order to avoid molybdenum .Mo/ producing long-lived radionuclide [746].
The F82H is developed as high performance martensitic steels with a target impact
absorption energy above 265 J and a creep rapture strength above 98MPa. The
reduced activation ferritic steel F82H has lower DBTT and adequate weldability and
high yield strength. F82H is adopted as a standard material under the IEA coopera-
tion. The composition of F82H recommended by IEA is shown in Table 9.2 [331].

Metal structure varies significantly with the chromium concentration. Low
Cr steel (example 2:25Cr) shows a relatively high strength, but shows lower
fracture toughness at low temperature. The strength decreases rapidly at a high
temperature > 773K. It also show significant irradiation embrittlement by the
generation of finer carbides. Conversely, the high chromium steel (example, 12Cr),
it becomes ferrite/martensite dual phase steel containing about 20 % of the ı ferrite,
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Table 9.2 Composition of the major elements of the reduced activation ferritic steel F82H

Elements Cr W V C Si Mn Ti Ta

Typical wt % 8.0 2.0 0.2 0.1 0.1 0.1 0.005 0.04

wt % range 7.5–8.5 1.8–2.2 0.15–0.25 0.08–0.12 0.05–0.2 0.05–0.20 0.004–0.012 0.01–0.06

Other elements are P < 0:01;B < 0:001; S < 0:01 and Nb;Mo;Ni;Cu;N;Co;Ag; Sn;O;As; Sb are LAP
(low as possible). From Hishinuma [331]

Fig. 9.9 DBTT as a function
of Cr contents in weight %.
Reproduced with permission
from Hishinuma [331].
Copyright Elsevier

which induces degradation of toughness. The most important optimization for the
composition is Cr contents to reduce DBTT after neutron irradiation as clarified by
Kohyama [462]. Figure 9.9 shows the DBTT for Fe � XCr � 2W � 0:25V alloys
under 20–24 dpa neutron irradiation at the temperature of 648K. This test clearly
shows appropriate Cr content will reduce DBTT to less than the room temperature.

The 316 stainless steel exhibits a large swelling due to neutron irradiation,
1 %/dpa. But the Martensitic steel such as F82H shows excellent stability against
swelling up to 200 dpa and swelling is not thought to be to be a major problem.

It is considered irradiation hardening almost saturated at 10 dps at �648K, while
irradiation hardening occurs slowly until 70 dpa at �703K. Irradiation softening
occurs at T > 723K and the creep strain reduces with neutron fluence.

Conversion rate of W to Os by fusion neutron is calculated to be 10 %/100 dpa. In
other words, 2W martensitic steel becomes 1:8W C 0:2.Os C Re/ steel by 100 dpa
irradiation. Deterioration of the irradiation resistance due to the transmutation is
an important issue. For 100 dpa fusion neutron irradiation to martensitic steel, the
generation of Mn is 0.5 %. The grain boundary segregation and precipitation of Mn
produces the irradiation-induced grain boundary embrittlement cracking as well as
the void swelling.

Helium and hydrogen produced by the neutron irradiation interact with
point defects and change the damaged tissue. While hydrogen interaction with
point defects is weak in the medium to high-temperature range, He interaction
with point defects is strong. In low activation martensitic steels, void swelling is
enhanced by the transmuted He. Helium embrittlement is remarkable in 300 ppmHe
in a high temperature region for austenitic steels, but martensitic steels still shows
the ductility. The test results of spallation neutron source implies the DBTT shift due
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Fig. 9.10 Operation diagram of F82H in (fluence, temperature) space. Reproduced with permis-
sion from Hishinuma [331]. Copyright Elsevier

to He implantation may occur above 50 dpa. Considering these features, Hishinuma
[331] gives an operating diagram shown in Fig. 9.10. F82H is an excellent structural
material that for fusion reactor blanket, but the operating temperature is limited to
500–550 ıC from the point of view of high-temperature strength. Oxide dispersion
strengthened steel (ODS steel) is considered to improve high-temperature creep
strength [454]. ODS steel can provide a lot of He trapping site as well as grain
boundary. Hasegawa [292] reported that there is almost no DBTT shift due to
He-implantation for both 9Cr and 14Cr ODS steels while F82H has large DBTT
shift due to He-implantation. Effort to increase He trapping site in base structural
material is important to mitigate He embrittlement [864].

Column 9-2: Steels
Iron is said to be found for the first time in the meteorite. In ancient years,
iron is manufactured from Iron sand. Ion ore are oxidized and the reduction
has been made by using charcoal, coal, coke. World steel production in 2013
is 1607Mega Tonnes .Mt/ of which 779Mt in China, 111Mt in Japan, 87Mt
in US, and 81Mt in India according to World Steel Association. Pure iron
has Body-Centered Cubic (BCC) crystal structure having magnetism, called
the ˛-Fe. At around 900ı, it changes to Face-Centered Cubic (FCC) crystal
structure without magnetism, called the � -Fe. British metallurgist Sir William

(continued)
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Chandler Roberts-Austen (1843–1902) found the � -Fe phase can be sustained
for all temperature if alloying elements including Ni are included, named
as Austenitic steel after him. In 1891, German metallurgist Adorf Martens
created a very hard BCC-structured steel with high C solution by rapid cooling
from Austenitic phase, named as Martensite after him. Stainless steels are
categorized into austenitic steel and ferrite and martensitic steels.

Austenitic steel: Austenitic stainless steel has FCC structure and is metal-
lic non-magnetic solid solution in � -Fe phase. It contains 0.02–0.08 % C,
16–19 % Cr and 8–12 %Ni to retain � -Fe phase.

Ferritic steel: Ferritic steels has BCC crystal structure and metallic mag-
netic solid solution in ˛-Fe phase. It contains less than 0.2 % C, 11.5–27 %
Cr and free from Ni.

Ferrite/Martensitic steel: Ferrite/Martensitic steel has BCC crystal struc-
ture and is metallic non-magnetic solid solution in ˛-Fe phase. It contains
7–9 %Cr and is produced by the rapid cooling from austenite region to
form a martensitic structure.

9.2.3 SiC/SiC Composite

Silicon carbide .SiC/ is a refractory semiconductor. This material has an excellent
thermal, mechanical and chemical stability and is suitable for use in extreme harsh
environments. Pure SiC shows the lowest activation properties to 14 MeV neutron.
Since SiC is a brittle material, it is thought difficult to be a structural material
initially.

Yajima’s invention of SiC fibre [840] leads to the fabrication of the SiC fiber-
reinforced SiC based ceramic composite material (hereinafter, SiC/SiC composite
material) proving possibility as a structural material. SiC/SiC composite material is
composed of SiC fibers having a diameter of 10�m, SiC matrix and the interphase.
SiC fiber is responsible for loading and the matrix transfer load to the fiber.

For the blanket structural material, there are requirements for the strength, the
thermal conductivity, the dimensional stability under irradiation, and the compat-
ibility with coolant and neutron multiplier. Early SiC fibers showed dimensional
instability under irradiation but the improvements were made subsequently. On the
other hand, there is a concern on the air-tightness (hermeticity) of high pressure
coolant such as He. The hermeticity could be improved by impregnation or coating.
SiC has a low permeability against hydrogen and will function as a tritium
permeability barrier.

Third Generation CVI Method
Since pure SiC shows an excellent irradiation resistance, the choice of fiber

and interphase is important. The SiC fiber is made by crystalline SiC, which does
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Fig. 9.11 SiC/SiC composite tubes made by third generation NITE method. Reproduced with
permission from Katoh [418]. Copyright Elsevier

not exhibit degradation of strength by neutron irradiation and is chemically stable.
Carbon is used for the interphase instead of BN subject to nuclear transmutation.
Chemical Vapor Infiltration (CVI) method is the standard production methods. Third
generation crystalline SiC fibers are available commercially. In the CVI method,
silane-based organic gas flows in the gap between the fiber bundle and deposits by
the chemical vapor deposition.

Thermal conductivity of the SiC/SiC composite increases with the improved
process. In the early (second generation) CVI process, the thermal conductivity
is � � 4W/mK at 20 ıC and 2W/mK at 1000 ıC, but the thermal conductivity
in the third generation CVI is increased by higher crystallinity of the SiC fiber to
� � 15W/mK at 20 ıC and 10W/mK at 1000 ıC.

NITE Method
Nano-infiltration and Transient Eutectic-phase (NITE) method is a method to

form a matrix by the liquid phase sintering (LPS) using oxide additives. This process
requires higher temperature to achieve a high density matrix while retaining an
acceptable range for fiber damage operating at higher than temperature limit of
highly crystalline SiC fiber. Kohyama group in Kyoto University developed NITE
with low porosity and high tensile stress � 400MPa, high proportional limit stress
(corresponds to the yield stress of the metal) � 220MPa, high thermal conductivity
� � 30W/mK at 20 ıC and 20W/mK at 1000 ıC [417] (Fig. 9.11).

Neutron Irradiation Damages
Early SiC/SiC composite shows strong degradation of mechanical strength even

at 1 dpa but the reduction of the difference in the swelling between fiber and matrix
improved mechanical property of SiC/SiC composite such as Hi-Nicalon S and
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Tyranno-SA up to 10 dpa [406]. Swelling tends to saturate in a few dpa except at
high temperature. Near the Critical Amorphization Temperature (150 ıC), distortion
between interstitials and vacancies is the cause of the swelling. As the temperature
increases, survived interstitial atoms of Si and C are reduced. The number of
dislocation loops and voids increases at temperature > 1000 ıC and the mobility
of vacancy is reduced leading to higher swelling.

Since the valence electrons are few in SiC, the heat transfer is based on the
phonon transport. The phonon scattering as a heat resistance mechanism are cat-
egorized into the grain boundary scattering .1=Kgb/, the phonon-phonon scattering
(Umklapp process) .1=Ku/, and the defect scattering .1=Kd/. In other words, the
inverse of thermal conductivity is given by 1=K D 1=Kgb C 1=Ku C 1=Kd. Defects
generated by neutron irradiation lower the thermal conductivity by scattering
phonon effectively. Non-irradiated CVD SiC achieved the thermal conductivity
up to 280W/mK, which is reduced to 5–20 W/mK at T < 100 ıC. The thermal
resistance increases in proportion to the swelling suggesting an increase in the
phonon scattering by irradiation defects. The thermal conduction in metal is electron
conduction which is robust to radiation defects.

Thus the development of SiC/metal compound may be necessary for the SiC to
be a promising structural material for fusion high heat flux environment. Here the
metal component should have low nuclear heating rate to preserve superiority of the
SiC in case of loss of coolant accident.

9.3 Blanket Materials

9.3.1 Tritium Breeding Material

Tritium breeding material is used to produce and recover tritium fuel in a fusion
reactor. Following tritium generation reactions for Li are used.

6Li C n !4 He C T C 4:78MeV (9.2)

7Li C n !4 He C T C n0 � 2:47MeV (9.3)

The Lithium is first discovered by Swedish chemist J.A. Arfwedson shown
in Fig. 9.12a in 1817. Whereas 6Li neutron cross section is 940 barn at
En D 0:025 eV, 7Li neutron cross section is three orders of magnitude smaller,
0:355 barn at En D 14MeV (see Fig. 9.12b). Even taking into account the
energy spectrum, the contribution of 6Li for tritium production is two orders of
magnitude greater. Furthermore, 6Li reaction is an exothermic reaction and the
energy multiplication occurs at the whole blanket. Natural lithium contains 7.5 % of
6Li. If the breeder does not have a high tritium breeding ratio (TBR), it is necessary
to concentrate 6Li.

The tritium breeding materials are categorized by liquid breeders and ceramic-
like solid breeders. Since the early 1980s, Li2O, Li2ZrO3, LiAlO2, Li2TiO3, and
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Fig. 9.12 (a) J.A. Arfwedson who discovered Li. (b) 6Li, 7Li, Be and Pb neutron reaction cross
sections modified from Johnson [405]

Li4SiO4 are considered as candidate solid breeders reviewed by Johnson [405].
The liquid breeder are liquid Li metal, Li17Pb83, and FLiBe etc. The desired
characteristics of the tritium breeding material are:

(1) High Li atom density and no elements with high neutron absorption.
(2) Short tritium residence time and easy to release tritium.
(3) Low chemical reactivity with structural material and coolant
(4) Excellent safety characteristics for accident.
(5) Small radioactive products.
(6) High thermal conductivity.
(7) Not excessive thermal expansion and swelling.

Table 9.3 shows characteristics of the solid and liquid breeders. The solid
breeders approximately satisfy the above conditions (1) and (2) , but the liquid
breeders have a problem in corrosion of the structural materials and are not easy
to satisfy the condition (2).

Lithium Oxide (Li2O) Li2O has been proposed as a tritium breeding material for
fusion reactor blanket first in 1973 by Sako [656]. Among many breeders, Li2O
shows high performance with its highest Li density and relatively smooth recovery
of tritium (retention time: 8 h). Since the thermal conductivity is the highest among
many solid breeders, it has a merit on the heat removal generated in the blanket.
Furthermore, only 16N is a radioactive material and decays by a half-life of 7 s. But,
the reactivity with the water is high and the use of pressurized water as a coolant
is less desirable. In such case, sophisticated safety measure is necessary (case for
SSTR). The helium cooling has no reactivity with Li2O and is excellent in safety
while He pumping power is large and the maximum heat flux will be limited. The
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Table 9.3 Characteristics of solid and liquid breeders

T breeder Li2O Li2TiO3 Li2ZrO3 Li4SiO4 LiAlO2 Li Li17Pb83 Li2BeF4
Melting
temperature (K)

1696 1808 1888 1523 1883 453 508 732

Theoretical
density (g/m3)

2.02 3.43 4.15 2.21 2.55 0.509 9.59 1.99

Li density (g/m3) 0.92 0.43 0.38 0.51 0.27 0.509 0.065 0.279

Thermal cond.
(W/mK)a

4.7 1.8 0.75 2.4 2.4 41.4 12.2 1.0

Water reactivity Large No No Small Small Violent Modest Small

T residence time
(h)a

8 2 1.1 7 50 long b b

Thermal
expansion (%)a

1.25 0.8 0.5 1.15 0.54 - - -

Swelling
(vol.%)a

7 - < 0:7 1.7 < 0:5 - - -

From Tanaka [748]
a Value at 500 ıC
b Low solubility and problem in leakage

Li2O has relatively large thermal expansion coefficient and also the swelling due
to neutron irradiation up to 7 %. So the care must be made for the dimensional
stability. In the case of Li2O pellets with 70–85 % relative to the theoretical density,
creep takes place for the swelling and may be internally adjusted [523].

Lithium Titanate (Li2TiO3) Li2TiO3 is inferior in thermal conductivity and Li
atomic density compared to Li2O, but there is no reaction with the water similar to
Lithium Zirconate, Li2ZrO3. Furthermore, there are some merits than the Li2ZrO3

such as shorter half-life of the activation product and the high thermal conductivity.
Tritium residence time is shorter than that of Li2O, 2 h at 440 ıC, which is
advantageous in the tritium recovery in case of the high temperature pressurized
water cooling. Li2TiO3 has been one of candidate breeders from early days [405]
but actual manufacturing development has been made rather recently [775, 776].

DEMO (fusion demonstration reactor) require advanced tritium breeders that
have high stability at high temperatures. Lithium titanate (Li2TiO3) is one of the
most promising candidates among tritium breeders. However, a decrease in lithium
mass of Li2TiO3 with time occurs in such environments as the DEMO blanket
because of Li evaporation and Li burn-up. Therefore, an original material of Li2TiO3

with excess Li (Li2CxTiO3Cy) as an advanced tritium breeder that can make up to
the lithium loss has been proposed [346]. Furthermore, pebble fabrication using the
emulsion method is one of the promising techniques for the mass production of
the advanced tritium breeder pebbles. JAEA have been developing a technique of
fabricating Li2CxTiO3Cy pebbles using the emulsion method [345, 348].

Lithium Silicate (Li4SiO4) and Lithium Aluminate (LiAlO2) Li4SiO4 has similar
properties on Li atom density, thermal conductivity, half-life of the activation
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Fig. 9.13 (a) Schematics of wet process before calcination/sintering. (b) Photograph of TiO2-
doped Li2TiO3 pebbles by wet process. Reproduced with permission from Kawamura [420].
Copyright IAEA Vienna

product comparable to Li2TiO3, but has some reactivity with the water. LiAlO2 has
long T residence time of 50 h.

Liquid Breeders (Li, Li17Pb83, Li2BeF4) Merits of liquid breeders are negligible
radiation damage and simultaneous cooling and T recovery. In addition, self-cooled
blanket is possible with liquid metal (Li) or lithium-lead alloy (Li17Pb83). On the
other hand, pipe corrosion and prevention of tritium permeation are the challenge
for Li17Pb83 and Li2BeF4. For liquid Li, high chemical reactivity, challenging tritium
recovery, and large MHD pressure loss are key issues.

Solid Breeder Microspheres Since tritium release is the rate-limiting by the
surface, the surface area is increased by manufacturing the microspheres. Then the
He gas is used as sweep gas to enhance the T diffusion and isotope exchange with
hydrogen. Solid breeder microspheres of 0.3–3 mm diameter have been developed
for this purpose. In order to increase tritium release, it is important to control the
grain size to 1–10�m.

There are a few methods to produce microspheres but we briefly introduce the
wet process [775]. The wet process is the molding method with liquid and there are
gel precipitation method and sol-gel method as shown in Fig. 9.13. Sol-gel method
is especially effective to obtain high density microspheres. Li2TiO3 microspheres of
0.2–1.5 mm diameter can be produced at the rate of 150 kg/year.

The sintering process of the microspheres is divided to the pre-baking for de-
binding and the main firing to form a dense ceramic body. For the solid breeders,
we have to be careful on that Solid breeders (1) are hygroscopic and (2) tend to
evaporate Li (especially Li2O), and (3) are highly reactive. Sintering temperature
is generally referred to .2=3/Tm but is quite high �1000–1400 ıC. Here Tm is the
melting temperature.

Li Recovery from Sea Water
The Li is an important fuel resource for DT fusion. The Li reserve is just 3:7M

ton and the Li reserve base is 9:4M ton, while gross mineral resource is estimated
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Fig. 9.14 (a) Schematics of selective Li permeation through membrane. (b) Experimental set up
of electrodialysis. After Hoshino [347]

as 800M ton. Salt lakes in South America is major source of Li. Especially Li
production is made at Atakama Salt Lake in Chille and Hombre Muerto Salt Lake
in Argentina.

The Li concentration in the sea water is 170 ppb and total resource in the sea
is estimated as 233G ton. Since there are large future market needs for Li and the
Li recovery from sea water is thought to be an important future technology. There
is new development of Li recovery from sea water by Hoshino [347]. This method
utilizes electrodialysis using ionic liquid membrane as shown in Fig. 9.14.

Figure 9.14a shows the principle of selective permeation of Li ion in the sea
water through ionic liquid membrane. Li selectively permeates from anode side to
the cathode side through an organic membrane impregnated with an ionic liquid
(PP13-TFSI). In the experimental set up shown in Fig. 9.14b, the Li concentration
of 5.94 % after 2 h with an applied voltage of 2 V, while other ions do not permeate
the membrane. With improved membrane covered with a Nafion 324 overcoat to
prevent outflow of ionic liquid, the Li concentration increased to 22.2 %.

This electrodialysis using ionic liquid membrane is also useful for the isotope
separation of 6Li and 7Li as demonstrated by Hoshino-Terai [343, 344].

9.3.2 Neutron Multiplier

With the tritium production reaction 6Li C n !4 He C T C 4:78MeV, the tritium
breeding ratio (TBR) is intrinsically less than 1 and the tritium production reaction
7LiCn !4 HeCT Cn0 �2:47MeV does not contribute much since it is a threshold
reaction. Multiplication of tritium fuel is crucially important for fusion and the
neutron multiplier to induce .n; 2n/ reaction is an essential functional material. The
typical neutron multiplication reactions are 9Be C n ! 2n C 2He � 2:5MeV and
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Fig. 9.15 (a) Phase diagram of Be � Ti inter-metallic compounds. From Kawamura [421].
(b) Comparison of swelling between Be and Be12Ti. Reproduced with permission from Kawamura
[420]. Copyright IAEA Vienna

APb C n ! 2n CA�1 Pb � 7MeV .A D 204; 206; 207; 208/. Bi and Zr are also
candidates in addition to Be and Pb.

Beryllium has a hexagonal close-packed crystal structure at room temperature
and pressure. Pure Be metal exhibits large swelling by the neutron irradiation and
may produce large amount of hydrogen by the chemical reaction with water. Thus
the inter-metallic compounds (Be12Ti, etc.) attract strong attention with their high
melting temperature and their chemical stability. The phase diagram of Be � Ti is
shown in Fig. 9.15a.

Be � Ti inter-metallic compounds have high melting points as 1500–1700ıC and
show the excellent creep strength and the high ductility at high temperature. While
tritium breeding ratio is reduced by �10% than that of Be metal, the reaction with
RAF is significantly smaller (1/5 reaction layer thickness) and the swelling is 1/50
of the metal Be (see Fig. 9.15b). The desorption of deuterium in Be12Ti occurs at
much lower temperature than Be. Reactivity to steam in Be12Ti is less than 1=1000
of Be metal at 1000 ıC. While the Be metal thermal conductivity is 93W/m/K at
700 ıC, that of non-irradiated Be12Ti is 46W/m/K and reduced to 28W/m/K after
irradiation. Properties of Be12Ti are reported by Kawamura [420, 421].

New granulation process has been established by combining a plasma sintering
method for beryllide synthesis [572] and a rotating electrode method using a plasma-
sintered electrode for granulation [573]. The beryllide granulation process and
the granulation apparatus are optimized for mass production of beryllide pebbles
by the improvement of ductility of plasma-sintered beryllide electrode [574] and
the customization of apparatus. Prototypic beryllide pebbles were successfully
fabricated with higher yield and larger volume.
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9.4 Neutronics

9.4.1 Neutron-Material Interaction

There are scattering and absorption in the neutron interaction with matter. Scattering
includes elastic and inelastic scatterings and absorption has capture and nuclear
transmutation. Each process has partial cross section of the reaction and the sum
is the total cross-section. In the fusion reactor core, 14 MeV neutrons are produced
and the energy spectrum in the blanket surrounding the plasma has a sharp peak at
14 MeV. This is very different from the neutron spectrum in fission reactor having a
broad peak near 2 MeV as seen in Fig. 9.16.

Fusion neutron energy of 14 MeV is much higher than the average binding
energy of nuclei, 7 MeV. Thus, inelastic scattering and threshold reactions such
as .n; n0˛/; .n; n0p/; .n; 2n/ occur and the secondary neutrons and the forward
scattering are also important. Neutron decays into proton, electron and neutrino
(ˇ decay) with a half-life of 614 s but is absorbed into the nucleus in time from
� second to a few tens of milliseconds before reaching the lifetime.

Neutron elastic scattering with nucleus X is expressed as X.n; n/X and it causes a
change in the traveling direction and a reduction in the kinetic energy of the neutron.
Assuming � is the scattering angle in the center-of-mass system, the ratio of the
neutron kinetic energy before .E1/ and after .E2/ the scattering is given by E2=E1 D
.A2 C 2Acos� C 1/=.A C 1/2. Here, A is the mass number of the nucleus X. In case
of head-on collision .� D 
/, it is given by E2=E1 D .A �1/2=.A C1/2 � ˛, which
implies light elements are suitable for neutron slowing down. The natural logarithm
of energy, ln.E0=E/ is called “lethargy”, where E0 is a constant usually the largest
energy of the system. The vertical axis of Fig. 9.16 is given by the neutron flux per
unit lethargy. Average increase of lethargy due to the elastic scattering is called the
“slowing down parameter” and can be expressed as � D 1 C .˛=.˛ C 1//ln˛ �
1=.A C 2=3/ for A 
 1[490]. Average distance between scatterings is called the

Fig. 9.16 Energy spectra of
fission and fusion neutrons in
flux/unit lethargy. Private
communication from
Dr. C. Konno
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Table 9.4 Neutron scattering parameters for various materials [576]

Material
Slowing-down
parameter �

Number of scattering
.2MeV ! 0:025 eV/

Mean free path
(14 MeV neutron) (cm)

H2O � 0.8 23 11

D2O � 0.5 36 9.4

Be 0.21 86 5.4

Fe 0.035 516 4.7

Pb 0.0096 1881 5.5

Li 0.27 67 14

Li2O 0.175 103 5.2

Li17Pb83 0.015 1204 6.3

“mean free path .� D 1=	n/”, where n is the atom density and 	 is the scattering
cross section. Table 9.4 shows slowing down parameter, number of scattering and
mean free path for various materials.

In the neutron reaction with nuclei X, sometimes an excited state C� is formed
and is called “compound nucleus”. The reaction is expressed as X C n ! C� !
Y C a. Cross-section to form a compound nuclei becomes large when the neutron
kinetic energy E is close to a resonance energy Er. This cross section is given by a
well-known Breit-Wigner formula. Most of the inelastic scattering occurs through
the compound nucleus formation. In the Breit-Wigner formula, neutron emission
width �n is proportional to E1=2. If the total width � is large enough, resonance
term .E � Er/

2 can be negligible and the cross section is proportional to 1=v. In the
tritium breeding reaction 6Li.n; ˛/T, cross section has 1=v dependence.

9.4.2 Fusion Neutronics

Field of research dealing with the neutron behavior is called “Neutronics”. Fusion
neutronics is the neutronics for fusion research, which includes all processes
involving neutron such as neutron transport, tritium breeding process, neutron
multiplication process, induced radioactivity, nuclear heat generation, and shielding.
It also include measurements of neutrons and � rays and validation of the nuclear
data.

The 14 MeV neutron, carrying 80% of fusion energy as a mean free path of 5–
10 cm. Therefore, there is some advantage that it is a volumetric nuclear heating
and not the surface heat flux. The 14 MeV neutron generates secondary gamma
rays and neutrons on which the shielding design must be carefully made taking the
weldability limit (<1appmHe) of the blanket and the vacuum vessel and the nuclear
heating in the superconductors into account.

The tritium breeding ratio must be high enough consistent with heat transfer
design of the first wall and the blanket. Material design must be consistent with
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the knowledge of radiation damage and care must be taken to short term induced
activity for safety consideration and long term induced activities for disposal.
Irradiation damage due to neutron irradiation may cause deterioration of the material
characteristics and the transmutation into unstable nuclides may change the material
composition itself. The calculation codes are developed such as one-dimensional
transport code ANISN [184], two-dimensional transport code DOT3.5 [626], Monte
Carlo code MCNP [547]. Monte Carlo method is a statistical method for simulating
the transport of gamma rays and neutrons according to the probability distribution
determined by the cross-section by using a pseudo-random number. The Monte
Carlo method is started by von Neumann in LANL for application to the neutron
diffusion. The transport equation of neutron and gamma ray is following Boltzmann
equation.

˝ � r˚.r;E;˝/C˙t.r;E;˝/˚.r;E;˝/ D
Z

d˝ 0
Z

dE0˙s.r;E0 ! E;˝ 0 ! ˝/˚.r;E0;˝ 0/C S.r;E;˝/ (9.4)

Here, r: space coordinates, E: energy, ˝ : solid angle, ˚ : ˝ dependent flux, ˙t:
total cross section,˙s: scattering cross section, S: external source.

Multi-group method is the method to solve this Boltzmann equation by dividing
energy into some groups, which leads the double integral to a single integral.

As for the cross-section data for neutron transport calculation, there are JENDL3
by Shibata [686], group datasets, Fusion-J3 (neutron 125 group, gamma 40 group)
and Fusion40 (neutron 42 group, gamma 21 group) by Maki [533], continuous
dataset for Monte Carlo calculation FSXLIB-J3 by Kosako [470].

Fusion nuclear data is provided as FENDL (Fusion Evaluation Nuclear Data
Library) contributed from all over the world including contributions from Japan
as coordinated by the IAEA Nuclear Data Center section [235].

The nuclear heating rate by gamma rays and neutron can be calculated using
the KERMA factor by Maki [532] and local gamma and neutron fluxes obtained
from transport calculations. Neutron radiation damage in dpa can be calculated
by multiplying the neutron flux and displacement damage cross section by Maki
[534]. Helium production rate can also be calculated by multiplying the neutron
flux and He production cross section by S. Mori [560]. Induced activity in fusion is
fairly large compared with fission since 14 MeV is larger than the average nuclear
binding energy. Codes to calculated induced activity are developed in US, EU and
Japan in 1980s. In Japan, THIDA-2 system is developed by Seki [674]. Substituting
the neutron and gamma fluxes by the transport codes, activation cross sections,
decay sequence data and delayed gamma data into ACT4 code, decay heat can be
calculated with the induced activity and decay gamma data.

These neuronic calculations are sometimes different among various codes and
also by geometry by duct streaming [12] and voids in addition to the uncertainties of
cross sections. The 14MeV fusion neutron sources such as FNS (Fusion Neutronics
Source) [469], FNG (Frascati Neutron Generator) [48], ASP facility [601] are quite



326 9 Technology Developments for Fusion Power

effective to check the validity of integrated consistency of neuronic calculations.
Especially code variation against experiment is important for the physical quantities
related to the tritium breeding ratio (TBR) since there are still some uncertainties
of order of 5–10 % for important cross sections and 5 % difference in TBR has
large impact for tritium self-sufficiency of fusion reactor. Tungsten (W) is thought to
be an important plasma-facing component (PFC) and neutronics benchmarking has
been done [49]. Sato [660] showed that W armor results in non-negligible reduction
of tritium production in the blanket and the accurate measurement of the tritium
production rate is important. The tritium production in the blanket mockup has been
extensively studied using 14MeV neutron sources and noble measuring techniques
such as by Sato [661] and Tanigawa [753]. Neutronics and nuclear data issues in
ITER and their validation are discussed by Batistoni [50] and validation of TBM
neutronics has been done [51].

9.4.3 Neutronics Applications

Necessary shield thickness is usually determined by the nuclear heating in the
superconducting TF coils in the inboard side. Using the group dataset (such
as Fusion40), transport calculations are made by 1-D ANISN and 2-D DOT3.5
transport codes. These produce neutron and gamma flux distributions during the
operation. Substituting the calculated neutron and gamma flux distributions into
THIDA system, we can calculate induced activities. These calculations are used
to modify shield design to meet design criterion for nuclear heating rate and
absorption dose limit of insulators. Figure 9.17a shows attenuation of neutron
flux for advanced shielding materials such as TiH2, ZrH2 and Mn.BH4/2 [306].
Neutronics calculations are also used to design the neutron shielding materials as
shown in Fig. 9.17b, c.

Induced activity is also important for waste management. It is critical for fusion
to minimize radioactive waste disposal and maximize clearance level materials. The
clearance is discussed for solid wastes initially in IAEA-TECDOC-855 [360] and
the exclusion, exemption and clearance in RS-G-1.7 [358]. Table 9.5 shows the
derived values of concentration for exemption given in RS-G-1.7 which is more
conservative than IAEA-TECDOC-855.

Tobita [768] made a classification of fusion waste into clearance level using
similar values defined in IAEA-TECDOC-855 to show that choice of shielding
material and thickness drastically changes clearance level waste (CLW).
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Fig. 9.17 (a) Attenuation of neutron flux for various shielding materials. Reproduced with permis-
sion from Hayashi [306]. Copyright Elsevier. (b) Characteristics of heat resistant neutron shielding
material. Reproduced with permission from Morioka [561]. Copyright Elsevier. (c) Characteristics
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Copyright Taylor and Francis

Table 9.5 Derived values of concentration for exemption

Isotopes H-3 Be-7 C-14 Na-22 Cl-36 Ca-45 Sc-46 Mn-54 Fe-55 Fe-59 Co-56 Co-57 Co-58

Bq/g 100 10 1 0.1 1 100 0.1 0.1 1000 1 0.1 1 1

From RS-G-1.7 [358]

9.5 Tritium and Deuterium Chemistry

9.5.1 Physical Chemistry of Hydrogen

Hydrogen molecule .H2/ consists of two electrons and two protons and the two
hydrogen atoms superpose their 1s orbitals each other, in which not only one’s
own electron but also other’s electron are in the orbital. Two electrons are shared
by two hydrogen atoms. This is called shared electron pair. The potential energy
is reduced by sharing the electrons, which produces binding of two atoms. This
form of binding is called “covalent bond”. Actual measurement of the dissociation
energy of hydrogen is 109:5 kcal/mol and the inter-nuclei distance is 0:74Å, whose
explanation needs the wave function of about 40 rather than the simple sum of the
wave function of the 1s orbital.

Water .H2O/ is an molecule with two hydrogen atoms bonded to an oxygen atom.
Oxygen has six electrons in the L shell and two in the K shell. L shell consists of
2s and three 2p, while electrons occupy from a lower energy level, i.e. enter the
s-orbital, then enters the p-orbitals. Six electrons are distributed as two in 2s and
two,one and one in 2p. Single electron in the 2p orbital is called “unpaired electron”,
to which 1s orbital of hydrogen atom couples to form H2O.

Below the boiling temperature, H2O becomes a liquid state by the “hydrogen
bonding”. Above the boiling temperature, H2O become gaseous state close to the
ideal gas. The strength of binding of the liquid is represented by the “cohesive
force”, whose index is the thermodynamical internal pressure .Pi D .@E=@V/T D
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T.@P=@T/V P/. Internal pressure is zero in the ideal gas since there is no inter-
molecular force. In the case of liquid, the internal pressure becomes much larger
than the external pressure. In the case of water, the internal pressure is very large at
20;000 atm at 25 ıC and 1 atm, which originates from the hydrogen bond.

Deuterium is a hydrogen isotope and its natural abundance is 1=7000, whose
form is mainly HDO. In order to concentrate deuterium, properties of the phase
equilibrium between the liquid and the gas phase, especially the property of the
vapor pressure is used. We introduce some of the basic physical chemistry of
hydrogen isotopes [558].

In the liquid .L/ and gas .G/ phase equilibrium, the chemical potential �i

introduced by Gibbs takes same value (�G
i D �L

i : This condition is obtained
from the change in the Gibbs’s free energy is zero: dG D �L

i .�dni/ C �G
i dni D

.�L
i � �G

i /dni D 0 , where dni is the molecule transfer from liquid to gas).
In 1986, French chemist Francois Marie Raoult (1830–1901) gives a law for

the partial pressure of component A as PA D XAP0A from the experimental data of
vapor pressure. Here, XA is the molar fraction of the component A, PA is the vapor
pressure of component A at XA, P0A is the vapor pressure of a solution of 100 % A.
This Raoult law is important in the isotope separation. If the interaction between
components in the solution is the same, it is called the “ideal solution”. In the two
component .A;B/ ideal solution, cohesive force between A � A;A � B, and B � B
are the same. Raoult’s law holds in the ideal solution. Two component solution with
same molecular structure with different isotope such as HDO and H2O is a good
example of an ideal solution.

The chemical potential of component A, �L
A in the ideal solution in phase

equilibrium with the gas phase is given by �L
A D �G

A D �G0
A C RTAlnPA (this

can be obtained by the integration of the thermodynamic relation @�A=@PA D VA D
RTa=PA under constant TA). Here, �G0

A is the chemical potential at PA D 1 atm.
For the chemical reaction A C B • C C D, the reaction rate to the right

is proportional to the density of A and B, while the reaction rate to the left is
proportional to the density of C and D, which is known as the “law of mass
action”. The chemical equilibrium is a state of left and right reactions are the same
(kRŒA�ŒB� D kLŒC�ŒD�), where ŒA� is the density of component A. The equilibrium
constant is defined as K D kR=kL D ŒC�ŒD�=ŒA�ŒB�. If the reaction is given by
aA C bB • cC C dD, the equilibrium constant is given by K D ŒC�cŒD�d=ŒA�aŒB�b.

If each component is close to the ideal gas for a chemical reaction between
the gas phases, the change in Gibbs’s free energy is given by dG D VdP D
RTdlnP for isothermal process. Integrating from P D 1 atm to P, we obtain
G � G0 D RTlnP. Therefore change due to chemical reaction is �G � �G0 D
RT

P
�ilnPi. Here �i is the number of mole. We obtain �G0 D �RT

P
�ilnPi D

RTln.PC/
c.PD/

d=.PA/
a.PB/

b D RTlnK using�G D 0. Gibbs’s free energy at 25 ıC
for various materials are given in Table 9.6.
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Table 9.6 Gibbs’s free energy at 25 ıC for various materials

Material H2O D2O HDO H2S H2O D2O HDO

Phase Gas Gas Gas Gas Liquid Liquid Liquid

�G298 (kcal/mole) �54.635 �24.73 �55.828 �7.892 �56.69 �58.206 �57.925

After Moore [558]

Fig. 9.18 (a) British
Physicist H. Cavendish
(1731–1810). (b) French
Physicist J. Charles
(1746–1823)

Salon: Hydrogen
The hydrogen is discovered in 1766 by Henry Cavendish (1731–1810)
(Fig. 9.18a) through chemical reaction between metal (such as Fe) and strong
acid (such as sulfuric acid). In 1783, French physicist J. Charles (1746–1823)
(Fig. 9.18b) considered hydrogen gas can be used for a balloon vehicle filled
with hydrogen. Manned balloon (Charles and co-pilot) flies � 36 km at 550m
height (Fig. 9.18).

9.5.2 Hydrogen Isotopes

In 1931, American chemist H. Urey (Fig. 9.19a) showed that the hydrogen isotope
of mass 2 exists by carefully investigating the spectrum of the residue in evaporated
hundreds of liters of liquid hydrogen. In 1932, Washburn and Urey found that
heavy water .D2O/ is concentrated in the residual liquid in the electrolysis of
water. Tritium hardly exists in nature but can be produced by the nuclear reaction
of deuteriums first produced by Australian physicist M. Olifant (Fig. 9.19b). The
physico-chemical properties of Hydrogen, Deuterium and Tritium are slightly
different each other. In addition, physical properties also differ among light water,
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Fig. 9.19 (a) US Chemist
Harold Urey (1893–1981)
who discovered Deuterium.
(b) Australian physicist Mark
Oliphant (1901–2000) who
discovered Tritium

Table 9.7 Physico-chemical
properties of hydrogen
isotopes

Item H2 D2 T2
Boiling temperature (K) 20.41 23.67 25.04

Vaporization heat (cal/mol) 216 293 333

Critical temperature (K) 33.19 38.34 40.44

Critical pressure (atm) 12.77 16.28 18.26

Critical density (mole/m3) 15,200 16,700 17,700

Triple point temperature (K) 13.96 18.73 20.62

Triple point pressure (mmHg) 54.0 128.6 162.0

After Souers [710]

Table 9.8 Physico-chemical properties of isotopic waters

Item Boiling temp. (K) Vaporization heat (cal/mol) Triple point temp. (K)

H2O 100 9.72 0.01

D2O 101.42 9.90 3.82

T2O 101.51 10.1 4.49

After Souers [710]

heavy water, and the tritiated water. The physical properties of the hydrogen isotopes
and isotopic waters are shown in Tables 9.7 and 9.8, respectively.

9.5.3 Hydrogen Isotope Exchange Reaction

Using the difference in physic-chemical properties of isotopic waters, hydrogen-
isotope exchange reaction is an efficient method to produce deuterium water and to
separate hydrogen, deuterium and tritium. This method is based on the principle
that the chemical equilibrium between the gas and liquid phases is different by
isotope [53].

H. Urey considered various isotope exchange reactions at Columbia University
between 1940–1943 years in order to produce a heavy water, which includes the
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Table 9.9 Separation factors in the deuterium exchange reaction in liquid-gas system After
Benedict [53]

Chemical reaction L • G Separation factor (25 ıC) Separation factor (125 ıC) Ratio

H2O C HDS • HDO C H2S 2.37 1.84 1.29

H2O C HD • HDO C H2 3.81 2.43 1.57

isotope exchange reaction of hydrogen sulfide and water. Spevack invented dual
temperature water-hydrogen sulfide exchange method in this period. In 1949, a
large amount of heavy water was required at the Savannah River reactor and Du
Pont assessed that this method is most efficient for the heavy water production.
To improve further this manufacturing method, Spevack takes measures for the
corrosion by hydrogen sulfide. Girdler Inc. manufactures a heavy water production
plant under the guidance of Du Pont and this method was called Girdler-Salfide
(GS) method.

Separation Factor ˛ is an important factor in the isotope separation. For example,
the separation factor ˛ of HD is defined by ˛ D Œx.1 � x/�=Œy.1 � y/� for H2, HD,
and D2 system, where x and y are concentration of HD in liquid and gas phase,
respectively.

Table 9.9 shows the separation factors at 125 ıC and 25 ıC in the isotope
exchange reaction typical of purifying the deuterium. If the ratio of the separation
factors in two temperatures is high, dual temperature isotope separation method is
efficient. The merit of hydrogen sulfide process that it does not require catalyst for
the reaction.

The reaction H2O.liquid/CHDS.gas/ • HDO.liquid/CH2S.gas/ is practically
most important reaction. Let K is equilibrium constant of liquid-gas phases and ˛ is
the separation factor. Separation factor is defined as the ratio of the deuterium in the
liquid phase and that in the gas phase.

˛ D .xHDP C 2xD2O/=.2xH2O C xHDO/

.yHDS C 2yD2S/=.2yH2S C yHDS/
(9.5)

If D2O concentration is much smaller than HDO concentration, the separation factor
is equal to the equilibrium constant K, i.e. ˛ D ŒxHDO=xH2O�=ŒyHDS=yH2S� D K.

Girdler-Sulfide method utilizes the fact that the separation factor for
H2O.liquid/C HDS.gas/ • HDO.liquid/C H2S.gas/ changes depending on the
temperature. Its operation principle is schematically shown in Fig. 9.20a. Deuterium
is transferred to the liquid phase (water) in the low temperature tower and to the gas
phase (hydrogen sulfide) in the high temperature tower because of the difference in
the separation factor.

System consists of cold and hot towers. Cold tower is assumed to have nc stages
and hot tower to have nh stages. Let F (Feed), P (Product), W (Waste), G (Gas) as
the flow rate, and xF; xp; xw; yF; and yp as the deuterium concentration.
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Fig. 9.20 (a) Schematics of GS method dual-temperature water-hydrogen sulfide exchange
system to enrich deuterium. Black line for liquid and orange line for gas. Modified from Benedict
[53]. (b) Mass flow diagram of GS process. Modified from Benedict [53]

Natural water containing deuterium of 0.014 % is supplied from the top of
the cold tower. Since the separation factor (equilibrium constant) of deuterium
transportation to liquid is large at low temperature, deuterium is transported actively
to water from the hydrogen sulfide in the cold tower. Some of the deuterium-rich
water enriched at low temperature column is heated via a heat exchanger and fed to
a high temperature tower. Since the separation factor is smaller in high temperature,
the deuterium is transferred from deuterium-rich water to hydrogen sulfide in hot
tower. Hydrogen sulfide with high deuterium concentration required at cold tower
is purified in this process.

Ignoring the evaporation of water and the solubility of hydrogen sulfide in water,
mass flow diagram of GS process is given in Fig. 9.20b. Assuming deuterium
concentration is small, we have xci D ˛cyci and xhi D ˛hyhi.

The mass balance of deuterium in cold tower is given by F.xp �xF/ D G.yp �yF/

and that above stage i is given by F.xc;i�1 � xF/ D G.yci � yF/. The operation line
(yci as a function of xci) is expressed as yci D yF C .F=G/.xc;i�1 � xF/ from these
relations. This gives the relation F=G D .yp�yF/=.xp�xw/. By selecting the ratio of
water (F) and hydrogen sulfide (G) flow rates, it is possible to transport deuterium
from water to hydrogen sulfide at hot tower. The operation lines are expressed in
.x; y/ diagram, called McCale-Thiele diagram. For detail, see M. Benedict [53].
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9.5.4 Fuel Circulation System in the Fusion Reactor

Fuel cycle of a fusion reactor consists of “fuel injection system”, “vacuum exhaust
system”, “fuel purification and impurity processing system”, “hydrogen isotope
separation system”, and “fuel storage system”.

The fuel injection system consists of the pellet and gas injection systems. Pellet
injection system supplies deuterium and tritium in the plasma periphery. The gas
injection system is used mainly to control the heat and particle fluxes to the diverter.

The vacuum system exhausts neutralized fuel, He ash and the impurities. He
ash and impurities are removed by Pd=Ag alloy membrane diffuser etc. in the fuel
purification and impurity processing system.

The Isotope Separation System (ISS) purifies deuterium and tritium by utilizing
the difference in the boiling temperatures of H2;HD;HT;D2;DT;T2. The purified
fuel are stored in the hydride bed metal such as U and ZrCo.

Tritium is generated by the .Li; n/ reaction inside the blanket and recovered by
He sweep gas flowing around the breeder.

Tritium is permeated into the coolant from the plasma side and from tritium
breeding zone in the blanket. Thus, the tritium recovery system from coolant is also
required.

The system also includes confinement system of radio active material and de-
tritiation system and stack release system.

The T availability for the first DEMO is an important issue since we have
relatively small production of T from CANDU reactors. The T self sufficiency is
also an important issue as discussed in Sect. 3.6.

9.6 Negative Ion Source and N-NBI System

9.6.1 Negative-Ion-Based Neutral Beam Injection

In the ITER and fusion power reactor, negative-ion-based neutral beam injector
(N-NBI) is expected for the heating the plasma high enough to fuse deuterium and
tritium to produce fusion energy. The reason to use negative ion is the neutralization
efficiency of positive ion decreases significantly with the beam energy � 100 keV,
while negative ion produced by attaching the electron to the neutral atom has
high stripping efficiency to produce neutral beam at high beam energy as seen
in Fig. 9.21. In case of negative ion, neutralizing efficiency of �60% is expected
and achieved for gas neutralizing target. In case of plasma neutralizing target,
neutralizing efficiency close to �90% is expected.
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Fig. 9.21 Neutralizing
efficiency as a function of
beam energy. Reproduced
with permission from
Kuriyama [480]. Copyright
Elsevier

9.6.2 Negative Ion Source

Negative hydrogen ion has been used as the ion beam species in the nuclear
experiments since the 1930s but its production is based on the double charge
exchange and the surface production. Bacal in 1979 [34] showed that the negative
ion density inside the ion source can be as high as 30 % of the positive ion density
by adjusting the arc discharge condition and gas pressure as measured by the laser-
induced photo-detachment of the electron [35]. It is called the ‘Volume Production’
of negative ion source. Later, it is found theoretically that the mechanism for
the volume production is two-step reaction: H2 C efast ! H�

2 .v/ C eslow and
H�
2 .v/C eslow ! H� C H0.
In the first step reaction, electrons of several eV collide with the hydrogen

molecules to produce vibrational excited states .v/, called the Driver region.
In the second step, a negative ion is formed when the low energy electrons with

<1 eV are absorbed by these excited molecules. This process called dissociative
electron attachment (DA). The cross section of this DA increases by five orders of
magnitude from vibrationally cold v D 0 molecule state to vibrationally excited
v D 5 state [792]. This reaction should be located near the Extraction region and
should have low electron temperature since the formed negative ions are easy to be
broken by the fast electrons.

Since the bonding energy of e� is low (� 0.75 eV), the electron in the negative
ion is easily separated by collisions. There are three important destruction processes.

H� C HC.HC
2 ;H

C
3 / ! H C � : mutual neutralization (MN) by collision (9.6)

H� C e ! H C 2e : electron detachment (ED) by electron collision (9.7)

H� C H ! H2.v
00/C e : associative detachment (AD) in atomic collision

(9.8)
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Fig. 9.22 Energy diagram of H0 at a distance z from the metal surface. Modified from Bacal [36]

It is a contradictory requirement to have high electron temperature to excite
hydrogen molecule, while high electron temperature is dangerous to sustain negative
ions. Due to the difference in the optimum electron temperatures, It is necessary to
separate the Driver region and the Extraction region in the negative ion source.

Magnetic Filter is conceived to separate the high and low electron temperature
regimes. The magnetic field of the magnetic filter is �50–100 Gauss and it prevents
to destroy the negative ions by the high energy electron in the driver region. The
external magnetic filter [373] is effective to produce high negative ion current
density � 220A/m2. The B � rB drift due to magnetic filter produces non-
uniformity of current density distribution in a large ion source and the tent filter
magnetic concept [767] successfully produces uniform negative ion current density
distribution since B � rB drift round the ion source periphery in this configuration.

In addition to the volume production mechanism, Cs coating on the metal
surface enhances the negative ion production and is called the “surface production”.
Negative ions are generated through the jumping of the electron by the tunnel effect
for H0 or HC, which are produced by the dissociation of molecular hydrogen in low
pressure arc discharge .H2 C efast ! H0 C HC C e/. This jumping occurs easily
if the surface work function is low. Cs has the minimum work function is as low
as 1:52 eV (see Fig. 9.22) and the electrons easily jump out from the surface by Cs
deposition. Combination of surface production produces 3 times larger negative ion
current density.

In front of the metal surface, hydrogens are neutralized with high probability.
Most important mechanism is resonant neutralization into an excited state followed
by Auger de-excitation to the ground state. Proton incident onto Cs coated metal
may penetrates the cesium layer and reflects from metal lattice as neutral. After
reflection, the hydrogen neutral picks up an additional electron. A negative ion
induces an image charge in the metal and the associated attractive interaction
results in a shift �E of the atomic affinity level. The probability of negative
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ion production on a metal surface, Pi D .2=
/expŒ�
.˚ � Ea/=2av� increases
with the atomic energy, where ˚ is the work function, Ea is the atomic affinity
energy, a is a screening constant, and v is the escaping velocity of the negative ion
perpendicular to the metal surface. With the help of enhanced surface production
from Cs coated metal surface, it is now possible to achieve reactor relevant current
density > 200A/m2 at the neutral gas pressure < 0:3 Pa as required in ITER.

Development of the negative ion sources are based on the high current arc
discharges in the multi cusp field. Cathodes such as tungsten filaments are used
which are subject to the lifetime of the filament typically 100–300 h. A radio
frequency ion-source has no filament and has long life. An RF ion source has
been developed at Max Planck institute for plasma physics (IPP) and applied to
the negative ion source [790]. IPP further developed RF ion sources for ITER
[196, 197, 210].

9.6.3 Negative Ion Accelerator

Extraction and acceleration of the negative ions is associated with the acceleration
of the electrons. To suppress electron acceleration, a weak magnetic field is applied
so that electrons are bended but ions can be extracted. Care must be taken on the
beam optics for a small bending of negative ion beam, which may cause excessive
heat load to the apertures.

Neutral beam injection heating device with a large negative ion source was
developed for the first time in JT-60U with the energy of 500 keV as shown in
Fig. 9.23 [467]. Deuterium negative ion beam is accelerated to 500 kV in the three-
stage acceleration with a beam current of 22A. While break down voltage scaling
in proportion to 1=2 power of vacuum insulation gap by Cranberg [151] (Clump
hypothesis) was used for the accelerator design, the locally intensified electric field
at the aperture of negative ion extraction and the corners of electrodes reduces
the break down voltage to about half of the scaling. Stable 500 kV acceleration
is achieved by performing optimization of the gap in each stage [467]. Beam
acceleration up to 1MeV is planned in ITER based on such progresses.

9.7 Gyrotron and ECRF System

Electron cyclotron range of frequency (ECRF) wave heating made a great progress
by the development of Gyrotron as a high-frequency power source.

Gyrotron is a coherent microwave radiation source [38]. In the former Soviet
Union during the 1970s, the tapered open-ended waveguide cavity and the mag-
netron injection gun are developed, by which electron beam formation method
having most of the energy in the form of cyclotron motion is established. This is
the technical breakthrough produced by Zaytsev [856] and Baird [37].
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Fig. 9.23 (a) JT-60U Negative Ion based Neutral Beam Injector [445]. (b) JT-60U Negative Ion
Source with 3 stage acceleration grids. Reproduced with permission from Kikuchi [445] and
Kojima [467]. Copyright IAEA Vienna

The key principle of excitation is the Cyclotron Resonance Maser (CRM) effect
to convert the rotational kinetic energy of weakly relativistic electron beam to
the electromagnetic energy. In the CRM effect, electron beams make the spacial
bunching due to the interaction with RF waves, and also the phase bunching occurs
to transfer kinetic energy to RF wave. These two processes occurs simultaneously.

In order to keep CRM effect as the dominant process, the Weibel instability must
be suppressed by having the parallel phase velocity !=kk > c.

The parameters characterizing the magnetron injection gun (MIG) are (1) beam
energy .V0/, (2) Beam current .I0/, (3) cyclotron frequency .B0/, (4) radius of the
guiding center .rg/, (5) ratio of parallel and perpendicular velocity .˛ D v?=vk/.

Important three technical innovations are carried out in the gyrotron development
during 2000s in Japan, EU and Russia. These are significant improvement in energy
efficiency by the energy recovery [648], significant increase in transmission power
density by the development of diamond window [416], robust high power operation
using the hard self-excitation shown in Fig. 9.24a [653]. While Sakamoto uses
magnetic field to control hard self-excitation, it is also possible to use anode voltage
to enter hard self-excitation regime as shown by Kobayashi [460].

With these technical break through, the gyrotrons capable of MW steady output
are realized. Figure 9.25 shows the 170 GHz gyrotron for ITER and a schematics
showing the basic structure [654]. There is a electron gun (magnetron gun) incident
at the bottom, and the electrons are extracted from the cathode potential of �47 kV.
Due to the CRM effect, the extracted fast electrons immersed in the strong magnetic
field by the superconductor excite the fast wave near the resonator with a mode
structure shown in Fig. 9.25b. The remaining energy of the decelerated electrons are
recovered at the anode with anode potential of 0V.

The fast wave amplified near the resonator is transmitted to the transmission
line through the diamond window having high thermal conductivity after passing
the quasi-optical launcher above the resonator and the multiple reflection by the
mirrors. ECRF power is transmitted through the transmission lines and injected into
the plasma via ECRF launcher shown in Fig. 9.26.
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Fig. 9.24 (a) Hysteresis curve of hard-self excitation regime in Gyrotron. Reproduced with
permission from Sakamoto [653]. Copyright Nature. (b) Gyrotron mode structure near the
resonator .TE31;8/. Private communication from K. Sakamoto

Fig. 9.25 (a) 170 GHz Gyrotron for ITER and (b) its schematic structure. Reproduced with
permission from Sakamoto [655]. Copyright IAEA Vienna
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Fig. 9.26 Schematic arrangement of Fusion reactor (ITER), ECRF launcher, and the gyrotron
array



Appendix A
Mathematical Basics

Useful formulas are given in NRL plasma formulary by J.D. Huba [353], and also
by J.D. Callen [92].

Flanders [206] is a good textbook for the elementary introduction of the
differential form. Arnolds [26] gives geometrical introduction of differential forms.
Lovelock [526] is also useful to see difference between differential form and tensor
algebra. Frankel [209] gives modern framework of the differential geometry.

Cary-Littlejohn [99] is best introduction of Lie transform techniques. Cary-
Brizard [100] and Brizard-Hahm [82] gives some fundamentals. Ince [372] Chap. IV
gives introduction to continuous transformation-group. Frankel [209] Chap. 4 gives
introduction to Lie derivatives.

The characteristics of L2 space is well described by Kolmogolov-Fomin [468].
For ordinary differential equation, see, for example, Tenenbaum [761] and

Ince [372].

A.1 Vector Identities and Differential Operators

Vector Formula: We list here well-known vector formulas. Here, a, b, c, d are
arbitrary vectors, f , g are scalar.

a � .b � c/ D b � .c � a/ D c � .a � b/ (A.1)

a � .b � c/ D b.a � c/ � c.a � b/ (A.2)

.a � b/ � .c � d/ D .a � c/.b � d/� .a � d/.b � c/ (A.3)

r � rf D 0 (A.4)

r � .r � a/ D 0 (A.5)

r � .rf � rg/ D 0 (A.6)

© Springer International Publishing Switzerland 2015
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r � .f a/ D f r � a C a � rf (A.7)

r � .f a/ D rf � a C f r � a (A.8)

r � .r � a/ D r.r � a/ � r2a (A.9)

r � .a � b/ D a.r � b/� b.r � a/C .b � r/a � .a � r/b (A.10)

r � .a � b/ D b � .r � a/� a � .r � b/ (A.11)

r.a � b/ D .b � r/a C b � .r � a/C .a � r/b C a � .r � b/ (A.12)

r2a � .r � r/a D r.r � a/ � r � .r � a/ (A.13)

We have following integral formula for vectors.

Z

V
dVr � A D

I
dS � A : Gauss theorem (A.14)

Z

V
dVrf D

I
dSf (A.15)

Z

V
dVr � A D

I
dS � A (A.16)

Z

V
dV.f r2g � gr2f / D

I
dS � .f rg � grf / (A.17)

Z

S
dS � rf D

I

C
dlf (A.18)

Z

S
dS � r � A D

I

C
dl � A : Stokes theorem (A.19)

Z

S
.dS � r/ � A D

I

C
dl � A (A.20)

For integral formulas, V is a volume enclosed by a surface S and the surface element
is given by dS D ndS, where n is the unit normal vector outward from V . For an
open surface S, an line element is given by dl.

Tensor Formula: We list here tensor formulas. Here, T is a 2nd order tensor T D
Tijeiej D Tijeiej, ab D aibjeiej D aibjeiej is a dyadic tensor constructed from two
vectors a D aiei D aiei and b D bjej D bjej, I is unit tensor. Here ei D rui and
ei D @x=@ui in general curvilinear coordinates [443]. Dot product between tensors
is a tensor defined by dyadic tensor such as .eiej/ � .ekel/ D .ej � ek/eiel D ıjkeiel

using the orthogonal relation. Double dot product between two tensor is a scalar
defined such as .eiej/ W .ekel/ D ei.ej � ek/el D ıjkıil to see F W G D f ijgji. Hints of
proof of following formulas are shown in the Descartes coordinates fxig.
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I W ab � .I � a/ � b D a � b .ıijajbi D aibi/ (A.21)

ab W cd � a � .b � c/ � d D .b � c/.a � d/ .aibjcjdi D biciajdj/ (A.22)

I W T D tr.T/ .ıijTji D Tii/ (A.23)

a � .cb � bc/ D .a � c/b � .a � b/c D a � .b � c/ (A.24)

Cross product of tensor:

a � .b � T/ D .a � b/ � T .ai�ijkbjTkl D .�kijaibj/Tkl/ (A.25)

a � .T � b/ D .a � T/ � b (A.26)

.a � T/ � b D a � .T � b/ (A.27)

r � .ab/ D .r � a/b C .a � r/b .@i.aibj/ D .@iai/bj C .ai@i/bj/ (A.28)

ab W rc C cb W ra D a � .b � r/c C c � .b � r/a D .b � r/.a � c/ (A.29)

.ab � ba/ W rc D b � rc � a � a � rc � b D .b � a/ � r � c (A.30)

I W ra D r � a .ıij@jai D @iai/ (A.31)

a � I W rb D a � r � b .�ijkajıkl@lbi D aj�jki@kbi D aj.r � b/j/ (A.32)

ra W T D T W ra D a � r � T � r � .a � T/ (A.33)

.ra/ � b C .rb/ � a D r.a � b/ ..@iaj/bj C .@ibj/aj D @i.ajbj// (A.34)

r � .ab/ D .r � a/b C .a � r/b .@i.aibj/ D .@iai/bj C ai@ibj/ (A.35)

r � .I � a/ D r � a (A.36)

r � .ab � ba/ D r � .b � a/ (use (A.35) and (A.10)) (A.37)

a � .b � .r � c// D a � rc � b C b � rc � a (A.38)

I � ra D ra � I D ra (A.39)

r � ab D .r � a/b � a � rb (A.40)

r � .f T/ D rf � T C f r � T (A.41)

r � .f T/ D rf � T C f r � T (A.42)

We illustrate one integral relation for tensor.
Z

V
dVr � T D

I
dS � T (A.43)

Differential formula in orthogonal coordinates: Let .x1; x2; x3/ are orthogonal
coordinate system, we have following formula for differential operators.

rf D 1

h1

@f

@x1
e1 C 1

h2

@f

@x2
e2 C 1

h3

@f

@x3
e3 (A.44)
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r2f D 1

h1h2h3

�
@

@x1

�
h2h3@f

h1@x1

�

C @

@x2

�
h3h1@f

h2@x2

�

C @

@x3

�
h1h2@f

h3@x3

��

(A.45)

r � F D 1

h1h2h3

�
@

@x1
.h2h3F1/C @

@x2
.h3h1F2/C @

@x3
.h1h2F3/

�

(A.46)

r � F D 1

h2h3

�
@

@x2
.h3F3/ � @

@x3
.h2F2/

�

e1

C 1

h3h1

�
@

@x3
.h1F1/ � @

@x1
.h3F3/

�

e2

C 1

h1h2

�
@

@x1
.h2F2/ � @

@x2
.h1F1/

�

e3; (A.47)

where the line element ds is given by ds2 D h21.dx1/2 C h22.dx2/2 C h23.dx3/2.
As an important coordinate system, we show differential formula in the cylin-

drical coordinates .R; �;Z/, where a differential length is given by ds2 D dR2 C
R2d�2 C dZ2.

rf D @f

@R
eR C 1

R

@f

@�
e� C @f

@Z
eZ (A.48)

r2f D 1

R

@

@R

�

R
@f

@R

�

C 1

R2
@2f

@�2
C @2f

@Z2
(A.49)

r � F D 1

R

@

@R
.RFR/C 1

R

@F�
@�

C @FZ

@Z
(A.50)

r � F D
�
@FZ

R@�
� @F�
@Z

�

eR C
�
@FR

@Z
� @FZ

@R

�

e� C
�
@RF�
R@R

� @FR

R@�

�

eZ

(A.51)

A � rB D
�

A � rBR � A�B�
R

�

eR C
�

A � rB� � A�BR

R

�

e� C .A � rBZ/eZ

(A.52)

Components of the Laplacian of the vector F in the cylindrical coordinates are
given as follows,

.r2F/R D r2FR � 2

R2
@F�
@�

� FR

R2
(A.53)

.r2F/� D r2F� C 2

R2
@FR

@�
� F�

R2
(A.54)

.r2F/Z D r2FZ; (A.55)
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where Laplacian operator to a scalar is given by (A.49).
The divergence of a Tensor T in the cylindrical coordinates is given as follows,

.r � T/R D 1

R

@

@R
.RTRR/C 1

R

@T�R
@�

C @TZR

@Z
� T��

R
(A.56)

.r � T/� D 1

R

@

@R
.RTR�/C 1

R

@T��
@�

C @TZ�

@Z
C T�R

R
(A.57)

.r � T/Z D 1

R

@

@R
.RTRZ/C 1

R

@T�Z
@�

C @TZZ

@Z
(A.58)

In the spherical coordinates .r; �; 
/, we have

ds2 D dr2 C r2d�2 C r2sin2�d
2 (A.59)

rf D @f

@r
er C 1

r

@f

@�
e� C 1

rsin�

@f

@

e
 (A.60)

r � F D 1

r2
@

@r
.r2F1/C 1

rsin�

@

@�
.sin�F2/C 1

rsin�

@F3
@


(A.61)

r � F D 1

rsin�

�
@

@�
.sin�F3/ � @F2

@


�

er

C1

r

�
1

sin�

@F1
@


� @

@r
.rF3/

�

e� C 1

r

�
@

@r
.rF2/� @F1

@�

�

e
 (A.62)

r2f D 1

r2
@

@r
.r2
@f

@r
/C 1

r2sin�

@

@�
.sin�

@f

@�
/C 1

r2sin2�

@2f

@
2
(A.63)

A.2 Curvilinear Coordinates

Descartes coordinates .x; y; z/ is given by, x D xOex C yOey C zOez, where Oex; Oey; Oez

are unit vectors satisfying Oei � Oej D ıij, where ıij is Kronecker delta function. Let
.u1; u2; u3/ as general curvilinear coordinates, “gradient” and “tangent” vectors are
defined as,

rui D @xuiOex C @yui Oey C @zu
i Oez (A.64)

@ix D @ixOex C @iyOey C @izOez (A.65)

rui.D @ui=@x/ is called the “co-variant basis vector” and @ix.D @x=@ui/ is called
the “contravariant basis vector”. Neither .rui/ nor .@ix/ are orthogonal set. But,
gradient and tangent vectors are orthogonal called “orthogonal relation”.

rui � @jx D ıij (A.66)
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Let .i; j; k/ D .1; 2; 3/; .2; 3; 1/; .3; 1; 2/, we have following dual relations between
gradient and tangent vectors.

rui D J�1@jx � @kx , @ix D Jruj � ruk; (A.67)

where J � @1x � .@2x � @3x/ is called the Jacobian. Any vector a can be expanded
using the covariant basis vector as a D airui called the “covariant representation”,
where ai D a � @ix, or using the contravariant basis vector as a D ai@ix called the
“contravariant representation”, where ai D a � rui. Metric tensor Œgij� and Œgij� and
g are defined as follows.

gij D @ix � @jx , g � jgijj D J2 (A.68)

gij D rui � ruj (A.69)

Each metric tensor is inverse of other metric tensor, e.g. Œgij�Œgij� D Œgij�Œgij� D I,
where I is unit tensor. Differential length ds2 is given by using metric gij as,

ds2 D dx2 C dy2 C dz2 D gijduiduj (A.70)

Differential volume dV D dxdydz is given by, dV D @1x � .@2x � @3x/du1du2du3 D
Jdu1du2du3. Rotation and divergence of vector a are given by,

r � a D J�1 �@iaj � @jai
�
@kx (A.71)

r � a D J�1@i.Jai/ (A.72)

The line, surface and volume integrals are given by,

Z
a � dx D

Z
a � @ixdui (A.73)

Z
a � dS D

Z
a � rukJduiduj (A.74)

Z
fdV D

Z
fJdu1du2du3 (A.75)

A.3 Vectors and Tensors on the Surface

In the plasma theory, we use tensor analysis in differential geometry. We gives
elementary introduction of tensor. Lovelock [526] is useful for tensor algebra on
manifolds. Consider a coordinates .u1; u2/ and .Nu1; Nu2/ on the surface S which are
related by the transformation, Nuj D Nuj.u1; u2/ W i D 1; 2. The difference dui is
given by,
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dui D @ui

@Nuj
d Nuj (A.76)

A set of number .a1; a2/ is called a “contravariant vector” or “contravariant tensor
of first order” if the following “contravariant transformation” relation is satisfied
under the coordinate transformation from .u1; u2/ to .Nu1; Nu2/.

ai D @ui

@Nuj
Naj (A.77)

Since dui D .@ui=@Nuj/d Nuj, .du1; du2/ is a contravariant vector. A set of number
.a1; a2/ is called a “covariant vector” or “covariant tensor of first order” if the
following “covariant transformation” relation is satisfied.

ai D @Nuj

@ui
Naj (A.78)

The “gradient” of a scalar function .@
=@u1; @
=@u2/ is a covariant vector since,

@


@ui
D @Nuj

@ui

@


@Nuj
(A.79)

The differential length ds is an invariant quantity to coordinate transformation.

ds2 D gijduiduj D Ngkld Nukd Nul (A.80)

Therefore, we obtain following transformation relation for metric tensor gij.

gij D @Nuk

@ui

@Nul

@uj
Ngkl (A.81)

A set of number .Tij/ is called a “covariant tensor of second order” if the
following “covariant transformation” relation is satisfied under the coordinate
transformation from .u1; u2/ to .Nu1; Nu2/.

Tij D @Nuk

@ui

@Nul

@uj
NTkl (A.82)

Thus, metric tensor gij (i; j D 1; 2) is a covariant tensor of second order.
Definition of contravariant and mixed tensor of second order is similarly defined.
Here, it is stressed that co- and contra-variant vectors and tensors are defined in this
section by using the transformation relation in S and without using the basis vectors
in R3.
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A.4 Differential Form

In the modern gyro kinetic theory, differential form is used as powerful tool. Here
we give an elementary introduction of the differential form.

Consider region U 
 R3, differential 0 form is a function in U. Differential 1
form ! in U is following form of summation.

! D a1.x/dx1 C a2.x/dx2 C a3.x/dx3 (A.83)

Differential 2 form in U is following form of summation.

a1.x/dx2 ^ dx3 C a2.x/dx3 ^ dx1 C a3.x/dx1 ^ dx2 (A.84)

Here, symbol ^ is called “wedge” operator to define “external product”, which
satisfies following rules.

dx ^ dx D dy ^ dy D dz ^ dz D 0 (A.85)

dx ^ dy D �dy ^ dx; dy ^ dz D �dz ^ dy; dx ^ dz D �dz ^ dx (A.86)

External product between p-form u and q form v becomes .p C q/ form written as
u ^ v. Let D uidxi and v D vidxi are one-forms with components ui and vi, we have

.u ^ v/ij D uivj � ujvi (A.87)

Rule is simple except multiplication of same differential form is 0 and change in
order change sign. Hereafter, “wedge operator” ^ is dropped for simplicity unless
otherwise specified.

External derivative d for scalar (f ) is given by df D .@f=@xi/dxi D rf � dx.
Consider one form u D uidxi its external derivative du is given by,

du D d.uidxi/ D @ui

@xj
dxjdxi D

X

i<j

�
@ui

@xj
� @uj

@xi

�

dxidxj; (A.88)

i.e. d.a � dx/ D r � a � dS. External derivative for differential two form (a � dS) is
given as d.a � dS/ D .r � a/dxdydz.

We introduce the “interior product” or “inner product” as a product of vector
field and the differential one form. Here we call a differential operator, X D Xi@=@xi

as a vector field. Let u D uidxi is a differential 1 form and X D Xi@=@xi is a
differential operator, the scalar uiXi is a scalar which is invariant to the selection of
the coordinates and we call this quantity an “interior product” of a vector field and
a differential 1 form. The calculation rule is X � u D .Xi@=@xi/ � .uidxi/ D uiXi. It is
clear that the differential form unifies differential operators such as grad, rot, div in
vector analysis. This has natural extension to any dimension.
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A.5 Spectrum and Initial Value Problem of Linear Operator

There are many cases in plasma physics where we see linear operator. This section
introduces categories of spectrum (point, continuous and residual spectrums) and
the initial value problem. See Kolmogolov-Fomin [468] and Friedman [214].

The eigenvalue problem is to obtain the eigenvalue � 2 C and eigenvector u
to satisfy Au D �u. This can be rewritten as .�I � A/u D 0 and the problem
is to find a set of null points of the linear operator .�I � A/. In the operator in
infinite dimensional linear space, spectrum analysis is used to investigate singularity
of .�I�A/�1. The operator R� D .�I�A/�1 if exists, is called the resolvent operator
of A. For complex values of �, the following three classes of the spectrum arise.

1. Point spectrum: If .�I � A/u D 0 has a non-trivial u, the resolvent operator R�
does not exists. The corresponding set of � is called a “point spectrum”.
Example: A D �@2x defined at x 2 Œ0; 1� satisfying u.0/ D u.1/ D 0. Eigenvalues
of .�I � A/u D 0 are � D f.n
/2I n D 1; 2;��g.

2. Continuous spectrum: In this case, the unbounded inverse R� exists. The
corresponding set is called a “continuous spectrum”.
Example: A D x. The solution for .� � x/u D 0 is u D ı.x/. This Dirac delta
function is not square integrable and does not belong to Hilbert space.

3. Residual spectrum: In the case where inverse .�I � A/�1 exists and is bounded,
the corresponding set called a “residual spectrum”. Example of the residual
spectrum is shown in p126 of Friedman [214]. Here, a linear operator A is said to
be “bounded” if there exists a constant N for all u 2 H such that jjAujj � Njjujj.
It is important to note that if � is in the residual spectrum of A, � is in the point
spectrum of the adjoint operator A� in p127 of Friedman [214]. Since Hermitian
(self adjoint) operator satisfy A� D A, there is no residual spectrum in the
Hermitian operator.

Dunford Integral:
The Dunford integral is a natural extension of following Cauchy integral formula

for a regular function F.�/ and complex constant a.

F.a/ D 1

2
i

I

�

F.�/d�

� � a
(A.89)

The Dunford integral is defined for a regular function F.�/ by,

F.A/ D 1

2
i

I

�

F.�/.�I � A/�1d� (A.90)

Consider the following initial value problem for the linear operator A.

du=dt D Au , u.0/ D u0 (A.91)
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The solution may be given as u D etAu0, where the exponential operator etA is given
by the Dunford integral as follows,

etA D 1

2
i

I

�

e�t.�I � A/�1d�; (A.92)

where the � is a closed line to see all singular points of the integrant left.

A.6 Important Ordinary Differential Equations

Hypergeometric Equation:
Let ˛, ˇ and � are constants and � is not integer.

.x2 � x/y00 C Œ.1C ˛ C ˇ/x � ��y0 C ˛ˇy D 0 (A.93)

This equation has regular singular points at x D 0; 1;1. The indicial equation is
�.� � 1C �/ D 0 and � D 0 gives the hypergeometric function.

Legendre Equation:
Legendre equation appears in collisional transport, when we expand the velocity

distribution function in velocity coordinates .v; �; '/.

.1 � x2/y00 � 2xy0 C n.n C 1/y D 0; (A.94)

where x D cos� . This equation has regular singular points at x D ˙1. The indicial
equation is �.��1/ D 0. This Legendre equation is a special case of hypergeometric
equation. For positive integer n, this gives Legendre polynomials, Pn.x/.

Pn.x/ D 1

2nnŠ

dn

dxn
.x2 � 1/n (A.95)

Lower order Legendre polynomials are P0.x/ D 1;P1.x/ D x;P2.x/ D .3x2 � 1/=3.
The Legendre polynomials satisfy following orthogonal relation.

Z 1

�1
Pn.x/Pm.x/dx D 2

2n C 1
ımn (A.96)

Sonnine Equation:
Sonnine equation appears in collisional transport, when we expand the velocity

distribution function in velocity coordinates .v; �; '/.

xy00 C .˛ C 1 � x/y0 C ny D 0; (A.97)
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where x D v=vTa and vTa is thermal speed of the species a. The solution is Sonnine
polynomials L˛n .x/.

L˛n .x/ D exx�˛

nŠ

dn

dxn
.e�xxnC˛/ (A.98)

Lower order Sonnine polynomials are L˛0 .x/ D 1;L˛1 .x/ D 1 C ˛ � x;L˛2 .x/ D
.˛ C 1/.˛ C 2/=2 � .˛ C 2/x C x2=2. The Sonnine polynomials satisfy following
orthogonal relation.

Z 1

0

e�xx˛L˛n .x/L
˛
m.x/dx D � .˛ C n C 1/

nŠ
ımn (A.99)

This property is important to solve the drift kinetic equation to derive analytical
parallel viscosity for the Maxwellian distribution function (e�x term in the integral)
in the collisional transport (see Sect. 4.3).

Sturm-Liouville Equation:
Sturm-Liouville equation is a following type of ordinary differential equation.

d

dx

�

f .x/
dy

dx

�

C Œ��.x/ � g.x/�y.x/ D 0 (A.100)

Here � is the eigenvalue and � > 0. This type of ODE is first studied by Sturm
(J. de Math, 1 (1836)106), which leads to Comparison Theorems and Oscillation
Theorems (see Ince [372]). The Sturm-Liouville type equation appears in Sect. 8.2
(8.45). This equation is much simpler than the Hain-Lust equation (8.22). The
singular point in the Hain-Lust equation (8.22) changes for different values of !.
But the singular point is fixed in the Sturm-Liouville type equation (8.58). This
property is useful to have fast convergence of eigenvalue.

A.7 Square Integrable Functions and L2 Space

In MHD and Vlasov spectrum theories, we sometimes see square integrable and non
square integrable functions. We gives elementary introduction on such functions.

Hilbert space is one of important linear normed space in the Functional Analysis.
Hilbert space is a natural infinite-dimensional analogue of Euclidean n-space. One
of important Hilbert space is the space L2 defined below. We say that f .x/ is a square
integrable function on a set R (where a measure � is defined on R) if the following
integral exists and finite.

Z
f 2.x/d� (A.101)
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Set of all square integrable functions is called L2. The inner product in L2 is:

.f ; g/ D
Z

f .x/g.x/d� (A.102)

The space L2 is the Euclidean space (a linear space with an inner product) whose
elements are square integrable functions. This L2 has following important property.

This L2 has following important properties.

L2.1/; The product of two square integrable functions is an integrable function.
L2.2/; A square integrable function is integrable.
L2.3/; Let f .x/; g.x/ 2 L2, then f .x/C g.x/ 2 L2.
L2.4/; Let ˛ is arbitrary constant and f .x/ 2 L2, then ˛f .x/ 2 L2.

A.8 Poisson Summation Formula

Let g.x/ is an arbitrary function of x, we define its Fourier transform G.k/ by,

G.k/ D
Z C1

�1
g.x/e�ikxdx (A.103)

And, g.x/ can be expressed as:

g.x/ D
Z C1

�1
dk

2

G.k/eikx (A.104)

Noting the following ı-function formula,

C1X

mD�1
eimx D 2


C1X

jD�1
ı.x � 2
j/ (A.105)

We have:

C1X

mD�1
g.mT/ D

C1X

mD�1

Z
dk

2

G.k/eikmT D

Z
dk

C1X

jD�1
ı.kT � 2
j/G.k/

(A.106)

Namely, we have following Poisson Summation formula.

C1X

mD�1
g.mT/ D 1

T

C1X

jD�1
G.
2
j

T
/ (A.107)
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A.9 Algebraic Solutions

Some of the dispersion relation in plasma physics become the quadratic, cubic or
quartic equations. The instability threshold is given by D D 0, where D is the
discriminant of the algebraic equation. For the quadratic equation x2 C ax C b D 0,
the instability threshold is given by D D a2 � 4b D 0.

For the cubic equation x3 C ax2 C bx C c D 0 (a ¤ 0), we first convert to a
reduced cubic equation y3 C py C q D 0, where y D x C a=3, p D b � a2=3,
q D c � ab=3 � 2a3=27. The instability threshold is given by Gerolamo Cardano
(1501–1576):

D D 4p3 C 27q2 D 4.b � a2=3/3 C 27.c � ab=3� 2a3=27/2 D 0 (A.108)



Appendix B
Elementary Physics

B.1 Physical Constants

Physical constant Symbol Value

Electron charge e 1:602 � 10�19 C

Electron mass me 9:110 � 10�31 kg

Proton mass mp 1:673 � 10�27 kg

mass ratio mp=me 1836.D 42:92/

Speed of light c 2:998� 108 m=s

Boltzmann const. kB 1:38� 10�23 J=K

Vac. permeability �0 1:257 � 10�6 H=m

Vac. dielectric c. "0 8:854 � 10�12 F=m

B.2 Electro Dynamics

B.2.1 Maxwell Equation

Maxwell equation in vector form is given by,

r � B D 0 (B.1)

r � E D �

"0
(B.2)

© Springer International Publishing Switzerland 2015
M. Kikuchi, M. Azumi, Frontiers in Fusion Research II,
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r � B D �0

�

J C "0
@E
@t

�

(B.3)

r � E D �@B
@t
; (B.4)

where B is the magnetic field, E is the electric field, J is the current density, � is the
charge density, respectively. Here, c2 D 1=�0"0 and c is speed of light.

Taking r� to (B.3), we have following charge continuity equation.

r � J C @�

@t
D 0 (B.5)

B.2.2 Vector and Scalar Potentials

Magnetic field has vector potential since B satisfies (B.1).

B D r � A (B.6)

Substitution of this equation into (B.4) gives,

r �
�

E C @A
@t

�

D 0; (B.7)

which leads to the following form of the electric field E.

E D �r˚ � @A
@t

(B.8)

B.2.3 Gauge

The vector and the scalar potentials have following gauge arbitrariness.

A0 D A � rG , ˚ 0 D ˚ C @G

@t
; (B.9)

which means A0; ˚ 0 can also produce same Maxwell’s equation. Substitutions of
(B.6) into (B.3) and of (B.8) into (B.2) gives,

r � r � A C �0"0

�

r @˚
@t

C @2A
@t2

�

D �0J (B.10)

r2˚ C r � @A
@t

D � �

"0
(B.11)
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We use the gauge arbitrariness to impose following gauge selection.

r � A C �0"0
@˚

@t
D 0 (B.12)

Then Eqs. (B.10) and (B.11) becomes as follows,

r2A � �0"0
@2A
@t2

D ��0J , r2˚ � �0"0 @
2˚

@t2
D � �

"0
(B.13)

B.2.4 Poynting Vector

Poynting vector S is electromagnetic energy flux density and is given by,

S D E � B=�0 (B.14)

From Maxwell’s equation, we have following “Poynting Energy Theorem”.

@

@t

 
B2

2�0
C "0E2

2

!

D �J � E � r � S (B.15)

Left hand side is rate of change of the electromagnetic field energy. �J � E is the
joule energy loss. �r � S is sink term of electromagnetic energy. Integral form of
the Poynting Energy Theorem can be obtained using the Gauss’s theorem.

Z "
@

@t

 
B2

2�0
C "0E2

2

!

C J � E

#

dV D �
I

S � d
 ; (B.16)

where d
 is a surface element. This means that an increase of the electromagnetic
energy and the Joule dissipation in a volume is supplied by the Poynting energy
influx from the surface.

B.2.5 Maxwell Stress

The force acting on continuous electromagnetic medium F is given by,

F D �E C J � B D r � T � �0"0 @S
@t
; (B.17)
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where T is the electromagnetic stress tensor whose i; j component is given by,

Tij D "0

�

EiEj � 1

2
E2ıij

�

C 1

�0

�

BiBj � 1

2
B2ıij

�

(B.18)

2nd term in the RHS is much larger than the 1st term in the magnetized plasma.
Then,

Tij D 1

�0

�

BiBj � 1

2
B2ıij

�

(B.19)

This electromagnetic stress tensor is sometimes called Maxwell stress tensor.

B.3 Lagrange and Hamilton Mechanics

Newton equation of motion in potential field can be converted to following Euler-
Lagrange equation,

d

dt

�
@L

@Pqi

�

� @L

@qi
D 0 (B.20)

Here L D T � V is Lagrangian (T is kinetic energy and V is potential energy),
Pqi D dqi=dt, qi is ith coordinate. Variational principle to give this Euler-Lagrange
equation is given by ıS D 0 with following action integral.

S D
Z t2

t1

Ldt (B.21)

The Lagrangian L to give Newton equation of motion is not unique. Assuming G
is an arbitrary function of .q; t/, LCdG=dt also gives same Euler-Lagrange equation.
The Lagrangian for the charged particle motion is,

L.x; Px; t/ D 1

2
majPxj2 C ea Px � A.x; t/ � ea˚.x; t/; (B.22)

where ˚.x; t/ and A.x; t/ are scalar and the vector potentials, respectively.
We define canonical momentum p by using L as

p D @L

@Pq (B.23)
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Then, Euler-Lagrange equation can be converted to following Hamilton equation
if we double the independent variables from q to q and p as follows,

dq
dt

D @H

@p
;

dp
dt

D �@H

@q
; (B.24)

where the Hamiltonian H is defined as follows,

H.q; p; t/ D p � Pq � L (B.25)

In case of charged particle motion, p and H are given by,

p D mPx C eA (B.26)

H D 1

2m
jp � eAj2 C e˚ (B.27)

Variational principle to give this Hamilton equation is given by ıS D 0 with
following action integral.

S D
Z t2

t1

Œp � Pq � H.q; p; t/� dt (B.28)

B.4 Special Relativity

Variational principle of special relativity for free particle is given by ıS D 0 with
following action integral similar to Fermat’s principle in Optics.

S D �mac2
Z �2

�1

d� (B.29)

where ma is the rest mass. Proper time � is time in rest frame and is given by,

� D tŒ1 � v2�1=2 (B.30)

where v D dx=dt is velocity. Using (B.30),

S D �mac2
Z t2

t1

r

1 �
�v

c


2
dt (B.31)

This gives Lagrangian of free particle in relativistic motion L as,

L D �mac2
r

1 �
�v

c


2
(B.32)
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Under the electromagnetic fields, the charged particle feels a potential field called
generalized potential V given by,

V D ea.˚ � vvv � A/ (B.33)

Then, the relativistic Lagrangian L is given by,

L D �mac2
r

1 �
�v

c


2 � ea.˚ � vvv � A/ (B.34)

Relativistic canonical momentum p D @L=@vvv is,

p D mavvvq
1 � �

v
c

	2
C eaA (B.35)

Hamiltonian (Energy) of the particle H D p � Px � L is given by,

H D mac2
q
1 � �

v
c

	2
C '.x/ (B.36)

Hamilton equation dp=dt D �@H=@x gives,

d

dt

mavvvq
1 � �

v
c

	2
D ea.E C vvv � B/ (B.37)



Appendix C
Appendix to Plasmas Physics

In this appendix, banana and fast ion parallel viscosities are derived from the drift
kinetic equation.

C.1 DKE Solution in Banana Regime

We shows the derivation of the parallel viscous in banana regime. It is noted that the
normalization is slightly different from main text.

The collisionless plasma in tokamak is characterized by the collisionality (4.97)
��

a 	 1. The relevant DKE (4.103) may be expressed as,

�
vk C vd

	 � rfa D Ca.fa/ or, vk � r�fa C maF

eaB
vk
@fa
@ 

� D Ca.fa/ (C.1)

Hereafter, we omit "a" for simplicity. Then, we have following solvability condition.

I
dl

vk
C.f / D 0 (C.2)

We expand f in powers of � and � as f D f 0 C f 1 C f 2 : : : : : : I f n D 0.�n/ and
f n D f n

0 C f n
1 C f n

2 : : : : : : I f n
m D 0.�m/. The lowest order solution is Maxwellian.

f 0 D fM. ; v/ (C.3)

And the 1st order solution is given as,

f 10 D �mF

eB
vk
@f 0

@ 
C g. ; v; �/; where � � v2?=Bv2 (C.4)

© Springer International Publishing Switzerland 2015
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Defining G as g � .mF=e/v.df 0=d /G. ; v; �/, we have:

f 10 D mF

eB
v
@f 0

@ 

�
BG � �	; where � � vk=v (C.5)

Then, the solvability condition (C.2) is given by:

I
dl

vk
C
�mF

eB
v
@f 0

@ 

�
BG � �

	
 D 0 (C.6)

Hereafter, considering the collisionless limit, the collision term is approximated as:

C.f 1/ D �DL .f 1/C PŒf 1�fM � �DL .f 1/; (C.7)

where L .f 1/ D 2�

B

@

@�
��
@f 1

@�

Then the explicit form of solvability condition Eq. (C.6 ) may be given by:

I

p

dl

vk
� �

B

@

@�
��

@

@�
.BG � �/

i
D 0; (C.8)

where
H

p is the integral along particle trajectory: = 0 for trapped particle.
Calculating the l.h.s as

I

p

dl

vk
� �

B

@

@�
��

@

@�
.BG � �/

i
D
I

p

dl

B

� @

@�
��

@

@�
.BG � �/

i

D
I

p
dl
� @

@�
��
@G

@�

i
C1

2

I

p
dl

and introducing the average < X >D .
H

Xdl=B/=.
H

dl=B/ along particle trajectory,
the solvability condition C.8 is expressed as

@

@�
� < � >

@G

@�
C 1

2
H.�c � �/ D 0; where �c D 1=B (C.9)

From this equation, the function G is given by:

G. ; v; �/ D 1

2

Z �c

�

d�

< � >
(C.10)
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This solution G is the function of . ; �/ and does not have v-dependence. In
order to allow v-dependence of G, we introduce OG.v/ as

G. ; v; �/ D 1

2
OG. ; v/

Z �c

�

d�

< � >
(C.11)

Using G function and noting d3v D 
Bv2dvd�=�, the parallel particle and heat
fluxes are calculated as,

< nBuk >D< B
Z

d3vvkf 10 >

D< B
Z

d3vvk
mF

e
v

df 0

d 
.G � �

B
/ >

D �mF

e
<

Z
d3vv2�2

df 0

d 
> CmF

e
< B

Z
d3vv2

df 0

d 
�G >

D nBV1 C mF

e



Z
dvv4

df 0

d 

˝
I

d�	B2G
˛
; 	 D ˙1

D nBV1C < B2 >
mF

e



Z
dvv4 OGdf 0

d 

I
d�
Z �c

�

d�0

< j� 0j > ;

D nBV1 C mF

e

4


3
fc

Z
dvv4 OGdf 0

d 
;

(C.12)

< Bqk >D< B
Z

d3v
m

2
v2vkf 10 > �5

2
p < Buk >

D< B
Z

d3v
m

2
v2vk

mF

e
v

df 0

d 
.G � �

B
/ > �5

2
p < Buk >

D �mF

e
<

Z
d3v

m

2
v4�2

df 0

d 
> CmF

e
< B

Z
d3v

m

2
v4

df 0

d 
�G > �5

2
p < Buk >

D 5

2
pBV2 C mF

e



Z
dv.

m

2
v2 � 5

2

p

n
/v4

df 0

d 

˝
I

d�	B2G
E

D 5

2
pBV2C < B2 >

mF

e



Z
dv.

m

2
v2 � 5

2

p

n
/v4 OGdf 0

d 

I
d�
Z �c

�

d�0

< j� 0j >

D 5

2
pBV2 C mF

e

4


3
fc

Z
dv.

m

2
v2 � 5

2

p

n
/v4 OGdf 0

d 

(C.13)
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where,

V1 � � F

eB

�1

n

dp

d 
C e

d˚
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On the other hand, moment equations give the following relations

< nBuk >D nBV1 C nu� < B2 >; (C.16)
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Then,
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From these relations, OG can be expressed, in series of Sonine polynomials of
order (3/2), as
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h
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5
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Next, the parallel viscous force< B�r �˘ > and heat viscous force< B�r �� >

are given by:

< B � r � ˘ >D< B
Z

dv3mv2krkf 1 >D< mB
Z

dv3vkC.f 1/ > (C.21)
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< B � r � r >D< mB
Z

dv3v2vkC.f 1/ > (C.23)

To calculate these parallel viscous forces, instead of Eqs. (C.21), (C.23), we
employ the following expressions,
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Then
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Defining fA.x/g D .8=3
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In the same way, the parallel heat viscous force is
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C.2 DKE Solution for Fast Ion

This section gives fast ion parallel viscosity [803]. An approximate Coulomn
collision operator for the fast ion (and ˛ particle) distribution function are given
under the condition of vTi 	 v 	 vTe. Since xe 	 1 and G.xe/ � 2xe=3

p

 , we

find the fast ion-electron slowing down frequency is given by � fe
s � 1=�se, where the
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slowing down time �se is given by,
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For the fast-ion slowing down, xi 
 1 and G.xi/ � 1=2x2i to obtain,
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where Ec D mfv
2
c=2 is called the critical energy. The deflection frequency � fe

D and
the parallel velocity diffusion frequency � fe

k are smaller than � fe
s and can be neglected

since the slowing down process is dominant for the fast ion-electron collision since
mf 
 me. But fast ion-ion collision is dominated by the deflection. since �fi

D D
vc=v/

3.mi=mf /=�s, we have following kinetic equation for the fast particle in the
uniform plasma:
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In case of isotropic fast ion distribution (such as in case of ˛ particle) with a birth
speed of v0, we have S D S0ı.v � v0/=4
v

2
0 and the solution of the kinetic equation

is the Stix solution given as:

ff .v/ D S�se

4
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The drift kinetic equation in a rare collision regime is given by,
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where � D vk=v. Rewriting the collision term from � D p
1 � �B to the pitch angle

variable � D .1 � �2/=B, the collision term can be given by,
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We use two smallness parameters �=�b and �=a satisfying �=�b 	 �=a 	 1,
where �b is a bounce time of the trapped particle. We expand fa in powers as f D
f 0 C f 1 C ��, f 1 D f 10 C f 11 C �� and f ˛ˇ D o..�=a/˛; .�=�b/

ˇ/. The lowest order
equation and it solution are,

vkb � rf 0 D C.f 0/C S. /ı.v � vb/ (C.43)
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The conservation of toroidal angular momentum conservation give rise to the
relation,
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the first order equation is given by,
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The f 1 is expanded in orders of �=�b as f 1 D f 10 C f 11 ,
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vkb � rf 11 D C.f 10 / (C.48)

The general solution of (4.123) is given by,
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Equation (4.124) gives solvability condition for f 10 or g:
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By using explicit form of the Coulomb collision operator (4.118) and rewriting
g D .mF=e/v.@f 0=@ /G, this condition can be rewritten as,
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By using G, the first order flows in the poloidal direction and parallel to the
magnetic field are expressed by,
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For the Maxwellian velocity distribution,
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Using the first order flows, the first order Legendre component of the perturbed
distribution function can be expressed as,
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where

Or D 7
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nmr

p
� 5

2
p (C.64)

Here Or D p for the Maxwell distribution.
We define the parallel viscous forces by,
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By using the relation,

vkb � rf 11 D C.f 10 / (C.67)

the parallel viscous forces caused by the 1st order deformation of the velocity
distribution function are calculated from the following equations:
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Using Hirshman-Sigmar technique [330] to use the relation h.B=vkC.f 1/i D 0

(Eq. (4.56)), these are rewritten as,
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Here, Vk and fc are given by,
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After some manipulations, we obtain following forms for the parallel viscous forces.
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In the pitch angle scattering dominant regime OZv3c=v3 
 1, G is given by,
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(C.76)

Allowing the v dependence of G in the following form,
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The parallel viscous forces are given by,
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The corresponding flows in the poloidal direction are,
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gyrokinetic theory (classical), 131, 137
gyrokinetic theory (modern), 137, 138, 140,

153
Gyrotron, 103, 336

H
Hain-Lust equation, 231, 234, 351
Hamilton equation, 19, 359
Hamiltonian, 359
hard self-excitation, 337
Hasegawa-Mima equation, 193, 196
Heaviside function, 90
helicity conservation, 18
helium liquefaction, 302
hermeticity, 315
Hermite operator, 246, 349
high-temperature superconductor, 306
Hilbert space, 230, 349, 351
HL-2A, 209, 211, 214, 288
HL-2M, 58
Hombre Muerto Salt Lake, 321
homoclinic tangle, 252
HRSAE (higher frequency RSAE), 287
HT-7U, 209
hydrogen bonding, 327
hydrogen sulfide, 332
hydrogen-isotope exchange reaction, 330
hypergeometric function, 350

I
IA (interstitial atom), 310
impact parameter, 80
indicial equation, 236, 263, 350
inertial range, 197
infernal mode, 259, 260
inter-metallic compound, 305, 322
interior product (inner product), 348
internal disruption, 259
internal tin diffusion process, 307
interstitial atom, 310
INTOR, 6
intrinsic rotation, 219

intrinsic torque, 190, 219
invariant principle, 158, 222–224
inverse cascade, 188
inverse energy cascade, 194, 197, 210
inverse operator, 230
ionic liquid, 321
ionic liquid membrane, 321
irradiation hardening, 313
irregular singular point, 236
ITB (internal transport barrier), 50, 53, 175,

213, 260, 261, 270
ITER, 3, 57
ITG (ion temperature gradient), 118, 119,

122–125, 150, 153, 154, 177, 179–181,
184, 185, 188, 190, 199, 200, 203, 206,
208, 209, 214–217, 219, 221

ITG (ion temperature gradient) mode, 179

J
J-TEXT, 252
Jacobian, 21, 32, 144, 346
JET, 3, 25, 49, 53, 57, 94, 96, 180, 252, 260,

284, 286, 289
JFT-2M, 109, 208, 212, 219, 252, 264
JIPP T-IIU, 209
Jobian atmosphere, 196
joint reflection symmetry, 177, 190
JT-60SA, 58
JT-60U, 3, 8, 25, 46, 53–57, 96, 98, 105, 106,

213–215, 219, 251, 257, 259–261, 265,
267, 270, 271, 284, 298, 312, 336

K
KAW (kinetic Alfven wave), 127, 231, 298
KBM (kinetic ballooning mode), 215, 216
Kelvin’s circulation theorem, 31
KERMA factor, 325
kinematic viscosity, 223
kink-ballooning mode, 48
Kronecker delta, 345
Krook collision operator, 92, 182
KSTAR, 58, 111, 252, 257

L
L-mode, 10, 177, 214, 215
Lagrange bracket, 141
Lagrange tensor, 140, 141, 144
Lagrangian, 81, 137–139, 218, 244, 247, 358,

359
laminar flow, 222



Index 399

Landau damping, 103, 200, 203, 230, 231, 289,
298

Laplacian, 344
large solution, 236
laser-induced photo-detachment, 334
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similarity law, 223
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thermal conversion efficiency, 11
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toroidal correlation length, 187
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total viscous stress tensor, 68
transition temperature, 305
translational symmetry, 199
trapped electron pinch, 183
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trigonometric function, 241
tritium breeding material, 317
tritium self-sufficiency, 56
turbulence de-correlation, 190
turbulent acceleration, 221
turbulent cascade, 197
turbulent flow, 222
turbulent viscosity, 220
two dimensional turbulence, 194
two form, 348
type I superconductor, 302
type II superconductor, 302

U
Umklapp process, 317
unpaired electron, 327
upper critical field, 305

V
vacancy, 310
vacancy cluster, 311
variational principle, 19, 139
vector potential, 19, 356
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Virial theorem, 29
viscous fluid, 176
viscous stress tensor, 65
Vlasov equation, 64, 131, 133, 135, 143, 144,

153, 197, 230, 294
volume production, 334
vortex filament, 303
vortex state, 302
vortex tube stretching, 194, 195
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vorticity equation, 195
vorticity tensor, 69
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Ware pinch, 184
wave-induced flux, 103
wave-particle interaction, 103
wedge operator, 348
Weibel instability, 337
Weiland fluid mode, 184
WEST, 58

wet process, 320
WKBJ (Wentzel-Kramers-Brillouin-Jeffries)

solution, 238, 256, 259
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