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Microbes are recognized for their ubiquitous presence, diverse metabolic activity, 
and unique survival strategies under extreme conditions. The diversity and abun-
dance of microorganisms in various environments are poorly explored. However, 
rapid and continuous increase in global human population combined with rapid 
industrialization has resulted in environmental pollution with heavy metals, pesti-
cides, and other toxic substances. Such impacts have adversely impacted crop 
production, the environment, and human health. Developing methods for sustaining 
crop production and environmental health are of prime importance in feeding 
global populations on a sustainable basis.

Molecular biology has revolutionized the study of microorganisms in the envi-
ronment and improved our understanding of the composition, phylogeny, and 
physiology of microbial communities. The current molecular toolbox encompasses 
a range of DNA-based technologies, and new methods for the study of RNA and 
proteins extracted from environmental samples. Currently, there is a major emphasis 
on the application of “omics” approaches such as genomics, proteomics, functional 
genomics, etc. to determine the identities and functions of microbes inhabiting 
different environments. Recent molecular-based developments will be of signifi-
cant value in discovering new microbes and microbial genes and to exploit them 
in solving the urgent challenges facing the environment, agriculture, and human 
health.

Emerging disciplines such as bioremediation, biofilms, microbial quorum 
 sensing, and microbial nanoparticles require greater attention by researchers. 
Molecular techniques in tracking and monitoring microbial inoculants both in bulk 
soil and in rhizosphere are of critical value for bioinoculant efficacy monitoring. 
Therefore, exploring novel microbes and technologies are prerequisites for 
 addressing the challenges of crop production and protection and environmental 
health management.

Considerable work has been carried out on the use of microbes in solving many 
agricultural and environmental pollution problems. A huge bank of data has already 
been generated on various practical aspects; however, the information is scattered 
and not available to all readers. There is a lack of concerted effort to publish edited 
books in this area and to address common agricultural and environmental problems 
where microbes could be efficiently applied to their management.

Preface
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In recent years, the use of microbes and microbial technology has been considered 
for solving environmental pollution problems from heavy metals, pesticide con-
tamination, etc. On the other hand, agricultural application to plant growth promo-
tion and crop protection is not new; however, greater enthusiasm has appeared in 
recent years due to the urgency of maintaining sustainable crop productivity and the 
detection of deterioration of soil health. New dimensions such as probiotics, quo-
rum sensing (i.e., cell-to-cell signaling), biofilms, and nanobiotechnology and their 
significance in environmental and agricultural issues embrace some of the recent 
trends of microbial technology.

The content of this book is divided into three main topic areas: microbial diver-
sity exploration, new trends in research, and applications in the management of 
environmental pollution and protection of plant health. The book is divided into  
18 chapters, with each focused on a specific topic to cover, diverse perspective top-
ics. Topics include the exploration of microbial diversity and detection of microbial 
pathogens in food, concepts and applications of microbial biofilms, genetic 
exchange in bacterial populations in the natural environment, and classical and 
modern techniques for studying and tracking plant growth-promoting rhizobacteria. 
Recent developments in bioremediation of contaminated soil and water using 
microbial surfactants, bioaugmentation-assisted phytoremediation, degradation of 
agricultural pesticides by soil bacteria, biosorption of heavy metals and radionu-
clides by microbial biomass, recent trends in the role of baculoviruses and fungal-
based agents in controlling plant pests and disease management, and production 
technology of mycorrhizal fungi are described. Current trends in the new frontiers 
of microbiology such as quorum sensing, biosensors, nanobiotechnology, and pro-
biotics are also discussed in detail.

With contributions from a broad range of leading researchers, this book focuses 
on current trends in microbial diversity, detection, and microbial technology appli-
cations. Although aimed primarily at research scientists and graduate students in 
environmental and agricultural microbiology, the topics and techniques are equally 
applicable to all branches of microbial biotechnology.

With great pleasure, we extend our sincere thanks to all the learned contributors 
for their timely response, excellent contributions, and consistent support and coop-
eration. We express our deep sense of gratitude to all our respected teachers, scien-
tific collaborators, colleagues, and friends for their guidance, support, and healthy 
criticism. The cooperation received from research students in book preparation is 
gratefully acknowledged. The names of selected students need special mention 
such as Mohammad Sajjad Ahmad Khan, Miss Maryam Zahin, and Fohad Mabood 
Husain.

It is not justified if we do not mention the inspiration/encouragement which we 
have received from many senior professors/scientists, especially Prof. R.J.C. 
McLean (USA), Prof. Hani Antoun (Canada), Prof. P.K. Wong (China), Dr. Vittorio 
Venturi (ICGEB, Italy), Dr. Elizabeth Grohmann (Germany), and Prof. M. Shamim 
Jairajpuri and Prof. M. Saleemuddin from AMU, Aligarh (India).

We must also offer special thanks to the colleagues/friends at AMU (Prof. Javed 
Musarrat, Prof. Akhtar Haseeb, Dr. M.R. Khan, Dr. Zaki Anwar Siddiqui, Dr. S. Hayat, 
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Dr. M. Owais, Dr. A. Malik, and Dr. M.S. Khan) for their encouragement, suggestions, 
and constructive criticism.

The technical assistance and support rendered from our excellent book publishing 
team, especially Dr. Melinda Paul and Meredith Clinton at Springer USA is most 
appreciated and acknowledged.

Many thanks to the members of our families for all the support they have 
provided.

Finally, we acknowledge Almighty God, who provided all the inspirations, 
insights, positive thoughts, and channels to complete this book project.

Aligarh, India Iqbal Ahmad
Uttaranchal, India Farah Ahmad
Muncie, IN John Pichtel
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Abstract Microbial diversity is an important component of the overall global 
biological diversity. Recent technological advances in exploring microbial diversity 
have revealed that a large proportion of microorganisms are still undiscovered, and 
their ecological roles are largely unknown. Careful selection of microbes and intel-
ligent design of test assays are the key steps in developing new technologies for 
effective utilization of microorganisms for sustainable agriculture, environmental 
protection, and human and animal health. Several microbial applications are widely 
known in solving major agricultural (i.e., crop productivity, plant health protec-
tion, and soil health maintenance) and environmental issues (i.e., bioremediation 
of soil and water from organic and inorganic pollutants). Wastewater treatment 
and recycling of agricultural and industrial wastes are other important uses of 
microbial technology. It is expected that microbes in combination with develop-
ments in electronics, software, digital imaging, and nanotechnology will play a 
significant role in solving global problems of the twenty-first century, including 
climate change. These advances are expected to enhance sustainability of agri-
culture and the environment. This chapter provides an overview of recent trends 
in microbial exploitation in plant growth promotion and sustainable environment 
mainly through bioremediation, biodegradation, and biosorption processes. Recent 
uses and application of microbes such as biosensors, synthesis of nanomaterials, 
and probiotics are also discussed. 

M. Singh  (*) 
Animal Science Division, Fort Valley State University, Fort Valley, GA 31030, USA 
e-mail: singhm@FVSU.EDU

Chapter 1
Microbial Applications in Agriculture  
and the Environment: A Broad Perspective

Iqbal Ahmad, Mohd Sajjad Ahmad Khan,  
Farrukh Aqil, and Mahipal Singh 
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1.1  Introduction

The microbial world is the largest unexplored reservoir of biodiversity on Earth. 
It is an important frontier in biology under intensive investigation. Interest in the 
exploration of microbial diversity has been prompted by the fact that microbes 
perform numerous functions essential for the biosphere that include nutrient 
cycling and environmental detoxification. The vast array of microbial activities and 
their importance to the biosphere and to human economies provide strong bases for 
understanding their diversity, conservation, and exploitation for society.

The environmental “super challenges” of the twenty-first century have become 
quite clear in the last several years. Climate change due to the vast increase in the 
production of greenhouse gases is real (Crowley 2000). There is a genuine need 
for renewable energy supplies (Cook et al. 1991; Jackson 1999). Constant threats 
of pandemics such as the Asian flu, Mad Cow disease, the outbreak of Legionella 
(Temmerman et al. 2006), as well as water shortages, shrinking agricultural 
 productivity, and environmental contamination comprise some of the important 
issues. How can microbial resources address these challenges? A wide variety of 
microorganisms are present in soil, water, air, and in association with plants and 
animals. These diverse communities constitute “a metagenome of knowledge.” 
This metagenome also extends to the microbial communities both inside and out 
of our body. Because of their metabolic actions, they are major players not only in 
our health and well-being but also in environmental sustainability (Verstaete et al. 
2007).

Microbial culture collections currently contain more than one million different 
strains (http://www.wdcm.niq.ac.jp) and thus are testimony of the efforts made for 
the conservation of biodiversity and the desire to make these resources available to 
the public. To what extent these collections can and need to be expanded is debatable. 
It is generally accepted that microorganisms tend to act in association with others 
and not alone. It is, therefore, obvious that at present, considerable effort should be 
devoted to the collection and preservation of these novel microbial associations in 
natural samples as well as in enrichment cultures. In addition, preservation of the 
habitats in which these microbes thrive is needed. Until now, attention has mainly 
been focused on various unique sites such as hot springs and pristine locations (e.g., 
Arctic/Antarctic regions). The latter, for instance, has given rise over the past 
decade to an enormous knowledge of novel polar microbial taxa (van Trappen et al. 
2005), which in turn has led to industrial applications such as cold-adapted enzymes 
(Siddiqui and Cavicchioli 2006), anti-freeze products (Gilbert et al. 2004), and 
many other strains capable of bioremediation in cold soils (Margesin et al. 2003). 
There is a need to explore more intensively new frontier habitats such as the deep 
oceans, the deep underground, endophytic microbes, and the deep intestine. Indeed, 
such environments harbor a wealth of putatively useful processes and products. 
Recent interesting discoveries include anaerobic ammonium oxidation (Anammox 
reaction) which converts ammonium and nitrite to dinitrogen gas in the sea 
(Kuypers et al. 2003), the Archaea-Bacteria consortia that oxidizes methane 

http://www.wdcm.niq.ac.jp
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 anaerobically by means of sulfate reduction (Hinrichs et al. 1999; Boetius et al. 
1997), and the pH 11–12-tolerant humus-degrading bacteria which occurs in the 
gut of soil-eating termites (Ji and Brune 2005). Not only are these “natural” habitats 
of value, but also a number of other sites, altered by industrial actions and often 
unwanted, are now to be earmarked as “resources” of microbial diversity. The best 
examples of these resources are sites exposed to acid mine drainage, which have 
recently delivered potential anticancer drugs (Yamada et al. 2004) and aquifers pol-
luted with chloroorganics, which have yielded very interesting halo-respiring 
microorganisms (de Wildeman and Verstraete 2003; Smidt and de Vos 2004). Thus, 
selection of specific unexplored microbial habitats, natural or modified, may be of 
great significance in terms of benefits for the environment, agriculture, and 
society.

1.2  Approaches to Studying Soil Microbial Populations

Soil is considered a storehouse of microbial activity. Living microorganisms are 
estimated to comprise less than 5% of the total space occupied. Therefore, major 
microbial activity is confined to “hot spots” i.e., aggregates with accumulated 
organic matter, rhizosphere (Pinton et al. 2001). Soil microbial communities are 
often difficult to characterize, mainly because of their immense phenotypic and 
genotypic diversity, heterogeneity, and crypticity. With respect to latter, bacterial 
populations in top layers of the soil profile can produce over 109 cells/g soil 
(Torsvik and Ovreas 2002). Most of these cells are unculturable. The fraction of the 
cells making up soil microbial biomass that have been cultured and studied in detail 
are negligible and are often less than 5% of the total population (Torsvik et al. 1990; 
Borneman and Triplett 1997; Ovreas and Torsvik 1998). The soil may be studied 
for microbiological, biochemical, and functional diversity using various approaches 
(Paul 2007).

Methods of studying microbial diversity can be broadly divided into two categories: 
(1) cultivation-based methods and (2) cultivation-independent methods. Both 
approaches have their unique limitations and advantages (Garbeva et al. 2004).

1.2.1  Cultivation-Based Methods

Traditional methods to study microbial diversity were based on cultivation and 
isolation of microbes (van Elsas et al. 1998). A wide variety of culture media have 
been formulated to maximize the variety and populations of microorganisms.  
A Biolog™-based method for directly analyzing the potential activity of soil micro-
bial communities displaying community level physiological profiling (CLPP) has 
been used to study microbial diversity (Garland 1996).
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1.2.2  Cultivation-Independent Methods

Recent developments in molecular technology have helped to better understand soil 
microbial diversity. These molecular techniques include polymerase chain reaction 
(PCR) and real-time polymerase chain reaction (RT-PCR), which are used to target 
the specific DNA or RNA in soil. The 16S or 18S ribosomal RNA (rRNA) or their 
genes (rDNA) represent useful markers for prokaryotes and eukaryotes, respectively. 
PCR products generated with primers based on conserved regions of the 16S or 18S 
rDNA using total DNA or RNA of the specific soil microbial community yield a 
mixture of DNA fragments representing all PCR accessible species present in the soil 
sample. The mixed PCR products can be used for (1) preparing clone libraries 
(Borneman and Triplett 1997; McCaig et al. 1999) and (2) a range of microbial 
 community fingerprinting. Such clone libraries are useful for identification and char-
acterization of the dominant bacterial or fungal types in soil and thereby provide a 
picture of microbial diversity (Garbeva et al. 2004). Moreover, a range of other tech-
niques have been developed to fingerprint soil microbial communities. For instance, 
denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) (Heur et al. 
1997; Muyzer and Smalla 1998), amplified rDNA restriction analysis (ARDRA) 
(Massol-Deya et al. 1995), terminal restriction fragment length polymorphism 
(T-RFLP) (Liu et al. 1997), single-stranded conformational polymorphism (SSCP) 
(Schmalenberger and Tebbe 2002), and ribosomal intergenic spacer analysis (RISA) 
(Ranjard and Richaume 2001) have been applied with great success.

1.3  Functional Diversity of Microbes

Functional diversity is the most important parameter for characterization and 
exploitation of microbial cultures. Similarly, functional genomics are considered 
powerful tools for discovering novel functions associated with an organism’s 
genome. Depending upon the target use of the organism, they have been given 
 different names which indicate their major functions in nature or under defined 
conditions. However, to obtain a novel class of compounds and functions, an intel-
ligent design of test system and careful selection of microbes is a prerequisite for a 
successful screening strategy. The wild strain obtained from various reservoirs may 
further be subjected to strain improvement programs (mutation, genetic exchange, 
protoplast fusion, and gene regulation) to increase the productivity and/or fitness of 
the culture in a specific location (Crueger and Crueger 2003). An overview of the 
possible use of microorganisms is elaborated in Fig. 1.1.

1.4  Application in Agriculture and the Environment

Various microbes of soil and other origins have been widely studied and 
exploited in crop production, crop protection, soil health improvement, and 
compost preparation. Microbial products have also been exploited in controlling 
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plant and animal diseases. Recent developments in microbial and plant molecular 
biology have made it possible to develop transgenic plants with improved gene 
delivery systems. Many successful examples of transgenic crops are now avail-
able. On the other hand, use of microorganisms in industrial, pharmaceutical and 
food industries are enormous and beyond the scope of the present article. 
Similarly, environmental exploitation for bioremediation of soil, water, and 
other polluted habitats with organic and inorganic pollutants are well known and 
extensively documented in the literature. However, due to the lack of informa-
tion on microbial diversity of various unique extreme habitats and poor under-
standing of nonculturable microorganisms, novel approaches are needed to 
explore and utilize the untapped microbial diversity in agriculture, the environ-
ment, and human health. In addition to classical uses and application of 
microbes, new dimensions have been explored where microbes are expected to 
provide solutions to specific problems and applications. Some are briefly 
 discussed here.

1.4.1  Microbes in Plant Growth Promotion  
and Health Protection

Plant-pathogenic microorganisms are a major and chronic threat to food production 
and ecosystem stability worldwide. As agricultural production has intensified over 
the past few decades, producers have become more and more dependent on agro-
chemicals as a relatively reliable method of crop protection, which ultimately 
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Phosphate solubilization
Siderophore production
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Agricultural applications
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Industrial applications

Probiotics

Bioactive products
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Pharmaceutical applications

Microorganisms
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Fig. 1.1 Scope and applications of microbial products
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imparts economic stability to their operations. However, increasing use of chemical 
inputs causes several negative effects. Today, the concepts of integrated plant 
 nutrient and integrated plant disease and pest management must be perfected 
according to resources available and agroclimatic and economic conditions. In this 
approach, use of biological agents (biofertilizers, biopesticides, biocontrol agents, 
and PGPRs) is an integral part of the management. Biocontrol is thus being consid-
ered as alternative or a supplemental means of reducing the use of chemicals in 
agriculture (de Weger et al. 1995; Gerhardson 2002; Postma et al. 2003, Welbaum 
et al. 2004). There is a large body of literature describing potential uses of plant-
associated bacteria as agents stimulating plants, and managing soil and plant health 
(Glick 1995; Hallman et al. 1997; Rovira 1965; Sturz et al. 2000; Welbaum et al. 
2004). The term plant growth-promoting bacteria (PGPB) was coined in 1978 by 
Kloepper and Scroth. Most PGPRs are members of fluorescent Pseudomonas 
(Glick 1995). PGPB as well as plant growth-promoting fungi, both symbiotic and 
free-living in the rhizosphere, are associated with many, if not all, plant species and 
are present in many environments. The most widely studied group of PGPBs are 
plant growth-promoting rhizobacteria (PGPR) (Kloepper and Schroth 1978), which 
colonize root surfaces and the closely adhering soil interface, the rhizosphere 
[Kloepper and Schroth 1978; Kloepper et al. 1999, as reviewed by Kloepper et al. 
(1999) or, more recently, by Gray and Smith (2005), and Ahmad et al. (2008a, b)]. 
The nature of these PGPR varies from free-living to endophytic, diazotrophs to non-
diazotrophs and other symbiotic fungi.

The widely recognized mechanisms of biocontrol mediated by PGPBs involve 
competition for an ecological niche or a substrate, production of inhibitory alle-
lochemicals, and induction of systemic resistance (ISR) in host plants to a broad 
spectrum of pathogens (Glick 1995; Haas et al. 2000; Bloemberg and Lugtenberg 
2001; Lugtenberg et al. 2001; Haas et al. 2002) and/or abiotic stresses (Nowak and 
Shulaev 2003). Research into the mechanisms of plant growth promotion by PGPB 
has provided a greater understanding of the multiple facets of disease suppression 
by these biocontrol agents. Still, most of the focus has been on free-living rhizobac-
terial strains, especially Pseudomonas and Bacillus. Much remains to be learnt 
from nonsymbiotic endophytic bacteria that have unique associations and appar-
ently a more pronounced growth-enhancing effect on host plants (Conn et al. 1997; 
Chanway et al. 2000; Bais et al. 2004). Revelations about the mechanisms of PGPB 
action open new doors to design strategies for improving the efficacy of biocontrol 
agents (Walsh et al. 2001; Morrissey et al. 2002, 2004). Similarly, modulation of 
the rhizosphere bacterial consortia can be accomplished by soil aeration, hydroge-
nation, and delivery of molasses, sugars and by appropriate crop rotations (Welbaum 
et al. 2004). Identifying different mechanisms of action facilitate the combination 
of strains, bacteria with bacteria or bacteria with fungi, to hit pathogens with a 
broader spectrum of microbial weapons (Duffy et al. 1996; Leeman et al. 1996; 
Schisler et al. 1997; Pierson et al. 1998; Raupach and Kloepper 1998; de Boer et al. 
1999; Kilic-Ekici and Yuen 2004; Lutz et al. 2004; Olivain et al. 2004). Along this 
same line, biotechnology can be applied to further improve strains that possess 
valued qualities (e.g., ease of formulation, stability, or otherwise those exceptionally 
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suited to plant colonization) by creating transgenic strains that combine multiple 
mechanisms of action (Timms-Wilson et al. 2000; Chin-A-Woeng et al. 2001; 
Huang et al. 2004). For example, transforming the1-aminocyclopropane-1- 
carboxylic acid deaminase gene, which directly stimulates plant growth by cleaving 
the immediate precursor of plant ethylene (Glick et al. 1998.) into P. fluorescens 
CHAO, not only increases plant growth but can also increase biocontrol properties 
of PGPB (Wang et al. 2000). Continued work with endophytic bacteria also holds 
potential for developing biocontrol agents that may be self-perpetuating by coloniz-
ing hosts and being transferred to progeny, as is the case with associative nitrogen-
fixing PGPB on sugarcane (Boddey et al. 2003) or the nonsymbiotic endophyte 
bacterium Burkholderia phytofirmans (Nowak and Shulaev 2003; Sessitsch et al. 
2005). Performance of a developed microbial agent should also be assessed in inte-
grated plant nutrition management for effective utilization.

A number of other bacteria are now considered to be PGPR, including species 
of Azotobacter, Azospirillum, Acetobacter, Burkholderia, and Bacilli. Virtually any 
nondeleterious free-living bacteria which could promote plant growth directly or 
indirectly may be designated as PGPR (Glick 1995; Glick et al. 1999). Recently, 
various other PGPR have been identified including Achromobacter, Arthobacter, 
Azocarus, Clostridium, Enterobacter, Flavobacterium, Frankia, Hydrogenophaga, 
Kluyvera, Microcoleous, Phyllobacterium, Serratia, Staphylococcus, Streptomyces, 
and Vibrio (Bashan and de-Bashan 2005; Ahmad et al. 2008).

PGPR may promote plant growth either directly or indirectly. Direct mecha-
nisms include (1) the ability to produce the plant growth regulators (indoleacetic 
acid, gibberellins, cytokinins, and ethylene); (2) asymbiotic N

2
 fixation; and (3) 

solubilization of mineral nutrients such as phosphates. Indirect mechanisms involve 
(1) antagonism against phytopathogens; (2) production of siderophores; (3) produc-
tion of extracellular cell wall degrading enzymes of phytopathogens such as b-1, 
3-glucanase, chitinase; (4) antibiotic production; and (5) cyanide production as 
described by Ahmad (2006) and Ahmad et al. (2008).

1.4.1.1  Plant Growth-Promoting Fungi

The role of various plant-associated microbes is widely known, for instance, 
legume–rhizobium interaction, role of mycorrhiza in plant growth promotion, etc. 
Free-living fungi have also been involved in the promotion of plant growth by one 
or another mechanism. One such example is by phosphate solubilization. These 
organisms are popularly known as phosphate solubilizers. The role of such organ-
isms was widely studied in the 1980–1990s in India and other parts of the world 
(Gaur 1990). However, due to the discovery of other environmental benefits associ-
ated with these organisms, new interest has been shown by many workers 
(Khan et al. 2009). More recently, the role of free-living fungi screened from Indian 
soil for their multiple potential PGP activities by Imran (2010) at our laboratory 
indicated that many phosphate-solubilizing fungi possess many additional benefi-
cial traits, including production of plant growth hormones, many extracellular 
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enzymes, resistance to many toxic metals, biosorption ability for Ni, Cd, and Cr, 
and also a contribution to plant growth enhancement when used as inoculants for 
wheat and chickpea under field conditions. Thus, efforts should be directed toward 
the exploration of additional organisms for better exploitation in crop productivity 
and environmental pollution management.

1.4.2  Microbes in Environmental Problem Management

Environmental pollutants in soil and water are a major concern worldwide. Many 
toxic, mutagenic, and carcinogenic elements pose serious threats to the environ-
ment and public health. Contaminated water and wastewater can be treated by 
means of chemical, physical, and biological means to remove and/or detoxify it. 
Similarly, various methods such as thermal desorption and landfilling can be used 
to treat contaminated soil. But these soil treatments do not effectively restore natural 
flora and fauna. Bioremediation, i.e., the use of microorganisms to remove toxic 
pollutants from the environment, is the most promising technology that is eco-
friendly, safe, and effective even if the pollutants are present at low concentrations 
(as in the case with heavy metal removal from water) (Labana et al. 2005; Singh 
2006; Zafar et al. 2007; Lal et al. 2010).

Many site-specific microorganisms are capable of carrying out bioremediation 
reactions, and many have already been used at sites previously contaminated with 
polycyclic aromatic hydrocarbons (PAHs), nitroaromatic compounds, chlorinated 
organics, etc. (Samanta et al. 2002; Zocca et al. 2004; Carvalho et al. 2005). In 
many cases, the contaminants are not completely mineralized and their derivatives 
may accumulate and create their own unique health hazards (Singh 2006). To find 
a solution to this problem, various strategies are considered including the use of 
various combination of microorganisms with capabilities for mineralizing certain 
forms of the pollutants and its derivatives. An excellent review article by Lal et al. 
(2010) indicated the potential and prospects of microflora in rapid degradation of 
pesticides as benzene hexachloride and related compounds. Another avenue, which 
is essential in this direction, is the exploration and/or engineering of new catabolic 
pathways and study of regulatory control of primary and secondary metabolites, to 
generate effective bioremediation reactions. This is a difficult task, as we do not 
possess complete information of in situ bacterial adaptation to environmental 
stresses and regulation of various metabolic genes. However, the development of 
bacterial genomics, proteomics, and metabolomics plus the development of sophis-
ticated new techniques in medical sciences make it possible to explore global pro-
tein expression and low molecular weight metabolite expression (metalbolomics) 
in environmental bioremediation (Singh 2006).

Bioremediation involves the utilization of organisms or derivatives from organ-
isms to degrade pollutants. The chief advantage of bioremediation is its reduced 
cost compared with conventional techniques such as incineration for which the 
remediation of all contaminated sites in the USA alone is estimated at $1.7 trillion 
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(Kuiper et al. 2004), or $7,000 per citizen. In addition, bioremediation often 
 provides a permanent solution (providing complete transformation of the pollutant 
to its molecular constituents such as carbon dioxide and water) rather than a method 
that simply transfers wastes from one phase to another (Kuiper et al. 2004). 
Biological catalysts have enormous catabolic potential for remediating wastes; 
however, the interactions between bacteria and pollutants are often complex and 
suitable remediation does not always take place. Moreover, many man-made com-
pounds lack good biological catalysts (for most of the ten million organic com-
pounds described, biodegradation has not been investigated, and in many instances 
good biocatalysts fail to transform pollutants in the environment). Hence, the field 
remains a fertile area for application of new biotechnological methods to facilitate 
bioremediation, such as metabolic engineering, proteomics, reverse genetics, tran-
scriptomics, metabolomics, and genome-scale metabolic modeling. In addition, 
follow-up studies are important for determining why pollutants persist. Metabolic 
engineering involves redirecting the cell’s metabolism to achieve a particular goal 
using recombinant engineering (Bailey 1991). One of the first and finest examples 
of this approach in bioremediation was the metabolic engineering of Pseudomonas 
sp. B13; five different catabolic pathways from three different bacteria were com-
bined to allow for degradation of methylphenols and methylbenzoates in a single 
organism (Rojo et al. 1987). Ju and Parales (2009) enabled bacteria, for the first 
time, to utilize chloronitrobenzenes for growth without the addition of cosubstrates 
and create the first strain that grows on 3-chloronitrobenzene. Chloronitrobenzenes 
are manufactured for pesticides, fungicides, dyes, and polymers. The bacteria 
accomplish this feat by cleverly introducing an enzyme that removes nitro groups, 
nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765, into Ralstonia 
sp. strain JS705, a strain that has an ortho pathway for the degradation of chloro-
catechols. The authors carefully show that 3-chloronitrobenzene is converted by the 
cloned nitrobenzene 1,2-dioxygenase into 4-chlorocatechol (with release of nitrite) 
which is subsequently degraded by the host Ralstonia sp. strain JS705. They also 
utilize an active-site mutant of the large subunit of the dioxygenase (F293Q) to 
reduce the doubling time on 3-chloronitrobenzene by 25%.

Related to the degradation of nitroaromatic compounds by microbes is the arti-
cle by Fernandez et al. (2009), which shows that the model bacterium Pseudomonas 
putida KT2440 can grow in the presence of saturated concentrations of the widely 
used nitroaromatic explosive, 2,4,6-trinitrotoluene. Using DNA microarrays, trans-
poson mutants, and isogenic mutants, the authors found that the organism reacts to 
the compound via activation of a series of detoxification functions including 
nitroreductase, isoquinolone oxidoreductase, dehydrogenase, and chaperones to 
prevent or repair cell damage. The authors also show that multidrug efflux pump 
genes (mexEF/oprN) are induced to reduce intracellular trinitrotoluene concentra-
tions. This work is groundbreaking in that few groups have applied transcriptomics 
to bioremediation, and this technique promises to help unravel unforeseen regula-
tory bottlenecks related to successful remediation. Matilla et al. (2007) also used 
whole-transcriptome profiling to determine mutualistic interactions in the rhizo-
sphere for strains relevant for bioremediation; for example, 90 rhizosphere 
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 upregulated genes were identified for P. putida growing on corn roots. Further in 
the line of subsurface contamination, Scheibe et al. (2009) present a genome-based 
metabolic model of the metabolism of Geobacter sulfurreducens and couple this to 
a hydrological transport model to predict in situ uranium bioremediation.  
As Geobacter activity to reduce U (VI) is critically dependent on the availability of 
acetate as an electron donor and Fe (III) as an electron acceptor (plus ammonium 
as key nutrient), predictive modeling clearly helps to discover the limiting factors 
and concentrations under natural environmental conditions. The model accurately 
predicted the behavior of Geobacter in a field trial of uranium bioremediation, 
demonstrating the power of coupling genome-scale metabolic models with hydro-
logical models for field-scale behavior. Further insights into the rates of intrinsic 
bioremediation, that of microbial degradation of hydrocarbon subsurface contami-
nants under anaerobic conditions at two fuel-contaminated sites, are provided by 
Gieg et al. (2009). Using deuterated compounds and skilful analytical work, they 
show that the long lag phases (weeks to months) seen in many laboratory experi-
ments may not adequately predict the fate of these fuel contaminants as they 
measure lags of hours to days for a wide range of compounds; hence, these pollut-
ants may be degraded far more rapidly than predicted. Evidence for anaerobic 
bioremediation of a wide range of compounds including toluene, m-xylene, ethyl-
benzene, 1,3,5,-trimethylbenzene, and hexane includes identification of degradation 
intermediates involving fumarate as well as other intermediates.

1.4.2.1  PAH Degradation

PAHs that possess more than three aromatic rings have been referred to as high 
molecular weight (HMW) PAHs in the environmental microbiology literature. The 
physical and chemical properties of HMW PAHs are such that they generally 
appear to be persistent in the environment and may pose risks to human and eco-
logical health in parent molecule form or after biological and/or chemical transfor-
mations (Lundstedt et al. 2007). HMW PAHs are sparingly soluble in water, are 
electrochemically stable, and may be acutely toxic, genotoxic, immunotoxic 
(Burchiel and Luster 2001), or act as agents of hormone disruption (van de Wiele 
et al. 2005), depending upon circumstances and mode of exposure. Due to their 
elevated octanol–water partition coefficients (Kow), HMW PAHs may partition into 
organic phases, soil and sediment organic matter, and membranes of living organ-
isms and are candidates for bioconcentration, bioaccumulation, and sometimes 
biomagnification through trophic transfers in terrestrial and marine food webs 
(Neff 2002; Meador 2003). The environmental levels of HMW PAHs vary widely; 
they appear to be ubiquitous in the environment; their occurrence has been studied 
in the atmosphere (Lang et al. 2008), soil (Nam et al. 2009), freshwater and marine 
sediments (Zakaria et al. 2002), ice cores (Kawamura and Suzuki 1994), in the deep 
oceans (Ohkouchi et al. 1999), and in numerous other media ranging from vegeta-
tion to food (Wagrowski and Hites 1997; Fismes et al. 2002).

Interest in understanding prokaryotic biotransformation of HMW PAHs has 
continued to grow and the scientific literature shows that studies in this field 
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 originate from research groups from many different locations throughout the world. 
In the last 10 years, research in regard to HMW PAH biodegradation by bacteria 
has been further advanced through the documentation of new isolates that represent 
diverse bacterial types that have been isolated from different environments and 
that possess different metabolic capabilities. This has occurred in addition to the 
continuation of in-depth comprehensive characterizations of previously isolated 
organisms such as Mycobacterium vanbaalenii PYR-1.

New metabolites derived from prokaryotic biodegradation of four- and five-ring 
PAHs have been characterized. Knowledge of the enzymes involved in these transfor-
mations has been advanced and HMW PAH biodegradation pathways have been further 
developed, expanded upon, and refined. At the same time, investigation of prokaryotic 
consortia has furthered our understanding of the capabilities of microorganisms func-
tioning as communities during HMW PAH (Kanaly and Harayama 2010).

1.4.2.2  Microbes in Metal Removal from Water

A recent development in environmental microbial technology involves the use of 
microbe-based sorbents for removal and recovery of strategic and precious heavy 
metals from industrial wastewater. Various microorganisms including bacteria, 
fungi, algae, and yeast have been subjected to intense scrutiny for their potential to 
remove heavy metals from aqueous solutions by active and passive mechanisms. 
Progress made in the last 2 decades indicates that the biosorption process can 
replace conventional processes of heavy metal pollution control or at least may be 
more effective in bioremediation in combination with other techniques.

1.4.2.3  PGPR in Biomanagement of Metal Toxicity

The improper disposal, misuse, and accidental release of toxic and organic and 
inorganic compounds into the environment have resulted in widespread pollution 
of soil, groundwater, and marine environments. As the adverse environmental and 
health effects of these materials become better known, increasing attention is 
being directed toward the development and implementation of innovative tech-
nologies for cleaning up this contamination (Hopper 1989). Contamination of 
agricultural soil with heavy metals has been increasing largely due to disposal of 
improperly treated wastewater and sewage, and agricultural runoff in many devel-
oping and developed countries. Such contamination has exerted adverse effects, 
both on soil health and crop productivity. PGPB may be useful in reducing the 
toxicity of metals to plants. This phenomenon could occur in two ways. The use 
of ACC deaminase-containing PGPB could decrease stress ethylene in plants 
growing in metal-enriched soil. In addition, plants are able to take up and utilize 
complexes of bacterial siderophores and iron. Plant siderophores bind to iron with 
a much lower affinity than bacterial siderophores do, so in metal-contaminated 
soils, a plant is unable to accumulate sufficient iron unless bacterial siderophores 
are also present (Glick 2003; Sylvia et al. 2005).
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A plant growth-promoting bacterium, Kluyvera ascorbata SUD165 that  
contained high levels of heavy metals, was isolated from soil collected near 
Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of  
Ni2+, Pb2+, Zn2+, and −

4CrO  and produced a siderophore(s), and displayed 1- 
aminocyclopropane 1-carboxylic acid deaminase activity. Canola seeds inoculated 
with this bacterium and grown under gnotobiotic conditions in the presence of 
high concentrations of nickel chloride were partially protected against nickel tox-
icity. In addition, protection by the bacterium against nickel toxicity was evident 
in pot experiments with canola and tomato seeds. The presence of K. ascorbata 
SUD165 had no measurable influence on the amount of nickel accumulated per 
milligram (dry weight) of either roots or shoots of canola plants. Therefore, the 
bacterial plant growth-promoting effect in the presence of nickel was probably not 
attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect 
the ability of the bacterium to lower the level of stress ethylene induced by the 
nickel (Burd et al. 1998).

The siderophore-overproducing mutant K. ascorbata 165/26 exerted a more 
pronounced effect on plant growth than did the wild-type bacterium K. ascorbata 
SUD 165. These bacteria had the ability to protect plants against the inhibitory 
effects of high concentrations of nickel, lead, and zinc; it was hypothesized that this 
effect was related to bacteria providing plants with sufficient iron (Burd et al. 
2000).

Rajkumar et al. (2005) isolated RNP
4
 obtained from a long-term tannery waste-

contaminated soil, which was characterized and presumptively identified as 
Pseudomonas sp. The strain RP

4
 tolerated concentrations up to 450 mg Cr6+/L on 

Luria-Britani (LB) agar medium and reduced substantial amounts of Cr6+ to Cr3+ 
in the medium. Furthermore, the strain was able to promote the growth of black 
gram, Indian mustard, and pearl millet in the presence of Cr6+. Thus, the innate 
capability of two novel isolates for parallel bioremediation and plant growth 
promotion had significance in the management of environmental and agricultural 
problems.

1.5  Microbial Biosensors and Their Applications

A biosensor is an analytical device that combines a biological sensing element 
with a transducer to produce a signal proportional to analyte concentration 
(Mulchandani and Rogers 1998; Mikkelson and Corton 2004). This signal can 
result from a change in proton concentration, release or uptake of gases, light 
emission, absorption, and so forth brought about by cellular metabolism. The 
transducer converts this biological signal into a measurable response such as current, 
potential or absorption of light that can be amplified, processed, and stored for 
later analysis (Mulchandani and Rogers 1998). The biological sources for biosensors 
include enzymes, antibodies, receptors, organelles, and microorganisms. Cells of 
higher organisms such as those from animals and plants or tissue have also been 
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used. Among these,  biological sources from microorganisms are more widely 
used. Microorganisms have been integrated with a variety of transducers such as 
amperometric, potentiometric, calorimetric, conductimetric, colorimetric, lumi-
nescent, and fluorescent to construct biosensor devices (Ramsay 1998; D’Souza 
2001). Considerable scientific literature addressing microbial biosensor develop-
ment has been published (Belkin 2003; Lei et al. 2006). Enzymes are the most 
widely used biological sensing element in the fabrication of biosensors 
(Mulchandani and Rogers 1998; Mikkelson and Corton 2004); purified enzymes 
are very specific, but the process is costly and tedious. Microorganisms provide an 
ideal alternative, but of less specificity compared to enzymes. Recent progress in 
molecular biology and RDT have opened new possibilities of tailoring microor-
ganisms to improve the activity of an existing enzyme or express foreign enzymes/
proteins in a host cell (Belkin 2003; Rensing and Maier 2003). The basis of a 
microbial biosensor is the close contact between microorganisms and the trans-
ducer. Thus, fabrication of a microbial biosensor requires immobilization on a 
transducer in proximity. Immobilization technology, therefore, plays an important 
role. There are several physical and chemical methods to immobilize the microor-
ganism on transducer or support matrices (Mulchandani and Rogers 1998; 
Mikkelson and Corton 2004). Details of these methods and their advantages and 
limitations can be seen in the literature (Lei et al. 2006). Table 1.1 summarizes 
various types of biosensors along with some examples. Microbial biosensors can 
be classified, based on the transducers, into electrochemical, optical, and others.

A variety of biosensors have been developed for environmental, food, military, 
and biomedical applications. This is primarily due to their low cost, long lifetime, 
and wide range of suitable pH and temperature ranges. However, when compared 
to enzyme biosensors, the development of highly satisfied microbial sensors is still 
hampered because they suffer from long response time, low sensitivity, and less 
selectivity. Recent developments in microbial genomics and DNA technology have 
given hope to the development of microbial biosensors for extreme conditions and 
with more specific applications in the future.

1.6  Microbes and Nanoparticles

Nanomaterials are at the leading edge of the rapidly developing field of nanotech-
nology. Use of microbes in synthesizing nanoparticles comes under the broad topic 
of microbial or bionanotechnology. This is a multi-interdisciplinary area where 
experts from physics, chemistry, biology, and engineering must act in a coordinated 
manner. There is an enormous interest in the synthesis of nanomaterials due to their 
unique optical, chemical, and electronic properties (Kumar et al. 2003). Recent 
developments in the organization of nanoscale structures into predefined super-
structures ensure that nanotechnology will play a significant role in the new millen-
nium in areas such as catalysis, biomedicine, mechanics, magnetic, and energy 
sciences.
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The synthesis of nanomaterials over a range of chemical compositions and high 
monodispersity is still a challenge in materials science. Several manufacturing 
techniques that usually employ atomistic, molecular, and particulate processing in 
a vacuum or a liquid medium are in use (Daniel and Astruc 2004). Most techniques 
are capital-intensive as well as inefficient in materials and energy use. Hence, there 
is an ever-growing need to develop clean, nontoxic, and environmentally benign 
synthesis procedures. Consequently, researchers in nanoparticle synthesis have 
turned to biological systems for inspiration. It is well known that many organisms 
can provide inorganic materials either intra- or extracellularly (Simkiss and Wilbur 
1989; Mann 1996). For example, unicellular organisms such as magnetotactic 
 bacteria produce magnetite nanoparticles (Lovley et al. 1987; Spring and Schleifer 
1995; Dickson 1999), and diatoms synthesize siliceous materials (Mann 1993; 
Oliver et al. 1995; Kroger et al. 1999). Multicellular organisms produce hard inorganic–
organic composite materials such as bones, shells, and spicules using inorganic 
materials as a foundation to build complex structures (Lowenstam 1981).

Biominerals are composite materials and consist of an inorganic component and 
a special organic matrix (proteins, lipids, or polysaccharides) that controls the mor-
phology of the inorganic compound. The surface layer bacteria produce gypsum 
and calcium carbonate layers (Pum and Sleytr 1999; Sleytr et al. 1999). Even 
though many biotechnological applications such as remediation of toxic metals 
employ bacteria (Stephen and Macnaughton 1999) and fungi (Mehra and Winge 
1991), such microorganisms have recently been found to be potential eco-friendly 
nanofactories. Processes devised by nature for the synthesis of inorganic materials 
on nano- and microlength scales have contributed to the development of a relatively 
new and largely unexplored area of research based on the use of microbes in the 
biosynthesis of nanomaterials (Sastry et al. 2004). Below we provide a brief over-
view of the current research worldwide on the use of bacteria and actinomycetes 
(both prokaryotes), as well as algae, yeast, and fungi (eukaryotes) in the biosynthesis 
of metal nanoparticles and their applications (Mandal et al. 2006).

1.6.1  Fungi in Nanoparticle Synthesis

The use of fungi in the synthesis of nanoparticles is a relatively recent addition to 
the list of potentially relevant microorganisms. The use of fungi is potentially 
exciting since they secrete large amounts of enzymes and are simpler to deal with 
in the laboratory. However, the genetic manipulation of eukaryotic organisms, as 
a means of overexpressing specific enzymes identified in nanomaterial synthesis, 
is more difficult than that of prokaryotes. An extensive screening process resulted 
to two genera, which, when challenged with aqueous metal ions such as AuCl

4
− 

and Ag+, yielded large quantities of metal nanoparticles either extracellularly 
(Mukherjee et al. 2002; Ahmad et al. 2003) or intracellularly (Mukherjee et al. 
2001a, b). The appearance of a distinctive purple color in the biomass of 
Verticillium after exposure to the 10−4 M HAuCl

4
 solution indicated the formation 
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of gold  nanoparticles intracellularly (Mukherjee et al. 2001a). At higher 
 magnification, the 5- to 200-nm-sized nanoparticles with an average size of 
20 ± 8 nm were clearly seen populating both the cell wall and the cytoplasmic 
membrane of the fungal cell. Furthermore, the powder diffraction pattern recorded 
from the biofilm indicated the crystalline nature of gold nanoparticles. The exposure 
of Verticillium sp. to silver ions resulted in a similar intracellular growth of silver 
nanoparticles (Mukherjee et al. 2001b).

The use of microorganisms such as bacteria, yeasts, algae, fungi, and actinomy-
cetes in the biosynthesis of metal nanoparticles has been now defined and 
described. This interdisciplinary field, “bionanotechnology,” requires collabora-
tion between physicists, chemists, biologists, and engineers. A number of issues 
need to be addressed from the nanotechnology and microbiology points of view 
before such biosynthetic procedures can compete with traditional protocols. The 
elucidation of biochemical pathways, leading to metal ion reduction among the 
different classes of microbes, is necessary to develop a rational microbial nanopar-
ticle synthesis procedure. The surface chemistry of biogenic nanoparticles should 
be properly recognized as well. Genetic engineering techniques can potentially be 
used to improve particle properties and control their composition. The shift from 
bacteria to fungi as a means of developing natural “nanofactories” has the added 
advantage that downstream processing and handling of the biomass would be 
much simpler. At present, microbial methods in the synthesis of nanomaterials of 
varying composition are extremely limited and confined to metals, some metal 
sulfides, and very few oxides. An extension of the procedures to enable reliable 
synthesis of nanocrystals of other oxides (TiO

2
, ZrO

2
, etc.), nitrides, and carbides 

could make microbial synthesis a commercially feasible proposition.

1.7  Other New Applications

Various examples illustrate the progress, based on novel discoveries in microbial 
ecology, which open up new applications and research in microbial technology. 
Some of these applications are briefly described.

1.7.1  Microbes and Climate Change

The anthropogenic production of carbon dioxide is currently of major concern to 
scientists, national representatives, and the public. Yet it represents only 10% of 
that of the CO

2
 produced normally by soil. Sustainable agriculture permits the 

buildup of humus in the soil (i.e., carbon sequestration) on the order of 0.3–1.0 tons 
C per ha per year. This way, about 10% of all carbon emitted by automobiles can 
be compensated by applying quality agriculture. In addition, microbial dynamics as 
a function of temperature and pCO

2
 are not yet fully understood. There is a 
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 possibility that changes in climate and land use can be compensated for by the 
“homeostasis” of the microbial communities.

The role of soil microbes in both the formation and removal of CO
2
 and NO

2
 is 

well known. Similarly, in the case of methane, it has been established that the 
rumen microbiology is responsible for some 30% of all emissions and novel 
research about short-circuiting rumen methanogens by providing alternate electron 
acceptors such as herbal components are underway. Rice paddies are a second 
important emitter of methane (approx. 30% of the global contribution), and an 
intriguing potential consists of trapping the reducing equivalents in the mud layer 
by electrodes (van De Woestyne et al. 1994). Third, in terms of methane emissions, 
are waste landfills (about 15% contribution), and here modern biotechnology of 
anaerobic digestion offers the possibility to capture these emissions and use them 
to produce utilizable energy (Boeckx et al. 1997). Most significant of all, however, 
are the services rendered to abatement of methane by the methanotrophic microbes 
present in soils. These bacteria scavenge on the order of 800–1,000 kg CH

4
 per ha 

per year (Mohanty et al. 2006). Understanding their role and the extent of their 
capacities is clearly warranted. Moreover, one should be capable to prevent that 
they are inhibited by the use of fertilizers and pesticides (Keppler et al. 2006) and 
even consider seeding and enhancing them on sites of concern such as methane 
production by the forest phylosphere (Feijtel et al. 1985). There are a number 
of novel perspectives and applications in the domain of biohydrogen/bioethanol/ 
 biodiesel/biogas and bioelectricity generation. One can even speculate about the 
potential of harvesting the sun’s by means of the combined route of legumes cou-
pled to hydrogen-producing Rhizobium symbionts (Rabaey and Verstraete 2005). 
Proposals to harvest sediments, wastes, and biorefinery downstreams by means of 
biogas technology coupled to microbial fuel cell technology will also continue to 
generate interest (Aeltermann et al. 2006).

1.7.2  Probiotics and Health

The Russian Nobel Prize winner Elie Metchnikoff first suggested that certain bac-
teria could modify the composition of the gut flora (Metchnikoff 1907). He sug-
gested that the longevity of Bulgarians and Russians of the Steppes was due to their 
consumption of “sour milk” containing beneficial microbes, which in fact are prob-
ably lactic acid bacteria (LAB) such as Lactobacillus bulgaricus. Henry Tissier of 
the Pasteur Institute isolated bacteria (now called Bifidobacterium bifidum) from 
the feces of healthy breast-fed infants and recommended giving it to babies suffering 
from diarrhea (Tissier 1900). In 1935, Minoru Shirota in Japan developed the first 
commercial probiotic drink called Yakult, which contains Lactobacillus casei 
Shirota that can survive the passage through the stomach and colonize the intestine. 
The probiotic market is now estimated to be worth about $6,000,000,000 per year 
and is growing at about 10% annually (UBIC-Consulting 2008). Since 1981, there 
have been over 2,000 patent applications on probiotics filed (with “probiotic” 
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 mentioned somewhere in the patent) and some 524 granted (in the USA and 
Europe). The two most commonly used probiotics in commercial products are 
 lactobacilli, members of the LAB, and bifidobacteria. However, some yeast and 
other bacteria have also been claimed to have probiotic potential (Ouwehand et al. 
2002). For an overview of commercially used strains and their claimed probiotic 
effects and genomics of these strains, see Siezen and Wilson (2010).

Probiotics are most commonly known as yogurts or yogurt-type drinks. The 
consumption of probiotics by humans is intended to improve or maintain a healthy 
intestine. The claimed modes of action of probiotics, include strengthening of the 
intestinal barrier function, modulation of immune responses, supply of vitamins, 
and antagonism of pathogens (or other commensals). For recent reviews, readers 
are directed to articles of Ventura et al. (2007), Kalliomaki et al. (2008), Lebeer 
et al. (2008), Kleerebezem and Vaughan (2009), and Siezen and Wilson (2010).

From an industrial perspective, crucial attributes of probiotic strains are good 
technological properties for production and storage, and low health risk to consum-
ers. Probiotics need not be restricted to food applications or oral delivery. Some can 
be applied to the skin as lotions or cream (Krutmann 2009) and have been used to 
treat vaginal infections (Reid 2008). Probiotics are also added to animal and fish 
feed to enhance growth, replacing banned additive antibiotics or growth hormones 
(Gatesoupe 2008; Higuchi et al. 2008; Wynn 2009). They appear to work by inhib-
iting/reducing the pathogenic bacterial load that some animals or fish carry. There 
is ample evidence for all of the above probiotic modes. Important microorganisms 
exploited for probiotics include: Bacillus coagulans GBI-30, Bifidobacterium  
animalis ssp. Lactis HN019 (DR10), Bifidobacterium infantis 35624, Bifidobacterium 
longum BB536, Escherichia coli M-17, Escherichia coli Nissle 1917, Lactobacillus 
acidophilus DDS-1, Lactobacillus acidophilus LA-5, Lactobacillus brevis KB290, 
Lactobacillus casei DN114-001, Lactobacillus paracasei St11, Lactobacillus john-
sonii NCC533 LC1, Lactobacillus plantarum 299v, Lactobacillus rhamnosus 
GR-1, Lactobacillus reuteri RC-14, Bifidobacterium bifidum BB-12, and 
Lactobacillus helveticus R0052 as described by Siezen and Wilson (2010).

Publicly available complete genome sequences of putative probiotic bacteria 
which include members of Bifidobacterium and Lactobacillus are available in the 
GOLD database (http://www.genomesonline.org).

At present, many of the commercial probiotic strains originate from the intes-
tines of healthy infants and adults. Current research focuses on the determination 
of the characteristics that these bacteria employ to survive and compete success-
fully in the intestine. With this knowledge, more effective probiotic strains can be 
identified. To speed up this search, numerous gut metagenomic sequencing efforts 
are ongoing worldwide to identify potential new probiotic candidates (Gill et al. 
2006; Kurokawa et al. 2007). See also the Human Gut Metagenome Initiative 
(http://www.international.inra.fr/press/mapping_the_human_intestinal_metage-
nome) and the Human Gut Microbiome Initiative (Gordon et al. 2006) (http://
genomeold.wustl.edu/hgm/ HGM_frontpage.cgi).

Perhaps the future will bring us health-promoting drinks containing mixtures of 
many probiotic strains, much like the cocktails used today, for vaccination against 

http://www.genomesonline.org
http://www.international.inra.fr/press/mapping_the_human_intestinal_metagenome
http://www.international.inra.fr/press/mapping_the_human_intestinal_metagenome
http://genomeold.wustl.edu/hgm/
http://genomeold.wustl.edu/hgm/
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infectious diseases. And what will be the next hype? Memory enhancing drinks 
would perhaps be a commercial success on quiz nights in the pub as suggested by 
Siezen and Wilson (2010).

1.8  Conclusion

With the rapid increase of world population, there is a consequent increase in the 
rate of resource utilization and environmental perturbation. On the other hand, there 
is a greater need to sustain and increase agricultural productivity and human health. 
Unexplored microbial diversity and available culturable microbes are the main 
bioresource to be exploited to solve the major challenges of twenty-first century. 
The genetic potential of various extreme habitats are considered to be useful for 
industrial technology. Future research and extension will go a long way toward 
applications of microbes for the improvement of environmental quality, agricultural 
productivity, human health and, for novel uses such as global climate change, nano-
materials, biosensors, biofuels, and probiotics.

Our future efforts should be directed toward (1) exploration of various unex-
plored habitats of microbial resources; (2) exploitation of plant health, plant 
genome promotion, and bioremediation research; (3) metagenomics, functional 
microbial genomics, and novel applications in sustainability of the environment; 
and (4) the role of microbes in global climate change, crops, new drugs develop-
ment, and transgenic development.
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Abstract Culture-based methods are important in investigating the microbial 
ecology of natural and anthropogenically impacted environments, but they are 
extremely biased in their evaluation of microbial genetic diversity by selecting a 
particular population of microorganisms. With recent advances in genomics and 
sequencing technologies, microbial community analyses using culture-independent 
molecular techniques have initiated a new era of microbial ecology. Molecular 
analyses of environmental communities have revealed that the cultivable fraction 
represents <1% of the total number of prokaryotic species present in any given 
sample. A variety of molecular methods based on direct isolation and analysis 
of nucleic acids, proteins, and lipids from environmental samples have been dis-
covered and revealed structural and functional information about microbial com-
munities. Molecular approaches such as genetic fingerprinting, metagenomics, 
metaproteomics, metatranscriptomics, and proteogenomics are vital for discovering 
and characterizing the vast microbial diversity and understanding their interactions 
with biotic and abiotic environmental factors. This chapter summarizes recent 
progress in the area of molecular microbial ecology with an emphasis on novel 
techniques and approaches that offer new insights into the phylogenetic and func-
tional diversity of microbial assemblages. The advantages and pitfalls of commonly 
used molecular methods to investigate microbial communities are discussed. The 
potential applications of each molecular technique and how they can be combined 
for a greater comprehensive assessment of microbial diversity has been illustrated 
with example studies.
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2.1  Introduction

The biosphere is dominated by microorganisms and contains about 4–6 × 1030 
prokaryotic cells (Whitman et al. 1998). This number represents at least two to 
three orders of magnitude more than all of the plant and animal cells combined. 
Thus, microorganisms are highly diverse group of organisms and constitute 
about 60% of the Earth’s biomass (Singh et al. 2009). In aquatic environments, 
such as the oceans, the number of microbial cells has been estimated to be 
approximately 1.2 × 1029, while in terrestrial environments, soil sustains as many 
as 4–5 × 1030 microbial cells (Singh et al. 2009). Owing to such enormous num-
bers, microorganisms are essential components of the Earth’s biota and represent 
a large unexplored reservoir of genetic diversity. Understanding this unexplored 
genetic diversity is a high-priority issue in microbial ecology from perspectives 
such as global climate change and the greenhouse effect.

Microorganisms are key players in important ecological processes such as soil 
structure formation, decomposition of organic matter and xenobiotics, and recy-
cling of essential elements (e.g., carbon, nitrogen, phosphorous, and sulfur) and 
nutrients. Thus, microbes play a critical role in modulating global biogeochemical 
cycles and influence all lives on Earth (Garbeva et al. 2004). In fact, all organisms 
in the biosphere either directly or indirectly depend on microbial activities. In soil 
ecosystems, microorganisms are pivotal in suppressing soil-borne plant diseases, 
promoting plant growth, and in promoting changes in vegetation (Garbeva et al. 
2004). An understanding of microbial dynamics and their interactions with biotic 
and abiotic factors is indispensable in bioremediation techniques, energy genera-
tion processes, and in biotechnological industries such as pharmaceuticals, food, 
chemical, and mining.

The three fundamental questions that exist while discovering and character-
izing any natural or artificial ecosystem are the following: (1) what type of 
microorganisms are present? (2) what do these microorganisms do? and (3) how 
do the activities of these microorganisms relate to ecosystem functions (e.g., 
energy flow, biogeochemical cycling, ecological resilience)? Microbial ecology 
aims to answer these central questions and deals with the study of microorgan-
isms and their interactions with each other and with their environment. A pleth-
ora of biochemical and molecular methods have been applied to reveal the 
microbial community composition over time and space in response to environ-
mental changes. These new approaches allow linkage between ecological pro-
cesses in the environment with specific microbial populations and help us to 
answer important questions in microbial ecology such as what factors and 
resources govern the enormous genetic and metabolic diversity in an environ-
ment. This chapter presents an overview of the potentials and limitations of cur-
rent molecular approaches used in microbial  ecology. Although these techniques 
have been discussed with special emphasis on soil and plant microbial ecosys-
tems, these are equally applicable to many other environments as well, such as 
oceans and sediments.
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2.2  Culture Methods in Microbial Ecology: Applications  
and Limitations

Standard culture techniques to characterize microbial ecology involve isolation 
and characterization of microorganisms using commercial growth media such as 
Luria–Bertani medium, Nutrient Agar, and Tryptic Soy Agar (Kirk et al. 2004). 
The major limitation of culture-based techniques is that >99% of the microor-
ganisms in any environment observed through a microscope are not culti vable 
by standard culturing techniques (Hugenholtz 2002). Several improved cultiva-
tion procedures and culture media have been devised that mimic natural environ-
ments in terms of nutrients (composition and concentration), oxygen gradient, 
pH, etc. to maximize the cultivable fraction of microbial communities. For 
example, a technique has been devised for the cultivation of uncultured micro-
organisms from different environments including seawater and soil that involved 
encapsulation of cells in gel microdroplets for large-scale microbial cultivation 
under low nutrient flux conditions (Zengler et al. 2005). Nonetheless, not all 
“uncultured” organisms are cultivable, and many of them remain “unculturable.” 
These organisms, although viable in their natural environments, do not grow 
under laboratory conditions and remain in a “viable but nonculturable” (VBNC) 
stage (Oliver 2005). Such VBNC organisms could represent completely novel 
groups and may be abundant or very active but remain untapped by standard 
culture methods.

Molecular microbial surveys based on 16S rRNA genes reveal that candi-
date bacterial divisions such as BRC1, OP10, OP11, SC3, TM7, WS2, and 
WS3 have no cultured representatives and are known only by their molecular 
sequences (Schloss and Handelsman 2004). These division-level clades, such 
as OP11, are highly diverse and widely distributed in different environments 
and are considered as “candidate divisions” to reflect our limited knowledge 
due to the lack of any cultured representative. Studies suggest the existence of 
at least 50 bacterial phyla with half represented entirely by molecular 
sequences (Schloss and Handelsman 2004). Additionally, microorganisms 
retrieved using common culture methods are rarely numerically abundant or 
functionally significant in the environment from which they were cultured. 
These cultured microorganisms are considered as the “weeds” of the microbial 
world and constitute <1% of all microbial species (Hugenholtz 2002). For 
example, most of the isolates cultured from soil samples belong to one of four 
phyla (the “big four”), Proteobacteria, Firmicutes, Bacteroidetes, and 
Actinobacteria, primarily due to their ease of cultivation under laboratory 
 conditions. Although Acidobacteria constitutes on average 20% of soil bacte-
rial communities, these organisms are difficult to culture and are represented 
by few genera (Schloss and Handelsman 2004). These findings suggest that 
molecular techniques that circumvent the need for isolation and cultivation are 
highly desirable for in-depth characterization of environmental microbial 
communities.
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2.3  Molecular Methods of Microbial Community Analyses

The vast majority of microbial communities in nature have not been cultured in the 
laboratory. Therefore, the primary source of information for these uncultured but 
viable organisms is their biomolecules such as nucleic acids, lipids, and proteins. 
Culture-independent nucleic acid approaches include analyses of whole genomes 
or selected genes such as 16S and 18S rRNA (ribosomal RNA) for prokaryotes and 
eukaryotes, respectively. Based on the comparative analyses of these rRNA signa-
tures, cellular life has been classified into three primary domains: one eukaryotic 
(Eukarya) and two prokaryotic (Bacteria and Archaea) (Hugenholtz 2002). Over 
the last few decades, the field of microbial ecology has seen tremendous progress, 
and a wide variety of molecular techniques have been developed for describing and 
characterizing the phylogenetic and functional diversity of microorganisms 
(Fig. 2.1). Broadly, these techniques have been classified into two major categories 
depending on their capability of revealing the microbial diversity structure and 
function: (1) partial community analysis approaches and (2) whole community 
analysis approaches.

Whole community analysis methods

Clone library method

Genetic fingerprinting techniques such as ARDRA, SSCP,
T-RFLP, DGGE, RISA, LH-PCR, RAPD

Q- PCR (real-time PCR)

DNA-DNA reassociation 

G+C fractionation

Whole genome sequencing 

Metagenomics 

Metaproteomics 
 

Metatranscriptomics 

FISH, dot-blot hybridization

Microautoradiography and isotope array

Molecular based methods

Extraction of DNA/RNA/Protein/Lipids

Environmental samples e.g., soil, water, and sediments

 

Partial community analysis methods

DNA microarrays

Microbial lipid analysis

DNA/RNA Stable isotope probing

CARD-FISH, Raman-FISH, NanoSIMS

Functional diversity 
Structural diversity

Protein diversity
Metabolic diversity

 

Proteogenomics 

Fig. 2.1 Culture-independent molecular toolbox to characterize the structural and functional 
diversity of microorganisms in the environment
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2.3.1  Partial Community Analysis Approaches

These strategies generally include polymerase chain reaction (PCR)-based methods 
where total DNA/RNA extracted from an environmental sample is used as a template 
for the characterization of microorganisms. In principle, the PCR product thus gener-
ated reflects a mixture of microbial gene signatures from all organisms present in a 
sample, including the VBNC fraction. PCR amplification of conserved genes such as 
16S rRNA from an environmental sample has been used extensively in microbial 
ecology primarily because these genes (1) are ubiquitous, i.e., present in all prokary-
otes, (2) are structurally and functionally conserved, and (3) contain variable and 
highly conserved regions (Hugenholtz 2002). In addition, the suitable gene size 
(~1,500 bp) and growing number of 16S rRNA sequences available for comparison 
in sequence databases make it a “gold standard” choice in microbial ecology. By 
estimating the phylogenetic relatedness to known microorganisms based on the 
homology of 16S rRNA sequences, the closest affiliation of a new isolate or molecu-
lar sequence is assigned. Other conserved genes such as RNA polymerase beta sub-
unit (rpoB), gyrase beta subunit (gyrB), recombinase A (recA), and heat shock protein 
(hsp60) have also been used in microbial investigations and to differentiate some 
bacterial species (Ghebremedhin et al. 2008). The PCR products amplified from 
environmental DNA are analyzed primarily by (1) clone library method, (2) genetic 
fingerprinting, (3) DNA microarrays, or by a combination of these techniques.

2.3.1.1  Clone Library Method

The most widely used method to analyze PCR products amplified from an environ-
mental sample is to clone and then sequence the individual gene fragments 
(DeSantis et al. 2007). The obtained sequences are compared to known sequences 
in a database such as GenBank, Ribosomal Database Project (RDP), and 
Greengenes. Typically, cloned sequences are assigned to phylum, class, order, 
 family, subfamily, or species at sequence similarity cut-off values of 80, 85, 90, 92, 
94, or 97%, respectively (DeSantis et al. 2007). While clone libraries of 16S rRNA 
genes permit an initial survey of diversity and identify novel taxa, studies have 
shown that environmental samples like soil may require over 40,000 clones to 
document 50% of the richness (Dunbar et al. 2002). However, typical clone libra-
ries of 16S rRNA genes contain fewer than 1,000 sequences and therefore reveal 
only a small portion of the microbial diversity present in a sample. A cloning- 
and-sequencing method was used to decipher the microbial community composi-
tion in mining-impacted deep subsurface soils of the former Homestake gold mine 
of South Dakota, USA (Rastogi et al. 2009). Phylogenetic analysis of 230 clone 
sequences could reveal only a partial view of phylogenetic breadth present in soil 
samples. Rarefaction analyses of clone libraries generated nonasymptotic plots, 
which indicated that diversity was not exhaustively sampled due to insufficient 
clone sequencing, a common problem when assessing environmental microbial 
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diversity using cloning approaches. Despite its limitations (e.g., labor-intensive, 
time-consuming, and cost factor), clone libraries are still considered the “gold stan-
dard” for preliminary microbial diversity surveys (DeSantis et al. 2007). With the 
advent of newer and inexpensive sequencing methods, great progress is expected in 
this method of microbial diversity analysis.

2.3.1.2  Genetic Fingerprinting Techniques

Genetic fingerprinting generates a profile of microbial communities based on direct 
analysis of PCR products amplified from environmental DNA (Muyzer 1999). 
These techniques include DGGE/TTGE, SSCP, RAPD, ARDRA, T-RFLP, LH-PCR, 
RISA, and RAPD and produce a community fingerprint based on either sequence 
polymorphism or length polymorphism. In general, genetic fingerprinting tech-
niques are rapid and allow simultaneous analyses of multiple samples. Fingerprinting 
approaches have been devised to demonstrate an effect on microbial communities 
or differences between microbial communities and do not provide direct taxonomic 
identities. The “fingerprints” from different samples are compared using computer-
assisted cluster analysis by software packages such as GelCompar, and community 
relationships are inferred. Community fingerprints are scored as present or absent, 
and the similarities among samples are determined using Jaccards’ coefficient.

 Denaturing- or Temperature-Gradient Gel Electrophoresis

In denaturing-gradient gel electrophoresis (DGGE), the PCR products are obtained 
from environmental DNA using primers for a specific molecular marker (e.g., 16S 
rRNA gene) and electrophoresed on a polyacrylamide gel containing a linear gradi-
ent of DNA denaturant such as a mixture of urea and formamide (Muyzer et al. 
1993). Temperature-gradient gel electrophoresis (TTGE) is based on the same prin-
ciple of DGGE except that a temperature gradient rather than chemical denaturant 
is applied. Sequence variation among different PCR amplicons determines the 
melting behavior, and therefore amplicons with different sequences stop migrating 
at different positions in the gel. Both DGGE and TTGE involve the use of a 5¢-GC 
clamped (30–50 nucleotides) forward primer during the PCR step. This is essential 
to prevent the two DNA strands from complete dissociation into single strands 
 during electrophoresis. For determining the phylogenetic identities from DGGE/
TGGE fingerprints, the bands can be excised from the gel, reamplified, and 
sequenced or blotted onto nylon membranes and hybridized to molecular probes 
specific for different taxonomic groups. DGGE profiles generated using universal 
bacterial primers from soil microbial communities are generally very complex. In 
order to overcome this problem, group-specific PCR-DGGE with primers targeting 
only specific physiological/phylogenetic groups has been used (Mühling et al. 2008). 
The other problems associated with DGGE/TGGE are as follows: (1) limited 
sequence information (<500 bp) obtained for phylogenetic analysis from DNA 
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bands, (2) different DNA fragments may have similar melting points, (3) number 
of different DNA  fragments, which can be separated by polyacrylamide gel electro-
phoresis (PAGE), and (4) sequence heterogeneity among multiple rRNA operons of 
one bacterium, leading to multiple bands in DGGE, which might overestimate the 
diversity. DGGE analysis  has been used to screen the unique clones in clone librar-
ies based on  distinct patterns and determining the number of operational taxonomic 
units (OTUs). In a microbial community investigation, DGGE was applied to soils 
 collected from different agricultural fields in Norway and the USA that were under 
different agronomic treatments (crop rotation and tillage) (Nakatsua et al. 2000). Of 
these soil samples, one was also highly contaminated by polyaromatic hydrocar-
bons (PAH, 700 mg kg−1). DGGE profiles were generated using primers based on 
V3 and V6/V9 regions for the bacterial population and V3 region of 16S rRNA for 
archaeal communities. Results showed that bacterial diversity was far greater than 
archaeal diversity except for the PAH-contaminated soil sample.

Single-Strand Conformation Polymorphism

In single-strand conformation polymorphism (SSCP), the environmental PCR prod-
ucts are denatured followed by electrophoretic separation of single-stranded DNA 
fragments on a nondenaturing polyacrylamide gel (Schwieger and Tebbe 1998). 
Separation is based on subtle differences in sequences (often a single base pair), 
which results in a different folded secondary structure leading to a measurable differ-
ence in mobility in the gel. Unlike DGGE, SSCP technology does not require any GC 
clamped primers, gradient gels, or specialized electrophoretic apparatus; therefore, it 
is a more simple and straightforward technique than DGGE. Similar to DGGE, the 
DNA bands can be excised from the gel, reamplified, and sequenced. However, SSCP 
is well suited only for small fragments (between 150 and 400 bp) (Muyzer 1999). A 
major limitation of the SSCP method is the high rate of reannealing  of DNA strands 
after an initial denaturation during electrophoresis, which can be overcome using a 
phosphorylated primer during PCR, followed by specific digestion of the phosphory-
lated strand with lambda exonuclease. SSCP has successfully been employed to 
 differentiate the pure cultures of Bacillus subtilis, Pseudomonas fluorescens, and 
Sinorhizobium  meliloti isolated from soil samples (Schwieger and Tebbe 1998). 
These authors have also applied SSCP for the analysis of rhizosphere bacterial com-
munities associated with two  different plant species, Medicago sativa and a common 
weed Chenopodium album. Their results showed that each plant harbored distinct 
rhizosphere bacterial communities despite the fact that both plants were growing in 
the same soil.

 Random Amplified Polymorphic DNA and DNA Amplification Fingerprinting

Random amplified polymorphic DNA (RAPD) and DNA amplification fingerprinting  
(DAF) techniques utilize PCR amplification with a short (usually ten  nucleotides) 
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primer, which anneals randomly at multiple sites on the genomic DNA under low 
annealing temperature, typically £35°C (Franklin et al. 1999). These methods gen-
erate PCR amplicons of various lengths in a single reaction that are separated on 
agarose or polyacrylamide gel depending on the genetic complexity of the micro-
bial communities. Because of the high speed and ease of use, RAPD/DAF has been 
used extensively in fingerprinting overall microbial community structure and 
closely related bacterial species and strains (Franklin et al. 1999). Both RAPD and 
DAF are highly sensitive to experimental conditions (e.g., annealing temperature, 
MgCl

2
 concentration) and quality and quantity of template DNA and primers. Thus, 

several primers and reaction conditions need to be evaluated to compare the related-
ness between microbial communities and obtain the most discriminating patterns 
between species or strains. A RAPD profiling study was used with 14 random prim-
ers to assess changes in microbial diversity in soil samples that were treated with 
pesticides (triazolone) and chemical fertilizers (ammonium bicarbonate) (Yang 
et al. 2000). RAPD fragment richness data demonstrated that pesticide-treated soil 
maintained an almost identical level of diversity at the DNA level as the control soil 
(i.e., without contamination). In contrast, chemical fertilizer caused a decrease in 
the DNA diversity compared to control soil.

 Amplified Ribosomal DNA Restriction Analysis

Amplified ribosomal DNA restriction analysis (ARDRA) is based on DNA 
sequence variations present in PCR-amplified 16S rRNA genes (Smit et al. 1997). 
The PCR product amplified from environmental DNA is generally digested with 
tetracutter restriction endonucleases (e.g., AluI, and HaeIII), and restricted frag-
ments are resolved on agarose or polyacrylamide gels. Although ARDRA provides 
little or no information about the type of microorganisms present in the sample, the 
method is still useful for rapid monitoring of microbial communities over time, or 
to compare microbial diversity in response to changing environmental conditions. 
ARDRA is also used for identifying the unique clones and estimating OTUs in 
environmental clone libraries based on restriction profiles of clones (Smit et al. 
1997). One of the major limitations of ARDRA is that restriction profiles generated 
from complex microbial communities are sometimes too difficult to resolve by 
agarose/PAGE. The ARDRA technique was applied for assessing the effect of cop-
per contamination on the microbial communities in soil. Whole community 
ARDRA profiles showed a lower diversity in copper-contaminated soil compared 
with control soil with no contamination (Smit et al. 1997).

 Terminal Restriction Fragment Length Polymorphism

Terminal restriction fragment length polymorphism (T-RFLP) is similar to ARDRA 
except for one major difference, which is the use of one 5¢ fluorescently labeled 
primer during the PCR reaction. The resulting PCR products are digested with 
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restriction enzyme(s), and terminal restriction fragments (T-RFs) are separated on 
an automated DNA sequencer (Thies 2007). Only the terminally fluorescent labeled 
restriction fragments are detected, thus simplifying the banding pattern and allow-
ing analysis of complex microbial communities. Community diversity is estimated 
by analyzing the size, numbers, and peak heights of resulting T-RFs. Each T-RF is 
assumed to represent a single OTU or ribotype. With recent developments in bioin-
formatics, several Web-based T-RFLP analysis programs have been developed, 
which enable researchers to rapidly assign putative identities based on a database 
of fragments produced by known 16S rDNA sequences. Similar to ARDRA, a 
T-RFLP pattern is characteristic of the restriction enzyme(s) used, and more than 
two enzymes should typically be applied. One pitfall of T-RFLP method is that it 
underestimates community diversity because only a limited number of bands per 
gel (generally <100) can be resolved, and different bacterial species can share the 
same T-RF length (OTU overlap or OTU homoplasy). Nonetheless, the method 
does provide a robust index of community diversity, and T-RFLP results are gener-
ally very well correlated with the results from clone libraries (Fierer and Jackson 
2006). Fierer and Jackson (2006) applied the T-RFLP technique to understand the 
biogeographical patterns in soil bacterial communities and to investigate the biotic 
and abiotic factors that shape the composition and diversity of bacterial communi-
ties. They collected 98 soil samples from across North and South America repre-
senting a wide range of temperature, pH, and other geographical conditions. Their 
results demonstrated that bacterial diversity was higher in neutral soils compared to 
acidic soils and was unrelated to factors such as site temperature, latitude, and other 
variables that typically act as good predictors of animal and plant diversity.

Length Heterogeneity PCR

Length heterogeneity PCR (LH-PCR) analysis is similar to the T-RFLP method 
except that the latter detects amplicon length variations that are produced after 
restriction digestion, whereas in LH-PCR different microorganisms are discrimi-
nated based on natural length polymorphisms that occur due to mutation within 
genes (Mills et al. 2007). Amplicon LH-PCR interrogates the hypervariable regions 
present in 16S rRNA genes and produces a characteristic profile. LH-PCR utilizes 
a fluorescent dye-labeled forward primer, and a fluorescent internal size standard is 
run with each sample to measure the amplicon lengths in base pairs. The intensity 
(height) or area under the peak in the electropherogram is proportional to the rela-
tive abundance of that particular amplicon. One advantage of using LH-PCR over 
the T-RFLP is that the former does not require any restriction digestion and there-
fore PCR products can be directly analyzed by a fluorescent detector. The limita-
tions of LH-PCR technique include inability to resolve complex amplicon peaks 
and underestimation of diversity, as phylogenetically distinct taxons may produce 
same-length amplicons (Mills et al. 2007). LH-PCR was used in combination with 
fatty acid methyl ester (FAME) analysis to investigate the microbial communities 
in soil samples that differed in terms of type and/or crop management practices 
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(Ritchie et al. 2000). LH-PCR results strongly correlated with FAME analysis and 
were highly reproducible, and successfully discriminated different soil samples. 
The most abundant bacterial community members, based on cloned LH-PCR prod-
ucts, were members of the b-Proteobacteria, Cytophaga–Flexibacter–Bacteriodes, 
and the high-G + C-content Gram-positive bacterial group.

Ribosomal Intergenic Spacer Analysis

Ribosomal intergenic spacer analysis (RISA) involves PCR amplification of a por-
tion of the intergenic spacer region (ISR) present between the small (16S) and large 
(23S) ribosomal subunits (Fisher and Triplett 1999). The ISR contains significant 
heterogeneity in both length and nucleotide sequence. By using primers annealing 
to conserved regions in the 16S and 23S rRNA genes, RISA profiles can be gener-
ated from most of the dominant bacteria existing in an environmental sample. RISA 
provides a community-specific profile, with each band corresponding to at least one 
organism in the original community. The automated version of RISA is known as 
ARISA and involves use of a fluorescence-labeled forward primer, and ISR frag-
ments are detected automatically by a laser detector. ARISA allows simultaneous 
analysis of many samples; however, the technique has been shown to overestimate 
microbial richness and diversity (Fisher and Triplett 1999). Ranjard et al. (2001) 
evaluated ARISA to characterize the bacterial communities from four types of soil 
differing in geographic origins, vegetation cover, and physicochemical properties. 
ARISA profiles generated from these soils were distinct and contained several diag-
nostic peaks with respect to size and intensity. Their results demonstrated that 
ARISA is a very effective and sensitive method for detecting differences between 
complex bacterial communities at various spatial scales (between- and within-site 
variability).

2.3.1.3  DNA Microarrays

DNA microarrays have been used primarily to provide a high-throughput and com-
prehensive view of microbial communities in environmental samples. The PCR 
products amplified from total environmental DNA is directly hybridized to known 
molecular probes, which are attached on the microarrays (Gentry et al. 2006). After 
the fluorescently labeled PCR amplicons are hybridized to the probes, positive 
signals are scored by the use of confocal laser scanning microscopy. The microar-
ray technique allows samples to be rapidly evaluated with replication, which is a 
significant advantage in microbial community analyses. In general, the hybridiza-
tion signal intensity on microarrays is directly proportional to the abundance of the 
target organism. Cross hybridization is a major limitation of microarray technology, 
particularly when dealing with environmental samples. In addition, the microarray 
is not useful in identifying and detecting novel prokaryotic taxa. The ecological 
importance of a genus could be completely ignored if the genus does not have a 
corresponding probe on the microarray. DNA microarrays used in microbial 
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 ecology could be classified into two major categories depending on the probes: 
(1) 16S rRNA gene microarrays and (2) functional gene arrays (FGA).

 16S rRNA gene Microarrays (PhyloChip)

The universal high-density 16S microarray contains about 30,000 probes of 16S 
rRNA gene targeted to several cultured microbial species and “candidate divisions” 
(DeSantis et al. 2007). These probes targets all 121 demarcated prokaryotic orders 
and allow simultaneous detection of 8,741 bacterial and archaeal taxa. PhyloChip 
technology has been used for rapid profiling of environmental microbial communi-
ties during bioterrorism surveillance, bioremediation, climate change, and source 
tracking of pathogen contamination (Brodie et al. 2007; DeSantis et al. 2007). 
PhyloChips were used to investigate the indigenous soil bacterial communities in 
two abandoned uranium mine sites, the Edgemont and the North Cave Hills in 
South Dakota (Rastogi et al. 2010). PhyloChip analysis revealed greater diversity 
than corresponding clone libraries at each taxonomic level and indicated the exis-
tence of 1,300–1,700 bacterial species in uranium mine soil samples. Most of these 
species were members of the phylum Proteobacteria and contained lineages that 
were capable of performing uranium immobilization and metal reduction.

 Functional Gene Arrays

Unlike PhyloChips that are useful in detecting microbial community composition 
and contain 16S rRNA genes as probes, FGA are designed primarily to detect spe-
cific metabolic groups of bacteria. Thus, FGA not only reveal the community 
structure, but they also shed light on the in situ community metabolic potential. 
FGA contain probes from genes with known biological functions; therefore, they 
are also useful in linking microbial community composition to ecosystem func-
tions. For instance, an FGA termed GeoChip contains >24,000 probes from all 
known metabolic genes involved in various biogeochemical, ecological, and envi-
ronmental processes such as ammonia oxidation, methane oxidation, and nitrogen 
fixation (He et al. 2007). GeoChips have been used to interrogate the role of 
Antarctica soil microbial communities in the global biogeochemical cycling of 
carbon and nitrogen (Yergeau et al. 2009). Their study demonstrated a significant 
correlation between the distribution of key genes and soil temperature, chemical 
characteristics, and vegetation cover. For example, the relative detection of cellu-
lose degradation genes was correlated with temperature, and microbial carbon-
fixation genes were found in greater abundance in samples without vegetation.

2.3.1.4  Quantitative PCR

Quantitative PCR (Q-PCR), or real-time PCR, has been used in microbial investiga-
tions to measure the abundance and expression of taxonomic and functional gene 
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markers (Bustin et al. 2005; Smith and Osborn 2009). Unlike traditional PCR, which 
relies on end-point detection of amplified genes, Q-PCR uses either intercalating 
fluorescent dyes such as SYBR Green or fluorescent probes (TaqMan) to measure the 
accumulation of amplicons in real time during each cycle of the PCR. Software 
records the increase in amplicon concentration during the early exponential phase of 
amplification which enables the quantification of genes (or transcripts) when they are 
proportional to the starting template concentration. When Q-PCR is coupled with a 
preceding reverse transcription (RT) reaction, it can be used to quantify gene expres-
sion (RT-Q-PCR). Q-PCR is highly sensitive to starting template concentration and 
measures template abundance in a large dynamic range of around six orders of mag-
nitude. Several sets of 16S and 5.8S rRNA gene primers have been designed for rapid 
Q-PCR based quantification of soil bacterial and fungal microbial communities 
(Fierer et al. 2005). Q-PCR has also been successfully used in environmental samples 
for quantitative detection of important physiological groups of bacteria such as 
ammonia oxidizers, methane oxidizers, and sulfate reducers by targeting amoA, 
pmoA, and dsrA genes, respectively (Foti et al. 2007). Kolb et al. (2003) estimated the 
abundance of total methanotrophic population and specific groups of methanotrophs 
in a flooded rice field soil by Q-PCR assay of the pmoA genes. The total population 
of methanotrophs was found to be 5 × 106 pmoA molecules g−1, and Methylosinus 
(2.7 × 106 pmoA molecules g−1) and Methylobacter/Methylosarcina groups 
(2.0 × 106 pmoA molecules g−1) were the dominant methanotrophs. The Methylocapsa 
group was below the detection limit of Q-PCR (1.9 × 104 pmoA molecules g−1).

2.3.1.5  Fluorescence In Situ Hybridization

Fluorescence in situ hybridization (FISH) enables in situ phylogenetic identification 
and enumeration of individual microbial cells by whole cell hybridization with oli-
gonucleotide probes (Amann et al. 1995). A large number of molecular probes tar-
geting 16S rRNA genes have been reported at various taxonomic levels (Amann 
et al. 1995). The FISH probes are generally 18–30 nucleotides long and contain a 
fluorescent dye at the 5¢ end that allows detection of probe bound to cellular rRNA 
by epifluorescence microscopy. In addition, the intensity of fluorescent signals is 
correlated to cellular rRNA contents and growth rates, which provide insight into the 
metabolic state of the cells. FISH can be combined with flow cytometry for a high-
resolution automated analysis of mixed microbial populations. The FISH method 
was used to follow the dynamics of bacterial populations in agricultural soils treated 
with s-triazine herbicides (Caracciolo et al. 2010). A variety of  molecular probes 
were used to target specific phylogenetic groups of bacteria such as a , b , g , and d 
subdivisions of Proteobacteria and Planctomycetes. Results demonstrated that 
g-Proteobacteria populations diminished sharply after 14 days of incubation in 
treated soil compared to control soil with no s-triazine treatment. In contrast, b- 
Proteobacteria populations remained higher than that of the control soils throughout 
the incubation period (70 days). Other bacterial groups, e.g., a-Proteobacteria and 
Planctomycetes were not significantly affected by the presence of the herbicide.
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Low signal intensity, background fluorescence, and target inaccessibility are 
commonly encountered problems in FISH analysis. In the last few years, extensive 
improvements have been made to solve some of these problems which include the 
use of brighter fluorochromes, chloramphenicol treatment to increase the rRNA 
content of active bacterial cells, hybridization with probes carrying multiple fluo-
rochromes, and signal amplification with reporter enzymes (Rogers et al. 2007). In 
a modified FISH method known as catalyzed reporter deposition (CARD) FISH, 
the hybridization signal is enhanced through the use of tyramide-labeled fluoro-
chromes (Pernthaler et al. 2002). This allows the accumulation of several fluores-
cent probes at the target site, which ultimately increases the signal intensity and 
sensitivity. Li et al. (2008) developed an advanced imaging technique by combining 
FISH to secondary-ion mass spectrometry (SIMS). In principle, the technique uses 
16S rRNA probes for in situ hybridization; however, the probes are labeled with a 
stable isotope or element (e.g., fluorine or bromine atoms) rarely present in bio-
mass. Once the probe is hybridized, the microbial identities of stable isotope-
labeled cells are simultaneously determined in situ by NanoSIMS imaging. With 
next-generation SIMS instruments, spatial resolution of ~50 nm (NanoSIMS) was 
achieved, which allowed quantifying the isotopic composition at single-cell level.

2.3.1.6  Microbial Lipid Analysis

Microbial community characterization by biomolecules other than nucleic acids 
such as lipids has been used without relying on culturing (Banowetz et al. 2006). 
Fatty acids are present in a relatively constant proportion of the cell biomass, and 
signature fatty acids exist in microbial cells that can differentiate major taxonomic 
groups within a community. The fatty acids are extracted by saponification  followed 
by derivatization to give the respective FAMEs, which are then analyzed by gas 
chromatography. The emerging pattern is then compared to a reference FAME data-
base to identify the fatty acids and their corresponding microbial signatures by 
multivariate statistical analyses. FAME profiling and multivariate statistical methods  
were used to identify the sources of soil that were contaminating surface waters 
(Banowetz et al. 2006). A variety of reference soils collected from land with con-
trasting uses in different seasons was used to generate FAME fingerprints for reliable 
classification of soils. FAME fingerprints generated from different soil samples were 
capable of discriminating reference soils. Results showed that FAME analysis can 
successfully classify sediment samples provided soil FAME profiles are developed 
for reference soils collected at the same time as surface water samples.

2.3.2  Whole Community Analysis Approaches

Sequence analysis of 16S rRNA genes is commonly used in most microbial 
 ecological surveys. However, being a highly conserved molecule, the 16S rRNA 
gene does not provide sufficient resolution at species and strain level (Konstantinidis 
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et al. 2006). Whole-genome molecular techniques offer a more comprehensive view 
of genetic diversity compared to PCR-based molecular approaches that target only a 
single or few genes. These techniques attempt to analyze all the genetic information 
present in total DNA extracted from an environmental sample or pure culture.

2.3.2.1  DNA–DNA Hybridization Kinetics

Whole-genome DNA–DNA hybridization (DDH) offers true genome-wide com-
parison between organisms. A value of 70% DDH was proposed as a recommended 
standard for bacterial species delineation (Goris et al. 2007). Typically, bacterial 
species having 70% or greater genomic DNA similarities usually have >97% 16S 
rRNA gene sequence identity. Although DDH techniques have been originally 
developed for pure culture comparisons, they have been modified for use in whole 
microbial community analysis. In DDH technique, total community DNA extracted 
from an environmental sample is denatured and then incubated under conditions 
that allow them to hybridize or reassociate. The rate of DNA reassociation is cor-
related with the genomic complexity (diversity) present in the sample. If the sample 
has high sequence diversity, the rate of DNA reassociation will decrease. Under 
defined conditions, the time needed for half of the DNA to reassociate (the half 
association value C

0
t, where C

0
 is the concentration of single-stranded DNA at time 

zero and t is time) is proportional to genomic diversity and can be used as a diver-
sity index. Based on DDH data, 6,000–10,000 different prokaryotic genomes per 
gram of soil have been suggested (Torsvik and Øvreås 2002). This number could 
be much higher as genomes representing rare and unrecovered species might have 
been overlooked in the analysis.

2.3.2.2  Guanine-Plus-Cytosine Content Fractionation

Different prokaryotic groups differ in their guanine-plus-cytosine (G + C) content of 
DNA, and phylogenetically related bacterial groups only vary by 3–5% in their 
G + C content (Nüsslein and Tiedje 1999). Thus, the fractionation of total commu-
nity DNA can be achieved by density-gradient centrifugation based on G + C con-
tent. The technique generates a fractionated profile of the entire community DNA 
and indicates relative abundance of DNA (hence taxa) as a function of G + C con-
tent. The total community DNA is physically separated into highly purified frac-
tions, each representing a different G + C content that can be analyzed by additional 
molecular techniques such as DGGE/ARDRA to better assess total community 
diversity. However, G + C content fractionation technique provides a coarse level of 
phylogenetic resolution as different phylogenetic groups may have the same G + C 
range. Additionally, it requires a large amount of DNA (about 50 mg) and a total 
time of about 4 days for completion. G + C fractionation has been widely applied in 
investigation of soil microbial communities to evaluate the effect of different treat-
ments or management practices (e.g., change in vegetation, grazing, application of 
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pesticides, and compost application). Nüsslein and Tiedje (1999) applied G + C 
fractionation together with ARDRA and 16S rRNA gene sequence analyses to 
investigate the influence of forest versus pasture vegetation in Hawaiian soil micro-
bial communities. All three techniques demonstrated that plants are an important 
determinant of microbial community structure and shift in vegetative cover to pas-
ture resulted in about 50% change in the microbial community composition.

2.3.2.3  Whole-Microbial-Genome Sequencing

Exploring microbial systems through whole-genome analysis is a comprehensive 
and integrated approach to understand microbial ecology and function. Whole 
microbial genomes are sequenced using a shotgun cloning method that involves (1) 
extraction of DNA from pure cultures, (2) random fragmentation of obtained 
genomic DNA into small fragments of ~2 kb, (3) ligation and cloning of DNA frag-
ments into plasmid vectors, and (4) bidirectional sequencing of DNA fragments. 
Once the sequences are obtained, they are aligned and assembled into finished 
sequences using specialized computer programs such as MEGAN (MEtaGenome 
ANalyzer) (Huson et al. 2007). The sequences are annotated in open reading frames 
(ORFs) to predict the encoded proteins (functions). Whole-genome sequencing has 
provided unprecedented insights into microbial processes at the molecular level and 
has potential applications in individual and community ecology, bioenergy produc-
tion, bioremediation, human and plant health, and various industries (Ikeda et al. 
2003). Several institutions and laboratories such as The Institute of Genome 
Research, the U.S. Department of Energy’s Joint Genome Institute, Lawrence 
Berkeley National Laboratory, and J. Craig Venter Institute have completed 
sequencing of whole genomes of several important microorganisms such as 
Pseudomonas syringae DC3000 (a plant pathogen), Desulfovibrio desulfuricans 
G20 (bioremediation capabilities), and Methanosaeta thermophila (a thermophilic 
aceticlastic methanogen). The genome sequence of Desulfovibrio desulfuricans 
G20, a model sulfate-reducing d-proteobacterium, demonstrated the existence of 
metabolic pathways by which these bacteria are able to reduce toxic metals such as 
uranium(VI) and chromium(VI) to less water-soluble species (Li et al. 2009). These 
molecular insights were highly crucial for the use of sulfate-reducing bacteria in 
bioremediation of metal-contaminated groundwater or soils. Recent developments 
in short-read sequencing techniques such as pyrosequencing have dramatically 
reduced the time and cost needed for whole-microbial-genome sequencing projects 
(Metzker 2010). The enormous amount of data gathered from genome sequencing 
programs is deposited in searchable databases that could be mined with various 
powerful bioinformatic tools available at the Integrated Microbial Genomes (IMG) 
Web server (Markowitz et al. 2010) for evolutionary studies, comparative genom-
ics, and proteomics. For example, Microbial Genomes Resources at the National 
Center for Biotechnology Information (NCBI) is a public database for prokaryotic 
genome sequencing projects and has now 1,000 complete prokaryotic genomes 
(http://www.ncbi.nlm.nih.gov/genomes/ [verified on 15th May, 2010]). The Genomes 

http://www.ncbi.nlm.nih.gov/genomes/
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Online Database (GOLD) is another database resource for comprehensive 
information  regarding complete and ongoing genome projects, as well as metage-
nomes and metadata, around the world (http://www.genomesonline.org). As of 15th 
May, 2010, the GOLD database held 1,284 completed and published genomes and 
4,289 ongoing bacterial, 199 archaeal, and 1,338 eukaryotic sequencing projects.

2.3.2.4  Metagenomics

Metagenomics is the investigation of collective microbial genomes retrieved directly 
from environmental samples and does not rely on cultivation or prior knowledge of 
the microbial communities (Riesenfeld et al. 2004). Metagenomics is also known by 
other names such as environmental genomics or community genomics, or microbial 
ecogenomics. Essentially, metagenomics does not include methods that interrogate 
only PCR-amplified selected genes (e.g., genetic fingerprinting techniques) as they 
do not provide information on genetic diversity beyond the genes that are being 
amplified. In principle, metagenomic techniques are based on the concept that the 
entire genetic composition of environmental microbial communities could be 
sequenced and analyzed in the same way as sequencing a whole genome of a pure 
bacterial culture as discussed in the preceding section. Metagenomic investigations 
have been conducted in several environments such as soil, the phyllosphere, the 
ocean, and acid mine drainage and have provided access to phylogenetic and func-
tional diversity of uncultured microorganisms (Handelsman 2004). Thus, metage-
nomics is crucial for understanding the biochemical roles of uncultured 
microorganisms and their interaction with other biotic and abiotic factors. 
Environmental metagenomic libraries have proved to be great resources for new 
microbial enzymes and antibiotics with potential applications in biotechnology, 
medicine, and industry (Riesenfeld et al. 2004; Rondon et al. 2000). Metagenomic 
library construction involves the following steps: (1) isolation of total DNA from an 
environmental sample, (2) shotgun cloning of random DNA fragments into a suit-
able vector, and (3) transforming the clones into a host bacterium and screening for 
positive clones. Metagenomic libraries containing small DNA fragments in the 
range of 2–3 kb provide better coverage of the metagenome of an environment than 
those with larger fragments. It has been estimated that to retrieve the genomes from 
rare members of microbial communities at least 1011 genomic clones would be 
required (Riesenfeld et al. 2004). Small-insert DNA libraries are also useful to 
screen for phenotypes that are encoded by single genes and for reconstructing the 
metagenomes for genotypic analysis. Large-fragment metagenomic libraries (100–
200 kb) are desirable while investigating multigene biochemical pathways. 
Metagenomic libraries could be screened either by sequence-driven metagenomic 
analysis that involves massive high-throughput sequencing or by functional screen-
ing of expressed phenotypes. Sequence-driven massive whole-genome metagenomic 
sequencing sheds light on many important genomic features such as redundancy of 
functions in a community, genomic organizations, and traits that are acquired from 
distinctly related taxa through horizontal gene transfers (Handelsman 2004).

http://www.genomesonline.org
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In function-driven metagenomic analysis (functional metagenomics), libraries 
are screened based on the expression of a selected phenotype on a specific medium. 
A wide variety of biochemical activities have been discovered in environmental 
metagenomic libraries. For example, novel antibiotics (e.g., turbomycin, terragine), 
microbial enzymes (e.g., cellulases, lipases, amylases), and proteins (e.g., antiport-
ers) have been identified in soil metagenomic libraries (Rondon et al. 2000). 
Function-driven metagenomic approaches require successful expression of a 
desired gene in a heterologous host such as E. coli. Thus, a major limitation is very 
low level or no expression of the majority of environmental genes in E. coli. In 
some cases, improved gene expression can be achieved by transforming metage-
nomic DNA into several additional surrogate hosts such as Streptomyces, Bacillus, 
Pseudomonas, and Agrobacterium. Strategies that can enhance heterologous 
expression of unknown genes in host cells are highly desirable. For example, 
genetically engineered E. coli that can support the translation and transcription of 
wide diversity of genes, or cloning vectors with strong promoters that can provide 
additional transcription factors will be highly desirable. In a metagenomic library, 
the frequency of active gene clones expressing a phenotype is typically very low. 
For example, in an environmental metagenomic library established from soil, only 
one in 730,000 clones showed lipolytic activity (Henne et al. 2000). The DNA and 
inferred protein sequence of a novel lipolytic clone exhibited only a moderate iden-
tity (<50%) with known lipases, indicating that it could be from an uncultured 
organism. Low occurrence of actively expressing clones in metagenomic libraries 
necessitates improved high-throughput screening and detection assays.

2.4  Next-Generation DNA Sequencing Techniques  
Transform Microbial Ecology

Large-scale sequencing technologies allow us to investigate deeper and deeper 
layers of the microbial communities and are vital in presenting an unbiased view 
of phylogenetic composition and functional diversity of environmental microbial 
communities (Zwolinski 2007). The capability of large-scale sequencing tech-
niques to generate billions of reads at low cost with high speed is useful in many 
applications such as whole-genome sequencing, metagenomics, metatranscrip-
tomics, and proteogenomics. Recent developments in new sequencing chemis-
tries, bioinformatics, and instruments have revolutionized the field of microbial 
ecology and genomics. Next-generation sequencing platforms such as Roche/454, 
Illumina/Solexa, Life/APG, and HeliScope/Helicos BioSciences are much faster 
and less expensive than traditional Sanger’s dideoxy sequencing of cloned 
 amplicons (Metzker 2010). 454Life Sciences commercially developed a 454 
pyrosequencing technique, which allows massive parallel high-throughput 
sequencing of hypervariable regions of 16S rRNA genes and offers two to three 
orders of magnitude higher coverage of microbial diversity than typical Sanger 
sequencing of a few hundred 16S rRNA gene clones. The hypervariable regions 



46 G. Rastogi and R.K. Sani

targeted are short enough (100–350 bases) but provide sufficient phylogenetic 
information and are easily covered in the short read lengths generated by pyrose-
quencing techniques.

One advantage of using the pyrosequencing technique is that multiple environ-
mental samples can be combined in a single run, and after sequencing, the reads 
can be parsed through their assigned nucleotide barcode, which is added in tem-
plates during PCR. The latest release of the third-generation platform 454 Genome 
Sequencer XLR (GS FLX Titanium) can yield read lengths exceeding >450 bp and 
approximately 400 million high-quality bases per 10-h instrument run with an 
accuracy of 99.96% (Metzker 2010). Third-generation sequencing platforms devel-
oped by Helicos and Pacific Biosciences are expected to be released in the year 
2010 and would be capable of single-molecule sequencing and producing reads 
exceeding more than 1 kb with an accuracy of >99.99% (Metzker 2010).

Environmental samples such as soil contain huge genetic diversity that encom-
passes microorganisms from the Eukarya, Bacteria, and Archaea domains. For 
example, GenBank, the largest database of microbial sequences, provides 
>686,266 sequence entries when searched for the keyword “soil” (verified on 15 
May 2010). This vast genetic information available in databases is the evidence of 
advances in genomics and increased use of nucleic-acid sequencing. Until recently, 
first-generation automated Sanger sequencing has been used in most molecular 
microbial surveys. The major limiting factor in the Sanger technique was the cost 
and time involved, with the result that most of the studies included sequencing of 
only few hundred clones. Sequencing of a low number of clones captures only the 
dominant components of microbial communities that mask the detection of low-
abundance microorganisms. These low-abundance microorganisms constitute a 
highly diverse “rare biosphere” in almost every environmental sample including 
soil (Lauber et al. 2009). The rare biosphere microbial populations are largely 
unexplored and offer a potentially inexhaustible genetic reservoir that could be 
explored only by using next-generation sequencing techniques. In a molecular 
investigation, spatial changes in soil bacterial communities were explored by tar-
geting V1 and V2 hypervariable regions of 16S rRNA genes using a massive bar-
coded pyrosequencing technique (Lauber et al. 2009). Eighty-eight soil samples 
representing a wide range of ecosystems from across North and South America 
were collected, and a total of 152,359 high-quality sequences on average of 1,501 
sequences per sample were generated. Results suggested enormous phylogenetic 
diversity in soil microbial communities with an average of at least 1,000 species 
per soil sample. The dominant phyla in all soil samples were Acidobacteria, 
Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Beta/
Gammaproteobacteria. The Lauber et al. (2009) study demonstrated that even after 
sequencing more than 1.5 billion 16S rRNA gene amplicons, the full extent of 
species diversity was not covered. This provided further evidence that soil bacte-
rial communities are extremely diverse and contain a large “rare biosphere” repre-
sented by an enormous number of low-abundance unique taxa. Such studies 
highlight the importance of large-scale sequencing techniques in investigating the 
highly diverse soil microbial communities.
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2.5  Functional Microbial Ecology: Linking Community 
Structure and Function

Understanding how microbial communities function in natural environments is a 
central goal in microbial ecology. RNA extracted from environmental samples 
provides more valuable information than DNA in revealing active microbial com-
munities versus dormant microbial communities (Torsvik and Øvreås 2002). This 
is due to the fact that rRNA and mRNA are considered as indicators of functionally 
active microbial populations. The amount of rRNA in a cell roughly correlates with 
the growth activity of bacteria, and mRNA of functional genes allows the detection 
and identification of bacteria actually expressing key enzyme activities under spe-
cific conditions (Wellington et al. 2003). Several genes, e.g., amoA (ammonia oxi-
dation), nifH (nitrogen fixation), nirK and nirS (denitrification), and dsrA (sulfate 
reduction), have been amplified from DNA/RNA isolated from microbial commu-
nities to obtain insights into key microbial processes (Hansel et al. 2008). Microbial 
catabolic diversity could also be studied by enzyme-coding genes involved in utili-
zation of specific carbon substrates such as chitin, cellulose, and lipids (Torsvik and 
Øvreås 2002). The diversity of lipase-producing microorganisms in glacier soil was 
investigated by the PCR amplification of lipase genes, and sequence analysis 
showed the existence of several novel lipase-producing organisms in soil (Yuhong 
et al. 2009). More advanced methods utilizing stable isotopes such as stable isotope 
probing (SIP), microautoradiography–FISH (MAR–FISH), and Raman–FISH offer 
more detailed insights into the metabolic activities of microbial communities and 
are discussed in the following sections.

2.5.1  Stable Isotope Probing

SIP involves offering a stable isotope (e.g., 13C)-labeled substrate to microbial com-
munities whose utilization is of interest to decipher a key biogeochemical process 
(Wellington et al. 2003). Active microbial communities that utilize the labeled 
substrate during growth incorporate the isotopes within their biomass. The labeled 
biomolecules (e.g., DNA, RNA, phospholipid fatty acids [PLFA]) are then sepa-
rated from biomass by different biochemical methods, and the phylogenetic iden-
tity of microorganisms metabolizing the substrate is established using molecular 
techniques. SIP relying on DNA biomarkers involves labeling of DNA with 13C that 
could be separated from 12C by CsCl equilibrium density-gradient centrifugation. 
The 13C-labeled DNA could be analyzed by genetic fingerprinting or clone library 
techniques, leading to the identification of microorganisms. SIP was applied to 
decipher the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading soil 
microbial communities (Cupples and Sims 2007). Soil samples were amended with 
13C-labeled 2,4-D and were incubated for 17 days. After incubation, labeled DNA 
was purified from soil samples and was used to construct 16S rRNA clone libraries. 
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Phylogenetic analyses of clone sequences revealed that bacteria belonging to 
b-Proteobacteria such as Comamonadaceae and Ramlibacter were responsible for 
uptake and degradation of the herbicide.

In recent years, with advances in imaging and spectroscopic techniques, SIP has 
been combined with other techniques such as FISH and Raman microscopy to 
simultaneously investigate the taxonomic identities and activity of microbial com-
munities at single-cell resolution (Huang et al. 2007). In the Raman–FISH method, 
environmental samples are incubated with a substrate labeled with 13C stable iso-
tope. After incorporation, the spectral profiles of uncultured microbial cells at sin-
gle-cell resolution are generated using Raman microscopy, which measures the 
laser light scattered by chemical bonds of different cell biomarkers. The proportion 
of stable isotope incorporation in cells affects the amount of light scattered, result-
ing in measurable peak shifts for labeled cellular components. The Raman–FISH 
provides much higher resolution and overcomes many of the limitations associated 
with conventional SIP/MAR–FISH techniques. Huang et al. (2007) used the 
Raman–FISH method to investigate naphthalene-degrading Pseudomonas commu-
nities in groundwater. Their results, based on differences in 13C content of the vari-
ous pseudomonad cells, suggested that different Pseudomonas species and even 
members of the same species vary in their capability of naphthalene degradation.

2.5.2  Microautoradiography

Microautoradiography (MAR) relies on the fact that metabolically active cells utiliz-
ing radiolabeled substrate can be visualized by exposure to radiation-sensitive silver 
halide emulsion (Okabe et al. 2004). The emulsion is placed on the top of cells that 
are mounted on a microscope slide. After exposure, excited silver ions precipitate as 
black grains of metallic silver inside or adjacent to the cells that can be observed by 
transmission electron microscopy. Commonly used radiolabeled substrates include 
glucose, acetate, and amino acids, which provide a general view of the overall meta-
bolic diversity. More specific substrates along with selective growth (incubation) 
conditions have been used to identify important physiological processes in situ. For 
example, radiolabeled iron or sulfate can be provided under controlled anaerobic 
conditions to identify the iron- and sulfate-reducing microbial communities, respec-
tively. When MAR is used in combination with FISH (MAR–FISH), it allows simul-
taneous phylogenetic identification of active cells that  consume the radioactive 
substrate (Rogers et al. 2007). MAR–FISH has been  modified slightly, leading to 
other methods such as STAR (substrate tracking autoradiography)–FISH. However, 
STAR–FISH differs from MAR–FISH only in methodological details, and the basic 
principle of the technique remains the same. Nielsen et al. (2003) developed a quan-
titative MAR (QMAR)–FISH approach that can detect even single cells due to its 
improved fixation protocol and use of an internal  standard of bacteria with known 
specific radioactivity. MAR–FISH  technique was used to study the autotrophic nitri-
fying bacteria in biofilms (Okabe et al. 2005). The uptake by heterotrophic bacteria 
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of 14C-labeled products derived from nitrifying bacteria was directly visualized by 
MAR–FISH. Results revealed that members belonging to Chloroflexi and Cytophaga–
Flavobacterium play an important role in scavenging the dead biomass and metabo-
lites of nitrifying bacteria and ultimately preventing the accumulation of organic 
waste products in the biofilms.

2.5.3  Isotope Array

Isotope arrays allow for functional and phylogenetic screening of active microbial 
communities in a high-throughput fashion. The technique uses a combination of SIP 
for monitoring the substrate uptake profiles and microarray technology for decipher-
ing the taxonomic identities of active microbial communities (Adamczyk et al. 
2003). In principle, samples are incubated with a 14C-labeled substrate, which during 
the course of growth becomes incorporated into microbial biomass. The 14C-labeled 
rRNA is separated from unlabeled rRNA and then labeled with fluorochromes. 
Fluorescent labeled rRNA is hybridized to a phylogenetic microarray followed by 
scanning for radioactive and fluorescent signals. The technique thus allows parallel 
study of microbial community composition and specific substrate consumption by 
metabolically active microorganisms of complex microbial communities. The major 
strengths of the technique lie in the fact that it does not involve any amplification 
step and is hence free of biases associated with PCR. The limitations of the tech-
nique include difficulties in obtaining high-quality rRNA and detecting low abun-
dance but active microbial populations from environmental samples (Adamczyk 
et al. 2003). Adamczyk et al. (2003) successfully used this technique to demonstrate 
phylogenetic diversity and CO

2
 fixation activity of ammonia-oxidizing bacteria 

(AOB) in nitrifying activated sludge samples. Their results suggested that 
Nitrosomonas was the dominant lineage in AOB communities of sludge samples.

2.6  Postgenomic Approaches

The recent applications of DNA-based molecular techniques such as metagenomics 
have revealed new insights into the phylogenetic and functional diversity of micro-
bial communities. However, in the postgenomic era, the limitations of DNA-based 
molecular approaches have been realized. For example, DNA-based techniques do 
not provide information on the gene expression (functionality) as it occurs under in 
situ conditions (Wilmes and Bond 2006). With the availability of comprehensive 
metagenomic databases, which also includes genomic sequences from uncultured 
microorganisms, it is now possible to apply postgenomic approaches such as 
metaproteomics and metatranscriptomics to reveal the link between genetic poten-
tial and functionality in microbial communities. In the following sections, these 
techniques are discussed in detail with their potential applications in investigating 
functionality of microbial communities.



50 G. Rastogi and R.K. Sani

2.6.1  Metaproteomics

Metaproteomics, also commonly known as environmental proteomics, deals with 
the large-scale study of proteins expressed by environmental microbial communi-
ties at a given point in time (Wilmes and Bond 2006; Keller and Hettich 2009). 
Compared to other cell molecules such as lipids and nucleic acids, protein biomark-
ers are more reliable and provide a clearer picture of metabolic functions than 
functional genes or even the corresponding mRNA transcripts of microbial com-
munities (Wilmes and Bond 2006). Although methods such as SIP/MAR–FISH 
have been developed for structure–function analyses of microbial communities, 
these methods reveal information only on microbial communities associated with a 
specific biogeochemical process (e.g., nitrification, methane oxidation) and do not 
reveal an overall picture of microbial functionalities. Compared to these methods, 
proteomics offers a comprehensive approach to investigate the physiology of 
microbial communities both qualitatively and quantitatively. For example, pro-
teomic profiling of microbial communities provides critical information on protein 
abundances and protein–protein interactions, which could not be achieved by DNA/
RNA molecular techniques such as metatranscriptomics and metagenomics (Keller 
and Hettich 2009). The physiological responses of microbial communities due to a 
stress condition could be identified from an altered proteofingerprint, which reflects 
changes in the functional status of the communities. Once the proteins are identi-
fied, they could be linked to corresponding metagenomic sequences to link meta-
bolic functions to individual microbial species.

Methodologically, metaproteome analysis involves extraction of total proteins 
from an environmental sample. Although in situ protein lysis methods provide an 
exhaustive recovery, a significant amount of protein originates from other organ-
isms such as protozoa, fungi, and multicellular organisms, which further compli-
cate the taxonomic characterization of proteins (Keller and Hettich 2009). 
Therefore, in some cases, microbial cells are first separated from the environmental 
matrix by ultracentrifugation and then lysed, which allows obtaining much higher 
quality and quantity of bacterial proteins. Once the total protein is obtained, it is 
separated by one-dimensional and two-dimensional electrophoresis to generate a 
community proteofingerprint. After separation, protein spots are digested and are 
identified by a variety of powerful analytical methods. Currently, high-throughput 
proteomic profiling of microbial communities is possible due to development of 
chromatographic and mass spectroscopic techniques (MS-based proteomics). 
High-efficiency mass spectrometry integrated with liquid chromatography allows a 
highly sensitive and rapid identification of proteins. The availability of Web-based 
services such as ExPASy (Expert Protein Analysis System; http://www.expasy.org/) 
offers a comprehensive suite of tools that are vital in identification and character-
ization of protein mass fingerprinting data. A metaproteomic approach was 
employed to identify proteins that were involved in the biodegradation of chloro-
phenoxy acid in soil samples (Benndorf et al. 2007). Soil samples were first 
enriched for chlorophenoxy acid-degrading bacteria by incubating with 2,4-D for a 

http://www.expasy.org/
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period of 22 days. After incubation, protein extracts were isolated from soil and 
separated by SDS-PAGE, and protein bands were identified by liquid chromatogra-
phy linked to mass spectroscopy. Proteomic analysis identified a major catabolic 
enzyme 2,4-dichlorophenoxyacetate dioxygenase, membrane transport proteins 
(porins), and molecular chaperones.

2.6.2  Proteogenomics

In metaproteomics, protein sequences could be identified with confidence only if 
they have significant homology to existing proteins in available databases. However, 
in most of the environmental proteomic surveys, proteins are only distantly related 
to known database sequences. Therefore, it appears that the majority of short pro-
tein sequences retrieved from metaproteomes will remain unidentified and cannot 
be assigned to their functional and phylogenetic features. However, these limita-
tions have been overcome by combining the metaproteomic and metagenomic 
approaches together under the name of “proteogenomics” (Banfield et al. 2005). In 
community proteogenomics, total DNA and proteins are extracted from the same 
sample, which allows linking of biological functions to phylogenetic identity with 
greater confidence. The metagenomic part of the proteogenomic approach plays a 
very significant role and increases the identification of protein sequences by meta-
genomic analysis of the same sample from which the proteins were extracted. The 
proteogenomics approach was applied to decipher phyllosphere bacterial commu-
nities in a study by Delmotte et al. (2009). Bacterial biomass was harvested from 
leaf surfaces of soybean, clover, and Arabidopsis, and proteins were extracted. This 
was followed by tryptic digestion and separation of fragments by liquid chromatog-
raphy and analysis by mass spectrometry. This led to the identification of 2,883 
unique proteins from nearly one-half million spectra. The metagenomic data gener-
ated from the DNA extracted from the same pool of bacterial biomass significantly 
increased (up to 74%) the number of identified proteins, indicating that the majority 
of the bacterial communities present in the phyllosphere were genetically distinct 
from those currently available in databases. Most identified proteins in the phyllo-
sphere proteome were assigned to the three bacterial genera Methylobacterium, 
Sphingomonas, and Pseudomonas. Large numbers of proteins involved in methanol 
oxidation were identified and were assigned to Methylobacterium species that can 
use methanol as a source of carbon and energy.

2.6.3  Metatranscriptomics

Metatranscriptomics (or environmental transcriptomics) allows monitoring of 
microbial gene expression profiles in natural environments by studying global 
 transcription of genes by random sequencing of mRNA transcripts pooled from 
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microbial communities at a particular time and place (Moran 2009). 
Metatranscriptomics is particularly suitable for measuring changes in gene expres-
sion and their regulation with respect to changing environmental conditions. The 
major challenge in metatranscriptomics is the fact that prokaryotic microbial 
mRNA transcripts are not polyA tailed, so obtaining complementary DNA (cDNA) 
is not easy. This results in coextraction of more abundant rRNA molecules in the 
total RNA pool, which can lead to overwhelming background sequences in a large-
scale sequencing analysis. A method for selectively enriching mRNA by subtrac-
tive hybridization of rRNA has been developed and evaluated for the gene transcript 
analysis of marine and freshwater bacterioplankton communities, which revealed 
the presence of many transcripts that were linked to biogeochemical processes such 
as sulfur oxidation (soxA), assimilation of C1 compounds (fdh1B), and acquisition 
of nitrogen via polyamine degradation (aphA) (Poretsky et al. 2005). More recently, 
a “double-RNA” method has been devised to analyze the total RNA pool of a com-
munity, as it is naturally rich in not only functionally but also taxonomically rele-
vant molecules, i.e., mRNA and rRNA, respectively (Urich et al. 2008). This offers 
a means to investigate both structural and biochemical activity of microbes in a 
single experiment. Their study combined transcriptomic profiling with massive 
pyrosequencing techniques to produce 193,219 rRNA tags and 21,133 mRNA-tags 
from sandy soil samples that were poor in nutrients and neutral in pH. The rRNA 
tags provided data on the phylogenetic composition of soil microbial communities 
and showed that Actinobacteria and Proteobacteria were most abundant, while 
Crenarchaeota were less abundant in soil samples. The mRNA tags provided a 
glimpse of the in situ expression of several key metabolic enzymes such as ammo-
nia monooxygenase (amoA and amoC) and nitrite reductase (nirk) that were 
involved in ammonia oxidation. In addition, microbial gene transcripts coding for 
the enzymes methyl-malonyl-CoA mutase and 4-hydroxybutyryl-CoA dehydratase 
that play a role in CO

2
 fixation pathways in Crenarchaeaota were detected.

2.7  Bias in Molecular Community Analysis Methods

Like culture methods, molecular techniques have their own pitfalls and are associ-
ated with bias at every step (von Wintzingerode et al. 1997). Biases associated with 
DNA extraction such as incomplete or preferential lysis of certain microbial cells 
can distort the community composition, richness, and microbial community struc-
ture. Feinstein et al. (2009) suggested the use of several validated DNA extraction 
methods and pooled DNA extracts in PCR-based molecular methods to minimize 
any risk of bias. Biases associated with PCR could include inhibition by compounds 
such as humic acids, which are generally coextracted with DNA extracted from soil. 
Several DNA purification steps have been devised; however, they lead to loss of 
DNA during purification, which also causes bias in subsequent PCR. Dilution of 
DNA templates or dialysis can be applied, but it influences the PCR efficiency. 
Hybridization efficiency and specificity of primers sometimes cause preferential 
amplification of certain templates, which affects the quantitative assessment of 
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microbial diversity. Formations of PCR artifacts (e.g., chimeric molecules, deletion 
mutants, and point mutants) could also lead to misleading results (von Wintzingerode 
et al. 1997).

2.8  Concluding Remarks and Future Directions

With the development and application of molecular genomic tools, the field of 
microbial ecology is undergoing unprecedented changes. Postgenomic molecular 
approaches enable us to interrogate the structural and functional diversity of envi-
ronmental microbial communities and reveal that we have only scratched the sur-
face of the genetic and metabolic diversity present in the most abundant organisms 
of the Earth, the Prokaryotes. Several important questions such as “How many 
microbial species are there on the Earth?”, “What is the extent of metabolic diver-
sity in natural microbial communities?”, and “How microbial communities are 
governed by biological, chemical and physical factors?” remain to be understood. 
Understanding the functional roles of uncultured organisms still remains a daunting 
task, as most of the genes identified have no homologous representatives in data-
bases. Although considerable progress has been made in the characterization of 
microbial communities by the application of metagenomic, metatranscriptomic, 
and proteogenomic approaches, many technical challenges remain including DNA, 
RNA, and protein extraction from environmental samples, mRNA instability, and 
low abundance of certain gene transcripts in total RNA. The next-generation 
sequencing techniques are still developing, and many technological innovations 
particularly tuned for environmental samples are expected in these techniques. 
Development in bioinformatics tools is also needed for evaluating the tremendous 
amount of information generated through whole-genome analysis and metagenomic 
and metatranscriptomics approaches. Quantitative assessment of microbial com-
munities is the greatest challenge due to significant biases associated with nucleic 
acid isolation and PCR and requires more advanced DNA/RNA extraction tech-
niques for environmental samples. All of the molecular approaches available for 
community structure and function analysis have advantages and limitations associ-
ated with them, and none provides complete access to the genetic and functional 
diversity of complex microbial communities. A combination of several techniques 
should be applied to interrogate the diversity, function, and ecology of microorgan-
isms. Culture-based and culture-independent molecular techniques are neither 
contradictory nor excluding and should be considered as complementary. An inter-
disciplinary systems approach embracing several “omics” technologies to reveal 
the interactions between genes, proteins, and environmental factors will be needed 
to provide new insights into environmental microbiology. Development of multi-
“omics” approaches will be a high-priority area of research in the coming years.
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Abstract Scientific studies over the past few decades have shown that the vast 
majority of microbes in the aqueous environment do not live as free-floating 
(i.e., planktonic) forms, but rather prefer to live as attached communities termed 
biofilms. Biofilm formation onto surfaces is usually detrimental to human health 
and man-made structures; biofilm-related problems range from antibiotic-resistant 
infections in humans and animals to drinking water contamination, energy loss in 
industrial systems, and increased corrosion in ship hulls and offshore structures. 
Biofilms also play several beneficial roles, such as nutrient transformation in the 
plant rhizosphere and enhanced biodegradation of organic carbon and various pol-
lutants during wastewater treatment and soil bioremediation. Recently, biofilms 
have shown great potential in selective, low-cost catalysis and energy conversion 
processes in biofuel production and microbially driven batteries. The biofilm 
structure provides several advantages to microorganisms within the biofilm, includ-
ing resistance to biocides and antibiotics, viscoelasticity, and resistance against 
fluid-dynamic shear stress. The congregation of multiple species into biofilm 
microcosms increases the range of substrates that can be biodegraded and offers 
great flexibility for a number of biotechnological applications. In the last 20 years, 
researchers have unveiled the relationship between biofilm structure and activity 
and have devised many methods to control biofilm development. However, use of 
biofilms for contaminant degradation in the field is still in its infancy. Furthermore, 
the processes that employ biofilms for energy conversion, environmental sensing, 
and “white biotechnology” (commonly known as industrial biotechnology) are still 
largely confined to academic research. In this chapter, we aim to highlight the most 
important and recent advances in the field of biofilm-based technologies and their 
potential applications.
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3.1  Introduction

Until recently, most microbiologists have focused on free-floating bacteria grown 
in defined media. This culturing method has been helpful in the study of microbial 
pathogenesis and physiology; however, bacteria rarely exist in nature as pure cul-
ture planktonic growth. Direct observation of a wide variety of natural habitats has 
established that the majority of microbes exist within well-structured communities 
attached onto surfaces and not as free-floating organisms. These attached commu-
nities are known as biofilms (Costerton et al. 1999).

Biofilms are important clinically as well as industrially. Clinically, biofilms are the 
source of persistent infections such as dental caries, nosocomial infections, as well as a 
variety of other infections and diseases (Costerton et al. 1999). Biofilms are a primary 
concern in the public drinking water and energy industries. Biofilm formation reduces 
heat transfer efficiency of heat exchangers, increases fuel consumption of ships, 
enhances corrosion and blockage of water distribution pipes, fouls reverse-osmosis 
membranes, and contaminates food processing equipment (Jain 2009). However, bio-
films offer several benefits in various other processes including biocontrol of plant 
pathogens (Emmert and Handelsman 1999), corrosion inhibition (Zuo 2007), wastewa-
ter treatment (Qureshi et al. 2005), bioremediation (Singh et al. 2006), productive bio-
catalysis (Rosche et al. 2009), and microbial fuel cells (MFCs) (Erable et al. 2009).

During biofilm formation, microbial cells undergo significant changes at the 
gene expression level (Gilmore et al. 2003). The changes in gene expression 
(genomics) lead to changes in overall metabolism of biofilm cells as compared to 
planktonic cells (Gjersing et al. 2007). These changes offer several unique proper-
ties to biofilms, which are either absent or poorly expressed in planktonic cells, for 
example, enhanced production of extracellular polymeric substances (EPS), typical 
three-dimensional biofilm architecture (structure), antimicrobial resistance, quo-
rum sensing (Davies et al. 1998), gene transfer (Roberts et al. 1999), and external 
electron transfer (Schroder 2007). The biofilm mode of life also provides protection 
against osmotic stress, dehydration, and nutrient limitations to the microbial popu-
lation. Biofilm allows for various physical, chemical, and molecular interactions 
within its resident microbial population, which enable optimal utilization of avail-
able resources (Shirtliff et al. 2002). Most biofilm-based technologies exploit and/
or are determined by one or more of the above biofilm properties.

The use of biofilms as biocontrol agents and corrosion inhibitors has been 
described for decades. There are very few commercially available biofilm-based 
biocontrol agents; increased development is needed to encourage more widespread 
application of this technology (Morikawa 2006). Also, most biofilm-based corrosion 
inhibitions have been described under laboratory conditions, with few field trials 
(Zuo 2007). More recently, the use of biofilms in energy conversion (Erable et al. 
2009) and biocatalysis processes (Rosche et al. 2009) has been described. Microbial 
fuel cells (MFCs) are devices that transform chemical energy into electrical energy 
via electrochemical reactions involving biofilms located either in both anode and 
cathode compartments, or in just one compartment. Ideally, biofilms in MFCs 
 completely oxidize organic matter such as carbohydrates, cellulose, and fatty acids. 
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MFCs have shown promise in the field of bioremediation (Li et al., 2008), energy 
recovery from industrial and municipal wastewater (Raghavulu et al. 2010), and 
biosensor development (Di Lorenzo et al. 2009). While substantial progress has been 
documented under laboratory conditions, only a few pilot-scale applications of this 
technology are known (Keller and Rabaey 2008). Biofilm technologies have shown 
enormous potential in productive biocatalysis or biotransformation (Qureshi et al. 
2005) and bioremediation of xenobiotics, hydrocarbons, and heavy metal pollutants 
(Singh et al. 2006). In biofilm reactors, the biofilms are formed on support media 
either by using the natural microbial populations (as in wastewater treatment) or by 
inoculating a desired culture (as in productive catalysis or bioremediation) in the 
reactor vessel. The biofilm formed on the support medium acts as self-regenerating 
catalyst to perform the desired reaction(s). The main advantages of biofilm treatment 
with respect to conventional technologies using free-floating microorganisms (e.g., 
activated sludge) are the higher concentration of active biomass and the resistance to 
short-term toxic shock, which are common issues in water treatment.

Biofilm research has received impetus by recent interest in sustainable and low-
cost technologies. Microorganisms in biofilms are essentially ideal catalysts, since 
they can self-repair and sustain harsh environmental conditions (Rosche et al. 
2009). While enzyme-based technologies can achieve faster conversion rates than 
those observed using viable microorganisms, enzymes are subject to rapid loss of 
activity under real-world process conditions. These complications increase cost and 
reduce environmental sustainability. Current research focuses on bridging the gap 
between laboratory research and industrial applications. It can be expected that the 
more stringent energetic and economic requirements in years to come will attract 
the interest of major industries toward biofilm-related technologies.

3.2  Biofilm: A Definition

A biofilm is defined as “a microbially-derived sessile community characterized by 
cells that attach to a substratum or interface or to each other, with the help of gelati-
nous extracellular polymeric substances.” The special gelatinous extracellular adhe-
sive is known as “biofilm matrix” (Costerton et al. 1999). The biofilm matrix provides 
protection against environmental changes, biocides, and antibiotics. Furthermore, it 
forms a nutrient-rich “microniche” for bacterial cells inside the biofilm by capturing 
and concentrating essential nutrients such as carbon, nitrogen, and phosphorus.

3.3  Mechanism of Biofilm Formation

As soon as surfaces are exposed to an aqueous environment, adsorption of  dissolved 
organic matter onto surfaces takes place; such matter is termed conditioning film. 
Conditioning film is mainly composed of glycoproteins, humic material, proteins, lipids, 
nucleic acids, polysaccharides, and aromatic amino acids (Jain and Bhosle 2009).  



62 A. Jain et al.

The formation of conditioning film changes the overall physicochemical properties 
of the surface including surface charge, wettability, hydrophobicity, and surface 
roughness, thereby effecting bacterial adhesion. Initially, bacterial cells are weakly 
held to the conditioned surface by physical attractive forces such as Van der Waals 
forces and electrostatic forces. However, after a few hours of contact with the sur-
face, bacterial cells begin to form more secure bonds. Subsequently, bacterial cells 
become firmly attached to the surface as a result of synthesis of extracellular adhe-
sive materials. Once the cells have become firmly attached to the surface, they start 
multiplying. This growth is followed by overproduction of the EPS that hold the 
dividing cells together and support the formation of a typical mature biofilm. The 
mature biofilm is characterized by the presence of voids or water channels, cells 
embedded in the self-secreted polymeric matrix, and a characteristic three-dimen-
sional structure (Lewandowski 2000). These voids or water channels allow water 
and nutrients to migrate to deeper portions of mature biofilm. In order to colonize 
new surfaces and to avoid population density-mediated starvation, bacterial cells 
are transported from biofilm phase to liquid phase by a process known as biofilm 
detachment. Continuous biofilm detachment maintains balance in biofilm growth, 
enabling the biofilm thickness to reach a pseudo steady state.

3.4  Biofilm Properties: Influence on Biofilm-Based 
Technologies

A specific biofilm (mixed species or pure culture biofilm) is selected for the devel-
opment of biofilm-based technologies on the basis of its desired properties; some 
are discussed below.

3.4.1  Extracellular Polymeric Substances: Role in Biofilm 
Reactor Performance

Bacterial cells irreversibly adhere to surfaces or each other through the production 
of EPS. EPS consist of water, polysaccharides, proteins, humic substances, nucleic 
acids, and lipids (Bhosle et al. 1996). EPS play a significant role in biofilm forma-
tion and structure (Jain and Bhosle 2008), and biofilm EPS are important in terms 
of industrial biofilm application.

Accumulation of unproductive EPS within bioreactors reduces the space avail-
able for active cells and may hamper the overall volumetric productivity of catalytic 
biofilm processes. Recently, Setyawatia et al. (2009) have reported that high EPS 
content in Acetobacter xylinum biofilm caused mass transfer limitation and led to a 
sixfold decline in the biotransformation activity of the biofilm. Excessive sloughing 
of EPS poses difficulties for downstream processing and product purification. 
Therefore, during industrial biofilm application, EPS production and accumulation 
must be carefully monitored and controlled.
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3.4.2  Biofilm Architecture: Role in Biofilm Reactor Performance

Biofilm architecture is heterogeneous both in space and time, constantly changing 
due to external and internal processes. Biofilm architectural characteristics such as 
thickness, density, and surface shape are crucial for the stability and performance 
of a biofilm reactor, since they affect biomass holdup and mass transfer. For exam-
ple, thin biofilms (<100–150 mm) enable oxygen to diffuse into the deepest layers, 
while thick biofilms create an external aerobic zone and an inner anaerobic zone. 
Therefore, control of biofilm thickness is of paramount importance to the operation 
of biofilm reactors. Biofilm surface shape also plays a crucial role, since fluffy 
biofilms and outgrowth lead to biofilm instability [e.g., in fluidized bed reactors 
(FBRs)] (Tijhuis et al. 1995).

3.4.3  Quorum Sensing: Role in Bioreactor Cleanup

Bacteria produce diffusible extracellular signaling molecules, e.g., acylated homo-
serine lactones (AHLs; Gram-negative bacteria) and oligopeptides (Gram-positive 
bacteria), to monitor their population density and to coordinate expression of spe-
cific sets of genes in response to cell density. This type of cell-density-dependent 
gene regulation is termed “quorum sensing.” Davies et al. (1998) published the first 
study showing the role of quorum sensing in the formation of biofilms and launched 
a period of research on cell-to-cell signaling in biofilms. Quorum sensing affects 
every aspect of biofilm development including its dispersal, which allows cells to 
be released from biofilms and to colonize new niches (Hall-Stoodley et al. 2004). 
Little is currently known about quorum sensing and biofilm dispersal in industrial 
biofilm processes. Once these mechanisms are better understood, it might be pos-
sible to control biofilm development in industrial applications with the aim of not 
only enhancing productivity but also facilitating bioreactor cleanup.

3.4.4  Antimicrobial Resistance: Role in Bioreactor Cleanup

Biofilms are well known for their enhanced tolerance to antimicrobials, toxic sub-
stances, and other adverse conditions compared to suspended cells. A number of 
resistance mechanisms contribute to this characteristic including lower diffusion 
within biofilms, limited cell growth, the formation of specialized survivor cells 
termed persisters, and active toxin removal (Anderson and O’Toole 2008). Some of 
these biofilm resistance mechanisms could be unfavorable for productive catalysis. 
For example, resistance conferred by limited growth could hinder the production of 
growth-linked metabolites in biofilms. Also, limited diffusion and removal of toxic 
substrates by efflux or degradation would negatively affect productivity.
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3.4.5  Gene Transfer Within Biofilms: Role in Bioremediation

Gene transfer occurs frequently and effectively in many bacterial biofilms, both in 
natural environments and in artificial settings. Gene transfer affects a population’s 
potential to meet and exploit new environmental conditions. Conjugation and trans-
formation are the two ways by which gene transfer occurs in biofilms (Maiques 
et al. 2007). Moreover, transfer of catabolic genes in natural as well as in vitro 
biofilms has shown great potential in bioremediation processes (Dejonghe et al. 
2000). Several gene carriers termed mobile genetic elements (MGE) (i.e., plasmids 
and transposons) are used for gene transfer in biofilms. The horizontal exchange of 
catabolic genes among bacteria in their metabolic pathways could help in the con-
struction of novel catabolic pathways and strategies for bioremediation. The trans-
fer of catabolic genes can be used to optimize bioreactor efficiency in cases where 
degradation is limited by low biomass and shortage of degradative genes.

3.4.6  External Electron Transfer in Biofilms:  
Role in MFC Function

A small group of biofilms, mainly formed by dissimilatory metal-reducing bacteria, 
can exchange electrons directly with electrodes and are therefore termed electro-
chemically active biofilms (EABs) (Reimers et al. 2001). EABs transfer electrons 
extracellularly via (1) microbially produced redox mediators, (2) membrane pro-
teins, or (3) conductive appendages termed nanowires. Microbially produced redox 
mediators can undergo repetitive oxidation/reduction, thereby facilitating the trans-
fer of electrons between biofilm and electrode. Examples of microbially produced 
redox mediators are phenazines (i.e., pyocyanine), quinone-related molecules, and 
flavins (Marsili and Zhang 2010). EAB-forming bacteria capable of direct extracel-
lular electron transfer can switch their metabolism from a soluble electron donor 
(e.g., hydrogen, glucose, acetate) or acceptor (e.g., oxygen, nitrate, fumarate) to a 
solid electron donor or acceptor at the surface of a conductive electrode (Bond and 
Lovley 2005). Recently, the role of bacterial cell surface appendages (i.e., pili, often 
termed nanowires) has been reported in electron transfer between biofilms and 
electrodes (Reguera et al. 2005).

3.5  Application of Biofilms

3.5.1  Biofilms as Biocontrol Agents

Biocontrol against plant diseases using microorganisms is a powerful alternative to 
the use of synthetic chemicals (Morris and Monier 2003). Recent studies have sug-
gested that the biofilm mode is important for bacteria to act as a biocontrol agent 
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(Bais et al. 2004). In this mechanism, the biofilm of a particular strain on plant 
surfaces will suppress a disease without causing long-term effects on the rest of the 
indigenous microbial population. Currently, few biocontrol agents are commer-
cially available; reasons for the slow development of this technology are (1) the 
lack of knowledge of the biological control system and (2) the difficulty in obtain-
ing a successful formulation (Fravel 2005). Most biocontrol agents have been suc-
cessful in laboratory trials; however, stability, effectiveness of the formulation, and 
scale-up production remain cumbersome. For example, viable formulations of fluo-
rescent Pseudomonads experience a major obstacle for their large-scale field appli-
cation. Sporulating Gram-positive microorganisms such as Bacillus and Streptomyces 
may help to solve the product formulation problem. These bacteria form heat- and 
desiccation-resistant spores that can be converted readily into stable products such 
as dry powder (Morikawa 2006).

3.5.1.1  Gram-Positive Bacterial Biofilms as Biocontrol Agents

Bacillus subtilis and Bacillus cereus are often found in the plant rhizosphere, i.e., 
the biologically and chemically active area of soil surrounding the plant root. In the 
rhizosphere, both B. subtilis and B. cereus promote plant growth and act as biocon-
trol agents (Bais et al. 2004). The commercial biocontrol agent Serenade, which 
contains a B. subtilis strain, is highly effective against a variety of pathogenic bac-
teria including Erwina, Pseudomonas, and Xanthomonas strains (Fravel 2005), 
whereas B. cereus has been used commercially for reliable biocontrol of various 
phytopathogens, especially oomycete pathogenic fungi. Upon root colonization, 
B. subtilis and B. cereus form stable and extensive biofilms. B. subtilis biofilm 
produces a variety of antibacterial agents including a broad range of lipopeptides 
such as surfactin, which are potent biosurfactants and important for maintaining the 
aerial structure of biofilms (Ongena and Jacques 2008). B. cereus biofilm produces 
two antibiotics, zwittermicin A and kanosamine, which contribute to biocontrol of 
alfalfa damping. The commercial success of these organisms as biocontrol agents 
is due to the ease of formulation and storage of the products.

3.5.2  Biofilms as Corrosion Inhibitors

Corrosion inhibition is the suppression of the corrosion reaction by inhibitors, 
either abiotic or biotic. The nature of corrosion inhibition is electrochemical, 
i.e., the same general mechanism as for corrosion (Videla and Herrera 2009). 
Mechanisms of corrosion inhibition are complex and often involve more than the 
production of a simple barrier on the metal. Recently, Zuo (2007) has reviewed 
recent progress in corrosion inhibition by beneficial bacterial biofilms and pro-
posed four different mechanisms. These are discussed in detail below.
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3.5.2.1  Corrosion Inhibition by Biofilm Through Oxygen Removal

Corrosion inhibition by biofilm-forming bacteria is a general phenomenon, and the 
nature of the biofilms (i.e., good biofilm former or poor biofilm former) determines 
the degree of corrosion inhibition. Additionally, an increase in depth of biofilm is 
known to correspond to a greater reduction in corrosion (Jayaraman et al. 1999a). 
Moreover, bacterial metabolic activities contribute to oxygen removal by biofilms 
(Dubiel et al. 2002).

3.5.2.2  Corrosion Inhibition by Biofilms Secreting Antimicrobials

Corrosion control approaches using biofilms secreting antimicrobials are known as 
corrosion control using regenerative biofilms (CCURB) (Zuo et al. 2004). This strategy 
enables the production of antimicrobial compounds within the biofilm (naturally or 
genetically constructed). Moreover, EPS help to maintain relatively higher local 
antimicrobial concentrations by preventing them from diffusing into bulk fluids. 
Jayaraman et al. (1999b) genetically constructed B. subtilis and B. brevis biofilms 
secreting antimicrobials and found that these biofilms inhibited the growth of corrosion-
causing sulfate-reducing bacteria (SRB) as well as reduced corrosion rates signifi-
cantly. Zuo et al. (2004) conducted a field trail evaluating the impact of protective 
gramicidin-S-producing B. brevis biofilm against multiple corrosive bacteria and 
reported a two- to tenfold decrease in the corrosion rate of mild steel.

3.5.2.3  Corrosion Inhibition with Biofilms Secreting Corrosion Inhibitors

Biofilms are ideal for delivering corrosion inhibitors, as they are generated within 
the biofilm and are adjacent to metal surfaces. Mansfeld et al. (2002) investigated 
the efficiency of polyaspartate or g-polyglutamate (naturally or genetically con-
structed within the microorganism) as corrosion inhibitors. Both polyaspartate and 
g-polyglutamate chelate metals, thereby protecting the metal surface from uniform 
corrosion by formation of an aluminum/anionic peptide complex.

3.5.2.4  Corrosion Inhibition Through Protective Layers (Biofilm Matrix)

Protective layers may be a passive oxide product formed during corrosion, which 
becomes entrapped in the biofilm matrix. Chongdar et al. (2005) reported that aerobic 
Pseudomonas cichorii was able to inhibit corrosion of mild steel due to formation 
of an iron oxide/iron phosphate layer within the biofilm matrix. Juzeliunas et al. 
(2006) isolated Bacillus mycoides, a Gram-positive, nonmotile soil bacterium that 
increases the charge transfer resistance of the aluminum, thereby inhibiting its 
corrosion.
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3.6  Biofilm-Based Technologies

3.6.1  Biofilm Reactors

Biofilms can be used in various types of reactors such as continuous stirred tank 
reactors (CSTRs), packed bed reactors (PBRs), trickling bed reactors (TBRs), FBRs, 
airlift reactors (ALRs), upflow anaerobic sludge blanket (UASB) reactors, expanded 
granular sludge beds (EGSB), internal circulation (IC) reactors, and membrane aer-
ated biofilm reactors (MABR). High reaction rates are the main advantage of biofilm 
reactors vs. conventional suspended biomass reactors (Table 3.1).

A CSTR consists of a vertically baffled tank fitted with a mechanical stirrer. It 
is continuously fed with influent, and treated effluent is removed from the reactor 
at the same rate (Fig. 3.1a). The PBR (Fig. 3.1b) uses a variety of packings (porous 
and nonporous) for biofilm growth, including polymers, ceramic, glass, and natural 
material (wood or bark). The TBR (Fig. 3.1c), in contrast to PBR, employs coun-
terflow of gas and liquid through packing material or beds. TBRs are used for 
large-scale production of vinegar, as biofilters for gas cleanup and deodorization, 
for water purification, and for ore leachate treatment. In FBRs, microbial cells grow 
around adsorbent particles and form active biofilms. FBRs can maintain high 

Table 3.1 Comparative evaluation of biofilm-based reactors with other types of biological 
reactors

Reactor type

Attributes Biofilm based Entrapment based
Immobilized 
reactors

Membrane 
reactors

Advantages Comparatively 
highest 
reactor 
productivity

High productivity High productivity High productivity

High cell 
concentration 
is achieved

High cell 
concentration 
may be 
achieved

High cell 
concentration 
may be 
achieved

High cell 
concentration 
may be 
achieved

Reactors can run 
longer

Economical 
operation

Disadvantages Effluent 
centrifugation 
required

Effluent 
centrifugation 
required

Effluent 
centrifugation 
required

Membrane fouling

Disintegration 
of matrix 
material with  
time

Restricted cell 
growth inside 
matrix

Not economical 
for the large 
volumes

Cell leaching 
from matrix

Chemical may 
affect cell 
growth
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 volumetric concentrations of biomass and a high substrate conversion rate. In FBRs 
(Fig. 3.1d), the flow of liquid is directed through the particles above the “minimum 
fluidization velocity,” leading to the lifting of particles from their fixed bed. FBR 
can be operated for much longer times (more than 4 months) than PBRs or CSTRs 
(with fibrous bed) without experiencing blockage. UASB reactors are based on the 
use of granular biofilm particles and are used for the anaerobic treatment of waste-
water and industrial effluents. At the top of the reactor, provisions are made for 
gases to escape and sludge particles to settle at the bottom of the reactor (Fig. 3.1e). 
In order to improve process efficiency of UASB reactors, an adequate influent dis-
tribution is required. The use of effluent recirculation in combination with a taller 
reactor (a larger height-to-diameter ratio) results in the development of EGSB 
 reactors. EGSB reactors are also used for the anaerobic treatment of wastewater/

Fig. 3.1 Schematic representation of various types of biofilm reactors. (a) continuous stirred tank 
reactor (CSTR); (b) packed bed reactor (PBR); (c) trickling bed reactor (TBR); (d) fluidized bed 
reactor (FBR); (e) upflow anaerobic sludge blanket reactor (UASB); (f) expanded granular sludge 
bed reactor (EGSB); (g) air lift reactor (ALR); (h) internal circulation (IC); and (i) membrane 
aerated biofilm reactor (MABR)
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industrial effluents (Fig. 3.1f). ALRs use circular mixing achieved by gas injection 
(Fig. 3.1g). This results in a lower degree of shear and more vigorous recirculation 
for the same rate of airflow. ALRs contain two concentric tubes, a riser (an inner 
tube) and a downcomer (an outer tube). In an IC reactor (Fig. 3.1h), influent is 
pumped at the bottom and is mixed with the granular anaerobic biomass. In the 
lower reactor compartment, most of the organic components are converted to meth-
ane and carbon dioxide. The self-regulating IC reactor offers considerable advan-
tages in system operation, leading toward reduced operational costs and increased 
productivity and reliability. The MABR uses immobilized microbial biomass on 
membranes through which oxygen is supplied (Fig. 3.1i). MABRs minimize losses 
of volatile organic compounds and allow easy control of oxygen penetration into 
biofilms through the membranes. The dissolved oxygen gradient across the mem-
brane and the biofilm offers an ideal environment for aerobic microbial strains and 
prevents foaming in the reactor due to generation of surfactants. Moreover, 
enhanced oxygen penetration makes MABRs an attractive option for pollutant bio-
degradation in high-strength wastewaters.

3.6.1.1  Biofilm Reactors in Wastewater and Waste Gas Treatment

The application of various types of biofilm reactors in wastewater treatment has 
been extensively reviewed elsewhere (Qureshi et al. 2005). Table 3.2 describes 
some of the important applications of biofilm reactors in wastewater treatment.

Biological treatment of waste gas is an attractive and environmentally friendly 
alternative to physicochemical methods. The biofilter, trickling biofilter, and 
 bioscrubber are the three major bioreactor designs frequently employed for 
 treatment of waste gas. A biofilter consists of a filter bed composed of a support 
material (sawdust, compost, dry wastewater sludge, etc.) for the active microorgan-
isms and as a nutrient source. Waste air is blown through the biofilms around par-
ticles of biofilter medium. On the other hand, in trickling biofilters, waste gas is 
continuously fed with a liquid medium to the biofilm grown on the packing mate-
rial. The bioscrubber is mainly used for treatment of waste gases containing high 
concentrations of water-soluble pollutants.

3.6.1.2  Biofilm Reactors in Bioremediation Process

Bioremediation is an emerging, efficient, and economical in situ technology that 
employs microorganisms for the cleanup of environmental pollutants (Woodley 
2006). Biofilms are well suited for treatment of recalcitrant or slow-degrading 
compounds because of their high microbial biomass and ability to immobilize com-
pounds by biosorption, bioaccumulation, and biomineralization (Table 3.3). 
Physiological properties of microorganisms such as biosurfactant production and 
chemotaxis enhance bioavailability and degradation of hydrophobic compounds 
(Paul et al. 2005).
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 Bioremediation of Hydrocarbons

Chlorinated aromatic compounds (recalcitrants) are widespread contaminants of 
soil and groundwater, and many are carcinogenic even at extremely low concentra-
tions. Table 3.4 lists the bioreactor types used in the bioremediation of hydrocar-
bons. Kargi and Eker (2005) reported complete degradation of 2,4-dichlorophenol 
(DCP) using a rotating perforated tube biofilm reactor with a mixed microbial bio-
mass supplemented with DCP-degrading Pseudomonas putida. Johnsen et al. 
(2005) reported that polycyclic aromatic hydrocarbons (PAHs) accumulate in bac-
terial biofilms by adsorption to microbial exopolymers. Subsequently, during 
periods  of starvation, the biofilm community metabolizes the accumulated PAHs. 
Perumbakkam et al. (2006) introduced atrazine-degrading genes into biofilms of 
Acinetobacter sp. BD413, thereby developing a biofilm-mediated process to 
degrade atrazine. Improving strains by engineering metabolic pathways and 
enzymes involved in degradation or by increasing the number of copies of degrada-
tive genes could further enhance biofilm-mediated bioremediation; therefore, a 
combination of genetic engineering of microorganisms and optimization of physi-
cochemical parameters and substrate concentrations in bioreactors is of paramount 
importance for developing bioremediation strategies.

 Bioremediation of Heavy Metals

Another promising application of biofilms is in heavy-metal and radionuclide 
remediation. Table 3.5 lists the biofilm reactor types used in bioremediation of 
heavy metals. Biofilm-assisted heavy-metal bioremediation can be achieved by 

Table 3.4 Biodegradation of chlorophenols, azo dyes, and herbicides using different biofilm 
reactors

Methods of 
remediation Experimental conditions

Heavy metals  
remediation References

Biosorption Anaerobic–anoxic biofilm 
process

Biofilm formed on moving bed 
sand filter

Biofilm formed on kaolinite

Zn, Cd, Ni 
Cu, Zn, Ni, Co  
Fe, Cd, Ni, Cr

Chang et al. 
(2006)

Diels et al. 
(2003)

Quintelas et al. 
(2009)

Immobilization Rotary biofilm reactor for algae 
immobilization

Co Travieso et al. 
 (2002)

Adsorption Biofilm development over  
granular activated carbon

Cd, Cu, Zn, Ni Scott and 
Karanjkar 
(1998); Scott 
et al. (1995)

Bioprecipitation Bacteria immobilized composite 
membrane reactor

Biogenic H
2
S from sulfate- 

reducing biofilm

Cd, Zn, Cu, Pb, Co, 
Ni, Pd, Ge 
Zn, Cu, Pb

Diels et al. (1995) 
Alvarez et al. 
(2007)
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immobilization, biosorption, and concentration, thereby minimizing anticipated 
hazards (Quintelas et al. 2009). There are several reports suggesting the role of 
biofilm EPS in metal precipitation, for example, accumulation of polycrystalline 
NaUO

2
PO

4
 by Citrobacter sp. N14 (Macaskie et al. 2000), and formation of spha-

lerite (ZnS) by members of Desulfobacteraceae in a natural biofilm (Labrenz et al. 
2000). The construction of improved strains with specific metal-binding properties 
through expression of metal-chelating proteins and peptides can improve metal 
precipitation processes.

3.6.1.3  Biofilm Reactors in Productive Biocatalysis

Biocatalysis is an effective and environmentally friendly tool for industrial produc-
tion of chemicals (Woodley 2006). Biocatalysts including bacteria, fungi, and their 
enzymes can be produced from renewable resources, are biodegradable, and cata-
lyze reactions with high specificity under normal conditions. Cell retention during 
continuous bioreactor operation and long-term cell viability are the main chal-
lenges in effective productive biocatalysis, and microbial biofilms offer solutions to 
these problems. Biofilms produce their own immobilization matrix and are natu-
rally adapted to be viable within the matrix. This offers the possibility of continu-
ous reactor use and significant cost reduction (per kg of product) compared to 
conventional systems (Gross et al. 2007). Owing to their robustness and ease of 
operation, various biofilm processes have already been implemented commercially 
with great success over the last few decades. An example is the commercial produc-
tion of vinegar using acetic acid bacteria (El-Mansi and Ward 2007). Qureshi et al. 
(2005) reviewed the feasibility of biofilm reactors in the conversion of agricultural 
materials such as starch, sugars, and glycerol into alcohols (e.g., ethanol, butanol, 
2,3-butanediol, dihydroxyacetone) or organic acids (e.g., acetic, lactic, fumaric, 
succinic, and citric acid). Recently, Wang and Chen (2009) have reviewed the vari-
ous opportunities for biofilm-based biofuel production. Further research in the field 
has been directed toward investigating biofilm potential for the production of other 
useful chemicals.

The examples shown in Table 3.6 illustrate the range of reactor configurations, 
surface materials, and organisms that has been considered for biocatalysis, mostly 
on a laboratory scale. Most recently, biofilm processes involving toxic substrates 
and toxic products have been the focus of attention. In this context, Li et al. (2006) 
reported that biofilms of Zymomonas mobilis were more tolerant to the toxic sub-
strate benzaldehyde than free-floating cells of the same strain and were able to 
produce benzyl alcohol in a continuous biofilm reactor. Gross et al. (2007) devel-
oped a tubular biofilm reactor for bioconversion of styrene, to (S)-styrene oxide, 
which is a biologically challenging compound because it is volatile, poorly water-
soluble and toxic to cells. A number of other studies have also reported successful 
application of biofilms in productive catalytic processes without biocatalyst degen-
eration or contamination over several months, demonstrating the potential of 
 biofilm applications for industrial catalysis.
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3.6.2  Microbial Fuel Cells

MFCs convert chemical energy stored in reduced carbon compounds directly into 
electrical energy via microbial catalysts (Liu et al. 2004). Although MFC design 
depends largely on the application, a conventional MFC is composed of two cham-
bers, an anode and a cathode, separated by a cation exchange membrane (Fig. 3.2a). 
Electroactive biofilms oxidize the substrate at the anode and produce electrons and 
protons. The electrons are transported via an external circuit to the cathode, while 
the protons are transferred through the cationic membrane. At the cathode, a terminal 
electron acceptor (i.e., oxygen) is reduced.

The power output of a MFC is affected by environmental conditions such as pres-
ence of oxygen and by the availability of an easily degradable carbon source. MFCs 
are fuelled by a wide variety of substrates including glucose, acetate, sucrose, ethanol, 
butyrate, glutamate, and wastewater. MFC designs are rapidly changing; for example, 
the cationic membrane has been removed to reduce the costs (Liu and Logan 2004), 
and both anodic and cathodic material are being investigated to increase electroactive 

Fig. 3.2 Schematic diagram of two chamber microbial fuel cells. (a) basic design of MFC; 
(b) marine MFC; (c) wastewater MFC; (d) biocathode MFC; and (e) biohydrogen-producing MFC
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biofilm concentration and its extracellular electron transfer rate. The adoption of a 
single-chamber MFC, wherein the reduction occurs directly in the gas phase increases 
coulombic efficiency of MFCs and reduces its technical complexity.

3.6.2.1  Marine MFCs

Marine MFCs typically consist of a graphite anode embedded in anaerobic marine 
sediments and are connected through an electrical circuit to a cathode setup in the 
overlying aerobic seawater as shown in Fig. 3.2b (Reimers et al. 2001). In marine 
MFCs, a constant supply of fuel and oxidants, by environmental processes such as 
settlement of dead phytoplankton and/or vegetative detritus, results in constant regen-
eration of microbial electrode catalysts. MFCs implemented in marine sediments show 
sustained current production over long periods (Reimers et al. 2006). Tender et al. 
(2008) demonstrated, for the first time, the use of marine MFC as a practical alternative 
to batteries for low power-consuming applications such as buoys and marine sensors.

3.6.2.2  Wastewater MFCs

MFCs can be operated successfully on a variety of substrates including complex 
materials such as domestic wastewater (Ghangrekar and Shinde 2008) (Fig. 3.2c), 
swine manure slurry (Min et al. 2005), landfill leachate (You et al. 2006), and meat-
packing wastewater (Heilmann and Logan 2006). Individual cell voltages of 0.7 V 
have been reported by researchers with power densities varying between 20 and 
2,000 mW/m2 of anode surface area, depending upon configuration of MFC, sub-
strate, anodophilic microorganisms, and operating conditions used. Integration of 
MFCs will enable significant economy in wastewater treatment (Logan et al. 2008).

3.6.2.3  Farm Field MFCs

Another interesting application of MFCs is in farm fields to generate power from 
cultivated plants. Electrical current was generated via in situ oxidation of rhizode-
posits from living rice plants. The electrical power output of a sediment MFC was 
found to be a factor of seven higher in the presence of actively growing plants. This 
process offers the potential of light-driven power generation from living plants in a 
nondestructive way. Sustainable power production up to 330 W/h may be attributed 
to the oxidation of plant-derived compounds (De Schamphelaire et al. 2008). This 
technology can provide small amounts of power in remote, off-grid locations.

3.6.2.4  Photosynthetic MFCs

In this relatively recent technology, the combination of microalgae and EABs has 
enabled a production of 110 mW/m2 (Strik et al. 2008). Microalgae are particularly 
interesting for energy conversion processes because they require relatively little 
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organic carbon and nutrients for their maintenance. Recently, Rosenbaum et al. 
(2010) have reviewed the five approaches that integrate photosynthesis with MFCs.

3.6.2.5  Applications of MFCs

Researchers are showing increasing interest in the application of MFCs into various 
fields including wastewater treatment, bioremediation, metal oxidation, and biosen-
sor and biohydrogen production. MFCs are used for the removal of oxidizable 
matter from industrial as well as domestic wastewaters. The published results 
(Table 3.7) demonstrate the utility of MFCs as a wastewater treatment system. 

Table 3.7 Application of electroactive biofilms in a variety of systems including wastewater 
treatment, biocathodes, bioremediation, and biohydrogen production

Application of 
electroactive biofilms Results References

Wastewater treatment 72% COD removal from wastewater Min and Logan 
(2004)

80% COD removal from domestic 
wastewater

Liu et al. (2004)

91% COD removal form swine wastewater Min et al. (2005)
93–95% COD removal from starch, 

peptone, and fish extract wastewater
Shimoyama et al. (2008)

53% Reduction in biochemical oxygen 
demand (BOD) of wastewater

Greenman et al. (2009)

Biocathode in current 
production

Fourfold increase in the current output Freguia et al. (2008)
SS cathode resulted in higher current than 

graphite
Dumas et al. (2008)

Biocathode in nitrogen 
removal

Biocathode can oxidize ammonia and 
helps in denitrification

Holmes et al. (2004)

Biocathode as the sole electron donor for 
nitrate reduction to nitrite

Gregory et al. (2004)

Reduction of nitrate at the biocathode Clauwaert et al. (2007)
Removal of 0.41-kg equivalent nitrogen/

m3 using biocathode per day
Virdis et al. (2008)

Metal oxidation Manganese oxidation using Leptothrix 
discophora

Rhoads et al. (2005)

Chromium removal with a power density 
of 1,600 W m72

Li et al. (2008)

Biosensor development Biosensor for in situ monitoring of nitrate/
nitrite concentrations

Larsen et al. (2000)

Linear correlation between current and 
nitrate/nitrite concentration

Nielsen et al. (2004)

Linear response in current with increase in 
glucose concentration from 0 to 25 g/l

Kumlanghan et al. 
(2007)

Current produced by EAB can be correlated 
to the available substrate concentration 
and the EAB respiration rate

Tront et al. (2008)

(continued)
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While scale-up and long-term feasibilities of MFCs remain a complex issue (Dewan 
et al. 2008), it is reasonable to expect that MFCs will gradually replace complex 
and energetically unsustainable technologies currently in use for wastewater treat-
ment. Recently, it has been reported that the biocathode in MFCs can harvest con-
siderable energy from pollutants in wastewater. Biocathodes can act as efficient 
catalysts for oxygen reduction and are a feasible alternative to abiotic systems in 
wastewater-fed MFCs. Holmes et al. (2004) found that a biocathode system of 
benthic MFCs participated in biological reactions such as ammonia oxidation and 
denitrification. Virdis et al. (2008) described an MFC configuration for simultane-
ous nitrification and dentrification in separate anodic and cathodic chambers. The 
anode effluent was aerated externally for nitrification to occur, and the nitrified 
effluents were routed to the cathode for denitrification (Fig. 3.2d).

Rhoads et al. (2005) employed a manganese-oxidizing bacterium (MOB), 
Leptothrix discophora, which oxidized Mn

2
 to MnO

2
 by releasing two electrons to 

oxygen. Li et al. (2008), using graphite paper as a cathode, demonstrated successful 
chromium removal with a maximum power density of 1,600 W m72 at a Columbic 
efficiency of 12%. The integration of MFC in the water electrolysis process enabled 
the system to reduce energetic costs for hydrogen generation. This technology is 
termed microbial electrolysis cells (MECs) (Logan et al. 2008). In a typical MEC, a 
small voltage is applied between anode and cathode, and the current generation is 
forced, thereby resulting in hydrogen production at the cathodic side due to proton 
reduction (Fig. 3.2e). Due to a thermodynamic barrier, many organic compounds are 
unsuitable for use as a substrate in fermentative hydrogen production (Logan et al. 
2008). However, they can be used in MECs because in this case, a small external 
voltage is applied to overcome the thermodynamic barrier (Holladay et al. 2009).
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Abstract Microbes have been used for millenia in food and alcoholic  fermentations; 
in recent years, microbes have undergone scientific scrutiny of their ability for pre-
ventive and therapeutic effects in humans. This work has led to the establishment 
of a new term, “probiotics.” Lactic acid bacteria (LAB) are normal microflora of 
the intestine of most animals. They play an important role in humans and other 
animals and act as an immunomodulator. LAB are helpful in disease treatment 
and prevention, as well as for improved digestion and absorption of nutrients. 
Probiotic microorganisms include LAB i.e., Lactobacillus acidophilus, L. bulgari-
cus, L. casei, L. plantarum, L. rhamnosus, etc. Use of these live bacteria to elicit an 
immune response or to carry a vaccine component is a new development in vaccine 
formulation. The advantages of live bacterial vaccines are their ability to mimic the 
natural infection, their intrinsic adjuvant properties, and that they can be adminis-
tered orally. Components of pathogenic and nonpathogenic food-related microbes 
are currently being evaluated as candidates for oral vaccines.

4.1  Introduction

Live vaccines have played an important role since the beginning of vaccinology. 
Within the last two decades, the concept of live vaccines has gained substantial inter-
est due to our increased immunological understanding and the availability of various 
techniques making the construction of safer live vaccines (Lindberg 1995).

The term “probiotics” was originally used by Lilley and Stillwell (1965) to indi-
cate a substance that stimulates the growth of other microbes. The meaning of this 
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term has recently been modified and is restricted to “a viable microbial agent 
which, when used for other organisms such as animal or man, beneficially affects 
the host by improving the balance of the normal microflora” (Fuller 1991). The first 
report regarding beneficial effects of probiotics was carried out by Metchnikoff in 
the early 1990s (Salimen et al. 1996) in which the useful effects of fermented milk 
in humans were documented. That consuming live microbes (such as lactic acid 
bacteria, LAB) in sour milk may help to improve the balance of the intestinal 
microflora was also reported.

Probiotic bacteria must survive in the oral cavity and be resistant to pH, bile 
acid, proteolytic enzymes, antimicrobial peptides, and intestinal peristalsis. 
Pathogenic and nonpathogenic food-related bacteria are currently being evaluated 
as live vaccines (Metchnikoff 1908).

Lindberg (1995) has conducted an excellent review of the history of live bacte-
rial vaccines (Kajikawa et al. 2007). The first live bacterial vaccine was used in 
Spain in 1884 and involved a subcutaneous injection of weakened Vibrio cholerae 
(Detme and Glenting 2006). That study was followed by field trials in India with a 
more effective V. cholerae as a vaccine through a parenteral route (Table 4.1).

4.2  Probiotics as Antibiotics or Lactobiotics

Probiotic microorganisms are innocuous and are indicated as GRAS (generally 
regarded as safe) status in animal and human systems (Underdahl et al. 1982). 
Safety evaluation of a probiotic strain(s) includes (1) the ability of cells to produce 
secondary metabolites (e.g., sakacin, salivaricin, enterocin, formic acid, diacetyl, 
hydrogen  peroxide, and acetoin) and enzymes (a-galactosidase, a-glucosidase, 
nitroreductase, b-glucosidase, etc.); (2) adhesion properties (e.g., a-enolase) that 
help them to adhere to the epithelium; (3) factors that influence the strain survival; 
and (4) interactions with the host body, particularly in terms of prevention of 
pathogenic microbes (Chukeatirote 2003). LAB are Gram-positive bacteria 
 consisting of various genera including Lactobacillus, Lactococcus, Leuconostoc, 
Pediococcus, Aerococcus, Bifidobacterium, and Weissela. Lactobacillus is the 
most widely used for probiotics (Havenaar et al. 1992; Greene and Klaenhammer 

Table 4.1 Microbial probiotics and their safety status

Organisms Infection potential

Lactobacillus Mainly nonpathogens; a few opportunists reported in AIDS patients
Lactococcus Mainly nonpathogens
Streptococcus Opportunists; only S. thermophilus is used in dairy products
Enterococcus Opportunists; some strains exhibit antibiotic resistance
Bacillus Only B. subtilis, GRAS status, is reported in probiotics use
Bifidobacterium Mainly nonpathogens; some strains are isolated from human infection
Propionibacterium Dairy propionibacterial group is a potential candidate for probiotics
Saccharomyces Mainly nonpathogens; some strains are isolated from human infection

Source: Adapted from Donohue and Salminen (1996)
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1994; Reid 1999; Reid et al. 1993; Bernet et al. 1994; Sarem-Damerdjii et al. 
1995; Kirjavainen et al. 1998; Ouwehand et al. 1999; Casas and Dobrogosz 1997; 
Holzapfel et al. 1998; Netherwood et al. 1999; Jack et al. 1994; Reid and Burton 
2002; Gonzalez et al. 1995; Khansari et al. 1990) (Table 4.2).

4.3  LAB as an Immune Enhancer

Consumption of Lactobacillus as a probiotic has been suggested for its disease resis-
tance benefits including immune system enhancement (IL-6 and IL-10 production) 
and resistance to malignant growth (a-TNF production) and other infectious diseases. 
Malfunctioning of the immune system in aging, stress, and from  infectious diseases 
(e.g., AIDS) and undernourishment are well established (Goodwin 1995; Pawelec 
et al. 1995; Woodward 1998; Lin and Chen 2000).

The above deficiencies can be overcome by immunomodulation with the aid of 
suitable natural and chemical agents and/or products. Currently available immuno-
stimulatory products are often associated with deleterious side effects, however 
(Lin et al. 1989; Tahri et al. 1996). The development of natural products with 
immunomodulatory properties while being devoid of side effects, would therefore 
be important to improving the health of large populations with impaired immune 
function (Dietrich et al. 2003).

Vaccination is an efficient and cost-effective means for preventing infectious 
diseases, but available vaccines are delivered by injection, which has made mass 
immunization expensive and hazardous. Oral vaccines have several merits when 
compared with parenteral vaccines, but their used has been limited against 
mucosally transmitted pathogens (Benyacoub et al. 1999). Their potential for con-
trolling nonmucosally transmitted diseases has not been accepted.

The development of oral live vaccines against pathogens is a major challenge in 
combating infectious diseases. The simple administration by mouth into the host is 
an attractive alternative to long-term drug treatments in a large  population with 

Table 4.2 Probiotic bacteria and their effects

Strain Beneficial effect

Lactobacillus acidophilus LA1 Adherence to human intestinal cells
Balances intestinal microflora
Immune enhancement

Lactobacillus GG Prevention of antibiotic-associated diarrhea
Treatment of rotavirus diarrhea
Treatment of diarrhea caused by Clostridium difficile
Stabilization of Crohn’s disease

Lactobacillus casei Shirota Prevention of intestinal microbiota disturbance
Positive effects on bladder cancer

Lactobacillus gasser Carcinogenic-associated enzyme reduction
Bifidobacterium bifidum Prevention of viral diarrhea
Propionibacterium freudenreichii Growth stimulation of other “friendly” bacteria

Source: For detailed references, see Salimen et al. (1996)
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limited health care resources. The use of bacteria to induce an immune response to 
itself or its component as vaccine is an attractive vaccine strategy (Lindberg 1995). 
Advantages of live vaccines include (1) they mimic the pathogen or antigen; (2) 
they possess adjuvant properties; and (3) they can be administered by the oral route 
(Kotloff et al. 1996). Derivatives of pathogenic and nonpathogenic food-related 
bacteria are also used as a source of oral vaccines (Donohue and Salminen 1996; 
Lindberg 1998).

Live attenuated bacteria as an oral vaccine is not a new concept (Kochi et al. 
2003). Previously attenuated Salmonella enterica serovar of Typhi administered as 
an acid-resistant capsule has already been marketed for use as a vaccine against 
typhoid. Attenuated V. cholerae forms the basis of a marketed vaccine against 
 cholera. However, there is a possibility of using attenuated bacteria as a vehicle 
for delivering heterogonous antigens, i.e., antigens against pathogens other than 
themselves.

Derivatives of both pathogenic and nonpathogenic bacteria can be used as live 
vaccines; these include Salmonella typhi, Shigella flexneri, Listeria monocyto-
genes, V. cholerae, and Escherichia coli as well as some nonpathogenic bacteria 
such as Lactobacillus and Bifidobacterium (McGhee et al. 1992; Nardelli-Haefliger 
et al. 1996; Klijn et al. 1995).

These probiotic bacteria targets inductive sites of the host immune system such 
as mucosal surfaces and antigen presenting cells (APC) on macrophages. Use of 
LAB for the delivery of the vaccine is less exploited than is for attenuated patho-
gens (Fuller 1989). These are safe and the availability of genetic tools for recom-
binant gene expression in LAB is attractive for use as a vaccine candidate. LAB 
are not pathogenic and the vaccine delivery to APC may be less effective than for 
invasive bacteria. Regardless, however, specific immune responses have been 
obtained with several LAB. Some health benefits claimed for probiotics include 
improvement in the maintenance of indigenous microflora, prevention of infec-
tious diseases and allergies, decrease in serum cholesterol levels, anticancer activity, 
stabilization of the gut mucosal barrier, immune adjuvant properties, alleviation of 
intestinal bowel disease symptoms, and improvement in the digestion of lactose in 
intolerant hosts (Strobel 1995).

4.4  Probiotics and GALT Immunity

The functioning of the gut mucosal immune system requires a complex network of 
signals with multiple interactions between commensal and foreign antigens and 
with the host cell. These host cells include epithelial cells, macrophages, dendritic 
cells, and other cells that belong to the nonspecific barriers mucous-producing cells 
such as goblet cells, and Paneth cells, which secrete antimicrobial peptides and 
produce cryptidins or defensins (Phillips-Quagliata and Lamm 1988).

Nonpathogenic probiotic bacteria must interact with the epithelial cells and 
GALT (gut-associated lymphoid tissue) (Fig. 4.1). The mucosal epithelial cells are 
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important because they coordinate defense mechanisms by releasing chemokines 
and cytokines (IL-2, IL-10, and IL-6) that check the immune cells in both the 
 specific and the nonspecific immune responses. This response must not be triggered 
by harmless intestinal commensal bacteria, and the inflammatory response must be 
controlled. Probiotic bacteria produce luminal secretory IgA (Link-Amster et al. 
1994).

The increase in the number of IgA-producing cells was the most remarkable 
property induced by probiotic microorganisms and by fermented milk yogurt 
(Reference). The physiological role of IgA in the mucosal surface is unquestion-
able. Some probiotic bacteria can act as adjuvants of the mucosal and systemic 
immune response (Perdigón and Alvarez 1992).

Probiotic microorganisms are capable of inducing a gut mucosal immune 
response, which requires bacteria to interact with the epithelial and immune cells 
in the gut to induce the network of signals involved in an immune response. In the 
gastrointestinal tract, LAB correspond with the various pathways to interact with 
antigens (Neutra and Krahenbuhl 1996). These bacteria (as whole cells or as anti-
genic fragments) interact with the M cells in the Peyer’s patches, with gut epithelial 

Fig. 4.1 The local immune response in the gut induced by the interaction between probiotic bac-
teria and the epithelial and immune cells associated with the lamina propria of the small intestine
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cells, and with the associated immune cells. Cells release cytokines that induce   
up- or downregulation of the immune response (Mattingly and Waksman 1978). 
Bacterial vaccine vectors induce the production of multiple cytokines, including 
tumor necrosis factor alpha (TNF-a), gamma interferon (IFN-g), and interleukin-12 
(IL-12), and proinflammatory mediators such as reactive nitric oxide (RNO), which 
enhance early innate immunity and create a local environment favorable for antigen 
presentation.

Mucosal epithelial cells form an efficient barrier, which prevents antigens of 
environmental pathogens gaining access to the host mucosal immunity and is 
responsible for more than two-thirds of the activity of the entire immune system. 
These findings are based on considerations of the numbers of immunecompetent 
cells, extent of the mucosal tissues, and quantities of immunoglobulins produced at 
these sites. Mucosal immunity is distinguished from systemic immunity by the 
abundance of secretory immunoglobulin i.e., s(IgA) and dedicated cellular flagel-
lated microorganisms including commensals. These entities trigger epithelial 
homeostatic chemokine responses that recruit immune cells of the innate immune 
system to the gut epithelium and lamina propria of the intestinal mucosa to link 
between the humoral and cell-mediated immune response.

Recognition to TLR (Toll-like receptor) by LAB can activate the signal of TLRs, 
mainly as TLR 2 and TLR 4. These peptides are the dominant receptor of lipopoly-
saccharides of bacterial species. TLR 2 mediates signals from other bacterial com-
ponents including lipoteichoic acid (LTA), peptidoglycan, and lipoproteins and/or 
lipopeptides (Singh et al. 2008). However, the exact location of these receptors in 
the intestinal epithelial cells remains controversial. TLR signals are essential, not 
only for response against pathogens, but also to maintain intestinal barrier func-
tions. For an effective application as an immune enhancer, there should be multiple 
consequences of the cross talk between the probiotic bacteria and intestinal mucosa. 
Probiotic bacteria may impart beneficial effects through colonization and/or release 
of some bioactive compounds (e.g., enzymes, peptides, and bacteriocins). These 
functions translate into reinforcement of the intestinal barrier as well as direct 
modulation of epithelial cell functions including cytokine and chemokine release 
(IL-6, IL10, IL-2, IL-8, and TGF-b). This elicits innate and adaptive immunity and 
production of cytokines by monocytes/macrophages. The result is an increase in the 
signals to the epithelial cells and other immune cells and provision of microbial 
antigens to native T cells in the Peyer’s patches and mesenteric lymph nodes 
(MLN). This activates an IgA antibody-mediated mucosal response to check the 
bacterium to prevent overgrowth and spread beyond MLN (Weissman et al. 
2000).

There is evidence for the uptake of nonpathogenic bacteria or their fragments by 
macrophages or dendritic cells in the lamina propria, which is possible through 
direct sampling of luminal antigen for dendritic cells through TLRs and CD-206 
mannose receptors (Akira et al. 2001). These bacteria can be cleared or transported 
to the mesenteric lymphatic node in which they interact with T and B cells to 
induce specific mucosal IgA or suppress T cells (Th3, Tr1, and CD25+) (Holder and 
Freeman 1981) (Fig. 4.2).
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4.5  The Demise of the Needle

Probiotic bacteria have long been considered useful because of the changes which 
they induce in the intestinal flora. Oral vaccines from probiotic strains of 
Lactobacillus are active against many diseases caused by bacteria, viruses, and 
protozoa.

4.5.1  Malaria

Merozoite surface protein 1 (MSP1) is a common surface protein layer which is 
found in most Plasmodium species. MSP1 has been studied as an important candi-
date for a vaccine against malaria (Blackman et al. 1991). High-level expression of 
MSP1 by Plasmodium in the asexual stage plays an important role in its entry in 
RBCs. MSP1 can be proteolytically cleaved into five fragments. It is a two step 
process. Matured merozoite contains carboxyl-terminal 19-ku fragment (MSP-119) 
on its surface (Miller et al. 1993).

These protective antigens can be delivered to the mucosal surfaces using live 
bacteria containing plasmids responsible for the expression of a specific antigen. 

Fig. 4.2 Schematic diagram showing cross talk between the probiotic bacteria and the intestinal 
mucosa
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These antigens are derived from attenuated pathogenic microorganisms such as 
S. typhi and Chlorella. As an alternative, harmless food-grade bacteria such as LAB 
are being evaluated for their efficacy as a live antigen candidate. LAB can survive 
in the gastrointestinal tract of humans and other animals with a retention time of 
2–3 days; it does not destroy or colonize the mucous membranes, and yet does not 
elicit strong host immune responses. The immunogenicity of soluble protein is low 
when administered orally, but by using genetically engineered bacteria immunoge-
nicity can be enhanced, so the low-level expression of MSP-119 in L. lactis is still 
able to elicit strong protection against malarial parasites (Mercenier et al. 2000).

4.5.2  AIDS

AIDS is a deadly disease alternatively, we can consider it to be a collection of dis-
eases. Safe, powerful, and cost-effective vaccines, which can induce both mucosal 
and systemic immunity, may be required to limit the spread of the HIV virus. In the 
past few years, multiple strategies to produce an immunogenic HIV vaccine have 
been discovered (Ke-Qin et al. 2003). This includes HIV subunit peptide vaccines, 
DNA as a vaccine, recombinant virus-vector vaccines (using viral vectors such as 
Vaccinia virus, Adenovirus, Rabies virus, Flavivirus, Friend murine leukemia virus, 
Venezuelan equine encephalitis virus, and adeno-associated virus), and bacteria as 
a vector (e.g., Bacille Calmette-Guerin). Each of these strategies has shown prom-
ise in animal models (Schnell et al. 2000); they can be used alone or in  combination. 
However, there is still a need for a safe and highly effective HIV vaccine. In a study 
conducted in mice, it was demonstrated that oral administration of recombinant 
L. lactis encoding the V2–V4 loop of the HIV env gene can induce HIV-specific 
mucosal and systemic immunity. Induced humoral and cell-mediated immune 
response is sufficient to impart immunity against an HIV Env – expressing vaccinia 
virus challenge in mice (Aldovini and Young 1991).

Oral administration of recombinant L. lactis-associated vaccine that contains the 
V2–V4 loop of the HIV virus can protect against AIDS and also significantly 
reduce viral load. These findings make recombinant L. lactis an appropriate candi-
date for HIV vaccine development.

4.5.3  Infantile Diarrhea

Rotavirus is the major cause for severe infantile diarrhea, responsible for over two 
million diarrheal episodes worldwide. The first rotavirus vaccine was the Rota Shield, 
first used in the USA. Its efficacy was rated as high as 80–100%; however, in 1999 
the US Centers for Disease Control and Prevention (CDC) found an association 
between Rotashield and a potentially fatal bowel obstruction called intussusceptions. 
As a result, Rotshield has been withdrawn from the market since 1999. In 2004, a new 
vaccine called “Rortarix” came into existence and is determined to be 70% efficient 
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(Reference). Rotarix was found to cause side effects such as incidence of low-grade 
fever, so it was not popularized. Another vaccine, RotaTeq, is a live attenuated vac-
cine in which passively produced antibodies provide protection against rotavirus 
(Anderson and Weber 2004). Over the last few years, the role of probiotics, especially 
Lactobacillus species preventing rotavirus diarrhea, has been recognized. A combina-
tion of species of Lactobacilli with anti-rotavirus antibodies produced in animals was 
studied in mouse pups along with rotavirus (Velazquez et al. 1996). L. rhamnosus 
GG, a well-known probiotic, was found to synergize with antiviral antibodies and 
helped in early recovery of diarrhea in mice and saved up to 90% of antibodies. 
L. casei (Strain GG) isolated from human samples, now popularly known as L. rham-
nosus, has been used in Finland for recovery from acute rotavirus diarrhea in children 
(Gomboova et al. 1986). This treatment is administered in the form of a powdered 
fermented milk product. In children with rotavirus diarrhea, recovery occurred within 
1.5 days in infants treated with Lactobacillus reuteri versus 2.5 days in the matched 
control infants (Korik et al. 1968). These organisms also reinforce local immune 
defenses through specific IgA response to rotavirus.

4.5.4  Trichomoniasis

This disease, commonly known as urinary tract infection or urinogenital tract infec-
tion, is asexually transmitted. An immunotherapeutic effect on trichomoniasis is 
accomplished by stimulation of the humoral/B-cell immune response in the serum 
and probably also in the cervical secretion of the host (Tatyana et al. 2000). Until 
1959, topical vaginal preparations were available against trichomoniasis which had 
provided relief but were ineffective as cures. Azomycin was used for the treatment 
of trichomoniasis, marketed as “Flagyl.” Azomycin was ineffective against T. vagi-
nalis. Solco Trichovac is the only commercially available vaccine. The mode of 
action of the bacterial vaccines prepared for trichomoniasis is not satisfactory, how-
ever; the vaccine composed of the LAB induce cross-reacting antibodies against 
abnormal Lactobacillus and T. vaginalis without adversely affecting the growth of 
normal Lactobacilli in the vagina. This concept of antigenic similarity of two such 
unrelated and serologically variable groups of organisms as Lactobacilli and 
Trichomonads is rather surprisingly it resides in the cervical secretion of the host 
(Classen et al. 1995). This mode of action of induction of antibodies against aber-
rant L. acidophilus, which cross-react with T. vaginalis but not with LAB, is a new 
concept for a vaccine candidate.

4.5.5  Ischemic Heart Diseases

Protection of the heart and prevention of ischemia is a difficult and multifaceted 
phenomenon with potential clinical applications. Previous reports suggest that heat 
shock proteins (HSPs) and proteins with antioxidative activity are helpful in 
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 preventing myocardial infarction. Hormone-mediated signaling mechanisms may 
also be involved in preventive treatment. Myocardial tolerance to a subsequent 
challenge against ischemia and reperfusion by sublethal doses of Gram-negative 
bacterial endotoxin (lipopolysaccharides; LPS) is well known (Morimoto and 
Santoro 1998); however, the toxic nature of the endotoxin has precluded its clinical 
application. Use of an endotoxin analog with reduced toxicity, the 48-monophos-
phoryl derivative of lipid A (MLA), has opened up new possibilities for studying 
protective mechanisms (Kukreja et al. 1996). Despite the reduced toxicity of MLA, 
such agents are administered in limited doses due to their toxic effects on the host. 
A Lactobacillus preparation is used as a nontoxic bacterial-derived agent for the 
formulation of new drugs that have no toxic effects (Goldin et al. 1992). Increased 
myocardial tolerance to ischemia–reperfusion damage, similar to that demonstrated 
with Gram-negative bacteria (endotoxin), might be obtained by using different 
bacterial strains capable of enhancing nonspecific resistance (Elmer 2001). 
Lactobacilli are generally recognized as safe organisms based on the fact that they 
are devoid of LPS and lipid A in their cell walls, and also because they stimulate 
the host’s nonspecific immunity (adjuvanticity).

4.5.6  Gastritis, Peptic Ulcer, and Gastric Adenocarcinoma

Helicobacter pylori is recognized as a human-specific gastric pathogen that colo-
nizes the stomach of at least half the world’s population. Most infected individuals 
seldom show any symptoms (Matsuzak and Chin 2000). Infection is associated 
with the formation of duodenal and gastric ulcers, inflammation of the colon and 
tumors. Prevention of adherence of the pathogen and its colonization at mucosal 
surfaces is best achieved when immunity is enhanced after local stimulation. 
Different delivery systems satisfying this requirement are currently under develop-
ment, with various avenues being explored for oral administration (Isolauri et al. 
1991). One such delivery system is based on live bacterial vectors including non-
pathogenic, noninvasive LAB strains (Shornikova et al. 1997). These do not induce 
pronounced proinflammatory responses, which renders them best suited for immu-
nocompromised subjects, infants, and elderly individuals.

4.6  Conclusion/Future Recommendations

The rationale behind the development of dietary LAB as a live mucosal delivery 
system is that they have been used from time immemorial in the preparation of 
fermented foods and feeds and have thus been consumed worldwide by humans and 
animals. Moreover, specific LAB strains have been shown to exert beneficial health 
effects, i.e., probiotic effects and to be particularly adapted to immunization by the 
oral route, since they are quite acid resistant.



974 Future Application of Probiotics: A Boon from Dairy Biology 

Administering vaccines orally, for example, through drinking water, provides 
excellent disease protection while eliminating the problems associated with paren-
teral injections. Oral vaccination offers numerous benefits including convenience 
and efficiency in treating very large numbers of patients. Oral vaccines are safe, 
noninvasive, nonpathogenic, and have good adherent properties. Lactobacillus is a 
noble oral vaccine candidate. LAB is capable of delivering antigens to the mucosal 
and systemic immune systems thus eliciting specific antibody responses in serum 
and secretions. Notably, this carrier seems to induce a mixed Th1/Th2-type immune 
response.
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Abstract The critical need for development of reliable and eco-friendly processes 
for synthesis of metallic nanoparticles has recently been realized in the field of 
nanotechnology. Increasing awareness toward green chemistry and biological 
 processes has elicited a desire to explore environmentally friendly approaches for 
the synthesis of nanoparticles as a safer alternative to physical and chemical methods, 
which involves harsh conditions and use of hazardous chemicals. Therefore, the 
use of natural resources, including bacteria and fungi, has been exploited for 
cost- effective and environmentally nonhazardous nanoparticle synthesis. The rich 
microbial diversity of bacteria and fungi contains the innate potential for the 
synthesis of nanoparticles and may be regarded as potential biofactories. In fact, 
microbial  synthesis of nanoparticles has emerged as an important branch of nano-
biotechnology. The synthesis of inorganic materials by biological systems occurs 
through remarkable processes at ambient temperature and pressures and neutral pH. 
Among the various biological systems, bacteria are relatively easy to manipulate 
genetically, whereas fungi have an advantage of easy handling during downstream 
processing and large-scale production. In spite of the successes achieved in biological 
synthesis of nanoparticles, there is still a need to improve the rate of synthesis 
and monodispersity of nanoparticles. Also, microbial cultivation and downstream 
processing techniques must be improved, and more efficient methods should be 
developed. Furthermore, in order to exploit the system to its maximum potential, 
it is essential to understand the biochemical and molecular mechanisms involved 
in nanoparticle synthesis. Delineation of specific genomic pathways and charac-
terization of gene products involved in biosynthesis of nanoparticles are required. 
The underlying molecular mechanisms that mediate microbial synthesis of nano-
particles will help in understanding the molecular switches and factors necessary 
to control the size and shape, as well as crystallinity of nanoparticles. Indeed, bio-
logical systems are still relatively unexplored, and therefore, the opportunities are 
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open for budding nanobiotechnologists to utilize nonpathogenic biological systems 
for metallic nanoparticle synthesis with commercial perspectives.

5.1  Introduction

Nanotechnology is a fascinating area that is emerging as a cutting-edge technology 
encompassing interdisciplinary subjects such as physics, material science, chemis-
try, biology, and medicine. The prefix “nano” in the term nanotechnology is derived 
from a Greek word nanos, which means “dwarf”. It refers to any engineered matter 
that is one billionth (10−9 m) in size and expressed as nanometer (nm) or roughly 
the length of three atoms side by side. Comparative analysis of nanoparticle size 
with that of other molecules indicates that the DNA molecule is 2.5 nm wide, a 
protein is approximately 50 nm in length, and a flu virus is about 100 nm vis-à-vis 
a human hair, which is approximately 10,000 nm thick. The concept of nanotech-
nology was first presented by Richard Feynman in 1959 through his famous lecture, 
at the American Institute of Technology, entitled “There’s plenty of room at the 
bottom”. Nanotechnology is a multidisciplinary field that has attracted the attention 
of material scientists, mechanical and electronics engineers, medical researchers, 
biologists, physicists, and chemists. With advancements in nanoparticle synthesis, 
many new applications of nanomaterials are emerging rapidly. In fact, the synthesis 
of nanoparticles is regarded as a cornerstone of nanotechnology. Developing new 
methods for nanoparticle synthesis is an active research area. The surge of interest 
in this field is due to the distinctness of nanoparticles in their physical, chemical, 
electronic, electrical, mechanical, magnetic, thermal, dielectric, optical, and bio-
logical properties as compared with the characteristics of bulk materials (Schmid 
1992; Daniel and Astruc 2004).

Diminution of particle size exerts pronounced effects on the physical properties 
of nanoparticles. The change in their physical properties is due to the large surface 
area, large surface energy, spatial confinement, and reduced imperfections. 
Nanoparticles are significantly different from bulk materials owing to their surface 
plasmon resonance, enhanced Rayleigh scattering, surface enhanced Raman scat-
tering, quantum size effect, and supermagnetism. Therefore, they serve as basic 
units for next-generation electronics, optoelectronics, and a range of chemical and 
biochemical sensors, based on their size, shape, and crystallinity (Ramanavicius 
et al. 2005). Typically, nanoparticles measure 0.1–100 nm in each spatial dimension 
and are commonly synthesized using top-down and bottom-up strategies (Fendler 
1998). In the top-down approach, the bulk materials are gradually broken down to 
nano-sized materials by machining and etching techniques. In contrast, the atoms 
or molecules are assembled into molecular structures in the nanometer range in the 
bottom-up approach, which is commonly applied for chemical and biological syn-
thesis of nanoparticles.

Generally, the methods used for nanoparticle synthesis follow chemical routes 
that are not environmentally friendly and often generate hazardous by-products, 
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which could potentially pollute the environment. Chemical synthesis involves 
 conditions such as high temperature, high pressure, and environmental inertness; 
such synthesis reactions are also cost-intensive (Rao et al. 2003). Furthermore, the 
use of toxic chemicals and organic solvents during nanoparticle synthesis and their 
occurrence on the surface of nanoparticles limit their applications. Such drawbacks 
necessitate the development of clean, biocompatible, nonhazardous, and eco-
friendly methods for nanoparticle synthesis. Consequently, biological systems have 
been focused on and exploited as a preferred, green alternative for synthesis of 
nanoparticles. In nature, living organisms from bacteria to beetles rely on protein-
based nanomachines, which perform excellent jobs from whipping flagella to flex-
ing muscles. Indeed, the molecular machinery evolved by nature surpasses 
everything that mankind knows and designs with conventional manufacturing tech-
nology (Lowe 2000). Undoubtedly, biological systems have a unique ability to 
control the structure, phase, orientation, and nanostructural topography of inorganic 
crystals (Cui and Gao 2003).

It is well known that microbes such as bacteria (Beveridge and Murray 1980; 
Brierley 1990), yeast (Huang et al. 1990), fungi (Frilis and Myers-Keith 1986), and 
algae (Sakaguchi et al. 1979; Darnall et al. 1986) are capable of adsorbing and 
accumulating metals. These microorganisms could be used for recovery of metals 
and reduction of environmental pollution (Klaus et al. 1999; Sharma et al. 2000; 
Mukherjee et al. 2001a; Nair and Pradeep 2002; Oremland et al. 2004). The poten-
tial of microbes to reduce metals has provided another new dimension of “Quantum 
Dots” or bimetallic nanoparticles with immense use in semiconductor devices 
(Dameron et al. 1989). A well-known example of reduction of metals includes the 
magnetotactic bacteria that synthesize magnetic nanoparticles (Schuler and Frankel 
1999) with widespread applications (Safarik and Safarikova 2002). Also, lactic acid 
bacteria in whey of buttermilk exhibit the capability of producing gold–silver com-
posite materials when challenged with a mixture of the two metal ions. Fungi, due 
to their tolerance to metals and metal bioaccumulation ability, are well-suited for 
metal nanoparticle generation (Sastry et al. 2003). Based on their enormous bio-
technological applications, microorganisms such as bacteria, fungi, and yeast are 
now regarded as possible eco-friendly “nano-factories” (Ahmad et al. 2002).

Microbial resistance to toxic heavy metals is due to the chemical detoxification 
and energy-dependent ion efflux from the cell by membrane proteins that function 
as either ATPase or chemiosmotic cation or proton anti-transporters. The detoxifi-
cation of metal ions occurs by reduction and/or precipitation of soluble toxic inor-
ganic ions to insoluble nontoxic metal nanoclusters. Such processes could be 
accomplished by either extracellular biomineralization, biosorption, complexation, 
precipitation or intracellular bioaccumulation. Microbes produce the inorganic 
materials either intra- or extracellularly in nanoscale dimensions. In the case of 
intracellular production, the accumulated particles are of relatively smaller dimen-
sion with low polydispersity. Since polydispersity is a major concern for practical 
commercial nanoparticle synthesis, it is important to optimize the conditions for 
monodispersity in biological processes (Bao et al. 2003). For controlling the size 
and shape of biological nanoparticles, genetically engineered microbes capable of 
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producing specific reducing agents can be developed. Nevertheless, the  combinatorial 
approach such as photobiological methods, as demonstrated in the case of Fusarium 
oxysporum-mediated silver nanoparticle production (Mohammadian et al. 2007), 
could be helpful in increasing the rate of production. Moreover, there are certain 
advantages to fungal synthesis of nanoparticles such as (1) economic viability, 
(2) ease in scale-up as in the thin solid substrate fermentation method, (3) ease in 
handling biomass, and (4) large-scale secretion of extracellular enzymes. Although 
biological methods are regarded as safe, cost-effective, sustainable, and environ-
mentally friendly, they still have some drawbacks in terms of culturing of microbes, 
which is time-consuming and difficult in providing optimal control over nanopar-
ticle size distribution, shape, and crystallinity. However, proper strain selection and 
optimization of conditions such as pH, incubation temperature and time, concentra-
tion of metal ions, and amount of biological material can help in successful imple-
mentation of biological and biomimetic approaches for large-scale nanoparticle 
production for commercial applications.

5.2  Nanoparticle Synthesis by Bacteria

Bacteria are among the most extensively exploited natural resources for synthesis 
of metallic nanoparticles. The key reason for bacterial preference for nanoparticle 
synthesis is their relative ease of manipulation. While exploring the secrets of 
microbial synthesis of nanoparticles, the formation of magnetite particles was 
documented in magnetotactic bacteria (Lovley et al. 1987; Dickson 1999), siliceous 
materials by diatoms (Pum and Sleytr 1999), and gypsum and calcium layers by 
S-layer bacteria (Milligan and Morel 2002). The interactions between metals and 
microbes have been exploited for various biological applications in the fields of 
bioremediation, biomineralization, bioleaching, and biocorrosion (Klaus-Joerger 
et al. 2001). Lately, the microbial synthesis of nanoparticles has emerged as a prom-
ising field of research as has nanobiotechnology. The status of research on biosyn-
thesis of some generally studied and commonly used metal nanoparticles by 
different bacteria, actinomycetes, and cyanobacteria is discussed below.

5.2.1  Silver Nanoparticles

A plethora of methods, namely, photocatalytic reduction (Chang et al. 2006), 
chemical reduction (Yu 2007), radiation–chemical reduction, metallic wire explo-
sion, sonochemistry, polyol process (Nersisyan et al. 2003), photoreduction 
(Courrol et al. 2007), reverse micelle-based methods (Xie et al. 2006), matrix 
chemistry (Ayyad et al. 2010), and biological synthesis (Zeiri et al. 2002; Shahverdi 
et al. 2007; Durán et al. 2007; Sathishkumar et al. 2009; Kalishwaralal et al. 2010) 
have been employed for production of silver nanoparticles. Klaus et al. (1999) 
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reported generation of silver crystals using silver-resistant bacterium Pseudomonas 
stutzeri AG259 isolated from silver mines. This bacterium has been found to gener-
ate pyramidal and hexagonal silver nanoparticles measuring up to 200 nm in size, 
embedded in the organic matrix of the bacterial cell. Similarly, Morganella sp. 
RP-42, an insect midgut isolate, upon exposure to silver nitrate (AgNO

3
), produced 

extracellular crystalline nanoparticles measuring 20 ± 5 nm. Three gene homo-
logues (silE, silP, and silS) have been identified in silver-resistant Morganella sp. 
The homologue of silE from Morganella sp. showed 99% nucleotide sequence 
similarity with the previously reported gene, silE, encoding a periplasmic silver-
binding protein. Also, the cells of Corynebacterium sp. SH09 have been shown to 
produce silver nanoparticles at 60°C within 72 h on the cell wall in the size range 
of 10–15 nm with diamine silver complex [Ag(NH

3
)2]+ (Zhang et al. 2005). The 

silver-binding proteins provide amino acid moieties that serve as nucleation sites 
for the formation of silver nanoparticles. Silver precipitating peptides (AG3 and 
AG4) have also been found with the capability of precipitating silver from aqueous 
solution of silver ions and form face-centered cubic (fcc) structured silver crystals 
(Naik et al. 2002). Under normal conditions, the small periplasmic silver-binding 
proteins bind silver at the cell surface and by efflux pumps propels the incoming 
metals and protects the cytoplasm from metal toxicity (Li et al. 1997; Gupta and 
Silver 1998). An airborne Bacillus sp. reduced Ag+ ions to Ag0 and accumulated 
metallic silver nanoparticles of 5–15 nm size in the periplasmic space of the cell 
(Pugazhenthiran et al. 2009). Silver nanoparticles of diameter 6.4 nm have also 
been produced by dried cells of Aeromonas sp. SH10, which reduced [Ag(NH

3
)2]+ 

to Ag0 within 4 h. These particles were monodispersed and uniform in size and 
remained stable for more than 6 months without aggregation and precipitation 
(Mouxing et al. 2006). Culture supernatants of Enterobacteriaceae (Klebsiella 
pneumoniae, Escherichia coli, and Enterobacter cloacae) also rapidly synthesize 
silver nanoparticles in sizes ranging from 28.2 to 122 nm with an average size of 
52.5 nm by reducing Ag+ to Ag0. Addition of piperitone partially inhibited silver 
ion reduction, which suggested the involvement of nitroreductase enzymes in the 
reduction process (Shahverdi et al. 2007). Similarly, the culture supernatant of 
nonpathogenic bacterium B. licheniformis has been used for the extracellular syn-
thesis of silver nanoparticles of ~50 nm size (Kalishwaralal et al. 2008). Barud 
et al. (2008) demonstrated the formation of homogeneous silver containing bacte-
rial cellulose membranes obtained from hydrated membranes of Acetobacter xyli-
num cultures soaked on silver ion with triethanolamine (Ag+-TAE) solution. 
Recently, Musarrat et al. (2010) have reported the biosynthesis of silver nanopar-
ticles in the size range of 5–27 nm, produced by an industrially important fungal 
strain KSU-09, isolated from the roots of date palm (Phoenix dactylifera). It has 
been demonstrated that mycelia-free water extracts obtained from mycelia sus-
pended in water for 72 h facilitated the production of stable, predominantly mono-
dispersed, and spherical nanoparticles upon addition of 1 mM silver nitrate, as 
determined by UV–visible spectroscopy, XRD, AFM, and TEM (Figs. 5.1–5.4). 
The infrared spectrum revealed the presence of fungal proteins in the medium, 
plausibly responsible for nanoparticle stability (Fig. 5.5). Thus, bacteria from the 



106 J. Musarrat et al.

environment could be exploited as a natural bioresource for simple, nonhazardous, 
and efficient synthesis of AgNPs for development of new generation nano-antimi-
crobials against multidrug-resistant microorganisms with a multitude of applica-
tions. This is discussed in a separate section of this chapter.

5.2.2  Gold Nanoparticles

Bacteria have been extensively used for the synthesis of gold nanoparticles. 
Ahmad et al. (2003a) demonstrated bacterial synthesis of monodispersed gold 
nanoparticles with extremophilic Thermomonospora sp. biomass via reduction 
of AuCl

4
 ions through enzymatic processes. Konishi et al. (2004) reported gold 

Wavelength(nm)
200 300 400 500

A
bs

or
ba

nc
e

0.0

0.5

1.0

1.5

Time (h)
0 2 24 48 72

A
bs

or
ba

nc
e 

at
 4

20
 n

m

0.0

0.2

0.4

0.6

0.8

1.0

0h 72h

a

c

b

d

a

b

Fig. 5.1 Conical flasks containing fungal biomass in aqueous solution of 1 × 10−4 M AgNO
3
 at the 

beginning and after 72 h of reaction. Panel (b) shows the UV–Visible absorption spectra of extra-
cellularly synthesized silver nanoparticles at 420 nm exhibiting time-dependent increase in typical 
SPR bands upon (a) 2 h, (b) 24 h, (c) 48 h, (d) 72 h of incubation. The inset shows the change in 
SPR as a function of time (Adapted from Musarrat et al. 2010.)
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 nanoparticle  synthesis using the mesophilic bacterium Shewanella, with H
2
 as an 

electron donor. Shiying et al. (2007) showed that the bacterium Rhodopseudomonas 
capsulata produced spherical gold nanoparticles in the range of 10–20 nm, upon 
incubation of bacterial biomass with aqueous chlorauric acid (HAuCl

4
) solution at 

a pH range of 4.0–7.0. Solution pH is an important factor in controlling the mor-
phology of biogenic gold particles and location of gold deposition in cells. 
Alkalotolerant Rhodococcus sp. produced more intracellular monodispersed gold 
nanoparticles on the cytoplasmic membrane than on the cell wall due to reduction 
of the metal ions by enzymes present in the cell wall and on the cytoplasmic mem-
brane, but not in the cytosol (Ahmad et al. 2003b). Bacterial cell supernatants of 
Pseudomonas aeruginosa have been used for reduction of gold ions and for extra-
cellular biosynthesis of gold nanoparticles (Husseiny et al. 2007). The exact 
mechanism leading to reduction of metal ions in organisms has not yet been elu-
cidated. Nevertheless, gel electrophoresis observations revealed the presence of 
four different proteins ranging from 10 to 80 KDa, which could be responsible for 
reduction of the chloroaurate ions and capping of the gold nanoparticles. Bacillus 
subtilis 168 has been reported to reduce water-soluble Au3+ ions to Au0 and pro-
duce nanoparticles of octahedral morphology and dimensions of 5–25 nm inside 
cell walls (Beveridge and Murray 1980). Heterotrophic sulfate-reducing bacterial 
enrichment from a gold mine has been exploited to destabilize gold (I)-thiosulfate 
complex Au(S

2
O

3
)2 to elemental gold of 10 nm size in the bacterial envelope, 

releasing H
2
S as an end product of metabolism (Lengke and Southam 2006). E. coli 

DH5a-mediated bioreduction of chloroauric acid to Au0 resulted in accumulation 
of nanoparticles, mostly spherical and some triangles and quasi-hexagons, on the 
cell surface (Du et al. 2007). These cell-bound nanoparticles offer promising 

Fig. 5.2 XRD pattern 
depicting the crystalline 
nature of silver nanoparticles. 
Diffraction at 38.5°, 44°, 
64.5°, and 72° 2q indexed to 
the (111), (200), (220), and 
(311) planes of the face-
centered cubic (fcc) silver, 
respectively. Particle size 
based on Scherrer’s algo-
rithm was 22 nm (Adapted 
from Musarrat et al. 2010.)
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applications in  electrochemistry of hemoglobin and other proteins (Du et al. 
2007). Bioreduction of trivalent aurum has also been reported in the photosyn-
thetic bacterium Rhodobacter capsulatus, which has a higher biosorption capacity 
of HAuCl

4
 per gram dry weight in the logarithmic phase of growth. The carote-

noids and NADPH-dependent enzymes embedded in the plasma membrane and/or 
secreted extracellularly have been found to be involved in the biosorption and 
bioreduction of Au3+ to Au0 on the plasma membrane and also outside the cell 
(Feng et al. 2007).

Fig. 5.3 The electron and atomic force microscopic analyses of AgNPs. Panel (a) shows the 
representative transmission electron micrograph recorded from a drop-coated film of the AgNPs 
produced by fungus on Morgagni™ 268 (d) instrument at a voltage of 80 kV. Panel (b) shows the 
3D topography of nanoparticles in both the perspective and top views. Scan size is 5 × 5 mm. The 
intensity of color in side bar reflects the height of the particles (our unpublished data)
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5.2.3  Magnetic Nanoparticles

The synthesis of magnetic nanoparticles has been widely reported in magnetotactic 
bacteria, which are Gram-negative bacteria of diverse morphology and occur widely 
in marine and freshwater sediments. They are known to produce intracellular, 
membrane-bound magnetite (Blakemore et al. 1979), greigite, and pyrrhotite 
(Bazylinski et al. 1993). Mann et al. (1984) reported that a microaerophilic bacte-
rium Aquaspirillum magnetotacticum, isolated from sediments, produces crystals 
of ordered single-domain magnetite (Fe

3
O

4
) particles with octahedral prism 

 morphology of (111) faces truncated by (100) faces. The marine magnetotactic 
bacterium MV-1, isolated from sulfide-rich sediments of an estuarine salt marsh, anaero-
bically bioreduced nitrous oxide and ferric quinate to yield iron-rich  magnetosomes. 

Fig. 5.4 Panel (a): Transmission electron-microscopic (TEM) image analysis of extracellularly 
produced silver nanoparticles in the size range of 16–23 nm, Panel (b): TEM image of intracel-
lularly produced silver nanoparticles, Panel (c): Scanning electron-microscopic (SEM) image of 
fungus producing silver nanoparticles (our unpublished data)
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Fig. 5.5 FTIR spectrum of silver nanoparticles synthesized by fungus (our unpublished data)
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Each magnetite (Fe
3
O

4
) particle is a parallelepiped with dimensions 40 × 40 × 60 nm, 

with a single magnetic domain (Bazylinski et al. 1988). Similarly, magnetotactic 
bacteria isolated from brackish and marine sulfide-rich water and sediments intra-
cellularly deposited single crystals of ferromagnetic iron sulfide, greigite (Fe

3
S

4
), 

reportedly associated with nonmagnetic iron pyrite (FeS
2
) and aligned in chains. 

Each chain contains approximately ten nanoparticles measuring 75 nm in size. 
Most of the particles have irregular shape, whereas some exhibit octahedral and 
cubo-octahedral symmetry with strong diffraction contrast (Mann et al. 1990). 
Bacteria such as Magnetospirillum magneticum have demonstrated the ability to 
synthesize fine (50–100 nm) intracellular membrane-bound ferromagnetic particles 
composed of magnetite (Fe

3
O

4
) or greigite (Fe

3
S

4
). These particles are surrounded 

by an intracellular phospholipid membrane forming structures called magneto-
somes (Schuler and Frankel 1999). Each bacterial cell contained from 0 to 45 
nanoparticles with polydispersity. Magnetosomes comprise both crystallite and 
noncrystallite magnetic crystals. In M. magnetotacticum (MS-1), magnetite (Fe

3
O

4
) 

nanoparticles have been found assembled into single or multiple chains and 
anchored inside the cell, enabling the bacteria to passively orient themselves along 
the geomagnetic field. Each nanoparticle assembled in the bacterial phospholipid 
membrane has a cubo-octahedral crystal structure with a diameter of ~50 nm and 
magnetic moment of ~6 × 10−17 A m2. Accumulation of magnetic iron mineral crys-
tals into highly ordered chain-like structures was also evidenced in the magneto-
somes of M. gryphiswaldense (Lang and Schuler 2006). Watson et al. (1999) 
demonstrated the synthesis of magnetic iron sulfide (FeS) nanoparticles of 2 nm on 
the surface of sulfate-reducing bacteria. Moreover, Bharde et al. (2005) studied 
magnetite nanoparticle synthesis by Actinobacter, a nonmagnetotactic bacterium. 
Lee et al. (2004) demonstrated that by manipulating magnetotactic bacteria in fluid 
using microelectromagnets, the assembly of magnetic nanoparticles inside the cell 
can be controlled. Furthermore, the multicellular magnetotactic bacterium 
Candidatus Magnetoglobus multicellularis has been reported to interact with the 
geomagnetic field on the basis of biomineralized magnetic nanocrystals (Perantoni 
et al. 2009). The magnetite nanoparticles formed by bacteria such as A. magnetot-
acticum (Mann et al. 1984), the magnetotactic bacterium MV-1 (Bazylinski et al. 
1988), Sulfate-reducing bacteria (Watson et al. 1999), M. magnetotacticum (Lee 
et al. 2004), and M. gryphiswaldense (Lang and Schuler 2006) largely exhibited 
octahedral prism, parallelepipeds, cubo-octahedral, and hexagonal prism morphol-
ogies in the size range of 2–120 nm.

5.2.4  Uranium Nanoparticles

Cell-free extracts of Micrococcus lactilyticus have been reported to reduce uranium 
(VI) to uranium (IV) (Woolfolk and Whiteley 1962). Also, Alteromonas putrefa-
ciens grown in the presence of hydrogen as electron donor and U (VI) as electron 
acceptor reduced U(VI) to U(IV) (Myers and Nealson 1988; Lovley et al. 1989). 
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Lovley et al. (1991) demonstrated that G. metallireducens GS-15, grown anaerobically 
in the presence of acetate and U(VI) as electron donor and electron acceptor, 
respectively, reduced soluble U(VI) to insoluble U(IV), oxidizing acetate to CO

2
. 

The Gram-positive sulfate-reducing bacterium Desulfosporosinus sp., isolated from 
sediments, has been found to reduce U(VI) to U(IV), which is precipitated to yield 
uraninite (UO

2
) crystals of 1.5–2.5 nm size range, coated on the cell surface (Suzuki 

et al. 2002). Marshall et al. (2006) found that c-type cytochrome (MtrC) on the 
outer membrane of dissimilatory metal-reducing bacterium S. oneidensis MR-1 is 
involved in the reduction of U(VI), predominantly with extracellular polymeric 
substance as UO

2
-EPS, both in cell suspension and periplasm.

5.2.5  Cadmium Nanoparticles

Cadmium is primarily used in the synthesis of particles called quantum dots (QDs), 
which are semiconductor metalloid-crystal structures of approximately 2–100 nm 
and containing about 200–10,000 atoms (Smith et al. 2008; Juzenas et al. 2008). 
Due to their small size, QDs have unique optical and electronic properties that 
impart the nanoparticles with a bright, highly stable, “size-tunable” fluorescence. 
The large surface area due to their small size also makes QDs easily functionalized 
with ligands for site-directed activity. Thus, QDs have potential applications in 
biological imaging at the cellular level, cancer detection, radio- and chemosensitiz-
ing, and targeted drug delivery (Juzenas et al. 2008; Alivisatos 2004; Smith et al. 
2008; Hardman 2006). The active center of the QD demonstrated as the core con-
sists of atoms from groups II to VI with CdSe and CdTe, most commonly used for 
biological applications (Smith et al. 2008). The significant characteristic of QDs is 
their size-tunable fluorescence. They are significantly brighter than organic fluoro-
phores and far more stable. Since the fluorescence is size-dependent, a single light 
source can be used for excitation and emission, which is tuned via particle size to 
various wavelengths spanning the UV, visible, and near and mid-infrared regions of 
the electromagnetic spectrum. Unlike organic fluorophores, QDs are also much 
larger, permitting easy addition of targeting groups to the surface of the nanopar-
ticle. CdSe and CdTe are important for optical, bioananalytic, and bioimaging 
applications, with CdSe fluorescence spanning the visible light region of the spec-
trum and CdTe utilizing the infrared regions. Since the QDs are hydrophobic, their 
functionalization with secondary coatings or “capping” materials such as mercap-
topropionic acid and polyethylene glycol (PEG) is required to improve solubility 
and maintain them in a nonaggregated state. These coatings can be further conju-
gated with targeting molecules such as receptor ligands or antibodies, which guide 
the QD to a specific tissue or organ (Medintz et al. 2005; Smith et al. 2008). Thus, 
QDs have the potential to dramatically improve medical therapy with respect to 
cancer detection and treatment.

Among early reports of intracellular semiconductor nanoparticle synthesis,  
E. coli has been found to accumulate nanocrystals composed of wurtzite crystal in 
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the size range of 2–5 nm, with spherical and elliptical shapes when incubated with 
cadmium chloride and sodium sulfide. The production of nanocrystals is reported 
to be 20-fold higher when the E. coli cells are grown to the stationary phase as com-
pared to late logarithmic phase. It has also been found that spherical aggregates of 
2–5 nm diameter sphalerite (ZnS) particles are formed within natural biofilms 
dominated by aerotolerant sulfate-reducing bacteria of the family Desulfobacteriaceae 
(Labrenz et al. 2000). Among semiconductor nanocrystals, CdS synthesized by C. 
thermoaceticum, Klebsiella pneumoniae (Smith et al. 1998), and E. coli (Sweeney 
et al. 2004) showed spherical and elliptical shapes in the size range of 2–200 nm. 
Sharma et al. (2000) isolated a highly cadmium-resistant Klebsiella planticola 
strain Cd-1 from reducing salt marsh sediments. The strain could grow in up to 
15 mM CdCl

2
 under a wide range of NaCl concentrations and at pH values ranging 

from acidic to neutral. In growth media amended with thiosulfate, the strain pre-
cipitates significant amounts of cadmium sulfide (CdS), as confirmed by X-ray 
absorption spectroscopy. Klebsiella aerogenes synthesized CdS crystallites of 
spherical shape, bound to the cell wall as electron-dense particles in the size range 
of 20–200 nm, upon exposure to Cd2+ in the growth medium. Energy dispersive 
X-ray analysis has established that cadmium and sulfur occur in a 1:1 ratio (Holmes 
et al. 1995). Bai et al. (2009) showed that Rhodopseudomonas palustris, a purple 
nonsulfur, photosynthetic bacterium, produced CdS nanocrystals extracellularly at 
room temperature. TEM and electron diffraction analyses confirmed the spherical 
distribution of fcc structured nanoparticles of 8.01 ± 0.25 nm size. Cysteine desulf-
hydrase (C-S lyase) activity has been reported to be responsible for the formation 
of CdS nanocrystals. The bacterial cellulose isolated from the strain 
Gluconoacetobacter xylinus has also been used in the synthesis of 30-nm CdS 
nanoparticles (Li et al. 2009).

5.2.6  Selenium Nanoparticles

Considering selenium oxyanions as the electron acceptor, bacteria such as 
Sulfurospirillum barnesii, B. selenitireducens, and Selenihalanaerobacter shriftii 
form uniform and stable crystalline extracellular nanoparticles of Se nanoparticles 
measuring ~300 nm. The spectral properties of nanoparticles differ significantly 
from that of amorphous Se0 formed by the chemical oxidation of H

2
Se and the vitre-

ous (black) Se0 formed chemically by reduction of selenite with ascorbate. Oremland 
et al. (2004) reported the structural and spectral features of selenium nanospheres 
produced by Se-respiring bacteria. Stenotrophomonas maltophilia SELTE02, a 
strain isolated from rhizospheric soil of selenium hyperaccumulator legume 
Astragalus bisulcatus, showed promising transformation of selenite (SeO

3
2−) to ele-

mental selenium (Se0) and accumulation of selenium granules in either the cell 
cytoplasm or extracellular space (Gregorio et al. 2005). Also, the facultative anaero-
bic bacterium, E. cloacea SLD1a-1 (Losi and Frankenberger 1997), purple nonsulfur 
bacterium Rhodospirullum rubrum in oxic and anoxic conditions, and Desulfovibrio 
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desulfuricans (Tomei et al. 1995) are reported to bioreduce selenite to selenium both 
inside and outside the cell. E. coli has also been found to deposit elemental selenium 
both in the periplasmic space and cytoplasm (Gerrard et al. 1974; Silverberg et al. 
1976). P. stutzeri is also known to aerobically reduce selenite to elemental selenium 
(Lortie et al. 1992). Recently, Yadav et al. (2008) have showed that P. aeruginosa 
SNT1, isolated from rhizospheric seleniferous soil, biosynthesized nanostructured 
selenium by biotransforming selenium oxyanions both intracellularly and extracel-
lularly to spherical amorphous allotrophic elemental red selenium. Selenium has 
photo-optical and semiconducting properties and, therefore, has applications in pho-
tocopiers and microelectronic circuit devices.

5.2.7  Titanium, Platinum, and Palladium Nanoparticles

The extracellular culture filtrate of Lactobacillus sp. has been shown to produce 
titanium nanoparticles at room temperature in the form of spherical aggregates 
ranging in size from 40 to 60 nm (Prasad et al. 2007). Titanium dioxide (TiO

2
) 

nanoparticles are lighter in weight and resistant to corrosion and, therefore, have 
widespread applications in automobiles, missiles, airplanes, submarines, cathode 
ray tubes, and in desalting plants, besides a promising role in gene delivery and 
cancer chemotherapy. TiO

2
 nanoparticles also exhibit photocatalytic activities, and 

therefore, are recommended for use as antibacterial agents, UV protecting agents, 
water and air purifiers, and in gas sensors and high-efficiency solar cells. Its photo-
activity is strongly related to its structure, microstructure, and powder purification. 
The three known crystalline structures for TiO

2
 include the anatase (tetragonal, 

a = 0.3785 nm, c = 0.9514 nm, band gap = 3.2 eV, which is equivalent to a wave-
length of 388 nm), rutile (tetragonal, a = 0.4593 nm, c = 0.2959 nm, band 
gap = 3.02 eV), and brookite (orthorhombic, a = 0.9182 nm, b = 0.5456 nm, 
c = 0.5143 nm, band gap = 2.96 eV). The anatase form of TiO

2
 has more photocata-

lytic activity than rutile. The rutile is thermodynamically more stable than anatase 
and brookite.

The Gram-negative Cyanobacterium P. boryanum UTEX 485 has been reported 
to produce extracellular Pt (II)-organics and metallic platinum nanoparticles with 
spherical, bead-like chains, and dendritic morphologies in the particle size range 
of 30–300 nm. Stationary phase culture of metal ion-reducing bacterium 
Shewanella algae in aqueous solution of H

2
PtC

l6
, under anaerobic conditions at 

room temperature and neutral pH, has been shown to reduce PtCl
6

2− ions within 
60 min to metallic platinum in the presence of lactate as electron donor. Platinum 
nanoparticles of ~5 nm size have been observed deposited in the periplasmic space 
between inner and outer membranes of the bacterial cell (Konishi et al. 2007). 
Also, the sulfate-reducing bacterium D. desulfuricans NCIMB 8307 anaerobically 
bioreduced and biocrystallized palladium (2+) ions to palladium nanoparticles on 
the cell surface in the presence of formate as an exogenous electron donor within 
minutes at neutral pH (Yong et al. 2002). De Windt et al. (2005) have demonstrated 
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that an  iron-reducing bacterium, S. oneidensis MR-1, reduced Pd(II) to Pd(0) 
 nanoparticles in the presence of lactate as electron donor on the cell wall and within 
the periplasmic space. This cell-associated nano-bioPd has an application as a cata-
lyst in the dechlorination of polychlorinated biphenyls.

5.3  Nanoparticle Biosynthesis by Actinomycetes

Actinomycetes are generally considered as the primary source for the synthesis of 
secondary metabolites like antibiotics. However, screening of actinomycetes for 
their innate potential for nanoparticle synthesis is an area open for further explora-
tion. An extremophilic actinomycete Thermomonospora sp. has been reported to 
synthesize extracellular monodispersed, spherical gold nanoparticles of average 
size 8 nm (Ahmad et al. 2003a). Fourier transform infrared spectroscopic (FTIR) 
analysis confirmed the presence of amide (I) and (II) bands of protein as capping 
and stabilizing agent on the surface of nanoparticles. Furthermore, an alkalotolerant 
actinomycete Rhodococcus sp. accumulated intracellularly gold nanoparticles of 
5–15 nm. The available reductases on the cell wall reduced Au3+ and accumulated 
Au0 on the cell wall and cytoplasmic membrane.

5.4  Nanoparticle Biosynthesis by Cyanobacteria

The cyanobacterium Plectonema boryanum UTEX 485 has been found to produce 
silver nanoparticles. Also, this filamentous cyanobacterium upon incubation with 
aqueous Au(S

2
O

3
)2 and AuCl

4
 solutions produced cubic gold nanoparticles and 

octahedral gold platelets, respectively (Lengke et al. 2006a, b). The mechanism of 
gold bioaccumulation by cyanobacteria from gold (III)-chloride solution suggested 
that its interaction with cyanobacteria promotes the precipitation of nanoparticles 
of amorphous gold (I)-sulfide at the cell wall, and finally deposited metallic gold in 
the form of octahedral (III) platelets (10 nm to 6 mm) near cell surfaces and in solu-
tion (Lengke et al. 2006a, b). Some common Anabaena, Calothrix, and Leptolyngbya 
cyanobacteria have also been found to produce intracellular Au, Ag, Pd, and Pt 
nanoparticles, which naturally released in the culture medium and stabilized by 
algal polysaccharides for their easy recovery. Indeed, the size of the recovered par-
ticles and yield depend on the cyanobacteria genus (Brayner et al. 2007).

5.5  Nanoparticle Biosynthesis by Yeast

The yeast Candida glubrata has been used for the intracellular production of 
monodispersed spherical and peptide-bound CdS quantum dots measuring 2 nm, 
by forming a metal–thiolate complex with phytochelatins (Dameron et al. 1989). 
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Schizosaccharomyces pombe also produced wurtzite-typed hexagonal lattice 
 structured CdS nanoparticles in mid-log phase in the size range of 1–1.5 nm 
(Kowshik et al. 2002). The synthesis of fcc structured PbS nanocrystallites exhibiting 
quantum semiconductor properties by yeast Torulopsis sp. has been reported 
(Kowshik et al. 2002). The quantum dots are intracellularly produced in the vacu-
oles with a dimension of 2–5 nm spherical shape. These nanoparticles are used to 
fabricate diode heterojunction with poly ( p-phenylenevinylene). In addition, 
Baker’s yeast, Saccharomyces cerevisiae, has been reported to biosorb and reduce 
Au3+ to elemental gold in the peptidoglycan layer of the cell wall by the aldehyde 
group present in reducing sugars (Lin et al. 2005). Similarly, another yeast, Pichia 
jadinii (Candida utilis), intracellularly produced spherical, triangular, and hexagonal 
gold nanoparticles of 100 nm size within 24 h (Gericke and Pinches 2006). Another 
tropical marine yeast, Yarrowia lipolytica NCIM 3589, produced hexagonal and 
triangular gold crystals of average size ~15 nm, nucleated on the cell surfaces by 
reduction of gold ions at pH 2.0. Further, S. cerevisiae has been found to produce 
spherical antimony oxide (Sb

2
O

3
) nanoparticles in the size range of 2–10 nm at 

room temperature, exhibiting semiconductor properties. The plausible mechanism 
could be the radial tautomerization of membrane-bound quinines or by membrane 
bound/cytosolic pH-dependent oxidoreductases (Jha et al. 2009). Extracellular 
production of hexagonal silver nanoparticles 2–5 nm in size has also been reported 
in the silver-tolerant yeast strain MKY3 in the exponential growth phase (Kowshik 
et al. 2003).

5.6  Nanoparticle Biosynthesis by Fungi

Biosynthesis of metal nanoparticles using fungi such as F. oxysporum (Senapati 
et al. 2004; Bansal et al. 2004, 2005; Kumar et al. 2007), Colletotrichum sp. 
(Shankar et al. 2003), Trichothecium sp., Trichoderma asperellum, T. viride, 
(Ahmad et al. 2005; Mukherjee et al. 2008; Fayaz et al. 2010), Phaenerochaete 
chrysosporium (Vigneshwaran et al. 2006), Fusarium solani USM3799 (Ingle et al. 
2009), Fusarium semitectum (Basavaraja et al. 2008), Aspergillus fumigatus 
(Bhainsa and D’Souza 2006), Coriolus versicolor (Sanghi and Verma 2009), 
Aspergillus niger (Gade et al. 2008), Phoma glomerata (Birla et al. 2009), 
Penicillium brevicompactum (Shaligram et al. 2009), Cladosporium cladospori-
oides (Balaji et al. 2009), Penicillium fellutanum (Kathiresan et al. 2009), and 
Volvariella volvacea (Philip 2009) has been extensively studied. Indeed, fungi are 
regarded as more advantageous for nanoparticle biosynthesis as compared to other 
microorganisms because (1) fungal mycelial mesh can withstand flow pressure, 
agitation, and other conditions in bioreactors compared to bacteria, (2) they are 
fastidious to grow and easy to handle, and (3) they produce more extracellular 
secretions of reductive proteins and can easily undergo downstream processing. 
Moreover, the nanoparticles precipitated outside the cell can be directly used in 
various applications. The size limit of nanoparticles could be related to the fact that 
the particles nucleate within the organism. Such nanoparticles could be smaller 
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compared to extracellularly produced nanoparticles. Mukherjee et al. (2001b) dem-
onstrated the biological synthesis of 20-nm gold nanoparticles using Verticillium 
sp. (AAT-TS-4). TEM analysis of ultrathin sections of fungal mycelia showed 
mostly spherical forms and few triangles and hexagonal nanoparticles on cell walls 
and quasi-hexagonal morphology on cytoplasmic membranes. In addition, 
Verticillium luteoalbum has been reported to produce spherical 10-nm gold nano-
particles within 24 h at pH 3.0. However, at pH 5.0, spheres and rods were formed 
along with triangular and hexagonal morphologies (Gericke and Pinches 2006). 
Trichothecium sp. has also been found to accumulate gold nanoparticles intracel-
lularly (Dastjerdi et al. 2009).

Furthermore, Verticillium sp. Biomass, on exposure to aqueous silver nitrate 
solution, resulted in accumulation of silver nanoparticles beneath the fungal cell 
surface (Mukherjee et al. 2001a; Senapati et al. 2004). Phoma PT35 and Phoma 
sp.3.2883 have been shown to selectively accumulate silver nanoparticles (Pighi 
et al. 1989; Chen et al. 2003). Vigneshwaran et al. (2007) reported that Aspergillus 
flavus accumulated silver nanoparticles 8.9 nm in size on the surface of its cell 
wall when incubated with silver nitrate solution for 72 h. Since fungi are known 
to secrete much higher amounts of proteins compared to bacteria, it could be one 
of the contributory factors for significantly higher productivity of nanoparticles in 
this biosynthetic approach. In order to elucidate the mechanism of nanoparticle 
formation, species-specific NADH-dependent reductase, released by F. oxyspo-
rum, has been used to catalyze the reduction of AuCl

4
 ions to gold nanoparticles. 

The trapping of AuCl
4
 ions on the surface of fungal cells could occur by electro-

static interactions with positively charged lysine residues present in the mycelia 
cell wall. The gold ions could be reduced by enzymes within the cell wall, leading 
to aggregation of metal atoms; however, the exact mechanism of formation of the 
gold nanoparticles is still unknown. It has been suggested that extracellularly produced 
nanoparticles are stabilized by proteins and other reducing agents secreted by the 
fungus. Experimental data suggest the association of some high-molecular-weight 
proteins including the NADH-dependent reductase released by fungal biomass in 
nanoparticle synthesis and stabilization. Fluorescence emission spectra reveal that 
the native form of these proteins present in solution as well as bound to the sur-
faces of nanoparticles remains unaltered and the reduction of metal ions did not 
significantly influence protein tertiary structure (Macdonald and Smith 1996; 
Kumar and McLendon 1997).

Proteins isolated from fungal cultures have been successfully used to demon-
strate nanoparticle production. For instance, nanocrystalline zirconia has been 
produced at room temperature by cationic proteins, similar in nature to silicatein, 
secreted by F. oxysporum and was capable of extracellularly hydrolyzing aqueous 
ZrF

6
 ions (Bansal et al. 2004).

Growth conditions play an important role during biosynthesis of nanoparticles. 
Trichothecium sp. biomass under stationary conditions produced extracellular 
nanoparticles when incubated with gold ions. However, under agitation, the fungus 
produces intracellular gold nanoparticles. The plausible reason for this could be the 
release of enzymes and proteins responsible for nanoparticle synthesis in the 
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medium under stationary conditions and no release under shaking conditions 
(Ahmad et al. 2005). Bharde et al. (2006) reported the synthesis of magnetic nano-
particles by using F. oxysporum and Verticillium sp. at room temperature. Both 
fungi secreted the proteins capable of hydrolyzing iron precursors to form iron 
oxides extracellularly (Gericke and Pinches 2006). Bhainsa and D’Souza (2006) 
have reported the production of monodispersed silver nanoparticles within 10 min 
using A. fumigatus. Also, Bansal et al. (2006) demonstrated the production of tetragonal 
barium titanate (BaTiO

3
) nanoparticles of <10 nm dimension using F. oxysporum 

under ambient conditions. The ferroelectric properties of these nanoparticles have 
tremendous potential for revolutionizing the electronics industries with their appli-
cations in preparing ultrasmall capacitors and ultrahigh density nonvolatile ferro-
magnetic memories. Furthermore, Bansal et al. (2005) and Kumar et al. (2007) have 
reported the synthesis of highly luminescent CdSe quantum dots, and silica and 
titania nanoparticles using the fungus F. oxysporum.

5.7  Scope and Applications of Nanoparticles

Production of inorganic and metal-based nanomaterials has stimulated the develop-
ment of a new field linking many disciplines of sciences for the quest for different 
types of nanoparticles with unique properties. Designing and developing novel and 
affordable techniques for scale-up production of nanomaterials have not only pro-
vided an interesting area of study but will also address the expanding human 
requirements including health safety and environmental issues. In industry, the 
application of nanomaterials is increasingly adopted, and they will soon replace the 
harmful or toxic chemicals conventionally used as antimicrobial agents (Mucha 
et al. 2002). Application of nanoparticles and their nanocomposites offers a sound 
and relatively safer alternative (Chen et al. 2006; Dimitrov 2006) and, therefore, 
open up new opportunities for development of antimicrobials. Since ancient times, 
silver has been most extensively studied and used to fight against infection and 
prevent spoilage (Rai et al. 2009). It is a safer antimicrobial agent in comparison to 
certain organic antimicrobial agents (Dastjerdi et al. 2010). Silver has been 
described as being oligodynamic because of its ability to exert a bactericidal effect 
on products containing silver, principally due to its antimicrobial activities and low 
toxicity to human cells (Dastjerdi et al. 2009). Its therapeutic property has been 
proven against a broad range of microorganisms (Jeong et al. 2005; Lok 2006). 
Lately, Musarrat et al. (2010) demonstrated the broad-spectrum antimicrobial activity 
of biosynthesized AgNPs against several human and plant pathogenic bacteria and 
fungi such as Shigella dysenteriae type I, Staphylococcus aureus, Citrobacter spp., 
E. coli, P. aeruginosa, B. subtilis, Candida albicans, and F. oxysporum.

Similarly, ZnO nanoparticles and nanorods have remarkable applications in 
solar cells, sensors, displays, gas sensors, piezoelectric devices, electroacoustic 
transducers, photodiodes and UV light emitting devices, sunscreens, gas sensors, 
UV absorbers, antireflection coatings, photocatalysis, and chemical catalysts  
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(Pan et al. 2001; Xu and Xie 2003). Gold nanoparticles are also known for their 
potent antibacterial activity against acne or scurf and have commercial applica-
tions in soap and cosmetic industries. They can remove waste materials from skin 
and control sebum (Park et al. 2006; Zhang et al. 2008). Zhang et al. (2008) have 
reported Au nanoparticle-mediated growth inhibition of different Gram-positive 
and Gram-negative bacteria and fungi. Park et al. (2006) loaded gold nanoparti-
cles inside the liposomes, which could be used as a controlled release delivery 
system.

Nanoparticles have enormous applications in biology and medicine. In a 
dynamic range of size <100 nm, they could be used as probes attached to peptides, 
antibodies, or nucleic acids for detection and quantification of molecular reactions 
in vivo (Niemeyer 2001). The potential for coating nanoparticles with antibodies, 
collagen, and other substances makes them biocompatible for detection and medi-
cal diagnosis. Bruchez et al. (1998) showed that nanoparticle-based fluorescent 
labeling is superior to the use of conventional fluorophores. Wu et al. (2003) 
observed that quantum-dot-based immunofluorescent labeling of the cancer marker 
Her2 is more efficient than normal fluorophores in labeling different target cell-
surface receptors, nuclear antigens, the cytoskeleton, and other intracellular organ-
elles. They also demonstrated that bioconjugated colloidal quantum dots were 
valuable in cell labeling, cell tracking, DNA detection, and in vivo imaging. Zhang 
et al. (2002) showed that surface modification of superparamagnetite nanoparticles 
with ethylene glycol and folic acid is effective in facilitating phagocytosis by cancer 
cells for potential cancer therapy and diagnosis. O’Neal et al. (2004) observed in 
mice that selective photothermal ablation of tumors using near infrared-absorbing 
polyethylene-coated gold nanoshells of 130 nm size inhibited tumor growth and 
increased survival of animals for up to 90 days compared with controls. Moreover, 
the antibody-coated magnetic iron nanoparticles reported by Perkel (2004) have 
been proven very effective to heat and virtually burn tumors. Gopalan et al. (2004) 
reported nanoparticle-based gene therapy using a novel tumor suppressor gene, 
FUSI, to be effective in systemic gene treatment of lung cancer. Dufes et al. (2005) 
reported gene therapy by intravenous administration of nanoparticle-based vector 
systems using tumor necrosis factor (TNF)-a expression plasmid and found 
increased transgene expression and long-term survival of rats with no toxicity. In 
vitro studies with breast cancer cells have shown the efficacy of nanoparticle-mediated 
gene delivery of the wild-type p53 gene. Cancer cells, upon nanoparticle-based 
gene delivery, exhibited an increased and sustained antiproliferative activity. Kaul 
and Amiji (2005) observed that PEG-modified gelatin nanoparticles used for tumor-
targeted gene delivery have been highly effective, biocompatible, biodegradable, and 
long-circulating for systemic delivery to solid tumors.

Pathogen detection is another widely explored area in BioMEMS research. 
Culture and colony counting methods and PCR have been the two conventional and 
most selective/reliable methods in molecular biology laboratories, although they 
take hours to days to provide conformity. The emphasis of detection technologies 
has been moved to BioMEMS/sensor technology because this provides equally reli-
able results in a fraction of the time employed for conventional methods.
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5.8  Conclusions

During the past several years, various methods based on chemical reduction,  thermal 
treatment, irradiation and laser ablation, etc. have been used for synthesis of metal 
nanoparticles. Most of these methods rely heavily on the use of organic solvents and 
toxic reducing agents like sodium borohydride and N, N-dimethylformamide, which 
may pose severe environmental problems and biological risks. Therefore, biological 
and biomimetic approaches for green synthesis of nanomaterials are now highly 
appealing, utilizing the potential of bacteria, fungi, and even plants for nanoparticle 
synthesis as eco-friendly nanofactories. The cell mass and leached components from 
microorganisms have reportedly been utilized for the reduction of metal ions to 
nanoparticles, through enzymes such as oxidoreductases and a shuttle quinone extra-
cellular process. Filamentous fungi possess some distinctive advantages over bacte-
ria due to ease of handling, mass cultivation, high metal tolerance, wall-binding 
capacity, and intracellular metal uptake capabilities. Nanoparticles of noble metals 
like gold, platinum, palladium, and silver, etc. have attracted scientific attention in 
recent years due to their unique chemical and physical attributes that differ from the 
respective bulk substance. The extremely small size and large surface area relative 
to their volume make them useful for many applications viz. nonlinear optics, spec-
trally selective coatings for solar energy absorption, optical receptors, catalysis in 
chemical reactions, biolabelling, and as antibacterials. Thus, the use of biologically 
compatible materials for nanoparticle synthesis and stabilization could play a crucial 
role in medical diagnosis and therapeutics including the detection of genetic disor-
ders by color-coded fluorescent labeling of cells using semiconductor quantum dots 
and cell transfection for gene therapy and drug delivery.
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Abstract Bacteria use the language of low-molecular-weight ligands to assess 
their population densities in a process called quorum sensing (QS). Different types 
of quorum sensing pathways are present in Gram-negative and Gram-positive bac-
teria. Signal molecules most commonly used in Gram-negative bacteria are acyl 
homoserine lactones. In recent years, a substantial amount of literature and data 
have been available on bacterial QS. Recently, interest in modulation of quorum 
sensing with different approaches has increased among scientific communities.  
In this chapter, we provide an updated overview on bacterial QS, assays and methods 
for detecting signal molecules, and various approaches to inhibit AHL-based quorum 
sensing. Significance of QS interference by prokaryotic and eukaryotic organisms 
in relation to plant health and the environment is discussed here.

6.1  Introduction

The first evidence of cooperative behavior among bacteria was described almost 50 
years ago by Tomasz (1965). Nealson et al. (1970) studied the biology of light-
producing organelles, i.e., via the bacterium Vibrio fischeri in deep-sea fish through 
a cell-density-dependent reaction. Subsequently, this population-dependent phe-
nomenon was termed “quorum-sensing” by Fuqua et al. (1994), reflecting the mini-
mum threshold level of individual cell mass required to initiate a concerted 
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population response. Such a system is coordinated by the intracellular production 
and export of a low-molecular-mass signaling molecule, the extracellular concen-
tration of which increases with the population density of the producing organism. 
The signal molecules involved in such communication are termed “autoinducers,” 
owing to their origin inside the bacterial cell and regulating their own expression. 
The signaling molecule can be sensed and reimported into these cells, thus allowing 
the entire population to respond to changing environment/requirements once a criti-
cal concentration (corresponding to a particular cell density) or “quorum,” i.e., the 
minimal number of bacteria amassed within a volume to make the “decision” to 
switch on gene expression of QS-controlled genes, is attained.

In Gram-negative bacteria, the best-studied QS systems use LuxI-type enzymes, 
which produce N-acyl homoserine lactones (AHLs) as signal molecules, which 
bind and activate members of the LuxR transcriptional activator protein family 
(Juhas et al. 2005; Duan and Surette 2007).The autoinducer N-(3-oxohexanoyl)-N-
homoserine lactone (3-oxo-C6-HSL) was identified as one of the quorum signaling 
molecules for V. fischeri. This molecule is the product of the LuxI autoinducer syn-
thase, which catalyzes the reaction between S-adenosylmethionine and acylated-
acyl carrier proteins to produce 3-oxo-C6-HSL. The luxI gene resides in the 
rightward portion of the bidirectional lux operon (luxICDABEG) containing both 
luxI and the genes encoding the proteins involved in bioluminescence. The luxR 
gene, which encodes the 3-oxo-C6-HSL-dependent response regulator, is encoded 
in the left operon (Egland and Greenberg 1999).

6.2  Quorum Sensing Pathways in Bacteria

A remarkable array of signaling molecules function as local sensors to commu-
nicate population densities in Gram-negative and Gram-positive bacteria. These 
molecular signals and their receptors are broadly grouped in up to four QS 
systems.

6.2.1  Autoinducer Type 1 Signaling System

The autoinducer type 1 system is widely used in multiple genera of Gram-negative 
bacteria and is highly homologous to the original luxR/luxI autoinducer type 1 
system in Vibrio spp., first defined in V. fischeri (Beutler et al. 2006). A highly 
soluble and freely diffusible sensor molecule uses a series of N-acyl homoserine 
lactone (AHL) molecules for signaling. AHL molecules vary in the N-acyl chain 
length (from 4 to 18 carbons), degree of saturation, and number of oxygen substitu-
tions. The l-isomeric form of the homoserine lactone ring is common to all AHLs. 
The luxI gene or its homologues encode the sequences that mediate the formation 
of the AHL signaling molecule.
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The receptor for AHL is mediated by the luxR gene in V. fischeri or related genes 
in other bacterial species. The translated product of luxR is the LuxR receptor mol-
ecule, which together with its AHL partner functions as a coactivator complex at 
the promoter sites for QS responsive operons in the bacterial genome. In V. fischeri, 
the end result is bioluminescence; for certain bacterial pathogens, the end product 
is the activation of many virulence factors.

Some of the bacterial genera use the same AHL molecule, indicating that some 
level of interspecies cross talk exists (Williams 2007). Other bacteria including 
E. coli do not synthesize AHLs but express a LuxR biosensor homologue (SdiA). 
It is speculated that this sensing system allows E. coli to “listen” to communication 
signals from other Gram-negative bacteria and exploit this information to its own 
advantage (Ahmer 2004).

6.2.2  Autoinducer Type 2 Signaling System

A second QS pathway was initially discovered in the V. harveyi bioluminescence 
system and is mediated by the luxS gene locus and related homologues (Miller 
and Bassler 2001; Bassler 2002). Elements of the autoinducer type 2 (AI-2) 
system are detectable in almost one half of all sequenced bacterial genomes, and 
this system is now recognized as the most ubiquitous signaling system employed 
by both Gram-negative and Gram-positive bacteria (Wen and Burne 2004; 
Hermann 2007). The AI-2 pathway uses a more complex, two component, recep-
tor kinase network to accomplish efficient signaling among bacteria. Structurally, 
the AI-2 signal in Vibrio spp. is composed of rather complex, multiple-ringed, 
cyclical furanosyl molecules containing the highly unusual presence of a boron 
atom (Bassler 2002). The receptor for the AI-2 apparatus is also complex, with 
a series of gene products that function as the receptor kinase signal transcription 
complex. In Vibrio species, the receptor is a membrane-bound, two-domain, sen-
sor kinase and response regulator (LuxQ). In enteric bacteria, a soluble receptor 
binds to the AI-2 signal molecule in the periplasmic space and then transports 
the AI-2 molecule across the membrane via a specific ABC-type transporter 
system (Kendall and Sperandio 2007). The internalized AI-2 molecule is phos-
phorylated and then complexed with an intracellular receptor that acts as the 
transcriptional activator.

Multiple variations of this AI-2 system are found in bacteria (Shiner et al. 2005). 
The AI-2 signaling molecule in Salmonella spp. is a furan molecule that lacks 
boron. Many bacteria apparently do not express the luxS gene but express the AI-2 
receptor complex (Kendall et al. 2007). Such an arrangement has been proposed to 
allow some bacterial strains to sense and use AI-2 signals generated by other bac-
teria to regulate their own coordinated transcriptional responses (Li et al. 2008). 
The precise role of AI-2 signaling in bacterial pathogenesis is not clear, as much of 
the transcriptional activity of AI-2 systems is directed toward regulation of meta-
bolic pathways (Zhao et al. 2010).
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6.2.3  Autoinducer Type 3 System

This newly discovered QS system is perhaps the most complicated of all signaling 
pathways thus far discovered. The autoinducer type 3 (AI-3) system shares many 
characteristics of the AI-2 system, as it uses a two-component, receptor kinase intra-
cellular signaling complex to activate genes of the virulome; however, in contrast to 
AI-2, the AI-3 system can use the human stress hormones epinephrine or norepi-
nephrine to signal the system (Walters and Sperandio 2006; Kendall et al. 2007).

The periplasmic receptor for the AI-3 system has recently been characterized and is 
known as the QseBC complex (Clarke et al. 2006). QseC is the sensor kinase, and QseB 
is the phosphorylated response regulator that alters transcription of virulence genes. The 
AI-3 system is essential in the pathogenesis of enterohemorrhagic E. coli infections and 
shigellosis (Kendall et al. 2007). Components of the AI-3 signaling network have been 
detected in enteropathogenic E. coli strains, commensal E. coli strains, and a number of 
other Gram-negative, enteric organisms, but thus far not in Gram-positive bacteria.

6.2.4  Short Peptide Signaling (AIP) System in Gram-Positive 
Bacteria

A number of Gram-positive bacteria are also known to employ quorum-sensing 
systems. The nature of the signal molecules used in these systems differs from those 
of Gram-negative organisms (de Kievit and Iglewski 2000). Many cell–cell signaling 
systems in Gram-positive bacteria use modified peptides as signals to regulate func-
tions such as virulence (agr system in staphylococci – Ji et al. 1995) and fsr system 
in enterococci – Haas et al. 2002), competence (com system in bacilli – Hamoen 
et al. (2003) and (pneumococci – Tomasz, 1965; Havarstein et al. 1995), and bacte-
riocin production (pin and ssp systems in lactic acid bacteria). Most autoinducing 
peptide (AIP) signals are generated by cleavage from larger precursor peptides, and 
subsequent modifications including substitution with isoprenyl groups and forma-
tion of lactone and thiolactone rings and lanthionines (Ansaldi et al. 2002). Signal 
release from the cell requires dedicated oligopeptide exporters, whereas signal per-
ception is mediated by sensor histidine kinases located in the cytoplasmic  membrane. 
Many Gram-positive bacteria communicate with multiple peptides in combination 
with other types of quorum-sensing signals. In some cases, the signaling peptide can 
be recognized not only by its cognate species but also by different strains of the same 
or related species (Thoendel and Horswill 2010).

6.3  QS Signal Molecules Diversity

Most QS signals are either small (1,000 Da) organic molecules or peptides with 
5–20 amino acids (Chhabra et al. 2005; Williams 2007). Gram-negative bacteria, 
for example, employ N-acyl homoserine lactones (AHLs), 2-alkyl-4-quinolones 
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(AQs), long-chain fatty acids, and fatty acid methyl esters, as well as autoinducer-2 
(AI-2), a collective term for a group of interconvertible furanones derived from 
dihydroxypentanedione (DPD). AI-2 is also produced by some Gram-positive bac-
teria, although generally these organisms prefer linear, modified, or cyclic peptides 
such as the autoinducing peptides (AIPs) made by the staphylococci. The strepto-
mycetes, however, synthesize c-butyrolactones such as A-factor, which are structur-
ally related to the AHLs, as both compound classes belong to the butanolides.  
In general, however, Gram-positive bacteria engage post-translationally modified 
peptides as quorum-sensing signal molecules referred as autoinducing peptides 
(AIPs), which range from 5 to 34 amino acids in length and typically contain 
unusual chemical architectures. Based on their structural uniqueness, three different 
families of AIPs have been characterized: (a) the oligopeptide lantibiotics, typified 
by the lactococcal nisin, which are characterized by the presence of lanthionine-
mediated thioether macrocyclic features and dehydroamino acid residues (Quadri 
2002), (b) the 16-membered thiolactone peptides, exemplified by the staphylococ-
cal AIP-1 (Chan et al. 2004), and (c) the isoprenylated tryptophan peptides in which 
ComX and its variants from Bacillus subtilis and other Bacillus species are cur-
rently the only known members (Ansaldi et al. 2002; Okada et al. 2005). QS signal 
molecules can also be further subdivided according to whether they interact with 
receptors at the cell surface (e.g., the staphylococcal AIPs) or are internalized (e.g., 
the AHLs, AQs, the Phr peptides of Bacillus subtilis, and the mating pheromones 
of Enterococcus faecalis (Williams 2007). However, here, we primarily consider 
quorum-sensing signal molecules and their inhibition in Gram-negative bacteria.

6.3.1  Gram-Negative Bacteria

AHL-mediated quorum sensing is employed by diverse Gram-negative proteobacte-
ria belonging to a, b, and g subdivisions (Chhabra et al. 2005). Most AHL-producers 
synthesize multiple AHLs that are characterized by a homoserine lactone (HSL) 
unsubstituted in the b- and g-positions, which is N-acylated with a fatty acyl group at 
the a-position. The acyl chain varies in length, saturation level, and oxidation state. 
In most cases, the chain has an even number of carbons (C4–C18), although AHLs 
with C5 and C7 acyl chains have been identified (Lithgow et al. 2000; Horng et al. 
2002). Examples of different AHLs produced by Gram-negative bacteria are shown 
in Table 6.1. They belong either to the N-acyl or N-(3-oxoacyl) or N-(3-hydroxyacyl) 
classes of compounds. AHLs with C14 and C18 acyl chains have also been described, 
which also contain one or two double bonds (Wagner-Dobler et al. 2005).

AHL-mediated signaling appears to require at least a C4 acyl side chain since 
N-butanoylhomoserine lactone (C4-HSL) and N-hydroxybutanoylhomoserine lac-
tone (3-hydroxy-C4-HSL) are the shortest AHLs found naturally (Winson et al. 
1995). This is probably because the HSL ring is highly susceptible to pH-dependent 
ring opening, a susceptibility which decreases as the acyl side chain is lengthened. 
Consequently, HSL and N-propionylhomoserine lactone (C3-HSL) are rapidly 
hydrolyzed at pH values well below 7.0. The HSL ring, for example, is typically 
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open when the pH is raised from 1 to 2. By introducing a C3 acyl chain (C3-HSL), 
the ring remains largely intact at pH 2, but approximately 70% is hydrolyzed by pH 
6, in contrast to C4-HSL, whose ring is completely opened only at pH 8 (Yates et al. 
2002). Ring-opened AHLs are not active as quorum-sensing signal molecules. 
Given the stability of the HSL ring at acidic pH values, it is perhaps not too surpri 
sing that the acidophilic extremophile, Acidithiobacillus ferrooxidans employs 
AHL-dependent quorum sensing. This organism is involved in the bioleaching 
of metal sulphide ores and produces at least nine AHLs including N-acyl, 

Table 6.1 Some examples of AHL-dependent QS systems and the phenotypes controlled 
[adapted from Williams (2007)]

Organism AHLs Phenotype

Aeromonas hydrophila C
4
-HSL, C

6
-HSL Biofilm, exoprotease, 

virulence
Aeromonas salmonicida C

4
-HSL, C

6
-HSL Exoprotease

Agrobacterium tumefaciens 3-OXO-C
8
-HSL Plasmid conjugation

Burkholderia cenocepacia C
6
-HSL, C

8
-HSL Exoenzymes, biofilm 

formation, swarming 
motility, siderophore, 
virulence

Chromobacterium violaceum C
6
-HSL Exoenzyme, cyanide, pigment

Erwinia carotovora 3-OXO-C
6
-HSL Carbapenem, exoenzyme,  

virulence
Nitrosomonas europea 3-OXO-C

6
-HSL Emergence from lag phase

Pseudomonas aeruginosa C
4
-HSL, C

6
-HSL, 3-OXO-C

12
-HSL Exoenzymes, exotoxins, 

protein secretion,  
biofilms, swarming  
motility, virulence

Pseudomonas aureofaciens C
6
-HSL Phenazines, protease,  

colony morphology,  
aggregation, root  
colonization

Pseudomonas putida 3-OXO-C
10

-HSL, 3-OXO-C
12

-HSL Biofilm development
Pseudomonas flourescens 3-OXO-C

10
-HSL Mupirocin

Rhizobium leguminosarum  
bv. Viciae

C
14

-HSL, C
6
-HSL, C

7
-HSL,  

C
8
-HSL, 3-OXO-C

8
-HSL,  

3-hydroxy-C
8
-HSL

Root nodulation/symbionts,  
plasmid transfer, growth  
inhibition, stationary- 
phase adaptation

Rhodobacter sphaeroides 7-cis-C
14

-HSL Community escape
Serratia sp. ATCC39006 C

4
-HSL, C

6
-HSL Antibiotic, pigments,  

exoenzymes
Serratia liquefaciens MG1 C

4
-HSL, C

6
-HSl Swarming motility, 

exoprotease, biofilm  
development,  
biosurfactant

Vibrio fischeri 3-OXO-C
6
-HSL Bioluminescence

Vibrio harveyi 3-hydroxy-C
4
-HSL Bioluminescence

Yersinia enterocolitica C
6
-HSL, 3-OXO-C

6
-HSL, 3-OXO- 

C10-HSL, 3-OXO-C
12

-HSL,  
3-OXO-C

14
-HSL

Swimming and swarming  
motility
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N-(3-oxoacyl), and N-(3-hydroxyacyl) compounds ranging from C8 to C16 in acyl 
chain length (Farah et al. 2005). The structures of various AHLs have been described 
in the literature (Williams 2007; Cooley et al. 2008; Hodgkinson et al. 2010).

6.4  QS-Regulated Bacterial Traits

Since the discovery of QS regulation in V. fischeri, numerous QS systems have been 
described in bacteria. They regulate diverse functions (Parsek and Greenberg 2005) 
such as production of antifungal or antibiotic compounds, motility patterns, viru-
lence factors, biofilm formation, and plasmid conjugal transfer. In the case of 
P. aeruginosa, at least 6% of its genome is AHL-regulated via the las and rhl 
quorum-sensing systems (Hentzer et al. 2003; Wagner et al. 2004). LasI primarily 
directs the synthesis of N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-
HSL; Pearson et al. 1994) and together with the LasR regulates the production of 
virulence factors including elastase, LasA protease, alkaline protease, and exotoxin 
A (de Kievit and Iglewski 2000). RhlI directs the synthesis of C4-HSL (Winson et al. 
1995), which activates RhlR and in turn induces, for example, the production of 
rhamnolipids, elastase, LasA protease, hydrogen cyanide, pyocyanin, siderophores, 
and LecA and LecB lectins (Winson et al. 1995; Latifi et al. 1996; Winzer et al. 
2000; Diggle et al. 2002).

In Chromobacterium violaceum, cviI gene encodes for the enzyme of N-hexanoyl-
l-homoserine lactone (HHL), which induces the production of violacein (purple 
pigment) and chitinase. In C. violaceum ATCC 31532, a number of phenotypes 
including production of violacein, hydrogen cyanide, and exoprotease are known to 
be QS-regulated (McClean et al. 1997).

luxRI homologues have been identified in Burkholderia cepacia, termed cepR 
and cepI. The CepRI quorum-sensing system has both positive and negative regula-
tory roles in B. cepacia, increasing protease production while simultaneously 
decreasing siderophore synthesis (Lewenza et al. 1999).

E. carotovora uses quorum sensing for exoenzyme production for successful 
tissue destruction and evasion of plant defenses (Pirhonen et al. 1993). This exoen-
zyme production is regulated by LuxI homologues ExpR and ExpI. E. carotovora 
quorum sensing is made even more complex by the finding that synthesis of the 
broad-spectrum antibiotic carbapenem is regulated using a second quorum-sensing 
system. Carbapenem production is regulated by CarR and CarI; the latter catalyzes 
the synthesis of 3-oxo-C6-HSL (Chhabra et al. 1993; McGowan et al. 1995).

A. tumefaciens produces 3-oxo-C8-HSL that stimulates plasmid conjugation 
(Zhang et al. 1993) together with a regulator called TraR, capable of activating 
expression of the tra genes (Piper et al. 1993), and this suggests that conjugal transfer 
in A. tumefaciens is regulated by a quorum-sensing system. Several other pathogens, 
such as P. aeruginosa (Brint and Ohman 1995), A. hydrophila (Chapon-Herve et al. 
1997), and S. marcescens (Cheung et al. 1992) have been shown to regulate biofilm 
formation by QS. There are many bacterial species known to produce AHL signals, 
but the corresponding biological function remains to be unveiled. Several reports have 
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described the QS-regulated behavior and associated signal molecules in different 
bacterial systems (de Kievit and Iglewski 2000; Williams 2007; Asad and Opal 2008; 
Defoirdt et al. 2010). Some QS-regulated traits are provided in Table 6.1.

6.5  Isolation, Purification, and Characterization  
of AHL Molecules

AHLs can be extracted from spent supernatants of late-exponential phase cultures 
(Shaw et al. 1997; Schaefer et al. 2000). Briefly, bacteria are removed by centrifu-
gation, supernatants are extracted twice with equal volumes of ethyl acetate, and the 
extracts are dried over anhydrous magnesium sulphate, filtered, and evaporated to 
dryness. Adapting the standard procedure, Khan et al. (2009) extracted AHL from 
Chromobacterium violaceum 31532 (an overproducing strain of C6-AHL). 
Bacterial culture is grown in 4 L of Luria broth on a shaking incubator at 28°C for 
18 h and centrifuged at 12,000 × g. The supernatant is sterilized by membrane filtra-
tion (0.22 mm). The filtrate is extracted with acidified ethyl acetate (0.1 v/v acetic 
acid) (supernatant and acidified ethyl acetate, 7:3, v/v) and finally concentrated and 
dried by rotary evaporation at 40°C and reconstituted in acetonitrile.

6.6  Assays for AHL Detection

QS signal molecules are produced in very low concentrations with various interfering 
compounds (Brelles-Marino and Bedmar 2001; Van Houdt et al. 2007). Most of 
these detection methods focus on the existence of various AHLs in different bacte-
rial cultures to demonstrate their stimulation actions in quorum-sensing mecha-
nisms (Yan et al. 2007).

To date, many qualitative and quantitative approaches have been developed to 
detect AHLs. These include whole-cell-based bioassays using AHL-specific bio-
sensors, thin-layer chromatography (TLC), gas chromatography-mass spectrometry 
(GC-MS), high-performance liquid chromatography (HPLC), liquid chromatogra-
phy-mass spectrometry (LC-MS), isotopic labeling, and absorbance-based assays 
(McClean et al. 1997; Zhu et al. 2003; Tait et al. 2005; Singh et al. 2006; Yang et al. 
2006; Cataldi et al. 2007; Yan et al. 2007; Pinto et al. 2010; Wang et al. 2010).

6.6.1  Detection Through Bioassays

Numerous bioassays and sensor systems have been developed that allow facile 
detection, characterization, and quantification of microbial acyl HSLs (McClean 
et al. 1997; Zhu et al. 2003; Steindler and Venturi, 2007; Kawaguchi et al. 2008) 
Detection of acyl HSLs has been facilitated by the development of a variety of 
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bioassay strains. Such strains contain an easily assayable reporter gene and lack all 
AHL synthases such that reporter activity requires exogenous AHLs. The AHL 
system identified to date has been made possible mainly by the use of bacterial 
biosensors that are capable of detecting the presence of AHLs. The biosensors do 
not produce AHLs and contain a functional LuxR family protein cloned together 
with a cognate target promoter (usually luxI synthase), which positively regulates 
the transcription of a reporter gene (e.g., bioluminescence, b-galactosidase, green 
fluorescent protein, and violacein production). AHL biosensors have been consti-
tuted based on several LuxR family proteins that detect short and medium acyl 
chain AHLs (C4-C8), long acyl chain AHLs (C10-C12), and 3-hyroxy-AHLs 
(Steindler and Venturi, 2007). Various reporter genes have been employed, including 
lacZ, gfp, lux, and the production of an endogenous pigment.

Different reporter strains have been used in agar-plate-based bioassays; however, 
all methods are basically similar. First, the reporter strain is mixed with agar and 
then the test strain or extract is spotted on top of the agar or in wells. Following a 
sufficient period of incubation, the surroundings of the spots or wells are screened 
for the presence of the reporter gene product (for example, violacein in C. viola-
ceum). However, this approach will not indicate if a sample contains multiple or 
only a single signal molecule. Detection can, however, be accomplished by thin-
layer chromatography. Monitoring through T-streaks or assays of conditioned 
media, AHL biosensors greatly facilitate the characterization of quorum-sensing 
signal molecule(s) produced by a given organism. Other compounds produced by 
the target organism may give false-negative results in these assays because of bac-
tericidal or bacteriostatic effects on the biosensor. The extraction of AHLs from 
spent culture medium using organic solvents (Shaw et al. 1997; Schaefer et al. 
2000) can overcome this problem and also allows for concentration of any AHL 
present. Where possible, transformation of target organisms with biosensor plas-
mids can also circumvent the problem of antimicrobial activity (Zhu et al. 2003). 
Furthermore, the assay of reporter gene expression throughout growth in these 
transformed strains enables any cell-density-dependent production to be deter-
mined. Broad-host-range vectors such as pSB403, based upon pRK415, are best 
suited to this type of study (Winson et al. 1998a). AHL biosensors have also been 
used effectively to screen for recombinant clones of AHL synthase genes in E. coli. 
Genomic libraries prepared from organisms activating the biosensor can be intro-
duced into an E. coli strain containing an AHL reporter plasmid, and the resulting 
transformants can be screened for reporter activation (Winson et al. 1998). 
Alternatively, patched libraries can be screened with biosensor overlays.

6.6.2  Chemical Detection

Thin-layer chromatography, gas chromatography, high-performance liquid chroma-
tography (HPLC), and isotope labeling (Teplitski et al. 2000) are methods com-
monly used to analyze autoinducers. TLC coupled to a specific bioassay is an 
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effective technique that allows the testing of a great variety of isolates. It is useful 
for detection and quantification of autoinducers and to monitor their purification. 
AHLs can be purified by fractionating concentrated supernatant extracts using 
HPLC (Camara et al. 1998) or TLC (Shaw et al. 1997). Separation of supernatant 
with organic molecules (e.g., dichloromethane, ethyl acetate) is made on the basis 
of differences in mass and polarity.

TLC, coupled with a bioreporter, provides a simple and rapid technique for 
assessing the minimum number of different acyl-HSL species produced by a given 
organism (Shaw et al. 1997). Using TLC overlay procedures, fractionation and 
detection is possible within 24 h. Spots of pigmentation or bioluminescence can be 
imaged and compared with known standards on the basis of R

f
. The technique also 

provides limited and preliminary information concerning the nature of these com-
pounds present in extracts of the culture supernatants.

TLC also provides preliminary information on the number and nature of com-
pounds present in the supernatant of bacterial cultures, R

f
 values calculated for the 

samples can be compared with those of the standards. Residual separation can be 
performed on C18 reversed-phase TLC plates (Shaw et al. 1997; Pinto et al. 2010). 
However, structures cannot be assigned based on chromatographic properties alone 
but rather can be assigned on the basis of spectroscopic properties. The most valu-
able tools for characterization are infrared spectroscopy, mass spectrometry, and 
nuclear magnetic resonance spectroscopy (Zhang et al., 1993; Debler et al., 2007; 
Lithgow et al. 2000; Donabedian 2003).

HPLC is an effective method for the fractionation and separation of AHLs for 
structural analysis. Biosensors can be used to identify active HPLC fractions, which 
can then be subjected to mass spectrometry (MS) and nuclear magnetic resonance 
(NMR) spectroscopy. The structure of the predicted molecule can then be con-
firmed by chemical synthesis (Chhabra et al. 1993; Wang et al. 2010).

A colorimetric assay developed by Yang et al. (2006) is a modified method of 
that reported by Goddu et al. (1955) for the analysis of ester molecules. This 
method is rapid, easy to use, and can analyze the quantity of lactone compounds 
and lactonase activity. Its detection limit is approximately 1 nmol for the lactone 
compounds, which is comparable to that of the HPLC method.

6.6.3  Application of Microbial and Chemical Assays

Biosensor-employing Chromobacterium violaceum was constructed by McClean 
et al. (1997), which produces and responds to C6-AHL. C. violaceum CVO26 strain 
is a violaceinand AHL-negative double mini Tn5 mutant in which a transposon is 
inserted into the cviI AHL synthase gene and another into a putative violacein 
repressor locus. Exposure of CVO26 strain to exogenous AHL results in rapid 
 production of violacein. The most active agonist AHL for CVO26 is the natural 
C. violaceum AHL, i.e., C6-AHL. The other AHLs that cause reasonable induction 
are C6-3-oxo-AHL and C8-AHL (six times less active in comparison to C6-AHL), 
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C8-3-oxo-AHL (11 times less active), and C4-AHL (30 times less active). The 
strain responds very poorly to C4-3-oxo-AHL, and AHLs with an acyl chain length 
of C10 and longer have no activity. Further, not all 3-hydroxy-AHLs are detected 
by CVO26. This strain is well suited for detection on solid media via “T” streak 
analysis as well as TLC soft agar overlay technique.

Detection and quantification of long-chain AHLs, in particular C12-3-oxo-AHL, 
can be carried out with P. aeruginosa PAO1 M71LZ, a lasI genomic knockout 
mutant, which contains a transcriptional fusion of promoter of rsaL and reporter 
gene lacZ (Dong et al. 2005). The rsaL gene is directly regulated by the LasI/R 
AHL QS system (de Kievit et al. 1999; Rampioni et al. 2006). Providing C12-3-
oxo-AHL to PAO1 M71LZ results in rsaL transcription via LasR, which is quantifi-
able through determination of b-galactosidase activity. This sensor is also employed 
for C10-3-oxo-AHL.

The Agrobacterium tumefaciens-based AHL biosensor detects a broad range of 
AHLs and also displays the greatest sensitivity toward these compounds (Cha et al. 
1998; Farrand et al. 2002; Zhu et al. 2003). The biosensor consists of a three-
plasmid system (pJZ384) (pJZ410) (pJZ372) in A. tumefaciens KYC55, which 
lacksTi plasmid and does not produce AHL. Plasmid pJZ384 contains TraR gene 
under the control of the phage T7 promoter, pJZ410 contains phage T7 RNA poly-
merase gene, and pJZ372 contains traI–lacZ reporter fusion. This biosensor has 
great sensitivity to a broad range of AHLs and can detect extremely low concentra-
tions. Like other A. tumefaciens-based biosensors, it can also be used for TLC 
analysis. Extracts or supernatant can also be assayed directly and quantification can 
be determined using this biosensor strain (Zhu et al. 2003). The TraI/R AHL system 
is located in the Ti-plasmid and is well characterized, producing and responding to 
C8-3-oxo-AHL. AHL biosensor A. tumefaciens NT1 (pZLR4) consists of strain 
NT1 cured of Ti plasmid and thus unable to produce AHLs. The plasmid contains 
the traR gene, and one of the tra operons containing a traG–lacZ reporter fusion, 
whose transcription is regulated by the TraI/R AHL QS system, is responsible for 
Ti plasmid conjugal transfer (Cha et al. 1998; Farrand et al. 2002). It is sufficiently 
sensitive to many AHLs such that it requires only small amounts of AHL extracts 
(Farrand et al. 2002). The sensor is used by spotting colonies, supernatants, or 
sample extracts onto an overlay of the sensor grown in suitable medium containing 
X-gal. After overnight incubation, the presence of AHLs results in a blue zone 
around the site of application. Similar A. tumefaciens biosensors were constructed, 
namely, WCF47 (Zhu et al. 1998) and A136 (Fuqua and Winans, 1996) harboring 
a plasmid pCF218, which strongly expresses the AHL-responsive transcriptional 
factor TraR, and second a plasmid pCF372 carrying a TraR-regulated promoter traI 
transcriptionally fused to lacZ. This A. tumefaciens biosensor is very sensitive to a 
variety of AHLs ranging from C6–C14 AHL chains (Zhu et al. 1998; Mclean et al. 
2004). A positive test for AHL production was indicated by blue coloration due to 
lacZ expression and X-gal hydrolysis in the biosensor (Fuqua and Winans 1996; 
Zhu et al. 1998; Mclean et al. 2004).

Several other biosensors have been developed that depend on a plasmid con-
struct harboring the luxCDABE operon of Photorhabdus luminescens resulting in 



138 I. Ahmad et al.

bioluminescence as a reporter system (Winson et al. 1998). These plasmids are 
usually harbored in Escherichia coli, which does not produce AHLs. Plasmid 
pSB401 (Winson et al. 1998) and pHV200I− (Pearson et al. 1994) are both based 
on the LuxR of V. fischeri and cognate luxI promoter controlling luxCDABE expres-
sion. The presence of AHLs, therefore, induces bioluminescence, which in a TLC 
analysis can be easily detected by exposing the TLC overlaid with biosensor to 
autoradiographic paper. They are most sensitive to cognate C6-3-oxo-AHL and 
display good sensitivity for C6-AHL, C8-3-oxo-AHL, and C8-AHL. These biosen-
sors need photon camera equipment and, therefore, are not easy to use. These two 
LuxR biosensors, E. coli (pSB401) and E. coli (pHV200I−), can be employed for 
the quantification of AHLs with the help of a luminometer (Winson et al. 1998). 
pSB403 contains the same arrangement of pSB401 (i.e., luxR and promoter of luxI 
controlling luxCDABE expression) cloned in a wide-host-range mobilizable plas-
mid, which provides the advantage that it can be harbored in several other Gram-
negative bacteria (Winson et al. 1998). A biosensor sensitive for C4-AHL is E. coli 
(pSB536). The plasmid is constructed using ahyR of Aeromonas hydrophila and 
cognate ahyI gene promoter fused to luxCDABE. Similarly, E. coli (pAL101) is 
another plasmid-based sensor responding to C4-AHL. This construct is composed 
of rhlR and cognate promoter rhlI fused to luxCDABE (Lindsay and Ahmer 2005). 
The RhlI/R AHL QS system belongs to Pseudomonas aeruginosa, and C4-AHL is 
the cognate signal molecule. This plasmid-based sensor works best if harbored in 
E. coli sdiA gene mutant. SdiA is an orphan LuxR family protein present in E. coli 
that can activate the rhlI promoter, thus interfering with C4p-AHL detection 
(Lindsay and Ahmer 2005). E. coli does not have SdiA cognate LuxI family syn-
thase and does not synthesize AHL.

Plasmid sensor pSB1075 contains lasR gene and cognate lasI gene promoter 
controlling luxCDABE expression (Winson et al. 1998). This plasmid can be har-
bored in E. coli, which responds well to C12-oxo-AHL, C10-oxo-AHL, and C12-
AHL. Another E. coli plasmid sensor also based on the LuxI/R system is pKDT17 
(Pearson et al. 1994). This plasmid contains lasR under the control of the lac pro-
moter and a lasB–lacZ translational fusion; hence, response to exogenous AHL is 
detected via b-galactosidase activity. The lasB gene encodes for an elastase, regu-
lated by the LasI/R AHL QS system. The E. coli (pKDT17) AHL biosensor 
responds strongly to C12-AHL, C10-AHL, and their derivatives; it does not detect 
any of the shorter and 3-hydroxy AHLs, however (Cha et al. 1998). Both biosensors 
can be used for the quantification of AHL.

To detect 3-hydroxy-AHLs, specific sensors have been developed based on the 
PhzI/R AHL QS system of Pseudomonas flourescens 2-79 (Khan et al. 2005). 
PhzI/R regulates the expression of the phzABCDEFG operon responsible for the 
biosynthesis of phenazine-1-carboxylate, an antimicrobial compound. PhzI of P. 
fluorescens is responsible for the production of six different AHLs of which the 
dominant and cognate signal is C6-3-hydroxy-AHL. The biosensor consists of two 
plasmid systems harbored in the wild-type P. fluorescens 1855 strain, which does 
not produce AHLs. Plasmid pSF105 harbors the phzR gene under the control of the 
trc promoter, and the other plasmid, pSF107, contains the phzR–phzA divergent 
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PhzR-regulated dual promoter region fused between oppositely oriented uidA and 
lacZ reporters, which are detectable by b-glucuronidase and b-galactosidase activity, 
respectively. Using the phzA–lacZ reporter in pSF107, the AHL sensor responds 
best to C6-3-hydroxy-AHL with tenfold less sensitivity to C8-3-hydroxy-AHL. 
This sensor can be used in TLC analysis, and quantification can be carried out by 
measuring either b-glucuronidase or b-galactosidase activity (Khan et al. 2005).

A novel plasmid (pEAL01) has been constructed and transformed into 
Pseudomonas aeruginosa QSC105 for the detection of a broad range of acyl-
homoserine lactones through the induction of lasB–lacZ transcriptional fusion 
(Ling et al. 2009). Monitoring b-galactosidase activity from this bioassay showed 
that P. aeruginosa (pEAL01) could detect the presence of eight acyl-homoserine 
lactones tested at physiological concentrations (Bernier et al. 2008).

Lukas et al. (2008) used Vibrio harveyi strain BB170-autoinducer bioassay to 
detect quorum-sensing autoinducer-2 molecule (AI-2) in culture fluids of commen-
sal intestinal bacteria. Culture fluids of Bacteroides vulgatus, Clostridium proteo-
clasticum, Escherichia coli, Eubacterium rectale, Lachnospira multipara, 
Pseudobutyrivibrio ruminis, Roseburia intestinalis, Ruminococcus albus, and 
Ruminococcus flavefaciens contained AI-2-like molecules.

Recently, several authors have reported the use of different biosensor strains in 
the detection of signal molecules (Li et al. 2008, 2010; Tao et al. 2009; Lipasova 
et al. 2009; Savka et al. 2010; Zhao et al. 2010).

6.7  Interferences in Bacterial Quorum Sensing

Quorum sensing helps to coordinate community-based bacterial behavior, but it 
is not essential for bacterial survival; therefore, inhibition of QS only interrupts  
the desired phenotype. For example, inhibition of QS may attenuate virulence, 
reduce biofilm formation, and increase bacterial sensitivity to drug therapy, and in 
some cases, turning on quorum sensing at an early stage itself may attenuate bacte-
rial virulence. Therefore, inhibition of bacterial quorum sensing may not bring 
about a universally beneficial effect. Also, inhibition is useful as in the production 
of adjuvants, since no bactericidal and/or bacteriostatic effects are necessarily pro-
duced. Furthermore, bacterial quorum sensing is not a singular event, as at least six 
QS pathways have been identified so far (Ni et al. 2009).

Different bacteria may use different pathways and autoinducers to regulate QS; 
for example, only Gram-negative bacteria use acylated homoserine lactones (AHL) 
as autoinducers, while only Gram-positive bacteria use autoinducing peptides 
(AIP) as autoinducers. However, autoinducer-2 (AI-2) mediates quorum sensing in 
both Gram-positive and Gram-negative bacteria. However, blocking QS has 
attracted scientists to a number of applications in controlling diseases in both 
humans and plants. On the other hand, blocking QS hopefully provides more infor-
mation for exploring the exact contribution of such systems in bacterial cell–cell 
communication, along with traits and genes involved in such process.
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There are several ways to inhibit quorum sensing in their respective pathway(s) 
as described by many workers (Defoirdt et al. 2004; Gonzalez and Keshavan 2006; 
Guoliang and Mingxia 2009; Ni et al. 2009):

 1. Inhibition of signal molecule biosynthesis
 2. Blocking signal transduction
 (a) Inhibition of autoinducer transport/secretion
 (b) Inhibition of targets downstream of receptor binding
 (c) Sequestration of autoinducers using, for example, antibodies against 

autoinducers
 3. Chemical inactivation and biodegradation of signal molecules
 (a) Degradation of autoinducers using either enzymes (such as lactonases) or 

catalytic antibodies (abzymes)
 4. Inhibition of receptor molecules
 (a) Using antibodies that “cover” and therefore block autoinducer receptors
 (b) Autoinducer receptor antagonism

These strategies can be applied to achieve inhibition in AIP-mediated QS (Gram-
positive), AHL-mediated QS (Gram-negative), and AIP-2-mediated QS. However, 
our focus in this chapter is on inhibition of AHL-mediated QS.

6.7.1  Inhibition of AHL-Mediated QS

6.7.1.1  Inhibition of Signal Molecule Biosynthesis

Most Gram-negative bacteria use AHLs as signaling molecules in quorum sens-
ing. Different bacteria could share the same AHL or use their own autoinducers 
(AIs). Knowledge about signal generation can be exploited to develop quorum-
sensing inhibitor molecules that target AHL signal generation. Various analogues 
of SAM, such as S-adenosylhomocysteine, S-adenosylcysteine, and sinefungin, 
have been demonstrated to be potent inhibitors of AHL synthesis catalyzed by the 
P. aeruginosa RhlI protein (Hoang and Schweizer 1999). Synthesis of AHL com-
pounds by a LuxI or its homologue is the critical first step in the AHL-mediated 
quorum-sensing process. S-adenosylmethionine (SAM) is the precursor of AHL; 
therefore, inhibitors of SAM-utilizing enzymes can interfere with AHL-mediated 
quorum sensing.

Parsek et al. (1999) reported that analogues of S-adenosylmethionine (such as 
S-adenosylcysteine) inhibited activity of the Pseudomonas aeruginosa LuxI homo-
logue RhlI by up to 97%. Since no AHL synthase sequence motifs were found in 
other enzymes with S-adenosylmethionine binding sites, it is possible to use the 
S-adenosylmethionine analogues as specific quorum-sensing inhibitors without 
affecting other vital processes in prokaryotic or eukaryotic organisms.

Lesic et al. (2007) identified halogenated AA analogues that specifically 
inhibited HAQ biosynthesis and disrupted MvfR-dependent gene expression. 
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These compounds restricted P. aeruginosa systemic dissemination and mortality in 
mice without perturbing bacterial viability, and inhibited osmoprotection, a wide-
spread bacterial function. The Pseudomonas aeruginosa MvfR-dependent QS regu-
latory pathway controls the expression of key virulence genes and is activated via 
the extracellular signals 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-
heptylquinoline (PQS), whose synthesis depend on anthranilic acid (AA), the pri-
mary precursor of 4-hydroxy-2-alkylquinolines (HAQs). These compounds provide 
a starting point for the design and development of selective anti-infectives that 
restrict human P. aeruginosa pathogenesis and possibly other clinically significant 
pathogens.

6.7.1.2  Blocking Signal Transduction

Blocking of quorum-sensing signal transduction can be achieved by an antagonist 
molecule capable of competing or interfering with the native AHL signal for binding 
to the LuxR-type receptor. Competitive inhibitors would conceivably be structur-
ally similar to the native AHL signal to bind to and occupy the AHL-binding site 
but fail to activate the LuxR-type receptor. Noncompetitive inhibitors may show 
little or no structural similarity to AHL signals, as these molecules bind to different 
sites on the receptor protein. Several reports describe the in vitro application of 
AHL analogues to achieve inhibition of the quorum-sensing circuits of various 
bacteria (Zhu et al. 1998; Parsek et al. 1999; Rasmussen and Givskov 2006).

 Synthetic Analogues for Quorum Sensing Autoinducers

A variety of structural analogues for different AHL molecules have been studied for 
their effects on the quorum-sensing system of the related bacterial strain. A study 
on the analogues of 3-oxo-C8-HSL shows that the nature of the agonistic or antago-
nistic activity strongly depends on the expression of the TraR protein (Zhu et al. 
1998; Parsek et al. 1999). Overexpression of the response regulator, as seen in the 
case of several reporter strains, results in recognition of most AHL analogues as 
agonists. In the study of Gonzalez and Keshavan (2006), wild-type levels of TraR 
identified 3-oxo-C7-HSL, 3-oxo-C11-HSL, and 3-oxo-C12-HSL as agonists. Most 
of the 33 compounds tested inhibited AHL-dependent gene expression. C8-HSL, 
3-oxo-C6-HSL, C7-HSL, C10-HSL, and 3-OH-C9-HSL were identified as the 
most effective antagonists. Overall, the agonistic or antagonistic activity, each 
requiring binding to TraR, is effective only when the acyl chain lengths are closer 
to that of the cognate AHL, 3-oxo-C8-HSL. When TraR was overexpressed, the 
bacterium was more sensitive to low concentrations of 3-oxo-C8-HSL than its par-
ent strain (Gonzalez and Keshavan 2006).

Similar studies conducted with synthetic analogues for cognate AHLs of other 
quorum-sensing systems indicate that the homoserine lactone ring is very impor-
tant for biological activity, while the nature of the acyl chains was not that critical 
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for binding the response regulator (Reverchon et al. 2002). Olsen et al. (2002) 
synthesized AHL analogues based on the strategy that modifying the conserved 
lactone head group of AHLs will probably result in antagonistic molecules with a 
broader application range. Based on their observations, they concluded that the 
analogues with C-4 substitutions on the lactone ring were weak activators, imply-
ing that this part of the molecule is crucial for recognition by LuxR, whereas 
substitution at the third position on the lactone ring resulted in activators of LuxR. 
Two compounds containing carbamate lactones were identified as inhibitors, 
although they appeared to be less efficient than a furanone. Another study aimed 
at synthesizing analogues to 3-oxo-C6-HSL and C6-HSL with either ramified 
cycloalkyl or ramified aryl substituents at the C-4 position of the acyl chain. The 
authors concluded that the inducing activity is retained if one branch is introduced 
at the C-5 position of the acyl chain. The best antagonists were compounds with a 
phenyl group or a phenyl bearing a heteroatom in the para position. Naphthyl and 
biphenyl compounds showed no activity, probably due to steric hindrance. They 
also observed that the 3-oxo group, which is important for the inducing activity, also 
favors the antagonistic activity of phenyl derivatives. Overall, the secondary alkyl 
derivatives had agonistic activity, while the aryl and tertiary alkyl derivatives had 
antagonistic activity when tested with an E. coli-based luminescent biosensor 
strain containing a plasmid with the lux genes from V. fischeri (Gonzalez and 
Keshavan 2006).

Kelly et al. (2009) synthesized an analogue for the CAI-1 autoinducer in Vibrio 
cholerae, the bacterium that causes cholera. Control of virulence factor production 
and biofilm development is dependent on response to two extracellular quorum-
sensing molecules, i.e., autoinducers. The strongest autoinducer, termed CAI-1 
(for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-
one. Biosynthesis of CAI-1 requires the enzyme CqsA. These workers determined 
the CqsA reaction mechanism, identified the CqsA substrates as (S)-2-aminobutyrate 
and decanoyl coenzyme A, and demonstrated that the product of the reaction is 
3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produced amino-CAI-1 by a 
pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is 
converted into CAI-1 in a subsequent step via a CqsA-independent mechanism. 
They further found that cells release ³100 times more CAI-1 than amino-CAI-1. 
Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas 
other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 
and amino-CAI-1 have potential as lead molecules in the development of an anti-
cholera treatment.

Recently, Chan et al. (2010) have identified the aiiA homologue, encoding an 
autoinducer inactivation enzyme catalyzing the degradation of N-acylhomoserine 
lactones of KM1S, a bacterial strain isolated from a Malaysian rainforest soil 
sample. A defined enrichment medium was used that specifically facilitated selec-
tion of quorum-quenching bacteria, which were amplified and cloned. Sequence 
analysis indicated the presence of the motif 

106
HXDH-59 amino acids-H

169
-21 

amino acids-D
191

 for N-acylhomoserine lactone lactonases. It degraded N-3-oxo-
hexanoyl homoserine lactone and N-3-oxo-octanoyl homoserine lactone in vitro 
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rapidly at 4.98 and 6.56 mg AHL h−1 per 109 CFU/ml, respectively, as determined 
by the Rapid Resolution Liquid Chromatography.

These studies have generated substantial knowledge about the structure–function 
relationships of AHL signals, which is of great value for the continued search for 
potent quorum-sensing inhibitors. Such AHL antagonists can be synthesized and are 
classified on the basis of whether the structural modification was on (1) the lactone 
ring, (2) the acyl side chain, or (3) both the acyl side chain and lactone ring.

 Modification of the Acyl Side Chain

As mentioned earlier, different AHLs are functional in different bacteria. 
Because of the structural diversity in AHLs, there are also different receptors/
regulators that respond in a specific fashion to specific AHLs. For example, 
AhyR exists in A. hydrophila, Rhl and LasR in P. aeruginosa, SwrR in S. lique-
faciens, CviR in C. violaceum, LuxR in V. fischeri, LuxN in V. harveyi, TraR in 
A. tumefaciens, and VanR in V. anguillarum (Whitehead et al. 2001). Some 
AHLs can be agonists in certain bacterial species and strains but serve as antago-
nists in others. One interesting observation in AHL-mediated quorum sensing is 
that it is common for AHLs with long side chains to antagonize the function of 
AHLs with short side chains.

Acyl side chain modified AHL analogues were mostly studied for their ability 
to antagonize the effect of natural ligands through receptor binding in bacteria such 
as V. fischeri (Reverchon et al. 2002), P. aeruginosa (Kline et al. 1999), and A. 
tumefaciens (Zhu et al. 1998). It has been found that most quorum-sensing receptors 
respond to analogues that differ from the natural ligands by only two carbons. Too 
many changes could eliminate their agonist effect. It has also been found that the 
homoserine lactone ring is very important to the activities of these analogues com-
pared with the acyl chain (Schaefer et al. 1996). Interestingly, AHL analogues with 
a longer side chain than the native AHL generally appear to be more efficient 
inhibitors than AHL analogues with a shorter side chain.

In one study of quorum sensing in E. carotovora, it was reported that increasing 
the length of the acyl side chain by one methylene unit reduced activity by 50%, 
whereas a two unit extension reduced activity by 90%. Decreasing the chain length 
by one methylene unit decreased activity to 10% (Chhabra et al. 1993). A study 
investigating the P. aeruginosa LasR receptor suggested that the fully extended 
chain geometry is necessary for activation, whereas constrained analogues locked 
into different conformations showed no activity (Kline et al. 1999).

Recently, Bokhove et al. (2010) have reported the first crystal structure of an 
AHL amidohydrolase, the AHL acylase PvdQ from Pseudomonas aeruginosa. 
PvdQ has a typical a/b heterodimeric Ntn-hydrolase fold, similar to penicillin G 
acylase and cephalosporin acylase. However, it has a distinct, unusually large, 
hydrophobic binding pocket, ideally suited to recognize C12-fatty-acid-like chains 
of AHLs. Binding of a C12 fatty acid or a 3-oxo-C12 fatty acid induces subtle 
conformational changes to accommodate the aliphatic chain.
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 Modification of the Lactone Ring

The homoserine lactone moiety is generally very sensitive to modifications, and the 
chirality is crucial to biological activity. Natural AHL signals are l-isomers, 
whereas d-isomers are generally devoid of biological activity (Chhabra et al. 1993). 
The acyl side chain appears essential for activity, as exemplified in E. carotovora, 
where the unsubstituted homoserine lactone ring fails to activate the quorum-
sensing system. Conversion of the homoserine lactone ring to a homoserine lactame 
ring results in a molecule without agonistic or antagonistic properties. A change of 
the homoserine lactone structure to a homoserine thiolactone ring appears permis-
sible in several quorum-sensing systems (Schaefer et al. 1996). A recent study has 
showed that LasR and RhlR proteins responded differently to changes in the homo-
serine lactone moiety (Smith et al. 2003). This may indicate that the two P. aerugi-
nosa AHL receptors differ significantly in their AHL binding sites.

As mentioned earlier, the quorum-sensing system in P. aeruginosa is controlled 
by two distinct yet interrelated pathways (Pearson et al. 1997), the las and rhl sys-
tems. There are two receptor proteins, LasR and RhlI, and two autoinducers (PAI1 
and PAI2) belonging to the AI-1 family. Smith et al. (2003) synthesized a library of 
analogues of P. aeruginosa autoinducers PAI1 and PAI2, in which the respective 
3-oxo-C12 and the C4 side chains were retained and the lactone portion was 
changed to different amines, alcohols, and ketones. The compounds were tested 
using the PAO-JP2 strain of P. aeruginosa in which both AI synthase genes, lasI 
and rhlI, were removed (Pearson et al. 1997).

Recently, Chen et al. (2010) have isolated the AHL-lactonase (AiiA
B546

) from 
Bacillus sp. B546 that was produced extracellularly in P. pastoris with a yield of 
3,558.4 ± 81.3 U/mL in a 3.7-L fermenter when using 3-oxo-C8-HSL as the substrate.

 Simultaneous Modifications on Both the Lactone Ring and Side Chain

Thomas et al. (2006) studied more quorum-sensing agonists/antagonists by under-
standing the immunomodulatory effects of AHL analogues in pathogenic bacterium 
P. aeruginosa and synthesized four AHL analogues. Instead of changing only the 
acyl chain, the lactone head group was changed to a 2-pyridyl analogue (Welch 
et al. 2000, a LasR antagonist) and to nonhydrolyzable cyclic ketones (Zhu and 
Winans 2001).

6.7.1.3  Chemical Inactivation and Biodegradation of Signal Molecules

Bacterial cell-to-cell communication can be inhibited by a decrease in the active signal-
molecule concentration in the environment. AHL decay might be a consequence of a 
nonenzymatic reaction, e.g., AHL signals are subject to alkaline hydrolysis at high pH 
values (Yates et al. 2002). Some bacteria have been reported to specifically degrade 
AHL signals (Dong et al. 2000; Leadbetter and Greenberg 2000).
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 Chemical Inactivation

AHL could be chemically inactivated via alkaline hydrolysis, such as through 
 oxidized halogen antimicrobials. These antimicrobials, at a concentration of 
approximately 0.14 mmol L−1, were found to decrease the concentration of  
3-oxo-substituted AHL to about one fourth after 1-min incubation but had no effect 
on unsubstituted ones. Moreover, the inactivation of 3-oxo-substituted AHL was 
shown to proceed in the presence of polysaccharide biofilm compounds despite the 
much higher concentration of the latter compared to the AHL concentration 
(Borchardt et al. 2001; Francesco et al. 2007).

 Biodegradation

Some bacteria block the quorum-sensing systems of their bacterial competitors to 
obtain a selective advantage. The actual inactivation of the signal compound can be 
mediated by two types of enzymes, namely, AHL lactonases and AHL acylases. 
Further, research has demonstrated that genes encoding AHL-degrading lactonases 
are widespread in many Bacillus species (Lee et al. 2002; Dong et al. 2004). These 
AiiA homologues showed about 90% sequence homology at the amino-acid level. 
Dong et al. (2000) were the first to highlight that enzymatic AHL inactivation could 
be used as a biocontrol strategy and found a Bacillus species strain 240B1, which 
produced an enzyme termed AiiA that catalyzed the hydrolysis of AHL molecules. 
The purified enzyme, at a concentration of 50 mg L−1, reduced the concentration of 
N-(3-oxohexanoyl)-l-homoserine lactone from 20 mmol L−1 to about 5 mmol L−1 
after 10 min (Dong et al. 2001; Park et al. 2007).

Expression of the aiiA gene in the plant pathogen Erwinia carotovora resulted 
in reduced release of AHL signals, decreased extracellular pectolytic enzyme activity, 
and attenuated soft rot disease symptoms in all plants tested (Dong et al. 2000). 
Moreover, transgenic plants expressing AiiA have been shown to be significantly 
less susceptible to infection by E. carotovora (Dong et al. 2001). In another study, 
Leadbetter and Greenberg (2000) isolated a strain Variovorax paradoxus VAI-C 
from a soil sample and demonstrated that V. paradoxus cleaves the AHL by an AHL 
acylase enzyme, releasing homoserine lactone and a fatty acid. The V. paradoxus 
strain is able to grow using 3-oxo-C6-N homoserine lactone as the sole energy and 
nitrogen source. Molina et al. (2003) also tested the efficacy of using an AHL-
degrading Bacillus sp. strain for the biocontrol of plant diseases. Lin et al. (2003) 
isolated an AHL-inactivating bacterium, Ralstonia sp. Strain XJ12B, from a mixed-
species biofilm. The enzyme responsible for the AHL-inactivating activity (AiiD) 
was purified, and subsequently, N-(3-oxodecanoyl)-l-homoserine lactone was incu-
bated with the purified enzyme. Electrospray ionization-mass spectrometry of the 
hydrolysis product demonstrated that the AiiD enzyme hydrolyzes the amide bond 
of AHLs. Moreover, Xu et al. (2003) investigated the ability of a eukaryotic coun-
terpart of these bacterial enzymes to inactivate AHL molecules. Different AHLs 
were shown to be inactivated by the porcine kidney acylase I enzyme. Since the 
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inactivation was greatest at high pH values, the effect could have been due to simple 
alkaline hydrolysis of the lactone ring.

A list of AHL-degrading enzymes produced by prokaryotes and eukaryotes is 
given in Table 6.2. More recently, other authors have reported production of chemi-
cals by bacteria that disrupt the QS system in other bacterial cells (Lesic et al. 2007; 
Chan et al. 2010; Chen et al. 2010).

6.7.2  Inhibition of Other Quorum-Sensing Systems

Mechanisms similar to inhibition in AHL-mediated QS have been reported by various 
workers in AI-2-mediated and also in AIP-mediated QS systems (Ni et al. 2009). 
In brief, inhibitors targeting histidine kinase or antagonists that target the AIP 
receptor have been described for inhibition of QS among Gram-positive bacteria 
(Wright et al. 2004). Inhibitors targeting synthesis of AI-2 have been reported by 
several workers (Zhu et al. 2004; Alfaro et al. 2004; Singh et al. 2006). Inhibition 
has also been achieved by blocking the AI-2 receptor and by the use of AI-2 antago-
nists (Niu et al. 2006; Ni et al. 2008, 2009).

6.7.3  Quorum-Sensing Inhibitors Expressed  
by Higher Organisms

A number of reports describe the ability of higher organisms to interfere with AHL-
mediated quorum sensing. Several workers have found that plant and animal hosts 
produce quorum-sensing antagonists that can bind to quorum-sensing response 
regulators but fail to activate them (Defoirdt et al. 2004; Gonzalez and Keshavan 

Table 6.2 Occurrence of AHL degradation enzymes in prokaryotes and eukaryotes 
[adapted from Dong and Zhang (2005)]

Species Genes Enzymes

Prokaryotes
Bacillus sp.240B1 aiiA AHL Lactonase
B. thuringiensis aiiA homologues AHL Lactonase
B. cereus aiiA homologues AHL Lactonase
Agrobacterium tumefaciens attM, aiiB AHL Lactonase
Arthrobacter sp.IBN110 ahlD AHL Lactonase
Klebsiella pneumoniae ahlK AHL Lactonase
Ralstonia strain XJ12B aiiD AHL Acylase
Pseudomonas strain PAI-A pvdQ AhL Acylase
P. aeruginosa PAO1 pvdQ AHL Acylase

Eukaryotes
Human (airway epithelia) PONs Lactonase
Porcine (kidney) ACY1 Acylase I
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2006). Many plants and fungi have co-evolved and established carefully regulated 
symbiotic associations with bacteria. Many plant-associated proteobacteria possess 
AHL-mediated quorum-sensing systems (Cha et al. 1998; Manefield and Turner 
2002). Importantly, both plants and fungi are devoid of the active immune systems 
that are observed in mammals; rather, they rely on chemical defense systems to 
respond to bacteria in the environment. For these reasons, it might be expected that 
plants and fungi have evolved to produce chemical compounds to inhibit (or in 
other cases to stimulate) bacterial AHL-mediated communication.

6.7.3.1  Inhibition of QS by Halogenated Furanone Compounds

The ability of bacteria to form biofilms is a major challenge for organisms at risk 
of infection, such as humans, other animals, and marine eukaryotes. Marine plants 
in the absence of an advanced immune system are prone to disease (Fenical 1997). 
Bacteria can be highly detrimental to marine algae and other eukaryotes (Littler and 
Littler 1995). The best-characterized example is that of the Australian red marine 
macroalga Delisea pulchra. It has developed a defense mechanism to protect itself 
from extensive bacterial colonization (Givskov et al. 1996). The alga produces a 
range of halogenated furanones [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-
furanones] as antagonists for AHL-mediated quorum sensing and display antifouling 
and antimicrobial properties (de Nys et al. 1996). The halogenated furanones most 
probably bind to LuxR family proteins without activating them (Manefield et al. 
1999; Rasmussen et al. 2000). This particular alga originally attracted the attention 
of marine biologists because it was devoid of surface colonization, i.e., biofouling, 
unlike other plants in the same environment. Biofouling is primarily caused by 
marine invertebrates and plants, but bacterial biofilms are believed to be the first 
colonizers of submerged surfaces, providing an initial conditioning biofilm to 
which other marine organisms may attach (Rice et al. 1999). Therefore, the abun-
dance and composition of the bacterial community on the surface will significantly 
affect the subsequent development of a macrofouling community (Belas 2003). 
Extensive experimental evidence in support of this model has accumulated in recent 
years. This includes the observations that furanones (a) repress AHL-dependent 
expression of V. fischeri bioluminescence (Manefield et al. 1999), (b) inhibit AHL-
controlled virulence factor production and pathogenesis in P. aeruginosa (Hentzer 
et al. 2003), (c) inhibit quorum-sensing-controlled luminescence and virulence of 
the black tiger prawn pathogen Vibrio harveyi (Manefield et al. 2000), and (d) 
inhibit quorum-sensing-controlled virulence of E. carotovora (Manefield et al. 
2001). The natural furanone compounds have little or no effect on the quorum-
sensing systems of P. aeruginosa. The furanone-repressed genes include many 
previously known as quorum-sensing-regulated genes, including numerous 
P. aeruginosa virulence factor genes such as lasB (encoding elastase), lasA (encoding 
LasA protease), rhlAB operon (regulating rhamnolipid production), phzA-G operon 
(encoding phenazine biosynthesis), hcnABC operon (regulating hydrogen cyanide 
production), and chiC (encoding chitinase).
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Ren et al. (2001) found that the natural furanone compound (5Z)-4-bromo-5-
(bromomethylene)-3-butyl-2(5H)-furanone could also inhibit the AI-2-mediated 
quorum sensing in V. harveyi and E. coli. Defoirdt et al. (2007) studied the 
molecular mechanism of action and found that this furanone at 323 mM blocks 
three quorum-sensing pathways, AI-1, AI-2, and CAI-1, in V. harveyi by decreasing 
the DNA-binding activity of the master transcriptional regulator protein LuxRvh, 
which is the protein downstream of all the three quorum-sensing systems in 
V. harveyi.

It is notable that the synthetic furanones, in concentrations that significantly 
lower quorum-sensing-controlled gene expression in planktonic cells, were equally 
active against biofilm bacteria, despite the profoundly different modes of growth. 
Several furanone-based structural analogues have been synthesized and analyzed 
for their QSI activity. A recent study has reported the isolation of two natural prod-
ucts from a marine sponge and a Pseudomonas sp. that were structurally similar to 
furanones. These compounds, isocladospolide and acaterin, were used as templates 
for further modifications, and the resulting compounds were tested against LuxR-
based E. coli biosensor strains. The 5H-furan-2-ones substituted with short alkyl 
chains were, in general, more antagonistic than the longer alkyl chain counterparts. 
Also, a substitution at the C-3 or C-5 position of the alkyl chain resulted in the most 
active antagonists (de Nys et al. 1996).

Synthetic furanones were initially tested on mouse lungs infected with E. coli 
strains carrying luxR–pluxI–gfp-based quorum-sensing sensors. AHL-dependent 
GFP expression was completely inhibited by intravenous injection of the active 
furanones. This inhibition was overcome by providing excess amounts of AHLs. 
This suggested that the synthetic furanones were transported via the blood to the 
lungs, entered lung tissue, and inhibited 3-oxo-C6-HSL-dependent gene expres-
sion in the bacteria. The death of mice inoculated with wild-type P. aeruginosa 
PAO1 was significantly delayed when they were treated with synthetic furanone, 
although the furanone could not prevent the death of the mice. In addition, there 
were fewer CFU of the bacteria on the furanone-treated lung surfaces compared 
to untreated controls. This suggests that the ability of the bacteria to colonize 
may be greatly reduced owing to inhibition of quorum sensing or because bacte-
rial clearance from the lungs was enhanced due to furanones (Wu et al. 2004).  
A C. violaceum-based screen for QSI compounds used natural and chemically 
synthesized furanones and aimed at identifying compounds that either inhibited 
or enhanced quorum-sensing-dependent behavior. The authors designed a microtiter-
dish-based assay that differentiated between compounds that affect growth, 
activate quorum sensing in C. violaceum strain CVO26, inhibit violacein forma-
tion induced by the cognate AHL, or enhance violacein formation in the presence 
of AHL. They found that some furanones were toxic at a higher concentration 
but inhibited quorum sensing at a much lower, nontoxic concentration. Several 
compounds were found to enhance quorum sensing at suboptimal C6 HSL con-
centrations but were antagonistic when optimal concentrations of C6 HSL were 
present. This study reflects on the variability of the activity of a given compound 
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based on its concentration as well as the availability of quorum-sensing-activating 
AHLs (Martinelli et al. 2004).

6.7.3.2  Inhibition of QS by Plant Products

It is known that exudates from higher plants such as peas, rice, soybeans, tomatoes, 
crown vetch, and Medicago truncatula (Barrel clover) also influence AHL-
mediated quorum sensing. Reverse-phase high-performance liquid chromatography 
revealed that there are several different AHL-mimicking substances present in 
extracts from pea and M. truncatula seedlings (Gao et al. 2003). These plants 
secrete substances that stimulate AHL-dependent quorum sensing as well as sub-
stances that inhibit such responses. Recently, similar results have been obtained for 
microalgae (Teplitski et al. 2004; Francesco et al. 2007). The algae Chlamydomonas 
reinhardtii, Chlamydomonas mutablis, Chlorella vulgaris, and Chlorella fusca all 
stimulated quorum-sensing-regulated luminescence in wild-type V. harveyi.

Recently, another example of eukaryotic interference with AHL-mediated sig-
naling has been provided by Teplitski et al. (2000), who showed that several plants 
secrete substances that mimic bacterial AHL signal activities and affect quorum-
sensing-regulated behaviors in associated bacteria. Exudates from pea (Pisum 
sativum) were demonstrated to exhibit several distinct activities that either stimu-
lated or inhibited bacterial AHL-dependent phenotypes.

In a study by Adonizio et al. (2006), out of 50 medicinal plants from southern 
Florida screened for anti-QS activity, six showed QS inhibition: Conocarpus erectus 
L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), 
Callistemon viminalis (Sol. ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. 
(Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus 
virginiana Mill. (Fagaceae). This study introduced not only a new mode of action 
and possible validation for traditional plant use but also a potentially new therapeutic 
direction for the treatment of bacterial infections.

Canavanine exuded from alfalfa seeds has been shown to possess the potential 
to affect the population biology of Bacillus cereus (Emmert et al. 1998). l-Canavanine 
is incorporated in the place of l-arginine into nascent protein chains during synthesis, 
resulting in altered protein structure and function and eventually leading to death of 
the targeted cell (Bence and Crooks 2003).

l-Canavanine is an arginine analogue found exclusively in the seeds of legumes. 
It has been reported to be as abundant as up to 5% (dry weight) of some leguminous 
seeds. In addition to serving as a nitrogen source for the germinating seedlings, 
l-canavanine is also known to serve as an allelopathic substance by inhibiting the 
growth of certain bacteria and phytophagous insects (Gonzalez and Keshavan 
2006).

Recently, Khan et al. (2009) have revealed anti-QS activity of clove oil. They 
showed inhibition of QS-linked behavior in C. violaceum 12472, C. violaceum 
O26, and P. aeruginosa PAO1.
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6.7.4  Practical Significance of Bacterial QS Modulation  
in the Environment/Agriculture

6.7.4.1  Roles of AHL-Degradation Enzymes in Host

AHL lactonases and AHL acylases are of microbial origins and were originally 
identified because of their activity against AHL signals (Leadbetter and Greenberg 
2000; Lin et al. 2003). Studies have focused on their roles in microbe–microbe 
interactions and microbial physiology. It has recently been shown that an AHL 
lactonase producing strain of B. thuringiensis suppresses the QS-dependent viru-
lence of the plant bacterial pathogen E. carotovora through a new form of microbial 
antagonism, signal interference (Dong et al. 2004). E. carotovora produces and 
responds to AHL signals to regulate the antibiotic production and expression of 
virulence genes; such QS-synchronized functions could be of critical importance 
for the pathogen in competing for ecological niches in microbe–microbe competi-
tion and pathogen–host interactions. Similarly, the expression of AHL lactonase in 
isolates of the soil bacterium P. fluorescens produces a similar effect in the biocon-
trol of E. carotovora (Molina et al. 2003). These data clearly indicate that AHL 
lactonase plays a significant role in obtaining competitive advantages for its pro-
ducer over that of its competitors in natural ecosystems.

The findings that PON enzymes could degrade AHL signals (Chun et al. 2004) 
suggest that these generic hydrolytic enzymes may also contribute to defense 
against pathogenic invaders. Characterization of their specificity and efficiency in 
AHL degradation, as well as their expression pattern, would allow for a thorough 
assessment of their roles in pathogen–host interactions.

6.7.4.2  Biotechnological and Pharmaceutical Implications  
of AHL Degradation Enzymes

Because bacterial quorum sensing is implicated in various pathologically relevant 
events, it is conceivable that inhibitors of bacterial quorum sensing could have thera-
peutic applications. Given that QS-deficient mutants of bacterial pathogens are defec-
tive in virulence gene expression and become avirulent, it might be possible to control 
bacterial infections by quenching the QS signaling of microbial pathogens (Jiang and 
Su 2009; Choudhary and Dannert 2010). The discovery of quorum-quenching 
enzymes, in addition to quorum-sensing inhibitors (Zhang and Dong 2004), has pro-
vided essential tools to assess the feasibility of this novel strategy. The expression of 
a quorum-quenching enzyme, regardless of an AHL lactonase or AHL acylase, either 
in the plant or human pathogens E. carotovora and P. aeruginosa, respectively, sig-
nificantly reduces their virulence (Lin et al. 2003; Molina et al. 2003).

Transgenic plants expressing AHL-lactonase can effectively quench bacterial 
QS signaling and disintegrate bacterial population-density-dependent infec-
tions, whereas untransformed control plants develop severe disease symptoms 
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(Dong et al. 2001). These results demonstrate that externally expressed AHL 
 degradation enzyme is sufficient in eliminating the QS signals of physiologically 
relevant concentrations and in suppressing the QS-dependent virulence gene 
expression by pathogens. As the constitutive expression of disease-resistant “R” 
genes might accompany severe yield and biomass penalties, the integration of 
quorum-quenching mechanisms with the inducible plant defense systems could be 
the most rational way to build proactive host defense mechanisms against patho-
genic invaders (Zhang 2003). Therefore, the genes encoding these novel quorum-
quenching enzymes might hold great promise for the genetic engineering of plant 
disease resistance.

Quorum-quenching enzymes could also be explored as a new version of antago-
nism for the biocontrol of microbial infections. Several natural or engineered AHL 
lactonase-producing strains, including B. thuringiensis, Arthrobacter sp., and 
P. fluorescens, significantly reduced potato soft rot when coinoculated with the 
pathogen E. carotovora, which otherwise causes severe soft rot disease symptoms 
(Molina et al. 2003; Dong et al. 2004). Antibiotic production has been the major 
mechanism of microbial antagonism commonly exploited in the biocontrol of bacterial 
and fungal diseases. The finding that QS could be a widely conserved mechanism 
in the regulation of virulence suggests that quorum-quenching mechanisms might 
have promising potentials in biocontrol. Furthermore, several authors have reported 
successful inhibition of virulence by interrupting QS in pathogens (Lesic et al. 
2007; Kelly et al. 2009; Jiang and Su 2009; Chen et al. 2010; Sintim et al. 2010).

6.7.4.3  Transgenic Plants

Quorum sensing appears to be crucial for plant-bacterial interactions, be they 
pathogenesis or symbiosis (Gonzalez and Marketon 2003). A timely activation of 
specific phenotypes responsible for interaction with the host plant ensures a suc-
cessful establishment of a bacterial population on a host. A premature activation of 
these bacterial phenotypes could trigger early defense responses and, therefore, 
may be deleterious to the bacterial population (Zhang 2003). This concept has been 
exploited to create transgenic plants encoding bacterial AHL synthases such that 
the plants are now capable of producing AHL signal molecules. Fray et al. (1999) 
cloned the yenI AHL synthase from Yersinia enterocolitica and targeted it to the 
chloroplasts of tobacco plants to create transgenics that produced 3-oxo-C6-HSL 
and C6-HSL. Another report involving the cloning of the expI gene from E. caro-
tovora, which is responsible for the synthesis of 3-oxo-C6-HSL, into tobacco 
showed that the transgenic plants produced the active signal molecule and exhibited 
enhanced resistance to infection by wild-type E. carotovora.

Cloning of a bacterial AHL lactonase enzyme (AiiA from Bacillus sp. strain 
2401B) into tobacco and potato plants by Dong et al. (2001) illustrates a potentially 
effective method to control bacterial infections. Soluble protein extracted from 
transgenic tobacco leaves and potato tubers inactivated 3-oxo-C6-HSL activity 
in vitro.



152 I. Ahmad et al.

Furthermore, transgenic potato plants containing the yenI gene shows increased 
susceptibility to soft rot infections by Erwinia strains. It was shown that the degree 
of susceptibility of transgenic potato plants to soft rot varied depending on the 
tissue tested and on the strain of E. carotovora (Gonzalez and Keshavan 2006). 
The contrasting results of cloning AHL synthase into tobacco and potato plants, 
with one showing increased resistance and the other enhanced susceptibility to the 
pathogens belonging to the same genus, Erwinia, show that further research on 
evaluating the mechanism of action along with elucidating the details of bacterial 
pathogenesis is necessary.

Recently, Vanjildorj et al. (2009) have developed a transgenic Chinese cabbage 
(Brassica rapa L. ssp. pekinensis) inbred line, Kenshin, with high tolerance to soft 
rot disease. The tolerance was conferred by expression of N-acyl-homoserine lac-
tonase (AHL-lactonase) in Chinese cabbage through an efficient Agrobacterium-
mediated transformation method. To synthesize and express the AHL-lactonase in 
Chinese cabbage, the plant was transformed with the aii gene (AHL-lactonase gene 
from Bacillus sp. GH02) fused to the PinII signal peptide (protease inhibitor II from 
potato). Transgenic plants showed a significantly enhanced tolerance (two- to 
threefold) to soft rot disease compared to wild-type plants. Thus, expression of the 
fusion gene pinIISP–aii reduces susceptibility to soft rot disease in Chinese 
cabbage.

6.8  Conclusion

It appears that quorum sensing is a common regulatory mechanism among bacteria. 
In plant-associated bacteria, quorum sensing is used to control a broad range of 
traits, as found in human pathogenic bacteria. Under natural conditions, bacteria 
must compete with complex communities of other microorganisms to colonize and 
persist on plants and other hosts. Competitiveness and survival of bacteria in soil 
and rhizosphere may be influenced by the expression of traits controlled by quorum 
sensing. This type of relationship also exists in the animal kingdom. Extensive 
knowledge on the structure and function of quorum-sensing molecules has been 
obtained in less than a decade, and more autoinducers will surely be discovered in 
the coming years. A better understanding of interpopulation signaling between 
coexisting microbial populations would be of great interest as well. Since plants, 
animals, and microorganisms coexist in nature, it is not surprising that they have 
evolved to sense each other’s presence. Fundamental research in quorum sensing 
will undoubtedly provide more precise insights into the mechanism(s) by which the 
expression of quorum-sensing-regulated genes is activated or inhibited. Such 
research will make it possible, for example, to conduct a more focused search for 
antagonists. The ability to generate bacterial quorum-sensing signaling molecules 
in transgenic plants offers the opportunity for disease control and for manipulating 
plant–microbe interactions to obtain improved crop production. Moreover, degra-
dation of AHLs has not only been a preventive but also a curative biocontrol activity. 
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Using techniques that disrupt the quorum-sensing systems of pathogenic bacteria 
is a promising alternative to antibiotics in fighting bacterial infections. This new 
approach might also have value in aquaculture since a link between quorum 
sensing and virulence factor expression in several aquatic pathogens has been 
demonstrated.

The past decade has seen the emergence of a new way of thinking about bacteria. 
Rather than existing as individual cells in the environment (and in biologists’ cul-
ture flasks, for that matter), bacteria grow in communities (notably biofilms) domi-
nated by diversity, hence requiring forms of intra- and interspecies communication. 
Given that the vast majority of bacteria from soil and deep oceans are not even 
culturable, it will remain a major challenge to understand the bacterial world liter-
ally all around us. Efforts are ongoing to mine the genomes of the bacterial world 
for unusual and interesting natural products, which have yielded and will continue 
to yield new avenues of therapy against human infections and other diseases. It has 
not yet been proven that understanding bacterial communication will directly lead 
to new therapies against bacterial infections; however, studying the modes of 
chemical communication that exist in the bacterial world will surely enhance our 
understanding of diversity and the importance of quorum-sensing-based regulation 
of bacterial traits under different conditions and will provide new information on 
crop protection, human health, and for solving environmental problems.
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Abstract Conjugative plasmid transfer is the most important mechanism for 
bacteria to deliver and acquire genetic information to cope with rapidly changing 
environmental conditions. An update of knowledge of conjugative plasmid transfer 
in aquatic and terrestrial habitats, including environments of particular concern 
such as agricultural areas and contaminated soils and sediments, is presented. 
Environmental factors affecting horizontal gene transfer in nature are discussed. 
Recent advances in the design of in situ monitoring tools to assess conjugative 
plasmid transfer in nature and laboratory model systems to simulate environmental 
conditions are critically reviewed. The impacts of horizontal gene transfer on bio-
degradation as well as recent approaches to model conjugative plasmid transfer in 
complex microbial communities are presented.

7.1  Introduction

The “horizontal gene pool” refers to genetic information accessible to more than a 
single bacterial species, potentially resulting in phenotypes of one being acquired 
by another. This pool includes genes of mobile genetic elements (MGEs) and genes 
that are not mobile themselves, but may be mobilized by MGEs (Slater et al. 2008). 
Plasmids, bacteriophages, conjugative transposons, and integrative conjugative ele-
ments (ICE) are examples of MGEs. Plasmids as self-replicating MGEs generally 
provide accessory, but not essential functions to their hosts. In particular, traits that 
confer adaptations to locally restrictive conditions tend to be clustered on plasmids. 
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In spite of the energetic burden imposed upon the host cell metabolism, plasmids 
can be considered as desirable elements for their host providing a mechanism for 
initiation of functions that are required for survival under environmental stress 
conditions but are dispensable in the absence of stress effectors (van Elsas et al. 
2000).

Bacterial conjugation is one of the most important means of gene delivery 
enabling adaptation of bacteria to changing environmental conditions, including 
spread of antibiotic resistance genes, thereby generating multiple antibiotic-resistant 
bacteria.

As microorganisms occupy and adapt themselves to different ecological niches 
within the biosphere, their activities control global homoeostasis in large part. 
Through its effects on microbial adaptation, horizontal gene transfer (HGT) poses 
both challenges and opportunities for the control of global human and environmen-
tal health (Smets and Barkay 2005). The mobile gene pool or “mobilome” spans all 
kingdoms of life.

This chapter focuses on the bacterial mobilome, the gene pool available for 
transfer from one bacterium to the other and for acquisition by bacteria from other 
organisms in the same environment. The chapter is divided into sections dealing 
with HGT in different natural and anthropogenic habitats including soil, sediments, 
and aquatic environments Research performed by several groups on HGT modeling 
is summarized. Promising approaches to monitor HGT without cultivation of the 
cells as well as valuable approaches to assess HGT frequencies under natural condi-
tions or conditions mimicking nature are discussed. The chapter ends with a 
description of technological prospects provided by transmissible traits encoded on 
MGE with respect to biodegradation and bioremediation in contaminated habitats, 
and perspectives for HGT research.

7.2  Horizontal Gene Transfer in Soil, Sediments,  
and Other Solid Surfaces

An excellent summary of the ecology of plasmid transfer was published by van 
Elsas et al. (2000). Van Elsas and coworkers issued key questions to be answered 
in the field of ecology of HGT. One of the most important questions is how effi-
ciently do plasmids spread in the environment and how is this spread affected by 
environmental factors.

Van Elsas et al. (2000) defined a series of key abiotic and biotic factors that 
affect plasmid host fate in natural environments, presumably having a net effect on 
HGT. The stimulating abiotic factors include, among others, presence of nutrients, 
presence of colonizable surfaces, soil texture (e.g., high clay content favors HGT 
due to protection of plasmid hosts), physiological temperatures, presence of oxy-
gen for aerobic microorganisms, etc. Biotic factors that enhance HGT include 
plant roots and other nutrient-rich colonizable surfaces, as well as soil animals 
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offering colonizable surfaces and interior environments, such as the gut of soil 
insects where plasmid transfer was demonstrated (Hoffmann et al. 1998, 1999). 
Many studies have reported the occurrence of conjugative transfer (mediated by 
plasmids or conjugative transposons) between bacteria in soil (e.g., Krasovsky and 
Stotzky 1987; Schofield et al. 1987; van Elsas et al. 1988a, b; Richaume et al. 
1989; Henschke and Schmidt 1990; Smit et al. 1991, 1993; Pukall et al. 1996; 
Götz and Smalla 1996; van Elsas et al. 1998; van Elsas and Bailey 2002; Smalla 
et al. 2006; Ansari et al. 2008; Malik et al. 2008; Sobecky and Coombs 2009). 
These studies have conferred important knowledge on HGT in natural habitats; 
however, all possess natural restrictions or limitations. They focused on a specific 
habitat and/or a particular MGE or a particular class of MGEs, in most cases con-
jugative plasmids.

Van Elsas and Bailey (2002) reviewed the impact of different experimental 
approaches and the influence of key environmental factors on HGT in soil and the 
phytosphere. They demonstrated how structured bacterial communities such as 
biofilms and selective pressure affect HGT frequencies in natural bacterial 
consortia.

7.2.1  Environmental Factors Affecting HGT in Nature

Microbial growth in most natural environments is restricted by the quantity of 
nutrients present, which can dramatically limit population densities and activity 
(van Elsas and Bailey 2002). In soil, in particular, plant surfaces were shown to 
provide conditions for microbial colonization, mixing, and bacterial activity, result-
ing in locally enhanced densities of bacterial cells. These sites offer favorable 
conditions for gene exchange and have been named “hot spots” for HGT (van Elsas 
et al. 2000). Hot spots for HGT processes in soil include rhizosphere and below-
ground plant tissue (e.g., Pukall et al. 1996; Lilley and Bailey 1997; Kroer et al. 
1998; van Elsas et al. 2000; van Elsas and Bailey 2002), the phyllosphere (e.g., 
Björklöf et al. 1995; van Elsas et al. 2000; Kay et al. 2002), manured soil (e.g., Götz 
and Smalla 1996; Heuer and Smalla 2007; Heuer et al. 2009) as well as guts of soil 
animals such as Collembola and earthworms (Daane et al. 1996; Hoffmann et al. 
1998; Thimm et al. 2001).

7.2.2  Tools to Study Horizontal Gene Transfer  
in the Environment

Three different types of tools are applied to study HGT in nature:

 1. Direct disruptive tools. These methods include extraction of bacteria from the 
environment and cultivation of the bacteria on selective media, followed by 
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molecular analysis. They have been applied to microcosms simulating plasmid 
transfer conditions in soil and the rhizosphere (e.g., Hoffmann et al. 1998; Kroer 
et al. 1998; Lilley et al. 2003) and to studies in the field, e.g., to investigate plasmid 
transfer in the phytosphere (e.g., Lilley et al. 1994; Lilley and Bailey 1997; van 
Elsas et al. 1998).

 2. Indirect tools. These methods include plasmid DNA isolation, PCR on genes 
encoded by MGEs, such as antibiotic resistance genes and key transfer factors, 
and sequence analysis of MGEs or parts thereof. They have been applied to dif-
ferent terrestrial environments to detect sequences of MGEs supporting evidence 
of gene transfer potential. The indirect tools do not provide evidence of plasmid 
transfer, but they provide evidence of the presence of conjugative plasmids and 
of the respective transfer genes. Molecular detection of transfer genes and plas-
mid DNA isolation does not prove that gene transfer takes place or has taken 
place in the respective habitats. However, it supports evidence of gene transfer 
potential (e.g., Götz and Smalla 1996; Levin and Bergstrom 2000; Ochman et al. 
2000; Smalla et al. 2000; Mendum et al. 2001; Ansari et al. 2008; Malik et al. 
2008; Ansari 2009).

 3. Direct, nondisruptive tools. These methods include fluorescence monitoring 
tools such as the use of plasmid donors with repressed gfp, coding for the Green 
Fluorescent Protein (e.g., Sørensen et al. 2003). These tools have been applied in 
particular to detect plasmid transfer events in biofilms (e.g., Christensen et al. 
1996, 1998; Heydorn et al. 2000). Recent developments on nondestructive tech-
niques to quantify plasmid transfer are summarized in the section “Monitoring 
HGT and assessing transfer frequencies”.

7.3  Plasmid-Mediated Gene Mobilization in Soil

Plasmids drive HGT in soil; however, information on the diversity of plasmids and 
other MGEs in soil and the phytosphere is still scarce. Depending on plasmid 
isolation protocol, plasmids with different characteristics with respect to Inc 
group, host range, antibiotic and heavy-metal resistance, and conjugative and 
mobilizable abilities can be obtained. The most effective methods to obtain conju-
gative plasmids with plasmid mobilization capacity are bi- and triparental exoge-
nous isolation. Conjugative plasmids are captured directly from environmental 
samples into recipient strains grown under selective laboratory conditions (Bale 
et al. 1988b; van Elsas and Bailey 2002). These tools have been successfully 
applied to soil and phytosphere habitats (e.g., Lilley et al. 1994; van Elsas et al. 
1998; Malik et al. 2008). pIPO2 was shown to self-transfer and mobilize IncQ 
plasmids to various Gram-negative bacteria in the wheat rhizosphere under field 
conditions (van Elsas et al. 1998). Mercury-resistance plasmids that were able to 
mobilize IncQ plasmids such as RSF1010 were also found (van Elsas et al. 2000). 
Prevalence of these plasmids seemed to be enhanced under conditions of mercury 
stress.
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7.3.1  Horizontal Gene Transfer in Metal- and  
Radionuclide-Contaminated Soils and Sediments

The presence of conjugative plasmids and antibiotic-resistance genes in anthropogenic 
soils from India and Germany by antibiotic resistance gene and key transfer factor-
specific PCR and Southern hybridization was investigated in our laboratory. The 
abundance of resistance factors and broad-host-range conjugative plasmids in an 
urban park and an abandoned sewage field in Germany were compared with those 
from four different Indian sites, three agricultural fields with distinct irrigation 
history (irrigation with industrial wastewater from tannery or steel industries), 
and one agricultural field irrigated with groundwater (Malik et al. 2008). Samples 
from the abandoned sewage field and all the Indian soils demonstrated the occur-
rence of IncP-specific plasmid sequences like oriT

IncP
 and the replication gene 

trfA, whereas in soil samples from the urban park, no IncP sequences were 
detected. Biparental exogenous plasmid isolation with bacteria detached from 
contaminated soils showed prevalence of conjugative IncPb plasmids in the 
strongly polluted German site (abandoned sewage field) and the Indian agricul-
tural field which had received wastewater from steel industries for many years.  
A similar conclusion was obtained by studies on multiple antibiotic- and heavy-
metal-resistant bacterial isolates from highly heavy-metal-contaminated Indian 
soils for the presence of conjugative plasmids from Gram-negative bacteria. The 
presence of conjugative/mobilizable IncP plasmids in the isolates indicated their 
gene-mobilizing capacity with implications for potential dissemination of intro-
duced recombinant DNA (Ansari et al. 2008).

Smalla et al. (2006) detected increased abundance of IncP-1b plasmids and 
mercury-resistance genes in mercury-polluted river sediments. They investigated 
river sediment samples from two mercury-polluted and two nonpolluted or less-
polluted areas of a river in Kazakhstan for the presence of mercury-resistance genes 
and broad-host-range plasmids by PCR. An increase of the degree of mercury pol-
lution corresponded to an increased abundance of mercury-resistance genes and of 
IncP-1b replicon-specific sequences detected in total community DNA (Smalla 
et al. 2006). Three different IncP-1b plasmids (pTP6, pTP7, and pTP8) were cap-
tured from contaminated sediment by the triparental exogenous plasmid isolation 
method. The plasmids conferred mercury resistance to their host, and the presence 
of a mercury-resistance transposon on these plasmids was demonstrated by hybrid-
ization. The nucleotide sequence of pTP6 revealed a backbone almost identical to 
that of the classical IncP-1b plasmid R751 (Smalla et al. 2006). This study provided 
further evidence of the role of IncP-1b plasmids in mediating maintenance and 
spread of adaptive traits such as mercury resistance, in bacterial communities.

Sobecky and Coombs (2009) summarized the state of the art of HGT in metal- 
and radionuclide-contaminated soils. Metal and radionuclide contamination in soils 
and in the subsurface poses a serious challenge to bacterial growth and survival 
because these contaminants cannot be transformed or biodegraded into nontoxic 
forms as it often occurs with organic xenobiotics (Sobecky and Coombs 2009). HGT 
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has played a major role in the dissemination of metal-resistance determinants among 
microbial communities (Sobecky and Coombs 2009). Metal-resistance genes were 
first detected on plasmids from diverse bacteria (Summers and Silver 1972; Silver 
et al. 1981). Subsequently, it was shown that transposons promote the acquisition of 
these plasmid-encoded metal-resistance genes (Liebert et al. 1999). Mercury-
resistance operons often encode concomitant antibiotic resistance genes (Liebert 
et al. 1999; Gilmour et al. 2004). Baker-Austin et al. (2006) and Wright et al. (2006) 
demonstrated that heavy-metal contamination due to anthropogenic sources contrib-
utes to the dissemination of antibiotic-resistance genes by either coselecting for 
antibiotic-resistant bacteria carrying metal-resistance genes, located on the same 
MGE, or by selecting for cross-resistance encoded by multidrug efflux pumps 
exporting metals and antibiotics (Baker-Austin et al. 2006; Wright et al. 2006).

One of the best characterized metal-resistance loci is the mer operon, consisting 
of up to seven genes required for transport, catalysis, and regulation of mercury 
resistance (Barkay et al. 2003). Exogenous plasmid isolation was applied to isolate 
conjugative mercury-resistance plasmids from bacterial soil populations (Sobecky 
and Coombs 2009). Five different novel HgR plasmid groups were detected in the 
rhizosphere and phyllosphere of sugar beets (Lilley et al. 1996). A study on the soil 
bacterial populations associated with wheat roots showed that in soils amended 
with mercury, novel plasmid groups conferring HgR were recovered by exogenous 
plasmid isolation (Smit et al. 1998). This phenomenon emphasizes the endemic 
nature of MGEs conferring HgR resistance among soil microbial communities.

Three mechanisms that promote microbial heavy-metal resistance or tolerance 
are known: (1) metal reduction, (2) metal complexation, and (3) ATP-dependent 
metal efflux (Sobecky and Coombs 2009). The P

IB
-type of prokaryotic heavy-

metal-translocating ATPases detoxifies the bacteria by exporting Cd(II), Co(II), 
Pb(II), Ni(II), and Zn(II) (Sobecky and Coombs 2009). P

IB
-type ATPase genes have 

been detected on MGEs from Gram-positive (Nucifora et al. 1989; O’Sullivan et al. 
2001) and Gram-negative bacteria (Mergeay et al. 2003). Dissemination of horizontally 
acquired P

IB
-type ATPase genes was shown by Sobecky and Coombs (2009).

Arsenic (As) occurs in four different oxidation states, As+5, As+3, As0, and As−3. 
It is a micronutrient used by a variety of microorganisms for cell growth and metabo-
lism (Sobecky and Coombs 2009). Prokaryotic metabolic activity has been shown to 
be important in the transformations and subsequent mobilization/immobilization of 
As compounds (Stolz et al. 2006). The ars operon encodes a detoxification pathway 
for As, which can be chromosomally or plasmid-encoded (Sobecky and Coombs 
2009). The operon contains numerous genes including arsC encoding arsenate 
reductase, which reduces arsenate to arsenite (Stolz et al. 2006). Phylogenetic analysis 
of more than 400 arsC sequences supported the role of HGT in the evolution and 
dissemination of arsenate reductase (Jackson and Dugas 2003).

Radionuclides cause severe environmental contamination problems for several 
reasons: (1) many radionuclides are heavy metals, and exposure to cells results in 
toxicity effects in addition to damage caused by radioactive decay; (2) radionu-
clides cannot be broken down or detoxified by transformation; (3) radionuclides are 
often present together with other environmental contaminants. This means that any 
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surviving organism in affected environments must be multiple-contaminant 
 resistant; and (4) bacteria have only limited resistance mechanisms for radionu-
clides (Sobecky and Coombs 2009).

Dissimilatory metal-reducing bacteria such as Geobacter sulfurreducens (e.g., 
Lovley et al. 1991; Lloyd et al. 2000) and sulfate-reducing bacteria such as 
Desulfovibrio desulfuricans (Lloyd et al. 1999) contain electron shuttle systems 
that immobilize radionuclides by reduction to their less mobile forms.

Reduction of radionuclides and heavy metals such as Cr(VI) is carried out by 
two possible mechanisms. Indirect reduction could take place when Fe(II), Mn(II), 
and H

2
S are generated by microbes during anaerobic respiration. The oxidation of 

these compounds to Fe(III), Mn(IV), and SO
4

−2 could work to reduce metals such 
as U(VI) and Tc(VII). Indirect reduction has not yet been shown in situ, however. 
The alternative mechanism is direct enzymatic reduction, a process not fully 
understood (Sobecky and Coombs 2009). However, it is known that c-type chro-
mosomes play an important role in dissimilatory metal-reducing bacteria (e.g., 
Shelobolina et al. 2007; Marshall et al. 2008) and in sulfate-reducing bacteria 
(Lovley et al. 1993; Payne et al. 2004). There is no direct evidence of HGT of 
genes required for enzymatic reduction; however, studies with c-type cytochromes 
demonstrated that HGT of these cytochromes can occur (Bertini et al. 2007; 
Sobecky and Coombs 2009). Analysis of 235 bacterial genomes revealed c-type 
cytochromes in nine cyanobacteria, G. sulfurreducens, and Nitrosomonas europaea 
(Sobecky and Coombs 2009).

7.3.2  Horizontal Gene Transfer in Mixed Waste Sites

Mixed waste in this section refers to anthropogenic contamination consisting of 
organic chemicals and radionuclides. Mixing of more than one contaminant at a waste 
site is important, as cocontaminants may interact with each other to enable or inter-
fere with chemical transformation or contaminant transport. Variation in electron 
acceptors can result in the generation of different redox zones over small spatial 
scales (Barber et al. 1992; Cozzarelli and Weiss 2007; Sobecky and Coombs 2009).

Metal resistance and catabolic genes are often encoded on MGEs (for reviews 
see Liebert et al. 1999; Mergeay et al. 2003; Springael and Top 2004). Transposons 
that have been sequenced from environmental samples appear to encode only cata-
bolic genes (for a review see Wyndham et al. 1994) or metal-resistance genes (e.g., 
Mindlin et al. 2001; Kholodii et al. 2002). A small number of plasmids contain 
genes for both (Sobecky and Coombs 2009). Of these, pJP4, pWW0, and pUO1 are 
self-transmissible plasmids (Kawasaki et al. 1981; Neilson et al. 1994; Pinedo and 
Smets 2005). Mobilization of pJP4 was demonstrated in soil (Neilson et al. 1994) 
and in bioreactors containing 2,4-D or 2,4-D and cadmium (Newby et al. 2000; 
Sobecky and Coombs 2009). It appears that exposure to toxic compounds such as 
2,4-D and cadmium does not have a stimulating effect on the conjugative transfer 
of large catabolic plasmids (Sobecky and Coombs 2009).
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Several cases of HGT among high and low G/C Gram-positive bacteria from 
mixed-waste have been reported. Most bacteria harbored large plasmids and could 
also tolerate toxic concentrations of U(IV) at low pH (Martinez et al. 2006). The 
frequency of HGT was higher among isolates from the contaminated site than from 
an uncontaminated site (Coombs and Barkay 2004).

7.3.3  Horizontal Gene Transfer in Agricultural Soils

Genomic approaches have revealed a large diversity of MGEs in soil and plant-
associated bacteria, including plasmids, prophages, pathogenicity islands, and 
integrons. Pathogenicity islands are MGEs that account for rapid changes in viru-
lence potential. They are known to have contributed to genome evolution by HGT 
in many bacterial pathogens (Dobrindt et al. 2004). Integrons are assembly platforms – 
DNA elements that acquire open reading frames embedded in exogenous gene 
cassettes – and convert them to functional genes by ensuring their correct expres-
sion (Mazel 2006; Heuer and Smalla 2007). Approximately 18% of bacterial iso-
lates from the phytosphere of sugar beets were shown to harbor plasmids (Powell 
et al. 1993). Many were able to mobilize nonself transmissible IncQ plasmids 
(Kobayashi and Bailey 1994).

The exogenous isolation of MGEs was applied to capture MGEs from soil and 
phytosphere microbial communities (Smalla and Sobecky 2002). Antibiotic resis-
tance or mercury resistance was often used as selective markers to exogenously 
isolate conjugative plasmids from the phytosphere of different crops (e.g., Lilley 
et al. 1996; Lilley and Bailey 1997; Smit et al. 1998; Schneiker et al. 2001; Malik 
et al. 2008) and from mercury-polluted soils (Dronen et al. 1998) in Gram-negative 
plasmid recipients. Biodegradative genes encoded on MGEs were captured from 
soils treated with 2,4-D, but not from untreated controls (Top et al. 1995, 1996). 
Two different cultivation-independent approaches were used to isolate naphtha-
lene-catabolic genes from oil-contaminated soil in Japan (Ono et al. 2007). One 
approach was the construction of a broad-host-range cosmid metagenomic library; 
the other involved exogenous plasmid isolation. A cosmid clone was obtained that 
carried a naphthalene-catabolic pathway operon for conversion of naphthalene to 
salicylate. The operon was similar to the corresponding operon on the IncP-9 
naphthalene-catabolic plasmid pDTG1. Using the exogenous approach the micro-
bial soil community was mated with a Pseudomonas putida recipient. 
Transconjugants had acquired either a 200- or 80-kb plasmid containing all the 
naphthalene-catabolic genes for complete degradation of naphthalene. Both plas-
mids belong to the IncP-9 incompatibility group, and the naphthalene-catabolic 
genes are highly similar to those of other IncP-9 plasmids, namely, pDTG1 and 
pSLX928-6 (Ono et al. 2007).

Miyazaki and coworkers determined the nucleotide sequence of the exogenously 
isolated plasmid pLB1 involved in g-hexachlorocyclohexane degradation (Miyazaki 
et al. 2006). pLB1 was isolated from hexachlorocyclohexane-contaminated soil and 
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transferred from Sphingobium japonicum to other alpha-proteobacterial strains by 
conjugative transfer. Thus, pLB1 may contribute to the dissemination of genes for 
g-hexachlorocyclohexane degradation in agricultural soils (Miyazaki et al. 2006).

Conjugative plasmids encoding multiple antibiotic resistance were captured 
from animal manure used for soil fertilization (Smalla et al. 2000; Heuer et al. 
2002, 2008; van Overbeck et al. 2002; Heuer and Smalla 2007; Binh et al. 2007, 
2008). van Elsas et al. (1998) isolated mobilizing plasmids from the rhizosphere of 
wheat plants by using microbial communities detached from the rhizosphere as 
donors in triparental matings. Plasmid pIPO2 was isolated in Ralstonia eutropha on 
the basis of its mobilizing capacity. Replicon typing and plasmid sequencing 
showed that this 45-kb cryptic plasmid was not related to any of the known broad-
host-range plasmids except plasmid pSB102 (Schneiker et al. 2001). Sequencing of 
plant-associated bacteria has revealed that many phytopathogenic and symbiotic 
bacteria harbor plasmids (Vivian et al. 2001; Zhao et al. 2005; Sundin 2007; 
Crossman et al. 2008; Li et al. 2008; Ding and Hynes 2009), pathogenicity or 
 symbiosis islands (Arnold et al. 2003; Ramsay et al. 2006; Büttner et al. 2007; 
Nandasena et al. 2007; Nakatsukasa et al. 2008), or integrons (Szczepanowski et al. 
2004; Gillings et al. 2005).

Agersø et al. (2006) investigated the effect of tetracycline residues in pig manure 
slurry on tetracycline-resistant bacteria and the tetracycline resistance gene tet(M) 
in soil microcosms. Four different types of microcosms were established, supple-
mented with combinations of pig manure slurry and a tetracycline-resistant 
Enterococcus faecalis strain encoding the tetM resistance gene. The concentration 
of both tetracycline-resistant bacteria (total CFU) and tetracycline-resistant entero-
cocci declined rapidly in all four types of microcosms. tet(M) was detected longer 
than tetracycline-resistant enterococci could be isolated. This result could be due to 
the presence of viable but not culturable (VBNC) bacteria encoding tet(M), HGT 
of tet(M) to indigenous soil bacteria, or presence of free DNA, e.g., attached to soil 
particles. The concentration of tetracycline was approximately stable throughout 
the study, but the antibiotic concentration had no effect on prevalence of tetracycline-
resistant bacteria (Agersø et al. 2006). The tetracycline residues present in the 
microcosms originated from pig manure slurry resulting from therapeutic treatment 
of the pigs. Tetracycline concentrations were similar to the actual concentration in 
manured agricultural soil. At this concentration, tetracycline did not appear to 
select for tetracycline-resistant bacteria, but it is degraded slowly in soil and may 
accumulate over time if manure containing tetracyclines is regularly amended to the 
soil (Agersø et al. 2006). As tet(M) was detected much longer than the original 
E. faecalis host, the resistance genes might form an antibiotic resistance reservoir 
in soil (Agersø et al. 2006).

Toomey et al. (2009) studied the HGT of antibiotic-resistance genes (plasmid- and 
transposon-encoded) between wild-type dairy isolates of lactic acid bacteria using an 
alfalfa sprout model. The plant model provided an environment that appeared to 
 promote high transfer frequencies between all lactic acid bacteria pairs tested. 
Transfer frequencies ranged from 4.7 × 10−4 to 3.9 × 10−1 transconjugants per recipient. 
Dairy cultures can act as a source of MGEs encoding antibiotic resistance that can 
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be spread with high frequency to other lactic acid bacteria in plant environments 
(Toomey et al. 2009).

7.4  Horizontal Gene Transfer in Aquatic Environments

As for soil and other natural environments, the frequency of conjugative plasmid 
transfer among bacteria in aquatic environments appears to be controlled by the 
characteristics of hot spots (van Elsas et al. 2000). Aquatic ecosystems can be 
divided into different habitats, (1) the free (bulk) water phase, (2) the colonizable 
suspended matter, (3) sediment or sewage, (4) stones and other surfaces carrying 
biofilms (termed the epilithon) (Hill et al. 1996), and (5) aquatic animals. Availability 
of nutrients as well as colonizable surfaces is important due to support of large den-
sities of metabolically active bacteria (Hill et al. 1994; Muela et al. 1994; van Elsas 
et al. 2000). Suspended matter is a preferred site for bacterial growth, resulting in 
bacterial densities higher than that in bulk water. Sediments rich in organic material 
can support bacterial population densities approximately three orders of magnitude 
higher than those found in bulk water (Ashelford et al. 1997; van Elsas et al. 2000). 
Bacterial biofilm communities are found in the epilithon on stones in rivers or lakes 
(Lock et al. 1984) and in percolating filter beds, which are nutrient-rich environ-
ments that support high population densities of metabolically active bacteria (Gray 
1992; van Elsas et al. 2000). Hence, plasmid transfer frequencies in aquatic environ-
ments seem to depend mainly on the possibilities for the formation of mixed donor–
recipient colonies or biofilms (van Elsas et al. 2000). In natural environments, 
competing, grazing, or antagonistic microflora can impart a significant effect on 
HGT rates, as donor and recipient cell numbers and physiological activities can be 
severely affected. Bale et al. (1987, 1988a, b) and Hill et al. (1994) investigated the 
transfer of epilithon-derived plasmids between different Pseudomonas isolates. Due 
to antagonistic effects, transfer frequencies on sterile stones in broth were higher 
than those on epilithon-covered stones in river water.

7.4.1  Evidence of Plasmid Transfer in Aquatic Environments

Most HGT studies in aquatic environments have been performed in microcosms, as 
they provide the advantage of controllable study conditions (van Elsas et al. 2000). 
HGT frequencies in microcosms are often revealed to be consistent with those 
obtained in situ (Ashelford et al. 1995, 1997). Microcosms such as flasks, sediment 
columns, activated sludge units, sewage filter beds, or small chemostats are consti-
tuted of enclosed samples of the environment they mimic or of synthetic 
 approximations of environmental samples. Indigenous microorganisms and other 
factors that provide complexity to the system, in particular colonizable surfaces 
and/or nutrient sources, may be present, and temperatures may be controlled or 
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manipulated. Although these microcosms are still different from the environment 
they represent, they are valuable, as they are simple, reproducible, flexible, and 
offer the possibility to control and/or adjust individual parameters (van Elsas et al. 
2000). In microcosms and in some in situ experiments, plasmid transfer between 
different bacteria was demonstrated in drinking water (Sandt and Herson 1991), 
river water and epilithon (e.g., Bale et al. 1987; Hill et al. 1994; Muela et al. 1994; 
Shintani et al. 2008), lake water (O’Morchoe et al. 1988; Jones et al. 1991; Popova 
et al. 2005), seawater (e.g., Goodman et al. 1993; Barkay et al. 1995; Dahlberg 
et al. 1998; Sobecky and Hazen 2009), marine sediment (e.g., Breittmayer and 
Gauthier 1990; Sandaa 1993; Rasmussen and Sørensen 1998), and sewage and 
wastewater (e.g., Gealt et al. 1985; Lebaron et al. 1994; Ohlsen et al. 2003). Thus, 
plasmid transfer seems to be part of the natural lifestyle of bacterial cells inhabiting 
these environments (van Elsas et al. 2000).

7.4.2  Evidence of Plasmid Transfer in Sewage Filter Beds  
and Activated Sludge Units

Sewage filter beds and activated sludge units represent aquatic environments of 
extreme nutrient availability, microbial mixing, and competition. Therefore, plasmid 
transfer should occur at maximum rates in these systems. Sophisticated micro-
cosms have been designed to mimic natural conditions of sewage filter beds and 
activated sludge units (van Elsas et al. 2000). Plasmid transfer in percolating filter 
beds was first studied by Ashelford et al. (1995). Plasmid transfer between different 
P. putida strains in the filter biofilm was observed (Ashelford et al. 1995, 1997).

Plasmid transfer studies were also performed in laboratory-scale activated 
sludge units by Mancini et al. (1987) and McClure et al. (1989). Mancini and 
coworkers studied conjugative plasmid transfer between laboratory E. coli K12 
strains and between wastewater-isolated E. coli strains. Transconjugants were 
detected throughout the microcosm, with highest frequencies, 2.5 × 10−3 transconju-
gants per donor for laboratory strains, in the settled sludge (van Elsas et al. 2000). 
McClure et al. (1989) investigated the fate of a P. putida strain harboring the mobi-
lizable plasmid pD10 in activated sludge units. They demonstrated pD10 mobiliza-
tion to indigenous sludge bacteria. This demonstrates that mobilization of 
nonconjugative plasmids can readily occur in nutrient-rich environments.

7.5  Modeling of Conjugative Plasmid Transfer

Several attempts to model conjugative plasmid transfer and conjugative mobiliza-
tion using different mathematical models with distinct simplifications on the  complex 
process of plasmid exchange between two organisms have been reported. Some 
recent models are described briefly. Gregory et al. (2008a) used COSMIC-rules, 
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an individual-based model for bacterial adaptation and evolution to study virtual 
transmission of plasmids within bacterial populations. Their simulations showed 
the spread of resistance (R) plasmids, compatible and incompatible, by conjugative 
transfer. Three case studies were examined: transfer of an R plasmid within an 
antibiotic-susceptible population, transfer of two incompatible R plasmids, and 
transfer of two compatible R plasmids. Rules for plasmid transfer, e.g., cost rules 
for plasmid maintenance versus benefit rules for plasmid maintenance were set up 
(Gregory et al. 2008a). Simulations were carried out for all the three case studies. 
Transfer of R plasmids was demonstrated to occur in the simulations of all the three 
case studies. The results support the original concept of the authors (Gregory et al. 
2008b), e.g., incompatibility could be predicted by this model to be an important 
limiting factor for plasmid spread in bacterial populations.

The ability to simulate plasmid transfer has applications in studies of adaptive 
evolution, dissemination of antibiotic-resistant bacteria (DeNap et al. 2004), and 
the ability of microbial populations to degrade xenobiotics (Basta et al. 2004).

Inoue et al. (2009) investigated the occurrence and persistence of transconju-
gants that have acquired self-transmissible plasmids via conjugation by a simula-
tion model on conjugative plasmid transfer in soil. Two conjugative plasmids with 
broad-host-range in Gram-negative bacteria, RP4 and pJP4, were applied to trans-
fer studies in soil microcosms. The simulation model incorporated the survival 
dynamics of the donors, recipients, and transconjugants, and the conjugative plas-
mid transfer dynamics. Bacterial survival was modeled as a simple growth/decay 
process. Bacterial conjugation was described based on the mass action model 
(Levin et al. 1979). Transconjugants were assumed to show similar survival char-
acteristics as recipients with positive/negative effects resulting from plasmid 
acquisition. They were assumed to act as secondary plasmid donors with transfer 
rates differing from those of the original donors (Inoue et al. 2009). The micro-
cosm experiments demonstrated that transconjugants occurred in soil even if the 
concentration of the original plasmid donors declined rapidly. The introduced 
plasmid can persist in the microbial community if the indigenous transconjugants 
are excellent plasmid donors with a broad spectrum of plasmid hosts (De Gelder 
et al. 2005) and/or high transfer frequency (Newby et al. 2000). The study of Inoue 
et al. (2009) was the first to model bacterial conjugation in complex microbial 
populations.

Sudarshana and Knudsen (2006) attempted to model plasmid mobilization 
between E. coli donors and Pseudomonas fluorescens recipients on pea seeds and 
roots. They developed a mathematical model to predict mobilization rates and to 
estimate the proportion of triparental matings in which plasmid mobilization 
occurs. The simple mathematical model was based on the mass action model of 
Levin et al. (1979) that was also applied by Inoue et al. (2009). The model assumes 
that matings occur among uniformly distributed donor and recipient cells and cells 
grow at the same constant rate. Although these assumptions are not fully met in 
heterogeneous ecosystems such as soil, modifications of the mass action model 
have been successfully applied to predict bacterial conjugation in soil, the 
 rhizosphere, and the phyllosphere (Knudsen et al. 1988; Richaume et al. 1989; 
Clewlow et al. 1990).



1757 Horizontal Gene Transfer Between Bacteria Under Natural Conditions

The study of Massoudieh and coworkers focused on exploratory modeling of 
HGT among surface-associated E. coli in the subsurface (Massoudieh et al. 2010). 
They developed a model and experimental system to quantify HGT in biofilms 
formed on granular porous media in microflow chambers. Important characteristics 
of this sophisticated model are mentioned briefly. To track the kinetics of the part-
ners in the conjugation process, four main states of the bacteria in the conjugative 
plasmid transfer process were considered: (1) donors, (2) recipients, (3) transcon-
jugants, and (4) donors in the exhausted state (donors which have to recover before 
reinitiating conjugative transfer). The simulations confirmed the strong dependence 
of the transfer rate on the concentration of donors and recipients and considered 
attachment and detachment rates of the bacteria involved. Studies on sandy media 
and on glass beads will verify the model and quantify the characteristics of each of 
the processes considered in the model (Massoudieh et al. 2010).

7.6  Monitoring Horizontal Gene Transfer  
and Assessing Transfer Frequencies

Several excellent papers have been published on visualization of HGT between 
bacteria in vitro. Most of them apply fluorescent tools; e.g., Babic et al. (2008) 
presented an elegant study on direct visualization of HGT between single cells of 
E. coli in real time using the fluorescent fusion protein SeqA–YFP. However, moni-
toring plasmid transfer and assessing HGT frequencies in complex microbial com-
munities in situ remain a challenge. Sørensen et al. (2005) published a critical 
review on HGT studies in situ. Direct evidence of the extent of in situ plasmid 
transfer in natural environments has been obtained by identification of plasmid-
encoded phenotypes, such as antibiotic resistance or heavy-metal resistance, fol-
lowing the introduction of donor strains. This approach relies on the cointroduction 
of a marked recipient strain or the emergence of identifiable phenotypes among the 
indigenous bacterial populations (Sørensen et al. 2005). Plasmid transfer frequency 
in bulk environments such as bulk water and bulk soil is low (transconjugant/donor 
typically <10−5). In many cases, transfer could only be detected after nutrient 
enrichment (Sørensen and Jensen 1998). This is in contrast to hot spots of bacterial 
metabolic activity and HGT, such as the rhizosphere and phylloplane of plants and 
other culturable surfaces, where transconjugant/donor ratios can be as high as 10−3 
or even 10−1 for indigenous as well as introduced plasmids (Lilley et al. 1994; van 
Elsas and Bailey 2002).

Modern approaches to detect and quantify plasmid transfer use reporter gene 
technology. Due to simple detection by fluorescence microscopy, only fluorescence 
reporter genes have been used for in situ monitoring of HGT in natural  environments. 
Biofilms are uniquely suited for HGT due to high bacterial density and metabolic 
activity even in the harshest environments (Wuertz 2002). Insights into the extent 
of HGT in biofilms were obtained from approaches combining fluorescently 
labeled plasmids and bacterial strains with confocal laser scanning microscopy and 
quantitative image analysis (Haagensen et al. 2002; Molin and Tolker-Nielsen 2003).
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Christensen et al. (1998) investigated transfer of the TOL plasmid in  flow-chamber 
biofilms of P. putida. Transconjugants were preferentially found on top of recipient 
microcolonies. Invasive transfer from new transconjugants to recipients in the 
microcolony was not observed. Online monitoring of transconjugant proliferation 
showed that the plasmid was primarily transferred vertically following a small 
number of HGT events (Sørensen et al. 2005).

The spatial structure of the biofilm has a decisive role in HGT. Bacterial 
 conjugation was analyzed by observing the physical environment encountered by 
donor cells migrating into a biofilm matrix (Wuertz et al. 2004). Transconjugants 
were found deep inside biofilms grown in flow cells, indicating the ability of donor 
cells to penetrate beyond superficial surface layers (Sørensen et al. 2005).

Aspray et al. (2005) investigated conjugative plasmid transfer in a soil-based 
microbial biofilm in flow cells amended with 2,4-D. A 2,4-D-degrading donor strain, 
P. putida harboring a 2,4-D-catabolic conjugative plasmid tagged with gfp (pJP4::gfp) 
was inoculated into the flow-cell chambers containing 2-day-old biofilm communi-
ties. Transfer of pJP4::gfp from the donor to the bacterial community was detected by 
green fluorescence as monitored by confocal scanning laser microscopy (GFP fluo-
rescence was repressed in the donor due to the presence of a chromosomally encoded 
lacIq repressor gene). A 2,4-D-degrading transconjugant was isolated from the flow-
cell chamber belonging to the genus Burkholderia (Aspray et al. 2005).

Conjugative plasmid transfer and plasmid mobilization in multispecies biofilms 
in continuously operated small-scale biofilm reactors have also been analyzed in 
the author’s group. The biofilm communities consisted of different Gram-positive 
bacteria belonging to the genera Staphylococcus and Enterococcus. Plasmid trans-
fer was monitored by GFP fluorescence. Donors and transconjugants were distin-
guished by an additional nontransferable fluorescence label in the donor cells. 
Transconjugants were obtained in intrageneric and intergeneric matings. Transfer 
rates were in the range of 10−8 transconjugants/recipient (Schiwon, K., Arends, K., 
and Grohmann, E., personal communication).

The use of GFP-tagged reporter plasmids for in situ studies has certain limita-
tions, however. The fluorescence of GFP can be affected by environmental condi-
tions such as high salt concentrations, low pH, and lack of oxygen, which is 
particularly relevant in dense biofilms. Expression of GFP in metabolically inactive 
or weakly active cells can be weak or even absent. Thus, expression cannot easily 
be distinguished from background fluorescence (Sørensen et al. 2005). Further 
efforts are required to develop more robust fluorescence labels with higher expres-
sion levels under environmental conditions.

7.7  Spread of Biodegradation Traits

Springael and Top (2004) published an excellent article on the state of the art of 
HGT in connection with microbial adaptation to xenobiotics. Characterization of 
bacteria that degrade organic xenobiotics has demonstrated that they can adapt to 
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these compounds by the expression of novel catabolic pathways. Some appear to 
have evolved by assembly of horizontally transferred genes, followed by muta-
tions and gene rearrangements. New types of xenobiotic catabolic MGEs have 
been detected recently, the so-called catabolic genomic islands, which integrate 
into the chromosome after transfer (e.g., Toussaint et al. 2003; van der Meer and 
Sentchilo 2003). The presence of such xenobiotic-degrading bacteria in the 
 biosphere has important environmental applications, such as the cleanup of pol-
luted sites, fate of pollutants in the ecosystem, and their ecotoxicology (Head and 
Bailey 2003).

Van der Meer et al. (1998) provided a case of a potential in situ catabolic 
pathway assembly. They isolated chlorobenzene-mineralizing bacteria from 
chlorobenzene-contaminated groundwater. The isolates degraded chlorobenzene 
by a well-described two-step process (van der Meer et al. 1998). Springael and 
Top (2004) postulated that catabolic “precursor” genes might be present in the 
bacterial community before its exposure to contamination or they might be 
 provided by “migrating” bacteria. Springael et al. (2002) showed that HGT 
resulting in the acquisition of xenobiotic degradation genes appears to occur 
with high frequency and over a relatively short period of time. Sentchilo et al. 
(2003) investigated the 105-kb genomic island of a Pseudomonas species carry-
ing the clcRABD gene cluster that encodes the mineralization of chlorocate-
chols by a modified ortho-cleavage pathway. Induction of HGT of the clc 
element by 3-chlorobenzoate was demonstrated. Sentchilo et al. (2003) were the 
first to show that a pollutant can regulate transfer of the MGE encoding its 
metabolism.

Bathe et al. (2004) analyzed the possibility of enhancing degradation of 2,4-D 
in a sequencing batch biofilm reactor with the conjugative plasmid pJP4 encoding 
genes for 2,4-D degradation. Transconjugants were detected both by culture and 
culture-independent approaches in the 2,4-D-degrading biofilm. A 90% 2,4-D deg-
radation was observed in the bioaugmented reactor within 40 h, whereas a control 
reactor without the plasmid contained 60% of the initial 2,4-D concentration after 
90 h. This study showed the increase of 2,4-D degradation by conjugative transfer 
of pJP4 from an introduced donor strain to the bacterial community of a laboratory 
wastewater treatment system and demonstrated that adaptation of a microbial com-
munity to a xenobiotic compound can be accelerated by HGT of the respective cata-
bolic genes (Bathe et al. 2004).

Bioaugmentation by HGT to mixed microbial populations in laboratory and 
pilot-scale sequencing batch biofilm reactors treating synthetic wastewater con-
taining benzyl alcohol was analyzed by Venkata Mohan et al. (2009). A P. putida 
plasmid donor chromosomally labeled with the gene for the red fluorescent pro-
tein (RFP), harboring a GFP-tagged TOL plasmid that confers degradation of 
benzyl alcohol, was used. Survival of a bioaugmented strain, conjugative plas-
mid transfer, and increased degradation of benzyl alcohol were detected in the 
laboratory-scale reactor, but not in the pilot-scale reactor (Venkata Mohan et al. 
2009).



178 E. Grohmann

7.8  Conclusions

Conjugative plasmid transfer is the most important means to disseminate resistance 
and catabolic genes among bacteria and to acquire them from other bacteria to cope 
with changes in the local environment. Many data have been collected in recent 
decades on the mechanism of HGT; protein key players have been identified and 
their enzymatic mechanisms elucidated. The three-dimensional structure of protein 
complexes required for horizontal plasmid spread has been solved for plasmids 
from Gram-negative bacteria, and detailed information on regulatory circuits 
involved in plasmid transfer of the sex-pheromone-responsive plasmids from 
Gram-positive enterococci has been obtained.

Ecology of HGT has kept pace with the advances in basic molecular and bio-
chemical research. Research on in situ plasmid transfer has proceeded tremen-
dously in recent decades, in particular due to the combined efforts of molecular 
biologists and microbial ecologists in the field. Experimental evidence for in situ 
plasmid transfer has been obtained for diverse aquatic and terrestrial habitats, bio-
films on all kinds of surfaces, inner surfaces and organs of soil and water animals, 
habitats ranging from very oligotrophic to extremely nutrient-rich environments. 
Horizontal plasmid transfer appears to be a component of the natural lifestyle of all 
known bacteria.

This chapter summarizes the current knowledge of horizontal plasmid transfer 
in diverse environments with a focus on contaminated habitats, pointing out the 
contribution of microorganisms, in particular, of their mobilome (all transmissible 
or mobilizable genes), to the cleanup of polluted environments and the application 
of MGE in technical bioaugmentation processes to increase biodegradation of 
xenobiotic compounds.

7.9  Future Recommendations

Second-generation sequencing technologies have generated a large number of full-
genome sequences including those of not only many pathogenic microorganisms 
but also numerous indigenous bacteria. Moreover, some research groups have 
focused on sequencing of whole plasmid genomes and genomes of other MGE of 
interest due to their prevalence in hospitals or in the environment. Determination of 
complete plasmid sequences from different origins with respect to host background 
and habitat will enable the comparison of numerous plasmid backbones and help 
decipher the evolution of mosaic structures of plasmid genomes, eventually leading 
to predictability of plasmid adaptation to environmental changes/challenges in the 
future.

Recent advances in fluorescence reporter technology (multiple labels, higher 
fluorescence intensities, fluorescence less affected by environmental conditions) 
and continuous improvements of microscopy techniques with three-dimensional 
resolution will facilitate the assessment of plasmid transfer efficiency in complex 
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environments. In conjunction with steadily improving and more realistic models of 
conjugative plasmid transfer and plasmid mobilization in complex microbial com-
munities, they will help determine plasmid transfer frequencies in nature and pre-
sumably in the near future enable us to predict HGT events as responses to 
environmental stress.
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Abstract Conventional methods of pathogen identification have often depended 
on the identification of disease symptoms, isolation, and culturing of the organisms, 
and identification by morphology and biochemical tests. The major limitations of 
these culture-based morphological approaches, however, are the reliance on the 
ability of the organism to be cultured, the time-consuming nature, and requirement 
of extensive taxonomic expertise. The use of molecular methods can circumvent 
many of these shortcomings. Accordingly, there have been significant develop-
ments in the area of molecular detection of bacterial pathogens in the last 3 decades. 
We report here a brief overview of the molecular detection methods applicable to 
microbes from food.

8.1  Introduction

Diseases caused by contaminated food constitute one of the most widespread public 
health problems and are an important cause of reduced economic productivity in 
both developed and developing countries (Anon 2005). Every year approximately 
76 million foodborne illnesses are reported in United States of which 325,000 
become hospitalized and approximately 5,000 die. The costs in terms of medical 
care and lost productivity are estimated at between $6.5 and $34.9 billion (Buzby 
and Roberts 1997; Mead et al. 1999). The number of people in Canada who con-
tract foodborne illness is estimated as 2.2 million annually (Anon 2005).
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Generally, due to the presence of very low numbers (<100 CFU g−1) in the midst 
of millions of other bacteria it is difficult to detect specific bacterial food patho-
gens. These microbes seem hidden among a background of indigenous microflora, 
and substances within the foods themselves may hinder detection. There is also the 
difficulty of demonstrating that the strains recovered from a food sample are, 
indeed, pathogenic to humans (Sockett 1991). Rapid and simple detection of 
pathogenic organisms facilitate precautionary measures to maintain healthy food 
(Feng 1992).

One of the major limitations to research in microbial communities, and conse-
quently the detection of bacteria in the environment, is the inability to isolate and 
grow in culture the vast majority of bacteria. There continues to remain a discrep-
ancy between cell numbers obtained from direct and viable counts to the numbers 
actually occurring in vivo (Keer and Birch 2003). Furthermore, some bacteria have 
been shown to be unculturable but retain their viability after exposure to the envi-
ronment and have thus been termed “non-culturable but viable” (NCBV) (Oliver 
2005). This phenomenon complicates both the detection and enumeration of key 
pathogenic organisms. A number of species are described as entering the VBNC 
state and include a large number of human pathogens, including Campylobacter 
spp., Escherichia coli (including EHEC strains), Listeria monocytogenes, Salmonella 
and Shigella spp. and Vibrio cholerae, V. parahaemolyticus, and V. vulnificus 
(Oliver 2005). The genera of Bacillus cereus, Campylobacter jejuni, Clostridium 
botulinum, E. coli, L. monocytogenes, Salmonella spp., Staphylococcus aureus, 
Shigella spp., and Yersinia enterocolitica comprise primarily foodborne bacterial 
pathogens (Kumar et al. 2002).

The characterization and detection of foodborne pathogens continue to rely on 
conventional culturing techniques, which include homogenization, enrichment in 
nonselective and selective media followed by plating in differential agar media to 
isolate pure cultures. Finally, phenotypic and genotypic characterization takes  
3–4 days to confirm the results. Biochemical and immunological methods for the 
detection require substantial amounts of pure culture, whereas DNA-based methods 
can be performed with mixed cultures or community DNA. The final detection 
stage requires gel electrophoresis after polymerase chain reaction (PCR) steps and 
further sequencing of the amplified product, thus increasing the time and complex-
ity of detection (Prasad and Vidyarthi 2009).

Currently, diagnostic laboratories are adapting molecular methods for routine 
detection of pathogens. With advances in molecular biology and biosystemat-
ics, the techniques available have evolved significantly over the past decade. In 
addition to conventional PCR, other technologically advanced methodologies, 
such as second generation PCR (real-time PCR) and microarrays which allow 
unlimited multiplexing capability, have the potential to bring pathogen detec-
tion to a new and improved level of efficiency and reliability (Mumford et al. 
2006).

The rapid methods employed for the identification of foodborne microorganisms 
are discussed below.
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8.2  Molecular Typing Methods for the Detection  
of Bacterial Pathogens

Conventional methods of pathogen identification have often depended on the identi-
fication of disease symptoms isolation and culturing of organisms, and identification 
by morphology and biochemical tests. The major limitations of these culture-based 
morphological approaches are the reliance on the ability of the organism to be 
cultured, the time-consuming nature of the lab analyses, and the requirement of 
extensive taxonomic expertise. The use of molecular methods can circumvent many 
of these shortcomings. DNA-based technologies such as the PCR have revolution-
ized molecular diagnostics and microbiological investigations.

8.2.1  PCR-Based Detection Methods

The PCR is a technique for in vitro amplification of specific segments of DNA by 
using a pair of primers (Nguyen et al. 1994). A million-fold amplification of a 
particular region can often be realized, allowing, among numerous other uses, the 
detection of specific genes within samples. PCR can be used to amplify genes spe-
cific to taxonomic groups of bacteria and also to detect genes involved in the viru-
lence of foodborne bacteria (Finlay and Falkow 1988; Bej et al. 1994).

In our laboratory, for the amplification of hly gene (234 bp) a PCR technique was 
standardized (unpublished data). The reaction mixture was optimized with master 
mix as follows: 2.5 ml of 10× PCR buffer (20 mM Tris–HCl, pH 8.0 at 25°C, 
100 mM KCl, 2.0 mM MgCl

2
, 0.1 mM EDTA, 1 mM dithiothreitol (DTT) 50% 

glycerol, 0.5% Tween 20, and 0.5% Nonidet-P40), 1.0 ml of dNTP mix (25 mM), 
1.0 ml of both forward and reverse primers (15 pmol), 0.2 ml of Taq DNA polymerase 
enzyme (5 U/ml), and 2 ml of DNA as template. Nuclease-free water was added to 
make the final volume 25 ml. PCR tubes containing reaction mixture were centri-
fuged and placed in a thermocycler. Cycling conditions included an initial denatur-
ation step at 95°C for 5 min followed by 40 subsequent cycles consisting of heat 
denaturation at 95°C for 30 s, primer annealing examined at 53°C, 54°C, and 55°C, 
respectively for 1 min, and extension at 72°C for 1 min. A final extension was per-
formed at 72°C for 5 min to ensure synthesis of all strands. The PCR products were 
electrophoresed on 1.5% agarose gel which showed a clear band at 234 bp (Fig. 8.1)

Several variations of the standard PCR have recently appeared and have contributed 
to the development of more sensitive detection methods. These are discussed below.

8.2.1.1  Multiplex PCR and Real-Time PCR

Multiplex PCR (mPCR) and real-time PCR (rPCR) are proving to be the most 
popular methods for microbial identification. The mPCR allows several targets to 
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be co-amplified in one PCR by combining or “multiplexing” primer pairs (Newton 
and Graham 1997). Duffy et al. (2001) described PCR-based detection of food-
borne pathogens including L. monocytogenes, Salmonella sp., C.jejuni, and E. coli 
O157:H7. A multiplex PCR protocol was reported for 13 species of foodborne 
pathogens (Cerniglia et al. 1997). Another protocol was reported by Park et al. 
(2006) for the simultaneous detection of E. coli O157:H7, Salmonella spp.,  
S. aureus, and L. monocytogenes from kimchi (a Korean food preparation).

rPCR allows reactions to be characterized by the time amplification of the PCR 
product, which can be first detected by the use of a fluorogenic probe (Livak 2000). 
In recent years, there has been significant progress in the development of rPCR 
aimed at the quantitation of bacterial load in various food matrices. Its principle is 
based on the detection of a fluorescent signal, which is proportional to the number 
of amplicons in the tested sample (Higuchi et al. 1992, 1993; Lee et al. 1993; Livak 
et al. 1995). Nowadays, rPCR-based detection is frequently used for foodborne 
bacterial pathogen detection (Malorny et al. 2004; Poltronieri et al. 2009; Life 
Technologies 2010).

In recent years, PCR has become important as a technique for the detection and 
identification of bacteria. The main reason for its popularity is that DNA from a 
single bacterial cell can be amplified in about 1 h, which is significantly more rapid 
than times necessary for the methods described previously. However, the method 
can also amplify dead cells, and this makes data interpretation complex and is an 
issue that must be addressed, as it has long-term implications from legal perspec-
tives. So care must be taken in designing experiments. Some investigators have 
detailed the PCR-based detection protocol for some foodborne bacterial pathogens 
(Islam et al. 1993; Keer and Birch 2003).

Fig. 8.1 LL0 gene based detected of L. Monocytogenes using PCR
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Diagnostic PCR has been greatly improved by the introduction of second- generation 
PCR, known as real-time PCR, where closed-tube fluorescence detection and quanti-
fication during PCR amplification (in real time) occurs, eliminating the need for labori-
ous post-PCR sample processing steps which greatly reduces the risk of carryover 
contamination. Using real-time PCR it is possible not only to detect the presence or 
absence of the target pathogen, but also to quantify the amount present in the sample. 
Enumerating the pathogen upon detection is crucial for estimating the potential risks 
with respect to disease development and provides a useful basis for disease manage-
ment decisions.

In another PCR assay targeting the 3¢-prime end of the eae gene (E. coli attaching 
and effacing) of E. coli O157:H7 (no RT-PCR) was found to be specific, with sensi-
tivity being 1 pg DNA or 103 CFU PCR per reaction (Uyttendaele et al. 1999). 
Furthermore, studies were carried out to determine the effect of the food matrix and 
sample preparation method on PCR detection of nonviable cells using heat-killed 
bacteria in ground beef. Sample preparation methods included centrifugation, buoy-
ant density centrifugation (BDC), immunomagnetic separation (IMS), chelex extrac-
tion, and swabbing. It was found that IMS was the only method which did not 
produce false positive results, provided the number of cells was below 108 CFU g−1. 
Above this number, IMS produced a false positive, which is a severe limitation of 
this approach.

8.2.1.2  Random Amplified Polymorphic DNA

The random amplified polymorphic DNA (RAPD) technique was first employed by 
Williams et al. (1990) to examine human DNA samples from anonymous individuals. 
Earlier, several authors reported on the application of the RAPD technique for the 
analysis of microbial DNA (Wagner et al. 1996; Byun et al. 2001). The method uses 
random primers (Williams et al. 1990) and can be applied to any species without 
requiring any information about the nucleotide sequence. The amplified products 
from this analysis exhibit polymorphism and thus can be used as genetic markers. 
The RAPD band, however, does not allow distinction between hetero- and homozy-
gous states. The fragments are scored as dominant Mendelian elements, and the 
protocols are relatively simple.

Hamza et al. (2009) described a RAPD protocol for lactic acid bacteria identifi-
cation from traditional Sudanese sour milk. The band pattern generated in the 
analysis represents genome characterization of a specific bacterial strain (Welsh 
and McClelland 1990). In addition, the method has the potential for analyzing phy-
logenetic relationships among closely related species (Williams et al. 1990) and can 
distinguish between strains within a species.

8.2.1.3  Restriction Fragment Length Polymorphism

The restriction fragment length polymorphism (RFLP) procedure involves isolation 
of DNA, digestion with restriction endonucleases, size fractionation of the resulting 
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DNA fragments by electrophoresis, DNA transfer from the electrophoresis gel 
matrix to a nylon membrane, preparation of radiolabeled and chemiluminescent 
probes, and hybridization to membrane-bound DNA (Olive and Bean 1999).

The probes can be labeled with detectable moieties, such as radioactive iso-
topes, enzyme-colorimetric, or enzyme chemiluminescent substrates (Arbeit 1995; 
Olive and Bean 1999). Due to the species and strain differences in the location of 
the restriction enzyme sites and with the specificity of the probe, the resulting 
fingerprint is simplified and therefore easier to analyze. The rRNA probe is more 
applicable for a wide variety of bacteria than other probes that are more species or 
strain-specific. The use of this probe for characterization is called ribotyping 
where restriction enzyme digestion and Southern blot hybridization are used 
together for analysis. Since the ribosomal operons in bacteria are organized into 
16S, 23S, and 5S rRNA and are often separated by noncoding spacer DNA 
(Towner and Cockayne 1993), the probe can be either one of the rRNA genes or a 
mixture or parts of the rRNA genes and the spacer sequences. Hybridization pat-
terns differ depending on the probe used (Saunders et al. 1990). Labeled probes 
containing E. coli 23S, 16S, and 5S rRNA sequences are most often used for ribo-
typing (Bingen et al. 1994).

Ribotyping has been shown to be advantageous in identifying strains, such as 
Carnobacterium species (C. divergens, C. piscicola, C. gallinarum, and C. mobile) 
which are difficult to type with classical phenotypic methods. Kabadjova et al. 
(2002) established a rapid PCR-RFLP-based identification scheme for four closely 
related Carnobacterium species (C. divergens, C. piscicola, C. gallinarum, and  
C. mobile) that are of interest to the food industry. Using the rapid PCR-RFLP 
scheme, three isolates previously incorrectly identified as C. divergens (INRA 
508, INRA 586, and INRA 515) were reclassified as C. piscicola. Similarly, four 
isolates identified as C. piscicola (INRA 545, INRA 572, INRA 722, and ENSAIA 13) 
were reclassified as C. divergens based on the patterns obtained by the 16S–23S 
ISR-RFLP methods.

Manceau and Horvais (1997) used RFLP analysis of rRNA operons to assess 
phylogenetic diversity among strains of Pseudomonas syringae pv. tomato. They 
successfully established the close relationships existing between P. syringae and  
P. viridiflava species.

8.2.1.4  Amplified Fragment Length Polymorphism

Amplified fragment length polymorphism (AFLP) analysis was developed by a 
team led by Marc Zabeau at Keygene N.V., Wageningen, The Netherlands (Zabeau 
and Vos 1993; Vos et al. 1995). Vos et al. (1995) described the principle of the 
AFLP fingerprinting technique. AFLP is a variation of RAPD and is able to detect 
restriction site polymorphisms without prior sequence knowledge using PCR 
amplification for the detection of restriction fragments (Zabeau and Vos 1993; Vos 
et al. 1995; Blears et al. 1998; Mueller and Wolfenbarger 1999).
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Basically, AFLP is a genome fingerprinting technique based on the PCR 
amplification of only certain fragments that have been the result of restriction 
digestion of the whole genome (Vos et al. 1995; Lin et al. 1996; Olive and Bean 
1999). The basic procedure includes enzyme digestion by two restriction 
enzymes that yield DNA fragments with two different types of sticky ends.  
To these ends, adapters are ligated to form templates for the PCR. The selective 
amplification reaction is performed using two different primers containing the 
same sequence as the adapters, but extended to include one or more selec 
tive bases adjacent to the restriction site of the primer. Only fragments that are 
a complete match are amplified. This technique results in about 30–40 DNA 
fragments, some of which are species-specific while others are strain-specific 
(Janssen et al. 1996; Koeleman et al. 1998; Jackson et al. 1999; Jureen et al. 
2004; Melles et al. 2007).

AFLP analysis is one of the most robust multiple-locus fingerprinting tech-
niques among genetic marker techniques that have been evaluated for genotypic 
characterization (Koeleman et al. 1997). Restrepo et al. (1999) used AFLP to char-
acterize the genetic relationships between Xanthomonas axonopodis pv. Manihotis 
strains. The study of Janssen et al. (1996) revealed extensive applicability of AFLP 
in bacterial taxonomy through comparison of newly obtained data with results pre-
viously obtained by well-established genotypic and chemotaxonomic methods such 
as DNA hybridization and cellular fatty acid analysis.

8.2.2  Pulsed-Field Gel Electrophoresis

Schwartz and Cantor (1984) described the pulsed-field gel electrophoresis (PFGE) 
method to produce a molecular karyotype from the chromosomal DNA of yeast 
Saccharomyces cerevisiae. PFGE is based on the digestion of chromosomal DNA 
by using rare cutting enzymes. The use of these enzymes minimizes the total 
amount of DNA fragments.

This method is capable of separating large DNA molecules (up to 2,000 kb) by 
applying alternately pulsed electric fields established perpendicular to each other and 
of which one is inhomogeneous. The basic principle of PFGE is the use of successive 
alternating electric fields which allow the DNA molecules to continuously change 
their direction of migration. The large DNA molecule will uncoil and elongate parallel 
to an electric field such that it can enter a pore opening in the agarose. When the elec-
tric field is turned off and a new electric field is applied perpendicular to the opened 
DNA, the molecule must re-orient itself to enter a new opening. The pulse time 
(ramping) and electron force (gradient) are constantly increased to achieve better 
separation of all sizes of DNA fragments (Towner and Cockayne 1993).

According to Arbeit (1995), PFGE is highly discriminatory and superior to 
many other microbial typing methods. The method is capable of differentiation 
between species and strains involved in foodborne outbreaks and therefore has 
been investigated for use in epidemiological studies such as with Campylobacter 
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coli, C. jejuni (Yan et al. 1991), L. monocytogenes (Brosch et al. 1991), and  
S. aureus (Schlichting et al. 1993).

In 1996, PFGE became the standard procedure for bacterial foodborne disease 
outbreak analysis (Swaminathan et al. 2001) due to its discriminatory capabilities 
(Gerner-Smidt et al. 2006). Uniform guidelines for performing PFGE and interpre-
tation of the data have been established to confirm reproducibility among laborato-
ries (Tenover et al. 1995). Therefore, PFGE is considered the “gold standard” for 
molecular-based studies. It has become the preferred subtyping method for net-
works that have been created within the United States (PulseNet) and Europe 
(PulseNet Europe) for surveillance and for collection of PFGE fingerprints of bac-
teria related to foodborne infections (Swaminathan et al. 2001; Rodríguez-Lázaro 
et al. 2007). Currently, PulseNet USA has standardized PFGE protocols for Shiga 
toxigenic E. coli O157, S. enterica, Shigella spp., L. monocytogenes, thermotolerant 
Campylobacter spp., and V. cholerae and S. enterica sv. Braenderup strain H9812 
digested with XbaI as the universal standard (Gerner-Smidt et al. 2006).

8.2.3  Biosensors

A biosensor is defined as a device or instrument comprising a biological sensing 
element coupled to a transducer. The biological sensing elements might include 
enzymes, organelles, antibodies, whole cells, DNA, and tissue. Transducers include 
electrochemical, calorimetric, optical, acoustical, or mechanical types (Richter 1993).

Microfabrication technology has enabled the development of electrochemical 
DNA biosensors with the capacity for sensitive and sequence-specific detection of 
nucleic acids. The ability of electrochemical sensors to directly identify nucleic 
acids in complex mixtures is a significant advantage over approaches such as PCR 
that require target purification and amplification. Application of DNA sensor 
technology to infectious diseases has the potential for recognition of pathogen-
specific signature sequences in biological fluids (Liao et al. 2007).

Immobilization of a DNA probe on the desired substrate is the most crucial step 
in developing the electrochemical biosensor because sensitivity, specificity, and 
reproducibility are significantly affected by this step. For effective binding of DNA 
to its substrate, the terminus of the DNA or the surface of the substrate must be 
functionalized. Affinity binding of streptavidin and biotin has been successfully 
used for immobilization of DNA probes. Gold substrates are also gathering special 
attention due to their covalent attachment with thiolated DNA. This technology has 
a special interest in the search for rapid, portable, and low-cost testing systems. 
Electrochemical biosensors have been successfully used to detect E. coli 0157:H7 
DNA combined with PCR (Berganza et al. 2007). A biosensor combined with gold 
nanoparticles (GNPs) has been used for the rapid detection of food pathogens 
(Leonard et al. 2003). Nanometer-sized gold particles have been used for the detec-
tion of specific DNA sequences (Daniel and Astruc 2004). As functionalized chem-
istry is not popular because of costs involved, an approach was proposed to use 
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nonfunctionalized GNP for the detection of dsDNA and ssDNA (Huixiang and 
Rothberg 2004; Sangchul et al. 2009). In this method, citrate-coated GNPs have a 
characteristic red color in the colloidal state. The aggregation of GNPs can be read-
ily induced by the addition of salts resulting in a purple color. The difference in 
color is visualized with the unaided eye. The negatively charged GNP has an elec-
trostatic interaction with ssDNA which can uncoil so that its hydrophilic negatively 
charged phosphate backbone is exposed to aqueous solution and DNA bases inter-
act with the GNP surface by Vander Waals forces. These interactions add negative 
charge to GNPs and enhance their repulsion. Such properties have been exploited 
to design a biosensor which can detect a PCR product directly in the same tube 
within minutes.

Major improvements in signal intensity of a biosensor have been achieved, con-
tributing significantly toward our goal of developing a microfluidics-based “lab-on-
a-chip” electrochemical sensor assay for the detection of bacterial pathogens, 
including E. coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aero-
genes, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, 
Citrobacter freundii, and Enterococcus faecalis (Liao et al. 2007). An evanescent 
(i.e., quickly fading) wave fiber optic biosensor was used to detect the bacteria in 
10 and 25 g ground beef samples. The biosensor uses a 635-nm laser diode to direct 
light onto optical fiber probes, which generates the evanescent wave. Fluorescent 
molecules within the evanescent field are excited and a portion of the emission 
recouples into the fiber probe. A photodiode detects and quantifies the fluorescent 
signal. A sandwich immunoassay was utilized, which allowed the detection of 
9.0 × 103 CFU g−1 for 25 g samples and 5.2 × 102 CFU g−1 for the 10-g sample. No 
false positives were obtained with results obtained 25 min after sample processing 
(Demarco and Lim 2002).

8.2.4  Microarrays

The DNA microarray technology was originally designed to study gene expression 
and generate single nucleotide polymorphism (SNP) profiles. Currently, it serves as 
a diagnostic technology for emerging pathogens. Microarray technology offers a 
platform for unlimited multiplexing capability. Thousands of specific DNA or RNA 
sequences can be detected simultaneously on a small glass or silica slide measuring 
about 1–2 cm2 (Aitman 2001) using microarray technology.

DNA microarrays consist of a solid surface (glass, silicon, nylon substrates) 
to which a large number of probes, DNA fragments, or oligonucleotides are 
immobilized that will hybridize to fluorescently labeled target DNA from the 
sample (Call 2005). The target can be genomic DNA isolated from the sample 
or an amplified PCR product. The DNA microarray is basically of two types, 
genomic microarrays and oligonucleotide arrays. In genomic DNA microarrays, 
the probes are complete genes or their fragments from a strain of a microorgan-
ism, while in oligonucleotide microarrays the target DNA hybridizes 18–70 
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nucleotide-length oligonucleotides. Although both types of microarrays can be 
used, pathogen detection, oligonucleotide microarrays are commonly chosen for 
the detection of either genomic DNA directly or the PCR-amplified portion of 
the genomic DNA, such as rRNA genes or virulence genes (Kostrzynska and 
Bachand 2006).

Microarrays have been developed for the identification of foodborne bacte-
rial pathogens belonging to Bacillus spp., C. jejuni, E. coli, L. monocytogenes,  
S. enterica, Shigella dysenteriae, Staphylococcus spp., and Vibrio spp. (Call et al. 
2003; Chiang et al. 2006; Garaizer et al. 2006; Sergeev et al. 2006; Eom et al. 2007) 
and for the discrimination of multiple pathogens and their virulence factors 
(Sergeev et al. 2006; Wang et al. 2007) in the case of food poisoning outbreaks and 
biological warfare (Sergeev et al. 2004; Wang et al. 2007).

In order to design a method for accurate detection and identification of food-
borne pathogens, Kim et al. (2008) used comparative genomics to select 70 mer 
oligonucleotide probes specific for 11 major foodborne pathogens (ten overlap-
ping probes per pathogen) for use in microarray analysis. Researchers analyzed 
the hybridization pattern of this constructed microarray with the Cy3-labeled 
genomic DNA of various foodborne pathogens and other bacteria. A highly spe-
cific hybridization pattern with the genomic DNA of each pathogen was observed. 
Microarray data were analyzed and clustered using the GenePix Pro 6.0 and 
GeneSpring GX 7.3.1 programs. The dendrogram revealed the discriminating 
power of the constructed microarray. Each foodborne pathogen clustered according 
to its hybridization specificity and nonpathogenic species were discriminated from 
pathogenic species. This method can be applied for rapid and accurate detection 
and identification of foodborne pathogens in the food industry. In addition, 
genome sequence comparison and DNA microarray analysis have a powerful 
application in epidemiologic and taxonomic studies as well as in the food safety 
and biodefence fields.

8.2.5  Integrated Systems

In the past few years some integrated systems (i.e., lab-on-a-chip) have grown, and 
some have been reported for the detection of bacterial pathogens (Kopp et al. 1998; 
Liao et al. 2007). These systems are popular because they decrease analysis times 
and increase efficiency of detection.

Recently, Lu et al. (2008) developed an on-chip immunoassay that detects an 
intracellular antigen of L. monocytogenes (Aad) based on polystyrene beads func-
tionalized with the Aad antibody. Polystyrene beads were mixed thoroughly with 
cell lysate in the microfluidics channel so that beads were bound with the antigen 
in the lysate. The beads were exposed to fluorescently labeled Aad and the detected 
bacterial concentration was inversely proportional to the fluorescence intensity 
from the beads after washing. This chip can be useful for immunoassays based on 
cell lysates. Woolley et al. (1996) described the integration of PCR and capillary 
electrophoresis in a microfabricated DNA analysis device. The approach combines 
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thermal cycling with high-speed DNA separation by the CE chips. This system 
provided an assay of genomic Salmonella DNA in about 45 min. Andreas Manz’s 
group has used a micromachined chemical amplifier to perform PCR in continuous 
flow at high speed (Kopp et al. 1998). The authors report that input and output of 
DNA are continuous, and amplification is independent of input concentration. They 
have reported that Neisseria gonorrhoeae was investigated and a 20-cycle PCR was 
completed in 90 s to 18.7 min, depending on flow rate.

An advanced nucleic acid analyzer (ANAA) was described by Lawrence 
Livermore National Laboratory for the detection of bacterial pathogens such as 
Erwinia herbicola, Bacillus subtilis, and B. anthracis (Belgrader et al. 1998). The 
instrument was composed of ten silicon reaction chambers with thin-film resistive 
heaters and solid-state optics. The authors reported that detection times were as 
short as 16 min and that 102–104 organisms per ml could be detected. The instru-
ment allows for rapid analysis, low-power consumption, real-time monitoring, and 
for ruggedness due to lack of moving parts.

8.3  Conclusions and Future Prospectives

It was not the intent for this review article to list all the organisms that have been 
detected using molecular techniques but to show the range of new methods that are 
applicable for detecting bacteria in food samples. Foodborne pathogen identification 
is an important aspect of human health care. Isolation and identification of foodborne 
pathogens by biochemical and immunological methods are time-consuming and 
have less sensitivity compared with molecular methods. DNA polymorphism 
among the different species of bacteria has been exploited to identify food 
pathogens.

PCR methods have been developed for the identification of these bacterial 
pathogens. PCR is an effective, rapid, reliable, and sensitive technique for the 
detection of genes of bacterial pathogens from various foods (Park et al. 2006). The 
5¢ nuclease multiplex PCR assay has also found applications in simultaneous 
screening of bacterial pathogens in food commodities and various environmental 
samples. The method will be also effective for slow-growing or nonculturable 
microorganisms.

The electrophoresis-based methods described in this chapter (mPCR, RAPD, 
RFLP, AFLP, and PFGE) are time-consuming and laborious. RFLP requires pure 
culture for the discrimination of bacteria at the species level. The disadvantages of 
the RAPD technique are that standardization of concentration of primers and tem-
plates are needed to make reproducible amplification products, and most of the 
RAPD markers are dominant, i.e., it is difficult to distinguish between similar DNA 
sequences amplified. A problem related to AFLP analysis is the incomplete diges-
tion of chromosomal DNA which may result in an aberrant AFLP pattern (Lukinmaa 
et al. 2004). PFGE has been considered the “gold standard” in identifying the caus-
ative organisms in cases of food poisoning, and water and hospital epidemics. 
PFGE has become the standard procedure for bacterial foodborne disease outbreak 
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analysis (Swaminathan et al. 2001) due to its discriminatory capabilities 
 (Gerner-Smidt et al. 2006). Although the method is reliable and accurate, sample 
preparation and analysis are time-consuming, i.e., the method is slow.

Real-time PCR permits the acquisition of more rapid results with minimal 
manipulation. It is now possible to follow the amplification in real time, thus elimi-
nating laborious postamplification processing steps such as gel electrophoresis. 
Real-time PCR offers better multiplexing possibilities; however, due to the avail-
ability of dyes emitting fluorescence at different wavelengths, multiplexing is still 
limited. Thus, detection of more than a few pathogens is currently not possible 
using these systems.

The microarray technology is currently a new and emerging pathogen diagnostic 
technology which, in theory, offers a platform for unlimited multiplexing capability. 
Tens of thousands of such probes can be spotted in a defined and addressable con-
figuration on the glass slide forming the chip. The unlimited capability for simul-
taneous detection of pathogens offers much promise for microarrays to detect all 
relevant pathogens within a specific food matrix. In food microbiology, the devel-
opment of microarrays for diagnostic applications is a recent development in this 
field, and has been detailed in this chapter. Microarrays have allowed for more 
rapid analyses; however, there are drawbacks to its use. Microarray instruments are 
expensive, of limited availability, and require specialized knowledge and training to 
extract useful information from the huge amount of data generated. This limits the 
broad application of microarray technology in ordinary laboratories. The effort to 
add a quantitative aspect to microarrays must continue and more work is needed to 
address the challenges of studying food samples where contaminants such as 
organic substances and heavy metals may interfere with DNA hybridization and 
affect the performance of microarrays.

Thus far, microbial biosensors and bioassays have been applied more for the 
detection of food additives and food contaminants than in direct monitoring of 
food pathogens (Table 8.1). Although biosensor research has sporadically 
appeared in the literature over 2 decades, few biosensors are commercially available. 
Major drawbacks include the delicate nature of the biological component and the 
miniaturization of the electrical components. As electronic innovation continues 
to deliver smaller and more reliable electronic devices and as the biological 
sciences continue to develop the unique understanding of enzyme and microbial 
genetics, the future will see reliable biosensors for the detection of biological 
events on-line. The food industry will significantly benefit from developments in 
rapid detection of microorganisms.

Although the above-described methods are highly specific and accurate, utmost 
care must be taken to standardize methods to isolate DNA from microbes in food 
samples. The DNA of dead microorganisms (VNBC) is also present which can 
amplify and give false positive results. Ethidium monoazide can be used to separate 
dead and viable bacteria (Rudi et al. 2002; Nogva et al. 2003; Keer and Birch 2003; 
Rudi et al. 2005). BDC also termed floatation, may be used successfully as a prior 
sample treatment to eliminate free DNA in samples (Wolffs et al. 2005). This can 
lower the risk of false positive results by avoiding DNA from VNBC bacteria.
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Due to inherent limitations in the methods developed thus far, it is unlikely that 
any one detection system will be suitable for monitoring genetically modified 
microorganisms. Similarly, the detection of recombinant microorganisms in the 
food microbiology industry may become an issue of interest that will stimulate 
further investigations into molecular methods for food microbiology.
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Abstract Environmental contamination by improper disposal of industrial,  mining, 
agricultural, municipal, and other residues is known worldwide. Various  chemical-, 
physical-, and biological-based methods are currently being developed for removal 
of such pollutants from soil and water. Among these techniques, biological 
 treatment, or remediation using microbes, is one of the most promising techniques, 
mainly because of its cost-effectiveness and essentially complete destruction of 
numerous pollutants. The major requirement for this technique is survivability of the 
degrading microorganisms during the process. Biosurfactants, particularly microbial 
surfactants, play a vital role in cases where pollutants are not readily bioavail-
able, by increasing the apparent water solubility of the pollutants, which could 
be achieved either by ex situ addition or in situ production of biosurfactants by 
microbes. However, due to wide application potential of microbial surfactants in 
the environmental sector, it is important to know their mechanisms of action, recent 
advances in bioremediation processes, and other possible applications. The goal of 
this chapter is, therefore, to provide an overview of the different types of microbial 
surfactants and sources, their roles in several bioremediation processes, and recent 
advances in the field.

9.1  Introduction

Pollution of soil and water due to toxic heavy metals, polycyclic aromatic 
 hydrocarbons (PAHs), petrochemicals, pesticides, and herbicides is increasing due 
to increases in global population, industrialization, and urbanization. These 
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 contaminants are generated as by-products of industries, mining, and agriculture 
and lead to soil and water contamination, if released into the environment without 
proper treatment. Accidental spillage may also lead to environmental problems. 
Due to potential toxicity, mutagenicity, and carcinogenicity of these contaminants, 
treatment of contaminated soil and water has become a major public health issue 
worldwide. Several conventional physical and chemical methods are available to 
treat contaminated sites; however, high cost and inability to destroy pollutants 
completely are their major limitations. The term “bioremediation” refers to reme-
diation of contaminated soil and water by the use of microorganisms or their prod-
ucts (e.g., enzymes, microbial surfactants, etc.) and has shown excellent promise in 
terms of being cost-effective along with the potential to degrade many contami-
nants completely. The prerequisite for this method is a suitable microbial culture, 
which can survive in the contaminated media and degrade the contaminants effi-
ciently and completely (Kosaric 2001). Bioremediation can be either in situ or ex 
situ, where the former is more appealing. In situ bioremediation often involves 
direct addition of microorganisms to the contaminated site; microorganisms utilize 
contaminants as the sole source of carbon or use them along with other carbon 
sources by cometabolism. Availability of contaminants that are highly water-insoluble 
is a limiting factor for microbial growth and biosurfactants, particularly microbial 
surfactants, play a vital role in bioremediation by increasing the apparent water 
solubility of the contaminants. Due to the wide application of microbial surfactants 
in the environmental sector, it is important to appreciate their mechanisms of 
action, recent advances in bioremediation processes, and other possible applica-
tions. This chapter provides an overview of the different types of microbial surfactants 
and sources, their role in several bioremediation  processes, and recent advances in 
the field.

9.2  Microbial Surfactants/Biosurfactants

Microbial surfactants, commonly known as biosurfactants, are surface-active 
agents produced by a variety of microorganisms when grown on water miscible or 
oily substrates (Mukherjee et al. 2006). Similar to chemical surfactants, they pos-
sess a polar (hydrophilic) head and nonpolar (lipophilic) tail and are capable of 
forming micelles and reverse micelles as shown in Fig. 9.1. Also, microbial surfac-
tants have the capability of reducing surface and interfacial tensions between the 
two phases.

9.2.1  Sources and Types of Biosurfactants

Biosurfactants are produced by bacteria, yeast, and fungi; therefore, they are 
 structurally diverse and can be classified based on their structure. Table 9.1 lists the 
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Fig. 9.1 General structure of a biosurfactant and its ability to form a micelle and reverse 
micelle

Table 9.1 Different types of biosurfactants and microbial source

Type of surfactant Microorganism References

Rhamnolipids Pseudomomas sp., P. aeruginosa, 
Serratia rubidea

Mulligan (2005)

Sophorose lipids Candida apicola, C. bombicola,  
C. lipolytica, C. bogoriensis, 
Wickerhamiella domercqiae,  
C. Batistae, Pichia anomala

Van Bogaert et al. 
(2007), Konishi et al. 
(2008), Thaniyavaran 
et al.(2008)

Trehalose lipids Arthrobacter paraffineus, 
Corynebacterium spp.,  
Mycobacterium spp., Rhodococus 
erythropolis, Nocardia sp.

Cooper et al. (1981b), 
Desai and Banat 
(1997), Mulligan 
(2005)

Cellobiose lipids Ustilago maydis, U. zeae Desai and Banat (1997)
Surfactin Bacillus subtilis Arima et al. (1968),  

Cooper et al. (1981a)
Mycolic acids Mycobacterium, Nocardia,  

Rhodococcus, and  
Corynebacterium species

Shimakata et al. (1984)

Corynomucolic acid Rhodococcus erythropolis Kretschmer et al. (1982)
Phospholipid Acinetobacter sp., Thiobacillus 

thiooxidans, Aspergillus sp.
Beeba and Umbreit 

(1971), Kappeli and 
Finnerty (1979)

Viscosin P. fluorescens
Surfactin B. subtilis Arima et al. (1968)
Emulsan Acinetobacter calcoaceticus Rosenberg et al. (1979)
Liposan C. lipolytica Kappeli and Fiechter 

(1977),Cirigliano and  
Carman (1984)

Alasan Acinetobacter radioresistens Barkey et al. (1999)
Lipopolysaccharides Acinetobacter calcoaceticus  

(RAG1), Pseudomonas sp.,  
Candida lipolytica

Mulligan (2005)

Lichenysin A, 
Lichenysin B

B. licheniformis Mulligan (2005)
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different types of biosurfactants along with their microbial sources. The most 
 common classes of biosurfactants are discussed below.

Glycolipids. Glycolipids are the most common and most widely studied biosurfac-
tants. They are nonionic and consist of a carbohydrate (mannose, rhamnose, etc.) 
head and a lipid tail. Rhamnolipids, sophorolipids, and trehalose lipids are best 
known examples of glycolipid-type biosurfactants (Desai and Banat 1997). 
Structurally, rhamnolipids are composed of one or two molecules of rhamnose 
sugar linked to one or two molecules of b-hydroxydecanoic acid. This group of 
biosurfactants is produced by a few Pseudomonas species and was first reported by 
Jarvis and Johnson (1949). Sophorolipids are mainly produced by a few yeasts of 
Candida species and consist of a dimeric glucose (also called sophorose) linked by 
a glycosidic bond through a hydroxyl group located at the penultimate position of 
an 18-carbon fatty acid (Van Bogaert et al. 2007; Daverey and Pakshirajan 2009). 
This type of biosurfactant occurs as a mixture of macrolactone and open-chain (free 
acid) forms and may be acetylated at the primary hydroxyl positions of the 
sophorose sugars. Gorin et al. (1961) were the first to report extracellular sophoro-
lipids using the yeast Torulopsis magnoliae (later identified as Candida apicola).   
In comparison to other biosurfactants, e.g., rhamnolipids that are produced by 
pathogenic microorganisms, sophorolipids can be produced by non- pathogenic 
Candida species and in much larger quantities (Van Bogaert et al. 2007). In case of 
trehalose lipids, disaccharide trehalose sugar is linked to mycolic acid (a long chain 
a-branched-b-hydroxy fatty acid) and is mainly produced by Mycobacterium, 
Nocardia, Corynebacterium, Rhodococcus, and Arthrobacter species (Asselineau 
and Asselineau 1978; Kretschmer et al. 1982; Li et al. 1984; Cooper et al. 1981b; 
Desai and Banat 1997).
Lipopeptides and lipoproteins. Lipopeptides and lipoproteins produced by micro-
organisms are known for their antibiotic activity rather than their surfactant proper-
ties. Surfactin (a cyclic lipopeptide), produced by Bacillus subtilis, is the most 
thoroughly studied biosurfactant in this group (Cooper et al. 1981; Besson and 
Michel 1992) and was first reported by Arima et al. (1968).

Fatty acids, neutral lipids, and phospholipids. Several microorganisms produce 
fatty acids, phospholipids, or neutral lipids in large quantities when grown on 
n-alkanes and have been considered biosurfactants (Desai and Banat 1997). Fatty 
acids produced by microorganisms may be simple straight-chain fatty acids or may 
be complex in nature containing OH groups and alkyl branches (Rahman and 
Gakpe 2008). Mycolic acids are long-chain, b-hydroxy fatty acids substituted at the 
a-carbon atom with a moderately long aliphatic chain and are primarily pro-
duced by Mycobacterium, Nocardia, Rhodococcus, and Corynebacterium species 
(Shimakata et al. 1984). Corynomucolic acid is another example of a complex fatty 
acid biosurfactant produced by Rhodococcus erythropolis (Kretschmer et al. 1982). 
Triacylglycerols found in all eukaryotic cells (yeasts, molds, plants, and animals) 
and esters produced by Acinetobatcer sp. related bacteria such as Moraxella and 
some eukaryotic algae are examples of neutral lipids. Acinetobacter sp. strain 
HO1-N produces phosphatidylethanolamine, a phospholipid surfactant, when 
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grown on n-alkanes. Aspergillus sp. (Kappeli and Finnerty 1979) and Thiobacillus 
thiooxidans (Beeba and Umbreit 1971) have also been reported to produce phos-
pholipids in large quantities.

9.2.2  Important Properties of Biosurfactants

Biosurfactants possess several properties similar to those of chemical surfactants. 
The most important properties are discussed below.

9.2.3  Surface and Interfacial Tension Reduction

Surfactants are evaluated based on properties such as surface or interfacial tension 
reduction and critical micelle concentration (CMC) (Parkinson 1985). Biosurfactant 
molecules tend to associate either with each other (micelle formation) or with sur-
faces between phases of different polarity (e.g., air/water, oil/water, or water/solid 
interfaces). Their effect on these interfaces is most readily seen as a reduction in 
surface tension. The surface tension at air/water and oil/water interfaces (often 
simply referred to as surface tension and interfacial tension, respectively) can be 
quantitatively determined by standard methods. As surfactant concentration is 
raised in an aqueous medium, the surface tension of the medium reduces, and even-
tually a point is reached at which surface tension of the medium takes up a minimal 
value and surfactant monomer begins to form micelle. The concentration of surfac-
tant at which micelles begin to form is called CMC. Above the CMC, the surface 
tension remains constant, indicating that the interface is saturated and micelle for-
mation has taken place in the bulk phase (Parkinson 1985). A lower CMC indicates 
that less surfactant is required to saturate the interface between either air–liquid or 
liquid–liquid and form micelles. Thus CMC is the most commonly used measure 
of surfactant efficiency. At concentrations higher than the CMC, it is hypothesized 
that additional surfactant molecules aggregate into micelles in the bulk phase and 
do not contribute to further significant changes on the interface. Values for surface 
and interfacial tension due to different biosurfactants reported in the literature are 
presented in Table 9.2. In general, biosurfactants are more effective and their CMC 

Table 9.2 Properties of some important biosurfactants

Biosurfactant Organism
Surface tension  
(mN/m) CMC (mg/l)

Interfacial tension  
(mN/m)

Rhamnolipids P. aeruginosa 29 0.1–10 0.25
Trehalolipids R. erythropolis 32–36 4 14–17
Sophorolipids C. bombicola 33 60 1.8
Surfactin B. subtilis 27–32 23–160 1
Viscosin P. flurescens 26.5 150

Adopted from Desai and Banat (1997)
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is about 10–40 times lower than that of chemical surfactants; i.e., compared with 
chemical surfactants, the quantity of biosurfactants required to reduce surface 
 tension is substantially less (Desai and Banat 1997).

9.2.4  Emulsification and De-emulsification Activity

Stable emulsions with a lifespan of months to years can be produced using biosur-
factants (Velikonja and Kosaric 1993). Also, biosurfactants can stabilize emulsions 
(emulsifiers) or destabilize them (de-emulsifiers). High molecular mass biosurfac-
tants are, in general, better emulsifiers than low molecular mass biosurfactants 
(Muthusamy et al. 2008).

9.2.5  Biodegradability

One of the major advantages of biosurfactants over synthetic surfactants is their 
biodegradability; therefore, they are particularly suitable for bioremediation 
(Mohan et al. 2006). Zeng et al. (2007) studied the codegradation of synthetic 
 surfactants (CTAB, Triton X-100, and SDS) and rhamnolipids with glucose by 
Pseudomonas aeruginosa, B. subtilis and compost microorganisms in liquid culture 
media. In addition to being recalcitrant to degradation by these microorganisms, 
CTAB inhibited organisms from utilizing the readily available carbon source (glu-
cose) within the media. Although the nonionic surfactant Triton X-100 was found 
to be nontoxic to microorganisms and hence did not inhibit growth, it was recalci-
trant to biodegradation. Anionic surfactant SDS also showed no toxicity toward 
microorganisms but could be codegraded as carbon source along with glucose. The 
biosurfactant rhamnolipid was a distinct type of surfactant that was nontoxic and 
well-degraded by B. subtilis and compost microorganisms; however, it could not be 
utilized by its producer organism, P. aeruginosa. Biodegradability of sophorolipids 
produced by Candida bombicola was studied by different authors and is reported 
to be a readily biodegradable biosurfactant (Hirata et al. 2009; Lo and Ju 2009).

9.2.6  Low Toxicity

Microbial surfactants are generally considered as less toxic or nontoxic products and, 
therefore, may be better suited for pharmaceutical, cosmetic, and food applications 
when compared with chemical surfactants (Flasz et al. 1998; Muthusamy et al. 2008). 
Poremba et al. (1991) found that a synthetic anionic surfactant (Corexit) displayed 
an LC

50
 against Photobacterium phosphoreum ten times lower than rhamnolipids, 

hence demonstrating the higher toxicity of the chemical-derived surfactant. 
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Similarly, sophorolipids displayed low cytotoxicity toward human fibroblasts, 
human keratinocytes cell-line HPK II, and normal human epidermal keratinocytes 
(Krivobok et al. 1994; Otto et al. 1999; Hirata et al. 2009).

9.3  Remediation of Contaminated Soil and Water Using 
Different Physical, Chemical, and Biological Techniques

Soil and water contaminated with hazardous chemicals is a major public health and 
environmental concern worldwide. In general, hazardous chemicals are generated 
as by-products of industries such as petrochemicals, pulp and paper, chemical 
manufacturing, mining, and others.

Several physical, chemical, and biological remediation techniques have been 
successfully applied by researchers, but more often a single remediation strategy 
may not provide sufficient removal of contaminants from soil or water; therefore, 
combinations of two or more remediation techniques are often used for achieving 
optimal results. Short descriptions of these techniques are provided below.

9.3.1  Physical Techniques

The objective of physical remediation techniques is to separate the contaminants 
from soil or water. Contaminants thus removed are generally subjected to ex situ 
treatment. Excavation and soil vapor extraction are the two most widely used physi-
cal techniques. Air sparging and soil washing using surfactant or cosolvent flushing 
are some of the other physical techniques used for treating contaminated soil and 
water. Generally, these techniques are costly and require further treatment 
(Wirthensohn et al. 2009).

9.3.2  Chemical Techniques

Oxidizing agents such as H
2
O

2
, Fenton’s reagent, permanganate, ozone, and sodium 

persulfate are widely used for remediation of contaminated soil and water. Selection 
of oxidant depends on the nature and type of contaminant, level of remediation 
required, viability of oxidant delivery, soil conditions, and hydrogeology of the site. 
The greatest advantages of chemical techniques are the relatively rapid treatment 
time and the ability to treat contaminants present at high concentrations. 
Nonselectivity and capital cost are among the major disadvantages of these  methods. 
In addition, many oxidizing agents are highly reactive, which lead to high reaction 
temperatures with the risk of explosion. Field scientists must be adequately trained 
in the use of these chemicals.
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9.3.3  Biological Techniques or Bioremediation

Bioremediation is an emerging and promising technology for the treatment of 
 contaminated soil and water. The primary requirements for bioremediation are 
that the microorganisms used should be capable of surviving in the contaminated 
environment and also efficient in degrading the contaminant. Therefore, bioreme-
diation can be effective only where environmental conditions permit microbial 
growth and activity. Sometimes environmental parameters must be manipulated to 
allow microbial growth and degradation of contaminants. Depending on the 
organism and the contaminant(s) of concern, bioremediation can be either aerobic 
or anaerobic. Pseudomonas, Alcaligenes, Sphingomonas, Rhodococcus, and 
Mycobacterium are a few of the microbial genera, which are reported to degrade 
contaminants such as pesticides and hydrocarbons under aerobic conditions. 
Many of these bacteria use the contaminant as the sole source of carbon and 
energy. The major advantage of this technique is its cost-effectiveness and perma-
nent removal of pollutant by complete mineralization of the contaminant. 
Furthermore, the technique can be designed to be noninvasive and leave the eco-
system intact. Bioremediation can address low concentrations of contaminants 
where cleanup by physical or chemical methods would not be feasible. When 
compared with conventional methods, the major drawbacks of this technique are 
longer process times and low predictability of the system. Selected bioremedia-
tion methods are described below.

In situ bioremediation. This method is generally the most desirable option due to 
low cost and less disturbance, since treatment occurs in-place, thus avoiding exca-
vation and transport of contaminants. In situ treatment is limited by depth of 
affected soil that can be treated. In many soils, effective oxygen diffusion for desir-
able rates of bioremediation extends to a range of only a few centimeters to about 
30 cm, although depths of 60 cm and greater have been effectively treated in some 
cases (Vidali 2001). To address this issue, oxygen can be pumped to lower depths 
via dissolution of air, peroxide, ozone, etc. into influent water. The most important 
in situ land treatments are briefly described further.

Bioventing is the most common in situ treatment (Lee and Swindoll 1993; Vidali 
2001) and involves supplying air and nutrients through wells to contaminated soil 
to stimulate the proliferation of indigenous bacteria. These organisms will work 
to decompose the contaminants, while negative pressure removes waste vapors. 
Bioventing employs low air flow rates and provides only the amount of oxygen 
necessary for biodegradation while minimizing volatilization and release of con-
taminants to the atmosphere (Leeson and Hinchee 1997; Vidali 2001). It works 
for simple hydrocarbons and can be used where the contamination is deep below 
the surface.

Biosparging. In this in situ technique, air (or oxygen) is injected below the water 
table to increase groundwater oxygen concentration and enhance the rate of bio-
logical degradation of contaminants by bacteria. This system increases mixing in 
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the saturated zone, thereby facilitating contact between oxygen and soil and 
groundwater. The ease and low cost of installing small-diameter air injection points 
allows considerable flexibility in the design and construction of the system.

Bioaugmentation. This in situ technique frequently involves the addition of micro-
organisms that are indigenous or exogenous to the contaminated sites. Two factors 
limit the use of added microbial cultures in a land treatment unit (1) nonindigenous 
cultures rarely compete well enough with an indigenous population to develop and 
sustain useful population levels and (2) most soils with long-term exposure to bio-
degradable waste have indigenous microorganisms that are effective degraders, if 
the land treatment unit is well managed.

9.3.3.1  Ex Situ Bioremediation

The ex situ method involves excavation or removal of contaminated soil. The soil 
is subsequently treated in surface units.

Landfarming is a simple technique in which contaminated soil is excavated and 
spread over a prepared bed and periodically tilled until pollutants are degraded. The 
goal is to stimulate indigenous microorganisms and facilitate aerobic degradation 
of contaminants. In general, the practice is limited to the treatment of surficial soil 
layers (e.g., 10–35 cm). Since landfarming has the potential to reduce monitoring 
and maintenance costs as well as clean-up liabilities, this technique has received 
much attention as a remediation alternative.

Composting involves combining contaminated soil with nonhazardous organic 
amendments such as manure or agricultural wastes. The presence of these organic 
materials supports the development of a rich microbial consortium and elevated 
temperatures. By this technique, hydrocarbon contaminants are degraded both bio-
logically and chemically.

Biopiles Fahnestock et al. (1998) are a hybrid of landfarming and composting. 
Engineered cells are constructed as aerated composted piles and used for the treat-
ment of surface contamination with petroleum hydrocarbons. This is a refined version 
of landfarming that tends to control losses of the contaminants by leaching and 
volatilization. Biopiles provide a favorable environment for the action of indigenous 
aerobic and anaerobic microorganisms.

Bioreactors. Slurry reactors or aqueous reactors are used for ex situ treatment of 
contaminated soil and water. A slurry bioreactor may be defined as a vessel used to 
create a three-phase (solid, liquid, and gas) mixing condition to increase bioreme-
diation rate of soil-bound and water-soluble pollutants. Owing to the creation of 
optimized environmental conditions and high mass transfer rates in bioreactors, the 
degradation rate of contaminant(s) is substantial. However, the system requires 
physical excavation of soil before applying the bioreactor system. In addition, reactor 
conditions (pH, N levels, gas release, etc.) must be monitored closely.
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9.4  Bioremediation of Contaminated Soil and Water Using 
Biosurfactants

Owing to their ability to reduce surface/interfacial tension between two phases and 
form micelles, biosurfactants play an important role in the bioremediation of soil 
and water contaminated with hydrophobic pollutants and also in the removal of 
heavy metals from contaminated soil. The role and mechanism of biosurfactants in 
bioremediation of sites contaminated with various pollutants are discussed below.

9.4.1  Hydrocarbons

Hydrocarbons are organic compounds, which consist solely of hydrogen and carbon. 
They can be classified as saturated hydrocarbons, unsaturated hydrocarbons, 
cycloalkanes, and aromatic hydrocarbons. They are used primarily as energy 
sources; however, if present in soil or water, they are toxic to the environment and 
human health due to their mutagenicity, carcinogenicity, and tendency to bioaccu-
mulate in the food chain.

9.4.2  Polycyclic Aromatic Hydrocarbons

PAHs are a class of organic compounds containing two or more fused aromatic 
rings. Naphthalene, phenanthrene, anthracene, and pyrene are examples of PAHs. 
Some PAHs have been shown to possess carcinogenic characteristics. Their release 
and subsequent accumulation in terrestrial environments is cause for concern 
(Cerniglia 1992). Therefore, soils containing these substances require remediation 
(Shuttleworth and Cerniglia 1995; Kanaly and Harayama 2000).

The low water solubility of PAHs increases their sorption to surfaces and limits 
their bioavailability to microorganisms, which is a barrier to effective bioremedia-
tion of sites contaminated with PAHs. Biosurfactants can enhance microbial growth 
on bound substrates by desorbing them from surfaces or by increasing their apparent 
water solubility (Marcoux 2000). Surfactants that dramatically lower interfacial 
tension are particularly effective in mobilizing bound hydrophobic molecules and 
making them available for biodegradation. Low-molecular-weight biosurfactants 
that have low CMCs increase the apparent solubility of hydrocarbons by incorpo-
rating them into the hydrophobic cavities of micelles (Miller and Zhang 1997; Ron 
and Rosenberg 2002). Several authors have studied the effect of different biosurfac-
tants to increase biodegradation of PAHs (Schippers et al. 2000; Arun et al. 2008; 
Gottfried et al. 2010; Sponza and Gok 2010). Figure 9.2 shows the mechanism of 
PAH removal by biosurfactants. The initial step is micelle formation, where the 
hydrophobic portion of the biosurfactant attaches to the PAH through hydrophobic 
interactions and forms micelles containing the PAH. The micelle contacts the cell 
membrane which is highly hydrophilic and increases membrane porosity for the 
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PAH to enter the cell. Once inside the cell, the PAH is attacked by the necessary 
enzymes and are degraded (Schippers et al. 2000). Another possible mechanism of 
biosurfactant action involves modification in cell hydrophobicity. If a biosurfactant 
attaches to the cell membrane and changes cell hydrophobicity, it will facilitate 
direct contact between cells and the PAH, which leads to PAH uptake by the cell 
and its biodegradation. Alasan (a high-molecular-weight bioemulsifier complex of 
an anionic polysaccharide and proteins) produced by Acinetobacter radioresistens 
KA53 increases the apparent aqueous solubilities of phenanthrene, fluoranthene, 
and pyrene up to 6.6-, 25.7-, and 19.8-fold, respectively (Barkey et al. 1999). 
Addition of rhamnolipid biosurfactant increases the apparent aqueous solubility of 
phenanthrene and overall degradation by at least 20% when combined with salicy-
late or glucose in liquid solution when compared with solutions that contained sali-
cylate or glucose with no biosurfactant (Gottfried et al 2010).

Recently, Sponza and Gok (2010) studied the degradation of PAHs in a petro-
chemical wastewater in a continuous stirred tank reactor and reported that the addi-
tion of rhamnolipid increased the removal efficiencies of PAHs from 72 to 80%. 
Rhamnolipid treatment significantly increased the degradation of five- and six-ring 
PAHs. Arun et al. (2008) isolated a biosurfactant-producing Pseudomonas strain 
from oil-contaminated soil and found that it degraded 90% of pyrene. Table 9.3 
summarizes the literature on biosurfactant-aided degradation of different hydrocar-
bons by microorganisms.

9.4.3  Petroleum Hydrocarbons

Petroleum hydrocarbons include alkanes, cycloalkanes, aromatics, PAHs, 
asphaltenes, and resins. Alkanes are represented by the formula C

2
H

2n+2
 (where n 
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EnzymesDegraded 
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Cell 
membrane

Phospholipid 
bilayer

BS micelle 
with PAH
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Cell 

Inside the 
cell

Outside the 
cell

Inside 
Cell 

Fig. 9.2 Mechanism of PAH degradation by microorganisms in the presence of a biosurfactant
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is the number of carbons and 2n+2 is the number of hydrogens) and are sometimes 
referred to as aliphatic compounds. Low-molecular-weight alkanes are the petro-
leum hydrocarbons most readily degraded by microorganisms. As chain length and 
the amount of branching increases, resistance of the compound to microbial attack 
increases (Mulligan 2005).

Biosurfactants are reported to increase the biodegradation of petroleum hydro-
carbons by mechanisms similar to that of PAHs (Zhang and Miller 1992; Shreve 
et al. 1995). Zhang and Miller (1992) demonstrated that rhamnolipids at a concen-
tration of 300 mg/l increased mineralization of octadecane from 5 to 20% compared 
with that of controls. Rahman et al. (2003) examined the bioremediation of 
n-alkanes in a petroleum sludge, which contained an oil and grease content of 
87.4%. The following degradation efficiencies in 10% sludge were reported after 
56 days with the addition of a bacterial consortium plus nutrients and rhamnolipids: 
C8–C11 alkanes: 100%; C12–C21: 83–98%; C22–C31: 80–85%, and C32–C40: 
57–73%. Although biodegradation rate decreased with increase in chain length, 
rates were significantly high even for C32–C40 compounds, thus indicating the 
benefit of rhamnolipid addition in enhancing biodegradation of these highly hydro-
phobic compounds. Whang et al. (2008) investigated the potential application of 
two biosurfactants, surfactin and rhamnolipid, for enhanced biodegradation of 
diesel-contaminated soil and water in a series of bench-scale experiments. In batch 
experiments with diesel/water, addition of 40 mg/l surfactin significantly enhanced 
diesel biodegradation up to 94%, compared with 40% with no surfactin addition. 
Similarly, the addition of rhamnolipid to diesel/water systems in the range of 
0–80 mg/l substantially increased the biodegradation of diesel from 40 to 100%. 
These results confirmed the utility of the biosurfactant in enhancing both efficiency 
and rate of diesel biodegradation in diesel/water and diesel/soil systems. Recently, 
Lai et al. (2009) studied microbial ability to degrade total petroleum hydrocarbons 
(TPHs) from soil by two biosurfactants (surfactin and rhamnolipid) compared with 
that of synthetic surfactants (Tween 80 and Triton X-100). The authors reported 
that biosurfactants exhibited much higher TPH removal efficiency than did the 
synthetic surfactants. By using 0.2% each of rhamnolipids, surfactin, Tween 80, 
and Triton X-100, TPH removal for soil contaminated with ca. 3,000 mg TPH/kg 
dry soil was 23, 14, 6, and 4%, respectively. For soil contaminated with ca. 
9,000 mg TPH/kg soil, the removal efficiency increased to 63, 62, 40, and 35%, 
respectively, due to the surfactants. TPH removal efficiency also increased with 
increase in biosurfactant concentration (from 0 to 0.2%); however, with increase in 
contact time from 1 to 7 days, efficiency did not vary significantly.

9.4.4  Pesticides and Herbicides

The pesticides dichlorodiphenyltrichloroethane (DDT), 2,4-dichlorophenoxyacetic 
acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), plasticizers, pen-
tachlorophenol, and polychlorinated biphenyls, among others are examples of 
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halogenated aromatic compounds. Their stability and toxicity are cause for concern 
for the environment and public health. The halogenated aliphatic compound, 
 position, and number of halogens are important in determining both rate and 
mechanism of biodegradation (Mulligan 2005). Pesticides and herbicides have poor 
aqueous solubility and biosurfactants are suggested to increase their aqueous solu-
bility, thereby increasing degree of biodegradation.

Rhamnolipids at 4 g/l have shown the capability to increase the mineralization 
of 4,4¢ chlorobiphenyl by an acclimated culture of Alcaligenes eutrophus up to 
213 times above that of the control (Robinson et al. 1996). Both rhamnolipids and 
Triton X-100 increased biodegradation of trifluralin and coumaphos in liquid 
cultures and soil slurries by microbial consortia isolated from contaminated cattle 
dip (Mata-Sandoval et al. 2001). A study conducted by Wattanaphon et al. (2009) 
demonstrated that biosurfactants were more active in solubilizing pesticides com-
pared with synthetic surfactants. The authors examined the ability of a glucolipid-
type of biosurfactant from an isolated strain Burkholderia cenocepacia BSP3 to 
enhance pesticide solubility in comparison with those of synthetic surfactants 
(nonionic surfactant Tween 80 and anionic surfactant SDS). Solubilization effi-
ciency of three pesticides with distinct water solubility, viz. methyl parathion, 
ethyl parathion, and trifluralin, was shown to be dependent on surfactant and its 
concentration. The biosurfactant from B. cenocepacia BSP3 substantially 
enhanced the apparent solubility of the three pesticides when the concentration 
was increased to 2 CMC; however, an increase in the biosurfactant concentration 
within the range of 2–10 CMC did not significantly enhance pesticide solubility. 
Under the conditions tested, biosurfactant from B. cenocepacia BSP3 was more 
efficient than Tween 80 and SDS in enhancing pesticide solubilization. Singh 
et al. (2009) isolated a Pseudomonas sp. (ChlD) from agricultural soil by enrich-
ment culture technique in the presence of chlorpyrifos, capable of producing bio-
surfactant (rhamnolipids) and degrading chlorpyrifos. They evaluated the ability of 
different concentrations of rhamnolipids ranging from 0.02 to 0.04 g/l in M-9 
medium to improve partitioning of chlorpyrifos to the aqueous phase. Chlorpyrifos 
solubility in the aqueous phase increased from 2.5% in controls to >87% in 
medium supplemented with 0.04 g/l of a biosurfactant preparation. The quantity 
of chlorpyrifos decreased concomitantly with an increase in biosurfactant concen-
tration from 0.02 to 0.04 g/l, indicating significant increase in aqueous phase 
partitioning of chlorpyrifos. In the absence of rhamnolipids, 91.7% of chlorpyrifos 
was degraded, whereas in the presence of the biosurfactant, over 98% of chlorpy-
rifos degradation was achieved.

The isomers of hexachlorocyclohexane (HCH) are a class of pesticides, which 
are reported to be highly toxic and carcinogenic and to be endocrine disrupters. The 
spatial arrangement of chlorine atoms in different HCH isomers and low aqueous 
phase solubility contribute to their persistence in the environment. Rhamnolipids 
produced from an isolated strain of P. aeruginosa WH-2 improved aqueous solubility 
of HCH isomers, suggesting the potential role of biosurfactants in bioremediation 
of pesticides and herbicides (Sharma et al. 2009).
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9.4.5  Heavy Metals

Soils contaminated with metals are the result of direct contact with industrial 
 discharge, improper disposal of wastes, spills and failure of land disposal facilities. 
Metals such as lead (Pb), chromium (Cr), cadmium (Cd), mercury (Hg), arsenic 
(As), copper (Cu), nickel (Ni), and zinc (Zn) have been detected in many sites 
(Forstner 1995; Kim and Vipulanandan 2006). Metals, unlike many hazardous 
organic constituents, cannot be degraded or readily detoxified. The existence and 
fate of the metals in soil is a matter of concern not only because of their potential 
impact on microbial communities but also because of the potential for groundwater 
contamination and hence toxicological impacts on human health (Kim and 
Vipulanandan 2006). Metal contaminants in the environment are usually tightly 
bound to colloidal particles and organic matter. This represents a major constraint 
on their removal using currently available in situ remediation technologies (Juwarker 
et al. 2008).

Biosurfactants can improve metal removal; however, the mechanism differs 
from solubilization, mobilization, sorption and emulsion formation, etc., which 
have been postulated for hydrocarbon removal. Mulligan et al. (1999b) studied 
metal removal with surfactin and described possible mechanisms by which biosur-
factants remove metals from soil. They suggested that the biosurfactant must be 
forming complexes through direct contact with the sorbed metal contaminants 
before detachment from the soil. The biosurfactant reduces the interfacial tension 
between the soil colloid and metal, which enables the removal of the metal from the 
soil surface. The biosurfactant micelle makes a strong complex with metal, which 
prevents readsorption of the metal to the soil.

Due to the anionic nature and complexation ability of rhamnolipids, they aid in 
the removal of metals, including ions of Cd, Cu, lanthanum (La), Pb, and Zn from 
soil (Tan et al. 1994; Herman et al. 1995; Ochoa-Loza 1998; Mulligan 2005).

Biosurfactants could be added to soil during ex situ soil washing processes. Due 
to the foaming property of biosurfactants, metal–biosurfactant complexes can be 
removed by the addition of air to cause foaming and then the biosurfactant can  
be recycled via precipitation by reducing solution pH to 2. Neilson et al. (2003) 
studied Pb removal by rhamnolipids. A 10 mM solution of rhamnolipid removed 
about 15% of soil Pb after ten washes. High levels of Zn and Cu did not impact lead 
removal.

Rhamnolipids have been added to mining ores to enhance metal extraction 
(Dahrazma and Mulligan 2004). Batch tests were performed at room temperature, 
and using a 2% rhamnolipid concentration, 28% (2.6 mg) of the Cu was extracted. 
Addition of 1% NaOH enhanced removal up to 42% (3.8 mg) for a rhamnolipid 
concentration of 2%, but removal decreased at higher surfactant concentrations. 
This study confirmed that pH plays an important role in removal of metals by bio-
surfactants. Sequential extraction studies were performed to characterize the mining 
ore and to determine the types of metals being extracted by the biosurfactants. 
Approximately 70% of the Cu was associated with the oxide fraction, 10% with the 
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carbonate, 5% with the organic matter, and 10% with the residual fraction. After 
washing with 2% biosurfactant at pH 6 for 6 days, 50% of the carbonate fraction 
and 40% of the oxide fraction were removed.

The effect of pH on metal removal by rhamnolipids was studied by Asci et al. 
(2007). At low pH (4.3–5.8), the rhamnosyl moiety of the rhamnolipids is at least 
50% unchanged and rhamnolipids form liposome-like vesicles. Between pH 6.0 
and 6.6, rhamnolipids form either lamella-like structures (6.0–6.5) or lipid aggre-
gates (6.2–6.6). When the rhamnosyl moiety is negatively charged above pH 6.8, 
micelles form. This suggests that, for better performance of rhamnolipids, the pH 
should be above 6.8. The optimal Cd(II) recovery efficiency (70.6–70.2% from 
kaolinite) was achieved using rhamnolipids by adjusting initial pH to 6.8–7.0 (Asci 
et al. 2007). Similarly, rhamnolipids removed a maximum 98.8% of Zn from 
Na-feldspar at pH 6.8 (Asci et al. 2008). On the other hand, low pH is more suitable 
for the sophorolipids type of biosurfactant, because above pH 7.0 the surfactant 
solution becomes a milky white solution with precipitate. After a single washing of 
soil with solutions containing sophorolipids (4% alone, 4% plus 0.7% HCl, and 4% 
plus 1% NaOH), Zn removal efficiency was 4, 16 and 7%, respectively (Mulligan 
et al. 1999a).

Kim and Vipulanandan (2006) evaluated the removal of Pb from water and 
contaminated soil (kaolinite) using a biosurfactant produced from vegetable oil. 
Over 75% of the Pb was removed from 100 mg/l contaminated water at ten times 
the CMC, and the biosurfactant:Pb ratio for optimal removal in the system was 
found to be 100:1. FTIR spectroscopy indicated that the carboxyl group of the 
biosurfactant was involved in the removal. Dahrazma and Mulligan (2007) evalu-
ated the performance of rhamnolipids in a continuous flow configuration (CFC) 
for removal of Cu, Zn, and Ni from sediments collected from Lachine Canal, 
Canada, to simulate a flow-through remediation technique. In this configuration, 
a rhamnolipid solution was passed through the sediment sample within a column 
at a constant rate. The removal from sediments was 37% of Cu, 13% of Zn, and 
27% of Ni when rhamnolipid without additives was applied. Adding 1% NaOH to 
0.5% rhamnolipid improved Cu removal by up to four times compared with 0.5% 
rhamnolipid alone.

Juwaker et al. (2008) isolated the di-rhamnolipid biosurfactant by P. aeruginosa 
strain BS2 and further assessed the potential of isolated biosurfactants as a washing 
agent for metal removal from multimetal contaminated soil (Cr, 940 mg/kg; Pb, 
900 mg/kg; Cd, 430 mg/kg; Ni, 880 mg/kg; Cu, 480 mg/kg). Between tap water and 
rhamnolipids, rhamnolipids proved very efficient in the mobilization of metal from 
contaminated soil; within 36 h of the leaching study, di-rhamnolipid when com-
pared with tap water facilitated a 13-fold higher removal of Cr from the soil, 
whereas removal of Pb and Cu were 9–10 and 14-fold higher than with tap water 
only. On the other hand, leaching of Cd and Ni from the spiked soil was 25-fold 
higher using rhamnolipids compared with the use of tap water. These results 
showed that leaching behavior of the biosurfactant was different for different metals. 
Table 9.4 summarizes the studies that have successfully demonstrated the removal 
of metals from contaminated systems using biosurfactants.
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9.5  Recent Advances in Bioremediation Processes Using 
Biosurfactants and Future Prospects

9.5.1  Use of Immobilized Microorganisms and Contaminants

In situ biosurfactant production and bioremediation of contaminated sites using 
immobilized microorganisms are viewed to be more economical and more advanta-
geous than many conventional chemical and physical methods. For instance, the 
use of immobilized cells can overcome adverse environmental conditions that 
threaten microbial survival and can also prevent direct contact of introduced micro-
organisms with the autochthonous microbial community (Barreto et al. 2010).  
In addition, immobilization facilitates the monitoring of microbial metabolism and 
offers the possibility of repeated use of the cells (Cassidy et al. 1996).

Table 9.4 Removal of different metals by biosurfactants

Metal Biosurfactant % Removal References

Cd Rhamnolipid (0.5%) foam 73.2 Mulligan and Wang 
(2006)

Rhamnolipid (0.5%) liquid  
solution

61.7 Mulligan and Wang  
(2006)

Rhamnolipid 71.9 Asci et al. (2007)
Rhamnolipid (0.1%) pH 8 92 Juwarker et al. (2008)
Biosurfactant isolated from  

marine bacterium
97.66 Das et al. (2009)

Ni Rhamnolipid (0.5%) foam 68.1 Mulligan and Wang  
(2006)

Rhamnolipid (0.5%) liquid  
solution

51 Mulligan and Wang  
(2006)

Pb Rhamnolipid (10 mM solution) 15 Neilson et al. (2003)
Rhamnolipid (0.1%) pH 8 88 Juwarker et al. (2008)
Biosurfactant isolated from  

marine bacterium
100 Das et al. (2009)

Zn Rhamnolipid (12%) 19.5 Mulligan et al. (1999a)
Sophorolipid (4%) 15.8 Mulligan et al. (1999a)
Sophorolipid (4%) with  

HCl (0.7%)
100 Mulligan et al. (1999a)

Surfactin (0.25%) with  
NaOH (1%)

22 Mulligan et al. (1999b)

Zn from  
Na-feldspar

Rhamnolipids (25 mM),  
pH 6.8

98.83 Asci et al. (2008)

Cu Rhamnolipid (12%) 25 Mulligan et al. (1999a)
Surfactin (1%) with  

NaOH (1%)
70

Rhamnolipid (2%) 28 Dahrazma and 
Mulligan (2007)
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Recently, Barreto et al. (2010) entrapped spores of B. subtilis LAMI008 
 (biosurfactant-producing bacteria) in chitosan beads and these beads were cross-
linked with glutaraldehyde (to improve the stability of the chitosan beads) for 
n-hexadecane biodegradation and eventual biosurfactant recovery. The entrapped 
cells degraded almost 100% of n-hexadecane (1%) in a medium supplemented with 
1% glucose within 48 h. The number of viable cells inside the beads was main-
tained throughout the experiment, and the released biosurfactant was not depleted 
as carbon source. Entrapment of the bacterial spores in chitosan beads was reported 
to overcome problems with stability, storage, and long-term cell viability encoun-
tered with vegetative cells. This approach can potentially be utilized for biodegra-
dation of complex compounds by entrapping spores of different species of 
biosurfactant-producing bacteria. Mahanty et al. (2009) reported a novel approach 
for biodegradation of PAHs by encapsulating pyrene into alginate beads for con-
trolled release of pyrene and its subsequent biodegradation by Mycobacterium 
frederiksbergense. Although this strain is not a biosurfactant producer, biodegrada-
tion of immobilized contaminants using biosurfactant-producing microorganisms 
could also be tested.

9.5.2  Novel Strains for Producing Biosurfactants

The primary requirement for microorganisms in bioremediation is the ability to 
grow and/or survive in the contaminated environment and efficiently degrade the 
contaminant. Although several microorganisms have been reported for their effec-
tiveness in bioremediation, there is still a need for effective biosurfactant-producing 
microorganisms, particularly for developing in situ bioremediation processes.

9.6  Applications of Biosurfactants in Agriculture

In agriculture, microbial surfactants are used for hydrophilization of heavy soils to 
obtain good wettability and to achieve even distribution of fertilizers. They also 
prevent the caking of certain fertilizers during storage and promote wetting, spreading, 
and penetration of pesticides (Kosaric et al. 1987). There are very few reports avail-
able on the use of biosurfactants in agriculture, and therefore, more detailed study 
is required to evaluate their potential.

9.7  Conclusion

Biosurfactants have shown potential for remediation of contaminated soil and 
water. Although the published literature suggests that biosurfactants are easily bio-
degradable and are less toxic compared with synthetic surfactants, most studies are 
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limited only to ex situ treatment using rhamnolipids. There is, therefore, a need to 
explore the potential of other biosurfactants such as sophorolipids and novel bio-
surfactants that may possess superior properties than those of rhamnolipids, as well 
as to successfully develop suitable biosurfactant-based in situ treatment processes.
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Abstract Bioaugmentation-assisted phytoextraction is a promising method for 
accelerating the cleanup rate of soils contaminated by metals. On average, bio-
augmentation increases metal accumulated by plant shoots by factors of about two 
(metal concentration) and five, as a result of higher bioaccessibility of metals in 
soils, with few obvious differences between effects by bacteria or fungi (e.g., plant 
growth-promoting rhizobacteria and arbuscular mycorrhizal fungi). Metal bioac-
cessibility is always controlled by microbial siderophores as well as organic acids 
and surfactants. In cases of excess concentrations, fungi immobilize metals, in con-
trast to bacteria. Unfortunately, the typically low inoculant survival rate may impair 
bioaugmentation efficiency. In this chapter, microbial inoculant formulations and 
management are addressed, as well as strategies for selecting the most relevant 
plant–microorganism couples for optimum phytoextraction of soil metals. In envi-
ronments subject to variable conditions, ecological engineering approaches may 
help in attaining maximal efficiency. Experiments at field-scale are reported, and 
environmental effects of the technique are discussed. Finally, future prospects are 
addressed with the main question being how maximal concentrations and amounts 
of metals in plants can be attained.

10.1  Introduction

Unlike organic pollutants, whose degradation can be undertaken in the very soil matrix 
to be cleaned up, toxic metal remediation implies removal (e.g., by solubilization 
or complexation). Nonpoint source contamination involving moderate concentrations 
of metals along extensive surfaces is less studied than is point source contamination. 
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However, when analyzing the situation in Europe and in the USA, approximately 
100,000 ha of land is contaminated by heavy metals (Lewandowski et al. 2006) 
as a result of both repeated applications of fertilizers and pesticides containing trace 
metals, along with atmospheric deposits. Although metal concentrations encountered 
are lower than those recorded in industrial sites, they are sufficiently high to generate 
a risk for the environment and humans through food chain contamination.

In situ soil phytoextraction is a “soft technology” allowing for sustaining crop 
production following treatment. Phytoextraction could even generate an economic 
benefit for farmers (Lewandowski et al. 2006) when several options for manage-
ment of contaminated agricultural soils are compared. Among the limitations of 
this technique (e.g., shallow soils are reached by roots and poor metal translocation 
from roots to shoots), its slow rate resulting from low bioaccessibility of metals is 
often considered to be the main limiting factor (Khan et al. 2000).

To increase metal availability to plants, various synthetic compounds have been 
tested (see review of Evangelou et al. 2007), but several limitations were observed: 
low biodegradability; toxicity to plants, microorganisms, and nematodes; lixivia-
tion risk and high cost. A promising alternative consists in optimizing the synergis-
tic effect of plants and microorganisms (Glick 2003) by coupling soil bioaugmentation 
(Lebeau 2010) with phytoextraction, a process termed rhizoremediation (Kuiper 
et al. 2004). Phytoextraction can be improved by increasing plant biomass as a 
result of plant growth-promoting rhizobacteria (PGPR) effect or by facilitating 
metal uptake with enzymes, siderophores, organic acids, or biosurfactants synthe-
sized by the microbial inoculant (Jing et al. 2007). Plants also play a major role as 
nutrient suppliers for maintaining microbial growth and activity. Data published 
until 2008 were extensively reviewed by Lebeau et al. (2008) where metal bioaug-
mentation-assisted phytoextraction was described in a technological viewpoint, i.e., 
efficiency and control of the metal phytoextraction in environments subject to vari-
able conditions. Since then, new results have confirmed previously published data, 
i.e., there is an average increase in metal concentration and total amount extracted 
by plants by factors of two and five, respectively.

After reviewing the basic mechanisms governing plant–microorganism relationships, 
this chapter addresses some practical advice on implementing on-site metal phytoextrac-
tion-assisted bioaugmentation from solid matrices such as soil and sediment. Ecological 
engineering could be a relevant approach for in situ metal phytoextraction-assisted 
bioaugmentation to attain maximal efficiency and control in environments subject to 
variable conditions. Methods are also reviewed to allow for a thorough understanding 
of mechanisms involved in this technique. Finally, future prospects are suggested.

10.2  Mechanisms Driving Metal Extraction  
in Plant–Microorganism Systems

The low quantities of metals extracted from soil by plants as well as the slow rate 
of extraction are primarily a consequence of low metal accessibility. Indeed, plant-
available metals often account for less than one percent of the total metal content 
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of a soil (Whiting et al. 2001; Braud et al. 2006b). This brings us to the issue of 
defining bioavailability vs. bioaccessibility. Definitions were provided by Semple 
et al. (2004): “a bioavailable compound [was defined] as that which is freely avail-
able to cross an organism’s cellular membrane from the medium the organism 
inhabits at a given time,” whereas a bioaccessible compound corresponds to “what 
is available to cross an organism’s cellular membrane from the environment, if the 
organism has access to the chemical.”

10.2.1  Metal Bioaccessibility as a Result of Microbial 
Mechanisms

In general, microbial processes solubilizing metals increase their bioaccessibility, 
whereas those immobilizing them reduce bioaccessibility (Gadd 2001). The bal-
ance between metal mobilization and immobilization represents the amount of 
metals available for uptake by the plant. This quantity varies depending on the 
metal, microorganism, environment, and physicochemical conditions such as pH, 
CEC, and organic matter content (Kayser et al. 2001).

In a bioaugmented process coupled with phytoextraction, solubilization pro-
vides a route for metal removal from soils manifesting itself in different forms 
(Gadd 2004):

Heterotrophic leaching. Chemoorganotrophic microorganisms acidify the local 
environment by efflux of H+ pumps due to the action of H+-ATPases, or by accu-
mulation of CO

2
 due to respiration. Leaching can also be due to the ability of 

microorganisms to synthesize metabolites (siderophores, biosurfactants, and 
organic acids) (Braud et al. 2006b; Di Simine et al. 1998; Wasay et al. 1998; 
Mulligan et al. 1999b). The most efficient acids include citric acid, which is known 
to solubilize Ni and Zn (Castro et al. 2000; Valix et al. 2001), and oxalic acid for 
Pb contained in pyromorphite (Sayer et al. 1999). Biosurfactants can also play a 
role in metal mobilization; examples include surfactin produced by Bacillus subtilis 
and rhamnolipids by Pseudomonas aeruginosa. Biosurfactants complex the free 
metallic form, which increases metal desorption from the solid phase and also 
mobilizes metal sorbed to the solid phase by the formation of micelles (Miller 
1995). Surfactin and rhamnolipids have been reported to mobilize Cu from the 
organic fraction of soil (Mulligan et al. 1999a). Siderophores are low-molecular-
weight molecules produced in soil at a few mmol/L of soil solution (Bossier et al. 
1988). Having a strong affinity for Fe (about 1030 for the affinity constant), sidero-
phores can, nonetheless, complex other metals in solution such as Cu, Ga, Mn, Ni, 
and Zn, albeit with lower affinity (Höfte et al. 1993; Braud et al. 2009a). Braud 
et al. (2006a) demonstrated that siderophore-producing bacteria inoculated in soil 
enhanced lead and chromium mobility. Pots bioaugmented with Aspergillus niger 
and P. aeruginosa contained higher concentrations of Cr (0.08 and 0.25 mg/kg dw 
soil) and Pb (0.25 and 0.3 mg/kg dw soil) in the exchangeable fraction (i.e., extrac-
tion with MgCl

2
) in comparison with nonbioaugmented soil where neither Cr nor 

Pb was detected. Diels et al. (1999) have shown that siderophore produced by 
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Alcaligenes eutrophus CH34 markedly increases the availability of Cd, Pb, and Zn 
by complexation (Gadd and White 1993).

Autotrophic leaching. Acidophilic, chemolithotrophic bacteria, which fix carbon 
dioxide, obtain energy from the oxidation of Fe(II) to Fe(III), and sulfur to H

2
SO

4
.

Biomethylation. This reaction occurs for Ag, Hg, Pb, Se, Sn, and Te. The methy-
lated metals are biologically more mobile than their corresponding elemental forms 
(Gadd 1993).

Redox reactions. The reduction of Fe and Mn oxides by microbes results in strong 
metal absorption and increases the mobility of metals in the soil.

10.2.2  Mechanisms Controlling Metal Uptake by Plants

Depending on metal bioaccessibility, metallic form, and plant status, metals are 
absorbed by roots as soluble forms or complexed to organic matter. Metal mobiliza-
tion within the rhizosphere occurs in exchange for proton extrusion, or secretion of 
phytosiderophores or organic acids. Nonetheless, no correlation has been found 
between hyperaccumulation and rhizospheric soil pH (McGrath et al. 1997) or with 
hyperproduction of root exudates (Zhao et al. 2001). Rhizospheric microorganisms 
have been shown, in certain situations, to stimulate root exudation (Groleau-Renaud 
et al. 2000). Despite the strong influence of root exudates on metal mobility 
(Mench et al. 1987), no study has shown the indirect impact of soil microorganisms 
on phytoextraction rate through stimulation of root exudation.

Once absorbed by the root, metals in ionic form can be immobilized by compl-
exation with carbonates, sulfates, and phosphates contained within plant cells 
(Raskin et al. 1994). Yet, complexation with some organic compounds such as his-
tidine, nicotianamine, and citrate tends to facilitate metal transport in xylem, while 
metallothionein and phytochelatin complexation tends to immobilize metals in root 
vacuoles (Clemens et al. 2002). Indeed, several phytoextraction studies have shown 
that citric acid and oxalic acid amendment increased metal accumulation as well as 
translocation factor in the plant (James and Bartlett 1984; Srivastava et al. 1998).

Translocation rate varies as a function of metallic species; some are easily trans-
located toward leaves (Cd, Co, Mn, Ni, and Zn), while others accumulate in the 
roots (Al, Cr, Cu, Fe, and Pb) (Baker et al. 1994; Pulford and Watson 2003). 
Hyperaccumulator plants, where the translocation factor is greater than 1, tend to 
sequester less quantity of metals in their vacuoles in comparison with nonhyperac-
cumulators (Singh et al. 2003). Although it cannot be applied to all Ni hyperaccu-
mulator species, metal exposition of Ni hyperaccumulator Alyssum sp., Streptanthus 
polygaloides, and Berkheya coddii increased histidine concentration in xylem, 
which increased metal transport and translocation (Kramer et al. 1996; Smith et al. 
1999; Salt and Kramer 2000).

Plant physiological status and stress response also play a role in phytoextraction 
rate. The plant’s strategy for managing metal toxicity involves synthesis of metal 
chelators such as phytochelatins or metallothioneins to chelate and detoxify the 
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metal absorbed (Zenk 1996). The expression of glutamylcysteine synthetase, a 
precursor of phytochelatins, was shown to enhance Cd accumulation and tolerance 
in Brassica juncea (Zhu et al. 1999). The synthesis, by bacteria, of 1-aminocyclo-
propane-1-carboxylate (ACC) deaminase, which degrades ACC, an ethylene pre-
cursor that can block root elongation if the plant is stressed, is a means of reducing 
stress to plants (Glick 2003).

10.3  Practical Issues and Recommendations with 
Phytoextraction-Assisted Bioaugmentation

The following two definitions of bioaugmentation should be kept in mind in the 
current discussion: (1) the definition given by El Fantroussi and Agathos (2005), 
i.e., “the technique for improvement of the capacity of a contaminated matrix (soil 
or other biotope) to remove pollution by the introduction of specific competent 
strains or consortia of microorganisms” and (2) a broader one suggested by 
Dejonghe et al. (2001), i.e., “this approach corresponds to increasing the metabolic 
capabilities of the microbiota present in the soil. In that respect, bioaugmentation 
corresponds to an increase in the gene pool and, thus, the genetic diversity of that 
site.” Soil bioaugmentation can be applied to plant nutrition in the following 
aspects: increase in plant growth, control of phytopathogens (biocontrol), improve-
ment of soil structure, mineralization of organic pollutants, and bioaccumulation or 
biolixiviation of inorganic pollutants (van Veen et al. 1997). Bioaugmentation tech-
niques have been widely used with the genus Rhizobium and Frankia and other 
nonsymbiotic microorganisms to increase plant growth, including Azospirillum, 
Azotobacter, Burkholderia, Gluconacetobacter, Herbaspirillum, and Klebsiella 
(Kennedy et al. 2004), and Bacillus, Pseudomonas, Aspergillus, and Penicillium 
(Khan and Khan 2002). New bioaugmentation processes have been developed to 
increase metal transfer to plants, using arbuscular mycorrhizal fungi (AMF) and 
plant growth-promoting rhizobacteria (PGPR) (Glick 1995). This new technique, 
termed rhizoremediation (Kuiper et al. 2004), is mainly used to enhance biodegra-
dation of organic pollutants by providing a host for degrading bacteria. The effects 
of nonsymbiotic and symbiotic bacteria on phytoextraction efficiency have been 
extensively reviewed by Lebeau et al. (2008).

10.3.1  Mutualistic and Symbiotic Relationships with Plants

Microorganisms used in augmented phytoextraction can have a mutualistic or 
symbiotic relationship with the host plant. Symbiotic microorganisms can be exo-
symbionts, i.e., residing outside the roots, mesosymbionts, or endosymbionts such 
as AMF, which belong mainly to the Glomales order and can colonize 97% of 
plant species (Abbott and Robson 1991). Depending on the plant–AMF association 
and soil conditions, AMF have a protective role toward metal toxicity and tend to 
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increase plant tolerance but decrease metal accumulation in shoots (Leyval et al. 
2002). Indeed, Hovsepyan and Greipsson (2004) suggest the use of a fungicide 
during phytoextraction of Pb by maize to avoid metal immobilization by AMF. 
Due to their high surface of sorption, AMF can chelate metals in the cells due to 
the production of glomalin (González-Chávez et al. 2004). Nonetheless, several 
studies have shown that AMF bioaugmentation increased Cd accumulation in bean 
and maize (Guo et al. 1996), alfalfa (El-Kherbawy et al. 1989), clover (Joner and 
Leyval 1997), and soybean (Heggo et al. 1990). Results differ as a function of 
plant species; for example, Glomus intraradices inoculation increased Pb concen-
tration in Agrostis capillaris roots, but not in Zea mays (Malcova et al. 2003). The 
success of phytoextraction assisted with AMF is variable also as a function of 
plant–microbial association, physicochemical properties of the soil, metal avail-
ability, inoculation conditions, and root density (Leyval et al. 1997). Furthermore, 
the use of AMF in phytoextraction can be criticized, since most hyperaccumulator 
plants belong to the Brassicaceae family and are typically nonmycorrhizal and are, 
therefore, not associated with AMF.

Bioaugmentation with nonsymbiotic microorganisms could ensure a higher 
success for rhizoremediation, since bacterial colonization would be less dependent 
on the plant–microbe association. The best known microbial group, i.e., PGPR, can 
influence metal extraction either indirectly by increasing plant growth rate due to 
(1) P and K solubilization, (2) production of indole acetic acid (IAA), a phytohor-
mone that increases plant growth, (3) production of ACC deaminase, which 
degrades ACC, an ethylene precursor that can block root elongation if the plant is 
stressed, and (4) production of siderophores, or directly by increasing metal mobility 
with microbial metabolites (Glick 2003).

In most contaminated soils, P and K are poorly available nutrients. The inocula-
tion of K- and P-solubilizing bacteria can increase both plant growth due to nutrient 
release and extraction of metals associated with P or K (Halstead et al. 1969). Some 
bacteria such as B. subtilis SJ-101, which produces IAA, increased B. juncea metal 
tolerance and improved Ni shoot extraction by 1.5-fold (Zaidi et al. 2006). 
Experiments with bacteria that naturally synthesize ACC deaminase such as 
Kluyvera ascorbata SUD165 did not show any improvement in metal extraction 
(Burd et al. 1998; Belimov et al. 2001), while plants engineered with bacterial ACC 
deaminase genes experienced increased metal extraction (Cd, Co, Cu, Mg, Ni, Pb, 
and Zn) in comparison with nonmodified plants (Grichko et al. 2000).

Metal contamination is often linked with Fe deficiency and plant stress, which 
implies development of chlorotic symptoms in plants growing on contaminated 
sites (Imsande 1998). Bacterial siderophores can act as an Fe supplier for the plant, 
increasing its growth and metal resistance, and increasing metal mobility in the soil 
(Bar-Ness et al. 1992). Siderophores are known as powerful Fe chelatants and can 
also complex other divalent and trivalent ions (Visca et al. 1992; Duffy and Defago 
1999), thus increasing metal mobility in the soil. For example, desferrioxamine B, 
a siderophore produced by Streptomyces, is able to mobilize Pb sorbed on goethite 
(Dubbin and Ander 2003), and siderophores produced by Burkholderia cepacia 
were able to desorb Cd from goethite (Mirabello 2006). Several studies have 
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reported that bioaugmentation with siderophore-producing microorganisms 
increases plant growth and metal phytoextraction (Höflich and Metz 1997; Whiting 
et al. 2001; Braud et al. 2009b).

According to Rajkumar et al. (2009), endophytic bacteria could be more suitable 
than nonendophytic PGPR for assisted phytoextraction because of their mutualistic 
relationship with the plant, ensuring better root colonization than would PGPR. 
However, the mechanisms for metal mobilization and/or plant growth promotion 
are the same as for PGPR. Endophytic bacteria colonizing roots of Brassica napus 
and producing IAA, siderophores, and ACC deaminase have been reported to facili-
tate Pb uptake and plant growth (Sheng et al. 2008).

10.3.2  Microbial Consortia

Some studies have used microbial consortia to enhance metal phytoextraction rate. 
A bacterial consortium adapted to selenium increased the bioconcentration factor 
in B. juncea by three, in comparison with the control, but decreased phytoextraction 
efficiency due to reduction of biomass production (Lampis et al. 2009). Another 
study showed that coinoculation of AMF and B. cereus increased Cd, Cr, Mn, and 
Ni phytoextraction by Trifolium repens (Azcón et al. 2009). Usually consortia are 
more efficient than pure cultures, as they do not lose their remediation ability and 
they allow the use of noncultivable microorganisms (Gentry et al. 2004).

10.3.3  Factors Impairing Bioaugmentation Success

Limiting factors for the success of bioaugmentation include the decrease of bacte-
rial survival after inoculation due to abiotic and biotic stress factors, and restricted 
mobility due to microbial size and attachment (Gentry et al. 2004; Lebeau 2010). 
The latter factor encourages the use of bacteria instead of fungi due to their smaller 
size and greater mobility. In order to increase bioaugmentation efficiency, several 
techniques have been developed: encapsulation of cells within a matrix, use of 
genetically engineered microorganisms to transfer genes of interest in indigenous 
microorganisms, rhizosphere bioaugmentation as an ecological niche for inocu-
lated microorganisms, use of ultramicrobacteria and adhesive-deficient bacteria, 
and use of surfactants to enhance mobility.

The main factors ensuring success of soil colonization is the efficiency of the 
inoculation method and the selection of bacteria based on their rhizocompetence. 
The rhizocompetence of a bacteria can be expressed as its ability to (1) mobilize 
iron, (2) reduce nitrate and carry out denitrification, and (3) use specific carbon 
sources and nutrients present in root exudates (Curl and Truelove 1986; Latour 
et al. 1996). Bacterial growth strategy is also an important factor for soil colonization; 
fast-growing bacteria (i.e., r strategists) are mostly found in young and immature 
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roots, while slow-growing bacteria (K strategists) grow mostly on mature roots  
(De Leij et al. 1995; Nacamulli et al. 1997). Phenotypical variations of microorgan-
isms can also favor root colonization due to their adaptability as a result of root 
maturation, as shown for root colonization of Arabidopsis thaliana by Pseudomonas 
brassicacearum (Achouak et al. 2004). Siderophore production and Fe mobiliza-
tion provide a competitive advantage for soil colonization by bacteria toward 
antagonists or predators. Statistical analyses have shown that the most competitive 
rhizospheric populations belong to the same siderotype (Latour et al. 2003).

10.3.4  Genetically Engineered Microorganisms

Most engineered microorganisms applied in phytoremediation have been used to 
increase metal resistance or adsorption and/or accumulation, but not specifically to 
enhance metal mobility. Most research has been focused on engineered microor-
ganisms to increase microorganism resistance to metals, to accumulate As, and to 
volatilize Hg and Se (Valls and Lorenzo 2002). A strain of B. cepacia holding the 
Ni resistance system genes of Ralstonia metallidurans increased root accumulation 
of Ni in Lupinus luteus, but not shoot Ni accumulation (Lodewyckx et al. 2001).

Increasing microbial metabolite production by genetic modification can enhance 
phytoextraction rates. A siderophore-overproducing mutant of Enterobacter,NBRI 
K28 SD1, has been reported to increase Zn extraction by B. juncea shoots (Kumar 
et al. 2008).

10.4  Plants

Most plants used in phytoextraction should resist metals, should possess a high 
growth rate and a developed root system, and must be able to efficiently translocate 
metals from root to shoot. (McGrath et al. 2002). Several approaches have been 
developed to enhance phytoextraction efficiency, including use of hyperaccumulators, 
use of high-biomass plants assisted by chemical or biological techniques, and use 
of fast-growing trees and genetically engineered plants.

10.4.1  Hyperaccumulators vs. High-Biomass Species

The major limiting factor in phytoextraction is remediation time, which can reach 
several decades. A reasonable and economically viable length, i.e., lower than 
5 years (Khan et al. 2000), implies the selection of species adapted to their environ-
ment and effective on lightly contaminated sites.

The choice of hyperaccumulator species vs. high-biomass species depends on 
soil parameters, metal speciation, and climatic conditions. Depending on the plant 
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and metallic species, predictive models have shown that the hyperaccumulator 
Thlaspi caerulescens is the most efficient plant for Zn phytoextraction, while the 
nonhyperaccumulator Nicotiana tabacum is the most effective for Cd remediation 
(Liang et al. 2009). Most hyperaccumulator species are low-biomass plants with a 
low growth rate, which can be a disadvantage for remediation of a large area as 
compared with using high-biomass species (Baker et al. 2000; Reeves and Baker 
2000). For example, Z. mays cultivated on the same area as T. caerulescens can 
extract three times more Cd, Cu, and Zn than the latter species because of higher 
biomass production (Keller and Hammer 2005). Another study compared the effi-
ciency of different plant species on soil contaminated with 2,500 mg/kg Pb and 
showed that Z. mays could extract twice as much Pb than the best B. juncea cultivar 
and almost three times more than Thlaspi rotundifolium (Huang and Cunningham 
1996). Therefore, numerous high-biomass plants have been used in phytoextraction 
processes, including Avena sativa, B. juncea and B. napus, Helianthus annuus, 
Hordeum vulgare, Pisum sativum, and Z. mays.

Fertilization can increase the yield of hyperaccumulator species and increase 
their potential for phytoextraction. With light NPK fertilization B. coddii biomass 
increased twofold to reach 22 tons/ha/year, and Ni concentration in shoots increased 
with higher rates of N amendments (Brooks and Robinson 1998). Fertilizer amend-
ments must be adjusted for each plant species, since excessive N fertilization can 
reduce Cd and Zn extraction by T. caerulescens and excessive P fertilization can even 
reduce its biomass (Sirguey et al. 2006). Furthermore, the use of P fertilizer can 
decrease metal availability and precipitate Pb in soil as pyromorphite (Scheckel 
et al. 2005).

10.4.2  Mobilization of Metals by Plants: The Role  
of Siderophores and Phytosiderophores

Plants are able to mobilize or immobilize metals by secreting root exudates, pro-
tons, phytosiderophores (PS), or organic acids (Kinnersley 1993; Wenzel et al. 
2003). PS are synthesized by strategy II plants, mostly graminaceous, under 
mugenic or avenic acid forms or nicotianamines in the case of Fe or Zn deficiency 
(Gries et al. 1995). Strategy I plants use proton exudation, Fe(III) reductases, and 
Fe(II) transporters for Fe uptake. Yet, PS are also able to complex other metals such 
as Cd, Ni, and Zn (Awad and Romheld 2000; Shenker et al. 2001). Plant exudates 
also contain low-molecular-weight organic acids (citric, malic, oxalic), which can 
mobilize Al, Ca, and Fe and increase their phytoextraction rate either by formation 
of metallic complexes or by reducing rhizosphere pH (Haynes 1990; Hinsinger 
et al. 2003).

A strong relationship exists between Fe status of the plant and siderophore pro-
duction in the rhizosphere (Yang and Crowley 2000). Several plants such as 
Lycopersicon esculentum (Duss et al. 1986), Dianthus caryophyllus, and H. vulgare 
(Duijff et al. 1991), Vigna radiata and Z. mays (Sharma and Johri 2003a, b), 
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Arachis hypogaea (Jurkevitch et al. 1988), and A. thaliana (Vansuyt et al. 2007) are 
able to use fluorescent Pseudomonas siderophores as an Fe supplier. It has been 
reported that bacterial siderophore ferrioxamine B (FOB) can be preferentially used 
by plants in comparison with Fe–EDTA or Fe–PS and is rapidly used in the 
Fe-deficient zones of Cucumis sativus (Wang et al. 1993). On the other hand, 
mugenic acid is more efficient than FOB for Fe uptake and translocation by Z. mays 
(Crowley et al. 1992), and PS are also more efficient than rhizoferrin, a fungal 
siderophore, for Fe uptake in wheat and barley (Shenker et al. 2001). These studies 
show that strategy I plants like C. sativus accumulate mostly siderophore–Fe com-
plexes, while strategy II plants such as Z. mays are able to produce PS and more 
readily absorb PS–Fe complexes.

Few studies have shown the role of siderophore-producing microorganisms in 
enhanced phytoextraction. Pseudomonas and Enterobacter increased Zn extraction 
twofold by T. caerulescens (Whiting et al. 2001). Maize phytoextraction of Pb and 
Cr increased by 5.4 and 3.8, respectively, by siderophore-producer P. aeruginosa, 
and Cr shoot extraction was enhanced by 5.2 after R. metallidurans bioaugmenta-
tion (Braud et al. 2009b). Another study reported that hydroxamate-type sidero-
phores secreted by Streptomyces tendae increased Cd and Fe uptake by 60% in H. 
annuus shoots (Dimkpa et al. 2009).

10.4.3  Plant Development

Except iron status, plant development stage is an important factor for determining 
the length of the remediation process and to reduce the treatment cost of biomass 
after phytoextraction. Indeed, the concentration factor from soil to shoot for Cd 
extraction by Solanum nigrum was lower at mature stage than at flowering stage 
(Wei et al. 2006). Another study reported that As concentration decreased in Pteris 
vittata fronds after 2 months growth, while the concentration in roots increased. It 
was concluded that young plants, with higher metabolic activities, were more suit-
able for phytoextraction (Gonzaga et al. 2007).

Fast-growing trees are considered good candidates for phytoextraction due to 
their deep root systems, adaptability to different substrates, and high biomass pro-
duction (Pulford and Watson 2003). Their rate of transpiration being high, the 
transfer of metal from root to shoot is facilitated in trees; for example, Salix can 
transpire 19,000 L of water in one summer (Hinchman et al. 1998). An economic 
study has shown that Salix can be adapted for the remediation of agricultural soil 
contaminated by Cd (Lewandowski et al. 2006).

10.4.4  Genetically Engineered Plants

Most engineered plants used in phytoextraction have been employed for phytovola-
tilization of mercury and selenium. Several strategies have been used for genetic 
improvement of the plant, such as alteration of uptake system specificity and 
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increasing chelatant production (Krämer and Chardonnens 2001). Understanding of 
the P. vittata As hyperaccumulation mechanism has led to the production of a modi-
fied Arabidopsis plant able to extract threefold more As than the nonmodified plant 
(Dhankher et al. 2002). Increasing production of chelant precursors glutathione and 
PC synthase increased metal tolerance and accumulation in the plant (Bennett et al. 
2003; Gisbert et al. 2003; Martínez et al. 2006). Furthermore, transfer of animal 
metallothionein genes to A. thaliana, Nicotiana sp., and Brassica sp. increased 
plant tolerance to Cd but did not increase Cd accumulation (Karenlampi et al. 
2000), while introduction of metallothionein from P. sativum into A. thaliana 
increased Cu uptake by roots (Evans et al. 1992). Another strategy increased 
transpiration rate by suppressing a transpiration inhibitor such as abscisic acid; a  
B. juncea mutant with this characteristic extracted twofold more Pb than did the 
wild plant (Gleba et al. 1999).

10.5  Practical Recommendations for Selection of  
Plant–Microorganism Couples and Implementation  
of the Bioaugmentation-Phytoextraction Technique

10.5.1  Strategy for Choosing the Most Relevant  
Plant–Microorganism Couples

In order to attain the greatest degree of metal extraction by plants, the optimal 
plant–microbial inoculant combination must be selected. The microbial inoculant 
should encompass the following properties: (1) sufficient metal mobilization from 
soil or sediment, (2) adequate survival rate, (3) plant protection against metal toxicity, 
and (4) plant growth stimulation. Regarding choice of plant, the main criteria are 
(1) biomass per soil surface area, (2) metal translocation and accumulation, (3) root 
colonization depth, (4) number of metals extracted by a single plant species, and 
(5) amount and composition of rhizodeposits available to support microbial growth. 
The complex interrelationships between these two partners complicate the selection 
scheme. Selected aspects of phytoextraction-assisted bioaugmentation are summa-
rized in Table 10.1. Some are detailed below.

The major problem with symbiotic microorganisms lies in their inability to 
modify the associations and that some plants are not involved in symbiosis, such as 
hyperaccumulators belonging to the Brassicaceae family (e.g., B. juncea and T. 
caerulescens), which are typically nonmycorrhizal (Brown et al. 1994; Kumar et al. 
1995). Conversely, regarding the host plant playing the dominant role in the sym-
biotic relationship, much more attention should be paid to host plants than to AMF 
(Chen et al. 2003) which are nonhost-specific symbionts. Among nonsymbiotic 
microorganisms, endophytic bacteria have been shown to tolerate higher concentra-
tions of Ni than do rhizospheric bacteria (Idris et al. 2004). Unfortunately, most 
endophytic bacteria are cultivation-independent. Yet, only biostimulation can be 
suggested, not bioaugmentation (Zhuang et al. 2007). Facultative endophytes such 
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as Pseudomonas fluorescens G10 and Microbacterium sp. G16 can, however, be 
used (Sheng et al. 2008), as they could colonize rhizosphere soil and plant tissue. 
Some microorganisms have been shown to be nonplant-specific (de Souza et al. 
1999) and can thus be associated with numerous plants. Nonetheless, some PGPRs 
only colonize certain plants (Zhuang et al. 2007). For example, Pseudomonas 
extracted from the rhizosphere of maize and inoculated in the same rhizosphere 
showed better colonization compared to Pseudomonas originating from the rhizo-
sphere of another plant (Benizri et al. 1997). Facing these constraints, Kuiper et al. 
(2001, 2004) were the first to suggest selecting strains indigenous to a host plant’s 
rhizosphere, calling this selection procedure “rhizo-directed strain selection.”

Regarding plants, cocultivation of two or more species is suggested for two key 
reasons: (1) some plants, particularly those belonging to the Brassicaceae family, 
cannot be associated directly with AMF. However, hyperaccumulators T. caerule-
scens and Sedum alfredii exhibit higher Zn uptake in the presence of mycorrhized 
maize (Wu et al. 2006b). These systems, associating nonmycorrhized hyperaccu-
mulators with mycorrhized plants, offer prospects for optimizing phytoextraction 
yields (Khan 2005); and (2) most soils are contaminated with several metals – 70% 
of contaminated sites in the USA are affected by at least two metals (Forstner 
1995), while most plant species only accumulate one or two metal species. 
Associations of multiple plant species, with the aim of collectively accumulating 
the metal mixture, should be undertaken and optimized. Unfortunately, most studies 
of multicontaminated soils restrict themselves to analyzing the botanical composi-
tion of the site without testing the relevancy of different plant associations in 
extracting several metals (Diez Lazaro et al. 2006; Regvar et al. 2006; Li et al. 
2007). The cropping of relevant plant associations should be experimented with, 
where each plant is associated with the most appropriate microorganism(s).

Soil metal concentration and fertility are additional important parameters to be 
considered regarding the plant–microorganism selection, since bioaugmentation 
may decrease metal uptake by plants above certain concentrations. AMF–plant sym-
biosis can be used primarily for less-contaminated soils (Audet and Charest 2007a). 
For example, maize, which has established symbiosis with the AMF Acaulospora 
mellea, accumulates more Cu in shoots and roots compared to the nonmycorrhized 
plant for Cu concentrations less than 400 mg/kg of soil (Wang et al. 2007). A similar 
Cu concentration threshold was observed by Andrade et al. (2010) for a Jack bean–
Glomus etunicatum association. No shift from positive to negative effect of bioaug-
mentation on metal extraction was shown in the range of metal concentrations tested. 
For example, the effects of 800 mg Pb/kg were compared to 400 mg/kg with isolates 
of P. fluorescens G10 and Microbacterium sp. G16 (Sheng et al. 2008); concentra-
tions ranged from 0 up to 580 mg/kg for Ni and 0 up to 9,780 mg/kg for Ni with soil 
inoculated with Bradyrhizobium sp. (Vigna) (Wani et al. 2007).

PGPR effects on plant growth can become impaired when plants are cultivated 
under optimal and stress-free conditions (Glick 2010).

The time and space to grow plants are also limiting factors when plant–
microorganism selection is undertaken. Although microorganisms must ultimately 
be tested with plants, a preselection could consist in cultivating microorganisms 
with artificial root exudates, as they play a key role in the establishment and 
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growth of microorganisms in the rhizosphere. Their compositions would mimic 
different plant species and physiological states. The composition of root exu-
dates originated from some plants are already well known (Chaudhry et al. 
2005), as are the variability of their composition under the influence of various 
parameters such as photoperiod cycle (Melnitchouck et al. 2005) and cultivars 
(Kush and Dadarwal 1981; Krotzky et al. 1988). Thus, new microbial culture 
media whose composition is similar to root exudates are suggested. This prese-
lection would greatly reduce the time required for final selection, and therefore, 
more combinations could be tested. With this selection scheme strategy, metal 
phytoavailability in soil could be determined by single-extraction procedures 
with chemical extractants.

10.5.2  Preculture Conditions of Microbial Inoculants

The ability of microorganisms to proliferate in soil after bioaugmentation has not 
been sufficiently taken into account, often impairing microbial survival (Lebeau 
2010). In addition to nutrient availability in soil, microbial persistence and activity 
are related to the phenotypical characteristics of the microorganisms and inocula-
tion procedures (Thompson et al. 2005) before soil bioaugmentation, encompassing 
both inoculant preculture and packaging. A “priming effect” was first announced 
by Bingemann et al. (1953). Basically, priming is predisposing an isolate or popula-
tion of microorganisms to future conditions in which they are designed to perform 
a function (Singer et al. 2005). The difference between “priming” and “activated 
soil” is as follows: soil priming aims at directly selecting microorganisms in the soil 
to be cleaned up. Activated soil first relies on the “priming” of a fraction of soil by 
the addition of the pollutant(s) with the aim of selecting relevant microorganisms 
and secondly at bioaugmenting the soil to be cleaned up. Activated soil serves at 
the same time of the inoculant, carrier, and source of nutrients without extracting 
the degraders from the soil (Gentry et al. 2004). The main advantages of these 
techniques are as follows: (1) a pool of useful complementary microorganisms is 
available; (2) a pool of cultivable and noncultivable microorganisms is available; 
(3) no steps of extraction and culture of microorganisms are necessary; and (4) bet-
ter microbial survival, since soil serves as a carrier for microorganisms. Preculture 
media such as soil extracts whose compositions are closer than that of artificial 
culture media could also help at increasing microbial survival after soil bioaugmen-
tation (Lebeau et al. 2002).

10.5.3  Selection and Bioaugmentation with Consortia:  
More Efficient than Pure Culture?

In theory, the use of microbial consortia instead of monoculture is more relevant as 
consortia can perform more complicated tasks, acting synergistically with others 
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and thus enduring more changeable and harsh conditions in polycontaminated 
environments (Verstraete et al. 2007; Brenner et al. 2008). “Natural” and “artificial” 
microbial consortia can be used in bioaugmentation. In the former case, the global 
performances may be optimal, but assemblages can maintain homeostasis, since 
members generally do not outcompete one another and do not exhaust the resources 
in their environments, and they can generally sustain harsh conditions as the result 
of selection over a long period (Brenner et al. 2008). Although microbial communi-
ties comprising consortia are constantly changing, the subtle equilibrium between 
the different populations making up the consortium is generally not broken, resulting 
in a high resiliency of these systems. Only the proportions of the populations 
 making up the consortia may change. For example, a minority population can 
become the most active population during nutrient limitation (LaPara et al. 2002). 
Hence, microbial communities are most probably the basis of microbial resource 
management in the domain of environmental biotechnology. Opposite to natural 
consortia, artificial consortia could be attractive by creating assemblages by gathering 
previously selected microorganisms such as superbugs (Singer et al. 2005). 
Nonetheless, the long-term behavior and destiny of such a consortium is, however, 
unpredictable.

Some microbial consortia, e.g., Glomus mosseae and Brevibacillus (Vivas et al. 
2003, 2006), G. intraradices and Glomus spurcum (Toler et al. 2005), G. mosseae 
and A. niger (Medina et al. 2006), Microbacterium saperdae, Pseudomonas mon-
teilii and Enterobacter cancerogenes (Whiting et al. 2001), a mixture of six 
rhizobacteria (de Souza et al. 1999), and Azotobacter chroococcum, Bacillus mega-
terium and Bacillus mucilaginosus (Wu et al. 2006b), were tested with the aim of 
enhancing metal phytoextraction. No outstanding differences in quantity of metals 
accumulated by plants were demonstrated between pure cultures and microbial 
consortia (Lebeau et al. 2008).

10.5.4  Microbial Inoculant Formulations and Management

Numerous studies use bacteria introduced in liquid culture stage (free cells), which 
does not guarantee proper distribution of bacteria in the soil profile, shelf life, or 
activity (Mrozik and Piotrowska-Seget 2010). Inoculant formulations have been 
tested to enhance inoculum survival. Artificial immobilization is a relevant means to 
stabilize inocula (i.e., growth and activity) (Labana et al. 2005; Plangklang and 
Reungsang 2009; Siripattanakul et al. 2009) as biofilms do for natural consortia. 
Seeds of Alyssum murale were inoculated by soaking with bacterial suspensions 
added to methylcellulose (Abou-Shanab et al. 2006). Willow cuttings from annual 
shoots were inoculated with Paxillus involutus in a peat–vermiculite substrate (Baum 
et al. 2006). Other formulations with peat have been experimented (Belimov et al. 
2004; Wu et al. 2006a). Soil bioaugmentation with immobilized P. aeruginosa cells 
supplied with skim milk increased Cr and Pb uptake by maize shoots by a factor of 
5.4 and 3.8, respectively (Braud et al. 2009b). A commercial inoculum composed of 
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rhizobacterial strains (Azospirillum lipoferum, Arthrobacter mysorens, Agrobacterium 
radiobacter, and Flavobacterium sp.) was tested (Belimov et al. 2004).

In many cases, it can be assumed that the main limiting factor impairing cell 
survival and growth of inoculants is the amount of soil substrates available for 
microorganisms, rather than the microbial ability to survive, as shown by Braud 
et al. (2009b) who compared skim milk supply with cell immobilization in 
Ca-alginate matrix. Yet, cell immobilization was able to protect inoculants from 
grazing, interspecific competition (Willaert and Baron 1996; Lebeau 2010), and 
environmental stresses such as toxicity of metals (Braud et al. 2007). Addition of 
substrates to soil that are specifically metabolized by the targeted microorganisms 
may contribute to their survival (Duquenne et al. 1999; Kuiper et al. 2001; Braud 
et al. 2006a, 2007).

Various inoculum sizes were tested (see review of Lebeau et al. 2008 for details) 
but do not seem to be correlated with rates of metal extracted by plants (Rai et al. 
2004; Braud et al. 2006b). As discussed above, one can assess that soil oligotrophy 
may impair establishment of additions of biomass. Reinoculation aims at disturbing 
the balance of the ecosystem to the benefit of the inoculum, with varied success.

In the case of bioaugmentation via seed soaking, the microbial inoculant must 
be densely associated with seeds. Alternatively, soil may be bioaugmented at the 
time of planting or before, in particular, with AMF (Lebeau et al. 2008).

10.5.5  Culture Duration and Planting Density

Regarding culture duration, experiments can be divided into short term (typically 
1 week up to 2 months), performed mainly under laboratory and greenhouse condi-
tions, and long term (approximately 4–6 months) in field conditions. The literature 
rarely mentions whether or not time of harvesting corresponds to maximal accumu-
lation of the target metal in plants. Furthermore, kinetic studies are very scarce, 
whereas the need of nutrients useful to plants varies greatly over the growing 
period. In a field experiment with the fern Pityrogramma calomelanos associated 
with rhizobacteria or rhizofungi, Jankong et al. (2007) showed that the amount of 
As in fronds was slightly higher at 12 weeks than at 6 weeks, while the amount in 
roots was lower (decrease by a factor of up to four). In a nonbioaugmented control, 
higher As accumulation in roots and fronds was recorded in 6 weeks. A similar 
finding by Chen et al. (2006) occurred for As and 238U accumulation by another fern 
(Pteris vittata L.) mycorrhized with different Glomus species and harvested after 
8 and 12 weeks.

Rhizospheric biomass is also strongly altered according to plant growth stage. 
B. juncea populations decrease as follows: seedling stage > flowering stage > tillering 
stage when associated with B. juncea (Wu et al. 2006a). Once inoculant is supplied 
to the soil, the additional amount of metal available for plants is reached within 
a few days. Peak values of water-soluble Pb and Cd in soil solution were 
reached 48 and 72 h, respectively, after soil inoculation with Burkholderia sp. 
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J62 (Jiang et al. 2008). The values were associated with a 2 pH unit decrease. 
Similar observations were made by Braud et al. (2006b) for crop soils contaminated 
by Cr and Pb and bioaugmented by P. fluorescens, P. aeruginosa, or A. niger.

Planting density also influences the acquisition of elements by plants from the 
environment. The “target-neighbour” cocropping approach is useful to determine 
the effect of planting density on metal uptake (Shann 1995). This method is based 
on the ecological concept that states that as density increases, competition for 
essential resources intensifies.

10.5.6  Experiments on Field Scale

Only limited experiments have been implemented in field conditions (Belimov et al. 
2004; Citterio et al. 2005; Zaidi et al. 2006; Farwell et al. 2007; Jankong et al. 2007). 
Belimov et al. (2004) conducted experiments on both laboratory and field scales. 
The positive rhizobacterial effect on Cd and Pb uptake by barley was shown in both 
pot and field experiments. Similar results were found by Jankong et al. (2007) with 
the fern Pityrogramma calomelanos bioaugmented with rhizobacteria in greenhouse 
and field experiments for As phytoextraction. Validation on field scale of the results 
obtained in the laboratory should be intensified in the next few years.

10.5.7  Economic Aspects of the Technique

It is now well established that phytoremediation can be cost-effective if aerial parts 
of plants are used as a raw material for the production of renewable energy (Sas-
Nowosielska et al. 2004; Banuelos 2006; Robinson et al. 2009). On the other hand, 
the additional benefit to the cost ratio is unknown when bioaugmentation is associ-
ated with phytoextraction.

10.6  Methods for a Better Understanding of the Mechanisms 
Involved in Bioaugmentation-Phytoextraction Processes

10.6.1  Methods for Inoculant Monitoring, Microbial 
Biodiversity, and Microbial Activity

Traditional microbiological techniques often underestimate microbial numbers and 
do not allow the detection of noncultivable bacteria. Molecular techniques have 
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been developed to monitor inoculated microorganisms including the variations 
within microbial communities.

Various techniques can provide information on species composition of communi-
ties. Normalized extraction techniques should be used, since different DNA extrac-
tion procedures give differing results on fingerprinting (Crecchio et al. 2004). DNA 
hybridization techniques have been used to detect in situ microorganisms in envi-
ronmental samples but may not be as sensitive as PCR techniques to monitor small 
communities; for example, real-time PCR allows for detection of less than 
104 cells/g of soil (Rodrigues et al. 2002). RNA-based methods using 16S rRNA 
genes are more powerful than DNA-based one, since they allow monitoring meta-
bolic active cells and gene expression. Genetic fingerprinting techniques characterize 
community variations and presence. A range of valuable techniques have been 
used, including T-RFLP, DGGE, TGGE, ARDRA, SSCP, DHPLC, ARISA, which 
can be coupled with sequencing (Widada et al. 2002). Among them, the most popu-
lar techniques are DGGE (denaturing gradient gel electrophoresis) and T-RFLP 
(terminal restriction fragment length polymorphism). Comparison of these two 
techniques shows that T-RFLP seems to be more sensitive than DGGE (Singh et al. 
2006). Techniques to monitor microbial survival have been reviewed by Gentry 
et al. (2004). Unlike fingerprinting techniques, reporter genes are used to monitor 
inoculated bacteria and allow for distinguishing them from genetically close indig-
enous bacteria. These quantitative methods use mostly gfp and lux genes (Jansson 
2003). Dual tagging techniques can be performed to detect both presence and activity 
of inoculated bacteria as shown by Unge et al. (1999), who monitored P. fluorescens 
SBW25 survival in soil after tagging with a gfp-luxAB cassette. Quantitative PCR 
(qPCR) and in situ PCR can be used to monitor specific gene expression of inocu-
lated microorganisms, in situ PCR being less sensitive than qPCR for enumerating 
specific inoculated microorganisms (Tani et al. 2002). Fluorescence in situ hybrid-
ization (FISH) is also a powerful tool to detect microorganisms at different levels, 
such as group or individual species, and to give an indication of microbial presence 
and/or metabolic activity in situ (Lee et al. 2009). Cells can then be enumerated by 
epifluorescence microscopy or flow cytometry (Iwamoto and Nasu 2001). DNA 
microarrays have recently been developed to quantify bacterial DNA and to report 
gene expression in microbial communities. The main advantage of microarray 
technology is that expression of numerous genes can be monitored simultaneously; 
for example, the expression of 64 genes from Ralstonia eutropha JMP134 in mixed 
microbial communities was monitored with microarrays as a function of 2,4-D 
addition (Dennis et al. 2003). In complement with genomics, proteomics studies 
allow for the sorting of microbial responses to environmental conditions and 
for detection of key enzymes and molecules in bioaugmentation and bioremedia-
tion processes (Chauhan and Jain 2010). Moreover, communication between 
plants and bioaugmented microorganisms can be assessed by detecting and iden-
tifying proteins involved in their association, such as signal molecules. 
Proteomic studies have allowed, for example, the study of the PGPR effect of  
P. fluorescens on rice (Kandasamy et al. 2009).
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10.6.2  Physicochemical and Biological Methods to Estimate 
Metal Bioavailability

Semple et al. (2004) estimate that until now, most routine chemical techniques 
 typically estimate the bioaccessible fraction of metals, which must be taken into 
consideration as a matter of priority in bioremediation purposes. Estimating metal 
bioaccessibility depends on its form in the soil rather than on the total amount 
(Allen 1997; Zemberyova et al. 1998), and various analytical tools have been sug-
gested. These include physical/chemical extraction techniques as well as an array 
of bioassays (Magrisso et al. 2008). Considerable research in environmental sci-
ence has focused on chemical speciation of metals. It is increasingly realized that 
the distribution, mobility, and biological availability of chemical elements depend 
not simply on their concentrations, but on the chemical and physical associations 
that they undergo in natural systems (Zemberyova et al. 1998).

Two different approaches are usually applied in speciation studies for solid 
samples: single and sequential extraction procedures with reagents having different 
chemical properties. The chosen extractants simulate the influence of differing 
environmental conditions, such as acid rain, on the hypothetical release of metals 
from soil. Single-step extractions are more rapid and less expensive than sequential 
extractions, but they do not provide information on associations between metals 
and different soil fractions (Tack et al. 1996). For simple extraction in a single step, 
the extractants most commonly used are distilled water, DTPA, NaNO

3
, or CaCl

2
 

(Adriano 1986; Gupta and Aten 1993; Van Ranst et al. 1999; Chen and Cutright 
2001). A method developed by Feng et al. (2005) uses a mixture of acetic, lactic, 
citric, malic, and formic acids, which can mimic the action of root exudates on 
metal mobility.

Many schemes have been proposed for sequential extraction. In a review, 
Filgueiras et al. (2002) listed over 400 references published over the last decade 
relating to sequential extraction of metals. Some of these schemes may be variants 
of one another with minor variations in extractants and/or operating conditions. The 
results obtained with extraction procedures are, of course, operationally defined 
because redistribution and adsorption (Kheboian and Bauer 1987; Wang et al. 
2003) usually take place during extraction. Possible oxidation of anoxic sediments 
due to the reagents used in the extraction process (Ngiam and Lim 2000) can be 
observed. The extraction efficiency is controlled by pH, concentration of extractant 
used, extraction time, temperature, and physicochemical properties of soil 
(McLaren 1998; Kalembkiewicz and Socco 2002). The particle size distribution 
and drying temperature, and therefore the presample processing, play an important 
role in metal speciation.

Chemical extractants tend to overestimate the concentration of phytoavailable 
metals, and correlation with shoot metal extraction is not always reliable; the effect 
was shown to be strongly dependent on the plant and metallic species (Gupta and 
Sinha 2006a, b). Regardless, however, the information obtained with these chemical 
methods is of great value to assess metal reactivity, and hence availability to the 
environment, and their potentially harmful effects (Abollino et al. 2002).
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According to several studies, the free ionic metal concentration in the soil 
 solution is a suitable indicator of what is extracted by plants corresponding to biodi-
sponibility (Checkai et al. 1987, Csillag et al. 1999). Recently, a new technique 
called diffusive gradients in thin films (DGT) has been developed to assess heavy 
metal phytoavailability (Duquène et al. 2010; Pérez and Anderson 2009; Almas 
et al. 2006). This technique has shown a high positive correlation between DGT-
extracted Cu and Cu concentration in Lepidium heterophyllum shoots (Zhang et al. 
2001) but a low correlation level with Cu uptake by Z. mays (Cattani et al. 2006). 
Similarly, a poor correlation was demonstrated between DGT-measured U and U 
concentration in ryegrass shoots (Duquène et al. 2010).

The soil solution recovered by centrifugation is an alternate means to estimate 
this availability (Csillag et al. 1999; Zhang et al. 2001), requiring, however, a per-
centage of soil moisture above 80%. If chemical methods are not always relevant to 
measure bioavailable metal concentration, biological tools such as biosensors can be 
used. Significant correlations have been reported for Ni concentrations detected by 
the biosensor BIOMET, derived from R. eutropha CH34, and Ni accumulation by 
maize (Tibazarwa et al. 2001). Other biosensors have been created to assess bioavail-
able concentrations of Cr and Pb in soil with R. metallidurans AE 2440 (Corbisier 
et al. 1999) and Hg with a mer-lux Escherichia coli (Rasmussen et al. 2000). 
However, none of these biosensors has been used to predict metal uptake by plants.

10.7  Efficiency of Phytoextraction-Assisted Bioaugmentation

10.7.1  Evaluation of Phytoextraction Efficiency Must 
Incorporate Several Parameters

10.7.1.1  Plant Parameters

A minimum value of the metal concentration in aerial portions must be attained. 
The cost of biomass treatment decreases as metal concentration in the plant 
increases. Nonetheless, the key parameter for efficient phytoextraction is the 
amount of metal extracted by the aerial parts of plants and per surface area, taking 
into consideration both metal concentration and plant biomass. Accordingly, hyper-
accumulating T. caerulescens whose Cd concentration in shoots was ten times 
higher than that recorded in Salix spp. extracted one-half Cd per hectare because of 
low biomass production (Hammer and Keller 2002). Because of their high biomass 
and extensive root system, trees are thus considered to be attractive for phytoextrac-
tion, although metal accumulation tends to be low (Glick 2010). Other parameters 
to evaluate phytoextraction efficiency include translocation (TF) and bioconcentra-
tion (BCF) factors (defined, respectively, as the ratio of metal concentration in 
shoots, metal concentration in soil and ratio of metals in shoots and roots), settling 
depth, ease of “mechanical harvesting, and the period and number of harvests 
expected per year based on phytoextraction rate (kinetic aspects).
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10.7.1.2  Microbial Parameters

Microbial survival is an important parameter, but microbial activity appears more 
appropriate, since rate of metal extracted by plants and plant growth are not always 
shown to be correlated with inoculum size (Rai et al. 2004; Baum et al. 2006; Braud 
et al. 2006b). Root elongation, solubilization of insoluble phosphates, activity of 
enzymes such as ACC deaminase, and IAA production are also relevant parameters 
that contribute to estimation of bioaugmentation relevancy.

10.7.1.3  Efficiency of Phytoextraction-Assisted Bioaugmentation

In spite of the numerous experimental protocols and various means of exploiting 
results, some tendencies can be derived from the extensive data published on this 
topic (reviewed by Lebeau et al. 2008). What emerges is the following: (1) various 
metals and metalloids have been studied (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, U, Zn); 
(2) multicontaminated soils and soils contaminated for long periods (not just prior 
to the experiments) each represented only 25% of the experiments, and most have 
been conducted with soils from industrial origin; (3) about 60% of soils were steril-
ized exacerbating the positive effect of bioaugmentation; (4) most experiments 
were performed in carefully controlled conditions (laboratories, greenhouse) and 
only a few in field conditions; and (5) microorganisms were selected from various 
environments such as the rhizosphere where microorganisms seem more tolerant to 
metals than in the bulk soil. Microbes were selected for their tolerance to metals 
more than for their ability to compete indigenous microorganisms and protozoa and 
in a few cases for their beneficial interaction with plants (growth and metal toler-
ance) and for their effect on the bioavailability of metals for plants.

The effect of microorganisms (especially PGPR and AMF) on plant biomass 
production and concentration of accumulated metal is shown in Table 10.2. The 
amount of metals extracted by shoots resulted in two main situations: (1) an 
increase (decrease) of plant biomass simultaneously to a decrease (increase) of 
metal concentration accumulated in plants. In such cases, bioaugmentation 
enhanced metal phytoextraction by a factor not exceeding 1.5 up to 2; and (2) the 
increase of both plant biomass and metal concentration as observed in a few studies 
and resulting in a fourfold higher metal amount in shoots (on average) with a maximum 
value that reached a factor of 34 (Di Gregorio et al. 2006). Most often, PGPRs 

Table 10.2 Effect of soil bioaugmentation (compared to non-
bioaugmented soils) on the increase in plant biomass and metal

Root Shoot

Plant biomass Bacteria 1.1–2.6 1.2–4
AMF 0.3–6.9 0.5–4.7

Plant metal concentration Bacteria 1.2–5.6 1.1–3.1
AMF 1.1–4.2 1.0–2.9
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decrease TF, while AMF increases or decreases TF irrespective of metal species 
and concentration. Overall bioconcentration factor (BCF) was above unity with the 
highest values observed with less-contaminated soils.

10.8  Environmental Aspects

As with any in situ remediation process, the environmental impact of bioaugmentation-
assisted phytoextraction must be evaluated. Indeed, one may be concerned that 
the increase of metal availability is greater than the plant accumulation ability 
(Barona et al. 2001) with a risk of contamination of subsoil and groundwater. 
This phenomenon has been observed for EDTA-assisted Pb extraction, resulting 
in more rapid mobilization of Pb by EDTA than its uptake rate by Brassica rapa 
L., Vigna radiata L., and Triticum aestivum L. (Shen et al. 2002; Chen et al. 
2004b). Nonetheless, the same authors have shown that Vetiver zizanioides is 
able to recover all Cd, Cu, and Pb complexed with EDTA as a result of a well-
developed root system.

Some bioindicators of the recovery of soil functioning following phytoextraction 
or bioaugmentation have already been used. Di Gregorio et al. (2006) have observed 
a severe modification of the bacterial community structure of the soil, using 
Denaturing Gradient Gel Electrophoresis (DGGE), due to cultivation with B. juncea. 
Conversely, EDTA only slightly affects bacterial community structure, with the 
exception of the simultaneous presence of B. juncea and PGPR Sinorhizobium sp. 
In contrast, pseudomonads inoculated in soils, either uncontaminated or contami-
nated with Cd, induced a shift in microbial communities, as suggested by analyzing 
in situ catabolic potential (Duponnois et al. 2006). Conversely, Epelde et al. (2009) 
showed a soil functioning restoration following Cd and Zn phytoextraction as 
reflected by the values of different microbial parameters. Metal phytoextraction 
level (hyperaccumulator vs. nonaccumulator plants) also affects microbial activity 
and community composition (Wang et al. 2008).

10.9  Future Prospects

During the past 10 years, microorganism-assisted phytoextraction has generated 
numerous experiments that have clearly shown the potential for increasing the 
quantity of metals extracted by plants (extensively reviewed by Lebeau et al. 2008). 
Although we now have a much better understanding of how microorganisms and 
plants interact in enhancing metal phytoextraction, one can wonder how great the 
concentration and amount of metals in plants can become. Some questions are still 
in abeyance, thus limiting the success of such a technique. For example, is the pres-
ence of inoculated microorganisms the limiting factor affecting metal bioaccessibility 
or the maximal amount of metals accumulated by plants? Low bioaccessibility of 
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metals in soil is often pointed out as the major limitation in phytoextraction 
efficiency (Pilon-Smits 2005). Soil bioaugmentation by siderophore-, biosurfac-
tant-, or organic acid-producing microorganisms were shown to significantly 
enhance metal bioavailability (Braud et al. 2006b), siderophores being the most 
efficient. Nonetheless, Glick (2010) stated, in his review, that PGPR producing 
such molecules would only slightly modify metal accessibility in the presence of 
high concentrations of metals. To definitively conclude with that point, mass bal-
ances should be undertaken to estimate the surplus bioaccessible metal in the soil 
following bioaugmentation and to conclude whether the entirety is extracted by the 
plant or not. Braud et al. (2009b) showed that, in spite of a higher amount of Cr and 
Pb in both the bioaccessible fraction of the soil and in maize shoots following soil 
bioaugmentation, the amount of metals accumulated in the whole plant almost 
always decreased. This imbalance between metal supply and uptake was already 
observed when synthetic metal chelators were used (Shen et al. 2002; Chen et al. 
2004a). Consequently, the concern persists that some metals will leave the root 
zone and generate an environmental risk that must be evaluated.

Regarding microbial–plant interactions, Audet and Charest (2007b) underscored 
a transitional role of AMF symbiosis in phytoremediation, shifting from “enhanced 
uptake” to “metal-binding” beyond critical metal levels. PGPRs seem less suscep-
tible to metal load in the soil (Lebeau et al. 2008), and bioaugmentation could be 
performed at higher metal concentrations. Although some microbial activities were 
identified, i.e., IAA, siderophores, and ACC deaminase, in promoting plant growth, 
further research should unravel the contribution of each. In his review, Glick (2010) 
reported that the presence of all or even some of these activities could be sufficient 
to elaborate the entire mechanism regarding plant growth promotion. Using mutants 
not producing or overproducing these microbial activities will be very useful to 
better understand the mechanisms involved in plant growth and metal phytoextrac-
tion following bioaugmentation. An increased tolerance of Medicago truncatula 
was shown with IAA-overproducing strain Sinorhizobium meliloti DR-64 (Bianco 
and Defez 2009) as the result of proline accumulation and decreasing levels of the 
antioxidant enzyme superoxide dismutase, peroxidase, glutathione reductase, and 
ascorbate peroxidase. Some rhizosphere chemical dialogues reviewed by Badri 
et al. (2009) also occurred in the intricate microorganism–plant interactions. For 
example, a specific plant signal could be received by each rhizobacterium, making 
the microorganism-plant selection much more complex. Single host–single PGPR 
interactions are most often examined while multiple interactions exist in nature. 
The same authors stated that although abundant information is available on the role 
of root-secreted secondary metabolites in rhizospheric plant–microbe interactions, 
the role of exuded proteins is poorly studied.

There is also a need to clarify whether soil bioaugmentation effects on plant 
growth and metal phytoextraction are direct or indirect via indigenous microorgan-
isms whose structure and activity could be altered by the supply of exogenous 
microorganisms.

Kinetic studies should also be performed to analyze both the length of time 
before plant harvest and the balance in the course of the time between surplus 
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bioaccessible metal following bioaugmentation, and metal uptake by plant. Indeed, 
it is never mentioned whether or not time of harvest corresponds to the maximal 
accumulation of metal in plants, while it is well known that nutrient needs vary 
greatly as does biomass during the growing period. For example, Cd concentra-
tions in roots and leaves of the hydroponically cultivated Allium schoenoprasum 
increased until 7 days and were stable afterward until 28 days at the two concen-
trations of Cd tested while the biomass increased (Barazani et al. 2004). With  
B. rapa (Chinese cabbage), Ag, Al, and Si concentrations decreased over the 
course of the growing cycle, while B and Ca increased with crop age (Moreno 
et al. 2003). Regarding surplus bioaccessible metals following bioaugmentation, 
peak values of water-soluble Pb and Cd in soil solution were attained 48h and 72h, 
respectively, after soil inoculation with Burkholderia sp. J62 (Jiang et al. 2008). 
Similar results were attained after 1 week, at most, with P. aeruginosa, P. fluore-
scens, and A. niger for Cr and Pb (Braud et al. 2006b). The physiological state of 
the plant associated with the inoculant also plays an important role. With B. juncea, 
PGPR population size (and probably its activity) varies according to the growth 
stage of the plant: seedling stage > flowering stage > tillering stage (Wu et al. 
2006a).

In the near future, the main question that arises will be the following: can we 
fully control in situ bioaugmentation-assisted phytoextraction, which is the primary 
goal of process engineering, in spite of the spatial and temporal variability of open 
ecosystems? According to Vogel and Walter (2001), microbial ecology issues (i.e., 
taking into account indigenous populations, environmental parameters together 
with phenotypic characteristics of the strains and procedures for inoculant introduc-
tion to determine activity, persistence, and performance of bioaugmented strains) 
are among the most important in bioaugmentation approaches, although, unfortu-
nately, they are rarely addressed. The ecological engineering concept first defined 
in the 1960s (Odum 1962) should be taken into account in all experiments regarding 
microorganism-assisted metal phytoextraction. This implies the design, develop-
ment, and maintenance of ecosystems by using engineering technologies based on 
ecological principles (Mitsch and Jørgensen 2004). Microbial communities are 
most probably the basis of microbial resource management in the domain of envi-
ronmental biotechnology, according to Verstraete et al. (2007). The challenge for 
microbial ecologists is to develop the soil metabolome by introducing relevant 
microorganisms to benefit from their actions within the system.

To conclude, future prospects for in situ bioaugmentation technologies should 
be to reconcile process engineering, based on the full control of any system, with 
variable environmental conditions. Systems associating microorganisms and plants 
are relevant, since physicochemical conditions in the rhizosphere are less suscep-
tible to change in the course of the remediation effort than in the bulk soil. 
Additionally, compared to the soil oligotrophy, rhizospheric soil contains a higher 
amount of nutrients regularly exuded by the plant (Gentry et al. 2004), ensuring a 
continuous substrate supply to microorganisms. Rhizosphere bioaugmentation 
could, thus, be considered a means to enhance both microbial survival and root 
colonization, as well as metal supplies to plants.
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Experiments based on multifactorial designs are a prerequisite to unravel both 
the respective contribution of the main factors involved in metal phytoextraction 
and their interactions for a better understanding and optimization of microorganism-
assisted phytoremediation. Unfortunately, only a few parameters are studied at a 
time, leading to a lack of some default values, thus precluding a full understanding 
of ecosystem functioning. The Taguchi method of design of experiments is a simple 
statistical tool that allows a maximum number of main effects to be estimated with 
a minimum number of experimental runs (Mohan et al. 2007; Rao et al. 2008). 
Proper design of experiments helps in gaining information about optimized levels, 
by addressing large numbers of variables over a specific region of interest. This 
approach concentrates on the effect of variation on process characteristics. The 
proposed method facilitates a systematic mathematical approach to understanding 
the complex bioremediation process and the optimization of near-optimum design 
parameters. For example, among eight biotic and abiotic factors (substrate loading 
rate, pH, dissolved O

2
, soil/water ratio, temperature, soil microflora load, applica-

tion of bioaugmentation, and humic substances concentration), substrate loading 
rate showed significant influence on bioremediation process (Mohan et al. 2007).

In open ecosystems, contrary to laboratory conditions, microorganisms are con-
stantly exposed to multiple and continuously changing environmental stresses, 
preventing the information developed at one site from being used to design treat-
ment strategies for other systems and pollution types. Therefore, predictions 
regarding microbial adaptive resiliency must be supplied by developing stress 
response systems as tools for effective and general process control (Hazen and 
Stahl 2006). Modeling is also a means of predicting bioremediation efficiency and 
to avoid too many experiments, but they are, however, unable to fully describe the 
huge complexity of ecosystems. Future prospects should consider the role of plants 
in bioremediation as a microbial regulating factor.
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Abstract Attempts were made to recover uranium ( U ) occurring in nuclear fuel 
effluents and mine tailings using bacteria isolated from U deposits in Canada, the 
United States, Australia, and Japan. To establish which microorganisms accumulate 
the most U, hundreds of strains of microorganisms were screened. Extremely high U 
accumulating ability was detected in some bacteria isolated from North American U 
deposits. Arthrobacter and Bacillus sp. accumulated approx. 2,500 mmol U/g dry wt. 
of microbial cells within 1 h. Cells removed U from refining wastewater with high 
efficiency. Cells also accumulated thorium with high efficiency. Lactobacillus cells 
isolated from Japanese U deposits removed more U from seawater than the other bac-
teria that had superior U removal capacity from nonsaline U solutions. Cells immobi-
lized with polyacrylamide gel had excellent handling characteristics and can be used 
repeatedly in U adsorption–desorption cycles. These bacteria from U deposits can be 
used as an adsorbing agent for the removal of the nuclear fuel elements, which may 
be present in nuclear effluents, mine tailings, seawater, and other waste sources.

11.1  Introduction

The recoveries of nuclear fuel elements, such as uranium (U) and thorium (Th), 
from aqueous systems have become a focus of interest for exploitation of unde-
veloped energy resources. The removal of radioactive elements and toxic heavy 
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metals from contaminated sources is also a worthwhile priority for environmental 
protection initiatives. In this regard, efforts have concentrated on studying the 
accumulation of U by microorganisms, including bacteria (Andres et al. 1993; 
Byerley et al. 1987; Friiss and Myers-Keith 1986; Gorab et al. 1991; Hu et al. 
1996; Marques et al. 1991; Strandberg et al. 1981), fungi (Byerley et al. 1987; 
Galun et al. 1983a, b; Tsezos and Volesky 1981; White and Gadds 1990), and 
yeasts (Strandberg et al. 1981; Shumate et al. 1978).

We have investigated U accumulation from aqueous systems using bacteria iso-
lated from U mines, among which some strains were found to possess extremely 
high U accumulating ability (Sakaguchi et al. 1996). Microbial biomass may thus 
be considered for use as a removal agent for the recovery of U from metallurgical 
effluents, mine tailings, seawater, and other waste sources.

In U deposits, it can be presumed that some microorganisms having a high accu-
mulating ability for U and different species having an ability to leach U from ore 
may exist in mine soil and aqueous systems. It would, therefore, be beneficial to 
isolate microorganisms having an enhanced ability to accumulate U from mines.

Recently, we screened hundreds of types of microorganisms existing in U deposits 
located in North America, Australia, and Japan for their ability to accumulate sig-
nificant quantities of U, and identified new strains which accumulated large quantities 
of U, such as Bacillus subtilis in Australia, Arthrobacter and Bacillus sp. in North 
America, and Lactobacillus and Bacillus sp. in Japan (Sakaguchi 1998). In this 
chapter, new strains of bacteria identified in North American, Australian, and 
Japanese U deposits, especially Arthrobacter, Lactobacter, and Bacillus sp., are 
discussed for their potential for the removal of nuclear fuel elements such as U from 
U refining wastewater and seawater.

11.2  Screening of Microorganisms Isolated from U Deposits 
for Their U Accumulating Ability

To determine the ability of microorganisms isolated from U deposits in Canada, the 
United States, Australia, and Japan to accumulate U, hundreds of strains of micro-
organisms were screened.

The medium for growing microorganisms contained 3 g/L beef extract, 5 g/L 
peptone, and 5 g/L NaCl in deionized water. The microorganisms were maintained 
on agar slants and grown in 300 mL of the medium in a 500-mL flask with continu-
ous shaking (120 rpm) for 72 h at 30°C. Cells were collected by centrifugation, 
washed thoroughly with deionized water, and then used in the following accumula-
tion experiments.

U was supplied as UO
2
(NO

3
)

2
. The pH of the solution was adjusted to 5.8 with 

0.1 M HNO
3
. Resting microorganisms (15 mg dry wt.) were suspended in 100 mL 

solution (pH 5.8) containing 84 mM U and the suspension was shaken for 1 h at 
25°C. Cells were collected by filtration through a membrane filter (pore size 
0.2 mm). The quantity of U accumulated by the cells was determined by measuring 
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U in the filtrate using an inductively coupled plasma quantometer (ICPS8000; 
Shimadzu Corporation, Kyoto, Japan). The microbial strains were identified by our 
coworker (Sakaguchi 1998).

The quantities of U accumulated by the cells ranged from a minimum of 10.9% 
to a maximum of 98.3% (Table 11.1). Of special interest to this discussion is the 
wide range of effectiveness with which different species of microorganisms accu-
mulate U.

Of these microorganisms tested, extremely high U accumulating ability was 
found in Arthrobacter (96.4%) and Bacillus sp. (95.9%) found in US, Lactobacillus 
(97.8%) and Bacillus sp. (97.6%) found in Japan, and Bacillus sp. (98.3%) found 
in Australia (Sakaguchi 1998), which accumulated large quantities of U per gram 
dry wt. of microbial cells within 5 min.

11.2.1  Factors Affecting U Accumulation by Bacteria

In order to obtain basic information regarding the removal of U using strains of 
bacteria found in U deposits, some factors affecting U accumulation were investi-
gated in detail using Arthrobacter sp., US-10 isolated from United States U 
deposits.

11.2.2  Effect of pH on U Accumulation

The pH of a test solution was adjusted to the desired value with 0.1 M HNO
3
 or 

0.1 M NaOH. Resting Arthrobacter cells (15 mg dry wt.) were suspended in 
100 mL solution containing 84 mM U for 1 h at 25°C.

Additionally, Zeta potential was measured by the electrolysis method using 
30–50 bacteria (bacterial concentration was 2.5 × 108 cells/mL) at pH 2–9 in 0.01 M 
NaNO

3
 solution (ZC-2000; Microtec-Nichion, Chiba, Japan).

The effects of pH on U absorption using Arthrobacter sp., US-10 and Lacto
bacillus sp., JPN-10 are shown in Fig. 11.1. The amounts of absorbed U are highest 
at approx. pH 5–8 and decrease with increasing acidity below pH 4 using Arthrobacter 
cells. On the other hand, the amounts of absorbed U using Lactobacillus were highest 
at pH 6, and rapidly decreased below pH 5 and above pH 7. Low pH is the result, of 
course, of higher proton concentrations, which can compete for binding with U, and 
Arthrobacter cells clearly remained less affected than Lactobacillus by the decreasing 
pH until about pH 4. Conversely, the high pH is, of course, the result of reduced 
proton concentration and increased hydroxide ions, which compete with microbial 
cells. Again, Arthrobacter exhibited a higher pH range for binding capacity than 
Lactobacillus, achieving good absorption at pH values as high as 8, while 
Lactobacillus performed well only at pH 6.

The effects of pH on Zeta potential of the cell surface are shown in Table 11.2. 
The quantities of U accumulated are highest at approx. pH 5 and decrease below pH 4. 
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Thus, the accumulation of U by Arthrobacter is markedly affected by solution pH. 
Zeta potential of the cell surface increased with increasing acidity of the solution.

The main U species at pH 6 includes some cations, such as (UO
2
)

3
(OH)

5
+ and 

UO
2
OH+ (Tsuruta 2006). On the other hand, Zeta potential of the cell surface was 

−23.18 mV at the same pH. Therefore, cationic uranyl species readily bond with 
negatively charged cell surfaces of Arthrobacter sp.

11.2.3  Effect of U Concentration on U Absorption

Resting Arthrobacter and Lactobacillus cells (15 mg dry wt.) were suspended 
in 200 mL of solution (pH 5.8) containing a specified quantity of U for 1 h 
at 25°C.

Quantities of absorbed U using Arthrobacter and Lactobacillus sp. (mmol U/g 
cells) increased as U concentration increased (Fig. 11.2). Arthrobacter and 
Lactobacillus cells accumulated 2,480 and 2,120 mmol U/g of cells, respectively.

Fig. 11.1 Effects of pH on 
the amount of uranium 
absorbed using Arthrobacter 
and Lactobacillus cells. 
Symbols: closed circles,  
uranium (VI) accumulated 
(mmol/g dry wt. cells) using 
Arthrobacter cells; open  
circles, uranium (VI) 
absorbed (mmol/g dry wt. 
cells) using Lactobacillus 
cells

Table 11.2 Effect of pH on Zeta potential of Arthrobacter cell

pH 2.07 3.00 4.04 5.09 6.07 6.97 8.06

Zeta potential (mV) 3.69 −1.50 −7.33 −21.01 −23.18 −22.11 −23.06
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Additionally, U absorption using these cells, especially Lactobacillus sp., does 
not obey the Langmuir isotherm over the entire U concentration range tested. It 
appears that the experimental data show a dual pattern. The dotted line was calcu-
lated using less than a 21.8-mM residual U concentration (as the initial uranium 
concentration was 85.0 mM) using Lactobacillus cells. The solid line was sepa-
rately calculated using residual concentrations below and above 21.8 mM. When 
the initial U concentration increased beyond 85.0 mM (with a 21.8-mM residual U 
concentration), the absorbed quantity increased to values far greater than those 
calculated based on the relationship in the low concentration range. On the other 
hand, the dotted line in Fig. 11.3 for Arthrobacter cells was calculated using a 
residual U concentration below 153 mM (and an initial U concentration of 
318 mM). The solid line was separately calculated for Arthrobacter cells using 
residual concentrations below and above 153 mM. When the initial U concentra-
tion increased beyond 318 mM (with a residual U concentration of 153 mM), the 
absorbed quantity increased to values a little greater than those calculated based 
on the relationship in the low concentration range. A similar result was obtained  
(Epstein 1966) from the absorption of potassium using barley roots. The estimated 
m, n, and maximum accumulated U capacity Q(U)

max
 (=1/m) are summarized in 

Table 11.3. A high Q(U)
max

 value of 2,580 and 2,370 mmol U/g dry wt. cells is 
estimated from the high U concentration region using Arthrobacter and 
Lactobacillus cells, respectively.

Lactobacillus sp.

Arthrobacter sp.

Uranium concentration (µM)
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Fig. 11.2 Effect of uranium concentration on uranium absorption using Arthrobacter, US-10 and 
Lactobacillus, JPN-10 cells. Symbols: circles, accumulated uranium (mmol/g dry wt. cells); 
squares, accumulated uranium (%); closed, absorbed uranium using Arthrobacter sp.; open, 
absorbed uranium using Lactobacillus sp.
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11.2.4  Time Course of U Accumulation

Resting Arthrobacter and Lactobacillus cells (15 mg dry wt.) were suspended in 
100 mL solution (pH 5.8) containing 84 mM U at 25°C.

Quantities of U accumulated by Arthrobacter and Lactobacillus cells increased 
rapidly during the first 5 min following the application of U (Fig. 11.4).

Residual uranium concentration (µM)
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Lactobacillus  cells

Arthrobacter cells

Fig. 11.3 Equilibrium isotherm of uranium absorption using microbial cells. Symbols: closed, 
absorbed uranium using Arthrobacter sp.; open, absorbed uranium using Lactobacillus sp. 
C

e
(U)/Q

U
 = mC

e
(U) + n, where Q

U
 indicates the amount of absorbed uranium (mmol uranium/g dry 

wt. cells), C
e
 is the residual uranium in the solution (mM), and m and n are constants

Table 11.3 Estimated Langmuir constants and Q(U)
max

 from the Langmuir isotherm

Strains

Initial uranium  
concentration 
(mM)

Residual uranium 
concentration 
(mM) m n

Q(U)
max

  
(mmol/g  
dry cells)

Arthrobacter  
sp.

107–318 10.0–153 4.22 × 10−4 4.32 × 10−3 2,371
318–525 153–343 3.69 × 10−4 1.13 × 10−2 2,710
107–525 10.0–343 3.88 × 10−4 6.45 × 10−3 2,580

Lactobacillus  
sp.

21.0–85.0 0.483–21.8 9.51 × 10−4 2.05 × 10−3 1,050
85.0–423 21.8–284 4.22 × 10−4 1.53 × 10−2 2,370
21.0–423 0–284 4.56 × 10−4 769 × 10−3 2,200

See the legend of Fig. 11.3
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11.2.5  Release of U from Cells by Washing with EDTA

Resting cells (15 mg dry wt.) were suspended in 100 mL solution (pH 6.0) containing 
84 mM uranium for 1 h at 25°C. Cells with accumulated U were washed three times 
with 10 mL of 10 mM EDTA solution.

When cells of Arthrobacter sp., US-10, Bacillus sp., US-9; and Lactobacillus sp., 
JPN-10 were washed with EDTA, approx. 70, 80, and 53% of the accumulated U was 
desorbed from the resting cells, suggesting that most U is coupled with ligands that are 
easily substituted by EDTA (Fig. 11.5). However, 30, 20, and 47% of accumulated U 
in Arthrobacter, Bacillus, and Lactobacillus sp. were therefore not substituted by 
EDTA washing that incorporated within cell membranes. The ratio of released U (%) 
occurred in the following order: Bacillus sp. > Arthrobacter sp. > Lactobacillus sp.

11.2.6  Distribution of U in Microbial Cells

The present experiments were undertaken to determine which parts of the cells had 
accumulated U in Arthrobacter, US-10 and Lactobacillus, JPN-10 cells.

Resting cells of Arthrobacter and Lactobacillus (640 mg fresh weight) were 
suspended in 1,000 mL solution (pH 5.8) containing 500 mM of U for 1 h at 25°C. 
The cells were fractionated as described in Fig. 11.6. The freeze-dried Arthrobacter 
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Fig. 11.4 Time course of 
uranium absorption using 
Arthrobacter and 
Lactobacillus cells. Symbols: 
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Fresh microbial cells

suspended in uranium solution
shaken for 1 h at 160 rpm 
collected by centrifugation

Uranium absorbed microbial cells

suspended in deionized water
disrupted by French press
(14,000 kg/cm2) 5 times
centrifuged at 3,000 rpm for 
30 min (1,000 x g)

Precipitate
(Cell wall fraction)

Supernatant solution

centrifuged at 17,000 rpm for 
30 min (28,000 x g)

Precipitate
(Intracellular
particle fraction)

Supernatant solution
(Intracellular soluble fraction)

Fig. 11.6 Fractionation of Lactobacillus sp., JPN-10, Arthrobacter sp., US-10 absorbed uranium
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and Lactobacillus cells, cell wall, and intracellular particle fractions were digested 
in the mixed solution of same volume of conc. HNO

3
/ H

2
SO

4
.

The quantities of accumulated U in each fraction were recorded in the following 
order (Table 11.4)

Cell wall > intracellular particle > intracellular soluble.
Abundant U was determined in the cell wall fraction and small amounts occurred 

in the intracellular fractions. In the case of Arthrobacter, this result coincides with 
the results noted above for EDTA washing. On the other hand, the results using 
Lactobacillus suggested that most accumulated U was coupled with the cell wall 
fraction; half of the accumulated U was not released by washing with EDTA. 
Therefore, the bond of U with cell wall of Lactobacillus cells appears to be strong.

On the basis of these findings, it seems reasonable to postulate that the accumu-
lated U using the cells, especially Lactobacillus sp. is mostly dependent on the 
physical–chemical binding relationships with cell wall components.

11.2.7  Selective Accumulation of U Using  
Arthrobacter, US-10 Cells

To determine which heavy metal ions are most readily accumulated by bacterial 
cells, the selective accumulation of ions using Arthrobacter, US-10 cells from a 
solution containing six metal cations and UO

2
2+ was examined. Resting cells 

(15 mg dry wt.) were suspended in 100 mL of a solution (pH 5.0) containing 
4 × 10−5 M of Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and UO

2
2+ for 1 h at 25°C.

The relative degree of heavy metal ions accumulated using Arthrobacter, US-10 
cells was (Fig. 11.7) UO

2
2+ > Cu2+ > others.

11.3  Accumulation of Th and Selective Accumulation  
of Th and U by Bacteria

As described above, bacteria found in U deposits accumulated U with high effi-
ciency. In this course of our study, the question was raised as to whether these 
strains had the ability to accumulate Th, another common waste from nuclear pro-
cessing (and an environmental contaminant), as well as U.

Table 11.4 Distribution of uranium in microbial cells

Fractions

Absorbed uranium

Arthrobacter sp. Lactobacillus sp.

(mmol) (%) (mmol) (%)

Whole cells 237 100 220 100
Cell wall fraction 140 59 209 95
Intracellular particle fraction 51 21 11 5
Intracellular soluble fraction 32 13 4 2
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As thorium hydroxide is precipitated in a solution containing thorium at pH 4.0, 
the accumulation of Th is examined at pH 3.5. Resting cells (15 mg dry wt.) were 
suspended in 100 mL solution (pH 3.5) containing 50 mM Th (as Th(NO

3
)

4
) and/or 

U for 1 h at 25°C.
Both Arthrobacter sp., US-10 and Bacillus sp., US-9 can also accumulate Th 

with high efficiency. However, the quantities of U and Th accumulated by 
Lactobacillus from the solution containing one metal only were lower than those 
using Arthrobacter and Bacillus sp. These results appear reasonable, because solu-
tion pH strongly affects the accumulation of both elements using Lactobacillus 
cells. The quality of accumulated U from the solution containing both elements at 
pH 3.5 by Arthrobacter was half that from the solution containing U only; however, 
that accumulated by Bacillus from the solution containing both elements was far 
lower than that from the U-only solution. Accordingly, the effect of Th on U accu-
mulation by Bacillus is greater than that by Arthrobacter. Thus, the Arthrobacter 
sp. appears to be the most efficient choice for a mixed solution of Th and U 
(Table 11.5).

Table 11.5 Accumulation of thorium and/or uranium from the solution containing thorium  
and/or uranium

Strains

Metal accumulated from the  
solution containing Th or U  
only (mmol/g dry wt. cells)

Metals accumulated from the 
mixed solution containing Th and 
U (mmol/g dry wt. cells)

Th U Th U

Arthrobacter sp. 98.8 98.9 98.5 52.1
Bacillus sp. 94.0 99.7 98.3 15.8
Lactobacillus sp. 47.1 64.9 46.7 17.9
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Fig. 11.7 Selective accumulation of heavy metals using Arthrobacter, US-10 cells
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11.3.1  Recovery of U by Immobilized Bacteria

As described above, bacteria such as Arthrobacter, Bacillus, and Lactobacillus sp. 
can accumulate large quantities of U from aqueous systems. However, the free cells 
of these bacteria are not reusable because of their mechanical instability and sus-
ceptibility to cell degradation. Furthermore, free cells are not suitable for use in 
column systems, because they cause plugging. To overcome these deficiencies with 
free cells, the cells of Arthrobacter sp., US-10 having high U accumulating ability 
were immobilized with polyacrylamide.

Five grams of precultured Arthrobacter cells were suspended in 4.5 mL isotonic 
NaCl solution and 680 mg acrylamide monomer. A total of 34 mg N, N¢-methylene-
bis(acrylamide), 0.3 mL 3-dimethylaminopropionitrile solution (5%), and 0.34 mL 
potassium persulfate solution (2.5%) were added to the suspension. After solidifi-
cation, the gel was crushed into small pieces (50–100 mesh), washed thoroughly 
with isotonic NaCl solution followed by deionized water, and then used for adsorp-
tion experiments.

To obtain basic information on the recovery of U using immobilized microbial 
cells, U adsorption–desorption cycle tests were carried out. It was previously shown 
(Sakaguchi et al. 1996) that the U retained on the adsorbent can easily be desorbed 
with dilute Na

2
CO

3
 solution, so 0.1 M Na

2
CO

3
 solution was used as the desorbent 

in this experiment.
Fifteen milliliters of a solution (pH 5.8) containing 42 mM U was adsorbed on a 

column (bed volume, 2 mL) of immobilized Arthrobacter cells at a space velocity 
of 20 h−1. Adsorbed uranium was desorbed with 10 mL of 0.1 M Na

2
CO

3
 solution. 

The test was replicated five times.
The ability of the immobilized Arthrobacter cells to adsorb U did not decrease 

after six repetitions of adsorption–desorption cycles (Fig. 11.8). Thus, immobilized 
microbial cells appear to have excellent handling characteristics and can be used 
repeatedly in adsorption–desorption cycles.

11.3.2  Removal of U from U Refining Wastewater by Bacteria

As mentioned above, some microbial species have a high U accumulating ability, 
which suggests the possibility that they may be used for the removal of U from U 
mine tailings, U refining wastewater, and other waste sources.

We attempted to remove U from U refining wastewater sampled at the Ningyo-
toge Environmental Engineering Center of the Japan Atomic Energy Agency using 
bacteria exhibiting a significant ability to accumulate U. Resting cells (15.0 mg dry 
wt.) were suspended in 100 mL of a solution (pH 6.0) of wastewater containing 
21.0 mM U for 1 h at 25°C.

Lactobacillus and Bacillus sp. isolated from Japanese U deposits removed 88.1 
and 74.4% U, respectively (Table 11.6), when solution pH was adjusted initially to 
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6.0. Solution pH gradually decreased, with Bacillus cells being more adversely 
affected by pH change than Lactobacillus cells. However, both strains quantita-
tively removed U when the pH was maintained at 6.0. These species can thus 
remove U from U refining wastewater with a high efficiency.

Attempts were also made to remove U from U refining wastewater using immo-
bilized microorganisms having a high ability to adsorb U. Uranium refining waste-
water (100 mL, pH 6.0) supplemented with 2.1 mM of U were adsorbed on a 
column (bed volume 2 mL) of immobilized bacterial cells at a space velocity of 
10 h−1 at 25°C.

Immobilized bacterial cells isolated from U mines in the United States can also 
remove U from the U refining wastewater with high efficiency (Table 11.7).
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Table 11.6 Uranium removal from uranium refining wastewater using microbial cells isolated 
from Japanese uranium mine

Strains

Removed U (%)

pH adjusted only started at pH 6.0 pH adjusted continuously at pH 6.0

Lactobacillus sp. 88.1 99.5
Bacillus sp. 74.4 95.5

Table 11.7 Uranium removal from uranium refining wastewater using 
immobilized microorganisms isolated from uranium mines

Strains Adsorbed uranium U (%)

Arthrobacter sp. 100
Bacillus sp. 100
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11.3.3  Removal of U from Seawater by Bacteria

The removal of U from seawater supplemented with 4.2 mM U using the bacteria 
isolated from U deposits was examined. The concentration of carbonate in 
 seawater is ~2.34 × 10−3 M (Ogata et al. 1971). The amount of U removed by 
Chlorella cells from solutions containing 1.196 × 10−3 M sodium hydrogen carbon-
ate was less at pH values above 6 than at pH 5 (Nakajima et al. 1979). The 
decrease in the amount of removed U from solutions containing carbonate was 
estimated from the amount of the UO

2
CO

3
 formed at pH 6 and of UO

2
(CO

3
)

3
4− 

formed at pH values greater than 7 (Nakajima et al. 1979, 1981). Although 
Lactobacillus sp. removed 36.2% of U from seawater, it removed nearly twice as 
much (70.2%) when the seawater was decarbonated (Table 11.8). Arthrobacter 
and Bacillus cells, which can remove large amounts of U from nonsaline water, 
removed far less U from either seawater or decarbonated seawater than did 
Lactobacillus. Accordingly, Lactobacillus has great potential in applications to 
remove significant quantities of U from seawater.

11.4  Conclusion

In U deposits located in Canada, the United States, Australia, and Japan, we iso-
lated strains of bacteria such as Arthrobacter, Bacillus, and Lactobacillus sp. having 
a significant ability to accumulate U. These species could accumulate approx. 
2,500 mmol U/g dry wt. of microbial cells within 1 h. These strains accumulated U 
selectively from solution containing six other heavy metals in solution. Cells also 
accumulated Th as well as U with high efficiency. These species removed U from U 
refining wastewater with high efficiency. Lactobacillus also accumulated U from 
seawater more effectively than other microbial cells which have high accumulating 
capacities, from nonsaline U solution.

Cells immobilized with polyacrylamide gel have excellent handling characteris-
tics and can be used repeatedly in U adsorption–desorption cycles.

These strains of Arthrobacter, Bacillus, and Lactobacillus can be used as an 
adsorbing agent for the removal of nuclear fuel elements which may be present in 
nuclear fuel processing effluents, mine tailings, seawater, and other environmental 
sources.

Table 11.8 Accumulation of uranium using microorganisms isolated from uranium mines

Solutions

Accumulated U (%)

Lactobacillus sp. Arthrobacter sp. Bacillus sp.

Uranium only solution  
(pH 8)

94.7 94.2 94.6

Natural seawater 36.2 0.8 0.9
Decarbonated seawater 70.2 6.1 6.0
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Abstract Bacterial biosorption can be used for the removal of pollutants from 
waters contaminated with pollutants that are not easily biodegradable, such as 
metals and dyes. A variety of biomaterials are known to bind these pollutants 
including bacteria, fungi, algae, and certain industrial and agricultural wastes. 
Biosorbents are less costly and more effective alternatives for the removal of 
metallic elements, especially heavy metals, from aqueous solution. In this chapter, 
the sorption abilities of bacterial biomass toward metal ions are emphasized. The 
appropriate conditions for immobilizing bacteria for maximum biosorption and the 
mechanism(s) involved are highlighted. The properties of cell wall constituents, 
such as peptidoglycan, and the role of functional groups, such as carboxyl, amine, 
and phosphonate, are discussed on the basis of their biosorption potentials. Binding 
mechanisms as well as the parameters influencing passive uptake of pollutants are 
analyzed. A detailed description of isotherm and kinetic models and the importance 
of mechanistic modeling are presented. To enhance biosorption capacity, biomass 
modifications through chemical methods and genetic engineering are needed for 
the effective removal of metal. For continuous treatment of effluents, a packed 
column configuration is suggested and the factors influencing its performance are 
discussed. The chapter also highlights the necessity for examination of biosorbents 
within real-world situations, as competition between solutes and water quality may 
affect biosorption performance. Thus, this chapter reviews the achievements and 
current status of biosorption technology and provides insights into this research 
frontier.
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12.1  Introduction

Enormous quantities of toxic metals are released into the environment annually as 
a result of human activities. In some cases, these releases are deliberate and well-
regulated, like industrial emissions, while in other cases they are accidental and 
include chemical spills or improper land disposal (Lloyd 2002). Toxic metals of 
concern include lead, chromium, mercury, uranium, selenium, zinc, arsenic, cad-
mium, gold, silver, copper, and nickel. These pollutants are derived from mining, 
metallurgical, electronic, electroplating, chrome tanning, textiles, metal finishing, 
fertilizer manufacture, and steel and automobile industries. Quantities of heavy 
metals released into the environment have increased due to rapid industrialization 
and technological development, posing significant threats to ecosystems and public 
health because of their toxicity, accumulation in food chains, and persistence in 
nature (Sharma et al. 2006; Tuzen et al. 2008). Following the fate of toxic metal 
species after they enter the ecosystem becomes difficult; furthermore, they inflict 
damage as they move from one ecological trophic layer to another. Controlling 
heavy metal discharges and removing toxic heavy metals from water bodies has 
become a challenge for the twenty-first century.

Methods used for heavy metal removal from industrial effluents can be classified 
as physical, chemical, and biological. Physicochemical methods such as precipita-
tion, ion exchange, filtration, membrane and electrochemical technologies, reverse 
osmosis, electrodialysis, adsorption on activated carbon, etc. require high capital 
and operating costs and may also be associated with the generation of secondary 
wastes which cause treatment problems. Therefore, recent attention has been drawn 
toward the development of alternative methodologies known as bioremediation 
processes. These technologies include, among other processes, biosorption. 
Biosorption or bioadsorption involves passive immobilization of metals by living 
biomass. Biosorption can be defined as the ability of biological materials to accu-
mulate heavy metals from wastewaters through metabolically mediated or phys-
iochemical pathways of uptake. Biosorbents for the removal of metals mainly come 
under the following categories: bacteria, fungi, algae, industrial wastes, agricultural 
wastes, and various polysaccharide materials. These biosorbents can effectively 
sequester dissolved metal ions from dilute complex solutions. The use of biological 
material in the removal of heavy metals from industrial effluents has gained impor-
tance during recent years because of the high efficiency, minimization of chemical/
biological sludge, low operating cost, regeneration of biosorbents, and possibility 
of metal recovery.

12.2  Bacterial Biosorbents

Bacteria are the most abundant and versatile of microorganisms and constitute a 
significant fraction of the entire living terrestrial biomass, whose mass is estimated 
as ~1018 g (Mann 1990). In the early 1980s, certain microorganisms were found to 
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accumulate metallic elements at a high capacity (Vijayaraghavan and Yun 2008a, b). 
Biosorbents derived from bacterial biomass have since become popular because of 
their small size, ability to grow under controlled conditions, and their resilience to 
a wide range of environmental situations; furthermore, inexpensive nutrient sources 
are readily available for microbes. Potent metal biosorbents among bacteria include 
genera Bacillus, Pseudomonas, Streptomyces, Micrococcus, and Escherichia coli. 
Table 12.1 summarizes basic information regarding the use of bacterial biomass for 
metal biosorption.

Metal ions in solution are adsorbed on to bacterial surfaces through interactions 
with chemical functional groups such as carboxylate, amine, amide, imidazole, 
phosphate, thioether, hydroxyl, and other functional groups found in cell wall bio-
polymers. Biosorption includes a combination of several mechanisms such as 
electrostatic attraction, complexation, ion exchange, covalent binding, van der 
Waal’s forces, adsorption, and microprecipitation. The extent of biosorption not 
only depends on the type of metal ions, but also on the bacterial genus, due to varia-
tions in cellular constituents. Very short contact times are generally sufficient to 
attain a metal-bacterial biomass steady state. This is because biomass is used in the 
form of either fine powder or wet cells, where mass transfer resistances are usually 
negligible. The rapid kinetics observed with bacterial biomass represents an advan-
tageous aspect for the design of wastewater treatment systems.

12.2.1  Bacterial Structure

The diameter of typical bacterial cells range from 0.5 to 1.0 mm; however, some are 
wider than 50 mm. Bacteria have simple morphology; the most common bacteria are 
present in three basic shapes: spherical or ovoid (coccus), rod (bacillus, with a cylin-
drical shape), and spiral (spirillum), although there is a great variety of shapes due 
to differences in genetics and ecology. The small size of bacteria ensures rapid meta-
bolic processes. A “typical” bacterial cell (e.g., E. coli) contains a cell wall, cell 
membrane, and the cytoplasmic matrix which consists of several constituents that 
are not membrane enclosed (inclusion bodies, ribosomes, and the nucleoid with its 
genetic material). Bacteria are classified as either Gram-positive or Gram-negative 
as distinguished by the Gram stain (Beveridge 2001). This classification divides 
bacteria into two main groups that differ in their cell wall characteristics (Beveridge 
1989; Sleytr and Beveridge 1999). Both cell wall types encompass a peptidoglycan 
layer that is rich in carboxylate groups and completely surrounds the cell (Beveridge 
1989; Langley and Beveridge 1999). The peptidoglycan layer in the Gram-positive 
cell wall is ca. 25 nm thick, whereas the Gram-negative peptidoglycan layer is much 
thinner (ca. 7.5 nm). The walls of Gram-positive bacteria consist of three primary 
components: cytoplasm mixed with peptidoglycan, to which teichoic acids are cova-
lently bound. The envelope of Gram-negative bacteria is more complex than that of 
Gram-positive bacteria. It consists of two membrane bilayers (the outer and plasma 
membrane) that are chemically and functionally distinct from one another and sand-
wich a thin peptidoglycan layer between them. Teichoic acids give the Gram-positive 
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Table 12.1 Biosorption by bacterial biomass (mg g−1)

Metal Bacteria species pH

Biosorption  
capacity  
(mg g−1) References

Cr (III) Pseudomonas aeruginosa 
AT18

7.72 200 Silva et al. (2009)

Rhodococcus opacus 6 1.404 Bueno et al. (2008)
R. opacus 5 714.29 Torem et al. (2008)
Staphylococcus  

saprophyticus BMSZ71
5 22.06 Zamil et al. (2009)

Cr (VI) Aeromonas caviae 2.5 284.4 Loukidou et al. (2004)
Arthrobacter sp. 4 9.115 Mishra and Doble (2008)
Arthrobacter sp. 5 175.87 Hasan and Srivastava (2009)
Bacillus licheniformis 2.5 69.4 Zhou et al. (2007)
Bacillus marisflavi 4 5.783 Mishra and Doble (2008)
Bacillus thuringiensis 2 83.3 Şahin and Öztürk (2005)
Chryseomonas luteola 4 3 Ozdemir and Baysal (2004)
Escherichia coli 4.6–5.1 4.6 Quintelas et al. (2009)
Pseudomonas sp. 4 95 Ziagova et al. (2007)
P. aeruginosa NA 0.05 Kang et al. (2007)
Pseudomonas fluorescence 

TEM08
2 40.8 Uzel and Ozdemir (2009)

Staphylococcus sp. 1 143 Ziagova et al. (2007)

Cu(II) Arthrobacter sp. 5 175.87 Hasan and Srivastava (2009)
Bacillus sp. F19 4.8 89.62 Yan et al. (2008)
Bacillus cereus NA 50.32 Jian-hua et al. (2007)
Geobacillus toebii 4 48.5 Ozdemir et al. (2009)
Geobacillus  

thermoleovorans
4 41.5 Ozdemir et al. (2009)

Enterobacter sp. J1 5 32.5 Lu et al. (2006)
Pseudomonas sp. 8 0.046 Choudhary and Sar (2009)
P. aeruginosa AT18 6.25 86.95 Silva et al. (2009)
R. opacus 6 0.506 Bueno et al. (2008)
Shewanella putrefaciens NA 45 Chubar et al. (2008)
Sphaerotilus natans 6 60 Beolchini et al. (2006)
Streptomyces coelicolor 5 66.7 Öztürk et al. (2004)
S. saprophyticus BMSZ71 6 22.36 Zamil et al. (2009)
Thiobacillus ferroxidans 6 198.5 Liu et al. (2004)

Cd (II) A. caviae 7 155.3 Loukidou et al. (2004)
Bacillus circulans 7 26.5 Yilmaz and Ensari (2005)
Bacillus jeotgali 7 57.9 Green-Ruiz et al. (2008)
G. toebii 6 29.2 Ozdemir et al. (2009)
G. thermoleovorans 4 38.8 Ozdemir et al. (2009)
Enterobacter sp. J1 6 46.2 Lu et al. (2006)
E. coli 5 2.18 Kao et al. (2009)
E. coli 5.6–6 10.3 Quintelas et al. (2009)
Pseudomonas sp. 7 278 Ziagova et al. (2007)
Pseudomonas veronii 2E 7.5 54 Vullo et al. (2008)
Pseudomonas sp. 9 0.078 Choudhary and Sar (2009)

(continued)
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Table 12.1 (continued)

Metal Bacteria species pH

Biosorption  
capacity  
(mg g−1) References

Streptomyces rimosus 8 64.9 Selatnia et al. (2004a)
S. saprophyticus BMSZ71 7 54.91 Zamil et al. (2009)

Fe (II) E. coli 2.7–3.5 16.5 Quintelas et al. (2009)
S. rimosus NA 122 Selatnia et al. (2004b)

Hg (II) Bacillus sp. 6 7.9 Green-Ruiz (2006)
S. saprophyticus BMSZ71 6 78.17 Zamil et al. (2009)

Ni (II) B. thuringiensis 6 45.9 Öztürk (2007)
E. coli 5.7–6.2 6.9 Quintelas et al. (2009)
G. toebii 4 21 Ozdemir et al. (2009)
G. thermoleovorans 4 42 Ozdemir et al. (2009)
Pseudomonas sp. 8 0.062 Choudhary and Sar (2009)
P. aeruginosa ASU6a 6 70 Gabr et al. (2008)
P. fluorescence TEM08 2 40.8 Uzel and Ozdemir (2009)
R. opacus 5 7.63 Cayllahua et al. (2009)
S. saprophyticus 7 16.85 Zamil et al. (2009)
S. coelicolor 11.1 8 Öztürk et al. (2004)

Pd Desulfovibrio  
desulfuricans

2 128.2 de Vargas et al. (2004)

Desulfovibrio  
fructosivorans

2 119.8 de Vargas et al. (2004)

Desulfovibrio vulgaris 2 106.3 de Vargas et al. (2004)

Pt D. desulfuricans 2 62.5 de Vargas et al. (2004)
D. fructosivorans 2 32.3 de Vargas et al. (2004)
D. vulgaris 2 40.1 de Vargas et al. (2004)

Zn B. jeotgali 7 222.2 Green-Ruiz et al. (2008)
G. toebii 5 21.1 Ozdemir et al. (2009)
G. thermoleovorans 4 29 Ozdemir et al. (2009)
P. aeruginosa AT18 7.72 56.4 Silva et al. (2009)
Pseudomonas putida 5 17.7 Chen et al. (2005)
S. putrefaciens NA 22 Chubar et al. (2008)
S. saprophyticus BMSZ71 26.33 7 Zamil et al. (2009)
T. ferroxidans 6 82.6 Liu et al. (2004)

U Arthobacter nicotianae 3.5 68.8 Nakajima and Tsuruta (2004)
B. licheniformis 3.5 45.9 Nakajima and Tsuruta (2004)

Bacillus megaterium 3.5 37.8 Nakajima and Tsuruta (2004)
Bacillus polymyxa  

IMV 8910
6 190.4 Shevchuk and Klimenko 

(2009)
Bacillus subtilis 3.5 52.4 Nakajima and Tsuruta (2004)
Citrobacter freudii NA 48.02 Xie et al. (2008)
Corynebacterium equi 3.5 21.4 Nakajima and Tsuruta (2004)
Corynebacterium  

glutamicum
3.5 5.9 Nakajima and Tsuruta (2004)

Micrococcus luteus 3.5 38.8 Nakajima and Tsuruta (2004)
Zoogloea ramigera 3.5 49.7 Nakajima and Tsuruta (2004)

(continued)
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cell wall an overall negative charge, due to the presence of phosphodiester bonds 
between teichoic acid monomers. The highly charged nature of lipopolysaccharides 
confers an overall negative charge on the Gram-negative cell wall. The anionic func-
tional groups present in the peptidoglycan, teichoic acids, and teichuronic acids of 
Gram-positive bacteria, and the peptidoglycan, phospholipids, and lipopolysaccha-
rides of Gram-negative bacteria are the components primarily responsible for the 
anionic character and metal-binding capability of the cell wall (Moat et al. 2002; 
Prescott et al. 2002). Extracellular polysaccharides (EPSs) are also capable of binding 
metals; however, their availability depends on the bacterial species and growth 
conditions, and they can easily be removed by simple mechanical disruption or 
chemical washing (Yee and Fein 2001).

The cell walls of bacteria contain a large number of surface functional groups, 
in which carboxyl is generally the most acidic group in the bacteria. At low pH 
values, cell wall ligands are protonated and compete significantly with metals for 
binding. With increasing pH, more ligands, such as amino and carboxyl groups, 
could be exposed, leading to attraction between these negative charges and the metals, 
and hence increase biosorption onto the cell surface. Some bacteria have special 
structures, such as flagella and the S-layer. The S-layer is a surface and paracrystal-
line envelope present in several groups of bacteria and archaea. This layer is formed 
by protein or glycoprotein monomers that can self-assemble in two-dimensional 
structures (Sleytr et al. 2003). S-layers are associated with lipopolysaccharides 

Table 12.1 (continued)

Metal Bacteria species pH

Biosorption  
capacity  
(mg g−1) References

Th A. nicotianae 3.5 75.9 Nakajima and Tsuruta (2004)

B. licheniformis 3.5 66.1 Nakajima and Tsuruta (2004)
B. megaterium 3.5 74.0 Nakajima and Tsuruta (2004)
B. subtilis 3.5 71.9 Nakajima and Tsuruta (2004)
C. equi 3.5 46.9 Nakajima and Tsuruta (2004)
C. glutamicum 3.5 36.2 Nakajima and Tsuruta (2004)
Micrococcus luteus 3.5 77 Nakajima and Tsuruta (2004)
Zoogloea ramigera 3.5 67.8 Nakajima and Tsuruta (2004)

Pb Aeromonas hydrophila 5 163.3 Hasan et al. (2009)
B. cereus NA 36.71 Jian-hua et al. (2007)
C. glutamicum 5 567.7 Choi and Yun (2004)
Enterobacter sp. J1 5 50.9 Lu et al. (2006)
P. aeruginosa PU21 5 0.7 Lin and Lai (2006)
P. aeruginosa ASU6a 7 79 Gabr et al. (2008)
P. putida 5.5 270.4 Uslu and Tanyol (2006)
R. opacus 5 0.455 Bueno et al. (2008)
S. saprophyticus BMSZ71 5 184.89 Zamil et al. (2009)
S. rimosus NA 135 Selatnia et al. (2004c)
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(LPSs) of Gram-negative bacteria or peptidoglycan of a Gram-positive cell (Urrutia 
1997; Madigan et al. 2000). Porosity is between 30 and 70% and the diameter of 
the pore between 2 and 8 nm. This characteristic can be exploited for metal binding. 
An important characteristic of this protein is its capacity to reassemble once iso-
lated from the cell (Pollmann et al. 2006). Due to this effect, it can be used for 
bioremediation. S-layer proteins might execute a trapping role of metallic ions in 
both living and dead cells, being a potential alternative for bioremediation of heavy 
metals in the field.

Some bacterial cells can produce a capsule outside the bacterial cell wall. They 
are highly hydrated and loosely arranged polymers of carbohydrates and proteins. 
Capsules are composed of polysaccharides and a few consist of proteins or poly-
mers of amino acids called polypeptides (often formed from the d- rather than the 
l-isomer of an amino acid). Bacillus anthracis, the anthrax bacillus, can produce 
polypeptide capsules composed of d-glutamic acid subunits. Capsules may be 
thick or thin, rigid or flexible, depending on specific organism. Several different 
terms can be found to describe the capsule layer, such as slime layer, glycocalyx, 
and EPS. Capsule polymers are usually acidic in nature although capsules can 
consist of neutral polysaccharide, charged polysaccharide, or charged polypeptide. 
Capsule arrangement is important to metal binding (Madigan et al. 2000; Moat 
et al. 2002). The composition of bacterial EPS is complex, depending on the strain 
and its culture conditions. EPS synthesis is also reported for several pseudomonads, 
Zoogloea ramigera, Rhizobium sp., Klebsiella sp., and Bacillus sp. Typical con-
stituents of EPS are mainly polysaccharides and proteins, often accompanied by 
nucleic acids, lipids, or humic substances (Flemming and Wingender 2001; van 
Hullebusch et al. 2003). Generally, EPSs have a high molecular weight with an 
abundance of negatively charged functional groups (ligands), e.g., carboxyl, 
hydroxyl, and uronic acids (Sobeck and Higgins 2002; Yan et al. 2008). These 
ligands make it possible for EPS to capture metal ions through electrostatic inter-
actions, forming multiple complexes (Pulsawat et al. 2003). Hence, EPSs have 
been recommended as a metal absorbent because of their extensive complexing 
capacity for heavy metals (Gutnick and Bach 2000). Recent studies from Yan et al. 
(2008) showed that the polymer from Bacillus sp. 19 possessed an affinity for 
copper.

12.3  Mechanisms of Biosorption

Localizing the metal deposition site within the biosorption biomass and under-
standing the metal sequestering mechanism, in combination with elucidation of the 
relevant metal solution chemistry and chemical structure of the metal deposition 
site, are all crucial aspects of the quest for an efficient biosorption process which 
should feature high metal selectivity and uptake. The attractive feature of biosorp-
tion is a certain specificity of the biosorbent for divalent and multivalent heavy 
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metal cations. Metal uptake may vary widely for different genera and even for 
 different mutant strains within a species. The nutrient status of the organism, its 
physiological state, the age of cells, and availability of micronutrients during 
growth, as well as environmental conditions during the biosorption process (e.g., pH, 
temperature, and presence of other metal ions), are all important parameters affecting 
the performance of a biosorbent. Solution chemistry of the metal also plays an 
important role in biosorption.

Biosorption is caused by a number of different physicochemical mechanisms, 
depending on a number of external environmental factors as well as on the metal, 
its ionic form in solution, and on the type of a particular active binding site respon-
sible for sequestering the metal. Biosorption consists of several mechanisms, 
mainly ion exchange, chelating, adsorption, and diffusion through cell walls and 
membranes, which differ depending on the species used, the origin and processing 
of the biomass, and solution chemistry.

Research is in progress to establish biosorption as a commercially viable 
 technique to trap and accumulate metals. Biosorption can serve as a tool for the 
recovery of precious metals (e.g., from processing solutions or seawater) and for 
the elimination of toxic metals (particularly from industrial wastewaters). The 
driving force of ion exchange is primarily the attraction of the biosorbent for the 
sorbate (metal). Metals can be bound electrostatically or by complexation. 
Interactions between the solute (metal) and the solvent play a role insofar as less 
hydrophilic molecules have a lower affinity for the liquid phase and are therefore 
sorbed more easily. Adsorption and microprecipitation involve binding of electri-
cally neutral metals without the release of a stoichiometric amount of previously 
bound ions. In microprecipitation, the driving force is interaction between the 
solute and the solvent, whereas in adsorption affinity between sorbent and sorbate 
is the driving force. Microprecipitation does not necessarily involve a bond 
between biomass and metal.

In the case of physicochemical interaction based on physical adsorption, ion 
exchange, and complexation between metal and functional groups of the cell sur-
face, metal uptake does not depend on cellular metabolism. The mechanism by 
which a metal binds onto the cell surface most likely includes electrostatic interac-
tions, van der Waals forces, covalent bonding, or some combination of these pro-
cesses. Negatively charged groups such as carboxyl, hydroxyl, and phosphoryl 
groups of the bacterial cell wall adsorb metal cations by electrostatic forces. Tunali 
et al. (2006) indicate that the biosorption of lead and copper by Bacillus sp. (ATS-1) 
involve an ion-exchange mechanism. Since the main mechanism involved in bio-
sorption is ion exchange, protons compete with metal cations for the binding sites 
and for this reason pH is the operational condition which influences the process 
most strongly (Schiewer and Volesky 2000). pH determines protonation/deprotona-
tion of metal ion binding sites and thus influences the availability of site to the 
sorbate. By lowering pH, it is also possible to release metal ions from the binding 
site. This property is used for the recovery of metal cations and regeneration of 
biosorbent.
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12.4  Techniques Used in Metal Biosorption Studies

Carboxyl groups are negatively charged and abundantly available, actively participate 
in binding of metal cations. Mishra and Doble (2008) indicated that carboxyl and 
amino groups were responsible for the binding of chromate. Kang et al. (2007) 
observed that amine groups protonated at pH 3 and attracted negatively charged 
chromate ions via electrostatic interaction. Potentiometric titrations can provide 
information on type and number of binding sites. Kang et al. (2007) titrated 
Pseudomonas aeruginosa and determined the pKa values of available binding sites. 
Jian-hua et al. (2007) successfully correlated the quantity of acidic groups present 
on Bacillus cereus biomass, determined via potentiometric titrations, with the metal 
uptake capacity.

The nature of the binding sites and their involvement during biosorption can be 
approximately evaluated using FTIR. Loukidou et al. (2004) analyzed the FTIR 
spectra of Cd2+ loaded and unloaded Aeromonas caviae. Several band transforma-
tions allowed the authors to predict the possible involvement of amino, carbonyl, 
carboxyl, and phosphate groups in the biosorption of Cd2+. Cayllahua et al. (2009) 
used FTIR spectra to confirm the presence of amide, carboxyl, and phosphate 
groups in Rhodococcus sp. biomass. Energy dispersive X-ray (EDX) can provide 
information regarding the chemical and elemental characteristics of biomass. 
Tunali et al. (2006) analyzed both Pb2+ and Cu2+ loaded Bacillus sp. using EDX, and 
confirmed the involvement of an ion-exchange mechanism during biosorption. In 
order to elucidate the chemical nature of bacterial cell-bound lanthanum, Kazy 
et al. (2006) employed X-ray diffraction (XRD) analysis and confirmed the involve-
ment of cellular carboxyl and phosphate groups in the binding of lanthanum by 
Pseudomonas biomass. SEM micrographs have aided researchers in analyzing cell 
surface morphology before and after biosorption. Tunali et al. (2006) visualized the 
surface of metal-loaded Bacillus sp.

12.5  Factors Affecting Heavy Metal Biosorption

12.5.1  pH

Since the main mechanism involved in biosorption is ion exchange, protons 
compete with metal cations for the binding sites and for this reason pH is the 
operational condition which influences the process most strongly (Schiewer 
and Volesky 2000). The different chemical species of a metal occurring at dif-
ferent pH values will have variable charges and adsorbability at solid–liquid 
interfaces. In many instances, biosorption experiments conducted at alkaline 
pH values have been reported to complicate the evaluation of biosorbent potential 
as a result of metal precipitation (Selatnia et al. 2004c; Iqbal et al. 2007). pH 
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determines the speciation and solubility of toxic metal ions and also affects the 
properties of the biomass (Chen et al. 2008). Many metals occur as free 
hydrated species at lower pH, hydroxides are formed with increasing pH and 
eventually precipitation may occur. pH influences the magnitude of negative 
charge on the surface of the material by either protonation or deprotonation of 
metal-binding sites. The different pH sorption profiles for various heavy metal 
ions may be related to the nature of chemical interactions of each metal with 
biomass (Kiran et al. 2005; Bueno et al. 2008). For different biosorption sys-
tems of metal ions, the optimal pH will differ. Both cations and anions show 
different patterns of sorption on sorbent in the same pH range. Ma and Tobin 
(2004) reviewed that uptake of anions is favored at low pH with typical maximum 
biosorption in the range of 1–2 while cation biosorption is maximal at a higher 
pH range. Solution pH primarily affects the surface properties of the biomass 
(Antizar-Ladislao and Galil 2004). It is worth noting that the capability of 
microorganism biomass to adsorb or chelate metal ions is due to the presence 
of several chemical groups on the biomass surface which are polar or anionic 
in nature such as carboxyl, phosphate, amine, amino, hydroxyl, and sulfhydryl. 
Such groups will contribute to the electrokinetic potential (zeta potential) of the 
surface (Zouboulis et al. 1999). Different isoelectric points (i.e., pH value when 
net surface charge is zero) are exhibited by different microorganisms due to the 
differing chemical compositions of the cell wall. At pH lower than the isoelec-
tric point, the overall charge of the biomass surface will become positive, 
whereas at pH higher than the isoelectric point, the overall surface charge will 
become negative (Zouboulis et al. 2004). In general, increasing pH increases 
the negative charge on the cell surface until all relevant functional groups are 
deprotonated, which favors electrochemical attraction and adsorption of cat-
ions. Furthermore, the increase in metal uptake with an increase in pH may be 
the result of more efficient competition of cations with H+ for binding sites on 
bacteria (Ziagova et al. 2007; Green-Ruiz et al. 2008; Zamil et al. 2009). 
Anions would be expected to interact more strongly with cells with an increasing 
concentration of positive charges, due to the protonation of functional groups 
at lower pH values. Many papers discuss the effect of this factor on biosorption 
performance (Uslu and Tanyol 2006; Bueno et al. 2008; Gabr et al. 2008) by, 
e.g., determination of zeta potential, electrostatic attraction, and contribution of 
ion-exchange mechanisms (Xu et al. 2006).

Metal ions in solution undergo hydrolysis as the pH increases. The extent of 
hydrolysis at different pH values differs with each metal, but the usual sequence of 
hydrolysis involves the formation of hydroxylated monomeric species followed by 
the formation of polymeric species, and subsequently the formation of crystalline 
oxide precipitates after aging (Ziagova et al. 2007; Hasan and Srivastava 2009). The 
different chemical species of a metal that occur with pH changes vary in charge and 
adsorbability at solid–liquid interfaces. Therefore, adsorption of metals on inter-
faces is highly pH-dependent, and there is a critical pH range, usually of less than 
one pH unit, for each metal wherein the amount of metal adsorbed increases 
significantly.
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12.5.2  Temperature

Biosorption by nonliving biomass is not significantly affected by the temperature. 
In contrast, the metabolism of living cells is temperature dependent, and hence 
change in this parameter will strongly affect the biosorption processes. 
Adsorption and ion exchange are exothermic in nature and hence the rate of 
these processes will increase with an increase in the temperature. However, at 
high temperatures, cell walls may be permanently damaged and for this reason 
a reduction in metal uptake is observed. Most of the increase in uptake has been 
reported in the temperature range of 4–23°C, whereas only a marginal increase 
is observed between 23 and 40°C. Metal uptake is reduced significantly when 
temperature is increased beyond this value. It is always desirable to conduct/
evaluate biosorption at room temperature, as this condition is easy to 
replicate.

12.5.3  Initial Metal Ion Concentration

Initial solute concentration appears to have an impact on biosorption, with a 
higher concentration resulting in a high solute uptake (Öztürk 2007; Bueno 
et al. 2008; Uzel and Ozdemir 2009). This occurs because at lower initial sol-
ute concentrations, the ratio of the initial moles of solute to the available sur-
face area is low; subsequently, the fractional sorption becomes independent of 
the initial concentration. However, at higher concentrations, the sites available 
for sorption become fewer compared with the moles of solute present and, 
hence, the removal of solute is strongly dependent upon initial solute 
concentration.

12.5.4  Initial Concentration of Biosorbent

The dosage of a biosorbent strongly influences the extent of biosorption. An 
increase in biomass concentration generally increases the amount of solute bio-
sorbed, due to the increased surface area of the biosorbent, which in turn increases 
the number of binding sites (Ziagova et al. 2007; Bueno et al. 2008). Conversely, 
the quantity of biosorbed solute per unit weight of biosorbent decreases with an 
increasing biosorbent dosage, which may be due to the complex interaction of sev-
eral factors. An important factor at high sorbent dosages is that the available solute 
is insufficient to completely cover the available exchangeable sites on the biosor-
bent, usually resulting in low solute uptake. The interference between binding sites 
due to increased biosorbent dosages cannot be overruled, as this will result in low 
specific uptake.
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12.5.5  Presence of Competing Ions

Wastewaters usually contain multiple metals. The presence of more than one 
metal in wastewater is expected to cause interactive effects as a function of many 
factors, such as the number of metals competing for binding sites, metal concen-
tration, and biosorbent dose. Many biosorption studies have been conducted 
with single-metal ion species in aqueous solutions. Metal uptake is significantly 
affected by the presence of other co-ions, as they will also compete for binding 
sites because many of the functional groups present on the cell wall and mem-
brane are nonspecific. Therefore, metal uptake from mixed solutions is often 
found to be lower than those in a single-species system. Generally, metal uptake 
increases as the ionic radius of metal cation increases, with metals having higher 
ionic charge showing greater binding to biomass. Furthermore, the extent of 
reduction in metal uptake in the presence of other cations is found to be depen-
dent on concentrations of the other cations. In particular, as the concentration of 
other cations increases, uptake of the metal further decreases. Bueno et al. 
(2008) reported that the presence of co-ions, whether in binary or ternary com-
binations, decreased the metal uptake when compared with the single-metal 
system. They observed that the presence of copper ions resulted in inhibition of 
lead uptake, which was greater than inhibition measured in the presence of chro-
mium and copper ions together. In the presence of other metal ions in solution, 
chemical interactions between these species as well as with biomass may take 
place, resulting in competition for adsorption sites on the surface. As a conse-
quence, the first component has a smaller “parking space” and its uptake is 
decreased (Akar et al. 2005).

Among the factors that affect biosorption preferences of a sorbent, binding of 
metal ions on biomaterials largely depends on physicochemical properties of the 
metallic species. It has been reported that the metal removal increases with the 
increase in ionic radius (Sag et al. 2002), which follows the order 
Pb(II) > Cu(II) > Cr(III). The differences in sorption affinities may also be attributed 
to differences in the electronegativity of the atoms, which also follows the order 
Pb(II) > Cu(II) > Cr(III). The greater the electronegativity or ionic radius, the greater 
the affinity, which also explains the significant suppression of lead uptake in the 
presence of copper and the moderate effect of chromium on lead biosorption. Uslu 
and Tanyol (2006) observed that the competitive biosorption capacities of 
Pseudomonas putida for Pb and Cu ions were lower than that under noncompetitive 
conditions.

Low atomic weight metal ions, such as Ca2+, Na+, and K+, occur in industrial 
wastewater. The experimental data has shown that these metal ions have little 
effect on heavy metal biosorption, indicating low biomass affinity for the lighter 
ions. The presence of anions also affects biosorption of metal ions. Kapoor and 
Viraraghavan (1997) reported that biosorption capacity decreased in the presence 
of ethylenediamine tetraacetate (EDTA), sulfate, chloride, phosphate, carbonate, 
glutamate, citrate, and pyrophosphate. The anions in solution may form a complex 
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with the metal ions, which would significantly reduce metal biosorption capacity. 
In general, biosorption is reduced at increased ligand concentrations.

12.6  Development of Bacterial Biosorbents

Feasible approaches leading to improvement of heavy-metal biosorption effi-
ciency include the development of more powerful biosorbents and the design 
of more efficient biosorption processes. Biosorbent development could be 
achieved by either isolating organisms with high capacity or high specificity 
to heavy metals or by tailoring genetically modified organisms abundant in 
high-affinity metal-binding proteins or polypeptides (Bae et al. 2002; 
Pazirandeh et al. 1998; Huang et al. 2003). Bae et al. (2003) reported that the 
metalloregulatory protein, MerR, which exhibits high affinity and selectivity 
toward mercury, was exploited for the construction of microbial biosorbents 
specific for mercury removal. Expression of mer operon genes encoding for 
cysteine-containing mercuric ion transport proteins (such as periplasmic pro-
tein MerP or inner membrane protein MerT) (Huang et al. 2003, Zhao et al. 
2005) on E. coli is very effective biosorbents for heavy metal removal. In addi-
tion, several other metal-binding proteins, such as metallothioneins (MTs) 
(Kao et al. 2006), phytochelatins (PCs) (Grill 1987), and metal-binding pep-
tides (Huang et al. 2003) were also expressed on E. coli to create powerful 
biosorbents. The MerP protein is a target for the development of genetically 
engineered biosorbents (Chen et al. 1998). Kao et al. (2008) used recombinant 
E. coli biosorbents with overexpression of MerP proteins for the biosorption 
of copper, nickel, and zinc from aqueous solutions. Deng et al. (2008) demon-
strated biosorption by immobilized recombinant cells expressing human met-
allothionein proteins. Samuelson et al. (2000) generated recombinant 
Staphylococcus xylosus and Staphylococcus carnosus strains with surface-
exposed chimeric proteins containing polyhistidyl peptides. Both strains of 
staphylococci gained improved nickel-binding capacities due to the introduc-
tion of H1 or H2 peptide into their surface proteins.

As the biosorption process is involved in mainly cell surface sequestration, modi-
fication of the cell wall can greatly alter the binding of metal ions. A number of 
methods have been employed for cell wall modification of microbial cells in order 
to enhance the metal-binding capacity of biomass and to elucidate the mechanism of 
biosorption. Physical treatments include heating/boiling, freezing/thawing, drying, 
and lyophilization. The various chemical treatments used for biomass modification 
include washing biomass with detergents, cross-linking with organic solvents, and 
alkali or acid treatment. Pretreatments could modify the surface characteristics/
groups either by removing or masking the groups or by exposing more metal-binding 
sites (Vijayaraghavan and Yun 2008a, b). For example, grafting of long polymer 
chains onto the biomass surface through direct grafting or polymerization of a 
monomer could introduce functional groups onto the surface of biomass.
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12.7  Biosorption and Equilibrium Studies of Heavy Metals

The type of process governs the rate of biosorption, which is considered as a rapid 
physical/chemical process. Biosorption can also be defined as a collective term for 
a number of passive accumulation processes, which may include ion exchange, 
 coordination, complexation, chelation, adsorption, and microprecipitation. In equilib-
rium, a certain relationship prevails between solute concentration in solution and 
adsorbed state (i.e., the amount of solute adsorbed per unit mass of adsorbent). 
The equilibrium concentrations are a function of temperature; therefore, the 
adsorption  equilibrium relationship at a given temperature is referred to as an adsorp-
tion isotherm. Several adsorption isotherms originally used for gas-phase adsorption 
are available and have been adopted to correlate adsorption equilibria in heavy metals 
biosorption. Some of the common equilibria are Freundlich, Langmuir, Redlich–
Paterson, and the Sips equation. Freundlich and Langmuir equations are the most 
widely used. These isotherms for the removal of heavy metals from water and waste-
water by biosorbents are discussed below.

12.7.1  Freundlich Isotherm

The Freundlich isotherm is an empirical equation and the most widely used 
isotherm for the description of adsorption equilibrium. It describes the adsorption 
of organic and inorganic compounds on a wide variety of adsorbents including 
biosorbents. The equation is written as:
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Equation (12.1) can also be expressed in the linearized logarithmic form:
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 are expressed. A Freundlich constant n between 1 and 10 indicates favorable 

adsorption. A larger value of n (smaller value of 1/n) implies stronger interaction 
between biosorbent and heavy metal while 1/n equal to 1 indicates linear adsorption 
leading to identical adsorption energies for all sites (Site 2001). The Freundlich 
isotherm has the ability to fit nearly all experimental adsorption–desorption data, 
and is excellent for fitting data from highly heterogeneous sorbent systems.
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A 1/n value higher than unity (n < 1) suggests the presence of a curved upward 
isotherm, sometimes termed as a solvent-affinity type isotherm (Site 2001). 
Within this type of isotherm, the marginal sorption energy increases with increas-
ing surface concentration. Sorption of solute on any sorbent can occur either by 
physical bonding, ion exchange, complexation, chelation or through a combina-
tion of these interactions. In the first case of physical bonding, as the solute is 
loosely bound, it can easily be desorbed using distilled water. Given the fact that 
miscellaneous functional groups such as hydroxyl, carbonyl, carboxyl, sulfhy-
dryl, thioether, sulfonate, amine, imine, amide, imidazole, phosphonate, and 
phosphodiester groups can be present within the structure of the biosorbent, the 
mechanism of adsorption will not be restricted to physical bonding (Dursun 
2006; Hanif et al. 2007; Wang et al. 2006a; Agarwal et al. 2006; Al-Rub 2006; 
Amarasinghe and Williams 2007; Basha et al. 2008; Liu et al. 2007; Parvathi 
et al. 2007; Popuri et al. 2007; Baral et al. 2007; Gokhale et al. 2008; Vijaya et al. 
2008; Calfa and Torem 2008; Schiewer and Patil 2008; Kumar et al. 2008). 
Different mechanisms can be involved as the interaction between sorbent and 
solute molecules is expected to be strong.

Adsorption capacity is the most important characteristic of an adsorbent. It is 
defined as the amount of adsorbate taken up by the adsorbent per unit mass of 
adsorbent. This variable is governed by a series of properties, such as pore and 
particle size distribution, specific surface area, cation exchange capacity, pH, sur-
face functional groups, and temperature.

As a precautionary note, the Freundlich equation is unable to predict the adsorp-
tion equilibria data at extreme concentrations. Furthermore, this equation is not 
reduced to linear adsorption expression at very low concentrations. However, 
researchers rarely face this problem, as moderate concentrations are frequently 
used in most biosorption studies.

12.7.2  Langmuir Isotherm

Another popular model for describing heavy metal sorption to biosorbents is the 
Langmuir model. The Langmuir equation relates the coverage of molecules on a 
solid surface to concentration of a medium above the solid surface at a fixed tem-
perature. This isotherm is based on three assumptions, namely, adsorption is limited 
to monolayer coverage, all surface sites are alike and can only accommodate one 
adsorbed atom, and the ability of a molecule to be adsorbed on a given site is inde-
pendent of its neighboring site’s occupancy. By applying these assumptions, and a 
kinetic principle (rate of adsorption and desorption from the surface is equal), the 
Langmuir equation can be written in the following form:
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where q
e
 is the amount adsorbed, C

e
 the equilibrium concentration, q

max
 the saturated 

monolayer adsorption capacity, and K
L
 the sorption equilibrium constant.

This equation is often written in different linear forms (Ho 2006, Ho and 
Ofomaja 2006):
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In biosorption process, the saturation limit of certain biomass is affected by several 
factors such as the number of sites in the biosorbent material, accessibility of the 
sites, chemical state of the sites (i.e., availability), and affinity between site and 
metal (i.e., binding strength). In the case of covalent metal binding, supposing that 
an occupied site is theoretically available, the extent to which the site is to be occu-
pied by a given metal depends further on its binding strength and concentration 
when compared with the metals already occupying the site.

The decrease of K
L
 value with an increase in temperature signifies the exother-

micity of the adsorption process (physical adsorption) (Ho 2006; Padmavathy 2008; 
Djeribi and Hamdaoui 2008; Shaker 2007), while the opposite trend indicates that 
the process needs thermal energy (endothermic), leading to chemisorption (Dursun 
2006; Ho 2006; Malkoc and Nuhoglu 2005; Wang et al. 2006b; Deng et al. 2006; 
Dundar et al. 2008; Aydin et al. 2008; Gupta and Rastogi 2008; Green-Ruiz et al. 
2008; Vilar et al. 2008). During physical adsorption, the bonding between heavy 
metals and active sites of the biosorbent weakens at higher temperatures in contrast 
to chemisorption bonding, which becomes stronger. The exothermicity or endother-
micity of the biosorption process can be determined via the heat of adsorption. This 
thermodynamic property is commonly obtained through an integrated Van’t Hoff 
equation, which relates the Langmuir constant, K

L
, to the temperature:

 a
L o exp ,( )E

K K
RT

= −  (12.8)

where K
o
 is the adsorption equilibrium constant, E

a
 the activation energy of adsorp-

tion/heat of adsorption, R the gas constant (0.0083 kJ/(mol K)), and T the absolute 
temperature (K).
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12.7.3  Temkin Isotherm

The derivation of Temkin isotherm is based on the assumption that the decline of 
heat of sorption as a function of temperature is linear rather than logarithmic, as 
implied in the Freundlich equation (Basha et al. 2008; Isik 2008). The Temkin 
isotherm has the form:
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RT
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b
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where b is the Temkin constant in relation to heat of sorption (kJ/mol) and a the 
Temkin isotherm constant (L/g).

Several experimental studies in chemisorption systems are correlated using this 
equation (Mondal et al. 2008; Isik 2008; Kiran and Kaushik 2008). Mondal et al. 
(2008) studied the biosorption of As, Fe, Mn, Cu, and Zn on Ralstonia eutropha. 
For several systems such as biosorption of Ni(II) by ureolytic mixed culture (Isik 
2008) and biosorption of Cr(VI) by Lyngbya putealis exopolysaccharides (Kiran 
and Kaushik 2008), Temkin isotherms are incapable of predicting biosorption equi-
libria. Since the basis of derivation for the Temkin equation involves simple 
assumptions, the complex phenomenon involved in liquid-phase adsorption is not 
taken into account by this equation. As a result, this equation is often not suitable 
for the representation of experimental data in complex systems.

12.7.4  Dubinin–Radushkevich Equation

The Dubinin–Radushkevich (DR) equation is excellent for interpreting sorption 
equilibria for organic compounds (in gas-phase condition) in porous solids. The DR 
equation is rarely applied onto liquid-phase adsorption due to the complexities 
associated with other factors such as pH and ionic equilibria inherent in these sys-
tems. In addition, the solute–solvent interactions often render the bulk solution 
nonideal. The mathematical expression for the DR equation in the liquid-phase 
system is given below:
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where b is a constant (proportional to the liquid molar volume) and E
0
 the solid 

characteristic energy toward a reference compound.
By taking into account the energetically nonuniform surface, this equation is 

capable of describing biosorption data as well (Igwe and Abia 2007; Cabuk et al. 
2007; Vijayaraghavan et al. 2006; Apiratikul and Pavasant 2008; Kiran and 
Kaushik 2008). One of the best features of the DR equation lies in the fact that it 
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is temperature dependent. If the adsorption data at different temperatures are plotted 
as the logarithm of the amount adsorbed against the square of potential energy, all 
suitable data shall, in general, lie on the same curve, termed the characteristic curve. 
This curve can later be utilized as an initial “tool” to measure the applicability of the 
DR equation in expressing adsorption equilibria data.

12.7.5  Brunauer–Emmer–Teller (BET) Model

In the Langmuir model, it was assumed that adsorption only occurs on the unoc-
cupied adsorption sites. In the BET model, this restriction is removed. Supposing 
that the initial adsorbed layer can act as a substrate for further adsorption, then 
the isotherm, instead of leveling off to some saturated value at high concentra-
tions, is able to rise indefinitely. The same kinetics concept proposed by Langmuir 
is applied to this multiple layering process, i.e., the rate of adsorption on any 
layer is equal to the rate of desorption from that layer. The simplified form of 
BET equation can be written in the following form:

 e
e max * *

e s e s
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where B is a constant related to the energy of adsorption and *
sC the saturation 

concentration of solute (mg/L).
Kiran and Kaushik (2008) showed a superb applicability of this model for 

Cr(VI) biosorption using L. putealis exopolysaccharides. They claimed that mul-
tilayer adsorption occurred in this system. As a note, other ideal assumptions 
within this model, namely, all sites are energetically identical along with no hori-
zontal interaction between adsorbed molecules, may be correct for heterogeneous 
material and simple nonpolar gases but not for complex systems involving het-
erogeneous adsorbent such as biosorbents and metals. For that reason, this equa-
tion is unpopular in the interpretation of liquid-phase adsorption data for complex 
solids.

12.7.6  Redlich–Paterson Isotherm

Redlich–Paterson is another empirical equation, designated as the “three parameter 
equation,” which is capable of representing adsorption equilibria over a wide 
 concentration range. This equation has the following form:
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where a
RP

, K
RP

, and b are Redlich–Paterson’s parameters.
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Equation (12.12) reduces to a linear isotherm at low surface coverage and to 
the Langmuir isotherm when b is equal to 1. This equation is quite popular for the 
prediction of heavy metal biosorption equilibria data (Dursun 2006; Basha et al. 
2008; Ho and Ofomaja 2006; Ho 2006; Preetha and Viruthagiri 2007; Padmavathy 
2008; Vijayaraghavan et al. 2006). Redlich and Paterson incorporated the charac-
teristics of Langmuir and Freundlich isotherms into a single equation. Two limiting 
behaviors exist, i.e., the Langmuir form for b = 1 and Henry’s law form for b = 0.

12.7.7  Multicomponent Heavy Metals Biosorption

The majority of the studies on biosorption of heavy metal ions by various biosor-
bents have focused on single-metal uptake. However, contrary to this, various met-
als are present in wastewater. The equilibrium modeling of multimetal biosorption, 
which is essential in the design of treatment systems, is often neglected. The effects 
of binary metal ions in various combinations seem to be more representative than 
single-metal studies (Aksu et al. 2002).

One of the major concerns arising from the adsorption of heavy metals from 
wastewater is the simultaneous presence of miscellaneous metals in wastewater. 
The interference and competition among different metals, metals and solvents, as 
well as metals and adsorption sites are significantly enough to be taken into 
account, leading to a more complex mathematical formulation of the equilibrium. 
Given the adsorption of heavy metals in real systems involving more than one com-
ponent, adsorption equilibria involving competition between molecules of different 
types are warranted for better understanding of the system and design purposes. 
Only a few isotherms were developed to describe equilibrium in such systems. 
These models range from simple equations associated only with the individual 
isotherm parameters (nonmodified adsorption models) to more complex models 
exploiting the individual isotherm parameters along with correction factors (modi-
fied adsorption models) (Aksu et al. 2002).

Multicomponent adsorption models such as the multicomponent Langmuir 
model including its modification as well as the multicomponent Freundlich model 
have become popular. The multicomponent Langmuir model is expressed in the 
following form:
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12.8  Kinetics of Heavy Metal Biosorption

Adsorption equilibria studies are important for determining the efficacy of metal 
adsorption. In addition, it is necessary to identify the adsorption mechanism type in 
a given system. For the purpose of investigating the mechanism of biosorption and 
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its potential rate-controlling steps that include mass transfer and chemical reaction 
processes, kinetic models have been used to test the experimental data. In addition, 
information on the kinetics of metal uptake is required to select the optimum 
 conditions for full-scale batch metal removal processes.

Adsorption kinetics is expressed as the solute removal rate that controls the resi-
dence time of the sorbate in the solid–solution interface. Several adsorption kinetic 
models have been described for the adsorption kinetics and rate-limiting step. 
These include pseudo-first and -second-order rate models, the Weber and Morris 
sorption kinetic model, the Adam–Bohart–Thomas relation (Djeribi and Hamdaoui 
2008), the first-order reversible reaction model (Baral et al. 2006), the external 
mass transfer model (Apiratikul and Pavasant 2008), the first-order equation of 
Bhattacharya and Venkobachar (Sag and Aktay 2002), and Elovich’s model and 
Ritchie’s equation. The pseudo-first and -second-order kinetic models are the most 
widely used models for biosorption kinetics of heavy metals and quantify the extent 
of uptake in biosorption kinetics.

12.8.1  Pseudo-First-Order Kinetics

The Lagergren first-order rate expression based on solid capacity is generally 
expressed as follows:
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where q is the amount adsorbed at time t and k
1
 the rate constant of first-order 

adsorption.
Integration of (12.14) with the boundary conditions as t = 0, q = 0, and at t = t, 

q = q, gives:

 ( )e e 1ln ln .q q q k t− = −  (12.15)

Equation (12.15) can be written in the nonlinear form:

 ( )( )e 11 exp .q q k t= − −  (12.16)

Hypothetically, to ascertain the rate constants and equilibrium metal uptake, the 
straight-line plots of log(q

e
 − q) against t of (12.15) were made at different initial 

metal concentrations (Ho and McKay 2002). The q
e
 value acquired by this 

method is then compared with the experimental value. If large discrepancies are 
posed, the reaction cannot be classified as first-order although this plot has a high 
correlation coefficient from the fitting process. Nonlinear fitting of (12.16) is 
another way to achieve the predicted value of q

e
 and k

1
, although this is not a 

common exercise. The trend shows that the predicted q
e
 values seem to be lower 

than the experimental values. A time lag, probably caused by the presence of a 
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boundary layer or external resistance controlling the beginning of the sorption 
process, was argued to be the responsible factor behind the discrepancy 
(Vijayaraghavan et al. 2006).

12.8.2  Pseudo-Second-Order Kinetics

The pseudo-second-order model is derived on the basis of the sorption capacity of 
the solid phase, expressed as:

 2
2 e
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d

q
k q q

t
= −  (12.17)

where k
2
 is the rate constant for pseudo-second-order model. Integration of (12.17) 

with the boundary conditions t = 0, q = 0, and at t = t, q = q, results in:
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Equation (12.18) can be stated in the linear form as:
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The pseudo-second-order rate constants were determined experimentally by 
 plotting t/q against t. Ho (2006) conducted an evaluation using linear and nonlinear 
methods to determine the pseudo-second-order kinetic parameters. He chose 
 cadmium as the heavy metal and tree fern as the biosorbent. As-acquired kinetic 
parameters from four kinetic linear equations using the linear method have discrep-
ancies among themselves. Further, for the linear method, the pseudo-second-order 
model as written in (12.19) has the highest coefficient of determination. In contrast 
to the linear model, the resulting kinetic parameters from the nonlinear model were 
almost identical among each other. To that end, the nonlinear method is considered 
as a better way to ascertain the desired parameters. Still, most of the biosorption 
studies in the literatures utilize (12.19).

As such, in comparison to pseudo-first-order kinetics, this model is consid-
ered more appropriate to represent the kinetic data in biosorption systems. This 
tendency comes as an indication that the rate-limiting step in biosorption of 
heavy metals are chemisorption involving valence forces through the sharing or 
exchange of electrons between sorbent and sorbate (Javed et al. 2007; Ofomaja 
and Ho 2007; Nasreen et al. 2008; Namasivayam and Sureshkumar 2008; 
Dundar et al. 2008; Yu et al. 2007; Rahaman et al. 2008; Mack et al. 2008; 
Pamukoglu and Kargi 2007; Miretzky et al. 2008; Guo et al. 2008), complex-
ation, coordination, and/or chelation (Yu et al. 2007; Baral et al. 2007; Lu and 
Gibb 2008).
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12.8.3  The Weber and Morris Sorption Kinetic Model

The Weber and Morris (WM) sorption kinetic model was initially employed by 
Pasavant et al. (2006) to describe their biosorption experimental data. This model 
has the following form:

 WM ,q K t=  (12.20)

where K
WM

 is the Weber and Morris intraparticle diffusion rate.
In their investigation, the sorption process by biomass for Cu(II), Cd(II), Pb(II), 

and Zn(II) was regulated by two main mechanisms, i.e., intraparticle diffusion and 
external mass transfer. The intraparticle diffusion can be estimated with the 
 following equation:
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where d
p
 is the mean particle diameter.

The external mass transfer process was determined by:
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where L'K  is the liquid–solid mass transfer coefficient, A the specific surface area 
of biomass, C the liquid-phase concentration of sorbate in the bulk solution at t, and 

s
iC  the concentration of sorbate in the inner pore of sorbent.
They observed that the external mass transfer coefficients can be ordered from 

high to low values as Cu(II) > Pb(II) > Zn(II) > Cd(II) while the intraparticle diffu-
sion coefficients (also in the decline sequence) as Cd(II) > Zn(II) > Cu(II) > Pb(II).

12.8.4  First-Order Reversible Reaction Model

To derive this model, the sorption of metal on biosorbent is assumed to be a first-
order reversible reaction, as expressed by the following reaction mechanism (Baral 
et al. 2006):

 A B⇔  (12.23)

In turn, the rate equation for the reaction is expressed as:

 ( )0 0 0 0B A
1 A 2 B 1 A0 A0 A 2 B0 A0

d d
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where C
B
 is the concentration of metal in sorbent at time t, C

A
 the concentration of 

metal in solution at time t, 0 0
1 2andk k the first-order rate constants, C

A0
 the initial con-

centration of adsorbate, C
B0

 the initial concentration of adsorbent, C
Be

 the  equilibrium 
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concentration of metal in adsorbent, and C
Ae

 the equilibrium concentration of metal 
in adsorbate.

At equilibrium conditions:
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Integrating (12.24) and applying the equilibrium condition gives:
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Baral et al. (2006) tried several equations to represent the Cr6+ biosorption experi-
mental data, and one among these equations was first-order reversible reaction 
model. This equation fits well for their experimental data. The reduced rate  constants 
and increasing equilibrium constant with the rise in temperature signifies that the 
biosorption of Cr6+ onto treated sawdust has exothermic nature. These observations, 
however, suggesting a complication as a careful examination onto the rate constant 
parameters revealed an existing violation toward Le Chatelier’s principle. Since the 
adsorption process is exothermic as a rule, the rate constant value of 0

1k  should 
decrease with increasing temperature. Based on the Le Chatelier’s principle, if the 
adsorption is exothermic, desorption would be endothermic. Therefore, the rate 
constant value of 

0
2k  should be enhanced in parallel with the rise in temperature. As 

mentioned previously, sorption of heavy metals on any biosorbent takes place by 
either physical bonding, ion exchange, complexation, coordination/chelation or a 
combination of these. By being restricted to a reversible chemical reaction assump-
tion, this model fails to capture any other possible complex mechanism involved.

12.9  Immobilization of Bacteria

In addition to the high biosorption yield obtained by bacteria, the heavy metal biore-
mediation process requires microorganisms to be attached to a solid surface. Surface 
fixation and cell entrapment are the two methods of immobilization. Different matri-
ces were tested for cell immobilization (Beolchini et al., 2003; Xiangliang et al., 
2005). Support matrices suitable for biomass immobilization include alginate, poly-
acrylamide, polyvinyl alcohol, polysulfone, silica gel, cellulose, and glutaraldehyde 
(Wang 2002; Vijayaraghavan and Yun 2008a, b). The polymeric matrix determines 
the mechanical strength and chemical resistance of the final biosorbent particle to be 
utilized for successive sorption–desorption cycles, so it is important to choose the 
correct immobilization matrix. Akar et al. (2009) measured the biosorption of 
100 mg L−1 of nickel at pH 6.5 to be 33.83 and 7.50 mg g−1 for silica gel and Proteus 
vulgaris, respectively, whereas the immobilized biosorbent had a biosorption capac-
ity of 45.48 mg g−1 under the same conditions. Maximum biosorption obtained using 
immobilized biomass provides promise for immobilized cells in a column reactor for 
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the remediation of heavy metals. At pH 5.0, the Cd2+ biosorption capacity of E. coli 
biomass-free PVA beads was 1.30 mg g−1, which was significantly lower than the 
adsorption capacity of PVA-immobilized cells, displaying a capacity of 2.18 and 
4.41 mg/g for biomass loading of 8.42 and 19.5 wt%, respectively (Kao et al. 2009).

Although cell entrapment imparts mechanical strength and resistance to chemical 
and microbial degradation upon the biosorbent, the costs of immobilizing agent can-
not be ignored. Free cells are not suitable for use in a column, due to their low density 
and size they tend to plug the bed, resulting in marked declines in pressure. For indus-
trial applications of biosorption, it is important to utilize an appropriate immobiliza-
tion technique to prepare commercial biosorbents which retain the ability of microbial 
biomass to adsorb metal(s) during the continuous treatment process. The immobiliza-
tion of biomass in solid structures would create a biosorbent material with the right 
size, mechanical strength, rigidity, and porosity necessary for use in practical pro-
cesses. The immobilized materials can be used in a manner similar to ion-exchange 
resins and activated carbon such as adsorption–desorption cycles (i.e., recovery of the 
adsorbed metal, reactivated and reuse of the biomass) (Veglio and Beolchini 1997).

In different matrices, tested surface fixation was chosen as the immobilization 
methodology instead of cell entrapment. Cell immobilization has successfully been 
achieved mostly in calcium alginate beads, but this matrix also has a high affinity 
for heavy metals. Metal retention kinetics studies with calcium alginate confirmed 
that almost 100% of the metal assayed was retained by the beads (Vullo et al. 2003) 
and that it is pointless to try to improve heavy metal retention by bacterial cell 
entrapment in calcium alginate beads (Arica et al. 2001; Davis et al. 2003; Vullo 
et al. 2003; Arica et al. 2004). Although calcium alginate is useful for entrapping 
cells in its gel structure, its advantage resides mostly in the re-utilization of the 
entrapped cells. However, the high heavy metal affinity of alginate makes it unus-
able for the development of continuous industrial processes, as the recovery of the 
alginic acid would increase the final costs of effluent treatment. Successful bacte-
rial immobilization was achieved on inert surfaces such as Teflon membranes, sili-
cone rubber, and polyurethane foams. Best results of surface fixation were obtained 
with Pseudomonas veronii 2E, which was able to grow on all three surfaces. This 
organism developed a film over the matrix surfaces, and also formed aggregates and 
adhered to glass during batch culture work. The development of other bacteria on 
the same surfaces was barely observed.

12.10  Desorption of Heavy Metals

Biosorption is a process of treating pollutant-bearing solutions to render it contam-
inant-free. However, it is also necessary to be able to regenerate the biosorbent. 
This is possible only with the aid of appropriate elutants which usually results in a 
concentrated pollutant solution. Therefore, the overall achievement of a biosorption 
process is to concentrate the solute, i.e., sorption followed by desorption. Desorption 
is of utmost importance when biomass preparation/generation is costly, as it is 
 possible to decrease process cost and the dependency of the process on a  continuous 
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supply of biosorbent. A successful desorption process requires the proper selection 
of elutants which strongly depends on the type of biosorbent and the mechanism of 
biosorption. In addition, the elutant must be (1) nondamaging to the biomass, 
(2) less costly, (3) environmental friendly, and (4) effective. Several investigators 
have conducted exhaustive screening experiments to identify appropriate elutants 
for this process. Kuyucak and Volesky (1989) examined several chemical agents to 
desorb Co2+ from cobalt-laden Ascophyllum nodosum, and identified CaCl

2
 in the 

presence of HCl as a suitable elutant.
The performance of an elutant also strongly depends on the type of mechanism 

responsible for biosorption. For instance, electrostatic attraction was found to be the 
primary mechanism responsible for biosorption of negatively charged dye anions to 
a positively charged cell surface (O’Mahony et al. 2002). Therefore, it would be 
logical to make the cell surface negative using alkaline solutions to repel the nega-
tively charged reactive dyes (Won and Yun 2008). Elution is also influenced by the 
volume of elutant, which should be as low as practically possible to obtain the 
 maximum solute concentration in the smallest possible volume (Volesky 2001). At 
the same time, the volume of the solution should be sufficient to provide maximum 
solubility for the desorbed solute. Also, one has to realize that the desorbed sorbate 
stays in solution and a new equilibrium is established between that and the one 
(remaining) still fixed on the biosorbent. This leads to the concept of a “desorption 
isotherm” where the equilibrium is strongly shifted toward the sorbate dissolved in 
the solution (Yang and Volesky 1996). Thus, it is necessary to evaluate the suitable 
elutant volume, which can be performed using experiments with different solid-to-
liquid ratios. The solid-to-liquid ratio is defined as the mass of solute-laden biosor-
bent to the volume of elutant. Davis et al. (2000) observed that solid-to-liquid ratio 
affected copper elution efficiency of CaCl

2
 solutions, while it was nearly indepen-

dent in the case of 0.1 M HCl. The purpose of desorption is to unbind a contaminant 
from a biosorbent, so both the recovered solute and biosorbent can be reused. After 
desorption, the biosorbent should be close to its original form, both morphologically 
and effectually. Also, during the desorption process, removal of all bound sorbate 
from biosorbent should be assured. If this does not occur, a diminished uptake 
should be expected in the next cycle. Puranik and Paknikar (1999) regenerated and 
reused a polysulfone-immobilized Citrobacter strain over three cycles for the bio-
sorption of lead, cadmium, and zinc, using 0.1 M HCl and 0.1 M EDTA as elutants, 
but only with limited success, and emphasized the need for further screening work. 
Beolchini et al. (2003) immobilized Sphaerotilus natans into a polysulfone matrix 
for the biosorption of copper, and with the aid of 0.05 M CaCl

2
 regenerated and 

reused the beads over ten cycles with satisfactory results.

12.11  Biosorption and Its Column Performance

Continuous biosorption studies are of utmost importance to evaluate the technical 
feasibility of a process for real applications. Among the different column configura-
tions, packed bed columns have been established as an effective, economical, and 
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most convenient setup for biosorption processes (Zhao et al. 1999; Saeed and Iqbal 
2003; Volesky et al. 2003; Chu 2004). These authors make best use of the concentra-
tion difference, which is known to be the driving force for sorption, and allow more 
efficient utilization of the sorbent capacity, resulting in better effluent quality (Aksu 
and Gönen 2004). Also, packed bed sorption has a number of process engineering 
merits, including a high operational yield and the relative ease of scaling-up proce-
dures (Aksu 2005). Other column contactors, such as fluidized and continuous 
stirred tank reactors, are rarely used for biosorption (Prakasham et al. 1999; Solisio 
et al. 2000). Continuous stirred tank reactors are useful when the biosorbent is in the 
form of a powder (Cossich et al. 2004); however, they suffer from high capital and 
operating costs (Volesky 1987). Fluidized bed systems, which operate continuously, 
require high flow rates to keep the biosorbent particles in suspension (Muraleedharan 
et al. 1991). Various parameters can be used to characterize the performance of 
packed bed biosorption, including the length of the sorption zone, uptake, removal 
efficiency, and slope of the breakthrough curve (Volesky et al. 2003; Vijayaraghavan 
et al. 2004). A mass transfer zone will develop between the gradually saturated sec-
tion of the column and the fresh biosorbent section (Naja and Volesky 2006). The 
length of this zone is important practically, which can be calculated from:
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where Z denotes bed depth (cm), and t
b
 and t

e
 the column breakthrough and exhaus-

tion times (h), respectively. The uptake is an important parameter often used to 
characterize the performance of a biosorbent in a packed column. The column 
uptake (Q

col
) can be calculated by dividing the total mass of biosorbed sorbate (m

ad
) 

by that of the biosorbent (M). The mass of biosorbed sorbate is calculated from the 
area above the breakthrough curve (C vs. t) multiplied by the flow rate. The removal 
efficiency (%) can be calculated, from the ratio of the sorbate mass biosorbed to the 
total mass of sorbate sent to the column, as follows:
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where C
0
 and F are the inlet solute concentration (mg/L) and flow rate (L/h), respec-

tively. It is important to note that the removal efficiency is independent of the biosorbent 
mass, but solely dependent on the flow volume. Therefore, it is necessary to consider 
both the uptake and removal efficiency when evaluating biosorbent potential.

The slope of the breakthrough curve from t
b
 to t

e
 (dc/dt) is often used to charac-

terize the shape of the curve (Volesky et al. 2003). It is preferential to have an 
extended breakthrough curve with a steep slope, as it is usually the result of a 
shorter mass transfer zone, which implies a longer column service time and greater 
utilization of the sorbent portion inside the column (Kratochvil and Volesky 1998). 
Thus, for effective biosorbents, a delayed breakthrough, earlier exhaustion, short-
ened mass transfer zone, high uptake, steep breakthrough curve, and high removal 
efficiency would be expected.
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12.11.1  Column Regeneration

Regeneration of biosorbent is relatively easier in a packed column arrangement, with 
the aid of an appropriate elutant. When the column becomes saturated, the contami-
nant solution flow should be switched to the elutant flow. In general, an elution 
process is usually rapid compared with that of sorption. Thus, a high contaminant 
concentration in a small elutant volume would be expected under optimized process 
conditions. In addition, it is desirable to limit the contact of the elutant with the 
sorbent. This is because extreme process conditions such as highly alkaline or acidic 
solutions are often employed for elution; thus, morphological damage to the biosor-
bent can be expected. Therefore, the optimal flow rate for the elution should be 
identified for successful reuse of the biosorbent over multiple cycles. In a typical 
elution curve, a sharp concentration increase is expected at the beginning, followed 
by a gradual decrease (Volesky et al. 2003; Vijayaraghavan et al. 2005).

Even with the successful optimization of an elution process, several investiga-
tors have observed a decrease in biosorption performance over subsequent cycles 
(Saeed and Iqbal 2003; Volesky et al. 2003; Vijayaraghavan et al. 2004). A loss of 
sorption performance during long-term use may occur for a variety of reasons, e.g., 
changes in the chemistry and structure of the biosorbent as well as flow and mass 
transport conditions within the column.

12.11.2  Sorption Column Model

The Bohart–Adams sorption model (Jansson-Charrier et al. 1996; Muraleedharan 
et al. 1994), developed primarily for carbon sorption, has often been used in studies 
of biosorption column performance; however, it is not an appropriate model that 
would reflect the uptake mechanism of ion exchange. The most complete column 
model taking into account dominant intraparticle mass transfer was developed for 
ion exchange by Tan and Spinner (1994). In principle, this mass transfer model can 
predict breakthrough curves for all species removed by the biosorbent and also the 
elution curves obtained during sorbent regeneration.

To predict biosorption in fixed-bed columns, the model based on the work of 
Kratochvil and Volesky (2000) is used. Adaptation of this model was necessary in 
order to study binary systems as well as ternary and quaternary systems. Its trans-
formation allowed testing the modeling approach for the case of multicomponent 
biosorption systems. The adapted approach consisted of numerically solving a 
mixed system of partial differential, ordinary differential, and algebraic equations 
describing the dynamics of multicomponent ion exchange in a flow-through fixed 
bed. Assuming isothermal conditions and constant physical properties for the feed 
solution, the differential molar balance for a sorbate species M is:
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The sorption rate equation can be written as (12.30), assuming a linear driving force 
for the sorption process and a combined film and intraparticle mass transfer 
resistance:
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where t is the time (h), rb the packing density of dry biomass in the packed bed 
(g L−1), Q the concentration of binding sites in the biosorbent (meq g−1), C

0
 the nor-

mality of the column feed (meq L−1), e the column void fraction, L
0
 the length of the 

column (cm), n the interstitial fluid velocity (cm min−1), D
Z
 the dispersion coeffi-

cient in the liquid phase (cm2 min−1), Sh
M

 the rate constant for ion exchange (min−1), 
C

M
 the concentration of species M in the liquid phase (meq L−1), q

M
 the uptake of 

species M by the biosorbent (meq g−1), 
*
Mq  the dimensionless equilibrium uptake of 

species M at C
M

, D
gM

 the solute distribution parameter, K
fM

 the overall mass transfer 
coefficient of species M (min−1), and P

ec
 is the column Peclet number.

12.12  Conclusion

Biosorption offers an economically feasible technology for efficient removal and 
recovery of metal(s) from aqueous solution. The process of biosorption has many 
attractive features including selective removal of metals over a broad range of pH 
and temperature, rapid kinetics of adsorption and desorption, and low capital and 
operational costs. Biosorbents can easily be produced using inexpensive growth 
media or obtained as a by-product from industry. The use of immobilized biomass 
rather than native biomass has been recommended for large-scale application, but 
various immobilization techniques have yet to be thoroughly investigated for ease, 
efficacy, and cost effectiveness. When designing a reactor for water treatment, it is 
important to achieve optimal conditions for metal retention at the lowest cost. Also, 
for an ex situ bioremediation process, costs will be lower when there is no need to 
include nutrients. The use of fixed or fluidized bed reactors is preferred because of 
easier recovery of the treated effluent, so successful bacterial immobilization on 
different matrices is required. Experiments in complexing capacity evaluation in 
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industrial effluents are necessary to verify metal bioavailability and improve the 
efficiency of the process. Although continuous processes of immobilized cells have 
been realized at laboratory scale, there is still a long way to go for biosorption com-
mercialization. Selection of quality, inexpensive support materials for biomaterial 
immobilization, improvement of reuse methods, and enhancement of properties of 
immobilized biosorbents such as pore ratio, mechanical intensity, and chemical 
stability are also important factors for application (Hu and Wang 2003).

Biosorption processes are applicable to effluents containing low concentrations 
of heavy metals for an extended period. This aspect makes it even more attractive 
for the treatment of dilute effluent that originates either from an industrial plant or 
from a primary wastewater treatment facility. Thus, biomass-based technologies 
need not necessarily replace conventional treatment routes but may complement 
them. To provide an economically viable treatment, the appropriate choice of bio-
mass and proper operational conditions must be identified.

Critical analysis reveals that not all metal-polluted wastewater-generating indus-
tries have the interest or the capability to treat effluents and most industries opt only 
for basic treatment techniques simply to comply with regulations. To attract greater 
usage of biosorption, strategies must be formulated to centralize facilities for 
accepting the used biosorbent where its processing can be carried out to either 
regenerate the biomass or convert the recovered metal into a usable form. This will 
further require an interdisciplinary approach with the integration of metallurgical 
skills along with sorption and wastewater treatment to apply biosorption technology 
for combating heavy metal pollution in aqueous systems.

12.13  Future Prospects

For the future of biosorption, there are two trends of development for the removal 
of metals. One is to use hybrid technology for pollutant removal, especially using 
living cells. A second trend requires the improvement of biomaterials immobiliza-
tion, as well as optimization of the parameters of the biosorption process and physi-
cochemical conditions, including reuse and recycling. Market factors for successful 
application of biosorption should be considered. The mechanisms involved in bio-
sorption or metal–microbe interactions should be further studied. Molecular bio-
technology, a powerful tool to elucidate mechanisms at the molecular level, should 
be considered more in the future to construct an engineered organism with higher 
sorption capacity and specificity for target metal ions.
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Abstract Heavy metals pose a significant ecological and public health hazard 
because of their toxic effects and their ability to accumulate in terrestrial and aquatic 
food chains. This chapter addresses the interactions of heavy metals with organ-
isms for application in wastewater or soil treatment systems, with special emphasis 
on yeasts and fungi. Conventional techniques to remove metals from wastewaters 
have several disadvantages; however, biosorption has demonstrated significant 
metal removal performance from large volumes of effluents. One key step of treat-
ment processes for cleanup of heavy metal-enriched water or soil involves growing 
resistant cells that accumulate metals to optimize removal through a combination 
of biosorption and continuous metabolic uptake. Fungal biosorption can be used 
for the removal of metals from contaminated water and soil; fungal biosorbents are 
less expensive and more effective alternatives for the removal of metallic elements, 
especially heavy metals, from aqueous solution. In this chapter, the biosorption 
abilities of fungal biomass toward metal ions are emphasized. The chapter also 
highlights the mechanisms involved in fungal biosorption and the factors affecting 
the biosorption process. The current status and achievements of fungal biosorption 
technologies are reviewed.

13.1  Introduction

Rapid industrialization and urbanization have resulted in elevated emissions of 
toxic heavy metals and radionuclides to the biosphere. Inorganic toxicants may 
occur as cations of metals such as mercury (Hg), cadmium (Cd), chromium (Cr), 
lead (Pb), nickel (Ni), and uranium (U). Toxic inorganics may also include alky-
lated or aromatized forms of metal ions, such as methylmercury and phenylmercury. 

M. Imran (*) 
Department of Agricultural Microbiology, Aligarh Muslim University, 
Aligarh 202002, India 
e-mail: iqbalahmad8@yahoo.co.in

Chapter 13
Metal Tolerance and Biosorption Potential  
of Soil Fungi: Applications for a Green  
and Clean Water Treatment Technology

Iqbal Ahmad, Mohd Imran, Mohd Ikram Ansari, Abdul Malik,  
and John Pichtel 



322 I. Ahmad et al.

The increasing quantities of toxic metals emitted into the biosphere pose potential 
hazards to ecosystems and influence the metabolism of living organisms (Gazso 
et al. 2001; Ansari and Malik 2007).

Heavy metals pose a significant threat to the environment and public health 
because of their toxicity and their accumulation in soil and food chains (Ceribasi 
and Yetis 2001; Chen et al. 2009; Gurel et al. 2010). Metal pollution of the bio-
sphere by toxic metals has accelerated dramatically since the industrial revolution 
(Mclveen and Negusanti 1994). Agricultural application of wastewater and sludge 
and improper disposal of industrial effluents in developing countries, including 
India, have resulted in the accumulation of toxic heavy metals in soil. Most heavy 
metals (except Cd, Hg, and Pb) are required by living organisms in trace quantities; 
however, at elevated concentrations these become environmental toxins. Once the 
soil is contaminated with a metal, it is difficult and costly to remove from soil. In 
addition, microbial diversity and their activity in soil will be adversely affected, 
which may result in adverse effects on soil productivity (Ansari and Malik 2010).

Industrialized countries are increasingly concerned regarding the occurrence of 
toxic metals in the environment. The most effective policy to minimize their release 
from industrial or agricultural sources is the adoption of low waste-generating tech-
nologies coupled with effective effluent purification processes (Fourest et al. 1994; 
Sag et al. 2000).

In recent years, public awareness has increased regarding the long-term effects 
of wastewater containing toxic elements. Numerous industrial processes generate 
aqueous effluents contaminated with heavy metals. Metal concentrations must be 
reduced to meet ever increasing legislative standards and recovered where feasible. 
According to the World Health Organization, the metals of most immediate concern 
are Hg, Cr, Cd, Pb, Ni, aluminum (Al), manganese (Mn), iron (Fe), cobalt (Co), 
copper (Cu), and zinc (Zn) (Allen and Brown 1995).

Removal of heavy metal ions from wastewater is necessary due to their toxic 
properties. Chemical precipitation, chemical oxidation and reduction, ion exchange, 
filtration, electrochemical treatment, reverse osmosis, evaporative recovery, and 
solvent extraction are the most commonly used procedures for removing heavy 
metal ions from aqueous environments (Ucun et al. 2003; Babu et al. 2007; 
Acheampong et al. 2010). However, these technologies have several disadvantages 
such as unpredictable rates of metal ion removal, high reagent or energy require-
ments, and/or generation of toxic sludge, which is often difficult to dewater and 
requires extreme caution in its disposal. The search for new and innovative treatment 
technologies has focused attention on the effects of heavy metal toxicity on, and 
uptake by, microorganisms (Aksu et al. 1997). Using microorganisms as biosor-
bents for heavy metals offers a potential alternative to existing methods (Igwe and 
Abia 2006; Malik 2004). With the growing scarcity and increasing economic value 
of certain metals, this intrinsic property of microorganisms has also given impor-
tance to the study of microbial metal recovery.

The use of biomass for heavy metal removal or recovery has gained importance in 
recent years due to its promising performance and low cost. Among the various sources, 
both live and inactivated biomass of microorganisms (fungi, algae, bacteria, etc.) 



32313 Metal Tolerance and Biosorption Potential of Soil Fungi

exhibit promising metal-binding capacities. Their complex cell walls contain high 
 concentrations of functional groups including amino, amide, hydroxyl, carboxyl, sulf-
hydryl, and phosphate, which have been associated with metal binding (Akhtar and 
Mohan 1995; Gardea-Torresdey et al. 2004). Specific constituents of fungal cell walls, 
e.g. chitin, have been documented as possessing significant metal binding abilities 
(Gadd et al. 2001).

Fungi possess many properties that influence metal mobility and toxicity, 
including the production of metal-binding proteins, organic and inorganic precipi-
tation, active transport, and intracellular compartmentalization.

The uptake of heavy metals by fungi is of industrial relevance (Gadd 1986a). 
Fungi are well suited for removal of metal ions from wastewater, since they exhibit 
marked tolerance toward metals and other adverse conditions, e.g., low pH. Fungi 
have higher capacities of metal binding to cell walls than other microorganisms.

The scientific literature indicates that the use of fungi and other microorganisms 
as biosorbents for heavy metals offers a potential alternative to existing chemical 
and physical methods, which possess several disadvantages. It is expected that fila-
mentous fungi of heavy metal-contaminated habitats exhibiting significant toler-
ance to toxic metals and demonstrating metal-complexing metabolites or activity 
will serve as efficient biosorbents for heavy metals.

Considering the problem of heavy metal pollution and the importance of fungi 
as a potential biosorbent for heavy metals, the present chapter discusses the diver-
sity of soil fungi, interactions with metals, and the development and exploitation of 
metal tolerance. The potential of various fungi in the biosorption of heavy metals 
from aqueous environments and their future prospects are discussed.

13.2  Soil Fungi and Their Diversity

Fungi are eukaryotic organisms and are ubiquitous members of soil microbial com-
munities. They comprise a varying proportion of the overall biomass in different 
systems. Fungi tend to dominate in soils containing high proportions of organic 
matter and of low pH and generally constitute a smaller proportion in intensively 
managed mineral soils. The fungi are an immensely diverse group of organisms, 
encompassing a wide range of forms from microscopic single-celled yeasts to large 
macrofungi, as exemplified by the well-known mushrooms and toadstools and the 
largest of fruiting bodies, the giant puffball (Bridge and Spooner 2001).

The majority of fungal species occur in the soil environment at some stage in their 
life cycle. Current knowledge of fungal diversity in soil is based largely on observa-
tions of fruiting bodies or cultures, which are obtained from soil isolation studies. 
Both approaches have limitations for the detection of the true diversity in any chosen 
environment. Approximately 17% of the known fungal species can be successfully 
grown in culture. Detecting exactly which fungi are present in a soil sample is not 
an easy task, one of the major problems being the fastidious nature of the great 
majority of species (Hawksworth et al. 1995). If the above figure was applied to the 
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1,200 culturable fungi species occurring in the biosphere as suggested by (Watanabe 
1994), then an estimated 7,000 species of fungi may exist in soil. In addition, 
although some soil fungi can be grown in culture, in many cases it is not possible to 
germinate resting structures such as spores, so that only vegetative mycelium is 
available for detailed analysis. Surveys of soil fungal diversity, which were popular 
during the 1960s and 1970s, have reappeared in the literature with the advent of 
DNA-based, culture-independent methods of analysis.

Culture-based estimates of soil fungal diversity require considerable effort and 
taxonomic expertise (Cosgrove et al. 2007). Culture-dependent approaches to char-
acterize microbial communities additionally have built-in biases in the isolation of 
microorganisms. Recent attempts have been made to develop new culture media to 
maximize the recovery of diverse microbial groups (Davis et al. 2005; Vieira and 
Nahas 2005).

Culture-independent methods have recently been used in preference to tradi-
tional isolation techniques for microbial community analysis, including denaturing 
gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis 
(TGGE), or temporal temperature gel electrophoresis (TTGE) methods (Muyzer 
et al. 1993; Torsvik et al. 1998; Muyzer 1999; Kirk et al. 2004; Kostanjsek et al. 
2005). These techniques have proved highly successful in detecting soil microbial 
composition and diversity, thus providing insight into the response of soil ecosys-
tems to environmental changes or anthropogenic disturbance. The combination of 
broad spectrum polymerase chain reaction (PCR) detection, coupled with single-
strand conformation polymorphisms (SSCP) or DGGE, can provide more accurate 
answers to fundamental questions regarding ecosystem diversity. This technique 
does not, however, distinguish between active and resting stages (Bridge and 
Spooner 2001).

The most commonly isolated culturable soil fungi having significant ecological 
roles and functions belong to Glomeromycota, Zygomycota, Ascomycota, and 
Basidiomycota. Mycorrhizae and sugar fungi (zygomycetes) have been widely stud-
ied. The Ascomycota are the largest group in terms of number of species (approxi-
mately 33,000 plus another 16,000 known only as asexual forms), which span a 
range of nutritional modes from parasitic and pathogenic to plants, animals, and 
other fungi, through mutualists and saprotrophs (Kirk et al. 2001). A separate artifi-
cial phylum, Deutromycota or Fungi Imperfecti, has been devised for those fungi 
that lack known sexual reproduction, but the majority comprise asexual relatives of 
Ascomycota (Seifert and Gams 2001). The most familiar and economically impor-
tant molds, including Aspergillus and Penicillium, are asexual forms of Ascomycota. 
Key literature in the identification of these groups of fungi appear in Gilman (2001), 
Ellis (1976), Domsch et al. (1993), Klich (2002), Mueller et al. (2004). 

Some 20 functions of fungi were described by Christensen (1989), one of the 
main functions of fungi in soil being primary degraders. Many soil fungi have other 
roles and interactions, one of the most widely studied being mycorrhizal processes. 
Mycorrhizal relationships vary widely and may involve direct cross-feeding with 
plants, aiding in plant seed germination or the prevention of invasion by pathogens 
through niche exclusion (Brundrett et al. 1996).
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Fungi are chemoheterotrophic organisms and are ubiquitous in subaerial and 
subsoil environments and are considered important decomposers and mutualistic 
symbionts of animal and plants. They are also pathogens and contribute to spoilage 
of natural and manufactured materials (Gadd 1993, 1999, 2006; Burford et al. 2003). 
Fungi also play an important role in the maintenance of soil structure due to their 
filamentous branching growth habit and exopolymer production. A fungal role in 
biogeochemical cycling of elements (e.g. carbon, nitrogen, phosphorus, sulfur, and 
metals) is well known and interlinked with the ability to adopt a variety of growth, 
metabolic and morphological strategies, their adaptive capabilities to environmental 
extremes, and their mutualistic associations with animals, plants, algae, and 
cyanobacteria (Burford et al. 2003; Gadd 2004; Braissant et al. 2004; Fomina et al. 
2005a). Free-living fungi also have major roles in the decomposition of plant and 
other organic materials including cellulose, lignin, and chitin as well as the degrada-
tion of xenobiotics and the solubilization of minerals (Gadd 2004, 2005, 2006).

13.3  Heavy Metal Pollution in Water and Soil

Many researchers have reported heavy metal pollution in soil, especially in agricul-
tural lands in different parts of the world (Sun et al. 2009; Fabiani et al. 2009; Yang 
et al. 2009; Nas et al. 2009). Fossil fuel combustion, mineral mining and process-
ing, and the generation of industrial effluents and sludges, biocides and preserva-
tives release a variety of toxic metal species into aquatic and terrestrial ecosystems, 
and this can have significant effects on biota (Gadd and Griffiths 1978; Gadd 
1992a, 2000c, 2005, 2007b; Wainwright and Gadd 1997; Pokrovsky et al. 2008; 
Fabiani et al. 2009). Metal-rich habitats also occur due to natural localized ores and 
mineral deposits, and the weathering of rocks, minerals, soil, and sediments are a 
vast reservoir of metals. Restoration of metal-polluted habitats requires a functional 
microbial community for plant community establishment, soil development, and 
biogeochemical cycling.

Heavy metals are elements having a density over 5 g/cm3. They are nondegrad-
able and exist in number of inorganic and organic forms. Some heavy metals such 
as Fe, Cu, and Zn are essential trace elements but others, such as Cd and Pb, have 
no beneficial biological function and are toxic even in very small amounts. 
Cadmium, Pb, and Hg are regarded as the most toxic of the heavy metals. Another 
elemental toxicant, arsenic (As), is sometimes regarded as a heavy metal, although 
strictly speaking, it is a metalloid.

Contamination of soil and water by heavy metals has significant relevance, 
because metals cannot be degraded like most organic pollutants and they accumu-
late in terrestrial, aquatic and marine food chains (Smejkalova et al. 2003; Ortega-
Larrocea et al. 2007). Metals such as Cd, Cr, Pb, Hg, As, copper (Cu), zinc (Zn), 
and nickel (Ni) are continuously being added to soils through agricultural activities 
such as long-term application of urban sewage sludge, and industrial activities such 
as waste disposal, waste incineration, and through vehicle exhausts. These sources 
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cause the accumulation of metals and metalloids in soils and pose threats to food 
safety and public health due to soil-to-plant transfer of metals.

Metals cause detrimental effects on both aquatic and terrestrial ecosystems and 
human health due to their mobilities and solubilities which determine their specia-
tion (Kabata-Pendias 1992; Del Val et al. 1999). In some cases, soil may be con-
taminated to such an extent that it may be classified as a hazardous waste (Berti and 
Jacob 1996). Soil contamination with heavy metal mixtures is receiving increasing 
attention from the public as well as governmental agencies, particularly in developing 
countries (Yanez et al. 2002; Khan 2005).

Cadmium (Cd) is ubiquitous in the environment and has been recognized as one 
of the most hazardous of the heavy metal pollutants (Robards and Worsfold 1991; 
Christine 1997). Cadmium readily transfers from soil to food plants through root 
absorption and accumulates in tissues (Oliver 1997; Ortega-Larrocea et al. 2007), 
thereby potentially affecting human health (Adriano 1986; Smith 1996; Jose et al. 
2002; Yao et al. 2003).

Cadmium concentrations ranging from 0 to 2.6 mg/L in drinking and natural 
waters have been reported from different parts of the world (Rajaratnam et al. 2002; 
Ho et al. 2003; Rosborg et al. 2003; Barton 2005; Virkutyte and Sillanpää, 2006; 
Asante et al. 2007). Natural Cd concentrations in water bodies rarely exceed the 
WHO guideline value of 3 mg/L (WHO 2006). High Cd concentrations in aquatic 
ecosystems are often reported in the surroundings of abandoned and active mines 
and metal smelters (Appleton et al. 2001; Miller et al. 2004; Lee et al. 2005a, b), 
especially where nonferrous metals are extracted (Florea et al. 2005). Phosphate 
fertilizers used in agriculture may also be enriched with Cd. Acidification of soil 
and water may release Cd bound to soil and sediments. Elevated Cd concentrations 
up to 57 mg/L (Seifert et al. 2000; Rajaratnam et al. 2002; Barton 2005) originating 
from soldered joints and zinc galvanized plumbing have been reported in tap water 
when first draw waters were studied. However, most of the households studied usu-
ally had acceptable Cd levels; for example, in Germany, Cd concentrations have 
been reported to exceed the WHO guideline value of 3 mg/L in only 0.7% of samples 
examined (Seifert et al. 2000).

In natural waters, Cd is distributed into three different fractions: dissolved, 
bound to suspended particulate matter (SPM), and precipitated/sedimented forms. 
Cadmium has a strong affinity for particulate matter, and sediments may contain 
over 100 mg/kg (Appleton et al. 2001; Woo and Choi 2001). As a result, soluble Cd 
concentrations in water are generally low, although the dissolved Cd fraction may 
be increased by high concentrations of dissolved organic matter (mainly fulvic and 
humic acids) (Linnik 2003) and low pH.

Excessive chromium (Cr) is present in the natural environment due to chrome 
plating and polishing operations, inorganic chemical production, cooling tower and 
steel mill effluents, and activities at wood-preserving facilities and petroleum refin-
eries (USEPA 1990; Allen et al. 1998).

Chromium wastes pose a serious threat to public health and the environment. 
The chemical form of chromium (e.g., trivalent versus hexavalent) determines its 
toxicity, its mobility in the environment, and its availability to microorganisms. 
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Chromium(VI) has been shown to have carcinogenic, mutagenic and allergenic 
effects in humans and animals. In contrast, Cr(III) is considered a trace element 
essential for living systems (Costa 1997; Nies 1999). The toxicity of hexavalent 
chromium is from 100 to 1,000 times greater than that for the trivalent species 
(Onta and Hattori 1983; Wyszkowska et al. 2001). Chromium(VI) is toxic to bio-
logical systems due to its strong oxidizing potential that can damage cells (Kotas 
and Stasicka 2000). Within living cells, Cr(VI) complexes with organic com-
pounds, interfering with metalloenzyme systems at high concentrations (Kotas and 
Stasicka 2000).

Lead contamination from anthropogenic sources is relatively common and high Pb 
concentrations have been detected in proximity to metal mines and smelters (Miller 
et al. 2004; Florea et al. 2005; Lee et al. 2005b). Point contamination on a smaller 
scale also occurs as a result of industrial emissions, agricultural practices, and 
improper disposal of sewage sludge. Before the introduction of unleaded fuels, the 
use of leaded gasoline was one of the major sources of Pb pollution to soil. Lead is 
also released into tap water from pipes, solders, and fittings of old plumbing systems 
(which may contain up to 50% Pb), and Pb concentrations up to 5,580 mg/L have been 
detected in tap water (Murphy 1993; Gulson et al. 1994; Gulson et al. 1997; Seifert 
et al. 2000; Barton et al. 2002; Rajaratnam et al. 2002; Fertmann et al. 2004).

The World Health Organization (WHO 2006) has established a limit of 10 mg/L 
for Pb in drinking water. Natural Pb concentrations of water bodies are generally 
low; background concentrations of <0.45–14 mg/L in groundwater have been 
reported (Smedley et al. 2002). Like Cd, Pb in water is distributed into three different 
fractions: dissolved, bound to SPM, and precipitated/sedimented. Lead has a strong 
affinity for particulate matter and, therefore, is mainly present in SPM and sediment 
fractions, but the dissolved amount is low (Balls 1988; Zarazua et al. 2006). 
However, Pb bound to SPM and sediments is at least partly reversible and may, 
therefore, be released to the surrounding water under suitable conditions (Chrastný 
et al. 2006).

13.4  Metal–Fungi Interactions and Development of Metal 
Resistance/Tolerance

Metals influence soil fungi by various means; for example, they can diminish total 
populations, impoverish fungal diversity, alter fungal morphology and physiological 
activity, and affect growth rate, reproduction processes, and enzyme production 
(Gadd 1992b, 1993; Martino et al. 2000). The response of Penicillium to heavy metals 
varies over a wide range of concentrations. Both sensitive and extremely resistant 
fungi of this genus have been reported in the literature. Penicillium ochrochloron is 
reported to grow in a saturated solution of copper sulfate (Stokes and Lindsay 1979). 
Metal effects vary not only among species and strains of fungi but also among dif-
ferent vegetative and reproductive forms of the same organism (Sabie and Gadd 
1990). Fungal survival in the presence of toxic metals depends primarily on intrinsic 
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biochemical and structural properties, physiological and/or genetic adaptation 
including morphological changes, and environmental modification of metal specia-
tion, and metal availability and toxicity. The relative importance of each of these is 
often difficult to determine (Gadd and Griffiths 1978; Gadd 1990, 1992b).

Heavy metal resistance in fungi has been investigated in detail in mutants isolated 
in the laboratory (Mohan and Sastry 1983) by gradual adaptation on toxic metal ion-
containing media or by mutagenesis. A number of metal-resistant fungi isolated from 
polluted environments have also been reported (Ashida 1965; Gadd 1993; Zafar et al. 
2007; Ahmad et al. 2006; Imran 2010); however, the mechanism of resistance in most 
cases was not studied. Resistance to heavy metals in fungi may be due to either of 
two mechanisms (1) transport blocks that restrict the entry of toxic metals into the cell 
and (2) intracellular sequestration into vacuoles or binding to specific proteins, viz. 
metallothioneins as described by Rao et al. (1997).

Numerous methods have been employed to determine metal tolerance in fungi. 
In vitro assays include sensitivity to spore germination, mycelia growth extension, 
and biomass production in the presence of various concentrations of metal salts in 
liquid and/or solid nutrient medium. These assays have demonstrated a range of 
levels of tolerance to different metals.

Metal-contaminated soil and wastewater harbor relatively more resistant fungal 
flora compared with noncontaminated media (Zafar et al. 2007; Ahmad et al. 2006; 
Ansari and Malik 2010); however, no strict criteria exist for the designation of a 
particular fungus as metal resistant/tolerant or sensitive. The minimum inhibitory 
concentration (MIC) of a metal sufficiently higher than MIC50 may be considered 
as tolerant or resistant.

13.5  Mechanisms of Metal Resistance and Tolerance

Metals and their compounds interact with fungi in various ways depending on 
metal species, organism, and environment. In addition, fungal metabolic activity 
can influence metal speciation and mobility.

Metal toxicity is greatly affected by the chemical behavior of the particular 
metal species, which is often influenced by the physical and chemical properties of 
the local environment. Metals exert toxic effects in many ways; for example, they 
can block the functional groups of important biological molecules such as enzymes, 
displace or substitute for essential metal ions, cause disruption of cellular and 
organellar membranes, and interact with systems which normally protect against 
harmful effects of free radicals generated during normal metabolism (Gadd 1992b, 
1993; Avery et al. 1996; Howlett and Avery 1997). Fungi possess numerous quali-
ties that influence metal toxicity including the production of metal-binding proteins 
(e.g., constituents of fungal cell walls [chitin, melanin] have significant metal 
 binding abilities (Gadd and Griffiths 1978; Gadd 1993), organic and inorganic 
precipitation of metals, and active transport and intracellular compartmentalization. 
All these mechanisms are highly dependent on the metabolic and nutritional status 
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of the organism, as these will affect the expression of energy-dependent resistance 
 mechanisms as well as synthesis of wall structural components, pigments, and 
metabolites, which affect metal availability and organism response (Gadd 1992b, 
1993; Ramsay et al. 1999).

Fungi restrict entry of toxic metal species into cells by (1) reduced metal uptake 
and/or increased metal efflux; (2) metal immobilization, e.g., cell wall adsorption, 
extracellular precipitation of secondary neo-formed minerals (e.g. oxalates); and 
(3) extracellular metal sequestration by exopolysaccharides and other extracellular 
metabolites (Gadd 1993, 2001a, b, c; Macreadie et al. 1994; Blaudez et al. 2000; 
Perotto and Martino 2001; Baldrian 2003).

Metal-tolerant fungi survive in metal-enriched environments in part due to their 
abilities of intracellular chelation by the generation of metallothioneins and phyto-
chelatins, and metal localization/sequestration within vacuoles. Fungal vacuoles 
play an important role in the regulation of cytosolic metal ion concentrations and 
the detoxification of potentially toxic metals (White and Gadd 1986; Gadd 1993; 
Gharieb and Gadd 1998; Liu and Culotta 1999). Metals preferentially sequestered 
by the vacuole include Mn2+ (Okorokov et al. 1985; Gadd and Laurence 1996), Fe2+ 
(Bode et al. 1995), Zn2+ (White and Gadd 1987), Co2+ (White and Gadd 1986), Ca2+ 
and Sr2+ (Okorokov et al. 1985; Borst-Pauwels 1989; Gadd 1993; Okorokov 1994), 
Ni2+ (Joho et al. 1995), and the monovalents K+, Li+, and Cs+ (Okorokov et al. 1980; 
Perkins and Gadd 1993a, b). Recently, other researchers have discussed the mecha-
nisms of metal resistance in soil fungi (Meharg 2003; Bučková et al. 2007; 
Gonçalves et al. 2007; Richie et al. 2007; Xiao et al. 2008).

13.5.1  Metal Solubilization

Solubilization of metal compounds is an important but unappreciated aspect of 
fungal physiology for the release of anions such as phosphate and essential metal 
cations into forms available for intracellular uptake, and transport through biogeo-
chemical cycles. Fungal solubilization of metal compounds, including certain 
oxides, phosphates, sulfides and mineral ores, occurs by several mechanisms 
including (1) protonation of the anion of the metal compound, thereby decreasing 
its availability to the cation with the proton-translocating ATPase of the plasma 
membrane (production of organic acids being the source of protons) and (2) sidero-
phore production (Gadd 1993, 1999; Sayer et al. 1995).

Organic acid anions are frequently capable of soluble complex formation with 
metal cations, thereby increasing mobility of the latter (White et al. 1997). Such 
complexation is dependent on relative concentrations of the anions and metals in 
solution, pH, and the stability constants of the various complexes (Denevre et al. 
1996). A further mechanism of metal solubilization is the production of low-
molecular-weight iron-chelating siderophores, which solubilize Fe3+. Siderophores 
are the most common means of acquisition of Fe by bacteria and fungi and are 
effective over a wide range of soils, including calcareous soil. The most common 
fungal siderophore is ferrichrome (Crichton 1991).
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Fig. 13.1 Organic acid 
 production by Penicillium spp.  
in plate (Ansari 2004)

Fig. 13.2 Organic acid 
 production by Aspergillus spp.  
in plate (Ansari 2004)

Acidification of soil can lead to metal release via a number of obvious routes, 
e.g., competition between protons and metal in a metal–anion complex or in a 
sorbed form, resulting in the release of free-metal cations. Heterotrophic metabo-
lism can also lead to leaching as a result of the efflux of organic acids and sidero-
phores. Organic acids supply both protons and metal-complexing anions (Burgstaller 
and Schinner 1993; Gadd 1999; Gadd and Sayer 2000). Citrate and oxalate anions 
can form stable complexes with a large number of metals. Many metal citrates are 
highly mobile and not readily degraded (Francis et al. 1992). Oxalic acid can also 
act as a leaching agent for those metals that form soluble oxalate complexes, 
including Al and Fe (Strasser et al. 1994).

In many fungi, an important leaching mechanism occurs through the production of 
organic acids (e.g., oxalic acid and citric acid) (Adams et al. 1992; Francis et al. 1992; 
Denevre et al. 1996; Sayer et al. 1997; Gadd 1999, 2000a; Sayer and Gadd 2001; 
Jarosz-Wilkolazka and Gadd 2003; Fomina et al. 2005a; Ansari 2004; Imran 2010) 
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(Figs. 13.1 and 13.2). Organic acid excretion by fungi is both inter- and intra-specific 
and can be strongly influenced by the presence of toxic metals (Sayer et al. 1995; 
Sayer and Gadd 2001; Fomina et al. 2004, 2005c).

13.5.2  Metal Immobilization

Toxic metal species including radionuclides can be bound, accumulated, and pre-
cipitated by fungi. Fungal biomass can act as a metal sink by (1) metal biosorption 
to biomass cell walls, pigments, and extracellular polysaccharides; (2) intracellular 
accumulation and sequestration (including uptake with complexation to ligands 
such as sulfur-containing peptides [e.g. metallothioneins] [Gadd 1993; Sarret et al. 
1998, 2002; Fomina et al. 2005b]); or (3) precipitation of metal compounds onto 
and/or around hyphae. Some fungi can precipitate metals in amorphous and crystal-
line forms, such as oxalates and other secondary mycogenic minerals (Gadd 1999; 
Burford et al. 2003, 2006).

In addition to immobilizing metals, the above processes reduce the external free 
metal concentration and drive the equilibria to release more metal ions into soil 
solution (Gadd 1993, 2000a, b; Sterflinger 2000). Fungi can be highly efficient 
accumulators of soluble and particulate forms of metals (e.g., Ni, Zn, Ag, Cu, Cd, 
and Pb), especially from dilute external concentrations (Gadd 1993, 2000a, b, 
2001b, c; Baldrian 2003).

13.5.3  Metal Transformations

Metal transformation embraces the mechanisms by which fungi (and other micro-
organisms) effect changes in metal speciation and mobility. Transformations are 
essential components of biogeochemical cycles for metals as well as all other elements 
including carbon, nitrogen, sulfur, and phosphorus. Fungi and other microorgan-
isms transform metals via oxidation, reduction, methylation, and dealkylation 
(Gadd 1992a). Some enzymatic metal transformations may be involved in survival 
since certain transformed metal species are less toxic and/or more volatile than the 
original species. Reductions carried out by fungi include Ag+ to metallic Ag0 which 
is deposited in and around cells (Kierans et al. 1991) and Cu2+ to Cu+ by cell wall-
associated compounds in Debaryomyces hansenii (Wakatsuki et al. 1988, 1991; 
Breuer and Harms 2006).

13.6  Biosorption

Biosorption is the process by which metals are sorbed or complexed to either 
living or dead biomass (Volesky and Holan 1995). Binding of metal ions onto 
cell walls and other external surfaces in fungal biomass (Gadd 1990, 1993; 
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Sterflinger 2000) can be an important passive process in concentrating metals 
in soils and contaminated aquifers (McLean et al. 1996; Berthelin et al. 1995). 
It has been suggested that stimulating the growth of indigenous microorganisms 
with metal biosorptive capacities may be a useful strategy for immobilizing 
metals in soils and preventing contamination of underlying groundwater sup-
plies (Valentine et al. 1996). Furthermore, it is possible to envision a barrier of 
microorganisms with biosorptive abilities established in subsurface environ-
ments to remove metals from groundwater flowing through. Although small-
scale bioremediation of mine drainage with biosorption has been documented 
(Ledin and Pedersen 1996), biosorption has been evaluated primarily as a strat-
egy for removing metals from waste streams. Biosorption may be economically 
competitive with ion exchange or chemical precipitation for treating some 
waste streams (Eccles 1995). One strategy to enhance the applicability of bio-
sorption over alternative techniques for metal removal is to survey for novel 
microorganisms with unique biosorption capacities (Hu et al. 1996; Vesper 
et al. 1996).

13.6.1  Biosorbents

Adsorptive removal of heavy metals from aqueous effluents, which has received 
much attention in recent years, is usually achieved using activated carbon or acti-
vated alumina (Faust and Aly 1987; Ouki et al. 1997; Hsisheng and Chien-To 1998; 
Ali et al. 1998; Ralph et al. 1999; Shim et al. 2001; Monser and Adhoun 2002; Igwe 
and Abia 2005).

Certain biosorbents bind and collect a wide range of heavy metals with no speci-
ficity, whereas others are specific for certain types of metals (Hosea et al. 1986; 
Volesky and Kuyucak 1988). When choosing biomass for metal biosorption experi-
ments, its origin must be taken into account. Biomass can originate from

 1. Industrial wastes, which should be obtained free of charge,
 2. Organisms readily available in large quantities in nature, and
 3. Organisms experiencing rapid growth and cultivated or propagated for biosorp-

tion purposes.

Biosorbents prepared from naturally abundant biomass are primarily of algae, 
fungi, moss, or bacteria that have been killed by washing with acids or bases or 
both, before drying and granulation (Brierley 1990; Kratochvil et al. 1997). Living 
or dead fungal biomass and fungal metabolites have been used to remove metal or 
metalloid species, metal compounds and particulates, radionuclides and organo-
metal compounds from solution by biosorption (Gadd and White 1989, 1990, 1992, 
1993; Wang and Chen 2006). These processes are ideally suited for use in bioreac-
tors (Gadd 2000a).
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13.6.2  Metal Binding to Cell Walls

The wall is the first cellular site of interaction with external metal species. Metal 
removal from solution may be rapid, although rates depend on numerous factors 
such as type of metal ion and biomass, metal concentration and environmental 
factors such as pH, oxidation–reduction status, presence of competing ions, etc. 
Metabolism-independent modes of metal binding to fungal walls include ion 
exchange, adsorption, complexation, precipitation, and crystallization (Mullen 
et al. 1992).

The fungal cell wall is composed primarily of polysaccharides, some of which 
may have associated proteins with other components including lipids and melanins. 
The specific components of the fungal cell wall include the following.

13.6.2.1  Skeletal Elements

Chitin: b-1-4-linked homopolymer of N-acetyl-d-glucosamine
b-Glucans: b-1-3-glucan homopolymer composed of d-glucose units with b-1-3- 
and b-1,6-glucosidic bonds (R-glucan)
Cellulose: b-1,4-linked homopolymer of glucose

13.6.2.2  Matrix Components

a-Glucan: a-1,3-homopolymer of glucose (s-glucan)
a-1,3- and a-1,4-Linked glucan (nigeran)
Glycoproteins
Mannoproteins

13.6.2.3  Miscellaneous Components

Chitosan: b-1,4-polymer of d-glucosamine
D-galactosamine polymers
Polyuronides
Melanins
Lipids

The fungal cell wall thus has important protective properties and so may act as 
a barrier controlling uptake of solutes, including potentially toxic metal species, 
into the cell (Gadd and Griffiths 1978; Gadd 1986a, b; Ono et al. 1988) and also 
indirectly affects the intracellular ionic composition by restricting cellular 
water.
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13.6.3  Transport of Toxic Metal Cations

Most research on metal ion transport in fungi has concerned K+ and Ca2+, largely 
because of their importance in fungal growth, metabolism, and differentiation. The 
transport of toxic metal species is still poorly understood.

Transport systems in cell membranes are usually classified as either carrier or channel 
systems. In the carrier system, conformational changes in the transport protein are 
believed to result in alternate exposure of the transport binding site on each side of the 
membrane. Carriers include all metabolically coupled and H+-gradient-driven trans-
port systems. Fluxes through such systems saturate with respect to ligand concentra-
tion and, if a current is carried, with respect to membrane potential (Sanders 1990).

Ion channels are a class of protein that function as gated pores in the plasma 
membrane allowing the flow of ions down electrical and/or chemical gradients 
(Gustin et al. 1986). Channels have higher turnover rates than carriers, 107−8 s−1 
compared with 10 2−5 s−1, respectively (Sanders 1990).

13.6.4  Metal Uptake by Living Cells

Penicillium is known to remove a variety of heavy metals from aqueous solution. 
Spores of Penicillium italicum were shown to accumulate Cu (Somers 1963; 
Kapoor and Viraraghavan 1995). Metal accumulation by growing cells varied with 
age of the cell. Maximum metal uptake occurred during the lag period, or the early 
stages of growth and declined as cultures reached a stationery phase. A. niger, 
P. spinolosum, and Trichoderma viride showed a similar uptake pattern (Townsley 
and Ross 1985, 1986; Kapoor and Viraraghavan 1995). Other, researchers have also 
reported metal uptake by living cells (Bayramoglu et al. 2006; Zafar et al. 2007; 
Melgar et al. 2007; Akhtar et al. 2007; Pakshirajan and Swaminathan 2009).

The uptake of metals by living cells depends on contact time, solution pH, culture 
conditions, initial metal ion concentration, and the concentration of cells in aqueous 
solution (Kurek et al. 1982; Galun et al. 1987; Siegel et al. 1987). Huang et al. (1988) 
observed that Cd biosorption on various fungal strains was pH-sensitive. Aspergillus 
oryzae, Fusarium solani, and Candida utilis were found to take up higher concentra-
tions of metal in the acidic range. Mortierella ramannianc, Rhizopus sexualis, R. stolo-
nifer, Zygorhynchus hetergamus, Z. moelleri, A. niger, Mucor recemosus, Penicillium 
chrysogenum, and T. viride removed Cd from aqueous solutions (Azab et al. 1990; 
Kurek et al. 1982; Ross and Townsley 1986; Kapoor and Viraraghavan 1995).

13.6.5  Intracellular Fate of Toxic Metals

Both in laboratory and in field studies, it has been shown that the toxicity of a given 
metal depends on species and chemical properties as well as environmental factors 
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(e.g., adsorption to solid surfaces, complexation, or precipitation) (Hughes and 
Poole 1989; Gadd 1992a, b).

Toxic effects include ion displacement and/or substitution of essential ions from 
cellular sites and blocking of functional groups of important molecules, e.g., enzymes, 
polynucleotides, and essential transport systems. This results in denaturation and 
inactivation of enzymes and disruption of cell organelle membrane integrity.

Metal-binding proteins are important in the modulation of intracellular concen-
trations of both potentially toxic and essential metal ions. The superfamily of proteins 
called metallothioneins may achieve these by binding the metal ion to cysteine thiolate 
groups (Hamer 1986).

Polypeptides are designated as “metallothioneins,” if they possess specific prop-
erties including low molecular mass, high metal content, high cysteine (cys) con-
tent, abundant cys-x-cys sequences (where x is an amino acid other than cys), and 
metal-thiolate clusters, and lack the aromatic amino acids and histidine.

The following subdivision of metallothioneins into three classes has been 
recommended (Rauser 1990).

Class I: Polypeptides with locations of cysteine closely related to those in equine 
renal metallothionein.

Class II: Polypeptides with locations of cysteine only distantly related to those 
in equine renal metallothionein.

Class III: Typical, nontranslationally synthesized metal thiolate polypeptides.

13.6.6  Metal Transformations Within Fungi

Microbes play key geoactive roles in the biosphere, particularly in the areas of element 
biotransformations and biogeochemical cycling, metal and mineral transforma-
tions, decomposition, bioweathering, and soil and sediment formation. Numerous 
categorie of microbes, including prokaryotes and eukaryotes, and their symbiotic 
associations with each other and “higher organisms,” can contribute actively to 
geological phenomena, and central to many such geomicrobial processes are trans-
formations of metals and minerals. Fungi possess a variety of properties that can 
effect changes in metal speciation, toxicity, and mobility, as well as mineral forma-
tion or mineral dissolution or deterioration. Such mechanisms are important com-
ponents of natural biogeochemical cycles for metals as well as associated elements 
in biomass, soil, rocks, and minerals, e.g., sulfur and phosphorus, and metalloids, 
actinides, and metal radionuclides (Gadd 2010).

Fungi are intimately involved in biogeochemical transformations at local and 
global scales, and although such transformations occur in both aquatic and terrestrial 
habitats, it is the latter environment where fungi probably have the greatest influence. 
Within terrestrial aerobic ecosystems, fungi may exert an especially profound influ-
ence on biogeochemical processes, particularly when considering soil, rock and 
mineral surfaces, and the plant root–soil interface. The geochemical transformations 
that take place can influence plant productivity and the mobility of toxic elements and 
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substances and are therefore of considerable socioeconomic relevance, including 
human health. Of special significance are the mutualistic symbioses, lichens, and 
mycorrhizas. Some fungal transformations have beneficial applications in environ-
mental biotechnology, e.g., in metal leaching, recovery and detoxification, and xeno-
biotic and organic pollutant degradation. They may also cause adverse effects when 
these processes are associated with the degradation of foodstuffs, natural products, 
and building materials, including wood, stone, and concrete (Gadd 2007a).

13.6.7  Metal Sorption by Dead Cells

The biosorption capacity of dead cells may be greater to, equivalent to, or less than 
that of living cells. Recently, several researchers reported metal removal by dead 
microbial cells (Naeem et al. 2006; Chen and Wang 2007; Akhtar et al. 2007; 
Bishnoi et al. 2007; Tsekova et al. 2007).

Use of dead biomass in industrial applications offers certain advantages over that 
of living cells. Systems using living cells are likely to be more sensitive to metal-ion 
concentration (i.e., toxicity effects) and adverse operating conditions (pH and tempera-
ture). Furthermore, a constant, regulated nutrient supply is required for systems using 
living cells (with increased operating cost for the management of waste streams), and 
recovery of metal and regeneration of biosorbent are more complicated for living cells.

In such a biosorption system cells can be killed by physical treatment methods 
using heat (Siegel et al. 1987), autoclaving, and vacuum drying (Tobin et al. 1984; 
Huang et al. 1988), or chemicals such as acids, alkalis, and detergents (Tsezos and 
Volesky 1981; Ross and Townsley 1986; Huang et al. 1988; Rao et al. 1993; Kapoor 
and Viraraghavan 1995).

13.6.8  Mechanism of Biosorption

Veglio and Beolchini (1997) described biosorption mechanisms on the basis of cel-
lular metabolism (i.e., metabolism-dependent and metabolism-independent) and 
according to location where the removed metal is located.

The process of biosorption may be classified as follows:

 1. Extracellular accumulation/precipitation
 2. Cell surface sorption/precipitation
 3. Intracellular accumulation

13.6.8.1  Extracellular Accumulation/Precipitation

Some prokaryotic (bacteria and archaea) and eukaryotic (algae and fungi) microorganisms 
produce or excrete extracellular polymeric substances (EPS) such as polysaccharides, 
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glycoprotein, lipopolysaccharides, soluble peptides, etc. These substances possess a 
substantial quantity of anionic functional groups which can adsorb metal ions. Research 
published on metal biosorption with EPS focuses mainly on the bacteria, such as 
Bacillus megaterium, Acinetobacter, Pseudomonas aeruginosa, sulfate-reducing bacte-
ria (SRB), cyanobateria, or activated sludge (Liu et al. 2001), whereas EPS studies for 
fungi and algae are limited (Wang and Yang 1996); Flemming and Wingender (2001) 
discovered that the initial rate of Pb2+ uptake by live cells of Saccharomyces cerevisiae 
is lower than that of dead cells, while in the case of A. pullulans, both the capacity and 
the initial rate of Pb2+ accumulation in live cells are greater than those in dead cells. This 
result was due to the presence of EPS in live A. pullulans.

13.6.8.2  Cell Surface Sorption/Precipitation

Numerous chemical groups have been suggested to contribute to metal biosorption 
either by whole organisms such as algae (Crist et al. 1981; Greene et al. 1987) and 
bacteria (Brierley 1990; Mann 1990) or by molecules such as biopolymers (Hunt 
1986; Macaskie and Dean 1990). These groups comprise hydroxyl, carbonyl, car-
boxyl, sulfhydryl, thioether, sulfonate, amine, imine, amide, imidazole, phospho-
nate, and phosphodiester groups. The importance of any given group for biosorption 
of a particular metal by particular biomass depends on factors including:

 1. The number of sites occurring within the biosorbent material
 2. The accessibility of the sites
 3. The chemical state of the site (i.e. availability)
 4. Affinity between site and metal (i.e. binding strength)

The cell wall consists of a variety of polysaccharides and proteins and hence offers 
a number of active sites capable of binding metal ions (Kuyucak and Volesky, 
1989). Thus, it is regarded as a complex ion exchanger, similar to a commercial 
resin. Differences in cell wall composition among different groups of microorgan-
isms, viz. algae, bacteria, cyanobacteria and fungi, and intra group differences can 
thus result in significant differences in type and amount of metal ion binding 
(Horikoshi et al. 1981; Friis and Myers-Keith 1986; Muraleedharan et al. 1991). 
The various groups involved in metal binding have been discerned by modification/
blocking of the groups (Tobin et al. 1990).

The cell wall tends to be the first cellular structure to come into contact with 
metal ions, excluding a possible extracellular layer mainly related to bacterial cells. 
Two basic mechanisms of metal uptake by the cell wall are (1) stoichiometric inter-
action between functional groups of the cell wall including phosphate, carboxyl, 
and amine as well as phosphodiester and (2) physicochemical inorganic deposition 
via adsorption or inorganic precipitation.

Other mechanisms such as complexation, ion exchange, adsorption (by electro-
static interaction or van der Waals force), inorganic microprecipitation, oxidation, 
and/or reduction have been proposed to explain metal sorption by organisms 
(Volesky 1990a, b; Liu et al. 2002).
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Kapoor and Viraraghavan (1997) showed that in dried fungal biomass of  
A. niger, amine and carboxyl groups were important functional groups involved in 
Pb, Cd, and Cu biosorption, and they reported that phosphate groups and the lipid 
fraction of the biomass did not play a significant role in biosorption of the metal 
ions studied.

Brady and Tobin (1995) found that the total metal ions displaced accounted for only 
a small portion of the metal ions taken up in the biosorption of metal ions by freeze-
dried R. arrhizus. This indicates that ion exchange is neither the sole nor the main 
mechanism for metal biosorption by fungi. However, Davis et al. (2003) believed ion 
exchange was the main mechanism for metal ion uptake by brown algae.

Precipitation and redox reactions of heavy metals on the cell surface are also 
reported by many researchers. A research group at Xiamen University in China 
found that precious metal ions such as Pd2+ (Liu et al. 2003; Xie et al. 2003a), Pt4+ 
(Xie et al. 2003b), Au3+ (Lin et al. 2005), Ag+ (Lin et al. 2001), and Rh3+ (Lin et al. 
2001) were unexceptionally bound to the cell wall of yeast and then reduced in situ 
to the corresponding solids.

Biosorption of heavy metals often involves many mechanisms. Kratochvil et al. 
(1998) proved that the maximal uptake of Cr6+ by protonated Sargassum biomass 
at pH 2 was due to simultaneous anion exchange and the reduction of Cr6+ to Cr3+.

13.6.8.3  Intracellular Accumulation/Precipitation

Metal transport across the cell membrane results in intracellular accumulation, 
which is dependent on cellular metabolism. This implies that this mode of biosorp-
tion may take place only within viable cells (Veglio and Beolchini 1997).

After entering the cell, metal ions are compartmentalized into different subcel-
lular organelles (e.g. mitochondria and vacuoles). Vijver et al. (2004) summarized 
metal ion accumulation strategies, in particular the internal compartmentalization 
strategies. The mechanism primarily relates to the presence of low-molecular-
weight metal-binding proteins, the metallothioneins (MT), which are cysteine-rich 
and occur in the animal kingdom, plants, eukaryotic microorganisms, and some 
prokaryotes. MT can be induced by many substances, including heavy metal ions 
such as Cd, Cu, Hg, Co, and Zn (Vijver et al. 2004).

In addition to MT, other cellular thiols influencing the sensitivity to toxic metals 
include glutathione (GSH), phytochelatins (b cadystins (a-Glu-Cys) nGly), and 
labile sulfide (Perego and Howell 1997; Gharieb and Gadd 2004). Tripeptide glu-
tathione (GSH) is a typical low-molecular-weight cellular thiol and functions as a 
storage form of endogenous sulfur and nitrogen as well as for detoxification of 
metal ions. GSH in S. cerevisiae may account for 1% of cell dry weight (Gharieb 
and Gadd 2004). The role of the vacuole in the detoxification of metal ions was 
investigated by Ramsay and Gadd (1997), who showed that a vacuole-deficient 
strain displayed much higher sensitivity and a lower biosorption capacity for Zn, 
Mn, Co, and Ni.
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Many genes involved in the tolerance to uptake or detoxification of metal ions 
have been identified (Rosen 2002). For example, the S. cerevisiae Arr4p plays an 
important role in the tolerance to As3+, As5+, Co2+, Cr3+, Cu2+, and VO

4
3− (Shen et al. 

2003). Genetic technologies, including cell surface display technologies have been 
applied to improve the performance of biomass in metal removal from solution (Bae 
et al. 2003; Kuroda et al. 2002; Wang 2005). Kuroda et al. (2002) constructed a cell 
surface-modified yeast S. cerevisiae, which produces histidine hexapeptide. This 
engineered yeast can chelate Cu ion and possesses the property of self-aggregation, 
which indicates the potential application for bioremediation of heavy metal 
pollution.

13.6.9  Factors Affecting Heavy Metal Biosorption

Bioremoval of a heavy metal using microorganisms is affected by several factors, 
including the specific surface properties of the microorganism and the physico-
chemical parameters of the solution such as temperature, pH, metal ion concentra-
tion, metal solubility, metal valence, concentration of complexing agents, and 
particle size (Brown and Lester 1979). Butter et al. (1998) showed temperature 
variations from 15 to 35°C did not affect Cd sorption by dead Streptomyces bio-
mass. Also, Kasan (1993) found that the complexation/removal of Cr, Pb, and Zn by 
living activated sludge was independent of temperature.

Several studies are reported in the literature which have investigated the effect of 
pH on biosorption of metals. Most investigators have reported negligible metal sorp-
tion at pH values < 4.0 (Tien and Huang 1987; Delgado et al. 1998; Wang et al. 1999). 
These results could be explained by the competition between hydrogen ions and metal 
ions for the sorption sites of cells. At very low pH values, metal cations and protons 
compete for binding sites on cell walls, which results in lower metal uptake. Biosorbent 
concentration has also been shown to be an important factor in the biosorption process. 
Metal uptake increased when biomass concentration decreased (Esposito et al. 2001); 
as an increase in biomass concentration leads to interference between binding sites 
(Veglio et al. 1997; Esposito et al. 2001).

Another factor affecting biosorption is initial metal concentration. It has been 
reported that adsorption rate increases with increasing initial metal concentration. 
For example, adsorption of Fe2+, Pb2+, and Cd2+ by S. leibleini increased with 
increasing initial metal ion concentrations up to 150 mg/L. At high concentrations, 
the adsorption rates did not change (Ozer et al. 1999).

13.6.9.1  Biomass Pretreatment Effect on Biosorption

Living cells have been pretreated using physical and chemical methods to increase 
metal biosorption capacity. Physical pretreatment methods have included heat treat-
ment, autoclaving, freeze-drying, and boiling. Chemical pretreatment methods such 
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as reacting cells, especially fungal cells, with acids, alkaline and organic chemicals 
have been reported (Wase and Forster 1997; Kapoor and Viraraghavan 1998; Zhao 
and Duncan 1998).

Yan and Viraraghavan (2000) studied the effect of pretreatment of Mucor rouxii 
biomass on bioadsorption of Pb2+, Cd2+, Ni2+, and Zn2+. Pretreatment with detergent 
and alkalis such as NaOH, Na

2
CO

3
, and NaHCO

3
 improved or maintained the bio-

adsorption capacity in comparison with live M. rouxii biomass. Acid pretreatment 
using HCl, H

2
SO

4
, and C

2
H

4
O

2
 resulted in a significant reduction in bioadsorption 

capacity. To improve the bioadsorption capacity for metal ions by dead biomass, 
alkali pretreatment was an effective method (Yan and Viraraghavan 2000).

Bai and Abraham (2002) reported that the treatment of the biosorbent with mild 
alkalies (0.01 N NaOH and ammonia solution) and formaldehyde (10% w/v) dete-
riorated biosorption efficiency. However, extraction of biomass powder in acids 
(0.1 N HCl and H

2
SO

4
), alcohols (50% v/v, CH

3
OH and C

2
H

5
OH), and acetone 

(50% v/v) improved Cr uptake capacity. Reaction of cell wall amino groups with 
acetic anhydride reduced biosorption potential drastically. Blocking of COOH 
groups by treatment with water-soluble carbodiimide resulted in an initial lag in Cr 
binding. Biomass modification experiments conducted using cetyl trimethyl ammo-
nium bromide (CTAB), polyethylenimine (PEI), and amino propyl trimethoxy 
silane (APTS) improved biosorption efficiency to exceptionally high levels.

13.7  Biosorption Potential of Fungal Biomass

Heavy metal biosorption potential of different treatment fungi are known and vary 
greatly. This variation is probably due to the different methods used and types of 
biomass and their pretreatment (Table 13.1). Heavy metal biosorption preference by 
various fungi in single/multimetal solutions is also variable as reported by various 
workers (Table 13.2).

Sorption of Pb by nonliving P. chrysogenum biomass was strongly affected by 
pH (Niu et al. 1993). Within a pH range of 4–5, the saturated sorption uptake of 
Pb2+ was 116 mg/g dry biomass, higher than that of activated charcoal and other 
microorganisms. At pH 4.5, P. chrysogenum biomass exhibited sorption prefer-
ence for metals in the following order: Pb > Cd > Cu > Zn > As. Sorption of Pb2+ 
remained unchanged in the presence of Cu2+, and As3+ decreased in the presence 
of Zn2+ and increased in the presence of Cd2+. Volesky and May-Phillips (1995) 
found that living and nonliving biomass of S. cerevisiae differs in uptake of ura-
nium (U), Zn, and Cu at the optimum pH of 4–5. Dead cells of S. cerevisiae 
removed approximately 40% more U or Zn than corresponding live cultures. The 
maximum Pb biosorption capacity at pH 6 of M. rouxii was estimated at 769 mg/g 
dry biomass, significantly higher than that of most microorganisms. Biomass of 
M. rouxii showed specific selectivity for Pb2+ over Zn2+, Ni2+, and Cu2+ (Lo et al. 
1999). Bai and Abraham (2001) reported that the optimum pH for biosorption of 
Cr6+ was 2.0. Adsorption capacity of biomass increased with increasing concentration 
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of ions, temperature, and agitation speed, and optimum sorption capacity was 
 determined at 45°C and 120 rpm.

Biosorption in the order Cu > Zn > Cd was observed in Microcystis sp. in single-, 
bi-, and trimetallic combinations. The order of inhibition of Cu, Zn, and Cd bio-
sorption in bi- and trimetallic combinations suggested possible screening or com-
petition of the binding sites on cell surfaces (Pradhan and Rai 2001). Yan and 
Viraraghavan (2001) studied the biosorption capacity of M. rouxii biomass and 
immobilized it in a polysulfone matrix. For single-component metal solutions, the 
metal removal capacities of the beads for Pb, Cd, Ni, and Zn were 4.06, 3.76, 0.36, 
and 1.36 mg/g, respectively. For a multicomponent metal solution, the capacities 
were 0.36, 0.31, and 0.40 mg/g for Cd, Ni, and Zn, respectively. Say et al. (2001) 
studied the biosorption of Cd2+, Pb2+, and Cu2+ from artificial wastewaters onto dry 
biomass of Phanerochaete chryosporium in the concentration range of 5–500 mg/L. 
Maximum absorption of metal ions on fungal biomass was obtained at pH 6.0. The 
experimental biosorption data for Cd2+, Pb2+, and Cu2+ ions were in good agreement 
with those calculated by the Langmuir model.

Immobilized mycelia of Rhizopus delemar showed an occasional increase in 
uptake compared with that of free cells. Metal ion accumulation from a mixed solu-
tion decreased slightly for Co and Fe and decreased considerably for Cu ions. Metal 
uptake was examined in immobilized column experiments; >92% heavy metal 
removal was achieved from a mixed solution during five cycles (Tsekova and 
Petrov 2002). Similarly, Yan and Viraraghavan (2003) reported that biosorption by 
dead biomass of M. rouxii was reduced in the presence of other metal ions but total 
biosorption capacity increased, indicating the capability of M. rouxii biomass in 
adsorbing multimetal ions. A. niger removed >98% Ni from a liquid medium after 
100 h growth but did not remove other metals (Magyarosy et al. 2002).

Table 13.2 Heavy metal biosorption preference by various fungi in single/multimetal solutions

pH Biosorbent
Biosorption  
preference/order References

0–2 Aspergillus niger Cr6+ Chhikara and Dhankhar (2008)
2–4 Trichoderma viride 

(immobilized)
Cr6+ Bishnoi et al. (2007)

4–6 Penicillium chrysogenum Pb > Cd > Cu > Zn > As Niu et al. (1993)
Sacchromyces cerevisiae U > Zn > Cd > Cu Volesky and May-Phillips (1995)
Baker’s yeast (nonliving) Zn > Cd > U > Cu Volesky and May-Phillips (1995)
Baker’s yeast (living) Zn > Cu = Cd > U Volesky and May-Phillips (1995)
Mucor rouxii Pb > Zn > Cd > Ni Yan and Viraraghavan (2003)
Aspergillus flavus  

(heat inactivated)
Pb > Cu Akar and Tunali (2006)

Phanerochaete  
chrsosporium

Cd > Cu Pakshirajan and Swaminathan 
(2009)

6–8 Mucor rouxii Pb > Zn > Cd > Ni Yan and Viraraghavan (2003)
Aspergillus niger Ni Amini et al. (2009)
Funalia trogii (immobilized  

live)
Hg2+ > Cd > Zn Yakup et al. (2004)

Sacchromyces cerevisiae Ni > Cd Fereidouni et al. (2009)
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Tan and Cheng (2003) used alkaline pretreatment of P. chrysogenum to remove 
proteins and nucleic acids from cells, thus increasing adsorption capacities from 18.6 
to 27.2 mg/g for Cr3+, from 13.2 to 19.2 mg/g for Ni2+, and from 6.8 to 24.5 mg/g for 
Zn2+. Yakup et al. (2004) measured maximum adsorption of metals on calcium 
alginate and both live and inactivated immobilized fungal preparations of Funalia 
trogii at pH 6.0. Metal biosorption capacities of heat inactivated-immobilized  
F. trogii for Hg2+, Cd2+, and Zn2+ were 403.2, 191.6, and 54.0 mg/g, respectively, 
while biosorption capacities of the immobilized live cells was 333.0, 164.8, and 
42.1 mg/g, respectively. The same order of affinity on a molar basis was observed 
for single- or multi-metal ions.

Heat inactivated biomass of Aspergillus flavus showed maximum biosorption 
values of 13.5 mg/g for Pb2+ and 10.8 mg/g for Cu2+ at pH 5.0 with an equilibrium 
time of 2 h. The results indicated that A. flavus is a suitable biosorbent for removal 
of Pb2+ and Cu2+ ions from aqueous solution (Akar and Tunali 2006). Ahmad et al. 
(2006) reported that alkali-treated, dried, and powdered mycelia of metal-tolerant 
fungal isolates of Aspergillus and Penicillium have high biosorption capacities for 
Cr, Ni, and Cd. Biosorption of all metals was found to be higher at 4 mM initial 
metal concentration when compared with that at 2 and 6 mM. At 4 mM initial metal 
concentration, Cr biosorption was 18.1 and 19.3 mg/g of Aspergillus and Penicillium 
biomass, respectively. Similarly, biosorption of Cd and Ni ions was maximal at 
4 mM initial metal concentration by Aspergillus (19.4 mg/g for Cd and 25.1 mg/g 
for Ni) and Penicillium (18.6 mg/g for Cd and 17.9 mg/g for Ni). Dried mycelial 
biomass of Co-resistant fungi belonging to Mortierella isolated from serpentine soil 
of Andaman (India) removed almost 50% of 4.0 mM Co from aqueous solution (Pal 
et al. 2006). The metal biosorption capacity of the isolate accelerated with increas-
ing Co concentration, while the reverse occurred with increased initial biomass. 
The optimum pH and temperature for Co2+ removal were 7.0 and 30°C, respectively. 
Co2+ uptake was inhibited in the presence of other metals (Pb, Cd, Cu, Ni, Cr, and 
Zn), however (Pal et al. 2006). Untreated, heat- and alkali-treated Lentinus sajor-
caju (white rot fungus) mycelia were used for the recovery of U from aqueous 
solution by Bayramoğlu et al. (2006). He reported that the alkali-treated form had a 
high biosorption capacity (378 mg/g) compared with 268 mg/g for untreated and 
342 mg/g for heat-treated fungal mycelia. Optimum biosorption was observed at 
pH 4.5 for all the tested fungal preparations and was independent of temperature 
(5–35°C). Naeem et al. (2006) studied H+, Cd, Pb, Sr, and Zn adsorption onto S. 
cerevisiae. They modeled the acid/base properties of the fungal cell wall by invok-
ing a nonelectrostatic surface complexation model with four discrete surface 
organic acid functional group types, with average pKa values of 3.4 ± 0.4, 5.0 ± 0.2, 
6.8 ± 0.4, and 8.9 ± 0.6. The affinity of the fungal cells for the metal ions followed 
the trend: Pb > Zn > Cd > Sr. The authors used the metal adsorption data to deter-
mine site-specific stability constants for the important metal fungal surface com-
plexes. Their results showed that S. cerevisiae may represent a novel biosorbent for 
the removal of heavy metal cations from aqueous waste streams. Pokhrel and 
Viraraghavan (2006) reported potential removal of As from an aqueous solution by 
nonviable fungal biomass of A. niger coated with Fe. A. niger biomass coated with 
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iron oxide showed maximum removal (approximately 95% of As5+ and 75% of 
As3+) at pH 6. No strong relationship was observed between the surface charge of 
the biomass and As removal.

Biosorption of Zn, Cu, Hg, Cd, or Pb by living or nonliving biomass of  
A. macrosporus from an acid solution, acid solution supplemented with P and K, 
and an alkaline solution showed maximum uptake of all metals (Cu 96% and Pb 
89%) at alkaline pH. With living biomass, metal biosorption was greater and 
more rapid in P/K-supplemented acid media than in nonsupplemented acid media 
(Melgar et al. 2007). Zafar et al. (2007) observed in vitro Cr and Cd biosorption 
capacity among fungi isolated from wastewater-treated soil, which belonged to 
genera Aspergillus, Penicillium, Alternaria, Geotrichum, Fusarium, Rhizopus, 
Monilia, and Trichoderma. Maximum biosorption of Cr and Cd ions was detected 
at 6 mM initial metal concentration. Aspergillus sp.1 accumulated 1.2 mg of Cr 
and 2.7 mg Cd/g of biomass. Accumulation of these metals by metal-tolerant 
Aspergillus sp.2 isolate was at par with relatively less tolerant Aspergillus sp.1 
isolate. Rhizopus sp. accumulated 4.3 mg of Cr and 2.7 mg Cd/g of biomass. 
These findings indicate promising capabilities for biosorption of Cd and Cr by 
Rhizopus and Aspergillus spp. from aqueous solution. There is little, if any, cor-
relation between metal tolerance and biosorption properties of the test fungi.

Bishnoi et al. (2007) reported that the biosorption efficiency of powdered  
T. viride biomass entrapped in a polymeric matrix of calcium alginate compared 
with that of cell-free calcium alginate beads. Biosorption of Cr6+ was pH-dependent 
and maximum adsorption (16.1 mg/g) was observed at pH 2.0. The maximum 
adsorption capacity was observed at a dose of 0.2 mg in 100 ml of Cr6+ solution. 
The experimental results were fitted satisfactorily to both Langmuir and Freundlich 
isotherm models. The hydroxyl (–OH) and amino (–NH) functional groups were 
responsible for the biosorption of Cr6+ with fungal biomass.

Fungal strain T. harzianum was found to be a comparatively better candidate 
for uranium biosorption than algae. The process was highly pH-dependent. At 
optimized experimental parameters, the maximum uranium biosorption capacity 
of T. harzianum was 612 mg U g−1, whereas maximum values of uranium bio-
sorption capacity exhibited by algal strains (RD256 and RD257) were 354 and 
408 mg U g−1, respectively, and much higher in comparison with commercially 
available resins (Dowex-SBR-P and IRA-400). Uranium biosorption by algae 
followed the Langmuir model while fungus exhibited a more complex multilayer 
phenomenon of biosorption and followed pseudo-second-order kinetics. Mass 
balance studies revealed that uranium recovery was 99.9% for T. harzianum, and 
97.1 and 95.3% for RD256 and RD257, respectively, by 0.1 M hydrochloric 
acid, which regenerated the uranium-free cell biomass facilitating the sorption–
desorption cycles for better economic feasibility (Akhtar et al. 2007)

Das and Guha (2007) found biomass of Termitomyces clypeatus (TCB) to be the 
most effective for biosorption of all fungal species tested. Sorption of Cr6+ by live 
TCB depends on pH of the solution, with the optimum pH value being 3.0. The biomass 
amino, carboxyl, hydroxyl, and phosphate groups chemically interacted with the chro-
mate ion forming a cage-like structure as depicted by scanning electron microscopic 
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(SEM) and Fourier-transformed infrared spectroscopic (FTIR) results. Desorption 
and FTIR studies also showed that Cr6+ was reduced to trivalent chromium on binding 
to the cell surface. The maximum Pb2+ biosorption capacity of Aspergillus parasiticus 
was found to be 4.02 × 10−4 mol/g at pH 5.0 and 20°C in a batch system. The biosorp-
tion equilibrium was reached in 70 min (Akar et al. 2007).

Chen and Wang (2007) used waste biomass of Saccharomyces as a biosorbent 
to react with ten metal ions, and maximum biosorption capacity (q (max)) was 
determined by the Langmuir isotherm model. They reported that values of q (max) 
decreased in the following order (in mM/g): Pb2+ (0.413) > Ag+ (0.385) > Cr3+ 
(0.247) > Cu2+ (0.161) > Zn2+ (0.148) > Cd2+ (0.137) > Co2+ (0.128) > Sr2+ (0.114) > Ni2+ 
(0.108) > Cs+ (0.092). It is suggested that the greater the covalent index value of the 
metal ion, the greater the potential to form covalent bonds with biological ligands 
such as sulfhydryl, amino, carboxyl, hydroxyl, etc. on the biomass surface and 
the higher the metal ion biosorption capacity. Fan et al. (2009) studied the iso-
therms, kinetics, and thermodynamics of Cd2+, Zn+2, and Pb2+ biosorption by 
Penicillium simplicissimum in a batch system. The effects of pH, initial metal ion 
concentration, biomass dose, contact time, temperature and presence of co-ions on 
biosorption were studied. The results of the kinetic studies at different temperatures 
showed that adsorption rate followed pseudo-second-order kinetics. The thermo-
dynamic constants DGo, DHo, and DSo of the adsorption process showed that bio-
sorption of Cd2+, Zn+2, and Pb2+ ions on P. simplicissimum were endothermic and 
spontaneous.

The quantity of metals retained through bioaccumulation by fungal strains 
Penicillium sp. A1 and Fusarium sp. A19 and of a consortium of the two types of 
strains (A1+A19) was significantly higher than that through biosorption by these 
fungi. The highest quantities of Cd, Cu, and Zn accumulated by fungal biomass was 
obtained in the presence of Cd2+ + Cu2+ + Zn2+ in potato dextrose agar compared with 
the individual A1 or A19 used in PDB. A1+A19 accumulated greater quantities of 
Cu and Pb in the presence of Cd2+ + Cu2+ + Pb2+ and greater quantities of Pb in the 
presence of Cd2+ + Cu2+ + Zn2+ + Pb2+. There was no simple relationship between 
metal biosorption by fungal biomass and fungal metal tolerance. The biomass of 
A1 + A19 cultivated in PDB absorbed greater quantities of metals than A1 or A19 
in the presence of single metals and their combinations (Pan et al. 2009). The 
results suggest that the applicability of growing fungi tolerant to heavy metals pro-
vides a potential biotechnology system for the treatment of wastewaters contami-
nated with heavy metals (Pan et al. 2009).

Effect of biosorbent dosage, initial solution pH and initial Ni2+ concentration on 
uptake of Ni2+ by NaOH-pretreated biomass of A. niger from aqueous solution was 
investigated by Amini et al. (2009). Optimum Ni2+ uptake (4.8 mg Ni2+/g biomass, 
70.3%) was achieved at pH 6.25, biomass dosage 2.98 g/L, and initial 
Ni2+concentration 30.0 mg/L Ni2+. Langmuir and Freundlich isotherms described 
the biosorption fairly well; however, the prediction of Ni2+ biosorption using 
Langmuir and Freundlich isotherms was relatively poor in comparison with 
response surface methodology (RSM) approaches. Pakshirajan and Swaminathan 
(2009) studied biosorption of Cu2+ and Cd2+ by live Phanerochaete chrysosporium 
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immobilized by growing onto polyurethane foam in individual packed bed columns 
over two successive cycles of sorption–desorption. Initial pH and metal concentra-
tions in their respective solutions were set to optimal levels (4.6 and 35 mg/L in the 
case of Cu and 5.3 and 11 mg/L for Cd). The breakthrough curves obtained for the 
two metals during sorption in both cycles exhibited a constant pattern at various bed 
depths in the columns. The maximum yield of the columns in removing these metals 
was found to be 57 and 43% for Cu and Cd, respectively. Recovery values of the 
sorbed Cu and Cd from the respective loaded columns using 0.1 N HCl as eluant 
exceeded 65 and 75%, respectively, at the end of desorption in both the cycles. In 
recent years, Tsekova et al. (2010) reported biosorption of Cu2+ and Cd2+ from 
aqueous solution by free and immobilized biomass of A. niger. Tsekova et al. 
(2010) study investigated the ability of A. niger resting cells entrapped in a polyvinyl 
alcohol (PVA) network to remove Cu2+ and Cd2+ from single-ion solutions. The 
performance of free and immobilized biosorbent was evaluated by equilibrium and 
kinetic studies. The PVA-immobilized fungal biosorbent removed Cu2+ and Cd2+ 
rapidly and efficiently with maximum metal removal capacities of 34.1 and 
60.2 mg/g, respectively. These values of metal uptake at equilibrium were higher 
than the quantity of Cu2+ and Cd2+ removed by free biomass (17.6 and 69.4 mg/g, 
respectively). Biosorption equilibrium data were best described by Langmuir iso-
therm models. The biosorption kinetics followed the pseudo-second-order model 
and intraparticle diffusion equation. The results obtained suggest that the immobi-
lized biosorbent holds great potential for wastewater treatment applications.

Based on the above literature search, it is concluded that there is sufficient sci-
entific data on the potential exploitation of fungal biomass for heavy metal removal 
from aqueous solutions. Therefore, further efforts should be focused on the devel-
opment of specific technologies for metal removal and recovery from fungal bio-
mass systems. More data are needed to assess the factors influencing metal removal 
in wastewater treatment systems and to build upon these issues.

13.8  Conclusions

Many modes of nonactive metal removal by microbial biomass are documented. 
Any one or a combination can be functional in immobilizing metallic species on 
biosorbents. Soil fungi seem to be well adapted to metals and could effectively be 
used as a metal biosorbent, either in living, dead and/or immobilized states. Metal 
tolerance appears to be an added advantage when using live cells for metal removal. 
A number of anionic ligands participate in metal removal: phosphoryl, carbonyl, 
sulfhydryl, and hydroxyl groups can all be active to various degrees in binding the 
metal. Due to the accumulated knowledge and due to the significant economic 
margin for application in metal removal/detoxification processes, new biosorbent 
materials are currently well poised for commercial exploitation. However, there are 
no limits to expanding the science of biosorption required to provide a deeper 
understanding of the phenomenon and to support effective application attempts. 
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Human populations need technologies to treat water supplies and diminish the 
environmental dangers posed by certain industrial and agricultural practices. 
Biosorption can be a solution to providing abundant clean water and treating soils 
contaminated by heavy metals. Research in the past two decades has provided a 
better understanding of metal sorption by certain potential biosorbents. Application 
aspects are being aimed at biosorption process optimization and development of 
strategies for further processing of biosorbent as a greener and cleaner technology.
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Abstract Roots serve a multitude of functions in plants including anchorage, 
acquisition of nutrients and water, and production of exudates with growth regu-
latory properties. The root–soil interface, or rhizosphere, is the site of greatest 
biological and chemical activity within the soil matrix. Plant growth-promoting 
rhizobacteria (PGPR) are known to influence plant health by controlling plant 
pathogens or via direct enhancement of plant development in the laboratory and in 
greenhouse experiments. Unfortunately, however, results in the field have been less 
consistent. The colonization of roots by inoculated bacteria is an important step in 
the interaction between beneficial bacteria and the host plant. However, coloniza-
tion is a complex phenomenon influenced by many biotic and abiotic parameters, 
some of which are only now apparent. Monitoring fate and metabolic activity of 
microbial inoculants as well as their impact on rhizosphere and soil microbial 
communities are needed to guarantee safe and reliable application, independent of 
whether they are genetically modified or not. The first and most crucial prerequi-
site for effective use of PGPRs is that strain identity and activity are continuously 
confirmed. A combination of both classical and molecular techniques must be 
perfected for more effective monitoring of inoculants strain (both genetically modi-
fied and unmodified) after release into the soil. Recent developments in techniques 
for studying rhizobacterial communities and detection and tracking systems of 
inoculated bacteria are important in future application and assessment of effective-
ness and consistent performance of microbial inoculants in crop production and 
protection.
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14.1  Introduction

The importance of rhizosphere microbial populations for maintenance of plant root 
health, nutrient uptake, and tolerance of environmental stress is well recognized 
(Bowen and Rovira 1999). These beneficial microorganisms can be a significant 
component of management practices to achieve attainable crop yields, defined as 
yields limited only by the natural physical environment of the crop and its innate 
genetic potential (Cook 2002). The prospect of manipulating crop rhizosphere 
microbial populations by inoculation of beneficial bacteria to increase plant growth 
has shown considerable promise in laboratory and greenhouse studies; however, 
responses have been variable in the field (Bowen and Rovira 1999). The potential 
environmental benefits of this approach, including healthy sustainable management 
practices with a reduction in use of agricultural chemicals are driving this technol-
ogy. Recent progress in our understanding of the biological interactions that occur 
in the rhizosphere and of the practical requirements for microbial inoculant formu-
lation and delivery systems will increase this technology’s consistency in the field 
and facilitate its commercial development.

Plant growth-promoting rhizobacteria (PGPR) were first defined by Kloepper and 
Schroth (1978) to describe soil bacteria that colonize the roots of plants following inocu-
lation onto seeds, and that enhance plant growth. Those components which comprise 
the colonization process include the ability to (1) survive inoculation onto seed; (2) 
multiply in the spermosphere (region surrounding the seed) in response to seed exu-
dates; (3) attach to the root surface; and (4) colonize the developing root system 
(Kloepper 1994). The ineffectiveness of PGPR in the field has often been attributed to 
their inability to colonize plant roots (Benizri et al. 2001; Bolemberg and Lutenberg 
2001). A variety of bacterial traits and specific genes contribute to root colonization, 
but only a few have been identified (Benizri et al. 2001; Lugtenberg et al. 2001) and 
include motility, chemotaxis to seed and root exudates, production of pili or fimbriae, 
production of specific cell surface components, ability to use specific components of 
root exudates, protein secretion, and recently biofilm-forming ability of the microbes 
and quorum sensing (Lugtenberg et al. 2001; Sharma et al. 2003). The generation of 
mutants altered in expression of these traits is aiding our understanding of the precise 
role each plays in the colonization process (Lugtenberg et al. 2001; Persello-Cartieaux 
et al. 2003). Progress in the identification of new, previously uncharacterized genes is 
being made using nonbiased screening strategies that rely on gene fusion technologies. 
These strategies employ reporter transposons (Roberts et al. 1999) and in vitro 
 expression technology (IVET) (Rainey 1999) to detect genes expressed during 
colonization.

Using molecular markers such as green fluorescent protein (GFP) or fluorescent 
antibodies, it is possible to monitor the location of individual rhizobacteria on the 
root using confocal laser scanning microscopy (Bloemberg et al. 2000; Bolemberg 
and Lutenberg 2001; Sorensen et al. 2001). This approach has also been combined 
with an rRNA-targeting probe to monitor the metabolic activity of specific 
rhizobacterial strains, and showed that bacteria located at the root tip were most 
active (Lubeck et al. 2000; Sorensen et al. 2001).
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An important aspect of colonization is the ability to compete with indigenous 
microorganisms present in the soil and rhizosphere of the developing plant. Our 
understanding of the factors involved in these interactions has been hindered by our 
inability to culture and characterize diverse members of the rhizosphere community 
and to determine how that community varies with plant species, plant age, location 
on the root, and soil properties. Phenotypic and genotypic approaches are now 
available to characterize rhizobacterial community structure. Phenotypic methods 
that rely on the ability to culture microorganisms include standard plating methods 
on selective media, community level physiological profiles (CLPP) using the 
BIOLOG system (Garland 1996), phospholipid fatty acid (PLFA) (Tunlid and 
White 1992), and fatty acid methyl ester (FAME) profiling (Germida et al. 1998). 
Culture-independent molecular techniques are based on direct extraction of DNA 
from soil and 16S-rRNA gene sequence analysis, bacterial artificial chromosome or 
expression cloning systems (Rondon et al. 1999). These are providing new insights 
into the diversity of rhizosphere microbial communities, the heterogeneity of the 
root environment, and the importance of environmental and biological factors in 
determining community structure (Baudoin et al. 2002; Berg et al. 2002; Smalla 
et al. 2001). These approaches can also be used to determine the impact of inocula-
tion of PGPR on the rhizosphere community (Ciccillo et al. 2002; Steddom et al. 
2002). Various microbial inoculants are used to treat plant seeds and seedling roots 
to promote plant growth and protect plant health. Numerous factors, both biotic and 
abiotic, are known which influence the performance of inoculated bacteria under 
field conditions. These factors may influence inoculants survival, colonization, and 
establishment in the rhizosphere; however, in many cases no assessment has been 
made to detect the presence and colonization of inoculated bacteria in the rhizo-
sphere. This has primarily been due to the absence of selection criteria in the inocu-
lants strain to distinguish it from indigenous bacteria. Recent advances in molecular 
techniques have given hope to developing inoculants with specific markers to be 
included for detection and colonization in the rhizosphere and to assess their per-
formance. The present chapter aims to provide an overview of rhizosphere coloni-
zation by rhizobacteria and methods used to detect, identify, and monitor 
colonization by inoculated bacteria in the root zone to ensure more effective and 
consistent performance of inoculants under field conditions.

14.2  The Rhizosphere and Rhizospheric Effect

The term “rhizosphere” was first used by Hiltner (1904) to describe the zone of soil 
under the influence of plant roots. The rhizosphere is the area of increased micro-
bial diversity and activity. From about 0 to 2 mm from the root surface the soil is 
significantly influenced by living roots. The rhizosphere can thus be described as 
the longitudinal and radial gradients occurring with expanding root growth, nutrient 
and water uptake, exudation, and subsequent microbial growth (Uren 2000). The 
rhizosphere is important in terms of root growth, exudate production, and community 
development of both macro- and microbiota. Stimulation of microbial proliferation 



366 F. Ahmad et al.

around the root due to the release of various organic compounds by the roots is 
known as the rhizospheric effect. The ability to secrete a vast array of compounds 
into the rhizosphere is one of the most remarkable metabolic features of plant roots, 
with nearly 49% of all photosynthetically fixed carbon being transferred to the 
rhizosphere through root exudates (Kennedy 1999).

14.2.1  Rhizosphere Colonization

Root exudates released into the soil environment from plants have been traditionally 
grouped into low- and high-molecular weight compounds. High-molecular weight 
compounds include polysaccharides, mucilage, and proteins. Plant mucilages are 
released from the root cap, the primary cell wall between epidermal and sloughed 
root cap, and epidermal cells (including root hairs). Lysates are released from roots 
during autolysis. Rhizospheric microorganisms also release microbial mucilages. 
Collectively, plant and microbial mucilages, microbial cells and their products 
together with associated organic and mineral matter are referred to as mucigel 
(Walker et al. 2003). Low-molecular organic compounds released by plant roots 
include ethylene, sugars, amino acids, vitamins, polysaccharides, and enzymes 
(Table 14.1). The fact the nutritional resources influence population structure and 
play a role in niche colonization and competition. The microbial population in and 
around roots includes bacteria, fungi, yeasts, and protozoa. Bacterial populations in 

Table 14.1 Compounds and enzymes identified in plant root exudates

Class of compounds Type of compounds

Amino acids Alanine, a-aminoadipic acid, g-aminobutyric acid, arginine, 
asparagine, aspartic acid, cysteine, cystine, glutamic acid, 
glutamine, glycine, histidine, homoserine, isoleucine, leucine, 
lysine, methionine, ornithine, phenylalanine, proline, serine, 
therionine, tryptophan, tyrosine, valine

Organic acids Acetic, aconitic, aldonic, butyric, citric, erythronic, formic, 
fumaric, glutaric, glycolic, lactic, malic, malonic, oxalic, 
piscidic, propionic, pyruvic, succinic, tartaric, tertronic, valeric 
acid

Sugars Arabinose, deoxyribose, fructose, galactose, glucose, maltose, 
oligosaccharides, raffinose, rhamnose, ribose, sucrose, xylose

Vitamins p-Aminobenzoic acid, biotin, choline, n-methionylnicotinic acid, 
niacin, panthothenate, pyridoxine, riboflavin, thiamine

Fatty acids and sterols Palmitic, stearic, oleic, linoleic, and linoleic acids; cholesterol, 
campestrol, stigmasterol, sitosterol

Nucleotides Adenine, guanine, uridine, cytidine
Enzymes Amylase, invertase, phosphatase, polygalactouranase, proteases
Miscellaneous HCO

3
−, OH−, H+, CO

2
, H

2
; auxins, flavonones, glycosides, saponin, 

scopolotin

Sundin (1990); Bolton et al. (1993); Dakora and Philipps (2002); Bais et al. (2006); Ahmad et al. 
(2008)
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the rhizosphere are predominantly Gram-negative short rods including species of 
Pseudomonas, Flavobacterium, and Alcaligenes, etc. Some are free-living while 
others form symbiotic associations with plants. The interaction between microor-
ganisms and roots may be beneficial, harmful, or neutral for the plant and sometimes 
the effect of microorganisms may vary as consequence of soil conditions (Alexander 
1985; Lynch 1990; Ahmad 2006).

Root colonizers may be pathogenic, symbiotic, and plant growth-promoting 
microorganisms. Based on these activities, the plant-beneficial microorganisms can 
be classified as biofertilizers, phytostimulators, rhizoremediators, and biopesti-
cides. Despite their importance to plant growth, the molecular basis of colonization 
in these plant–microbe interactions is not completely understood. This is a key 
reason for the limited success of PGPR in field conditions.

Plant root colonization by a bacterium can be considered as an enrichment of the 
best adapted microorganisms to a particular ecological niche. The colonization of 
the volume of soil under the influence of the root is known as rhizosphere coloniza-
tion (Kloepper et al. 1991; Kloepper 1994). Rhizosphere colonization is important 
not only as the first step in pathogenesis of soil-borne microorganisms but is also 
crucial in the application of microorganisms for beneficial purposes. A variety of 
bacterial traits and specific genes contribute to colonization but few have been 
identified (Lugtenberg et al. 2001; Benizri et al. 2001). PGPR generally improves 
plant growth by colonizing the root system and pre-empting the establishment of, 
or suppressing deleterious rhizosphere microorganisms (Schroth and Hancock 
1982). PGPR must be able to compete with indigenous microorganisms and effi-
ciently colonize the rhizosphere of the plant to be protected; such colonization is 
widely believed to be essential for biocontrol (Weller 1983; Parke 1991). Thus, a 
biocontrol agent should be able to proliferate and ultimately colonize the surface of 
the plant root (Benizri et al. 2001; Bolemberg and Lutenberg 2001).

Colonization of roots by inoculated bacteria is an important step in the interaction 
between beneficial bacteria and the host plant. Seed colonization is the first step in 
root colonization. Microorganisms established on the germinating seed can multiply 
and colonize the root as it emerges and grows through soil. Thus colonization of the 
imbibing seed may predispose future colonization of the root (Sylvia et al. 1999).

The competitive exclusion of deleterious rhizosphere organisms is directly 
linked to an ability to successfully colonize a root surface. In effect, all disease-
suppressive mechanisms demonstrated by florescent pseudomonads are essentially 
of no real value unless these bacteria can successfully establish themselves in the 
root environment (Kloepper et al. 1980; De Weger et al. 1987).

14.2.2  Competition for Root Niches and Bacterial Determinants 
Directly Involves Root Colonization

The root surface and surrounding rhizosphere are significant carbon sinks (Rovira 
1965). Photosynthate allocation to this zone can be as high as 40% (Degenhardt 
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et al. 2003). Thus, along root surfaces there are various suitable nutrient-rich locations 
attracting a diversity of microorganisms including phytopathogens. Competition for 
nutrients and niches is a fundamental mechanism by which PGPR protects plants 
from phytopathogens (Duffy 2001).

The quantity and composition of chemoattractants and antimicrobials exuded 
by plant roots are under genetic and environmental control (Bais et al. 2004b). 
This implies that PGPR competence strongly depends either on their abilities to 
take advantage of a specific environment or on their abilities to adapt to changing 
conditions. PGPR may be uniquely equipped to sense chemo attractants, e.g., rice 
exudates induce stronger chemotactic responses of endophytic bacteria as com-
pared to non-PGPR present in the rice rhizosphere (Bacilio-Jime´nez et al. 2003). 
Bacterial lipopolysaccharides (LPS), in particular the O-antigen chain, also con-
tribute to root colonization (Dekkers et al. 1998a). However, the importance of 
LPS in such colonization might be strain-dependent since the O-antigenic side 
chain of Pseudomonas fluorescens WCS374 does not contribute to potato root 
adhesion (De Weger et al. 1989), whereas the O-antigen chain of P. fluorescens 
PCL1205 is involved in tomato root colonization (Dekkers et al. 1998a). 
Furthermore, the O-antigenic aspect of LPS does not contribute to rhizoplane 
colonization of tomato by the plant-beneficial endophytic bacterium P. fluorescens 
WCS417r; however, this bacterial determinant was involved in endophytic coloni-
zation of roots (Duijff et al. 1997). It has also been recently demonstrated that the 
high-bacterial growth rate and ability to synthesize vitamin B1 and exude NADH 
dehydrogenases contribute to plant colonization by PGPR (Dekkers et al. 1998a; 
Simons et al. 1996). Another determinant of root colonization ability by bacteria 
is type IV pili, better known for its involvement in the adhesion of animal and 
human pathogenic bacteria to eukaryotic cells (Strom and Lory 1993). The type 
IV pili also play a role in plant colonization by endophytic bacteria such as 
Azoarcus sp. (Steenhoudt and Vanderleyden 2000; Compant et al. 2005). Bacterial 
traits required for effective root colonization are subject to phase variation, a regu-
latory process for DNA rearrangements orchestrated by site-specific recombinase 
(Dekkers et al. 1998b; Sa´nchez-Contreras et al. 2002; Van der Broek et al. 2003). 
In certain PGPR, efficient root colonization is linked to their ability to secrete a 
site-specific recombinase (Dekkers et al. 1998b; Dennis et al. 2010). Transfer of 
the site-specific recombinase gene from a rhizosphere-competent P. fluorescens 
into a rhizosphere-incompetent Pseudomonas strain enhanced its ability to colo-
nize root tips (Dekkers et al. 2000; Compant et al. 2005; Martínez-Granero et al. 
2005; Mavrodi et al. 2006).

14.2.3  Biofilms in the Rhizosphere

Bacteria adhere to environmental surfaces in multicellular assemblies described as 
biofilms. Plant-associated bacteria interact with host tissue surfaces and form biofilm-
type structure to extensive mature biofilm. The surface properties of plant tissue, 
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nutrient and water availability, and the proactivities of the colonizing bacteria 
strongly influence biofilm structure. Biofilms hold tremendous practical significance 
in agricultural, industrial, and medical settings, exhibiting both beneficial and detri-
mental activities (Webb et al. 2003; Parsek and Fuqua 2004; Ramey et al. 2004).

Root-associated pseudomonads have been studied extensively and many promote 
the growth of host plants or are used as biocontrol agents (Lugtenberg et al. 2001). 
Plant growth-promoting pseudomonads have been reported to discontinuously colo-
nize the root surface, developing as small biofilms along epidermal fissures 
(Bloemberg et al. 2000). However, pathogenic pseudomonads formed dense, confluent 
biofilms (Walker et al 2004; Bais et al. 2004a). It has been suggested that 
pseudomonad root biofilms can range from relatively small multicellular clusters to 
extensive biofilm networks (Ramey et al. 2004). The root colonization ability of 
Azospirillum brasience and other related species with cereals such as wheat and 
maize is widely known. It has been found that plant growth promotion by this free-
living diazotrophic bacteria is associated with colonization on root elongation zones 
and root hairs followed by the formation of biofilm (Assmus et al. 1995). The ability 
of rhizobia to form root nodules is also associated with biofilm formation in curled 
root hairs. Agrobacterium tumefaciens and rhizobia form dense biofilms on root 
surfaces, extensively coating the epidermis and root hairs as well as abiotic surfaces. 
Bacillus cereus, a Gram-positive bacteria, develops dense surface-associated popula-
tions, and one recent study has linked biocontrol with the ability of this species to 
form biofilms (Bais et al. 2004a). Several functions known to influence biocontrol 
activity are also likely to play a role in biofilm formation (Dunn et al. 2003).

A number of microbial cell structures such as flagella or type IV pili, LPS, and 
outer membrane proteins including adhesins are important in colonization and bio-
film formation (vande Broek and Venderleyden 1995; Tans-Kersten et al. 2001; 
Hinsa et al. 2003). Similarly, bacterial products such as exopolysaccharides are 
well-associated with biofilm development in many bacteria including Pseudomonas 
aeruginosa and A. tumefaciens (Ramey et al. 2004).

Biofilm-forming ability of various pathogenic bacteria are now widely known 
and described. Ramey et al. (2004) have described biofilm formation in vascular 
pathogens such as Xylella fasttidiosa, Xanthomonas campestris pv campestris, 
Pantoea stewartii sub sp. stewartii, Ralstonea solanacearum, and Clavibacter 
michiganensis. Many bacterial biofilm formation processes are linked with a cell–
cell communication mechanism termed quorum sensing. Many other bacteria 
including pathogenic, symbiotic, and free-living have been increasingly demon-
strated to form biofilms on biotic and abiotic surfaces. Various factors including 
surface chemistry, and nutrient availability and intrinsic ability of bacteria deter-
mine the nature and types of biofilm formed. An important issue for future research 
efforts is determination of the extent of contribution of biofilms in plant growth 
promotion by different rhizospheric bacteria, especially root-associated free-living 
bacteria (Timmusk et al. 2005; Rudrappa et al. 2008).

Recent reports on quorum sensing and its modification due to the presence of 
plant root exudates/metabolites have further compounded the complexity of 
microbe–plant root interaction mechanisms. Inter- and intra-species signal molecules 
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(N-acyl homoserine lactones for Gram-negative bacteria and protein/polypeptides for 
Gram-positive bacteria) are synthesized as bacterial populations reach high densities 
and play a part in regulating sets of genes involved in the production of exoenzymes 
such as pectin lyase, pectate lyase, polygalactouranase, cellulase, and protease 
(Fray et al. 1999) or antibiotics (Pierson et al. 1998). Thus, root colonization by 
rhizobacteria is usually found to be correlated with high inoculum density (Berger 
et al. 1995; Pillay and Nowak 1997; Wei and Zhang 2006; Scott et al. 2006; 
Williams 2007; Klein et al. 2009).

14.2.4  Factors Affecting Root Colonization and Efficacy  
of Rhizobacteria

Bacterial root colonization is primarily influenced by the presence of specific 
bacterial traits required for attachment and subsequent establishment; however, 
other abiotic and biotic factors play an important role in colonization. When an 
organism colonizes a root, the process must be confirmed with an array of external 
parameters including water content, temperature, pH, soil types (texture, organic 
matter, microaggregate stability, presence of key nutrients such as N, P, K, and Fe), 
composition of root exudates, and presence of other microorganisms. Plant species 
is another major determinant of overall microbial diversity (Grayston et al. 1998; 
Dakora and Philipps 2002). The colonization of a fluorescent Pseudomonas strain 
in the potato rhizosphere was reported to be tenfold greater in a sandy loam soil 
than in clay loam soil (Benizri et al. 2001).

Root colonization of bacteria is negatively affected by predation (protozoa) and 
parasitism (bacteriophages). Inoculated bacteria must compete with natural inhabit-
ants of the soil for nutrients. The biosynthesis of antagonistic compounds by 
rhizobacteria such as antibiotics could be affected by nutrient competition. 
Antibiotic secretion also plays an important role in the establishment of bacteria in 
the rhizosphere (De Weger et al. 1995; Greer-Phillips et al. 2004; De Weert and 
Bloemberg 2006).

In vitro activities exhibited by various PGPR for biocontrol may not provide the 
identical results under field conditions. The failure of PGPR to produce the desired 
effects after seed/seedling inoculation is frequently associated with their inability 
to colonize plant roots. The process of root colonization is complex; several traits 
associated with survivability, tolerance, competition with indigenous rhizospheric 
microorganisms, and expression of root colonizing traits are important (Somers and 
Vanderleyden 2004). In many countries, harsh climatic conditions, population pres-
sures, land constraints, and decline of traditional soil management practices have 
often reduced soil fertility. Such extreme effects will certainly alter soil’s chemical, 
physical, and biological properties and therefore affect microbial colonization.

Biocontrol agents may be affected by indigenous soil microbial communities 
and they may also influence the community into which they are introduced. 
Enhancement of introduced PGPR populations leading to enhanced suppression of 
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pathogens can be augmented by manipulation of several field cultural practices 
(Kloepper et al. 1999). This may include application of organic matter (Siddiqui 
2004; Siddiqui 2006).

A single biocontrol agent is not active against all the pathogens that attack the 
host plant; a single biocontrol agent is effective against a single pathogen under 
laboratory conditions. This may be the reason for the inconsistent performance of 
biocontrol agents introduced into the field. Naturally occurring biocontrol results 
from mixtures of agents, rather than from high populations of a single organism. 
Greater suppression and enhanced consistency against multiple cucumber patho-
gens were observed using strain mixtures of PGPR (Raupach and Kloepper 1998). 
Incompatibility of the co-inoculants may sometimes arise and thus inhibit each 
other as well as the target pathogens (Leeman et al. 1996). This is therefore an 
important prerequisite for successful development of strain mixtures. Even more 
important is that the inoculant strains may fail to survive and not colonize the root. 
Patterns of survival and effectiveness with growth phases of plants have not been 
clearly studied; nor have efforts to distinguish inoculated PGPR from indigenous 
microbial populations. Thus, various methods are in use to monitor inoculant 
strains, both genetically modified and nonmodified. Some techniques are briefly 
described below.

14.3  Monitoring of Microbial Inoculants (Biocontrol  
Agents/PGPR)

Substantial range of monitoring methods has been developed for the detection and 
quantification of microorganisms for various purposes (Morris et al. 2002). 
Monitoring methods can be divided into three groups: microbiological, direct meth-
ods, and molecular methods. Here, a brief descriptions of the common methods 
used to monitor biocontrol agents are described (Table 14.2).

14.3.1  Microbiological Monitoring Methods

These methods are culture-based classical methods and are commonly used to 
study and monitor soil microbes including those inoculated into the soil system for 
their survival and colonization on root surfaces as well as in bulk soil. The basic 
requirement for such methods is the availability of selective media for target organ-
isms to differentiate from native microbes. It is at times difficult to differentiate 
inoculated organisms from native populations based on morphological characteristics 
(Lima et al. 2003). Many authors have used the spontaneous mutant of the parent 
strain resistant to antibiotics such as nalidixic acid and rifampicin in order to dif-
ferentiate with indigenous bacterial population (Nautiyal 2000; Lindow and Suslow 
2003; Ahmad et al. 2006). However, resistance to antibiotics among indigenous 
populations which can grow on selective media should be first checked before 
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application. Once a suitable method is developed for the detection of a target organism, 
a quantitative method based on CFU count and/or most probable number (MPN) 
should be applied (Russek and Colwell 1983; Rothballer et al. 2003).

However, this technique requires knowledge about traits involved in the coloni-
zation process and then to isolate mutants with these traits. For example, studies 
have focused on motility (Lutenberg et al. 1996), the necessity for biosynthesis of 
cell surface molecules (Matthysse and McMahan 1998; Lutenberg and Dekkers 
1999), O antigens of LPS present in outer membranes, prototrophy for amino acids 
and vitamin B

1
 (Lutenberg et al. 1996; Simons et al. 1997), and growth on seed and 

root exudates such as carbohydrates and organic acids (Lutenberg and Dekkers 
1999; Roberts et al. 1999). To follow the fate of inoculant strains in the rhizosphere 
of crop plants and nontarget plants, cultivation-dependent methods are most 
frequently applied. Most suitable for tracking inoculants by selective plating is the 
use of rifampicin-resistant mutants (i.e., involving mutation of the ribosomal bind-
ing site) of the PGPR strains (Lin et al. 2000; Lottmann et al. 2000), as the back-
ground level of indigenous soil bacteria with resistance to rifampicin is low. In the 
past selective plating had been used primarily for strain confirmation; however, 
nowadays it is understood that these tools, although rapid and inexpensive, are not 
sufficiently reliable for inoculant strain confirmation since spontaneous mutants 
(e.g., antibiotic resistance) can readily occur. Although these classical approaches 
have serious limitations they are still viable due to their simplicity and reproducible 
nature in many situations, and may provide viable cell counts (Nautiyal 2000).

14.3.2  Direct Monitoring Methods

Direct monitoring methods are based on the detection of a specific phenotypic 
characteristic of the biological agent, for example the emission of flourescence, to 
achieve its identification. Bioluminescence is a phenotypic characteristic that can 
be used to mark biological control/PGPR agents. This technique is based on the 
introduction of an exogenous reporter gene which encodes for enzymes or proteins 
responsible for bioluminescence. The most frequently described reporter genes are 
the lux gene from the bacterium Vibrio fischeri and gfp gene from the jellyfish 
Aequorea victoria. The quantification in direct monitoring is achieved by optical 
detection methods such as flourescence microscopy (epiflourescence microscopy), 
spectrofluorometry, or flow cytometry. Many authors using direct monitoring methods 
for biological control agents in environmental samples make use of gfp markers 
with flow cytometry (Lowder et al. 2000) and the gfp/lux dual marker with flow 
cytometry and spectrofluorometry to monitor P. flourescence (Unge et al. 1999).

Emphasis has been placed on the detection and enumeration of PGPR released in 
field inoculations as an essential requirement for the assessment of their survival in field 
conditions. Fluorescent-antibody and selective plating techniques have served as the 
conventional strategies for detection and isolation of bacteria in environmental samples 
(Herbert 1990).
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Direct fluorescent antibody (DFA or dFA) (also known as direct immuno- 
flourescence) is a laboratory test that uses antibodies tagged with fluorescent dye 
that can detect the presence of microorganisms. This method offers straight-forward 
detection of antigens using fluorescently labeled antigen-specific antibodies. 
Because detection of the antigen in a substrate of sample (cellular smear, fluid or 
patient-inoculated culture medium) is the goal, DFA is seldom quantitative.

Immunological techniques are useful for both quantification and in situ visu-
alization of bacteria (Van Vurude and Van-DerWolf 1995; Mahaffee et al. 1997). 
They are based on specific antibodies directed against bacterial antigens. 
Compared with the traditional enzyme-linked immunosorbent assay (ELISA) 
procedure (Tsuchiya et al. 1995), the immunoflourescence colony (IFC) staining 
approach is more informative since it combines quantification (enumeration of 
colonies marked with antibodies conjugated with fluorescein isothiocyanate) 
with visualization in planta. Immunomagnetic attraction (specific antibodies 
linked to iron oxide particles) is also used for quantification (enumeration of 
bacteria captured with a supermagnet) (Paulitz 2000). Flourescence-labeled anti-
bodies have been used with success for detection of root-colonizing Pseudomonas 
strains by immunoflourescence microscopy (Kragelund and Nybroe 1996; 
Troxler et al. 1997).

Monospecific polyclonal antisera raised against Rhizobium leguminosarum bv. 
trifolii R39, a bacterium which was isolated originally from redclover nodules, 
were used to study the colonization of roots of leguminous and nonleguminous 
plants (Pisum sativum, Lupinus albus, Triticum aestivum, and Zea mays) after 
inoculation.

14.3.3  Molecular Monitoring Methods

Recent developments in molecular detection techniques have greatly increased 
the ability to track microorganisms and engineered genetic markers in natural 
environments (Pickup 1991). Molecular biology techniques that allow the detec-
tion of microorganisms in soil include the use of DNA probes (Holben et al. 
1988), polymerase chain reaction (Steffan and Atlas 1988; Ruppel et al. 2006), 
use of selective markers such as antibiotic resistance genes, and the use of chro-
mogenic markers such as b-galactosidase (Drahos et al. 1986) and b-glucuroni-
dase (Jefferson 1989). None of the techniques mentioned above provides in situ 
detection in soil, however. DNA hybridization requires extraction of cells and 
removal of humic material prior to DNA extraction. For monitoring of organisms 
after introduction into soil, a selective marker that does not interfere with the 
ability of the strain to survive and, in the case of microorganisms that interacts 
with plants, to promote plant growth, is needed.

A general molecular approach to characterize and detect specific microorganism 
based on direct DNA isolation and subsequent molecular characterization is elabo-
rated in the form of flow chart (Fig. 14.1).
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Many workers have used genomic molecular markers to track the biocontrol 
strain (Raaijmakers and Weller 2001; Garbeva et al. 2004; Broggini et al. 2005). 
This technique has drawbacks, as the native strain may also have similar molecular 
markers. To overcome this problem amplified fragment length polymorphism 
(AFLP), the amplification of repetitive sequence-based PCR (rep PCR), and ran-
dom amplified polymorphic DNA (RAPD) are recommended. However, these 
techniques have been used primarily for eukaryotic organisms (De Curtis et al. 
2004; Buhariwalla et al. 2005). AFLP, rep PCR, and RAPD have been used for 
fingerprinting microorganisms. However, when used for the detection of biological 
control agents they have a significant drawback; in spite of being specific for char-
acterization of a microorganism, they require the isolation of the target strain prior 
to its detection. An improvement has been made to the above technique by developing 
sequence characterized amplified regions (SCARs). SCAR markers are obtained by 
the selection of a unique amplified fragment which differentiates the target strain 
from others (Chapon et al. 2003).

Strain Genome
Detection of Polymorphism

 

AFLP rep-PCR RAPD

DNA digestion

Adapter ligation

PCR with primer 
pairs targeting 

adapter and selected

Amplification of 
sequences matching

selective primers

Amplification of 
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targeting ERIC, REP, 
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Detection by PAGE Detection by Agarose
gel electrophoresis

PCR with arbitrary
primers

Amplification of homologous 
sequences matching 
randomized primers

Detection by Agarose
gel electrophoresis

Fig. 14.1 Detection of polymorphism in genome
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Several techniques based on PCR have been developed to achieve quantification 
as well as detection of target DNA. The first quantification method was PCR-based 
dilution end point (Q-PCR) (Cross 1995). An improved method has been used for 
monitoring P. flourescence CHA0 (Rezzonico et al. 2003). Improvement in this 
direction continued and real-time PCR (RT-PCR) has been developed, which is 
used for monitoring several biocontrol agents, particularly fungi (Schena et al. 
2004; Rubio et al. 2005).

Molecular techniques such as rRNA probes, coupled with PCR, are used to 
quantify and detect inoculated bacteria in plants, labeled probes with fluorochrome 
(Laguerre et al. 1994; Di Cello et al. 1997; Rothballer et al. 2003; Sørensen et al. 
2009; Ruppel et al. 2006), 16S rDNA probe obtained by dot plot hybridization 
(Amann et al. 1995), enzyme activities quantified by colorimetry lacZ (b galacto-
sidases, blue colonies) (Bowen and Rovira 1999), and gus A (b glucuronidase, 
indigo) (Wilson et al. 1994; Wilson et al. 1995).

14.3.4  Use of Reporter Genes

In molecular biology, a reporter gene is a gene that researchers attach to a gene 
of interest in cell culture, animals, or plants. Certain genes are chosen as reporters 
because the characteristics they confer on organisms expressing them are readily 
identified and measured, or because they are selectable markers. Reporter genes 
are generally used to determine whether the gene of interest has been taken up 
by or expressed in the cell or organism population. To introduce a reporter gene 
into an organism, scientists place the reporter gene and the gene of interest in the 
same DNA construct to be inserted. For bacteria or eukaryotic cells in culture, 
this is usually in the form of a circular DNA molecule called a plasmid. It is 
important to use a reporter gene that is not natively expressed in the cell or 
organism under study, since the expression of the reporter is being used as a 
marker for successful uptake of the gene of interest (Sørensen and Nybroe 
2006).

Commonly used reporter genes that induce visually identifiable characteristics 
usually involve fluorescent and luminescent proteins; examples include the gene 
that encodes jellyfish GFP, which causes cells that express it to glow green under 
blue light, the enzyme luciferase, which catalyzes a reaction with luciferin to pro-
duce light, and the red fluorescent protein (RFP) from the gene dsRed. Another 
common reporter in bacteria is the GUS (UidA) gene, which encodes the protein 
beta-glucuronidase. This enzyme causes bacteria expressing the gene to appear 
blue when grown on a medium that contains the substrate analog X-gal (an inducer 
molecule such as IPTG is also needed under the native promoter). An example of 
a selectable-marker reporter in bacteria is the chloramphenicol acetyltransferase 
(CAT) gene, which confers resistance to the antibiotic chloramphenicol (Sørensen 
and Nybroe 2006; Rochat et al. 2010).
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14.3.5  Green Fluorescent Protein

The first application of GFP isolated from the jellyfish A. victoria as a reporter 
(Chalfie et al. 1994) has become a hallmark in modern biology and is used through-
out a range of biology and biotechnology research areas including microbiology and 
cell biology. Advantages in the use of GFP in comparison with other reporters or 
dyes is that GFP is present within the cell as a product of gene expression and that 
visualization does not require any fixation or preparation protocols, which are time-
consuming and might result in artifacts or influence cellular properties. Furthermore, 
it does not require substrates or additional energy such as often is the case in biolu-
minescence. In addition, GFP-labeled cells can be used for flow cytometry analysis 
and quantitative analysis by PCR (Utermark and Karlovsky 2006). Disadvantages of 
GFP are that its structure and flourescence are dependent on pH and presence of 
oxygen (Heim et al. 1994). However, studies on Rhizobium tagged with a GFP 
derivative showed that GFP was well visualized in bacteroids present in root nod-
ules, an oxygen-limiting environment (Gage et al. 1996; Stuurman et al. 2000). 
A point of consideration before applying GFP is the autoflourescence background 
or noise from the environment in which the bacteria are to be analyzed. For example, 
sand and other soil particles as well as certain plant structures or organelles such as 
chloroplasts can severely hamper GFP visualization. Such problems might be 
resolved by using other autofluorescent proteins (AFPs) with different excitation and 
emission wavelength spectra (Bloemberg 2007). Modifications of GFP (often by 
gene shuffling experiments) have resulted in the isolation of mutants that have 
shifted emission and excitation wavelengths, which offer the opportunity of using 
multiple AFPs in one system in order to differentiate between different cells or to 
visualize different processes within one cell. Important GFP derivatives include 
enhanced GFP (EGFP), enhanced cyan fluorescent protein (ECFP), and enhanced 
yellow fluorescent protein (YFP) (Yang et al. 1998; Tsien 1998; Matus 1999; 
Ellenberg et al. 1999). Blue fluorescent protein (BFP) has also been developed but 
is less used due to its low brightness. Andersen et al. (1999) have developed a set of 
GFP derivatives with reduced half-lives by the addition of short amino acid tags to 
the C terminus, recognized by specific proteases widely present in bacterial cells, 
which usually break down partially produced proteins. Although efforts have been 
directed toward isolation of a red fluorescent derivative of GFP, this was never 
achieved and was bypassed by the discovery and application of RFP or DsRed 
isolated from the coral Discosoma striata (Matz et al. 1999). Since the rfp sequence 
is not homologous to gfp the use of both genes in one cell will not result in unwanted 
recombinations. Efficient use of DsRed is hampered by its slow maturation due to 
its tetramerization, which is required for its fluorescent properties, and its toxic 
properties when overproduced. Recently, several improved DsRed derivatives have 
been constructed to overcome these problems. One of these new derivatives, DsRed.
T3_S4T, which matures faster (Sorensen et al. 2003), was successfully applied in 
Pseudomonas spp. for rhizosphere studies for being brighter and without causing 
loss of competitive colonization ability (Dandie et al. 2005). A report by Shaner 
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et al. (2004) on the construction of improved monomeric red, orange, and YFPs 
derived from DsRed, which mature more efficiently, are more tolerant to N-terminal 
fusions and have improved photostability. These forms have not been reported for 
studies of PGPR.

Over the past few years, the GFP has become a convenient and effective tool 
for studying microorganisms in complex biological systems. Marker systems 
based on reporter genes have been widely used to study dynamics and distri-
bution of gfp-labeled bacteria in the rhizosphere. GFP-based biosensors allow 
for detection at the single cell level. The GFP system has numerous advantages 
over existing marker systems and is especially useful in visualizing spatial distri-
bution and correlation in situ with existing technologies such as confocal laser 
microscopy or epiflourescence microscopy (Tombolini et al. 1999; Errampalli 
et al. 1999; Normander et al. 1999; Pallai 2005). The distribution of flourescence 
levels in populations of cells can be determined using flourescence activated cell 
sorters (FACS) (Southward and Surette 2002). GFP fluoresces green and requires 
only the presence of oxygen to mature – no external compound need be added to 
an organism expressing GFP in order to detect flourescence (Chalfie et al. 1994). 
GFP does not interfere with the growth of the host; it is brilliant for nondisrup-
tive studies for the study of bacterial communities or other systems. GFP requires 
live cells to be studied at the single cell level. Several GFP color variants (red, 
yellow, cyan) are available, which can be easily distinguished from others, 
 allowing simultaneous monitoring of expression (Stuurman et al. 2000; Bloemberg 
et al. 2000). GFP activity is not influenced by metabolic activities of the organ-
isms. A major disadvantage of GFP is that once formed it seems to be very stable, 
which in turn renders the protein less valuable of transient gene expression 
(Bloemberg 2007).

With the discovery and development of AFPs as markers and the development 
of highly sophisticated flourescence microscopes such as confocal laser scanning 
microscopes, a new dimension has been created for studying PGPR in their natural 
environment. Several review articles provide the reader further methods in detail 
(Bloemberg and Lugtenberg 2004; Chalfie and Kain 2005; Larrainzar et al. 2005; 
Rediers et al. 2005; Bloemberg and Camacho 2006; Bloemberg 2007).

14.3.6  Lac Z and Lux Gene-Based Reporting Methods

Luminescence-based techniques offer many of the advantages of classical tech-
niques (fluorescent-antibody and selective plating), and no extensive detection of 
marked cells in soil samples are needed (Sørensen and Nybroe 2006). Stable inte-
gration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors 
(Sørensen and Nybroe 2006). The system permitted the detection of tagged 
Rhizobium meliloti in the presence of more than 105 CFU per plate without the 
use of any selective markers (such as antibiotic resistance genes). No significant 
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 differences in growth rates or soil survival were found between the marked strain 
and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good 
correlation between cell biomass and bioluminescence. The firefly luciferase tag-
ging system is an easy, safe, and sensitive method for the detection and enumeration 
of bacteria in the environment (Cebolla et al. 1993).

A mutant strain, P. fluorescens WCS365 with Tn5lacZ mutation, colonized 
roots to a lesser extent than did wild type (de Weger et al. 1987; Simons et al. 
1997; Dekkers et al. 1998b; Kozaczuk and Skorupska 2001). Dekkers et al. 
(1998b) showed that the gene encoding NADH dehydrogenase plays an important 
role in root colonization. Another gene required for efficient colonization is the 
sss gene, encoding a site-specific recombinase of the lambda integrase family 
which helps in adapting cells to rhizosphere conditions (Dekkers et al. 1998a). 
Further, it was hypothesized that a two-component system involving genes colR 
and colS plays an important role in the root colonizing ability of P. fluorescens 
strain WCS365 (Dekkers et al. 1998b). A recent study by Miller et al. (2001) has 
shown that the gene rpoS is essential for plant root colonization by Pseudomonas 
putida in a competitive environment. Rainey (1999) identified as many as 20 
genes that were induced during root colonization using a novel promoter trapping 
technology. Chauhan and Nautiyal (2010) have reported purB gene that controls 
rhizosphere colonization in Pantoea agglomerans.

The lux operon is a set of genes in V. fischeri, a rod-shaped bacterium residing 
in organisms that live in marine environments. The lux operon is a 9-kb frag-
ment that controls bioluminescence through the catalysis of the enzyme 
luciferase (Meighen 1993). The bacterial luciferin–luciferase system is encoded 
by a set of genes labeled the Lux operon. In V. fischeri, five such genes 
(LuxCDABE) have been identified as active in the emission of visible light, and 
two genes (LuxR and LuxI) are involved in regulating the operon (Urbanczyk 
et al. 2008). Several external and intrinsic factors appear to induce and inhibit 
the transcription of this gene set and produce or suppress light emission. 
Although the lux operon encodes the enzymes necessary for the bacteria to 
glow, bioluminescence is regulated by autoinduction. An autoinducer is a tran-
scriptional promoter of the enzymes necessary for bioluminescence. Before the 
glow can occur, a certain concentration of an autoinducer must be present. 
Thus, in order for bioluminescence to occur, high colony concentrations of 
V. fischeri should be present in the organism (Madigan and Martinko 2006). 
Isolation of the lux genes and the ability to transfer these genes into prokaryotic 
and eukaryotic organisms have greatly expanded the scope and potential uses 
of bacterial bioluminescence as a safe, rapid, and sensitive sensor for a wide 
variety of compounds and metabolic processes. Maize and lettuce seeds were 
treated with derivatives of all strains marked with lux genes for biolumines-
cence and resistance to kanamycin and rifampin prior to planting in nonsterile 
Promix and natural soil. The introduced bacterial strains were quantified on 
roots by dilution plating on antibiotic media together with observation of bio-
luminescence (Chabot et al. 1996; Darwent et al. 2003).
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14.3.7  Luciferase Gene

The eukaryotic luciferase genes, luc from the firefly Photinus pyralis (de Wet et al. 
1985) and those from the luminous click beetle Pyrophorus plagiopthalamus 
(Wood et al. 1989) also have been expressed successfully in various bacteria 
(Cebolla et al. 1991; de Wet et al. 1985; Lampinen et al. 1992; Palomares et al. 
1991). Each gene codifies a monomeric enzyme that catalyzes the same reaction, 
involving d-luciferin, ATP, and O

2
. Furthermore, comparison of the expression of 

both types of luciferases in Bacillus subtilis showed that bacteria expressing bacte-
rial luciferase suffered a decrease in growth rate with respect to that of the parental 
strain (Lampinen et al. 1992). This fact may result in a selective disadvantage for 
these bacteria when competing with indigenous bacteria. In contrast, no significant 
variation in B. subtilis growth was observed upon expression of eukaryotic 
luciferases. Furthermore, the luciferase activities measured were about threefold 
higher than that of the bacterial luciferase. Other requirements for tagging of micro-
organisms include the following: (1) stable inheritance of the engineered tag must 
be ensured; (2) the risk of transferring the marker gene among ecosystem popula-
tions must be avoided; (3) the gene should not be over-expressed; and (4) markers 
conferring resistance to antibiotics should be avoided (Cebolla et al. 1993; Alvarado 
et al. 2004).

Stable integration into the bacterial genome was achieved by use of mini-TnS 
delivery vectors. The procedure developed was applied for tagging of representative 
Gram-negative bacteria such as Escherichia coli, R. meliloti, P. putida, and A. tume-
faciens. The system permitted detection of tagged R. meliloti in the presence of 
more than 105 CFU per plate without the use of any selective markers (such as 
antibiotic resistance genes). No significant differences in growth rates or soil sur-
vival were found between the marked strain and the wild-type strain. Studies of 
bioluminescent R. meliloti also revealed a good correlation between cell biomass 
and bioluminescence. The firefly luciferase tagging system is an easy, safe, and 
sensitive method for the detection and enumeration of bacteria in the environment 
(Cebolla et al. 1993; Alvarado et al. 2004; Koo et al. 2007).

14.4  Conclusions and Future Prospects

Microorganisms introduced into the environment undergo a wide variety of pro-
cesses following their introduction including growth, physiological adaptation, 
conversion to nonculturable cells, physical spread, and gene transfer (Van Elsas 
et al. 1998). Hence, the application of single methods for microbial detection and 
for evaluation of their activity in the rhizosphere and risk involved is likely to pro-
vide only partial information. Both culture-based and culture-independent 
approaches have their own advantages and limitations. It is suggested that a poly-
phasic approach would be most practical for monitoring of microbial inoculant in 
rhizosphere/bulk soil (Fig. 14.2).
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For robust assessment of the fate and effect of released microbial inoculants/
PGPR, it is therefore necessary to use a combination of techniques as the case may 
depend upon microbe-to-microbe and microbe-to-plant interactions and other envi-
ronmental factors. Microscopy, cultivation-based and molecular-based techniques 
should be developed both for genetically modified and unmodified inoculants 
released into the rhizosphere or the larger environment.

As our understanding of the complex environment of the rhizosphere, of the 
mechanisms of action of PGPR, and of the practical aspects of inoculant formula-
tion and delivery increase, we can expect to see new PGPR products becoming 
available. The success of these products will depend on our ability to manage the 
rhizosphere to enhance survival and competitiveness of these beneficial microor-
ganisms (Bowen and Rovira 1999). Rhizosphere management will require consid-
eration of soil and crop cultural practices as well as inoculant formulation and 
delivery. Genetic enhancement of PGPR strains to enhance colonization and effec-
tiveness may involve addition of one or more traits associated with plant growth 
promotion. The use of multistrain inocula of PGPR with known functions is of 
interest as these formulations may increase consistency in the field. Alternatively, 
plant growth-promoting microorganisms with multifarious desirable traits and 
tolerance to environmental conditions are expected to provide improved results 
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(Ahmad 2006; Ahmad et al. 2008; Imran 2009). They offer the potential to address 
multiple modes of action, multiple pathogens, and temporal or spatial variability. 
The application of molecular tools is enhancing our ability to understand and man-
age the rhizosphere and will lead to new products with improved effectiveness. 
However, multiple strain-based inoculants will require more careful monitoring 
for their survival, colonization, and effectiveness in the root zone.
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Abstract Modern application of insecticides belonging to different chemical 
families to boost agricultural productivity has led to their accumulation in soils 
to levels that affect, directly and indirectly, soil enzyme activities and physiol- 
ogical characteristics of nontarget soil microflora including plant growth-promoting 
rhizobacteria, and, consequently the performance of crop plants. Various biological 
strategies can be applied for removing toxic substances, including insecticides, 
from the environment and are collectively known as bioremediation. Among bio-
logical approaches, the use of microbes with degradative ability is considered the 
most efficient and cost-effective option to clean pesticide-contaminated sites. The 
present review focuses on the role of naturally occurring rhizosphere microbes 
involved in degradation or transformation of insecticides.

15.1  Introduction

During cultivation, the majority of economically important crops are infested by 
insect pests including pod borers, aphids, jassids, and pod flies, which cause a 
substantial reduction in yields (Mukherjee et al. 2007). In current agronomic 
operations, pesticides, including insecticides are therefore applied, sometimes 
excessively or indiscriminately to crops and soils to combat insect problems and 
consequently to increase productivity of agro-ecosystems. After repeated applica-
tion, a significant proportion of insecticides may accumulate in upper soil layers 
(0–10 cm) and exert damaging impacts, not only on the diversity but also on the 
functionality of ecologically and agronomoically important soil microflora (Das 
et al. 2005). Subsequently, abnormally high concentrations of insecticides may 
lead to a considerable loss in soil fertility (Pal et al. 2006).
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Soil microorganisms, specifically rhizospheric bacteria including plant 
 growth-promoting rhizobacteria (PGPR), facilitate plant growth (Khan et al. 2010) 
by (i) solubilizing insoluble phosphates; (ii) fixing atmospheric N and transporting 
it to plants; (iii) facilitating uptake of other plant nutrients; and (iv) synthesizing 
siderophores and phytohormones (Zaidi et al. 2009). Documented results have, 
however, shown that insecticide concentrations above recommended values 
adversely affects both the physiological traits of rhizobacteria and various meta-
bolic activities of plants leading to losses in biomass, symbiotic attributes, nutrient 
(N and P) uptake, and quantity and quality of seeds of plants (Ahemad and Khan 
2010). To circumvent such losses and to reduce dependence on chemical additions 
to soil, biological methods (i.e., microbes and plants) may be applied to detoxify/
remove insecticides from soils.

15.2  Toxicity of Pesticides to Soil Microorganisms and Plants

Soil microbial communities play a critical role in cycling of soil elements and, in 
turn, affect soil fertility and plant growth. However, beneficial microbial communi-
ties are greatly influenced by factors including the application of agrochemicals 
(Ahemad and Khan 2009), which are applied in modern agricultural practices to 
attain optimum crop yields. Of the various agrochemicals, pesticides, in particular, 
include any substance intended for preventing, destroying, repelling, or mitigating 
a pest. Microorganisms can, however, be tolerant or resistant (e.g., slightly or not 
affected) to pesticides. If, microorganisms are indeed sensitive, pesticides will 
interfere with vital metabolic activities of microbes.

The consistent and injudicious use of synthetic pesticides has, nevertheless, 
become a major threat to beneficial soil microbes (Zahran 1999; Srinivas et al. 
2008) and in turn affects the sustainability of agricultural crops. Globally, the 
greater concern is how to minimize or reduce the effects of pesticides so that the 
potential negative impacts of these chemicals on microorganisms involved in nutri-
ent cycling, vis-a-vis the productivity of crops could be preserved. In the following 
section, an attempt is made to highlight the impact of insecticides on soil microflora 
and agronomic crops.

15.2.1  Insecticidal Impact on Rhizobacteria and Crops

In modern high-input agricultural practices, insecticides belonging to diverse 
chemical groups (Table 15.1) are used as seed and/or soil treatments to prevent 
losses due to insect pests. Following application, such insecticides accumulate in 
soils to undesirable levels and affect, either directly or indirectly, soil enzyme 
activities and physiological characteristics of nontarget soil microbiota (Table 15.2), 
thereby leading to loss in productivity of soils. For example, Gundi et al. (2005) 
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Table 15.1 Examples of insecticides and their mode of action

Mode of action Chemical type Examples

Acetylcholinesterase  
inhibitors

Carbamates Aldicarb, carbaryl,  
carbofuran, propoxur,  
carbosulfan

Organophosphates Phorate, chlorpyrifos,  
omethoate, parathion,  
methmidophos, malathion,  
diazinon

GABA-gated chloride  
channel antagonists

Cyclodienes and other  
organochlorines (OC)

Lindane, aldrin, endosulfan

Phenylpyrazoles (fiproles) Fipronil
Sodium channel modulators OC DDT
Acetylcholine receptor  

antagonists
Neonicotinoids Imidacloprid, thiamethoxam

Acetylcholine receptor  
antagonists allosteric

Spinosyns Spinosad

Voltage-dependent sodium  
channel blocker

Oxadiazine Indoxacarb

Adapted from http://www.irac-online.org/

Table 15.2 Impacts of selected insecticides on soil biota

Insecticide Effects References

Fipronil and pyriproxyfen Reduced synthesis of IAA and  
siderophores in Rhizobium  
leguminosarum and  
Mesorhizobium.

Ahemad and Khan  
(2009)

Malathion, dimethoate,  
phorate

Aerobic bacteria, among all groups  
of microflora, were most adversely  
affected by all insecticides at  
normal or four times more the  
normal rate and phorate was found  
to be most toxic

Aamil et al.  
(2005)

Chlorpyrifos Reduced bacterial numbers, but  
significantly increased fungal numbers

Pandey and Singh  
(2004)

Carbofuran Significant impacts on acetylcholinesterase 
activity in earthworms

Panda and Sahu  
(2004)

Dimethoate Short-term reduction in microarthropod 
numbers (Collembola), but recovery  
in numbers after time

Martikainen et al.  
(1998)

DDT Reduced bacterial and soil algal  
populations, but may have increased 
fungal counts

Megharaj et al.  
(2000)

Malathion Short-term impacts on earthworm  
population

Panda and Sahu  
(1999)

BHC, phorate, carbofuran,  
and fenvalerate

Stimulated proliferation of aerobic 
nonsymbiotic N

2
-fixing bacteria and 

phosphate-solubilizing microorganisms 
and also their biochemical activities, 
such as nonsymbiotic N

2
-fixing and 

phosphate-solubilizing capacities, which 
resulted in greater release of available 
N (NH

4
+ and NO

3
−) and P in soil

Das and Mukherjee  
(2000)

http://www.irac-online.org/
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observed that a mixture of monocrotophos or quinalphos and cypermethrin had 
additive, synergistic, and antagonistic effects toward bacteria and fungi and dehy-
drogenase activity in a black clay soil. Application of monocrotophos, quinalphos, 
and cypermethrin at different rates used either singly or in combination to soil sig-
nificantly enhanced proliferation of bacteria and fungi and soil dehydrogenase 
activity even at the highest level of 25 mg g−1. Antagonistic interactions were, however, 
more pronounced for soil microflora and dehydrogenase activity when monocroto-
phos or quinalphos were applied with cypermethrin to soil at the highest rate 
(25 + 25 mg/g). Synergistic or additive responses, on the other hand, occurred at 
lower application rates with the same combination of insecticides. Some insecti-
cide-tolerant strains of PGPR are also known. For example, Nazarian and Mousawi 
(2005) identified strains belonging to Pseudomonas and Flavobacterium which 
tolerated concentrations of 2.5, 4, and 8 g/L of guthion, methyl parathion, and 
dimethoate, respectively. The resistance in these bacteria against such organophos-
phorus pesticides was probably due to the presence of organophosphorous-degrading 
plasmids that have the ability to express hydrolytic enzymes.

In a follow-up study, Vasileva and Ilieva (2007) carried out pot trials to deter-
mine the effect of pre-sowing treatment of seeds with insecticides promet 400 SK 
(furathiocarb) at a dose of 3 L/100 kg seeds, and carbodan 35 ST (carbofuran) at 
1, 2 and 3 L/100 kg seeds on nodulating ability, nitrate reductase activity, and plas-
tid pigments content of lucerne (cv. obnova). It was found that the insecticides did 
not depress nodulation; instead, nodule numbers and specific nodulation ability of 
carbodan 35 ST (3 L/100 kg seeds)-treated plants increased by 23 and 7%, respec-
tively, compared to control. Root length for the variants with pre-sowing treatment 
of seeds was higher than the control by 7–26%. The variant with carbodan at 2 and 
3 L/100 kg seeds and promet increased nitrate reductase activity in roots and that 
with carbodan at 1 L/100 kg seeds increased nitrate reductase activity in leaves. 
Total content of plastid pigments increased in all variants with carbodan and was 
lower than the untreated control in the variant with promet.

Das et al. (2003) investigated the effects of phorate and carbofuran at 1.5 and 
1 kg active ingredient per hectare, respectively, on the population and distribution 
of bacteria, actinomycetes, and fungi as well as the persistence of insecticidal resi-
dues in rhizosphere soils of rice (Oryza sativa L., variety IR-50). Application of 
insecticides stimulated populations of bacteria, actinomycetes, and fungi in rhizo-
sphere soils. Stimulation was more pronounced with phorate when compared with 
carbofuran. Neither insecticide, however, markedly affected Streptomyces or 
Nocardia in the rhizosphere soils. Total numbers of Bacillus, Escherichia, 
Flavobacterium, Micromionospora, Penicillium, Aspergillus, and Trichoderma 
treated with phorate and that of Bacillus, Corynebacterium, Flavobacterium, 
Aspergillus, and Phytophthora with carbofuran increased. On the other hand, numbers 
of Staphylococcus, Micrococcus, Fusarium, Humicola, and Rhizopus under phorate 
stress and Pseudomonas, Staphylococcus, Micrococcus, Klebsiella, Fusarium, 
Humicola, and Rhizopus under carbofuran stress were inhibited. Similarly, phorate 
at 100 and 500 mg/mL substantially reduced IAA production by phosphate-solubilizing 
bacteria belonging to genera Serratia, Pseudomonas, and Bacillus isolated from 
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various rhizospheric soils, while P-solubilizing activity of PSB was marginally 
affected (Wani et al. 2005).

The effect of lindane on microbial populations was analyzed in soil with a history 
of contamination with various chemicals, including pesticides, by Rodríguez and 
Toranzos (2003). Soil microcosms were amended with 100 mg lindane/kg soil and 
microbial populations were monitored for 70 days. A 50% reduction in bacterial 
cell concentrations in lindane-amended microcosms was observed during the second 
week of the experiment. Overall, no effect of lindane was observed on the meta-
bolic versatility and genetic diversity in these soils, demonstrating the ability of the 
bacterial populations to tolerate the stress generated by the addition of pesticides. 
In another report, pencycuron at field rate (FR), 2FR, and 10FR affected microbial 
biomass C (MBC), soil ergosterol content, and fluorescein diacetate-hydrolyzing 
activity (FDHA) differentially. Changes in microbial metabolic quotient (qCO

2
) 

and microbial respiration quotient indicated pencycuron-induced disturbance at 
10FR. This study revealed that the metabolically activated microbial population 
was more suppressed compared to the dormant population (Pal et al. 2006).

The effect of increasing rates of lindane (156.0, 244.0, and 312.0 g/ha), unden 
(propoxur) (125.0, 187.5, and 250.0 g/ha), dithane and karate (166.6, 209.8, and 
333.3 g/ha) on garden eggs (Solanum melongena), okra (Abelmoschus esculentus), 
and tomatoes (Lycopersicum esculentus) was studied by Glover-Amengor and 
Tetteh (2008). Yields of garden eggs were suppressed by all rates of lindane. In 
tomatoes, lower lindane rates increased yields, whereas higher rates suppressed 
yields below the control. In okra, yields were higher than the control at all lindane 
levels though yield increments were low. Unden application had the greatest effect 
on garden egg yields followed by tomatoes, and the least on okra. In the garden egg 
and tomato treatments, increasing concentrations of unden resulted in decreased 
yields, though yields were higher in the control plots. The optimum unden rate for 
garden egg and tomato was U20 (125.0 g/ha). Increasing rates of unden on okra did 
not have any significant effect. Pesticide application reduced soil fungal popula-
tions by 50–70%, while bacterial populations declined by 23–38%. In general, 
dithane suppressed bacterial populations considerably, whereas karate suppressed 
fungal populations. Lindane did not have any advantage over other pesticides as it 
caused the lowest increase in yield. Singh and Singh (2006) evaluated the impacts 
of diazinon, imidacloprid, and lindane treatments on ammonium-, nitrate-, and 
nitrite-nitrogen and nitrate reductase enzyme activities in a groundnut field for  
3 consecutive years (1997–1999). Diazinon was applied for both seed and soil treat-
ment but imidacloprid and lindane were used for seed treatments only at recom-
mended rates. Diazinon residues persisted for 60 days in both the cases. Average 
half-lives (t

1/2
) of diazinon were found to be 29.3 and 34.8 days in seed and soil 

treatments, respectively. In the diazinon seed treatment, NH
4

+, NO
3

−, and NO
2

− 
nitrogen and nitrate reductase activity were not affected. However, diazinon soil 
treatment resulted in a significant increase in NH

4
+-N in a 1-day sample which 

continued until 90 days. Some declines in NO
3
−-N were detected from 15 to 

60 days. Along with this decline, significant increases in NO
2

−-N and nitrate 
reductase activity were found between 1 and 30 days. Imidacloprid and lindane 
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persisted for 90 and 120 days with average half-lives of 40.9 and 53.3 days, 
 respectively. Within 90 days, imidacloprid residues decreased by 73.17–82.49%, 
while lindane residues declined by 78.19–79.86% within 120 days. In imidacloprid 
seed-treated field, stimulation of NO

3
−-N and decline in NH

4
+-N, NO

2
−-N, and 

nitrate reductase activity were observed between 15 and 90 days. However, lindane 
seed treatment resulted in significant increases in NH

4
+-N, NO

2
−-N, and nitrate 

reductase activity and decline in NO
3
−-N between 15 and 90 days. Fox et al. (2007) 

concluded, via study on interaction of agrochemicals with crop plants, that organo-
chlorine pesticides and other environmental contaminants induce a symbiotic phe-
notype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, 
fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in 
overall plant yield at time of harvest. Moreover, Evans et al. (1991) reported that 
omethoate was toxic to some Rhizobium strains on direct contact when diffused 
through agar seeded with these bacteria or mixed in broth cultures containing the 
bacteria. Omethoate mixed with peat-based legume inoculant and applied to seed 
of subterranean clover or lucerne significantly reduced number of nodules formed 
over 3 weeks on seedlings grown in pots of sand, compared with inoculated con-
trols. Rhizobia numbers were reduced markedly by mixing with omethoate. Seed 
pretreatment with omethoate before inoculation had no effect on nodule number 
(9–11 weeks after sowing), compared with inoculated controls. In another experi-
ment, Evans et al. (1993) found that the effectiveness of inoculation with Rhizobium 
meliloti was significantly reduced when inoculant was applied to seeds pretreated 
with omethoate. Nodule numbers and shoot mass per plant were reduced by 6 and 
22%, compared to untreated plants.

15.3  Bioremediation

Injudicious use of natural resources has resulted in the contamination of land and 
water with hazardous substances to a considerable extent in many parts of the 
world. Contaminated sites continue to be discovered due to increasing urbanization 
and industrialization. Contaminated sites pose a serious threat to human health and 
also to the environment. Many biological, physical, and chemical strategies are 
available to clean up contaminated land or water. Some of the commonly used 
methods for removing pollutants from soil are presented in Table 15.3.

One of the more promising and cost-effect approaches to address soil contami-
nation problems is bioremediation. Bioremediation is defined as the engineered use 
of biological agents such as microbes or plants to remove/neutralize/degrade/trans-
form contaminants present in soil, sediments, or water. Bioremediation can take 
place both in situ and ex situ (Hussain et al. 2009). In situ bioremediation does not 
require excavation of soils; generally, in situ bioremediation is applied for degrada-
tion of pollutants present in saturated soils and groundwater. This method has 
considerable appeal over other bioremediation strategies due to its low cost and 
employment of innocuous microflora to biodegrade hazardous chemicals and their 
derivatives. In this technology, chemotaxis is an important attribute since microbial 
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communities with chemotactic traits migrate toward a site enriched with contaminants 
(chemoattract). Therefore, by enhancing the chemotactic abilities of cells, in situ 
bioremediation can be made safer for degrading harmful compounds. The benefits 
of application of in situ bioremediation include: (i) it does not require excavation 
of the contaminated soils and is consequently cost-effective and (ii) there is mini-
mal site disruption resulting in simultaneous treatment of soil and groundwater. 
Conversely, in situ bioremediation also has drawbacks: (i) the method is time-
consuming compared to other remedial methods and (ii) the potential efficiency of 
microbes is subject to seasonal variation and environmental factors. In addition, 
microorganisms perform better when contaminant molecules provide nutrients and 
energy for growth. If these conditions are not favorable, the ability of microbes to 
degrade pollutants is decreased. Alternatively, genetic manipulation of microbes is 
required to accelerate degradability of the pollutants even though stimulating indig-
enous microflora is generally preferred.

Ex situ bioremediation processes require excavation of contaminated soils or 
pumping of groundwater to facilitate microbial degradation. Depending on the state 
of the contaminant to be removed, ex situ bioremediation is classified as (i) a solid-
phase system (including land treatment and soil piles) and (ii) slurry-phase systems 

Table 15.3 Remediation strategies for contaminated soils

Remediation strategy Advantages Disadvantages

Chemical inactivation  
(immobilization/oxidation)

Rapid Use of chemicals may 
be costly and may 
give rise to added 
contamination

Incineration Rapid Reduction in  
waste volume

High costs of transportation, 
problems such as  
combustibility of soil  
matrix and toxic  
emissions

In situ vitrification Reduces leaching and  
soil volume

High costs to generate  
required temperature  
(1,600–2,000°C)

Stabilization/solidification  
(binding to resins)

Reduces leaching The cost of binding resins  
may be very high

Thermal desorption(high  
temperatures in the  
absence of oxygen to  
vaporize or destroy  
pesticides)

Required less heat  
than incineration 
The matrix is not 
incinerated

Reduced emissions

Gaseous emission  
controls required

Vapor stripping (vacuum is  
applied to contaminated  
soil, removing volatile waste)

Generates little wasteFairly 
cost effective

Only suitable for  
volatile contaminants

Bio- and phyto-remediation Low cost and  
maintenance,  
environment-friendly,  
suitable for in situ

Slow compared to  
incineration/chemical 
deactivation

Adopted from Atterby et al. (2002)
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(including solid–liquid suspensions in bioreactors). Solid-phase treatment may be 
applied to organic wastes (e.g., sewage sludge, animal manures, and agricultural 
wastes) and problematic wastes (e.g., domestic and industrial hazardous wastes, 
municipal solid wastes). Solid-phase soil treatment processes include landfarming, 
soil biopiles, and composting. Slurry-phase bioremediation is a relatively rapid 
process compared to the other biological treatment processes. In slurry-phase biore-
mediation, contaminated soil is combined with water and other additives in a large 
vessel termed a bioreactor and mixed to keep the soil microorganisms in contact 
with contaminants. Nutrients and oxygen are added, and conditions in the bioreactor 
are monitored and controlled to create the optimum environment for the micro-
organisms to degrade the contaminants. When treatment is complete, water is 
removed from the solids, which are disposed or treated further, if they contain 
additional pollutants (Sasikumar and Papinazath 2003).

15.3.1  Bioremediation of Insecticides

Numerous processes occur during dissipation of insecticides in the environment, 
for example: (i) volatilization into the air, (ii) sorption to soil components, 
(iii) movement in soils through runoff, (iv) leaching into soils, and (v) upward 
movement in soils through capillary forces (Fig. 15.1) (HCN 1996). Degradation, 
the principal method for insecticide loss, is the primary process affecting the 
dynamics of insecticide residues in the environment including persistence in soils. 
The degradation of insecticides is carried out both by physico-chemical methods 
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Fig. 15.1 The fate of the pollutants in the environment [modified from HCN (1996)]
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and by organisms (microbes and plants). Microbial degradation of insecticides is 
characterized by enzymes that mediate the splitting of the molecules through 
 different metabolic pathways and is ultimately dependent on the viability, density, 
and enzymatic activity of soil microorganisms. Furthermore, physico–chemical 
properties of soils, and types and concentrations of insecticides either applied or 
previously accumulated in soils, greatly influence degradation rate (Cáceres et al. 
2010). In this section, the microbial degradation of insecticides, in particular lin-
dane, chlorpyrifos, and monocrotophos, is discussed primarily because of their 
toxicity and extensive usage in agricultural production systems.

15.3.1.1  Lindane and Its Isomers

Lindane (1, 2, 3, 4, 5, 6-hexachlorocyclohexane, g-HCH), a broad-spectrum 
organochlorine pesticide, is a persistent organic pollutant (POP) and enters soil by 
direct application, disposal of contaminated waste, or wet/dry deposition from the 
atmosphere. Immediately following application, HCHs are adsorbed to the soil 
particles, volatilized to the atmosphere or leached into groundwater, or enter crop 
plants along with contaminated water. HCHs are strongly adsorbed to soil organic 
matter (SOM) and, consequently, remain immobile in soils. Nevertheless, under 
conditions of low SOM and consistent rainfall, lindane, and other HCH isomers 
pose a significant threat to groundwater (Wauchope et al. 1992). Conventionally, 
three methods like chemical degradation, physical adsorption, and bioremediation 
have been reported for the removal of lindane from the contaminated sites. 
Chemical treatments include the use of microwave irradiation (Salvador et al. 
2002), degradation with NaOH-modified sepiolite (Salvador et al. 2002), and addi-
tion of hydrogen peroxide (Ahlborg and Thunberg 1980). These treatments involve 
the use of corrosive chemicals and hence are not eco-friendly. In contrast, physical 
methods involve thermal desorption and incineration, which provide sufficient deg-
radation but require huge infrastructure and are expensive. In addition, they generate 
high toxic gases (phosgene). Biological treatments including the use of microbes 
often called bioremediation, are even though a relatively slow process but are an 
attractive option due to its inherent eco-friendly characteristics and low cost. In this 
context, the isolation of microorganisms with lindane degrading potential has con-
firmed specific strains, which degrade lindane and other HCH isomers (Anupama 
and Paul 2010) either aerobically or anaerobically. Some strains grow well in media 
supplemented with HCH as a sole source of C and energy.

 Anaerobic Biodegradation Pathway

The first anaerobic lindane-degrading bacterium isolated was Clostridium sphe-
noides UQM780 (MacRae et al. 1969). Subsequently, several other degrading 
microorganisms were reported, which include genera of Clostridium, Bacillus, and 
Enterobateriaceae (Kuritz and Wolk 1995; Middeldorp et al. 1996; Boyle et al. 
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1999). There is however, inconsistency in results reported for the degradation of 
different HCH isomers, predominantly owing to varied genera of microorganisms 
in test soils and degree of tolerance and resilience to contaminants (Moreno and 
Buitron 2004). Haider and Jagnow (1975) reported that g-HCH was degraded 
 significantly (up to 90% after 5 days), whereas a- and b-HCH were found to be 
resistant under both methanogenic and sulfate-reducing conditions (Bachmann 
et al. 1988). Moreover, the degradation of all four HCH isomers (a-, b-, g-, and 
s-HCH) by mesophilic anaerobic sludges was reported by Buser and Muller (1995) 
and Quintero et al. (2005). In an anaerobic degradation pathway of HCHs, tetra-
chlorocyclohexene (TCCH) is identified as an intermediate, even though it is 
assumed that the primary intermediate was pentachlorocyclohexane (PCCH), 
which is too unstable to be detected. The complete pathway is shown in Fig. 15.2.

Aerobic Biodegradation Pathway

Complete mineralization of HCH occurs under only aerobic conditions. Microbial 
aerobic degradation of the four HCH isomers has been observed in both mixed soil 
cultures (Sahu et al. 1993) and pure cultures (Thomas et al. 1996; Johri et al. 1998). 
The majority of studies on the determination of an aerobic degradative pathway of 
lindane and other HCH isomers has concentrated on Sphingomonas paucimobilis 
UT26, a nalidixic acid-resistant mutant of Sphingomonas (previously classified as 
Pseudomonas) paucimobilis SS86 (Imai et al. 1989; Senoo and Wada 1989). This 
novel bacterial strain UT26 degrades a-, g-, and s-HCH and exploits g-HCH as a 
sole source of carbon in the presence of oxygen (Nagasawa et al. 1993). The deg-
radation pathway shown in Fig. 15.3 and involves several enzymes [Lin A (dehy-
drochlorinase), Lin B (halidohydrolase), Lin C (dehydrogenase), Lin D (reductive 
dehalogenase), Lin E (dioxygenase), Lin F (maleylacetate reductase), and Lin X 
(dehydrogenase)] encoded by genes (linA, linB, linC, linD, linE, linF, linR, and 

Fig. 15.2 Pathway for anaerobic degradation of HCH [adopted from Middeldorp et al. (1996)]
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linX, respectively) and leads to eventual mineralization (Nagata et al. 2006). In 
addition to these catalytic enzymes, a putative ABC-type transporter system 
encoded by linKLMN is also essential for the g-HCH utilization in UT26. After 
complete genome sequence analysis of UT26, it was found that lin genes for the 
g-HCH utilization are dispersed on three large circular replicons of 3.5 Mb, 682 kb, 
and 191 kb. Nearly identical lin genes were also found in other HCH-degrading 
bacterial strains, and it has been suggested that the distribution of lin genes is 
mainly mediated by insertion sequence IS6100 and plasmids. Recently, it was 
revealed that two dehalogenases, LinA and LinB, have variants with small number 
of amino acid differences, and they showed dramatic functional differences for the 
degradation of HCH isomers, indicating these enzymes are still evolving at high 
speed (Nagata et al. 2007).

In a study, Böltner et al. (2007) isolated four Sphingomonas strains, all of which 
degraded a-, b-, g-, and d-HCH. Of these, two strains effectively colonized corn 
roots reaching a high cell density in cultivated soil and could partly remove g-HCH. 
These bacteria, however, performed poorly in unplanted soils. It was suggested that 
the removal of persistent toxic chemicals can be accelerated by composite applica-
tion of plants and bacteria, a process generally known as rhizoremediation. Pesce 
and Wunderlin (2004) reported the aerobic biodegradation of lindane by a consor-
tium of bacteria, Sphingobacterium spiritivorum, Ochrobactrum anthropi, Bosea 
thiooxidans, and S. paucimobilis, from sediment at a polluted site on the Suquia 

Fig. 15.3 Aerobic pathway of g-HCH degradation by S. paucimobilis UT26. Compounds: 
A g-HCH, B g-pentachlorocyclohexene, C 1,3,4,6-tetrachloro-1,4-cyclohexadiene, D 1,2,4-trichlo-
robenzene, E 2,4,5-trichloro-2,5-cyclohexadiene-1-ol, F 2,5-dichlorophenol, G 2,5-dichloro-2,5-
cyclohexadiene-1,4-diol, H 2,5-DCHQ, I CHQ, J HQ, K acylchloride, L g-hydroxymuconic 
semialdehyde, M maleylacetate, N b-ketoadipate [modified from Endo et al. (2005)]
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River, Cordoba, Argentina. The consortia of bacteria showed initial lindane 
 degradation rates of 4.92 × 10−3, 11.0 × 10−3, and 34.8 × 10−3 mM h−1 when exposed 
to lindane concentrations of 0.069, 0.137, and 0.412 mM, respectively. Chloride 
concentration increased during aerobic biodegradation, indicating lindane mineral-
ization. A metabolite identified as g-2,3,4,5,6-pentachlorocyclohexene appeared 
during the first 24 h of biodegradation. Pure strains of B. thiooxidans and S. pauci-
mobilis, however, degraded lindane after 3 days of aerobic incubation. The potential 
of different enriched bacterial cultures for degrading lindane, methyl parathion 
(O-dimethyl O-(4-nitro-phenyl) phosphorothioate) and carbofuran (2,3-dihydro-
2,2-dimethyl-7-benzofuranyl methylcarbamate) was assessed under various envi-
ronmental conditions by Krishna and Philip (2008). Generally, the enriched cultures 
showed a variable level of degradation and differed with different pesticides. 
Degradation was more in a facultative anaerobic condition relative to those 
observed under aerobic condition. In aerobic cometabolic process, the degradation 
of lindane by lindane enriched cultures was 75 ± 3%, whereas 78 ± 5% of lindane 
degradation occurred in anaerobic cometabolic process. Degradation of methyl 
parathion by methyl parathion enriched culture was 87 ± 1% in facultative anaerobic 
condition. During degradation, many intermediate metabolites were observed, 
some of which were, however, disappeared after 4–6 weeks of incubation. 
Interestingly, it was found that the mixture of pesticide-enriched culture was more 
effective and degraded all the three pesticides more rapidly compared to the sole 
pesticide-enriched culture. This study suggested that the consortia of bacterial cul-
tures capable of detoxifying the toxicity of multiple pesticides at one time could 
serve an interesting option for restoring the sites contaminated with multiple pesti-
cides. In addition to bacterial communities, soil also harbors fungi, which are 
known to degrade lindane very effectively. For example, the degradation of lindane 
through secretion of certain enzymes has been reported for nonwhite-rot fungus 
Conidiobolus 03-1-56 (Nagpal et al. 2008), white-rot fungi Cyathus bulleri and 
Phanerochaete sordid (Singh and Kuhad 2000), and other fungus Pleurotus ostreatus 
(Rigas et al. 2005).

15.3.1.2  Biodegradation of Chlorpyrifos

Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) is a 
broad-spectrum organophosphate insecticide displaying insecticidal activity against 
a wide range of insects and other arthropod pests. There are many reports on the 
degradation of chlorpyrifos by an extensive array of microbial communities inhab-
iting varied ecological niches and belonging to different genera including 
Flavobacterium and Escherichia (Wang et al. 2005; Richinis et al. 1997), 
Enterobacter (Singh et al. 2004), Arthrobacter (Mallick et al. 1999), and Klebsiella 
(Ghanem et al. 2007). The importance of microorganisms in the degradation of the 
organophosphorus insecticide chlorpyrifos during kimchi fermentation was investi-
gated by Cho et al. (2009). Of the 30 mg chlorpyrifos L−1 used during the kimchi 
fermentation, 83.3% of chlorpyrifos was degraded rapidly until day 3, while after 
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9 days, it was degraded completely. The chlorpyrifos degrading lactic acid bacteria 
isolated from kimchi fermentation in the presence of 200 mg chlorpyrifos L−1 were 
identified as Leuconostoc mesenteroides (WCP907), Lactobacillus brevis 
(WCP902), Lactobacillus plantarum (WCP931), and Lactobacillus sakei (WCP904). 
All bacterial strains exhibiting degrading ability, used chlorpyrifos as the sole C and 
P source. Other insecticides, such as coumaphos, diazinon, parathion, and methyl 
parathion, were also degraded by the tested strains. In other study, a bacterial strain 
M-1 isolated from sludge collected from the wastewater treatment pool of a pesti-
cide factory later identified as Paracoccus sp. by morphological and biochemical 
properties and 16 S rDNA sequence analysis was able to degrade 92.47% monocro-
tophos (100 mg/L) in 24 h. Monocrotophos was used as a sole C source by strain 
M-1. The biodegradation of monocrotophos was mediated by constitutively 
expressed cytosolic proteins, which had the greatest activity at pH 8 and 25 C, with 
its Michaelis–Mentn’s constant (K

m
) and maximum degradation rate (V

max
) of 

0.29 mmol × mL−1 and 682.12 mmol (min × mg)−1, respectively. The degrading 
enzyme was sensitive to high temperature, but was active at alkaline conditions (Jia 
et al. 2007). In a recent investigation, species of Bacillus and Pseudomonas were 
found to degrade 75% of chlorpyrifos and phorate and 50% of dichlorvos, methyl 
parathion, and methomyl within 7 days of incubation. However, dichlorvos and 
phorate were completely degraded by the end of 14 days and the order of microbial 
degradation was: phorate > dichlorvos > methyl parathion > chlorpyrifos > methomyl. 
Qualitative analysis of chlorpyrifos and methyl parathion residues by gas chroma-
tography revealed the formation of one unidentified metabolite in inoculated sam-
ples, whereas no metabolite formation was detected in the case of other 
insecticides-inoculated samples (Madhuri and Rangaswamy 2009). Mallick et al. 
(1999) reported the rapid degradation of chlorpyrifos, added to a mineral salt 
medium, or applied to soil as a sole C source, by Flavobacterium sp. ATCC 27551 
isolated from diazinon-retreated rice fields (Sethunathan and Yoshida 1973). 
Similarly, an Arthrobacter sp. isolated from a flooded soil retreated with methyl 
parathion has shown chlorpyrifos-degradating ability (Mishra et al. 1992). Moreover, 
Huang et al. (2000) studied the degradation of chlorpyrifos in poultry and cow-
derived effluents and reported that chlorpyrifos was degraded by aerobic microbial 
processes in animal-derived lagoon effluents. Analysis of the microbial communi-
ties involved in the degradation process by denatured gradient gel electrophoresis 
of PCR-amplified 16 S rRNA genes showed that a single band became dominant in 
effluents during chlorpyrifos degradation, thus indicating that a single aerobic bac-
terial population is involved in chlorpyrifos degradation.

Biodegradation of chlorpyrifos is dependent on numerous abiotic factors. Soil 
pH plays a crucial role in the process. Singh et al. (2003) studied the effects of 
soil pH on biodegradation of chlorpyrifos in the UK and Australian soils and 
reported that the dissipation of chlorpyrifos in the UK soils varied at pH values from 
4.7 to 8.4 and was mediated by the cometabolic activities of soil microorganisms. 
A robust bacterial population that utilized chlorpyrifos as a sole source of C was 
detected in an Australian soil. Transmission and propagation of chlorpyrifos-
degrading microorganisms from the Australian soil to UK soils was monitored by 
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molecular fingerprinting of bacterial 16sRNA genes by PCR-denaturing gradient 
gel electrophoresis. A heightened ability to biodegrade chlorpyrifos was increased 
in the UK soils. In addition, only soils with pH ³ 6.7 were able to maintain this 
degrading ability 90 days after inoculation. The rate of degradation in chlorpyrifos-
degrading bacteria-inoculated soils increased with increasing soil pH from 4.3 to 
7.0, but there was no significant difference in degradation rate with pH 7.0–8.4. The 
degradation rate of chlorpyrifos in acidic soils was slower than in neutral and alka-
line soils (Yang et al. 2006). In another study, Singh et al. (2004) reported the 
enhanced degradation of chlorpyrifos by an Enterobacter strain B-14 and found 
that the strain responsible for enhanced biodegradation of chlorpyrifos showed 
greatest similarity to Enterobacter asburiae based on 16 s rRNA analysis. This 
strain utilized chlorpyrifos as a sole source of C and P and hydrolyzed it to dieth-
ylthiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP). Further studies 
with B-14 revealed that the strain possessed a novel phosphotriesterase enzyme 
system, as the gene coding for this enzyme had a different sequence from the widely 
studied organophosphate degradative (opd) gene (Singh et al. 2004). The authors 
also concluded that the application of the strain B-14 as bioinoculant in chlorpyrifos-
contaminated soil led to substantial increase in the degradation rate of chlorpyrifos 
than that observed for noninoculated soils. Yang et al. (2005) isolated Alcaligenes 
faecalis DSP3, which has the ability to degrade both chlorpyrifos and TCP. 
Moreover, Yang et al. (2006) were successful in cloning the mpd gene from a 
chlorpyrifos-degrading bacterium and applying it to bioremediation of contami-
nated soils. Six chlorpyrifos-degrading bacteria were isolated using chlorpyrifos as 
the sole source of carbon by enrichment procedure. Their strain, YC-1, showed the 
highest degrading capability and was putatively identified as the genus 
Stenotrophomonas. The strain YC-1 degraded 100 mg/L chlorpyrifos within 24 h. 
When chlorpyrifos-degrading strain YC-1 was used as bioinoculant in fumigated 
and nonfumigated soils, the inoculated soils experienced a more rapid rate of chlo-
rpyrifos degradation compared to the noninoculated control. The initial concentra-
tion of 100 mg/kg chlorpyrifos was completely degraded within 15 days. Degradation 
of chlorpyrifos in control nonfumigated soils (without inoculation) was consider-
ably lower. According to Guha et al. (1997), the opd gene for the degradation of 
chlorpyrifos occurs on plasmids as observed in Micrococcus sp. isolated from soil. 
In contrast, the presence of plasmids was not detected in chlorpyrifos-degrading 
Stenotrophomonas strain YC-1 by the alkali lysis method, which inferred that the 
opd gene was located on the chromosome (Yang et al. 2006). However, both mpd 
and opd genes have also been found located variably on chromosome and plasmid. 
For example, Ajaz et al. (2009) suggested that the biodegradation of chlorpyrifos is 
mediated by split location of the genes (located on the plasmid and the chromo-
some) in the Pseudomonas putida MAS-1.

In a follow-up study, Li et al. (2007) isolated a highly effective chlorpyrifos-
degrading bacterium strain Dsp-2 from the polluted treatment system of a chlorpy-
rifos manufacturer. This strain identified as Sphingomonas sp. by morphological, 
physiological, biochemical tests, and employing molecular tool (16 S rDNA) could 
utilize chlorpyrifos as a sole C source for growth by hydrolyzing chlorpyrifos to 
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3,5,6-trichloro-2-pyridinol (TCP). It could also utilize parathion, parathion-methyl, 
fenitrothion, and profenofos, but not phoxin and triazophos. Subsequently, the 
bioremediation ability of this strain was tested under soil environment. When strain 
Dsp-2 was added to soil treated with 100 mg kg−1 chlorpyrifos, it showed a higher 
degradation rate relative to control soils (without inoculation).The moderate pH, 
moisture, and inoculum density were found to promote degradation. The gene 
encoding the chlorpyrifos-hydrolytic enzyme was found as having 99% similarity 
to mpd (a gene encoding the parathion-methyl hydrolyzing enzyme in Plesiomonas 
sp. M6). The hydrolytic efficiency of mpd for chlorpyrifos was significantly greater 
than the wild-type mpd from strain M6.

The degradation of chlorpyrifos is, however, influenced by various factors. In 
order to assess the impact of variable culture conditions, such as pH, inoculum 
density, presence of added carbon/nutrient sources, and pesticide concentration, 
Anwar et al. (2009) conducted an experiment employing Bacillus pumilus C2A1 
for chlorpyrifos degradation. Chlorpyrifos was utilized by strain C2A1 as the sole 
source of C and energy as well as it was cometabolized in the presence of glucose, 
yeast extract, and nutrient broth. Chlorpyrifos was degraded maximally at pH 8.5 
and high-inoculum density. Degradation was, however, further enhanced in the 
presence of other nutrients probably due to high growth on easily metabolizable 
compounds which in turn increased degradation. The strain C2A1 also showed 90% 
degradation of TCP (300 mg/L) within 8 days of incubation. In a similar study, 
Lakshmi et al. (2009) observed that the degradation of chlorpyrifos in soil by three 
aerobic bacterial consortia, AC, BC, and DC, was greater (50, 56, and 64%, respec-
tively) at 30 days compared to those observed after 21 days (54, 46, and 61%, 
respectively) growth in basal medium treated with 50 mg chlorpyrifos L−1. 
Pseudomonas aeruginosa, Bacillus cereus, Klebsiella sp., and Serratia marscecens 
when grown alone in basal medium supplemented with 50 mg chlorpyrifos L−1 
degraded chlorpyrifos by 84, 84, 81, and 80%, respectively, after 20 days and 92, 
60, 56, and 37%, respectively, after 30 days. Formation of 3,5,6-trichloro-2-pyridinol, 
the major metabolite of chlorpyrifos degradation, was observed during the degrada-
tion of chlorpyrifos by P. aeruginosa, which disappeared to negligible amounts. 
This and other associated studies are thus likely to help overcome chlorpyrifos 
toxicity in contaminated environment.

15.3.1.3  Monocrotophos

The degradation of a widely used organophosphorus insecticide, monocrotophos 
(dimethyl (E) 1-methyl-2-methylcarbamoyl vinyl phosphate) in two Indian agricul-
tural soils, i.e., a black vertisol and red alfisol, was studied in the laboratory by 
Gundi and Reddy (2006). The insecticide was applied at two concentrations, 10 and 
100 mg g−1 soil, under aerobic conditions at 60% water-holding capacity at 28 ± 4°C. 
The degradation of monocrotophos (MCP) at both concentrations was rapid, 
accounting for 96–98% of the applied quantity following first-order kinetics with 
rate constants (k) of 0.0753 and 0.0606 day−1 and half-lives (t

1/2
) of 9.2 and 
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11.4 days, respectively. Degradation of MCP in soils proceeded by hydrolysis, with 
the formation of N-methylacetoacetamide. Even three additions of MCP at 10 mg g−1 
soil did not result in enhanced degradation. However, there was cumulative accu-
mulation of N-methylacetoacetamide in soils pretreated with MCP, i.e., 7–15 mg g−1 
soil. Both biotic and abiotic factors were involved in MCP degradation. In one 
study (Bhalerao and Puranik 2009), soil fungi capable of degrading MCP were 
isolated from various geographical sites. Twenty-five strains were isolated by an 
enrichment method using MCP as a carbon and phosphorus source. On the basis of 
MCP tolerance capacity exhibited in gradient agar plate assay, the isolate M-4, 
identified as Aspergillus oryzae ARIFCC 1054, was selected for further studies. 
The ability of the isolate to mineralize MCP was investigated under different culture 
conditions. The isolate was found to possess phosphatase activity. The course of the 
degradation process was studied using high-performance thin layer chromatography 
(HPTLC) and FTIR analyses. The results suggest that this organism could be used 
for bioaugmentation of soil contaminated with MCP and for treatment of aqueous 
wastes.

Degradation of MCP in soils was found to be enhanced by light, moisture (more 
in flooded soils than in dry loam soils), and type of water (greater in tap water than 
distilled water) (Dureja 1989). Biodegradation of MCP and other organophosphates 
by soil bacteria was studied by Rangaswamy and Venkateswarlu (1992). They iso-
lated several strains of Bacillus and one isolate of Azospirillum lipoferum, which 
were capable of degrading MCP. Microbial degradation was more pronounced and 
rapid than chemical decomposition.

Bhadbhade (2001) studied microbial degradation of MCP; microorganisms 
capable of degrading MCP were isolated from ten soil samples collected from 
Maharashtra. Among 54 isolates, 74% (32 isolates) were obtained from exposed 
soils, whereas 26% (22 isolates) were from soils not exposed to MCP. This revealed 
the predominance and ease in isolating MCP-degrading bacteria from exposed 
soils. The cultures belonged to the genera Bacillus (62%), Arthrobacter (22%), 
Pseudomonas (12%), and 2% each to Planococcus and Stomatococcus. Three cul-
tures identified as Arthrobacter atrocyaneus, Bacillus megaterium, and Pseudomonas 
mendocina showed 80–90% degradation to MCP at maximum initial concentration 
of 500 mg/L in synthetic medium within 48 h. The cultures tolerated MCP up to a 
concentration of 2,500 mg/L and could utilize MCP as a sole source of carbon in 
synthetic media. The isolates showed maximum degradation of MCP under differ-
ent environmental conditions; for example, pH values of 7.0–8.0, temperatures of 
30–35ºC, MCP concentrations ranging from 100 to 500 mg/L, and an inoculum 
density of 108–109 cells/mL, in synthetic medium under aerated culture condition 
in 48 h. The removal of MCP ranged between 77 and 78% (Bhadbhade 2001).

Biodegradation of MCP to phosphates, ammonia, and carbon dioxide was 
brought about through the formation of intermediate compounds; namely, one 
unidentified metabolite, methylamine, and volatile fatty acids such as acetic acid or 
n-valeric acid. The isolates were found to exhibit two enzymes, namely phos-
phatase and esterase, which were involved in the degradation of MCP. The 
microbial metabolic pathway for the degradation of MCP has been proposed 
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based on experimental results (Fig. 15.4) (Bhadbhade et al. 2002a). In addition, 
MCP  degradation genes are now known to be located on plasmids (Bhadbhade 
et al. 2002b). In a similar study, Subhas and Singh (2003) observed Pseudomonas 
aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11 able to 
degrade technical MCP in shake-flask culture up to 98.9 and 86.9%, respectively, 
and pure MCP up to 79 and 80%, respectively, within 24 h at 37°C. The optimal 
concentration of MCP required for the normal growth was 500 ppm. Tris-p-
nitrophenyl phosphate was found as the most preferred substrate followed by 
paraoxon. The enzyme involved in the degradation of MCP was phosphotriesterase, 
which was localized on the membrane-bound fraction of the disrupted cells. The 
gene responsible for the production of phosphotriesterase (opd) in P. aeruginosa 
F10B was plasmid-borne.

15.4  Conclusion

Insecticides in general adversely affect metabolic activities of both soil microflora 
and crop plants. At recommended dose rates, the toxic effects of insecticides on 
beneficial activities of rhizobacteria and plant growth parameters are, however, less 
severe. Rates higher than recommended field rates have been found to decrease 
nitrogen fixing ability, production of phytohormones, and other regulatory sub-
stances in soil microorganisms and photosynthesis, dry biomass accumulation and 
the general nutrient status of crop plants. Therefore, natural, inexpensive, and eco-
friendly microbes endowed with insecticide-degrading potential could be an 
 ecologically sound alternative to detoxify persistent and excessive quantities of 
residual insecticides in soils.

Fig. 15.4 Pathway for degradation of monocrotophos (Bhadbhade et al. 2002a)
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Abstract Baculoviruses pesticides are ideal tools in integrated pest management 
programs as they are usually highly specific to their host insects; thus, they do not 
affect other arthropods including pest predators and parasitoids. They are also safe 
to vertebrates and plants and to the biosphere. Over 50 baculovirus products have 
been used against different insect pests worldwide, and all have been produced 
in vivo, mostly on insects reared on artificial diets. However, there are cases of 
significant viral production in the field by applying a baculovirus against natural 
populations of the insect host and collecting dead or moribund larvae for further 
processing into a formulated product. Despite the considerable number of programs 
worldwide utilizing baculoviruses as biopesticides, their use is still low compared 
to another biological insecticide based on the bacterium Bacillus thuringiensis 
Berliner. As of the present, there are no programs using in vitro commercial produc-
tion of baculovirus due to several technical limitations, and further developments 
in this area are much needed. Use of the baculovirus of the velvetbean caterpillar 
in Brazil has experienced a setback over the past 7 years due to modifications in 
cultural practices by soybean growers. Slow speed of kill by viral pesticides is a 
limitation that has led to considerable research effort toward developing faster kill-
ing agents through genetic modifications by either deleting or inserting toxin genes 
from scorpions and spiders into their genomes. However, these GMOs have not 
been used in practice due to significant resistance by the public to modified bacu-
lovirus genomes. Effective public extension services and farmer education toward 
application of biopesticides are much needed to expand the use of these products 
worldwide.
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16.1  Introduction

There are at least 12 viral families associated with insects and other arthropods 
(Erlandson 2008). The Baculoviridae is the most commonly investigated with 
regard to its development as a microbial insecticide due to its favorable character-
istics such as safety to the environment, humans, other vertebrates, plants, and natural 
enemies of pests (particularly predators and parasitoids). These viruses are gener-
ally highly selective, not affecting other insect species including those that are 
pests. Consequently, the baculoviruses are ideal control agents to be used in inte-
grated pest management (IPM) programs in agriculture, forests, and pastures. Use 
of these agents as microbial insecticides was advocated in the 1960s and 1970s 
(e.g., Ignoffo and Couch 1981; Tanada and Kaya 1993; Cunningham 1995; 
Moscardi 1999; Szewczyk et al. 2006, 2009).

Baculoviruses have also proven to be extremely valuable tools in biotechnology. 
The baculovirus–insect cell expression system has become one of the most widely 
used systems for routine production of recombinant proteins. More recently, bacu-
loviruses have demonstrated the ability to make ideal vectors for a variety of mam-
malian cell lines and are potential candidates in gene therapy (Kost et al. 2005; 
Hitchman et al. 2009).

16.2  State of Taxonomy and Biology of Baculoviruses

16.2.1  Taxonomy

Baculoviruses are a large and diverse group of viruses pathogenic to arthropods, 
primarily insects from the orders Lepidoptera, Hymenoptera, and Diptera. More 
than 700 baculoviruses have been isolated from invertebrates and reported in the 
literature (Moscardi 1999; Herniou and Jehle 2007). These viruses occur naturally 
in insect populations and are normally named for the initial host from which they 
were isolated. Owing to their high virulence, specificity to insects, and environmen-
tal stability, they have been widely used as bioinsecticides for the control of numer-
ous agricultural and forest pests. A number of these viruses have been used to 
control insects as biological alternatives to chemical pesticides (Moscardi 1999; 
Szewczyk et al. 2009).

Baculoviruses replicate in the nuclei of infected host cells and possess circu-
lar, covalently closed, double-stranded DNA genomes ranging from 80 to 
180 kbp in length, encoding for 100–180 proteins (Theilmann et al. 2005). 
Genomes of more than 50 baculoviruses have been sequenced (NCBI databases) 
and many have been analyzed and published (van Oers and Vlak 2007; Rohrmann 
2008a). These viruses belong to the family Baculoviridae, which is currently 
subdivided on the basis of phylogenetic evidence and molecular characteristics 
into four genera: Alphabaculovirus (lepidopteran nucleopolyhedrovirus), 
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Betabaculovirus (lepidopteran granulovirus), Gammabaculovirus (hymenopteran 
nucleopolyhedrovirus), and Deltabaculovirus (dipteran nucleopolyhedrovirus). 
This classification of baculoviruses (Jehle et al. 2006) has been proposed for the 
9th International Committee on Taxonomy of Viruses Report (www.ictvonline.
org). Lepidopteran NPVs can be further classified into two groups, i.e., I and II. 
This subdivision has been correlated with the presence of unique envelope fusion 
proteins, GP64 (Group I) and F (Group II), encoded by viruses from each group 
(Zanotto et al. 1993; Pearson et al. 2000; Ijkel et al. 2000; Herniou et al. 2001, 
2003). Virions of Alphabaculoviruses are designated single (S) or multiple (M) 
depending on the number of nucleocapsids per ODV (occlusion-derived virus), 
whereas delta- and gammabaculoviruses normally contain a single nucleocapsid 
per ODV (Volkman et al. 1995; Theilmann et al. 2005).

Baculoviruses exist as two phenotypes, i.e., occlusion-derived virus (ODV) and 
budded virus (BV), which have a common nucleocapsid structure and carry the same 
genetic information (Blissard 1996). These virions are produced at different cell 
locations and times in the infection cycle. Also, they differ with relation to some of 
their virus-derived proteins, in the composition of their viral membranes, and in their 
mechanisms of entry into the host cell. BVs are produced in the late phase of 
 infection, obtain their envelope from the cell membrane, and require the fusion 
protein GP64 (Monsma et al. 1996; Hefferon et al. 1999) or another unrelated pro-
tein termed the F protein (Lung et al. 2002; Westenberg et al. 2004) that facilitates 
systemic infection. This protein forms structures called peplomers at one end of the 
budded virus particle, but they are not present in ODVs (Monsma et al. 1996), 
although a number of other proteins are only associated with ODV. Several ODV 
envelope proteins have been identified as essential for primary infection of midgut 
cells of insect larvae and others as ODV components whose specific location and 
function have not yet been determined (Kuzio et al. 1989; Faulkner et al. 1997; 
Kikhno et al. 2002; Pijlman et al. 2003; Ohkawa et al. 2005; Slavicek and Popham 
2005; Fang et al. 2007, 2009; Li et al. 2007). ODVs are produced in the very late 
phase of the infection when nucleocapsids become enveloped within the nucleus 
and are subsequently occluded in a protein crystal structure forming the occlusion 
bodies (OBs).

16.2.2  Viral Life Cycle

In the baculovirus life cycle, ODVs establish primary infection in the midgut and 
are required for horizontal transmission of baculoviruses between insect hosts. 
These virions are derived from the nuclear membrane of the insect cell and at a very 
late time, postinfection, become occluded in a protein matrix, forming paracrystal-
line structures termed occlusion bodies (OBs). The occlusion bodies are composed 
mainly of a protein called polyhedrin in NPVs and granulin in GVs that are highly 
stable and facilitate virus survival and dispersal in the environment (Olszewski and 
Miller 1997). BVs are highly infectious for insect cells and are capable of spreading 

http://www.ictvonline.org
http://www.ictvonline.org
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infection from cell to cell both within the insect and in cell culture. These virions 
have an envelope distinct from ODV that facilitates systemic infection. They 
acquire their envelopes by budding through the plasma membrane.

The viral life cycle begins when a susceptible host ingests OBs that have been 
deposited on foliage by a previously infected host, resulting in the release of 
hundreds of ODVs in the gut. In the host midgut, crystalline polyhedron matrix 
surrounding the ODVs is dissolved by the alkaline environment. The released 
ODVs then pass through the peritrophic membrane, attach to the microvilli, and 
subsequently initiate primary infection of mature columnar epithelial cells within 
the midgut. Budded virus (BV) produced in these cells initiates secondary infec-
tions, spreading throughout the host. The nucleocapsids are released from the 
endosomes and are transported to the nucleus, where viral transcription, DNA 
replication, and assembly of progeny nucleocapsids occur, resulting in the pro-
duction of BV and ODV. In the final stage of infection, most of the nucleocapsids 
remain in the nucleus and become occluded in a protein matrix to form OBs. 
Progeny OBs are released upon death and disintegration or liquefaction of the 
infected insect and subsequently initiate a new round of infection to other hosts. 
The terminally infected insect can migrate to a higher elevation on the branch of 
a plant, facilitating dispersal of the occlusion bodies (Kamita et al. 2005a, b; 
Rohrmann 2008b). The consecutive steps of this complex process of infection are 
shown in Fig. 16.1.

Fig. 16.1 Natural life cycle of baculovirus AcMNPV. Polyhedra are taken orally by the larvae 
along with plant material (a) and are dissolved in the alkaline environment of the midgut  
(b). ODVs are liberated and infect epithelial midgut cells (c). The virus replicates, and budded 
viruses (BVs) are produced (d), and they infect other tissues (e). After secondary infection (f ), 
polyhedra are accumulated (g). Finally, the larval body disintegrates, and millions of new polyhe-
dra are released to the environment (h). BV – budded form of the virus. ODV – occlusion derived 
form of the virus



41916 Baculovirus Pesticides: Present State and Future Perspectives 

16.2.3  Molecular Biology of Baculoviruses

Baculoviruses are a large group of double-stranded DNA viruses. They infect 
arthropods and do not replicate in vertebrates, plants, or microorganisms. Though 
they do not replicate, they may, under special conditions, enter animal cells. This 
unexpected property has made baculoviruses a valuable tool for studies of transient 
expression of foreign genes under vertebrate promoters introduced into the baculo-
virus genome (Boyce and Bucher 1996; Kost et al. 2005).

The baculoviruses have gained immense attention in molecular biology labora-
tories because they are one among the most versatile genetic engineering tools (for 
a review see van Oers 2006). The most widely studied baculovirus is the Autographa 
californica nucleopolyhedrovirus (AcMNPV). Our current knowledge about the 
biology of AcMNPV is, to a large extent, a consequence of the developments of 
baculovirus-based expression vectors. This system of foreign gene expression has 
many advantages over other systems, which are as follows:

A high level of foreign gene expression is usually achieved compared to other •	
eukaryotic expression systems.
It is possible to express more than one foreign gene.•	
The baculovirus genome can accommodate large pieces (around 20 kbp) of for-•	
eign DNA.
Insertion of specific signal sequences in front of a foreign gene often leads to •	
export of the gene product outside of the infected cell.

The circular DNA genome of AcMNPV is surrounded by a small basic protein 
that neutralizes the negative charge of the DNA. This structure is protected by pro-
teins forming a nucleocapsid. Virions consist of one or more nucleocapsids embedded 
in a membranous envelope. The genomic circular DNA is infectious in the naked 
form. As mentioned above, the two morphologically distinct, but genetically identi-
cal, viral forms (ODV and BV) are produced at different periods after infection. The 
occlusion bodies (polyhedra) contain many occlusion-derived virions (ODV) sur-
rounded by a matrix composed mainly of polyhedrin, a major structural protein 
(Braunagel et al. 2003). It should be stressed here that polyhedrin is produced in 
large quantities (approx. 30% of total protein mass at the time of host death) but is 
not needed for transmission of the virus from cell to cell. Polyhedra (OBs) are rela-
tively stable, and protected virions under favorable conditions can survive in the 
environment for decades. They are large enough to be seen under a light microscope. 
Under magnification of 1,000×, polyhedra resemble clear, irregular salt crystals.

Recombinant baculoviruses are usually constructed in two steps. Initially, a 
heterologous gene is introduced into a baculovirus transfer vector. The vector con-
sists of a bacterial replicon of a multicopy plasmid, a selection marker gene, pro-
moter and terminator regions along with flanking baculovirus sequences from a 
nonessential locus, and a multiple cloning site (or a single unique restriction site) 
downstream from a viral promoter. When commercial production of a recombinant 
protein is required, the promoters and the flanking DNA usually originate from one 
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of the very late genes, either polyhedrin or p10. The latter is another viral gene 
coding for a protein produced in large quantities very late in the infection. It is the 
main component of the fibrillar structures, which accumulate in the nucleus and in 
the cytoplasm of infected cells. For some purposes, e.g., for earlier enhancing of the 
insecticidal properties of a baculovirus, weaker late but not very late promoters 
[e.g., basic protein promoter (p6.9)] or early promoters (e.g., ie1, p35 or DA26) are 
sometimes preferred.

Classical methods of recombinant construction are based on the homologous 
recombination in insect cells as the second step of engineering the recombinant. 
The baculovirus transfer vector containing foreign DNA and genomic viral DNA 
are introduced into insect cells where they recombine yielding recombinant virus 
with an integrated heterologous gene. Many improvements over classical methods 
(Summers and Smith 1987) for recombinant selection have been made in recent 
years. Linearization of the baculovirus genome at one or more locations simplifies 
the construction of recombinant baculoviruses. Linear baculovirus DNA exhibits a 
greatly reduced infectivity compared to preparations of circular DNA. When a 
unique restriction site was introduced into the AcMNPV genome, which allows for 
linearization in the vicinity of the polyhedrin gene, recombinant viruses were 
obtained at a frequency of about 30% (Kitts et al. 1990). It should be pointed out 
that recombination between linear genomic DNA and a transfer vector results in 
circularization of the genome. Therefore, even though the titer of recombinants per 
transfection is similar to that of the normal cotransfections with circular genomic 
DNA, the percentage of recombinants is greatly increased because the background 
of nonrecombinants originating from linear DNA is greatly reduced. Further devel-
opments of the above method increased the percentage of recombinant viruses to 
almost 100% (Kitts and Possee 1993).

Many laboratories specializing in the production of recombinant proteins rou-
tinely use the Bac-to-Bac expression system for constructing baculovirus recom-
binants (Luckov et al. 1993). The diagram shown in Fig. 16.2 outlines the key 
steps of recombinant construction. A bacmid (baculovirus shuttle vector) is an 
engineered low-copy bacterial plasmid (F1 derivative) containing the complete 
baculovirus genome. The gene of interest is cloned into another small plasmid  
(e.g., pFastBac) downstream of the polyhedrin promoter. This plasmid also con-
tains two transposable elements flanking the gene of interest and a gentamycin-
resistance gene. The donor plasmid is used to transform special bacterial strains 
containing the baculovirus genome. These bacteria also contain a plasmid coding 
for the enzyme transposase that catalyzes transposition between the transposable 
elements engineered in the donor plasmid and those engineered in the viral 
genome. As a result, the bacmid containing the gene of interest is obtained and 
can be visually selected because of the presence of an additional LacZ marker 
gene within the viral genome. After verifying the presence of the gene of interest 
in the baculovirus genome, recombinant bacmid preparations from bacteria are 
used to transfect insect cells. Following transfection, viable recombinant 
 baculovirus should be budding into the culture medium within 2–3 days 
posttransfection.
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A few hundred insect cell lines that can potentially be used for in vitro propaga-
tion of baculoviruses are known. A few that support the growth of AcMNPV were 
obtained from two parental organisms, Spodoptera frugiperda and Trichoplusia ni 
(Lepidoptera: Noctuidae). The most widely used is Sf9, which grows well in sus-
pension (Summers and Smith 1987). BTI-Tn5B1-4 derived from T. ni, known as 
High Five cells, has also been used for viral growth (Granados et al. 1994). Cell 
lines that can be used for propagation of Lymantria dispar nucleopolyhedrosis virus 
(LdMNPV), Helicoverpa zea nucleopolyhedrosis virus (HzSNPV), Bombyx mori 
nucleopolyhedrovirus (BmSNPV), Anticarsia gemmatalis nucleopolyhedrovirus 
(AgMNPV), and a few other baculoviruses are also currently available.

The baculovirus expression system is widely used for production of glycopro-
teins with therapeutic potential for humans and animals. Most posttranslational 
modifications of these proteins are the same as in mammalian cells. However, 
N-glycosylation of proteins in mammalian cells is more complex than that in 
insect cells. In the latter, N-glycans with terminal mannose residues are produced, 
in contrast to sialic acid-terminated glycans in vertebrate cells. In most cases, the 
extent and quality of glycosylation in insect cells are sufficient for preservation of 
biological activities of glycoproteins, and such insect-derived glycoproteins fulfill 
the requirements for a potential therapeutic agent. In rare cases, when the role of 
glycan chains in preservation of biological activity is very high, it is possible to 
use “humanized” insect cell lines (Harrison and Jarvis 2006), which are geneti-
cally engineered to produce the required vertebrate-type complex N-glycans with 
terminal sialic acids.

Fig. 16.2 Schematic diagram of Bac-to-Bac expression system. The foreign gene is inserted into 
pFastBac vector, and the plasmid is introduced into specially engineered Escherichia coli strain 
containing Bacmid – large low-copy plasmid and a helper plasmid allowing for site-specific trans-
position. The recombinant Bacmid is isolated and transfected into cultured insect cells. The 
transfected cells are then lysed to yield recombinant baculovirus used later for large-scale prepara-
tion of the baculovirus and for the production of the recombinant protein
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16.3  Baculovirus Production Technology

16.3.1  In Vivo Production

At present, commercial production of baculoviruses has been carried out only 
in vivo, either by applying the virus against the host insect in the field and collecting 
diseased or dead larvae or by producing the target insect in the laboratory on an 
artificial diet and contaminating the diet with a baculovirus for further collection 
of virus-killed insects. The latter is the most commonly used method for producing 
baculoviruses in different countries. Both methods have been used successfully for 
commercial production of the Anticarsia gemmatalis Alphabaculovirus (AgMNPV) 
in Brazil (Moscardi 1999, 2007). For some insects, there are no available artificial 
diets, and therefore, commercial production of baculoviruses of these insects is 
generally too difficult or impossible under laboratory conditions due to depen-
dency of host plant leaves for viral inoculation. On the other hand, field production 
of baculovirus agents is viable, resulting in a product of lower cost (Moscardi 
1999). However, field production is difficult when liquefaction of the insect body 
is very intense, as, for instance, in larvae infected by Spodoptera spp. baculoviruses, 
making it almost impossible to collect dead larvae. In this case, live larvae must 
be collected close to death when the body has not yet ruptured. These larvae may, 
however, contain less virus than would dead larvae. It is known that two viral 
enzymes, chitinase and cathepsin, are important in the process of cuticle disinte-
gration and liquefaction of the insect body, which are common among species of 
Lepidoptera. Among natural isolates of a same baculovirus, it is possible to find a 
few which lack these enzymes, thus facilitating field and laboratory production. 
The commercial field and laboratory production of the AgMNPV are discussed in 
Sects. 16.4.1.2 and 16.4.1.3, to exemplify details of both production methods.

16.3.2  In Vitro Production

Baculovirus production in insect cell cultures offers advantages over in vivo multi-
plication for being a controllable, sterile, highly pure product yield process, besides 
the fact that hundreds of cell lines have already been established. The process of 
baculovirus production for agricultural pest control needs to be efficient, with 
competitive cost, leading to a final product that is highly pathogenic to the target 
pest. There is a strong limitation for in vitro production, however, since successive 
passages of the virus in cell culture result in genetic alterations, leading to loss of 
virulence (Krell 1996; Rhodes 1996). In laboratory culture, production of occlu-
sion-derived virions (ODV) is not necessary for survival of the virus. The budded 
virus (BV) particle is the form used for cell-to-cell transmission in cell culture. The 
main protein of the BV particle is the GP64 (Blissard 1996). During infection, this 
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glycoprotein is essential for virus budding and is responsible for entrance of the 
virus into the next host cell (Monsma et al. 1996). Various culture conditions are 
known to influence infection of lepidopteran cells by baculoviruses and include 
temperature, pH, dissolved oxygen concentration, osmolality, and nutrient compo-
sition of the culture medium. Most lepidopteran cells proliferate optimally at tem-
peratures between 25 and 28°C with an optimum pH of 6.2. Insect cells present 
several comparative advantages to mammalian cells such as ease of culture, higher 
tolerance to osmolality and by-product concentration, and higher expression levels 
when infected with a recombinant baculovirus (Agathos 1996; Ikonomou 
et al. 2003).

In vitro production remains an important requirement from a commercial per-
spective for the use of baculoviruses as insecticides. One of the most important 
effects of the viral passage is the change from the parental, many polyhedra per cell 
(MP) phenotype, to the few polyhedra per cell (FP) phenotype (Fraser and Hink 
1982; Fraser et al. 1983; Pedrini et al. 2004; Rezende et al. 2009; Slavicek et al. 
1996). A key problem associated with the passage effect is the reduced occlusion 
and loss of virulence of the occluded virus. Frequent mutations have been identified 
within a specific region in the Few Polyhedra mutants (FP) that contains the 25k fp 
locus. This gene encodes a 25-kDa protein that is essential for virion occlusion and 
polyhedron formation (Chakraborty and Reid 1999; Harrison and Summers 1995; 
Lua et al. 2002; Pedrini et al. 2004; Slavicek et al. 1996). Another type of mutant 
generated during serial passage of baculovirus is the formation of Defective 
Interfering Particles (DIPs). These mutants have lost the ability to be replicated in 
the host cell without the aid of a helper virus, and large sizes portions of their 
genome are usually deleted (Bangham and Kirkwood 1990; Kool et al. 1991; 
Pijlman et al. 2001).

Another challenge for in vitro production of baculovirus is the requirement for 
a highly productive insect cell line (Jem et al. 1997) and a highly productive cul-
ture medium (Chakraborty et al. 1999). Many cell lines are available for produc-
tion purposes and are derived from various sources, thus exhibiting a wide variety 
of growth and production characteristics. Careful screening or formulation of 
media must be performed for a particular virus isolate–cell line combination, as 
different media can greatly affect polyhedra yields (Pedrini et al. 2006). Recently, 
a new strategy for in vitro production has been proposed based on Many 
Polyhedra (MP) variants. These are clones selected using the plaque assay tech-
nique after several passages of the virus in cell culture. MPs maintain the wild-
type features such as formation of many polyhedra in the cell nucleus and Budded 
Virus high titer (Slavicek et al. 2001; Pedrini et al. 2005), which allow them, in 
principle, to be competitive with the population of Few Polyhedra mutants accu-
mulated in cell culture. The investigation of factors associated with loss of 
genetic stability and the use of new strategies such as isolation of more stable 
variants (MP), as well as the reduction of cost of cell culture medium compo-
nents, is an important requirement for process optimization of in vitro baculovi-
rus production.
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16.4  Use of Baculoviruses for Pest Control

Since the comprehensive review by Moscardi (1999) on use of baculoviruses for 
control of Lepidoptera, other works have been published on the state of virus utili-
zation against insect pests of agricultural, forest, and vegetable production systems 
(e.g., Copping and Menn 2000; Szewczyk et al. 2006, 2009; Souza et al. 2007; 
Erlandson 2008). In this chapter, we focus on the most important programs world-
wide, with emphasis on those aspects that benefit or limit use of these agents in 
IPM programs. The use of the AgMNPV in Brazil is presented as a case study to 
discuss how a very successful program (the most important one worldwide) expe-
rienced a serious setback over the past 6 years.

The main baculoviruses that have been or are currently being utilized are 
depicted in Table 16.1. In Latin America, the AgMNPV is the most commonly used 
biological product to control A. gemmatalis in soybean (Glycine max). This virus 
was used in about 2.0 million hectares during the 2003/2004 growing season in 
Brazil, representing approximately 10% of the soybean cultivated area in the country. 
It has also been used in Argentina, Colombia, Bolivia, Paraguay, and Mexico 
(Moscardi 1999, 2007; Sosa-Gómez et al. 2008). Another virus that is presently 
used in Brazil is the nucleopolyhedrosis of the poplar moth, Condylorrhiza vesti-
gialis. This virus has been produced on insects reared on an artificial diet. The 
primary objective of its application is the treatment of 2,000 ha/year, which repre-
sents the infested area among 5,500 ha of poplar (Populus spp.) plantations in south 
Brazil (Sosa-Gómez et al. 2008). In Peru, a granulovirus has been developed to 
control larval populations of the potato tuber moth, Phthorimaea operculella, in 
field and stored potatoes, by the initiative of the International Potato Center (CIP) 
(Raman et al. 1992). This virus has also been used in Bolivia, Colombia, and 
Ecuador (Moscardi 1999; Sosa-Gómez et al. 2008). Presently, another baculovirus 
used in Latin America is the Erinnyis ello GV in Colombia, which has replaced 
chemical insecticides in sites of endemic occurrence of the insect (Bellotti 1999, 
Bellotti, pers. communication). Apparently, there are no significant programs using 
entomopathogenic viruses in Cuba, since there are no reports in the literature, and 
contacts with Cuban researchers on use of baculoviruses for pest control have not 
been acknowledged.

The genera Heliothis and Helicoverpa represent key pests of several annual 
crops and vegetables worldwide (Ignoffo and Couch 1981; Cunningham 1995), 
responsible for losses of millions of dollars annually. An NPV of H. zea was devel-
oped in the 1960s and registered in 1975 in the USA (Ignoffo and Couch 1981), 
representing an important breakthrough in virus use. Elcar™, developed by Sandoz, 
was the first viral insecticide registered in the USA for use in cotton. The HzSNPV 
has a relatively broad range, infecting other species belonging to the genera 
Helicoverpa and Heliothis. An HzSNPV formulated product registered as GemStar™ 
has been used to control Helicoverpa armigera on cotton in Australia. Locally 
obtained isolates of H. armigera SNPV have also been produced and applied to 
cotton, soybean, pigeon pea, maize, and tomato crops in China, India, and Australia 
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(Zhang et al. 1995; Sun and Peng 2007; Erlandson 2008; Srinivasa et al. 2008). The 
potential application of the NPVs of H. zea and H. armigera is enormous, as H. zea 
and H. virescens in the Americas and H. armigera in Africa, Asia, and Australasia 
cause severe losses to several crops and vegetables. In China, NPVs of H. armigera 
are used on over 100,000 ha annually involving at least 12 HaSNPV producers (Sun 
and Peng 2007).

Another insect genus that causes a severe economic impact on food production 
is the Spodoptera complex, including S. frugiperda, S. exigua, S. littoralis, and S. 
litura. In Brazil, an indigenous isolate of S. frugiperda NPV (SfNPV) was used to 
control the insect in maize and was applied to 20,000 ha/year (Valicente and Cruz 
1991; Moscardi 1999). Owing to difficulties and high cost of SfNPV production by 
the Brazilian Organization of Agricultural Research (Embrapa), a government 
research institution, this program has been discontinued temporarily – at present, 
no SfNPV product is available to maize farmers. Presently, a S. exigua NPV, under 
different trade names, has been used to control this species on vegetable crops in 
the USA, Europe, China, and Thailand. Also, an NPV of S. litura is used in China, 
India, and Thailand (Sun and Peng 2007; Erlandson 2008; Kumari and Singh 2009; 
Szewczyk et al. 2009).

One of the most important successes in commercial production and use of a 
baculovirus in Europe may be the coddling moth, Cydia pomonella, GV (CpGV) 
for use in orchards, particularly apples and pears. The CpGV has been produced 
under different trade names (Table 16.1) and has been used in Argentina, Canada, 
France, Germany, Russia, and Switzerland, among other countries (Moscardi 1999; 
Arthurs and Lacey 2004; Vincent et al. 2007; Erlandson 2008; Kutinkova et al. 
2008). The product Madex® (Andermatt BIOCONTROL), initially developed to 
support organic fruit producers in Europe, is now produced for application on over 
250,000 ha units/year (Vincent et al. 2007). Considering application of other trade 
names of the CpGV, this may be the most important worldwide viral insecticide 
currently applied in terms of treated area.

Other important viruses that are currently employed to control insects include 
the tea tortricids Adoxophyes honmai and Homona magnanima granuloviruses 
(GV) in Japan. From 1990 to 1993, five GV production facilities were established 
in Kagoshima County. These facilities were government-subsidized but operated by 
a tea growers cooperative. The area sprayed with GVs comprised 5,850 ha in 
Kagoshima in 1995, equivalent to 80% of all the tea fields in the prefecture (Nishi 
and Nonaka 1996). The GVs of H. magnanima and A. honmai were registered in 
2003 and produced by Arysta LifeScience Corporation (M. Nakai, pers. communi-
cation); however, the use of GVs has declined. One reason for the reduction in use 
of GVs in Japanese tea fields is the changing pattern of occurrence of other pests. 
Mulberry scale, for example, has been increasing recently, and chemical treatment 
is required to control this insect at the same time GVs are sprayed. However, the 
spray also kills H. magnanima and A. honmai. Furthermore, GVs have been applied 
in Kagoshima for more than 10 years, and the populations of H. magnanima and 
A. honmai have been reduced (Nakamura 2003). In China, approximately 12 bacu-
loviruses have been authorized as commercial insecticides, including H. armigera 
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NPV (cotton, pepper, tobacco) (which is the most heavily used virus in the country), 
S. litura NPV (vegetables), S. exigua NPV (vegetables), Buzura suppressaria NPV 
(tea), and Pieris rapae GV, and Plutella xylostella GV (vegetables) (Sun and Peng 
2007). Use of baculoviruses in China is the greatest worldwide, regarding the num-
ber of viruses being registered for insect control. Sun and Peng (2007) also report 
a Cypovirus (CPV) produced in China for control of Dendrolimus punctatus, an 
insect pest of pine forests.

In forest systems, especially in temperate regions, defoliating larvae of 
Lepidoptera and Hymenoptera are often significant pests. A Lymantria dispar 
(Lep.: Lymantriidae) MNPV has been developed since the 1980s as a viral insecti-
cide under the trade names Gypcheck and Disparvirus, among others (Moscardi 
1999; Reardon et al. 1996; Erlandson 2008; Szewczyk et al. 2009). Also, NPVs of 
hymenopterans such as Neodiprion sertifer, N. abietis, and Diprion pini (Diprionidae) 
have been developed as bioinsecticides (Lucarotti et al. 2007; Erlandson 2008; 
Szewczyk et al. 2009). Forest ecosystems tend to be more stable than agricultural 
systems, allowing for natural or applied baculoviruses to remain in the environment 
for long periods of time.

16.4.1  Use of the Alphabaculovirus of Anticarsia gemmatalis 
(AgMNPV) in Brazil and Latin America: A Case Study

The virus AgMNPV serves as the most important testament that baculoviruses are 
a viable insect control strategy in the context of an IPM program. Conversely, when 
an IPM program is not available or not functioning adequately, use of a baculovirus 
may not succeed. The evolution of the AgMNPV use may serve as an example 
(Moscardi 1999, 2007), as its applications in soybean in Brazil reached approxi-
mately 2.0 million hectares in 2003/2004 season. However, due to changes in agri-
cultural practices by soybean growers, use of the AgMNPV experienced a sharp 
decline in the last 7 years. This program is summarized and discussed in the 
sequence.

16.4.1.1  Historical Perspective

The AgMNPV program was established after a pilot phase, conducted during 
1980–1982 in farmers’ fields in various regions in south Brazil. The virus was 
found to be efficient for control of A. gemmatalis with only one application, 
compared to 1.8 insecticide applications in areas conducted according to farm-
er’s perceptions (Moscardi 1999, 2007). Implementation of the program for 
AgMNPV use began in the 1982/1983 soybean season, when approx. 2,000 ha 
of soybean were treated. Initially, small amounts of the virus were produced in 
A. gemmatalis larvae reared on an artificial diet at Embrapa Soybean facilities 
(Londrina, PR). At that time, frozen killed larvae were distributed to extension 
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officers for treatment of demonstration plots and virus production in the field, 
which provided inocula to treat other areas in the same season or to collect and 
store dead larvae for the subsequent season. AgMNPV usage gained momentum 
with the development of a wettable powder formulation of the virus in 1986 
(Moscardi 1989, 1999).

Another important step for consolidation of the AgMNPV program was the  
legal agreement between Embrapa and five private companies in 1990. Through 
these agreements Embrapa would transfer all the technology for AgMNPV pro-
duction, formulation, and quality control of production batches. The products 
based on the AgMNPV of each company were registered according to Brazilian 
policies for registration of plant protection insecticides (Moscardi and Sosa-
Gómez 1996). With the commercialization of the AgMNPV by private compa-
nies, the use of this virus increased from about one million hectares in 1990 to 
approximately 1.5 million hectares in 1995, with most of the production occur-
ring in the field during each soybean season. Peak AgMNPV use occurred in the 
2003/2004 season, when approximately two million hectares of soybeans were 
treated with the virus. Afterward, the use of this agent declined sharply because 
of changes in farmers’ procedures to control pests in soybean (Fig. 16.3), which 
are discussed below. In addition to the early efforts by Embrapa to develop and 
improve, both technically and economically, in vivo procedures for AgMNPV 
production under controlled laboratory conditions, two of the companies also 
attempted to develop production methodologies. One of them (Geratec) produced 
about 150,000 ha-equivalent of the virus per year in the early 1990s. However, 
owing to the high cost of labor, disposable rearing containers, and components of 
the insect artificial diet, laboratory production of the virus was discontinued by 
both companies. On the other hand, AgMNPV field production became widely 

Fig. 16.3 Evolution of the use of the Alphabaculovius of Anticarsia gemmatalis (AgMNPV). In 
Brazil. Y-axis = Number of treated hectares (×1,000); X-axis = Soybean seasons since 1982/1983. 
The arrow indicates when the soybean integrated program in Brazil started to have a setback, 
making difficult the use of a very specific baculovirus, as discussed in the paper



42916 Baculovirus Pesticides: Present State and Future Perspectives 

adopted by all participating companies as the best available method to obtain 
large quantities of virus-killed larvae at low cost (Moscardi 1999, 2007). Both 
methods (field and laboratory) of AgMNPV production are discussed in this 
sequence. This virus was also used in Argentina and is currently being used in 
Paraguay and Mexico (Sosa-Gómez et al. 2008).

16.4.1.2  AgMNPV Field Production

Field production of the virus became a major enterprise during the 1980s and 
1990s, involving small companies that specialized in marketing AgMNPV-killed 
caterpillars to private companies that registered the virus for commercialization 
(Moscardi 1999, 2007). Growers’ fields were contracted and pest control in their 
fields was implemented by the AgMNPV producers. Usually, about three fields are 
sprayed per day during the prevalence of A. gemmatalis larvae in soybeans 
(December and January). Before collection, fields that are sprayed each day with 
the AgMNPV are inspected at the 6th or 7th day postapplication for selection of 
those that would yield the highest number of dead larvae per hectare. Peak 
 collection occurs from the 8th to the 10th day after virus application and may 
involve 200–300 “larval pickers” per day, requiring ten buses to transport them to 
the fields. In a single day, production at one collection site could reach 600 kg of 
AgMNPV-killed larvae, enough for treatment of 30,000 ha. To emphasize the 
importance of production in the field, during the 2002/2003 season, approximately 
45 metric tons of AgMNPV-killed caterpillars were collected and sold to the pri-
vate companies at about US$ 10–12/kg, representing about two million hectare-
equivalents of the biological insecticide to be applied in the subsequent soybean 
season.

Despite its value for producing high quantities of AgMNPV at low cost, field 
production presented problems that restricted the expansion of its use or affected 
the quality of the end-product, for example, (1) yearly production was too depen-
dent on natural incidence of the host insect, which may occur in low numbers in 
certain seasons, thus reducing AgMNPV yield and resulting in variable quantities 
of the biological insecticide to growers from season to season; (2) quality of field-
collected AgMNPV-killed larvae decreased owing to change in collection proce-
dures to attend the high demand by the private companies that registered their 
AgMNPV commercial products. A key problem was that collection of dead larvae 
in the field shifted from handpicking to shaking plants over pieces of cloth placed 
over the ground in between soybean rows. This shift resulted in collection of dead 
larvae, live host larvae (containing low amounts of virus), larvae from other lepi-
dopteran species, other insects (stink bugs, beetles, etc.), and leaves, which resulted 
in material with higher amount of extraneous organic matter other than the 
AgMNPV-killed larvae. While the handpicking method resulted in an average 
50 ha equivalent of the virus per kg, the newer procedure resulted in an average 
30–35 ha equivalent of the virus per kg. Because of the higher amount of extrane-
ous organic matter, standard procedures for homogenization and formulation had to 
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be modified. Additionally, higher amounts of organic matter in the final product led 
to nozzle clogging and decreased efficiency of the product in the field. Therefore, 
commercial laboratory production of the AgMNPV became a requirement to 
improve quality. To achieve this goal, research was conducted at Embrapa Soybean 
to carry out the necessary improvements to make commercial laboratory production 
viable.

16.4.1.3  AgMNPV Commercial Laboratory Production: A Breakthrough

Improvements in the AgMNPV laboratory production procedures up to 1997 
(Moscardi et al. 1997) served as a starting point for a PhD study (Santos 2003) 
aimed at removing the most important bottlenecks related to commercial production 
of AgMNPV. Among various aspects studied (ingredients of the insect diet, rearing 
conditions, containers, virus dosage, larval size at inoculation, and number of larvae 
per container), significant progress in AgMNPV production was attained as a result 
of these studies. Cost for the artificial diet was reduced by approximately 85% 
through substitution of agar by another jellifying agent, and through the reduction 
of casein content by 50%. With these new procedures, the cost of AgMNPV-killed 
larvae was approximately US$ 0.42 to treat one ha, as compared with US$ 0.30 for 
those collected in the field (Santos 2003). Considering the much higher quality of 
laboratory-produced AgMNPV plus the cost involved, the product generated from 
laboratory production could be offered at a lower cost than that of chemical insec-
ticides to control A. gemmatalis.

In May 2003, a private company (Coodetec) established a pilot laboratory for 
virus production in Cascavel, PR, Brazil and by the end of that year was inocu-
lating 100,000 A. gemmatalis larvae per day, employing 14 people. After pro-
cessing 1,000 kg of dead larvae, viral yield was 65–72 ha-equivalent/kg. 
Coodetec subsequently built large laboratory facilities in 2004, consisting of two 
independent laboratories of 750 m2 each: one for insect production and the other 
for virus production, with another facility (500 m2) for virus storage, processing, 
and formulation. In the first laboratory, eggs are collected daily in adult oviposi-
tion rooms, and larvae are reared in separate rooms up to the 4th instar in 500-ml 
cardboard cups containing insect diet. Daily, 4–5% of the 4th instar larvae are 
transferred to plastic trays with diet and vermiculite to obtain pupae and main-
tain the insect colony. The remaining larvae (95–96%) are taken to the virus 
production laboratory where they are transferred from the 500-ml cups to plastic 
trays containing AgMNPV-treated diet. Seven days later, dead larvae are col-
lected in plastic bags and stored at −4°C for further processing and formulation 
of the biopesticide. The laboratories implemented at Coodetec were imple-
mented to employ 45 people to inoculate 800,000–1,000,000 larvae per day, 
resulting in a quantity of AgMNPV to treat 1.8–2.0 million ha/year. However, 
these laboratories discontinued their production as soybean pest control strategy 
changed in the last 7 years, drastically reducing the demand for the AgMNPV, 
which is discussed below.
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16.4.1.4  Why Did the AgMNPV Program Experience a Setback in Brazil?

With the implementation of no-till agricultural systems in Brazil, soybean farmers 
had to apply herbicides as desiccants prior to soybean sowing. In this operation, 
growers began to mix broad-spectrum insecticides (such as pyrethroids) with the 
herbicides, “just to kill any insects that were present in the weeds” (Corrêa-Ferreira 
et al. 2010). At 15–20 days after soybean emergence, when growers apply poste-
mergence herbicides, most also mixed pyrethroids, and in most cases, these two 
insecticide applications before and early in crop development were found to be 
detrimental to natural enemies (predators and parasitoids), thus disturbing the equi-
librium in soybean systems. Other insects/organisms such as the soybean looper, 
white flies, Spodoptera spp., and mites, which were considered as secondary pests 
7 years ago then became important pests (Bueno et al. 2007). Farmers, therefore, 
went into a treadmill, as broad-spectrum chemicals had to be applied against these 
“pests,” and a highly specific biological product such as AgMNPV could no longer 
be used. Coodetec ceased production of the virus in the laboratory, but the 
 developments regarding commercial AgMNPV production under laboratory condi-
tions were proved to be viable and cost-competitive with chemical insecticides 
available on the market. Presently, this virus is used on about 300,000 ha yearly, 
compared to about two million hectares 7 years ago (Moscardi 2007). Lastly, with 
the introduction of soybean rust in Brazil, at least two applications of fungicides are 
made that may reduce the incidence of important natural entomopathogenic fungi 
such as Nomuraea rileyi (Sosa-Gómez et al. 2003) and Entomophthorales, which 
used to hold down populations of various caterpillar species before fungicide appli-
cations on the crop.

16.5  Factors Limiting Baculovirus Use

A successful program for use of a baculovirus depends upon a combination of fac-
tors (see Moscardi 1999 and references cited in pgs. 274–277), including selection 
of the most virulent isolate, application timing (as larvae may take a week or more 
to die), application technology, and plant substrate. However, solar radiation is the 
major factor affecting field persistence of baculoviruses. Viral activity can be com-
pletely lost in less than 24 h, but mean half-life generally has varied from 2–5 days. 
Ultraviolet radiation in region B (UV-B) (280–310 nm) inactivates baculoviruses. 
However, UV-A (320–400 nm) may also be critical in baculovirus deactivation. 
Many substances have been tested as sunscreening agents in formulations of these 
biological products, with many promoting protection to baculoviruses against UV 
radiation, such as fluorescent brighteners of the stilbene group. Besides protection 
against UV, the stilbenes also enhance viral activity (Shapiro 1995, Morales et al. 
2001 and literature cited therein).

Baculoviruses, because of their high specificity, are most suited for use in 
agriculture, forestry, and fruit crop systems where there are no concurrent 
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important insect pests, as was the case of the application of AgMNPV against A. 
gemmatalis in soybean in Brazil (Moscardi 1999). Also, if an IPM program is 
not adopted by farmers, it is difficult to succeed in using a baculovirus, since the 
target insect must be monitored frequently (at least once per week) to time appli-
cations against the most susceptible larval instars (i.e., young ones). Farmers 
may find the need to sample their fields every week troublesome and may prefer 
the rapid killing by chemical insecticides. A critical issue in baculovirus use is 
the time necessary to kill the insect host (Moscardi 1999; Szewczyk et al. 2006, 
2009; Souza et al. 2007; Erlandson 2008). Farmers may not initially be prepared 
to observe no obvious control results for 4–5 days following application of a 
baculovirus insecticide (Moscardi 2007). In Brazil, in the beginning of the 
AgMNPV program, farmers were not accustomed to wait long for A. gemmatalis 
larval mortality after virus application. Many would return to the fields within 2 
or 3 days and apply chemical insecticides, not waiting for the virus to act on the 
larval populations. Because of this limitation, research has been directed at 
developing genetically modified baculoviruses with shorter times to kill their 
host larva.

16.6  Genetically Modified Baculoviruses to Control Insects

In the past, the practical application of baculoviruses as commercial insecticides 
was hampered by their relatively slow killing action and technical difficulties for 
in vitro commercial production. Due to the slow killing action, primary users (used 
to fast-killing chemical insecticides) regarded baculoviruses as ineffective. With 
advances in genetic-engineering technologies, many successes have been made in 
improving the timing of the killing action. Two broad strategies have been pursued 
in laboratories worldwide to achieve this goal: interference with host physiology 
and introduction of an insect-specific toxin (Bonning and Hammock 1996; Mishra 
1998; Inceoglu et al. 2001).

The first strategy involves introducing genes coding for some insect hormones 
or enzymes into the baculovirus genome. Alternatively, the deletion of some non-
essential baculovirus genes provides a beneficial effect for the speed of kill of a 
virus, as was found in the case of viral ecdysteroid UDP-glucosyltransferase (egt) 
gene. The product of this gene catalyzes the conjugation of sugar molecules to 
ecdysteroids (Tumilasci et al. 2003), thus preventing the ecdysteroid from crossing 
cellular membranes. Maeda (1989) was the first to introduce a diuretic hormone 
gene into Bombyx mori baculovirus genome to cause insects to lose water. 
Modified BmNPV killed larvae about 20% faster than wild-type BmNPV. Ma 
et al. (1998) expressed pheromone biosynthesis activating neuropeptide (PBAN) 
fused to the bombyxin signal sequence for secretion using AcMNPV. The recom-
binant baculovirus reduced survival time of Trichoplusia ni larvae by more than 
20% in comparison to larvae infected with a control virus. Two other insect 
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 hormone genes (eclosion hormone and prothoracicotropic hormone genes) were 
also studied as potential factors for modification of baculovirus; however, no sig-
nificant improvement over wild-type virus was observed (Eldridge et al. 1991; 
O’Reilly et al. 1995). Another strategy for improving the timing of the killing 
action was based on control of the juvenile hormone, which in lepidopteran larvae 
regulates the onset of metamorphosis at the final molt. The juvenile hormone is 
regulated by juvenile hormone esterase which when overexpressed decreases con-
centration of the hormone. This, in turn, is a signal to stop feeding and to pupate. 
This elegant hypothesis for improvement of baculovirus action encountered many 
difficulties in practice but is being pursued to make it more efficient under natural 
conditions (Hammock et al. 1990; van Meer et al. 2000; Hinton and Hammock 
2003; Inceoglu et al. 2001).

Another approach to reduce killing time was used by O’Reilly and Miller 
(1991), who deleted the baculovirus-encoded ecdysteroid glucosyltransferase 
gene. The product of the egt gene normally prevents larval molting during infec-
tion and indirectly increases feeding activity of infected caterpillars. The infec-
tion with recombinant virus resulted in 30% faster killing of larvae and 
significant reduction in food consumption. The egt enzyme is responsible for 
rendering the hormone ecdysone inactive. Inactivation of ecdysone results in 
prolongation of the larval stage and increased plant consumption. When larvae 
are infected with an egt-minus virus, molting proceeds normally, and conse-
quently, the larvae eat less food. The egt gene is not essential for viral replication 
and can be replaced with an exogenous gene, e.g., with a toxin gene, which may 
further enhance the insecticidal activity of the recombinant virus (Popham et al. 
1997; Sun et al. 2004).

Enhancins are baculovirus-encoded proteins that can increase the oral infectivity 
of a heterologous or homologous baculovirus. Their infection-enhancing effects are 
probably due to the degrading action on mucins and to the improved fusion of the 
virus to the midgut epithelium cells (Wang et al. 1994; Wang and Granados 1997). 
Enhancin genes have been expressed by recombinant AcMNPVs and subjected to 
dose-mortality studies (Hayakawa et al. 2000; Li et al. 2003). LD

50
 values were 

significantly lower for the recombinant virus in comparison to the wild-type virus 
(from 4.4- to 21-fold lower). Harrison and Bonning (2001) have constructed a 
recombinant AcMNPV producing three different proteases from the flesh fly 
Sarcophaga peregrina, which are known to degrade basement membrane proteins. 
One of the recombinants expressing cathepsin L under baculovirus promoter of 
p6.9 gene generated a 51% faster speed of kill in comparison to the wild-type virus. 
Chitinases are enzymes that degrade chitin into low-molecular-weight oligosac-
charides. Baculovirus chitinases are likely to be involved in the degradation of 
exoskeletons and gut linings of insects. A recombinant AcMNPV expressing the 
chitinase gene of Manduca sexta was constructed by Gopalakrishnan et al. (1993). 
When fourth instar Spodoptera frugiperda larvae were infected with the recombi-
nant, their survival time was reduced by approximately 1 day in comparison to the 
wild-type AcMNPV.
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Modification of the baculovirus genome by introduction of specific toxin 
genes has been much more widely exploited than methods based on interference 
with host physiology. Most reported research has focused on arthropod toxin 
genes isolated from mites, spiders, or scorpions (reviewed by Inceoglu et al. 
2001; Kamita et al. 2005a, b). This line of research proved to be highly success-
ful, but the reluctant attitude of policy makers in many countries toward geneti-
cally engineered products has hampered their introduction. The first reports on 
successful construction of baculovirus genome containing insect-specific toxin 
genes were published about 20 years ago (Carbonell et al. 1988; Tomalski and 
Miller 1991). The most promising insect-specific toxin gene used for construc-
tion of baculovirus recombinants is probably the gene coding for AaIT toxin 
originating from the scorpion Androctonus australis. The reported speed of kill 
by this baculovirus recombinant was increased up to about 40%, and the feeding 
damage was also reduced by about 40% (Inceoglu et al. 2001). The AaIT toxin 
gene was introduced into different baculovirus vectors including NPVs of 
Bombyx mori (Maeda et al. 1991), Autographa californica (Stewart et al. 1991), 
mint looper Rachiplusia ou (Harrison and Bonning 2000), cotton bollworm 
Helicoverpa zea (Treacey et al. 2000), and Helicoverpa armigera (Sun et al. 
2004). Baculovirus expression of AaIT provides a continuous supply of freshly 
produced toxin; therefore, a low level of constant toxin production, even when 
driven by an early promoter, may be sufficient to elicit a paralytic response. In 
accordance with this hypothesis, Elazar et al. (2001) found that the concentra-
tion of AaIT in the hemolymph of paralyzed Bombyx mori is about 50 times 
lower when the toxin is delivered by a recombinant baculovirus in comparison 
to the dose delivered by direct injection of the same toxin. Toxin genes isolated 
from other scorpions, e.g., Leiurus quinquestriatus hebraeus (Chejanovsky et al. 
1995; Gershburg et al. 1998; Froy et al. 2000), straw itch mite Pyemotes tritici 
(Burden et al. 2000), ants (Szolajska et al. 2004), or spiders Diguetia canities 
and Tegenaria agrestis (Hughes et al. 1997) and introduced into baculovirus 
genomes were highly active against lepidopteran larvae and are also under inten-
sive study as potential biopesticides. Most of these toxins attack insect sodium 
channels, so their target is similar to chemical pesticides belonging to the pyre-
throid group (Bloomquist 1996; Cestele and Catterall 2000). However, their 
specific site of action within sodium channels is different, so they may impart a 
synergistic effect when used in conjunction with baculovirus recombinants car-
rying toxin genes (McCutchen et al. 1997). Another promising approach for 
improvement of baculovirus insecticidal efficacy was suggested by Herrmann 
et al. (1995), who demonstrated that when excitatory and depressant toxins are 
simultaneously injected into insect larvae, they may exert a synergistic effect. 
Regev et al. (2003) have shown that in the case of a recombinant AcMNPV 
expressing toxin pairs (a combination of excitory and depressant scorpion tox-
ins) used against H. virescens, H. armigera, and Spodoptera littoralis larvae, a 
cooperative insecticidal effect is observed. The recombinant producing excitory 
toxin LqhIT1 and depressant toxin LqhIT2 from Leiurus quinquestriatus 
hebraeus provided an improvement of 40% in effective time to paralysis when 
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compared to wild-type AcMNPV and an improvement of approximately 20% 
when compared to recombinants producing each toxin separately. Chang et al. 
(2003) have elaborated a novel and highly successful method for the improve-
ment of recombinant baculoviruses; they generated a baculovirus that produced 
occlusion bodies incorporating Bt toxin. The recombinant baculovirus genome 
coded for native polyhedrin and a fusion protein in which polyhedrin is fused to 
the Bt toxin. The speed of action and pathogenicity of the recombinant were 
greatly enhanced compared to wild-type virus, thus yielding a biopesticide com-
bining the positive properties of the virus and the bacterial toxin and minimizing 
the probability of evolution of insect resistance to these two killing factors.

Numerous studies have investigated the effectiveness of factors such as gene 
promoters and signal sequences in front of cloned genes on the efficiency of pro-
duction and biological quality of expressed toxins. Historically, initial laboratory 
studies with recombinant baculoviruses were carried out by infecting caterpillars 
through ingestion of occlusion bodies or by injecting the budded virus into the 
hemocoel (O’Reilly et al. 1992). The infection by ingestion of occlusion bodies 
can be used for recombinants with healthy polyhedrin gene, so in the past, the 
toxin gene was usually introduced into the p10 locus, while the latter method was 
employed for recombinants with foreign genes in the polyhedrin locus. As an 
alternative to larval injections, the recombinant occlusion-negative viruses were 
packaged into polyhedra by cells infected with a second, occlusion-positive virus 
(e.g., wild-type virus) (Wood et al. 1993). A breakthrough in the construction of 
viral recombinants was the elaboration of the method of duplication of a viral 
promoter (Roy 1992). This procedure allowed for the expression of foreign genes 
under different promoters, e.g., under a basic protein gene promoter (Bonning 
et al. 1994) because none of the viral genes are lost. The level of recombinant 
gene expression in the baculovirus system is promoter-dependent, but factors 
other than the quantity of the product must also be taken into account. The argu-
ment for use of late or very late promoters in recombinant baculoviruses is the 
reduction of risk that a toxin gene could be expressed in nontarget insects because 
these promoters are not active in beneficial insects (McNitt et al. 1995). 
Rachiplusia ou MNPV (RoMNPV) expressing a gene coding for either scorpion 
Androctonus australis toxin (AaIT) or Leiurus quinquestriatus hebraeus toxin 
(LqhIT2) killed larvae of corn borer Ostrinia nubilalis most effectively when the 
gene was cloned behind a late p6.9 promoter. When p10 promoter was used, the 
level of polyhedra production was reduced in some cases, and virions were not 
occluded efficiently (Harrison and Bonning 2000). Recombinant AcMNPV 
expressing cathepsin L of the flesh fly through ie-1 promoter killed H. virescens 
larvae only slightly faster than wild-type AMNPV, but when the gene was 
expressed from the p6.9 promoter, the recombinant virus killed the host about 
50% faster than did the wild-type baculovirus (Harrison and Bonning 2001). On 
the other hand, Tuan et al. (2005) showed that the early p-PCm promoter was 
superior to the very late p10 for controlling insect pests when LqhIT2 scorpion 
depressant toxin gene was introduced into AcMNPV genome, which may indi-
cate higher susceptibility of earlier instars of these larvae to baculovirus infec-
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tion. Sun et al. (2004) constructed a chimeric promoter by insertion of a p6.9 
promoter downstream of the polyhedrin promoter and used this dual promoter for 
the expression of AaIT scorpion toxin gene in egt locus of HaSNPV. This 
HaSNPV-AaIT recombinant was found to be a much more effective biocontrol 
agent than the wild-type virus or egt-deleted virus.

Speed of action of genetically modified baculoviruses can be also enhanced 
by signal sequences in front of cloned genes. van Beek et al. (2003) con-
structed a series of AcMNPV recombinants expressing LqhIT2 scorpion toxin 
gene with different signal sequences, including signal sequences of AcMNPV 
GP64, cuticle protein II of Drosophila melanogaster, bombyxin of B. mori, 
dipteran chymotrypsin, and some scorpion toxins. Bombyxin signal sequence 
proved to be the most effective for enhancing insecticidal efficacy. Further 
searches for new promoters and for more effective signal sequences in trans-
porting a toxin outside of the expressing cell are being carried out in many 
laboratories, and it is expected that many more natural and synthetic promoters 
and signal sequences will improve the speed of kill and safety of recombinant 
baculoviruses.

Biosafety of a biopesticide is an important problem, which requires special 
consideration. Biosafety can never be assured with absolute confidence, but a 
number of studies indicate that baculoviruses pose no hazard to animals other 
than their hosts. Though baculoviruses can enter mammalian cells, productive 
viral infection does not occur even at very high multiplicity of infection (Kost 
et al. 2005). Additionally, the foreign gene to be expressed after baculovirus 
infection must be placed under specific mammalian promoters; the expression 
from the baculoviral promoter has never been observed. Recombinant HaSNPV 
expressing AaIT scorpion toxin gene was not pathogenic to bees, birds, fish, and 
other vertebrates (Sun et al. 2002). Genetically modified AcMNPV did not affect 
the aquatic microbial community in any respect (Kreutzweiser et al. 2001). 
Natural enemies of larvae such as parasitoids and predators were not adversely 
affected by preying upon larvae infected with recombinant viruses (Li et al. 1999; 
Smith et al. 2000; Boughton et al. 2003). Also, it has not been proven thus far that 
the foreign gene can be transferred from donor recombinant baculovirus to 
another organism (Inceoglu et al. 2001, 2007). On the basis of these reports, it 
can be concluded that there is no evidence that recombinant baculoviruses pose 
greater threats to the animal world and the biosphere than the parental baculovi-
ruses. However, in spite of this fact, field trials of genetically modified baculovi-
ruses have instigated massive public protests, which put further trials on hold. 
The slow progress in application of genetically modified baculoviruses as pesti-
cides may be, in part, due to the choice of “exotic” toxin genes used for modifica-
tions of the baculovirus genome. Taking into account the origin of these social 
conflicts, the choice of toxins used for this purpose should be reexamined, and 
baculoviruses should be modified with genes coding for more “natural” insect 
toxins, e.g., with genes coding for toxic polypeptides of parasitoid wasps occur-
ring in regions infested by a particular pest.
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16.7  Final Considerations and Further Prospects on Use  
of Baculoviruses as Biopesticides

Baculovirus insecticides have not met their full potential to control pest insects 
worldwide. In his review, Moscardi (1999) previewed the following: (1) The expan-
sion of baculovirus use, in the following 5 years, i.e., up to 2004, would depend on 
new developments in the areas of recombinant baculoviruses and in the in vitro 
commercial production of these agents. The development of recombinant baculovirus 
was efficiently completed by researchers in several countries, but the in vitro com-
mercial technology still lags behind today due to technical problems; (2) The use 
of baculoviruses would increase substantially in 10 years (i.e., up to 2009). 
However, this did not occur; (3) The AgMNPV program in Brazil could reach about 
four million hectares of soybean. This did not happen either. In reality, the use of 
the AgMNPV declined from two million hectares to about 300,000 ha over the past 
7 years due to reasons discussed above (Sect. 16.4.1.4). In spite of this reduction in 
AgMNPV usage, this program can be considered an example regarding the viability 
of baculoviruses as insecticides. A current program for revival of the integrated pest 
management of soybean insect pests in Brazil will help to increase the use of 
AgMPV.

Despite the low use of viral insecticides worldwide (ca. 0.5%) as compared 
to biopesticides based on the bacterium Bacillus thuringiensis, total use of 
microbial insecticides worldwide is only about 2.0–2.5% of the total market of 
insecticides. Despite the low market influence of baculovirus insecticides, there 
are over 50 registered products in different countries, including the same product 
under different trade names. In the future, genetically modified baculoviruses 
will contribute to the expansion of baculovirus use worldwide, as these GMOs 
are considered safe through extensive research conducted over many years 
(Szewczyk et al. 2009). The most important issue for baculovirus use will be 
public perception regarding the benefits of baculovirus GMOs to control insects, 
including low impact on the environment. Also, regardless of whether a program 
is based on a wild-type or a genetically engineered baculovirus, global farmer 
education toward general use of biological pest control agents will be a key 
feature for expansion of baculovirus use worldwide. Unfortunately, pest control 
programs in most countries are directed toward the use of chemical insecticides, 
as in Brazil, where the official extension services have been “demolished” in 
90% of the states over the past 10 years, leaving farmers to the control recom-
mendations of professionals related to agrochemical companies. The use of 
baculoviruses as very specific bioinsecticides will depend on sound IPM pro-
grams, where integration of available techniques to control insects are used to 
reduce the number of chemical insecticide applications on a given crop and 
minimize the environmental impact of pest control. In systems where no IPM 
programs exist, there is little chance of success of use of a very specific baculo-
virus, especially in crop production systems where the one to be controlled with 
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a baculovirus occurs with other concurrent insect pests. Adoption of the IPM 
approach by farmers is important for use of baculovirus pesticides for successful 
sustainable agriculture.
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Abstract Plant diseases are among the major constraints in the production of 
food crops and inflict significant losses to global agriculture. Pesticides are widely 
used to control plant diseases but their application is costly and, in some cases, 
may bring more disadvantages than benefits. Use of bioinoculants to control plant 
diseases is an economically viable and ecologically sustainable method of disease 
management. A large number of bioinoculants is available; among them, bioin-
oculant fungi constitute the majority and are widely used in different cropping 
systems. Important bioinoculants that directly parasitize plant pathogens include 
Trichoderma spp., Paecelomyces lilacinus, and Pochonia chlamydosporia. Plant 
growth-promoting fungi such as Aspergillus spp. and Penicillium spp. may also 
suppress plant pathogens. In general, bioinoculants are effective against seed- and 
soil-borne fungi and nematodes. However, an important limitation in their com-
mercial use in crop protection is nonavailability of efficient immobilizing systems 
for delivery and survival of bioinoculants. This chapter describes important bio-
inoculants, their effects, and their mechanisms of action against plant diseases 
caused by fungi, bacteria, and nematodes. State-of-the-art technology available for 
the production of commercial formulation of bioinoculants, along with important 
lacuna, is also discussed.

17.1  Introduction

Plant diseases are a common component of natural systems and are among many 
ecological factors that keep plant and animal populations in balance. When a plant 
suffers from an infection, its normal development and functioning are affected and 
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it becomes diseased. Kuhn, in 1858 (Wilhelm and Tietz 1978), was probably the 
first to scientifically define plant disease as “abnormal changes in physiological 
processes which disturb the normal activity of the organs.” Ward (1896) defined 
disease as a condition in which the function of the organism is improperly dis-
charged or, in other words, it is a state which is physiologically abnormal and 
threatens the life of the being or organ. The British Mycological Society defined 
disease as a harmful deviation from the normal functioning process (Wallace et al. 
1950). Plant disease can also be defined as “a physiological disorder or structural 
abnormality that is harmful to the plant or to any of its parts or products that reduces 
the economic value” (Stalkman and Harrar 1957). According to Horsfall and 
Cowling (1977), disease is a malfunctioning process that is caused by continuous 
irritation which may result in some suffering, and this produces symptoms. More 
scientifically, “disease is any malfunctioning of host cells and tissues that results 
from continuous irritation by a pathogenic agent or environmental factor and leads 
to development of symptoms” (Agrios 2005).

Crop plants are known to be affected by over one hundred diseases (Agrios 
2005). However, only a few, usually a single pathogen, at a given time can multi-
ply to an extent to cause the disease. Diseases of crop plants are among the most 
important constraints in the production of adequate quantities of food. 
Approximately half of the world`s total agricultural production is lost due to 
 various pests and diseases at planting and postplanting stages (Khan 2008). The 
incidence of crop losses due to disease is much lower in developed countries 
because of awareness among farmers for disease management. In developing 
countries, greater yield losses occur due to plant diseases because of unplanned 
agricultural practices such as use of marginal lands, low agricultural inputs, and 
lesser concerns by farmers toward plant disease management. On average, losses 
inflicted by weeds, plant diseases, and insect pests upon agricultural crops have 
been  estimated as 33, 26, and 22%, respectively (Khan 2008). According to 
another estimate, plant diseases, weeds, and insects contribute to a 14.1, 10.2, and 
12.2%, respectively, decline in crop production (FAOSTAT 2003; Agrios 2005; 
Table 17.1). Among different kinds of pathogens, the greatest losses are inflicted 
by fungi (42%) followed by bacteria (27%), viruses (18%), and nematodes (13%) 
(Khan and Jairajpuri 2010; Fig. 17.1).

Table 17.1 Estimated annual crop losses caused by pests and diseases 
worldwide a

Practice Losses (US $)

Attainable cop production (2002 prices) $1.5 trillion
Actual crop production (−36.5%) $950 billion
Production without crop protection $455 billion
Losses prevented by crop protection $415 billion
Actual annual losses to world crop production $550 billion
Losses caused by disease only (14.1%) $220 billion
aFAOSTAT (2003); Agrios (2005)
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17.1.1  Management of Plant Diseases

Continual increases in global human population have put twofold pressure on agri-
culture. Precious agricultural lands are being diverted from crop production to 
urbanization and industrialization. As a result, the net area under crop production 
is shrinking, whereas demand for food products continues to increase at an alarming 
pace. According to one estimate, the present global land area under crop production 
would produce much greater quantities of food than present requirements if pest- 
and disease-free crops were grown (Khan and Jairajpuri 2010). Hence, the primary 
requirement to meet food requirements of both present and future populations is to 
integrate plant protection techniques into crop production systems. Numerous meth-
ods of pest and disease management are available including chemical, cultural, physical, 
and biological, which are used according to the crop, pathogen, availability of 
material, and demand of the situation.

Pest control methods involving chemical pesticides is one of the most effective 
and reliable means of disease management; however, in an environmentally con-
scious world, the use of pesticides is under criticism because of several real and 
perceived ill effects. Age-old cultural practices like crop rotation, mixed cropping, 
green manuring, etc. to combat plant diseases are slow in action and are of no benefit 
during epidemic situations. The pace of development and durability of resistant/
tolerant crop cultivars has been slow and unreliable in spite of tremendous advance-
ments in plant genetic engineering. Considering these limitations, there has been a 
growing emphasis on the development of novel management practices that alone or 
in integration with other practices result in a good degree of reduction in pathogen 
inocula and disease severity coupled with sustainability in the production system, 
cost-effectiveness, and eco-friendliness. Biological control is an important approach 

Fig. 17.1 Actual crop production and annual crop losses due to plant diseases, insect pests, and 
weeds (a) and breakdown of crop losses caused by fungi, bacteria, viruses, and nematodes (b)
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in this direction. The most obvious and environment-friendly alternative to pesticides 
is to use naturally occurring beneficial bioinoculants to manage pests and 
diseases.

17.1.1.1  Biological Control

Consensus is developing that chemical-based farming is nonsustainable; as a result, 
ecological approaches are being researched more intensively. The most obvious 
environment-friendly alternative to pesticide application for managing agricultur-
ally important diseases is the use of biological approaches. Biological control is 
based on the phenomenon that every living entity has an adversary in nature to keep 
its population in check (Khan 2005). In 1965, Garrett defined biological control as 
“any condition under which, or practice, whereby, survival and activity of a pathogen 
is reduced through the agency of any other living organism (except man himself) 
with the result that there is a reduction in the incidence of disease caused by the 
pathogen.” Baker and Cook (1974) defined biological control as the “reduction of 
inoculum density or disease producing activities of a pathogen or parasite in its 
active or dormant state, by one or more organisms, accomplished naturally or 
through manipulation of the environment, host, or antagonists, or by mass introduction 
of one or more antagonists.” In 1983, they revised the definition to “the reduction 
of the amount of inoculum or disease producing activity of a pathogen accom-
plished by one or more organisms other than man.”

Biological control can be achieved either by introducing bioinoculants (biocon-
trol agents) directly into a natural ecosystem or by adopting cultural practices that 
stimulate survival, establishment, and multiplication of the bioincoulants. Hence, 
more scientifically, biological control of pests and diseases can be defined as reduction 
in disease severity, crop damage, population or virulence of the pest or pathogen in 
its active or dormant state by the activity of microorganisms that occur naturally 
through altering cultural practices which favors survival and multiplication of the 
microorganisms or by introducing bioinoculants.

In 1874, Roberts demonstrated the first evidence of antagonistic action of micro-
organisms in liquid cultures between Penicillium glaucum and a bacterium and 
introduced the term “antagonism” (Baker 1987). Since then, a great deal of data has 
been generated to demonstrate that biological control is a realistic proposition for 
disease management. The first attempt to control a plant disease with microorganism 
introduced to soil was by Hartley in 1921 where introduction of isolates of sapro-
phytic fungi and one bacterium resulted in significant reduction in severity of 
damping-off of pine seedlings caused by Pythium debaryanum (Baker 1987).

 Bioinoculant Fungi and Mechanisms of Action

Bioinoculants or biocontrol agents are the microorganisms that induce stimulatory 
effects on plant growth and/or suppressive effects on pests or pathogens through 
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a variety of mechanisms when applied in an ecosystem. A large number of 
bioinoculants have been investigated to harness their beneficial effects on crop 
productivity. Bioinoculants are primarily fungal and bacterial in origin. 
Bioinoculant fungi basically work through parasitism (Papavizas 1985; Stirling 
1993) against plant pathogenic fungi and nematodes (Khan 2005). The important 
genera of biocontrol fungi that have been tested against plant pathogenic fungi 
and nematodes include Trichoderma, Aspergillus, Chaetomium, Penicillium, 
Neurospora, Fusarium (saprophytic), Rhizoctonia, Dactylella, Arthrobotrys, 
Catenaria, Paecilomyces, Pochonia, and Glomus. Other kinds of biocontrol 
agents such as plant growth-promoting organisms have also been evaluated for 
disease management (Papavizas 1985; Nair and Burke 1988). A number of fungi 
such as Aspergillus spp., Penicillium spp., and Trichoderma spp. are active 
phosphate-solubilizing microorganisms (PSM), which also suppress plant patho-
gens. Application of PSM can control soil-borne pathogens such as Fusarium 
oxysporum, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia 
solani, Sclerotinia sclerotiorum, and Meloidogyne incognita (Sen 2000; Khan 
and Anwer 2007, 2008; Khan et al. 2009).

Bioinoculants suppress plant pathogens by direct parasitism, lysis, competition 
for food, direct antibiosis or indirect antibiosis through production of volatile sub-
stances, viz., ethylene, hydrogen cyanide, alcohols, monoterpenes, and aldehydes 
(Juan et al. 2005). Activity of bioinoculants mainly depends on the physicochemical 
environmental conditions to which they are subjected. These mechanisms are com-
plex, and what has been defined as biocontrol is the final result of varied mecha-
nisms acting antagonistically to achieve disease control. Some important mechanisms 
in disease suppression by bioinoculants are discussed below.

 Fungistatic

An effective antagonist is usually able to survive in the presence of metabolites 
produced by other microorganisms and plants, and multiply under extreme com-
petitive conditions. Aspergillus spp., Penicillium spp., and Trichoderma spp. were 
found to be most resistant to herbicides, fungicides, pesticides, and many toxic 
heavy metals at minimum inhibitory concentrations (MIC) of 125–850 mg/ml 
(Baytak et al. 2005; Yuh-Shan 2005; Ahmad et al. 2006; Braud et al. 2006). Dose–
response relationships of fungicide resistance in agar growth tests were examined 
with Aspergillus niger, A. nidulans, and Penicillium expansum to pentachloroni-
trobenzene (PCNB), 3-phenylindole, benomyl, or thiabendazole, and resistance 
was measured at high concentrations of these chemicals (van Tuyl 1977). When 
A. niger was included with Foltaf SOW (Captafol 80%) for the treatment of pigeon-
pea wilt, the disease was more effectively controlled than when the fungicides were 
used alone (Bhatnagar 1995).

Trichoderma strains grow rapidly when inoculated in soil because they are natu-
rally resistant to many toxic compounds such as DDT and phenolic compounds 
(Chet et al. 1997). Trichoderma strains are efficient in controlling several phyto-
pathogens such as R. solani, P. ultimum and S. rolfsii when alternated with methyl 
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bromide, benomyl, captan, or other chemicals due to the presence of the ABC 
transport system (Vyas and Vyas 1995; Harman et al. 2004). When Trichoderma 
harzianum was included with Blue Copper-50 for the treatment of pigeon-pea wilt, 
the disease was more effectively controlled than when the fungicides were used 
alone (Bhatnagar 1995).

 Competition for Nutrients

Starvation or shortage of nutrients is one of the most common causes of death of 
microorganisms (Chet et al. 1997). Competition resulting in limiting the nutrient 
supply to fungal phytopathogens results in their biological control (Chet et al. 
1997). For instance, in most filamentous fungi, iron (Fe) uptake is essential for 
viability (Eisendle et al. 2004), and under Fe-deficient condition, most fungi 
excrete low-molecular-weight ferric iron-specific chelators termed siderophores to 
mobilize environmental Fe (Eisendle et al. 2004). Siderophores play a considerable 
role in biocontrol of soil-borne plant pathogens (Leeman et al. 1996) and as a sup-
plier of Fe nutrition to crop plants (Jadhav et al. 1994). Since plant pathogens may 
not have the cognate ferri–siderophore receptor for uptake of the Fe–siderophore 
complex, they are prevented from proliferating in the immediate vicinity because 
of Fe deficiency (O’Sullivan and O’Gara 1992). Hence, siderophore-producing 
bioinoculants can confer a competitive advantage to interactions in the rhizosphere 
(Raijmakers et al. 1995). One of the most sensitive stages for nutrient competition 
in the life cycle of Fusarium is chlamydospore germination (Scher and Baker 
1982). In soil, the chlamydospores of F. oxysporum require adequate nutrition to 
maintain a germination rate of 20–30%. Germination may decrease due to sharing 
of nutrients with other microorganisms. Root exudates are a major source of nutri-
ents in soil. Thus, colonization in the rhizosphere by an antagonist might reduce 
infection by Fusarium-like pathotypes (Cook and Baker 1983). Aspergillus niger 
AN27, a potential biocontrol agent, produced both hydroxamate and catecholate 
groups of siderophores (Sen 1997; Mondal and Sen 1999).

Trichoderma has a superior capacity to mobilize and take up soil nutrients com-
pared to other microorganisms. The efficient use of available nutrients is based on 
the ability of Trichoderma to obtain ATP from the metabolism of different sugars, 
such as those derived from polymers widespread in fungal environments, for exam-
ple cellulose, glucan, and chitin among others, all rendering glucose (Chet et al. 
1997). High-affinity glucose transporter, Gtt 1, has been isolated from T. harzianum 
CECT 2413. Role of this transport system is yet to be discovered properly, but its 
efficiency is considered to be crucial in microbial competitions (Delgado-Jarana 
et al. 2003). The strain CECT 2413 was present in nutrient-poor environments and 
relied on extracellular hydrolases for survival. The Gtt 1 is only expressed at very 
low glucose concentrations, that is, when sugar transport is expected to be limiting 
in nutrient competition (Delgado-Jarana et al. 2003).

By the same mechanism, soil composition influences the biocontrol effective-
ness of Pythium by Trichoderma (i.e., according to Fe availability). Some 
Trichoderma strains produce highly efficient siderophores that chelate Fe and stop 
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the growth of other fungi (Chet and Inbar 1994). In addition, T. harzianum T35 
controls F. oxysporum by competing for both rhizosphere colonization sites and 
nutrients, with biocontrol becoming more effective as the nutrient concentration 
decreases (Tjamos et al. 1992). Competition for carbon has also been involved in 
the occurrence of antagonism expressed by different strains of Trichoderma spp. 
against plant pathogens, particularly F. oxysporum (Sivan and Chet 1989). The 
advantage of using Trichoderma to control Botrytis cinerea is the coordination of 
several mechanisms, the most important being nutrient competition, since Botrytis 
cinerea is particularly sensitive to low nutrient levels (Latorre et al. 2001).

 Antibiosis

Antibiosis is the phenomenon of suppression of one organism by another due to 
release of toxic substances/metabolites into the environment. Antibiosis is important 
in determining the competitive saprophytic and necrotrophic ability of antagonists. 
The bioinoculant fungi may suppress plant parasitic nematodes through antibiosis 
and by stimulating host defense. Low-molecular-weight compounds and antibiotics 
(both volatile and nonvolatile) produced by Trichoderma species and Aspergillus 
spp. impede colonization of harmful microorganisms including nematodes in the 
root zone (Eapen and Venugopal 1995). Harzianic acid, alamethicins, tricholin, pep-
taibols, 6-pentyl-a-pyrone, massoilactone, viridin, gliovirin, glisoprenins, heptelidic 
acid, oxalic acid, and enzymes are some of the chemicals possessing antibiotic prop-
erties produced by Trichoderma and Aspergillus species (Mankau 1969a, b; Benitez 
et al. 2004; El-Hasan et al. 2007).

Aspergillus spp. and Trichoderma spp. are well known for producing antifungal and 
antibacterial agents (Buchi et al. 1983; Fujimoto et al. 1993). An antifungal butenolide, 
harzianolide has been isolated from Trichoderma harzianum (Claydon et al. 1991). 
Most Trichoderma strains produce volatile and nonvolatile toxic metabolites that 
impede colonization by antagonized microorganisms; among these metabolites, the 
production of harzianic acid, alamethicins, tricholin, peptaibols, 6-pentyl-a-pyrone, 
massoilactone, viridin, gliovirin, glisoprenins, heptelidic acid, and others have been 
described (Vey et al. 2001). In some cases, antibiotic production correlates with bio-
control ability, and purified antibiotics mimic the effect of the entire agent. Volatile 
substances from Trichoderma spp. inhibited mycelial growth of Macrophomina 
phaseolina by 22–51% (Angappan 1992). The volatile antibiotics of T. harzianum and 
T. atroviride significantly decreased growth of canker fungal pathogens of poplar, 
Cytospora chrysosperma and Dothiorella gregaria, but nonvolatile metabolites in the 
culture filtrate of Trichoderma spp. inhibited the linear growth of pathogens (Deshmukh 
and Pant 1992; Pandey 1988). There are also examples of antibiotic-overproducing 
strains such as gliovirin-overproducing mutants of T. virens, which provide controls 
similar to that of the wild type and of gliovirin-deficient mutants, which failed to 
 protect cotton seedlings from Phythium ultimum, whereas the parental strain did (Chet 
et al. 1997). Trichoderma spp. are reported to produce carbon monoxide, ammonia 
(Dennis and Webster 1971b), carbonyl compounds, and acetaldehyde (Robinson and 
Park 1966), which may enhance antagonistic activity in soil.
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Aspergillus niger, Trichoderma spp., and Penicillium spp. that parasitize eggs 
prefer eggs which are deposited in cyst or a gelatinous matrix. The oviposition 
nature of Heterodera spp. and Meloidogyne spp. makes them more vulnerable to 
attack by these fungi. As soon as the fungi identify a cyst or an egg mass, they 
rapidly grow and colonize those eggs where larval formation is not complete. 
However, when larva is formed, the egg becomes less vulnerable. It has been sug-
gested that this differential vulnerability of egg and larval stage is due to chitin-
olytic activity of these fungi. Chitin is a major constituent of the egg shell, which 
is lacking in the larval cuticle.

The fungus P. chlamydosporia (i.e., Verticillium chlamydosporium) produces 
nematicidal metabolites. The culture filtrate of P. chlamydosporia in yeast extract 
medium showed pronounced nematicidal and nematostatic effects. A dilution of 1:1 
culture filtrate caused 100% mortality of G. rostochiensis, G. pallida, and 
Panagrellus redivivus (Saifullah 1996c). The actively growing mycelium of P. chla-
mydosporia infects eggs and females of nematodes (Morgan-Jones et al. 1983). Egg 
hatching in the presence of the fungus was inhibited probably due to the effect of 
toxins secreted by the fungus (Meyer et al. 1990) or disintegration of the eggshell’s 
vitelline layer and also partial dissolution of the chitin and lipid layers due to activity 
of exoenzymes (Lopez-Llorea and Duncan 1988; Saifullah and Thomas 1997; 
Stirling 1991). Serine proteases have been identified in P. chlamydosporia (Segers 
et al. 1994). These extracellular enzymes are synthesized in the presence of nema-
tode eggs and repressed by glucose (Segers et al. 1999). In a chemical investigation 
of one fungal strain of P. chlamydosporia, YMF 1.00613, isolated from root knots 
of tobacco infected by M. incognita, four aurovertin-type metabolites were isolated 
and identified, including a new compound, aurovertin I (A1), and three known 
metabolites, aurovertins E, F, and D (A2−A4). The results suggest that the aurovertin-
type metabolites produced by P. chlamydosporia might be one of the pathogenic 
factors involved in the suppression of nematode M. incognita (Niu et al. 2010).

Paecilomyces lilacinus is an effective parasite of nematode eggs and adults (Jatala 
et al. 1979) and its mode of action involves recognition phenomena (e.g., chemot-
axis and adhesion), signaling and differentiation, and penetration of the nematode 
cuticle/eggshell using mechanical as well as enzymatic (protease and chitinase) 
means (Lopez-llorca et al. 2008).

 Mycoparasitism

Mycoparasitism involves direct parasitism of one fungus by another and involves 
recognition, attack, and subsequent penetration and killing of the host fungus 
(Harman et al. 2004). In a necrotrophic association, there is direct contact between 
two fungi, and a nutrient exchange channel is established between them. Typical 
examples are the association of Arthrobotrys oligospora with R. solani (Persson 
et al. 1985), Trichoderma hamatum with species of Phythium, and Rhizoctonia with 
Sclerotium (Bruckner and Pryzybylski 1984).

Observations using scanning electron microscopy revealed that A. niger coiled 
around the pathogen hyphae and penetrated within. Presence of A. niger hyphae 
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inside pathogen hyphae has been confirmed using fluorescent microscopy repeatedly 
in F. oxysporum f.sp. melonis and ciceris, and other pathogens (Sen et al. 1997; 
Sharma and Sen 1991a, b). Further studies have revealed that A. niger could kill 
Macrophomina phaseolina, several species of Pythium, Rhizoctonia solani, Sclerotinia 
sclerotiorum (Sen et al. 1995), and Sclerotium rolfsii (Palakshappa et al. 1989). The 
dead hyphae of the pathogens were eventually invaded. These observations confirm 
that A. niger is a contact and invasive necrotroph (Mondal and Sen 1999).

Trichoderma spp. may detect a host fungus before contact and grow toward it. 
Such remote sensing is partly due to the sequential expression of cell wall-degrading 
enzymes, mostly chitinases, glucanases, and proteases (Harman et al. 2004). 
Trichoderma attaches to the pathogen with cell wall carbohydrates that bind to 
pathogen lectins. Once Trichoderma is attached, it coils around the pathogen and 
forms the appressoria. Production of cell wall-degrading enzymes and peptaibols 
(Howell 2003) follows, which facilitates both the entry of Trichoderma hypha into 
the lumen of the parasitized fungus and the assimilation of the cell-wall content. 
Trichoderma spp. reacts vigorously with hyphae of the Fusarium species. The 
hyphae of Trichoderma spp. when near a pathogen induce morphological deformities 
in the host hyphae. Many times bursting of hyphae and vacuolation have frequently 
been observed (Komatsu 1968; Gao et al. 2001). In addition, granulation, coagula-
tion, disintegration, and finally lysis of the pathogen occurs (Lim and Teh 1990; 
Elad et al. 1983; Nigam et al. 1997; Gao et al. 2001). In vitro studies have revealed 
greatly suppressed synthesis of endochitinase, chitobiosidase, n-acetyl-  b-
glucosidase, and glucan 1, 3-b-glucosidase, and combinations thereof, during spore 
germination and germ tube elongation in Trichoderma spp. (Lorito et al. 1993; Di 
Pietro et al. 1993; Lorito et al. 1994a, b).

Stimulation of Host Defense Response

Association of Trichoderma spp., Aspergillus spp., Penicillium spp., and other 
phosphate-solubilizing fungal antagonists also stimulates plant defensive mecha-
nisms (Howell et al. 2000; Hanson and Howell 2004). An elicitor of plant disease 
resistance, pectinase, was produced by A. niger, which elicited disease resistance in 
cucumber and tomato seedlings (Bai et al. 2004). Cervone et al. (1987) showed that 
the active endo-polygalacturonase (EPG) of A. niger formed oligosaccharides from 
pectin, which were capable of eliciting resistance response in Vigna unguiculata.

Species or strains of Trichoderma amended to the rhizosphere may also protect 
plants against aerial infections including those of viral, bacterial, fungal, and nema-
tode pathogens, due to induction of resistance mechanisms similar to the hypersen-
sitive response (HR), systemic acquired resistance (SAR), and induced systemic 
resistance (ISR) in plants (Harman et al. 2004). At the molecular level, resistance 
results in an increase in concentration of metabolites and enzymes related to defen-
sive mechanisms, such as production of the enzymes phenylalanine ammonia lyase 
(PAL) and chalcone synthase (CHS), which are involved in the biosynthesis of 
phytoalexins (HR response), chitinases, and glucanases. These enzymes comprise 
pathogenesis-related proteins (SAR response) and enzymes involved in response to 
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oxidative stress. Trichoderma metabolites may act as elicitors of plant resistance or 
induce the expression in transgenic plants of genes whose products act as elicitors. 
The metabolites may also be instrumental in the synthesis of phytoalexins, PR 
proteins, and other compounds that may impart greater resistance against several 
plant pathogens, including fungi, bacteria, and nematodes (Elad et al. 2000; Howell 
et al. 2000; Dana et al. 2001; Hanson and Howell 2004), as well as resistance to 
stressful abiotic conditions (Harman et al. 2004). An ethylene-inducing xylanase 
(EIX) produced by T. viride (Dean and Anderson 1991) elicited the production of 
the phytoalexin resveratrol in grapevine cells (Calderon et al. 1993). Hanson and 
Howell (2004) reported that culture filtrates from effective biocontrol strains of 
T. virens stimulated significantly greater terpenoid levels in cotton, and the elicitors 
were most likely proteins or glycoproteins. T. harzianum also induced resistance in 
bean and cucumber (Koike et al. 2001).

 Fungal Diseases and Their Management by Bioinoculants

Fungi are eukaryotes and constitute a group of plant pathogens that incite the most 
economically significant diseases of agricultural crops. Fungi infect all types of 
crops including cereals, vegetables, legumes, and ornamentals and cause specific 
symptoms (Fig. 17.2). Important diseases caused by fungi are rusts (Puccinia spp., 
Hemileia spp.), smuts (Ustilago spp., Tilletia spp.), seed-rot (Pythium spp.), 

Fig. 17.2 Symptoms of some common plant diseases caused by fungi. (a) Leaf rust of wheat 
caused by Puccinia recondite f. sp. tritici, (b) Fusarial wilt of tomato caused by Fusarium oxyspo-
rum f.sp. lycopersici, (c) Fusarial wilt of pigeon pea caused by Fusarium udum, (d) Powdery 
mildew of dahlia caused by Erysiphe cichoracearum, (e) Downy mildew of grapes caused by 
Plasmopara viticola. (Courtesy photo: (a) http://www.ars.usda.gov/.../leaf%20rust%20poster.jpg; 
(b) http://www.mobot.org/.../images/Pests/Pest182.jpg; (e) http://www.plantmanagementnetwork.
org/.../image/1sm.jpg)

http://www.ars.usda.gov/.../leaf%20rust%20poster.jpg
http://www.mobot.org/.../images/Pests/Pest182.jpg
http://www.plantmanagementnetwork.org/.../image/1sm.jpg
http://www.plantmanagementnetwork.org/.../image/1sm.jpg
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 damping-off (Pythium spp.), root rot (Rhizoctonia spp.), wilt (Fusarium spp.), 
blight (Phytophthora spp.), powdery mildew (Erysiphe spp., Shaerotheca spp.), and 
downy mildew (Plasmopara spp., Peronospora spp.), which attack crops under a 
varied range of agroclimatic conditions (Agrios 2005). Generally, moderately 
cooler climates with higher relative humidity are favorable for pathogenesis of 
fungi. Numerous studies have been conducted to test the effect of bioinoculants, 
and on several occasions, their application has proved quite effective in controlling 
fungal-induced plant diseases. The effects of the bioinoculants have been tested 
under in vitro, pot, and field conditions.

 In Vitro

The antagonistic potential of Trichoderma spp. against plant pathogenic fungi has 
been widely explored. Bell et al. (1982) demonstrated in vitro antagonism of 
Trichoderma species against fungal pathogens. Cell-free culture filtrate of T. virens 
proved inhibitory to Pythium ultimum (Howell and Stipanovic 1983). T. harzianum 
strain C184 was tested in vitro for its antagonism against Cylindrocladium pteridis, 
which causes root necrosis in banana and plantain, and Fusarium solani, F. oxyspo-
rum, and Aspergillus sp., which are secondary colonizers of the root system of these 
crops (Ngueko 2002). T. viride and T. harzianum were screened for their antagonis-
tic ability against the rice sheath blight pathogen, Rhizoctonia solani, and their 
culture filtrate inhibited the growth of R. solani (Krishnamurthy et al. 1999; Xu and 
Qin 2000).

Among five species of Trichoderma, T. harzianum and T. viride greatly sup-
pressed the growth of Macrophomina phaseolina in a dual culture test (Khan and 
Gupta 1998). In a similar study, T. virens strongly antagonized P. aphaniderma-
tum, the pathogen responsible for tomato damping-off disease. In fungal growth 
tests, the isolates T. harzianum 1, T. harzianum 2, T. viride 1, T. viride 2 and T. 
viride 3 inhibited growth of the Helminthosporium (Bipolaris) spp. by 79, 69, 84, 
83 and 74%, respectively (Jegathambigai et al. 2009). T. harzianum was found 
antagonistic to Rhizoctonia solani and Verticillium dahliae at 15 and 25°C, respec-
tively, and in vitro inhibited the development of R. solani and V. dahliae at both 
temperatures (Santamarina and Rosello 2006). Chaudhary and Prajapati (2004) 
reported antagonism of T. harzianum and T. virens against F. udum. The antago-
nists reduced colony growth of F. udum through saprophytic competition. T. har-
zianum showed maximal growth in a dual culture test and effectively inhibited the 
growth of Macrophomina phaseolina (65%) (Malathi and Doraisamy 2004). 
Similar effects of T. harzianum have also been reported on S. rolfsii (Prasad et al. 
2003) and F. udum (Singh et al. 2002). In a dual culture test, T. harzianum caused 
severe vacoulation, shrinkage, and coagulation of the cytoplasm of pathogen 
hyphae.

In an in vitro study, T. viride inhibited the radial growth of Aspergillus flavus 
(51%), A. fumigatus (52%), Fusarium sp. (64%), and Penicillium sp. (54%) in 
dual culture (Rajendiran et al. 2010). T. hamatum, T. pseudokoningii, and  
T. virens inhibited Phytophthora cinnamomi, the causal organism of root rot of 
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chestnut, by mycoparasitism with evidence of parallel growth and coiling, and 
overgrowth, preventing further pathogen growth (Chambers and Scott 1995). 
Kucuk and Kivanc (2008) reported in vitro mycoparasitism of Gibberella zeae 
and Aspergillus ustus by T. harzianum strains. In another study, Trichoderma 
isolates were evaluated by the dual culture method, where competition by sub-
strate, mycoparasitism, and antibiosis were observed. The Trichoderma spp. 
isolates inhibited the radial growth of R. solani between 60 and 98% (Martinez 
2008).

 Pot Culture

Species of Trichoderma provided protection to seeds during germination 
against seed rot fungi in pot culture (Elad and Chet 1987). In an in vitro experi-
ment, Elad and Chet (1987) demonstrated that application of spores of 
Penicillium oxalicum on seeds, seedling roots, corms, bulbs, and tubers pro-
vided protection against Pythium ultimum (Elad and Chet 1987). Significantly 
lengthy protection from Penicillium expansum infection (up to 2 months) was 
obtained when intact apples were dipped for 30 s in formulated T. harzianum 
conidia before being inoculated by P. expansum, as compared to untreated 
fruits (Benitez et al. 2004).

Muskmelon seeds were soaked overnight in Aspergillus niger AN 27 (Kalisena 
SD) spore suspension and grown in sand for 6 days. The roots of seedlings (with fully 
opened cotyledonary leaves) were washed thoroughly in water to remove A. niger 
spores. The seeds were suspended in F. oxysporum meloni (aqueous) spore suspen-
sion. These Muskmelon seedlings raised from the A. niger-treated seeds showed 56% 
resistance to F. oxysporum melonis without physical presence of A. niger in the root 
zone. These seedlings were 58, 26, and 2% higher in peroxidase, polyphenol oxidase, 
and phenylalanine ammonia lyase activity, respectively, over controls (Radhakrishna 
and Sen 1986; Angappan et al. 1996). The lignin content was also higher in the tissues 
of treated plants and resulted in the induced resistance (Kumar and Sen 1998).

Application of Trichoderma spp. has been found effective in pot conditions 
against a large number of fungi such as Fusarium spp. (Khan 2005), Rhizoctonia 
spp. (Olson and Benson 2007), Macrophomina phaseolina (Khan and Gupta 
1998), Pythium spp. (Pill et al. 2009), Phytophthora spp. (Hanada et al. 2009), 
Botrytis spp., and other pathogenic fungi (Olson and Benson 2007). Greenhouse 
experiments showed that plant growth media based on grape marc compost (com-
post peat 1:1, v/v) amended with T. asperellum T34 suppressed Fusarium wilt of 
carnation (Sant et al. 2010). In another study, T. koningii (TNAU) was used to 
control chickpea blight caused by Colletotrichum dematium with seed treatment 
(108 cfu/ml) (Rao and Narayana 2010). In a greenhouse experiment, Trichoderma 
spp. isolates significantly controlled sheath blight of rice caused by R. solani 
(Martinez 2008) and Fusarium rot of bean caused by Fusarium solani (using a 
combination of T. harzianum and T. asperellum) (Ibrahimov et al. 2009). T. asper-
ellum strain T34 also suppressed Fusarium wilt of carnation better than standard 
chemicals (Sant et al. 2010).
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 Field Conditions

In a field study, seed treatment with T. harzianum decreased incidence and severity 
of Fusarium wilt in chickpea by 30 and 60%, respectively (Khan et al. 2004). In 
another trial, the same antagonist provided the highest control of F. oxysporum 
f. sp. ciceris, which causes wilt in chickpea under field conditions (Singh et al. 
2003). T. harzianum had superior antagonistic efficiency against ten isolates of 
F. oxysporum f. sp. ciceri compared to T. viride (Gurha 2001). Prasad et al. (2002) 
evaluated T. harzianum PDBCTH 10 and T. viride PDBCTV against natural inci-
dence of chickpea wilt. The wilt incidence was highest (12 and 16%) in control 
plots, and in plots treated with T. harzianum, only 4 and 5.1% wilt incidence was 
observed at 60 and 90 days, respectively. Upadhyay and Mukhopadhyay (1986) 
demonstrated the suppression of Sclerotium root rot of sugar beet by application of 
T. harzianum in field soil. Singh and Singh (2004) reported that T. harzianum con-
trolled S. rolfsii, the incidence of collar rot in mint by 67–100%. Khan and Akram 
(2000) observed a significant decrease in wilt of tomato caused by F. oxysporum 
f. sp. lycopersici by soil application of T. virens. In another trial, soil application of 
T. koningi, T. hamatum, and T. virens controlled tomato wilt caused by F. oxyspo-
rum f. sp. lycopersici (Cipriano et al. 1989). Khan and Gupta (1998) reported 
superior control of root rot of eggplant caused by Macrophomina phaseolina fol-
lowing soil application of T. harzianum and T. viride in comparison to T. koningi. 
Satisfactory control of tomato damping-off has been reported by seed treatment 
with T. virens (De and Mukhopadhyay 1994).

Seed treatment with T. harzianum or P. lilacinus controlled wilt of tomato 
(Shahida and Gaffar 1991). Seed treatment with T. harzianum also checked root rot 
of chickpea caused by R. solani, and subsequently, the yield of chickpea varieties 
increased by 40–65% (Khan and Rehman 1997). Soil application of a T. virens pellet 
formulation controlled damping-off caused by R. solani (Papavizas and Lewis 
1989). Coating seeds with T. harzianum, T. viride, and T. virens significantly con-
trolled F. oxysporum f. sp. ciceri wilt by 30–46%, and integration of biocontrol 
agent and carboxin increased seed yield by 25–43% (Dhedhi et al. 1990).

Helminthosporium (Bipolaris) causes leaf spot disease in cane palm, 
Chrysalidocarpus lutescens, and losses could reach 90% during rainy weather condi-
tions. Field experiments were carried out to test the efficacy of seed treatment of cane 
palm against Helminthosporium infection. Isolates of T. harzianum and T. viride 
obtained from soil and having antagonistic activity against Helminthosporium were 
used in field trials. Seed treatment with spore suspension completely eliminated the 
disease and also significantly increased seed germination, seedling growth, and seed-
ling vigor (Jegathambigai et al. 2009). Commercial formulations of T. harzianum 
(Plant Guard and Biocide) successfully controlled F. solani, F. oxysporum, and 
Macrophomina phaseolina, the main pathogens of root rot disease in grapevines. A 
complete elimination of these pathogens was recorded with Plant Guard, and a 51 and 
48% increase in yield/vine was recorded with Plant Guard and Biocide, respectively 
(Riad et al. 2010). In another study, black rot caused by Thielaviopsis paradoxa in 
pineapple was controlled by T. harzianum (Wijesinghe et al. 2009).
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A good deal of work has been conducted in field trials of Aspergillus niger 
against soil-borne fungal pathogens. In a field where muskmelon and watermelon 
crops were suffering from Fusarium wilt (sometimes R. solani and Pythium spp. 
were associated with the disease), treatment of seeds with A. niger (Kalisena SD) 
at 8 g/kg and soil with A. niger (Kalisena SL) at 30 g/pit resulted in 81% control of 
the disease. The vines were more vigorous, and even with 15% incidence of disease, 
yield was approximately 5% greater as compared to that in disease-free areas 
(Chattopadhyay and Sen 1996). Seed treatment with Kalisena SD also provided 
30% less sheath blight disease over control plants (Kumar and Sen 1998). Problems 
of pre-and postemergence damping-off incited by P. aphanidermatum and R. solani 
in fruit and vegetable farms were successfully overcome by a combined treatment 
of seed and soil application of Kalisena SD and Kalisena SL (Majumdar and Sen 
1998). Similarly, 93% control of charcoal rot of potato in a Macrophomina 
phaseolina-infested field was obtained with A. niger (Kalisena SD and Kalisena 
SL) (Mondal 1998). Winter sorghum can be strongly damaged by Macrophomina 
infection; however, A. niger (Kalisena SD) seed treatment brought down incidence 
of the disease from 30 to 7% (Das 1998).

Many filamentous fungi and yeasts have been shown to be effective antagonists 
of fungi infecting the aerial parts of plants (Blakeman and Fokema 1982; Blakeman 
1985). Hyseik et al. (2002) reported that a T. harzianum-based commercial product 
(Supresivit) applied at 0.5 g/kg of mineral fertilizers could suppress foliage dis-
eases in wheat, barley, maize, oil rape, and potato, and therefore increase yields. 
Several foliar diseases have also been reduced significantly (by more than 50%) 
when leaves were sprayed with spores of common phylloplane fungi,  
e.g., Alternaria, Cochliobolus, Septoria, Colletotrichum, and Phoma or with spores 
of hyperparasites (Omar and Heather 1979). Examples include the cucumber pow-
dery mildew fungus Sphaerotheca fuliginea treated with spores of Ampelomyces 
quisqualis or Tilletiopsis (Hijwegen 1986), the wheat leaf rust fungus Puccinia 
triticina with spores of Darluca filum (Devay 1956), and the carnation rust fungus 
with Verticillum lecanii (Fleming 1980). Similarly, spraying a spore suspension of 
common bark saprophytes such as Cladosporium sp. and Epicoccum sp. (Fokkema 
1971), and Trichoderma spp. on pruning cuts of fruit trees has prevented infection 
by canker-causing pathogens such as Nectria galligena and Leucostoma (Cytospora sp.). 
A spray with Trichoderma in the field reduced Botrytis rot of strawberries and 
grapes at harvest and in storage (Dubos and Bulit 1981) and dry eye rot of apple 
fruits (Tronsmo 1986). Andrews et al. (1983) showed that Chaetomium globosum 
was able to control scab (Venturia inaequalis) development when applied to apple 
leaves under experimental conditions.

Postharvest rot of several fruits could be reduced considerably by spraying the 
fruit with spores of antagonistic fungi and saprophytic yeasts at different stages of 
fruit development, or by dipping the harvested fruits in a spore suspension. Control 
of postharvest diseases caused by B. cinerea and A. alternata of apple and tomato 
has been successful by using culture filtrates of T. harzianum T22 (Ambrosino et al. 
2005). Yeast such as Metschnikowia pulcherrima (Irina et al. 2006) reduced post-
harvest rotting of peach and apricot. Also, significant reduction of citrus green 
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mold (Penicillium digitatum) was obtained by treating fruits with antagonistic 
yeasts or the fungal antagonist T. virens (Zamani et al. 2006), whereas post-harvest 
Botrytis rot of strawberries or grapes was reduced by several sprays of Trichoderma 
spores on blossoms and young fruits (Sesan et al. 1999). Postharvest black rot 
caused by Thielaviopsis paradoxa of pineapple fruit has been controlled by T. har-
zianum (Reyes et al. 2004; Wijesinghe et al. 2009). Penicillium rot of pineapple was 
reduced considerably by spraying fruits with nonpathogenic strains of the pathogen 
(Singh et al. 2009). Similarly, several antagonistic yeasts protected grapes and 
tomatoes from Botrytis, Penicillium, and Rhizoctonia rots (Janisiewicz and Jeffers 
1997). The film-forming Saccharomyces cerevisiae strain M25 showed a signifi-
cant ability to reduce postharvest decay in apples caused by the phytopathogenic 
fungus and patulin-producer Penicillium expansum (Ortu et al. 2005). One such 
yeast, Candida saitoana, controlled postharvest decay of apples by inducing systemic 
resistance while at the same time increasing chitinase and b-1,3-glucanase activi-
ties in the fruit (El Ghaouth et al. 2003).

 Bioinoculants in IPM

Some bioincoulants, especially Trichoderma spp., have been found to be quite 
compatible with common fungicides and nematicides such as Thiram, Vitavax, 
Carbendazim, Nemacur, and Furadon; hence, they can be used in integrated disease 
management programs. Chickpea and lentil seeds treated with T. virens (107 
conidia/ml) and subsequently with 0.1% carboxin effectively reduced soil-borne 
populations of F. oxysporum, R. solani, and Sclerotium rolfsii (Mukhopadhyay 
et al. 1992). In the field, integrated use of T. harzianum with fungicidal seed treat-
ments significantly reduced incidence of chickpea wilt complex and increased crop 
yields. Bean seeds sown in soil heavily infested with B. cinerea, R. solani, and 
P. ultimum and treated with conidia of the transgenic Trichoderma strain germi-
nated, but the seeds treated with wild-type spores did not germinate (Brunner et al. 
2005). Transgenic strain SJ3-4 of T. atroviride not only exhibited threefold greater 
inhibition of spore germination of Botrytis cinerea but also overgrew and caused 
lysis of R. solani and P. ultimum (Brunner et al. 2005). Seed treatment with Vitavax 
and Ziram resulted in 30% disease control. Disease control increased to 63% when 
T. harzianum was applied with the fungicides (Kaur and Mukhopadhyay 1992).

 Bacterial Diseases and Their Management

The first evidence of bacteria being responsible for plant diseases was reported in 
1982 when the association of a bacterium (now known as Erwinia amylovora) was 
established with fire blight disease of pear. Since then, numerous plant pathogenic 
bacteria have been identified. The bacteria that cause diseases in plants are faculta-
tive saprophytes and can be grown artificially on nutrient media; however, fastidious 
vascular bacteria are difficult to grow in artificial media and some do not grow in 
culture (Agrios 2005). Plant pathogenic bacteria are rod-shaped, the only exception 
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being Streptomyces, which is filamentous. Streptomyces produce spores, called 
conidia, at the end of the filament. Other bacteria, however, do not produce spores. 
Bacterial pathogenicity depends primarily on spore/conidia production in the shortest 
possible time. Bacterial diseases of plants occur at any location that is reasonably 
moist and warm. Under favorable environmental conditions, they may be destruc-
tive in any geographical region.

Plant pathogenic bacteria induce different kinds of symptoms in plants depending 
on causal agent and host, such as leaf spots and blights; soft rots of fruits, roots, and 
storage organs; wilts; overgrowths; scabs; and cankers (Fig. 17.3), and cause severe 
yield losses. There are eight major bacterial genera that are plant pathogenic and 
cause significant economic losses to plants: Pseudomonas, Xanthomonas, Erwinia, 
Agrobacterium, Clavibacter, Curtobacteium, Rhodococcus, and Streptomyces 
(Singh 2008). Bacterial canker of tomato is distributed throughout the world and 
may cause up to 60% yield loss (Chang et al. 1992). Yield reduction due to other 
important bacterial diseases may reach 5–25% (bacterial blight of cotton, Verma 
1995), 6–60% (bacterial leaf blight of rice, Srivastava and Rao 1966), 10–15% (bac-
terial blight of mango, Kishun 1987), 8–16% (bacterial spots of chilli and tomato, 
Singh 2008), 10–70% (bacterial brown rot and wilt of potato, Verma and Shekhawat 
1991), and 11–91% (bacterial wilt of tomato and eggplant, Kishun 1987).

Data on control of plant pathogenic bacteria with the application of bioinoculants 
is limited; however, a few studies conducted thus far have shown that bacterial 

Fig. 17.3 Symptoms of some common plant diseases caused by bacteria. (a) Soft rot of chilli 
caused by Erwinia carotovora subsp. Carotovora. (b) Bacterial leaf blight of rice caused by 
Xanthomonas oryzae pv. oryzae, (c) Potato scab caused by Streptomyces scabies, (d) Bacterial 
wilt of tomato caused by Ralstonia solanacearum (symptoms on youngest leaves), (e) Bacterial 
wilt of tomato in the field, (Courtesy photo: (a) http://www.omafra.gov.on.ca/.../bacterial-soft-rot.
html; (b) http://www.jxny.com/bctk/2009-4-15/sdbykb.htm; (c) http://www.hort.uconn.edu/ipm/
veg/htms/scabpot.htm; (d) University, USDA Cooperative Extension Slide Series, Bugwood.org; 
(e) Courtesy J. P. Jones (http://www.apsnet.org/.../bacteria/text/fig02.htm))

http://www.omafra.gov.on.ca/.../bacterial-soft-rot.html
http://www.omafra.gov.on.ca/.../bacterial-soft-rot.html
http://www.jxny.com/bctk/2009-4-15/sdbykb.htm
http://www.hort.uconn.edu/ipm/veg/htms/scabpot.htm
http://www.hort.uconn.edu/ipm/veg/htms/scabpot.htm
http://www.apsnet.org/.../bacteria/text/fig02.htm
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diseases of plants can be successfully managed with bacterial antagonists. For 
example, bacterial crown gall has been controlled by treating seeds or nursery stock 
with bacteriocin-producing strain Agrobacterium radiobacter K-1026 (Jindal 
1990). Some information is also available on management of bacterial plant patho-
gens with fungal bioinoculants. Treatment of tubers and seeds with fungal antago-
nists has proved effective against plant pathogenic bacteria, but not under field 
conditions (Agrios 2005). Kalita et al. (1996) reported 47.5% reduction in citrus 
canker incidence (Xanthomonas campestris pv. citri) after application of a strain of 
Aspergillus terreus. Bacterial wilt of tomato (Ralstonia solanacearum) and soil 
populations of the pathogen were reduced by soil application of Glomus mosseae 
together with P. fluorescens (Kumar and Sood 2002).

 Nematode Diseases and Their Management

Parasitic nematodes are considered important pathogens of agricultural crops. 
Nematodes damage plants by injuring and feeding on root hairs, epidermal cells, 
cortical, and/or stelar cells (Khan 2008). A significant number of nematodes like 
Rotylenchus, Hoplolaimus, Helicotylenchus, Tylenchorhynchus, Belonolaimus, 
Trichodorus, and Longidorus are ectoparasites, which feed on the root surface. 
However, a considerable number of nematodes fully enter the host root and are 
termed endoparasites. Examples include root-knot nematodes (Meloidogyne spp.), 
cyst-forming nematodes (Heterodera spp.), and root-lesion nematode (Pratylenchus 
spp.). Some nematodes such as citrus nematode (Tylenchulus semipenetrans) and 
reniform nematode (Rotylenchulus reniformis) are considered semi-endoparasites 
as they only partly enter the host tissue.

Nematodes are documented to cause up to 7–12% yield loss to various crops. 
Yield losses vary greatly, depending on inoculum level and host species. Severe infec-
tion may result in as much as 80–90% yield decline in an individual field, and 
sometimes, plants fail to produce any yields of economic value. Nematode damage 
usually remains hidden and is not recognized by growers or scientists. This is not 
always the case, however. When fields are heavily infested, characteristic symp-
toms appear on roots or shoots. Specific symptoms include root lesions, root rot, 
root pruning, root galls, and cessation of root growth (Fig. 17.4).

Some nematodes also cause characteristic symptoms on aboveground parts. 
Aphelenchoides spp. cause necrosis and whitening of leaves of chrysanthemum, 
strawberry, and rice. Ditylenchus dipsaci attacks bulbs as well as buds of tulip and 
lily (Fig. 17.5). In addition to direct damage, nematodes often aid or aggravate 
diseases caused by fungi, bacteria and viruses or may break the resistance of culti-
vars to pathogens. Hairy root of rose, caused by Agrobacterium rhizogenes, is of 
minor importance, but in the presence of Pratylenchus vulnus, the disease becomes 
severe (Sitaramaiah and Pathak 1993). Fusarium wilt-resistant cultivars of cotton 
become susceptible in the presence of root-knot nematodes (Atkinson 1892). The 
degree of crop damage, however, depends largely on plant species or cultivar, 
nematode species, level of soil infestation, and prevailing environmental conditions. 
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Plant nematodes may also act as vectors for bacteria, fungi, and viruses. For 
instance, Anguina tritici carries Clavibacter tritici and Dilophospora alopecuri to 
the shoot meristem of wheat (Khan and Dasgupta 1993).

Biological control of nematodes may be achieved with two kinds of microorgan-
isms, i.e., classical parasites or predators, and plant growth-promoting (PGPR) 
microorganisms. Classical parasites or predators such as Paecilimyces lilacinus, 
Dactylaria candida, and Pasteuria penetrans have been used in nematode control 
during the last few decades and reduce nematode population by direct action 
(De Bach 1964). PGPR may suppress rhizoshpheric nematode populations by pro-
moting host growth, inducing systemic resistance, and/or producing nematoxic 
metabolites such as bulbiformin (Brannen 1995), phenazin (Toohey et al. 1965), and 
pyoleutorin (Howell and Stipanovic 1980).

In recent years, considerable research has been carried out on the use of bioin-
oculants to control nematode populations in soil. Effects of microorganisms have 

Fig. 17.4 Symptoms of some common nematode diseases on roots. (a, b) Root lesion of tobacco 
caused by Pratylenchus penetrans, (c) Root-knot disease of tomato caused by Meloidogyne incog-
nita, (d) Cysts of Globodera rostochiensis, the golden nematode on potato roots, (e) Blistered and 
cracked onion bulbs caused by Ditylenchus dipsaci. [Courtesy photo: (a) R. J. Reynolds Tobacco 
Company Slide Set, R. J. Reynolds Tobacco Company, Bugwood.org (http://www.forestryimages.
org/.../3072x2048/1402035.jpg); (b) C. C. Russell (http://www.nematode.unl.edu/extpubs/kanfig3e.
jpg); (c) R. S. Hussey, (http://www.apsnet.org/.../images/fig08.jpg); (d) courses.cit.cornell.edu/.../
Golden_nematode.html; (e) http://www.inra.fr/.../HYPPZ/RAVAGEUR/6ditdip.htm]

http://www.forestryimages.org/.../3072x2048/1402035.jpg
http://www.forestryimages.org/.../3072x2048/1402035.jpg
http://www.nematode.unl.edu/extpubs/kanfig3e.jpg
http://www.nematode.unl.edu/extpubs/kanfig3e.jpg
http://www.apsnet.org/.../images/fig08.jpg
http://courses.cit.cornell.edu/.../Golden_nematode.html
http://courses.cit.cornell.edu/.../Golden_nematode.html
http://www.inra.fr/.../HYPPZ/RAVAGEUR/6ditdip.htm
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been evaluated against different nematodes under in vitro, pot, and field conditions. 
Some important fungal bioinoculants are listed in Table 17.2.

 In Vitro Studies

Culture filtrate of Pochonia chlamydosporia in yeast extract medium has demon-
strated pronounced nematicidal and nematostatic effects. A dilution of 1:1 culture 
filtrate resulted in 100% mortality of Globodera rostochiensis, G. pallida, and 
Panagrellus redivivus (Saifullah 1996c). Strains of T. virens and Burkholderia cepa-
cia (bacteria) were found to produce extracellular factors that decreased M. incog-
nita egg hatch and juvenile mobility (Siddiqui and Shaukat 2004). Eapen and 
Venugopal (1995) have shown that isolates of Trichoderma spp. have broad-spectrum 
biocontrol activity against a number of pathogenic fungi and nematodes.  
A serine protease of 28 kDa with trypsin activity was isolated from Trichoderma 
strain 2413. The enzyme reduced the number of hatched eggs of root knot nema-
todes and showed synergistic effects with other proteins produced during antagonis-
tic activity of the strain (Benitez et al. 2004). The number of hatched eggs of the 
root-knot nematode, M. incognita, was significantly reduced after incubation with 

Fig. 17.5 Some common foliar symptoms of nematode diseases. (a) Damage to tulip flower due 
to Ditylenchus dipsaci, (b) Aphelenchoides ritzemabosi on chrysanthemums, (c) Cauliflower 
disease of strawberry caused by Aphelenchoides fragariae, (d) Aphelenchoides fragariae on car-
nation leaf, (e) White tip of rice caused by Aphelenchoides besseyi. [Courtesy photo: (a) Central 
Science Laboratory, Harpenden Archive, British Crown, Bugwood.org (http://www.forestryimages.
org/browse/detail.cfm?imgn); (b) http://www.floranazahrade.cz/poradna/poradna2003_12.htm; 
(c) ucdnema.ucdavis.edu/.../204NEM/2FOLIAR.htm; (d) ucdnema.ucdavis.edu/.../204NEM/2FOLIAR.
htm; (e) Donald Groth, Louisiana State University AgCenter, Bugwood.org (http//www.forestry-
images.org/browse/detail.cfm?imgn)]

http://www.forestryimages.org/browse/detail.cfm?imgn
http://www.forestryimages.org/browse/detail.cfm?imgn
http://www.floranazahrade.cz/poradna/poradna2003_12.htm
http://ucdnema.ucdavis.edu/.../204NEM/2FOLIAR.htm
http://ucdnema.ucdavis.edu/.../204NEM/2FOLIAR.htm
http://ucdnema.ucdavis.edu/.../204NEM/2FOLIAR.htm
http://http//www.forestryimages.org/browse/detail.cfm?imgn
http://http//www.forestryimages.org/browse/detail.cfm?imgn
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pure PRA1 (trypsin-like protease) preparations of T. harzianum CECT 2413 (Suarez 
et al. 2004). In another study, T. asperellum-203 and T. atroviride suppressed  
M. javanica populations by direct effect on various developmental stages of nema-
todes, viz., eggs, larvae, and adults (Sharon et al. 2009). Culture filtrates of 
Aspergillus niger soil isolates AnC2 and AnR3 efficiently suppressed hatching of eggs 
and mortality of juveniles of M. incognita (Khan and Anwer 2008).

Table 17.2 Effect of different bioinoculant fungi on plant nematodes infesting agricultural 
crops

Antagonistic fungi Nematode managed Host plant References

Aspergillus niger Meloidogyne spp. Tomato Singh et al. (1991)
A. niger M. incognita Okra Sharma et al. (2005)
A. niger M. incognita Eggplant Khan and Anwer (2008)
A. niger M. incognita Tomato Khan et al. (2007)
Paecilomyces lilacinus Meloidogyne spp. Tomato Khan and Tarannum (1999); 

Pal and Gardener (2006); 
Schenek (2004)

P. lilacinu and T. virens M. incognita Tomato Khan and Akram (2000)
P. lilacinus and 

 P. chlamydosporia
M. incognita Mung bean Khan and Kounsar (2000)

P. lilacinus M. javanica Tobacco Hewlett et al. (1988)
P. lilacinus R. reniformis Tomato Lysek (1966)
P. lilacinus Meloidogyne spp. Various Jatala (1986)
P. lilacinus Meloidogyne spp. Okra Khan and Ejaz (1997)
Penicillium anatoticum Globodera sp. Potato Jatala (1986)
T. harzianum, P. lilacinus M. incognita Chickpea Pant and Pandey (2002)
T. harzianum M. javanica Tomato Siddiqui and Shaukat (2004)
T. harzianum M. arenaria, Corn Windham et al. (1989)
T. harzianum Meloidogyne spp. Cardamom IISR 1995
Trichoderma asperellum 

-203 and Trichoderma  
atroviride

M. javanica In vitro Sharon et al. (2009)

T. pseudokoningii,  
T. viride, P. lilacinus,  
A.niger, G. mosseae

M. incognita Soybean Oyekanmi et al. (2008)

T. harzianum,  
P. lilacinus

Meloidogyne javanica Okra Zareen et al. (2001)

T. atroviride R. similis Banana Zum Felde et al. (2006); 
Pocasangre Enamorado 
et al. (2007)

T. harzianum (T014) M. incognita Gladiolus Khan and Mustafa (2005)
T .harzianum and  

P. chlamydosporia
Globodera rostochiensis 

and G. pallid
Potato Saifullah (1996a, b)

T. harzianum and  
P. chlamydosporia

M. incognita Chickpea Khan et al. (2005a)

T. harzianum and  
P. chlamydosporia

H. cajani Pigeonpea Siddiqui and Mahmood 
(1996)
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 Pot Conditions

The majority of studies exploring the potential of bioinoculants against plant 
nematodes have been carried out under pot conditions (Khan 2007). In a pot 
experiment, chilli (Capsicum annum) seedlings were inoculated with Meloidogyne 
javanica, Aspergillus niger, and Rhizoctonia solani alone or in various combina-
tions. All growth parameters were significantly greater with A. niger and lower 
with M. javanica or R. solani (Shah et al. 1994). Singh et al. (1991) showed that 
application of A. niger decreased the damage caused by M. incognita and R. solani 
singly or together on the tomato cultivar, Perfection. Similarly, inoculation with 
A. niger, Epicoccum purphurascum, Penicillium vermiculatum, and Rhizopus utg-
ricans effectively diluted the adverse effect of R. solani and M. incognita resulting 
in an increase in germination of the tomato cultivar, Pusa Ruby (Rekha and Saxena 
1999). In a pot experiment, application of A. niger isolates (AnC

2
 and AnR

3
) sig-

nificantly suppressed galling, egg mass production, and soil populations of  
M. incognita. The isolates AnC

2
 and AnR

3
 produced the greatest quantities of 

siderophores, HCN and NH
3
, and solubilized the greatest quantity of soil phospho-

rus (Khan and Anwer 2008). Windham et al. (1989) reported a suppressive effect 
of T. harzianum on M. arenaria resulting in an increase in root fresh weight and 
decrease in number of eggs per gram of root. Significant reduction in H. avenae 
populations and increase in wheat growth were recorded with P. chlamydosporia 
(Bhardwaj and Trivedi 1996). In another study, application of the same fungus 
decreased the number of eggs, juveniles, and galls of M. hapla in tomato plants 
(De leij et al. 1993).

Application of T. virens and Burkholderia cepacia (bacteria) as a seed coat 
followed by root drenches suppressed root-knot nematode infestation in bell 
pepper compared with untreated plants (Meyer et al. 2000). Pant and Pandey 
(2001) reported maximum reduction in populations of M. incognita with T. har-
zianum, P. lilacinum, and A. niger applied in sterilized soil in pots at 5,000 
spores/pot. In a greenhouse test, P. chlamysosporia provided 75% control of the 
first cropping of Heterodera schachtii. Ashraf and Khan (2008) evaluated the 
efficacy of wastes of apple (Malus pumila), banana (Musa paradisiaca), papaya 
(Carica papaya), pomegranate (Punica granatum), and sweet orange (Citrus 
sinesis) at 20 g/plant and Paecilomyces lilacinus at 2 g (mycelium + spores)/
plant against the reniform nematode, Rotylenchulus reniformis, on chickpea. The 
best protection of chickpea against R. reniformis was recorded using integration 
of P. lilacinus with papaya wastes, followed by apple and pomegranate wastes. 
Control of M. javanica was accomplished by inoculating soil with P. chlamy-
dosporia-colonized rice medium at a rate of 30 g/kg soil (De leij et al. 1993). 
Introduction of the fungus 2 weeks before nematode inoculation provided 
significantly greater control of M. javanica (De leij et al. 1993). Application of 
culture filtrate of T. harazianum, T. viride, T. koningii, T. reesei and T. hamatum 
resulted in effective control of the reniform nematode (Rotylenchulus reniformis) 
and root-knot nematode (M. javanica) on the eggplant cultivar, Black Beauty 
(Bokhari 2009).
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 Field Conditions

Relatively few field trials have been conducted to evaluate the effectiveness of 
 bioinoculants against nematode infestations. These studies, however, have demon-
strated that nematode control to a level can be exploited commercially (Khan 
2005). Soil treatment by A. niger in castor beans abated the population of 
Rotylenchulus reniformis up to 71% (Das 1998). Suppression of root-knot nema-
todes resulting in improved growth of cardamom seedlings in nurseries due to 
application of T. harzianum has been reported (IISR 1995). Pochonia chlamydosporia 
var. catenulate integrated with other strategies reduced soil populations of plant 
parasitic nematodes (51–78%) in vegetable crops (Garcia et al. 2004). Under natural 
soil conditions, nematode eggs appear to be an important source of nutrients for 
P. chlamydosporia. The fungus parasitized large numbers of H. avenae eggs in 
English cereal fields and played a major role in limiting multiplication of the nema-
tode (Kerry et al. 1982a, b). In a field experiment, effects of root-dip treatment of 
ornamental plants hollyhock (Althea rosea), petunia (Petunia hybrida), and poppy 
(Papaver rhoeas) with P. chlamydosporia, P. fluorescens, and B. subtilis were 
evaluated. The three bioinoculants suppressed galling of M. incognita by 37%, 
27%, and 24%, respectively (Khan et al. 2005b). Chlamydospores of some biotypes 
of P. chlamydosporia applied to soil significantly reduced (>50%) population den-
sities of M. hapla on tomato and of G. pallida on potato plants (Siddiqui et al. 
2009). In another study, Kumar (2009) reported satisfactory control of root knot of 
papaya with P. chlamydosporia.

Soil application of Paecilomyces lilacinus with or without neem leaf powder 
reduced galling and egg mass production by 24–46% and enhanced yield of okra 
by 15% (Khan and Ejaz 1997). In another study, soil application or root dip treat-
ment of tomato seedlings with Bacillus subtilis or Pseudomonas stutzeri controlled 
root knot of tomato (Khan and Tarannum 1999). Application of P. fluorescens, 
T. virens, or P. lilacinus controlled the root knot caused by of M. incognita in the 
presence or absence of wilt fungus, Fusarium oxysporum f. sp. lycopersici (Khan 
and Akram 2000; Akram and Khan 2006). A field study conducted to evaluate rela-
tive effectiveness of seed treatment with different rhizobacteria (Azotobacter coc-
cum, Azospirillum lycopirum, B. subtilis, and Bijrica indica) and antagonistic fungi 
(Arthrobotrys oligospora, Cylindrocarpon destructans, Pochonia chlamydosporia, 
and P. lilacinus) on root nodulation and plant growth of green gram revealed that 
treatment with B. subtilis or B. indica reduced galling by 33–34% and increased dry 
weight of shoots by 22–24% (Khan and Kounsar 2000; Khan et al. 2002). Other 
bioinoculants were also found to be effective. Seed treatment with P. fluorescens or 
B. subtilis was effective against root knot of green gram (Khan et al. 2007).

Siddiqui and Shaukat (2004) reported that combined application of T. har-
zianum with P. fluorescens in unsterilized sandy loam soil caused significant 
reduction in M. javanica population densities in tomato roots. Application of P. 
chlamydosporia at 20 g/plot (6 × 107 cfu/g substrates) along with P. lilacinus and 
neem cake effectively controlled M. incognita and increased yield (58%) of inocu-
lated brinjal plants (Cannayane and Rajendran 2001). Dhawan et al. (2008) 
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reported that  combined effects of P. chlamydosporia and P. fluorescens significantly 
managed the root-knot nematode M. incognita and increased yield of brinjal in 
farmer’s fields. Bioefficacy and compatibility of formulations of P. chlamydosporia 
(2 × 106 cfu/g) and P. lilacinus (2 × 106 cfu/g) were evaluated against the root-knot 
nematode M. javanica infecting nursery of acid lime. Application of 5 or 10 g of 
each bioinoculant formulation and combined use of P. lilacinus and P. chlamy-
dosporia, each at 10 g/kg soil, significantly reduced root-galling index and number 
of nematodes in roots (Rao 2005).

17.1.2  Production Technology of Bioinoculants

For field application of a bioinoculant, an efficient substrate for mass production 
and an inert immobilizing material are required, which could carry the maximum 
number of propagules of the organism with minimum volume and necessarily 
maintain its survival and integrity. An excellent bioinoculant is one that is intro-
duced into an ecosystem, and subsequently survives, proliferates, becomes active, 
and establishes itself in a new environment (Khan 2005). For preparing a commer-
cial formulation, these attributes must be considered. In addition, the bioinoculant 
should be mass cultured on an inexpensive substrate in a short period of time. Easy 
application, effectiveness, and consistent results under a variety of environmental 
conditions are other desirable features required for production of bioinoculant 
formulations.

Different techniques of cell immobilization have been developed to devise 
 efficient carrier systems to produce commercial formulations of bioinoculants. A 
number of carriers for immobilization of microorganisms have been used to develop 
commercial formulations of biocontrol agents, viz., peat, seeds, meals, kernals, 
husks, bran, bagasse, farmyard manure, cow dung cake, compost, oil cakes, wood 
bark, vermiculite, sand, clay, and liquid carriers. Three types of formulations, viz., 
pellet, granular, and liquid, are widely produced.

17.1.2.1  Pellet Formulations

A small amount of liquid bioinoculant culture encapsulated by some appropriate 
inert material to hold the suspension and organism intact is termed a pellet. 
Different materials such as natural polymers (alginate, carrageenan, cellulose, agar, 
agarose, hen-egg white, gelatin) as well as synthetic polymers (polyacrylamine, 
photo cross-linkable resins, etc.) can be used to encapsulate liquid suspension of 
bioinoculants to formulate efficient delivery systems for field application of micro-
organisms (D’Souza and Melo 1991). The gelant sodium alginate is considered a 
useful material for encapsulation of liquid preparations of microorganisms. The 
microbes remained viable for many weeks in alginate pellets. Fravel et al. (1985) 
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prepared pellet formulation on a comminuted (blended) mixture of sodium alginate 
and pyrax (pyrophyllite, hydrous aluminum silicate) in a 1:10 ratio. The mixture 
was amended with bioinoculant liquid suspension in the ratio 9:1. The alginate–
pyrax–microorganism mixture was stirred continuously while dripping through a 
pipette into a solution of 0.25 M CaCl

2
 or 0.1 M C

12
H

22
CaO

14
 (calcium gluconate). 

The pellets, after drying under sterile air (laminar flow hood), were stored at different 
temperatures for various durations in a deep freezer to determine viability of the 
spores. Populations of the microorganism pellets were determined by the dilution 
plate method. Some pellet formulations are listed in Table 17.3.

Successful encapsulation of liquid suspension of spores and hyphae of P. chla-
mydosporia was conducted with sodium alginate containing 10% (w/v) kaolin or 
wheat bran (De Leij and Kerry 1991). On soil application, the fungus proliferates 
in soil from those granules which contained wheat bran as the energy source. In 
another study, Kerry (1988) estimated approximately 9 × 104 and 4 × 104 cfu of  
P. chlamydosporia/g soil after 1 and 12 weeks of application of granules, respectively.

17.1.2.2  Powder Formulations

Granular or powder carrier systems for microorganisms are more useful than pellets 
and are compatible with existing farm machinery. Formulations of fungal bioinocu-
lants can be successfully prepared on fermenter biomass in the form of powder with 
diluents such as cake (semisolid), pyrax, or alginate pellets containing a food base 
such as bran (Papavizas et al. 1984; Beagle-Ristaino and Papavizas 1985). 
Papavizas and Lewis (1989) prepared two formulations of T. virens, alginate–bran–
fermenter biomass pellets and pyrax–fermenter biomass mixture. The formulations 
were available at low cost as they were developed from inexpensive agriculture/
industrial wastes or by-products. A good immobilizing material is one that provides 
an energy base for the sustenance and multiplication of the bioinoculants. Numerous 
powder/granular formulations have been prepared and marketed (Table 17.4).

Liquid stillage, a by-product of sorghum fermentation, can be added to granular 
lignite in a 1:2 ratio and stirred (Jones et al. 1984). The amended granules are dried 
overnight at 30°C, treated again with the stillage (50% v/v), and autoclaved in coni-
cal flasks or polyethylene bags. The sterilized mixture is inoculated with a liquid 
suspension of fungal bioinoculants such as T. harzianum and T. virens. Four days 
after inoculation at 25°C, the flasks/bags are shaken to distribute evenly the sporu-
lating fungus. Populations of the microorganism pergram of granules and their 
viability with regard to storage temperature and duration are determined by the 
dilution plate method. The air-dried granules can be prepared and stored at 20°C 
for up to 4 months with 90% viability of spores.

Various agricultural materials, industrial wastes, and by-products, viz., wheat 
bran–sand mixture, sawdust–sand–molasses mixture, corn cob–sand–molasses 
mixture, bagasse–sand–molasses mixture, organic cakes, cow dung–sand mixture, 
compost/farm manure, inert charcoal, diatomaceous earth, and fly ash can also be 
used to prepare powder formulations of bioinoculants (Khan 2005).
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Backman and Rodriguez-Kabana (1975) prepared a commercial formulation of 
T. harzianum on sterilized granules of diatomaceous earth impregnated in 10% 
molasses for four days. The bioinoculant remained viable after air-drying for up to 
1 month in cold storage. Kelley (1976) used clay granules with additional nutrients 
to produce T. harzianum formulations. Khan et al. (2001) used grains and meals of 
cereals, corn cob–sand–molasses, compost, leaf litter, bagasse–soil–molasses, and 
sawdust–sand–molasses to mass-culture T. harzianum, T. virens, and P. chlamy-
dosporia. Highest cfu counts of Trichoderma spp. (106−7 cfu/g material) and  
P. chlamydosporia (105−6 cfu/g material) were recorded in bagasse–soil–molasses 
and leaf litter–sucrose, respectively. Cabanillas and Barkar (1989) tested wheat 
grains, alginate pellets, and diatomaceous earth granules to produce a commercial 
formulation of Paecilomyces lilacinus for soil application. The formulation con-
tained active propagules of the antagonist in higher number, and the application 
effectively controlled root-knot disease in tomato and consequently increased yields.

Khan (2005) developed a novel process for production of commercial formulations 
by bioinoculants, viz., T. harzianum, P. chlamydosporia, and P. fluorescens. The pro-
cess involved two steps: the first dealt with the preparation of mass culture or stock 
culture of the microorganisms on sawdust, soil, and 5% molasses mixture in the ratio 
of 15:5:1. The immobilization of the microorganisms took place on a fly ash-based 
carrier (fly ash, soil, and 5% molasses, 15:3:1). One part of the stock culture and 20 
parts of the carrier were packed in a poly pack and incubated at 25°C for 1 week. Using 
the process, three commercial formulations of T. harzianum and P. chlamydosporia 
were prepared. The bioinoculants were found viable in the formulation up to 32 weeks 
at 25°C or at room temperature. Seed treatment or soil application of the formulations 
successfully carried the microorganisms to soil (field) and effectively controlled soil-
borne fungi and nematodes on vegetables and pulse crops (Khan 2005).

17.1.2.3  Liquid Formulations

Single-stage liquid fermentation of fungal and bacterial bioinoculants is an attractive 
process from an industrial point of view, as sometimes it becomes difficult to 
improve production of conidia (spores) on solid materials (grains, powder, etc.). 
Several liquid media for fungal bioinoculants such as potato dextrose broth (PDB), 
Sabouraud dextrose broth with yeast extract (SDYB), Sabouraud maltose broth with 
yeast extract (SMYB), malt extract broth (MEB), corn meal broth (CMB), jaggery 
soya broth (JSB), yeast peptone dextrose broth (YPDB), yeast peptone soluble 
starch broth (YPSS), Czapek–Dox broth (CDB), and yeast peptone soybean oil broth 
(YPSB) in stationary and shaker culture have been evaluated for mass production of 
Beauveria bassiana, Metarhizium anisopliae, T. harzianum, and T. viride. Maximum 
biomass production of bioinoculants was observed with JSB in stationary  
(12.5–20/100 ml wet wt.) and shaker cultures (20–48.8 g/100 ml wet wt.), and 
highest cfu (5.1 and 9.8 × 108cfu/ml) in stationary and shaker culture were observed, 
respectively (Rao and Gopalakrishnan 2009). Some liquid formulations are listed 
in Table 17.5.
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Peighami-Ashnaei et al. (2009) evaluated combinations of two carbon 
(sucrose and molasses) and two nitrogen (urea and yeast extract) sources for 
rapid growth and yield of P. fluorescens and B. subtilis and found that media 
containing molasses and yeast extract (MY) in a 1:1 w/w ratio supported rapid 
growth and high cell yields in both strains. Luna et al. (2002) and Peighami-
Ashnaei et al. (2009) showed that maximum growth of the two bioinoculants 
was obtained when the C/N ratio was 1:1. Molasses is a high quality and inex-
pensive substrate and can be used for rearing bioinoculants through liquid 
fermentation. Substantial fungal biomass (spores + mycelia) was formed by 
incubating Trichoderma spp. on molasses in fermenter vessels for 15 days. The 
biomass was filtered, dried, milled, and mixed with anhydrous aluminum silicate 
as a diluent to increase volume for application (Papavizas et al. 1984). The 
filtered microbial biomass may also be formulated with selected liquids.

Bioinoculant formulations are often applied as drenches, spot treatments, or 
granules, but applying them as foliar sprays creates technical challenges. Use of 
oils may help to overcome this restriction of foliar application. The intermediate 
solution is to use more conventional formulations (e.g., wettable powder, WP) or 
technical materials (e.g., pure, dried fungal conidia) with emulsified oil adjuvants 
such as “Codacide” (Bateman and Alves 2000). However, as Wraight and 
Carruthers (1999) point out, oil formulations should be seen as a “silver bullet”; 
successful development will require a rigorous approach to selection of isolates, 
delivery system, and deployment in the marketplace.

17.2  Conclusion

Plant diseases are significant constraints on crop production worldwide, and their 
management is essential to increase food production. In view of the adverse effects 
of pesticides, fungal bioinoculants offer a potential substitute. Numerous poten-
tially useful microorganisms are available, such as Trichoderma spp., Aspergillus 
niger, Penicillium digitatum, P. anatolicum, Paecilomyces lilacinus, Pochonia chla-
mydosporia, or nonpathogenic strains of certain pathogens. These organisms can be 
applied directly to soil, as a seed treatment or foliar spray to reduce the inoculum 
level of pathogen or disease severity. Commercial formulations of most bioinocu-
lants are available and provide varied degrees of disease control. Overall perfor-
mance of phosphate-solubilizing fungi such as A. niger, Trichoderma spp., 
Penicillium spp., against plant diseases and nematodes is at levels that ensure their 
commercial exploitation. This necessitates research efforts toward identification of 
more efficacious and environmentally adaptable strains, development of suitable 
mass production technologies, and development of efficient immobilization 
systems.

Bioinoculant formulations can be seen as a tool for developing a more rational 
pesticide use strategy. Understanding the implications of working with living 
organisms in agricultural systems is highly desirable. Perhaps more importantly, 
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biological control/IPM practitioners, organic growers, and other parties willing to 
promote bioinoculants must understand that they are most likely to succeed as com-
mercial products, available as practicable, stable, efficacious formulations.

17.2.1  Future Recommendations

The use of bioinoculants is likely to become more widespread in the near future, as 
increasing pressure develops to limit environmental damage from the use of chemi-
cals as well as development of pathogen resistance to pesticides. Environmentally 
sustainable systems for control of soil-borne pathogens are likely to be developed 
because the soil environment provides a more favorable habitat for the persistence 
of antagonists. In addition, the necessity for new systems will increase, requiring 
greater research efforts to develop technologies and methods for foliar application 
of bioinoculants. The technology available presently is able to produce liquid, pow-
der, pellet, and granular formulations of bioinoculants, and limited formulations 
that are compatible for foliar application are available. Moreover, efficient methods 
are needed for improving multiplication rate of useful bioinoculants, which will 
enable bulk inoculum production with longer shelf life.

It is likely that genetically engineered microorganisms will be increasingly used 
in the future because it is often difficult to select, from natural microflora, an organism 
that both adapts to persist in the environment of roots or shoots of crop plants and 
possesses a high level of antagonistic activity against pathogens. Introducing a 
desired antagonistic ability, such as antibiotic or lytic enzyme production, into an 
organism that is both persistent and an effective colonist of roots or shoots may 
allow for such difficulties to be overcome. Such development must be combined 
with risk assessment studies to ensure the safety of the released bioinoculant, to 
provide adequate food to burgeoning populations, especially in Asia and Africa.
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Abstract Of the seven types of mycorrhizae, the symbiotic association of plants 
with arbuscular mycorrhizae (AM) and ectomycorrhiza (ECM) is the most abun-
dant and widespread. Mycorrhizal inoculant technology, especially of AM and 
ECM, appears to be a promising avenue for sustainable agriculture and forestry 
because of their extensive and productive association with plants. Production 
of mycorrhizal inocula is a complex procedure that requires commercial enter-
prises to develop the necessary biotechnological skill and ability to respond to 
legal, ethical, educational, and commercial requirements. At present, commercial 
mycorrhizal inocula are produced in pots, nursery plots, containers with different 
substrates and plants, and aeroponic systems, and by nutrient film technique, or 
in vitro. Different formulated products are now marketed, which creates the need 
for the establishment of standards for widely accepted quality control. Generally, 
preparation and formulation of mycorrhizal inocula are carried out by applying 
polymer materials with well-established characteristics and which are useful for 
agriculture and forestry. The most commonly used methods involve entrapment of 
fungal materials in natural polysaccharide gels, which includes immobilization of 
mycorrhizal root pieces, vesicles, and spores, in some cases coentrapped with other 
plant-beneficial microorganisms. Efforts should be devoted toward registration 
procedures of mycorrhizal inoculants to stimulate the development of mycorrhizal 
products industry. Biotechnology research and development in such activities must 
be encouraged, particularly with regard to interactions of mycorrhizal fungi with 
other rhizosphere microbes, and selection of new plant varieties with enhanced 
mycorrhizal traits to provide maximum benefits to agriculture and forestry.
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18.1  Introduction

Mycorrhizal fungi form symbiotic relationships with plant roots in a fashion similar 
to that of root-nodule bacteria of legumes. Of the seven types of mycorrhizae docu-
mented (arbuscular, ecto-, ectendo-, arbutoid, monotropoid, ericoid, and orchida-
ceous mycorrhizae), arbuscular mycorrhizae and ectomycorrhizae are the most 
abundant and widespread (Smith and Read 1997; Allen et al. 2003). Arbuscular 
mycorrhizal (AM) fungi comprise the most common mycorrhizal association and 
form mutualistic relationships with over 80% of all vascular plants (Brundrett 
2002). Ectomycorrhizal (ECM) fungi are also widespread in their distribution but 
are associated with only 3% of vascular plant families (Smith and Read 1997). 
These two groups of mycorrhizal fungi play an important role in sustainable agri-
culture and forestry (Siddiqui and Mahmood 1995; Akhtar and Siddiqui 2008; 
Futai et al. 2008; Siddiqui and Pichtel 2008; Akhtar et al. 2011). The production of 
commercial inocula of these fungi has been increasing, particularly in the last few 
years, due to the following:

 1. Their positive impact on plant health and development, land reclamation, phy-
toremediation, and disease management,

 2. Increased awareness about biodiversity, concerns about soil microbial communities, 
and acceptance of mycorrhizal inoculants as an alternative to agrochemicals, 
and

 3. Greater emphasis by society toward sustainable agriculture and forestry.

Production of mycorrhizal inoculants is a complex process that requires develop-
ment of the necessary biotechnological expertise along with related legal, ethical, 
educational, and commercial requirements.

18.2  Inocula Production of AM Fungi

AM inoculants are marketed today in varied formulations. Some companies market 
a single strain of mycorrhiza mixed with a carrier. Others sell liquids, powders, and 
tablets, and most sell cocktails containing a variety of organisms. AM in spore form 
alone is a poor inoculant; for improved results, AM fungi containing spores, root 
fragments, and hyphae are superior to those containing only spores. Of greater 
importance for mycorrhizal inoculants is the degree of infectivity present. 
Effectivity of an inoculant depends on how rapidly it can colonize the root system. 
The species used in the inoculant should be effective over a wide range of plant 
species, pH levels, and soil types. The main obstacle to producing substantial quan-
tities of AM inocula is their obligate nature; this continues to be a major limitation. 
Two major systems for AM inocula production are (1) soil-based systems and (2) 
soil-less techniques.
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18.2.1  Soil-Based Systems

The inoculum propagation process entails the following stages: (1) isolation of 
AMF pure culture strain, (2) choice of host plant, and (3) optimization of growing 
conditions. The soil-based system has been adapted to reproduce different AM 
strains for increasing propagule numbers in situ (Menge 1984). AM development 
and its influence on the host are at least partially under genetic control (Gianinazzi-
Pearson et al. 1996). Mycorrhizal development is affected by nutrient availability 
in soil and the inoculum potential of AM fungus. For propagation of AM fungi 
using the soil-based system, starting fungal inocula usually composed of spores and 
colonized root segments are incorporated into a growing substrate for plant seed-
ling production (Brundrett et al. 1996). The fungi become established and spread 
within the substrate and colonize the root seedlings. Both colonized substrates and 
roots then serve as mycorrhizal inocula. Bagyaraj (1992) found that a mixture of 
perlite and Soilrite mix (1:1 v/v) was the optimal substrate and Chloris gayana 
(Rhodes grass) the optimal host for mass propagation of mycorrhizal inocula. 
In addition, pesticides captan and Furadan added to the pot cultures at half the 
recommended level checked other microbial contaminants with no effect on the 
mycorrhizal fungi. This technique is very useful for the production of “clean” myc-
orrhizal inoculum (without other microbial contaminants) with high potentiality in 
a short span of time.

Douds et al. (2010) have suggested on-farm production of AM fungus to 
benefit vegetable farmers. perlite-, vermiculite-, and peat-based potting media 
were tested as diluents of yard clipping compost for media in which the inocu-
lum was produced on Paspalum notatum Flugge. All substrates produced satis-
factory numbers of AM fungus propagules, though vermiculite proved superior 
to other potting media (89 vs. 25 propagules cm−3, respectively). Adoption of 
on-farm production of AM fungal inoculum by growers requires a greater degree 
of flexibility than that present in the method described earlier (Douds et al. 
2006). The original method requires that compost be diluted with vermiculite 
and that the starter inoculum be in the form of purchased P. notatum seedlings 
colonized by specific isolates of AM fungi. These characteristics are restrictive, 
particularly the latter. Experiments with perlite-, vermiculite-, and peat-based 
potting media demonstrated that these restrictions are readily overcome (Douds 
et al. 2010).

The trap plants commonly used for pot culture of AM fungi are Sorghum 
halepense, Paspalum notatum, Panicum maximum, Cenchrus ciliaris, Zea mays, 
Trifolium subterraneum, Allium cepa, and Chloris gayana (Chellappan et al. 2001; 
Bagyaraj 1992). The inoculum consists of spores, hyphal segments, and infected 
root pieces and generally takes 3–4 months to produce on host plants. The practice 
of pot culture has certain drawbacks that include limited quantities of inocula, 
bulky nature of inocula, transport problems, risk of contamination, presence of 
impurities, and lack of genetic stability of inocula (Abdul-Khaliq et al. 2001). 
Large-scale production of AMF inoculum requires control and optimization of both 
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host growth and fungal development. The microscopic size of AMF together with 
complex identification processes contributes to the pitfalls of inoculum 
propagation.

18.2.2  Soil-Less Techniques

18.2.2.1  Aeroponic Culture

Soil-less culture systems such as aeroponic cultures enable production of spores 
with limited contamination and facilitate uniform nutrition of colonized plants 
(Jarstfer and Sylvia 1999). In aeroponic cultures, pure and viable spores of a 
selected fungus are used to inoculate the cultured plants, which are later transferred 
into a controlled aeroponic chamber (Singh and Tilak 2001). A fine mist of a well-
defined nutrient solution is applied to the roots of the host plant in aeroponic 
culture. Mycorrhizal cultures have been established successfully using this system 
(Weathers and Zobel 1992; Mohammad et al. 2000). Three basic methods for pro-
ducing atomized nutrient solution are as follows:

 1. An impeller system making use of an atomizing disk (Zobel et al. 1976),
 2. Pressurized spray through nozzles, and
 3. Ultrasonically generated fog (Weathers and Zobel 1992).

The fine mist of nutrient solution is required for successful aeroponic culture. 
Standardization of droplet size is needed so that drops attach to the root system for 
an adequate time period. Generally, a 45-mm droplet size is optimum; modified 
Hoagland solution (Epstein 1972) has been used for cultivation of Bahia grass and 
sweet potato (Wu et al. 1995; Hung and Sylvia 1988). Lack of substrate ensures 
extensive root growth, colonization and sporulation of the fungus and makes it an 
ideal system for obtaining sufficient amounts of clean AM fungus propagules 
(Abdul-Khaliq et al. 2001).

18.2.2.2  Monoxenic Culture

The successful propagation of some AM fungal strains on root organ culture has 
allowed the cultivation of monoxenic strains that can be used either directly as 
inoculum or as starting inoculum for large-scale production (Fortin et al. 2002). 
In vitro bulk production of AMF inoculum is promising, offering clean, viable, 
contamination-free fungi. The cost of in vitro inoculum may appear prohibitive 
compared to the cost of greenhouse-propagated inoculum, but its use is a warranty 
of purity. In vitro production provides research and industry scientists with pure 
and reliable material for starting inoculum production for both fundamental 
research and applied technologies (Dalpe 2004). Mass production of AM fungi has 
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been achieved with several species with increased spore production on monoxenic 
cultivation. Chabot et al. (1992) produced 25 spores/ml during a 4-month incubation 
time. St-Arnaud et al. (1996) produced 1,000 spores/ml in 3–4 months. Similarly, 
Douds (2002) produced 3,250 spores/ml in 7 months, while Adholeya (2003) pro-
duced 3,000 spores/ml in 3 months through monoxenic-based inoculum 
production.

Agrobacterium rhizogenes, a Gram-negative soil bacterium, produces hairy 
roots and allows roots to grow rapidly on artificial media (Abdul-Khaliq et al. 
2001). Once the hairy roots are ready, the collected AM inoculum is surface-
sterilized using a suitable surfactant solution. Generally, Tween 20 and a solution 
choramine T are used for sterilization of AM spores (Fortin et al. 2002). The 
spores are subsequently rinsed in streptomycin–gentamycin solution (Becard 
and Piche 1992). The rinsed spores should be stored at 4°C in distilled water or 
water agar, or on 0.1% MgSO

4
 7H

2
O solidified with gellan gum (Fortin et al. 

2002). The nutrient media should be carefully selected to allow growth of the 
host as well as the fungus. Since roots require rich nutrient medium for growth, 
AM fungi require a relatively poor nutrient medium (Abdul-Khaliq et al. 2001). 
Generally, Murashige and Skoog’s medium (1962) and White’s medium are 
used for dual culture of host root and AM fungus. Regardless of the high tech-
nological investment and high cost, not all AM fungi are successfully culturable 
in this system. Additionally, the suitability of inoculum produced in vitro, in 
particular its competitive ability toward other microbes in field soil, has yet to 
be tested.

18.2.2.3  Nutrient Film Technique

Nutrient film technique (NFT) is a specialized technique developed for com-
mercial production of crops that entails continuous recycling of a large volume 
of nutrient liquid over a film, which flows over plant roots. The major concern 
in NFT is the concentration of nutrients. The requirements of nutrient elements 
vary from one particular mycorrhizal system to another depending upon the 
size, physiological requirements, and other features of the plants (Sharma 
et al. 2000). It is necessary to maintain the nutrient solution in the form of a 
thin film (5 mm to 1 cm). Chemical forms of nutrient elements also affect 
mycorrhizal infection. Therefore, it is desirable to use a balanced and proper 
composition.

Low sporulation can be obtained compared to soil-based systems. Problems of 
contamination by undesirable organisms like rotifers, protozoans, and eelworms are 
expected because of the common nutrient solution used. The inoculum produced by 
the NFT method is ideal for the production of easily harvestable solid mats of roots 
with more concentrated and less bulky forms of inoculum than that produced by 
plants grown in soil-based or other solid media (Abdul-Khaliq et al. 2001; 
Chellappan et al. 2001).
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18.2.2.4  Polymer-Based Inoculum

It is desirable to apply inoculants to soil with a carrier that can provide physical 
protection and nutrients for microbial cells (Gentry et al. 2004). For preparation of 
microbial inoculants, the key issues include microbial selection and characteriza-
tion, mass production of target microorganisms, selection of carrier material, 
microbial behavior after formulation, and effectiveness and competitiveness after 
application (Vassilev et al. 2005).

The simplest method of applying polymer materials is based on the use of 
hydrogels. Several hydrogels have been used as carriers of AM fungi (Johnson and 
Hummel 1985; Nemec and Ferguson 1985); however, pH extremes of gel materials 
have imparted adverse effects on spore germination and root colonization (Vassilev 
et al. 2005). Entrapment or encapsulation of microbial cells in polymer materials is 
a highly successful method of immobilization. This method involves entrapment of 
cells or spores within porous structures, which are formed in situ around the bio-
logical material. The carrier should be relatively economical and compatible with 
the materials that are used for the production of product. The preferred carrier 
materials include natural polysaccharides and various hydrophilic hydrogels. 
Various combinations of natural, semisynthetic, and synthetic polymers are available, 
but the majority incorporates natural polysaccharides including kappa carrageenan, 
agar, and alginates. Calcium alginates are the most widely used carrier of about 
1,350 combinations of carriers in use (Vassilev et al. 2005). The encapsulation of 
AM fungi produced monoxenically in alginate beads offers the possibility to diver-
sify the inoculation process (Diop 2003). It would be useful to incorporate fla-
vonoids into the capsules (Bécard and Piché 1989; Gianinazzi-Pearson et al. 1989). 
Some commercially prepared AM inoculants are listed in Table 18.1.

18.2.2.5  Integrated Method

One of the reasons for lower survival and establishment of micropropagated plants 
during transplantation is the absence of natural associates (Varma and Schuepp 
1995). Use of mycorrhizae helper bacteria (MHB) promotes AM symbiosis in vari-
ous crop plants (Von 1998). The role of MHBs in growth and development of dif-
ferent AM fungi was reported by several workers (Siddiqui and Mahmood 1998; 
Vosatka et al. 1999). Combined and judicious use of AM fungi and plant-growth-
promoting rhizobacteria (PGPR) can provide proper establishment of in vitro 
propagated plantlets under field conditions. Bhowmik and Singh (2004) reported 
that PGPR considerably enhanced mycorrhizal colonization and can be used in 
mass production of AM fungal cultures. da Silva et al. (2007) observed production 
and infectivity of inoculum of AM fungi multiplied in substrate supplemented with 
Tris–HCl buffer. Sporulation of AM fungi was also improved in solution with 
buffer. Large-scale production of inoculum can be obtained by addition of Tris–HCl 
buffer in nutrient solution and storage at 4°C (da Silva et al. 2007).

Interactions of nitrogen fixers and P-solubilizers with AM fungi have been sug-
gested as one reason for improved growth of many plant species (Turk et al. 2006), 
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and these associations are useful in improving survival rates of micropropagated 
plants (Webster et al. 1995). Microorganisms such as Frankia, Rhizobium, and 
Bradyrhizobium improve soil-binding capacity, stability, and properties making soil 
conducive for the establishment of micropropagated plantlets as that of mycorrhiza 
(Varma and Schuepp 1995).

18.3  Storage of AM Inocula

Propagules of AM fungi must be used immediately once they are extracted or pro-
duced. Propagules obtained from soil-less propagation generally have the same 
requirements for immediate use as those produced in soil-based media. Factors that 
predispose propagules to higher mortality are harvesting pots, when they are moist, 
and chopping roots. Chopping roots and mixing contents should be carried out only 

Table 18.1 Commercial AM fungi inoculants produced by different companies

Product Type of mycorrhiza Web address for detailed information

AgBio-Endos Endomycorrhizal 
inoculant

http://www.agbio-inc.com/agbio-
endos.html

Rhizanova™ Endomycorrhizae http://www.arthurclesen.com/resources/
Rhizanova%20Overview%20Sheet.
pdf

Bio/Organics Endomycorrhizal inoculant http://www.biconet.com/soil/
BOmycorrhizae.html

Endorize Mycorrhizal product http://www.agron.co.il/en/Endorize.aspx
BuRize VAM inoculant http://www.biosci.com/brochure/

BRZBro.pdf
Cerakinkong VA mycorrhizal fungi http://www.cgc-jp.com/products/

microbial/
MYCOgold AM fungi http://www.alibaba.com/product/

my100200874-100160217-0/
Mycogold_Crop_Enhancer_Bio_
Fertilizer_.html

BIOGROW Hydo-sol Endomycorrhizae http://www.hollandsgiants.com/soil.html
Mycor Endo/ectomycorrhizae http://www.planthealthcare.co.uk/pdfs/

mycorflyer.pdf
PRO-MIX ‘BX’ Endomycorrhizal fungi http://www.premierhort.com/eProMix/

Horticulture/TechnicalData/pdf/TD2-
PRO-MIXBX-MYCORISE.pdf

AM 120 Microbial inoculant http://www.ssseeds.com/other_products.
html

BioVAm Mycorrhizal powder http://www.harbergraphics.com/Biovam/
index.html

Diehard™ Endodrench http://www.horticulturalalliance.com/
DIEHARD_Endo_Drench.asp

MYCOSYM Mycorrhiza Vitalizer http://www.mycosym.com/Documents/
Flyer%20Olive%20and%20
Verticilosis%20WEB.pdf

http://www.agbio-inc.com/agbio-endos.html
http://www.agbio-inc.com/agbio-endos.html
http://www.arthurclesen.com/resources/Rhizanova%20Overview%20Sheet.pdf
http://www.arthurclesen.com/resources/Rhizanova%20Overview%20Sheet.pdf
http://www.arthurclesen.com/resources/Rhizanova%20Overview%20Sheet.pdf
http://www.biconet.com/soil/BOmycorrhizae.html
http://www.biconet.com/soil/BOmycorrhizae.html
http://www.agron.co.il/en/Endorize.aspx
http://www.biosci.com/brochure/BRZBro.pdf
http://www.biosci.com/brochure/BRZBro.pdf
http://www.cgc-jp.com/products/microbial/
http://www.cgc-jp.com/products/microbial/
http://www.alibaba.com/product/my100200874-100160217-0/Mycogold_Crop_Enhancer_Bio_Fertilizer_.html
http://www.alibaba.com/product/my100200874-100160217-0/Mycogold_Crop_Enhancer_Bio_Fertilizer_.html
http://www.alibaba.com/product/my100200874-100160217-0/Mycogold_Crop_Enhancer_Bio_Fertilizer_.html
http://www.alibaba.com/product/my100200874-100160217-0/Mycogold_Crop_Enhancer_Bio_Fertilizer_.html
http://www.hollandsgiants.com/soil.html
http://www.planthealthcare.co.uk/pdfs/mycorflyer.pdf
http://www.planthealthcare.co.uk/pdfs/mycorflyer.pdf
http://www.premierhort.com/eProMix/Horticulture/TechnicalData/pdf/TD2-PRO-MIXBX-MYCORISE.pdf
http://www.premierhort.com/eProMix/Horticulture/TechnicalData/pdf/TD2-PRO-MIXBX-MYCORISE.pdf
http://www.premierhort.com/eProMix/Horticulture/TechnicalData/pdf/TD2-PRO-MIXBX-MYCORISE.pdf
http://www.ssseeds.com/other_products.html
http://www.ssseeds.com/other_products.html
http://www.harbergraphics.com/Biovam/index.html
http://www.harbergraphics.com/Biovam/index.html
http://www.horticulturalalliance.com/DIEHARD_Endo_Drench.asp
http://www.horticulturalalliance.com/DIEHARD_Endo_Drench.asp
http://www.mycosym.com/Documents/Flyer%20Olive%20and%20Verticilosis%20WEB.pdf
http://www.mycosym.com/Documents/Flyer%20Olive%20and%20Verticilosis%20WEB.pdf
http://www.mycosym.com/Documents/Flyer%20Olive%20and%20Verticilosis%20WEB.pdf
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just prior to inoculum usage. Conditions for successful long-term storage of AM 
propagules remain vaguely defined. Spores are generally air-dried and then stored 
at 4°C. Temperate isolates can be stored at 4–10°C, whereas tropical isolates should 
be stored at 20–25°C. Feldmann and Idczak (1992) observed that the infectivity of 
Glomus etunicatum stored at 20–23°C and 30–50% relative humidity for 3 years 
was reduced by only 10–15%.

Fungal viability and mycorrhizal efficiency can be maintained for several 
months at room temperature (20–25°C), especially when semidry inocula are stored 
in plastic containers or packaging. Long-term storage (up to 1–2 years) may be 
conducted at 5°C. More sophisticated and expensive preservation techniques are 
performed by research institutions. These include the maintenance of inocula on a 
living plant host grown on sterile growth substrate with regular checks for mono-
specificity of the cultivated strains, storage in liquid nitrogen (Douds and Schenck  
1990), and freeze-drying under vacuum. Kim et al. (2002) reported that cold stor-
age of mixed inoculum enhanced colonization and growth-promoting activity of 
G. intraradices compared to freshly prepared inoculum.

18.4  Inocula Production of Ectomycorrhizal Fungi

The successful application of ECM fungi in plantation forestry depends on the 
availability of a range of fungi capable of improving the economics of tree produc-
tion in various environments, and the ability to supply the fungi as inocula (Kuek 
et al. 1992). Inocula of ECM fungi are usually composed of biomass and carrier 
material. Many existing or advocated types of inocula only partially satisfy these 
criteria (Kuek et al. 1992). Three main types of ectomycorrhizal inoculants have 
been used in nurseries during the last few decades: soil, fungal spores, and vegeta-
tive mycelia. Fungal spores obtained from fruiting bodies harvested in natural forests, 
old nurseries, or established plantations have been used in many parts of the world 
(Theodorou 1971). They are easy to obtain and apply to plants. Effect of 
Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. uro-
phylla, Pinus elliottii, and Pinus radiata was studied (Chen et al. 2006). The results 
suggest that there is a need to source Scleroderma from outside China for inoculat-
ing eucalypts in Chinese nurseries, whereas Chinese collections of Scleroderma 
could be used in pine nurseries (Chen et al. 2006).

On the other hand, Lamb and Richards (1974a, b) demonstrated that chlamy-
dospores were less effective than basidiospores as inoculum, and there were signifi-
cant differences in yield by different fungal species at high inoculum densities and 
in the presence of added phosphate. Generally, fungal spores are small (ca. 10 mm 
in length; Clémençon et al. 2004) and are usually produced in large amounts (e.g., 
1 × 108 – 1 × 109 spores per sporocarp in Suillus bovinus; Dahlberg and Stenlid 
1994), enabling long-distance (e.g., intercontinental; Nagarajan and Singh 1990) 
dispersal by wind or animals (Allen 1991; Ishida et al. 2008). However, basidio-
spores of most ECM require special environmental conditions for germination, 
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which are still unknown for many species. Spores of only a few species have been 
germinated under controlled conditions, a necessary prerequisite to obtain mono-
sporus mycelia to perform mating tests (Martín and Gràcia 2000).

Among ectomycorrhizal basidiomycetes, three main types of germination acti-
vators have been reported (Fries 1987): (1) nonectomycorrhizal microorganisms 
such as colonies of the yeast Rhodotorula glutinis (Fries 1976, 1978), the filamen-
tous fungus Ceratocystis fagacearum (Oort 1974), and some bacterial isolates 
obtained from sporophores, mycorrhizae, or soil (Ali and Jackson 1988), (2) a 
mycelium of the same species as the spores (Fries 1978; Iwase 1992), and (3) roots 
of higher plants (Melin 1962; Kope and Fortin 1990). Generally, germination acti-
vation is caused by some stimulation, such as those from exudates from microor-
ganisms or root exudates. These exudates presumably contain compounds 
possessing the capacity to trigger spore germination (Kikuchi et al. 2007). Kikuchi 
et al. (2006) showed that spores of the ectomycorrhizal fungus Suillus bovinus 
germinated through the combination of activated charcoal treatment of media and 
coculture with seedlings of Pinus densiflora. Moreover, they showed that flavonoids 
play a role as signaling molecules in symbiotic relationships between woody plants 
and ectomycorrhizal fungi (Kikuchi et al. 2007).

Submerged cultivation of ectomycorrhizal fungi is a convenient technique that 
has many advantages in relation to solid-state fermentation, viz., a higher viability 
and biomass productivity, smaller volumes of inoculants, and lower cost compared 
with other cultivation methods. Inoculant production may be achieved using small 
bioreactors, and bioreactor cost may be minimized by the adoption of pneumatic 
reactors such as airlift systems, whose construction and maintenance are less 
expensive than those of conventional stirred-tank bioreactors. The mycelia pro-
duced in submerged culture should be immobilized in alginate gel or other poly-
meric carriers to maintain viability during storage and after inoculation in the 
nursery. The application of such alginate-immobilized inoculant is easy and 
inexpensive.

In order to achieve optimum performance of large-scale bioreactors for 
inoculant production, it is essential to undertake biochemical and physiological 
studies of the growth and nutrition of the fungi involved. Only then is it possible 
to obtain ectomycorrhizal fungal inoculants of high quality at an acceptably low 
cost and in quantities sufficient to meet the needs of the forest industry (Rossi 
et al. 2007).

In the production of vegetative ectomycorrhizal inoculants, the selection of 
mycorrhizal fungi and suitable carrier is important as is the survival and develop-
ment of inoculant ectomycorrhizal fungi on roots. Techniques for inoculation with 
pure cultures of selected mycorrhizal fungi have been developed for quasi-opera-
tional use by many investigators. Unfortunately, it is the common experience of 
mycorrhiza researchers worldwide that many mycorrhizal fungi grow poorly or not 
at all in the pure culture methods attempted thus far. Thus, the practical use of 
mycelial culture inoculum is limited at present. Fortunately, some of the fungi that 
grow well in culture have also proven highly beneficial to survival and growth in 
outplanted stock (Trappe 1977). The ectomycorrhizal fungal genus Lactarius has 
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been intensively marketed in Europe, Asia, and northern Africa, especially the 
choice edible species Lactarius deliciosus and Lactarius sanguifluus. Lactarius 
forms ectomycorrhizae with a variety of host plants (Trappe 1962; Hutchison 
1999). Some pure culture inoculation studies demonstrate that this species readily 
colonizes the root system of pines under aseptic conditions. Guerin-Laguette et al. 
(2000) obtained fruiting body primordia of L. deliciosus 1 year after inoculation of 
Pinus sylvestris seedlings in growth pouches and subsequently transferred them to 
containers. The L. deliciosus could be effectively used for controlled mycorrhizal 
plant production in nurseries as has been successfully done with other ectomycor-
rhizal fungi. Parladé et al. (2004) described different methods for inoculating seed-
lings of Pinus pinaster and P. sylvestris with edible Lactarius species under 
standard greenhouse conditions. All the inoculation methods tested, except the 
alginate-entrapped mycelium, were appropriate for the production of seedlings 
colonized with L. deliciosus. However, the percentage of colonized plants and the 
degree of colonization observed were highly variable depending on the inoculation 
method and the plant-fungal strain combination.

Because of their characteristic odor, flavor, and texture, “matsutake” mush-
rooms (fruiting bodies or sporocarps) of the ectomycorrhizal fungus Tricholoma 
matsutake are the most sought-after and expensive mushrooms in Japan. Recently, 
the annual harvest of matsutake mushrooms has declined dramatically as the result 
of P. densiflora trees dying from pine wilt disease caused by the nematode 
Bursaphelenchus xylophilus. Deforestation and modern forestry management 
practices have also been detrimental to matsutake growth (Wang et al. 1997; Gill 
et al. 2000). Despite nearly a century of research (Ogawa 1975a, b, 1977), attempts 
to cultivate matsutake have been unsuccessful. Yamada (1999) reported on the 
ability of T. matsutake isolates to form mycorrhizae using aseptic seedlings of P. 
densiflora in vitro. They germinated pine seeds aseptically on a nutrient agar 
medium, and pairs of 1-week-old seedlings were transplanted into polymethylpen-
tene bottles containing autoclaved Sphagnum moss/vermiculite substrate. The 
substrate was saturated with nutrient medium containing glucose. At the same 
time, the bottles were inoculated with a T. matsutake isolate. The cultured T. mat-
sutake mycelium formed true ectomycorrhizae with P. densiflora seedlings 
in vitro. Moreover, innovative inoculation techniques such as the recent “mat-
sutake sheet” technique (Yoshimura 2004) could be helpful for the inoculation of 
mature trees in forest ecosystems and could be extended to other late-stage edible 
mycorrhizal fungi, such as Boletus edulis, Cantharellus cibarius, and Amanita 
caesarea, which have thus far not been domesticated. Guerin-Laguette et al. 
(2005) described successful inoculation of mature pine with T. matsutake using 
long root segments (ca. 5–10 mm diameter, 50 cm length) of 50-year-old Pinus 
densiflora trees; the long root segments were excavated, washed, auxin-treated 
(2–5 mg indole butyric acid, IBA, per root), and incubated in moist Sphagnum 
moss. After 12 months, short roots were regenerated of which approximately 90% 
were free of mycorrhizae. The mycorrhiza-free short roots were inoculated with 
mycelial pieces of T. matsutake and incubated further in a sterilized substrate. 
Four-and-a-half months later, roots putatively colonized by matsutake were 
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 sampled near the inoculation points. The authors proposed that the localized 
inoculation technique was a key step in obtaining early-stage matsutake symbiotic 
structures in situ on a mature tree. Future work should focus on scaling up the 
inoculation trials in situ and on monitoring the persistence of matsutake mycor-
rhiza (Guerin-Laguette et al. (2005).

18.4.1  Formulation of ECM

In fact, the selection of an appropriate carrier is an important step in the develop-
ment of a process for inoculant production. The mycelium in the inoculant must 
remain viable between the time of sowing and the time when receptive roots are 
formed. The nascent mycelium must resist adverse conditions such as drought, 
microbial antagonism, or predation by insects and other arthropods (Rossi et al. 
2007). In studies to achieve a higher quality of inoculum and an improved produc-
tion process. Krupa and Piotrowska-Seget (2003) used an alginate-immobilized 
inoculum of of mycorrhizal fungi to introduce the fubgi to the soil. They reported   
that the total concentration of cadmium in contaminated soil inoculated with ECM 
fungi was lower then in non-inoculated soil. As well, Kropáček et al. (1990) 
reported that they used mycelia of ECM fungi immobilized in alginate gel in a 
mixture with a silicate carrier-perlite. This inoculum was applied at sowing  
in forest nurseries to obtian resistant plants for afforestation of areas exposed to 
man-made stresses. Under both sterile and nonsterile conditions, the growth of 
seedings and mycorrhiza development were increased by inoculation with a strain 
Laccaria laccata. These formulation of ECM offers great flexibility as it allows 
addition of chemical additives to improve gel stability and conserve the inoculant 
(Mauperin et al. 1987). Inoculant beads can remain viable for several months under 
refrigeration, although the results vary between fungal species. Hebeloma wes-
traliense and Laccaria laccata are relatively stable inoculants for more than 5 
months; in contrast, the viability of Elaphomyces decreased to 40% after 1-month 
storage (Kuek et al. 1992).

An advantage of alginate gel is the possibility of preparing a multimicrobial 
inoculant. Douglas fir (Pseudotsuga menziesii) seedlings in two bare-root forest 
nurseries were inoculated with the ectomycorrhizal fungus L. laccata, together or 
not with one of five mycorrhiza helper bacteria isolated from L. laccata sporocarps 
or mycorrhizae and previously selected by in vitro and glasshouse screenings 
(Duponnois and Garbaye 1991). A dual inoculum composed of calcium alginate 
beads containing the two microorganisms was a valuable option for increasing the 
efficiency of ectomycorrhizal inoculation of planting stocks in forest nurseries.

Despite clear evidence from small-scale experiments that ectomycorrhizal 
fungi improves growth of the host plant, the use of inoculation in plantation for-
estry is not widespread. In contrast to arbuscular mycorrhizal inoculants, only 
relatively few ectomycorrhizal fungal inoculants have been commercialized 
(Table 18.2). 
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18.4.2  Storage of ECM

Ectomycorrhizal fungi are usually maintained by subculturing at approximately 
25°C. Ito and Yokoyama (1983) and Jong and Davis (1987) demonstrated that some 
ectomycorrhizal fungi are preserved by freezing. Corbery and Le Tacon (1997) 
showed that the survival of ectomycorrhizal fungi after freezing at −196 or −80°C 
depends on cooling rate and species or strain. The optimum rate of cooling for 
ECM is −1°C per min. Thelephora terrestris and Paxillus involutus did not survive 
any freezing method. The resistance of Cenococcum geophilum to freezing may be 
related to its tolerance to water stress and high salinity. Hung and Molina (1986) 
reported that, in general, fresh inocula of Laccaria laccata and Hebeloma crustu-
liniforme were most effective; their effectiveness remained high for a month of 
storage and then declined rapidly for a short period, then slowly to the point of no 
mycorrhiza formation. The effectiveness declined more rapidly with lower inocula-
tion rates. Storage at 2°C prolonged inoculum viability for at least 2 months over 
that of 21°C storage. Inoculum from different fungal species or isolates within a 
species responded to storage temperatures differently. Pisolithus tinctorius inocu-
lum was the most sensitive: 1-month storage strongly reduced its effectiveness. The 
difference between 2 and 21°C storage was more obvious in H. crustuliniforme 
than in either isolate of L. laccata.

Tibbett et al. (1999) described a method for maintaining viable cultures of 
ectomycorrhizal Hebeloma strains in cold liquid culture medium. Isolates of 
Hebeloma spp., collected over a wide geographic range, were stored at 2°C for  
3 years. All cultures survived this storage period and showed a greater time period 
and success rate than have previously been reported for the long-term storage of 
ectomycorrhizal basidiomycetes. Rodrigues et al. (1999) studied the viability of 
fragmented mycelia of Pisolithus tinctorius and Paxillus involutus entrapped in 
calcium alginate gel to determine the efficacy of producing ectomycorrhizal 
fungus inoculum. Fungi were grown in modified Melin-Norkrans (MMN) solution 
at 28°C before being fragmented in a blender and subsequently entrapped in 

Table 18.2 Commercial ectomycorrhizal fungi inoculants produced through different processes 
by different companies (Rossi et al. 2007)

Commercial product Type/process Company, location

BioGrow Blend® Spores Terra Tech, LLC
MycoApply®-Ecto Spores Mycorrhizal Applications, Inc.
Mycorise Pro Reclaim® Propagules ecto+endo Symbio Technologies, Inc.
Myke® Pro LF3 Propagules Premier Tech Biotechnologies
Mycor Tree® Spores Plant Health Care, Inc.
MycoRhiz® Mycelium/Solid-state fermentation Abbott Laboratories
Somycel PV Mycelium/Solid-state fermentation INRA-Somycel S.A.
Ectomycorrhiza Spawn Mycelium/Solid-state fermentation Sylvan Spawn Laboratory, Inc.
– Mycelium/Submerged Rhone Poilenc-INRA
Mycobead® Mycelium/Submerged Biosynthetica Pty. Ltd.
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calcium alginate. Paxillus involutus mycelium was more than 90% viable when 
entrapped mycelia were 10–50 days old, and Pisolithus tinctorius attained its 
highest viability (55%) for 20- to 40-day-old mycelia. Gel-entrapped Paxillus 
involutus mycelium grew well at all temperatures after 30-day storage, but viabil-
ity significantly decreased after 60-day storage at 6°C on dry filter paper. For gel-
entrapped Pisolithus tinctorius mycelia, viability was greatest when stored at 25°C 
in 0.7 M CaCl

2
. Entrapment of Paxillus involutus fragmented mycelia in calcium 

alginate beads under the conditions that they propose can be used successfully to 
produce inoculum. Lehto et al. (2008) grew isolates of Suillus luteus, Suillus var-
iegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. 
Subsequently, they exposed samples to a series of temperatures between +5 
and −48°C. Relative electrolyte leakage (REL) and regrowth measurements were 
used to assess damage. The REL test indicated that the lethal temperature for 50% 
of samples (LT

50
) was between −8.3 and −13.5°C. However, in the regrowth 

experiment, all isolates resumed growth after exposure to −8°C and higher tem-
peratures. As high as 64% of L. laccata samples, but only 11% in S. variegatus, 
survived at −48°C. There was no growth of Hebeloma and S. luteus after exposure 
to −48°C, but part of their samples survived −30°C (Lehto et al. 2008).

Here, we describe inoculant technologies; however, there is currently limited 
information regarding commercialized products. Therefore, the advent of inocula-
tion technology on a broad scale is necessary, and the overall scientific evidence is 
important for justifying its use in increasing the economic productivity of forest 
plantations (Kuek 1994).

18.5  Discussion

Inoculation of plants with mycorrhizal fungi increases the survival and growth rates 
of seedlings and cuttings in greenhouse and natural conditions. The inoculation also 
improves the acclimatization of in vitro micropropagated plants and promotes ear-
lier flowering and fruiting. These results have arisen because mycorrhizal plants are 
more efficient in the uptake of specific nutrients and more resistant to diseases 
caused by soil-borne pathogens. Inoculation of plants with mycorrhizae offers the 
possibility of reducing fertilizer and pesticide applications. Therefore, mycorrhizal 
inoculants are gaining popularity as “biofertilizers,” “bioprotectors,” and “biocon-
trol agents,” and the industry of mycorrhizal inoculum production is expanding 
worldwide.

To lower the risk of contamination by pathogenic organisms, crops are usually 
grown in soil-less potting mixes containing different ratios of perlite, vermiculite, 
peat moss, and composted forest products. Soil-less media also have a lower bulk 
density and provide better aeration and a higher water-holding capacity than do 
mineral soils. These artificial rhizosphere conditions may be advantageous to 
achieve rapid plant growth; however, their effects on mycorrhizal colonization are 
not well understood. The unpredictability of soil-less media to promote  mycorrhizal 
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colonization can further be confounded by the multiple additives occurring in 
 commercial mycorrhizal inoculants including carriers, fertilizers, humic acid, and 
soil conditioners. It is necessary to test the infectivity of commonly available com-
mercial mycorrhizal inoculants in standard practices and to analyze plant growth 
response to inoculation with these products.

Entrepreneurs are currently developing inoculum production systems and 
 marketing mycorrhiza. Still, however, technical difficulties exist for large-scale 
utilization of mycorrhizal inocula; additionally, numerous legal, ethical, and eco-
nomical aspects of this technology must be addressed. It is important to fill gaps in 
fundamental knowledge and to optimize maintenance and application of mycor-
rhizal fungi in plant production systems. Producers and distributors of inocula 
should convince users that this technology is economically feasible. More applied 
studies are needed to aid food and plant production, particularly where sustainable 
methods of agriculture or horticulture are developing. Moreover, awareness on the 
part of the public must be encouraged regarding the potential of mycorrhizal tech-
nology for sustainable plant production and soil conservation.
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