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 As a chemistry undergraduate at the Missouri Univer-
sity of Science and Technology, which was then called the 
University of Missouri at  Rolla ,  Thom  was fascinated by 
the ability of organic chemists to rationalize the course of 
a broad range of chemical reactions by shuttling electrons 
around in the molecules. However, he was also somewhat 
skeptical — this seemed too good to be true. The following 
year he took a course in quantum mechanics in the Physics 
Department and realized that quantum mechanics was the 
means for fact-checking the explanations in organic chem-
istry. Thus began his passion for chemical theory. In the 
quantum mechanics course, he encountered the differential 
equation for the states and  wavefunctions  of the harmonic 
oscillator. Since he had just had a course in numerical 
analysis and the university was touting its new,  “ very pow-
erful ”  computer that it had just installed (an IBM 1620!), 
 Thom  decided to solve the harmonic oscillator equation on 
the computer. After teaching himself the new programming 
language developed by IBM — FORTRAN — and coding the 
problem, he was amazed to fi nd that his numerical solution 
agreed perfectly with that obtained analytically. Thus began 
his passion for computing. 

   1   Contributions to chemical theory 

   Thom  ’ s research career has focused on topics in chemical 
theory (e.g., open-shell Hartree –  Fock  theory, generalized 
valence bond theory), numerical techniques for solving the 
 Schr ö dinger  equation (e.g., basis sets for both orbital and 
correlated calculations), and applications of computation to 
important chemistry problems (molecular physics of lasers, 
species and reactions involved in combustion, structure and 
energetics of aqueous clusters, and, more recently, the unu-
sual chemistry of the late p-block elements in the second 

                             Thom  H. Dunning, Jr., provides an outstanding example 
of success in science, computing, and scientifi c leadership. 
From his scientifi c contributions to knowledge to his devel-
opments and accomplishments that have enabled discovery, 
 Thom  ’ s infl uence upon science, computing, and the scien-
tifi c community has been signifi cant. 

  Published as part of the special collection of articles celebrating 
the career of Professor  Thom  Dunning upon his retirement.  

                                                        A. K. Wilson   (  *  )  
 Department of Chemistry   ,  University of North Texas    , 
 1155 Union Circle, #305070   ,  Denton   ,  TX     76203-5017   ,  USA  
 e-mail: akwilson@unt.edu    

  K. A. Peterson  
 Department of Chemistry   ,  Washington State University    , 
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 e-mail: kipeters@wsu.edu  

  D. E. Woon  
 Department of Chemistry   ,  University of Illinois 
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row and beyond). Below is a brief summary of  Thom  ’ s 
contributions to chemical theory and computation. 

   1.1   Generalized valence bond theory 

  Thom  began his graduate career at  Caltech  in 1965, just 
as Dr. William A.  Goddard   III  accepted an appointment as 
an Arthur Amos Noyes Fellow in the Chemistry Division. 
Although Bill could not accept students at that point,  Thom  
was impressed by the insights provided by the valence bond-
based theory that he was developing (later called general-
ized valence bond,  GVB , theory). The  GVB   wavefunction  
corrects the main defi ciencies of the Hartree –  Fock /molecu-
lar orbital  wavefunction  while providing a conceptually 
appealing, chemistry-oriented description of the electronic 
structure of molecules. Although  Thom  ’ s thesis research 
focused on the excited states of the ethylene molecule with 
Professor B. Vincent  McKoy , as a postdoctoral fellow, he 
contributed to the development of the perfect pairing, strong 
orthogonality version of  GVB  theory. Imposition of these 
constraints made it possible to extend  GVB  calculations to a 
broad range of molecules, often with only modest sacrifi ces 
in accuracy. A paper summarizing early work in this area 
was published in  Accounts of Chemical Research  ( Goddard  
et al.,   Acc .  Chem . Res.   1973 ,  6 , 368 – 376). 

 More recently, Dr. Dunning, Dr. David E.  Woon , and 
the rest of his research group at the University of Illinois 
at Urbana-Champaign used the  GVB  method, as well as 
more sophisticated coupled cluster and  multireference  
confi guration interaction methods, to study the electronic 
structure of  hypervalent  molecules, e.g., PF 5 ,  SF  4 / SF  6 , 
and  ClF  3 / ClF  5 . It was found that a new type of bond, the 
  recoupled  pair  bond, provides the basis for the formation 
of  hypervalent  molecules. In fact, the ability of the second 
row elements to form this new type of bond explains many 
of the other anomalies associated with the chemistry of the 
late p-block elements in the second row and beyond: new 
bound low-lying excited states, edge versus vertex inver-
sion in heavily halogenated species, and unusually rapid 
chemical reactions to name just a few of these anomalies. 
A paper summarizing early work in this area was published 
in  Accounts of Chemical Research  (Dunning et al.,   Acc . 
 Chem . Res.   2013 ,  46 , 359 – 368). These full  GVB  calcula-
tions were made possible by the  CASVB  program, which 
was developed by T.  Thorsteinsson  and D. Cooper and is 
included in both the  MOLPRO  (   http :// www . molpro .net/    ) 
and  MOLCAS  (   http :// www . molcas . org /    ) electronic struc-
ture packages. 

    1.2   Basis sets for molecular computations 

 Dr. Dunning is perhaps best known for the develop-
ment of basis sets for use in molecular calculations. In 

graduate school,  Thom  found the existing Gaussian basis 
sets for Hartree –  Fock  calculations on molecules of inter-
est to him — ethylene, formaldehyde, and other organic 
molecules — to be lacking.  Thom  systematically explored 
the construction of new basis sets, laying out a set of rules 
that enabled the construction of high-quality basis sets for 
Hartree –  Fock  calculations. In the late 1980s, at Argonne 
National Laboratory, he became frustrated at the inabil-
ity to converge confi guration interaction calculations with 
regard to the basis set. Then Jan  Alml ö f  and Peter Taylor 
reported that the occupations of the natural orbitals from 
atomic calculations grouped naturally into sets with simi-
lar occupation numbers.  Thom  had no explanation for this 
fi nding and set out on a systematic exploration of correla-
tion in atoms. The result of this study was the development 
of the correlation-consistent basis sets for the fi rst row 
atoms (H, He, B – Ne), a family of basis sets that provide 
systematic, increasingly accurate solutions of the electronic 
 Schr ö dinger  equation for atoms and molecules. After his 
move to Pacifi c Northwest National Laboratory, this work 
was extended to other elements of the Periodic Table and 
to the use of these basis sets to quantify the intrinsic error 
in electronic structure methods (see following paragraph). 
These basis sets are used in almost all computational chem-
istry codes. Six scientifi c publications in this series are 
 “ Citation Classics, ”  i.e., they have received more than 1000 
citations ( J.  Chem .  Phys .   1970 ,  53 , 2823 – 2833;  ibid .  1971 , 
 55 , 716 – 723;  ibid .  1989 ,  90 , 1007 – 1023;  ibid .  1992 ,  96 , 
6796 – 6806;  ibid .  1993 ,  98 , 1358 – 1371;  ibid .  1995 ,  103 , 
4572 – 4585). This work was summarized in a chapter in the 
 Encyclopedia of Computational Chemistry  (Dunning et al., 
 Encyclopedia of Computational Chemistry , Ed. P. v. R. 
 Schleyer , John Wiley  &  Sons Ltd, 1997). 

    1.3   Assessment of electronic structure methods 

 The development of the correlation-consistent basis sets, 
which systematically approach the complete basis set limit, 
made it possible to separate the basis set error from the 
error due to the electronic structure method. This made it 
possible to determine the  intrinsic  error associated with a 
given electronic structure method (confi guration interac-
tion, perturbation theory, coupled cluster, etc.). Dr. Dun-
ning and his co-workers used this approach to rigorously 
assess the accuracy of the quantum chemical methodolo-
gies used to describe the electronic structure of molecules. 
This work yielded a number of major surprises,  e.g. , the 
poor/non-convergence of the perturbation expansion for 
a broad range of molecules, and established the intrinsic 
accuracy of the coupled cluster method. A  “ Feature Arti-
cle ”  summarizing some of this work was published in the 
 Journal of Physical Chemistry A  (T. H. Dunning, Jr.,  J. 
 Phys .  Chem . A   2000 ,  104 , 9062 – 9080). 
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    1.4   Characterization of molecular lasers 

 At Los Alamos National Laboratory, Dr. Dunning and Dr. P. 
Jeffrey Hay were involved in characterizing the electronic 
states responsible for laser action in a number of exotic 
molecular systems (rare has halides, rare gas oxides, etc.), 
which were being developed for laser fusion and laser iso-
tope separation applications. These molecules have unsta-
ble ground states and, thus, are very diffi cult to characterize 
experimentally. The computational studies provided infor-
mation on these molecules (e.g., excited state lifetimes) 
that were otherwise unavailable and guided subsequent 
experimental studies of these species. As a result of the 
computational studies, a new laser transition in the rare gas 
halides was predicted and later observed. A review article 
describing this work was published in the  Annual Reviews 
of Physical Chemistry  (P. J. Hay, T. H. Dunning, Jr. and W. 
R.  Wadt ,   Annu . Rev.  Phys .  Chem .   1979 ,  30 , 311 – 346). 

    1.5   Chemical species and reactions in combustion 

 When Dr. Dunning moved from Los Alamos National Lab-
oratory to Argonne National Laboratory, he led a research 
group focused on characterizing the molecular species 
and reactions involved in the combustion of hydrogen and 
hydrocarbon fuels. These studies provide new insights 
into the chemical reactions involved in fl ames, answering 
some questions that had puzzled chemical  kineticists  and 
combustion modelers for decades. This work also provided 
information on the complex pathways involved in the reac-
tions of hydrocarbon species, including a wealth of here-
tofore unavailable information on reaction products and 
branching ratios. Using the information on quantum chemi-
cal methods/basis sets referred to above developed the pro-
tocol to compute the heats of many chemical reactions to 
an accuracy that is comparable to (and often better than) 
that obtained from experiment. 

     2   Contribution to computing 

  Thom  ’ s leadership abilities were recognized early on when 
he was appointed Associate Group Leader for Molecular 
Theory in the Laser Theory Group at Los Alamos National 
Laboratory. With the untimely passing of Chris  Wahl , 
 Thom  was recruited to Argonne National Laboratory, where 
he was appointed the Group Leader of the Theoretical and 
Computational Chemistry Group. During  Thom  ’ s tenure 
at Argonne, the group became an international focal point 
for theoretical and computational studies of the species and 
reactions involved in combustion. The success of this effort 
led to  Thom  ’ s recruitment to the Pacifi c Northwest National 
Laboratory, which was planning the development of a new 

molecular science research center — an activity that eventu-
ally matured into the Environmental Molecular Sciences 
Laboratory ( EMSL ), a $230 million project funded by the 
Offi ce of Biological and Environmental Research ( BER ) in 
the US Department of Energy (DOE). Although the  EMSL  
project was funded by  BER , it also had strong support and 
guidance from Dr. Robert S.  Marianelli  in the Chemical 
Sciences Division in the Offi ce of Basic Energy Sciences. 

 The  EMSL  Project began just as computing technolo-
gies were  transitioning  from the fast vector  supercomput-
ers  built by  Cray  Research to  “ massively ”  parallel comput-
ers based on microprocessors. The trouble was that to take 
full advantage of these new computers, the codes used to 
model molecular systems had to be rewritten to distribute 
the compute load over the processors. This was a major 
undertaking. Fortunately, the  EMSL  project provided the 
funding to do this, and  Thom  recruited a top team of com-
putational chemists, including Robert Harrison, Jeff  Nich-
ols , and  Ricky  Kendall as well as computer scientists and 
applied mathematicians to tackle this problem. This effort 
led to the development of  NWChem , an application that 
has maintained its position at the leading edge of parallel 
chemistry software for more than 15 years and has scaled 
from the 100 ’ s of processors available in the mid-1990s to 
the 100,000 ’ s of cores available today. 

 The success of the  NWChem  project led the US DOE to 
ask  Thom  to help them plan a new DOE-wide initiative in 
scientifi c simulation. Although they stated this would only 
be a temporary assignment,  Thom  was, in fact, the Assis-
tant Director for Scientifi c Simulation in DOE ’ s Offi ce 
of Science for more than 2 years. The culmination of this 
effort was DOE ’ s  “ Scientifi c Discovery through Advanced 
Computing ”  ( SciDAC ) program, which brought together 
disciplinary computational scientists, computer scientists, 
and applied mathematicians to enable a broad range of sci-
entifi c computational disciplines — from biology and chem-
istry through materials science to fusion energy, nuclear 
physics and particle physics — to take full advantage of par-
allel computers, which at the end of the 1990s were capable 
of executing one trillion arithmetic operations per second (a 
 terafl op ) to a quadrillion operations per second (a  petafl op ) 
by the end of the 2000s. 

 After  Thom  left his assignment at the Offi ce of Science, 
he briefl y held the position of Vice President for High Per-
formance Computing  &  Communications at  MCNC  and 
was responsible for high performance computing and net-
working for the University of North Carolina System as 
well as Duke University and Wake Forest University. He 
was then appointed the founding director of the Joint Insti-
tute for Computational Sciences, Distinguished Professor 
of Chemistry and Chemical Engineering at the University 
of Tennessee, and Distinguished Scientist at Oak Ridge 
National Laboratory. In 2004, he accepted the position of 

Reprinted from the journal 3
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director of the National Center for  Supercomputing  Appli-
cations and Distinguished Chair for Research Excellence 
in the Department of Chemistry at the University of Illi-
nois at Urbana-Champaign. In October 2006, Dr. Dunning 
was also appointed the founding director of a new Institute 
for Advanced Computing Applications and Technology at 
 UIUC . This Institute has a charter similar to that of  UIUC  ’ s 
 Beckman  Institute, namely, to foster multi- and interdis-
ciplinary research, in this case, at the interface between 
disciplinary computational science, computer science, and 
applied mathematics. 

 As  NCSA  director, Dr. Dunning led the effort to obtain 
funding for and then the deployment of the largest super-
computer system ever to be sited at a university — the  Blue 
Waters Sustained  Petascale  Computer . This $208 million 
project for the National Science Foundation was vision-
ary in that it clearly defi ned a computing system that would 
enable the computational science and engineering commu-
nity to make a major advance in their research. The project 
not only developed the specifi cations for the computer sys-
tem, it also established a technical user assistance program 
to ensure that the research teams granted access to Blue 
Waters could take full advantage of its capabilities. Also 
during  Thom  ’ s tenure,  NCSA  was selected to lead  NSF  ’ s 
national  cyberinfrastructure  project —  XSEDE , the Extreme 
Science  &  Engineering Discovery Environment.  NCSA  is 

now widely recognized as one of the world ’ s preeminent 
 supercomputing  centers and the only one of its kind on a 
university campus anywhere in the world. 

 At the end of 2013,  Thom  retired from the University 
of Illinois at Urbana-Champaign. But, retirement does not 
mean that he has lost interest in chemistry and computing. 
As soon as he had retired from  UIUC ,  Thom  accepted a 
part-time position with the Pacifi c Northwest National Lab-
oratory to help  PNNL  and the University of Washington 
establish the new Northwest Institute for Advanced Com-
puting. He was also appointed a Distinguished Faculty Fel-
low in  UW  ’ s Department of Chemistry. We look forward to 
 Thom  ’ s continuing contributions to the fi eld. 

  Thom  ’ s recognitions include the American Chemical 
Society Award for Computers in Chemical and Pharma-
ceutical Research (2011), Distinguished Associate Award 
(2001) and E. O. Lawrence Award in Chemistry (1996) 
from the U.S. DOE, Award for Excellence in Technology 
Transfer (2000) from the Federal Laboratory Consortium 
for Technology Transfer, Fellow of the American Chemi-
cal Society (2011), Fellow of the American Physical Soci-
ety (1992), and Fellow of the American Association for the 
Advancement of Science (1992). 

 Angela K. Wilson, Kirk A.  Peterson , and David E.  Woon  
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Abstract Sulfur–oxygen chemistry encompasses a rich

variety of chemical species and reactions. Sulfur–oxygen

bonds can be quite short and strong, and historically, there

has been disagreement as to the nature of the SO bond in

sulfinyl groups. Early work invoked participation by the

3d orbitals of sulfur to explain the apparent double-bond

character of sulfinyl bonds, but modern calculations have

clearly established that sulfur 3d atomic orbitals do not

participate as valence orbitals in hypervalent sulfur com-

pounds. In prior work, we used generalized valence bond

(GVB) theory to explain the features of the SO bond in the

HSO/SOH structural isomers, and we extend that work

here to the chlorinated analogs (ClSO/SOCl). We also use

GVB theory to elucidate the nature of the bonding in

Cl2SO and its higher energy structural isomer ClSOCl. We

find that recoupled pair bonding, which we first introduced

in our study of sulfur fluorides, is integral to describing the

SO bond in all of these species. We also connect our

analysis to the use of hyperconjugation to explain the back-

bonding in the p system in the sulfinyl halides.

Keywords Recoupled pair bonding � Thionyl chloride �
Hyperconjungation � Sulfinyl group � Generalized valence

bond (GVB) theory

1 Introduction

Sulfur and oxygen atoms interact to form a rich variety of

molecules with varying bond lengths and strengths that

contribute to the diversity of sulfur–oxygen chemistry. Of

interest here are molecules containing a single sulfinyl

(SO) group with two additional ligands, which have the

general formula XYSO. The SO bonds in these species are

typically shorter and stronger than a standard single SO

covalent bond [1], and their bond dissociation energies can

vary significantly depending on the identity of the sub-

stituents (X, Y) [2]. Both the electronegativity and aro-

maticity of X and Y affect the SO bond dissociation

energy. In general, electronegative substituents tend to

correlate with especially strong SO bonds [3]. In fact, the

SO bond in such compounds is often drawn as a double

bond in recognition of its shortness and strength, but the

presence of multiple bond character is controversial, and

the origin of this multiple bond character has been debated

[4]. For example, some texts depict XYSO species with a

dative, or hypercoordinate covalent SO bond between the

S3p2 orbital and the empty O2p2 arising from the O(1D)/

O(1S) states with back-bonding being invoked to explain

the shortness and strength of the bond.

As is typical of sulfur-containing species, the atomic

3d orbitals of the sulfur atom were employed as a possible

explanation for the variation in SO bond lengths and

strengths. It was suggested that the doubly occupied

O2p lone pair orbitals back-bond to the S3d orbitals of the

central atom [5, 6]. However, detailed calculations of

various hypervalent molecules show that S3d functions

only provide polarization and correlation effects [7–9];

these functions do not participate as 3d valence orbitals in

the bonding in the sulfinyls. In light of this finding, other

bonding schemes have been proposed. It has been
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suggested that back-bonding in the SO bonds (and related

bonds involving late p-block elements and oxygen) is a

consequence of hyperconjugation [10]. So-called anionic

hyperconjugation occurs when a bond pair and lone pair

interact, and the lone pair orbital energy is stabilized by

interaction with the empty anti-bonding orbital of the bond

[11]. Other studies have described these types of bonds as

composed of a polar covalent r bond and a nearly ionic p
bond, especially when the (X, Y) substituent is a very

electronegative element (e.g., a halide), without necessarily

addressing the origin of the multiple bond character [12–

14]. Yet other studies concluded that there in fact is no

multiple bond character, and the SO bond is strengthened

by purely electrostatic interactions [4].

In this work, we focus on thionyl chloride (Cl2SO) and its

structural analog, ClSOCl, as well as their parent triatomic

molecules: ClSO and SOCl. Cl2SO is interesting from a

theoretical perspective but is also an important reagent in a

wide variety of chlorination reactions [15] and in electro-

chemistry as a component in lithium/sulfinyl chloride bat-

teries [16]. We use generalized valence bond (GVB) theory

to provide insights into the nature of the bonding in these

molecules. A prior study of sulfur–oxygen compounds in

our group showed that recoupled pair bonding involving the

electrons in the p orbitals accounts for the strength of the

SO bond in the ground X3R- state of diatomic SO, as well

as for the large differences in geometry and SO bond

strength of the ~X2A00 states of HSO and SOH [17]. We found

that a recoupled pair p bond is formed by the interaction of

the electrons in the S3pp2 lone pair and the O2pp1 orbital in
SO(X3R-). In the S(3P) atom, the two electrons in the S3py

2

(or S3py-3py?) lone pair are singlet-coupled, but in

SO(X3R-), one of the electrons in the S3pp-like orbital

(3py?) is singlet-coupled to the O2pp
1-like orbital to form a

recoupled pair p bond. The remaining S3pp-like orbital

(3py-) is mostly centered on the sulfur atom. As a result, the

two singly occupied orbitals of SO(X3R-) are largely

localized on the S atom and the recoupled pair p bond is

maintained in HSO but must be broken to form SOH. This is

shown in GVB diagrams of the ~X2A00 states of HSO and

SOH in Fig. 1. Consequently, the SO bond in HSO is

0.15 Å shorter and 21.5 kcal/mol stronger than that in SOH.

Despite this difference, the ground states of HSO and SOH

are very close in energy (DE = 1.9 kcal/mol), which is due

to a near cancellation of two effects: (1) OH bonds are

stronger than SH bonds (favoring SOH), and (2) the re-

coupled pair bond is maintained in HSO but not SOH

(favoring HSO). We expect that similar effects are present

in ClSO/SOCl and Cl2SO/ClSOCl and may provide an

explanation for the preference of ClSO over SOCl and of

Cl2SO over ClSOCl as well as the shortness and strength of

the SO bond in the former species.

The remainder of this work is organized as follows. In

Sect. 2, we describe the computational methodology,

including a brief overview of GVB theory. In Sect. 3, we

compare the structure, energetics, and GVB orbitals of the

ClSO and SOCl structural isomers. We compare the cor-

responding dichlorinated species (Cl2SO and ClSOCl) in

Sect. 4. Finally, in Sect. 5, we conclude.

2 Computational methods

Prior studies in our group have utilized GVB theory to gain

insights into the nature of the bonding in a variety of

molecules of the second-row elements. Unlike Hartree–

Fock (or molecular orbital, MO) theory, GVB theory has

the advantage of being inherently multi-reference and

therefore able to describe bond dissociation and formation.

A subset of the GVB orbitals (na) are singly occupied,

instead of doubly occupied, and the GVB wave function

can be written as follows [18–21].

WGVB ¼ Â/d1/d1 � � �/dnd
/dnd

ua1ua2 � � �uana
ab � � � abHna

SM

ð1Þ
In Eq. (1), the {/di} are the doubly occupied core and

valence orbitals and the {uai} are the active GVB orbitals.

The {/di} orbitals can be considered as orbital pairs that are

singlet-coupled and overlap perfectly with one another. The

active orbitals, by contrast, are singly occupied with over-

laps less than unity and can be spin-coupled in various ways

as described by the spin-coupling coefficients, the sum of

which is Hna
SM ¼Pk cskH

na
SM;k. Because the active spatial

orbitals, {uai}, as well as the spin-coupling coefficients,

{cSk}, are optimized at each nuclear configuration, the GVB

wave function provides an accurate, yet compact descrip-

tion of the changes in the electronic structure of the mole-

cule with changes in the nuclear configuration. This is in

contrast to traditional VB calculations that typically require

several covalent and ionic structures to be included for the

calculation to be sufficiently accurate. Characterizing the

evolution of the spatial orbitals and the associated spin-

coupling patterns as a function of internuclear distance

provides a clear bridge between the electronic structure of

the molecule and that of its constituent fragments.

Fig. 1 GVB diagrams for the ground ( ~X2A00) states of HSO and SOH.

Valence p orbitals for the O and S atoms and the 1s orbital of

hydrogen atom are shown. We indicate the 3p2 (3p-, 3p?) lone pair

on sulfur with a dashed line; this pair can be recoupled to form an SO

p bond
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The spin-coupling coefficients, {cSk}, are related to the

relative weight, wk, of a particular spin function (Hna
SM;k) in

the wave function. There are various choices for the spin

basis functions used in the GVB calculation. The Kotani

spin basis is a popular choice because the basis is ortho-

normal, and the squares of the resulting coefficients {cSk}

yield a direct measure of the contribution of the spin-cou-

pling patterns to the total GVB wave function, wk = cSk
2 [22].

Any weights reported in this work will be computed in the

Kotani spin basis. A related spin basis is the Rumer spin

basis [23, 24]. The Rumer spin functions have the advantage

of being interpretable in terms of singlet pairs. The Kotani

spin functions (in reverse order) can be obtained by Gram–

Schmidt orthogonalization of the Rumer spin functions [25].

The disadvantage of using Rumer spin functions is that,

because they are not orthogonal, the contribution of each spin

function to the total wave function cannot be uniquely

defined (though various definitions are available [26–28]).

Nonetheless, the magnitudes of the coefficients provide

valuable insights into the relative importance of the various

Rumer spin-coupling patterns. For species in which the

bonding pattern changes as a function of geometry, the Ru-

mer spin basis is often viewed as a natural choice to describe

this transition.

Generalized valence bond (GVB) calculations are

inherently more accurate than Hartree–Fock calculations

because they contain the major nondynamical correlation

effects in a valence CASSCF wave function, e.g., those

associated with the s–p near-degeneracy in the atoms and

those associated with the incorrect dissociation of the

Hartree–Fock wave function in the molecule. However,

GVB calculations do not include dynamic correlation and

are thus not as accurate as MO-based multi-reference

configuration interaction (MRCI) or coupled cluster (CC)

methods. Therefore, in this work, we will use a hybrid

approach: (1) we use very accurate MO-based methods,

such as the MRCI and CC methods, to optimize the

geometries and compute the energetics of the species of

interest here, and (2) we combine these results with cal-

culations of the GVB wave function to examine the elec-

tronic structure of the molecule.

We will make use of GVB orbital diagrams to sche-

matically represent the GVB wave function as shown in

Fig. 1 in Sect. 1. In this work, the valence p orbitals of the

atoms will be represented as follows: two lobes in the plane

of the paper for each of the px and pz orbitals, and a small

circle to represent the py orbital, which is the p orbital that

has a node in the plane of the paper. The SO bonding axis

is defined to be the z-axis. The dots in the lobes represent

the electronic occupation of the orbitals, and singlet cou-

pling between two orbitals centered on different atoms (a

chemical bond) is shown as a line connecting the orbitals.

We indicate the possibility of recoupling the S3p2 pair with

a dotted line drawn through this doubly occupied orbital.

This S3p2 pair is shown in Fig. 2 in both the MO and GVB

representations. In MO theory, the 3p orbital is doubly

occupied; in GVB theory, this lone pair is represented by

two lobe orbitals. The 3p lobe orbitals result from the

inclusion of an S3d orbital in the GVB wave function,

which provides the GVB orbitals with angular correlation

such that they have some spatial separation, though their

overlap is still high [29].

All calculations were performed with the Molpro suite

of quantum chemical programs [30]. The GVB calculations

were performed using the CASVB program of Thor-

steinsson et al. [31]. We generally computed the full GVB

wave function (also called the spin-coupled VB (SCVB)

wave function by Gerratt et al. [18, 19]). To compute the

GVB wave function, our general strategy was to localize

the Hartree–Fock orbitals in terms of atomic orbitals [32]

and then perform a CASSCF calculation with a small

active space if needed to further refine these orbitals, which

were then used to generate a starting guess for the CASVB

program. The main constraint on the wave function was

orthogonality between orbitals of different symmetry.

All geometries were optimized, and bond energies were

calculated with explicitly correlated coupled cluster theory

including a perturbative triples correction [CCSD(T)-F12

and RCCSD(T)-F12 with the ‘‘a’’ approximation] [33–36].

For geometry optimizations, the augmented correlation

consistent double-zeta basis set with tight d-functions on

sulfur and chlorine [AV(D ? d)Z] was used [37–39].

Because the explicitly correlated coupled cluster method-

ology contains terms that depend explicitly on interelec-

tronic distances, convergence with respect to basis size is

accelerated relative to traditional approaches. A calculation

including explicitly correlated terms is typically at least as

accurate as a calculation using a basis set that is one zeta

higher without the explicitly correlated terms [40]. So we

expect that the CCSD(T)-F12/AV(D ? d)Z calculations

performed here are comparable in accuracy to standard

CCSD(T)/AV(T ? d)Z calculations. For calculating

molecular energies, we used the AV(T ? d)Z basis set,

which, using the explicitly correlated methodology, should

have an accuracy between quadruple or quintuple zeta for

Fig. 2 MO and GVB representations of the S3p2 pair
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calculations performed without the explicitly correlated

terms. For potential energy scans over a range where a

single-reference method was not appropriate, a CASSCF

calculation [41, 42] was performed or MRCI with the

Davidson correction was employed (MRCI ? Q) [43, 44].

For these calculations, the AV(T ? d)Z basis set was used

and a full valence active space was used unless otherwise

stated.

3 The ClSO/SOCl isomers

3.1 The structures and energetics of ClSO/SOCl

The geometries and relative energetics of the ground

( ~X2A00) states of the ClSO and SOCl isomers are shown in

Fig. 3. The structure for ClSO( ~X2A00) is in good agreement

with a prior study [45]. The ClSO( ~X2A00) isomer is sub-

stantially more stable than the SOCl( ~X2A00) isomer,

DE = 56.0 kcal/mol. This is in contrast to the nearly

energetically degenerate HSO/SOH structural isomers

shown in Fig. 1. We cannot attribute the increased stability

of the ClSO isomer to any inherent difference in the

strengths of the SCl and OCl bonds; the dissociation

energies of these bonds in the diatomic species (Table 1)

are very similar, with the SCl(X2P) state being only

3.8 kcal/mol more strongly bound than the OCl(X2P) state.

We also compare the bond lengths and energies of the

diatomic molecules to those of the ClSO/SOCl molecules

in Table 1. Clearly, additional factors are at play in the

ClSO/SOCl isomers compared to the HSO/SOH isomers.

The SCl bond energy in the ClSO( ~X2A00) isomer,

56.1 kcal/mol, is slightly weakened relative to that in the

SCl(X2P) state, 67.6 kcal/mol, but similar in magnitude.

Similarly, the SCl bond is only slightly longer in the

ClSO( ~X2A00) isomer, 2.054 Å, than that in the SCl(X2P)

state, 1.985 Å. Therefore, we consider this bond to be a

typical SCl covalent bond, and attribute its lengthening and

weakening relative to SCl(X2P) to the additional electronic

repulsion among the SCl bond pair, the SO bond pair, and

the O2p2 pair in the ClSO( ~X2A00) isomer. By contrast, in

the SOCl( ~X2A00) isomer, the OCl bond is weak almost to

the point of nonexistence, De(SO–Cl) & 0.1 kcal/mol. The

OCl bond length is correspondingly much longer in the

SOCl( ~X2A00) isomer than that in OCl(X2P): Re(SO–

Cl) = 2.121 Å versus Re(O–Cl) = 1.569 Å. Clearly, the

interaction between the O and Cl atoms cannot be descri-

bed as a covalent bond. We will discuss the nature of

bonding in this species in Sect. 3.3.

The SO bonds in the triatomic molecules are quite

similar in terms of length, with the SO bond length only

increased by 0.04 Å in the SOCl isomer relative to the

ClSO isomer. This is in distinct contrast to the hydrogen-

substituted case where the SO bond in HSO was 0.15 Å

shorter than in SOH. However, both the HS bond length in

the HSO( ~X2A00) isomer and the OH bond length in the

SOH( ~X2A00) isomer were very close to that of the X2P
states of the corresponding diatomic molecules, XH

(X = O, S). Thus, the shortness of the SO bond and the

extraordinary length of the OCl bond in the SOCl( ~X2A00)
isomer are peculiar to chlorine substitution.

3.2 The GVB orbitals of ClSO

In our prior study of HSO/SOH, we found that the recou-

pled pair p bond in SO was maintained in HSO and was

broken upon formation of SOH. In contrast, for ClSO and

SOCl, based on the bond lengths alone, it seems that the

recoupled pair p bond in SO is maintained in both isomers.

The GVB orbitals for the ~X2A00 states of the ClSO and

SOCl isomers support this conclusion. The five GVB

valence orbitals of a00 symmetry in ClSO, as well as the

associated GVB diagram, are shown in Fig. 4. In the

dominant spin-coupling pattern (95.6 %), the electrons of

the Cl3p2 pair (u1, u2) are singlet-coupled, which is

denoted by the dotted line between the orbitals. The other

singlet-coupled pair (u3, u4) is a recoupled pair p bond

between the O2p1-like orbital and one of the S3p-like lobe

orbitals, which has delocalized onto the O atom and rep-

resents the highly polarized (Sd?Od-) nature of the bond.

The remaining S3p-like lobe orbital has a spin, yielding an

overall doublet state. This bonding scheme is depicted in

the GVB orbital diagram in Fig. 4. The bonding scheme for

Fig. 3 Optimized geometries and relative energetics of the ClSO and

SOCl isomer. Throughout this work, the chlorine atom is blue, the

sulfur atom is yellow, and the oxygen atom is red

Table 1 Comparison of bond lengths (in Å) and dissociation ener-

gies (in kcal/mol) for the SCl and OCl bonds in ClSO/SOCl versus the

diatomic species

Re De

Cl–SO( ~X2A00) 2.054 56.1

S–Cl(X2P) 1.985 67.6

SO–Cl( ~X2A00) 2.121 0.1

O–Cl(X2P) 1.569 63.8
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the S and the O atoms in the ClSO( ~X2A00) isomer is

essentially the same as that found in HSO previously.

Note that the Cl3p2 lone pair is an example of a GVB

description of a 3p2 lone pair that is not recoupled. The

lone pair consists of two lobe orbitals, (u1 & Cl3py-,

u2 & Cl3py?), with high overlap (S = 0.88) that are sin-

glet-coupled to each other.

3.3 The GVB orbitals of SOCl

Unlike HSO and ClSO, the features of SOCl are qualita-

tively different than those of SOH, indicating a different

bonding pattern in the two species. In SOH, the SO bond

was significantly lengthened relative to that in the HSO

isomer. By contrast, in SOCl, the SO bond is still fairly

short, 1.502 Å in SOCl versus 1.460 Å in ClSO. However,

the OCl bond is very long and weak. The GVB orbitals for

the SOCl( ~X2A00) isomer are shown in Fig. 5a. In the

dominant spin-coupling pattern (87.3 %), the O2p1-like

GVB orbital (u3) is singlet-coupled to one of the S3p lobes

(u4) and not to the Cl3p GVB orbital, resulting in the same

type of recoupled pair p bond that we observed in the

ClSO( ~X2A00) isomer. The other singlet pair consists of the

Cl3p-like GVB orbital (u2) and the remaining S3p lobe

orbital (u5). There is a slight tail of these orbitals on the O

atom, but u2 is largely centered on the chlorine atom and

u5 is largely centered on the S atom. Therefore, these two

orbitals do not have a large spatial overlap (S = 0.24) with

one another and do not form a conventional chemical bond.

In essence, the recoupled pair bond is maintained at the

expense of forming a covalent OCl bond. The p bond

delocalizes slightly onto the Cl atom, which could be the

genesis of the slightly longer SO bond in SOCl relative to

that in the ClSO isomer.

Ongoing work in our group has observed a similar

bonding pattern in the ~A2A0 state of NOF (Takeshita and

Dunning, to be published). We will refer to this weakly

overlapping singlet-coupled pair as a through-pair inter-

action. Despite the small overlap of this singlet pair, the
~X2A00 state of SOCl is 10.7 kcal/mol lower in energy than

the corresponding quartet state at the equilibrium geometry

for the doublet state. (The O–Cl bond dissociates on the

quartet surface). A more comprehensive study of the

through-pair interaction will be the subject of a future

article (Takeshita and Dunning, to be published); however,

we speculate that the singlet coupling is energetically

favorable not because a traditional covalent bond is

formed, but rather because the overlap of the singlet-cou-

pled pair reduces the electronic repulsion between the

Fig. 4 GVB orbitals for those orbitals shaded green in the accom-

panying GVB diagram for ClSO( ~X2A00). A dotted line separating two

orbitals indicates that they are singlet-coupled in the dominant spin-

coupling pattern of the wave function
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Fig. 5 a GVB orbitals for those orbitals shaded green in the

accompanying GVB diagram for optimized geometry of SOCl( ~X2A00).
b The same GVB orbitals for R(SO) = Re(SO) ? 0.12 Å with

optimization of the remaining degrees of freedom. Note that the

dotted line indicating singlet coupling between orbitals has switched

from vertical to horizontal. c Magnitudes of the coefficients of the

Rumer spin functions for the GVB wave function of SOCl( ~X2A00) as a
function of R(SO) for the orbital ordering indicated in (a) and (b)

Theor Chem Acc (2014) 133:1443

123Reprinted from the journal 9



electrons in the recoupled pair p bond and the electrons in

the weakly overlapping pair.

The electronic structure of the SOCl isomer is actually

even more complex than the above analysis implies. If the

SO bond is lengthened (even slightly), the recoupled pair p
bond weakens and the bonding pattern switches from that of

a recoupled pair p bond and a through-pair interaction to that
of an S3p2 lone pair and a standard covalent OCl bond. At

Re(SO) ? 0.12 Å, the GVB wave function (shown in

Fig. 5b) is almost entirely (99.8 %) described by the latter

bonding pattern. If we perform GVB calculations from

R(SO) = Re – 0.02 Å to R(SO) = Re ? 0.12 Å and pre-

serve the ordering of the orbitals by atomic character, we can

directly observe the switch in character between the re-

coupled pair bonding pattern and the covalent bonding

pattern in the spin-coupling coefficients, {cSk}, associated

with the Rumer spin functions. We plot these values in

Fig. 5c as a function of R(SO). Because the spin functions in

the Rumer basis are nonorthogonal, there is no unambiguous

way to relate the spin-coupling coefficient to its contribution

to the GVB wave function. Nevertheless, the magnitudes of

the spin function coefficients are certainly correlated with

the importance of the spin-coupling patterns.

At intermediate values of R(SO), there is some ambiguity

in the assignment of the orbitals as they exchange character

through both the spin and spatial degrees of freedom, and an

orbital ordering that resulted in the smoothest evolution of

the Rumer spin functions was chosen. At larger values of

R(SO), the covalent OCl bonding pattern (diamonds) totally

dominates, but as R(SO) decreases, the recoupled pair

bonding pattern (upward triangles) becomes increasingly

important, and becomes dominant at R(SO) values below

1.56 Å. A third spin-coupling pattern (circles) also becomes

important as R(SO) decreases. This spin function corre-

sponds to coupling u3 and u4 into a recoupled pair p bond,

and then singlet coupling the out-of-plane S3p GVB orbital

(u1) to the Cl3p in-plane orbital (u2) and high spin-cou-

pling the other in-plane S3p GVB orbital (u5). This spin

function does not describe an OCl bond. This spin-coupling

coefficient increases because the triplet-coupling of the

orthogonal valence S3p-like orbitals (u1 and u5 in Fig. 5a)

on the SO(X3R-) fragment becomes important as the Cl

atom becomes increasingly weakly bound. (In the Rumer

spin basis, there is no spin function that corresponds directly

to triplet-coupling these two orbitals). The increasing con-

tribution of this spin function as R(SO) decreases is not

surprising given the weakness of the OCl bond.

The presence of two distinct bonding patterns has con-

sequences for the potential energy curve as a function of

SO bond length for SOCl. For ClSO, the analogous

potential energy curve acts like a Morse oscillator around

the minima as the SO bond is stretched; see Fig. 6, where

the energies of the respective minima have been set to zero.

However, for SOCl, while there is only one minimum,

there is an obvious change in the character of the potential

energy curve around 1.65 Å. We attribute this feature to

the competition of the two bonding motifs, which possess

two distinct equilibrium bond lengths and strengths,

depending on whether the recoupled pair p bond is present

or absent.

4 The Cl2SO/ClSOCl isomers

Similarly to ClSO/SOCl, we can understand the energetic

differences between the Cl2SO and ClSOCl isomers in

terms of recoupled pair p bonding. Consider first

ClSO( ~X2A00) ? Cl(2P). In order to form an OCl bond to

yield ClSOCl, the Cl atom must bond via a through-pair

interaction or it has to break the p bond just as we observed

in SOCl. However, in Cl2SO, the second SCl bond forms

with the orbital left over from the formation of the recou-

pled pair p bond, u5 in Fig. 4, and the recoupled pair p
bond is maintained. These pathways are depicted in Fig. 7.

By this logic, we expect the energy difference between the

Cl2SO and ClSOCl isomers to be similar in magnitude to

that between the triatomic ClSO and SOCl molecules, and

it is: the Cl2SO isomer is 47.0 kcal/mol lower in energy

than the ClSOCl isomer.

We can also understand the variation in SO bond

strength as a function of X and Y in the XYSO molecules

in terms of recoupled pair p bonding. We saw in our prior

studies of recoupled pair bonding that the orbital left over

from the formation of the recoupled pair bond has large
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Fig. 6 Potential energy curves as a function of R(SO) for the ~X2A00

states of ClSO (circles) and SOCl (squares) with all other degrees of

freedom optimized at the MRCI ? Q/AV(T ? d)Z level of theory.

The energy at the minima is set equal to zero for both curves
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unfavorable overlaps with the bond pair [17, 46]. For

ClSO, we find that u5 in Fig. 4 has a large energetically

unfavorable overlap with the p bond pair (u3 and u4).

Therefore, bond formation with this orbital will be more

favorable if the incoming ligand is strongly electronegative

and can polarize this orbital away from the SO bond pair,

but would be less favorable or even unfavorable if the

ligand is weakly electronegative and thus augments the

electronic repulsion in the p system. A more in-depth

discussion of Cl2SO will be deferred until Sect. 4.2.

4.1 The ClSOCl isomer

Given the similarity in the GVB diagrams of SOCl and

ClSOCl, it should come as no surprise that the potential

energy curve associated with stretching the ClS–OCl bond

also has contributions from two bonding patterns: recou-

pled pair p bond/through-pair interaction and S3p2 lone

pair/covalent OCl bond. However, for ClSOCl, there is

increased electron repulsion between the SCl bond and the

OCl bond and p orbitals. Because lengthening the SO bond

reduces this repulsion, the more stable bonding pattern is

shifted from the recoupled pair p bond/through-pair inter-

action to the S3p2 lone pair/covalent OCl bond motif. As a

result, ClSOCl has a longer SO bond length

(DRe = 0.10 Å) but much shorter OCl bond length

(DRe = - 0.37 Å) than in SOCl. In addition, the potential

energy curve for stretching the ClS–OCl bond is very flat,

increasing by only 0.3 kcal/mol at R(SO) = Re(SO) -

0.1 Å, compared to 8.5 kcal/mol in ClSO over the same

range. In ClSOCl, the presence of the two bonding patterns

is especially obvious because the balance between the two

bonding motifs yields two distinct minima at the CCSD(T)-

F12/AV(D ? d)Z level of theory (confirmed by frequency

calculations); see Fig. 8a.

The two minima for ClSOCl are shown in Fig. 8b. As

anticipated, the major geometric differences between these

two isomers are the SO and OCl bond lengths; the SCl

bond length and the angles are effectively the same. This

pair of isomers can thus be described as bond stretch iso-

mers, although the barrier separating the two isomers is

extremely small. The OCl bond length is highly dependent

on the SO bond length for this entire region of the potential

energy curve: as the SO bond shortens, the recoupled pair p
bond strengthens at the expense of the OCl bond. Figure 8c

shows the strong inverse correlation between R(SO) and

R(OCl). In contrast, the R(SCl) bond length is effectively

independent of R(SO).

While the miniscule barrier between these two isomers

makes distinguishing between them experimentally

impossible, the unusual potential energy curve shown in

Fig. 8a will lead to a distinct, if complicated, infrared

spectrum that could, in principle, be observed. The atypical

features of this potential energy curve are similar to what

has been observed previously for the H2PO radical, where,

at lower levels of theory, there was a double well in the

potential energy as a function of R(PO) [47]. In that case,

increasing the amount of dynamic correlation in the cal-

culation eliminated the barrier completely yielding a very

flat potential energy curve. There was also a change in the

character of the singly occupied orbital as the PO bond

length decreased, from that consistent with a single PO r
bond (singly occupied orbital localized on oxygen) to that

suggestive of a r bond plus a recoupled pair p bond (singly

occupied orbital on phosphorus).

4.2 The Cl2SO isomer

At the start of this section, we considered the formation of

Cl2SO from ClSO and Cl, which suggested a covalent r
and a recoupled pair p bond for the SO bond and, through

resonance, two predominantly covalent ClS bonds. This

pathway is consistent with prior studies that showed a polar

covalent r SO bond and a nearly ionic p SO bond in related

molecules [9, 12–14] (recoupled pair bonds tend to be quite

polarized toward the recoupling ligand). This bonding

scheme would predict Cl2SO to have two ClS bonds similar

in length to that in ClSO (2.054 Å) with a ClSCl angle near

90�. It would also predict an SO bond length close to that in

ClSO (1.460 Å) with \ClSO like that in ClSO (109.2�).
This compares well with the calculated structure of Cl2SO:

Re(ClS) = 2.069 Å, \ClSCl = 95.5̊, Re(SO) = 1.435 Å,

and \Cl2S–SO = 115.9̊ (the latter is the angle between the

bisector of the Cl2S plane and the SO bond); see Table 2.

These geometric parameters compare well with prior

computational and experimental studies of Cl2SO [48–51].

Clearly, this approach provides a compelling description of

the bonding in the Cl2SO molecule. But, there are alter-

native descriptions of the SO bond in the sulfinyls.

Fig. 7 GVB orbital diagrams for the addition of two chlorine atoms

to SO(X3R-) to form either Cl2SO or ClSOCl, and optimized

geometries and relative energetics for these isomers
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We can, for example, consider the formation of Cl2SO

from Cl2S and O instead of ClSO and Cl. However, the

ground-state fragment, Cl2S( ~X
1A1) and O(3P), cannot yield

the ground singlet state of Cl2SO, the ~X1A0 state. As a

result, bonding in XYSO species is often assumed to

originate from the XYS( ~X1A) ? O(1D) asymptote. This

suggests that the SO bond is a dative bond, where the S3p2

pair of Cl2S is donated to the empty O2pz orbital that

results from mixing the 1A0 states arising from the

XYS( ~X1A) ? O(1D) and XYS( ~X1A) ? O(1S) asymptotes,

i.e., the O(2px
22py

2) configuration. The optimized structure

of Cl2SO( ~X
1A0) is in reasonable agreement with expecta-

tions based on this bonding motif: the geometric parame-

ters of the Cl2S group are reasonably close to those in the

Cl2S( ~X
1A1) state (see Table 2). Further, the angle between

the Cl2S plane and the oxygen atom 115.9� is consistent

with what would be anticipated from bonding with one of

the lone pairs of Cl2S, a mix of S3s2 and S3p2 orbitals.

However, the Cl2S( ~X
1A1) ? O(1D) limit is actually not

the lowest energy asymptote for the dissociation of

Cl2SO( ~X
1A0). The lowest energy asymptote that can form a

singlet state is Cl2S(~a
3B1) ? O(3P). The energy of

Cl2S(~a
3B1) at its optimum geometry is only 36.2 kcal/mol

higher in energy than that of the Cl2S( ~X
1A0) ground state,

compared to 49.1 kcal/mol for the O(3P) to O(1D) excita-

tion energy [RCCSDT-F12/AV(T ? d)Z calculations]. We

have described bonding in Cl2S(~a
3B1) elsewhere [52]. In

short, the two SCl bonds comprise a r recoupled pair bond

dyad, where both Cl atoms form bonds to the 3p2 pair of

the S(3P) atom. As we have shown, recoupled pair bond

dyads are very stable, consistent with the small excitation

energy observed in Cl2S. The angle between the two ClS

bonds in the Cl2S(~a
3B1) state is 147.8� and

Re(ClS) = 2.117 Å, 0.10 Å longer than in the Cl2S( ~X
1A1)

ground state. The two singly occupied orbitals, one in the

plane of the molecule and one out of the molecular plane,

resemble two S3p orbitals, with the in-plane orbital having

significant S3s admixture that polarizes it toward the side

of the sulfur atom containing the Cl atoms; see Fig. 9a. The

next lowest energy electronic state of Cl2S, the ~b3A2 state,

is bound by one recoupled pair bond and one covalent

bond, yielding a strongly bent geometry, 87.6�, with

Re(ClS) = 2.146 Å. The Cl2S(~b
3A2) state lies 57.0 kcal/

mol above the ground state.

The geometric parameters listed above for the optimized

Cl2SO molecule deviate significantly from those optimal for

Cl2S(~a
3B1); see the comparison in Table 2. However, the

planar transition state for the inversion of Cl2SO possesses

structural features similar to the ~a3B1 state of Cl2S, namely

Re(ClS) = 2.189 Å and \ClSCl = 161.9�. Figure 9b shows
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Fig. 8 a Potential energy for ClSOCl as a function of R(SO) from

CCSD(T)-F12/AV(T ? d)Z calculations with all other geometric

parameters optimized at the CCSD(T)-F12/AV(D ? d)Z level of

theory. b Structures and geometric parameters of the two minima at

the same level of theory as (a). Optimized SCl (squares) and OCl

(circles) bond lengths as a function of R(SO) in ClSOCl from the

geometries in (a)

Table 2 Optimized geometric parameters (in Å and degrees) of the
~X1A1, ~a

3B1, and ~b3A2 states of Cl2S and Cl2SO at the minimum and

the planar transition state for inversion

R(S–Cl) A(Cl–S–Cl) R(S–O) A(Cl2S–S–O)
a

Cl2S( ~X
1A1) 2.017 100.3 - -

Cl2S(~a
3B1) 2.117 147.8 - -

Cl2S(~b
3A2) 2.146 87.6 - -

Cl2SO(Opt.) 2.069 95.5 1.435 115.9

Cl2SO(T.S.) 2.189 161.9 1.433 180.0

a The angle between the O atom, S atom, and the bisector of the Cl–

S–Cl angle
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the relevant orbitals of the planar Cl2SO transition state. The

in-plane S3p-like orbital from Fig. 9a forms an extremely

polar r bond with the in-plane O2p1 orbital, and the out-of-

plane S3p orbital forms a polar p bond (though less polar than
the r bond). The remaining O2p2 pair is largely localized on

the oxygen atom. While both the r and p bonds are polarized

toward the more electronegative oxygen atom, the r bond is

much more polar because polarizing toward oxygen reduces

the anti-bonding character present in the S3p-like in-plane

orbital. Despite the polar nature of these bonds, it seems

reasonable that bonding in this state should be interpreted as

an SO double bond, and the strength of this bond relative to

the Cl2S(~a
3B1) ? O(3P) asymptote (100.8 kcal/mol) is con-

sistent with this interpretation. For reference, the a1D state of

SO, which contains a r and a p bond, is bound by 103.2 kcal/

mol. The transition state for inversion is 40.1 kcal/mol higher

in energy than the minimum—similar to many other XYSO

molecules where X and Y are not bonded together via rings

[2, 53–57].

The equilibrium geometry of Cl2SO leads to two ques-

tions. (1) Why do the geometries for the minimum and

transition state appear to be associated with two different

asymptotes? Further, (2) why is the calculated dissociation

energy for Cl2SO( ~X
1A0) ? Cl2S( ~X

1A1) ? O(1D) so large?

It is 153.8 kcal/mol—substantially larger even than that for

the strong bond in the ground, X3R-, state of SO. See

Table 3 for the RCCSD(T)-F12 bond dissociation energies

for the various asymptotes relative to the optimized

Cl2SO( ~X
1A0) energy. The answers to both of these ques-

tions are related.

We can understand the variation in Cl2S angle between

the optimized geometry and the planar transition state for

inversion of Cl2SO from the orbitals of the different

electronic states of Cl2S. When the Cl2S group is con-

strained to be planar with the O atom, an a1 orbital must

be present and available in Cl2S to form a r bond with

oxygen. Figure 9a shows that Cl2S(~a
3B1) ? O(3P) clearly

meets this criterion. For the Cl2S( ~X
1A1) ? O(1D) limit,

the situation is not nearly as favorable. From Fig. 10,

which shows the relevant orbitals of the Cl2S group at the

optimized Cl2SO geometry, we can see that, while there is

an a1-symmetric lone pair (a slightly polarized S3s2-like

orbital) associated with the ~X1A1 state of Cl2S, bonding

between this orbital and O(1D) is likely to be disfavored.

This is a result of the electronic repulsion among the O2p2

pairs and the S3p2 lone pair, coupled with the short SO

bond length that would be required for the empty O2p

orbital to have a large overlap with the mostly spherical

3s-like lone pair. The third lowest-lying state of Cl2S, the
~b3A2 state of Cl2S, does not have any a1-symmetric singly

occupied orbitals that can bond with O(3P). The domi-

nance of the Cl2S(a
3B1) ? O(3P) asymptote is reflected in

the large (161.9�) Cl–S–Cl angle that is near optimal for

the ~a3B1 state, but not the ~X1A1 or ~b3A2 states, of Cl2S.

However, if the oxygen atom approaches from an

approximately 90� angle relative to the plane of the Cl2S

group, then an SO r bond can be formed with the highest-

lying b1 orbital of Cl2S. For Cl2S( ~X
1A1) ?

O(1D) ? Cl2SO( ~X
1A0), because the symmetry is CS

instead of C2V, the S3s and S3p orbitals shown in Fig. 10

can mix to minimize electronic repulsion, so dative bond-

ing from this asymptote will be more stable than in the

(a)

(b)

Fig. 9 a Singly occupied orbitals of Cl2S(~a
3B1) at its optimized

geometry. b Select GVB orbitals for the transition state to inversion of

Cl2SO

Table 3 Energy (kcal/mol) of the molecular fragments (Cl2S and O)

that are capable of forming Cl2SO( ~X
1A0) relative to the optimized

Cl2SO geometry

Fixed Cl2S Optimized Cl2S

Cl2S( ~X
1A1) ? O(1D) 155.8 153.8

Cl2S(~a
3B1) ? O(3P) 170.1 141.0

Cl2S(~b
3A2) ? O(3P) 165.4 161.8

The Cl2S molecule is either at the same geometry as in the optimized

Cl2SO structure (first column) or at optimized for the given electronic

state of Cl2S (second column)

Theor Chem Acc (2014) 133:1443

123Reprinted from the journal 13



planar configuration. Moreover, the singly occupied orbi-

tals of the Cl2S(~a
3B1) and Cl2S(~b

3A2) states are well

positioned to form double bonds with O(3P), as is apparent

from Fig. 10. At the optimum Cl–S–Cl angle in

Cl2SO( ~X
1A0), all of these asymptotes are similar in energy,

see the left column in Table 3. As we saw for the transition

state, bonds originating from an orbital possessing anti-

bonding character are likely to be quite polar to minimize

this unfavorable character. The upshot of this situation is

that all three asymptotes have comparable energies and

have the same symmetry and basic orbital structure, and

thus they all have the potential to mix to stabilize the

ground state—lowering its energy and leaving the excited

states with weaker bonds.

We have investigated the impact of the higher-lying

asymptotes in Fig. 11 with a 6-state CASSCF/AV(T ? d)Z

potential energy scan as a function of R(SO), where all of the

other geometric parameters are fixed at the optimized Cl2SO

geometry.We include all valence orbitals except theO2s2 and

Cl3s2 pairs in the active space and include two a0 and one a00

virtual orbitals.At largeR(SO), the first three states collapse to

the Cl2S( ~X
1A1) ? O(1D) asymptote, the fourth and fifth

asymptotes correspond to Cl2S(~b
3A2) ? O(3P), and the sixth

state is the Cl2S(~a
3B1) ? O(3P) asymptote. (The next

asymptote is 50.9 kcal/mol higher in energy). Figure 11a

shows the results of the CAS calculation, where, for clarity,

several data points from the four highest-lying states at small

values ofR(SO) have not been plotted due to their interactions

with even higher-lying electronic states. The ground state is

bound by 119.8 kcal/mol, recovering about 77 % of the

CCSD(T)-F12/AV(T ? d)Z energy reported in the upper left

cell of Table 3.

Clearly, these states are interacting and curve crossings

are present that complicate the interpretation of these results.

However, if we assume that all states corresponding to

aligning the O2p2 pair with an occupied S3p-like orbital are

purely repulsive and smooth, we can isolate the parts of the

calculation related to the asymptotes that we expect to bond.

We show these data (denoted by ‘‘x’’s) with corresponding

fits with splines in Fig. 11b. It is clear in both Fig. 11a, b that

there is a dearth of favorable bonding interactions associated

with the triplet asymptotes, two of which (those in Fig. 11b)

are aligned to form double bonds. The remaining favorable

character is mixed into the second lowest electronic state at

small R(SO)—squares in Fig. 11a. This state is bound by 9.9

and 18.2 kcal/mol relative to the asymptotes involving

Cl2S(~b
3A2) andCl2S(~a

3B1), respectively. For reference, with

the same active space, the similarly double-bonded transition

Fig. 10 Orbitals of Cl2S relevant to SO bond formation to yield

Cl2SO for the ~X1A1, ~a
3B1, and ~b3A2 states. The geometry is that of the

Cl2S group in Cl2SO
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Fig. 11 a Potential energy (CASSCF/AV(T ? d)Z) for the first six

electronic states of Cl2SO as a function of R(SO) with all other

geometric parameters fixed. For clarity, some of the data points for

the four highest-lying states at small values of R(SO) that interact

with even higher-lying electronic states have been removed. b Fits to

the parts of the potential energy curves corresponding to ‘‘bonding’’

asymptotes; data points from (a) shown as ‘‘x’’s
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state is bound by 82.8 kcal/mol. Therefore, the majority of

the bonding character associated with the triplet asymptotes

is not found in the higher-lying electronic states.

The stabilizing effects of these triplet asymptotes can

form an anomalously strong SO bond in the ground state,

with the ground state effectively robbing these excited

states of their favorable character because the orbitals

between the three asymptotes are so similar. The double

bonds arising from the triplet asymptotes are similar to

those of the transition state, only the r and p orbitals have

switched. In this case, it is the p bonds that are extremely

polar because of the anti-bonding character present in the

a1- and b2-symmetry Cl2S orbitals of the ~a3B1 and ~b3A2

states, respectively. This is direct evidence that multi-bond

character is present in the ground state, significantly low-

ering its energy. Based on these results, we suggest that the

multi-bond character owing to the triplet asymptotes

dominates SO bonding in Cl2SO, with dative bonding

being of secondary importance.

Before concluding this discussion, we will consider one

other point. The polarization/delocalization of the orbitals

on the oxygen atom in sulfinyl groups has been previously

noted in both MO and GVB calculations [9, 10, 12–14] and

had been attributed to p–3d back-bonding in early work.

However, consistent with moremodern calculations, we find

that this description does not explain the polarization of these

orbitals for Cl2SO( ~X
1A0). Figure 12a, b both show the p

GVB orbitals of Cl2SO but those in Fig. 12b are computed

with only s and p basis functions on the sulfur atom. While

the polarization toward sulfur is somewhat reduced in the

latter orbitals, one of the GVB lobes in each direction

remains highly delocalized. This comparison is consistent

with the idea that the S3d functions provide additional

polarization and correlation corrections but do not to act as

valence orbitals for sulfur. As stated above, we attribute this

polarization (and the energetic stabilization that it imparts)

to the participation of the triplet asymptotes in the ground

state of Cl2SO; furthermore, we can actually see that some of

the features of the low-lying triplet states of Cl2S are present

in the orbitals of Cl2SO. The asymmetric electron density of

the a1-symmetric orbital of Cl2S(~a
3B1) in Fig. 10 with

respect to reflection through the xz plane (out of the plane of

the paper) explains the similar asymmetric nature of u1 and

u2 in Fig. 12. This asymmetric p bond may also be con-

nected to the bent-bond description of SO bonds observed by

Cooper et al. [14] for some short sulfur–oxygen bonds.

5 Conclusion

In this work, we have explained the difference in stability

between two pairs of structural isomers: ClSO/SOCl and

Cl2SO/ClSOCl. While the bond strengths of the SCl and

OCl diatomic molecules are comparable, bonding the Cl

atoms to sulfur allows the recoupled pair p bond present

in SO(X3R-) to be maintained, whereas forming a cova-

lent bond with oxygen causes the recoupled pair p bond to

break. (This is what occurred in our prior work on SOH).

However, we saw that in SOCl, instead of breaking the

recoupled pair p bond, the orbital on the Cl atom is sin-

glet-coupled with the singly occupied orbital largely

localized on sulfur. We refer to this bonding motif here as

a through-pair interaction and the associated bond energy

is very small (essentially 0 kcal/mol in SOCl, but see the

work on NOF by Takeshita and Dunning, to be

published).

In ClSOCl, competition between the two modes of

bonding present in SOCl yields a very flat potential energy

surface when the SO bond is stretched and contains a pair

of bond stretch isomers separated by a very small barrier.

(a)

(b)

Fig. 12 GVB orbitals in the p space of the SO bond for Cl2SO a with
and b without d basis functions on the sulfur atom
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The ClSOCl molecule has many commonalities with the

H2PO radical, and we suspect that there may be other

instances of this behavior in compounds involving oxygen

bonded to an element in the second-row late p-block where

a competition between a recoupled pair bonded scheme and

traditional covalent bonding yields quite interesting and

unexpected features in the potential energy surface of these

compounds.

For Cl2SO, we rationalized the short SO bond length and

very strong SO dissociation energy relative to the

Cl2S( ~X
1A1) ? O(1D) asymptote by showing that other

(slightly) higher-energy asymptotes also contribute to the

ground-state Cl2SO molecule. The polarization of the SO p
orbitals can be attributed to the importance of two triplet

asymptotes in the electronic structure of Cl2SO:

Cl2S(~a
3B1) ? O(3P) and Cl2S(~b

3A2) ? O(3P). This is a

useful application of our previous work using recoupled

pair bonding to describe the energetics and bonding in the

a3B1 and b3A2 states of Cl2S. Understanding the nature of

the bonding in Cl2SO provides an important motivation for

fully understanding the electronic structure of not only the

ground state, but also the lower-lying excited states, of the

fragments that compose a molecule.

The nature of the bonding in Cl2SO is consistent with

donation from the O2p orbitals to the SCl anti-bonding

orbitals—or ‘‘anionic’’ hyperconjugation—in the MO

framework, which has been suggested for similar hyper-

valent molecules (F2SO and H3PO for instance) [10]. The

low-lying triplet states of Cl2S can be generated by exci-

tation of one of the S3p electrons into one of the SCl anti-

bonding orbitals of either a1 or b2 symmetry to yield the

~a3B1 and ~b3A2 states of Cl2S, respectively. The MO

description of these bonds is sometimes referred to as

single bonds plus hyperconjugation, but from the VB per-

spective, it is clear that the SO bond should be considered

double bonds since they arise from the triplet asymptotes,

which form true double bonds. Recoupled pair bonding

explains why these triplet states are so low in energy, or

said in the MO framework, why some molecules have

lower energy r* orbitals. These results unify the MO and

VB perspectives (single bond and hyperconjugation versus

polar r bond and nearly ionic p bond) reported in previous

work by demonstrating that hyperconjugation in this case

arises from higher-lying asymptotes that are capable of

forming double bonds.

The Cl2S orbitals that contribute to the p bonding have

significant anti-bonding character, which causes these

bonds to be extremely polarized toward oxygen, which

may make them look like lone pairs from an electron

density perspective as observed in the prior studies of

similar compounds [4, 58]. But the weakness of the SO

bonds in the states evolving from the higher-lying triplet

asymptotes as a function of SO internuclear distance pro-

vides direct evidence that multiple bond character is a

critical feature of SO bonding in sulfinyl halides. As the

electronegativity of the substituents (X and Y) decreases,

the energy of triplet XYS states will increase, as will the

polarizability of the S3p-like orbital of XYS. This will both

decrease the importance of multi-bond character in the SO

bond and increase the strength of the dative SO bond. So

for compounds such as H2SO and organic sulfoxides, the

single bond plus electrostatic stabilization view may very

well be appropriate. However, for the sulfinyl halides,

multiple bond character is an essential feature in the

description of the SO bond.
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Abstract New sets of all-electron correlation consistent

triple- and quadruple-zeta basis sets have been developed

for the 5p and 6p elements (In–Xe, Tl–Rn). For the

5p elements, the spin-free Douglas–Kroll–Hess (DKH)

Hamiltonian truncated at second order was used, while for

the 6p row, DKH3 was employed. The resulting cc-pVmZ-

DK sets (m = T, Q) are designed to correlate the valence

ns and np electrons, but both core–valence sets

(cc-pwCVmZ-DK) for (n - 1)spd correlation and diffuse-

augmented sets (aug-cc-pVmZ-DK) for weak interactions

have also been included. Benchmark DKH CCSD(T) cal-

culations were carried out on the atoms for their first ion-

ization potentials and electron affinities. Coupled cluster

calculations of the near-equilibrium potential energy

functions of 18 selected diatomic molecules were also

carried out to determine their spectroscopic and thermo-

dynamic properties. These results are extensively com-

pared to those obtained using the analogous aug-cc-

p(wC)VmZ-PP basis sets with their associated small-core

pseudopotentials. For the quadruple-zeta quality basis sets,

the mean unsigned differences were found to be just

1.4 mÅ for re, 0.7 cm-1 for xe, and 0.2 kcal/mol for De

with corresponding maximum differences of 4.8 mÅ,

4.3 cm-1, and 0.7 kcal/mol, respectively. Using all-elec-

tron DKH calculations with the present basis sets as cor-

rections to the pseudopotential approximation appears to be

most accurate when (n - 1)d correlation is considered in

both cases using aug-cc-pwCVQZ quality basis sets. The

new DK basis sets exhibit similar basis set convergence

toward the complete basis set (CBS) limit as the PP-based

sets and hence should find utility in all-electron [T, Q] basis

set extrapolations.

Keywords Basis sets � Douglas–Kroll � Correlation
consistent � Pseudopotentials

1 Introduction

Theoretical chemistry has been developed over the last

30 years or so into a quantitative instrument capable of

making predictions that can sometimes rival experiment.

The most important development has probably been the

massive increases in computational resources, but theo-

retical breakthroughs were of course necessary to make

use of these. Two of the key developments behind quan-

titative ab initio theory were an improved understanding of

basis set convergence and the implementation of efficient,

highly correlated methods such as those based on coupled

cluster theory [1–3]. Basis set convergence is regular and

relatively well understood when the correlation consistent

basis sets, pioneered by Dunning [4], are used, and this

allows the complete basis set (CBS) limit of the chosen

method to be estimated [5, 6]. This eliminates one of the

major sources of errors in ab initio calculations. Coupled

cluster theory is size extensive and systematically con-

vergent toward full configuration interaction (FCI) as

higher excitations are included [7]. By combining the

systematic characteristics of basis set convergence and

electron correlation treatment, composite schemes [8–14]

allow various approximations to be accounted for in
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separate, tractable calculations, and these have been

shown to be a reliable strategy for obtaining high accuracy

in applications such as ab initio thermochemistry or

spectroscopy.

One of the approximations often invoked in ab initio

calculations, which is particularly relevant for heavy

systems, is the use of a non-relativistic Hamiltonian.

Spin–orbit and scalar relativistic effects have been shown

to be important in obtaining chemical accuracy (1 kcal/

mol) in thermochemistry applications, as well as obtain-

ing accurate spectroscopic properties [1, 15]. Even in a

system as light as water, scalar relativistic effects can

account for about 3 cm-1 in the stretching harmonic

frequencies and nearly 0.3 kcal/mol in its atomization

energy [16–19]. Fortunately, there are ways to introduce

relativistic effects without needing to use the computa-

tionally expensive four-component Dirac–Coulomb

Hamiltonian. Scalar relativistic effects can be treated

using methods such as the X2C or Douglas–Kroll Ham-

iltonians [20–23], or even a posteriori with the Cowan–

Griffin or mass–velocity–Darwin (MVD) method [24, 25],

which involves a calculation of the expectation values of

the mass velocity and one-electron Darwin operators.

Relativistic pseudopotentials (PPs) or effective core

potentials (ECPs) can account for both scalar and spin–

orbit relativistic effects with high accuracy. In particular,

the energy-consistent small-core pseudopotentials of

the Stuttgart–Köln variety, which have been adjusted

to atomic multi-configurational Dirac–Hartree–Fock

(MCDHF) results using the Dirac–Coulomb–Breit Ham-

iltonian, have been shown to reliably reproduce a variety

of all-electron data [26–30]. Recent reviews of pseudo-

potentials and their uses in quantum chemistry calcula-

tions are available [31, 32]. Also, correlation consistent

basis sets have been developed in conjunction with

Stuttgart–Köln pseudopotentials [27–30, 33], which con-

ceptually makes investigating systems involving atoms as

heavy as Rn essentially the same as those containing Kr.

There are properties, however, which depend on the

electron density near the nucleus, e.g., chemical shielding

constants for NMR or the even multipole moments [34],

where PP treatments are typically not amenable (although

certainly in some cases they are, see, e.g., Ref. [35] and

references therein). In other cases, explicit treatment of

some of the electrons subsumed by the pseudopotential can

be important, e.g., correlation of the 4f electrons in

5d transition metals [30, 36]. Of course, the pseudopoten-

tial approximation itself introduces some error and the

ability to calibrate this for any given system is important

when performing high accuracy work. Hence, it is impor-

tant to have all-electron relativistic treatments available.

A variationally stable a priori method, which reliably

recovers relativistic effects, can be used in one- or two-

component calculations, and also allows control over the

level of accuracy in treating these effects, is the Douglas–

Kroll–Hess Hamiltonian (DKH) [21, 22, 37]. Basis sets for

use within this framework are the primary focus of the

present paper. For many of the published correlation con-

sistent basis sets employing pseudopotentials, an equiva-

lent triple-zeta all-electron DKH basis set was also

included, primarily for the purposes of benchmarking the

pseudopotential results. Comparing DKH and PP results

does introduce some ambiguity, since, for example, the

DKH Hamiltonian does not include certain contributions

such as the Breit interaction. On the other hand, the current

generation of Stuttgart–Köln pseudopotentials was adjusted

to four-component MCDHF reference data using a Dirac–

Coulomb Hamiltonian and perturbatively including the

Breit correction to the two-electron terms [29, 38]. But

even so, attempts at such a calibration can be useful.

Comparison of the PP-based results to all-electron DKH

calculations for 4d transition metals showed differences in

electron affinities generally\0.5 kcal/mol, but for excita-

tion energies, these reached about 1–2 kcal/mol for valence

correlation in the late metals Tc-Pd, and just over 2 kcal/

mol when outer-core 4s4p electron correlation was con-

sidered [29]. In 5d atomic calculations, the difference

between ionization potentials (IPs) and EAs reached about

1 kcal/mol [30].

A few basis sets developed for use in DKH calcula-

tions on molecules involving the 5p and 6p elements

have already been made available in the literature. Spe-

cifically, these include the atomic natural orbital (ANO)

sets of Roos [39], the double-zeta HF DK3 sets of Hirao

and co-workers [40], the Sapporo DKH sets of Koga and

co-workers [41, 42], and the segmented DKH sets of

Jorge and co-workers for the 5p elements [43–45]. The

relativistic correlation consistent-style basis sets devel-

oped by Dyall [46] for four-component calculations

should also be mentioned in this context. In the present

work, all-electron DKH correlation consistent basis sets

have been developed at both the triple- and quadruple-

zeta levels for the 5p and 6p elements, i.e., In–Xe and

Tl–Rn, respectively. The outermost composition of these

sets was designed to be as similar as possible to their

corresponding PP counterparts, i.e., cc-pVmZ-PP, cc-

pwCVmZ-PP, and aug-cc-p(wC)VmZ-PP, so that they

could be reliably used to benchmark these PP results and

also be of utility in all-electron calculations estimating

CBS limits. Sets designed for valence-only correlation

(nsp correlation, cc-pVmZ-DK) and outer-core correlation

[valence ? (n - 1)spd, cc-pwCVmZ-DK] are included,

as well as their diffuse-augmented versions (aug-cc-

p(wC)VmZ-DK).

Theor Chem Acc (2014) 133:1434
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2 Methodology

2.1 Computational details

The MOLPRO ab initio suite of programs was used

throughout this work [47]. All orbitals were symmetry

equivalenced, and pure spherical harmonics were used

throughout, although at the correlated level symmetry

equivalencing was not enforced. A one-electron, spin-free

DKH implementation was employed at either second or

third order (DKH2 or DKH3) [23]. All of the benchmark

atomic and molecular correlated calculations used the

CCSD(T) method [48, 49]. For the open-shell systems, the

R/UCCSD(T) method was used, which utilizes restricted

open-shell Hartree–Fock (ROHF) orbitals but with relaxed

spin restrictions in the CCSD [50–53].

The basis sets used in pseudopotential calculations

corresponded to aug-cc-pVmZ-PP [27, 33, 54] and aug-cc-

pwCVmZ-PP [55], including the revised iodine pseudo-

potential and basis sets [54]. The basis sets for the light

atoms were aug-cc-pVmZ (H,N,O) [3, 4] and aug-cc-

pV(m ? d)Z (Si and Cl) [2, 56]. While the difference

between all-electron DKH- and PP-based calculations in a

comparable basis set can yield estimates of the errors due

to the pseudopotential approximation, it also contains the

scalar relativistic effects of any light atoms. To separate

these two contributions, the scalar relativistic effects of the

light atoms were estimated using the MVD method. These

utilized the triple-zeta basis sets described above [aug-cc-

pVTZ(-PP) or aug-cc-pwCVTZ(-PP)], but completely

uncontracted, in CISD calculations. Of course, this

assumes the contribution to the MVD result from the atom

with the PP is negligible, but this has been validated pre-

viously by Feller et al. [57].

To assess the new all-electron DK basis sets (see below),

the spectroscopic properties of the diatomic molecules

originally treated in Refs. [27, 33] using PP-based corre-

lation consistent sets were determined with the new basis

sets in all-electron DKH2 and DKH3 calculations. Spe-

cifically, the near-equilibrium potential energy functions of

InCl, TlCl, In2, Tl2, SnO, PbO, SbN, BiN, Sb2, Bi2, SiTe,

SiPo, HI, HAt, I2, At2, XeH
?, and RnH? were obtained by

fitting 7 energies distributed around their equilibrium val-

ues (r - re = -0.3, -0.2, -0.1, 0.0, ?0.1, ?0.3, ?0.5

a.u.) to a fifth- or sixth-order polynomial in internal dis-

placement coordinates. Spectroscopic constants were

obtained from the usual Dunham analysis [58]. All of these

molecules involved closed-shell singlet ground states,

except for In2 and Tl2 where 3Pu states were utilized.

Unless otherwise noted, the frozen-core approximation was

used throughout, i.e., only the valence s and p electrons

were correlated, leaving the (n - 1)d electrons of the post-

d elements in the frozen core. This led to a few problems

with molecules containing early post-d elements, i.e., the

dr orbital of the heavy element tended to mix with the

valence s orbital of the lighter atom. Therefore, in order to

obtain accurate frozen-core calculations for InCl, SnO,

SbN, TlCl, PbO, and BiN, these dr and s orbitals were

localized using the Pipek–Mezey method [59] in order to

unambiguously leave the (n - 1)dr electrons in the core.

This procedure was also carried out previously for these

molecules with the PP basis sets [33].

2.2 Basis set construction

The basis set development closely followed this labora-

tory’s previous work [28–30] for the 4d, 5d, and coinage

metal -DK sets, and thus will only be briefly described

here. Either a standard BFGS method was employed with

convergence set to 10-6 a.u. on the exponent gradients or a

simplex algorithm was used with a convergence of 10-7 Eh

on the energy. Overall, the sets were developed to be of the

same quality as the existing triple- and quadruple-zeta

pseudopotential-based sets for the 5p and 6p elements [27,

33]. The Hartree–Fock (HF) primitives (spd for 5p and spdf

for 6p) were optimized using a sixth-order Legendre

polynomial scheme as proposed by Petersson [60],

although the outermost 5 functions of s, p, and d symmetry

were fully optimized. Because of the well-known weak

singularity of the Dirac and DKH Hamiltonians for a point

nucleus model, which can lead to very large s-type expo-

nents (see, e.g., Ref. [61]), the present optimizations were

carried out whereby the maximum exponent was con-

strained to be less than 9 9 1012 in order to avoid

numerical problems. The exponents of all the 5p elements

were optimized at the more commonly used DKH2 level,

while for the heavier 6p elements DKH3 was utilized. The

former was chosen based on the work of Tsuchiya et al.

[40] but has also been validated in the present work. Ini-

tially, the sizes of the triple-zeta (TZ) primitive sets were

chosen to match the coinage metal cc-pVTZ-DK basis sets

[28] and then were adjusted during the optimization to

achieve a triple-zeta valence HF description of the orbitals,

i.e., the outermost part of the valence s and p atomic

orbitals were described by three exponents. The quadruple-

zeta basis sets were initially chosen to have two additional

functions in each occupied angular momenta, but this was

latter revised based on the observed energetic lowerings at

the HF level. The HF/TZ optimizations for the 5p elements

proceeded by bootstrapping each primitive set using the TZ

set from the preceding element in the row. Each angular

momentum was optimized separately but was iterated until

self-consistent. For the 6p elements, each angular

momentum was also separately optimized, but for com-

putational expediency, the contracted DK3 primitive sets of

Tsuchiya et al. [40] were used for the angular momenta not

Theor Chem Acc (2014) 133:1434
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being optimized. The chosen primitive HF sets are given in

Table 1. These were generally contracted to [5s4p2d]

(5p elements) and [6s5p3d1f] (6p elements) based on the

HF atomic orbital coefficients of the electronic ground

states of the atoms (DKH2 for 5p and DKH3 for 6p). Note

that if these sets are used in calculations employing a dif-

ferent order of the DKH Hamiltonian, it is recommended

that they be appropriately recontracted.

The correlating functions for the cc-pVmZ-DK basis

sets were optimized at the singles and doubles configura-

tion interaction (CISD) level of theory for valence

sp correlation only and included 2s2p2d1f and

3s3p3d2f1g functions for triple- and quadruple-zeta,

respectively. In the corresponding PP sets, the need for an

additional s correlating function was due to the pseudo-

potential approximation [33, 62, 63], and thus, just a

Table 1 Final DK basis set compositions

HF [primitives]/

(contracted)

Valence nsp correlation

(cc-pVmZ-DK)

Diffuse augmenting

(aug-)

Valence ? (n - 1)spd correlation

(cc-pwCVmZ-DK)

TZ

5p [28s21p14d]/(5s4p2d) ?2s2p2d1f ?1s1p1d1f ?2s2p2d2f1g

6p [34s28p19d11f]/(6s5p3d1f)

QZ

5p [30s23p17d]/(5s4p2d) ?3s3p3d2f1g ?1s1p1d1f1g ?3s3p3d3f2g1h

6p [36s30p21d12f]/(6s5p3d1f)

Table 2 Atomic electron affinities (kcal/mol) calculated using DK and the difference between these and analogous PP results (DPP)

Basis set Hartree–Fock DCorrelation [CCSD(T)-HF]

aug-cc-pVmZ aug-cc-pwCVmZ Valencea Valence ? (n - 1)db

DK DPP DK DPP DK DPP DK DPP

In TZ 1.88 -0.02 1.89 0.00 7.78 0.01 7.27 -0.03

QZ 1.90 0.02 1.90 0.02 8.02 0.00 7.61 -0.05

Sn TZ 23.53 -0.11 23.54 -0.09 8.56 0.03 8.51 -0.03

QZ 23.53 -0.08 23.53 -0.08 9.00 0.02 9.05 -0.05

Sb TZ -4.73 -0.17 -4.73 -0.08 22.78 0.00 22.90 -0.13

QZ -4.75 -0.05 -4.74 -0.05 24.56 0.03 24.65 -0.02

Te TZ 25.22 -0.11 25.22 -0.06 19.27 0.02 19.59 -0.06

QZ 25.20 -0.02 25.20 -0.02 21.48 0.03 21.81 -0.03

I TZ 57.32 -0.17 57.31 -0.12 15.69 -0.02 15.97 -0.09

QZ 57.27 -0.07 57.27 -0.07 18.38 -0.01 18.64 -0.09

Tl TZ -0.41 0.08 -0.40 0.11 7.39 -0.01 7.41 -0.09

QZ -0.37 0.14 -0.37 0.14 7.62 -0.03 7.82 -0.09

Pb TZ 20.51 -0.03 20.52 0.00 8.62 0.00 8.97 -0.10

QZ 20.53 0.01 20.53 0.01 9.02 -0.02 9.56 -0.09

Bi TZ -6.60 -0.20 -6.60 -0.08 22.49 -0.03 22.88 -0.11

QZ -6.58 -0.04 -6.57 -0.04 24.13 0.02 24.66 -0.02

Po TZ 22.30 -0.15 22.30 -0.08 19.18 0.02 19.79 -0.08

QZ 22.32 -0.05 22.32 -0.05 21.21 0.00 21.88 -0.03

At TZ 52.82 -0.09 52.82 -0.04 15.84 -0.02 16.33 -0.10

QZ 52.84 -0.03 52.84 -0.03 18.30 -0.02 18.81 -0.06

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)
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standard correlation consistent prescription was followed in

the present all-electron sets. Care was taken to avoid any

linear dependencies between correlating functions and

underlying primitives by either substituting an optimal

correlating function by a HF primitive or, as in the case of

the d functions for the TZ sets of the 6p elements, substi-

tuting the 2 optimal d correlating functions for existing HF

primitives and reoptimizing the remaining HF primitives in

the presence of these fixed correlating functions (the latter

step resulted in minimal changes to the HF energy). This

was necessary to ensure stability of the DKH integral

evaluation, which for MOLPRO involves a resolution of the

identity using the completely uncontracted orbital basis

sets. The resulting triple-zeta basis sets, denoted cc-pVTZ-

DK, consisted of (28s21p14d1f)/[7s6p4d1f] for In–Xe and

(34s30p19d12f)/[8s7p5d2f] for Tl–Rn. The cc-pVQZ-DK

basis sets corresponded to (30s23p17d2f1g)/[8s7p5d2f1g]

for In–Xe and (36s30p24d14f1g)/[9s8p6d3f1g] for Tl–Rn.

These are also summarized in Table 1. Diffuse augmenting

functions (one for each angular momentum in the basis)

were optimized for the total energy of the atomic anions,

yielding the aug-cc-pVmZ-DK (m = T, Q) sets. Specifi-

cally, the s and p exponents were optimized for the HF

energy of the anions, while the d, f, g functions were

optimized for the total CCSD(T) energy.

DKH basis sets appropriate for correlating the outer-

core electrons, (n - 1)spd, were also generated by

including additional functions with the valence basis sets

described above. The same number of core-correlating

functions was added to the cc-pVmZ-DK sets as was pre-

viously used to augment the cc-pVmZ-PP sets [55], i.e.,

2s2p2d2f1g for triple-zeta and 3s3p3d3f2g1h for quadru-

ple-zeta. In general, these exponents were optimized in a

weighted core–valence scheme [64] for correlating the

valence (nsp) and outer-core electrons, (n - 1)spd,

whereby the core–valence pair correlation energy was

strongly weighted over the core–core pair correlation

energy (0.99:0.01). Linear dependencies among the lower

Table 3 Atomic ionization potentials (kcal/mol) calculated using DK and the difference between these and analogous PP results (DPP)

Basis set Hartree–Fock DCorrelation [CCSD(T)-HF]

aug-cc-pVmZ aug-cc-pwCVmZ Valencea Valence ? (n - 1)db

DK DPP DK DPP DK DPP DK DPP

In TZ 118.28 -0.03 118.27 -0.03 7.81 0.07 9.54 -0.09

QZ 118.28 -0.03 118.27 -0.02 8.14 0.05 10.32 -0.12

Sn TZ 157.76 0.00 157.75 0.00 8.36 0.07 10.13 -0.06

QZ 157.75 -0.01 157.75 -0.01 8.82 0.08 10.99 -0.07

Sb TZ 199.36 0.10 199.35 0.10 8.22 0.02 10.04 -0.23

QZ 199.34 0.08 199.34 0.08 8.90 0.03 10.97 -0.14

Te TZ 174.84 0.05 174.84 -0.02 21.85 0.06 23.72 -0.07

QZ 174.82 -0.04 174.81 -0.04 24.39 0.10 26.41 -0.03

I TZ 220.92 -0.11 220.91 0.00 18.04 0.01 19.81 -0.26

QZ 220.85 -0.17 220.84 0.00 21.04 0.01 22.94 -0.25

Xe TZ 268.80 -0.10 268.78 0.00 13.85 0.06 15.23 -0.25

QZ 268.67 -0.15 268.67 0.00 17.32 0.08 18.80 -0.22

Tl TZ 113.29 0.46 113.27 0.46 6.76 -0.01 9.59 -0.29

QZ 113.28 0.45 113.28 0.45 7.13 -0.07 10.65 -0.26

Pb TZ 150.77 0.00 150.90 -0.16 7.79 -0.12 10.20 0.16

QZ 150.72 0.00 150.89 -0.18 8.29 -0.17 11.21 -0.14

Bi TZ 190.03 -0.09 190.03 -0.13 8.03 0.02 10.24 -0.18

QZ 190.01 -0.13 190.00 -0.13 8.68 0.01 11.34 -0.13

Po TZ 165.38 -0.07 165.37 -0.24 21.03 0.03 23.37 -0.10

QZ 165.35 -0.25 165.35 -0.25 23.46 0.04 26.01 0.01

At TZ 208.14 0.01 208.14 -0.11 17.51 0.06 19.61 -0.09

QZ 208.11 -0.12 208.11 -0.12 20.32 0.03 22.60 0.01

Rn TZ 252.16 0.08 252.16 -0.03 13.61 0.07 15.19 -0.09

QZ 252.12 -0.04 252.12 -0.04 16.84 0.04 18.56 0.00

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)

Theor Chem Acc (2014) 133:1434

123Reprinted from the journal 23



angular momenta were avoided by simply uncontracting

appropriate spd functions from the underlying HF primitive

sets instead of adding extra functions with optimal expo-

nents. This yielded the cc-pwCVmZ-DK (m = T, Q) basis

sets. Of course, the diffuse augmenting functions described

above can also be added to these CV sets to yield aug-cc-

pwCVmZ-DK basis sets.

3 Results

3.1 Atomic electron affinities and ionization potentials

In order to provide an initial assessment of the quality of

the basis sets produced in this work, as well as to provide

detailed comparisons to the PP-based sets previously

developed, atomic electron affinities (EAs) and ionization

potentials (IPs) were calculated at the CCSD(T) level of

theory. The calculated EAs are shown in Table 2, both for

HF and the CCSD(T) correlation contributions for the cases

of valence electron correlation (nsp) and valence ? (n - 1)d

electron correlation. It should be noted that the PP results

are identical to those of Refs. [27] and [33] except for

iodine. At the HF level, there is very little change in the

EAs between aug-cc-pVTZ-DK and aug-cc-pVQZ-DK

with a maximum difference of just 0.04 kcal/mol. Sur-

prisingly, the PP-based results show generally larger vari-

ations as indicated by the dependence of the values of DPP,
EA(DKH) - EA(PP), with basis set at the HF level. These

range to over 0.1 kcal/mol in several cases. This was

(a) (b)Fig. 1 Convergence of the

calculated

CCSD(T) equilibrium bond

length(re) and dissociation

energy (De) of Sb2 as a function

of aug-cc-pVmZ-PP/DK or aug-

cc-pwCVmZ-PP/DK basis sets

for valence and

valence ? (n - 1) d correlated

calculations, respectively.

a Valence correlated,

b valence ? (n -

1)d correlated

Table 4 Dissociation energies, De (kcal/mol), for selected homonu-

clear diatomics calculated using DK and differences between these

and analogous PP calculations (DPP)

Basis set Hartree Focka CCSD(T),

valencea
CCSD(T),

valence ?

(n - 1)db

DK DPP DK DPP DK DPP

In2 TZ 15.15 0.06 25.28 0.04 26.89 0.04

QZ 15.28 0.09 26.01 0.07 27.64 0.05

Sb2 TZ -5.48 0.39 59.88 0.23 64.02 -0.09

QZ -4.95 0.56 64.11 0.39 67.83 0.37

I2 TZ 22.07 -0.10 42.19 -0.13 43.86 -0.13

QZ 22.82 -0.06 45.19 -0.16 46.48 -0.03

Tl2 TZ 12.92 0.09 22.23 0.14 24.67 0.05

QZ 13.09 0.13 22.89 0.11 25.45 0.11

Bi2 TZ -17.31 -0.06 50.17 -0.08 54.78 -0.12

QZ -16.64 0.10 54.50 -0.11 58.51 0.08

At2 TZ 17.78 0.08 38.11 0.03 40.16 0.02

QZ 18.64 0.14 41.08 -0.09 42.53 0.15

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)

Table 5 Equilibrium bond lengths, re (Å), for selected homonuclear

diatomics calculated using DK and the differences between these and

analogous PP calculations (DPP in mÅ)

Basis set Hartree Focka CCSD(T),

valencea
CCSD(T),

valence ?

(n - 1)db

DK DPP DK DPP DK DPP

In2 TZ 3.1167 0.39 3.0903 4.34 3.0081 -0.26

QZ 3.1151 -1.52 3.0902 -2.09 2.9956 -0.78

Sb2 TZ 2.4377 -2.22 2.5341 -2.64 2.4947 -0.67

QZ 2.4350 -2.93 2.5255 -3.88 2.4854 -3.14

I2 TZ 2.6674 1.45 2.7024 2.46 2.6718 2.23

QZ 2.6629 1.02 2.6860 1.01 2.6575 0.60

Tl2 TZ 3.2088 -5.93 3.2052 -5.11 3.0896 -0.71

QZ 3.2066 -8.26 3.1988 -6.44 3.0743 -4.75

Bi2 TZ 2.5759 2.21 2.6885 2.06 2.6412 3.36

QZ 2.5718 1.45 2.6790 1.18 2.6302 1.06

At2 TZ 2.8472 -1.28 2.8867 -0.44 2.8483 -0.38

QZ 2.8411 -1.11 2.8683 -0.89 2.8336 -2.00

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)
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unexpected since the two families of basis sets are very

similar in their compositions, especially in the valence

regions. Use of the aug-cc-pwCVmZ-DK basis sets at the

all-electron HF level yields EAs that are essentially

unchanged from the aug-cc-pVmZ-DK results. Small

improvements, however, are observed for the PP values for

m = T. In most cases, this removes the differences in HF

convergence behavior between DK and PP basis sets for

this property. Focusing on the CCSD(T) correlation con-

tributions to the EAs, the DK and PP results are nearly

identical when only the valence electrons are correlated,

i.e., the DPP values lie between 0.00 and 0.03 kcal/mol.

The latter do increase slightly once the 4d or 5d electrons

are correlated, but even then, the maximum values are only

slightly above 0.1 kcal/mol. Taken as a whole, i.e.,

HF ? Corr., the new TZ and QZ DK basis sets show very

similar basis set convergence compared with the PP sets,

and in addition, the value of DPP has a maximum value of

only about 0.2 kcal/mol for the EAs. In general, the DK

and PP results also agree better with the QZ quality basis

sets. On the whole, this confirms that the new DK basis sets

are very comparable in quality to the original PP basis sets,

but also that the underlying PPs used in the aug-cc-

p(wC)VmZ-PP sets are very accurate, at least as compared

to scalar DKH calculations.

Table 3 shows the calculated IPs for the 4p and

5p atoms. Overall, the trends are similar to the EA cases in

Table 2 except that the magnitude of DPP is larger,

reaching just under 0.5 kcal/mol at the HF level (Tl) and

0.29 kcal/mol for the correlation contribution when the

outer-core d electrons are included. In the majority of

cases, however, the differences between DK and PP

treatments are between 0.0 and 0.2 kcal/mol. While the

results shown in Table 3 utilized the diffuse-augmented

sets, calculations of the IPs were also carried out with the

un-augmented sets. While not shown here, it was found

that while the DK results were very insensitive to this

choice for the IPs, the PP values at the HF/TZ level were

not. Specifically, the HF IPs using either the cc-pVTZ-PP

or cc-pwCVTZ-PP basis sets exhibited basis set errors as

large as 1 kcal/mol above those shown in Table 3 when the

aug- sets were used. Further investigation indicated that a

single diffuse p function added to the cc-pVTZ-PP (or

wCV) sets eliminated this problem. This seems to be spe-

cific to the PP approximation itself and not the basis sets

since the outer exponents of the DK and PP basis sets were

very similar to each other. Hence, the diffuse-augmented

sets have been used throughout the remainder of this work

to yield more accurate DPP values.

3.2 Spectroscopic properties of homo-

and heteronuclear diatomics

3.2.1 Valence and outer-core correlation, DKH versus PP

The pseudopotential-based correlation consistent sets (cc-

pVmZ-PP) for the post-d elements have been previously

shown to converge monotonically toward the CBS limit of

the CCSD(T) method [27, 33]. These results also usually

compared well to experiment, particularly when consider-

ing outer-core electron correlation [54, 55]. It is known,

however, that in many cases, at least tight f-type functions

may be important for molecules containing 5p and 6p ele-

ments [65]. This deficiency affects the valence sets, but of

course not the core–valence basis sets since the latter

contain functions with sufficiently large exponents. It is

expected that the current DK sets suffer some of the same

problems as the PP sets due to the similarity of their

construction. In terms of the spectroscopic properties of

diatomic molecules, the overall differences between the

aug-cc-pVmZ-PP and aug-cc-pVmZ-DK results are much

smaller than the differences between TZ and QZ, as shown

in Fig. 1 for Sb2.

Comparisons between De, re, and xe calculated with the

new DK basis sets and those obtained in PP calculations

[27, 33, 55] are shown in Tables 4, 5, and 6, respectively,

for six homonuclear diatomics. For the dissociation ener-

gies and harmonic frequencies, the DK and PP results are

in excellent agreement, differing by at most a few tenths of

a kcal/mol or cm-1 for De and xe, respectively. In many

cases, the differences between DK and PP (DPP) are well

reflected at the HF level, but in a few cases, the correlation

Table 6 Harmonic frequencies, xe (cm
-1), for selected homonuclear

diatomics calculated using DK and the differences between these and

analogous PP calculations (DPP)

Basis set Hartree Focka CCSD(T),

valencea
CCSD(T),

valence ?

(n - 1)db

DK DPP DK DPP DK DPP

In2 TZ 109.0 0.1 113.8 -1.0 118.6 -0.1

QZ 109.0 0.0 113.6 0.0 119.6 -0.3

Sb2 TZ 327.9 0.5 266.5 -0.1 275.1 -0.2

QZ 327.6 0.5 269.2 0.6 278.8 0.2

I2 TZ 236.2 -0.4 215.1 -2.2 217.5 -0.6

QZ 236.6 -0.3 219.2 -0.5 223.1 0.0

Tl2 TZ 75.6 0.7 75.8 0.9 83.0 0.0

QZ 75.6 0.5 76.9 0.3 84.1 0.4

Bi2 TZ 229.9 -0.2 182.1 0.1 191.1 -0.6

QZ 229.5 -0.3 184.7 -0.3 194.3 -0.3

At2 TZ 168.8 -0.1 152.5 -0.2 156.6 -0.1

QZ 169.1 0.0 156.8 -0.2 160.5 0.1

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)
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of the outer-core d electrons made a non-negligible impact.

In the latter case, this tended to decrease the differences

between DK and PP. The results for the equilibrium bond

lengths (Table 5) somewhat contrasted these results by

showing a bit more sensitivity and larger DPP values. The

largest difference between the DK and PP re’s is still only

-4.75 mÅ, but correlation of the (n - 1)d electrons has a

generally larger effect on this quantity. The changes in DPP
between the TZ and QZ basis sets (reflecting different

convergence rates of DK and PP calculations) are also

observed to be non-negligible, but generally less than

1 mÅ at the HF level but reaching nearly 4 mÅ for Tl2
with (n - 1)d correlation. In the latter case, however, the

total basis set effect (QZ-TZ) on re is over 15 mÅ with DK.

Tables 7, 8, and 9 show the analogous results for the

series of heteronuclear diatomic molecules. As discussed

above, since in these cases only one of the atoms includes

scalar relativistic effects via a PP, a MVD correction with

uncontracted TZ basis sets has been applied to account for

scalar relativistic effects on the lighter atoms in the PP

calculations. The impact of the latter correction can be seen

from the difference between DPP and DPP ? MVD in the

tables, and in general, they are nearly completely negligible

for these molecules. Errors due to the PP approximation

can be approximately judged by the DPP ? MVD values.

Overall, the trends are very similar to those discussed for

the homonuclear diatomics. For the dissociation energies

(Table 7), the DK and PP results are in close agreement,

differing generally by only a few tenths of a kcal/mol, and

the HF results are generally excellent indicators of the

magnitude of DPP. Electron correlation generally tends to

decrease the magnitude of the differences between the DK

and PP dissociation energies. In regard to the convergence

of the bond lengths (Table 8), larger differences between

DK and PP are actually seen at the HF level, although these

are still only 1–3 mÅ. Inclusion of electron correlation,

particularly with (n - 1)d electron correlation, produces

DPP ? MVD values predominately under 1 mÅ. The

Table 7 Dissociation energies, De (kcal/mol), for selected diatomics calculated using DK, the difference between these and analogous PP results

(DPP), and the difference between these and PP results with MVD corrections included (DPP ? MVD)

Basis set Hartree Focka CCSD(T), valencea CCSD(T), valence ? (n - 1)db

DK DPP DK DPP DPP ? MVD DK DPP DPP ? MVD

InCl TZ 84.65 0.41 103.06 0.28 0.07 104.02 0.42 0.22

QZ 84.98 0.53 105.59 0.39 0.19 106.44 0.50 0.29

SnO TZ 46.83 0.76 126.58 0.51 0.36 129.92 0.69 0.51

QZ 48.39 1.06 130.02 0.75 0.61 132.54 0.84 0.66

SbN TZ -34.73 0.65 76.85 0.38 0.33 80.71 0.37 0.29

QZ -33.50 0.93 80.86 0.63 0.58 84.09 0.68 0.60

SiTe TZ 62.24 0.40 103.91 0.31 0.28 106.15 0.24 0.19

QZ 62.57 0.45 107.41 0.39 0.36 109.24 0.36 0.31

HI TZ 56.32 -0.11 78.11 -0.16 -0.16 79.42 -0.16 -0.16

QZ 56.72 -0.07 79.05 -0.11 -0.11 80.10 -0.06 -0.06

XeH? TZ -231.89 -0.01 89.43 -0.02 -0.02 89.55 -0.04 -0.04

QZ -231.48 0.06 87.61 -0.03 -0.03 87.31 0.09 0.09

TlCl TZ 79.62 0.03 98.42 -0.06 -0.28 99.93 0.08 -0.14

QZ 79.75 0.32 100.81 0.04 -0.18 101.98 0.39 0.18

PbO TZ 27.71 -0.05 112.17 -0.12 -0.27 116.24 0.14 -0.03

QZ 29.57 0.43 125.81 0.10 -0.09 128.64 0.38 0.21

BiN TZ -54.08 -0.04 63.36 -0.06 -0.11 67.76 0.09 0.02

QZ -52.48 0.33 67.19 0.18 0.12 70.74 0.34 0.27

SiPo TZ 51.78 0.05 95.02 0.11 0.09 97.88 -0.03 -0.06

QZ 52.20 0.09 98.30 0.02 0.01 101.01 0.13 0.10

AtH TZ 48.39 0.08 70.73 0.11 0.11 72.44 -0.01 -0.02

QZ 48.91 0.13 71.78 -0.04 -0.04 72.94 0.07 0.07

RnH? TZ -258.58 0.10 63.73 0.11 0.11 63.92 0.13 0.13

QZ -258.07 0.20 62.16 -0.04 -0.05 61.70 0.15 0.14

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)
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results for the harmonic frequencies (Table 9) show that

for most of the molecules, there is a close correspondence

between the DK and PP results. Some of the larger dif-

ferences occur for the hydrides, where DPP ? MVD for xe

change by 2–4 cm-1 when increasing the basis set from TZ

to QZ in core-correlation calculations. In these cases,

though the majority of the differences between DK and PP

appear to reside in the TZ sets since at the QZ level, the

values of DPP ? MVD are only a few tenths of a cm-1

(with d electrons correlated).

3.2.2 Third- versus second-order DKH

Tsuchiya et al. [40] have suggested that for elements

heavier than Z = 81, at least third-order DKH should be

used. To test this assertion in the present molecular

benchmarks, all calculations were performed using both

DKH2 and DKH3. While it is recommended to recontract a

primitive HF basis set when using it in a different order

DKH calculation (compared to the order with which the

basis set was originally contracted for), the effects of not

doing so were also briefly tested. Using the DKH2 con-

tractions in a DKH3 CCSD(T) calculation for the spec-

troscopic properties of At2 led to a difference of 150 kcal/

mol in the total energies, but only 0.05 kcal/mol in the

dissociation energy. Other properties were also relatively

insensitive, with differences of only 0.15 mÅ in re and

0.1 cm-1 in xe. Nevertheless, it is still recommended that

contractions specific to the DKH order employed should be

used (as was done throughout this work).

As seen in Table 10, for the 5p elements there is very

little difference in the dissociation energies between using

DKH2 or DKH3. Among the molecules containing 5p ele-

ments, the difference between the DKH2 and DKH3

De values was largest for XeH?, but this only amounted

to 0.07 kcal/mol. The spectroscopic properties of the 5p

Table 8 Equilibrium bond lengths, re (kcal/mol), for selected diatomics calculated using DK, the difference between these and analogous PP

results (DPP in mÅ), and the difference between these and PP results with MVD corrections included (DPP ? MVD in mÅ)

Basis set Hartree Focka CCSD(T), valencea CCSD(T), valence ? (n - 1)db

DK DPP DK(Å) DPP DPP ? MVDc DK DPP DPP ? MVD

InCl TZ 2.4400 -0.42 2.4552 -0.92 -1.78 2.4171 -1.07 -1.95

QZ 2.4359 -1.76 2.4505 -1.95 -2.81 2.4094 -1.57 -2.45

SnO TZ 1.7955 -2.55 1.8649 -3.04 -3.04 1.8372 -3.61 -3.65

QZ 1.7918 -3.42 1.8583 -3.93 -3.93 1.8330 -4.09 -4.13

SbN TZ 1.7744 -1.51 1.8608 -1.71 -1.67 1.8379 -1.64 -1.65

QZ 1.7710 -2.20 1.8537 -2.99 -2.95 1.8328 -2.52 -2.53

SiTe TZ 2.2567 -1.58 2.3015 -1.71 -1.54 2.2866 -1.54 -1.39

QZ 2.2542 -1.87 2.2934 -2.33 -2.16 2.2780 -1.94 -1.79

HI TZ 1.6020 1.03 1.6185 1.25 1.19 1.6042 0.52 0.44

QZ 1.6000 0.52 1.6173 0.58 0.52 1.6047 0.39 0.31

XeH? TZ 1.5939 -0.16 1.6067 -0.21 -0.28 1.5953 -0.11 -0.19

QZ 1.5921 -0.51 1.6148 -0.47 -0.54 1.5973 -0.43 -0.51

TlCl TZ 2.5451 0.53 2.5681 1.30 0.40 2.5129 0.23 -0.74

QZ 2.5415 -1.88 2.5656 -0.32 -1.22 2.5034 0.64 -0.33

PbO TZ 1.8745 2.32 1.9612 2.39 2.48 1.9256 0.90 0.88

QZ 1.8693 0.44 1.9529 0.53 0.50 1.9214 0.21 0.19

BiN TZ 1.8506 1.31 1.9547 1.64 1.68 1.9272 0.53 0.54

QZ 1.8459 0.02 1.9459 -0.27 -0.23 1.9219 -0.24 -0.23

SiPo TZ 2.3345 0.93 2.3869 0.87 1.03 2.3683 1.42 1.57

QZ 2.3311 0.54 2.3874 0.38 0.54 2.3602 0.32 0.47

AtH TZ 1.6886 0.11 1.7108 0.48 0.41 1.6920 -0.19 -0.28

QZ 1.6855 -0.50 1.7082 -0.31 -0.38 1.6928 -0.74 -0.83

RnH? TZ 1.6795 -1.36 1.6977 -1.38 -1.46 1.6826 -0.97 -1.05

QZ 1.6764 -1.42 1.6965 -0.94 -1.02 1.6848 -1.45 -1.54

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)
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elements were also relatively insensitive, with the mean

unsigned differences (MUD) being 0.1 mÅ for re and

0.4 cm-1 for xe. The maximum difference was 0.4 mÅ for

In2 and 1.5 cm-1 for XeH?. The 6p elements showed

larger differences for all the properties, almost twice as

large for frequencies and energetics, while the changes in

equilibrium bond lengths are more notable, being 0.6 mÅ

on average and a maximum of 1.2 mÅ for Tl2. This

appears to confirm that DKH2 is probably sufficiently

accurate for 5p element-containing molecules, while for

molecules containing atoms as heavy as 6p, DKH3 should

be employed.

Table 9 Harmonic frequencies, xe (cm
-1), for selected diatomics calculated using DK, the difference between these and analogous PP results

(DPP), and the difference between these and PP results with MVD corrections included (DPP ? MVD)

Basis set Hartree Focka CCSD(T), valencea CCSD(T), valence ? (n - 1)db

DK DPP DK DPP DPP ? MVD DK DPP DPP ? MVD

InCl TZ 306.1 -0.1 308.0 0.1 0.3 311.9 0.4 0.5

QZ 306.4 0.3 309.4 0.3 0.5 315.3 0.2 0.3

SnO TZ 957.8 1.4 800.2 1.7 1.3 819.7 1.6 1.4

QZ 964.3 2.2 811.4 2.5 2.2 828.3 1.0 0.7

SbN TZ 1,097.3 1.6 855.2 1.8 1.5 871.9 1.2 0.5

QZ 1,100.3 2.0 866.7 2.7 2.4 883.8 1.3 0.6

SiTe TZ 524.9 1.3 474.9 1.3 0.8 479.0 0.7 0.2

QZ 525.3 1.1 479.2 1.4 0.8 482.9 0.9 0.3

HI TZ 2,446.0 -0.3 2,312.8 -0.6 -0.6 2,332.7 -2.9 -2.8

QZ 2,450.3 -0.9 2,318.5 -2.8 -2.8 2,336.4 -0.2 -0.1

XeH? TZ 2,396.5 -0.5 2,297.2 -0.6 -0.5 2,309.6 -3.9 -3.8

QZ 2,399.8 -0.9 2,290.4 -2.1 -2.0 2,300.7 0.0 0.1

TlCl TZ 265.3 0.2 271.8 0.0 0.2 277.7 0.0 0.3

QZ 265.5 0.4 272.6 0.4 0.6 280.7 0.0 0.2

PbO TZ 868.3 -1.9 713.1 -1.8 -2.3 733.5 -1.4 -1.7

QZ 874.9 -0.3 723.9 -0.4 -0.3 738.3 0.5 0.2

BiN TZ 1,002.0 -0.7 757.4 -1.1 -1.4 778.1 -1.0 -1.3

QZ 1,005.3 -0.1 769.4 0.1 -0.2 787.5 0.6 0.3

SiPo TZ 478.9 0.4 430.7 0.8 0.4 435.4 -0.2 -0.7

QZ 479.1 0.2 434.4 0.4 0.0 439.4 0.6 0.1

AtH TZ 2,278.0 3.9 2,140.4 3.5 3.5 2,164.9 -4.4 -4.3

QZ 2,282.8 1.3 2,148.9 -2.0 -2.0 2,166.6 0.0 0.1

RnH? TZ 2,273.6 4.3 2,158.4 5.4 5.5 2,172.1 -1.7 -1.6

QZ 2,277.5 2.6 2,159.3 -3.0 -3.0 2,168.6 0.1 0.1

a aug-cc-pVmZ(-DK/-PP)
b aug-cc-pwCVmZ(-DK/-PP)

Table 10 Statistics of unsigned differences between calculated CCSD(T) DKH2 and DKH3 values of De (kcal/mol), re (mÅ), and xe (cm
-1)

Molecules Valence correlateda Valence ? (n - 1)d correlatedb

De re xe De re xe

Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

5p 0.06 0.02 0.31 0.16 1.12 0.19 0.07 0.02 0.40 0.14 1.47 0.35

6p 0.12 0.06 1.68 0.64 2.58 0.73 0.10 0.05 1.19 0.61 2.02 0.71

a CCSD(T) with aug-cc-pVTZ-DK for the heteronuclear diatomics and cc-pVTZ-DK for the homonuclear diatomics
b CCSD(T) with aug-cc-pwCVTZ-DK with the valence and (n - 1)d electrons on 5p and 6p elements correlated
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4 Conclusions

New all-electron correlation consistent basis sets of triple-

and quadruple-zeta quality have been optimized for In–Xe

and Tl–Rn using the DKH scalar relativistic Hamiltonian.

The new sets (cc-pVmZ-DK, aug-cc-pVmZ-DK, and cc-

pwCVmZ-DK with m = T and Q) appear to have very

similar basis set incompleteness errors as the previously

developed PP-based correlation consistent sets. The new

sets can be used in general, all-electron scalar relativistic

calculations or in PP-based composite thermochemistry

approaches to account for scalar relativistic effects on light

atoms and provide corrections for the pseudopotential

approximation. To perform DKH calculations for 6p ele-

ments, third-order DKH is recommended, and the present

basis sets for these elements have been optimized for this in

mind. For routine work, calibration by DK calculations of

results obtained with the cc-pVmZ-PP-style basis sets does

not seem warranted since overall the differences between

DK- and PP-based calculations are found to be generally

very small in the present work for these elements. If such a

PP correction is desired, correlation of the (n - 1)d elec-

trons should be considered with cc-pwCVQZ quality basis

sets since this appears to give the best converged results for

this quantity.
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Cheeseman JR (2011) J Chem Phys 134:204102

35. Mosyagin NS, Titov AV (2005) J Chem Phys 122:234106

36. Spohn B, Goll E, Stoll H, Figgen D, Peterson KA (2009) J Phys

Chem A 113:12478

37. Jansen G, Hess BA (1989) Phys Rev A 39:6016

38. Metz B, Schweizer M, Stoll H, Dolg M, Liu WJ (2000) Theor

Chem Acc 104:22–28

39. Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark P-O

(2004) J Phys Chem A 108:2851–2858

40. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) J Chem Phys

115:4463–4472

41. Noro T, Sekiya M, Koga T (2013) Theor Chem Acc 132:1363

42. Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131:1124
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Abstract Improved accuracy benchmark atomization

energies, equilibrium structures, and harmonic frequencies

were obtained from the composite Feller–Peterson–Dixon

procedure applied at the highest possible level permitted by

our current hardware and software. Convergence of the

1-particle expansion was achieved through use of correla-

tion consistent basis sets as large as aug-cc-pV8Z and aug-

cc-pV9Z, followed by the application of a simple extrap-

olation formula in order to more closely approximate the

basis set limit. Convergence of the n-particle expansion

was addressed with a systematic sequence of coupled

cluster methods up through CCSDTQ5. In 10 cases, cou-

pled cluster theory was augmented with full configuration

interaction. Each of the multiple sources of error was

carefully monitored in order to minimize the overall

uncertainty to the extent possible. Comparison with high-

quality experimental values, many of them obtained from

the active thermochemical tables, reveals overall close

agreement with theory.

Keywords Ab initio � Basis sets � Coupled cluster �
Composite methods � Benchmarks

1 Introduction

A ‘‘benchmark’’ is, by definition, a standard for facilitating

the comparison of related quantities. In the field of quan-

tum chemistry, benchmarks typically serve to either

establish a point of reference whereby less rigorous

approaches can be calibrated or illustrate the capabilities of

a newly developed technique. Due to the rapid introduction

of improvements in hardware and software, time tends to

quickly erode the practical value of computational bench-

marks. Therefore, it is important that they be updated on a

regular basis in order to accurately reflect the evolving state

of the art. Quantum chemistry has a long tradition of

benchmark studies stretching all the way back to its

inception in the 1950s. Their number is too large to attempt

a comprehensive listing here, but their study provides an

interesting historical perspective on how this branch of

science has progressed. The goal of this work is to create a

compilation of benchmark data, involving atomization

energies (heats of formation), equilibrium structures, and

vibrational frequencies for a collection of small molecules.

The current approach follows the general strategy outlined

in the Feller–Peterson–Dixon (FPD) procedure [1–3]. FPD

utilizes multiple levels of coupled cluster theory combined

with large correlation consistent basis sets. A second,

companion article is devoted to a detailed description of

corresponding dissociation energies based on the active

thermochemical tables (ATcT) [4].

Dedicated to Professor Thom Dunning and published as part of the

special collection of articles celebrating his career upon his

retirement.

Electronic supplementary material The online version of this
article (doi:10.1007/s00214-013-1407-z) contains supplementary
material, which is available to authorized users.

D. Feller (&) � K. A. Peterson
Department of Chemistry, Washington State University,

Pullman, WA 99164-4630, USA

e-mail: dfeller@owt.com

B. Ruscic

Chemical Sciences and Engineering Division,

Argonne National Laboratory, Argonne, IL 60439, USA

B. Ruscic

Computation Institute, University of Chicago,

Chicago, IL 60637, USA

123

Theor Chem Acc (2014) 133:1407

DOI 10.1007/s00214-013-1407-z

Reprinted from the journal 31



Of the numerous computational techniques provided by

popular electronic structure codes, such as Gaussian [5],

GAMESS [6], or MOLPRO [7], relatively few are capable

of achieving consistent accuracy across major portions of

the Periodic Table for a wide range of properties. A dis-

tinction is drawn here between (1) computationally inex-

pensive approaches which rely on a significant, fortuitous

cancelation of errors in order to achieve agreement with

experiment (often for a limited collections of molecules)

and (2) more expensive approaches that may benefit from

some cancelation of error, but do not depend upon it for

attaining accurate results. Among the latter are configura-

tion interaction (CI), coupled cluster theory, and quantum

Monte Carlo. While each has its own strengths and

weaknesses, coupled cluster theory is currently the most

widely used method in high-accuracy studies of ‘‘well-

behaved’’ chemical systems, i.e., those not suffering from

excessive multi-configurational character in their wave

functions. The single-reference coupled cluster technique

which involves single and double excitations, combined

with a noniterative, quasiperturbative estimate of the effect

of triple excitations, CCSD(T) [8–11], has been shown to

be powerful enough to recover a large fraction of the

electron correlation energy [12]. It can even be applied to

molecules whose wave functions exhibit moderate multi-

configurational character, such as C2, O3, and FOO [13,

14]. Unfortunately, the method’s computational expense,

which scales as *n2N4Nit (with a single n3N4 step), is

daunting and it requires large 1-particle basis sets to

achieve good results. Here, n, N, and Nit are the number of

occupied and unoccupied molecular orbitals and the num-

ber of CCSD iterations, respectively. In practice,

CCSD(T) calculations can take hours, days or even weeks,

on high-speed computers. A recently developed, explicitly

correlated variant, known as CCSD(T)-F12b [15–17],

provides more rapid convergence with respect to the basis

set, but the current implementation may not be suitable for

studies seeking the very highest level of accuracy [18].

Higher levels of coupled cluster theory, which are required

for very highest accuracy studies, incur even greater

computational expense. These scale as n3N5Nit, n
4N6Nit or

even steeper.

2 Approach

2.1 CCSD(T) basis set limit

The FPD method consists of a sequence of (up to) 13 steps,

with the dominant contribution to a property arising from

the frozen core (FC) CCSD(T) result. An extrapolation is

performed in order to better estimate the complete basis set

(CBS) limit for the energy. The remaining components are

considerably smaller and it is assumed that their contri-

butions are additive. Because they are of varying sign,

some cancelation of error is likely. Careful monitoring of

the errors arising from each component can help reduce the

overall uncertainty in the final answer to a level sufficient

to meet the needs of a wide range of studies with different

target accuracies. The FPD approach further assumes that

when CCSD(T) is carried out with extended basis sets, it is

capable of describing most properties of interest suffi-

ciently well to serve as an effective foundation for even

higher-order methods. Nevertheless, as a single-reference

method, CCSD(T) has its limitations. In terms of the

additivity assumption, the FPD method is similar to many

of its multi-component contemporaries, such as Gaussian-

n [19–21], Wn [22, 23], HEATx [24, 25], ccCA [26–28],

Focal Point Analysis [29–31], and Petersson-style Com-

plete Basis Set [32–34] approaches. Statistical analyses

performed with the Computational Results Database

(CRDB) [35] show that the FPD method is capable of a

root mean squared (RMS) deviation of slightly under

0.2 kcal/mol with respect to high-quality experimentally

derived atomization energies. The mean absolute deviation

(MAD) is roughly half that size. The CRDB currently holds

more than 122,000 entries on 434 chemical systems.

Resorting to composite approaches is a practical

necessity due to the factorial growth in the size of full CI

(FCI) calculations, which would need to be carried out with

large basis sets, a relativistic Hamiltonian and involve the

correlation of all electrons. FCI represents the exact solu-

tion of the electronic Schrödinger equation for any given

basis set, but its use remains severely restricted despite

tremendous advances in hardware. That is likely to remain

true for the foreseeable future.

To illustrate the magnitude of the FCI scaling problem,

consider a sequence of calculations on first-row homonu-

clear diatomics with the small cc-pVDZ basis set. In the

following discussion, we will assume the use of the FC

approximation in which the 1s2 inner shell electrons were

excluded from the correlation treatment. ForC2 (
1Rg

?) andN2

(1Rg
?), a FCI calculation requires 2.8 9 107 and 5.4 9 108

determinants, respectively. Leininger et al. [36] reported FCI

spectroscopic constants at this level as early as 2000. At the

time, these calculations represented an imposing computa-

tional challenge. Today it is possible to carry out the same

calculation on N2 in a little over 2 h per point on a personal

computer. Nonetheless, to the best of our knowledge, after

more than a decade, there has been no report in the literature

of a similar explicit FCI/cc-pVDZ calculation on O2 (
3Rg

-)

with 5.4 9 1010 determinants, much less F2 with over 1011

determinants. Methods for estimating the FCI energy will be

discussed in a subsequent section.

It can be helpful to think about the challenge of

obtaining high-accuracy results in terms of the 1-particle

Theor Chem Acc (2014) 133:1407
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and n-particle expansions. The former is associated with

the quality of the (typically Gaussian) basis set and the

latter with the degree of correlation recovery. Demon-

strated convergence along each axis is necessary to credi-

bly claim high accuracy. Our goal is more ambitious than

either FCI with small basis sets or low-level perturbation

theory at the basis set limit. Of the two expansions, defi-

ciencies in the 1-particle basis set normally generate the

majority of the error (relative to FCI/CBS) with

CCSD(T) calculations, as has been shown in numerous

studies [3, 12]. Prior to the introduction of the correlation

consistent basis set family of Dunning, Peterson and co-

workers [18, 37–56], there were very few efficient tools for

systematically addressing the high-accuracy requirements

for most elements. Correlation consistent basis sets are

available for most of the elements from H through Rn. The

quality of the basis sets ranges from 2f to as high as 9f and
they support valence, core/valence (CV), pseudopotential

and Douglas-Kroll-Hess [57, 58] scalar relativistic calcu-

lations. For neon, a 10f basis set has been reported [51],

and correlation consistent basis sets have even been

developed for pseudopotential-based quantum Monte Carlo

[59].

The diffuse function enhanced aug-cc-pVnZ, (n = D, T,

Q, 5,…, 9) basis sets, and their second row aug-cc-

pV(n ? d)Z counterparts will be used for all valence

CCSD(T) calculations. For the sake of brevity, we will

denote these basis sets as aVnZ. The aV9Z basis set corre-

sponds to a (23 s, 17p, 9d, 8f, 7g, 6h, 5i, 4k, 3l, 2m) ? [11s,

10p, 9d, 8f, 7g, 6h, 5i, 4k, 3l, 2m] contraction. The new sets

are available in Supporting Information. Although some

molecular properties converge rapidly with respect to the

basis set, such as first-order electrical properties (e.g. dipole

and quadrupole moments), others require much greater

effort, such as thermochemical properties. Recent studies on

more than 180 small-to-medium size molecules demon-

strated that basis sets of aV7Z quality or better are required if

‘‘chemical accuracy’’ (±1 kcal/mol) is to be uniformly

achieved in the FC part of the problem using only the ‘‘raw’’

energies. The term ‘‘raw’’ implies that no secondary

extrapolation procedure has been applied.

An unintentional benefit accrued from the correlation

consistent basis sets’ uniform convergence to the CBS limit

in the energy is the practical possibility of accelerating that

convergence through the use of simple extrapolation

schemes. Through extensive testing, it was possible to

measure the performance of six extrapolation techniques

chosen from the literature. A seventh approach was also

examined, although not as extensively. Even the poorest

performing extrapolation provided an improvement of one

basis set index or better for problematic atomization ener-

gies, i.e. CBS(aVnZ) & raw [aV(n ? 1)Z] [52, 60]. By

using the collection of reference atomization energies as a

training set, it proved possible to achieve an increment of 3 in

the basis set index, i.e. CBS(aVnZ) & raw [aV(n ? 3)Z].

This accomplishment represents an enormous savings in

computer time [52]. However, the formula that produced the

best results is not available for the present study because of

the very large sets (aV8Z and aV9Z) that will be employed.

Instead, the CBS limit will be estimated by an expression

proposed byMartin [61] that involves the maximum angular

momentum present in the basis set (‘max):

Eð‘maxÞ ¼ ECBS þ A=ð‘max þ 1=2Þ4 ð1Þ
This formula built upon earlier work bySchwartz [62, 63],

Carroll et al. [64], Hill [65], and Kutzelnigg and Morgan

[66]. Among the older extrapolation formulas, Eq. (1) and a

multi-formula average proved to be statistically superior to

other formulas with RMS deviations of *0.30 kcal/mol

compared to values ranging between 0.36 and 0.74 kcal/mol

(592 comparisons) [52]. Equation (1) leads to slightly larger

atomization energies than the multi-formula average, which

we have tended to use in previous studies. The spread among

the various formulas will be adopted as a crude estimate of

the uncertainty in our CBS extrapolations. We applied

Eq. (1) to the total energy.With basis sets as large as the ones

used in this study, the Hartree–Fock component is already

converged.

The primary goal of the FPD method is accurate

molecular properties. Secondarily we want to accomplish

the primary goal in a reasonably efficient manner so that

the method can be applied to chemical systems with a

range of sizes. The secondary goal has practical conse-

quences in terms of the composition of the multi-step,

additive procedure. Ideally, the investment in computer

resources should roughly match the target accuracy with-

out undue wasted effort. In particular, it is inefficient to

reduce the uncertainty in any component to a level that is

much smaller than the least accurate components. In order

to accomplish this in practice, it is necessary to exploit the

different convergence rates of different components. As a

result, we have traditionally separated the slowly conver-

gent valence correlation problem from the more rapidly

convergent core/valence (CV) and scalar relativistic (SR)

corrections. For first-row compounds, the largest of the

numerous corrections to the CCSD(T)(FC) energy typi-

cally arises from CV effects. This observation has led

some researchers to insist that separate treatments of core

and valence correlation should be abandoned [25]. A very

recent paper on the dissociation of F2 by one of the ori-

ginal developers of the HEAT model chemistry reported

calculations with CV basis sets of 7f and 8f quality [67].

The largest of these included 574 contracted functions per

atom. While it might be possible to perform CV8Z cal-

culations on a diatomic molecule, similar calculations on

even slightly larger systems would quickly become

Theor Chem Acc (2014) 133:1407
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prohibitive without a commensurate improvement in

overall accuracy.

Our previous examination of this issue indicated that the

error resulting from the FC ? CV additivity assumption

was small compared to other sources of error [14]. In the

case of second- and third-row compounds, the SR correc-

tion can easily surpass the CV correction in magnitude. For

example, in the case of SiF4, the two corrections for

atomization energies are as follows: DCV = 0.9 and

DSR = -1.9 kcal/mol. In the case of AsH, DCV = 0.8

and DSR = -1.1 kcal/mol. Thus, if magnitude alone was

the determining factor for what corrections cannot safely

be treated in separate calculations, it appears that neither

the CV or SR corrections would qualify. To further gauge

the impact of the additivity assumption, we performed

CCSD(T) calculations on a collection of first-row mole-

cules that simultaneously included both CV and SR con-

tributions. The CV contribution was obtained with wCV5Z

basis sets and the scalar relativistic contribution was

modeled with the second-order Douglass–Kroll–Hess

(DKH) method [57, 58]. Results for just the homonuclear

diatomic spectroscopic properties are shown in Table 1,

where multi-component values of De, re, and xe are com-

pared to combined CCSD(T)(CV)-DK/aug-cc-pwCV5Z-

DK calculations. It is evident that the magnitudes of the

errors are small in an absolute sense. They are also small

relative to the residual basis set truncation error, as indi-

cated by the ‘‘Best FC ? CV ? SR’’ CCSD(T) composite

entries. Mean absolute deviations (MADs) for the addi-

tivity approximation across all molecules considered in this

study are as follows: De = 0.07 kcal/mol, re = 0.0002 Å,

and xe = 0.4 cm-1. For comparison purpose, the MADs of

the CCSD(T)(CV)-DK/aug-cc-pwCV5Z-DK results with

respect to the Best FC ? CV ? SR are: De = 0.93 kcal/

mol, re = 0.0006 Å and xe = 1.6 cm-1. On the basis of

these and our previous findings, we conclude that in most

systems, the error arising from a multi-component

(FC ? CV ? SR) decomposition of the CCSD(T) contri-

bution to a property is acceptably small until the desired

uncertainty in the final answers approach an accuracy of

±0.1 kcal/mol, ±0.0003 Å and 0.5 cm-1. In this study, we

will include additivity corrections in our best estimates.

Very similar numerical findings to those shown in Table 1

can be obtained with the smaller aug-cc-pwCVQZ-DK

basis set.

Most of the calculations performed for this study were

carried out at the optimal geometries associated with every

level of theory/basis set combination. The only exceptions

were calculations with the aV9Z basis sets, where bond

lengths were estimated from an exponential extrapolation

of aV6Z, aV7Z, and aV8Z bond lengths, or levels of theory

where a single energy evaluation required multiple days.

The latter situation was encountered with certain large

basis set, higher-level coupled-cluster calculations, such as

CCSDTQ. All CCSD(T) calculations using basis sets up

through 6f were performed with MOLPRO 2012.1 [7].

Table 1 Comparison of CCSD(T) spectroscopic constants

from multi-component and FC ? CV ? SR combined

CCSD(T) calculations

Component De re xe

B2 (
3Rg

-)

aV5Z 64.90 1.59276 1048.87

DCV(wCV5Z) 0.75 -0.00638 8.59

DSR(V5Z-DK) -0.06 -0.00010 -0.58

Component total 65.59 1.58628 1,056.88

awCV5Z-DK 65.61 1.58604 1,057.81

Error -0.02 0.00024 -0.93

Best FC ? CV ? SRb 65.9 1.5857 1,057.9

C2 (
1Rg

?)

aV5Z 144.45 1.24482 1,858.43

DCV(wCV5Z) 0.98 -0.00325 10.63

DSR(V5Z-DK) -0.17 -0.00015 -0.49

Component total 145.26 1.24142 1,868.57

awCV5Z-DK 145.31 1.24123 1,869.22

Error -0.05 0.00019 -0.65

Best FC ? CV ? SRb 146.2 1.2407 1,870.6

N2 (
1Rg

?)

aV5Z 225.59 1.09953 2,359.32

DCV(wCV5Z) 0.78 -0.00212 9.89

DSR(V5Z-DK) -0.13 -0.00018 -0.86

Component total 226.24 1.09723 2,368.35

awCV5Z-DK 226.40 1.09706 2,368.96

Error -0.16 0.00017 -0.61

Best FC ? CV ? SRb 227.9 1.0967 2,370.6

O2 (
3Rg

-)

aV5Z 119.07 1.20706 1,601.16

DCV(wCV5Z) 0.23 -0.00200 5.82

DSR(V5Z-DK) -0.18 -0.00022 -2.24

Component total 119.12 1.20484 1,604.74

awCV5Z-DK 119.14 1.20511 1604.92

Error -0.02 -0.00027 -0.18

Best FC ? CV ? SRb 120.0 1.2045 1,607.6

F2 (
1Rg

?)

aV5Z 38.08 1.41104 926.95

DCV(wCV5Z) -0.10 -0.00142 1.52

DSR(V5Z-DK) -0.03 -0.00034 -0.44

Component total 37.95 1.40928 928.03

awCV5Z-DK 37.93 1.40989 928.03

Error 0.02 -0.00061 0.00

Best FC ? CV ? SRb 38.4 1.4089 930.2

a Dissociation energies in kcal/mol, bond lengths in Å and harmonic

frequencies in cm-1. All corrections were computed using optimized bond

lengths for every level of theory
b Best CCSD(T) component estimates based on: De = CCSD(T)(FC)/

CBS(aV789Z) ? CCSD(T)(CV)/CBS(wCVTQ5)Z ? CCSD(T)(FC)-

DKH/cc-pV5Z-DK
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123 Reprinted from the journal34



Calculations involving k - (‘max = 7), l - (‘max = 8),

and m-functions (‘max = 9) required either Dalton 2.0 [68]

for closed shell systems or Gaussian 09 Rev. D.01 [5]. The

integral accuracy in Gaussian 09 was increased to 10-13

with the Int = (Acc2E = 13) command. Two other com-

mands were used with Gaussian. The first (nobasistrans-

form) instructed the program to disable the automatic

transformation of generally contracted basis sets into seg-

mented contractions. The second command tightened the

threshold for the elimination of functions associated with

small eigenvalues of the overlap matrix. The default in G09

(10-6) was reset to 10-7 with IOp(3/59 = 7).

Open-shell calculations were based on the

R/UCCSD(T) method, which begins with restricted open-

shell Hartree–Fock (ROHF) orbitals, but allows a small

amount of spin contamination in the solution of the CCSD

equations [69, 70]. Atomic symmetry in the orbitals was

imposed in calculations on the atomic asymptotes when

computing atomization energies. Because Gaussian only

supports UCCSD(T) and what it labels ROHF-CCSD(T), it

was necessary to estimate the R/U energies using the

scheme described in earlier work [52]. The approach

assumes that the difference between UCCSD(T) and

R/UCCSD(T) energies for basis sets beyond 6f can be

determined to an accuracy of *10-6 Eh using results up

through 6f. Spectroscopic properties and multi-component

corrections for all of the diatomic species were obtained

from a sixth degree Dunham fit of the potential energy

curve [71]. Due to differences in the way various codes

generate semi-canonical orbitals, the total energies differ

by small amounts.

The CCSD(T)(CV) correction was determined with cc-

pwCVnZ (n = Q, 5) basis sets and included a CBS

extrapolation step. For C2, the raw cc-pwCV5Z spectro-

scopic properties were within 0.02 kcal/mol (De),

4 9 10-5 Å (re) and 0.06 cm-1 of the estimated CBS limit.

Consequently, there appears to be little reason to push the

CV calculations to basis sets beyond 5f or 6f.
The scalar relativistic correction was obtained from

second-order CCSD(T)(FC)-DKH calculations with the cc-

pV5Z-DK basis sets. For the systems studied here, a VTZ-

DK basis set would have sufficed for most purposes, but

the V5Z-DK was adopted for the sake of exhausting the

1-particle contribution to this property. For C2, the smaller

VTZ-DK basis set produces corrections that are within

0.01 kcal/mol (De), 1 9 10-5 Å (re), and 0.05 cm-1 (xe)

of the much larger cc-pV5Z-DK set.

Atomic spin–orbit (SO) coupling effects shift the energies

of the isolated atoms relative to the spin multiplet average

values obtained from standard CCSD(T). It is necessary to

include the atomic SO contribution for accurate atomization

energies. For this purpose, we have chosen to use the tabu-

lated values of Moore [72]. If molecular SO effects are

present, they are obtained either from experimental values (if

available) or from configuration interaction calculations

[73–75]. The only case of a molecular SO correction in the

current set of molecules is NO (2P) where a value of

0.17 kcal/mol was used [76]. It is possible to compute the

atomic SO correction directly, but there seems little reason to

do so purely from an accuracy perspective. As an illustration,

in the case of F2, older Dirac-Coulomb and Gaunt correction

calculations by Visscher and Dyall [77] found a Hartree–

Fock value of -0.75 kcal/mol, in close agreement with the

very recent correlated work of Csontos et al. [67] at

-0.77 kcal/mol. The latter value included an estimate of the

quantum electrodynamics (QED) contribution. Both of these

values are in very close agreement with the value reported in

C. Moore tables (-0.77 kcal/mol).

The commonly employed Born–Oppenheimer approxi-

mation assumes separation of electronic and nuclear

motions. It can contribute a potentially significant error in

the case of molecular properties for systems composed of

light elements, especially hydrogen. In the present work, a

first-order, adiabatic correction, known as the diagonal

Born–Oppenheimer correction (DBOC), will be obtained

from CCSD(FC)/aVTZ calculations performed with the

CFOUR program [78] using CCSD(T)(FC)/aVTZ geome-

tries. The open-shell systems are based on unrestricted

Hartree–Fock wave functions and UCCSD.

Vibrational zero point energies (ZPEs) are required for

computing heats of formation at 0 and 298 K, DHf,0K and

DHf,298K, respectively. The Dunham analysis provides both

harmonic frequencies xe and anharmonic constants xexe
for diatomics. Anharmonic vibrational zero point energies

for polyatomic molecules are based on the expression:

ZPE ¼ 0:5 ZPEH þ ZPEFð Þ þ v0 � 0:25ðRviiÞ ð2Þ
where ZPEH = 0.5(Rxi), ZPEF = 0.5(Rmi),xi and mi are the
harmonic frequencies and the fundamentals and v0 and vii
are given by Barone [79]. The anharmonic corrections are

insensitive to the level of theory and can be accurately

modeled with frozen core, second-order Møller-Plesset

perturbation theory, MP2(FC). In Gaussian, they are based

on finite difference evaluations of third and semidiagonal

fourth derivatives. The harmonic frequencies for the tri-

atomic molecules were obtained from numerical differenti-

ation of CCSD(T) energies because MOLPRO does not

support analytical derivatives for that level of theory. For

closed shell systems, such as H2O, we compared harmonic

frequencies produced analytically and via finite differences.

The average difference was*0.3 cm-1 with the aVTZ basis

set. The difference in the zero point energieswas\0.01 kcal/

mol. Additionally, we know of no codes that are capable of

analytical second derivatives for R/UCCSD(T).

Molecular heats of formation also require knowledge of

accurate experimental (or in some cases theoretically
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derived) atomic heats of formation. The values used here

are taken from the following sources: H = 51.63337 ±

0.00002 ATcT 2013; [4] B = 135.1 ± 0.2 kcal/mol, Kar-

ton and Martin [80]; C = 170.027 ± 0.013 kcal/mol,

ATcT 20 [4, 13] N = 112.470 ± 0.005 kcal/mol, ATcT 20

[4, 13] O = 58.9971 ± 0.0005 kcal/mol, ATcT 20 [4, 13],

F = 18.472 ± 0.013 ATcT 20 [4, 13], P = 75.42 ± 0.24

NIST-JANAF [81], and S = 66.26 ± 0.07 Nagy et al.

[82] kcal/mol. The procedure for obtaining DHf(0 K) and

DHf(298 K) from the atomization energy has been dis-

cussed by Curtiss et al. [83].

2.2 Higher-order contributions

As mentioned above, CCSD(T) has proven to be remark-

ably accurate. Some early users of the method likened it to

FCI [19, 61, 84–86]. However, experience gained over

years of use has shown that CCSD(T) alone is incapable of

reproducing FCI results to chemical accuracy. Higher-

order (HO) correlation recovery can easily contribute more

than 1 kcal/mol to atomization energies even in small, first-

row molecules. In the present study, HO corrections will be

obtained from coupled cluster theory beyond the level of

CCSD(T), including CCSDT, CCSDTQ, CCSDTQ5, as

well as explicit and estimated FCI. The coupled cluster

calculations were performed with the MRCC program of

Kállay and co-workers [87, 88] interfaced to MOLPRO. In

the limited number of cases where it proved possible, FCI

calculations were run with the FCI code in MOLPRO.

Atomic symmetry was not imposed in the higher-order

coupled-cluster and FCI calculations.

The computational cost of these methods will impose a

practical limit on the size of the basis sets that can be used.

For diatomics, the largest basis sets will typically be V5Z

(CCSDT), VQZ (CCSDTQ), and VDZ (CCSDTQ5 or

FCI), unless otherwise noted. Fortunately, each increase in

excitation level is accompanied by a sharp, corresponding

decrease in the basis set index, n, required to reach a

fixed level of convergence [12]. In many cases, the

CCSD(T) ? CCSDT and CCSDT ? CCSDTQ correc-

tions are of opposite sign and of roughly equal magnitude,

as seen in Fig. 1 where the relevant data are shown for C2.

Experience has shown that combining CCSDT/V(n ? 1)Z

with CCSDTQ/VnZ corrections leads to reasonably bal-

anced DCCSDT ? DCCSDTQ totals.

In order to estimate the remaining difference between

CCSDTQ (or CCSDTQ5) and the FCI limit in cases

where explicit FCI was impossible, we have previously

used a continued fraction (cf) approximant originally

suggested by Goodson with Hartree–Fock (HF), CCSD,

and CCSD(T) energies [89]. Testing against FCI atom-

ization energies revealed that this formulation lacked

sufficient accuracy for our purposes [90]. In many

instances, it failed to improve upon the raw

CCSD(T) values. However, when the original 3-energy

sequence was replaced by CCSD, CCSDT, and CCSDTQ,

much better results were found. In 57 out of 61 cases, use

of the approximant improved the CCSDTQ value. The

RMS deviation was 0.06 kcal/mol. Here we will employ

the CCS(DTQ) or CCSD(TQ5) sequences for the con-

tinued fraction approximant to FCI. While the method is

not perfect, with careful use it can provide a useful

adjunct to CCSDTQ calculations.

Bytautas and Rudenberg have proposed a method they

call correlation energy extrapolation by intrinsic scaling

(CEEIS) to approximate the FCI energy while requiring

only a fraction of the number of determinants [91–93]. The

authors reported results for first-row homonuclear diato-

mics with VDZ, VTZ, and VQZ basis sets. An uncertainty

of *0.3 mEh (0.19 kcal/mol) is quoted in the Conclusion

section of their 2005 paper, but it is not clear whether that

value just refers to the VQZ results or to the smaller basis

set results, as well [93]. The same value is quoted in a

follow-up paper focused on the potential energy curve of

F2 [94]. If both the molecule and the isolated atoms were in

error by 0.3 mEh, the overall error might be too large to

render CEEIS helpful for high-accuracy studies. Compar-

isons with coupled cluster methods were presented in the

2007 paper [94], but they were limited to CCSDT or lower

levels of CC theory. The same was true of a 2010 paper on

the potential energy of O2 [95].

In order to further compare CEEIS and higher levels of

coupled cluster theory for dissociation energies, we carried

Fig. 1 CCSDT(FC) and CCSDTQ(FC) higher-order corrections

(kcal/mol) to the dissociation energy of C2 (1Rg
?). The ‘‘Total’’ data

points are based on DCCSDT/V(n ? 1)Z ? DCCSDTQ/VnZ
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out: (1) explicit FCI on N2, (2) up through CCSDTQ56 on

O2, and (3) up through CCSDTQ5 on F2 with the small VDZ

basis set. This basis was chosen because it was assumed that

the uncertainty inCEEISwould increase as the basis set grew

in size. Thus, VDZ is expected to provide the highest level of

accuracy. The results are shown in Table 2. For N2, the

CEEIS molecular energy is in exact agreement with the

explicit FCI value, but the dissociation energies differ by

0.2 kcal/mol because the nitrogen atom energy is in error:

-54.47870 (CEEIS) versus -54.478551 (FCI). For O2, the

coupled cluster results andCEEIS results differ by 0.05 kcal/

mol. The cf TQ5 est. FCI De falls within 0.001 kcal/mol of

the Q56 value. A single point CCSDTQ5/VDZ calculation

on O2 requires 1.4 h on a 2.5 GHz Intel i7 processor. Run

times have not been reported for the CEEIS calculations,

making performance comparisons impossible. Finally, for

F2, there are two CEEIS values derived from different zer-

oth-order reference functions which differ by 0.15 mEh.

These lead to De values which bracket the cf TQ5 est. FCI

value, one being 0.11 kcal/mol smaller and the other 0.09

larger. On the basis of this admittedly limited data, it does not

appear that the CEEIS method offers any clear advantage in

terms of accuracy or computational efficiency over a con-

tinued fraction approximant using higher levels of coupled

cluster theory.

Correlation recovery beyond CCSD(T) will also con-

tribute to the CV correction, although the magnitude of the

effect for first-row molecules of the size considered here is

expected to be small. The only exception would be in cases

where there is substantial multi-configurational character to

the wave function. For example, the HO(CV) correction to

the atomization energy of CO2 is *0.07 kcal/mol. For sec-

ond-row compounds like S2, the HO(CV) correction

increases to 0.23 kcal/mol. For this purpose, we use a

combination of CCSDT(CV)/wCVTZ ? CCSDTQ(CV)/

wCVDZ. Unlike the case with the valence HO correlation

correction, whereCCSDT andCCSDTQcomponents are often

of opposite signs, here the effects of triple and quadruple

excitations are normally of the same sign. Consequently, con-

vergence in themagnitude of the correction is easier to achieve.

The HO(CV) correction can quickly become extremely time

consuming, especially with second- or third-row elements.

3 Results and discussion

3.1 Homonuclear diatomics

The best theoretical dissociation energies, equilibrium bond

lengths, and harmonic frequencies for first-row homonuclear

diatomics produced in this study are listed in Tables 3 and 4,

along with a breakdown of the components and estimated

uncertainties (when available). Also listed are selected

experimental values taken from the chemical literature [23,

76, 81, 96–101]. Note that the theoretical and experimental

uncertainties are often not directly comparable. Experi-

mentalists prefer to quote uncertainties corresponding to a

95 % confidence interval (roughly two standard deviations),

whereas the theoretical uncertainties are an attempt to con-

servatively estimate the residual error in each component due

to basis set truncation error. The total uncertainties are based

on the sum of the individual uncertainties, i.e., cancelation of

error is not assumed, although due to the alternating sign of

the component corrections some is likely to occur. We have

discussed alternate approaches for attaching meaningful

error bars to theoretical results in a previous work [14].

As expected, the minor corrections to the CCSD(T)/CBS

values are all small and of varying sign. For first-row

Table 2 Comparison of N2, O2 and F2 dissociation energies (kcal/

mol) from coupled cluster, continued fraction estimated FCI and

CEEIS calculations using the cc-pVDZ basis set

Method Energy De # Det.’s

N2 (
1Rg

?)

CCSDT -109.275147 199.630 60,842

CCSDTQ -109.276751 200.584 969,718

CCSDTQ5 -109.276958 200.714 8,746,130

cf DTQ est. FCI -109.276982 200.728 540,924,024

cf TQ5 est. FCI -109.276979 200.726

FCI -109.276979 200.726

CEEIS est. FCIa -109.27698 200.539

O2 (
3Rg

-)

CCSDT(FC) -149.985713 104.007 90,744

CCSDTQ(FC) -149.987581 105.081 1,721,238

CCSDTQ5(FC) -149.987772 105.201 18,907,900

CCSDTQ56(FC) -149.987794 105.211 127,907,385

cf DTQ est. FCI -149.987968 105.314 5,408,656,512

cf TQ5 est. FCI -149.987793 105.214

cf Q56 est. FCI -149.987797 105.213

CEEIS est. FCIa -149.98787 105.265

F2 (
1Rg

?)

CCSDT(FC) -199.097753 26.686 131,274

CCSDTQ(FC) -199.099291 27.506 2,905,969

CCSDTQ5(FC) -199.099367 27.553 37,927,843

cf DTQ est. FCI -199.099597 27.679 54,087,833,504

cf TQ5 est. FCI -199.099371 27.556

CEEIS est. FCIa -199.09935 27.642

CEEIS est. FCIb -199.09920 27.454

Calculations were performed at the experimental bond lengths of

Huber and Herzberg: re(N2) = 1.097685Å, re(O2) = 1.20752 Å,

re(F2) = 1.41193 Å [76]
a Energy from Table IX of 2005 paper by Bytautas and Rudenberg

[93] Atomic energies are: -54.47870 (N), -74.91006 (O),

-99.52765(F)
b Energy from Table X of the 2007 paper by Bytautas et al. [94]. The

atomic asymptotes were computed at r = 8.0 Å
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Table 3 Dissociation energies components for first-row homonuclear

diatomics (kcal/mol)

Component De/D0/correction

B2 (
3Rg

-)

De R/UCCSD(T)(FC)/CBS(aV78)
a 65.20 ± 0.03

DCCSD(T)(CV)/CBS(wCVTQ5) 0.77 ± 0.01

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.06 ± 0.00

DCCSDT(FC)/CBS(TQ) 0.08 ± 0.04

DCCSDTQ(FC)/CBS(DT) 1.26 ± 0.03

DFCI(FC)/VTZ 0.09

DCCSDT(CV) ? CCSDT(Q)(CV)b 0.11 ± 0.01

DUCCSD(FC)-DBOC/aVTZ 0.01

CCSD(T) additivity correctionc 0.02

DAtomic S.O. -0.06

Best composite De estimate 67.42 ± 0.12

Anharm. ZPEd -1.50 ± 0.00

Best composite D0 estimate 65.92 ± 0.12

Expt. D0 (NIST-JANAF)
e 73.4 ± 8

C2 (
1Rg

?)

De R/UCCSD(T)(FC)/CBS(aV89)
a 145.37 ± 0.10

DCCSD(T)(CV)/CBS(wCVTQ5) 1.00 ± 0.01

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.17 ± 0.00

DCCSDT(FC)/CBS(Q5) -2.26 ± 0.03

DCCSDTQ(FC)/CBS(TQ) 2.29 ± 0.03

DFCI(FC)/VTZ ? diff.(s,p) 0.41

DCCSDT(CV) ? CCSDT(Q)(CV)b 0.29 ± 0.01

DCCSD(FC)-DBOC/aVTZ 0.03

CCSD(T) additivity correctionc 0.05

DAtomic S.O. -0.17

Best composite De estimate 146.84 ± 0.18

Anharm. ZPEd -2.65 ± 0.01

Best composite Do estimate 144.19 ± 0.19

Expt. D0 (ATcT 2013)f 144.007 ± 0.066

Expt. D0 (ATcT 2006)g 144.7 ± 0.3

N2 (
1Rg

?)

De R/UCCSD(T)(FC)/CBS(aV89)
a 227.25 ± 0.14

DCCSD(T)(CV)/CBS(wCVTQ5) 0.77 ± 0.01

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.06 ± 0.00

DCCSDT(FC)/CBS(Q5) -0.77 ± 0.02

DCCSDTQ(FC)/CBS(TQ) 1.01 ± 0.01

DFCI(FC)/VDZ 0.13

DCCSDT(CV) ? CCSDT(Q)(CV)b 0.06 ± 0.01

DCCSD(FC)-DBOC/aVTZ 0.01

CCSD(T) additivity correctionc 0.02

DAtomic S.O. 0.00

Best composite De estimate 228.36 ± 0.19

Anharm. ZPEd -3.37 ± 0.01

Best composite D0 estimate 224.99 ± 0.20

Expt. D0 (ATcT 2013)f 224.939 ± 0.011

Expt. D0 (ATcT 2008)h 224.938 ± 0.007

Expt. D0 (NIST-JANAF)
e 224.94 ± 0.01

O2 (
3Rg

-)

De R/UCCSD(T)(FC)/CBS(aV89) 119.95 ± 0.08

DCCSD(T)(CV)/CBS(wCVTQ5) 0.24 ± 0.00

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.18 ± 0.00

DCCSDT(FC)/CBS(TQ) -0.66 ± 0.02

DCCSDTQ(FC)/CBS(DT) 1.09 ± 0.01

Table 3 continued

Component De/D0/correction

DEst. FCI(FC)/VDZ 0.15

DCCSDT(CV) ? CCSDT(Q)(CV)a 0.00 ± 0.01

DUCCSD(FC)-DBOC/aVTZ 0.01

CCSD(T) Additivity Correctionb 0.02

DAtomic S.O. -0.45

Best composite De estimate 120.17 ± 0.12

Anharm. ZPEc -2.29 ± 0.02

Best composite Do estimate 117.88 ± 0.14

Expt. D0 (ATcT 2013)f 117.994 ± 0.001

Expt. D0 (ATcT 2008)h 117.99 ± 0.001

Expt. D0 (HH)
i 117.97 ± 0.002

F2 (
1Rg

?)

De R/UCCSD(T)(FC)/CBS(aV89)
a 38.49 ± 0.01

DCCSD(T)(CV)/CBS(wCVTQ5) -0.10 ± 0.00

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.03 ± 0.00

DCCSDT(FC)/CBS(TQ) -0.30 ± 0.01

DCCSDTQ(FC)/CBS(DT) 0.77 ± 0.02

DEst. FCI(FC)/VDZj 0.11

DCCSDT(CV) ? CCSDT(Q)(CV)b 0.06 ± 0.01

DCCSD(FC)-DBOC/aVTZ 0.00

CCSD(T) Additivity Correctionc -0.02

DAtomic S.O. -0.77

Best composite De estimate 38.21 ± 0.05

Anharm. ZPEd -1.30 ± 0.00

Best composite Do estimate 36.91 ± 0.05

Expt. D0 (ATcT 2013)f 36.944 ± 0.026

Expt. D0 (ATcT 2009)k 36.95 ± 0.05

Expt. D0 (ATcT 2008)h 36.93 ± 0.03

Expt. D0 (ATcT 2006)l 36.91 ± 0.07

Expt. D0 (ATcT 2004)m 36.90 ± 0.06

Expt. D0 (Yang et al.)n 37.03 ± 0.02

Expt. D0 (Colburn et al.)o 36.94 ± 0.14

Expt. D0 (NIST-JANAF/CODATA)
e 36.94 ± 0.14

a Raw CCSD(T)(FC) De values (kcal/mol) obtained with the largest basis sets
are: B2 = 65.14; C2 = 145.19; N2 = 227.01, O2 = 119.82, F2 = 38.45
b Higher-order CV correction based on CCSDT(CV)/wCVTZ ?
CCSDT(Q)(CV)/wCVDZ
c Additivity correction based on CCSD(T)(CV)-DKH/aug-cc-pwCV5Z-DK
calculations
d ZPE based on CCSD(T)(FC)/aV8Z ? DCCSD(T)(CV)/wCV5Z ?
DCCSD(T)(FC)-DKH/V5Z-DK ? DHO FC ? Additivity correction. The
experimental anharmonic ZPE corrections (kcal/mol), based on the xe and xexe

values from Huber and Herzberg, are: B2 = - 1.50, C2 = -2.64, N2 = -
3.36, O2 = 2.25, F2 = 1.30 [76]
e NIST-JANAF [81] and CODATA [96]
f Ruscic et al. [4]
g Ruscic [124]
h Harding et al. [25]
i Huber and Herzberg [76]
j Continued fraction CCSDTQ5 estimated full CI
k Klopper et al. [97]
l Karton et al. [23]
m Ruscic [98]
n Yang et al. [99, 100]
o Colbourn et al. [101]
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molecules, this has been well established in our previous

work, as well as the work of other groups [1, 12–14, 23, 25,

73, 90, 102–111]. The various corrections to De in Table 3

differ qualitatively from the re and xe corrections due to

the local nature (with respect to the potential energy sur-

face) of the latter two. The corrections to the atomization

energy tend to grow with the size of the molecule. For

example, while the CV/CBS correction to the atomization

energy of C2 is 0.8 kcal/mol, we estimate the value for

C8H18, octane, as *9.6 kcal/mol. Even DDBOC for a

molecule the size of octane would approach 0.2 kcal/mol.

Thus, while it might be tempting to avoid the burdensome

computational expense associated with the various smaller

corrections, experience has shown that they are necessary if

consistent high quality is desired without relying on for-

tuitous cancelation of error.

In Table 4, the largest corrections to re and xe arise

from the core/valence and higher-order correlation cor-

rections which are of opposite signs and roughly equal

magnitudes. To the extent this observation holds true for

polyatomic molecules, it implies that whenever higher-

order corrections are unavailable, frozen core

CCSD(T) likely provides a better estimate of the full CI

limit than a value corrected solely for core/valence effects.

The maximum higher-order corrections to re and xe are

0.004 Å and -22 cm-1, respectively. Average values are

roughly half as large.

Most model chemistries focus exclusively on atomiza-

tion energies and heats of formation. All such calculations

are carried out with reference molecular structures obtained

from a lower level of theory than the highest level used for

the actual thermochemistry. The same is true for the

vibrational frequencies. An exception is the work of Karton

and Martin who applied W4 theory to the prediction of

spectroscopic properties [112]. In this regard, the FPD

approach is different in that it tries to use geometries

optimized for every method and basis set whenever pos-

sible. As a result, accurate molecular structures, frequen-

cies, and zero point vibrational energies are produced as a

matter of course. The impact of using optimized structures

for atomization energies is not expected to be large, but the

precise numerical consequence depends upon the system

and the quality of the reference geometry. As an example,

consider the C8H18 (n-octane) system which was studied in

2005 with CCSD(T) and the aVDTQZ sequence of basis

sets at the optimal second-order Møller-Plesset perturba-

tion theory (MP2) [113] geometry [114]. At that time, the

1,468 basis function CCSD(T)/aVQZ calculation was

extremely challenging. It required days of time on a $24

million massively parallel computer using between 600 and

1,400 processors. Today, the identical level of calculation

can be performed on a single processor of a personal

Table 4 Equilibrium distances (Å) and harmonic frequencies (cm-1)

for first-row homonuclear diatomics

Component re/correction xe/correction

B2 (
3Rg

-)

CCSD(T)(FC)/CBS 1.59205 1,049.7

DCCSD(T)(CV)/CBS -0.00638 8.6

DR/UCCSD(T)-DKH/V5Z-DK -0.00010 -0.4

DHO(FC) 0.00409 -9.3

DHO(CV) -0.00019 0.0

CCSD(T) additivity correction -0.00024 0.9

CCSD-DBOC/aVTZ 0.00002 0.01

Best composite estimate 1.5893 1,049.6

Expt.a 1.5900 1,051.3

C2 (
1Rg

?)

CCSD(T)(FC)/CBS 1.24409 1,860.4

DCCSD(T)(CV)/CBS -0.00329 10.6

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.00014 -0.5

DHO(FC) 0.00195 -15.3

DHO(CV) -0.00004 -0.9

CCSD(T) additivity correction -0.00019 0.7

Best composite estimate 1.2424 1,855.0

Expt.a 1.2425 1,854.7

N2 (
1Rg

?)

CCSD(T)(FC)/CBS 1.09900 2,361.5

DCCSD(T)(CV)/CBS -0.00215 10.0

DR/UCCSD(T)-DKH/cc-pV5Z-DK -0.00018 -0.9

DHO(FC) 0.00097 -13.3

DHO(CV) 0.00030 -0.7

CCSD(T) additivity correction -0.00017 0.6

Best composite estimate 1.0978 2,357.2

Expt.a 1.0977 2,358.6

O2 (
3Rg

-)

CCSD(T)(FC)/CBS 1.20629 1,604.0

DCCSD(T)(CV)/CBS -0.00203 5.8

DR/UCCSD(T)-DKH/V5Z-DK 0.00022 -2.2

DHO(FC) 0.00298 -21.5

DHO(CV) 0.00008 -0.5

CCSD(T) additivity correction 0.00027 0.2

Best composite estimate 1.2078 1,585.8

Expt.a 1.2075 1,580.2

F2 (
1Rg

?)

CCSD(T)(FC)/CBS 1.40939 929.1

DCCSD(T)(CV)/CBS -0.00144 1.5

DR/UCCSD(T)-DKH/cc-pV5Z-DK 0.00033 -0.4

DHO(FC) 0.00356 -10.8

DHO(CV) 0.00030 -2.2

CCSD(T) additivity correction 0.00061 0.0

Best composite estimate 1.4127 917.2

Expt.a 1.4119 916.6

a Huber and Herzberg [76]
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computer, including the effects of geometry optimization.

The aVDZ and aVTZ atomization energies increase by 2.4

and 0.6 kcal/mol, respectively. But the final CBS value

based on optimized geometries was only 0.3 kcal/mol

larger than the 2005 value using the same extrapolation

formula. Compared to other sources of uncertainty in the

atomization energy, this is a relatively minor contribution.

From a pragmatic point of view, it is relatively easy to

compute higher-order corrections for harmonic frequencies

(or anharmonicity constants) for diatomic molecules

because all of the necessary calculations preserve C?v or

D?h symmetry. Unfortunately, in the general polyatomic

case, methods such as CCSDTQ are currently not imple-

mented with either analytical first or second derivatives in

any codes to our knowledge. This necessitates the use of

two point numerical differentiation using displaced struc-

tures with C1 symmetry. As a concrete example, a

CCSDTQ/VDZ calculation on CO2 at its equilibrium

geometry requires 38 9 106 determinants. By comparison,

a calculation in C1 symmetry involves 306 9 106 deter-

minants and a factor of 12 increase in computer time.

Consequently, CCSDTQ corrections for polyatomic har-

monic frequencies are likely to remain very computation-

ally challenging for some time to come. Note that the

CFOUR [78] code does support analytical CCSDT second

derivatives, but this level of theory doesn’t pick up the

majority of the higher-order correction.

The level of agreement between theory and experiment

for all three properties is good, with the exception of

De(B2) where the NIST-JANAF [81] value is not known

Table 5 Selected theoretical values for the first-row homonuclear diatomics taken from the literature

System Method Year D0 re xe References

B2 (
3Rg

-) FPD 2008 66.15 ± 0.2 1.5899 NA Feller et al. [14]

C2 (
1Rg

?) MRCI/V5Z 1995 140.9 1.2465 1848.2 Peterson [125]

FPD 2008 143.89 ± 0.3 1.2426 NA Feller et al. [14]

W4.4 2007 144.08 NA NA Karton et al. [126]

N2 (
1Rg

?) W1 1999 227.89 NA NA Martin [22]

W2 1999 228.06 NA NA Martin [22]

W3 2004 225.12 NA NA Boese et al. [127]

W4.4 2007 225.02a NA NA Karton et al. [126]

HEAT 2004 224.92 NA NA Tajti et al. [24]

HEAT-456QP 2008 224.89 NA NA Harding et al. [25]

CC Theory 2006 NA 1.0975 NA Heckert et al. [128]

CC ? PTa 2009 224.86 NA NA Klopper et al. [97]

FPD 2008 224.88 ± 0.3 1.0976 NA Feller et al. [14]

O2 (
3Rg

-) W1 1999 119.89 NA NA Martin [22]

W2 1999 119.58 NA NA Martin [22]

W3 2004 117.99 NA NA Boese et al. [127]

W4.4 2007 117.98b NA NA Karton et al. [126]

HEAT 2004 117.92 NA NA Tajti et al. [24]

HEAT-456QP 2008 118.00 NA NA Harding et al. [25]

FPD 2008 117.92 ± 0.2 1.2077 NA Feller et al. [14]

F2 (
1Rg

?) W1 1999 37.72 NA NA Martin [22]

W2 1999 37.64 NA NA Martin [22]

W3 2004 36.94 NA NA Boese et al. [127]

W4.4 2007 36.95 NA NA Karton et al. [126]

HEAT 2004 36.91 NA NA Tajti et al. [24]

HEAT-456QP 2008 36.92 NA NA Harding et al. [25]

CC Theory 2006 NA 1.4108 NA Heckert et al. [128]

CC ? PTa 2009 36.76 NA NA Klopper et al. [97]

FPD 2008 36.90 ± 0.2 1.4122 NA Feller et al. [14]

(HEAT) 2013 37.03 ± 0.11 NA NA Csontos et al. [67]

Dissociation energies in kcal/mol. Bond lengths in Å. Harmonic frequencies in cm-1. NA not available
a Coupled cluster theory augmented with explicitly correlated perturbation theory
b Using the partial-wave CBS extrapolation
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with high precision. In the case of C2, which has significant

multi-configurational character in its wave function (the

2ru
2 ? 3rg

2 excitation enters with a CI coefficient of

-0.32), the theoretical and experimental uncertainties in

D0 nonetheless overlap each other.

The five first-row homonuclear diatomics are often used

in calibration studies undertaken whenever newmethods are

introduced. Consequently, there are a very large number of

theoretical publications reporting spectroscopic properties

for these systems. It is beyond the scope of this work to

provide a comprehensive survey of literature values. This is

especially true of dissociation energies (atomization ener-

gies), where there has been a proliferation of thermochem-

ical ‘‘model chemistries’’ in recent years, each with its own

predictions forD0. For example, we are aware of 37 different

variants of the Weizmann-n models, alone. Table 5 offers a

cursory list of previous high-level results for the first-row

homonuclear diatomics. We are aware of relatively few

reports dealing with B2 and C2, but the other three molecules

are well represented. Overall, the spread in values among the

approaches shrinks over time as would be expected due to

their use of similar computational techniques. The variation

among the dissociation energies is well within 1 kcal/mol if

we restrict ourselves to data published after 2004.

The recent work on the dissociation energy of F2 by

Csontos et al. [67] attempted to resolve a small discrepancy

between the experimental value due to Yang et al. [99, 100]

D0(F2) = 37.03 ± 0.02 kcal/mol and the 2008 ATcT value

of 36.93 ± 0.03 kcal/mol. An older, high-resolution

absorption spectra value of D0(F2) = 36.94 ± 0.14 kcal/

mol had also been reported by Colburn et al. [101]. Csontos

et al. used an approach that is similar to HEAT, which

involved CV basis sets up through 8f, combinedwith higher-

order corrections from coupled cluster theory through

CCSDTQ and CCSDTQ(P)K. Their final D0(F2) value was

37.03 ± 0.11 kcal/mol.Overlapping error bars precluded an

unequivocal choice between the two experimental values,

but fortuitously exact agreement was found with the value of

Yang et al. A selection of experimental and theoretical

D0(F2) values are shown in Fig. 2. Our best theoretical value

is in close agreement with the latest ATcT value.

Although results for H2 are not included in Tables 3 and

4, highly accurate values are possible with FCI/

CBS(aV89Z) [18]. We find De = 109.493 ± 0.003 kcal/

mol, D0 = 103.264 ± 0.003 kcal/mol using the same 1/

(‘max ? �)4 extrapolation formula applied throughout the

rest of this work. The 1/‘max
3 formula gives a slightly larger

value of 103.268 ± 0.003 kcal/mol, compared to the most

recent ATcT value of 103.266730 ± 0.000005 kcal/mol.

The diagonal Born–Oppenheimer correction for H2 was

computed at the FCI/aVQZ level of theory. The best the-

oretical bond distance is 0.7416 Å and the best harmonic

frequency is 4,403.0 cm-1 (atomic mass = 1.007825),

which compare to 0.74144 Å and 4,403.2 cm-1 given by

Huber and Herzberg [76]. The latter value was given in

footnote ‘‘i’’ of the H2 table in Huber and Herzberg and

includes Dunham corrections. The current re and xe values

also agree very well with the explicitly correlated results of

Wolniewicz, re = 0.74162 Å and xe = 4,403.14 cm-1,

using a tenth degree fit to the Born–Oppenheimer ? rela-

tivistic ? adiabatic data points [115].

3.2 Other systems

Several additional molecules were treated with the same

procedure applied to the first-row homonuclear diatomics.

For P2 and S2, it was not possible to compute the higher-

order CV corrections for re and xe due to computational

limitation. The atomization energies, equilibrium structures,

and harmonic frequency results, shown in Table 6, were

found to be similar in terms of their level of agreement with

experiment [25, 76, 97, 116–122]. The symbol RD0 denotes

the zero point inclusive atomization energy. The optimized

structure and harmonic frequencies for H2Owere taken from

the recent high-level study of Feller and Peterson [123]. For

the 16 molecules examined in this benchmark study, bond

lengths were found to have an RMS deviation of 0.0001 Å

(eMAD = 0.00004 Å, eMax = 0.0005 Å). If the comparison

set is expanded to include all molecules in the CRDB for

which accurate experimental values are available,

eRMS = 0.0027 Å (124 comparisons). These include many

polyatomic species for which semi-experimental structures

have been reported. Heats of formation at 0 and 298.15 K for

all molecules are listed in Table 7. The wave functions for

most of the systems are strongly dominated by the Hartree–

Fock configuration. CN (2R) is an exception, with a leading

Fig. 2 Experimental and theoretical D0(F2) values (kcal/mol)
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Table 6 Results for other molecules

CO (1R?) D0 re xe

Best composite estimatea 256.26 ± 0.16 1.1282 2,168.8

Expt. (ATcT 2013)b 256.224 ± 0.013 1.12832 2,169.8

Expt. (ATcT 2009)c 256.24 ± 0.02

Expt. (ATcT 2008)d 256.25 ± 0.02

Expt. (NIST-JANAF)e 256.16 ± 0.04

CO2 (
1Rg

?) RD0 rCO xpu xrg xru

Best Composite Estimatea,f 381.97 ± 0.27 1.1598 669.7 1,350.3 2,390.8

Expt. (ATcT 2,013)g 381.977 ± 0.006 1.1601 674.7 1,416.0 2,396.2

Expt. (ATcT 2009)c 381.98 ± 0.02

Expt. (ATcT 2008)d 382.00 ± 0.02

Expt. (NIST-JANAF)e 381.91 ± 0.01

NO (2P) D0 re xe

Best Composite Estimatea 149.78 ± 0.16 1.1507 1,906.6

Expt. (ATcT 2013)h 149.816 ± 0.014 1.15077 1,904.2

Expt. (ATcT 2010)i 149.82 ± 0.01

Expt. (NIST-JANAF)f 150.06 ± 0.04

CN (2R?) D0 re xe

Best Composite Estimatej 178.20 ± 0.20 1.1715 2,066.8

Expt. (ATcT 2013)k 178.120 ± 0.034 1.17182 2,068.6

Expt. (ATcT 2008)d 178.18 ± 0.06

Expt. (NIST-JANAF)f 178.1 ± 2.4

Expt. (Huang)l 178.5 ± 0.5

Expt. (Engleman)m 177.2 ± 1.1

Expt. (Costes)n 179.2 ± 1.2

CH (2P) D0 re xe

Best Composite Estimatel 80.00 ± 0.04 1.1186 2,861.6

Expt. (ATcT 2008)m 79.99 ± 0.06 1.1190 2,858.5

HF (1R?) D0 re xe

Best Composite Estimaten 135.26 ± 0.04 0.9168 4,138.5

Expt. (ATcT)o 135.28 ± 0.00 0.9168 4,138.3

P2 (
1Rg

?) D0 re xe

Best Composite Estimaten 116.16 ± 0.18 1.8933 779.4

Expt. (NIST-JANAF)f 116.07 ± 0.50 1.8934 780.8

Expt. (CODATA)p 115.99 ± 0.48

S2 (
3Rg

-) D0 re xe

Best Composite Estimatea 102.02 ± 0.17 1.8883 727.1

Expt. (Frederix et al.)q 101.89 ± 0.01 1.8892 725.7

Expt. (CODATA)p 100.66 ± 0.07

H2O (1A1) RD0 rOH xa1 xa1 xb2

Best Composite Estimater 219.35 ± 0.09 0.9577 1,648.6 3,834.8 3,946.3

Expt. (ATcT 2013)s 219.369 ± 0.0005 0.9572 1,648.5 3,832.2 3,942.5

Expt. (ATcT 2009)c 219.36 ± 0.02

Expt. (ATcT 2008)d 219.37 ± 0.01

Expt. (NIST-JANAF)e 219.36 ± 0.03
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FCI coefficient of only 0.89. It was possible to carry out FCI

calculations on CN with the VDZ basis set and CH with the

VQZ basis set.

If we compare all available experimental atomization

energies in the CRDB whose reported uncertainties are

B0.2 kcal/mol with the corresponding best available the-

oretical results obtained from the FPD method we find

eRMS = 0.16 (0.67), eMAD = 0.10 (0.42) and eMSD = 0.02

(0.08) kcal/mol (kJ/mol in parentheses), where

MSD = mean signed deviation. A total of 79 comparisons

were included in generating these statistics. Most of the

theoretical results were not carried out to quite the same

high level as the current findings. For example, they did not

include corrections for the additivity assumption or basis

sets of aV8Z or aV9Z quality. They did, however, include

all of the other major categories of corrections.

4 Conclusion

New benchmark quality spectroscopic properties for a

collection of small molecules were obtained from the

Table 6 continued

CH2 (
3B1) RD0 rCH xa1 xa1 xb2

Best Composite Estimater 179.76 ± 0.07 1.0,754 1,089.8 3,145.9 3,375.9

Expt. (ATcT 2013)t 179.85 ± 0.03 1.0748 1,080 3,090 3,220

Expt. (ATcT 2008)d 179.90 ± 0.06

CH2 (
1A1) RD0 rCH xa1 xa1 xb2

Best Composite Estimateu 170.98 ± 0.11 1.1061 1,393.3 2,930.3 3,007.0

Expt. (ATcT 2013)v 170.85 ± 0.04 1.107

Expt. (ATcT 2009)c 170.87 ± 0.05

Dissociation energies in kcal/mol. Bond lengths in Å. Harmonic frequencies in cm-1

a Based on CCSD(T)(FC)/CBS(aV678Z) ? CCSD(T)(CV)/CBS(wCVTQ5Z) ? CCSD(T)-DK(FC)/cc-pV5Z-DK ? HO(FC)/CBS(VTQZ) ? HO(CV)/wCVTDZ)

? cf est. FCI/VDZ ? CCSD(FC)- DBOC/aVTZ ? additivity correction. ZPE(CO) correction = - 3.09 kcal/mol. ZPE(NO) correction = -2.72 kcal/mol
b CO experimental values: D0 Ruscic et al. ATcT 2013;4 re and xe Huber and Herzberg [76]
c Klopper et al. ATcT 2009 [97]
d Harding et al. ATcT 2008 [25]
e Chase NIST-JANAF [81]
f CO2 anharmonic ZPE correction (-7.22 kcal/mol) is based on CCSD(T)(FC)/aV6Z ? DCCSD(T)(CV)/wCV5Z ? DCCSD(T)(FC)-DKH/V5Z-DK ? Additivity

correction. with an anharmonic MP2 correction from Pfeiffer et al. [129]
g CO2 experimental values: RD0 Ruscic et al. ATcT 20[4, 13] rCO Pawlowski et al. [116] harmonic frequencies from Herzberg [130]
h NO experimental values: D0 Ruscic et al. ATcT 204, 13re and xe Huber and Herzberg [76]
i Stevens et al. [131]
j Based on CCSD(T)(FC)/CBS(aV678Z) ? CCSD(T)(CV)/CBS(wCVTQ5Z) ? CCSD(T)-DK(FC)/cc-pV5Z-DK ? HO(FC)/CBS(VTQZ) ? HO(CV)/wCVTDZ)

? FCI/VDZ ? CCSD(FC)-DBOC/aVTZ ? additivity correction. ZPE(CN) correction = -2.95 kcal/mol
k CN experimental values: D0 Ruscic et al. ATcT 2013;4 re and xe Huber and Herzberg [76]
l Haung et al. [117]
m Engleman and Rouse [118]
n Costes et al. [119]
l Based on CCSD(T)(FC)/CBS(aV678Z) ? CCSD(T)(CV)/CBS(wCVTQ5Z) ? CCSD(T)-DK(FC)/cc-pV5Z-DK ? FCI(F)/VQZ ? HO(CV)/wCVTDZ) ?

CCSD(FC)-DBOC/aVTZ ? additivity correction. ZPE(CH) correction = -4.05 kcal/mol
m CH experimental values: D0 ATcT 2008;25 re and xe Huber and Herzberg [76]
n Based on CCSD(T)(FC)/CBS(aV678Z) ? CCSD(T)(CV)/CBS(wCVTQ5Z) ? CCSD(T)-DK(FC)/cc-pV5Z-DK ? FCI(F)/VTZ ? HO(CV)/wCVTDZ) ?

CCSD(FC)- DBOC/aVTZ ? additivity correction. ZPE(HF) correction = -5.87 kcal/mol
o Klopper et al. [97]
p P2 experimental values: D0 CODATA;[96] re and xe Huber and Herzberg [76]
q S2 experimental values: D0 Frederix et al.;[132] re and xe Huber and Herzberg [76]
r Based on CCSD(T)(FC)/CBS(aV678Z) ? CCSD(T)(CV)/CBS(wCVTQ5Z) ? CCSD(T)-DK(FC)/cc-pV5Z-DK ? FCI(FC)/VTZ(O),VDZ(H) ? HO(CV)/

wCVTDZ) ? CCSD(FC)-DBOC/aVTZ ? additivity correction. The optimal HOH bond angle = 104.5�. ZPE(HF) correction = -13.26 kcal/mol [123]
s H2O experimental values: RD0 Ruscic et al. ATcT 200[4, 9] structure and harmonic frequencies from Benedict et al. [120]
t CH2 (

3B1) experimental values: RD0 Ruscic et al. ATcT 2009,4 structure and harmonic frequencies from Bunker and Jensen [121]
u Based on CCSD(T)(FC)/CBS(aV678Z) ? CCSD(T)(CV)/CBS(wCVTQ5Z) ? CCSD(T)-DK(FC)/cc-pV5Z-DK ? FCI(FC)/VDZ ? HO(CV)/wCVTDZ) ?

CCSD(FC)- DBOC/aVTZ ? additivity correction. The optimal HOH bond angle = 102.4�. ZPE(HF) correction = -13.26 kcal/mol
v CH2 (

1A1) experimental values: RD0 Ruscic et al. ATcT 2009,4 structure from Petek et al. [133]. The experimental HCH angle = 102.4�. Harmonic frequencies

are not available. The experimental fundamentals are 1,352.6, 2,805.9, and 2,864.5 cm-1 from Jensen and Bunker [122]
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composite Feller–Peterson–Dixon method applied at the

highest currently practical level based on our available

hardware and software. The frozen core CCSD(T) contri-

bution to the properties relied on correlation consistent

basis sets as large as aV8Z or in some cases aV9Z. The

complementary n-particle expansion was modeled with a

progression of coupled cluster theory calculations through

CCSDTQ5. In ten cases (B2, C2, N2, CN, CH, HF, P2, H2O,

CH2 (3B1) and CH2 (1A1)) these results were further aug-

mented with full configuration interaction. Good agreement

was found with the best available experimental data. Chief

among these are values derived from the active thermo-

chemical tables, whose accuracy continually challenges

theoreticians to push the state of the art. By paying careful

attention to the various sources of error in the atomization

calculations it was possible to assign conservative esti-

mates of the residual uncertainties to our final values.

While the same general approach can be applied to larger

systems, e.g. octane, practical limitations force us to use

smaller basis sets with resulting larger uncertainties.

Recent developments in explicitly correlated methods and

improved extrapolation techniques should be helpful with

the 1-particle expansion.
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Abstract The diatomic carbon molecule has a complex

electronic structure with a large number of low-lying

electronic excited states. In this work, the potential energy

curves (PECs) of the four lowest lying singlet states (X1Rþ
g ,

A1Pu, B1Dg, and B01Rþ
g ) were obtained by high-level

ab initio calculations. Valence electron correlation was

accounted for by the correlation energy extrapolation by

intrinsic scaling (CEEIS) method. Additional corrections to

the PECs included core–valence correlation and relativistic

effects. Spin–orbit corrections were found to be insignifi-

cant. The impact of using dynamically weighted reference

wave functions in conjunction with CEEIS was examined

and found to give indistinguishable results from the even

weighted method. The PECs showed multiple curve

crossings due to the B1Dg state as well as an avoided

crossing between the two 1Rþ
g states. Vibrational energy

levels were computed for each of the four electronic states,

as well as rotational constants and spectroscopic parame-

ters. Comparison between the theoretical and experimental

results showed excellent agreement overall. Equilibrium

bond distances are reproduced to within 0.05 %. The dis-

sociation energies of the states agree with experiment to

within *0.5 kcal/mol, achieving ‘‘chemical accuracy.’’

Vibrational energy levels show average deviations of

*20 cm-1 or less. The B1Dg state shows the best agree-

ment with a mean absolute deviation of 2.41 cm-1. Cal-

culated rotational constants exhibit very good agreement

with experiment, as do the spectroscopic constants.

Keywords Diatomic carbon � Ab initio electronic

structure � Dissociation � Configuration interaction �
Spectroscopic properties � Multi-configurational

wave functions

1 Introduction

Diatomic carbon has been studied spectroscopically in

sources such as stars [1], comets [2], the interstellar

medium [3], and hydrocarbon combustion reactions [4].

The molecule has a large number of low-lying excited

states, which have been probed in numerous studies [5–

19]. One-band system of note is the Swan system, which

involves the d3Pg - a3Pu transitions. The high-intensity

transitions of this system led to the early inference that

the a3Pu state was the ground state [5]. However, the

X1Rþ
g state was later identified as the ground state with

only 700 cm-1 separating the two states [6]. C2 also has

several low-lying singlet states, among which the Phillips

system (A1Pu - X1Rþ
g ) is well studied. On the basis of

these data, the quality of theoretical potential energy

curves (PECs) can be assessed by comparing the theo-

retical rotational–vibrational levels with the experimental

values. At the present state of the art, theoretical PECs

that reproduce the rotational–vibrational levels to spec-

troscopic accuracy (*1 cm-1) or near spectroscopic

accuracy (*10 cm-1) are considered highly accurate.
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From a theoretical perspective, the complex electronic

structure of C2 offers a challenge to ab initio methods

[20–41]. The large number of low-lying excited states

leads to several avoided crossings. Even for the ground

state PEC, a reasonable description of C2 must account for

the strong multi-reference character. Indeed, the funda-

mental nature of the bonding in C2 is still an active area of

discussion in the literature [36, 40]. By virtue of these

attributes, C2 represents a good system for testing new

ab initio methods.

Recently, ground state PECs have been calculated using

the full configuration interaction quantum Monte Carlo

(FCIQMC) method [37], and the explicitly correlated

internally contracted multi-reference coupled-cluster

method (ic-MRCCSD(F12*)) [41]. The multi-reference

correlation consistent composite approach (MR-ccCA) [38]

has been applied to the X1Rþ
g , B

1Dg, and B
01Rþ

g states. A

comparison of internal contraction schemes in multi-ref-

erence configuration interaction (ic-MRCI) [39] was per-

formed on the X1Rþ
g and B

01Rþ
g states. Shi et al. [34, 35]

recently performed MRCI calculations to obtain the PECs

for several (X1Rþ
g , A1Pu, B1Dg, B

01Rþ
g , C1Pg, D1Rþ

u ,

E1Rþ
g , and 11Du) electronic states of C2.

An accurate description of this molecule must account

for both static correlation at the reference level and

dynamic correlation using a highly correlated method. To

account for static correlation within a group of states

(ground state and excited states), state-averaged multi-

configurational self-consistent field (SA-MCSCF) calcu-

lations are commonly used. Often, the states are

weighted evenly. However, to ensure smoothly varying

reference PECs, dynamically weighted (DW-MCSCF)

[42] procedures are also used. The impact of using

dynamical weighting versus even weighting on the

dynamic correlation will be examined in this work.

In order to recover dynamic correlation, the present

study uses the method of correlation energy extrapolation

by intrinsic scaling (CEEIS) [43–45]. This approach has

been used to obtain highly accurate ground state PECs

for the first-row diatomics B2, O2, F2, from which

rotational–vibrational energy levels with near spectro-

scopic accuracy were obtained [46–48]. In contrast to the

other ab initio approaches used recently for C2, the

present approach focuses on recovering the correlation

energy of higher excitation levels by CEEIS extrapola-

tion for smaller basis sets and then extrapolating to the

complete basis set limit. Using a generalized form of this

method that extrapolates correlation energies for multiple

electronic states, the PECs of the four lowest energy

singlet states of C2 (X1Rþ
g , A1Pu, B1Dg, B

01Rþ
g ) are

obtained in this study. The spectroscopic constants and

rotational–vibrational levels corresponding to these

curves are compared to the experimental values.

2 Method

The PEC calculations for the dissociation of C2 in this

work follow the general method developed by Bytautas

et al. in earlier studies on the diatomics F2, O2, and B2 [46–

51]. In addition to the X1Rþ
g ground state, PECs are cal-

culated for the three lowest lying excited singlet states:

A1Pu, B1Dg, and B
01Rþ

g . The calculations rely on the

CEEIS method to obtain the valence correlation with near

full configuration interaction (FCI) accuracy. Additional

corrections due to core–valence correlation and relativistic

effects are added to achieve near spectroscopic accuracy.

Where feasible, complete basis set (CBS) extrapolations

are performed. All ab initio electronic structure calcula-

tions were completed using the GAMESS program suite

[52].

2.1 Zeroth-order wave function

An accurate description of the C2 dissociation requires a

multi-reference wave function to capture the static corre-

lation of the system. Of particular note is the strong multi-

configurational character of the ground state even at the

experimental equilibrium distance of 1.242 Å where the

primary determinant is coreð Þ2r2g2r2u1p2xu1p2yu
��� E

. However,

a doubly excited configuration coreð Þ2r2g1p2xu1p2yu3r2g
��� E

has

a coefficient of 0.37, which is unusually large for a ground

state molecule at equilibrium. The excited states also show

multi-configurational character (see the Supporting Infor-

mation for more details). Therefore, the reference energies

and orbitals for all subsequent calculations were obtained

from MCSCF calculations in the full valence configuration

space. In C2, the valence space consists of the full opti-

mized reaction space (FORS) [53–56] of eight electrons in

eight orbitals (CAS(8,8) in the complete active space

notation [57]). The core consists of four electrons in two

core orbitals. In the D2h symmetry group used by GAMESS

for calculations on linear molecules, three of the investi-

gated states (X1Rþ
g , B

1Dg, and B
01Rþ

g ) belong to the fully

symmetric Ag irreducible representation (irrep). The ref-

erence functions of these states were obtained by state-

averaged MCSCF (SA-MCSCF) calculations. The A1Pu

state (B2u irrep in D2h) was calculated separately by state-

specific MCSCF.

In addition to the evenly weighted SA-MCSCF calcu-

lations over the three states (referred to as SA-MCSCF for

Theor Chem Acc (2014) 133:1425
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the rest of the paper), dynamically weighted MCSCF

(DW-MCSCF) functions were also optimized at various

bond distances. TheDW-MCSCFmethod ofDeskevich et al.

[42] minimizes a weighted average of the state energies. The

weight assigned to state i is given by the formula:

wi ¼ sech2 �b Ei � E0ð Þ½ �
¼ 4=ð2þ e2b Ei�E0ð Þ þ e�2b Ei�E0ð ÞÞ

where b is an adjustable parameter, Ei is the energy of state

i, and E0 is the ground state energy. The reported results

used b-1 = 2.0 eV (chosen from the recommended range

of values from Deskevich et al.), and other values were

tested and showed similar results. DW-MCSCF has been

shown to reduce discontinuities and smooth out potential

energy surfaces. The impact of using dynamically weighted

reference orbitals with the highly correlated CEEIS method

will be examined below.

The reference calculations were performed using

Dunning’s series of correlation consistent basis sets,

cc-pVXZ [58, 59] where X = 4, 5, and 6. The reference

energies were extrapolated to the complete basis set limit

using the three-point formula [60, 61]:

E Xð Þ ¼ E CBSð Þ þ a e�aX

where the three unknowns [E(CBS), a, and a] are deter-

mined by calculating E(X) for each of the three different

basis sets.

2.2 Valence correlation

2.2.1 CEEIS method for a single state

The dynamic valence correlation was determined using the

CEEIS method, developed by Ruedenberg and Bytautas

[43–45] to approximate the FCI energy. Only a brief

description of the method is included here for context. The

FCI energy is expressed as a sum of contributions from

higher and higher levels of configurational excitation, until

all possible configurations have been included. However,

since the rapid increase in the number of configurations

with increasing system size makes full CI calculations

prohibitively expensive for most applications, excitation

levels beyond the doubles are typically ignored in favor of

the truncated CISD method. The CEEIS method estimates

the higher excitation energy contributions from these trun-

cated calculations by means of an extrapolation technique.

The CEEIS procedure can be carried through with

respect to single determinant Hartree–Fock reference

functions or multi-determinant MCSCF reference func-

tions. A set of correlating virtual orbitals is needed that is

ordered according to decreasing importance. To this end,

the pseudo-natural orbitals [62], i.e., the natural orbitals

from a multi-reference CISD calculation (MR-CISD),

ordered by their occupation numbers have been found to

provide an effective set for the CEEIS procedure. The

pseudo-natural orbitals are produced by diagonalizing only

the virtual block of the one-particle density matrix. For the

rest of this paper, these orbitals will be referred to as nat-

ural orbitals even though the full density matrix has not

been diagonalized. The number of correlating orbitals, M,

is equal to the total number of virtual orbitals.

In the CEEIS procedure, the values of the contributions

from the double and triple excitations are used to estimate

the energy changes due to the higher excitation levels

x = 4, 5, 6, etc., i.e., quadruple, quintuple, and sextuple

excitations. Note that x is used to denote the excitation

level, whereas X was used above to denote the basis set

size. Let E(x) be the CI energy when all configurations up

to and including excitation level x are taken into account.

The incremental energy contributions due to the inclusion

of excitation level x are then defined as

DE xð Þ ¼ E xð Þ � Eðx� 1Þ for x[ 2;

e.g., DE(3) would be the difference between the CISDT

and CISD energies.

Bytautas and Ruedenberg [43] found that the energy

change DE(x) can be related to the energy change from

excitations two levels lower, i.e., DE(x - 2). For example,

the energy change due to quadruple excitations can be

estimated from that due to double excitations. The relation

is established by considering correlation energy increments

that are analogous to DE(x), but are instead obtained from

CI calculations with excitations into smaller subsets of m

(\M) virtual orbitals. If these increments are denoted as

DE xjmð Þ ¼ E xjmð Þ � Eðx� 1jmÞ;
then DE(x|m) manifestly becomes DE(x) when m ? M.

Bytautas and Ruedenberg showed that, in all systems that

were examined, the following linear relationship holds with

respect to the variation of m:

DE xjmð Þ ¼ axDE x� 2jmð Þ þ cx:

The linear relationship is not observed at very small

values of m, but is seen to hold for m running from some

threshold m0 to M. Consequently, the following

extrapolation is found to be effective. Values of

DE(x|m) and DE(x - 2|m) are calculated for a range of m

values considerably smaller than M. From these data,

the coefficients ax and cx in the linear relation are

determined by a least-mean-squares fit. The known value

of DE(x - 2) is then inserted into the linear equation for

DE(x - 2|m = M), and, thereby, an extrapolated value is

produced for the unknown value of DE(x) = DE(x|m = M).

The extrapolations must be performed with calculations

involving at least m0 virtual orbitals. Careful selection of

Theor Chem Acc (2014) 133:1425

123Reprinted from the journal 49



the range of m values is necessary to ensure an

extrapolation of high accuracy. Detailed information on

the choice of effective ranges can be found in past work

describing the CEEIS method [43–47].

The contributions from the singles and double excitations

[DE(x = 2) = E(x = 2) - E(x = 0)] are computed

exactly. If practical, this is also done for the contributions

from the triple excitations. If, however, a prohibitive effort is

required for the latter, then the value of DE(x = 3) is also

obtained by extrapolation from the single and double exci-

tations by an analogous linear extrapolation. The range of

m for this extrapolation typically extends to higher values.

2.2.2 CEEIS method for a set of several states

Bytautas et al. [48] also showed that the CEEIS method can

be applied simultaneously to several states of the same

symmetry. Building upon that observation, the analogous

multiple state CEEIS approach has been developed further

in considerable detail and has been incorporated into

GAMESS [63]. Appropriate reference functions are

obtained from a SA-MCSCF calculation that includes all

the states of interest in the state averaging. Correlating

virtual orbitals are obtained from a preliminary MRCISD

calculation. In contrast to the single-state case, the one-

particle density matrices of the MRCISD wave functions

are averaged over the states of interest and the virtual block

is diagonalized to give state-averaged natural orbitals.

These averaged natural orbitals form the set of M corre-

lating virtual orbitals used in the multistate CEEIS proce-

dure. Multiple-root CI calculations with higher excitations

(CISDT, CISDTQ, …) are then computed for a prespeci-

fied range of m values as in the single-state case. The

eigenvalues of these calculations provide the values

DEk(x|m) for each of the states jki under investigation,

which are then used to extrapolate the total contribution

that excitation x will make to the full CI energy for each

state. The computation and extrapolation of the multiple

states have been automated within GAMESS. However, the

user still needs to be careful to correctly identify the CI

states when the states are very close in energy. The energy

order of near degenerate states may change as calculations

are performed throughout the range of correlating orbitals,

m. Therefore, one must ensure that all of the energy dif-

ferences used in the extrapolations are associated with the

same reference wave function (i.e., have the same domi-

nant electronic configurations).

2.2.3 CEEIS procedure for C2

For the CEEIS calculations on C2, the full valence

CASSCF(8,8) wave functions described above are used as

a reference. The correlating virtual orbitals used are the

natural orbitals from MR-CISD calculations with respect to

the CASSCF(8,8) references. For the reference functions of

the three states X1Rþ
g , B

1Dg, and B
01Rþ

g , which are obtained

from a SA-MCSCF calculation in the Ag irrep, the corre-

lating orbitals are obtained from the virtual block of the

state-averaged density matrix. The number of virtual

orbitals is M = 50 and M = 100 for the cc-pVTZ and

cc-pVQZ basis sets, respectively.

The double and triple excitation contributions were

calculated exactly in all cases, except for the triple exci-

tations in the cc-pVQZ basis, which was too expensive.

These were obtained by extrapolation from the double

excitations, as discussed above. The range of virtual orbi-

tals used for the extrapolation of the triples contribution

was m:{18–25, 30, 35}.

The CEEIS procedure was performed up to sextuple

excitations. For the extrapolation of the quadruple contri-

bution, the range of correlating virtual orbitals used was

m:{18–25}. For the quintuple and sextuple excitations, the

ranges were m:{13–17} and {10–14}, respectively. In

addition, it is important to note that m is chosen so that

degenerate orbitals remain paired.

CBS extrapolation of the correlation energy was per-

formed using the cc-pVXZ bases and the two-point formula

[64, 65]:

DECORR Xð Þ ¼ DECORR CBSð Þ þ acX
�3

where DECORR is the difference between the reference and

the estimated FCI energy. Using X = 3 and 4, the CBS

limit for the correlation energy was determined. Addition

of the CBS correlation energy to the CBS reference energy

yielded the valence-correlated approximate FCI PECs. The

uncertainty in the CEEIS energies was estimated to be

*0.1 millihartree.

2.3 Corrections to the PECs

Past studies [50, 51] have shown that reproducing the

rotational–vibrational energy levels to near spectroscopic

accuracy requires additional corrections to the valence-

correlated PECs. The first contribution is the inclusion of

core electron correlation. As in previous studies, these

effects were captured using MRCISD calculations includ-

ing the Davidson correction (?Q) [66]. The Dunning tri-

ple-zeta basis set modified for core–valence effects,

cc-pCVTZ [58], was used. The reference orbitals for the

MRCISD?Q calculations were taken from a full valence

CASSCF(8,8) calculation. In the valence only

MRCISD?Q, excitations are only allowed from the origi-

nal CAS(8,8) space. The valence plus core MRCISD?Q

calculation allowed single and double excitations from a

CAS(12,10) space that included the core orbitals. The
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core–valence correlation correction is obtained from the

difference between these two energies.

Relativistic effects are accounted for by two corrections.

The first is the scalar relativistic contribution, which was

obtained using the one-electron Douglas–Kroll (DK)

method [67]. The transformation to third-order (DK3) [68,

69] approach was applied at the CASSCF(8,8) level. A

modified DK-contracted basis, cc-pCVQZ [70] was used.

The second relativistic correction is due to the spin–orbit

(SO) coupling. SO coupling effects were computed using

the full one- and two-electron Breit–Pauli operator [71].

Equivalent orbitals were obtained through SA-MCSCF

calculations over the 18 states with MS = 0 that dissociate

to the ground state 3P atomic terms. The active space for

these calculations was a reduced valence space including

only the molecular orbitals that arise from the 2p atomic

orbitals (CAS(4,6)). These CAS-CI states form the basis

for the SO calculation. Addition of the Breit–Pauli operator

introduces off-diagonal terms into the Hamiltonian matrix,

which generate the spin–orbit couplings between states.

Diagonalizing the Hamiltonian produces spin-mixed states.

The energy lowering of these states relative to the CAS-CI

states provides the SO correction to the PECs. The

cc-pVQZ basis was used for these calculations. A more

detailed description of the procedure has been given for the

molecules F2 and O2 [49, 51]. Adding all corrections to the

energies calculated with the CEEIS method yields the final

potential energy curves.

2.4 Fitting continuous functions to PECs

In order to determine spectroscopic constants and rota-

tional–vibrational levels for comparison with experiment,

the potential energy curves must be fitted to a continuous

function. Bytautas and Ruedenberg have used even-tem-

pered Gaussian functions to fit PECs of the diatomics O2,

F2, and B2 [48, 50, 51]. The terms of the expansion are

found using linear least-squares regression. This approach

yielded analytic curves that show high-quality fits with two

of the states of interest: A1Pu and B1Dg (mean absolute

deviations of 0.044 and 0.037 millihartree).

However, the even-tempered Gaussian functions fit to

the two Rþ
g states showed mean absolute deviations

(MADs) an order of magnitude greater (0.219 and

0.296 millhartree). Increasing the number of Gaussians in

the expansion did not change the quality of the fit to the

ab initio data. The even-tempered Gaussian expansions

proved incapable of capturing the irregular shape of the Rþ
g

curves due to an avoided crossing which occurs near

1.70 Å on the PECs. Presumably, these local distortions are

difficult to represent in terms of reasonably simple analytic

(i.e., everywhere infinitely differentiable) functions. As an

alternative, cubic splines were fitted to the ab initio data

using the module VIBROT within MOLCAS [72]. The

PECs were constructed from 44 ab initio calculations along

the dissociation path. The points range from 0.9 to 6.0 Å

with an additional point at 20.0 Å to determine the disso-

ciated values. The points were chosen to adequately

describe both the minimum and the avoided crossing

regions of the potential and to provide a sufficient density

of points to fit the cubic spline.

2.5 Calculation of rotational–vibrational energy levels

The rotational–vibrational energy levels are found by

solving the nuclear Schrödinger equation for the analyt-

ical representations of the PECs. When the analytical

function was an even-tempered Gaussian expansion, the

discrete variable representation (DVR) method [73] was

used to solve for the rotational–vibrational levels. For the

functions using cubic splines, the Schrödinger equation

was solved using Numerov’s method [74] (in the pro-

gram VIBROT) [72]. The two different approaches

yielded similar results for the 1Pu and B1Dg states

(deviations *1 cm-1 and *10 cm-1, respectively).

However, the energy levels obtained from an even-tem-

pered Gaussian fit and a cubic spline for the Rþ
g states

show large disagreement (*100 cm-1). This supports

the inference that the even-tempered Gaussian expansion

cannot describe the avoided crossing exhibited by the Rþ
g

states. The spectroscopic constants were determined by

least-mean-squares fitting to the rotational–vibrational

levels [9].

3 Results

3.1 Potential energy curves

The ab initio PECs curves are presented in Fig. 1. These

energies include the CBS extrapolated reference energies,

the CBS extrapolated CEEIS valence correlation energies,

the core–valence correlation, and the relativistic correc-

tions. These curves reveal the complexity of the electronic

structure of C2. At distances longer than about 1.6 Å, all

four states are close in energy. The B1Dg state is seen to

drop below both the X1Rþ
g and A1Pu states near 1.6 Å.

Another aspect of interest is the avoided crossing between

the two Rþ
g states which occurs in the region of R = 1.6 Å.

This avoided crossing is accompanied by a change in the

dominant configurations of the two states as well as a

distortion of the shapes of the curves. This distortion is the

likely explanation for the failure of the even-tempered

Gaussian expansion to accurately fit the Rþ
g states. As the
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two atoms separate, all four of the states become degen-

erate, dissociating to the two carbon atoms in their 3P

ground states.

3.2 Dynamic versus even weighting in averaging

the reference states

The impact of using DW-MCSCF versus SA-MCSCF

reference orbitals with the CEEIS method was examined.

CEEIS energies were calculated using the cc-pVTZ basis

and DW reference orbitals at 10 points along the dissoci-

ation curve. The energy differences between the SA and

DW calculations are reported in Table 1. While the refer-

ence energies at the MCSCF level are very sensitive to the

weighting scheme, the CEEIS energies including dynamic

correlation are not significantly changed. Furthermore, the

DW weights quickly converge to a near even weighted SA

due to the decrease in energy differences between states as

the separation distance increases. The maximum impact on

the CEEIS energies (*0.2 millihartree) is of the same

order as the uncertainty in the CEEIS extrapolations. For

most of the PEC, the change due to using a DW-MCSCF

reference is well below the uncertainty in the CEEIS

method. Since the FCI energy is independent of the ref-

erence wave function, the observed insensitivity to the

weighting of states in determining the reference orbitals

confirms the soundness of the CEEIS method.

These results are in agreement with Zeng et al. [75] who

found little difference between DW- and SA-MCSCF

orbitals when used in conjunction with multi-configura-

tional quasidegenerate perturbation theory (MCQDPT).

Their work on the Sn2
? dissociation showed minimal

change in the spectroscopic constants and vibrational

energy levels. Based on this previous study and the

aforementioned results, the C2 PECs used in the present

study were obtained using SA-MCSCF orbitals.

3.3 Contributions to the PECs

As described above, the PECs include three additional

corrections beyond the valence-correlated CEEIS method.

Tables with complete information for each contribution at

each point on the PECs are provided in the Supporting

Information. In the following, all energies are given rela-

tive to the value at dissociation.

The most significant correction is the inclusion of the

core–valence correlation. Each of the four states exhibits

Fig. 1 Ab initio PECs of the

lowest energy singlet states of

C2, energies obtained using

CBS extrapolated reference, and

CEEIS valence correlation

energy with core–valence

correlation and relativistic

corrections

Table 1 Energy differences (millihartree) between SA and DW at

the MCSCF reference and CEEIS level

R (Å) MCSCF CEEIS

X1Rþ
g B1Dg B

01Rþ
g

X1Rþ
g B1Dg B

01Rþ
g

1.0 13.720 -50.437 -33.531 -0.016 -0.213 -0.079

1.2 12.151 -28.189 -23.413 0.024 -0.199 -0.166

1.25 9.534 -15.148 -12.203 0.028 -0.147 -0.118

1.4 2.507 -1.935 -1.368 0.017 -0.034 -0.026

1.6 0.092 -0.057 -0.037 0.016 -0.018 0.001

1.8 0.023 0.074 -0.101 0.003 0.003 -0.001

2.0 0.042 0.071 -0.118 0.003 0.003 -0.001

2.4 0.007 0.009 -0.016 0.000 0.000 0.000

2.8 0.001 0.001 -0.002 -0.004 0.004 0.000

3.2 0.000 0.000 0.000 -0.005 0.005 0.000

Reported here as the E(SA) - E(DW)
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the same qualitative trend in and similar quantitative con-

tributions from the core–valence correlation. The following

discussion will therefore focus on the ground state. The

core–valence correction grows as the atoms move closer

together, and the largest value in these calculations was

-6.870 millihartree at 0.9 Å. At equilibrium (1.24244 Å),

the correction was -2.906 millihartree.

Of the two relativistic corrections, the scalar Douglas-

Kroll method has a greater impact on the shape of the

PECs. At most bond distances, the DK3 correction is

positive relative to the value at dissociation. For the ground

state, this repulsive effect is strongest at 1.4 Å where the

value is 0.335 millihartree. As the bond length increases,

the correction smoothly decreases. As the bond length

decreases from 1.4 Å, the DK3 correction decreases and

eventually drops below the dissociated value as the repul-

sive wall of the PEC is approached. This trend is observed

in all the calculated states, although the energy changes are

somewhat smaller for the excited states.

The second relativistic contribution, the spin–orbit

coupling, causes no significant change in the shape of the

PECs. For every state, the contribution is effectively zero

inside the potential wells. The SO effects do become

nonzero at bond lengths longer than 2.3 Å. As the carbon

atoms become well separated, the SO effect lowers the

energy of the system. However, even at the dissociation

limit, the energy difference is quite small. For the ground

state, the difference in energy due to SO coupling between

equilibrium and dissociation is only 0.246 millihartree.

The impact is slightly smaller for the other three states but

on the same order of magnitude.

3.4 Comparison of theoretical and experimental results

3.4.1 Equilibrium bond distance and electronic energies

Table 2 reports the experimental and theoretical values for

the equilibrium bond distance (Re), for the dissociation

energy from the potential curve minimum (De) and for the

adiabatic electronic excitation energy from the ground state

(Te). Excellent agreement between experiment and theory

is seen for the equilibrium bond distances (percent differ-

ences of 0.05 % or less). The experimental value of De for

the excited states is obtained by adding the experimental

values for Te to the experimentally determined ground state

De. The theoretical dissociation energies deviate from

experiment by \0.6 kcal/mol, demonstrating ‘‘chemical

accuracy.’’ The dissociation energies in this work show

better agreement with the most recent experimental values

[76] than other recent high-level ab initio studies [34, 35,

Table 2 Experimental and theoretical spectroscopic constants of C2

singlet states

Experiment Theory Difference

X1Rþ
g

Re (Å) 1.24244 1.2431 0.00066

De (kcal/mol)a 147.8 147.42 -0.38

Te (cm
-1) – – –

xe (cm
-1) 1,855.01 1,850.91 -4.10

xexe (cm
-1) 13.5547 10.5857 -2.969

Be (cm
-1) 1.82010 1.82008 -0.00002

ae (cm
-1) 0.018012 0.0177588 -0.0002532

Drot (10
-6 cm-1) 6.9640 6.8950 -0.0690

be (10
-8 cm-1) 6.41 9.59 3.18

A1Pu

Re (Å) 1.318311 1.3176 -0.000711

De (kcal/mol)b 123.8 123.41 -0.39

Te (cm
-1) 8,391.4085 8,413.9989 22.5904

xe (cm
-1) 1,608.20 1,616.52 8.32

xexe (cm
-1) 12.0597 13.1386 1.0789

Be (cm
-1) 1.61663 1.61693 0.00030

ae (cm
-1) 0.0169691 0.0168091 -0.00016

Drot (10
-6 cm-1) 6.5086 6.4856 -0.0230

be (10
-8 cm-1) 2.53 3.12 0.59

B1Dg

Re (Å) 1.38548 1.3851 -0.00038

De (kcal/mol)b 113.3 112.73 -0.57

Te (cm
-1) 12,082.3360 12,162.6256 80.2896

xe (cm
-1) 1,407.47 1,403.23 -4.24

xexe (cm
-1) 11.47937 9.7608 -1.71857

Be (cm
-1) 1.46369 1.46342 -0.00027

ae (cm
-1) 0.0168161 0.0156176 -0.0011985

Drot (10
-6 cm-1) 6.3188 6.3475 0.0287

be (10
-8 cm-1) 1.492 0.559 -0.933

B
01Rþ

g

Re (Å) 1.37735 1.3771 -0.00025

De (kcal/mol)b 103.8 103.43 -0.37

Te (cm
-1) 15,409.139 15,425.9939 16.8549

xe (cm
-1) 1,424.12 1,413.15 -10.97

xexe (cm
-1) 2.57113 1.62016 -0.95097

Be (cm
-1) 1.481006 1.48053 -0.00048

ae (cm
-1) 0.011752 0.012027 0.000275

Drot (10
-6 cm-1) 6.8596 6.4618 -0.3978

be (10
-8 cm-1) -15.81 -19.55 -3.74

Experimental values from references [11, 12] unless otherwise noted
a Experimental values from Ref. [76]
b Experimental value obtained by adding ground state De plus excited

state Te
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38]. The theoretical adiabatic excitation energies are in

close agreement with experiment, showing percent differ-

ences of 0.27, 0.66, and 0.11 % for the A1Pu, B
1Dg, and

B
01Rþ

g states, respectively.

3.4.2 Vibrational spectrum

Table 3 shows a comparison between the experimental

vibrational levels [11, 12] and the theoretical results

obtained in this work. The energy levels reported are

given relative to the minimum of the PEC of each

respective state. The MADs of the four states are on the

order of 10–20 cm-1, demonstrating the near spectro-

scopic accuracy of the ab initio PECs. However, there is

a clear trend of decreasing accuracy with increasing v.

Particularly, good agreement (MAD = 2.41 cm-1) is

obtained for the B1Dg state, while the worst agreement is

seen for the B
01Rþ

g state. Also included in Table 3 are

the energy differences between the vibrational levels

(G(v) - G(v - 1)). These vibrational spacings show

smaller deviations between theory and experiment;

however, they cumulatively lead to the larger deviations

observed in the absolute vibrational levels. In Table 4,

additional ab initio vibrational levels for each state (up

to v = 24) are reported. The higher vibrational levels

currently lack experimental values for comparison. All

bound vibrational levels for each PEC are listed in the

Supporting Information: 57 levels for the X1Rþ
g , 54 for

Table 3 Comparison of theoretical and experimental vibrational energy levels of C2 singlet states (Energies in cm-1)

G(v) G(v) - G(v - 1)

v Experiment Theory Difference Experiment Theory Difference

X1Rþ
g

0 923.98 919.49 -4.49 – – –

1 2,751.47 2,749.85 -1.62 1,827.48 1,830.36 2.88

2 4,550.67 4,555.98 5.31 1,799.20 1,806.13 6.93

3 6,320.57 6,330.44 9.87 1,769.91 1,774.46 4.55

4 8,060.33 8,071.98 11.65 1,739.76 1,741.54 1.78

5 9,768.11 9,782.08 13.97 1,707.77 1,710.10 2.33

6 11,441.95 11,458.92 16.97 1,673.84 1,676.84 3.00

MAD 9.12 3.58

A1Pu

0 801.10 806.64 5.54 – – –

1 2,385.15 2,394.98 9.83 1,584.05 1,588.34 4.29

2 3,944.97 3,959.64 14.67 1,559.83 1,564.66 4.83

3 5,480.53 5,499.90 19.37 1,535.56 1,540.26 4.70

4 6,991.74 7,014.93 23.19 1,511.21 1,515.03 3.82

5 8,478.54 8,504.38 25.84 1,486.79 1,489.45 2.66

MAD 16.41 4.06

B1Dg

0 700.95 699.57 -1.38 – – –

1 2,085.49 2,081.44 -4.05 1,384.54 1,381.87 -2.67

2 3,447.16 3,445.98 -1.18 1,361.67 1,364.54 2.87

3 4,786.03 4,786.06 0.03 1,338.87 1,340.08 1.21

4 6,102.15 6,104.61 2.46 1,316.12 1,318.55 2.43

5 7,395.60 7,400.96 5.36 1,293.45 1,296.35 2.90

MAD 2.41 2.42

B
01Rþ

g

0 712.74 706.83 -5.91 – – –

1 2,133.23 2,116.28 -16.95 1,420.48 1,409.45 -11.03

2 3,552.75 3,527.01 -25.74 1,419.52 1,410.73 -8.79

3 4,974.08 4,936.74 -37.34 1,421.34 1,409.73 -11.61

MAD 21.48 10.48

Experimental values from references [11, 12]
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the A1Pu states, 49 for the B1Dg state, and 36 for the

B
01Rþ

g state.

The theoretical vibrational levels of this work for the

X1Rþ
g and A1Pu states show reduced deviations compared

to work by Zhang et al. [34] (MADs of 13.1 and

27.60 cm-1 for the X1Rþ
g and A1Pu states, respectively, for

the Zhang work). However, the same group [35] reports

vibrational levels for the B1Dg and B
01Rþ

g states which

show better agreement with experiment (MADs of 1.37 and

5.15 cm-1, respectively) than this work. Kokkin et al. [30]

have obtained vibrational levels for the X1Rþ
g state which

are of similar accuracy (MAD 8.43 cm-1) to this work,

while their results for the A1Pu state show better accuracy

(MAD 0.77 cm-1) than this work. All of these other studies

employed internally contracted MRCISD calculations

using the aug-cc-pV6Z basis and included core–valence

correlation and scalar relativistic corrections.

It is worth noting the contribution that each additional

correction (core–valence correlation and relativistic

effects) makes toward achieving accurate vibrational

levels. Including core–valence correlation leads to a *10–

20 cm-1 reduction in the MAD for each of the states. The

scalar relativistic correction (DK3) is less important, with a

*1 cm-1 improvement in the MAD of the vibrational

levels. Finally, the SO contribution was seen to make no

difference in the vibrational levels of the C2 singlet states.

This is not surprising given the magnitude of the SO cor-

rection, and the distances at which the contribution

becomes significant. The low levels of the vibrational

manifold are not strongly impacted by the SO effects that

arise near dissociation. The unimportance of SO effects for

determining the vibrational levels of C2 was also seen by

Kokkin et al. [30] in calculations on the X1Rþ
g and A1Pu

states.

3.4.3 Rotational constants

Table 5 reports the rotational constants (Bv and Dv) from

both experiment [11, 12] and this work. The rotational

energy can be expanded [9] as

Fv Jð Þ ¼ Bv J J þ 1ð Þ½ � � Dv J J þ 1ð Þ½ �2þ. . .

A least-squares fit to the lowest 10 rotational levels at

each vibrational level was used to determine the theoretical

values of Bv and Dv. The overall agreement between the

rotational constants of this work and experiment is quite

good. For Bv, the largest deviation of the theoretical values

from the experimental ones is *0.1–0.2 %, while most of

the deviations are smaller than this. The Dv values are

significantly smaller than Bv (reported in 10-6 cm-1) and

are therefore expected to be less accurate on a percent

basis. The agreement between theory and experiment is

still very good, with the exception of the highest energy

B
01Rþ

g state (with a 16 % deviation). For the other states,

the percent difference between the values is at worst*1 %

and for most values is significantly lower.

3.4.4 Spectroscopic constants

The relationship between the rotational–vibrational levels

and the spectroscopic constants is given by the Dunham

expansion in terms of (v ? 1/2) [9]:

G vð Þ ¼ xe vþ 1

2

� �
� xexe vþ 1

2

� �2

þ � � �

Bv ¼ Be � ae vþ 1

2

� �
þ � � �

Dv ¼ Drot þ be vþ 1

2

� �
þ � � �

Using this expansion, the equilibrium spectroscopic

constants given in Table 2 were obtained by a least-mean-

Table 4 Theoretical vibrational levels of C2 singlet states

v X1Rþ
g A1Pu B1Dg B

01Rþ
g

0 919.49 806.64 699.57 706.83

1 2,749.85 2,394.98 2,081.44 2,116.28

2 4,555.98 3,959.64 3,445.98 3,527.01

3 6,330.44 5,499.90 4,786.06 4,936.74

4 8,071.98 7,014.93 6,104.61 6,344.88

5 9,782.08 8,504.38 7,400.96 7,749.06

6 11,458.92 9,968.70 8,674.54 9,146.88

7 13,100.36 11,408.50 9,924.90 10,535.60

8 14,702.82 12,823.87 11,152.23 11,911.95

9 16,261.81 14,214.39 12,356.91 13,271.97

10 17,773.27 15,579.26 13,539.17 14,611.66

11 19,234.77 16,918.24 14,698.87 15,927.89

12 20,646.17 18,231.53 15,835.77 17,219.13

13 22,009.10 19,519.03 16,949.92 18,484.20

14 23,326.85 20,780.33 18,041.63 19,721.42

15 24,603.22 22,015.14 19,110.63 20,929.34

16 25,841.91 23,223.37 20,156.30 22,106.73

17 27,046.53 24,404.87 21,179.08 23,252.29

18 28,219.42 25,559.47 22,180.00 24,364.26

19 29,362.03 26,687.03 23,158.49 25,440.71

20 30,475.54 27,787.42 24,113.15 26,480.12

21 31,561.58 28,860.20 25,044.74 27,481.17

22 32,620.69 29,904.57 25,954.80 28,442.21

23 33,652.70 30,919.72 26,842.17 29,361.71

24 34,658.45 31,905.30 27,704.66 30,238.18

(Energies in cm-1, relative to the potential curve minimum of each

state)
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squares fitting to the energy levels in Table 3 and the

rotational constants in Table 5. The fittings were calculated

using VIBROT [72].

The theoretical values for the first terms in each of the

expansions, xe, Be, and Drot, exhibit very small deviations

from experiment (average percent differences of 0.45, 0.02,

and 1.9 %, respectively). The Be results in particular show

excellent agreement. The average percent difference for

Drot is 0.6 % if the B
01Rþ

g state is excluded. The second

terms in the expansions are less accurate since the values

themselves are quite small to begin with. However, the

qualitative trends are correct, and the agreement for the ae
values is still quite good (average difference 3.0 %), while

the differences for xexe and be exhibit average differences

of 21 and 40 %, respectively.

The accuracy of the spectroscopic constants in Table 2

is comparable to other recent high-level ab initio studies.

Some of these studies (using ic-MRCISD and MR-ccCA)

[30, 34, 38] have determined the ground state harmonic

frequency (xe) with absolute deviations from experiment

of 1.5 cm-1 or less, while others using ic-MRCISD and ic-

MRCCSD(F12*) methods [32, 41] have shown deviations

of *6–8 cm-1. The deviation in the present work is

4.1 cm-1. The first anharmonicity (xexe) of the X
1Rþ

g state

in this work shows slightly worse agreement with experi-

ment (3 cm-1 difference) than the previous [30, 34, 39, 41]

theoretical results (*1 cm-1 or better). In the A1Pu state,

the 8 cm-1 deviation in the current results for xe matches

the deviation in reference 34, while two previous studies

[30, 38] have achieved *1 cm-1 deviations from experi-

ment. The xexe result for the A1Pu state in this work

(Table 2) is of a similar quality to past work [30, 34]. The

current results for the two highest energy states studied

(B1Dg and B
01Rþ

g ) also compare well with the previous

Table 5 Comparison of theoretical and experimental rotational constants of the C2 singlet states (Energies of Bv in cm-1, Dv in 10-6 cm-1)

Bv Dv

v Experiment Theory Difference Experiment Theory Difference

X1Rþ
g

0 1.81107 1.81106 -0.00001 7.00315 7.00540 0.00225

1 1.79288 1.79329 0.00041 7.05398 6.98626 -0.06772

2 1.77434 1.77397 -0.00037 7.0944 7.12137 0.02697

3 1.75540 1.75534 -0.00006 7.2066 7.25091 0.04431

4 1.73590 1.73590 0.00000 7.2941 7.27346 -0.02064

5 1.71570 1.71601 0.00031 7.499 7.40893 -0.09007

6 1.69381 1.69553 0.00172

A1Pu

0 1.60813 1.60871 0.00058 6.52569 6.51101 -0.01468

1 1.59109 1.59113 0.00004 6.53614 6.52156 -0.01458

2 1.57397 1.57475 0.00078 6.5731 6.55940 -0.01370

3 1.55676 1.55747 0.00071 6.6026 6.59281 -0.00979

4 1.53945 1.54010 0.00065 6.6289 6.63691 0.00801

5 1.52205 1.52265 0.00060 6.657 6.65359 -0.00341

B1Dg

0 1.45527 1.45548 0.00021 6.3259 6.37096 0.04506

1 1.43843 1.43964 0.00121 6.34196 6.30755 -0.03441

2 1.42155 1.42346 0.00191 6.3575 6.41764 0.06014

3 1.40464 1.40646 0.00182 6.3671 6.33773 -0.02937

4 1.38772 1.38928 0.00156 6.4035 6.35229 -0.05121

5 1.37074 1.37223 0.00149 6.3883 6.39922 0.01092

B
01Rþ

g

0 1.47531 1.47472 -0.00059 6.781 6.39399 -0.38701

1 1.46482 1.46337 -0.00145 6.6208 6.12939 -0.49141

2 1.45614 1.45375 -0.00239 6.744 5.96153 -0.78247

3 1.44786 1.44437 -0.00349 6.881 5.79821 -1.08279

Experimental values from references [11, 12]
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work [35, 38]. All theoretical harmonic frequencies exhibit

small deviations, especially in terms of percent differences.

The first anharmonicities for the B1Dg and B
01Rþ

g states

from this work are somewhat less accurate than the values

found in references [34, 35].

The constants derived from the rotational energy levels

(Be, ae, and Drot) were only reported in three recent studies

[30, 34, 35]. These theoretical studies, as well as this work,

reproduce the experimental Be values to a high level of

accuracy for all states. Good agreement is also seen in the

ae results with the exception of the B1Dg state where the

results of this work differ from experiment and the results

of reference 35 by 7 %. Drot values from this work and

references [34, 35] differ from the experiment by *1 % or

less except for the B
01Rþ

g state, where all theoretical results

deviate by *5 %.

It is worth noting that all of the previous studies with the

highest accuracies employed MRCISD calculations with

basis sets up to aug-cc-pV6Z. In contrast, the present work

uses only basis sets up to and including cc-pVQZ, but

recovers the full correlation up to sextuple excitations by

CEEIS and complete basis set extrapolations. Core–

valence correction and scalar relativistic effects were

included in the previous and the present studies. In general,

the present theoretical work and past studies agree very

well for the values of the spectroscopic constants. The

deviations are on the order of a few cm-1, with percent

differences being notably small in most cases.

4 Conclusions

The previous CEEIS methodology for calculating diatomic

ground state PECs has been extended to the simultaneous

determination of ground and excited states. As was the case

for the calculations on ground states, CBS extrapolated

CEEIS energies, with the addition of the corrections due to

core–valence correlation and relativistic effects have been

shown to yield highly accurate PECs for the excited elec-

tronic states.

With this method, ab initio PECs of the four lowest

lying singlet states (X1Rþ
g , A

1Pu, B
1Dg, and B

01Rþ
g ) have

been calculated. In contrast to previous studies that have

used MRCISD with aug-cc-pV6Z basis sets, the present

work has obtained the extrapolated full correlation energy

up to and including sextuple excitations using up to

cc-pVQZ basis sets, followed by complete basis set

extrapolation. The effect of using dynamically weighted

versus evenly weighted MCSCF reference functions was

found to be negligible once the dynamical correlation was

accounted for by the CEEIS procedure. The calculated

PECs exhibit the interesting, complex structure of the low-

lying singlet states of C2, involving multiple curve cross-

ings and the avoided crossing between the two 1Rþ
g states.

This avoided crossing causes distortions in the shapes of

the 1Rþ
g PECs that make it difficult to fit these curves by

analytic functions.

The theoretical PECs show very good agreement with

the experimental results. For all four states, equilibrium

bond distances, dissociation energies, excitation energies,

and spectroscopic constants are obtained with high accu-

racy. The calculated dissociation energy of the ground state

deviates from experiment by only -0.38 kcal/mol, exhib-

iting ‘‘chemical accuracy.’’ After fitting the ab initio

energies to an analytical form or to cubic splines, the

nuclear Schrödinger equation was solved to obtain rota-

tional–vibrational levels and spectroscopic parameters. The

previously unreported full spectra of all bound vibrational

states are reported in the Supporting Information for all

four electronic states. Comparisons with the available

experimental data on the vibrational manifolds (which are

limited to 4–7 levels) show MADs of *10–20 cm-1 for

the vibrational energy levels, or ‘‘near spectroscopic

accuracy.’’ Spectroscopic constants were obtained by

expanding the vibrational and rotational energy levels in

terms of powers of (m ? �) and [J(J ? 1)]. The calculated

rotational constants (Bv and Dv) show excellent agreement

with experiment. The lower-order constants of the vibra-

tional expansions also show excellent agreement with the

experimental results, while the higher-order terms are less

accurate.
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Abstract The nature of the chemical bonds in E2 and

tetrahedral E4 (E = N, P) has been analysed with the help

of an energy decomposition method. The p bonds in P2 are

not particularly weak. On the contrary, the contribution of

P–P p bonding to the chemical bond in P2 is even higher

than the contribution of N–N p bonding to the chemical

bond in N2. The higher stability of P4 (Td) and the much

lower stability of N4 (Td) with regard to the diatomic

species come from the substantially larger weakening of

the N–N r-bonds compared with the P–P r-bonds in the

tetrahedral species. The sum of the six P–P r-bond ener-

gies in P4 is higher than the sum of two r- and four p-
bonds in two P2, but the six N–N r-bonds in N4 are weaker

than two r- and four p-bonds in two N2. The crucial factor

that leads to the weak N–N bonds in N4, is the rather long

N–N bonds which are 32.8 % longer than in N2. In con-

trast, the P–P bonds in P4 are only 16.2 % longer than in

P2. Since the equilibrium distances in E2 and E4 are

determined by Pauli repulsion, it can be concluded that the

origin for the different stabilities of N4 and P4 relative to

the diatomic molecules is the exchange repulsion. The

nitrogen atoms encounter stronger Pauli repulsion, because

the 2s and 2p valence orbitals have a similar radius while

the 3s and 3p radii are more different.

Keywords Multiple bonding � p-Bonding of heavy main-

group atoms � Energy decomposition analysis �
Dipnictogens � Tetrapnictogens

1 Introduction

It is well known that molecules with multiple bonds

between heavier main-group atoms are much more difficult

to synthesize than their counterparts of the first octal row

and that their equilibrium geometries are often very dif-

ferent from the structures of the lighter homologues [1, 2].

For example, the ditetrylenes E2H4 possess a trans-bent

(E = Si, Ge) or a doubly hydrogen-bridged geometry

(E = Sn, Pb) [3–5], while ethene C2H4 has a planar C2v

structure. Even more exotic are the equilibrium geometries

of the heavier ditetrylynes HEEH, which exhibit several

unusual structures, none of them being linear like acetylene

HCCH. Quantum chemical calculations suggested that the

energetically lowest lying form of HEEH (E = Si–Pb)

possesses a non-planar doubly hydrogen-bridged butterfly

structure E(l-H)2E and that the next higher lying isomer

has a planar singly bridged E(l-H)EH geometry [6–24].

The theoretical predictions have been verified by low-

temperature matrix isolation studies [25–30]. Recently,

ditetrylynes E2R2, which carry bulky substituents R, could

become isolated. X-ray analysis showed that the molecules

have a trans-bent geometry where the bending angle is

between 95� and 140� [31–35].1

The unusual geometries of the heavier ditetrylenes E2H4

and ditetrylynes HEEH can be explained in terms of donor–
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acceptor interactions between the respective fragments EH2

and EH [3s]. Chemical bonding in ethylene takes place

between the CH2 fragments in the (3B1) triplet ground state,

while the heavier tetrylenes EH2 bind through their 1A1

ground state. Similarly, the bonding in acetylene occurs

between CH in the 4Rg state
2, while the bonding in the hea-

vier homologues takes place through the 2P ground state.

Such explanation is not valid when one addresses the

questionwhy diatomicN2 is clearly themost stable isomer of

the lightest pnictogen whereas the most stable allotrope of

phosphorus is tetra-atomic P4, which has a tetrahedral (Td)

structure. Unlike N2, diatomic P2 is a highly reactive species

that can only be observed in the gas phase [36]. Tetra-atomic

N4 (Td) is an energetically high-lying energy minimum on

the potential energy surface that has not been observed so far

[37].3 Chemical bonding in dipnictogens E2 and tetrapnict-

ogens E4 (E = N, P) takes place for both elements through

the 4S ground state of atom E yielding a E:E triple bond in

E2 and E–E single bonds in (Td) E4. The higher stabilities of

tetrahedral P4 for phosphorus and of diatomicN2 for nitrogen

are thus an intrinsic property of the atoms in the electronic

ground state, which is not related to an excitation energy.

What is the driving force for the different equilibrium

structures of nitrogen and phosphorus?

Old textbooks suggested that p bonding between heavier

main-group atoms is weaker than p bonding between atoms

of the first octal row, because the longer bond in the former

system would lead to smaller overlap. This intuitive

argument does not agree with calculations of the overlap

between the p(p) AOs of heavier main-group atoms. The

more diffuse p(p) AOs of the latter atoms lead to overlaps,

which are not much smaller than those of the lighter

homologues. The chemical bonding of heavier main-group

atoms and the contrast to the lighter homologues has been

analysed in a seminal paper by Kutzelnigg 30 years ago

where the author discusses quantum theoretical findings

about the nature of the chemical bond [38, 39] A crucial

difference between atoms of the first and higher octal rows

concerns the spatial distribution of the s and p valence

orbitals, which are engaged in covalent bonding. The

2p orbitals of the first octal-row atoms penetrate rather

deeply into the core, because there are no p functions in the

core. Therefore, the radii of 2p and 2s orbitals are very

similar, which leads to effective sp hybridization. In con-

trast, the occupied np AOs (n C 3) of the heavier atoms

encounter Pauli repulsion with electrons in the p core

orbitals, which causes larger radii for the np than for the

respective ns AOs. The spatial regions of np and ns AOs

(n C 3) are more separate than those of 2p and 2s AOs,

which leads to less effective hybridization of the heavier

main-group atoms. Kutzelnigg came to the conclusion that

the difference between the spatial distribution of the s and p

valence orbitals implies that single bonds between first row

elements are weak and multiple bonds are strong, whereas

for the second or higher row elements, single bonds are

strong and multiple bonds weak [38, 39].

The conclusion by Kutzelnigg offers an explanation for

the finding that multiple-bonded N2 is more stable than N4,

which has N–N single bonds, whereas P4 is clearly more

stable than P2. However, there are still open questions. Why

are single bonds between first octal-row elements weaker

than between heavier main-group atoms when the stronger

hybridization of the 2s and 2p AOs means that there is a

larger contribution from the energetically lower-lying

2sAOs?What is the difference between the pnictogen bonds

in diatomic E2 and tetrahedral E4 in terms of energy contri-

butions to the chemical bonding? Is there a particular type of

interatomic interaction, which can be given as the cause for

the different stabilities of E2 and E4? In order to address these

questions, we analysed the chemical bonds in the diatomic

and tetrahedral pnictogens with an energy decomposition

scheme, which has been proven to give comprehensive

insight into the structures and chemical bonding of a wide

variety of main-group compounds [24, 40–72] and transition

metal complexes [73–125].

2 Methods

The bond lengths of the diatomic and tetrahedral molecules

E2 and E4 have been optimized with the generalized gra-

dient approximation (GGA) to density functional theory

(DFT) using the exchange functional of Becke [126] in

conjunction with the correlation functional of Perdew [127]

(BP86). Uncontracted Slater-type orbitals (STOs) were

employed as basis functions for the SCF calculations [128].

The basis sets have triple-f quality augmented by two sets

of polarization functions, i.e. 2p and 3d functions on

hydrogen and 3d and 4f functions on the other atoms. Core

electrons (i.e. 1s for nitrogen and 1s2s2p for phosphorus)

were treated by the frozen-core approximation. This level

of theory is denoted BP86/TZ2P. An auxiliary set of s, p, d,

f and g STOs was used to fit the molecular densities and to

represent the Coulomb and exchange potentials accurately

in each SCF cycle [129]. The calculations were carried out

with the program package ADF [130].

2 The a4Rg state of CH is not the electronic ground state, but the

rather small excitation energy from the X2P ground state is

compensated by the stabilization of the p bonds in HC:CH. The

excitation energy X2P ? a4Rg of the heavier homologues EH

(E = Si–Pb) is much higher than for carbon and the stabilization

through the p bonds is not as high as in acetylene. For a detailed

discussion see reference [24].
3 A planar isomer of N4 which has two N2 moieties that are

connected by a long N–N bond has been observed as short-lived

isomer in gas-phase experiments.
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The interatomic interactions have been analysed by

means of an energy decomposition scheme that was

developed independently by Morokuma [131] and by

Ziegler and Rauk [132, 133]. The focus of the bonding

analysis is the instantaneous interaction energy DEint

between the chosen fragments in the particular electronic

reference state and in the frozen geometry of the molecule.

In the present case of E2 and (Td) E4, DEint is the energy

difference between E2 or E4 and the atoms E in the 4S

electronic ground state. The interaction energy is divided

into three main components:

DEint ¼ DEelstat þ DEPauli þ DEorb ð1Þ
DEelstat gives the electrostatic interaction energy

between the fragments, which are calculated using the

frozen electron density of the interacting fragments. The

second term in Eq. (1), DEPauli, refers to the repulsive

interactions between the fragments, which are caused by

the fact that two electrons with the same spin cannot

occupy the same region in space. DEPauli is calculated by

enforcing the Kohn–Sham determinant on the superim-

posed fragments to obey the Pauli principle by antisym-

metrization and renormalization. The stabilizing orbital

interaction term, DEorb is calculated in the final step of the

energy partitioning analysis when the Kohn–Sham orbitals

relax to their optimal form. This term can be further par-

titioned into contributions by the orbitals belonging to

different irreducible representations of the point group of

the interacting system.

For molecules where the fragments do not electronically

or geometrically relax after bond breaking, the interaction

energy DEint gives directly (by definition with opposite

sign) the bond dissociation energy (BDE) De. If the two

fragments of the chemical bond are in an electronically

excited state or if they have more than one atom which

means that there is a relaxation of the fragments during

bond rupture into the equilibrium geometry, the preparation

energy DEprep must be added to DEint in order to obtain the

bond dissociation energy:

DE ð¼ �DeÞ ¼ DEint þ DEprep ð2Þ
Because the atomic fragments, which were used in our

calculations, are in the electronic ground state it follows

that for the E2 and E4 molecules DEprep = 0 and

DEint = -De. Further details about the EDA can be found

in the literature [134–136].

3 Results and discussion

Figure 1 shows the results of the geometry optimization and

energy calculation of E2 and (Td) E4 (E = N, P). The data

provide the framework for the following bonding analysis.

The calculated bond lengths at BP86/TZ2P for N2, P2
and P4 are in very good agreement with experimental data

[137, 138]. The theoretical values for the reaction energies

for formation of the tetrahedral species are striking evi-

dence for the drastic difference between the nitrogen and

phosphorous systems. The calculated data for reactions 1

and 2 give only the electronic energies, because we are

interested in the variation in the electronic structures,

which lead to the different stabilities. Experimental values

are available for the dimerization reaction 2 of the phos-

phorus species. The experimental heats of formation [139]4

of P2 (DHf
0 = 34.8 kcal/mol) and P4 (DHf

0 = 16.0 kcal/

mol) give a reaction energy of DER
0 = 53.6 kcal/mol which

agrees quite well with the ZPE corrected calculated value

of DER
0 = 58.0 kcal/mol.

Table 1 shows the results of the EDA calculations of E2

and (Td) E4 (E = N, P) where the atoms E in the electronic

ground state (2s22px
12py

12pz
1) 4S are used as interacting frag-

ments. We first discuss the data for N2 and P2 [140].
5 The

calculated interaction energies DEint give after ZPE correc-

tions theoretical bond dissociation energies of Do =

236.9 kcal/mol for N2 andDo = 117.4 kcal/mol for P2. This

is in reasonable agreement with the experimental values of

Do = 225.0 kcal/mol for N2 and Do = 116.1 kcal/mol for

N2 4 

P2       P4

2 N2 → N4(Td)  +158.9 kcal/mol (1) 

2 P2 → P4(Td)     -59.7 kcal/mol (2) 

N

Fig. 1 Calculated bond lengths (Å) of E2 and (Td) E4 (E = N, P) and

dimerization energies De of E2 at BP86/TZ2P. Experimental bond

lengths are given in parentheses

4 Calculated from the differences between the heats of formation.
5 Chemical bonding in diatomic molecules E2 of atoms of the first

and second octal rows.
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P2 [137]. Inspection of the EDA results indicates that the

attractiveN–N interactions comemainly (70 %) fromorbital

(covalent) interactions DEorb, while 30 % are contributed

from electrostatic (Coulombic) attraction DEelstat. The P–P

bond in P2 has according to the EDA results a slightly smaller

contribution from the orbital term (57.3 %) and a higher

electrostatic character (42.7 %). The breakdown of the

orbital term into contributions of r and p interactions sug-

gests that r bonding provides about two-thirds (65.6 %) to

DEorb in N2, while DEp contributes about one-third (34.4 %)

to covalent bonding. Table 1 shows that the contribution of p
bonding to the orbital term in P2 (40.5 %) is even higher than

in N2! This clearly shows that the preference of phosphorus

for tetrahedral P4 does not come from the alleged weak p
bonds in P2. The calculations also show that the overlap

integral of the p(p) AOs in P2 (0.63) is slightly smaller than

the p(p) overlap in N2 (0.74), but also the overlap of the r

AOs in P2 (1.49) is a bit smaller than in N2 (1.59). Note that

the hybridization of the N–N r-bond has a higher s contri-

bution (37.5 %) than the P–P bond (20.8 %), which agrees

with the suggestion that atoms of the first octal row exhibit

larger s/p hybridization than the heavier homologues

[38, 39].

The EDA results in Table 1 disprove the suggestion that

p bonding in heavier main-group compounds is intrinsi-

cally weak, but this does not provide an explanation for the

higher stability of P4 over P2. Before we discuss the results

for the tetrahedral species, we show in Fig. 2 the EDA

results for E2 at different interatomic distances which are

relevant for the further discussion. The variation of the

three energy terms as a function of the E–E distance shows

that the attractive terms DEelstat and DEorb become larger

when the bond length gets shorter than the equilibrium

distance. This holds for a bond shortening up to *0.3 Å of

Table 1 EDA results in kcal/mol for E2 and (Td) E4 (E = N, P) (BP86/TZ2P?)

E2 E4 1/4 E2 1/2 E4

E = N

DEint -240.2 -322.6 -120.1 -80.7

DEPauli 802.2 1,636.6 401.1 409.2

DEelstat
a -312.8 (30.0 %) -705.4 (36.0 %) -156.4 (30.0 %) -176.4 (36.0 %)

DEorb
a -729.6 (70.0 %) -1,253.7 (64.0 %) -364.8 (70.0 %) -313.4 (64.0 %)

DEr
b -478.7 (65.6 %) -1,253.7 (100.0 %) -239.4 (65.6 %) -313.4 (100.0 %)

DEp
b -250.9 (34.4 %) – -125.5 (34.4 %) –

Hybridizationc of the r bond s: 37.5 %

p: 61.9 %

s: 7.0 %

p: 92.5 %

s: 37.5 %

p: 61.9 %

s: 7.0 %

p: 92.5 %

R(N–N) 1.102 (1.098)e 1.464 1.102 1.464

Do
d 236.9 (225.0)e 330.9

E = P

DEint -118.5 -293.1 -59.3 -73.3

DEPauli 317.6 972.3 158.8 243.1

DEelstat
a -186.3 (42.7 %) -545.7 (43.1 %) -93.2 (42.7 %) -136.4 (43.1 %)

DEorb
a -249.8 (57.3 %) -719.8 (56.9 %) -124.9 (57.3 %) -180.0 (56.9 %)

DEr
b -148.7 (59.5 %) -719.8 (100.0 %) -74.4 (59.5 %) -180.0 (100.0 %)

DEp
b -101.1 (40.5 %) – -50.6 (40.5 %) –

Hybridizationc of the r bond s: 20.8 %

p: 77.8 %

s: 5.2 %

p: 93.2 %

s: 20.8 %

p: 77.8 %

s: 5.2 %

p: 93.2 %

R(P–P) 1.911 (1.893)e 2.221 (2.223)f 1.911 2.221

Do
d 117.4 (116.1)e 289.2 (285.6)g

The interacting fragment atoms E in the 4S ground state (s2px
1py

1pz
1). Bond lengths R(E–E) are given in Å

a The values in parentheses give the percentage contribution to the total attractive interactions DEelstat ? DEorb

b The values in parentheses give the percentage contribution to the total orbital interactions DEorb

c There is a small contribution from the d polarization functions
d Bond dissociation energy into the atoms corrected by ZPE contributions
e Experimental value, Ref. [137]
f Experimental value, Ref. [138]
g Experimental value, Ref. [139]
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N2 and up to *0.8 Å in P2. At shorter interatomic dis-

tances the electrostatic interaction decreases because the

nuclear–nuclear repulsion becomes very strong. Note that

the orbital (covalent) interactions continuously increase up

to very short bond lengths. This contradicts the statement

in many textbooks that the equilibrium bond lengths of

covalent bonds are determined by the size of the overlap of

the r orbitals. It has been shown before that the overlap of

the r orbitals in N2 and P2 further increases when the

interatomic distance becomes shorter than the equilibrium

value [140]. The energy term which prevents further

shortening of the E–E bond in E2 is the Pauli repulsion.

Fig. 2 Calculated energy terms

of the EDA at different bond

length of N2 and P2
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Figure 2 shows that the curve for DEPauli exhibits a sharp

rise at shorter distances than the equilibrium value which

compensates the increase of the attractive terms. The

equilibrium distance of N2 and P2 is determined by the

Pauli repulsion. This conclusion holds for most covalent

bonds [140].

The stage has been set now for discussing the EDA

results for tetra-atomic E4. Table 1 shows also the EDA

results for N4 and P4. The nature of the bonding in the tetra-

atomic molecules which possess E–E single bonds does not

change dramatically compared to the triply bonded dia-

tomic species. The electrostatic character increases a bit in

E4 compared with E2 while the covalent character

decreases. The largest change occurs in the hybridization of

the E–E r bonds. The % s contribution to the N–N bond is

significantly reduced from 37.5 % in N2 to 7.0 % in N4 and

it has decreased from 20.8 % in P2 to 5.2 % in P4. The

change in the hybridization can be explained with the

longer bonds in the tetrahedral molecules. The N–N bond

of N2 (1.102 Å) becomes 32.8 % longer in N4 (1.464 Å),

while the P–P bond in P2 (1.911 Å) is stretched by 16.2 %

in P4 (2.221 Å). The calculated interaction energy DEint for

P4 (-293.1 kcal/mol) gives after ZPE correction an

atomization energy for fragmentation into four P atoms of

Do = 289.2 kcal/mol ? DZPE which is in good agreement

with the experimental value of Do = 285.6 kcal/mol [139].

The calculated DEint values for (Td) E4 which refer to six

E–E bonds suggest that each single bond has an interaction

energy of 53.8 kcal/mol for the N–N bond and 48.9 kcal/

mol for the P–P bond.

In order to compare the EDA results of E4 with E2, we

also show in Table 1 the calculated data per atom for the

diatomic and tetra-atomic species 1/2 E2 and 1/4 E4. The

intrinsic interaction energy DEint for N2 (-240.2 kcal/mol)

is much higher than for P2 (-118.5 kcal/mol) while the

DEint value for N4 (-322.6 kcal/mol) is only slightly larger

than for P4 (-293.1 kcal/mol). The DEint values per atom

for the two systems reveal that the interaction energy for a

single nitrogen atom in N2 (-120.1 kcal/mol) is much

stronger than in N4 (-80.7 kcal/mol), while the DEint value

for a phosphorous atom in P2 (-59.3 kcal/mol) is weaker

than in tetrahedral P4 (-73.3 kcal/mol). But this is a trivial

result, because the differences between the DEint values for

4N and 4P are identical to the dimerization energies which

are given in Fig. 1. The crucial question concerns the EDA

terms which are responsible for the opposite trends in the

stabilisation energies of N2/N4 and P2/P4.

The data in Table 1 show that the DEPauli values per

atom slightly increase from N2 (401.1 kcal/mol) to N4

(409.2 kcal/mol), but they increase even more from P2
(158.8 kcal/mol) to P4 (243.1 kcal/mol). Thus, the differ-

ences between the Pauli repulsion do not correlate with the

strength of the E–E bond from dimer to tetramer. The

electrostatic attraction per atom in P2 (-93.2 kcal/mol)

becomes stronger in P4 (-136.4 kcal/mol) but the DEelstat

values also increases from N2 (-156.4 kcal/mol) to N4

(-176.4 kcal/mol). Although the increase of DEelstat in the

phosphorous species is stronger than in the nitrogen mol-

ecules, the unidirectional trend of the Coulomb attraction

does not agree with the opposite trend of the total inter-

action energy. A reverse trend is found, however, for the

calculated values of the orbital interactions. The calculated

DEorb values per atom clearly decrease from N2

(-364.8 kcal/mol) to N4 (-313.4 kcal/mol), but they sig-

nificantly increase from P2 (-124.9 kcal/mol) to P4
(-180.0 kcal/mol). It follows that the opposite trend in the

bond strength between the nitrogen and phosphorous sys-

tems N2/N4 and P2/P4 comes mainly from the change in the

covalent (orbital) bonding in the molecules.

It is instructive to analyse the EDA results for the orbital

interactions given in Table 1 in more detail. The calculated

value of DEorb = -719.8 kcal/mol in P4 which has six r-
bonds means that the DEr value for one P–P bond in the

tetramer is -120.0 kcal/mol. This is less than the DEr

value in P2 (-148.7 kcal/mol), but the strength of three

P–P r-bonds (-360.0 kcal/mol) overcompensates the

value for the triple bond in P2 (-249.8 kcal/mol) which

consists of a r and two p-bonds. In N4, the value of

DEorb = -1,253.7 kcal/mol suggests that the N–N r-bond
strength is -208.9 kcal/mol, which is much weaker than

the r-bond in N2 (-478.8 kcal/mol). In contrast to P4, the

strength of three N–N r-bonds in N4 (3 9 -208.9 =

-626.7 kcal/mol) does not compensate for the r- and two

p-bonds in N2 (-729.6 kcal/mol). Thus, the crucial dif-

ference between the nitrogen and phosphorous systems

comes from the substantial weakening of the N–N r-bond
in N4, which makes N2 more stable than the tetra-atomic

species.6

But what is the driving force for the weaker N–N

r-bond in N4? The answer is directly related to the ques-

tion for the factor, which determines the equilibrium bond

lengths in covalent bonds, which was discussed above. The

bond length in N2 and P2 comes from the increase of the

Pauli repulsion, which comes from the overlap of the

orbitals between the two atoms, which are occupied by

electrons that posses the same spin. In N4, each nitrogen

atom encounters Pauli repulsion by three other nitrogen

atoms, which makes DEPauli at a given N–N distance much

larger than in N2. This leads to significantly longer N–N

6 The finding that the r bond in N2 is quite strong appears to

contradict the suggestion of Kutzelnigg [38, 39] that single bonds

between first row elements are weak and multiple bonds are strong,

whereas for the second or higher row elements, single bonds are

strong and multiple bonds weak. The statement by Kutzelnigg refers

to the total interactions DEint while we identify r bonding with the

orbital interactions DEr.
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bonds in N4 than in N2. The N–N bond in N4 is 32.8 %

longer than in N2. The same effect is operative in P4, but

the bond lengthening is smaller (16.2 %) than in the

nitrogen system.

The resume of the EDA results is thus as follows: The

transition from 2 E2 to (Td) E4 changes two r and four p
bonds into six r bonds. The r bonds in E4 are weaker

than in E2, because the E–E bonds in the tetra-atomic

species are longer than in the diatomic molecules, which

is caused by stronger Pauli repulsion. The six longer r
bonds in P4 are stronger than the two r and four p bonds

of 2 P2, but the r bonds of N4 are weaker than the r and

p bonds of 2 N2. This is, because the N–N bonds in N4

are 32.8 % longer than in N2, while P–P bonds in P4 are

only 16.2 % longer than in P2. Since the equilibrium

distances in E2 and E4 are determined by the increase in

DEPauli, it can be concluded that the higher stability of P4
over P2 and lower stability of N4 over N2 is caused by

Pauli repulsion.

The latter conclusion is not yet fully satisfactory,

because it does not answer the question why the Pauli

repulsion stretches the N–N bond in N2 much more than it

stretches the P–P bond in P2. Figure 2 shows that the

curve for DEPauli at the equilibrium distance of E2 exhibits

a steeper slope for N2 than for P2. This can be explained

with the hybridization at nitrogen in N2, which has a much

higher %s character than the phosphorus atom in P2. The

nitrogen atoms encounter overlap of the doubly occupied

2s AOs in the bonding region to a higher degree than the

phosphorus atoms, which leads to stronger Pauli repulsion

in N2 at the equilibrium distance. This is schematically

shown in Fig. 3 that depicts in a nutshell the difference of

covalent bonding between first octal-row atoms and hea-

vier homologues. As mentioned in the introduction, the

better hybridization of 2s/2p valence orbitals compared to

3s/3p comes from the absence of p core AOs in atoms of

the first octal row [38, 39]. The higher stability of P4 over

P2 and lower stability of N4 over N2 can thus be traced

down to the ratio of the 2s/2p radii of nitrogen atom

versus 3s/3p of phosphorus atom, which causes stronger

Pauli repulsion yielding longer and weaker N–N bonds in

N4.

4 Conclusion

The results of this work can be summarized as follows. The

p bonds in P2 are not particularly weak. On the contrary,

the contribution of P–P p bonding to the chemical bond in

P2 is even higher than the contribution of N–N p bonding

to the chemical bond in N2. The higher stability of P4 (Td)

and the much lower stability of N4 (Td) with regard to the

diatomic species, comes from the substantially larger

weakening of the N–N r-bonds compared with the P–P

r-bonds in the tetrahedral species. The sum of the six P–P

r-bond energies in P4 is higher than the sum of two r- and
four p-bonds in two P2, but the six N–N r-bonds in N4 are

weaker than two r- and four p-bonds in two N2. The

crucial factor, which leads to the weak N–N bonds in N4,

are the rather long N–N bonds that are 32.8 % longer than

in N2. In contrast, the P–P bonds in P4 are only 16.2 %

longer than in P2. Since the equilibrium distances in E2 and

E4 are determined by Pauli repulsion, it can be concluded

that the origin for the different stabilities of N4 and P4
relative to the diatomic molecules is the exchange repul-

sion. The nitrogen atoms encounter stronger Pauli repul-

sion, because the 2s and 2p valence orbitals have a similar

radius while the 3s and 3p radii are more different.
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Abstract The present work focuses on the first (lightest)

of the six diatomic interhalogens, namely ClF and its ions

ClF? and ClF-, in an effort to better understand these

interesting species. Toward this end, we have performed

highly correlated all electron ab initio calculations of

multireference (MRCI) and single-reference coupled-clus-

ter calculations, employing quintuple and sextuple corre-

lation consistent basis sets. Within the K - S ansatz, we

have examined all 12 states of ClF correlating adiabatically

with the first energy channel, all 23 states of ClF? corre-

lating with the first three channels, and three states out of

four of ClF- correlating with the first two channels

Cl- ? F and Cl ? F-. Full potential energy curves at the

MRCI/quintuple zeta level have been constructed for

12, 21, and 3 states of ClF, ClF?, and ClF-, respectively.

After correcting for core–subvalence and scalar relativistic

effects, albeit small as expected, and spin–orbit interac-

tions, most of our results are in excellent agreement with

available experimental data. Some lingering questions have

been definitely settled. Our final recommended binding

energies (D0 in kcal/mol) and equilibrium bond distances

(re in Å) for ClF (X 1R?), ClF? (X 2P), and ClF- (X 2R?)

are [60.35, 1.6284], [67.40, 1.5357], and [29.80, 2.151],

respectively. The adiabatic electron affinity of ClF, ClF

(X 1R?) ? e- ? ClF- (X 2R?), is EAad = 2.25 ± 0.01

eV about 0.6 eV smaller than the suggested experimental

value which is certainly wrong.

Keywords Interhalogen � ClF � Ab initio

1 Introduction

One of the most interesting series of atomic elements are

the four stable halogens (X), namely 19F (Z = 9), 35,37Cl

(17), 79,81Br (35), and 127I (53) [1]. All possible combi-

nations between the four halogens result to four homonu-

clear dihalides (X2) and six unique diatomic interhalogens

(XX0), viz. ClF, BrF, IF, BrCl, ICl, and IBr, all of which are
known and relatively stable, the most robust being the ClF

[2]. The latter is a colorless gas at room temperature with a

melting point of -155.6 �C [2] and a dissociation energy

(D0
0) of *60 kcal/mol [3]. For some physical properties of

the XX0 compounds, see Table 17.12 of Ref. [2].

The present ab initio work focuses on ClF and its ions

ClF? and ClF-. We have investigated all 12 2Sþ1K
molecular states of the neutral species emanating from the

ground-state fragments Cl(2P) and F(2P), all 23

(=12 ? 9?2) states of ClF? related to the first three adi-

abatic channels of Cl?(3P, 1D, 1S) ? F(2P), and three states

of ClF-, employing variational multireference (MRCI) and

single-reference coupled cluster methods combined with

large correlation consistent basis sets. In what follows we

give a rather complete account of the previous experi-

mental and theoretical work on ClF and ClF± related to the

present work.

To the best of our knowledge, the first experimental

work on ClF was published by Wahrhaftig [4] in 1942 who

Dedicated to Professor Thom Dunning and published as part of the

special collection of articles celebrating his career upon his

retirement.
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recorded its absorption spectrum. He cites spectroscopic

parameters and dissociation energies, De and D0, for both

the ground (X 1R?) and first excited (a 3P), the only ‘‘true’’

bound valence states correlating with ground-state atoms.

The accuracy of Wahrhaftig’s results for work published

more than seventy years ago is indeed remarkable. Table 1

lists, practically, all the experimental structural information

for the X 1R? and a 3P states of ClF concerning the present

work (Refs. [4–17]). The work of Schumacher and

coworkers published in 1947 and 1950 is not included in

Table 1 because of our lack of access to the appropriate

journals [18, 19] (see, however, Refs. [6, 7]). It should be

mentioned at this point that henceforth the first excited

(bound) state, a 3P, will be tagged either A0 (3P2), or A

(3P1), or B (3P0�), depending on the X = K ? R value;

see footnote (l) of Table 1. If the X coupling is not taken

into account, the first excited state of ClF will be simply

called a 3P according to standard practice [15].

The first theoretical work on the electronic structure and

properties of the X state of ClF was published in 1974 by

Staub and McLean [20]. These authors reported Hartree–

Fock HF/(DZ ? P)—Slater results on all diatomic mole-

cules XX0, X2, and HX (X = Cl, F, Br, and I). Since then, a

significant number of ab initio studies on ClF have been

appeared in the literature, the most relevant to the present

work given in Refs. [21–27, 31–34]1. In 1985, Scharf and

Ahlrichs [22] performed coupled pair functional (CPF)

calculations for the X state of ClF (and ClF3) employing a

[6s6p/Cl 6s4p/F] ? P(olarizaion) basis sets. They report re,

De ? Q (?Q = the Davidson correction), and le (equi-

librium electric dipole moment). In 1988, Peyerimhoff and

coworkers [23] using the multireference single and double

excitation MRDCI method (see below) and a Gaussian

[6s5p2d/Cl 4s4p2d/F] ? 3s2p bond functions basis set,

calculated potential energy curves (PEC) for the first six

singlets (X 1R?, 11P, 21P, 11D, 11R-, 21R?), all repulsive

except the X state, correlating with Cl(2P) ? F(2P). A

number of Rydberg and charge transfer states have also

been studied. In 1990, Peterson and Woods [24] using the

coupled electron pair approximation (CEPA), singles and

doubles electron configuration (CISD), and Møller–Plesset

fourth-order perturbation theory with single, double, and

quadruple excitations (MP4SDQ) combined with a

[12s8p3d1f/Cl 10s3p2d1f/F] Gaussian basis sets, calculated

among other things the spectroscopic constants re, De, xe,

xexe, ae, �De, and le of the X 1R? state of the isoelectronic

species ClF, ClO-, SF-, and ArF? around equilibrium.

Their results are in good agreement with corresponding

experimental numbers. Perera and Bartlett [25] examined

the dependence of the electric dipole moments on scalar

relativistic effects of the ground states of all six interhal-

ogens XX0 at the coupled cluster level (CCSD) and effec-

tive core potentials.

In 1998, de Jong et al. [26] studied the ground states of

the six interhalogens XX0 using augmented correlation

consistent aug–cc–pVnZ (n = 2, 3) valence basis sets at

the MP2, CCSD, and CCSD(T) fully relativistic level of

theory. In particular, correlation effects of dipole moments

and polarizabilities were obtained through the CISD rela-

tivistic approach.

The most systematic and complete theoretical work so far

on ClF published in 2000 is that by Alekseyev, Lieberman,

and Buenker [27]. These workers performed multireference

MRDCI calculations (see Refs. [28–30]) employing relativ-

istic effective core potentials (RECP), treating explicitly the

seven valence electrons (3s23p5/2s22p5) of each halogen atom

through a [7s7p3d1f/Cl,F] basis set. They report full PECs for

all 12 K - S states correlating with Cl(2P) ? F(2P) and five

ion pair states, which correlate with the ionic fragments

Cl?(3P) ? F-(1S). Spin–orbit (SO) effects have been taken

into account employing the 2Sþ1K eigenfunctions as basis for

the SO calculations. Their results will be compared to ours in

due course. Recall, however, that MRDCI calculations

involve a specific number of approximations in addition to the

RECPs in the present case, details of which are described in

Refs. [27–30].

In a mixture of density functional theory DFT(B3LYP)

and coupled cluster CCSD(T) calculations combined with

aug–cc–pVnZ (n = T, Q, 5) basis sets, Ricca [31] calcu-

lated certain ground-state properties of ClFx (x = 1, 2, 3)

around equilibrium. At the highest level of theory including

tight d functions and correcting for scalar relativistic and

core effects, her ab initio results re, De, and IE (ionization

energy) are in good agreement with experiment. Three

years later, Horný et al. [32] reported a series of coupled

cluster calculations around equilibrium on the X states of

ClF and ClF- with the purpose of obtaining an accurate

value of the electron affinity (EA) of ClF, a controversial

quantity indeed (vide infra), using a series of valence cc-

pVnZ (n = D, T, Q, 5) basis sets with and without diffuse

functions and a variety of coupled cluster (CC) variants

(CCSD, CCSD(T), CCSDT, EOM-CC). Besides EA, they

predict re and xe for the neutral species. Their best values

at the CCSD(T)/aug–cc–pV5Z level for the X 1R? state of

ClF are re = 1.6305 Å and xe = 783 cm-1 in agreement

with experiment.

Very recently Chen et al. [33] in an effort to understand

the bonding in the series of molecules ClFx (x = 1–7), they

performed high-level valence MRCI and CCSD(T) calcu-

lations in conjunction with aug–cc–pVnZ (n = T, Q, 5)

1 This just published work by Dunning and coworkers again on ClFn
?

(n = 1–6) refines the ‘‘recoupled pair bonding’’ model (rpd),

introduced in order to explain the phenomenon of hypervalency.

For another point of view on hypervalency, perhaps more economic

and without introducing new models like the rpd, see Refs [35, 36].
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Table 1 Experimental results on 35Cl19F. Bond distances re (Å),

dissociation energies De and D0 (cm-1), harmonic frequencies and

anharmonic corrections xe, xexe, xeye (cm
-1), rotational vibrational

coupling constants ae (cm-1), electric dipole moments le (D), and

separation energies Te (cm
-1) of the X 1R? and a 3P states

Footnotes X 1R?

re De
a D0

a xe xexe xeye ae 9 103 le Te

b 1.625 21,495 ± 3 21,101 ± 2 793.2 9.9 6 ± 2 0.0

c 1.628 (1) 20,633 ± 2 784.1 ± 1 5.3 ± 0.5 4.5 ± 0.4

d 1.62831 4.359 0.881 ± 0.02

e 20,406 ± 323

f 0.8881 (2)

g 21,108

h 785.2 ± 1.3 5.3 ± 0.1 -0.03 ± 0.01

i 1.628341 (4) 783.553 (30) 5.045 (87) 4.325

j 21,500 21,126 ± 6

k 21,110 ± 2

States a 3Pl

3Pb
0þ 1.92 2,946 ± 50 2,790 ± 50 313.484 2.217 -0.400 1.4 18,549 ± 50

3Pd
0þ 2.038 (1) 362.4 ± 1 8.8 ± 0.5 -0.14 ± 0.10 3.8 (1)

B3Ph
0þ 362.5 ± 1.6 8.5 ± 0.4 -0.13 ± 0.03 18,827 ± 4

B3Pj
0þ

2.031m 3,079.1 363.1m 8.64m -0.124m 4.7m 18,825.3

A3Pk
1

353 ± 1 9.7 ± 1 0.17 ± 0.01 18,841 ± 5

A03Pn
2

2.0245 (16) 3,243 ± 5 363.53 (2.58) 8.3 (67) 6.31 (28) 18,257 ± 5

A3Po
1

2.0247 2,988.4p 361.23 7.74 6.28 18,511.6

B3Po
0þ 2.0221 3,078.7q 362.578 8.227 7.36

a With respect to the ground-state atoms including spin–orbit interaction, Cl(2P3/2) ? F(2P3/2)
b Ref. [4]; ClF absorption spectroscopy; most probable dissociation products of the 3P0þ state are Cl(2P3/2) ? F(2P3/2)
c Ref. [6]; visible absorption spectrum; D0 obtained by assuming that the end products of the 3P state are Cl(2P1/2) ? F(2P3/2)
d Ref. [5]; microwave spectroscopy; re calculated from Be; see also Ref. [3]
e Ref. [7]; photoionization study; most probable end products of the 3P state are Cl(2P1/2) ? F(2P3/2). Ionization energy IE[ClF(X 1R?,

v = 0) ? ClF? (X 2P3/2, v = 0)] = 12.65 ± 0.01 eV
f Ref. [8]; radio frequency spectroscopy
g Ref. [9]; chemiluminescence spectroscopy; end products of the 3P state taken as Cl(2P3/2) ? F(2P1/2)
h Ref. [10]; emission spectroscopy
i Ref. [11]; millimeter rotational spectroscopy
j Refs. [12, 13]; laser excitation spectrum; upper limit of D0 with dissociation products of the B state (3P0þ ) taken as Cl(2P3/2) ? F(2P1/2)
k Ref. [14]; optical–optical double resonance (OODR) spectroscopy; dissociation products of the B state taken as Cl(2P3/2) ? F(2P1/2),

D0 = 20,633 cm-1 if end products Cl(2P1/2) ? F(2P3/2)
l According to standard convention(s) (Ref. [15]; see also Ref. [3]), the first higher state with different spin multiplicity from the ground state of

a diatomic molecule (here the first excited state 3P) should be named a 3P. However, sanctioned by custom the historical naming is followed,

that is, A0 (3P2), A(
3P1), and B(3P0þ ); no letter name has been attached to 3P0� . Unfortunately, this practice is still followed for some historical

molecules like N2, X2, and XX0
m Recalculated in Ref. [3] according to data of Ref. [6]
n Ref. [16]; OODR ? fluorescence spectroscopy
o Ref. [17]; OODR spectroscopy
p Ref. [17]; dissociation to two ground-state atoms 21,500 (2) above the X state
q Ref. [17]; dissociation to Cl(2P3/2) ? F(2P1/2)
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basis sets and a tight d function on Cl. For the X 1R? and

a 3P states of ClF, their equilibrium structural parameters

re, De (D0), xe, and IE will be contrasted to ours later on.

We turn now to the ClF? cation. The limited experi-

mental data we are aware of are given in the Huber–

Herzberg collection [3], all drawn from Refs. [7, 37–39]

published some 40 years ago. The best D0
0 experimental

value of ClF? (X 2P3=2) is indirectly obtained through

the energy conservation relation D0
0 ClFþ;X2P3=2

� � ¼
D0

0 ClF;X1Rþð Þ þ IE Cl;ð 2P3=2Þ� IE ClF; X1Rþð Þ ¼ 2:617þ
12:96763 (Ref. [40]) -12.66 (Ref. [3]) eV = 2.924 eV

(= 67.43 kcal/mol). The Huber–Herzberg value is D0
0 =

2.93 eV [3].

There are only two relevant ab initio calculations on

ClF?. In 1981, Ewig et al. [21] obtained the vertical ioni-

zation energy of ClF within a limited MCSCF-CI/

[5s4p1d/Cl 4s3p1d/F] approach. Almost 30 years later,

Dunning and coworkers [33] reported D0, re, xe, of the

X 2P and 4R- states of ClF? at the valence MRCI (?Q)/

aug–cc–pVnZ (n = T, Q, 5) level. Their best results

(MRCI ? Q/n = 5) are D0 = 66.14 (13.08) kcal/mol,

re = 1.536 (1.1745) Å, and xe = 919.9 (363.2) cm-1 for

the X 2P (4R-) state. At the MRCI ? Q/n = 5 level, the

ionization energy is predicted to be IE [ClF(X 1R?)?
ClF?(X 2P)] = 12.56 eV, just 0.1 eV less than the

experimental value [3].

Hardly anything is known experimentally for the anion

ClF-. The four experimental publications that refer to the

electron affinity EA, the only (indirectly) measured quan-

tity, seems to be off by more than 0.5 eV (see below).

Harland and Thynne [41] are the first to give an EA value

of ClF (or the IE of ClF-) after bombarding the pentaflu-

orosulfur chloride with an electron beam; they report

EA = 1.5 ± 0.4 eV. Their results were confirmed

10 years later by Dispert and Lacmann [42] who obtained

EA = 1.5 ± 0.3 eV. Almost the same time Illenberger

et al. [43] through low-energy electron impact experiments

on CF2Cl2, CF3Cl, and CFCl3 concluded that EA

(ClF) = 1.79 eV, within the (large) error bars of the pre-

vious workers. According to Ref. [32], however, Dudlin

et al. [44] ‘‘in their electron impact investigation of ClF3
and its dissociation products estimated the lower limit of

EAad(iabatic) to be 2.37 ± 0.21 eV’’. After further analysis

of the dissociation energies, the authors suggest that

EAad = 2.86 ± 0.2 eV (see also Ref. [45]). Obviously, an

experimental reinvestigation of the electron affinity of ClF

is in order.

We are aware of two ab initio studies on the EA of

ClF. Through G3 [46] and G3X [47] calculations,

Law et al. [48] report EA = 2.31 and 2.07 eV, respec-

tively. The most recent work on the EA of ClF is that by

Horný et al. (vide supra) [32]. Their best results at the

CCSD(T)/aug–cc–pV5Z (?zero point energy = ZPE) are

EAad(ClF) = 2.22 (2.25) eV, re (ClF-) = 2.1531 Å, and

xe (ClF
-) = 378 cm-1, in harmony with the present work

(vide infra).

We believe that the above exposition on the past find-

ings on ClF and ClF± shows the need for a systematic

theoretical investigation on these species, confirming or not

certain results and reporting new ones. Hence, we have

performed highly correlated all electron ab initio calcula-

tions via the MRCI, RCCSD(T), and RCCSDT methods

combined with large correlation consistent basis sets,

including scalar relativistic and core correlation effects on

Cl as well as spin–orbit (SO) couplings. The construction

of full potential energy curves for a large number of states

allows for a better understanding of bonding interactions

and the extraction of accurate spectroscopic parameters and

energetics. Our work is structured as follows: In Sect. 2, we

outline basis sets and methods, Sect. 3 and subsections 3.1,

3.2, and 3.3 refer to results and discussion on ClF, ClF?,

and ClF-, respectively, while Sect. 4 epitomizes our gen-

eral approach and findings.

2 Basis sets and methods

The augmented correlation consistent basis sets of Dunning

and coworkers [49–52] for the F and Cl atoms, aug–cc–

pVnZ and aug–cc–pV(n ? d)Z (n = 5, 6) including a set of

tight d functions for Cl were employed in all calculations.

Both sets were generally contracted to [7s6p5d4f3g2h/F
8s7p6d4f3g2h/Cl] and [8s7p6d5f4g3h2i/F 9s8p7d5f4g3h2i/Cl]

for n = 5 (quintuple) and n = 6 (sextuple), renamed for

brevity A5f and A6f and consisting of 263 and 387 spherical
Gaussians, respectively. To estimate the core effects on ClF

for the Cl atom only (2s22p6), the A5f set was augmented by a

series of weighted core functions [53], resulting to

[7s6p5d4f3g2h/F 12s11p9d7f5g3h/Cl] : CA5f of order 347.
Notice that the CA5f basis set does not include the tight d

function on Cl. Scalar relativistic valence effects were cal-

culated at the quintuple cardinality level after recontracting

the A5f basis set accordingly (=A5f - rel) [50, 53].

Two methods of correlated calculations are followed,

the complete active space self-consistent field ? sin-

gle ? double replacements (CASSCF ? 1?2 = MRCI),

and the (single-reference) restricted coupled clus-

ter ? singles ? doubles ? quasi-perturbative connected

triples (RCCSD(T)) [54–57]. The CASSCF reference

wavefunctions are defined by allotting 14 (ClF), 13 (ClF?),

and 15 (ClF-) electrons to 12 orbitals related to

(3s ? 3p/Cl 2s ? 2p ? 3s ? 3p/F) atomic orbitals for ClF,

ClF?, and ClF- giving rise to 978, 1,196, and 354 refer-

ence configuration functions (CF), respectively. Internally

contracted (ic) [58, 59], valence MRCI wavefunctions are
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calculated by single ? double excitations out of the CASSCF

wavefunctions; of course, all of our reported multireference

results are of icMRCI quality. RCCSD(T) valence calcula-

tions were performed only for theX 1R? state of ClF, theX 2P
and a 4R- states of ClF?, and the X2R? state of ClF-. In

addition, RCCSDT/A5f calculations were performed for the

X states ofClF,ClF?, andClF-. Core correlation effects of the

2s22p6/Cl electrons are taken into account by including them in

the CI and CC procedures, tagged C-MRCI and

C-RCCSD(T), respectively. The inclusion of the 2s22p6/Cl
subvalence electrons in the CI process increases considerably

the number of CFs. For instance, the MRCI (icMRCI)/A5f
expansion of the X 1R? wavefunction of ClF contains

3.7 9 108 (8.2 9 106) CFs as contrasted to 1.6 9 109

(3.7 9 107) CFs of the C-MRCI(icC-MRCI)/CA5f wave-

functions. Corresponding numbers of the (valence) MRCI

(icMRCI)/A6f are 8.34 9 108 (9.8 9 106) CFs.

Valence scalar relativistic effects for the X 1R?, a 3P
(ClF), X 2P, a 4R- (ClF?), and X2R? (ClF-) were esti-

mated through the Douglas–Kroll–Hess Hamiltonian up to

second order (DKH2) [60, 61] using the A5f - rel basis

set. Spin–orbit effects have been obtained by diagonalizing

the Ĥel þ ĤSO Hamiltonian employing the Ĥel MRCI/A5f

eigenvectors, where ĤSO is the full Breit–Pauli operator.

Basis set superposition errors (BSSE) estimated around

equilibrium by the usual counterpoise method [62, 63] are

small enough not to be taken into account, for example, for

the X 1R? state of ClF BSSE [MRCI/A5f (A6f)] = 101

(47) cm-1, with similar results at the CC level. Spectro-

scopic parameters (re, xe, xexe, xeye, ae, �De) have been

determined via the Dunham approach [64, 65]. The number

of vibrational levels for certain states was determined by

solving numerically the one-dimensional Schrödinger

equation of the two nuclei. The size non-extensivity error

(SNE) is estimated by subtracting the sum of the energies

of the atoms from the energy of the supermolecule at an

internuclear distance of 20–30 bohr. We find that for the

X 1R? state of ClF SNE = 8.6 (1.7), 8.7 (1.7) kcal/mol at

the MRCI (?Q)/A5f or A6f level, respectively, where ?Q

refers to the Davidson correction [66, 67]; see also page 3

of Ref. [68]. Finally, C2v constraints have been imposed

through all computations.

The RCCSDT/A5f calculations were performed by the

CFOUR program [69]; all other calculations were carried

out through the MOLPRO 2010 package [70].

3 Results and discussion

3.1 ClF

For reasons of convenience, Table 2 lists the most reliable,

according to the present authors, experimental values of the

X 1R? and B 3P0þ states of 35Cl19F; see also Table 1. The

interaction of the ground-state atoms Cl(2P) ? F(2P) gives

rise to 12 molecular 2Sþ1K states, singlets and triplets, that

is, 1,3(R?[2], R-, P[2], D). Two of them X 1R? and a 3P
are bound, one is a van der Waals state (11P), whereas the

rest of the nine states are strongly repulsive. For all 12

states, full MRCI ? Q/A5f PECs are displayed in Fig. 1.

The second adiabatic channel Cl (3s23p44s1; 4P) ? F(2P)

located 8.922 eV higher gives rise to states of Rydberg

character; the third and fourth channels are of charge

transfer nature, Cl?(3P) ? F-(1S) and Cl?(1D) ? F-(1S),

located 9.566 and 11.011 eV above the X state, respec-

tively [71]. From the third and fourth channels, five ion

pair states (Cl?F-) of 3R-, 3P and 1R?, 1P, and 1D
symmetry emerge. We note that the F- anion does not

have any excited states (vide infra). As was already

mentioned, the present study deals exclusivelywith the first 12

valence K - S states related to the first Cl(2P) ? F(2P)

channel.

3.1.1 X 1R?

Table 3 lists our numerical results on the X 1R? state of

ClF, whereas Fig. 1 displays all 12 MRCI ? Q/A5f 2Sþ1K
PECs correlating with the ground-state atoms. The bonding

of the X 1R? state is described succinctly by the valence-

bond-Lewis (vbL) diagram shown below along with the

leading equilibrium MRCI/A5f CFs (only valence e- are

counted).

Table 2 ‘‘Best’’ experimental properties of the X 1R? and B3P0þ

states of 35Cl19F according to Table 1. Apart from re (Å) and le
(Debye) all units are in cm-1

Properties X 1R?
B3P0þ

re 1.628341 (4) 2.0221

D0
e

21,500a 3078.7c

D0
0

21,110b

xe 783.353 362.6

xexe 5.045 8.3

xeye -0.003 (1)

ae 9 103 4.325 7.4

�De � 107 8.98d; 8.77e 11.0f

le 0.8881 (2)

Te 0.0 18,825.3

a 2.666 eV = 61.47 kcal/mol
b 2.616 eV = 60.36 kcal/mol
c 0.3817 eV = 8.802 kcal/mol
d Refs. [12, 13]
e Calculated through �De ¼ 4B3

e

�
x2

e where Be and xe are taken from

Refs. [4, 5], respectively; see also Ref. [3]
f Obtained by us using the Be and xe given in Refs. [12, 13]
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X1Rþ�� � � 1r22r2½ð0:94Þ3r2 � ð0:11Þ4r2�1p2x1p2y2p2x2p2y
��� E

:

According to the Mulliken population analysis, a total

charge of 0.25 e- is transferred from Cl to F, resulting to a

Cl?F- charge polarity. All our results listed in Table 3,

with the exception of the second anharmonicity xeye, are

in very good agreement with experiment. The MRCI ?

Q/A6f and RCCSD(T)/A6f properties corrected for core

(2s22p6/Cl) and scalar relativistic effects, employing the

CA5f and A5f - rel basis sets at the corresponding

methods, are referred as ‘‘best’’ values; Table 3. For

instance, at the CC level re (‘‘best’’) : re* = re
[RCCSD(T)/A6f] ? drcore ? drrel where, drcore = re [C-

RCCSD(T)/CA5f] - re [RCCSD(T)/A5f] and drrel =
re[RCCSD(T) ? DK/A5f - rel] - re [RCCSD(T)/A5f].
Therefore, re* = 1.6289 ? (-0.0022) ? 0.0017 = 1.6284 Å

in perfect agreement with experiment; Table 3. Exactly the

same re* (=1.6284 Å) is obtained at the MRCI ? Q level.

Dissociation De* values are 62.78 (MRCI) and 62.21

(RCCSD(T)) kcal/mol with respect to Cl(2P) ? F(2P).

Taking into account, however, the calculated (experimental

[71]) SO splitting DE(2P3/2 -
2P1/2) = 799.1 (881) and

398.1 (404) cm-1 for Cl and F, respectively, the dissoci-

ation energy De with respect to the lowest Cl(2P3/2) ?

F(2P3/2) fragments and disregarding the SO effects of the X
1R? state as negligible (*5 cm-1), is D0

e(MRCI ? Q) =

De* - 1/3 9 DECl(
2P3/2 - 2P1/2) - 1/3 9 DEF(

2P3/2 -
2P1/2) = 62.78 kcal/mol - 1/3 9 799.1 cm-1 - 1/3 9

398.1 cm-1 = 61.64 kcal/mol. Also D0(MRCI ? Q) =

D0
e(MRCI ? Q) - xe/2 ? xexe/4 = 61.64 kcal/mol -

787.7/2 cm-1 ? 4.70/4 cm-1 = 60.35 kcal/mol. Analo-

gously, the CC method gives D0
e[RCCSD(T)] = 62.21

kcal/mol - 1/3 9 799.1 cm-1 - 1/3 9 398.1 cm-1 = 61.07

kcal/mol. The MRCI ? QDe (D0) = 61.64 (60.35) kcal/mol

can be considered as in perfect agreement with the exper-

imental value of 61.47 (60.35) kcal/mol (see Table 3),

while the CC value is by 0.40 kcal/mol smaller. Corre-

sponding numbers from Ref. [27] are re = 1.641 Å and

De
0 = 58.62 kcal/mol. Notice that at the CC/A5f level tri-

ple excitations either perturbatively (RCCSD(T)) or self-

consistently (RCCSDT) give identical results; see Table 3.

Spectroscopic constants xe*, xexe*, ae, and �De are in very

good agreement with the experimental results as well.

We now turn to the permanent electric dipole moment of

the X 1R? state of ClF. All calculated values listed in

Table 3 either MRCI ? Q or CC have been obtained

through the finite field approach; see also Ref. [72]. The

le*[RCCSD(T)] = 0.891 D is in complete agreement with

the experimental value (le = 0.8881(2) D), while

le*[MRCI ? Q] = 0.865 D is smaller by 0.023 D, a rel-

ative error of less than 3 %. It is interesting to note that in

1973 Flygare et al. [73, 74] reported an experimental value

le = 2.1 ± 1.4 D and an opposite charge polarity, Cl–F?.

The latter was challenged very soon by Green [75] whose

CI calculations indicated the reverse polarity and con-

firmed ‘‘experimentally’’ to be indeed Cl?F- by Janda

et al. [76] and Fabricant and Muenter [77]. For a similar

misunderstanding concerning the polarity of boron mono-

fluoride (BF), see Ref. [78] and references therein.

Fig. 1 Relative MRCI ? Q/A5f PECs of twelve 2S?1K valence

states of ClF correlating with Cl(2P) ? F(2P). Two states are bound

(X 1R?, a 3P), one is of vdW nature (11P) and the rest strongly

repulsive. The first inset magnifies the nine repulsive PECs, and the

second shows the X splittings of the a 3P state
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3.1.2 a 3P

Figure 1 displays the MRCI ? Q/A5f PEC of the a 3P
state, while Table 4 lists numerical results corrected for

scalar relativistic effects (‘‘best’’ values). To avoid large

relative errors that could possibly be induced by the ?Q

Davidson correction when treating 14 (valence) ? 8

(core) = 22 electrons by the MRCI method (see below) for

a state of less than 10 kcal/mol binding energy like the

a 3P one, core corrections are not included.Within the 2Sþ1K
ansatz, the a 3P state is the first and only excited bound

state of ClF correlating with Cl(2P) ? F(2P). Its bond

strength and distance, however, are much weaker and much

longer, respectively, than those of the X 1R? state. Clearly,

two end combinations Cl(2P; M = 0) ? F(2P; M = ±1) or

Cl(2P; M = ±1) ? F(2P; M = 0) result to two states of 3P
symmetry. According to the Mulliken population analysis,

the a 3P state correlates with the first one (M = 0, ±1),

whereas the repulsive 23P state (see Fig. 1) correlates with

the second (M = ±1, 0) combination. The vbL bonding

diagram, leading equilibrium MRCI configurations, and

Mulliken atomic populations at re and r1(20 bohr) of the

a 3P state are given below

a3P
�� �� 1r22r23r24r1½ð0:79Þ1p2x2p1x�ð0:32Þ1p1x2p2x �1p2y2p2y

��� E
�0:35 1r22r23r14r21p2x2p

1
x1p

2
y2p

2
y

��� E
re : 3s

1:973p1:50z 3p1:23x 3p1:97y =Cl2s
1:982p1:46z 2p1:73x 2p1:98y =F

r1 : 3s1:983p1:03z 3p1:94x 3p1:97y =Cl2s
1:982p1:96z 2p1:03x 2p1:99y =F

The vbL icon indicates that the M = 0 (Cl) ? M = ±1

(F) combination leading to two 3e- - 2c(enter) interaction

Table 3 Total energies E (Eh), bond distances re (Å), dissociation

energies De (kcal/mol), harmonic frequencies xe (cm-1), anharmo-

nicities xexe and xeye (cm-1), rotational vibrational coupling

constants ae (cm-1), centrifugal distortions �De(cm
-1), and dipole

moments le (D) of the X 1R? state of 35Cl19F at the MRCI ? Q

(MRCI), RCCSD(T) and RCCSDT methods. Previous theoretical and

experimental results are given for easy comparison

Method -E re De
a xe xexe xeye ae 9 103 �De � 107 lbe

MRCI ? Q/A5f 559.45806 1.6279 62.79 789.4 5.18 -0.109 4.32 8.86 0.879

MRCI ? Q/A6f 559.46375 1.6263 62.99 789.5 5.63 0.068 4.64 8.90 0.870

(MRCI/A6f)c (559.43428) (1.6234) (62.83) (797.8) (6.24) (0.04) (4.64) (8.83) (0.897)

C-MRCI ? Q/CA5f 559.79451 1.6281 63.01 788.4 4.85 -0.029 4.24 8.89 0.865

MRCI ? DK ? Q/A5f - rel 560.95509 1.6298 62.36 787.0 5.62 0.008 4.50 8.86 0.892

‘‘Best’’ valuesd 1.6284 62.78 786.1 5.74 0.871

RCCSD(T)/A5f 559.46165 1.6299 62.22 791.8 4.97 -0.026 4.22 8.79 0.875

RCCSDT/A5f 559.46200 1.6306 61.72 788.2

RCCSD(T)/A6f 559.46760 1.6289 62.49 790.0 4.85 -0.026 4.21 8.82 0.876

C-RCCSD(T)/CA5f 559.80680 1.6277 62.25 791.3 4.77 -0.099 4.04 8.83 0.872

RCCSD(T) ? DK/A5f - rel 560.95866 1.6316 61.91 790.0 5.02 -0.012 4.24 8.78 0.893

‘‘Best’’ valuesd 1.6284 62.21 787.7 4.70 0.891

MRD - CIe 1.641 59.70 785

MRCI ? Q/A5ff 559.45004 1.627 60.18 797.8

CCSD(T)f 559.46165 1.629 62.21 788.2

Expt.g 1.628341 (4) 61.47 783.353 5.045 -0.003 4.325 8.77 0.8881

a With respect to the ground-state atoms Cl(2P) ? F(2P)
b Calculated by the finite field approach; fixed strength 5 9 10-5 a.u.
c MRCI/A6f values (no ?Q correction) given for comparison
d Corrected MRCI ? Q/A6f and RCCSD(T)/A6f values for core and scalar relativistic effects at the CA5f and A5f - rel levels of theory; see

text
e Ref. [27]
f Ref. [33]
g See Table 2
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is not conducive for strong bonding, rather the opposite,

hence the weak binding and considerable bond lengthening

as compared to the X 1R? state. The population distribution

suggests that *0.5 e- migrate from F to Cl along the r
frame with a concomitant back transfer from Cl to F of

*0.7 e- along the p frame, resulting to the Cl?F- polarity

with the in situ F atom negatively charged by *0.2 e-.

From Table 4, we can see the excellent agreement at all

levels of theory but the MRCI/A6f, due to SNE effects (no

?Q amendment), and that relativistic effects are very

small. Recall that we are working within the K - S frame

and that the experimental data cited in Table 4 refer to the

B (3P0þ ) X component of the a 3P multiplet (see below).

Experiment and theory are in excellent harmony, the

absolute differences DX from the ‘‘best’’ listed values Xe*,

DX = |Xexpt - Xe*|, being Dre = 0.008 Å, DDe = 0.05

kcal/mol, Dxe = 4.0 cm-1, Dxexe = 2.2 cm-1, Dae
*0.3 9 10-3 cm-1, D �De = 0.5 9 10-7 cm-1, and

DTe = 39 cm-1. The electric dipole moment of the a 3P
state is experimentally unknown, determined theoretically

for the first time in the present work; the recommended

calculated finite field value is le = 1.62 ± 0.02 D. Cor-

responding DX differences from Ref. [27] are Dre = 0.021

Å, Dxe = 10.1 cm-1, and DTe = 379 cm-1; no le or De
0

values are given.

Before we turn to the X states, a word of caution is

needed as to the RCCSD(T) calculations of the a 3P state.

Its strong multireference character precludes the use of a

single-reference CC method. Indeed, our RCCSD(T)/A5f

calculations around equilibrium gave results of question-

able reliability; that’s why they are not included in Table 4.

See also the CCSD(T) numbers on the a 3P state of Chen

et al. [33].

Taking into account the X = K ? R coupling, the a 3P
state splits into 3P2,

3P1, and 3P0� , where to a first

approximation the energy separation between the X com-

ponents is given by DT = AKR, A = constant for a given

multiplet. For K = 0 as in the present case, however,

second-order interactions split slightly the X = 0 compo-

nent into 0? and 0-. In the present case, our calculations do

not allow for a 0? to 0- separation; therefore, within our

approach, the 3P0�states can be identified with the 3P0.

The A0 3P2 state is lower in energy (inverted), the cal-

culated MRCI ? Q/A5f SO DT(3P0� - 3P1,
3P1 -

3P2)

being equidistant with DT = 260 cm-1, therefore

A = 260 cm-1; see the upper inset of Fig. 1. Experimen-

tally, it is found that DT = 255 [12, 13, 17] and 313 cm-1

(Ref. [16]) for the X = 0? - 1 and 1–2 splittings,

respectively. The 0? to 0- separation has not been deter-

mined experimentally, but according to the MRDCI cal-

culations of Buenker and coworkers [27], the 0-

component lies below the 0? by *27 cm-1, a rather large

number for this kind of splitting. At the MRCI ? Q/A5f
level of theory, the bond distances of the 3P0� ,

3P1, and
3P2, states are (experimental values for B, A, and A’ states

in parenthesis), re = 2.0245 (2.0221 or 2.031), 2.0233

(2.0247), and 2.0221 (2.0245) Å, respectively (see

Tables 1 and 2). Observe that the absolute differences

Table 4 Total energies E (Eh), bond distances re (Å), dissociation

energies De (kcal/mol), harmonic frequencies xe (cm-1), anharmo-

nicities xexe and xeye (cm-1), rotational vibrational coupling

constants ae (cm-1), centrifugal distortions �De(cm
-1), dipole

moments le (D), and energy separations Te (cm
-1) of the a 3P state

of 35Cl19F at the MRCI ? Q method. Previous theoretical and

experimental results are given for comparison

Method -E re De
a xe xexe xeye ae 9 103 �De � 107 lbe Te

MRCI ? Q/A5f 559.37191 2.0159 8.70 364.4 9.92 -0.265 6.94 11.5 1.618 18,908

MRCI ? Q/A6f 559.37720 2.0144 8.70 365.3 10.3 -0.173 7.14 11.5 1.567 18,996

(MRCI/A6f)c (559.345460) (2.0293) (6.91) (334.7) (11.8) (-0.163) (8.49) (13.17) (1.550) (19,494)

MRCI ? DK ? Q/A5f - rel 560.86954 2.0160 8.75 365.5 10.1 -0.212 7.04 11.5 1.634 18,776

‘‘Best’’ valuesd 2.0145 8.75 366.6 10.5 1.583 18,864

MRD - CIe 2.064 *350

MRCI ? Q/A5ff 559.36168 2.072 4.73 250 19,393

Expt.g 2.0221 8.802 362.6 8.3 18,825.3

a With respect to the ground-state atoms Cl(2P) ? F(2P)
b Calculated by the finite field approach; fixed strength 5 9 10-5 a.u.
c MRCI/A6f values (no ?Q correction) given for comparison
d Corrected MRCI ? Q/A6f values for core and scalar relativistic effects only; see text
e Ref. [27]
f Ref. [33]
g Results for the B3P0þ state; see Table 2 and text
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between experiment and theory are not larger than

0.002 Å.

3.1.3 11P

The 11P state is in essence repulsive; its PEC however

presents a shallow minimum of less than 0.5 kcal/mol at re
*3.3 Å, so it can be characterized as a van der Waals

(vdW) state; see Fig. 1. It correlates with the M = 0

(Cl) ? M = ±1 (F) projections of the ground-state atoms.

Around 3.3 Å, there are two leading MRCI configurations

of almost equal weight

11P
�� � � 0:69 1r22r23r14r21p2x1p

2
y2�p

1
x2p

2
y

��� E
þ 0:64 1r22r23r24r11�p1x1p

2
y2p

2
x2p

2
y

��� E
At the MRCI ? Q/A6f level of theory r(vdW) = 3.31 Å

(=6.25 bohr), DE(vdW) = -0.43 kcal/mol (= -150 cm-1),

x = 44 cm-1, and T(11P / X 1R?) = 21,795 cm-1.

Interestingly enough the well depth of 150 cm-1 can sus-

tain six vibrational levels. At the MRDCI level, Buenker

and coworkers predicted a well depth of *100 cm-1 at

r(vdW) *6.5 bohr [27].

3.1.4 Repulsive states

Nine more 2S?1K valence states all of strong repulsive

character correlate with the ground-state atoms

Cl(2P) ? F(2P), namely 23P, 21P, 13R?, 13R-, 11D, 21R?,

11R-, 13D, and 23R?, all calculated at the MRCI ? Q/A5f
level; see lower inset of Fig. 1. The two states of the same

spatial–spin symmetry, 13R? and 23R?, do not seem to

interact at this level, while at distances shorter than 4.5

bohr the energy ordering is the one given above and shown

in Fig. 1. Crossings of the pairs 21R? - 11R-, 23P–21P,

21R? - 13D, and 11D–11R- are observed at distances

*4.5, 5.0, 5.1, and 5.3 bohr, respectively.

3.2 ClF?

It is useful to collect at this point all we know experi-

mentally on ClF?: D0
0 = 67.43 kcal/mol (see the Sect. 1),

xe (X
2P3/2,

2P1/2) = 870 or 912 ± 30 cm-1, SO splitting

DESO = 630 cm-1, and IE[ClF(X 1R?)?ClF?(X 2P3/2)] =

12.66 eV [3]; see also Refs. [38, 39]. In comparison with

the X 1R? state of ClF, the D0
0 of ClF? is 7.1 kcal/mol

larger.

The IEs of Cl and F are 12.96763 [40] and 17.42282 eV

[79], respectively. The ground state of Cl? is 3P (3s23p4)

with the first 1D (3s23p4), second 1S (3s23p4), and third
3P(3s13p5) excited states 1.402, 3.414, and 11.57 eV

higher, respectively [71]. Thus, the adiabatic dissociation

products of the first three channels are Cl?(3P, 1D,
1S) ? F(2P). We have constructed all 12 doublets and

quartets PECs from the first channel Cl?(3P) ? F(2P),
2,4(R?, R-[2], P[2], D), all nine doublets from the second

channel Cl?(1D) ? F(2P) ? 2(R?[2], R-, P[3], D[2], U),
and the two doublets 2R? and 2P correlating with the third

channel Cl?(1S) ? F(2P), a total of 23 states. Figure 2

displays the 21 PECs correlating adiabatically with the first

two channels; the two highest PECs (2R?, 2P) originating

from the third channel are not shown (but see below).

Table 5 lists our theoretical results for the X 2P, a 4R-,

22P, and 32P states along with available experimental and

theoretical results by Dunning and coworkers [33] for the

first two states. Notice that at the same level of theory,

MRCI ? Q/A5f, the total energies of the X 2P and a 4R-

states are lower in the present calculations by 6.4 and 8.3

mEh, respectively, as compared to Ref. [33]; see Table 5.

The reason is the extended zero-order space used here; see

Sect. 2.

Fig. 2 Relative MRCI ? Q/A5f PECs of twelve (first channel) and

nine (second channel) states of ClF?. The inset displays the avoided

crossing among the 2P states
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3.2.1 X 2P

The lowest state of ClF? is certainly of 2P symmetry

correlating with Cl?(3P) ? F(2P). The vbL icon describing

the bonding of ClF? is that of the X 1R? state of ClF after

removing one electron from a 3pp atomic (or 2p molecular)

orbital of the neutral species and of course with similar

leading configurations. The calculated MRCI ? Q/A5f or

A6f (RCCSD(T)/A6f) ionization energy of ClF(X 1R?) is

IE = 12.61 (12.71) eV, in excellent agreement with

experiment (IE = 12.66 eV [38, 39]; Table 5). Recall that

IE(Cl) = 12.97 eV [40], hence the electron is removed

from the chlorine atom in ClF. According to the Mulliken

analysis, upon bonding the charge distribution is
?0.90Cl - F?0.10.

According to Table 5, the bond distance of ClF? ranges

between 1.5349 (RCCSD(T)/A6f) and 1.5367 (MRCI ?

Q/A5f) Å. Core and relativistic effects are quite small

changing slightly the bond distance and the binding energy.

At the MRCI ? Q/A5f (RCCSD(T)/A5f) core and special

relativity are responsible for drcore ? drrel = -0.0034

(-0.0031) ? 0.0018 (0.0016) Å = -0.0016 (-0.0015) Å.

Therefore, our ‘‘best’’ MRCI ? Q(RCCSD(T))/A6f bond

length is re* = 1.5357–0.0016 (1.5349–0.0015) = 1.5341

(1.5334) Å, both values in agreement with the 1.536 Å of

Ref. [33]. The experimental re value of ClF? has been

estimated to be 0.1 Å less than that of ClF(X 1R?) [32],

therefore re(expt) = 1.628–0.1 & 1.53 Å, in pleasant

agreement with the present calculated value(s).

Combined core and relativistic effects increase

(decrease) the dissociation energy De by 0.49 (0.59)

kcal/mol at theMRCI ? Q (RCCSD(T))/A5f level of theory.
Therefore, our ‘‘best’’ MRCI ? Q (RCCSD(T))/A6f dis-

sociation energy is (see Table 5), De* = 68.70 ? 0.49

(68.16–0.59) = 69.19 (67.57) kcal/mol, or D0* = 67.89

(66.21) kcal/mol for the X 2P state of ClF?. The

Table 5 Total energies E (Eh), bond distances re (Å), dissociation

energies De and D0 (kcal/mol), harmonic frequencies xe (cm
-1) and

anharmonicities xexe (cm-1), rotational vibrational coupling

constants ae (cm-1), ionization energies IE (eV), and energy

separations Te (cm-1) of the X 2P, a 4R-, 2 2P and 32P bound

states of 35Cl19F?

Method -E re De
a D0

a xe xexe ae 9 103 IE Te

X 2P

MRCI ? Q/A5f 558.99504 1.5367 68.35 67.05 911.7 5.78 5.0 12.61 0.0

MRCI ? Q/A6f 559.00034 1.5357 68.70 67.40 913.7 5.86 5.0 12.61 0.0

RCCSD(T)/A5f 559.99515 1.5358 68.10 66.78 929.5 5.58 4.8 12.69 0.0

RCCSD(T)/A6f 559.00065 1.5349 68.16 66.83 931.7 5.99 4.8 12.71 0.0

RCCSDT/A5f 558.99686 1.5365 68.08 936.6 12.66

MRCI ? Q/A5fb 558.98865 1.536 67.44 66.14 911.9

Expt. 1.53d 67.43c 870d, 912e 12.66d,e,f 0.0

a 4R-

MRCI ? Q/A5f 558.91059 1.9491 16.05a 15.50a 397.1 11.8 2.9 18,535

MRCI ? Q/A6f 558.91537 1.9475 16.10 15.54 398.5 11.9 2.5 18,649

MRCI ? Q/A5fb 558.90233 1.9745 13.59 13.07 363.2 18,945

2 2Pg

MRCI ? Q/A5f 558.86428 2.00 20.6 20.0 410 4.5 16.15 28587

Expt.h 16.39 (1)

3 2Pi

558.8574 *2.27 *16 15 *725 *16 *30,200

a Dissociation energies with respect to the adiabatic products Cl?(3P) ? F(2P) for the X 2P and a 4R- states. D0 = De - xe/2 ? xexe/4
b Ref. [33].
c See introduction and Ref. [3]. This value refers to X 2P3/2

d Ref. [39]
e Ref. [38]
f With respect to X 2P3/2

g The 22P is the lowest state correlating diabatically with the second energy channel Cl?(1D) ? F(2P). De with respect to the diabatic products

(second channel)
h Ref. [38]; IE = [E(22P) - E(X 1R?)] ? Dxe/2/MRCI ? Q/A5f
i Pseudostate; see tex
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experimental D0 = 67.43 kcal/mol given in Table 5 refers

to the X = 3/2 component of the X 2P state. Taking into

account the SO splitting of both the ClF? species and the

Cl? and F atoms, our final MRCI ? Q (RCCSD(T))/A6f
D0 value of the X

2P3/2 state of ClF
? is D0 = D0* ? 1/2 9

DEClFþ (
2P3/2 -

2P1/2) - 1/3 9 DEF(
2P3/2 -

2P1/2) -1/9 9

DEClþ (
3P0 -

3P2) - 3/9 9 DEClþ (
3P1 -

3P2) = 67.89

(66.21) kcal/mol ? {1/2 9 630 - 1/3 9 404 - 1/9 9

996 - 3/9 9 697} cm-1 = 67.42 (65.74) kcal/mol, where

experimental SO splittings have been used. In particular,

the experimental DEClFþ(
2P3/2 -

2P1/2) SO splitting is

628 ± 30 [38] or 630 ± 30 [39] cm-1, with the 2P3/2

being the lower component; the corresponding calculated

splitting is 607 cm-1. Obviously the agreement with

experiment is excellent, the difference being -0.01

kcal/mol (=-3.5 cm-1) at theMRCI ? Q level of theory, but

at the RCCSD(T) level the discrepancy is ?1.69 kcal/mol

(=591 cm-1). As previously reported, RCCSDT/A5f results
corroborate completely the RCCSD(T)/A5f values; see

Table 5.

As a final word for the X 2P state, it can be said that our

results suggest that the experimental harmonic frequency

xe is closer to 912 cm-1 rather than to 870 cm-1; see

Table 5.

3.2.2 a 4R-

This is the first excited state of ClF?, a rather dark state for

the experimentalists being spin and Franck–Condon for-

bidden; no experimental results are available. The a 4R-

state is a relatively weakly bound state, De & 16 kcal/mol,

located some 19,000 cm-1 above the X state at

re = 1.95 Å (Table 5). It arises by removing a pp electron

from the a 3P state of ClF. The bonding interaction

between Cl?(3P) ? F(2P) is captured by the following vbL

icon, analogous to that of the a 3P state (vide supra).

The leading MRCI configurations are

a4R��� � � 1r22r23r24r1½ð0:82Þ1p2x2p1x � ð0:24Þ1p1x2p2x �1p2y2p1y
��� E

�0:24 1r22r23r24r11p2x2p
1
x1p

1
y2p

2
y

��� E

very similar to the leading configurations of the a 3P (ClF)

state. A total charge of 0.15 e- is transferred from F to Cl?

according to the Mulliken analysis. The contrast of the

numerical parameters between a 4R- and a 3P (ClF) shows

clearly the analogy between these two states. Indeed, at the

MRCI ? Q/A6f level, we have (a 3P results in parenthesis):

re = 1.9475 (2.0144) Å, De = 16.10 (8.70) kcal/mol,

Te = 18,649 (18,996) cm-1; seeTable 5. The almost doubling

of De of the a
4R- state as compared to the a 3P, is due to an

extra3e- - 2cpp ‘‘bond’’ of the former; see the corresponding

vbL diagrams. Core and relativistic effects are practically

negligible in the a 4R- state. For instance, theX 2P–a 4R- gap

(Te) at the MRCI ? Q/A5f level increases by 173 and

decreases by 175 cm-1 due to core and relativistic effects,

respectively. Finally, it is interesting to observe that the

MRCI ? Q/A5f re and De values reported in Ref. [33] are by

0.025 Å larger and 2.5 kcal/mol smaller than the present ones.

Table 6 Total energies E (Eh), bond distances re (Å), dissociation

energies De and D0 (kcal/mol), harmonic frequencies xe (cm
-1) and

anharmonicities xexe (cm
-1), rotational vibrational coupling constant

ae (cm
-1), and adiabatic electron affinity EAad (eV) of the X

2R? state

of the 35Cl19F- anion

Method -E re De
a D0

a,b xe xexe ae 9 103 EAad

MRCI ? Q/A5f 559.53667 2.159 30.32 29.78 375.0 2.40 2.69 2.17

MRCI ? Q/A6f 559.54233 2.151 30.33 29.80 373.0 3.50 4.06 2.16

RCCSD(T)/A5f 559.54378 2.1643 30.14 29.62 364.0 2.62 3.00 2.26

RCCSDT/A5f 559.54389 2.1640 29.47 2.23

RCCSD(T)/A6f 559.54977 2.1644 29.82 29.30 363.4 2.51 3.08 2.26

CCSD(T)/A5fc 2.1531 378 2.25

Expt.d 2.86 ± 0.2

a With respect to Cl-(1S) ? F(2P)
b D0 = De - xe/2 ? xexe/4
c Ref. [32]
d Ref. [44]
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3.2.3 22P, 32P

These two 2P states correlate adiabatically with the first

(22P) and with the second (32P) energy channels. The

repulsive 22P state, however, suffers a severe avoided

crossing with the incoming 32P (attractive) state around

4 bohr; see inset of Fig. 2. It seems that the only experi-

mental finding relevant to this energy region is an ioniza-

tion–excitation energy in very good agreement with the

MRCI ? Q/A5f calculated value, 16.39 ± 0.01 [38] ver-

sus 16.15 eV. At this level of theory Te (2 2P /
X 2P) = 28,587 cm-1, De (D0) = 20.6 (20.0) kcal/mol

with respect to the diabatic fragments Cl?(1D) ? F(2P),

and re = 2.00 Å. In Table 5, and with a grain of salt,

results are also given for the 32P (pseudo) state.

3.2.4 Higher states of ClF?

We discussed three bound states of ClF?, X 2P, a 4R-, and

2 2P, all correlating adiabatically with the first channel

Cl?(3P) ? F(2P). The rest of the states, nine from the first

and eight from the second channels, are weakly bound or of

repulsive nature never characterized before either experi-

mentally or theoretically; see Fig. 2. The nine states split

naturally in two sheafs of five (lower) and four (higher)

states each. The symmetries of the first five states are (in

parenthesis equilibrium minima re in Å and attractive

interaction energies -DE in kcal/mol) 14D (2.48, 4.2),

14R? (2.49, 4.6), 12R- (2.65, 3.50), 12D (2.61, 3.3), and

12R? (2.68, 2.9) at a mean separation energy of �Te =

23,609 cm-1. The next four states of symmetries 14P,

22R-, 24R-, and 24P are of repulsive character but the

14P, where re = 3.27 Å and DE = -1.19 kcal/mol at

Te = 24,568 cm-1; see Fig. 2.

We now turn to the eight doublets which emerge from

the second channel. The first three at a mean �Te =

34,067 cm-1 can be considered as slightly bound, namely

22D (re = 2.35 Å, De = 6.9 kcal/mol), 32R- (2.41, 6.8),

and 22R?(2.47, 5.3). The first of the remaining five states,

42P, shows a well depth of DE = -1.3 kcal/mol at

re = 3.25 Å, while states of symmetries 12U, 32R?, 52P,

and 32D are repulsive. The last two PECs calculated at the

MRCI ? Q/A5f level of theory originate from the third

channel, Cl?(1S) ? F(2P), of 62P and 42R? symmetries;

their PECs are not shown in Fig. 2. The 42R? state is

purely repulsive, whereas the 62P interacts attractively

at re = 2.71 Å with DE = -3.8 kcal/mol and Te =

50,995 cm-1.

3.3 ClF-

Molecular anions are not easily tamed species either the-

oretically or experimentally. For an exhaustive review

referring to atomic and molecular electron affinities and the

difficulties of obtaining reliable results, see Ref. [45] and

references cited therein. As was already discussed in Sect.

1, the only structural parameter that has been measured on

ClF- is its ionization energy, or the adiabatic electron

affinity of ClF, the most recent value being EAad =

2.86 ± 0.2 eV [44], a strongly disputed number (see the

Sect. 1). For the best ab initio work so far on ClF-, we refer

to Horný et al. [32]; see also Sect. 1 and Table 6.

The EAs of Cl(2P) and F(2P) are 3.612724 ± 0.000027

[80] and 3.4011895 ± 0.0000025 eV [81], respectively.

Theoretical EAs at the MRCI ? Q (RCCSD(T))/A6f level
of theory are 3.574 (3.659) and 3.450 (3.414) eV, respec-

tively. It should be said at this place that bound excited

states (not resonances) of atomic anions are not common.

In particular, it is rather certain that there are no excited

states of Cl-(1S) and F-(1S) [82, 83], despite the high EAs

of these atoms, as a matter of fact the highest of all ele-

ments [84]. According to the discussion above, one expects

four molecular 2S?1K states of 2P and 2R? symmetry,

related to the channels Cl-(1S) ? F(2P), and Cl(2P) ?

F-(1S), the experimental energy difference between the

two adiabatic end products being DEAad = 0.212 eV.

Table 6 lists spectroscopic parameters for the X 2R?

state of 35ClF-, while Fig. 3 displays state-specific

MRCI ? Q/A5f PECs of the X 2R?, 12P and 22R? states.

The fourth 22P state, repulsive in character, is not shown

because of severe technical problems.

Fig. 3 Relative MRCI ? Q/A5f PECs of two (first channel) and one

(second channel) states of ClF-
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3.3.1 X 2R?

The ground state of ClF- correlates adiabatically with

Cl-(1S) ? F(2P). The vbL diagram, MRCI leading equi-

librium configuration, and Mulliken population distribu-

tions around equilibrium (re) and at infinity (r1) presented

below allow for a better understanding of the considerable

binding energy of the X 2R? state, De * 30 kcal/mol.

X2Rþ�� � � 0:93 1r22r23r24r11p2x1p
2
y2p

2
x2p

2
y

��� E
re : 3s

1:983p1:37z 3p1:97x 3p1:97y =Cl2s
1:982p1:59z 2p1:98x 2p1:98y =F

r1 : 3s1:993p1:95z 3p1:97x 3p1:97y =Cl2s
1:992p1:02z 2p1:99x 2p1:99y =F

Overall about 0.6 e- seems to be transferred from Cl- to F

around the equilibrium distance at the MRCI/A5f or A6f
level. However, the morphology of the PECs suggests that

due to an interaction at *9.5 bohr between the X 2R? and

22R? states, the latter correlating with F-(1S) ? Cl(2P),

*0.4 e- are transferred from F- to Cl around equilibrium.

According to Table 6, the RCCSD(T)/A6f (RCCSDT/

A5f), EAad = 2.26 (2.23) eV at re = 2.164 Å, in practical

agreement with the EAad of Horný et al. [32] who at the

CCSD(T)/A5f level predict EAad = 2.25 eV; MRCI ? Q/

A5f or A6f EAad is by 0.1 eV less. We believe that this

settles definitely the question of the EAad of ClF(X 1R?).

Using this value and the experimental binding energy of

ClF along with the experimental EA of Cl, the ‘‘experi-

mental’’ dissociation energy of ClF- is D0(ClF
-) =

D0(ClF)–[EA(Cl) - EAad(ClF)] = 60.35 kcal/mol - (3.6127

- 2.26) eV = 29.16 kcal/mol, completely consistent with

the CC results and in excellent agreement with the

MRCI ? Q results of Table 6. Thus, the recommended D0

value of the X 2R? state of ClF- is 29.5 kcal/mol. It should

be added at this point that core and relativistic effects at the

RCCSD(T)/A5f level reduce the bond distance by 0.002

and 0.001 Å, respectively. Therefore, our ‘‘best’’ bond

distance is re* = 2.161 Å.

3.3.2 12P

This state correlates with Cl-(1S) ? F(2P; M = ±1). The

congestion of four electrons in the r-frame is the cause of a

pure repulsive 12P state the MRCI ? Q/A5f PEC of

which is shown in Fig. 3.

3.3.3 22R?

The MRCI ? Q/A5f PEC of 22R? state correlates with

F-(1S) ? Cl(2P; M = 0) presenting a well depth of

0.82 kcal/mol at about 9.2 bohr; see Fig. 3.

4 Epitome and remarks

We believe that the present work is a systematic theo-

retical study of the interhalogen diatomic ClF and its ions

ClF± within the K - S ansatz. Despite the chemical

simplicity of the X2 and XX0 (X, X0 = F, Cl, Br, I)

molecules, the determination of reliable properties either

experimentally or theoretically is a daunting task. Even

for the lightest interhalogen species (ClF), the large

number of valence electrons (14), the relative weak

bonding, and the intervening spin–orbit effects create a

challenging computational milieu. Although this investi-

gation leaves much to be done for the ClF0,± systems,

particularly for the higher states, some of our results are

very accurate, some have been calculated for the first

time, and in general a wealth of new information is

enclosed in this communication useful to workers with

some interest in these systems.

Through the use of augmented quintuple and sextuple

correlation consistent basis sets, thus in essence removing

the error related to the one-electron basis set at least for the

lowest states, and multireference CI (MRCI) and single-

reference CC (RCCSD(T), RCCSDT) calculations, we

have examined a significant number of states of ClF and

ClF±. In particular, we have constructed full potential
2S?1K energy curves for all states of ClF emanating from

the first channel (12), all states of ClF? emanating from the

first three channels of Cl? ? F (23), and three states out of

four correlating with Cl-(1S) ? F(2P) or Cl(2P) ? F-(1S)

for the ClF- anion. A number of states have been corrected

for core (2s22p6/Cl), scalar relativistic, and SO effects. Size

non-extensivity errors were taken into account through the

?Q Davidson correction. The most salient features of the

present work are summarized below.

4.1 ClF

The ground state of ClF is of 1R? symmetry; MRCI ? Q

calculated (experimental) values are D0
0 = 60.35 (60.35)

kcal/mol, re = 1.6284 (1.628341(4)) Å, xe = 786.1

(783.353) cm-1, le = 0.878 (0.8881) Debye with a charge

polarity ?qCl - F-q, q = 0.25. Excellent agreement is

obtained at the CC level as well. The single r bond can be

adequately described by one configuration function;

indeed, C0j j2� 0:9.
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a 3P is the first and only within the K - S coupling

scheme bound state related to ground-state fragments. Its

binding energy is about an order of magnitude less than

that of the X 1R? state. A weak Paschen–Back effect is the

cause of the X = 2, 1, 0? (0-) components of the a 3P
state, named A0, A, and B, respectively, for historical

reasons; no name has been adopted for the 0- state. Notice

that the splitting between the 0?-0- components is very

small [3] and in the present work 3P0� ¼ 3P0. Our ‘‘best’’

MRCI ? Q calculated (experimental results referring to
3P0þ) values are De

0 = 8.75 (8.802) kcal/mol, re = 2.0145

(2.0221) Å, xe = 366.6 (362.6) cm-1, le = 1.583 D (no

experiment), and Te = 18,864 (18,825.3) cm-1. This is a

multireference state; therefore, CC calculations are not

recommended for its computation. Within the K - S

treatment, there are nine strongly repulsive PECs and a van

der Waals 11P state, the latter with an interaction energy of

less than 0.5 kcal/mol and r(vdW) = 3.31 Å at the

MRCI ? Q level.

4.2 ClF?

The ground state of ClF? is of 2P symmetry. We have

detected three K - S bound states X 2P, a 4R-, and 22P,

whereas for the latter two the experimental data are prac-

tically none.

For the X 2P state, our MRCI ? Q/A6f calculated

(experimental) values are D0
0 = 67.40 (67.43) kcal/mol,

re = 1.5357 (1.53) Å, xe = 913.7 (912) cm-1, and

IE = 12.61 (12.66) eV. CC results are in very good

agreement as well. The dissociation energy of the X 2P
state is by DD = 7.1 kcal/mol larger than that of the X 1R?

of ClF, whereas Dre (X
2P - X 1R?) = -0.093 Å.

Our MRCI ? Q/A6f results for the a 4R- state, a rather

‘‘dark’’ state for the experimentalists, areD0 = 15.54 kcal/mol,

re = 1.9475 Å, xe = 398.5 cm-1, and Te = 18,649 cm-1.

Notice also that in line with the a 3P state of ClF,

DD = 6.74 kcal/mol and Dre = -0.04 Å.

For the 22P state, our MRCI ? Q/A5f calculations

predict D0 = 20.0 kcal/mol, re = 2.00 Å, xe = 410 cm-1,

and Te = 28,587 cm-1. It is interesting that there is a

remarkable agreement with an experimental ionization–

excitation energy, 16.39 ± 0.01 eV versus 16.15 eV,

proving that the ‘‘tentative’’ assignment of the experi-

mentalists [38] is correct.

4.3 ClF-

The ground state of ClF- is of 2R? symmetry. The only

experimental datum is the (adiabatic) electron affinity EAad

[ClF (X 1R?) ? e- ? ClF-(X 2R?)] = 2.86 ± 0.2 eV,

proved to be wrong by *?0.6 eV. Our RCCSDT/A5f

[RCCSD(T)/A6f] (MRCI ? Q/A6f) = 2.23 [2.26] (2.16)

eV value, in agreement with previous CC calculations.

Clearly, our calculations converge to an EAad of

2.25 ± 0.01 eV. The MRCI ? Q/A6f predictions for this

state are D0
0 = 29.80 kcal/mol, re = 2.151 Å, and

xe = 373.0 cm-1. A charge of 0.4 e- is transferred from

the in situ F- to Cl around the equilibrium.

The four homonuclear and six heteronuclear dihalogens,

XX0 (X, X0 = F, Cl, Br, I) are of emblematic importance

for chemistry. We tried to present here a useful theoretical

account of the behavior and properties of ClF0,±, but

obviously the subject is far from being closed and further

investigation experimental and theoretical as well is clearly

needed. We hope that our future work will move toward

this direction, particularly toward the excited manifold of

these fascinating species.
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Abstract If the potential V describing the interaction

between an excess electron and a ground-state neutral or

anionic parent is sufficiently attractive at short range,

electron-attached states having positive electron affinities

(EAs) can arise. Even if the potential is not attractive

enough to produce a bound state, metastable electron-

attached states may still occur and have lifetimes long

enough to give rise to experimentally detectable signatures.

Low-energy metastable states arise when the attractive

components of V combine with a longer-range repulsive

contribution to produce a barrier behind which the excess

electron can be temporarily trapped. These repulsive con-

tributions arise from either the centrifugal potential in the

excess electron’s angular kinetic energy or long-range

Coulomb repulsion in the case of an anionic parent. When

there is no barrier, this kind of low-energy metastable state

does not arise, but improper theoretical calculations can

lead to erroneous predictions of their existence. Conven-

tional electronic structure methods with, at most, minor

modifications are described for properly characterizing

metastable states and for avoiding incorrectly predicting

the existence of metastable states with negative EAs where

no barrier is present.

Keywords Electron affinities � Metastable anions �
Electron–molecule interaction potential

1 Introduction

An electron may interact with the ground state of a parent

(neutral, cation, or anion) to produce an electron-attached

species having a lower energy than that of the parent. Such

species are said to have positive electron affinities (EAs)

and occur at discrete (i.e., quantized) energies that can be

found using bound-state electronic structure methods. In

addition, an electron can interact with the same parent to

produce a species having a higher energy than that of the

parent. In fact, there exists a continuum of such states

having energies E[ 0, where E = 0 is taken to be the

energy of the parent plus an electron infinitely far away and

having zero kinetic energy.

The full treatment of the states with E[ 0 lies within

the realm of electron–molecule scattering theory. In gen-

eral, continuum levels cannot be addressed using conven-

tional electronic structure techniques. However, for

circumstances discussed in this paper, the density of elec-

tron-plus-parent states q(E) may be concentrated in certain

energy ranges E ± dE to produce states that can be viewed

as metastable with lifetimes dt & h/dE related to the

energy range dE over which the high state density exists.

These states are characterized by energies E that are not

rigorously quantized but can be specified within ranges dE,
and they can give rise to spectroscopic features that allow

them to be experimentally differentiated from the under-

lying continuum of states. These metastable states are

associated with the negative EAs and can be identified

using conventional electronic structure codes with, at most,

straightforward modifications, but, as we demonstrate here,
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considerable care must be used to distinguish such states

with energies lying within the region E ± dE of high state

density from states belonging to the underlying continuum

whose energy can have any value E[ 0.

Within the Born–Oppenheimer picture, the electronic

stability of molecular anions depends crucially on the rel-

ative energies of the anion and neutral potential energy

surfaces at various geometries. For example, an electron-

attached species may have a positive EA at one geometry

yet be metastable and have a negative EA at another

geometry. Figure 1a depicts a case in which the anion lies

below the neutral at the neutral’s equilibrium geometry

(which gives a positive vertical EA) and lies below the

neutral at the anion’s equilibrium geometry [producing a

positive vertical detachment energy (DE)]. The adiabatic

EA, defined as the energy of the neutral at its equilibrium

geometry (the red circles in Fig. 1) minus the energy of the

anion at its equilibrium geometry (the blue circles in

Fig. 1), is positive for the case shown in Fig. 1a.

Figure 1b depicts a case where the anion lies above the

neutral at the minimum of the latter (giving a negative ver-

tical EA) and lies below the neutral at the anion’s equilib-

rium geometry (giving a positive vertical DE). Furthermore,

the adiabatic EA is negative if the energy of the anion at its

minimum lies above the energy of the neutral at its minimum

as shown in Fig. 1b. Alternatively, if the minimum of the

anion in Fig. 1b were lowered such that it lies below the

energy of the neutral at its minimum, a positive adiabatic EA

would result. Finally, Fig. 1c depicts a case in which the

anion lies above the neutral at all geometries thus producing

negative vertical and adiabatic EAs.

Anions with potential energy surfaces as depicted in

Fig. 1b and c are unstable to electron detachment, and the

plots of their energies as functions of molecular geometry

should be thought of as plots of the center of the range

E ± dE of enhanced state density. Also, the lines in such

plots should be drawn with Heisenberg widths dE that vary

with geometry. However, for visual clarity, the plots of

potential energy curves of metastable states will, through-

out this paper, be shown as simple lines.

For the case shown in Fig. 1c, the electron will undergo

autodetachment at any geometry but it may have a lifetime

long enough to allow it to produce a spectroscopic signature

that is readily detected in laboratory experiments. For the sit-

uation illustrated by Fig. 1b, in the absence of non-Born–

Oppenheimer coupling between the electronic and vibration–

rotation degrees of freedom, the electron cannot detach at

geometries where the anion lies below the neutral. However, if

vibrational motion allows the anion to access geometries

where its energy lies above the neutral, the anion of Fig. 1b can

undergodetachment, inwhich case the rate of electron losswill

depend on the rate at which such geometries are accessed.

Finally, even in the case illustrated in Fig. 1a, the anion will

become metastable if its level of vibrational or rotational

excitation places its total energy above the zero-point level of

the neutral molecule. In this case, the magnitude of vibration/

rotation–electronic couplings governs the lifetime of the anion.

Vibrationally/rotationally excited anions with potentials such

as that shown in Fig. 1a usually have much longer lifetimes

than anions with potentials as illustrated in Fig. 1c because

such non-Born–Oppenheimer coupling is usually weak.

2 The physical content of electron–molecule interaction

potentials

To appreciate what determines whether an anion’s elec-

tronic energy lies above or below that of its parent in its

ground electronic state at a particular molecular geometry,

it is important to understand the physical content of the

interaction potential V(r) experienced by an excess electron

interacting with the parent system. A rigorous basis for

Fig. 1 Qualitative depictions of AB- anion (blue) and AB neutral

(red) potential energy curves as functions of a geometrical coordinate

for three cases discussed in the text
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defining V(r) begins with the Schrödinger equation gov-

erning the (N?1)-electron wave function of the parent-

plus-electron system

Hðx; rÞWðx; rÞ ¼ EWðx; rÞ
¼ ½HðxÞ þ HðrÞ þ Uðx; rÞ�Wðx; rÞ ð1Þ

Here, H(x) is the electronic Hamiltonian containing the

kinetic energy, electron–nuclear attractions, and electron–

electron interactions for the first N electrons whose coor-

dinates collectively are denoted x; H(r) is the electronic

Hamiltonian containing the kinetic energy and electron–

nuclear attractions for the N?1st electron whose coordi-

nates are denoted r; and U(x, r) is the electron–electron

interaction potential between the N?1st electron and the

parent’s N electrons and is of the form
PN

i¼1
e2

r�xij j:

At large values of |r|, V(r) should be equal to the elec-

trostatic potential energy of interaction of a negatively

charged probe particle at r with the N-electron parent

species in its ground electronic state plus the potential

energy of interaction of the probe particle with the various

moments it induces in the parent. For example, at large |r|,

V(r) should contain the following terms:

(a) Coulomb attraction (if the parent is a cation) or

repulsion (if the parent is an anion),

(b) charge–dipole, charge–quadrupole, and higher

charge–multipole interactions,

(c) charge-induced–dipole and higher charge-induced–

multipole interactions.

In the present study, we focus on states that arise through

electron attachment to the ground state of the parent in which

case the electronic configuration Wðx; rÞ of the electron-

attached species can be qualitatively described as an anti-

symmetrized product of a wave function wðx; rÞ that is an

eigenfunction of HðxÞ þ Uðx; rÞ multiplied by a spin-orbital

/ðrÞ occupied by the excess electronWðx; rÞ ¼Awðx; rÞ/ðrÞ.
The function wðx; rÞ is the ground-state wave function of the
parent in the presence of a stationary excess electron whose

interaction with the parent is given by Uðx; rÞ
½HðxÞ þ Uðx; rÞ�wðx; rÞ ¼ EðrÞwðx; rÞ ð2Þ
E(r) is the energy of the ground-state parent as it interacts

with the stationary excess electron located at r, and A is the

antisymmetrizer operator.

In addition to the vibration/rotation-excited anions whose

electron detachment depends on non-Born–Oppenheimer

couplings discussed earlier, there is another class of meta-

stable states that arise in anions but that also is not the focus of

the present study. In these states, which are called core-exci-

ted, the excess electron is temporarily bound to an excited

electronic state of the parent. There are two types of core-

excited anion states [1]—those in which the anion lies

energetically above its parent andwhich tend to be short lived,

and those that lie energetically below their parent state, and

which can be quite long lived. Both types are discussed in Ref.

[1] using ethylene as an example, but similar states occur in

other olefins and in polyenes. In general, core-excited anions

states in which the orbitals involved in the excitation and

electron capture are valence, e.g., the p1 p*2 state of the eth-
ylene anion, are of the former type, while anions involving

excitation to and electron capture into Rydberg orbitals are of

the latter type, an example of which is the p1(3s)2 anion of

ethylene.The latter anion lies approximately 0.5 eVbelow the

parent p13s1 Rydberg state for ethylene, and its autodetach-

ment involves a two-electron process in which one electron is

ejected from the 3s orbital, while another electron relaxes

from the 3s orbital into the p orbital. The lifetimes for

undergoing such two-electron events are often significantly

longer than those for tunneling through the barriers arising in

the states of primary interest here.

2.1 Electrostatics, polarization, antisymmetry,

and orthogonality

It is possible to use perturbation theory to reduce the

solution of Eq. (1) to an equation to be solved for the spin-

orbital characterizing the excess electron. This results in an

equation of the form

½HðrÞ þ EðrÞ � E�/ðrÞ

�
XN
i¼1

Z
w � ðx; rÞUðx; rÞwðri; rÞ/ðxiÞdxþ VrepðrÞ/ðrÞ

¼ 0 ð3Þ
H(r) contains the kinetic energy of the excess electron plus

the electron–nuclear Coulomb interactions of this electron.

E(r) is, as explained earlier, the energy of the ground-state

parent in the presence of a stationary excess electron at

r. E(r) can be expressed as the energy E0 of the parent in

the absence of the excess electron plus the sum of elec-

trostatic Ves(r) (e.g., Coulomb, permanent dipole, perma-

nent quadrupole) and induced Vind (r) (e.g., dipole

polarization, quadrupole polarization) interactions between

the parent and the stationary electron as well as contribu-

tions describing non-adiabatic energies Vnon-ad(r) arising

from the finite kinetic energy of the excess electron [2–4].

The terms in the sum in Eq. (3) are the exchange contri-

butions, collectively referred to as Vexch(r) arising from the

antisymmetry of the (N ? 1)-electron wave function.

Finally, Vrep(r) is a repulsive potential arising from the

constraint that the excess electron’s spin-orbital be

orthogonal to the parent’s wave function. In its simplest

form in which E(r) is approximated by Hartree–Fock (HF)-

level electrostatic interactions, Eq. (3) describes the static-
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exchange approximation in which /ðrÞ is equivalent to an

unoccupied (i.e., virtual) HF orbital.

By combiningVelectrostatic(r) ? Vinduced(r) ? Vnon-ad(r)?

Vexchange(r) with Vrep(r), we obtain a one-electron potential

V(r) that combines with H(r) to yield an equation to be

solved for the excess electron’s spin-orbital

½HðrÞ þ VðrÞ � E�/ðrÞ ¼ 0 ð4Þ
The eigenvalues E in Eq. (4) specify the energies of the

electron-attached species relative to the parent at a fixed

geometry of the molecule. Negative values of E correspond

to bound states, and positive values to unbound states. For

bound states and metastable states, E is equal to minus the

EA. Equation (4) has served as the basis for developing

several one-electron models for describing excess electrons

interacting with water clusters and other systems [5]. We

now turn our attention to the features of the total potential

V(r) that combine with H(r) to determine when either a

positive EA or a metastable state can be expected.

2.2 Centrifugal potential contributions

For temporary anions with Born–Oppenheimer potential

energy surfaces lying above the corresponding neutral’s

surface (as in Fig. 1c), the attractive components in V(r)

are not strong enough to produce a negative eigenvalue E

in Eq. (4). In such cases, it is important to consider whether

the repulsive angular momentum centrifugal potential

arising from the kinetic energy operator � �h2

2m
r2

r can

combine with V(r) to produce an effective radial potential

Veff(r) having a barrier behind which the excess electron

can be temporarily trapped. It is through such a combina-

tion of repulsive and attractive potentials that low-energy

metastable anion states often arise, with the barrier and

well behind it generating a high density of states in certain

energy ranges.

To illustrate, consider the specific examples of placing

an excess electron into the lowest unfilled valence orbital

of N2, H2, H2O, or CO2. In the case of N2, the lowest empty

valence orbital is of pg symmetry, which has a dominant

component of angular momentum corresponding to the

quantum number L = 2 (referred to as a d-wave in the

language of electron scattering theory). The
LðLþ1Þ�h2

2mr2
cen-

trifugal potential combines with V(r) to produce an effec-

tive potential that has sizable (*8 eV) barrier, which

results in an N2
- anion that lives long enough to display

resolvable vibrational structure in the total cross section for

electron scattering even though it is unstable with respect

to N2 plus a free electron [6]. For H2, the lowest unoccu-

pied valence molecular orbital (LUMO) is of ru symmetry

and is dominated by an L = 1 (p-wave) component. This

results in a lower angular momentum barrier (through

which the electron must tunnel to escape) than in N2
- and

hence a shorter anion lifetime. As a result, H2
- appears as a

broad resonance lacking resolvable vibrational structure in

the electron scattering cross section [7].

In the case of H2O, the lowest antibonding O–H rg*
valence orbital is of a1 symmetry and has a large L = 0

component. As a result, there is no barrier behind which the

excess electron can be trapped, and thus the corresponding
2A1 state of H2O

- is not detected experimentally. Essen-

tially, the a1 rg* valence orbital has dissolved in the con-

tinuum of a free electron plus the neutral molecule. Later,

we will demonstrate theoretical tools for handling the

metastable states of N2
- and H2

- and for avoiding incor-

rectly predicting a low-energy metastable 2A1 state of

H2O
- to exist. It should be pointed out that there are

metastable 2A1 states of H2O
-, but these states lie at higher

energies and have orbital occupancies (e.g., 1a1
2 2a1

2 1b2
2 3a1

1

1b1
2 4a1

2) in which an occupied orbital of H2O is excited and

the excess electron is attached to an excited orbital. That is,

they are of the core-excited variety mentioned earlier and

are not the kind of low-energy metastable states we are

focusing on.

Whether an anion is stable or metastable can also

depend on the geometry of the molecule. For example, the

lowest-energy unoccupied valence orbital of CO2 at the

linear equilibrium structure is of pu symmetry and thus

has a nonzero centrifugal potential. As a result, a meta-

stable anion results from electron capture into this orbital

as can readily be detected in electron scattering mea-

surements (with a peak in the cross section near 3.8 eV)

[8]. However, when CO2 is bent, the in-plane component

of the pu orbital acquires a1 symmetry, which introduces

an L = 0 component and lowers the centrifugal barrier

and thus the anion’s lifetime. The fraction of L = 0

character increases with increased bending, and it has

been concluded that a metastable state having a lifetime

long enough to be detectable occurs only for OCO angles

[165� [9].

2.3 Differential electron correlation and problems

with Hartree–Fock and DFT

There are often substantial (1–2 eV) differences between

the correlation energy of a bound or metastable valence-

type anion and its neutral parent. In fact, the correlation

contribution to the electron binding is often of the same

order of magnitude as the EA itself, so inclusion of electron

correlation effects is essential for accurately characterizing

these anion states. It is possible for the correlation energy

of the parent to be larger than that of the anion, for

example, in cases where the excess electron attaches to a

vacant valence spin-orbital that contributes strongly to
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electron correlation in the parent. The occupancy of this

spin-orbital in the anion then excludes it from being used to

correlate the anion’s electrons thus reducing the anion’s

correlation energy. For example, in olefins, the parent’s

two electrons occupying p orbitals derive much of their

correlation energy through double excitations of the form

p2 ? p*2. If the p* orbital is occupied to form the anion,

the two electrons occupying the p orbital can no longer use

the p2 ? p*2 excitation to gain correlation energy. How-

ever, it is more common for the anion to have considerably

larger correlation energy than its parent neutral. In either

case, it is important to include correlation effects because

they often contribute a very significant percentage of the

electron-binding energy.

Finally, it should be noted that in many cases, density

functional theory (DFT) methods using standard GGA

functionals such as B3LYP and PBE overbind anion states

and can thus predict a stable anion when, in fact, the anion

is metastable or there is not even a metastable anion. For

example, DFT calculations performed with a flexible basis

set incorrectly predict that CO2 in its linear structure has a

bound 2Rg
? anion. This is less of a problem when using

range-separated DFT methods [10] that have the correct

long-range exchange interaction.

2.4 Variational collapse is a problem to be overcome

When electron correlation is ignored and the anion is

treated within HF theory, a phenomenon known as varia-

tional collapse can plague the calculation as we now

illustrate. For the reasons explained above, a HF-level

treatment of an anion whose parent actually has a positive

EA may (incorrectly) predict the anion to lie above the

parent if the anion’s correlation energy exceeds that of the

parent. In such a situation, the HF wave function of the

anion will collapse to a function describing the parent plus

an approximate continuum function for the excess electron

if the atomic orbital basis set has sufficiently diffuse

functions in it. This happens because, within the variational

HF calculation, a lower energy is achieved by forming a

wave function with the N ? 1st electron in an orbital that is

infinitely removed from the parent. Only by properly

including the correlation energy of the excess electron will

the energy of the anion be adjusted to lie below the energy

of the parent.

It is tempting to try to avoid this variational collapse

by limiting the basis set’s radial extent thus not allowing

the N ? 1st electron to escape. However, as we discuss

in great detail in this paper, although this approach

produces a HF state in which the excess electron remains

attached to the parent, this (N ? 1)-electron HF wave

function cannot be trusted to offer a reasonable zeroth-

order function to subsequently use in a correlated

calculation. The central issue is how to limit the basis

set’s radial extent in a way that generates an N ? 1st

orbital that, once electron correlation effects are added to

the potential the excess electron experiences, produces a

correct description of the bound excess electron. Arbi-

trarily limiting the basis’ radial extent is not a correct

approach, but the so-called stabilization methods we

discuss later are.

Analogous variational collapse issues also plague

calculations when attempting to identify metastable

electron-attached states, even when including electron

correlation effects. For example, for the case illustrated

in Fig. 1c, a straightforward application of traditional

electronic structure methods (even correlated methods) to

the anion is guaranteed, when using a radially flexible

basis set, to collapse onto the neutral plus an approxi-

mate continuum function. As discussed later, researchers

have developed a variety of methods, including the sta-

bilization method [11, 12] and the coordinate rotation

method [13], for avoiding the variational collapse prob-

lem when the electron-attached species is metastable, and

much of the latter part of this paper is dedicated to

illustrating how to use these tools within conventional

electronic structure codes.

As noted above, a HF-level description may, because of

the differential correlation energy, predict a negative EA

for a species that is actually bound. In such cases, if the

(N ? 1)st HF orbital has resulted from variational collapse,

using it to form a (N?1)-electron wave function as a

starting point for subsequent MPn or coupled cluster

treatment of electron correlation is problematic. So, even

though CCSD(T) often captures a large percentage of the

correlation energy, if the initial approximation to the wave

function has the variationally collapsed HF orbital occu-

pied, even this powerful technique cannot be trusted. It is

essential that the orbital occupied by the excess electron

offer a reasonable approximation to the (N?1)-electron

wave function if correlated methods that use this function

as their starting point are to be trusted. If the stabilization

methods discussed later are used to form an initial (N?1)-

electron wave function, then subsequent MPn or coupled

cluster treatment of electron correlation will likely be

reliable.

There are methods such as Green’s function [14] or

EOM-CCSD [15] theory that can be especially useful in

such problematic cases because their working equations

can be cast in a way that does not depend on the

qualitative correctness of the HF orbitals. Not only do

Green’s function and EOM methods provide a route for

calculating EAs but they also give descriptions of the

electron–parent interaction potential that can supplement

the perturbation theory approach with V(r) mentioned

earlier. Both theories can be cast in a form [16] in which
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the EA is obtained as an eigenvalue of a one-electron

energy-dependent Hamiltonian whose matrix elements

account for the excess electron’s kinetic energy, its

attractions to the parent’s nuclei, its electrostatic and

induced interactions with the parent’s electron density,

and the fact that the excess electron is indistinguishable

from the parent’s electrons (i.e., antisymmetry). The

eigenfunctions of these one-electron Hamiltonians are

called Dyson orbitals and are closely related to the /ðrÞ
that we described above.

Having introduced many of the concepts and issues that

arise when treating electron-attached species, we move on

to address the primary purpose of this paper. It is to present

approaches capable of distinguishing between metastable

anions arising in regions of enhanced state density and the

underlying continuum of states and to offer guidance about

how to characterize the former. Before discussing these

issues, it will prove useful to examine several illustrative

systems to show how the electron–molecule potential and

angular momentum play key roles in determining whether

the electron-attached state is stable or metastable. In Sect.

3, we describe the potentials V(r) and effective potentials

Veff(r) that govern the interaction between an electron and a

cation, neutral, or anion, and we illustrate features of these

potentials that produce bound or metastable states. Several

examples from the recent literature are used to illustrate the

diverse behavior arising in these systems. In Sect. 4, we

discuss theoretical tools to focus on metastable electron-

attached states. Section 5 provides a summary of the main

points.

3 Comparing electron–cation, electron–neutral,

and electron–anion interaction potentials

As explained in Sects. 1 and 2, the ability of an atom or

molecule to bind an extra electron is governed by the

potential V(r, h, /) between the electron and the atom or

molecule. This potential depends on the location (given by

the variables r, h, and /, denoted collectively as r) of the

electron and on the electrostatic moments and polariz-

abilities of the underlying parent atomic or molecular

species. In Fig. 2, we give qualitative depictions of the

radial behavior of V(r, h, /) for three cases:

1. Interaction of an electron with a cation of charge Z to

form a species with charge Z - 1, which relates to the

formation of a neutral species if Z = 1 or to formation

of a cation of lower charge if Z[ 1.

2. Interaction of an electron with a neutral parent to form

a singly charged anion.

3. Interaction of an electron with an anion of charge

-Z to form an anion of charge -Z - 1; if Z = 1, this

corresponds to forming a dianion from a mono-anion.

3.1 The electron–neutral case

As illustrated in Fig. 2, the depth of the outer region

potential well appropriate for an electron interacting with a

neutral atom or molecule is less deep than that associated

with the electron–cation interaction. The depth of the well

depends on the balance between the attractive and repul-

sive contributions to V(r, h, /). The spatial range and

strength of the repulsive contributions are determined by

the sizes and shapes of the parent’s occupied orbitals. The

relative depths of the potential wells are determined largely

by the strength of the long-range attractive components of

V(r, h, /).
The large-r asymptotic form of the polarization potential

varies as -a/2r4, where a is the molecular polarizability

(assuming that it is isotropic). If the molecule has a per-

manent dipole, the corresponding electrostatic interactions

dominate over the polarization interaction at sufficiently

large r. For the range of multipole moments and polariz-

abilities found in most molecules, the charge–multipole

and charge–polarization attractions are not as strong as the

Coulomb attraction present in the electron–cation case.

This is why the electron–cation well depth almost always

exceeds the well depths for electron–neutral or electron–

anion systems and is the primary reason behind the

observation that electron affinities (EAs) are nearly always

smaller than ionization potentials (IPs).

In addition to having a potential well less deep than for

electron–cation cases, the fact that the electron–neutral

potential varies at large-r as r-n with n C 2 gives rise to a
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Fig. 2 Qualitative depiction of effective potentials associated with an

excess electron interacting with a cation, a neutral, or an anion as a

function of the distance between the electron and the parent species
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qualitative change in the pattern of bound quantum states

existing in such wells. It can be shown that, within the Born–

Oppenheimer approximation, any species having a perma-

nent dipole moment in excess of 1.625 D has an infinite

number of bound states into which an excess electron can

attach [17–21]. However, in practice, due to Born–Oppen-

heimer corrections, unless the dipole is very large, only the

lowest of these states is significantly bound and then only if

the dipole moment is in excess of ca. 2.5 D.

To summarize, the strong electron–cation Coulomb

attraction at large-r gives rise to a deep potential well sup-

porting an infinite progression of bound electronic states for

an electron interacting with an atomic or molecular cation.

These bound states often provide useful spectroscopic fin-

gerprints for studying cation or neutral species because their

energy spacings fall in the visible or ultraviolet regions

where high-resolution and high-sensitivity light sources and

detectors can be employed. In contrast, electron–neutral

potentials have shallower wells and produce few, if any,

significantly bound states. Moreover, even when bound

excited anion states occur, their electronic excitation ener-

gies often lie in ranges where light sources and detectors are

not routinely available or are of low sensitivity. Therefore,

spectroscopic probes based on accessing bound excited

states are generally not feasible for anions, although photo-

electron spectroscopy, which requires only one bound or

long-lived state, is a powerful tool.

3.2 The electron–anion case

For an electron interacting with a negative ion of charge

-Z, there is a long-range Coulomb repulsive Ze2/r contri-

bution to V(r). This contribution alters the energy land-

scape in two ways: (1) it generates the long-range repulsive

Coulomb barrier (RCB) shown in Fig. 2, and (2) it shifts

the electron–neutral potential upward in energy even

within the regions occupied by the parent’s valence and

inner-shell orbitals. Given what was said earlier about the

shallowness of electron–neutral potential wells, it should

therefore come as no surprise that multiply charged anions

usually have only one or no bound state. As we now

illustrate, such species can also have metastable states

whose lifetimes depend on the height and thickness of the

RCB.

In Fig. 3, we show the molecular structure of copper

phthalocyanine, 3,40,400,4000-tetrasulfonate [CuPc(SO3)4]
4-

in which the tetradentate phthalocyanine ligand has four

negatively charged sulfonate groups attached to its

periphery and a copper atom at its center. To illustrate the

range of electron-attached states that can arise in such a

species, we discuss the results of photo-electron spectros-

copy experiments [22].

If the four sulfonate groups are rendered neutral and the

resulting complex is subjected to photo-electron spectros-

copy, it is found that the complex has an IP of 6.3 eV (the

Cu-centered electron is detached). In contrast, if one of the

four sulfonate groups is neutralized and the resulting triply

charged anion is studied, it is found that the system has a

DE of 1.2 eV [22]. However, when photons with energy

only slightly higher than 1.2 eV are used, essentially no

photo-electrons are ejected. Once the photon energy

reaches 3.7 eV, ample electron detachment is observed and

the kinetic energy of the ejected electrons is found to be ca.

Fig. 3 Copper phthalocyanine complex with four sulfonate groups

(from Ref. [22])

Fig. 4 Qualitative depiction of electron–parent interaction potential

showing RCB and electron-binding energies for uncharged (a), triply
charged (b), and quadruply charged (c) systems (taken from Ref. [22])
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2.5 eV. It is by subtracting the kinetic energy of the elec-

trons from the photon energy that we know the threshold

detachment energy is 1.2 eV for this triply charged anion.

As suggested in Fig. 4, the height of the RCB for this triply

charged anion is 2.5 eV, which is why no photo-electrons

are detected at photon energies below 3.7 eV.

When the quadruply charged anion having four sulfo-

nate groups is studied, it is found that very few electrons

are detached with photons having energy less than 3.5 eV.

However, for photons with energy slightly greater than

3.5 eV, ample electron ejection occurs and electrons hav-

ing kinetic energies of ca. 4.4 eV are detected. That is, the

ejected electrons have higher kinetic energy than the

energy of the photons used to eject them! This indicates

that the system has a negative detachment energy value of

-0.9 eV as shown in Fig. 4.

For the purposes of the present paper, the most impor-

tant thing to note is that the RCB that arises in such mul-

tiply charged anions can not only lower DE values for

bound electronic states but can also generate metastable

states that have negative DE values, but live long enough to

be experimentally detected.

3.3 More examples of metastable states

In the example just discussed, the presence of the RCB

generates a potential that can bind the extra electron behind

the RCB. As discussed earlier when we treated electrons

interacting with N2, H2, and CO2, there are also situations

in which the repulsive centrifugal potential generates a

barrier in the effective potential that can temporarily bind

an electron. To develop these ideas in more detail, let us

consider a neutral Mg atom in its ground 1S state inter-

acting with an extra electron. Here, the electron atom

potential V(r,h,/) depends only on the radial coordinate

r describing the distance of the electron from the Mg

nucleus although the centrifugal component of the related

effective potential Veff also depends on the angular

momentum L of the excess electron.

For this electron Mg example, V(r) has a sizeable

attractive component because of the significant polariz-

ability of the Mg atom, and, when applied to s or p orbitals,

it also has a short-range repulsive contribution to account

for orthogonality to the Mg atom’s occupied s and p orbi-

tals. Figure 5 depicts V(r) and the effective potential

Veff(r) for a nonzero value of L.

When considering the possibility of an electron binding

to the Mg atom, one needs to specify the symmetry of the

electron-attached state being studied. For example, we

consider the possibilities of forming a 3s23p1 2P or a 3s24s1

2S state. In the former case, the angular quantum number

associated with the extra electron is L = 1; in the latter,

L = 0 applies.

As it turns out, the e--Mg potential is not sufficiently

attractive to support a bound state in any angular momentum

channel. Thus, the 3s24s1 2S state is not bound, and it is not

metastable because there is no angular momentum barrier to

trap the electron. However, the combination of the attractive

V(r) and the repulsive centrifugal potential
�h2LðLþ1Þ

2mr2
produces

an effective potential Veff(r) that can temporarily bind an

electron to form a metastable 3s23p1 2P state and is readily

detected in electron scattering experiments (the anion is only

0.15 eV above the ground state of the neutral [23]). The

energy level and the dominant component of the radial wave

function of this metastable state are depicted in Fig. 5. In

Sect. 4, we will describe how one identifies this metastable

state computationally and how one should avoid incorrectly

predicting that the 3s24s1 2S Mg- state is metastable.

The wave function of the metastable 2P Mg- state has

three distinct components: (1) it has a major lobe whose

peak is located in the region of the minimum of Veff(r); (2)

in the tunneling region where the energy of this state lies

below Veff, it decays exponentially with increasing r; and

(3) at larger r, where the energy of the state lies above Veff,

it displays sinusoidal variation with a de Broglie wave-

length that characterizes the ejected electron’s momentum.

Of course, the wave function also has smaller-r compo-

nents but we do not show these in Fig. 5. As detailed in

Sect. 4, a proper description of the wave function in all

regions is essential to achieving a full description of such

metastable-state wave functions and their energies.

Unlike the Mg case just discussed, Ca has a large

enough polarizability to cause its electron atom potential

V(r) to be sufficiently attractive to produce a 4s24p1

r
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Fig. 5 Electron Mg atom potential V(r) in black and effective

potential Veff(r) in red for a nonzero value of L. The radial wave

function for the 3p orbital producing the 3s23p1 2P temporary anion is

also shown
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2P anion state [24] that is bound by 0.025 eV. The relevant

effective potential Veff(r) is described qualitatively in

Fig. 6. In addition, Ca- has a metastable 2D state at

0.7–1.0 eV [25, 26].

In the bound 4s24p1 2P state of Ca-, the wave function

has a lobe with its maximum near the minimum of Veff, and

an exponentially decaying component in the region where

Veff is above the state’s energy. However, the wave func-

tion of this bound state lacks an asymptotic sinusoidal

component, which distinguishes it from the wave function

of the 2P metastable state of Mg- discussed above.

It is worth noting that the Ca atom does not form a bound

4s25s1 2S anion even though it forms a bound 4s24p1

2P state. The failure of Ca- to have a bound 2S state is due to

the fact that the excess electron’s 5s orbital has to be

orthogonal to the 4s, 3s, 2s, and 1s orbitals, while the 4s24p1

2P state’s 4p orbital needs to be orthogonal to only the

3p and 2p orbitals. This offers a nice example of how

orthogonality constraints contribute to the total electron–

parent potential and thus affect the electron-binding energy.

In summary, an electron interacting with an alkaline

earth atom may have a positive EA if Veff has a sufficiently

deep well as it does for 4s24p1 2P Ca- but not for

2s22p 2P Be-, 3s23p1 2P Mg-, 4s25s1 2S Ca-, or 3s24s1

2SMg-. Moreover, the 2s22p1 2P Be-, 3s23p1 2P Mg-, and

4s24d1 2D Ca- states exist as observable metastable states;

however, the corresponding 2S anionic states are not

metastable because the potentials are not sufficiently

attractive to support a bound state and there is no centrif-

ugal barrier to radially constrain the extra electron.

4 Theoretically characterizing anions or multiply

charged anions having negative EAs

As explained in Sects. 2 and 3, a ground-state parent’s

electron-attached state can be metastable when the under-

lying parent neutral or anion presents to the approaching

electron a potential V(r) that is sufficiently attractive to

combine with either a nonzero centrifugal potential (in the

case of a neutral parent) or the repulsive Coulomb com-

ponent of V(r) (for an anion parent) to generate an effective

potential that can bind the extra electron inside the cen-

trifugal or Coulomb barrier. When there is no barrier

present, such metastable states do not arise.

So, how does one find the metastable states and charac-

terize their energies and lifetimes? Let us assume that one is

carrying out a conventional electronic structure calculation

on a system comprised of an extra electron interacting with

either a neutral whose LUMO has nonzero angular

momentum (and thus produces a centrifugal barrier) or

anionic parent (whose RCB generates the barrier). Further-

more, let us assume that the methods being used allow one to

calculate many approximate eigenvalues of the associated

Schrödinger equation (e.g., within HF-based Koopmans’

theorem [27] by using minus the energies of unoccupied

orbitals to approximate the EAs or within configuration

interaction (CI) theory by finding several eigenvalues of the

N?1-electron CI Hamiltonian matrix and subtracting them

from the CI energy of the parent). Because such approaches

utilize a finite atomic orbital basis set (which we will denote

{vJ(r, h, /); J = 1, 2,… N}), the HF orbital energies {eJ} or
CI eigenvalues {EK} will be finite in number.

Because we anticipate that a true metastable state’s

wave function must contain a substantial component inside

the barrier as well as a tunneling-range part and a large-

r component that radially oscillates with a de Broglie

wavelength indicative of the extra electron’s asymptotic

momentum, let us assume that the atomic orbital basis set

consists of

1. inside-barrier and tunneling-range functions {vJ(r, h,
/); J = 1, 2,… n} typical of a high-quality electronic

structure calculation on the parent neutral or anion,

augmented by

2. a set of functions {vJ(r, h, /); J = n ? 1, n ? 2,…N}

that are radially more diffuse and are designed to be

combined to produce functions that can oscillate

radially with de Broglie wavelengths in a range that

we anticipate might characterize the extra electron’s

asymptotic momentum.

Fig. 6 Schematic of electron Ca atom effective potential (black) for

L = 1 (without the centrifugal term) and the effective potential

including a centrifugal potential with L = 1 (red)
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The primary difficulty that arises when one uses any of

the approaches noted above can be illustrated using the

plots of Fig. 7 where the inside-barrier and large-r compo-

nents of the effective radial potential experienced by the

extra electron are depicted qualitatively in black for a sit-

uation in which the limited basis set generates only a few

low-energy states having E[ 0.

Using a modest basis set, one might find among the four

lowest eigenvalues (i.e., by either subtracting CI eigen-

values of the electron–parent system from the CI energy of

the parent or using the negative of the HF unoccupied

orbital energies) for this simple example

1. A lowest eigenvalue (denoted by the yellow horizontal

line in Fig. 7) whose wave function (also in yellow)

has little, if any, inside-barrier component and is

dominated by a long de Broglie wavelength function

existing at large-r but extending outward only as far as

the most diffuse atomic basis function in {vJ(r, h, /);
J = n ? 1, n ? 2,… N} allows;

2. a higher-energy eigenvalue (black) whose wave func-

tion also has little inside-barrier component, exists

primarily at large-r, but has a somewhat shorter de

Broglie wavelength than the first eigenfunction;

3. an eigenvalue (red) whose wave function has both a

large inside-barrier component and an oscillating

large-r component whose de Broglie wavelength gives

the asymptotic momentum of the extra electron.

4. a fourth eigenvalue (blue) of even higher energy whose

wave function is similar in character with the wave

functions indicated by yellow and black curves but has

a shorter de Broglie wavelength.

The wave function shown in red and its energy corre-

spond to the metastable state. The yellow, black, and blue

curves describe the extra electron with various asymptotic

kinetic energies encountering and reflecting off of the

barrier on the electron–parent effective potential. It is

important to note that the metastable state of interest is by

no means the lowest-energy state. Moreover, as more and

more diffuse basis functions are utilized in the calculation,

there is an increasing number of continuum-dominated

states lying below (and above) the resonance state.

It might seem possible to simply carry out a conven-

tional quantum chemistry calculation with a reasonable

number of diffuse basis functions and visually examine the

inside-barrier, tunneling, and asymptotic character of many

of the resulting wave functions to find the metastable state.

However,

1. when studying electrons interacting with large mole-

cules, it is extremely difficult to examine pictorially a

large number of the low-energy wave functions of the

electron–parent system, and, more importantly,

2. one often finds that two or more of the eigenfunctions

possess substantial components of inside-barrier, tun-

neling, and asymptotic character. Obviously, a method

is needed that can isolate the correct state when mixed

states occur.

4.1 The orbital exponent stabilization method

The so-called stabilization method [11, 12] provides a

means of identifying the resonances. There are multiple

variants of the stabilization method, and here, we consider

only the exponent scaling approach where the radial

character of the diffuse basis functions is tuned by scaling

their orbital exponents. If the (N–n) diffuse functions

{vJ(r,h,/); J = n ? 1, n ? 2,…N} are of Gaussian form,

the scaling is accomplished by multiplying each of

their orbital exponents by a positive scaling factor a
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Fig. 7 Effective radial potential

(black) and wave functions of

four states of the electron–

parent system including a

metastable state whose energy

and wave function is shown in

red and electron–parent

collision events whose wave

functions are shown in yellow,

black, and blue
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(i.e., f ! af) ranging from less than 1.0 to larger than 1.0

(the range of a-values necessary to realize the avoided

crossings discussed below varies from case to case;

sometimes it can be from 0.9 to 1.2, and other times it can

be from 0.5 to 1.5).

In a stabilization study in search of metastable states for

electron–neutral or electron–anion systems, one carries out

a series of calculations for different a values for the

approximate EAs using a specified set of valence and dif-

fuse atomic basis functions. In each such calculation, one

generates approximations to several (four in the example

shown in Fig. 7) approximate EAs. One then plots the

lowest several approximate EAs as functions of this scaling

factor and obtains a stabilization plot such as that depicted

in Fig. 8.

The eigenvalues associated with continuum levels

move upward in energy as a is increased because

increasing a contracts the radial extent of the diffuse

functions, in effect reducing the radial ‘‘box size’’ that

confine the functions. However, if a metastable state

exists, one also finds a series of avoided crossings as

seen in Fig. 8. This behavior results from the coupling of

(1) one state that, in a diabatic sense, contains primarily

inside-barrier and tunneling-range components and whose

energy is relatively insensitive to a to (2) other states

having nearly the same energy but containing primarily

large-r oscillatory character. One can estimate the energy

of the metastable anion state as the average of the

energies of the two states undergoing avoided crossing at

the value of a where their energy gap is smallest. Such

metastable states are often called resonance states.

In the example shown in Fig. 8, there is more than one

avoided crossing near EA = -1 eV. A series of avoided

crossings is generated as increasing a radially constrains all

of the diffuse basis functions. To successfully carry out this

kind of stabilization calculation, one does not need to use a

basis with a large number of diffuse functions that leads to

several avoided crossings. In general, it is adequate to

employ a basis capable of generating only one large-r-

dominated function that undergoes an avoided crossing

between the inside-barrier and tunneling-range functions as

a is varied.

In Fig. 9, we show a stabilization plot obtained from

EA-EOM-CCSD [15] calculations on an excess electron

interacting with a H3C–CN molecule, within C3v symmetry

with the two carbon atoms and one nitrogen atom on the z-

axis, for states of e symmetry (chosen because the valence

p* orbital is of this symmetry). The basis set used to obtain

these data was of 6-31?G* [28] quality with an additional

set of diffuse 2s and 2p functions employed on the heavy

atoms. The exponents of these supplemental s and p func-

tions (0.0146 on C and 0.0213 on N) and of the most dif-

fuse p functions in the 6-31?G* basis were simultaneously

scaled.

In this system, the stabilization plot predicts there to be

one metastable state with a negative EA of about -4 eV

and another around -8 eV. By examining the character of

the occupied orbitals in these two states (i.e., plotting the

orbitals), we find the wave function for the lower energy

resonance has significant weight from the C 	 N p*
valence orbital, whereas the higher-energy resonance is

associated primarily with the electron being attracted to the

dipole moment’s positive regions near the methyl group. It

should be mentioned that CH3CN also has a dipole-bound

state having E\ 0 (that we have not treated here), so this

species displays both bound and metastable valence anio-

nic states.

Orbital Scaling Parameter !

Resonance state energy

E
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Fig. 8 Example of a stabilization calculation plot showing four

E[ 0 eigenvalues as a function of the orbital scaling parameter a,
illustrating the avoided crossings that result due to the presence of a

metastable state
Fig. 9 Stabilization plot of the EA-EOM-CCSD energies (n.b., the

EAs are minus the energies at which avoided crossings occur) for ten

states of e symmetry (L = 1; M = ±1) for CH3CN ? e; the energies

are given relative to that of the parent CH3CN molecule
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4.2 Lifetime estimates

From the avoided crossing in a stabilization plot, it is also

possible to estimate the lifetime s of the metastable state or

the rate at which this state undergoes autodetachment

Rate ¼ 1

s
ð5Þ

if tunneling through the barrier is the rate-determining

factor as it is for the anion states treated in this paper. To do

so, one finds the minimum in the energy splitting (see

Figs. 8, 9) that occur at the avoided crossings of the

stabilization plot and uses the Heisenberg relation

dE � h

s
ð6Þ

with dE taken as 1/2 the minimum splitting, to determine s.
For example, the resonance at ca. 4 eV in Fig. 9 has

dE & 0.2 eV, which corresponds to a lifetime of ca.

2 9 10-14 s. It is clear from Fig. 9 that the splitting value

is not the same at each avoided crossing of the resonance

near 4 eV, so there clearly is uncertainty in the lifetime

thus deduced, but this is one of the simplest routes for

estimating such decay rates of metastable electron-attached

species. A more rigorous approach is to analytically con-

tinue the calculated energies into the complex plane and to

identify the complex stationary point [29] at which

qE/qa = 0. A good example of applying this kind of

stabilization method to N2
- and Mg- is given if Ref. [30].

4.3 The charge stabilization method

There is another stabilization-based method for estimating

the energies of metastable states that is even more

straightforward to implement than the exponent scaling

stabilization method outlined above. Its potential for effi-

ciency derives from the fact that it does not require the

evaluation of two-electron integrals at numerous a-values,
which the orbital scaling method does. It involves only

modification of the one-electron components of the elec-

tronic Hamiltonian. We illustrate this so-called charge

stabilization method [31] using the sulfate dianion SO4
2-

as an example. Here, we anticipate either being able to bind

an electron to the SO4
1- ion (if the attractions are strong

enough) or being able to form a metastable dianion in

which the electron is trapped behind the RCB of the SO4
1-

anion.

Our goal is to compute the EA for binding a second

electron to the SO4
1- anion to form the sulfate ion, and let

us assume we know the equilibrium S–O bond length of

this dianion. A straightforward calculation (e.g., using HF,

CI, or other ab initio approach) finds that there is no state of

the dianion that lies below the energy of the SO4
1- ion.

That is, we find that sulfate is not electronically stable as an

isolated species. So, we are faced with finding a metastable

state of the sulfate dianion in which the RCB or a cen-

trifugal potential traps the electron.

One could, of course, carry out an exponent scaling

stabilization calculation on this system much like we

described earlier. Alternatively, one can do the following:

1. Increase the nuclear charge of the sulfur atom from 16

to 16 ? dq using a series of fractional positive values

of dq. If dq were allowed to assume the value 1.0, one

would be studying the ClO4
1- system (at the geometry

of SO4
2-) rather than SO4

2- and ClO4 is known to have

a positive EA. So, for some fractional positive value of

dq, the EA must evolve from negative (for SO4
1-) to

positive (for ClO4). Alternatively, one could increase

the nuclear charges of the four oxygen atoms each by

an identical small amount. Any such change to the

attractive potential experienced by the excess electron

that preserves the symmetry of the parent can be used.

2. Compute the EA of the fictitious XO4
1- anion (where

X is undergoing transmutation from S to Cl) using a

good quality inside-barrier and tunneling-range atomic

orbital basis and a reliable method, but only use the

resultant data for values of dq for which the EA

remains positive. For positive values of EA, the results

of such standard electronic structure calculations can

be trusted, but it is important to keep in mind the

warnings issued earlier (e.g., HF may give a negative

EA when; in fact, the true EA is positive and included

electron correlation is usually important because of the

large differential correlation energy that usually

occurs).

3. Then, plot the positive EA values as a function of the

increased charge dq and extrapolate the data to

dq ? 0, making sure to use only data from dq values

for which EA is positive. The value obtained from this

extrapolation gives the estimate of the metastable

state’s negative EA.

An example of such a charge stabilization plot for the

SO4
1- system is shown in Fig. 10 with EA data obtained

from HF, MP2, MP4, and coupled cluster calculations [32].

Notice that the computed data points corresponding to

negative EA values (see those within the red box in Fig. 10)

do not fall on the linear fits that are obtained using those

data points for which EA is positive, which is why we do not

use these data points in making our estimate of the actual

negative EA. These energies relate to states that are part of

the SO4
- ? e- continuum and become less reliable for

characterizing SO4
2- as dq decreases below ca. 0.25. The

HF-level data deviate most strongly from the linear fit, with

the MP2 and MP4 data deviating less and the CCSD(T) data

deviating only slightly. In these calculations, the radial

Theor Chem Acc (2014) 133:1445

123 Reprinted from the journal96



extent of the basis set limits the degree of variational col-

lapse that the (N?1)st electron’s orbital can undergo. As a

result, this orbital retains much valence character, which, in

turn, allows the correlation calculations to be reasonably

successful even for dq\ 0.25.

The charge stabilization method outlined above does not

provide a direct estimate of the lifetime, unlike the expo-

nent scaling stabilization method. However, other workers

[33, 34] have extended this kind of approach (i.e., scaling

the nuclear charge) employing non-analytic functional

forms (e.g., including terms such as (Z - ZC)
3/2) for how

the EA should scale with nuclear charge Z. In that work,

the N?1 to N-electron energy gap DE for values of Z for

which the energy difference is real was fit to, for example,

Z2DE ¼ aþ bðZ � ZCÞ þ cðZ � ZCÞ2 þ dðZ � ZCÞ3=2
ð7Þ

This fit was then used to predict the energy gap for values

of Z\ZC where DE has a negative real part (corre-

sponding to a metastable state) and a nonzero imaginary

component (inversely related to the lifetime). Such an

approach was used [33], for example, to extrapolate from

the IP of Ne (Z = 10), through the IP of F- (Z = 9), to

predict the negative EA of O- (-5.38 eV) and the lifetime

(5 9 10-16 s) of O2-.

It is interesting to point out that the experimental com-

munity employs ‘‘tricks’’ similar to the charge stabilization

device to estimate negative EAs of metastable anions. For

example, we show in Fig. 11 a plot of the measured elec-

tron-binding energies for sulfate anions solvated by various

numbers of water molecules [35].

When sulfate is solvated by three or more water mole-

cules, the resulting complex has a positive electron-binding

energy; when two or fewer water molecules are present, the

species is metastable. By plotting the electron-binding

energy as shown in Fig. 11 and using only data points for

which the complex is stable, the authors of Ref. [35] could

extrapolate to predict a negative EA for SO4
-; doing so, we

obtain an EA of -0.5 to -1.0 eV, although the data points

in Fig. 11 clearly do not follow a straight line near n = 3,

so there is considerable uncertainty in this extrapolation.

These extrapolated values are in reasonable agreement with

the CCSD(T) extrapolation shown in Fig. 10.

5 Summary

By analyzing the various components contributing to the

interaction potential between an excess electron and a

Fig. 10 Charge stabilization

plot for the electron SO4
1-

system computed at various

levels of theory (adapted from

Ref. [32]). The HF-level data

follow the red dots, while the

CCSD(T) data follow the green

dots

Fig. 11 Plot of the electron-binding energies, determined by photo-

electron spectroscopy in Ref. [35] for (SO4
2-)(H2O)n clusters with

n = 13. The lower data points relate to adiabatic electron detachment,

and the upper points to vertical detachment
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ground-state parent that is either a neutral (forming an

anion daughter) or an anion (forming a multiply charged

anion), we have illustrated that several outcomes can arise.

1. The electron–parent attractive interactions may be

strong enough to produce a bound state in which the

electronic energy of the daughter lies below that of the

parent, at least near the minimum energy geometry of

the daughter. These cases are characterized by positive

EAs. The ground electronic states of Ca-(2P), Cl-,

OH-, O2
- (H2O)4

-, [CuPc(SO3)4]
3-, and of the dipole-

bound NC–CH3
- provide examples of such cases.

Electronic structure methods that do not involve

stabilization-type analyses can be used to determine

the positive EAs associated with this class of anions.

However, one must employ basis functions diffuse

enough to accommodate the excess electron and one

should use an approach that includes electron corre-

lation corrections because of the large correlation

energy difference between the parent and electron-

attached systems. Moreover, if the excess electron is

not bound in the HF approximation, as is the case for

Ca-(2P), one must use electronic structure methods

that do not depend on the suitability of the HF wave

function (or its orbitals and orbital energies) so as to

avoid the plague of variational collapse.

2. The electron–parent attractive interactions may not be

strong enough to produce a bound state having a

positive EA but may, in combination with either a

repulsive centrifugal or a repulsive Coulomb potential,

produce an effective potential having a barrier that can

trap the excess electron behind it. In these cases, a low-

energy metastable electron-attached state having a

negative EA can form. The lifetimes of such states are

governed primarily by the rate at which the excess

electron tunnels through the barrier behind which it is

trapped. The low-energy metastable states of Mg-(2P),

N2
-, C6H6

-, SO4
2-, PO4

3-, [CuPc(SO3)4]
4- give

examples of such states. To properly characterize this

class of anions, one should employ an approach that

avoids the variational collapse that would otherwise

occur when using diffuse basis functions capable of

describing the long-range character of the metastable

state’s wave function.

3. If the electron–parent attractive potential is weak and

if there is no repulsive Coulomb or centrifugal

potential with which it can combine to form a barrier,

then no low-energy electron-attached metastable state

can be formed. Calculations on such systems using

finite basis sets may produce energies for the electron-

attached species that lie above the energy of the parent,

but these are not metastable states. Their nature can be

uncovered by improving the basis sets (especially by

enhancing the radial range of the diffuse functions)

upon which the state will collapse to a function

describing the parent plus the excess electron far away

(i.e., not attached at all). In a stabilization calculation,

one will find that the stabilization plot has no regions

of avoided crossing within which inside-barrier and

large-r-dominant functions are coupled. The

Ca-(4s25s1) 2S state provides an example of such a

case.

The class of metastable electron-attached states focused

on in this paper are often studied experimentally using so-

called electron transmission spectroscopy (ETS) methods

in which the intensity of a beam of electrons either trans-

mitted through or scattered from a gas-phase sample is

monitored as a function of the kinetic energy of the inci-

dent electrons and the kinetic energy of the scattered

electrons. Low-energy shape resonance states as studied

here are detected, for example, by observation of attenua-

tion of the incident beam within a range of electron kinetic

energies E ± dE. The center of this range is used to specify
the energy of the metastable state and the spread dE over

which attenuation is observed is used to specify the state’s

lifetime via. Eq. (6). Reference [36] provides a good

overview of how ETS has been used to characterize many

low-energy shape resonance states of organic molecules.

Typically, ETS measurements have instrumental resolu-

tions of ca. 0.05 eV. The shape resonance states discussed

here often have lifetimes in the 10-14 s range, which gives

them Heisenberg widths dE of ca. 0.5 eV. The core-excited

electron-attached states mentioned earlier in this paper,

which require two-electron transitions to undergo electron

detachment, have longer lifetimes and thus produce ETS

signatures that have much smaller dE values. These order-

of-magnitude estimates of the experimental resolution and

of lifetimes and widths of metastable states offer some

guidance about what accuracy one needs in determining the

EAs corresponding to these states.
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Abstract The ground state and first singlet excited state

of ethylene, so-called N and V states, respectively, are

studied by means of modern valence bond methods. It is

found that extremely compact wave functions, made of

three VB structures for the N state and four structures for

the V state, provide an N ? V transition energy of 8.01 eV,

in good agreement with experiment (7.88 eV for the

N ? V transition energy estimated from experiments).

Further improvement to 7.96/7.93 eV is achieved at the

variational and diffusion Monte Carlo (MC) levels,

respectively, VMC/DMC, using a Jastrow factor coupled

with the same compact VB wave function. Furthermore,

the measure of the spatial extension of the V state wave

function, 19.14 a0
2, is in the range of accepted values

obtained by large-scale state-of-the-art molecular orbital-

based methods. The r response to the fluctuations of the p
electrons in the V state, known to be a crucial feature of the

V state, is taken into account using the breathing orbital

valence bond method, which allows the VB structures to

have different sets of orbitals. Further valence bond cal-

culations in a larger space of configurations, involving

explicit participation of the r response, with 9 VB struc-

tures for the N state and 14 for the V state, confirm the

results of the minimal structure set, yielding an

N ? V transition energy of 7.97 eV and a spatial extension

of 19.16 a0
2 for the V state. Both types of valence bond

calculations show that the V state of ethylene is not fully

ionic as usually assumed, but involving also a symmetry-

adapted combination of VB structures each with asym-

metric covalent p bonds. The latter VB structures have

cumulated weights of 18–26 % and stabilize the V state by

about 0.9 eV. It is further shown that these latter VB

structures, rather than the commonly considered zwitter-

ionic ones, are the ones responsible for the spatial exten-

sion of the V state, known to be ca. 50 % larger than the

V state.

Keywords Valence bond � Quantum Monte Carlo �
V state of ethylene � Breathing orbitals

1 Introduction

It often happens that valence bond (VB) theory provides

compact and accurate descriptions of difficult test cases

which, by contrast, necessitate long configuration
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expansions in the molecular orbital (MO) framework. As

well-known examples, spin-coupled (SC) theory [1, 2] and

generalized valence bond (GVB) theory [3, 4] are able to

provide the most possible compact wave functions taking

care of most of the static correlation energy in a molecule.

Moreover, other VB-type methods include also dynamic

correlation in a simple and lucid way [5–8]. Usually,

dynamic correlation is retrieved in the MO framework by

means of complete active space self-consistent-field

approach (CASSCF) followed by a perturbative treatment

(CASPT2), while VB methods may include dynamic cor-

relation without increasing the number of VB structures,

e.g., by using the breathing orbital effect [9–11].

The first singlet excited state of ethylene (so-called the

V state) is a notoriously difficult test case. Thus, even an

extensive CASPT2 calculations, involving an all-valence

(12,12) active space, were found to be unsuccessful [12],

and the correct description required more elaborate treat-

ments. In the present paper, we pose the question whether

VB theory can handle the challenge and still provide a

compact but accurate description with a lucid account of

electronic correlation? Taking up this challenge is our way

of honoring Prof. Dunning who has significantly contrib-

uted to the revival of VB theory, among his other numerous

achievements.

The V state of ethylene, according to the Merer-Mul-

liken notation [13], is a singlet excited state of B1u sym-

metry dominated by the pu ? pg MO configuration, which

can be qualitatively represented in VB terms as a resonance

between two zwitterionic structures, Scheme 1. The V state

exhibits a broad UV absorption band with a maximum at

7.66 eV [14]. For a long time now, the V state poses an

intriguing test case and exceptionally difficult to describe

for theoreticians despite the small molecular size. Up to the

late seventies, it was not even clear whether this state was

of valence or Rydberg nature [15–19]. At the Hartree–Fock

level, the V state exhibited characteristics of a Rydberg

state [15], owing to a very large spatial extent of the wave

function as measured by an hx2i expectation value of

42.1 a0
2 (x being the axis orthogonal to the molecular

plane), which is four times larger than the value of 11.9 a0
2

computed for the ground state (the N state) [20]. However,

Bender et al. [20] and Buenker and Peyerimhoff [21]

showed that wave functions computed with configuration

interaction (CI) are considerably more contracted than the

Hartree–Fock one, so that the diffuse character of the state

in the latter method is artificial. A few years later,

McMurchie and Davidson [22] presented the first definitive

theoretical evidence that the V state is essentially a valence

type. Thus, using a configuration selection scheme by

classes of excitations in order to ensure a correct descrip-

tion of all correlation effects, involving the p and p*
electrons, these authors obtained the values 17.8 a0

2 for hx2i
and 7.96 eV for the N ? V transition energy. Remarkably,

McMurchie and Davidson found that including excitations

of r ? r* type along with p ? p* ones are essential to

give the V state its correct spatial extension. This indicates

that inclusion of dynamic electron correlation in the p
space must by accompanied by a concomitant reoptim-

ization of the r orbitals [23, 24], a condition that is not met

at the Hartree–Fock or CASSCF levels. It follows that even

CASPT2 calculations, which are based on these latter

levels, overestimate the energy of the V state and place it

close to the Rydberg 3dpg configuration [25]. This energy

proximity creates a spurious valence-Rydberg mixing,

making the vertical N ? V transition energy (Te) artifi-

cially correct. As such, getting reasonable Te values is not

sufficient to validate a calculation, since improper orbital

optimization can lead to spurious Rydberg character. A

valid description of the V state must display both an

accurate N ? V transition energy and an adequate value of

spatial extent of the wave function, as measured by hx2i.
Indeed, later computations by Buenker et al. [18, 19]

obtained values of 19–20 a0
2 for hx2i and 8.05 eV for Te,

employing larger basis sets and MRSDCI configuration

selection.

At this point, it is important to note that the calculated Te
value that best matches the experiment is not 7.66 eV, the

maximum of the absorption band. The Te value should be

higher, if vibrational corrections were taken into account.

On the basis of zero-point energy corrections, Davidson

proposed that the best estimate for Te should be 7.8 eV

[26]. More recently, Lasorne et al. [27] found a value of

7.92 eV for Te at a sophisticated MRCI level and then

performed quantum dynamics simulation that reproduced

the absorption spectrum with a maximum at 7.70 eV, only

0.04 eV above the experimental value. As such, the theo-

retical Te value that best matches experiment lies 0.22 eV

above the absorption maximum, giving rise to the value of

7.88 eV as the best theoretical estimate.

Since the difficulty of calculating the Te and hx2i values
arises from a lack of sufficient electron correlation at the

orbital optimization step, various strategies have been

devised to optimize the orbitals at a better level than

Hartree–Fock or CASSCF. Roos et al. [28] used a multi-

state CASPT2 scheme, allowing the zero-order states to

mix among themselves under the effect of dynamic cor-

relation, and got a Te value of 7.98 eV, with an hx2i value

1a 1b

Scheme 1 Traditional representation of the V ionic excited state of

ethylene
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in the range 18–20 a0
2. Krebs and Buenker performed an

MRCI calculation in large basis set, including up to more

than one million configurations state functions (CSFs), and

estimated Te in the range 7.90–7.95 eV [29]. An even more

extensive MRCI calculation was performed by Müller et al.

[30], including up to 80 million CSFs, yielding a Te value

of 7.7 eV. Both these MRCI calculations provide hx2i
values in the range 16.5–20 a0

2. Still another strategy was

used by Schautz and Filippi [31]. They performed diffusion

Monte Carlo (DMC) calculations after optimization of the

orbitals in the presence of the Jastrow factor at the VMC

level. Their best Te value was 7.92 eV, with hx2i being

*20 a0
2. The quantum Monte Carlo (QMC) method was

also used by Anderson and Goddard, in an endeavor to use

a GVB determinantal part times a Jastrow factor as a DMC

form of trial wave function. For the sake of cost-efficiency,

the orbitals were taken from a previous bare GVB calcu-

lations and not reoptimized at the DMC level, as orbital

reoptimization is a time-consuming part in QMC calcula-

tions. This strategy proved very successful for a number of

excited states of ethylene and other molecules, but less so

for the V state of ethylene, leading to a Te value of 8.27 eV

[32].

Recently, Angeli analyzed in detail the requirements

for the correct description of the V state of ethylene and

more generally the ionic p ? p* excited states of

polyenes, using qualitative VB reasonings [12]. The

importance of the r–p mixing, also called rp correlation,

was explained in terms of a dynamic response of the r
framework to the field generated by the p electrons in

each ionic structure. In short, the r MOs follow the charge

fluctuation in the p system (represented as 1a $ 1b in

Scheme 1) by polarizing in a dynamic way so as to

dampen the net charge on each carbon atom. Impor-

tantly, Angeli also showed that taking into account the

latter effect induces a spatial contraction of the p atomic

orbitals (AOs), thus eliminating the spurious Rydberg

character due to incomplete electron correlation. The

strategy that was used to get an appropriate set of

orbitals for CI was to optimize the orbitals in a

self-consistent field manner using a restricted-active-

space-SCF (RASSCF) calculation containing all the

excitations describing the dynamic r polarization. Then,

these orbitals were used in a CAS-CI(2,2) or CAS-

CI(6,6), followed by a multistate perturbative treatment

to second order. The procedure proved successful, with

hx2i values in the range 15.8–18.7 a0
2 and Te values of

7.65–7.80 eV.

It is clear from the above that the reasons for the early

difficulties to describe the V state are now well understood

and that there exist well-defined strategies to obtain rea-

sonable values for the diffuseness of this state as well as

N ? V transition energy in the MO-CI framework [12, 22,

33–35]. Still, the corresponding wave functions, which are

constructed with large perturbative expansions, lack com-

pactness and lucid interpretability, whereas the compact

CASSCF(2,2) wave function is quite inaccurate. However,

it has always been our experience that some ab initio VB

methods, providing static and dynamic correlations [9–11,

36–38], are able to give quantitative results as well as

physical insight by means of very compact wave functions,

with a very small number of chemically lucid VB struc-

tures. Examples involve dissociation reactions of two-

electron bonds [9, 39] and three-electron bonds [40],

reaction barriers [41, 42], transition energies [43], and so

on [7]. Thus, in view of the difficulties encountered by

many researchers and the elaborate strategies that had to be

devised to describe the V state of ethylene with MO-CI

methods, we decided to address the problem by the use of

ab initio VB methods, with the aim of getting accurate

values of N ? V transition energies as well as diffuseness

hx2i values, from compact and insightful VB wave func-

tions. Furthermore, we want the strategy for choosing the

relevant VB structures to emerge from clear physical

principles, without the need of preliminary large-scale

calculations.

There are already some clues that this simple approach

should be successful: (1) the effect of paramount impor-

tance to the accurate description of the V state is the

dynamic response of the r orbitals to the fluctuations of the

p electrons. This effect is very simply described by means

of the breathing orbital valence bond (BOVB) method [9–

11]. Furthermore, this effect can be easily turned off,

allowing one to visualize and assess the effects of dynamic

rp correlation on the size of orbitals and on the

N ? V transition energy. (2) BOVB, as well as quantum

Monte Carlo valence bond methods (QMC-VB) [44–46],

includes all the necessary dynamic correlation for both the

N and V states, and (3) most of the MO-CI strategies that

get an accurate description of the V state are in fact based

on qualitative VB reasonings.

Based on these considerations, modern VB methods can

take up the challenge of reconciling compactness, accu-

racy, and physical insight in the calculation of the V state of

ethylene. The paper is organized as follows. First, the VB

methods are briefly described in a theoretical section. Then,

the VB structures are chosen, and finally, the results are

presented and discussed.

1.1 Theoretical methods

1.1.1 The VB wave function

A many-electron system wave function, W, is expressed in

VB theory as a linear combination of Heitler–London–

Slater–Pauling (HLSP) functions, UK in Eq. 1,
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W ¼
X
K

CKUK ð1Þ

where UK corresponds to ‘‘classical’’ VB structures, and

CK is the corresponding structural coefficients. An

important feature of our VB calculations is that all the

active orbitals, i.e., those that have varying occupancies in

the VB structures, are strictly localized on a single atom,

like in the classical VB method. This ensures a clear

correspondence between the mathematical expressions of

the VB structures and their physical meaning, ionic or

covalent.

Several definitions exist for the weights of the VB

structures [6]. The Coulson–Chirgwin formula [47], Eq. 2,

is the equivalent of a Mulliken population analysis in VB

theory:

WK ¼ C2
K þ

X
L 6¼K

CKCLSKL ð2Þ

Here, SKL is the overlap integral of two VB structures.

However, as this definition becomes meaningless when

the overlaps are large, alternative definitions have also

been proposed. Löwdin’s scheme for symmetric orthogo-

nalization [48] (Eq. 3)

WL€owdin
K ¼

X
IJ

S
1=2
KI CIS

1=2
KJ CJ ð3Þ

is an attractive option, which leads to orthogonalized

functions deviating as little as possible from the original

set.

Another appropriate definition, which also remedies the

overlap dependence problem, is the ‘‘inverse-overlap’’

Norbeck-Gallup formula [49] (Eq. 4), which is close to the

normalized squares of coefficients:

WInv
K ¼ NC2

K

S�1
KK

ð4Þ

where N is a normalization factor.

1.1.2 The VB levels

There are several computational approaches for VB theory

at the ab initio level [5, 7]. In the VB self-consistent field

(VBSCF) procedure [50], both the VB orbitals and struc-

tural coefficients are optimized simultaneously to minimize

the total energy. The breathing orbital valence bond

method (BOVB) [9–11] improves the VBSCF accuracy

without increasing the number of VB structures UK. This is

achieved by allowing each VB structure to have its own

specific set of orbitals during the optimization process,

such that the orbitals can be different from one VB struc-

ture to the other. In this manner, the orbitals can fluctuate

in size and shape so as to fit the instantaneous charges of

the atoms on which these orbitals are located. As such,

effectively, BOVB covers a much larger variational space

than CASSCF/VBSCF, without losing the compactness of

the wave function.

The orbitals in either VBSCF or BOVB are not

restricted to be orthogonal, and thus, it is not guaranteed

that orbitals that are localized on the same fragment will be

independent of each other. However, since we always

obtain a unique variationally optimized solution, wherein

both orbitals and structural coefficients are fully optimized,

the nonuniqueness of the orbitals, if happens, does not

matter.

The BOVB method has several levels of sophistication

[11]. Here, we chose the ‘‘SD-BOVB’’ level, whereby each

doubly occupied active orbital is split into a pair of singly

occupied orbitals accommodating a spin-pair, so as to

account for the radial correlation of the electrons involved

in the lone pair. Moreover, as indicated by the letter D

(delocalized), the orbitals that do not belong to the active

space are allowed to delocalize. The VBSCF and BOVB

calculations have been performed using three different

basis sets: (1) the standard 6-31G* basis set, (2) the cor-

relation-consistent triple-zeta cc-pVTZ of Dunning et al.

[51], and (3) a mixed basis set of triple-zeta ? diffuse

quality on the carbons, made of the aug-cc-pVTZ basis set

[52] for carbons and of the cc-pVDZ basis set [51] for

hydrogens. This latter basis set is referred to as aug-VTZ in

this work.

1.1.3 The VB-QMC levels

Very recently, a mixed valence bond/quantum Monte Carlo

(VB-QMC) method has been proposed which managed to

provide high accuracy while keeping the full interpretative

capabilities of classical valence bond methods [44–46].

The VB-QMC wave function we utilize here consists of a

VBSCF determinant part multiplied by a Jastrow function

that is included to account for electronic correlation. The

Jastrow function is the same as in previous studies [44–46]

and includes explicit two-body electron–electron, electron–

nucleus, and also three-body electron–electron–nucleus

terms. In this study, the energies of the N and V states are

computed by optimizing simultaneously Jastrow parame-

ters, VB structural coefficients, and, in some specified

cases, also orbitals. The variational Monte Carlo (VMC)

optimization algorithm is used on the multi-structure wave

function and separate atoms, respectively, by minimizing

the total energy and a small percentage of variance (1 %)

using the linear optimization method [46]. These VB-VMC

wave functions are then projected onto the ground state

using the diffusion Monte Carlo (DMC) algorithm under

the fixed-node approximation, a procedure that recovers

most of the remaining correlation effects that are missing at

the VB-VMC level, while at the same time compensating

Theor Chem Acc (2014) 133:1441

123 Reprinted from the journal104



basis set deficiencies, and usually provides very accurate

energy differences [44, 53]. This latter method is referred

to here as VB-DMC. For all VB-QMC calculations, a

systematically convergent triple-zeta polarized basis set of

Burkatzki et al. [54] for carbon, supplemented with the

s and p diffuse functions taken from the standard aug-cc-

pVTZ basis set, and the double-zeta basis set of Burkatzki

et al. for the hydrogen atom, was used together with their

corresponding pseudo-potentials. The so-constructed basis

set will be referred to here as ps-aug-VTZ.

All calculations were performed using the experimental

equilibrium geometry of ethylene: RCH = 1.086 Å,

RCC = 1.339 Å, \HCH = 117.6�. The VBSCF and BOVB

calculations were carried out with the Xiamen Valence

Bond (XMVB) program [55–57]. All the QMC calculations

were carried out using the CHAMP program [58].

1.2 The VB structures set

Restricting ourselves to an MO space of two orbitals and

two electrons, so-called (2,2) space, the description of the

N state of ethylene becomes straightforward: structure 2, in

which the p bond is fully covalent (Scheme 2), comple-

mented with two ionic structures 3a and 3b that we define

with split p atomic orbitals (AOs) for full generality. For

the V state, the simplest way to get an elementary VB

description is to expand the pp* MO configuration into VB

structures. Doing this in minimal basis set would yield the

familiar picture 1a $ 1b shown above in Scheme 1.

However, the expansion in extended basis sets yields

additional terms, because the p and p* MOs are made from

different AOs, p0a and p0b in p* being generally more diffuse

than pa and pb in p:

p / ðpa þ pbÞ ð5aÞ
p� / p0a�p0b

� �
; p0a 6¼ pa; p

0
b 6¼ pb ð5bÞ

where the labels a and b refer to the left and right carbon

atoms, respectively.

Using these orbital expressions and expanding pp* give

rise to four VB structures instead of two, as shown in Eq. 6

below, dropping normalization constants:

p�p� � �pp�j j ¼ ðpa þ pbÞð�p0a � �p0bÞ � ð�pa þ �pbÞðp0a � p0bÞ
�� ��

¼ pa�p
0
a

�� ��� �pap
0
a

�� ��� �� pb�p
0
b

�� ��� �pbp
0
b

�� ��� �
� pa�p

0
b

�� ��� �pap
0
b

�� ��� �þ pb�p
0
a

�� ��� �pbp
0
a

�� ��� �
ð6Þ

where the terms in parentheses represent structures 3a, 3b,

4a, and 4b, respectively, in Scheme 2. In 3a and 3b, one

recognizes the zwitterionic structures analogous to 1a and

1b, with the difference that the electrons pairs are split into

different AOs, thus including some radial correlation. On the

other hand, 4a and 4b are asymmetric covalent types, which

have not been considered before. Their negative combina-

tion (4a–4b) has the right symmetry (B1u) to contribute to the

V state and has the same constrained coefficient as (3a–3b) in

pp* (Eq. 6). The importance or lack thereof of 4a and 4b as

contributors to the V state will be determined by the quan-

titative VB calculations below, in which the coefficients of

all VB structures will be fully relaxed and optimized.

To calculate the N ? V transition energy, it is necessary

to calculate both the N and V states at a consistent level of

accuracy. This will be done by describing the N state with

the three structures 2, 3a, and 3b (these two latter ones will

combine with a positive sign), while the V state will involve

the negative combinations (3a–3b) and (4a–4b). This set of

five structures will be denoted as VBSCF-5 or BOVB-5,

according to the level of VB theory. In all structures 2–4 of

the (2,2) space, the r frame, made of the r–CC and CH

bonds, is described as a set of doubly occupied MOs. It

should be noted that even this small (2,2) space is sufficient

to account for the r response to the fluctuation of p elec-

trons, provided the underlying r MOs are allowed to be

different for different VB structures, as in the BOVB

method. This effect is illustrated (in part) in Scheme 2

where the r–CC bonding MOs are drawn as polarized in

opposite directions in 3a and 3b.

3a 3b

4a 4b

2

Scheme 2 Set of VB structures

for the N and V states in the

(2, 2) space. The r–CC bond is

represented as a doubly

occupied bonding MO, which is

polarized in opposite directions

in 3a and 3b at the BOVB level
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A more detailed way to allow for the r response to

fluctuations of the p electrons is to describe both the p space

and the r–CC bond in a VB fashion. This can be achieved

by extending the VB space for the N and V states to the 15

VB structures displayed in Scheme 3. Here, the r–CC bond

is not any more described as a doubly occupied MO, but as a

combination of covalent and ionic structures. Hence, the rp
correlation will be visualized as the difference in weights

between structures 8a, 8b versus 9a, 9b. The VB structure set

in Scheme 3 will be denoted as VBSCF-15 or BOVB-15.

2 Results

2.1 VB calculations in the (2, 2) space

Although it is well known that basis sets involving diffuse

basis functions are required for the description of states

involving a dominant ionic component, it is interesting to

start with smaller basis sets and then proceed to the largest.

Table 1 displays the results of calculations in the

6-31G* double-zeta basis set. For the N state, all compu-

tational levels provide an hx2i value in agreement with the

accepted value, 11–12 a0
2 [20]. However, the calculated

hx2i values for the V state appear to be much too small,

around 12 a0
2, showing that the 6–31G* basis set is not

appropriate to allow the V state to be 50 % more diffuse

than the N state, as it should. It is therefore not surprising

that all N ? V transition energies are largely overesti-

mated in this basis set, even at the BOVB level (by 1.23 eV

in BOVB-5).

As can be seen in Table 2, the hx2i values of the V state

are practically not improved in the larger cc-pVTZ basis

set, which is of triple-zeta quality but still devoid of diffuse

basis functions; however, the transition energies are

improved and deserve some comments. The

7a

7b

10a

10b

5 6a

8a 9a

8b 9b

11a 12a

11b 12b

6b

Scheme 3 Set of VB structures

for the N and V states in the

(4, 4) space
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N ? V transition energy is lower at the VBSCF-5 level

than at the CASSCF one, although the latter configuration

space contains all VB structures 2–5 and more. This is

because the coefficients of the VB structures in the

CASSCF space are somewhat constrained, whereas they

are fully optimized in VBSCF. Besides, the slight non-

equivalence of CASSCF and VBSCF calculations even

when both span the same variational space [6] has also

been pointed out.1

The importance of structures 4a and 4b can be appre-

ciated by performing a VB study in a smaller space,

restricted to 2, 3a, and 3b. The results at the VBSCF and

BOVB levels (referred to as VBSCF-3 and BOVB-3,

respectively) show that removing 4a and 4b from the VB

space causes a considerable increase in the transition

energy relative to the reference VBSCF-5 and BOVB-5

levels, in both 6-31G* and cc-pVTZ basis sets, indicating

that structures 4a and 4b stabilize the V state by some 0.7-

0.9 eV. Lastly, the effect of dynamic correlation in the p
system on the transition energy, as measured by the

BOVB-VBSCF difference, is seen to be quite large, ca.

0.9 eV in cc-pVTZ basis set and 1.1 eV in 6-31G*. These

differences indicate that allowing the r response to fluc-

tuations of the p electrons is of importance, as will be

analyzed in more details below. The best transition energy

in these two basis sets amounts to 8.47 eV, at the BOVB-5/

cc-pVTZ level. This last result, which is off by ca. 0.6 eV

relative to experiment, as well as the hx2i diffuseness value
which is found too small for the V state, indicates that basis

sets devoid of diffuse basis functions are inappropriate for

the problem at hand, as already discovered long ago by

Roos et al. [59, 60]. In accord, the rest of the study will be

performed in a triple-zeta basis set augmented with diffuse

basis functions on the carbon atoms, and a double-zeta

basis set on the hydrogen atoms, so-called aug-VTZ (see

Theoretical methods).

Table 3 displays results calculated in the aug-VTZ basis

set, which in principle combines all the requirements in

terms of flexibility and diffuseness to reliably describe an

ionic state, which does not have a Rydberg character.

Inspection of Table 3 reveals that the hx2i values of the
ground state are practically unchanged relative to smaller

basis sets and remain close to the generally accepted value

of 12 a0
2 at all levels. On the other hand, the V state is

affected by the augmented basis set. Thus, V is found much

too diffuse at the CASSCF level, as previously found by all

researchers, with an hx2i value of 25 a0
2. Quite expectedly,

about the same exaggerated spatial extension is found at

the VBSCF-5 level, which lacks dynamic correlation like

CASSCF, with the consequences that have been amply

discussed in the past literature (vide supra). Thus, the fair

agreement between experimental vertical energy and the Te
values that are found at these two levels, 8.25 and 8.26 eV,

is artifactual and due to spurious mixing with a higher lying

Rydberg configuration.

As shown in the Methods section, dynamic correlation is

introduced by going from VBSCF to BOVB levels. As a

first step, indicated as BOVB-5(p-only) level, the r orbitals

remain common to all structures and only the p orbitals are

allowed to breathe for each of the structures 3a, 3b, 4a, 4b.

It can be seen from Table 3 that there is practically no

improvement at this level relative to VBSCF-5: The spatial

extension diminishes only slightly, from 24.92 to 24.22 a0
2,

and the N ? V transition energy is nearly unchanged. In a

second step, we allow all orbitals to be different for dif-

ferent structures, at the BOVB-5 level. Here, the r response

to the fluctuation of p electrons in the V state is turned on,

and the change relative to CASSCF and VBSCF-5 is now

clearly significant. The spatial extension of the wave

function goes down to 19.14 a0
2, quite in the range of

accepted hx2i values from high-level calculations. This

result nicely illustrates the internal contraction of the wave

function under the influence of dynamic correlation and also

shows that essentially all the dynamic correlation that is

attached to the description of the p system in the V state is

made of the r response to the fluctuation of p electrons.

Another way of visualizing the contraction of the wave

function is by comparing the different sizes of the p AOs

[12], calculated at the CASSCF(2,2) level (devoid of

Table 1 The vertical excitation energy in (2, 2) active space, cal-

culated by HF, CASSCF, and different VB methods with the 6-31G*

basis set

N state V state Te
(eV)

E (a.u.) hx2i
(a0

2)

E (a.u.) hx2i
(a0

2)

Hartree–

Fock

-78.030983 11.53

(2, 2) Active space

CASSCF -78.059873 11.34 -77.678207 12.08 10.39

VBSCF-3a -78.059878 11.34 -77.657866 12.19 10.94

VBSCF-5b -78.059878 11.34 -77.683298 12.08 10.25

BOVB-3a -78.079418 11.29 -77.718647 11.83 9.82

BOVB-5b -78.079418 11.29 -77.744694 11.80 9.11

a Involves structures 2, 3a and 3b for the N state, and 3a, 3b for the

V state, as structure 2 cannot contribute to the V state for symmetry

reasons
b Involves structures 2, 3a and 3b for the N state, and 3a, 3b, 4a, 4b
for the V state. Structures 4a and 4b are not included in the N state as

their symmetric combination would be redundant with the structure 2

1 Slight differences between VBSCF and CASSCF calculations

spanning the same variational space are due to the fact that the AOs

that compose the MOs in CASSCF may be different in size and shape

from one MO to the other, whereas the set of AOs is unique in

VBSCF.
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dynamic correlation), shown in Fig. 1a, versus the dynam-

ically correlated BOVB-5 level, Fig. 1b. First, it can be seen

that the pa and p0a AOs that are, respectively, part of the p
and p* MOs arising from the CASSCF calculations are very

different in size, p0a being much more diffuse than pa
(Fig. 1a). Second, it clearly appears by comparing Fig. 1a, b

that going from CASSCF to BOVB-5 induces a strong

contraction of the p0a AOs. As an effect of rp dynamic

correlation, the latter AOs have somewhat different shapes

in 3a, 3b versus 4a, 4b, but they have about the same spatial

extension, quite smaller than at the CASSCF level.

Another nice feature of the BOVB-5 level is an excel-

lent value of the N ? V transition energy, 8.01 eV, only

0.13 eV above the recommended value. This good Te value

together with a correct spatial extension of the wave

function shows that compact VB functions with only three

configurations for the N state and four ones for the V state

are able to capture all the physics of the N ? V excitation

in ethylene, whereas many more configurations are

required in the MO framework to reproduce the same

effects.

It is interesting at this point to estimate the effect of rp
dynamic correlation or polarization on the Te value. One

could be tempted to simply take it as the VBSCF-5 versus

BOVB-5 energy difference, i.e., 0.24 eV (entries 4 vs. 7 in

Table 3). However, one must recall that the relatively low

Te value at the VBSCF-5 (or CASSCF) level is artifactual

and due to spurious valence-Rydberg mixing. It is therefore

Table 3 The vertical excitation energy in (2, 2) active space, cal-

culated by HF, CASSCF, and different VB methods with the aug-

VTZ basis set

N state V state Te
(eV)

E (a.u.) hx2i
(a0

2)

E (a.u.) hx2i
(a0

2)

Hartree–Fock -78.059607 12.01

(2, 2) Active

space

CASSCF -78.087096 12.05 -77.783590 25.08 8.26

VBSCF-3a -78.087129 11.68 -77.733637 14.07 9.69

VBSCF-5b -78.087129 11.68 -77.783951 24.92 8.25

BOVB-5

(p-only)b
-78.089552 11.73 -77.786128 24.22 8.26

BOVB-3a -78.111200 11.64 -77.782916 13.04 8.93

BOVB-5b -78.111200 11.64 -77.816658 19.14 8.01

a Involves structures 2, 3a and 3b for the N state, and 3a, 3b for the

V state, as structure 2 cannot contribute to the V state for symmetry

reasons
b Involves structures 2, 3a and 3b for the N state, and 3a, 3b, 4a, 4b
for the V state. Structures 4a and 4b are not included in the N state as

their symmetric combination would be redundant with the structure 2

Fig. 1 The p AOs of the V state of ethylene, as calculated at the

CASSCF(2,2) level (a upper figure), and at the dynamically correlated

BOVB-5 level (b lower figure), showing the contraction of p AOs

under the effect of the dynamic r response to the fluctuation of p
electrons. All calculations in aug-VTZ basis set. The isodensity value

is 0.045 a.u. in both (a) and (b)

Table 2 Vertical excitation energies in (2, 2) active space, calculated by HF, CASSCF, and different VB methods with the cc-pVTZ basis set

N state V state Te (eV)

E (a.u.) hx2i (a02) E (a.u.) hx2i (a02)

Hartree–Fock -78.063239 11.84

(2, 2) Active space

CASSCF -78.090945 11.58 -77.741633 13.27 9.51

VBSCF-3a -78.091235 11.59 -77.713055 12.97 10.29

VBSCF-5b -78.091235 11.59 -77.746673 13.32 9.38

BOVB-3a -78.113076 11.71 -77.766555 12.28 9.43

BOVB-5b -78.113076 11.71 -77.801926 12.72 8.47

a Involves structures 2, 3a, and 3b for the N state, and 3a, 3b for the V state, as structure 2 cannot contribute to the V state for symmetry reasons
b Involves structures 2, 3a, and 3b for the N state, and 3a, 3b, 4a, 4b for the V state. Structures 4a and 4b are not included in the N state as their

symmetric combination would be redundant with structure 2

Theor Chem Acc (2014) 133:1441

123 Reprinted from the journal108



more instructive to consider this energy difference in a

basis set like cc-pVTZ, where the valence-Rydberg mixing

does not take place, for lack of diffuse basis functions.

Thus, comparing entry 4 versus entry 6 in Table 2 yields

the value 0.91 eV, which can be considered as an energetic

measure of the importance of r response to the fluctuation

of p electrons, more precisely the greater importance of

this r response in the V state relative to the N state.

Another outcome of the above VB calculations is the

novel finding that structures 4a and 4b, which are essen-

tially asymmetric covalent structures, are essential ingre-

dients of the V state of ethylene. In terms of energy, their

importance can be estimated as the difference between the

2-structure and 4-structure wave functions, and can be seen

to be quite large at both the VBSCF and BOVB levels. At

the BOVB level, the BOVB-3 versus BOVB-5 energy

differences amount to 0.71, 0.96, and 0.92 eV in 6-31G*,

cc-pVTZ, and aug-VTZ basis sets, respectively. This sig-

nificant stabilization can be interpreted as due to two

effects: (1) a simple resonance energy, arising from the

mixing of 4a, 4b with 3a, 3b, and (2) the tempering of the

charge separation in the p system in 3a and 3b when 4a and

4b are added. It is also remarkable that without structures

4a and 4b, i.e., at the VBSCF-3 and BOVB-3 levels, the

spatial extension of the wave function comes out too small,

even in aug-VTZ basis set, with an hx2i value of only 13.04

a0
2 in the V state at the BOVB-3 level. Thus, it appears that

the zwitterionic structures 3a and 3b have no physical

reason to be very diffuse because the corresponding VB

structures are overall neutral with positive charges in the

vicinity of the negative ones. On the other hand, 4a and 4b

must have diffuse orbitals, so as to clearly differentiate the

two p AOs involved in the covalent bond; otherwise, the

negative combination 4a–4b would just vanish (see the

above VB expansion). Thus, the reason for the known fact

that the V state is 50 % more diffuse than the N state does

not lie in the zwitterionic structures, but in the asymmet-

rical covalent ones, 4a and 4b.

In view of the essential role played by 4a and 4b in the

electronic structure of the V state, one may anticipate sig-

nificant weights for these structures. However, the calcu-

lation of their weights can only be approximate owing to

their large overlaps with 3a and 3b (Table 4). These large

overlaps originate in the fact that all these structures

involve diffuse AOs. For this reason, the usual Coulson–

Chirgwin definition of weights [47], which is quite sensi-

tive to overlap [61], is better replaced by the two alterna-

tive definitions of the weights, Löwdin’s scheme [48] and

the ‘‘inverse-overlap’’ formula of Norbeck and Gallup [49].

These two definitions have been applied to calculate the

weights of 3a, 3b, 4a, and 4b, which are displayed in

Table 5 together with their coefficients in the BOVB-5

wave function of the V state. The Löwdin and inverse-

overlap weights are quantitatively different from each

other, as always happens when the VB structures have

strong mutual overlaps, and therefore, they can only pro-

vide orders of magnitude. Still, the calculated weights

show that the major structures are 3a and 3b, whereas 4a

and 4b are less important but far from being negligible.

2.2 VB calculations in the (4, 4) space

Extending the space of VB structures so as to include the

C–C r bond into the VB treatment leads to the 15 struc-

tures displayed in Scheme 3. Calculations in this full space

(5–12b) are referred to as VBSCF-15 and BOVB-15.

However, being redundant with 5–6b, structures 10a–12b

are removed from the calculation of the N state, while for

obvious symmetry, reasons 5 is removed for the calculation

of the V state. Thus, the calculation of the N and V states

involves 9 structures and 14 structures, respectively.

Since both the p system and the r C–C bond are now

involved in the VB treatment, one may expect the r
response to fluctuation of the electrons to be present

already at the VBSCF level, at least to some extent. This r
response will be made apparent by comparing the weights

of structures 8a versus 9a, or 8b versus 9b. If the two p
electrons are on the same AO, say the left one as in 7a–9a

(Scheme 3), the r C–C bond will compensate this charge

separation by polarizing itself in the opposite way, through

the ionic structures 8a and 9a. Therefore, one expects the

weight of 8a, in which both carbon atoms are globally

neutral, to be significantly larger that that of 9a, in which

the carbons have formal charges of -2 and ?2, respec-

tively. Inspection of Table 6 shows that this is indeed the

case, as the weights of 8a and 9a are calculated to be 0.129

Table 4 The overlap matrix of V state from BOVB-5 calculations

with the aug-VTZ basis set in (2, 2) active space

3a 3b 4a 4b

3a 1.000000

3b 0.316388 1.000000

4a 0.845642 0.429452 1.000000

4b 0.429452 0.845641 0.474833 1.000000

Table 5 The weights and coefficients of VB structures of the V state

from BOVB-5 calculations with the aug-VTZ basis set in (2, 2) active

space

Löwdin weights Inverse weights Coefficients

3a 0.4081 0.3047 1.1882

3b 0.4081 0.3047 -1.1882

4a 0.0919 0.1953 -0.9733

4b 0.0919 0.1953 0.9733
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and 0.066 at the VBSCF-15 level, according to Löwdin’s

definition of the weights. Moreover, the difference in

weights is even more significant with the inverse-overlap

weight definition. Of course, similar differences in weights

are found between structures 8b and 9b.

It should be noted that the r response to p fluctuation, as

it appears from the weights displayed in Table 6, is

incomplete at the VBSCF-15 level since it is restricted to

the r C–C bond and does not involve the C–H bonds. Still,

one expects some improvement of the description of the

V state with respect to the VBSCF calculations in the (2, 2)

space. Table 7 reports the absolute energies of the N and

V states as calculated in the (4, 4) space, together with their

spatial extensions and the N ? V transition energies Te.

While the CASSCF results are still poor at this level, it can

be seen that the VBSCF-15 results are indeed improved

relative to the VBSCF-5 results in the (2,2) space

(Table 3), as the hx2i value goes down from 24.92 to

22.95 a0
2, while the transition energy also goes down, from

8.26 to 8.15 eV. However, in spite of these improvements,

the results are not fully satisfying at this level, and once

again, one must use the BOVB level in the same space to

retrieve the missing dynamic rp correlation. To facilitate

convergence, only partial BOVB is performed, in which

the VB structures are partitioned into groups: (5–6b), (7a–

9a), (7b–9b), (10a–12a), and (10b–12b). A common set of

orbitals is used within each group, but orbitals of one group

are allowed to be different from those of other groups. The

results are now excellent, with a spatial extension of

19.16 a0
2 for the V state, and a transition energy of 7.97 eV,

only 0.09 eV higher than the reference value of 7.88 eV.

Interestingly, these latter results are virtually unchanged

relative to the BOVB-5 results in the (2,2) space, showing

that all the necessary electron correlation is already taken

into account in the smaller VB space.

Since VB structures displaying asymmetrical p covalent

bonds proved essential for the description of the V state in

the (2,2) space, one may wonder if structures of the same

type (10a–12b) have a comparable importance in the (4, 4)

space. Clearly, the answer is yes: In terms of weights,

structures 10a–12b sum up to 0.190 with the Löwdin

definition, and to 0.357 with the inverse-overlap one

(Table 5, BOVB-15). This can be compared with the

cumulated weights 0.184 and 0.391, respectively, with the

same definitions, in the (2,2) space (Table 5). In terms of

stabilization energies, the stabilization brought by struc-

tures 10a–12b can be estimated by comparing the calcu-

lations of the V state in the 15-structure space (entries 2 and

5 in Table 7), to those using a restricted 9-structure space,

Table 6 The weights and coefficients of VB structures for the V state of ethylene, calculated with the aug-VTZ basis set in (4, 4) active space

VBSCF-15 BOVB-15

Löwdin weights Inverse weights Coefficients Löwdin weights Inverse weights Coefficients

6a 0.0003 0.0086 0.0437 0.0000 0.0130 -0.0573

6b 0.0003 0.0086 -0.0437 0.0000 0.0130 -0.0573

7a 0.1786 0.1707 0.9472 0.1984 0.2391 0.8064

8a 0.1281 0.1028 0.4935 0.1149 0.0556 0.2672

9a 0.0656 0.0013 0.0551 0.0915 0.0141 0.1378

7b 0.1788 0.1710 -0.9483 0.1984 0.2391 -0.8064

8b 0.1277 0.1018 -0.4911 0.1149 0.0556 -0.2672

9b 0.0660 0.0014 -0.0567 0.0915 0.0142 -0.1378

10a 0.0624 0.1387 -0.8696 0.0471 0.1376 -0.6180

11a 0.0259 0.0009 -0.0470 0.0248 0.0110 -0.1172

12a 0.0388 0.0768 -0.4400 0.0233 0.0297 -0.1919

10b 0.0624 0.1389 0.8705 0.0471 0.1376 0.6180

11b 0.0260 0.0009 0.0484 0.0248 0.0110 0.1172

12b 0.0390 0.0776 0.4423 0.0233 0.0297 0.1919

Table 7 The vertical excitation energy in (4, 4) active space, as

calculated by VB methods with the aug-VTZ basis set

N state V state Te
(eV)

E (a.u.) hx2i
(a0

2)

E (a.u.) hx2i
(a0

2)

VBSCF-9a -78.110778 11.68 -77.769936 13.44 9.27

VBSCF-15b -78.110778 11.68 -77.811182 22.95 8.15

CASSCF(4, 4) -78.112095 11.60 -77.800412 22.21 8.48

BOVB-9a -78.121389 11.76 -77.796188 13.07 8.85

BOVB-15b -78.121389 11.76 -77.828470 19.16 7.97

a Involves structures 5–9b for the N state, and 6a–9b for the V state
b Involves structures 5–9b for the N state, and 6a–12b for the V state
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involving only structures 5–9b (entries 1 and 4). The sta-

bilization amounts to 1.12 and 0.88 eV, respectively, at the

VBSCF and BOVB level. Moreover, as was also found in

the (2,2) space, the spatial extension of the V state comes

out too small (ca. 13 a0
2) if structures 10a–12b are omitted.

Thus, from all point of views, it appears that the newly

proposed VB structures displaying asymmetrical p cova-

lent bonds are essential ingredients of the V state of eth-

ylene, albeit they were never considered before, to our

knowledge.

2.3 VB-QMC calculations

Since QMC methods are known to be extremely accurate in

principle, provided one uses sufficiently good trial func-

tions, it is interesting to check whether the extra correlation

provided by these methods would change or confirm our

above results. To this aim, we have used the QMC methods

by inputting the above VBSCF and BOVB wave functions

as trial wave functions, in so-called VB-QMC methods

[44]. Two levels of VB-QMC calculations have been used.

At the VMC level, previously optimized VBSCF or BOVB

wave functions are supplemented with a Jastrow factor

including explicit interparticle correlation (see theoretical

section), and wave function parameters are reoptimized.

Then, the more accurate DMC level consists of projecting

the VMC wave function onto the ground state using the

fixed-node DMC algorithm.

Table 8 displays the results obtained at these two levels,

where VB-VMC (resp. BO-DMC) corresponds to a wave

function that has a VBSCF (resp. BOVB) type of deter-

minantal part. It can be seen that when a simple VBSCF

wave function is used as a trial function (VB-VMC, entry

1), the N ? V transition energy is disappointingly large,

8.59 eV, showing that the Jastrow factor is not able to

retrieve the rp dynamic polarization that accompanies the

fluctuation of the p electrons. On the other hand, using now

the BOVB-5 wave function as a trial function, one gets a

much better Te value of 8.04 eV when only the Jastrow

parameters and coefficients of the CSFs are optimized

(entry 2), and an even better value, 7.96 eV, if a further

optimization of the inactive orbitals is performed (entry 3).

By contrast, removing structures 4a and 4b from the set of

VB structures in the trial function, as in the BO-VMC-3

calculation, leads to a much too high N ? V transition

energy, 8.98 eV. This result further confirms that structures

4a and 4b are essential components of the V state of eth-

ylene, even when a high level of electron correlation is

brought by the Jastrow factor.

Fixed-node DMC calculations further improve the BO-

VMC-5 results. Using a BOVB-5 trial wave function

where only Jastrow and CSFs parameters were reoptim-

ized at the VMC level leads to a DMC transition energy

of 7.96 eV, quite close to the experimental value, in

excellent agreement with experiment (7.88 eV), showing

that the nodal structure of the standard BOVB level is

physically correct. This has to be compared with the best

DMC value of 8.27 eV (190.8 kcal/mol) obtained by

Anderson et al. [32], using a GVB-type trial function.

Finally, using the BOVB-5 trial wave function where the

r orbitals were also reoptimized at the VMC level further

improves the transition energy to 7.93 eV, identical within

the error bars to the DMC value obtained by Schautz and

Filippi [31].

Table 8 Energies of the N and V states and weights of structures 4a and 4b, as calculated at the VMC and DMC levels using VBSCF or BOVB

wave functions as trial functions, with the ps-aug-VTZ basis set

QMC method N state V state Te (eV)

Optimized parametera E (a.u.) E (a.u.) Weigths of 4a,4bb

VB-VMC-5c,d j ? c -13.7132(5) -13.3977(5) 0.138(1) 8.59(2)

BO-VMC-5c,e j ? c -13.7053(5) -13.4098(5) 0.092(1) 8.04(2)

BO-VMC-5c,e j ? c ? i -13.7221(5) -13.4294(5) 0.074(1) 7.96(2)

BO-VMC-3c,e,f j ? c -13.7053(5) -13.3751(5) – 8.98(2)

BO-DMC-5c,e j ? c -13.7382(2) -13.4455(2) 0.087(1) 7.96(1)

BO-DMC-5c,e j ? c ? i -13.7439(2) -13.4525(2) 0.074(\1) % 7.93(1)

Statistical errors are shown in parenthesis
a Parameters optimized at the VMC level: j for Jastrow parameters, c for CSFs coefficients, i for inactive (r) orbitals
b Weights of each of the structures, Löwdin definition, Eq. 3
c Involves structures 2, 3a, and 3b for the N state, and 3a, 3b, 4a, 4b for the V state
d A VBSCF wave function is used as a trial function
e A BOVB wave function is used as a trial function
f Involves structures 2, 3a, and 3b for the N state, and only 3a, 3b for the V state
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3 Conclusions

The V state of ethylene poses a long-standing challenge for

theoretical methods, despite the small size of the molecule.

The difficulties encountered with standard MO-CI methods

are due to (1) the strong charge fluctuation within the p
system, which requires a dynamic response of the r frame

already at the orbital optimization step, and (2) a low-lying

Rydberg state which may spuriously contaminate the

V state. Thus, any meaningful wave function for the V state

must satisfy the dual condition of providing an accurate

energy relative to the ground state, and a reasonable spatial

extension, neither too large nor too small, i.e., being about

50 % larger than that of the ground state but not more.

The strategies of overcoming these difficulties in the

MO framework are all based on simple VB reasoning.

These methods are generally successful, but lead to long

configuration expansions that are treated by multi-refer-

ence variational or perturbative methods. This obviously

suggests the use of direct VB treatments, which are per-

formed with two different methods, VBSCF that is limited

to static electron correlation (like GVB and SC methods),

and BOVB that further involves dynamic correlation while

keeping the number of VB structures unchanged. At the

VBSCF level, the results share the same shortcomings as

CASSCF calculations and provide too large N ? V transi-

tion energies and V state wave functions that are too diffuse

to qualify as valence state. On the other hand, the BOVB

level provides excellent results in terms of both transition

energies and spatial extension of the wave functions. The

number of configurations amounts to only 14 structures in

the (4, 4) VB space, and 4 VB structures in the (2, 2) space.

Both VB structure sets lead to practically identical results,

showing that 4 VB structures with the BOVB method are

already capable of taking care of the r response to the

fluctuations of the p electrons, by means of the breathing

orbital effect. Moreover, the contraction of the p AOs

under the influence of dynamic electron correlation can be

clearly visualized by turning this latter type of correlation

on and off, by switching from BOVB to VBSCF.

The BOVB wave functions of the (2, 2) space have also

been used as guess functions for diffusion Monte Carlo

calculations, yielding results in close agreement with the

calculations of Schautz and Filippi [31], even without

needing to re-optimize the guess orbitals at the VMC step.

This further confirms the adequacy of BOVB wave func-

tions as guesses for DMC calculations, as noted already in

previous studies [44, 62].

Another outcome of the present study is the evidence for

the importance of VB structures displaying an asymmetric p
covalent bond as an essential component of the V state of

ethylene. Such VB structures, which have never been con-

sidered before in qualitative descriptions of the V state, arise

naturally from an expansion of the pp* MO configuration

into VB structures. These asymmetric p-bonds contribute

18–26 % of the total VB wave function. Moreover, they

have quite a significant stabilizing effect, of the order of ca.

0.90 eV, which can be understood as their role in tempering

the fluctuations of the p electrons, together with a classical

resonance effect due to their mixing with the zwitterionic

structures. Lastly, the two asymmetric covalent VB struc-

tures are the ones responsible for the spatial extension of the

V state being 50 % larger than that of the N state. It must

therefore be concluded that the V state of ethylene is not

100 % ionic as usually assumed, but involves a minor

though non-negligible covalent component. Incidentally,

the disregard of these structures in current qualitative rea-

soning is due to the usage of a minimal basis set in the

decomposition of the pp* configuration, in which the

asymmetrical covalent structures vanish. Nevertheless, the

importance of these structures does not imply that carbon

has suddenly five valence orbitals in the V state. The effect

of 4a and 4b is essentially perturbational, and it dresses the

zwitterionic structures with left–right correlation, which

tempers the antiresonant interaction (of the 3a–3b combi-

nation in the minimal VB set) and the high electron–elec-

tron repulsion of the doubly occupied 2p orbitals. It is

tempting to assign the diffuse orbitals in 4a and 4b as

carbon 3p AOs, however, we were not able to verify this

character since the orbitals lack the requisite radical node to

qualify as 3p.

All in all, the above study shows that performing direct

VB calculations in a reasonable basis set may lead to an

accurate description of the V state by means of extremely

compact wave functions provided the VB treatment

involves a built-in dynamic electron correlation. The rea-

son for the success is that VB can achieve this in a direct

way, whereas MO-CI methods must do this in a roundabout

and sometimes complicated way, owing to orthogonality

constraints. By contrast, the choice of VB structures that

need be involved in the computations does not require

complicated reasoning, but naturally arises from chemical

considerations. The additional and sometimes unexpected

insight that arises from such calculations is an intrinsic

feature of modern ab initio VB methods.

Acknowledgments W. W. is supported by the Natural Science

Foundation of China (Nos. 21120102035, 21273176, 21290193). SS

thanks the Israel Science Foundation (ISF grant 1183/13). B. B.

thanks the IDRIS computational center for an allocation of computer

time.

References

1. Cooper DL, Gerratt J, Raimondi M (1991) Chem Rev 91:929

2. Gerratt J, Cooper DL, Karadakov PB, Raimondi M (1998) Spin-

coupled theory. Wiley, New York

Theor Chem Acc (2014) 133:1441

123 Reprinted from the journal112



3. Goddard WA, Dunning TH Jr, Hunt WJ, Hay PJ (1973) Acc

Chem Res 6:368

4. Bobrowicz FW, Goddard WA (1977) In: Schaefer III HF (ed)

Methods of electronic structure theory, vol 4. Springer, Heidel-

berg, p 79

5. Hiberty PC, Shaik S (2007) J Comput Chem 28:137

6. Shaik S, Hiberty PC (2008) A chemist’s guide to valence bond

theory. Wiley, Hoboken

7. Wu W, Su P, Shaik S, Hiberty PC (2011) Chem Rev

111:7557–7593

8. Shaik S, Hiberty PC (2004) Rev Comp Chem 20:1–100

9. Hiberty PC, Humbel S, van Lenthe JH, Byrman C (1994) J Chem

Phys 101:5969

10. Hiberty PC, Flament J-P, Noizet E (1992) Chem Phys Lett

189:259

11. Hiberty PC, Shaik S (2002) Theoret Chem Acc 108:255

12. Angeli C (2009) J Comput Chem 30:1319

13. Merer AJ, Mulliken RS (1969) Chem Rev 69:639

14. Wilkinson G, Mulliken RS (1955) J Chem Phys 23:1895

15. Dunning TH Jr, Hunt WJ, Goddard WA (1969) Chem Phys Lett

4:147

16. Brooks BR, Schaefer HF III (1975) Chem Phys 9:75

17. Schaefer HF III (1978) J Chem Phys 68:4839

18. Buenker RJ, Shih S-K, Peyerimhoff SD (1979) Chem Phys 36:97

19. Buenker RJ, Peyerimhoff SD, Shih S-K (1980) Chem Phys Lett

69:7–13

20. Bender CF, Dunning TH Jr, Schaefer HF III, Goddard WA, Hunt

WJ (1972) Chem Phys Lett 15:171

21. Buenker RJ, Peyerimhoff SD (1975) Chem Phys 9:75

22. McMurchie LE, Davidson ER (1977) J Chem Phys 66:2959

23. Duben AJ, Goodman L, Pamuk HO, Sinanoglu O (1973) Theoret

Chim Acta (Berl) 30:177

24. Sinanoglu O (1969) Adv Chem Phys 14:237

25. Davidson ER (1996) J Phys Chem 100:6161

26. Davidson ER, Jarzecki A (1998) Chem Phys Lett 285:155

27. Lasorne B, Jornet-Somoza J, Meyer H-D, Lauvergnat D, Robb

MA, Gatti F (2013) Spect Acta A. http://dx.doi.org/10.1016/j.saa.

2013.04.078
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Abstract A comparison is presented of uncontracted

multireference singles and doubles configuration interac-

tion (MRCI) and internally contracted MRCI potential

energy surfaces for the reaction H 2Sð Þ þ O2
3
P�

g

	 

! HO2

2A00ð Þ. It is found that internal contraction leads to

significant differences in the reaction kinetics relative to

the uncontracted calculations.

Keywords MRCI � Internal contraction � H ? O2

1 Introduction

The reaction of hydrogen atom with molecular oxygen

H 2S
� �þ O2

3R�
g

	 

! HO2

2A00� � ð1Þ

on the electronic ground state potential energy surface

(PES) is important in both combustion and atmospheric

chemistry. Several experimental [1–4] and theoretical [5–

10] studies of the high-pressure limit for this reaction have

been reported. All the theoretical studies are based on

multireference electronic structure methods. Multirefer-

ence methods are appropriate here because the reaction

results in a change in the number of open-shell orbitals,

three for the reactants and just one for the product. Prob-

ably the most accurate, global, HO2 PES currently avail-

able was reported in 2005 by Xu et al. [11]. It consists of a

spline fit to 15,000 internally contracted multireference

configuration interaction (ic-MRCI) energies employing

the Dunning, aug-cc-pVQZ basis set and the Davidson

correction for higher-order excitations.

The theoretical studies reported in Refs. [5, 10] both

employ MRCI calculations with the same, 7-orbital 9-elec-

tron, active space and the same orbital basis set (aug-cc-

pVTZ). The only difference between the two calculations is

that the earlier study is an uncontracted MRCI (uc-MRCI)

calculation computed with the COLUMBUS program

package [12], while the more recent study is an ic-MRCI

calculation computed with the MOLPRO program package

[13]. Figure 1 of Ref. [10] shows significant differences

between the minimum energy path (MEP) energies from the

uncontracted and internally contracted calculations. The

purpose of this communication is to explore further the dif-

ferences between the uc-MRCI and ic-MRCI results for this

reaction, and to determine the effect these differences have

on the predicted high-pressure-limit reaction rate.

The paper is organized as follows. A brief summary of

the uc-MRCI and ic-MRCI methods is presented in Sect. 2.

The electronic structure calculations are described in Sect.

3. The transition state theory (TST) calculations of the

reaction rates are described in Sect. 4. In Sect. 5, the results

of the calculations are presented and discussed. The paper

concludes with Sect. 6.
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special collection of articles celebrating his career upon his

retirement.
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2 The uc-MRCI and ic-MRCI formalisms

In a MRCI approach, the wave function is expanded in a

basis of reference functions and excitations from those

reference functions. In this work, which involves open-

shell molecular radical species, the expansion functions are

chosen to be spin-adapted configuration state functions

(CSF) rather than primitive Slater determinants.

wMRCIi�� ¼
XNdim

n

cn nij ¼
XNref

m

cðmÞ m; refij

þ
XNref

m

X
pq

cðmÞpq mp
qi

���
þ
XNref

m

X
pqrs

cðmÞprqs mpr
qsi

��� þ � � �

with

mp
qi

��� ¼ Epq m; refij ; mpr
qsi

��� ¼ epqrs m; refi; . . .j

Epq and epqrs are the spin-adapted single- and double-

excitation operators. The expansion space employed in the

present calculations is limited to single and double exci-

tations, which is typical for MRCI applications.

In general, the orbital summations range over all the

molecular orbital (MO) basis functions, but when the ref-

erence functions are constructed from doubly occupied and

active orbital subsets, the allowed combinations of orbital

indices in the excitation operators are correspondingly

restricted. Furthermore, the above basis functions are typ-

ically linearly dependent, which results in further restric-

tions in the summations. One type of linear dependency

occurs when, for example, the molecular orbital us is

unoccupied in the reference function m; refij , in which case

the basis functions mpr
qsi

��� should be eliminated from the

expansion. A second type of linear dependency occurs

when the same expansion function is generated from two

different reference functions, mpr
qsi

��� ¼ m
0p0r0
q0s0 i

��� , in which

case only a single instance of the function should be

included in the expansion.

An alternative approach to define the expansion space

consists of imposing orbital occupation restrictions on

subsets of the orbitals to generate the reference functions

m; refij along with a consistent set of orbital occupation

restrictions for the single and double excitations. This

occupation restriction approach eliminates the complica-

tions associated with linear dependence of the basis, but it

imposes some restrictions on the general form of the

expansion space, and it may also include expansion terms

that do not belong to the minimal interacting space [14]. In

the COLUMBUS program system, these occupation

restrictions are imposed by restricting the allowed nodes of

the Shavitt graph in the Graphical Unitary Group Approach

(GUGA) (see ref. [12] and references therein).

In the following discussion, the above expansion basis,

after the appropriate elimination of linear dependencies,

will be called the uc-MRCI space. As discussed in ref. [15],

the uc-MRCI expansion dimension Ndim increases,

approximately linearly, with the reference space dimension

Nref, resulting in expensive computational procedures and

limiting the application of the method generally with

respect to molecular system size.

In order to reduce the expansion dimension and the

corresponding computational costs of MRCI, the internal

contraction approximation was introduced [16, 17]. In this

ic-MRCI approximation, the excitation operators are

applied to the contracted reference wave function rather

than to the individual reference basis functions,

wic�MRCIi�� ¼
XNdim

n

~cn ~nij ¼ ~c0 ~w0i
�� þ

X
pq

~cpq
~wp
qi

��� þ
X
pqrs

~cprqs
~wpr
qsi

���
with

~w0i
�� ¼

XNref

m

crefm m; refij ; ~wp
qi

��� ¼ Epq
~w0i
�� ; ~wpr

qsi
��� ¼ epqrs ~w0i

�� :

The reference expansion coefficients crefm are typically fixed

at their optimal MCSCF values and not allowed to vary

during the subsequent CI optimization. Thus, the number

of variational coefficients Ndim in ic-MRCI is comparable

to that of a single-reference calculation and is reduced

significantly compared to the uc-MRCI dimension. The ic-

MRCI expansion spans a subspace of the minimal inter-

acting space [17].

One of the most popular implementations of the ic-

MRCI method is the MOLPRO program [13, 18–21]. In

this particular implementation, only the double excitations

are contracted, the reference functions and the single

excitations are left uncontracted. This hybrid approach

increases the flexibility of the wave function compared to

the fully ic-MRCI expansion while still reducing the

computational costs significantly compared to the uc-

MRCI expansion.

Both the uc-MRCI and the ic-MRCI energies satisfy the

variational bound properties that the computed energies are

rigorous upper bounds to the full-CI energies computed

with the same MO basis, provided that no further approx-

imations to the Hamiltonian operator or to the computed

integrals are imposed. The full-CI energies computed with

a given MO basis in turn are upper bounds to the complete-

CI energies. The complete-CI energy is the limit of a full-

CI energy within a complete MO basis and is the exact

solution to the Schrodinger equation within the Born–
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Oppenheimer approximation. Because the ic-MRCI

expansion spans a subspace of the uc-MRCI expansion,

there is also a variational bound relation between these two

PESs. Furthermore, these bound relations hold for arbitrary

ground and excited electronic states.

E
complete�CI
k 
Efull�CI

k 
Euc�MRCI
k 
Eic�MRCI

k

See ref. [15] for a more complete discussion of the con-

sequences of the ic-MRCI approximation.

Many molecular properties involve energy differences

rather than total energies, and in these cases it is possible

for a less-flexible method to enjoy a more favorable can-

celation of errors. This cancelation of error may be fortu-

itous, or it may be systematic. In such a situation, the

accuracy of the computed properties may not agree with

the above ordering of the accuracies of the total energies.

The computed reaction rates discussed in the present work

depend on such energy differences. These rates depend on

the behavior of the PESs, in particular barrier heights and

the associated reaction-path partition functions, relative to

the asymptotic dissociation limits; these shifted PESs are

called interaction potentials.

3 Electronic structure calculations

The MRCI calculations employ a 7-orbital 9-electron active

space, consisting of all valence orbitals except for the oxygen

2s orbitals that correspond to low-lying lone-pair spectator

orbitals for this reaction. The Dunning aug-cc-pVTZ basis

set [22] is used for all atoms, resulting in 115 total MOs.

Calculations were performed in the standard Jacobi coordi-

nates,ROO,RMH and theHMOangle,whereM is the center of

mass of the O2 fragment. The calculations were carried out

on a 9 9 31 9 17 grid covering ranges of 1.14–1.38 Å for

ROO, 1.3–8.0 Å for RMH and 0�–90� for the HMO angle. The

resulting grids of energies were then fit using three-dimen-

sional splines. Both the contracted and the uncontracted

calculations were corrected for higher-order excitations with

two different approaches. The Davidson correction is an a

posteriori correction applied to the MRCI energy, and the

averaged quadratic coupled cluster [23] (AQCC) method is

an a priori correction in which the CI equation itself is

modified. See ref. [15] for a detailed discussion of both

approaches. The uc-MRCI and uc-AQCC calculations were

computed with the COLUMBUS program system [12], and

the ic-MRCI and ic-AQCC calculations were computed with

the MOLPRO program [13]. All calculations were per-

formed within the Cs point group. The molecular orbitals

were determined with CASSCF calculations, and the four

electrons in the O atom 1 s core orbitals were frozen in the

subsequent MRCI expansions.

The internal orbital space consists of the active orbitals

plus the two spectator oxygen 2 s orbitals. This expansion

is denoted CAS?1?2. The uc-MRCI expansions consist of

868 internal CSFs (the 240 reference CSFs of A
00
symmetry

plus excitations within the internal orbital space), 277,727

single excitations, and 27,836,460 double excitations,

resulting in Ndim = 28,115,055 total CSFs. In the ic-MRCI

calculations, the double excitations are contracted down to

225,117 expansion terms, resulting in an expansion space

of dimension Ndim = 503,712. The ic-MRCI expansion

spans a subspace of the minimal interacting space [14, 17],

whereas the uc-MRCI expansion includes also terms that

interact only indirectly with the references.

Finally, as an additional check on the accuracy of the

MRCI calculations, full-CI calculations were carried out

along a one-dimensional path. These calculations used the

Dunning VDZ basis set [24] (no polarization functions)

with the OO distance fixed at Re and the HOO angle fixed

at 115�. These full-CI calculations were performed with

MOLPRO [13, 18, 19].

4 Transition state theory calculations

Variable reaction coordinate transition state theory (VRC-

TST) [25, 26] was used to predict the H ? O2 high-pres-

sure recombination rate coefficient. The calculations were

performed for the four separate analytical potential energy

surfaces obtained from fits to the ic-MRCI, ic-

MRCI ? QC, uc-MRCI and uc-MRCI ? QC calculations,

where ?QC denotes inclusion of the renormalized David-

son correction [15, 27, 28]. The VRC-TST analysis

depends on the location of pivot points for the rotational

motions of the fragments. For large separations ([4 Å), the

O2 pivot point was placed at its center of mass, while for

shorter separations pairs of pivot points displaced along the

OO axis were considered. The displacement of these pivot

points ranged from 0 to 1 Å. Distances ranging from 1.6 to

8 Å were considered for the H to pivot point separation.

Convergence limits of 2 % were employed for the Monte

Carlo integrations over the configurational integrals.

5 Results and discussion

MEPs for the title reaction obtained using uc-MRCI and ic-

MRCI both with and without the Davidson correction and

uc-AQCC and ic-AQCC are all presented in Fig. 1. The

results are very similar to those presented in ref. [10]. A

key question in this and other radical ?O2 reactions con-

cerns the form of the long-range interaction potential (i.e.,

for separations ranging from about 2 to 3 Å). The results

Theor Chem Acc (2014) 133:1429
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shown in Fig. 1 illustrate that this long-range potential is

very sensitive to the level of theory. The ic-CAS?1?2

calculations exhibit a small, positive barrier. The uc-

CAS?1?2, ic-CAS?1?2?QC and ic-AQCC calculations

all exhibit submerged barriers. Finally, the uc-

CAS?1?2?QC and uc-AQCC calculations exhibit a

potential that is monotonically attractive, i.e., with no PES

barrier. Interestingly, the difference between the uc-MRCI

and ic-MRCI calculations for the overall exothermicity of

the reaction is very small, *0.02 kcal/mol.

To check whether the differences between the ic-MRCI

and uc-MRCI energies are primarily due to the contraction

or to the interacting space restriction, additional calcula-

tions were carried out in which the number of reference

states in the ic-MRCI calculations was varied. In principle

if the number of references states is increased to equal the

number of CSFs in the reference wave function, this should

have the effect of fully uncontracting the ic-MRCI calcu-

lation within the interacting space. This is not practical for

the 9-orbital active space used in the majority of calcula-

tions reported here. As a test, a limited number of calcu-

lations were performed with a smaller, 5-orbital, 7-electron

active space consisting of the O2 p and p* orbitals and the

hydrogen 1s orbital. For these calculations, the reference

wave function consists of 20 CSFs, and when all 20 ref-

erence states are included in the ic-MRCI calculation, the

resulting interaction energy agrees to within 0.02 kcal/mol

with the uc-MRCI calculation. This residual difference is

presumably due to the differences in the expansion spaces

discussed above. On a cautionary note, we find that the

convergence of the ic-MRCI interaction energy as a func-

tion of increasing the number of reference states is highly

non-monotonic. Although an increment in the number of

reference states at a given molecular conformation results

in a monotonic decrease in the total energy, the differences

of these values can lead to either smaller or larger inter-

action energies and to non-systematic differences between

these ic-MRCI and uc-MRCI energies. This is illustrated in

Fig. 2 where the variation in the 9-active orbital ic-MRCI

interaction energies (both with and without the Davidson

correction) is shown as a function of the number of refer-

ence states (1–20) along with the corresponding uc-MRCI

energy. Increasing the number of reference states to two or

three is seen to result in small improvements in the

agreement between the ic-MRCI and uc-MRCI interaction

energies. However, other increments can result in signifi-

cantly worse agreement.

The errors in the MRCI interaction potentials relative to

the full-CI are presented in Fig. 3. Without the Davidson

correction, the uc-MRCI calculations are in significantly

better agreement with the full-CI calculations than are the

ic-MRCI. The uc-MRCI calculations are in near perfect

agreement with the full-CI for distances greater than 2.5 Å

and then become slightly too attractive at shorter distances.

The ic-MRCI calculations are not attractive enough in this

region. However, inclusion of the Davidson correction

changes this picture. With the Davidson correction, the uc-

Fig. 1 Minimum energy path energies for the reaction

H ? O2 ? HO2 as a function of the OH bond length. The OO bond

length and the HOO angle are optimized at the ic-CAS?1?2/aug-cc-

pVTZ level

Fig. 2 Comparison of ic-MRCI and uc-MRCI interaction energies as

a function of the number of reference states included in the ic-MRCI

calculation. All calculations were performed at one intermediate

point, ROH = 4.2 au (2.22 Å), near the maximum on the ic-MRCI

MEP shown in Fig. 1
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MRCI ? QC calculations become too attractive at long

range, while the ic-MRCI ? QC are in near perfect

agreement with full-CI at long range. At shorter distances,

the magnitude of the error in the Davidson-corrected uc-

MRCI ? QC and ic-MRCI ? QC calculations is compa-

rable, with the uncontracted calculations being too attrac-

tive and the contracted calculation not attractive enough. It

should be emphasized that these small-basis VDZ calcu-

lations capture only a small percentage of the correlation

energy, and it is unclear to what extent these trends would

persist with more flexible orbital basis sets. The full-CI

total energies are listed in Table 1 of the Supplemental

Information.

Contour plots of the uc-MRCI and ic-MRCI PESs for

ROO fixed at Re are given in Fig. 4, and the difference

between the two PESs is presented in Fig. 5. The plot

shows that the differences between the uc-MRCI and ic-

MRCI calculations are largest at H-center-of-mass dis-

tances of 1.5–2 Å. The differences also become larger near

either the collinear or C2v orientations. In this regard, it

may be significant to note that conical intersections exist

along both the collinear and C2v approaches.

The results of the TST calculations of the rate are given

in Fig. 6 along with experimental results from references

[1, 4] and results employed in a recent modeling study of

H2/O2 flame and ignition data [29]. The latter modeling

study showed good agreement across a wide range of

observables, including high-pressure flame data [30, 31],

for which most other models were deficient. It employed

the high-pressure limit obtained in the analysis of Troe [6],

which in turn was based on the earlier potential energy

surface study of Harding et al. [5]. At room temperature,

the uc-MRCI-based calculations give rates that are *30 %

larger than the ic-MRCI-based calculations. Inclusion of

the Davidson correction increases this difference to

*50 %. At the highest temperatures, the uc-MRCI and ic-

MRCI results differ by only 5–10 %. The best agreement

between theory and experiment comes from the Davidson-

corrected uc-MRCI calculations although both of the

Fig. 3 Errors relative to full-CI in the uc-MRCI/VDZ and ic-MRCI/

VDZ energies as a function of the OH bond length. The OO bond

length is fixed at Re, and the HOO bond angle is fixed at 115�

Fig. 4 Comparison of the uc-MRCI and ic-MRCI, CAS?1?2/aug-

cc-pVTZ, H ? O2 interaction potentials for ROO fixed at 1.21 Å. Blue

contours represent regions lower in energy than the H ? O2

asymptote, while red contours represent energies higher than the

asymptote, and the black contour corresponds to the energy of the

asymptote. Contour increments for the heavy (light) contours are

5.0 kcal/mol (0.5 kcal/mol)
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Davidson-corrected results are in reasonably good agree-

ment with the experiment, given the uncertainty in the

experimental data.

6 Conclusions

It is demonstrated that ic-MRCI calculations introduce

small, but kinetically significant errors in interaction

potentials relative to the corresponding uc-MRCI calcula-

tions. For the H ? O2 addition reaction, these errors are

largest in the vicinity of the dynamical bottleneck. As

dynamical bottlenecks often occur in regions where the

character of the electronic wave function is changing rap-

idly (such as near-avoided crossings) and the wave function

flexibility is critical, we expect this conclusion to be fairly

general.

It is important to note that there is a significant differ-

ence in the computational cost of ic-MRCI and uc-MRCI

calculations. For the CAS ? 1 ? 2/aug-cc-pVTZ calcula-

tions reported here, an uc-MRCI calculation requires

approximately 40–50 times more computer time than the

corresponding ic-MRCI calculation. This means that the

use of the ic-MRCI approximation enables calculations

with larger basis sets and active spaces than is currently

feasible with uc-MRCI. When very high accuracy is

needed, a hybrid approach might be most efficient in which

the contraction error is evaluated with a relatively modest

basis set and then applied as a correction to a larger basis

set ic-MRCI interaction potential.
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Abstract Spin-coupled theory for ‘N electrons in M orbi-

tals’ active spaces [SC(N,M)], an ab initio valence-bond (VB)

approach which uses a compact and easy-to-interpret wave

function comparable in quality to a ‘N inM’ complete-active-

space self-consistent field [CASSCF(N,M)] construction, is

used to obtain modern VB descriptions of the p-electron
systems of the most important annulene rings with 4n ? 2 p
electrons: the cyclopropenium ion, the cyclobutadiene dica-

tion and dianion, the cyclopentadienide anion, benzene, the

cycloheptatrienyl cation, and the cyclooctatetraene dication

and dianion in their highest-symmetry nuclear conforma-

tions. The SC wave functions for the cyclopropenium ion,

cyclopentadienide anion, cycloheptatrienyl cation, cyclo-

octatetraene dication and dianion are shown to closely

resemble the well-known SC model of the classical example

of an aromatic system, benzene. The SC orbitals for the cy-

clobutadiene dication and dianion are more delocalized and

demonstrate the ways in which SC wave functions adjust to

electron-deficient and electron-rich environments. The high

levels of resonance observed in all annulene ions with

4n ? 2 p electrons clearly demonstrate their aromaticity.

Keywords Spin-coupled theory � ‘N in M’ active

space � Valence-bond theory � Aromaticity �
Cyclopropenium ion � Cyclobutadiene dication/

dianion � Cyclopentadienide anion � Benzene �
Cycloheptatrienyl cation � Cyclooctatetraene
dication/dianion

1 Introduction

Annulenes and annulene ions with 4n ? 2 p electrons are

classical examples of aromatic systems which follow

Hückel’s 4n ? 2 rule. Using the familiar Frost–Musulin

diagrams [1], based on Hückel molecular orbital theory, it

is easy to demonstrate that all p electrons in the cyclop-

ropenium ion, C3H
þ
3 , the cyclobutadiene dication, C4H

2þ
4 ,

the cyclopentadienide anion, C5H
�
5 , benzene, C6H6, the

cycloheptatrienyl cation (tropylium ion), C7H
þ
7 , and the

cyclooctatetraene dication, C8H
2þ
8 , are placed in doubly

occupied bonding MOs, which makes these systems par-

ticularly stable. Similarly stable p electron distributions are

observed in the dianions of cyclobutadiene and cyclo-

octatetraene, C4H
2�
4 and C8H

2�
8 , in each of which four

additional p electrons (relative to the dications) occupy two

doubly degenerate non-bonding orbitals. Another way of

explaining the aromaticity of annulenes and annulene ions

with 4n ? 2 p electrons is to use the classical valence-

bond (VB) concept of resonance: It is possible to draw, for

each of these systems, several equivalent stable resonance

structures, such as those for the cyclopropenium ion and

the cyclopentadienide anion shown below.
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Unfortunately, the only ab initio MO approach which

can be used to justify the Frost–Musulin diagrams is the

closed-shell Hartree–Fock (HF) method: A HF calculation

on a CmHm conjugated cycle of Dmh symmetry containing

an even number of electrons produces, amongst others,

m orbitals dominated by carbon 2pp basis functions; the

energies of these orbitals are in a one-to-one correspon-

dence with the orbital energies from a Frost–Musulin dia-

gram with m vertices. The situation with ab initio

implementations of classical VB theory is less satisfying:

As a rule, the results retain very little of the intuitive clarity

of the concept of resonance, as the wavefunctions need to

include very large numbers of structures, most of which

have next to no chemical relevance.

Spin-coupled (SC) theory, a modern VB approach, uses a

post-HF wave function which usually provides a close

approximation to a complete-active-space self-consistent

field (CASSCF) wave function, but can be interpreted in

terms of a small number ofVB resonance structures (for a SC

review, see Ref. [2]). As a rule, the most important of these

VB resonance structures are observed to be the ones which

would be suggested by chemical intuition. A good example

of SC theory in action is furnished by the SC description of

the p-electron system of benzene [3–5]. The six p electrons

populate a single product of six non-orthogonal active (or,

spin-coupled) orbitals, the spins of which are coupled in all

five possible ways leading to an overall singlet. The optimal

SC orbitals turn out to be well localized, similar in shape to

C(2pp) atomic orbitals with small symmetrical protrusions

toward neighboring carbons, while the optimal spin-cou-

pling pattern, if expressed in terms of Rumer spin func-

tions [6], reveals the presence of two equivalent dominant

Kekulé-like structures and three much less important

equivalent Dewar-like (or para-bonded) structures. This SC

picture reproduces the essential features of the well-known

classical VB description of benzene in terms of resonance

structures, and yet it comes from a wave function which

accounts for close to 90 % of the ‘non-dynamic’ correlation

energy incorporated in a ‘6 electrons in 6 orbitals’ p-space
CASSCF [CASSCF(6,6)] wave function [5].

In its original form [8, 9], the SC(N) wave function is

equivalent to the full generalized valence-bond (full-GVB)

wave function [7] and incorporates a ‘N in N’ active space,

described by means of a single product of N non-orthog-

onal active orbitals, multiplied by a general N-electron spin

function. Clearly, an ansatz of this type cannot accommo-

date the ‘N in M’ active spaces with different numbers of

active electrons and active orbitals typically employed in

CASSCF wave functions. This problem was recently

addressed through the development of an extension of SC

theory to ‘N in M’ (N = M) active spaces [10]. The

SC(N,M) wave function retains the essential features of the

original SC model: It involves just the products of non-

orthogonal orbitals corresponding to all distributions of

N electrons between M orbitals in which the smallest

number of orbitals possible, |N - M|, are doubly occupied

(for N[M) or omitted (for N\M), and all other orbitals

are singly occupied; each of these products is combined

with a flexible spin function which allows any mode of

coupling of the spins of the orbitals within the product. Of

course, SC(N,N) signifies precisely the same construction

as the original SC(N) wave function.

In the present work, we use appropriate SC(N,M) wave

functions to obtain and compare modern VB descriptions

of the p-electron systems of the most important annulene

rings with 4n ? 2 p electrons: the cyclopropenium ion, the

cyclobutadiene dication and dianion, the cyclopentadienide

anion, benzene, the cycloheptatrienyl cation, and the

cyclooctatetraene dication and dianion. We show that the

SC method can produce, at a near-CASSCF level of theory,

a convincing general model for the electronic structure of

these frequently discussed aromatic systems which justifies

the continued use of the popular VB resonance structures.

2 Results and discussion

The highest-symmetry geometries of the cyclopropenium

ion, the cyclobutadiene dication and dianion, the cyclo-

pentadienide anion, benzene, the cycloheptatrienyl cation,

and the cyclooctatetraene dication and dianion were opti-

mized using p-space CASSCF wave functions within the

6-311G(d,p) basis. These calculations were carried out by

means of GAUSSIAN09 [11] under the ‘VeryTight’
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convergence criteria. The optimized geometries were

identified as local minima or saddle points through diago-

nalizations of the corresponding analytic nuclear Hessians.

The optimized carbon–carbon and carbon–hydrogen bond

lengths are shown in Table 1. Despite the fact that, for

isolated ions, the D4h geometries of the cyclobutadiene

dication and dianion correspond to saddle points on the

respective potential energy surfaces, both geometries can

be stabilized as, for example, in the tetra-

phenylcyclobutadiene dication reported by Olah and Staral

[12] and the tetrakis(trimethylsilyl)cyclobutadiene dianion

synthesized by Sekiguchi et al. [13]. While it is possible to

obtain local minimum geometries of lower energy and

lower symmetry for isolated C4H
2þ
4 and C4H

2�
4 , these

geometries are most likely to be non-aromatic.

The CASSCF geometry optimizations were followed by

fully variational SC(2,3), SC(2,4), SC(6,4), SC(6,5),

SC(6,6), SC(6,7), SC(6,8) and SC(10,8) calculations

on C3H
þ
3 ; C4H

2þ
4 ; C4H

2�
4 ; C5H

�
5 ;C6H6;C7H

þ
7 ; C8H

2þ
8 and

C8H
2�
8 , respectively. The fully variational SC calculations

were carried out at the respective CASSCF/6-311G(d,p)

optimized geometries, again within the 6-311G(d,p) basis,

by means of the CASVB algorithms [14–17] implemented

in MOLPRO [18]. The total energies of the HF, SC and

CASSCF wave functions for all cyclic systems studied in

this paper and the percentages of CASSCF correlation

energy accounted for by the SC wave functions, together

with the numbers of configuration state functions (CSFs)

included in the CASSCF and SC wave functions, are

shown in Table 2. The identical energies of the SC and

CASSCF wave functions for the three smallest 4n ? 2

cyclic systems, the cyclopropenium ion and the cyclobut-

adiene dication and dianion, suggest that these wave

functions may coincide. The percentages of CASSCF

correlation energy recovered by the SC wave functions for

the larger cyclopentadienide anion, cycloheptatrienyl cat-

ion and cyclooctatetraene dication and dianion remain very

high, well above the 89.6 % obtained for benzene, which

indicates that the SC(N,M) wave functions for these cyclic

ions can be viewed as very close approximations to their

CASSCF(N,M) counterparts.

The percentages ofCASSCFcorrelation energy accounted

for by the SC wave functions for C5H
�
5 ; C6H6 and C7H

þ
7 ,

obtained in the current calculations within the 6-311G(d,p)

basis, are very much the same as the corresponding cc-pVDZ

and cc-pVTZ numbers reported in Ref. [10]. This is an

indication that the relatively small gaps between the energies

of the p-space SC and CASSCF wave functions for these

systems arise as a consequence of wave function ansatz dif-

ferences that are largely basis-set-independent.

Each of the SC(2,3), SC(2,4), SC(6,4), SC(6,5), SC(6,6),

SC(6,7), SC(6,8) and SC(10,8) calculations on C3H
þ
3 ;

C4H
2þ
4 ;C4H

2�
4 ; C5H

�
5 ; C6H6; C7H

þ
7 ; C8H

2þ
8 and C8H

2�
8 ,

respectively, produced a set of symmetry-equivalent SC

orbitals (see Figs. 1, 2). The SC orbitals for C5H
�
5 ; C6H6

and C7H
þ
7 are visually indistinguishable from those cal-

culated within the cc-pVDZ basis and shown in Ref. [10].

These orbitals, as well as the SC orbitals for C3H
þ
3 ; C8H

2þ
8

and C8H
2�
8 , resemble distorted C(2pp) atomic orbitals. The

SC orbitals for the cyclobutadiene dication and dianion are

more delocalized, which is a consequence of the fact that

these are the orbitals with the lowest and highest formal

occupation numbers within the series, 0.5 and 1.5,

respectively.

The overlap integrals between SC orbitals associated with

neighboring carbons are listed in Table 3 (for all cyclic sys-

tems studied in this paper, we assume that the SC orbitals are

numbered clockwise around the ring). The only more sig-

nificant deviation from the benzene \wl|wl?1[ overlap

integral (wl and wl?1 are SC orbitals associated with

neighboring carbonatoms) is observed for the cyclobutadiene

dianion in which each SC orbital has, in addition to the part

resembling a distorted C(2pp) atomic orbital, a diagonally

opposite component that looks like an inverted-phase

reduced-size C(2pp) atomic orbital (see orbital (c) in Figs. 1,

2). The particular shape of the C4H
2�
4 SC orbitals is also

responsible for the increased magnitude of the ‘diagonal’

overlap integrals\wl|wl?2[ (see Table 3).

Table 1 Carbon–carbon and carbon–hydrogen bond lengths (in Å) in

the cyclopropenium ion, the cyclobutadiene dication and dianion, the

cyclopentadienide anion, benzene, the cycloheptatrienyl cation, and

the cyclooctatetraene dication and dianion optimized using p-space
CASSCF wave functions within the 6-311G(d,p) basis

System Point

group

Wave function RCC RCH

Cyclopropenium ion

ðC3H
þ
3 Þ

D3h CASSCF(2,3)a 1.3540 1.0718

Cyclobutadiene

dication ðC4H
2þ
4 Þ

D4h CASSCF(2,4)b 1.4353 1.0838

Cyclobutadiene

dianion ðC4H
2�
4 Þ

D4h CASSCF(6,4)c 1.4639 1.0918

Cyclopentadienide

anion ðC5H
�
5 Þ

D5h CASSCF(6,5)a 1.4098 1.0794

Benzene (C6H6) D6h CASSCF(6,6)a 1.3952 1.0756

Cycloheptatrienyl

cation ðC7H
þ
7 Þ

D7h CASSCF(6,7)a 1.3945 1.0755

Cyclooctatetraene

dication ðC8H
2þ
8 Þ

D8h CASSCF(6,8)a 1.4059 1.0774

Cyclooctatetraene

dianion ðC8H
2�
8 Þ

D8h CASSCF(10,8)a 1.4124 1.0916

a Optimized geometry corresponds to a local minimum
b Optimized geometry corresponds to a first-order saddle point
c Optimized geometry corresponds to a fourth-order saddle point
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The unnormalized SC(2,3) wave function for the cy-

clopropenium ion involves just three orbital products and

the singlet two-electron spin eigenfunction

W00ð2; 3Þ ¼ Â�ð18Þ�w1w2 þ w2w3 þ w3w1

��
ab� baÞ� ð1Þ

In this equation, ‘(18)’ denotes the 18 core electrons,

accommodated in 9 doubly occupied optimized orbitals.

Wave function (1) represents the simplest mathematical

description of the classical VB resonance in the

cyclopropenium ion (see the C3H
þ
3 resonance structures in

the Introduction and Fig. 3): Each of the products of singlet-

coupled overlapping SC orbitals w1w2, w2w3 and w3w1

models the p component of the double bond in one of the

three symmetry-equivalent resonance structures (denoted as

R in Fig. 3). Due to the fact that the energies of the SC(2,3)

and CAS(2,3) wave functions for C3H
þ
3 are identical (see

Table 2), Eq. (1) can be viewed as an easy-to-

interpret alternative form of the CAS(2,3) wave function.

The SC(2,4) and SC(6,4) wavefunctions for the

cyclobutadiene dication and dianion can be written down

as

W00ð2; 4Þ ¼ Âð24Þ�Ca;0

�
w1w2 þ w2w3 þ w3w4 þ w4w1

�
þ Cb;0

�
w1w3 þ w2w4

���
ab� baÞ� ð2Þ

W00ð6; 4Þ ¼ Âð24Þ�Ca;0

�
w2
3w

2
4w1w2 þ w2

1w
2
4w2w3

þ w2
1w

2
2w3w4 þ w2

2w
2
3w4w1

�
þ Cb;0

�
w2
2w

2
4w1w3 þ w2

1w
2
3w2w4

��
abab

�
ab� baÞ�

ð3Þ
Each of these wave functions incorporates 24 core

electrons, placed in 12 doubly occupied optimized orbitals.

The SC orbital products in W00ð2; 4Þ and W00ð6; 4Þ fall into
two groups: In the first group, the two singly occupied

orbitals are on neighboring carbons, which gives rise to

resonance structures with a single carbon–carbon p bond

Ra (see Fig. 3), while in the second group the two singly

occupied orbitals are along one of the diagonals of the

square formed by the carbons, resulting in diagonally

bonded resonance structures Rb. The VB structures for the

dianions which are not shown in Fig. 3 can be obtained

trivially from those for the dications by replacing the plus

signs with minus signs. The relative importance of the Ra

and Rb structures can be examined, as is usual in VB

theory, by calculating their Chirgwin–Coulson

weights [20]. As shown in Fig. 3, the combined

Chirgwin–Coulson weight of the Ra structures is larger

than that of the Rb structures, but this is actually a

consequence of the fact that there are four symmetry-

Table 2 Total HF, SC and

CASSCF energies (in a.u.),

percentages of the recovered

CASSCF correlation energy (in

brackets) and numbers of CSFs

included in the SC and CASSCF

wave functions

System Wave function CSFs Total energy

Cyclopropenium ion ðC3H
þ
3 Þ HF 1 �115:031554 ð0:0%Þ

SC(2,3) 3 -115.055323 (100.0 %)

CASSCF(2,3) 6 -115.055323 (100.0 %)

Cyclobutadiene dication ðC4H
2þ
4 Þ HF 1 �152:936990 ð0:0%Þ

SC(2,4) 6 -152.968532 (100.0 %)

CASSCF(2,4) 10 -152.968532 (100.0 %)

Cyclobutadiene dianion ðC4H
2�
4 Þ HF 1 �153:320790 ð0:0%Þ

SC(6,4) 6 -153.345554 (100.0 %)

CASSCF(6,4) 10 -153.345554 (100.0 %)

Cyclopentadienide anion ðC5H
�
5 Þ HF 1 �192:234802 ð0:0%Þ

SC(6,5) 10 �192:278712 ð97:6%Þ
CASSCF(6,5) 50 -192.279813 (100.0 %)

Benzene (C6H6) HF 1 �230:753520 ð0:0%Þ
SC(6,6) 5 �230:818566 ð89:6%Þ
CASSCF(6,6) 175 -230.826126 (100.0 %)

Cycloheptatrienyl cation ðC7H
þ
7 Þ HF 1 �268:951162 ð0:0%Þ

SC(6,7) 35 �269:032346 ð95:4%Þ
CASSCF(6,7) 490 -269.036264 (100.0 %)

Cyclooctatetraene dication ðC8H
2þ
8 Þ HF 1 �306:898421 ð0:0%Þ

SC(6,8) 140 �306:999376 ð96:9%Þ
CASSCF(6,8) 1,176 -307.002563 (100.0 %)

Cyclooctatetraene dianion ðC8H
2�
8 Þ HF 1 �307:371910 ð0:0%Þ

SC(10,8) 140 �307:444510 ð97:5%Þ
CASSCF(10,8) 1,176 -307.446396 (100.0 %)
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equivalent Ra structures and two symmetry-equivalent Rb

structures; if we look at individual structures, the Rb

structures, in which the two charges are kept further apart,

have larger weights.

The spins of the singly occupied orbitals within the SC

wave functions in Eqs. (1), (2) and (3) are coupled by a

singlet two-electron spin function which has the same form

in any spin basis. The SC wave functions for larger an-

nulene ions incorporate spin functions for more than two

electrons and, to make it easier to establish connections

between the SC results and classical VB theory, it would be

appropriate to make use of the Rumer spin basis [6].

Another option, of which we shall be making use here, is to

assemble linear combinations of suitably reordered orbital

products with the perfect-pairing spin function which is

present in most spin bases, for example, Rumer [6], Kotani

[21] and Serber [22, 23].

The SC(6,5), SC(6,6) and SC(6,7) wave functions for

C5H
�
5 ; C6H6 and C7H

þ
7 , respectively, obtained in the cur-

rent work using the 6-311G(d,p) basis, are very similar to

the corresponding wave functions calculated within the cc-

pVDZ and cc-pVTZ bases in Ref. [10]. To emphasize the

fact that each of the SC(6,5) wave function for the

cyclopentadienide anion and the SC(6,6) wave function for

benzene contains just two symmetry-unique structures (see

Fig. 3), these wave functions can be expressed as (in un-

normalized form)

Fig. 1 Active orbitals from the SC wave functions for the cyclop-

ropenium ion (a), cyclobutadiene dication (b), cyclobutadiene dianion
(c), cyclopentadienide anion (d), benzene (e), cycloheptatrienyl cation
(f), cyclooctatetraene dication (g) and cyclooctatetraene dianion

(h) as isovalue surfaces at wl = ±0.05. All POV-Ray (Persistence of

Vision Raytracer) files for the isovalue surfaces were generated by

MOLDEN [19]. For further details, see text

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2 Active orbitals from the SC wave functions for the cyclop-

ropenium ion (a), cyclobutadiene dication (b), cyclobutadiene dianion
(c), cyclopentadienide anion (d), benzene (e), cycloheptatrienyl cation
(f), cyclooctatetraene dication (g) and cyclooctatetraene dianion

(h) as contour plots (step 0.025) in a plane 1 Bohr above the

respective molecular plane. All contour plots were generated by

MOLDEN [19]. For further details, see text

Table 3 Overlaps between neighboring orbitals in the SC wave

functions for the cyclopropenium ion, the cyclobutadiene dication and

dianion, the cyclopentadienide anion, benzene, the cycloheptatrienyl

cation, and the cyclooctatetraene dication and dianion

System Wave function \wl|wl?1[

Cyclopropenium ion ðC3H
þ
3 Þ SC(2,3) 0.5330

Cyclobutadiene dication ðC4H
2þ
4 Þ SC(2,4) 0.4661a

Cyclobutadiene dianion ðC4H
2�
4 Þ SC(6,4) 0.1188b

Cyclopentadienide anion ðC5H
�
5 Þ SC(6,5) 0.6812

Benzene (C6H6) SC(6,6) 0.5252

Cycloheptatrienyl cation ðC7H
þ
7 Þ SC(6,7) 0.4358

Cyclooctatetraene dication ðC8H
2þ
8 Þ SC(6,8) 0.4483

Cyclooctatetraene dianion ðC8H
2�
8 Þ SC(10,8) 0.6722

a ‘Diagonal’ overlaps\wl|wl?2[ = 0.1871
b ‘Diagonal’ overlaps\wl|wl?2[ = -0.7261
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W00ð6; 5Þ ¼ Âð30Þ�Ca;0

�
w2
1w2w3w4w5 þ w2

2w3w4w5w1

þ w2
3w4w5w1w2 þ w2

4w5w1w2w3 þ w2
5w1w2w3w4

�
þ Cb;0

�
w2
1w2w5w3w4 þ w2

2w3w1w4w5

þ w2
3w4w2w5w1 þ w2

4w5w3w1w2

þ w2
5w1w4w2w3

��
abðab� baÞðab� baÞ�

ð4Þ
W00ð6Þ ¼ Âð36Þ�Ca;0

�
w1w2w3w4w5w6 þ w2w3w4w5w6w1

�
þ Cb;0

�
w1w4w2w3w5w6 þ w2w5w3w4w6w1

þ w3w6w4w5w1w2

��ðab� baÞðab� baÞðab� baÞ�
ð5Þ

If we were to write down the SC(6,7) wave function for

C7H
þ
7 in a form similar to the SC(6,5) and SC(6,6) wave

functions for C5H
�
5 and C6H6 respectively, the expression

would include four groups of symmetry-equivalent

resonance structures: seven Ra, seven Rb, seven Rc and

fourteen Rd resonance structures (see the second row of

structures in Fig. 3). In contrast to the SC wave functions

for the cyclopentadienide anion and benzene, in which the

diagonally bonded structures Rb are of relatively low

importance, with combined weights of under 20 %, in the

case of the tropylium cation structures of this type (Rb, Rc

and Rd) are responsible for about 50 % of the wave

function.

R
1

+
3× 4× 2×

+

+

+

+
Ra

0.571(0.665)
Rb

0.429(0.335)

− −

5×

Ra
0.819

Rb
0.181

2× 3×

Ra
0.807

Rb
0.193

7× 14×

+ + ++
Ra

0.501
Rb

0.037
Rc

0.010
Rd

0.452

8× 16×

Ra
0.049(0.083)

Rb
–0.002(0.012)

Rd
0.044(0.065)

Rc
0.003(0.005)

+ + + + + ++ +

Re
0.079(0.043)

Rf
0.040(0.025)

Rg
0.075(0.069)

+

+

+

+

+

+
16× 8×

Rh
0.323(0.432)

Ri
0.029(–0.002)

Rj
0.084(0.110)

Rk
0.042(–0.018)

8×

+

+

+

+

+

+

+

+

16×

Rl
0.144(0.093)

Rm
0.094(0.091)

Rn
–0.005(–0.008)

+

+

+

+

+

+

8× 4×

Fig. 3 VB structures included

in the SC wave functions for the

cyclopropenium ion,

cyclobutadiene dication,

cyclobutadiene dianion,

cyclopentadienide anion,

benzene, cycloheptatrienyl

cation, cyclooctatetraene

dication and cyclooctatetraene

dianion, and combined

Chirgwin–Coulson weights of

the groups of symmetry-unique

structures. Results for anions in

brackets
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The SC(6,8) and SC(10,8) wave functions for the

cyclooctatetraene dication and dianion contain 140 struc-

tures each. There are four groups of symmetry-equivalent

structures in which the two charges are on adjacent carbons

(see Ra, Rb, Rc and Rd in the third row in Fig. 3), three

groups of symmetry-equivalent structures in which the two

charges are separated by one carbon (see Re, Rf and Rg in

the fourth row in Fig. 3), four groups of symmetry-equiv-

alent structures in which the two charges are separated by

two carbons (see Rh, Ri, Rj and Rk in the fifth row in

Fig. 3) and three groups of symmetry-equivalent structures

in which the two charges are separated by three carbons

(see Rl, Rm and Rn in the bottom row in Fig. 3). The most

important structures, both for the cyclooctatetraene dica-

tion and dianion, are the eight Rh structures, with a com-

bined weight of 32.3 % in the dication and 43.2 % in the

dianion, each of which involves three carbon–carbon p
bonds, and the two charges are well separated. The adverse

effect of keeping the two charges close together is dem-

onstrated by the low weights of the eight structures Ra, that

also involve three carbon–carbon p bonds each, but which

show combined weights of just 4.9 % in the dication and

8.3 % in the dianion. The small negative combined weights

for some of the cyclooctatetraene dication and dianion

structures (for example, Rn) are due to the fact that while

the Chirgwin–Coulson weights add to unity, some of them

may turn out to be outside the [0, 1] range in the case of

strong overlaps between structures.

The SC descriptions of the cyclopropenium ion, cyclo-

pentadienide anion, benzene, cycloheptatrienyl cation,

cyclooctatetraene dication and dianion involve remarkably

similar active orbitals which are well localized and

resemble C(2pp) atomic orbitals with small symmetrical

protrusions toward neighboring carbons. All of these sys-

tems exhibit extensive resonance between structures con-

structed from the respective SC orbitals; the dominant

resonance structures are similar to the Kekulé-like struc-

tures for benzene and make good chemical sense, for

example, by keeping multiple charges well separated, as in

the cyclooctatetraene dication and dianion. The SC orbitals

for the cyclobutadiene dication and dianion demonstrate

how the shapes of benzene-like SC orbitals change when

placed in electron-deficient or electron-rich environments:

In both cases, the orbitals become more delocalized, but

resonance remains extensive.

3 Conclusions

SC theory for ‘N electrons in M orbitals’ active spaces

[SC(N,M)] has been used here to obtain modern VB

descriptions of the p-electron systems of a series of an-

nulene rings with 4n ? 2 p electrons in their highest-

symmetry nuclear conformations. The fully variational SC

wave functions for the cyclopropenium ion [SC(2,3)], cy-

clobutadiene dication [SC(2,4)] and dianion [SC(6,4)],

cyclopentadienide anion [SC(6,5)], benzene [SC(6,6)],

cycloheptatrienyl cation [SC(6,7)], cyclooctatetraene

dication [SC(6,8)] and dianion [SC(10,8)] were shown to

recover all (C3H
þ
3 ; C4H

2þ
4 and C4H

2�
4 ) or almost all

(C5H
�
5 : 97.6 %, C6H6: 89.6 %, C7H

þ
7 : 95.4 %, C8H

2þ
8 :

96.9 %, C8H
2�
8 : 97.5 %) of the correlation energy included

in their CASSCF counterparts. This indicates that the

SC(N,M) wave functions can be regarded as easier-to-

interpret, more compact alternatives to CASS-

CF(N,M) constructions employing analogous active spaces.

The qualitative features of the SC wave functions for the

cyclopropenium ion, cyclopentadienide anion, cyclohep-

tatrienyl cation, cyclooctatetraene dication and dianion are

very much those that could have been anticipated from the

well-known SC description of the p-electron system of

benzene [3–5]: The optimized p-space SC orbitals are very

similar to those in benzene, while the optimized resonance

patterns are fully consistent with the ideas of classical VB

theory. The more delocalized nature of the SC orbitals for

the cyclobutadiene dication and dianion which emerged

from the SC(2,4) and SC(6,4) calculations on these systems

can be viewed as a result of the attempts of the respective

SC wave functions to adjust to an electron-deficient and an

electron-rich environment. The high levels of resonance

observed in both C4H
2þ
4 and C4H

2�
4 indicate that these ions

are aromatic.

SC theory provides compact VB-style descriptions of

the p-electron systems of C3H
þ
3 ;C4H

2þ
4 ; C4H

2�
4 ; C5H

�
5 ;

C6H6; C7H
þ
7 ; C8H

2þ
8 and C8H

2�
8 in their highest-symmetry

nuclear conformations which demonstrate the aromaticity

of annulene ions with 4n ? 2 p electrons through the

classical VB concept of resonance. While the highest level

of theory at which one can justify the familiar Frost–Mu-

sulin diagrams, often applied to annulenes and annulene

ions with 4n ? 2 p electrons, is closed-shell HF, the

equally easy-to-interpret modern VB models reported in

this paper emerge from near-CASSCF-quality wave

functions.
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Abstract Following previous work on PFn and SFnCl

compounds, we report high-level ab initio quantum

chemical calculations on PF2Cl, PF3Cl, and PF4Cl. Cou-

pled cluster (CCSD(T)) calculations were used to deter-

mine the structures and energetics of the various PFnCl

isomers, while generalized valence bond calculations were

used to gain a deeper understanding of the factors influ-

encing the structure and energetics of the isomers. Muett-

erties’ rule, which predicts that more electronegative

elements occupy the apical positions in pentavalent phos-

phorus compounds, is examined in the context of the re-

coupled pair bonding model, which provides invaluable

insights into the bonding, structure, and reactivity of hy-

pervalent compounds. While we found more electronega-

tive fluorine is favored in the apical position in closed-shell

PF4Cl, the opposite is true for PF3Cl and two triplet excited

state isomers of PF2Cl, all of which are open-shell species.

Keywords Muetterties’ rule � Bent’s rule �
Apicophilicity � Pentavalent phosphorus � Phosphorus
chlorofluorides � Hypervalency � Recoupled pair bond

1 Introduction

A well-known guideline of inorganic chemistry, Muetter-

ties’ rule [1, 2], predicts that in pentavalent phosphorus

compounds, the two apical (or axial) positions will be

occupied by the most electronegative ligands in the com-

pound. Muetterties observed this to be the case through

NMR studies of a number of phosphorus compounds [1, 2].

It has been argued [3, 4] that Muetterties’ rule is a con-

sequence of Bent’s rule [5, 6], which states that ‘‘atomic s

character tends to concentrate in orbitals that are directed

toward electropositive groups’’ [5]. In pentavalent phos-

phorus compounds, Pauling’s hybridization model predicts

that the P atom has three sp2 hybrid orbitals in the equa-

torial plane and two pd hybrid orbitals along the axial

bonds [7, 8]. Thus, according to Bent’s rule, the axial

positions would be occupied by the most electronegative

ligands, as observed by Muetterties. Despite the fact that

Pauling’s model has been shown to drastically overesti-

mate the importance of d orbitals [7, 9–11], there are the-

oretical calculations that support the validity of Bent’s rule

in predicting the isomerism of hypervalent phosphorus and

sulfur compounds [3, 4, 12]. Muetterties’ rule is directly

related to the concept of apicophilicity [13], which is

defined as the affinity of a given ligand for the apical (or

axial) position relative to other ligands. Thus, following

Muetterties’ rule, greater ligand electronegativity implies

greater ligand apicophilicity.

Previously, we reported that generalized valence bond

(GVB) theory and the resulting recoupled pair bonding
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model are able to rationalize the geometric isomerism

observed in various ground and excited states of SFn–1Cl

(n = 1–6) [14]. To gain a better understanding of the

factors influencing the structures and energetics of the

analogous phosphorus isomers, we performed high-level

CCSD(T) and GVB calculations on PF2Cl, PF3Cl, and

PF4Cl. As our previous work has shown [14–21], studying

the precursor species and their low-lying excited states

provides unique insights into the nature of bonding in a

given molecule. Thus, we studied both the closed-shell

PF4Cl isomers and open-shell PF3Cl isomers, as well as the

ground and lowest excited states of PF2Cl. Experimental

studies have focused on the closed-shell trivalent and

pentavalent phosphorus chlorofluorides [22–28]. There are

previous theoretical studies of PF4Cl [12, 29–32], most

notable of which are DFT and MP2 studies done in the

mid-2000s [3, 4]. There are no relevant prior theoretical

calculations on either PF3Cl or the excited states of PF2Cl,

which are also of interest here.

Calculations have shown that a recoupled pair bond is

formed when an electron in a singly occupied orbital of an

incoming ligand recouples the electrons of a lone pair of

another atom, forming a bond pair. The remaining electron

from the lone pair resides in an orbital that undercuts the

strength of the bond: in the molecular or natural orbital

framework [such as in a Hartree–Fock (HF) or complete

active space (CAS) wave function], it is an orbital with

strong antibonding character in the region of the bond,

while in the full GVB framework, it is an orbital that has a

large unfavorable overlap with the newly formed bond pair.

Regardless of the choice of wave function, the electron left

over from recoupling destabilizes the molecule, resulting in

a bond energy that is typically much smaller than that of a

covalent bond. However, a second bond can be formed

with the electron remaining from the recoupling process.

When the second ligand is very electronegative, the ‘‘left

over’’ orbital polarizes toward and delocalizes onto the

incoming ligand during bond formation, thus decreasing

the destabilizing effect of the ‘‘left over’’ orbital on the first

bond. This results in an unusually strong second bond. This

pair of bonds is referred to as a recoupled pair bond dyad.

For more information on this process and recoupled pair

bonding in general, see any of our previous works [14–19,

21, 33], especially our review article [20].

We note that while Muetterties’ rule was originally

formulated in the context of closed-shell pentavalent

phosphorus compounds, the concept of apicophilicity is

more general and is applicable to the open-shell precursor

PF3Cl and, as we will argue below, the open-shell triplet

excited states of PF2Cl. At first glance, one might expect

Muetterties’ rule to hold for PF3Cl, for example, given that

the geometric and electronic structures of PF4Cl are

derived from PF3Cl. However, we will demonstrate that

Muetterties’ rule is not obeyed by PF3Cl or by the excited

states of PF2Cl. This, however, does not mean that Mu-

etterties’ rule is incorrect. We argue instead that Muetter-

ties’ rule is not universally applicable to open-shell tri- and

tetravalent phosphorus species. This is, of course, not

necessarily surprising given that Muetterties’ original

studies were limited to closed-shell species and that the

effect of a singly occupied orbital in the place of a lone pair

or bond pair, and ligand can be substantial.

2 Methods

All minimum energy molecular structures were optimized

and energies computed with restricted coupled cluster

theory with full single and double excitations plus pertur-

bative triples [RCCSD(T)] [34–38]. Large augmented

correlation consistent basis sets of triple- or quadruple-f
quality, with additional tight d functions on Cl and P, i.e.,

aug-cc-pV(T ? d, Q ? d)Z, were used for all calculations

[39–42]. These basis sets will be referred to as AVTZ and

AVQZ. The AVQZ basis set was used for all geometry

optimizations of minima and energies used in calculating

the bond energies and relative stabilities of the isomers. A

transition state (TS) for the 3A00 excited electronic state of

PF2Cl was optimized at the PBE0/AVTZ level of theory,

followed by a CCSD(T)/AVTZ single-point energy calcu-

lation. Spin-coupled valence bond [43–46] (referred to here

as GVB) calculations were performed on structures of

interest using the AVTZ basis set. Orbitals, orbital over-

laps, and spin-coupling coefficients were used to analyze

the bonding. All calculations were performed with the

Molpro program package [47].

3 Results

3.1 PF2Cl

Understanding the bonding and isomerism in smaller pre-

cursor phosphorus species is helpful for understanding and

anticipating the behavior of the larger phosphorus species.

Thus, in order to gain insight into PF3Cl and PF4Cl, we

begin with PF2Cl.

The 4S ground state of P has three singly occupied 3p

orbitals and a doubly occupied 3s orbital as shown in

Fig. 1. As for PF3 [16], the ground state of PF2Cl, labeled

X1A0, is bound by covalent bonds between the three halo-

gen atoms and phosphorus, i.e., by the formation of three

singlet-coupled electron pairs involving the singly occu-

pied halogen p orbitals and the singly occupied 3p orbitals

of P(4S). The calculated geometric structure of PF2Cl is

shown in Fig. 2 and Table 1. Mutual bond pair repulsion

Theor Chem Acc (2014) 133:1428
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between the three phosphorus–halogen bonds accounts for

the calculated bond angles, which are about 8� larger than
the ideal angle of 90� between the three mutually orthog-

onal phosphorus 3p orbitals. The calculated RCCSD(T)/

AVQZ structure is in excellent agreement with the exper-

imental microwave structure [24]. The experimental P–F

and P–Cl bond lengths (r0) are 1.571 ± 0.003 and

2.030 ± 0.006 Å, respectively, as compared to our

calculated (re) values of 1.572 and 2.042 Å. Likewise, the

experimental F–P–F and F–P–Cl angles are 97.3 ± 0.2�
and 99.2 ± 0.3�, respectively, as compared to our calcu-

lated values of 97.3� and 98.8�.
PF2Cl has excited triplet states that arise from the 2D

excited state of P, which lies 32.5 kcal/mol above the

ground P(4S) state (see Fig. 1) [48]. The first excited

state of PF2Cl is the 3A00 (PF2Cl–ax) state, which lies

Fig. 1 GVB orbital coupling

diagrams for the phosphorus

atom and the ground and first

two excited states of PF2Cl.

Singlet coupling is indicated by

singly occupied orbitals

connected by straight lines

Fig. 2 Geometries for PFnCl

(n = 2–4) calculated at the

RCCSD(T)/AVQZ level of

theory. Bond lengths are in Å.

State labels for excited states are

shown in red. Relative energies

in kcal/mol are indicated by

arrows pointing toward less

stable structures. Bond angles

are provided in Table 1. (Cl:

blue, F: green, P: brown)
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75.6 kcal/mol above the ground state; the corresponding

GVB orbital diagram is shown in Fig. 1. As we previously

described for the analogous 3B1 excited state of PF3 [16],

the bonding in this state arises from the bonding of the

halogen atoms with the 2D excited state of phosphorus,

where one of the electrons in a singly occupied 3p orbital

has been excited into one of the other singly occupied 3p

orbitals giving, for example, a 3s23pz
23px configuration. A

typical recoupled pair bond dyad can then be formed

between two of the halogen ligands (F and Cl) and the 3pz
2

pair of P(2D); see Fig. 1. The third halogen (F) then re-

couples the 3s2 pair. This leaves a singly occupied P 3px
orbital and an sp hybrid-like lobe, the electrons of which

are spin-coupled into a triplet. The GVB orbitals of this

state are shown in Fig. 3.

The dominant spin-coupling function for the PF2Cl–ax

isomer is the perfect-pairing function with a weight of

wPP = 0.969. In this spin-coupling, the bond pairs are

singlet-coupled (boxed in Fig. 3), and the electrons in the

two singly occupied orbitals, u7 and u8, are triplet-cou-

pled, just as we postulated above. The axial bond lengths of

PF2Cl–ax are 0.028 (P–F) and 0.11 Å (P–Cl) longer than

those of the corresponding ground state bonds (Fig. 2).

This is consistent with the presence of a recoupled pair

bond dyad [20]. Furthermore, the P–Feq bond length is

slightly shorter (0.007 Å) than the P–F bonds of the ground

state, which is consistent with an increase in the s character

of the orbitals participating in the bond. These results

support the interpretation of the bonding diagram in Fig. 1.

Orbital u7 is the orbital ‘‘left over’’ from recoupling the

P 3s2 pair. It has considerable overlap with the other bond

pair orbitals, especially those centered on the P atom, as

shown in Table 2. This is also consistent with other

Fig. 3 GVB orbitals for PF2Cl–

ax (3A00). Singlet-coupled bond

pairs are boxed. The orbital

overlap matrix is provided in

Table 2. (Cl: blue, F: green, P:

brown)

Table 2 GVB orbital overlaps for PF2Cl–ax (3A00)

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.00

u2 20.83 1.00

u3 -0.01 0.08 1.00

u4 -0.07 0.22 0.83 1.00

u5 -0.02 0.10 0.10 0.14 1.00

u6 -0.07 0.22 0.04 0.11 0.81 1.00

u7 0.11 20.32 20.19 20.48 20.12 20.41 1.00

u8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Bond pair overlaps are shown in bold font, and unfavorable overlaps

of u7 with every other orbital are shown in bold and italic font

Table 1 Calculated, RCCSD(T)/AVQZ, bond lengths (in Å) and

angles (in degrees) for PFnCl

Structure State Bond re (Å) Angle he (�)

PF2Cl
1A0 P–F 1.572 F–P–F 97.3

P–Cl 2.042 Cl–P–F 98.8

PF2Cl–ax
3A00 P–Feq 1.565 Feq–P–Fax 98.5

P–Fax 1.600 Feq–P–Clax 101.0

P–Clax 2.152 Fax–P–Clax 160.5

PF2Cl–eq
3B1 P–Fax 1.626 Cleq–P–Fax 102.3

P–Cleq 2.006 Fax–P–Fax 155.4

PF3Cl–ax
2A0 P–Feq 1.544 Feq–P–Feq 102.4

P–Fax 1.584 Clax–P–Fax 160.2

P–Clax 2.147 Clax–P–Feq 96.33

Fax–P–Feq 96.02

PF3Cl–eq
2A0 P–Feq 1.550 Cleq–P–Feq 105.9

P–Cleq 2.000 Fax–P–Fax 162.6

P–Fax 1.606 Fax–P–Feq 92.8

Fax–P–Cleq 97.2

PF4Cl–eq
1A1 P–Feq 1.541 Feq–P–Feq 117.1

P–Cleq 1.999 Feq–P–Cleq 121.4

P–Fax 1.584 Fax–P–Feq 89.9

Fax–P–Cleq 90.3

PF4Cl–ax
1A1 P–Feq 1.541 Feq–P–Feq 120.0

P–Fax 1.577 Clax–P–Feq 90.3

P–Clax 2.074 Fax–P–Feq 89.7
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recoupled systems we have studied [19, 20]. We will dis-

cuss the importance of these overlaps in Sect. 4.

The second excited state of PF2Cl is the PF2Cl–eq (3B1)

state, which lies 7.4 kcal/mol above the PF2Cl–ax state.

This state is analogous to the PF2Cl–ax (3A00) state dis-

cussed above, except the Cl ligand now occupies the

equatorial position, i.e., it is an isomer of PF2Cl–ax. Again,

the axial positions are slightly longer (0.054 Å) than a

typical P–F covalent bond (as in the PF2Cl ground state),

and the P–Cl bond length is slightly shorter than that of a

typical P–Cl covalent bond, indicating increased s char-

acter of the bonding orbitals. Furthermore, the P–F bonds

are only slightly longer (0.012 Å) than those of the anal-

ogous PF3(
3B1) state [16]. The GVB orbitals of this state

are shown in Fig. 4. The dominant spin-coupling function

is again the perfect-pairing function that couples the bond

pairs into singlets and the electrons of u7 and u8 into a

triplet (wPP = 0.995). The orbital u7 is again the orbital

‘‘left over’’ from forming the P–Cleq recoupled pair bond,

in which Cl recouples the P 3s2 pair, and u8 is simply a

P 3p orbital. Again, u7 has considerable overlap with

several of the bond pair orbitals as shown in Table 3. These

data are consistent with the bonding diagram drawn in

Fig. 1.

It should be noted that although PF2Cl–ax and PF2Cl–eq

have different electronic and spatial symmetries, Cs and

C2v, respectively, they both belong to the same Cs sym-

metry electronic state. The PF2Cl–eq C2v state collapses to

the 3A00 Cs symmetry electronic state (of PF2Cl–ax) by

simply breaking its C2v symmetry. Thus PF2Cl–ax and

PF2Cl–eq are isomers on the same 3A00 electronic state.

Indeed, we located the barrier separating the two isomers

by first optimizing the transition state (TS) at the PBE0/

AVTZ level of theory and calculating a CCSD(T)/AVTZ

single-point energy of the TS. IRC calculations were per-

formed to verify that this TS connects the PF2Cl–ax and

PF2Cl–eq isomers. The barrier protecting the PF2Cl–eq

isomer was found to be quite small, just 0.86 kcal/mol

(0.52 kcal/mol with ZPE corrections to all structures using

PBE0/AVTZ frequencies). However, we have found this to

be typical of such isomers. For example, in our studies of

SFnCl, similar isomers were protected by \1.0 kcal/mol

[14, 18].

3.2 PF3Cl

PF3Cl is an open-shell doublet in its ground electronic

state. It has two geometric isomers shown in Fig. 2: one

with the Cl in the axial position (PF3Cl–ax) and the other

with Cl in the equatorial position (PF3Cl–eq). The elec-

tronic structure of these isomers is derived from that of the

excited triplet isomers of PF2Cl. Forming a P–F covalent

bond with u8 of PF2Cl–ax (3A00) and PF2Cl–eq (3B1) yields

PF3Cl–ax and PF3Cl–eq, respectively. Indeed, the geo-

metric parameters of PF3Cl–ax and PF2Cl–ax as well as

PF3Cl–eq and PF2Cl–eq are quite similar. Again, as in

PF2Cl, the more stable isomer is the one in which Cl

occupies the axial position—this time by almost 8 kcal/

mol.

The two singly occupied orbitals of the PF3Cl isomers,

which are derived from the u7 orbitals of PF2Cl, are shown

in Fig. 5. It is clear that these orbitals are similar to u7 of

Fig. 4 GVB orbitals for PF2Cl–

eq (3B1). Singlet-coupled bond

pairs are boxed. The orbital

overlap matrix is provided in

Table 3. (Cl: blue, F: green, P:

brown)

Table 3 GVB orbital overlaps for PF2Cl–eq (3B1)

u1 u2 u3 u4 u5 u6 u7 u8

u1 1.00

u2 0.80 1.00

u3 0.00 -0.09 1.00

u4 -0.08 -0.25 0.82 1.00

u5 0.00 -0.09 0.06 0.06 1.00

u6 -0.08 -0.25 0.06 0.12 0.82 1.00

u7 20.10 20.37 0.19 0.50 0.19 0.50 1.00

u8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Bond pair overlaps are shown in bold font, and unfavorable overlaps

of u7 with every other orbital are shown in bold and italic font
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PF2Cl, but they have become somewhat distorted in

response to the presence of the additional P–F bonds.

The PF3Cl isomers can also be derived from the ground

state of PF2Cl, by the addition of an F atom opposite

either the existing Cl or F ligands. To form the additional

P–F bond, the P 3s2 pair of electrons must be recoupled,

and thus this bond energy is much weaker than a covalent

bond. As shown in Table 4, adding F to ground state PF2Cl

yields sequential bond energies of 64.5 and 56.5 kcal/mol

for the two isomers, which are much less than the

sequential bond energies of PCl ? F (113.0 kcal/mol) and

PFCl ? F (126.2 kcal/mol).

3.3 PF4Cl

There are two possible geometric isomers for the trigonal

bipyramidal structure of PF4Cl: PF4Cl–ax and PF4Cl–eq as

shown in Fig. 2. Muetterties’ rule correctly predicts the

ground state isomer to be PF4Cl–eq. The PF4Cl–eq isomer

is 3.3 kcal/mol more stable than the PF4Cl–ax isomer at the

RCCSD(T)/AVQZ level of theory. This result is in good

agreement with previous theoretical results, despite the fact

that our calculations are of much higher quality [3, 4]. The

two isomers of PF4Cl arise from the formation of P–F

covalent bonds with PF3Cl–ax and PF3Cl–eq. The respec-

tive bond energies are shown in Table 4. The bond energies

will be discussed in more detail in Sect. 4. The geometric

parameters of PF4Cl–ax and PF4Cl–eq are similar to those

of PF3Cl–ax and PF3Cl–eq, with the bond lengths univer-

sally shorter in the pentavalent phosphorus species. This is

consistent with the behavior we observed in PFn com-

pounds [16].

The calculated RCCSD(T)/AVQZ PF4Cl–eq structure is

in excellent agreement with the experimental electron

diffraction results [25]. The experimental P–Feq, P–Fax, and

P–Cleq bond lengths are 1.535(3), 1.581(4), and

2.000(3) Å, respectively, as compared to our calculated

values of 1.541, 1.584, and 1.999 Å. Likewise, the exper-

imental Feq–P–Feq and Feq–P–Fax angles are 117.8(7)� and
90.3(4)�, respectively, as compared to our calculated values

of 117.1� and 89.9�. Experimental uncertainties in paren-

theses represent three standard deviations.

4 Discussion of isomerism

It may be surprising that PF2Cl–ax and PF3Cl–ax are the

most stable isomers for the excited 3A00 electronic state of

PF2Cl and the ground electronic state of PF3Cl. However,

this is consistent with our observations on SFnCl [14] and,

in fact, was the behavior we anticipated based on those

observations. After discussing the open-shell cases (PF2Cl

and PF3Cl) whose more stable structures have Cl occupy-

ing the axial position, we will discuss isomerism in the

closed-shell pentavalent case, which conforms to Muett-

erties’ rule.

4.1 Open-shell cases

In both excited triplet state isomers of PF2Cl and the

ground state of PF3Cl, the isomer with Cl occupying the

axial position—participating in the recoupled pair bond

dyad—is more stable, which is contrary to what one would

expect if Muetterties’ rule prevailed. The observed isom-

erism for PF2Cl can be understood based on the Pauli

exchange repulsion between the bond pairs and the elec-

trons in the singly occupied orbitals, as measured by the

overlaps of the GVB orbitals. First, consider the more

stable PF2Cl–ax isomer, whose GVB orbital overlaps are

shown in Table 2. Although large overlaps between the

Fig. 5 Singly occupied natural orbitals of PF3Cl–ax and PF3Cl–eq.

(Cl: blue, F: green, P: brown)

Table 4 Calculated RCCSD(T)/AVQZ sequential bond energies for

PFn and PFnCl

De (kcal/mol)

P ? F ? PF 107.1

PF ? F ? PF2 120.0

PF2 ? F ? PF3 134.1

PF3 ? F ? PF4 57.4

PF4 ? F ? PF5 136.5

PCl ? F ? PFCl 113.0

PFCl ? F ? PF2Cl 126.2

PF2Cl ? F ? PF3Cl–ax 64.5

PF2Cl ? F ? PF3Cl–eq 56.5

PF3Cl–eq ? F ? PF4Cl–eq 135.0

PF3Cl–ax ? F ? PF4Cl–ax 123.7

PFn bond energies taken from Woon and Dunning [16]. All species

are in their ground electronic states
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orbitals within a singlet-coupled pair are favorable, large

overlaps between the orbitals in different singlet-coupled

pairs or between a singly occupied orbital, and the orbitals

in the singlet-coupled pairs are unfavorable—they give rise

to the exchange repulsions associated with the Pauli prin-

ciple. In Table 2, the bond pair overlaps are in bold font,

and the unfavorable overlaps of the orbital remaining from

recoupling the 3s2 pair (u7) are in bold and italicized font.

The sum of the absolute values of the overlaps of u7 with

every other orbital is 1.63, which is the majority of the sum

of every unfavorable overlap (i.e., overlaps between elec-

trons that are not part of the same bond pair). The sum of

the overlaps of u7 with every other orbital in the PF2Cl–eq

isomer is 1.85, also a majority of the total unfavorable

overlaps (the total unfavorable overlap for the PF2Cl–ax

and PF2Cl–eq isomers is 2.81 and 2.99, respectively). Thus,

the more stable isomer is the one with the smallest amount

of total unfavorable GVB orbital overlaps. Although

summation of the unfavorable overlaps between orbital u7

and the other GVB orbitals is an admittedly simple way to

estimate the total magnitude of the exchange repulsions, it

does appear to be a useful proxy in this case.

The orbitals associated with the axial positions of the

PF2Cl triplet state geometries (u3, u4, u5, u6) contribute

more to the unfavorable overlaps with u7 than the orbitals

associated with the equatorial position (u1, u2). Further, as

expected, the phosphorus hybrid GVB orbitals (u2, u4, u6)

make up the majority of these overlaps. When Cl occupies

the axial position, the naturally longer P–Cl bond length

(with respect to P–F) pulls the bond pair orbitals further

away from u7 and the other bond orbitals, thus reducing

unfavorable overlaps. Compare the overlap between orbi-

tals (u6, u7) in the PF2Cl–ax and PF2Cl–eq isomers to

observe the largest such difference in overlaps. Thus, the

orbitals of the isomers with P–Cl axial bonds have more

‘‘breathing room.’’

It is important at this point to note that this is the same

behavior we observed in SFnCl [14], where we examined

the amount of antibonding character present in a given

natural orbital remaining from recoupling to explain the

stability of the isomers.

We argued in Sect. 3.2 that PF3Cl derives its electronic

structure by F atom addition to the triplet state isomers of

PF2Cl. To further investigate this, we attempted to calcu-

late the GVB wave function for PF3Cl, but this proved to

be very difficult due to technical complications in the

orbital optimization process. Instead, we argue by exten-

sion that the arguments posed above for PF2Cl also apply

to PF3Cl. There are good reasons to believe this is the case,

as discussed in Sect. 3.2. For example, the nature of the

singly occupied orbital remaining from recoupling, the

geometric parameters, and the relative energies of the

corresponding species are very similar.

The PF2X ? F ? PF3X bond energies are reported in

Table 4. The bond energy for forming PF3Cl–eq is similar

to that of PF4, differing by only 0.9 kcal/mol, while the

bond energy to form PF3Cl–ax is about 8.0 kcal/mol larger.

This implies that PF3Cl–eq is as (relatively) stable as PF4,

whereas PF3Cl–ax is actually more stable.

There are some previous relevant studies on the isom-

erism of other open-shell phosphorus compounds, namely

the work by Cramer and co-workers on open-shell fluoro-

phosphoranyl radicals and hydroxylphosphoranyl radicals

[49–53]. These authors also found an example of a less

electronegative ligand (H) preferring the axial position in

HP(OH)3 [51, 53]. In their publications, the authors argue

that increased hyperconjugative stabilization present when

multiple hydroxyl groups occupy the equatorial positions is

enough to overcome the difference in apicophilicity

between H and OH. This is arguably not a dominant factor

in PFnCl, given that both F and Cl can contribute to hy-

perconjugative stabilization (although likely to different

extents), whereas H cannot. Although, further calculations

would be required to verify this.

Finally, steric interactions likely play a role in the

observed isomerism. For example, it could be argued that

the steric repulsions are greater for PF2Cl–eq as compared

to PF2Cl–ax given that the former contains two P–Cl/P–F

bond pair interactions at an angle of 102.3� while the latter
has one P–Cl/P–F interaction at 101.0� and one P–F/P–F

interaction at 98.5�. Similar arguments can be made for

PF3Cl and PF4Cl as we discuss below; however, such

interactions are difficult to quantify and isolate from the

other interactions occurring in these systems.

4.2 Closed-shell pentavalent case

Finally, we can discuss the case to which Muetterties’ rule

applies—PF4Cl. Bond energies will be helpful in analyzing

the isomerism in the PF4Cl molecule. As discussed in the

Introduction, a bond formed between a very electronega-

tive ligand and the orbital left over from the first recoupled

pair bond is favorable because it relieves the unfavorable

interactions associated with the electron in that orbital.

Depending upon the wave function, this occurs either by

minimizing the antibonding character of the orbital (HF or

CAS wave functions) or by reducing the unfavorable

orbital overlaps (GVB wave functions), by drawing that

orbital toward the incoming ligand and further from the

first (recoupled) bond pair (and any other bond pairs). The

PF3Cl–eq ? F ? PF4Cl–eq bond energy is similar to that

for the analogous PFn reaction (135.0 vs. 136.5 kcal/mol).

This is consistent with the fact that bond energies for

forming PF3Cl–eq and PF4 are similar, indicating similar

relative stabilities, and equivalent amounts of unfavorable

interactions with the orbital remaining from recoupling. On

Theor Chem Acc (2014) 133:1428

123Reprinted from the journal 137



the other hand, the PF3Cl–ax ? F ? PF4Cl–ax bond

energy is 11.3 kcal/mol lower than that for forming PF4Cl–eq.

This is consistent with the notion that the orbitals of

PF2Cl–ax and PF3Cl–ax have less unfavorable overlap with

u7 than those of PF2Cl–eq and PF3Cl–eq, respectively.

Thus, we expect the bond energy for forming PF4Cl–ax to

be less than that for forming PF4Cl–eq. Although this

explains why the bond energies would differ by the amount

of extra destabilization present in PF2,3Cl–eq (*8 kcal/

mol), it does not account for the additional 3.3 kcal/mol

that causes PF4Cl–eq to be more stable than PF4Cl–ax.

Trying to account for such a small energetic difference

as 3.3 kcal/mol is difficult, especially since ab initio cal-

culations of the current quality are expected to have an

accuracy that is no better than about 1 kcal/mol. It is

possible that the more numerous 90� P–Cl/P–F steric

interactions in PF4Cl–ax as compared to PF4Cl–eq

accounts for some of the additional 3.3 kcal/mol. This is

the argument often used to explain why groups with bulkier

bond/lone pairs occupy equatorial positions in trigonal

bipyramids, but this is likely not the only factor important

in isomerism. We believe we have provided sufficient

evidence to explain the isomerism in excited state PF2Cl

and PF3Cl, but we have insufficient data to fully explain the

energy differences observed in PF4Cl. Thus, in the future,

we plan to explore cases where the energetic differences

between the pentavalent isomers are expected to be more

dramatic, such as PF4CH3 and the multiply chlorine-

substituted species, PFnClm (n ? m = 5). Preliminary

calculations on PFnClm indicate very similar behavior to

that observed here.

5 Conclusions and future directions

We have shown that GVB theory and the recoupled pair

bond model provide important insights into the bonding

and isomerism in PF2Cl, PF3Cl, and PF4Cl. While these

insights provide compelling arguments for the observed

isomerism in triplet PF2Cl and ground state PF3Cl, we

currently lack sufficient data to fully explain the relative

energetics of the isomers in PF4Cl. The energies of the

excited triplet state isomers of PF2Cl and ground state

PF3Cl, to which Muetterties’ rule does not apply, are

readily explained by the differences in the magnitude of the

Pauli exchange repulsions in the two isomers, as measured

by the differences in the unfavorable overlaps of the orbital

‘‘left over’’ from recoupling the P 3s2 pair of electrons, and

the other orbitals. We plan to continue this work, and gain a

better understanding of the electronic factors important in

understanding isomerization in the closed-shell pentavalent

phosphorus species, by studying systems where the

differences in the isomerization energy are more pro-

nounced, such as PFn(CH3) and PFnClm.

Acknowledgments This work was supported by funding from the

Distinguished Chair for Research Excellence in Chemistry at the

University of Illinois at Urbana–Champaign. This research was sup-

ported in part by the National Science Foundation through TeraGrid

resources by the National Center for Supercomputing Applications

under Grant Number TG-CHE100010. This work was adapted from

the first author’s PhD dissertation, which is available at http://hdl.

handle.net/2142/34409.

References

1. Muetterties EL, Mahler W, Schmutzler R (1963) Inorg Chem

2:613–618

2. Muetterties EL, Mahler W, Packer KJ, Schmutzler R (1964)

Inorg Chem 3:1298–1303

3. Noorizadeh S (2005) J Mol Struct Theochem 713:27–32

4. Kandemirli F, Hoscan M, Dimoglo A, Esen S (2008) Phospho-

rous Sulfur Silicon 183:1954–1967

5. Bent HA (1960) J Chem Educ 37:616–624

6. Bent HA (1961) Chem Rev 61:275–311

7. Cooper DL, Cunningham TP, Gerratt J, Karadakov PB, Raimondi

M (1994) J Am Chem Soc 116:4414–4426

8. Pauling L (1931) J Am Chem Soc 53:1367–1400

9. Magnusson E (1990) J Am Chem Soc 112:7940–7951

10. Reed AE, Schleyer PVR (1990) J Am Chem Soc 112:1434–1445

11. Reed AE, Weinhold F (1986) J Am Chem Soc 108:3586–3593

12. Van Der Voorn PC, Drago RS (1966) J Am Chem Soc

88:3255–3260

13. Wang PW, Zhang Y, Glaser R, Reed AE, Schleyer PVR, Stre-

itwieser A (1991) J Am Chem Soc 113:55–64

14. Leiding J, Woon DE, Dunning TH Jr (2011) J Phys Chem A

115:329–341

15. Leiding J, Woon DE, Dunning TH Jr (2011) J Phys Chem A

115:4757–4764

16. Woon DE, Dunning TH Jr (2010) J Phys Chem A 114:8845–8851

17. Chen L, Woon DE, Dunning TH Jr (2009) J Phys Chem A

113:12645–12654

18. Leiding J, Woon DE, Dunning TH Jr (2012) J Phys Chem A

116:1655–1662

19. Leiding J, Woon DE, Dunning TH Jr (2012) J Phys Chem A

116:5247–5255

20. Dunning TH Jr, Woon DE, Leiding J, Chen L (2013) Acc Chem

Res 46:359–368

21. Woon DE, Dunning TH (2009) J Phys Chem A 113:7915–7926

22. Cradock S, Rankin DWH (1972) J Chem Soc Faraday Trans

2(68):940–946

23. Morse JG, Parry RW (1972) J Chem Phys 57:5372–5374

24. Brittain AH, Smith JE, Schwendeman RH (1972) Inorg Chem

11:39–42

25. Macho C, Minkwitz R, Rohmann J, Steger B, Wölfel V, Ober-

hammer H (1986) Inorg Chem 25:2828–2835

26. Eisenhut M, Mitchell HL, Traficante DD, Kaufman RJ, Deutch

JM, Whitesides GM (1974) J Am Chem Soc 96:5385–5397

27. Beattie IR, Livingston KMS, Reynolds DJ (1969) J Chem Phys

51:4269–4271

28. Holmes RR (1967) J Chem Phys 46:3718–3723

29. Chesnut DB, Quin LD (2005) Tetrahedron 61:12343–12349

30. Efremov DI, Soifer GB (1997) J Struct Chem 38:901–907

Theor Chem Acc (2014) 133:1428

123 Reprinted from the journal138

http://hdl.handle.net/2142/34409.
http://hdl.handle.net/2142/34409.


31. Murrell JN, Scollary CE (1976) J Chem Soc Dalton Trans

9:818–822

32. Brun C, Choplin F, Kaufmann G (1972) Inorg Chim Acta

6:77–80

33. Woon DE, Dunning TH Jr (2009) Mol Phys 107:991–998

34. Bartlett RJ (1989) J Phys Chem 93:1697–1708

35. Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219

36. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918

37. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989)

Chem Phys Lett 157:479–483

38. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

39. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

40. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys

96:6796–6806

41. Wilson AK, van Mourik T, Dunning TH Jr (1996) J Mol Struct

Theochem 388:339–349

42. Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys

114:9244–9253

43. Cooper DL, Thorsteinsson T, Gerratt J (1997) Int J Quantum

Chem 65:439–451

44. Cooper DL, Thorsteinsson T, Gerratt J (1998) Adv Quantum

Chem 32:51–67

45. Thorsteinsson T, Cooper DL (1998) J Math Chem 23:105–126

46. Thorsteinsson T, Cooper DL, Gerratt J, Karadakov PB, Raimondi

M (1996) Theor Chim Acta 93:343–366

47. Werner H-J, Knowles PJ, Manby FR, Schütz M et al (2009)
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Abstract We present a new ab initio potential energy

surface (PES) and a dipole moment surface (DMS) for H7
?

in the bound region. The PES is a linear least-squares fit to

42,525 ab initio points whose energies were computed with

CCSD(T)-F12b/cc-pVQZ-F12 theory, and the DMS is a fit

to dipole moments calculated at MP2 level of theory. The

PES and DMS describe the bound region of H7
? precisely.

MULTIMODE (MM) calculations of the infrared spectra

of H7
? and D7

? were performed using the new PES and

DMS. These calculations were carried out at the lowest

three stationary points using the single-reference version of

MM, and only the five high-frequency modes were con-

sidered. The calculated spectra agree well with the recent

experimental predissociation action spectra.

Keywords H7
? � Ab initio potential energy surface �

Large-amplitude motion � MULTIMODE � Infrared
spectrum

1 Introduction

The hydrogen cations, Hþ
2nþ1, are believed to be present in

the interstellar medium and play an important role in

interstellar chemistry [1–3]. However, only H3
? has been

detected in the interstellar medium [4]. For the spectro-

scopic detection of the larger clusters, theoretical investi-

gations and predictions of the spectra can be of great

importance.

The infrared (IR) spectrum of H5
? has been extensively

studied recently using ab initio potential energy surfaces

(PESs) [5, 6] with various methods such as vibrational self-

consistent field and configuration interaction (VSCF/VCI)

implemented in the MULTIMODE reaction-path version

(MM-RPH) [7, 8], diffusion Monte Carlo (DMC) [7, 9, 10],

path-integral Monte Carlo (PIMC) [11, 12], full-dimen-

sional quantum calculations [13], reduced-dimensional

simulations [14–16], and multi-configuration time-depen-

dent Hartree [17–19]. These calculations are challenging

due to the fluxional nature of the molecule, the high

dimensionality, and the strong mode coupling. Neverthe-

less, these studies have achieved much progress and agree

reasonably well with the experimental measurements [7, 8].

However, little work has been done for the H7
? cluster

due to the difficulty in the experiments and the lack of a

high-quality PES for theoretical studies. Okumura et al.

[20, 21] reported the first predissociation spectroscopy of

this cluster, and the IR photodissociation spectroscopy was

revisited by Duncan and coworkers recently [22]. The

experimental spectrum of H7
? is simpler than that of H5

?: A

weak and broad feature at about 2,200 cm-1 and a peak at

3,982 cm-1 were reported. Based on DFT/B3LYP/6-

311?G** and MP2/6-311?G** calculations of the spec-

trum with the double-harmonic approximation and the

standard scaling method, Duncan and coworkers assigned
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the feature at about 2,200 cm-1 to the asymmetric stretch

of the central H3
?, and the 3,982 cm-1 peak to the stretch of

the outer H2. In terms of theoretical studies, calculations

using VSCF followed by second-order vibrational Møller–

Plesset perturbation theory have been performed for the

vibrational analysis of Hn
? (n = 5, 7, 9) with a relatively

low-level ab initio method and with only a 2-mode cou-

pling representation of the potential [23]. Just recently, an

analytical PES at the MP2/cc-pVQZ level of theory

became available [24]; with this PES, DMC and PIMC

calculations have been carried out to investigate the dis-

sociation energy of H7
? and the vibrational ground-state

properties [25]. Both DMC and PIMC results show that the

two H2 almost act as ‘‘free’’ rotors, making this system

challenging for quantum vibrational analysis.

Motivated by the latest experimental progress and the

availability of the PES, we investigated the spectrum of H7
?

with MULTIMODE (MM). However, by carrying out

DMC calculations, we found that the MP2 PES underes-

timates the dissociation energy, D0 of H7
? and D7

?, by

roughly 200 cm-1, compared to early experimental

enthalpy measurements [26–29]. The PES also underesti-

mates the electronic dissociation energy, De, by 65 cm-1

compared to the literature CCSD(T)-CBS value [30]. Fur-

ther, the MP2 normal-mode harmonic frequencies corre-

sponding to the H3
? and H2 stretching modes differ from the

CCSD(T) benchmarks by 50 and 100 cm-1, respectively.

Thus, if one wants to compare with the recent experimental

IR bands, higher-level ab initio data should be employed in

the PES parameterization. So, here, we present a new

version of the PES at the CCSD(T)-F12b/cc-pVQZ-F12

level of theory that only describes the bound region as well

as a dipole moment surface (DMS) based on MP2 theory.

MM calculations were performed using the PES and DMS.

In Sect. 2, we describe the method of fitting the PES and

DMS, and the details of the MM calculations. Then, we

present our results and discussions in Sect. 3, and a sum-

mary and conclusions are given in Sect. 4.

2 Computational details

2.1 Potential energy and dipole moment surface

As we mentioned above, the MP2 PES is not as accurate as

needed for rigorous vibrational analysis, so we considered

higher-level ab initio calculations. The coupled-cluster

level of theory employing large-size basis sets is compu-

tationally expensive as the number of atoms and configu-

rations to be calculated increase. In the last years,

significant advances have been made, and the so-called

explicitly correlated CCSD(T)-F12 method [31, 32] has

been shown to provide energies in impressive agreement

with the CCSD(T) complete basis set (CBS) limit values.

Thus, we performed different test calculations and found

that the CCSD(T)-F12 method presents a computationally

efficient way to generate the thousands of data points for

the PES. In Table 1, we present the effect of the methods

on the total energy Eopt and the electronic dissociation

energy De, as well as the effect of using the cc-pVQZ [33]

and cc-pVQZ-F12 [34, 35] basis sets in the calculations.

One can see that the difference in De is about 65 cm-1 for

MP2/cc-pVQZ and about 20 cm-1 for CCSD(T)-F12b/cc-

pVQZ-F12, relative to the benchmark CCSD(T)/CBS

value. Overall, we found that the CCSD(T)-F12b energies

are in better agreement with the CCSD(T)/CBS limit, and

the CCSD(T)-F12a results are lower than the F12b ener-

gies. This observed relative performance of the CCSD(T)-

F12a/b is consistent with previous investigations [32].

Therefore, as it is also recommended, the F12b energies

were considered.

For the new PES, we selected a subset of configurations

from the previous MP2 PES and calculated the electronic

energies using CCSD(T)-F12b/cc-pVQZ-F12. This subset

contains only the configurations in the bound region; thus,

the new PES is a local representation. The present PES was

generated by a fit to 42,525 ab initio energies calculated

with MOLPRO 2010.1 [36], employing the invariant

polynomial method [37]. As in our previous work [24], a

single expression containing a seven-body term was used to

represent the potential function, in permutationally invari-

ant polynomials of Morse-type variables for all internu-

clear distances. The maximum order of the polynomial was

seven, which resulted in 739 terms for the H7
? PES.

We also constructed a DMS for H7
? using all the 42,525

configurations. The three components of the dipole

moment were calculated at MP2 level of theory with the

cc-pVQZ-F12 basis set. To represent the dipole moment

vector, we used the expression [38]

lðRÞ ¼
XN
i¼1

wiðRÞri ð1Þ

Table 1 Total energies (in a.u.) of the optimal structure of H7
? and

H5
? ? H2, together with electronic dissociation energy, De, (in cm-1)

at the indicated level of theory and basis set

Method/basis set E
Hþ
7

opt E
Hþ
5

opt þ EH2
opt

De

MP2/cc-pVQZ -3.69009130 -3.68222854 1,725.7

CCSD(T)/cc-pVQZ -3.71237896 -3.70571378 1,744.6

CCSD(T)-F12b/cc-pVQZ -3.71371801 -3.70568117 1,763.9

CCSD(T)-F12a/cc-pVQZ-F12 -3.71539068 -3.70732528 1,770.2

CCSD(T)-F12b/cc-pVQZ-F12 -3.71405842 -3.70598923 1,771.0

CCSD(T)/CBSa -3.71453 -3.70637 1,790.9

a From Ref. [24]
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where R denotes the molecular configuration and ri rep-

resents the Cartesian coordinates of the ith nucleus.

wi(R) can be viewed as the effective charge on the ith

nucleus, which is a scalar quantity that can be expanded in

basis functions that depend on the internuclear distances.

The coefficients in the expansion were determined by a

linear least-squares fit to ab initio dipole moments. The

basis functions transform covariantly under permutations

of the like atoms [37]. The sum of the effective partial

charges has to be the total charge of the molecule, which is

one for H7
?, and we imposed this as an additional constraint

in the fitting procedure.

2.2 MULTIMODE calculations

The codeMM[39]was used for vibrational calculations. The

code uses the Watson Hamiltonian [40] in mass-scaled

normal coordinates. However, the Watson Hamiltonian has

difficulty in describing large-amplitude motions such as the

torsion; for molecules with low torsional barriers. The MM-

RPH code is an extension of MM to include one large-

amplitude coordinate in the‘‘reaction-path Hamiltonian’’

[41]. TheMM-RPH version could be employed for H7
? since

the two H2 units act almost like free rotors in H7
? [25].

However, here, we did not perform MM-RPH calculations;

instead, we employed the single-reference version (MM-SR)

but limited to the five highest-frequency modes. The reason

for choosing MM-SR is that we focus on the experimental

part of the spectrum, which is only probing the high-fre-

quency H3
? and H2 internal modes. Therefore, we restricted

our calculations to the five high-frequency modes, and these

calculations can be conveniently done with MM-SR. Fur-

ther, based on our previous calculations of the IR spectra of

water clusters [42, 43] and F-(H2O)2 [44], ignoring the low

frequency modes can usually still achieve reasonable

agreement with the experiment. However, in recognition of

the nearly free-rotor motion of the twoH2 groups, we carried

out MM-SR calculations at three configurations on the tor-

sion path, as described below.

In brief, we solved the 5-mode Schrödinger equation

ĤwðQÞ ¼ EwðQÞ; ð2Þ
where Q = [Q1 Q2 Q3 Q4 Q5] denotes the five modes,

and Ĥ is the Watson Hamiltonian, given by

Ĥ ¼ 1

2

X
ab

Ĵa � p̂a
� �

lab Ĵb � p̂b
� �

� 1

2

X
k

o2

oQ2
k

� 1

8

X
a

laa þ VðQÞ:
ð3Þ

In the Watson Hamiltonian, the Ĵa and p̂a (a = x, y, z) are

the total and vibrational angular momenta, and lab is the

inverse of the effective moment of inertia. Qk

(k = 1, 2, 3, 4, 5) are the normal coordinates of the five

modes, and V(Q) is the full potential with respect to the

five modes, while the other modes stay at their minima. In

MM, the potential is expanded in a hierarchical N-mode

representation [39] and usually is truncated at the 4-mode

representation. For high-dimensional problems, this redu-

ces the cost for multi-dimensional integrations. In this

work, we mostly used the 4-mode representation, and the

5-mode representation was considered to test the conver-

gence of the calculations.

We solved the Schrödinger equation for zero-total angular

momentum using the VSCF/VCI approach [45–47]. In the
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Fig. 1 The number of points and rms error below each energy

Fig. 2 The structures of the lowest three stationary points
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VSCF, step 11 harmonic oscillator wavefunctions for each

mode were used to construct the VSCF states. The CI states

were expanded using the VSCF ground state, and the virtual

states obtained in the VSCF calculation. In the VCI calcu-

lations, we allowed the simultaneous excitation of up to five

modes, and the largest allowed excitation of an individual

mode is 10. We also restricted the sum of total quanta of

excitation to be 10. Convergence of the calculations was

tested by using the full 5-mode representation of the potential

and by changing the size of basis sets (see Sect. 3.2). The

sizes of CI matrices were 3,003 and 6,188 for 11 and 13 basis

functions, respectively.

The infrared intensities were calculated with the two

step ‘‘dump-restart’’ method [48]. Briefly, in the first step,

we performed MM calculations as usual, but also recorded

the wavefunctions of the states we were interested in. In the

second step, we restarted the MM, read in the recorded

information of the wavefunctions, and calculated the

transition dipole

Raif ¼
Z

WiðQÞDaðQÞWf ðQÞdQ ð4Þ

where a = x, y, z, and Da(Q) is the DMS. Once the

transition dipole Raif has been evaluated, the infrared

intensity of the i ? f transition is given by

Aif ðmÞ / m
X
a

Raif

�� ��2 ð5Þ

where m is the wavenumber of the transition. To finally get

the spectra, the stick line shapes were replaced by Gaussian

line shapes to achieve the similar line width as the

experiment.

Table 2 The energy of the minimum structure (in a.u.) and the rel-

ative energies of two saddle points (in cm-1) from CCSD(T)-F12b/cc-

pVQZ-F12 calculations and the PES, the difference between them (in

cm-1), as well as the values from the previous MP2 PES

Config. Energy

CCSD(T)-F12b PES Ediff MP2 PESa

1-C2v -3.71405842 -3.71405830 0.03 -3.69008308

2-Cs 47.3 46.9 -0.4 45.2

3-C2v 113.5 113.9 0.4 122.8

a From Ref. [24]

Table 3 Comparison of harmonic frequencies (in cm-1) calculated

from the ab initio program at CCSD(T)-F12b/cc-pVQZ-F12 level of

theory and the PES

Mode Description CCSD(T)-

F12b

PES

1 Torsion of H2 98 96

2 Torsion of H2 124 122

3 168 167

4 Asymmetric stretch of H2–H3
?–H2 562 565

6 Symmetric stretch of H2–H3
?–H2 572 571

7 695 694

8 732 733

9 797 798

10 907 908

11 Bending of H3
? 2,294 2,293

12 Asymmetric stretch of H3
? 2,525 2,527

13 Symmetric stretch of H3
? 3,288 3,286

14 Out-of-phase stretch of two H2 4,237 4,235

15 In-phase stretch of two H2 4,239 4,237

ZPE 10,821 10,818
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Fig. 3 Contour plots of the PES. In the upper panel, H7
? is fixed at

1-C2v, and /1 and /2 are torsional angles of two H2; in the lower

panel, H7
? is also fixed at the minimum. /2 is the torsional angle of H2

and D2 is the H3
?–H2 distance
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3 Results and discussion

3.1 Properties of the PES and DMS

The overall root-mean-square (rms) error of the fit is 17.2

cm-1, which is an order ofmagnitude smaller than that of the

previousMP2 PES. Figure 1 shows the number of points and

the rms error below each energy in the PES. As is shown in

the figure, most of the configurations in the data set are below

15,000 cm-1, and the rms error for this region is as small as 5

cm-1. Thus, this fit provides an accurate representation of

H7
? surface in the bound region up to energies of about

15,000 cm-1 above the globalminimum. Figure 2 shows the

structures of the lowest three stationary points that are used

as the reference geometries in the MM calculations.

In Table 2, we list the energies of the three optimized

stationary points on the fitted PES and their comparison

with the previous MP2 PES and the CCSD(T)-F12b

ab initio energies. One can see that the difference between

the energy from the PES and the ab initio value for each

stationary point is less than 1 cm-1. Normal-mode analysis

is also carried out for each stationary point, and the har-

monic frequencies predicted by the PES for the minimum

are listed in Table 3. The difference between the PES and

the ab initio value is less than 5 cm-1 for each mode. The

energies of other stationary points and the frequencies of

2-Cs and 3-C2v are provided in the supplementary material.

In Fig. 3, we present contour plots of the present PES of

H7
?. In the upper panel of the figure, we show the contour

lines of the potential with the H3
? core fixed, while the two

H2 units are both rotating in the /1 and /2 coordinates,

where /1 and /2 are the torsional angles of the two H2

units. The torsional angle is zero for the minimum con-

figuration and is 90 degree for the saddle point. One can

see the behavior of the PES around the 4 symmetric 1-C2v

minima, the 4 equivalent 2-Cs saddle points connecting

them, and the 3-C2v stationary point. In the lower panel, the

H7
? is kept fixed at the 1-C2v configuration and the contour

plot is presented as a function of the D2, which is the H3
?–

H2 distance, and /2 coordinates. The region around the two

symmetric 1-C2v minima and their 2-Cs barrier are shown

up to energies of 180 cm-1.

The rms fitting error of the dipole moments is 0.0006

a.u. The x-, y-, and z-components of the dipole moments

along specified normal modes (see the descriptions of the

normal modes in Table 3) at the minimum are plotted in

Fig. 4. As one can see, among the five high-frequency

modes, the dipole moments along the bending of H3
? (mode

11), the asymmetric stretch of H3
? (mode 12), and out-of-

phase stretch of two H2 (mode 14) have significant chan-

ges; thus, these modes may play an important role in the IR

spectrum of H7
?. Here, we should note that this DMS is

only valid in the bound region, and it is not correct when

H7
? dissociates to H5

? and H2.
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Fig. 4 One-dimensional cuts of the DMS along the specified normal modes at the minimum configuration. (See Table 3 for the description of

the normal modes.) In mode 11, 13, and 15, lx and lz overlap
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3.2 IR spectra

The frequencies of the five fundamentals and a combina-

tion band from the MM calculations are listed in Table 4.

We used both 4- and 5-mode representations for the PES

and expanded the wavefunctions with different number of

basis functions. As one can see in the Table 4, the differ-

ences between these calculations are mostly less than

1 cm-1. Therefore, the 4-mode representation with 11

basis functions is adequate to achieve good convergence

for this problem, and thus, it is employed for the calcula-

tions of the spectra.

In the MM calculations, we find that for the 1-C2v and

3-C2v reference configurations, two states show strong

mixing: (1) the out-of-phase stretch of the two H2; (2) the

combination band of the H3
? bending and H3

? asymmetric

stretch. While for 2-Cs, three states, namely two stretches

of the two H2 and the combination band of H3
? bending and

asymmetric stretch, have strong coupling. Comparing the

results from three stationary points, we find the frequencies

vary only about 20 cm-1.

Since the previous DMC and PIMC simulations suggest

that the two H2 almost rotate freely at vibrational ground

state, we combine the three spectra to obtain an overall

spectrum for H7
?, which is shown in Fig. 5. In the range

from 2,000 to 4,500 cm-1, our calculated spectrum has two

Table 4 MULTIMODE results from 4- and 5-mode representations

of the potential and different numbers of basis functions

Config. Mode 4-Mode
representation

5-Mode
representation

11 basis 13 basis 11 basis 13 basis

1-C2v

m11 1,909.7 1,909.1 1,909.7 1,909.1

m12 2,172.9 2,172.7 2,172.9 2,172.7

m13 2,907.0 2,906.5 2,907.0 2,906.5

m11 ? m12, m14 3,941.1 3,939.5 3,941.3 3,939.6

m15 3,983.9 3,983.8 3,983.9 3,983.8

m14, m11 ? m12 4,004.2 4,003.5 4,004.0 4,003.2

2-Cs

m11 1,928.1 1,927.6 1,928.1 1,927.6

m12 2,174.3 2,174.1 2,174.3 2,174.1

m13 2,908.9 2,908.4 2,908.9 2,908.4

m11 ? m12, m14, m15 3,952.8 3,951.7 3,952.8 3,951.6

m15, m14, m11 ? m12 3,983.9 3,983.8 3,983.9 3,983.8

m15, m11 ? m12, m14 4,012.0 4,011.0 4,012.1 4,011.1

3-C2v

m11 1,928.2 1,927.7 1,928.2 1,927.7

m12 2,185.1 2,184.8 2,185.0 2,184.8

m13 2,912.8 2,912.3 2,912.8 2,912.3

m14, m11 ? m12 3,960.7 3,959.6 3,960.9 3,959.8

m15 3,989.2 3,989.1 3,989.2 3,989.1

m14, m11 ? m12 4,018.6 4,017.5 4,018.4 4,017.2
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Fig. 5 Comparison of the calculated and experimental spectra of H7
? and D7

?, respectively. We combined the spectra of 1-C2v (blue sticks), 2-Cs (red

sticks), and 3-C2v (green sticks) in onefigure, and replaced the stick line shapeswithGaussian line shapes to obtain the calculated spectrum (purple lines)
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relatively intense peaks at 2,177 and 3,954 cm-1, respec-

tively, which are in good agreement with the experimental

ones at about 2,200 and 3,982 cm-1. As is explained in

Ref. [22], the relative intensities of the two experimental

bands can be attributed to the lower laser power at low

frequency and the lower photodissociation yield with lower

power. Therefore, the differences of the intensities between

our computations and the experiment are understandable.

Comparing with the scaled DFT spectrum of H7
?, which

still overestimates the peak at 3,982 cm-1 by 100 cm-1

[22], our spectrum from the VCI calculations is in better

agreement with the experimental action spectrum. In

addition, we assign the peak at 3,982 cm-1 to the mixed

state mentioned above, instead of the stretch of H2. The

spectrum from the three stationary points for D7
? is also

shown in Fig. 5. As is shown, it does not exhibit significant

differences compared to that of H7
?, except that the posi-

tions of the peaks are shifted by a factor of roughly
ffiffiffi
2

p
.

4 Summary and conclusions

We constructed a new potential energy surface and a dipole

moment surface for H7
? cluster, which is very precise, to

describe the bound region of it. The PES was used in MM

calculations, in which we only considered the five high-

frequency internal modes of H3
? and H2. These reduced-

dimensional calculations resulted in spectra of H7
? and D7

?

that are in good agreement with the experiment. More

rigorous calculations need to couple more modes and to

correctly treat the two torsional motions of the H2 groups,

which will be the goal in the future.

Acknowledgments C.Q. and J.M.B. thankNASAfor financial support

through Grant No. 370NNX12AF42G from the NASA Astrophysics

Research and Analysis program. R.P. thanks the Centro de Calculo (IFF-

CSIC) and SGAI (CSIC) for allocation of computer time. Supports from

MICINN, Spain,Grant No. FIS2011-29596-C02-01, Consolider-Ingenio

2010 Programme CSD2009-00038 (MICINN), and COST Action

CM1002 (CODECS) are gratefully acknowledged by R.P. We thank

Mike Duncan for sending his experimental spectra.

References

1. Duley WW (1996) Astrophys J 471:L57

2. Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258
3. Snow TP, Bierbaum VM (2008) Annu Rev Anal Chem 1:229

4. Geballe TR, Oka T (1996) Nature 384:334

5. Xie Z, Braams BJ, Bowman JM (2005) J Chem Phys 122:224307

6. Aguado A, Barragán P, Prosmiti R, and Delgado-Barrio G, Vil-

larreal P, Roncero O (2010) J Chem Phys 133:024306

7. Cheng TC, Bandyopadyay B, Wang Y, Carter S, Braams BJ,

Bowman JM, Duncan MA (2010) J Phys Chem Lett 1:758

8. Cheng TC, Jiang L, Asmis KR, Wang Y, Bowman JM, Ricks

AM, Duncan MA (2012) J Phys Chem Lett 3:3160

9. Lin Z, McCoy AB (2012) J Phys Chem Lett 3:3690

10. Lin Z, McCoy AB (2013). J Phys Chem A. doi:10.1021/

jp4014652
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Abstract For the local (adiabatic) vibrational modes of

Konkoli and Cremer (Int J Quantum Chem 67:29–40,

1998), infrared intensities are derived by setting up the

appropriate adiabatic conditions. It is shown that the local

mode intensities are independent of the coordinates used to

describe a molecule and correctly reflect the molecular

symmetry and isotope composition. Normal mode inten-

sities are related to local mode intensities via an adiabatic

connection scheme (ACS). The ACS reveals intensity

changes due to local mode mixing and avoided crossings,

which are easily identified and quantified. The infrared

intensities of simple molecules such as H2O, CH4, O3,

HOOH, CH3OH, and the water dimer are discussed, and

the influence of isotopes is quantified.

Keywords Local vibrational modes � Local stretching
force constant � Infrared intensities � Local mode

intensities � Adiabatic connection scheme � Isotope effects

1 Introduction

One of the primary objectives in chemistry is to determine

the properties of the chemical bond [1]. Chemists have

collected bond dissociation energies (BDE), bond lengths,

stretching force constants, and other properties to derive

suitable bond strength descriptors [2–4]. Although BDE

values may be useful in a qualitative sense, they fail to be

bond strength descriptors in a quantitative way because

they depend on both the strength of the bond to be broken

and the stabilization of the dissociation fragments caused

by electron density redistribution, geometry relaxation, and

avoided crossings between electronic states [5, 6]. The

bond length has been used as bond strength descriptor for

small, nonpolar molecules however becomes problematic

for molecules with strongly polar bonds as is documented

in the literature [7]. More suitable as bond strength

descriptors are the stretching force constants of a vibrating

molecule, which are obtained with the help of vibrational

spectroscopy [4, 8, 9].

The use of stretching force constants to describe the

chemical bond dates back to the 20s and 30s of the last

century when Badger [10] found a relationship between

force constant and bond length for diatomic molecules

[11]. The extension of the Badger relationship to poly-

atomic molecules turned out to be difficult because spec-

troscopically derived stretching force constants are not

unique, reflect coupling between the vibrational modes,

and depend on the internal coordinates used for the

description of the molecule in question [11]. Repeated

attempts have been made to use stretching force constants

by assuming that the bond stretching frequencies of certain

functional groups are less effected by mode–mode cou-

pling and therefore provide at least approximate measures

for the bond strength via the associated force constants [12,

13]. These attempts are based on the general understanding

that the stretching force constants of a molecule in its

equilibrium geometry are the appropriate measures of the

bond strength. Vibrational force constants are related to the

curvature of the Born–Oppenheimer potential energy sur-

face (PES) E(q) spanned by the internal coordinates qn of
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the molecule in question. They can be obtained by calcu-

lating the Hessian of E(q), which collects all second

derivatives of the molecular energy with regard to the qn-

coordinates and is identical (apart from some conversion

factors) to the force constants matrix Fq expressed in terms

of internal coordinates.

The stretching force constant corresponds to an infini-

tesimally small change of the bond, and therefore, it is an

ideal dynamic measure of the bond strength, which is no

longer influenced by electronic structure reorganization or

geometry relaxation effects. However, the stretching force

constants obtained for a polyatomic molecule by either

directly calculating the Hessian matrix or, alternatively,

deriving them from measured stretching frequencies by

solving the basic equation of vibrational spectroscopy [8]

can because of coupling effects, no longer be related to

individual bonds. Therefore, vibrational spectroscopists

have pursued various ways of obtaining local mode

stretching force constants.

Already in the 60s, Decius [14] suggested to solve the

force constant problem by reverting to the inverse force

constant matrix C ¼ ðFqÞ�1
and introducing the compli-

ance constants Cnn as local bond strength descriptors.

Ample work has been carried out with the compliance

constants to describe the properties of chemical bonds [15–

19] although their physical meaning and relationship to the

normal vibrational modes remained unclear. McKean [20–

22] solved the problem of obtaining local XH stretching

force constants by synthesizing isotopomers of a given

molecule where all H atoms but the target hydrogen were

replaced by deuterium. By measuring then the isolated XH

stretching frequency, a reasonable approximation for a

local mode frequency was obtained. Henry [23] obtained

local mode information on CH-stretching vibrations from

overtone spectra. Apart from this, there were numerous

attempts to set up relationships between stretching force

constants or frequencies and bond strength descriptors such

as BDE values, bond orders, bond lengths, etc., which are

discussed in a 2010 review article that underlines the

necessity of obtaining local mode information from normal

vibrational modes [11].

Konkoli and Cremer [24] determined for the first time

local vibrational modes directly from normal vibrational

modes by solving the mass-decoupled Euler–Lagrange

equations. Each local mode is associated with an internal

coordinate qn (n = 1,. . .;Nvib with Nvib ¼ 3N � R; N num-

ber of atoms; R number of translations and rotations),

which drives the local mode [24]. These authors also

demonstrated that each normal vibrational mode can be

characterized in terms of local vibrational modes, where

their characterization of normal mode (CNM) method is

superior to the potential energy distribution analysis [11,

25]. Cremer et al. [26] developed a way of calculating from

a complete set of 3N � R measured fundamental frequen-

cies the corresponding local mode frequencies. In this way,

one can distinguish between calculated harmonic local

mode frequencies (force constants) and experimentally

based local mode frequencies (force constants), which

differ by anharmonicity effects [27, 28]. Larsson and

Cremer [29] showed that McKean’s isolated stretching

frequencies are equal to the local mode frequencies if there

is a complete decoupling of the CH-stretching modes in a

deuterium isotopomer. Zou et al. [30] proved that the

reciprocal of the compliance constant of Decius is identical

with the local force constant of Konkoli and Cremer.

Furthermore, they proved that the local vibrational modes

of Konkoli and Cremer are the only modes, which directly

relate to the normal vibrational modes.

A local mode depends only on the internal coordinate it

is associated with (leading parameter principle [24]) and

is independent of all other internal coordinates used to

describe the geometry of a molecule. Accordingly, it is

also independent of using redundant or non-redundant

coordinate sets. The number of local vibrational modes

can be larger than Nvib, and therefore, it is important to

determine those local modes, which are essential for the

reproduction of the normal modes. They can be deter-

mined with the help of an adiabatic connection scheme

(ACS), which relates local vibrational frequencies to

normal vibrational frequencies by increasing a scaling

factor k from 0 (local frequencies) to 1 (normal fre-

quencies). For a set of redundant internal coordinates and

their associated local modes, all those frequencies con-

verge to zero for k ! 1, which do not contribute to the

normal modes so that a set of Nvib dominant local modes

remains [30, 31].

The infrared intensities of vibrational modes have been

used to determine effective atomic charges of a molecule

[32–34]. The measured intensities are associated with the

atomic polar tensor (APT), which is the matrix of dipole

moment derivatives with regard to the geometrical

parameters of a molecule. If it is possible to obtain the APT

from measured infrared intensities and if in addition the

geometry of a molecule is known, one can directly deter-

mine effective atomic charges from measured infrared

intensities. Much work has been done in this direction [32–

35] where however all attempts so far have been based on

normal rather than local vibrational modes. Since each

normal mode is delocalized because of mode–mode cou-

pling, it is questionable whether reliable charge informa-

tion can be obtained from normal mode intensities. It is

much more likely that in these cases, as in the case of the

bond strength description, local mode rather than normal

mode information is needed.
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In this work, we will make the first and necessary step

for obtaining effective atomic and bond charges from

infrared intensities and APT by deriving the local mode

intensity. Furthermore, we will relate the local mode

intensities to those of the normal modes utilizing an

intensity ACS as was recently done for the frequency ACS

[30]. Equipped with these theoretical tools, we will be able

to analyze normal mode intensities and discuss them in

terms of local mode intensities, mode–mode coupling,

isotope-dependence, and symmetry.

Before doing so it is necessary to clarify the term local

mode because it is used in the literature in at least four

different ways. (i) In computational chemistry, the normal

modes are calculated using the classical description of a

vibrating molecule introduced by Wilson et al. [8]. In this

description, normal modes are delocalized because of mode

coupling and their counterparts (derived by Konkoli and

Cremer [24]) are the local modes of this work. Other terms

such as isolated [20] or intrinsic [36] have been used in

connection with local mode descriptions, but these latter

terms refer to normal vibrational modes, which are local

only in an approximate sense. (ii) Henry et al. [23, 37–40]

have developed local mode (an)harmonic oscillator models

to quantum mechanically calculate the overtones of XH

stretching modes. The higher overtone modes (n = 5 or 6)

for isolated XH groups are largely decoupled, which jus-

tifies speaking of local modes. Contrary to the normal and

local modes of classical physics (see i), the local modes of

the oscillator models and their frequencies are true eigen-

functions and eigenvalues of a quantum mechanical

Hamiltonian acting on the vibrational wave function. (iii)

Reiher et al. [41–43] calculate unitarily transformed nor-

mal modes associated with a given band in the vibrational

spectrum of a polymer where the criteria for the transfor-

mation are inspired by those applied for the localization of

molecular orbitals. The authors speak in this case of local

vibrational modes because the modes are localized in just a

few units of a polymer. Nevertheless, Reihers local modes

are still delocalized within the polymer units. (iv) Yet,

another use of the term local modes is made in solid-state

physics where it refers to the vibrational mode(s) of an

impurity in a solid material [44, 45].

The results of this work will be presented in three

sections. In Sect. 2, the theory of the local mode inten-

sities and the intensity ACS will be developed. Local

mode intensities are analyzed and discussed for some

small molecules in Sect. 3. It is shown how the normal

mode intensities can be stepwise converted into local

mode intensities and vice versa. In Sect. 4, the chemical

relevance of the local mode intensities is discussed. In

the final section, conclusions are drawn and an outlook is

presented.

2 Theory of local vibrational modes

The vibrational secular equation expressed in Cartesian

coordinates is given by Eq. (1): [8, 9, 46]

Fx ~L ¼ M ~LK ð1Þ
where Fx is the force constant matrix, M the mass matrix,

matrix ~L collects the vibrational eigenvectors ~ll in its

columns, and K is a diagonal matrix with the eigenvalues

kl, which leads to the (harmonic) vibrational frequencies

xl according to kl = 4p2c2xl
2. In Eq. (1), the number of

vibrational modes is given by Nvib, i.e., R translational and

rotational motions of the molecule are already eliminated.

Here and in the following, a tilde above a vector or matrix

symbol indicates mass weighting. Matrix ~L has the

following properties

~L
y
M ~L ¼ I ð2Þ

~L
y
Fx ~L ¼ K ð3Þ

i.e., matrix ~L and eigenvalue matrix K are obtained by

diagonalization of the mass-weighted force constant

matrix. Usually, the normal mode vectors ~ll are re-

normalized according to

ll ¼ 1ffiffiffiffiffiffiffi
~l
y
l
~ll

q ~ll ¼
ffiffiffiffiffiffi
mR

l

q
~ll ð4Þ

or

L ¼ ~LðMRÞ1=2 ð5Þ
where mR

l ¼ ~l
y
l
~ll

	 
�1

is the reduced mass of mode l.
Matrix L also satisfies Eq. (1) in the form

FxL ¼ MLK ð6Þ
which leads to

LyFxL ¼ K ð7Þ
LyML ¼ MR ð8Þ
Equations (7) and (8) define the diagonal normal force

constant matrix K and the reduced mass matrix MR (with

elements ml
R), respectively.

The vibrational secular equation expressed in internal

coordinates qn is given by Wilson et al. [8]

Fq ~D ¼ G�1 ~DK ð9Þ
Here, ~D contains the normal mode vectors
~dlðl ¼ 1; . . .;Nvib), and matrix G ¼ BM�1By (Wilson

matrix) gives the kinetic energy in terms of internal

coordinates [8]. The eigenvector matrix ~D has the

properties

Theor Chem Acc (2014) 133:1451

123Reprinted from the journal 151



~DyG�1 ~D ¼ I ð10Þ
~DyFq ~D ¼ K ð11Þ
Renormalization of ~D according to

D ¼ ~DðMRÞ1=2 ð12Þ
leads to

FqD ¼ G�1DK ð13Þ
and

DyFqD ¼ K ð14Þ
DyG�1D ¼ MR ð15Þ

The relationship between Dð ~D) and Lð ~L) is given by

Zou et al. [31]

L ¼ CD ð16Þ

~L ¼ C ~D ð17Þ
Matrix C is the pseudo-inverse matrix of B, where the

latter is a rectangular (Nvib 9 3N) matrix containing the

first derivatives of the internal coordinates qn with regard to

the Cartesian coordinates.

C ¼ M�1ByG�1 ð18Þ
Equations (1)–(18) are needed to present and derive in the

following the properties of the local vibrational modes.

2.1 Properties of a local mode

The local vibrational modes of Konkoli and Cremer [24]

can be directly determined from the normal vibrational

modes. The local mode vector an associated with qnðn ¼
1; . . .;Npara with Npara being the number of internal coor-

dinates to specify the molecular geometry) is given by

an ¼ K�1dyn
dnK

�1dyn
ð19Þ

where the local mode is expressed in terms of normal

coordinates Ql associated with force constant matrix

K. Here, dn denotes a row vector of the matrix D. The

local mode force constant kn
a of mode n (superscript

a denotes an adiabatically relaxed, i.e., local mode) is

obtained with Eq. (20):

kan ¼ aynKan ¼ ðdnK�1dynÞ�1 ð20Þ
Local mode force constants, contrary to normal mode force

constants, have the advantage of being independent of the

choice of the coordinates to describe the molecule in

question [24, 26]. In recent work, Zou et al. [30, 31] proved

that the compliance constants Cnn of Decius [14] are sim-

ply the reciprocal of the local mode force constants:

kan ¼ 1=Cnn.

The reduced mass of the local mode an is given by the

reciprocal diagonal element Gnn of the G-matrix [24].

Local mode force constant and mass are sufficient to

determine the local mode frequency xn
a

ðxa
nÞ2 ¼

1

4p2c2
kanGnn ð21Þ

2.2 Adiabatic connection scheme (ACS) relating local

to normal mode frequencies

With the help of the compliance matrix Cq ¼ ðFqÞ�1
, the

vibrational eigenvalue Eq. (9) can be expressed as [30]

ðCqÞ�1 ~D ¼ G�1 ~DK ð22Þ
or

G ~R ¼ Cq ~RK ð23Þ
where a new eigenvector matrix ~R is given by

~R ¼ ðCqÞ�1 ~D ¼ Fq ~D ¼ ð ~D�1ÞyK ð24Þ
Next, the matrices Cq and G are partitioned into diag-

onal (Cq
d and Gd) and off-diagonal (C

q
od and God) parts: [30]

ðGd þ kGodÞ ~Rk ¼ ðCq
d þ kCq

odÞ ~RkKk ð25Þ
where the off-diagonal parts can be successively switched

on with a scaling factor k (0 B k B 1), so that the local

mode description given by the diagonal parts (k = 0) is

stepwise converted into the normal mode description

obtained for k = 1. For each value of k a specific set of

eigenvectors and eigenvalues collected in ~Rk and Kk,

respectively, is obtained. Equation (25) is the basis for the

ACS.

2.3 Infrared intensity of a normal mode

The infrared intensity of normal mode l is determined by

[34, 47, 48]

Inml ¼ ðdnml Þydnml ð26Þ
where superscript nm denotes a normal mode and the

dipole derivative vectors dnml are collected in a matrix dnm

given by Eq. (27):

dnm ¼ CD ~L ¼ CDLðMRÞ�1=2 ð27Þ
The APT matrix D is of dimension 3 9 3N and contains

the dipole moment derivatives with regard to Cartesian

coordinates [32, 34]. If the normal mode intensity Il
nm is
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given in km/mol and D and MR in atomic units, the con-

version factor C in Eq. (27) is 31.22307.

2.4 Infrared intensity of a local mode

The intensity In
a of a local mode an associated with internal

coordinate qn has to fulfill a number of requirements: (i) In
a

must be characteristic of the local mode in question (and

the associated displacement coordinate), however inde-

pendent of any other internal coordinate used for the

description of the molecular geometry. (ii) It must be

characteristic of the masses of the atoms participating in

the local vibration, but at the same time it must be inde-

pendent of any other atomic masses in the molecule. (iii) In

case of symmetry, symmetry-equivalent local modes must

possess identical intensities. (iv) For diatomic molecules,

the local mode intensity must be identical with the normal

mode intensity.

For the derivation of the local mode intensity, Eq. (27) is

re-written in terms of internal coordinates utilizing Eqs.

(10), (17), and (18):

dnm ¼ CD M�1ByG�1
� �

~D ð28Þ
¼ CDM�1Byð ~DyÞ�1 ð29Þ
If Npara = Nvib, the inverse of ~D exists.

For the adiabatic situation with k = 0, Eq. (22) becomes

ðCqÞ�1
d

~D0 ¼ G�1
d

~D0K ð30Þ
and the normalization condition (10) takes the form

~Dy
0G

�1
d

~D0 ¼ I ð31Þ
where the subscript 0 denotes k = 0. If the local modes are

ordered according to increasing frequencies xl
2, then matrix

~D0 will be diagonal. Hence, matrix D0 ¼ G
�1=2
d

~D0 is also

diagonal whereMR
0 ¼ G�1

d . Accordingly, it holds that

D
y
0D0 ¼ ~Dy

0G
�1
d

~D0 ¼ I ð32Þ
or

XNvib

m

ðD0ÞlmðD0Þml ¼ ðD0Þ2ll ¼ 1 ð33Þ

which implies that ðD0Þll ¼ �1 where only the positive

value is used for reasons of simplicity. We conclude that

matrix D0 is the unit matrix.

Hence, the local mode condition with k = 0 implies that

(i) D0 = I, (ii) MR
0 ¼ G�1

d , and (iii) ~D0 ¼ G
1=2
d . Equation

(29) takes for local mode an the form

da ¼ CDM�1ByG�1=2
d ð34Þ

which leads to the local mode intensity

Ian ¼ ðdanÞydan ð35Þ
It can be easily proved that Eq. (34) is both isotope-inde-

pendent and parameter-independent and, in addition, leads

to symmetry-equivalent intensities thus fulfilling the

requirements (i), (ii), and (iii) for local mode intensities.

For a diatomic molecule, Eq. (34) collapses to Eq. (27).

The fulfillment of (i), (ii), and (iii) is demonstrated for the

water molecule (see Table 1).

The water example shows that the bending intensity is

relatively large and literally identical for normal and local

mode where the difference results from a small coupling

between bending and symmetric stretching mode. The local

OH stretching intensities are identical and of medium size,

which changes as a consequence of coupling between the

two OH stretching modes. The symmetric stretching mode

has only a small intensity because it leads to a relatively

small change in the charge distribution. It is noteworthy

that the measured intensity of the symmetric stretching

mode is 2.2 km/mol [33], which is a result of a small

mixing of stretching and bending vibration. The asym-

metric stretching mode causes a large change in the charge

distribution and accordingly has a large normal mode

intensity.

If the bending parameter is replaced by the distance

between the H atoms, a much lower intensity is obtained

because the charge changes become smaller during this

non-bonded stretching motion. However, none of the OH

stretching vibrations changes its intensity value confirming

that the local modes are independent of the other internal

coordinates used for determining the molecular geometry.

In this connection, it is important to note that the HH

distance is used here only for test purposes. If the fre-

quency ACS of the water molecule is set up with a

redundant set of six internal coordinates (three distances

and three angles in a hypothetical triangle), three local

Table 1 Local and normal mode intensities In
a and Il

nm of H2O and

HDO

Molecule Parameter In
a (km/mol) Mode l Il

nm (km/mol)

H2O H–O 23.4868 1 40.8595

H–O 23.4868 2 3.2361

H–O–H 69.1712 3 69.5078

H�H 11.3848

HDO H–O 23.4868 1 24.7171

D–O 14.9527 2 11.2932

H–O–D 59.8634 3 59.5745

D–O 14.9527

H�D 16.9479

B3LYP/cc–pVTZ calculations based on Eqs. (26) and (34)
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mode frequencies associated with HH distance and the two

OHH angles converge to zero.

If one H is replaced by D, the local DO stretching

intensity adopts a lower value because of the large mass of

the D atom. Again, this does not lead to a change in the

local OH stretching intensity. Also, there is no change

when the bending angle is replaced by the H � D non-

bonded distance.

Because of the parameter-independence, Eq. (34) can be

formulated for an individual local mode associated with qn
as

dan ¼
Cffiffiffiffiffiffiffiffi
Gnn

p DM�1byn ð36Þ

where bn is a vector of matrix B. Since byn=
ffiffiffiffiffiffiffiffi
Gnn

p
has the

unit of amu1/2, the conversion factor C in Eq. (36) does not

depend on bn, i.e., the conversion factors for bond

stretching, bending, or torsion are the same, which is dif-

ferent from the case of local mode force constants [31].

2.5 Adiabatic connection scheme for intensities

Equation (29) can be used as a starting point for deriving

an ACS for infrared intensities.

dk ¼ CDM�1Byð ~Dy
kÞ�1 ð37Þ

i.e., the intensity Ik depends on the eigenvector matrix ~Dk

obtained from Eq. (38):

C�1
k

~Dk ¼ G�1
k

~DkKk ð38Þ
or

Cq
d þ kCq

od

� ��1 ~Dk ¼ Gd þ kGodð Þ�1 ~DkKk ð39Þ
with the scaling factor k increasing from 0 (local modes;

~Dk¼0 ¼ G
1=2
d and dk¼0 ¼ da) to 1 (normal modes; ~Dk¼1 ¼

~D and dk¼1 ¼ dnm).

Equation (39) has a number of advantages compared

with Eq. (25). The latter becomes unstable in the case of

small normal mode frequencies associated with small

normal mode force constants because ~R of Eq. (24)

becomes also small. This can no longer happen if one

works with the inverse of matrices Gk and Ck.

In the following, we give some application examples,

which illustrate the method described. Also, the usefulness

of local mode intensities is discussed.

3 Local mode intensities and ACS for infrared

intensities

In Figs. 1a–d, 2a, b and 3a, b, intensity and frequency ACS

diagrams are shown for H2O, CH4, O3, HOOH, CH3OH,

and the water dimer, (H2O)2, as obtained (if not otherwise

noted) at the xB97X-D/aug–cc–pVTZ level of theory [49,

50]. For ozone, CCSD/aug–cc–pVTZ calculations were

carried out to get more reliable results. The calculated

geometries and the notation of the atoms are given in

Fig. 4. In Table 2, calculated normal and local mode fre-

quencies and intensities are compared. In the following, we

will discuss interesting features of the intensity ACS,

which help to understand the magnitude of the normal

mode intensity.

3.1 Water

The two local OH stretching modes are equivalent and,

accordingly, the two local OH stretching frequencies are

identical as are the corresponding intensities (see Fig. 1a).

These identities reflect the symmetry of the molecule

although none of the two local OH stretching vectors can

by classified to have a symmetry of the C2v point group.

However, an infinitesimal increase of k by � leads to an

large change in the OH stretching intensities caused by the

fact that the symmetry of the molecule is switched on. In

this sense, k ¼ e (e ! 0) denotes a catastrophe point [51]

in the ACS diagram for intensities (according to Thom’s

theory of catastrophes) [52].

Contrary to the vibrational frequencies, the k-dependent
intensities explicitly depend on the mode vectors [see

Eq. (37)]. For a given normal mode l, one can define the

mode dependent part as

tlðkÞ ¼ ½ð ~Dy
kÞ�1�l ¼ ½ðGkÞ�1 ~Dk�l ð40Þ

which in the case of the local mode (k = 0) becomes

tnðk ¼ 0Þ ¼ ½ð ~Dy
k¼0Þ�1�n ¼ ½G�1=2

d �n ð41Þ
i.e., the local mode vector tn contains only zeroes with the

exception of position n.

This may be demonstrated for H2O at k = 0 where the

following matrix contains the three column vectors tn
corresponding to internal coordinates H–O–H, O–H1, and

O–H2:

0:0000 0:0000 0:9737
0:0000 0:9737 0:0000
1:2416 0:0000 0:0000

0
@

1
A ð42Þ

At k = e = 10-4, the column vectors change strongly

�0:0001 0:6886 0:6885
�0:0001 0:6886 �0:6885
1:2416 0:0008 0:0000

0
@

1
A ð43Þ

indicating that there is an intensity catastrophe leading to

the splitting into a large asymmetric OH stretching inten-

sity and a small symmetric OH stretching intensity.
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(a) (b)

(c) (d)

Fig. 1 Intensity ACS for a water, bmethane, c ozone, and d hydrogen

peroxide. The different mode symmetries are indicated by different

colors. For the purpose of identifying intensity catastrophes, the I (k)
curves are started with an arbitrary negative k value so that the

splitting at k = 0 can be made visible. For the numbering of atoms,

see Fig. 4. xB97X-D/aug–cc–pVTZ or CCSD/aug–cc–VTZ (ozone)

calculations

(a) (b)

Fig. 2 a Frequency and b intensity ACS for methanol, CH3OH. The

different mode symmetries are indicated by different colors. For the

purpose of identifying intensity catastrophes, the I (k) curves are

started with an arbitrary negative k value so that the splitting at k = 0

can be made visible. For the numbering of atoms, see Fig. 4 . xB97X-
D/aug–cc–pVTZ calculations
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The magnitude of the intensity splitting for equivalent

modes depends on the corresponding values of the APT

(the change in the charge distribution caused by the local

mode), the ratio of the masses involved and the coupling of

the mode vectors. In the case of H2O, the two stretching

mode vectors involve as a common atom the O atom,

which is a prerequisite for a large coupling (proximity

effect). However, the angle between the mode vectors is

with 105� (Fig. 4) close to 90� where the coupling of the

OH stretching modes vanishes. Also the light–heavy–light

situation of the three atoms involved leads to a smaller

coupling. However, the changes in the charge distribution

upon OH stretching are significant so that the splitting

values DI of the local OH stretching intensities at the

catastrophe point takes a medium-seized value of ±28 km/

mol (see Table 3; Fig. 1a).

An intensity catastrophe is not found in the case of

isotopomer HOD because of the difference in the OH and

OD stretching modes. At k = 0, three different tn vectors

are determined:

0:0000 0:0000 0:9737
0:0000 1:3375 0:0000
1:4164 0:0000 0:0000

0
@

1
A ð44Þ

and at k ¼ e;

0:0001 0:0007 0:9737
0:0001 1:3375 �0:0007
1:4164 0:0008 0:0006

0
@

1
A ð45Þ

for which the changes are moderate in comparison to (44).

It can be concluded that sudden changes in the intensity are

connected with catastrophe points caused by a switching on

of the molecular symmetry as a result of an infinitesimal

change of k = 0 to k ¼ e:

3.2 Other examples with catastrophe points

CH4, O3, and HOOH. For methane, Nvib = Npara = 9 where

the four CH bond lengths and five of the six H–C–H

bending angles are used. There are just two local mode

(a) (b)

Fig. 3 a Frequency and b intensity ACS for the water dimer, (H2O)2.

The different mode symmetries are indicated by different colors. For

the purpose of identifying intensity catastrophes, the I (k) curves are

started with an arbitrary negative k value so that the splitting at k = 0

can be made visible. For the numbering of atoms, see Fig. 4. xB97X-
D/aug–cc–pVTZ calculations

Fig. 4 xB97X-D/aug–cc–
pVTZ or CCSD/aug–cc–VTZ

(ozone) geometries of the

molecules investigated
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frequencies and two local mode intensities, which in two

separate catastrophes (catastrophe points both at k ¼ e) slit
up into five different intensities with weight factors

3:2:1:2:1 (stretching, bending, bending, bending, stretch-

ing; see Fig. 1b). In the case of the CH-stretching modes,

an intensity value of 22 km/mol associated with the 2T2-

symmetrical (triply degenerate) asymmetric CH-stretching

modes and an intensity of 0 associated with the A1-sym-

metrical CH-stretching mode is obtained. It is noteworthy

that the intensities of the CH-stretching modes fulfill a sum

rule

XNd
k

ðDIÞk ¼
XNd
k

ðIk¼�Þk � ðIk¼0Þk ¼ 0 ð46Þ

The intensity sum rule is a result of the molecular sym-

metry and is fulfilled provided that the members of a set of

equivalent local modes (i.e., all members of the set have

identical local mode frequencies) cannot mix with other

modes possessing the same symmetry. Hence, the deviation

from the zero value given by the intensity sum rule is a

measure for the degree of mode mixing. In Table 3, the

sum rule is tested for the infrared intensities of the mole-

cules investigated in this work.

The sum rule of the local mode intensities is nicely

fulfilled for the set of local CH-stretching modes (xn
a =

3,126 cm-1, Table 2) and the set of local HCH bending

modes (xn
a = 1,450 cm-1, Table 2). For the former, the

positive DI values of the three asymmetric CH-stretching

intensities (2T2 symmetry) is balanced by the strong

decrease in the symmetric CH-stretching intensity (1A1)

leading to a sum of just -0.02 km/mol. For the HCH

bending intensities, the situation is different as the

intensities associated with the 1T2- and 1E-symmetrical

mode sets split up into three parts (2:1:2). This is a result

of the fact that from six possible HCH bending angles

only five are relevant thus fulfilling the requirement

Nvib = Npara. The sum rule leads to a value of 0.02, which

is indicative for some residual mixing of modes of the

same symmetry.

In the case of ozone (see Fig. 1c), there is a deviation

from the intensity sum rule by 0.67 km/mol (see Table 3),

which results from the mixing of the symmetric OO

stretching mode with the bending mode. This is stronger

Table 2 Comparison of normal mode and local mode frequencies

and intensities obtained by xB97X-D/aug–cc–pVTZ or CCSD/aug–

cc–VTZ (ozone) calculations

Molecule

mode l
Sym. xl

nm

(cm-1)

Il
nm

(km/

mol)

Local mode

parameter n

xn
a

(cm-1)

In
a

(km/

mol)

H2O C2v

1 A1 1,634.8 76.6 HOH 1,634.8 76.4

2 A1 3,878.3 4.9 OH 3,913.2 35.5

3 B2 3,985.4 62.6 OH0 3,913.2 35.5

CH4 Td

1, 2, 3 1T2 1,360.4 13.3 HCH (93) 1,450.1 5.4

4, 5 1E 1,577.0 0 HCH (92) 1,450.1 5.4

6 1A1 3,041.7 0 CH 3,126.2 15.9

7, 8, 9 2T2 3,159.8 21.7 CH (93) 3,126.2 15.9

O3 C2v

1 1A1 761.8 5.2 O0OO00 866.5 2.5

2 1B2 1,253.7 231.8 OO0 1,249.7 143.0

3 2A1 1,272.9 0.2 OO00 1,249.7 143.0

HOOH C2

1 1A 3,93.5 164.5 HOO0H0 394.0 164.0

2 2A 1,025.6 0.4 OO0 1,020.5 0.0

3 1B 1,361.6 99.0 OO0H0 1,365.2 47.3

4 3A 1,468.8 0.4 O0OH 1,365.2 47.3

5 2B 3,839.7 54.6 OH 3,836.2 34.9

6 4A 3,841.1 14.3 O0H0 3,836.2 34.9

CH3OH Cs

1 1A00 300.4 107.7 HOCHi 348.9 86.8

2 1A0 1,069.6 101.4 CO 1,111.7 114.2

3 2A0 1,100.0 22.0 COH 1,260.4 77.2

4 2A00 1,189.0 0.5 OCHo 1,302.2 8.6

5 3A0 1,377.8 27.2 OCHi 1,277.5 2.3

6 4A0 1,485.0 2.6 OCH0
o 1,302.2 8.6

7 3A00 1,505.3 3.5 HiCHo 1,487.8 2.7

8 5A0 1,523.2 6.0 HiCH
0
o 1,487.8 2.7

9 6A0 3,019.2 61.6 CHo 3,044.3 57.4

10 4A00 3,073.3 53.1 CH0
o 3,044.3 57.4

11 7A0 3,134.5 25.3 CHi 3,120.3 25.0

12 8A0 3,916.3 34.1 OH 3,911.3 33.8

(H2O)2 Cs

1 1 A00 129.8 167.2 H3O4H5 264.7 126.3

2 2A00 166.8 3.4 H5O4H3O1 354.7 66.5

3 1A0 168.2 192.3 H3O4H6 264.7 126.3

4 2A0 203.3 106.2 O4H3H 587.6 413.4

5 3A0 381.3 45.0 O1H3O4H 380.9 63.9

6 3A00 643.2 95.4 H2O1H3O4 357.0 98.0

7 4A0 1,637.8 93.4 H5O4H6H 1,621.7 81.0

8 5A0 1,659.2 40.0 H2O1H3H 1,564.4 49.7

9 6A0 3,755.4 330.4 O1H3 3,757.2 390.9

10 7A0 3,871.7 11.1 O4H5 3,902.3 52.8

11 8A0 3,950.4 88.7 O1H2 3,918.1 30.1

Table 2 continued

Molecule

mode l
Sym. xl

nm

(cm-1)

Il
nm

(km/

mol)

Local mode

parameter n

xn
a

(cm-1)

In
a

(km/

mol)

12 4A00 3,974.8 85.0 O4H6 3,902.3 52.8

A star indicates that a change in ordering occurred due to an avoided

crossing. For a notation of atoms, see Fig. 4
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than in the case of H2O because of an increase in the

bending angle from 105� to 118� (Fig. 4) and a mass ratio

equal to 1, which both facilitate mode mixing.

The intensity ACS in Fig. 1c reveals that the intensity of

the 1B2-symmetrical mode decreases from 284.9 to

231.8 km/mol. This is a direct effect of mass coupling, as

reflected by the increase in the negative off-diagonal ele-

ment of matrix G�1; which connects the asymmetric with

the symmetric OO stretching mode. Actually, the same

effects can be found for the intensities of the asymmetric

XH stretching modes in H2O and CH4. However, the

decrease in the local mode intensities is much smaller in

these cases because mass coupling is smaller for these

light–heavy–light situations.

It is interesting to note that the intensity of the local OO

stretching modes are high (143 km/mol, Table 2), which is

predominantly due to a large ATP element, which in turn is

in line with a relatively large change in charge upon OO

stretching in a molecule with high biradical character.

For hydrogen peroxide, the sum rule is exactly fulfilled

for the OH stretching intensities and approximately for the

OOH bending intensities (Table 3). Mass coupling has a

relatively small effect on the intensities as can be seen in

Fig. 1d. The largest element in the APT is found for the

torsional motion as a result of the relatively large change in

the charge distribution upon HOOH torsion.

3.3 Methanol, CH3OH

There are 12 normal and 12 local vibrational modes, which

are shown in the frequency ACS of Fig. 2a. The corre-

sponding intensity ACS is given in Fig. 2b. There are

familiar features such as the intensity splitting of the two

CHo stretching intensities and that of the two O–C–Ho

bending intensities where only the first fulfill the intensity

sum rule and the latter deviate because of coupling with

other modes of the same symmetry (see Table 3). The CO

stretching mode and the H–O–C–Hi torsional mode possess

the largest intensities which is due the polarity of the CO

bond and the relatively large changes in the charge distri-

bution accompanying these vibrational modes as is con-

firmed by the corresponding elements of the APT.

Contrary to the intensity ACS shown in Fig. 1a–d, in

which the intensity lines mostly change almost linearly

(after a possible catastrophe point) from the local mode to

the normal mode intensities for k = 1, there are strong

variations in the intensity of the CO stretching, the C–O–H

bending, the O–C–Ho bending, and the O–C–Hi bending

modes (Fig. 2b). These variations in the intensity are the

results of avoided crossings between these modes. For

example, there is an avoided crossing at k = 0.87 between

modes 1A0 and 2A0; which are related to the local CO

stretching and C–O–H bending modes (see Fig. 2a). At the

avoided crossing, there is a strong mode mixing accom-

panied by the exchange of mode character and mode

energy. Figure 2b reveals that as a consequence also the

mode intensities change in the sense that the CO stretching

intensity is enhanced and that of the C–O–H bending

Table 3 Splittings DI of intensities of equivalent local modes at the

catastrophe point e ¼ 0:01

Molecule

parameter

Sym. Ik=0
(km/mol)

Ik¼e

(km/mol)

DI
(km/mol)

H2O

OH 2A1 35.49 7.43 -28.06

OH 1B2 35.49 63.52 28.03

Sum -0.03

CH4

HCH 1T2 (92) 5.43 10.87 5.44

HCH 1T2 (91) 5.43 3.93 -1.50

HCH 1E (91) 5.43 1.50 -3.93

HCH 1E (91) 5.43 0.00 -5.43

Sum 0.02

CH 1A1 15.89 0.00 -15.89

CH 2T2 15.89 21.18 5.29

Sum -0.02

O3

OO 2A1 143.02 0.45 -141.90

OO 1B2 143.02 284.92 142.57

Sum 0.67

HOOH

OOH 3A 47.31 0.00 -47.31

OOH 1B 47.31 94.67 47.36

Sum 0.05

OH 4A 34.89 14.71 -20.18

OH 2B 34.89 55.07 20.18

Sum 0

CH3OH

OCHo 4A0 8.58 5.53 -3.05

OCHo 2A00 8.58 10.59 2.01

Sum -1.04

CHo 6A0 57.37 53.67 -3.70

CHo 4A00 57.37 61.11 3.74

Sum 0.04

(H2O)2

HOH 1A0 126.29 51.13 -75.16

HOH 1A00 126.29 195.00 68.71

Sum -6.45

OH 7A0 52.82 19.05 -33.77

OH 4A00 52.82 86.47 33.65

Sum -0.12

Sum denotes the value according to the sum rule of Eq. (46). For a

notation of atoms, see Fig. 4
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intensity by about the same amount decreased. In the

region of the avoided crossings, the two intensity curves

change in a complementary fashion.

Avoided crossings are also found at k = 0.02 between

modes 2A0 and 3A0, which are related to the local C–O–H

and O–C–Hi bending modes (Fig. 2a) and at k = 0.98

between modes 4A0 and 5A0; which are related to the local

O–C–Ho and H–C–H bending modes (Fig. 2a). These

avoided crossings are responsible for the steep comple-

mentary changes in the C–O–H and O–C–Hi bending

intensities I (k) for small k (i.e., on the local mode side).

Involved is also the local O–C–Hi intensity due to an

avoided crossing between modes 3A0 and 4A0 (Fig. 2a). The
avoided crossing at k = 0.98 is however too late to have a

large impact on the 4A0 and 5A0 intensities (Fig. 2b)

3.4 H2O dimer, (H2O)2

The intensity ACS of the water dimer (Fig. 3b) is char-

acterized by a large intensity change of the H-bond

(O4 � � �H3) stretching intensity from 588 to 106 km/mol of

the 2A0 mode, which due to a transfer of the mode char-

acter from the 3A0 to the 2A0 mode at the avoided crossing

at k = 0.8 (Fig. 3a) where the latter becomes the H-bond

stretching mode (mixed with O1� H3 � � �O4 bending

character) and, because of the 2A0 � 1A0 avoided crossing

at k = 0.98 (Fig. 3a), an addition of H3 � � �O4�H5 bending

character [27]. Again at the two avoided crossings, the

changes of the 3A0 and 2A0 (2A0 and 1A0) intensity curves

are complementary (Fig. 3b).

This observation leads to the important conclusion that

the local H-bond stretching intensity has a large value

because of a large change in charge accompanying the

stretching motion. This effects the polarization of the

charge distribution in the two water molecules since this is

determined by H-bonding. However, mass coupling

(caused by stepwise switching on of the masses of the other

four atoms in the water dimer; H3 and O4 have already

their correct masses) leads to a significant decrease in the

intensity. Therefore, the measured normal mode intensity is

no longer a reliable descriptor of the charge distribution

caused by H-bonding in the dimer.

As noted before, there are no avoided crossings in the

intensities. Hence, one must follow the frequency ACS,

which is obtained by solving the vibrational eigenvalue

problem in dependence of k to determine that normal

mode, which is dominated by H-bond stretching character.

This is the 2A0 mode, which can be confirmed by the

analysis of normal modes in terms of local modes [25, 53].

It is noteworthy that the local O1–H3 stretching mode

has also a relatively large intensity because it is directly

involved in the charge polarization caused by H-bonding.

However, this mode (6A0) does not experience any avoided

crossings with other A0 modes (Fig. 3a) and its mass

dependence is smaller than that of O4 � � �H3. Therefore,
the decrease in the intensity is just from 391 to 330 km/mol

(Table 2).

There are also jumps in the intensity ACS curve of the

local H3 � � �O4�H5 bending mode (converting to the 1A00

normal mode, which starts at 126.3 km/mol for k = 0 drops

down to 51 km/mol because of a catastrophe point (mixing

with the H3 � � �O4�H6 bending), then continues to

decrease to 0 km/mol because of avoided crossings with

the torsional modes H2�O1�H3 � � �O4 and

H5�O4 � � �H3�O1 (converting into 3A00 and 2A00), and

finally experiencing a steep increase to 167 km/mol

because of an avoided crossing with the 2A00 mode at k =

0.98, which makes the intensity of the 3A00 mode drop

down to 3 km/mol. Other changes in the intensity curves of

Fig. 3b can also be explained by identifying the avoided

crossings in the frequency ACS. Conversely, an avoided

crossing in the frequency ACS can be confirmed by

inspection of the intensity ACS and identifying then the

complementary changes in the intensity lines of the modes

involved.

4 Chemical relevance of the local mode intensities

As mentioned in the introduction, local mode intensities

are derived to get a direct insight into the charge distri-

bution of a molecule. Secondly, the local mode intensities

together with the local mode frequencies provide the basis

for analyzing infrared spectra. Also, the local mode

intensities are tools for a better quantum chemical calcu-

lation of infrared intensities. Finally, local mode intensities

can be used for the calibration of weakly coupled or

completely uncoupled anharmonic oscillator models.

4.1 Infrared intensities and the molecular charge

distribution

The derivation of atomic charges from measured quantities

has been a major effort in chemistry. Promising in this

respect is the determination of effective atomic charges

from infrared intensities, [32] which was strongly advo-

cated by Person and Zerbi [33], Galabov and Dudev [34]

and their co-workers. The approach had limited success

although the line of action was well-defined. This had to do

with the fact that for the determination of effective atomic

charges, the APT is needed, which could not be obtained

from intensities without addition information from quan-

tum chemistry. However, if the APT is fully known,

effective atomic charges, which reasonably correlate with
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natural bond orbital (NBO) charges, [54] can be deter-

mined as was demonstrated by Milani et al. [35].

In our work, we pursue a different approach. We will

use the local bond stretching intensities to determine

effective bond charges, [34] which determine the charge

transfer between two bonded atoms and by this the bond

polarity. The exact quantum chemical calculation of the

bond polarity is only possible by using highly correlated

coupled cluster methods because this requires a well-bal-

anced description of covalent and ionic states in a corre-

lated wave function. For the understanding of bonding, one

needs to know the covalent and the ionic (polar) contri-

butions to the bond strength.

The new method of calculating effective bond charges

from local mode intensities will comprise the following

steps: (i) Calculation of the APT of a target molecule; (ii)

Improvement in the APT with the help of measured normal

mode intensities; (iii) Use of Eq. (35) to obtain local mode

intensities; (iv) Determination of bond charges Dpn using

the relationship Dpn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ian=Gnn

p
; and (v) Calculation of

bond dipole moments from the known molecular geometry

and the Dpn values. If only relative intensities are mea-

sured, which is mostly the case, a reliable quantum

chemical calculation of the infrared intensities is needed to

convert them into absolute intensities. For quantum

chemically calculated intensities, it will be interesting to

see how the effective bond polarity and the bond dipole

moment derived from local mode intensities differ from

those obtained by a population analysis (often derived in a

somewhat arbitrary way).

4.2 Analysis of infrared spectra

In this work, we have shown that the normal mode

intensities are the result of mode mixing. Therefore, they

are not associated with a specific structural unit. By

determining the local mode frequency and intensity, the

consequences of mode coupling for normal mode fre-

quencies and intensities can be given in detail by the ACS

diagrams such as those shown in Figs. 1, 2 and 3. This is

particularly interesting when local mode properties are

determined on the basis of measured vibrational data [27,

28]. Then, it is possible to determine the strength of a

bonding interaction from the local stretching force constant

and the bond polarity from the local intensity. Since this

information would be extracted from experiment rather

than quantum chemical data, the shortcomings of method,

basis set, or harmonic approximation used in a quantum

chemical calculation would not need to be discussed. Such

an analysis would show that H-bonding is combined with a

large charge separation contrary to the small intensity of

the H-bond stretching band at 143 cm-1 [27]. The com-

bination of APT and local mode intensity would provide

the effective atomic charges and the magnitude of the

effective bond charge equal to the charge transfer.

4.3 Improved scaling procedures

The local mode frequencies can be used for a superior

scaling of quantum chemical frequencies calculated for

large molecules utilizing the harmonic approximation.

Since a local mode is associated with a given internal

coordinates, local mode frequencies for molecular units

such as XH, AB, ABH, ABC, etc. can be determined

from measured [26] and calculated frequencies. The

determination of scaling factors for well-defined struc-

tural units is straightforward and can be used to an

individual normal mode frequency. Each normal mode

can be decomposed into local mode contributions, i.e.,

for each mode the percentage of XH stretching, ABC

bending, etc. can be determined. Then, each mode con-

tribution is assigned the appropriate local mode scaling

factor and an individual frequency scaling factor is cal-

culated from the properly weighted local scaling factors

of the local modes contributing to the normal mode in

question. This dynamic scaling approach is superior to

previous static scaling procedures, which could not con-

sider the effect of mode coupling. A stretching mode

may have a significant contribution from bending, and

therefore, significant down-scaling of the frequency as

needed for pure stretching frequencies is inappropriate

because harmonic bending frequencies have to be less

reduced than harmonic stretching frequencies.

The need for individual intensity scaling is even larger

than for frequency scaling as was emphasized in various

articles [55, 56]. The use of an individual scaling scheme as

described in the case of the normal mode frequencies is

only possible with the help of the local mode intensities.

For example, in a recent investigation, the cyano-stretching

intensities were scaled with a common factor leading to an

improved but not exact agreement with experiment [56].

This we see as a result of different coupling situations for

the CN stretching vibration with other modes, thus trig-

gering stronger changes in the intensity ACS. Another

source of error results from solvent influences, which are

different for polar and nonpolar groups in a molecule. The

calculation of local mode intensities can provide exact

information with regard to solvent dependable intensity

changes.

4.4 Calibration of harmonically coupled oscillator

models (HOM)

The local mode model of molecular vibrations developed

in the 70s by Henry et al. [37] has been used in the

description of CH-stretching overtone spectra [38–40, 57,
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58]. In this approach, harmonically coupled Morse oscil-

lators (including anharmonicity effects) are used to quan-

tum mechanically determine the vibrational frequencies

and wave functions of the HOM. By employing quantum

chemical methods to calculate the dipole moment function

and then the oscillator strengths in the CH-stretching overtone

spectra of various small and medium-seized organic mole-

cules (alkanes, alkenes, alcohols,H-bonded complexes, etc.) a

useful account of frequencies and intensities of overtones up

to v = 6 could be determined [23].

In previous work, Cremer and co-workers demonstrated

that the local mode frequencies of Konkoli and Cremer

[24] linearly correlate (R2 = 0.990) with the overtone fre-

quencies of Henry for v = 6 [11]. Also, it could be shown

by these authors that residual couplings lead to deviations

from the ideal local oscillator model. This opens up the

possibility of providing suitable local force constants for

the parametrization of the HOM. This can be done for

anharmonically corrected force constants where the latter

are derived from measured vibrational frequencies using

the Konkoli–Cremer approach [26]. Rong et al. [40]

observed that the harmonically coupled anharmonic oscil-

lator model leads to exaggerated intensities depending on

the quantum chemical method and basis set used for cal-

culating the dipole moment function. Clearly, the predic-

tion of overtone intensities can be improved by proper

scaling where again local mode intensities derived from

experiment and from calculations would lead to suitable

scaling factors as described in the previous subsection.

5 Conclusions

In this work, we have introduced the local mode intensities

and the intensity ACS for the purpose of analyzing normal

mode intensities. A number of conclusions can be drawn

from the work presented here.

1. The local mode intensity has been derived by

expressing the normal mode intensity in internal

coordinates and then applying the adiabatic condition

(k = 0), which leads to three requirements defining

D0;M
R
0 ;

~D0; and by this also the local mode intensity

In
a associated with mode an and the internal coordi-

nate qn. Local mode intensities Il
nm are independent of

the coordinates qm, (m = n) used for the description

of the molecular geometry. They are also indepen-

dent of any variation in the isotope distribution in

other parts of the molecule but the target fragment

described by qn. The local mode intensity values of a

molecule comply with the molecular symmetry and

become identical for diatomic molecules to the

normal mode intensity.

2. The intensity ACS has been derived in this work by

exploiting the dependence of the normalized internal

coordinate mode vectors on k, which can be

expressed in the form ðGkÞ�1 ~Dk: The first term of

the matrix product reflects the effect of mass

coupling on the intensity, which increases as the

off-diagonal elements of the G-matrix increase with

k. The second product term describes the effect of

mode mixing on the intensity Ik.

3. Mass coupling leads to an essentially linear decrease

or increase in the local to the normal mode intensity.

This can be anticipated by an analysis of the matrix

G�1:
4. Symmetry-equivalent local modes strongly couple,

which leads to a large change in the corresponding

intensities upon an infinitesimal increase of k from 0

to �; for which we have coined the term intensity

catastrophe because the sudden change in the local

mode intensities complies with the mathematical

definition of a catastrophe [51]. The changes in the

intensities accompanying an intensity catastrophe

depend on the position of the local mode units in the

molecule (proximity effect), the alignment of the

local mode vectors, the ratio of the masses involved

and the change in the charge distribution caused by

the local mode vibrations.

5. All members of a group of equivalent local modes are

involved in an intensity catastrophe and if there is no

coupling with modes outside the group, the intensity

changes DI caused by the catastrophe sum to zero

(intensity sum rule). The deviation from the sum rule

is a quantitative measure for the coupling with other

modes of the same symmetry.
6. Avoided crossings in the frequency ACS between

modes of the same symmetry can lead to strong

nonlinear changes in the intensity curves Ik, which

are largely complementary for the vibrational

modes involved. Depending on the type of avoided

crossing, the mode character is transferred from

one mode to the other or the original mode changes

its character by absorbing additional local mode

contributions. This has to be considered when

analyzing intensity changes from local to normal

modes.
7. There are no avoided crossings in an intensity ACS.

However avoided crossings in the frequency ACS

can be detected by identifying modes with strong, but

complementary changes in the intensities.

8. In each case investigated, one obtains detailed

physical explanations why a normal mode intensity

adopts a particular value. This is facilitated by

evaluating matrices D;M�1;By; ðGkÞ�1; and ~Dk for
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specific values of k between 0 and 1 where the first

three matrices do not change with k.
9. There have been attempts to relate normal mode

intensities to bond charges [34, 47]. On the back-

ground of this work, we can say that these attempts

are only meaningful in cases of minimal local mode

coupling and large mass ratios. In general, this

approach is useless as long as it does not start from

local mode intensities.

10. We have shown the chemical relevance of local mode

intensities with regard to the determination of bond

charges and bond polarity, for the analysis of infrared

spectra, for the development of a dynamic scaling

method of calculated harmonic infrared intensities,

and for the calibration of harmonic and anharmonic

oscillator models.

In this work, we have not put emphases on the correct

calculation of the infrared intensities because the derivation

of the basic concept of local mode intensities and the

analysis of normal mode intensities in terms of the former

is at the primary focus of this work. However, in future

work we will focus on the determination of local mode

intensities from experimental intensities or coupled cluster

intensities. Also, we will derive effective bond charges

from local mode intensities, which are no longer contam-

inated by mass- or mode-coupling.
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Abstract The addition of one H atom to C96H24 has been

studied for the neutral, cation, and anion. Hydrogen atom

binding at the solo site is the most favorable for all three

charge states. The solo and duo sites are significantly more

strongly bound than the endo positions. One extra hydro-

gen atom has very little effect on the infrared spectra. It is

unlikely that species with one extra hydrogen could be

identified from the astronomical emission spectra.

Keywords Astrochemistry � Molecular data � Infrared
bands � Interstellar medium � DFT

1 Introduction

The observed spectra of many astronomical objects show

emission features at 3.3, 6.2, 7.7, 8.6, and 11.2 lm, which

have been attributed [1, 2] to polycyclic aromatic hydro-

carbons (PAHs). A detailed analysis of these spectra

reveals that the PAH features vary between different

classes of objects and even spatially within extended

objects (e.g., [3–8]). This suggests that the observed

emission features depend on the specific PAH molecules

present and the conditions within the emission zones. One

puzzle that remains today is the cause of the variation in

the band that falls near 6.2 lm. Peeters et al. [3] analyzed

the spectra of 57 sources and found three classes of objects,

which they denoted as Class A, B, and C. Class A peaks

between 6.19 and 6.23 lm, Class B peaks between 6.235

and 6.28 lm, and Class C peaks at 6.29 lm and is more

symmetric than the other two classes. As expected, the

three classes are representative of different sources [9].

Class A sources consist of interstellar material illuminated

by a star, including HII regions, reflection nebulae, and the

general interstellar medium (ISM) of the Milky Way and

other galaxies. Class B sources are associated with cir-

cumstellar material, such as planetary nebulae, a variety of

post-asymptotic giant branch (post-AGB) objects and

Herbig Ae/Be stars. Class C sources are limited to a few

extreme carbon-rich post-AGB objects. Classes A and B

are more common than Class C and therefore have

attracted more attention. For simplicity, the Class A and

Class B bands in the 6.2–6.3 lm region are commonly

referred to as the 6.2 and 6.3 lm bands, respectively. The

Class B bands are consistent with the C–C stretching fre-

quency of typical PAH molecules, with the intensity

showing that many of species are ions. The origin of the

Class A species is far from obvious, and some candidates

have been proposed to explain the Class A emission, for

example, hydrogenated amorphous carbon [10, 11], PAHs

where inner carbons have been replaced by nitrogen atoms

(denoted endo-PANHs) [12] and singly protonated PAHs

(denote as HPAH+) [13]. While experiments [13] show that

small HPAH+s have a band near 6.2 lm, the overall fea-

tures of their spectra are inconsistent with astronomical

observations. We studied [14] protonated PAH species

computationally and found that the spectra of small

HPAH+s agreed with experiment. However, we found that
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the large HPAH+s, which have an overall spectra consistent

with observations, have a C–C stretching band that is

consistent with Class B. Since large HPAH+s are more

likely to represent the species emitting in space, we con-

cluded that it is very unlikely that the HPAH+ species are

responsible for the Class A emission.

In our previous study of the HPAH+ species, we only

considered protonation at the edge of the PAH leading to

the formation of a CH2 group. This edge binding site yields

the largest binding energies and is consistent with the

bonding position in the small HPAH+s studied in experi-

ment. In our study of endo-PANHs [12], we observed that

the substitution of a carbon atom with a nitrogen atom

shifted the 6.3 lm band to shorter wave length and that this

shift increased as the substitution moved toward the center

of the PAH molecule. This implies that the effect on the IR

spectra depends on the substitution site. A similar effect

could occur for hydrogen addition; therefore, our decision

to study only HPAH+s with hydrogen atoms added to edge

sites, based on binding energy, may have been too

restrictive. In this manuscript, we report on adding H atoms

to all possible nonequivalent carbon atoms in C96H24 and

compare the binding energy and IR spectra as a function of

hydrogen binding site.

2 Model and methods

The parent molecule, circumcircumcoronene (C96H24), is

shown in Fig. 1. The hydrogen atom can add to ten unique

sites, two are at the edge of the molecule, and 8 are

internal. The edge sites are classified as solo (S) or duo

(D) by the number of hydrogens on the same six-mem-

bered ring. The solo site has one hydrogen on the ring,

and the duo has two hydrogens. The eight internal or endo

sites are numbered from 0 to 7 starting from the center of

the PAH molecule out to the edge, see Fig. 1. The

hydrogen addition at the solo site and the duo site has

been reported previously for the C96H25
+ cation [14], and

in this work, we extend the study to include the neutral

and anion species. The structures were fully optimized and

the harmonic frequencies computed using density func-

tional theory (DFT). We used the hybrid B3LYP [15, 16]

functional in conjunction with the 4-31G basis set [17].

Previous work [18] has shown that the computed B3LYP/

4-31G harmonic frequencies, scaled by a single scale

factor of 0.958, are in excellent agreement with the matrix

isolation mid-IR fundamental frequencies of the PAH

molecules. However, for some PAH molecules, the results

obtained with the B3LYP functional are inconsistent with

experiment. We have found [19] that switching to the

BP86 functional [20, 21] can be used to evaluate the

validity of the B3LYP results. If the B3LYP and BP86

results are in agreement, then B3LYP spectra are likely to

be reliable. If the two functionals yield different results,

then additional information is required to determine if

either spectra is correct. This problem arises for one

molecule in this work and is discussed in more detail

below.

While experience has shown that the B3LYP/4-31G and

BP86/4-31G approaches yield reliable IR spectra for PAH

molecules, bond energies have not been as extensively

calibrated. Therefore, in this work, we perform some cal-

ibration calculations for the C–H bond energies of 1-hydro,

2-hydro, and 9-hydronaphthalene. B3LYP calculations are

preformed using the 4-31G and 6-31G** basis sets [17].

Coupled cluster singles and doubles calculations [22],

including the effect of connected triples determined using

perturbation theory [23], CCSD(T), are also performed.

The CCSD(T) calculations use the correlation consistent

polarized triple zeta (cc-pVTZ) set of Dunning [24].

The computational studies yield integrated band inten-

sities in km/mol, which we broaden in wavenumber space

because it is linear in energy. After broadening, the y axis

units are those of a cross section and reported in

105 9 cm2/mol. The x axis units are converted from cm-1

to lm to compare with observational results, which are

commonly reported in lm.

The B3LYP spectra are broadened by a linewidth of 30

cm-1 for the bands shortward of 9 lm, while a linewidth of

10 cm-1 is used for the bands longward of 10 lm; these

values are consistent with current observational and theo-

retical modeling, see discussion in Bauschlicher et al. [25].

For the 9–10 lm region, the full width at half maximumFig. 1 Carbon sites for the hydrogen addition
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(FWHM) is scaled in a linear fashion (in wavenumber

space) from 30 to 10 cm-1. In addition to ignoring any

further variations of linewidth as a function of mode, Fermi

resonances are not taken into account. Despite these limi-

tations, these idealized spectra can be useful in better

understanding the astronomical spectra.

Typically, the astronomical PAHs are observed as the

emission from highly vibrationally excited molecules.

Hence, when comparing with observations, our computed

0 K absorption spectra should be shifted to the red to

account for the difference between absorption and

emission from vibrationally excited molecules. The size

of this shift depends on many factors such as the size of

the molecule, the anharmonicity of modes, and temper-

ature of the emitting species. In this work, we focus on

changes in the spectra with hydrogen position, so the

shift is ignored; however, some consideration of the shift

should be made before comparing these spectra with

observation.

All of the calculations are performed using Gaussian 09

[26] or earlier versions of this code. The interactive

molecular graphics tool MOLEKEL [27] was used to aid

the analysis of the vibrational modes.

3 Results and discussion

The binding energy for the aliphatic C–H bond in 1-hydro,

2-hydro, and 9-hydronaphthalene is shown in Table 1 as

function of the level of theory for the cation, neutral, and

anion species. Overall, there is good agreement between

the different levels of theory. The B3LYP/6-31G** values

are 2–3 kcal/mol larger than the B3LYP/4-31G values for

all species. The CCSD(T) values are larger than the

B3LYP/4-31G binding energies for the cation and anion

but smaller for the neutral. The 1-hydro and 2-hydro have

errors in the 2.6 to 4.3 kcal/mol range, while the errors for

the 9-hydro are 5.7 and 7.5 kcal/mol for the cation and

anion. While there are errors associated with the B3LYP/4-

31G approach, it appears to be sufficiently accurate that we

can evaluate the trends in the binding energies for the

larger C96H24 system.

The B3LYP/4-31G C–H binding energies of the added

hydrogen atoms for the sites considered are summarized in

Table 2. These binding energies have been corrected for zero-

point energy using our computed harmonic frequencies. The

cation and anion have larger binding energies than the neutral

as they both have an open-shell electron for the incoming

hydrogen to bond with. The cation binding is slightly larger

than the anion. Adding the H atom to sites 0–7 causes a

puckering of the carbon framework because the hybridization

of the carbon at the binding site changes from sp2 to sp3. This

leads to a disruption of the p bonding network and therefore to
a smaller binding energy than bonding of the hydrogen at the

edge, where the p bonding is less disrupted by the addition of

an extra hydrogen. As shown in Table 2, this favoring of the

solo and duo sites is rather significant. For the cation, wewere

able to find the transition state for the hydrogen transfer from

site 0 to site 1. The barrier is almost equal to the binding

energy. An inspection of the transition state geometry shows

that the carbons are almost planar; that is, the p bonding is

essentially restored to that of the parent, with the hydrogen

only weakly interacting with the parent PAH.

Typically, the band positions and intensities, as well as,

the total intensities are similar for all the PAH species of

Table 1 The C–H binding

energy (in kcal/mol) for the

‘‘extra’’ hydrogen in

naphthalene (in kcal/mol) as a

function of the level of theory

These are De values

Site Cation Neutral Anion

B3LYP CCSD(T) B3LYP CCSD(T) B3LYP CCSD(T)

4-31G 6-31G** cc-pVTZ 4-31G 6-31G** cc-pVTZ 4-31G 6-31G** cc-pVTZ

1-Hydro 69.0 70.1 71.6 34.7 36.7 31.4 57.9 59.5 62.2

2-Hydro 65.5 66.9 68.9 29.6 31.9 26.7 53.1 55.0 56.8

9-Hydro 47.4 49.8 53.1 7.6 10.1 6.7 36.0 38.0 43.5

Table 2 The C–H binding energy (in kcal/mol) for the ‘‘extra’’

hydrogen in C96H25 and the transition state barrier (in kcal/mol) for
the hydrogen transfer between sites 0 and 1 (TS 0!1)

Site Cation Neutral Anion

0 19.3 9.0 16.1

1 20.6 9.0 17.4

2 20.8 10.1 17.6

3 20.5 10.8 15.9

4 16.1 8.6 12.8

5 25.0 12.4 21.3

6 16.0 3.3 11.2

7 18.5 10.4 14.9

D 35.8 32.0 32.2

S 53.9 41.4 50.0

TS 0!1 18.2

The binding energies have been corrected for zero-point energy
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approximately the same size and with the same charge

state, see Figs. 2, 3, and 4. This is true for all species

considered in this work, except for site 3, where the

neutral has two very strong bands at 9.33 and 10.47 lm,

the cation has a band at 9.17 lm that is 3 times the cross

section of the bands for the other C96H25
+ species, and the

anion has a very large band (4 times the cross section of

any other C96H25
- species) at 9.71 lm. Since the spectra

Fig. 3 The 6–10 lm region of the computed spectra of the C96H25 species. The spectra of the parents, C96H24, C96H24
+ , and C96H24

- , are also

shown. Dashed lines have been added at 6.3, 7.7, and 8.6 lm to help compare the spectra

Fig. 2 The C–H stretching region of the computed spectra of the C96H25 species. The spectra of the parents, C96H24, C96H24
+ , and C96H24

- , are

also shown. A dashed line has been added at 3.27 lm to help compare the spectra

Theor Chem Acc (2014) 133:1454
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for site 3 are clearly inconsistent with those of the other

PAH spectra, we repeated the calculations using the BP86

functional for site 3 and several other sites. We first note

that for all sites considered, excluding site 3, the BP86

and B3LYP spectra looked very similar, thus confirming

the reliability of the B3LYP functional for these sites. For

the neutral and the cation, the BP86 spectra for site 3 did

not look like the B3LYP spectra, but rather looked con-

sistent with the spectra of the other sites. For the anion,

the BP86 spectrum for site 3 did not look like the B3LYP

spectrum, and it also looked different from the other sites

as well, namely the large band shifted to 9.0 lm. The fact

that the B3LYP and BP86 results are inconsistent with

each other and inconsistent with the anion results at the

other sites suggests that neither the B3LYP nor BP86 is

reliable for the anion of site 3. Because BP86 appears to

fail for this system, we also tested a second nonhybrid

functional, namely the exchange–correlation function of

Perdew et al. [28], which is denoted as PW91PW91 in the

Gaussian program. The PW91PW91 spectra for the ions of

site 3 are very similar to those obtained using the BP86

functional. While we cannot rule out finding a functional

that will work for this site, it is beyond the scope of this

work to try all possible functionals. The BP86 results for

the neutral and cation are consistent with our observation

that similar-sized species with the same charge have

similar spectra, which suggests that the BP86 results for

the neutral and cation are reasonable. However, we adopt

Table 3 The strongest bands in the C–H stretching region for C96H24

and C96H25

Molecule Cation Neutral Anion

k I k I k I

C96H24 3.255 630.6 3.268 931.3 3.279 1479.9

D 3.256 542.3 3.269 892.4 3.281 1459.9

3.495 2.9 3.524 97.6 3.563 464.1

S 3.255 558.5 3.267 910.9 3.279 1488.0

3.452 4.7 3.494 63.3 3.519 213.7

0 3.256 554.8 3.267 921.9 3.279 1468.2

3.730 2.2 3.806 15.3 3.786 75.9

1 3.256 561.4 3.267 931.0 3.279 1477.4

3.728 1.5 3.806 19.3 3.782 95.8

2 3.256 558.6 3.267 923.9 3.279 1491.8

3.729 2.9 3.790 17.3 3.779 95.8

4 3.256 563.0 3.266 918.2 3.280 1523.3

3.747 4.0 3.814 18.8 3.807 119.5

5 3.257 588.4 3.267 963.5 3.280 1564.7

3.708 3.3 3.761 25.5 3.752 129.3

6 3.256 586.6 3.267 958.1 3.280 1579.5

3.805 2.9 3.902 55.2 3.834 217.0

7 3.257 583.6 3.268 949.3 3.281 1574.3

3.774 16.7 3.799 37.1 3.808 220.5

The band position (k) and the intensity (I) are given in lm and km/

mol, respectively. Only bands with an intensity larger than 50 km/mol

for any one charge state are reported

Fig. 4 The 10–15 lm region of the computed spectra of the C96H25 species. The spectra of the parents, C96H24, C96H24
+ , and C96H24

- , are also

shown. A dashed line has been added at 11.0 lm to help compare the spectra
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a conservative approach and do not report any infrared

spectra for site 3.

The C–H stretching region of the computed spectra is

shown in Fig. 2, and the band positions and intensities for

the strong bands are summarized in Table 3. (N.b. All of

the spectral information will be included in the next

update of our PAH database [29] at http://www.astrochem.

org/pahdb.) Overall, the spectra of all of the C96H25 spe-

cies look very similar, where there is one main peak, with

the position varying slightly with charge state and a sec-

ond, weaker band that is red shifted with a peak position

that varies somewhat with site. The position of the strong

peak is very similar to that in the parent, where the

maximum difference between the C96H24 and the C96H25

species is 0.002 lm for all three charge states. The

intensity of the main peak is also similar for the parent

and C96H25 species. The weaker band arises from the C–H

stretching involving the ‘‘extra’’ hydrogen. For the edge

sites, there are actually two bands, which correspond to

the symmetric and asymmetric stretching of the CH2

group, but these two bands fall close to each other and for

a FWHM of 30 cm-1 they do not appear as separate

bands. For the cations and many of the neutral species,

these bands are much weaker than the strong band, see

Table 3. For the anions, these bands are more intense, but

still much weaker than the main band. The 0–7 positions

show a larger shift away from the main band than do the

solo and duo sites.

The 6–10 lm region of the computed spectra is shown

in Fig. 3. We first note that the range of cross section

Table 4 The strongest bands in

the C–C stretching and C–H in-

plane bending region for C96H24

and C96H25

The band position (k) and the

intensity (I) are given in lm and

km/mol, respectively. Only

bands with an intensity larger

than 150 km/mol are reported

Molecule Cation Anion Molecule Cation Anion

k I k I k I k I

C96H24 8.401 1023.3 8.462 1354.0 D 8.509 589.0 8.464 744.6

7.782 469.8 7.834 920.8 7.710 1387.7 7.814 1866.8

7.563 1816.1 7.676 1461.4

7.151 193.5 7.122 335.5 7.166 309.1

6.827 997.8 6.842 312.0 6.694 876.4 6.730 334.0

6.499 296.4

6.345 2718.2 6.354 1251.3 6.384 1265.5 6.399 1272.4

S 8.517 722.9 8.487 886.9 0 8.578 683.4 8.690 1139.0

7.765 1893.8 7.836 2194.0 7.854 850.7 8.036 1370.8

7.632 352.0

7.136 165.6 7.420 351.5 7.478 783.3

6.697 449.2 6.730 234.5 6.845 207.2 7.126 180.9

6.672 570.1 6.714 1001.8

6.380 1797.2 6.381 1643.0 6.288 850.3 6.398 555.7

1 8.516 479.4 8.633 693.7 2 8.542 512.3 8.568 743.7

7.770 1340.0 7.935 1534.7 7.915 1327.9

7.548 379.8 7.749 1530.9 7.617 755.4

7.130 56.6 7.081 232.2 7.198 106.1 7.197 251.8

6.913 212.6 6.841 68.0 6.918 126.6

6.568 539.4 6.597 610.6 6.579 493.7 6.591 701.0

6.303 997.9 6.405 755.5 6.311 1042.7 6.434 879.9

4 8.642 865.1 8.715 1634.5 5 8.546 610.6 8.589 752.5

7.736 1722.0 7.982 2213.4 7.754 1587.7 7.777 2172.8

7.187 114.2 7.173 659.5 6.977 328.7

6.854 790.4 6.873 643.9 6.774 548.7 6.715 202.3

6.323 755.8 6.382 678.0 6.363 1584.4 6.377 1420.2

6 8.512 527.6 8.567 759.7 7 8.516 552.7 8.536 704.5

8.033 295.8

7.702 1384.8 7.723 1853.2 7.705 1401.6 7.736 1565.2

7.167 203.4 7.230 355.8 7.155 190.1 7.194 357.9

6.743 569.1 6.732 432.5 6.733 722.9 6.730 348.7

6.376 1412.4 6.389 1318.7 6.378 1242.7 6.386 1211.2
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values for the neutrals is about ten times smaller than for

the cation or anion, which is typical of PAH molecules.

Since the observed astronomical emission in the 6–10 lm
region has about the same intensity as that at about 11 lm,

it is clear that the observed emission at 6–10 lm arises

from the ions. The bands with intensity greater than

150 km/mol are given in Table 4. Note that only ion bands

are shown as all of the neutral bands are smaller than the

cutoff. The absence of any strong neutral bands in this

region of the spectra is consistent with other neutral PAHs

and shows that adding one H atom does not significantly

change the intensities in this region. In fact, a detailed

examination of the spectra shows that the addition of one

hydrogen makes only extremely small changes in the

spectra. Focusing on the 6.2–6.3 lm region shows that

adding a hydrogen atom to the inner most rings causes a

shift to shorter wave length; the shifts relative to the parent

are -0.057, -0.042, -0.034, and -0.022 lm for the 0, 1,

2, and 4 sites, respectively. For the remaining sites, there is

a small positive shift from 0.018 for site 5 to 0.035 lm for

site S. Thus, we see no evidence that these endo species can

account for the observed variation in this 6.2–6.3 lm
region as a function of astronomical source. These small

shifts in the peak position are of the same magnitude as the

variation in band position for PAH ions with different

numbers of rings or with a different arrangement of rings.

That is, it would be impossible to separate the addition of H

atoms from some variation in the PAH population in the

emission zone.

The 10–15 lm region of the spectra is shown in Fig. 4.

The band positions and intensities of the strong bands are

summarized in Table 5. For the cation, the main peak is at

approximately 10.8 lm and is attributed to the solo out-of-

plane hydrogen motion. This band looks very similar for all

species, the largest shift is -0.046 lm for site 0. The duo

band at approximately 12.4 lm is also very similar for all

species. The only difference between the species are some

weak bands, most notably the band between 11 and 12 lm.

The neutral spectra look similar to those of the cation, with

the two main band positions slightly shifted to the red

(approximately at 11 and 12.45 lm) and the weak bands

are slightly less noticeable. The variation in the strongest

peak with hydrogen site is even smaller for the neutral than

for the cation, with a shift of 0.025 lm for site 6. The

anions show slightly more variation between the species.

The main solo peak is further to the red (11.4 lm) as does

the duo peak (12.75 lm). However, the solo peak is split

for some of the species, while others have some weak

peaks between the solo and duo peaks, as found for the

cation and neutral. The strongest anion band in this region

shows even smaller changes with hydrogen addition than

the cation or neutral, with a maximum shift of -0.015 lm
for site 6. All of these changes are smaller [30] than the

difference between C54H18 and C96H24, and it would be

difficult to differentiate between an added hydrogen atom

or a variation in PAH population in an observed astro-

nomical spectra.

4 Conclusions

The addition of an extra hydrogen to C96H24 has very little

effect on the infrared spectra. This includes adding

hydrogen atoms to either the edge or central carbons.

Clearly, it would be very difficult to identify large PAHs

with a single hydrogen added in an astronomical spectra.

Binding hydrogens to the edge carbons is much more

favorable than adding them to central carbons. The edge

Table 5 The strongest bands in the C–H out-of-plane bending region

for C96H24 and C96H25

Molecule Cation Neutral Anion

k I k I k I

C96H24 12.385 76.9 12.464 73.8 12.602 65.9

11.329 155.3

10.825 299.0 10.957 317.1 11.131 207.1

D 12.415 92.8 12.502 63.1 12.598 62.5

10.833 304.1 10.971 262.5 11.138 329.8

S 12.379 84.9 12.475 73.6 12.582 71.2

11.308 107.7

10.824 236.3 10.979 231.3 11.123 184.9

0 12.382 82.3 12.480 71.5 12.582 58.2

10.779 306.7 10.977 314.8 11.133 283.3

1 12.389 83.8 12.483 71.7 12.587 69.5

11.335 63.1

10.792 307.7 10.977 315.9 11.142 276.3

2 12.387 80.9 12.484 73.6 12.591 69.3

10.791 305.1 10.975 312.4 11.135 290.8

4 12.378 77.1 12.491 65.9 12.588 63.2

10.828 311.0 10.971 282.0 11.122 344.8

5 12.362 99.9 12.488 74.8 12.594 67.8

11.761 84.3 11.711 63.5

11.308 73.7

10.798 313.8 10.964 309.5 11.123 253.4

6 12.661 53.0

12.401 77.8 12.489 72.5 12.568 82.6

11.494 89.0 11.766 52.3 11.846 91.9

10.817 274.0 10.982 286.8 11.116 281.8

7 12.407 117.1 12.498 59.7 12.594 60.5

12.080 65.6

10.818 275.0 10.969 267.7 11.121 299.0

The band position (k) and the intensity (I) are given in lm and km/

mol, respectively. Only bands with an intensity larger than 50 km/mol

are reported
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solo site is favored over the edge duo site. The barrier for

hydrogen migration is a sizable fraction of the total binding

energy. This suggests that adding hydrogen atoms to the

center of PAHs followed by hydrogen migration to the

edge will not be a very efficient process, since the energy

for hydrogen loss and hydrogen migration is so similar. It

seems more likely that H atoms will add and detach from

various sites with the solo hydrogenated species being the

longest lived followed by the duo hydrogenated species.
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Astrophys 490:665

12. Hudgins DM, Bauschlicher CW, Allamandola LJ (2005) Astro-

phys J 632:316

13. Ricks AM, Douberly GE, Duncan MA (2009) Astrophys J

702:301

14. Ricca A, Bauschlicher CW, Allamandola LJ (2011) Astrophys J

727:128

15. Becke AD (1993) J Chem Phys 98:5648

16. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J

Phys Chem 98:11623

17. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265,

and references therein

18. Bauschlicher CW, Langhoff SR (1997) Spectrochimica Acta A

53:1225

19. Bauschlicher CW, Ricca A (2010) Mol Phys 108:2647

20. Becke AD (1988) Phys Rev A 38:3098

21. Perdew JP (1986) Phys Rev B 33:8822

22. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

23. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989)

Chem Phys Lett 157:479

24. Dunning TH (1989) J Chem Phys 90:1007

25. Bauschlicher CW, Peeters E, Allamandola LJ (2009) Astrophys J

697:311

26. Frisch MJ et al. (2013) Gaussian 09, Revision D.01, Gaussian,

Inc., Wallingford CT
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Abstract The unified reaction valley approach (URVA)

is used in connection with a dual-level approach to describe

the mechanism of ten different cycloadditions of 1,3-

dipoles XYZ (diazonium betaines, nitrilium betaines, azo-

methines, and nitryl hydride) to acetylene utilizing density

functional theory for the URVA calculations and

CCSD(T)-F12/aug-cc-pVTZ for the determination of the

reaction energetics. The URVA results reveal that the

mechanism of the 1,3-dipolar cycloadditions is determined

early in the van der Waals range where the mutual orien-

tation of the reactants (resulting from the shape of the

enveloping exchange repulsion spheres, electrostatic

attraction, and dispersion forces) decides on charge trans-

fer, charge polarization, the formation of radicaloid cen-

ters, and the asynchronicity of bond formation. All

cycloadditions investigated are driven by charge transfer to

the acetylene LUMO irrespective of the electrophilic/

nucleophilic character of the 1,3-dipole. However, an

insufficient charge transfer typical of an electrophilic 1,3-

dipole leads to a higher barrier. Energy transfer and energy

dissipation as a result of curvature and Coriolis couplings

between vibrational modes lead to an unusual energy

exchange between just those bending modes that facilitate

the formation of radicaloid centers. The relative magnitude

of the reaction barriers and reaction energies is rationalized

by determining reactant properties, which are responsible

for the mutual polarization of the reactants and the stability

of the bonds to be broken or formed.

Keywords Unified reaction valley approach �
1,3-Dipolar cycloadditions � Reaction mechanism �
Mutual polarization � Energy transfer and dissipation

1 Introduction

1,3-Dipolar cycloadditions are pericyclic reactions leading

to five-membered rings with heteroatoms [1–5]. The

reactions involve a 1,3-dipole molecule and a reaction

partner with a multiple bond as a dipolarophile. The

reaction mechanism is in most cases concerted and stereo-

and regiospecific with regard to both 1,3-dipole and di-

polarophile. The interest in these cycloadditions results

from the fact that a large variety of 1,3-dipole molecules

XYZ rapidly reacts in an exothermic fashion to the desired

cycloaddition product yielding a wealth of heterocycles. A

suitable combination of groups X, Y, and Z containing C,

N, or O leads to 18 different 1,3-dipole molecules, 12 of

which are N-centered and 6 are O-centered. The XYZ

framework of a 1,3-dipole molecule can contain 16 valence

electrons as in the case of the diazonium betaines 1, 2, and

3 or the nitrilium betaines 4, 5, and 6 of Fig. 1. Alterna-

tively, XYZ may have a total of 18 valence electrons as in

the case of the azomethines 7, 8, and 9 of Fig. 1.

1,3-Dipole molecules are better described by resonance

structures rather than simple Lewis structural formulas
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with standard single, double, or triple bonds. The propar-

gyl-allenyl-type resonance structures (only the former is

shown in Fig. 1) are typical of the 16 valence electrons

systems 1–6, and the allyl-type resonance structures (only

one shown) are typical of the N-centered 18 valence

electron systems 7–9. Although the electronic structures of

the 1,3-dipole molecules are different, the mechanism of

their cycloadditions to dipolarophiles is similar as reflected

by their exothermicity, similar reaction barriers, and a

similar stereochemistry [1–5]. This has been explained to

some part by applying the Woodward–Hoffmann rules [6]

and identifying 1,3-dipolar cycloadditions as concerted,

symmetry-allowed pericyclic p4s ? p2s reactions involv-

ing 4 p-electrons of the 1,3-dipole and 2 p-electrons of the
double or triple bond of the dipolarophile leading in this

way to a Hückel-aromatic, stabilized transition state (TS)

according to the Evans–Dewar–Zimmerman rules [7]. The

state- and orbital-symmetry analysis can explain the rela-

tively low barriers of 1,3-dipolar cycloadditions and their

stereochemistry. Detailed trends in reaction rates and

changes in the stereochemistry have been explained, often

with success, on the basis of frontier orbital theory [8]. An

Fig. 1 1,3-Dipolar

cycloaddition systems 1–9
investigated in this work. The

name of the 1,3-dipole and the

five-membered ring formed is

given
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even more detailed insight has been provided by a large

number of quantum chemical investigations [9–21] where

especially the thorough and extensive work of Houk et al.

[22–37] has to be mentioned.

1,3-Dipolar cycloadditions are versatile tools for the

synthesis of heterocyclic molecules [1–5]. Applications

range from asymmetric organic synthesis [38, 39], catalysis

[40–43], materials science [44], and drug design [45] to

chemical biology [46, 47]. The mechanism of the 1,3-

dipolar cycloaddition reactions had been controversially

debated starting in the late 1960s when Huisgen [48]

postulated a concerted mechanism and Firestone [49]

advocated a stepwise biradical mechanism. Numerous

quantum chemical investigations have been performed

since then to shed light on the mechanism of 1,3-dipolar

cycloadditions [33, 50, 51], to provide accurate energetic

data [29, 34–36] and kinetic data [24], and to investigate

the regioselectivity of these reactions [9, 11, 17, 28]. Cal-

culations could solve the Huisgen–Firestone controversy;

the concerted mechanism is favored for the reactions of the

unsubstituted 1,3-dipoles with ethylene and acetylene [21,

26, 27], whereas the stepwise mechanism becomes likely

when the 1,3-dipoles and dipolarophiles are substituted by

radical-stabilizing groups [25, 31, 52].

Still, open mechanistic questions concern the driving

force of the cyclization and the electronic factor(s) that

determine(s) the barrier height. Currently, three different

rate-determining factors are discussed in the literature: (1)

the distortion energy of dipole and dipolarophile as defined

by Houk et al. [22, 23, 30, 32]; (2) reaction acceleration by

an excitation of the bending vibrations of the 1,3-dipole

[13, 14, 26, 27]; and (3) the biradical character of the 1,3-

dipole molecule [10, 12].

Most of the previous work on the 1,3-dipolar cycload-

ditions has focused on finding a rationale for the relatively

low reaction barriers because they predominantly deter-

mine the reaction rate and the yield of a given product. A

general assumption in this connection is that the similarity

of the activation energies indicates a similarity of the

reaction mechanism.

In this work, we will show that comparable reaction

barriers do not necessarily imply a similarity in the reaction

mechanism. Conversely, two reactions may have a similar

mechanism although they have different barriers. We

approach the question of the mechanism of the 1,3-dipolar

cycloadditions in a different way than previous investiga-

tions by utilizing the unified reaction valley approach

(URVA) of Kraka and Cremer [53–57]. URVA explores

the reaction path and the reaction valley via its direction

and curvature, using a number of tools that provide direct

information about the reaction mechanism. According to a

definition two of us have given recently [53], the mecha-

nism of a reaction is determined by the nature and sequence

of elementary electronic events that take place in each

phase of the reaction starting from the first long-range

interactions between the reactants in the entrance channel

and terminating with the finalization of the products in the

exit channel.

We will show that the fate of the reaction is determined

early on in the van der Waals region of the entrance channel.

Furthermore,wewill reveal that all 1,3-dipolar cycloadditions

investigated in this work pass through the same reaction

phases; however, there are distinct differences between dif-

ferent classes of cycloadditions. Also, it will become apparent

that there is a difference between reactionswith radicaloid and

biradicaloid character and that the dipolarophile rather than

the 1,3-dipole initiates bond formation.

The current investigation is based on a detailed analysis

of the reaction path and the reaction valley, which will lead

to a better understanding of the mechanism than it is pos-

sible with a conventional mechanistic analysis based on the

features of the stationary points along the reaction path.

Our focus will be on well-defined transient points along the

reaction path corresponding to bond breaking and bond

formation, rehybridization, and (bi)radicaloid formation.

The results of this work are presented in the followingway.

In Sect. 2, the computational methods used in this work are

described. The results of the quantum chemical investigation

of ten 1,3-dipolar cycloadditions are presented and discussed

in Sect. 3. Conclusions will be drawn in the final section.

2 Computational methods

The current investigation is based on URVA [53–57], the

reaction path Hamiltonian of Miller, Handy, and Adams

[58], and the local vibrational mode description of Konkoli

and Cremer [59–62] recently theoretically justified by Zou

and Cremer [63, 64]. URVA has been repeatedly described

in previous publications [55, 65–69] as well as several

review articles [53, 54, 56, 57]. Therefore, we refrain from

a detailed account of the theory of URVA and the use of

local vibrational modes and instead outline the methods

used in a more qualitative fashion.

Each 1,3-dipolar cycloaddition system is investigated

with a dual-level approach: (1) A high level such as

CCSD(T)-F12/aug-cc-pVTZ [70–72] is used to determine

the energetics of the reaction from the relative energies

(enthalpies) of the stationary points along the reaction path.

(2) The reaction valley and the reaction path embedded in

the reaction valley are calculated at a lower level using

density functional theory (DFT). The primary objective of

URVA is to determine those locations along the reaction

path at which the chemical processes of bond breaking and

forming take place, where the first van der Waals interac-

tions lead to chemical change, where rehybridization leads
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to the formation of radicaloid and biradicaloid structures,

and where, after bond formation, the electrons are reorga-

nized to form delocalized p-electron ensembles. To get

these insights, a paradigm shift with regard to conventional

mechanistic studies is made: The primary concerns are no

longer the energy or geometry changes of the reaction

complex, but rather the features of the reaction path, which

can be directly related to changes in the electronic structure

[53, 54, 56].

Chemical change and chemical processes always imply a

curving of the reaction path [53, 54, 56]. If the reaction path

becomes a straight line, physical processes driven exclu-

sively by electrostatic forces take place with no or just a

steady change in the electronic structure. Chemical pro-

cesses are characterized by catastrophe points in the electron

density distribution of the reaction complex (infinitesimal

changes in the density lead, e.g., to singularity catastrophes

in its topological structure reflecting sudden changes in

bonding), and this in turn is connected with directional

changes (curving) of the reaction path (which must not be

confused with the energy curvature of the potential energy

surface). Changes in the reaction path can be described with

the help of the two Frenet vectors: path tangent (direction)

and path curvature (curving). A third Frenet vector leading to

the path torsion is only of relevance in case of repeated

curving of the path over a larger area, which seldom occurs.

The reaction complex and the reaction path are intimately

related, and analyzing the latter on the basis of just two

quantities (direction and curvature vector) solves the prob-

lem of monitoring of the 3N-L (N: number of atoms; L:

number of translations and rotations) degrees of freedom of

the reaction complex during the reaction.

The curvature vector kappa has the dimension of 3N–L.

In URVA, the scalar curvature (the length of the curvature

vector) is investigated to obtain an easy-to-analyze func-

tion j(s) (scalar curvature as a function of the mass-

weighted arc length s; s\ 0: entrance channel of the

reaction; s = 0: TS; s[ 0: exit channel). The square of the

scalar curvature is equal to the sum of the squares of the

normal mode curvature coupling coefficients Bl,s, which

describe the coupling between the translational mode along

the reaction path and the normal vibrational modes ll
spanning the reaction valley [58]. The normal vibrational

modes, in turn, can be decomposed into the local vibra-

tional modes an of Konkoli and Cremer [59, 60]. Each local

mode is driven by an internal coordinate qn of the reaction

complex. By decomposing the scalar curvature into local

mode curvature coupling coefficients An,s, those parts of

the reaction complex can be directly identified, which are

related to the curving of the reaction path and enhance-

ments of the scalar curvature.

In this way, all electronic structure changes of the

reaction complex along the reaction path can be

monitored. They present the basis of the reaction

mechanism, which develops in the form of a sequence of

reaction phases along the reaction path. Each reaction

phase is characterized by a curvature enhancement or

peak enclosed by locations of minimal or even zero

curvature [53, 54, 56]. The positions of minimal curva-

ture correspond to transient structures of the reaction

complex with interesting electronic structure features.

Suitable changes of the reaction complex and/or the

reaction environment can transform these transient points

into stationary points, and therefore, the terms hidden

intermediate and hidden transition state have been

coined to describe the mechanistic relevance of these

curvature minima [53, 65, 67].

There are three quantities, which are used in this work to

describe the reaction mechanism as it develops via the

scalar curvature function j(s): (1) local mode curvature

coupling coefficients An,s to describe the mechanism; (2)

normal mode curvature coupling coefficients Bl,s to

describe energy transfer from the vibrational modes into

the translational motion along the path; and (3) normal

mode Coriolis (mode–mode) coupling coefficients Bl,m to

describe energy dissipation between the modes. Apart from

this, URVA calculates charge transfer and charge polari-

zation as a function of s and determines local mode force

constants and frequencies of the reaction complex [63, 64].

For URVA, a representative reaction path must be

chosen, which can be the intrinsic reaction coordinate

(IRC) path of Fukui [73], a reasonable down-hill path, or

any other representative path [68, 74]. In this work, we use

the IRC path and follow it with an algorithm recently

suggested by Hratchian and Kraka [75] where B3LYP/6-

31G(d,p) [76–78] is used to describe the reaction valley.

For each cycloaddition path, between 630 and 930 path

points were calculated. At each second path point, gen-

eralized harmonic vibrational frequencies of the reaction

complex were determined. Curvature, curvature coupling

coefficients, and all other URVA-related quantities were

calculated with the ab initio package COLOGNE13 [79].

The analysis of the charge distribution (charge transfer and

charge polarization) was based on the natural bond orbital

(NBO) method of Weinhold et al. [80, 81]. For the

CCSD(T)-F12 calculations [71], the program package

MOLPRO [82] was used. Reaction enthalpies DRHð298Þ,
activation enthalpies DHað298Þ, reaction free energies

DRGð298Þ, and DGað298Þ were calculated using CCSD(T)-

F12/aug-cc-pVTZ energies in connection with B3LYP/6-

31G(d,p) or xB97X-D/aug-cc-pVTZ geometries and

vibrational frequencies [83, 84]. The latter functional is

known to provide an improved description of dispersion

interactions [83, 85]. Basis set superposition error (BSSE)

corrections were obtained using the counterpoise method

[86].
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Scalar curvature as a function of the reaction path parameter

s (solid black line) for 1,3-dipolar cycloaddition systems 1–10. Local
mode curvature coupling coefficients are given in color. The borders

of the reaction phases are indicated by vertical dashed lines at

curvature points M1, M2, and M3. The TS at s = 0 amu1/2 Bohr is

also indicated by a vertical dashed line. a Nitrous oxide, 1,
b hydrazoic acid, 2, c diazomethane, 3, d fulminic acid, 4,
e formonitrile imine, 5, f formonitrile ylide, 6, g methylene nitrone,

7, h azomethine imine, 8, i azomethine ylide, 9, j nitryl hydride, 10
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3 Results and discussion

In Fig. 2, curvature diagrams j(s) of the 1,3-dipolar

cycloaddition systems 1–9 listed in Fig. 1 and the nitryl

hydride system 10 are shown, where each curvature is

decomposed in terms of local mode curvature coupling

coefficients An,s(s). An example for the composition of the

reaction path direction in terms of local mode contributions

is given for reaction system 4 in Fig. 3 and the charge

transfer from the 1,3-dipole to acetylene in Fig. 4a and b.

Calculated energy barriers and reaction energies are ana-

lyzed in Figs. 5 and 6. An example of the dependence of

the vibrational frequencies on the path parameter s is given

in Fig. 7a and b for system 4.

The energy data for the ten cycloaddition reactions

investigated in this work are summarized in Table 1. The

reaction and activation enthalpies obtained at the

(g) (h)

(i) (j)

Fig. 2 continued

Fig. 3 Components of the reaction path direction given as a function

of the reaction parameter s for reaction system 4
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CCSD(T)-F12a/aug-cc-pVTZ level of theory compare well

with the corresponding CBS-QB3 values of Houk et al.

[30, 50]. The corresponding B3LYP and xB97X-D results

(after BSSE corrections) show a reasonable agreement with

the CCSD(T)-F12a data, which makes them both suitable

for the description of the reaction valley. To reduce the

computational costs, B3LYP/6-31G(d,p) was used for the

URVA analysis as described above. It is interesting to note

that the entropy contributions DRSð298Þ to the free reaction

energies DRGð298Þ are fairly constant (-36 to -41 entropy

units, Table 1) as are the contributions DSað298Þ to the free
activation energies, DGað298Þ, which vary from -32 to

-37 entropy units. The values collected in Table 1 suggest

that entropy effects can be excluded from the discussion of

the reaction mechanism.

All ten cycloaddition reactions follow a four-phase

mechanism irrespective of the nature of the 1,3-dipole

reacting with acetylene. These phases will be discussed

below by making reference to the curvature diagrams

presented in Fig. 2.

Reaction phase 1 (entrance channel from start to cur-

vature point M1): There are four properties of the 1,3-

dipole molecule, which are decisive in the first phase of the

cycloaddition reaction:

1. The first property is the exchange repulsion envelope

around the reactants, which decides on the approach

mode. If one terminal group of the 1,3-dipole is more

electronegative than the other, the exchange repulsion

envelope at this end (e.g., an O atom) will be more

(a)

(b)

Fig. 4 a Charge transfer from

the HOMO of the 1,3-dipole

(schematically drawn for NNZ)

to the LUMO of acetylene in the

case of reaction systems 1, 2,
and 3. b Charge transfer from

the 1,3-dipole to acetylene in

the entrance channel (TS at

s = 0 amu1/2 Bohr) given as a

function of the reaction

parameter s
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contracted than at the other terminal group. The

reactants will approach each other in such a way that

stabilizing dispersion interactions and electrostatic

attractions are maximized while minimizing the

short-range exchange repulsion. The approach distance

will be shorter for the more electronegative group than

for the other group. Accordingly, there is a larger or

smaller inclination angle of the axis of the 1,3-dipole

molecule (when it is linear, otherwise the 1,3 connec-

tion axis) relative to the axis of acetylene. These are

given in Table 2 for the first point in the entrance

channel where interaction energies are smaller than

just a few tenth of a kcal/mol.

One can see that the eletronegativity difference

between X2 and Z4 determines sign and magnitude

of the inclination angle (Table 2). Systems with an

electronegative group Z (1, 4, 5, 7, and 8; compared

with Fig. 1) have a positive inclination angle, systems

3 and 6 have a negative inclination angle (i.e., the

distance C3X2 is shorter than the distance C1Z4),

whereas systems 2, 9, and 10 approach each other in a

parallel fashion because of symmetry and/or similar

(identical) electronegativities of X2 and Z4. The mode

of approach has direct consequences for the sequence

of bond formation as will be shown below.

2. The second property relevant to the mechanism is the

dipole moment of the 1,3-dipole molecule, where only

its component parallel to the axis of the approaching

acetylene molecule matters. This has been determined

Fig. 5 Comparison of the energy change in reaction phase 2,

E(M2) – E(M1), with the activation energy DEa for the nine 1,3-

dipolar cycloaddition reactions (for numbering of reaction complexes,

see Fig. 1)

Fig. 6 Comparison of the parameter DsðTSÞ, which determines the

shift of the TS relative to the center M3 of the bond-forming

processes, with the reaction energy DRE for the nine 1,3-dipolar

cycloaddition reactions (for numbering of reaction complexes, see

Fig. 1). A positive DsðTSÞ value indicates an early TS according to

the Hammond–Leffler postulate

(a)

(b)

Fig. 7 Vibrational frequencies of reaction system 4 given as a

function of the reaction parameter s. The avoided crossings (AC) are

the positions of mode–mode (Coriolis) coupling leading to energy

dissipation. a Framework vibrations. b 1,3-Dipole and acetylene

bending
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for the first point in the entrance channel and is given

in Table 2 as lz (the direction z is that defined by the

acetylene CC axis) together with the total dipole

moment of the 1,3-dipole. The magnitude of the dipole

component lz reflects the ability of the 1,3-dipole to

polarize the acetylene molecule. It has a direct influ-

ence on the barrier of the reaction.

3. The third property is the polarizability of the reactants.

If one compares different dipolarophiles, one would

have to compare their polarizabilities a where the

magnitude of the azz component would be the most

important. Since this is not the case, we consider here

only the fact that both reactants ‘‘communicate’’ via

their polarizing power and their polarizability. Polar-

ization of the charge distribution of acetylene leads to

an induced dipole moment, which in turn polarizes the

charge distribution of the 1,3-dipole molecule. The

latter process depends on its polarizability where again

the zz-component of the polarizability tensor rather

than the isotropic polarizability will be important. A

large azz facilitates the reaction and leads to a lower

reaction barrier.

4. The fourth property, which strongly influences reaction

rate and reaction mechanism, is the ability of both

partners of accepting or donating charge. Previous

studies have discussed the charge transfer between

dipolarophile and 1,3 dipole within the framework of

the frontier molecular orbital (FMO) theory. Using this

concept, the 1,3-dipoles were categorized as being

nucleophilic [Nucl(HOMO); Fig. 1] donating charge

from their HOMO to the LUMO of the dipolarophile,

electrophilic [Elec(LUMO); Fig. 1] accepting charge

from the dipolarophile in their LUMO, or amphiphilic

[Amphi(HOLU), Fig. 1] reacting either way depending

on the character of the dipolarophile [1–5]. We have

investigated the charge transfer between the reactants

and found, contrary to the qualitative description of

FMO theory, that the charge transfer starts already in

the van der Waals region, i.e., in phase 1. Then, it is

directed from the 1,3-dipole to the acetylene molecule

and continues to develop to its full strength in phase 2

(compared with Fig. 4a and b).

On the basis of these facts, the curvature of the reaction

path, and its decomposition into local mode curvature

coupling coefficients (see Fig. 2a–j), one can describe the

events in phase 1 as follows where system 4 (Fig. 2d) is

used as an example. Guided by the form of its exchange

repulsion envelope, HCNO approaches acetylene as much

as possible at its O terminus (Z4), which leads to an

inclination angle of 41�. Accordingly, the local mode

curvature coupling coefficients associated with the orien-

tation angles C3C1O4 and C1C3C2 become relativelyT
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large and they are responsible (via their squares) for a

significant curvature enhancement in phase 1. Since in this

phase, C1Z4 and C3X2 are approach parameters measuring

the degree of exchange repulsion, their curvature coupling

coefficients can also make a contribution to the scalar

curvature; however, they will always be negative, i.e., the

reaction complex resists a shortening of the approach dis-

tance (a closer approach requires energy).

Because of a substantial magnitude of the lz-component

(-2.43 D), the charge of acetylene is polarized so that the

C3H end becomes negative and the C1H end positive (dif-

ference in local charges 55 me). At the same time as charge

polarization starts, also the charge transfer to acetylene begins

(see Fig. 4b). Hence, phase 1 can be characterized as the

orientation, polarization, and charge transfer phase, in which

the electronic structure of the reactants is not significantly

altered. In this sense, one can also speak of a van der

Waals phase. Phase 1 will be well developed in the curva-

ture diagram if the orientation of the reactants to each other is

important as reflected by the orientation angle of Table 2.

Reaction systems 1, 2, and 9 have small or zero orientation

angles, and therefore, phase 1 is rather small (see Fig. 2a, b, i).

Reaction Phase 2 (from curvature point M1 to curvature

point M2): As Fig. 4b reveals, charge transfer fully

develops in phase 2, which we call the rehybridization

phase as will be explained below. Charge transfer to

acetylene and the simultaneous polarization of the acety-

lene density leads to a labilization that invokes bending and

the formation of a radicaloid center. If acetylene accepts

negative charge, it will try to adopt a bent structure. The

amount of bending at each terminus depends on whether

the charge is equally distributed in the corresponding pH

MO (see 9) or, via charge polarization, shifted to the CH

group farther away from the more electronegative terminal

group of the 1,3-dipole. When free acetylene accepts

negative charge, a trans form is adopted, which is also

formed in phase 1 (supported by attraction with an elec-

tronegative terminal group Z4 (X2)), however with bend-

ing angles deviating by just a couple of degree from the

linear form (revealed by the local mode curvature coupling

coefficient of the HCC bending type in phase 1). In phase

2, however, acetylene is forced into a cis-bended form

(e.g., 9) or a form significantly bent at just one center

whereas the other CCH unit remains quasi-linear.

We have investigated the local vibrational modes of a

charge-polarized acetylene molecule and find a smaller

bending force constant for the more negatively charged

acetylene terminus. Hence, charge transfer and charge

polarization are the driving forces for bending and rehy-

bridization of acetylene. A radicaloid or biradicaloid cen-

ter(s) with fractional unpaired electrons protruding in the

direction of the attacking 1,3-dipole is (are) generated. The
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HCC local mode curvature coupling coefficients clarify

which HC group bends first. In all those cases where an

electronegative group in the 1,3-dipole leads to a larger

orientation angle, the not directly attacked CCH group

bends more and becomes the location for the first bond

formation. This means that a close attack on one CH ter-

minus of acetylene causes the other terminus to prepare

first for bonding.

Charge loss leads to a labilization of the rigid (multiple)

bond structure of the 1,3-dipole so that bending becomes

possible. The curvature enhancement in phase 2 is domi-

nated by the XYZ and CCH local mode curvature coupling

coefficients. These are negative, thus indicating that energy

is required to enforce rehybridization and bending of the

two reactants. Both reactants change at the same time so

that there is no way of saying that the one or the other

reactant is leading the reaction. However, snapshots of the

geometry and the curvature coupling coefficients reveal

that in asymmetric cases with a sizable orientation angle,

bending of one HCC acetylene group is clearly ahead of the

other CCH group.

The charge transfer curves shown in Fig. 4b reveal that

there is a clear distinction between the 1,3-dipole mole-

cules with regard to charge-donating capacities. This is

large for nucleophilic 1,3-dipoles (see Fig. 1) and extends

beyond the TS, thus leading to relatively low energy bar-

riers (compared to all other cycloaddition systems or within

a given group as, e.g., in the group of the diazonium

betaines in the case of reaction system 3). For electrophilic

1,3-dipoles such as 1, the labilization of acetylene is not

sufficient for the formation of a radicaloid center and

therefore a large energy barrier results (Table 1). For the

purpose of verifying this hypothesis, we investigated also

the cycloaddition of the strongly electrophilic 1,3-dipole

molecule nitryl hydride to acetylene (system 10, Fig. 2j)

and found the predicted reaction behavior: Insufficient

charge transfer (see Fig. 4b) is coupled with a relatively

large reaction barrier of 29.4 kcal/mol (Table 2).

In view of the nature of the curvature enhancement

dominating reaction phase 2, we speak of the rehybrid-

ization and bending phase, which leads to the formation of

(bi)radicaloid centers.

Reaction Phase 3 (from curvature point M2 to curvature

point M3): Reaction phase 3 can be distinguished from

phase 4 only in the case of reaction systems 3, 4, and 5

where a curvature peak of medium size results from the

formation of the first bond between the reactants. In all

other cases, the scalar curvature of phase 3 appears as a

shoulder of a large curvature peak developing in phase 4.

Nevertheless, a distinction between phases 3 and 4

becomes possible when one investigates the local mode

curvature coupling coefficients of the two bond formation

processes. In phase 3, one is positive (bond formation

supporting) and the other negative (bond formation resist-

ing). Therefore, it is justified to characterize phases 3 and 4

as the first and second bond formation phases.

In phase 3, the C3X2 bond curvature coupling coeffi-

cient is positive (when Z4 corresponds to the electroneg-

ative terminus of the 1,3-dipole), whereas the C1Z4

interaction (characterized by a negative curvature coupling

coefficient) is still resisting bond formation. This corre-

sponds to the fact that bond C3X2 is formed before bond

C1Z4. In phase 1, the electronegative end of the 1,3-dipole

is much closer to acetylene, suggesting that bond C1Z4 is

formed first. However, charge transfer and charge polari-

zation facilitate the formation of a radicaloid center at the

other terminus. Radicaloid centers with lower exchange

repulsion between them can bridge much easier a larger

distance so that bond formation, contrary to general

expectations, takes place earlier between the atoms farther

apart.

In the cases of systems 2 and 3 (N2 is now the elec-

tronegative end), the situation is reversed and the C1Z4

curvature coupling coefficient is ahead of the resisting

C3X2 curvature coupling coefficient, indicating that the

C1Z4 bond is formed now before the C3X2 bond. In case

of symmetry, phase 3 is less pronounced and is dominated

by C1C3 and C2N5C4 adjustments. This is also true for

system 6 for which both termini of the 1,3-dipole have

similar electronegativities.

Reaction Phase 4 (from curvature point M3 to the end in

exit channel): The question, which bond is formed first

when generating the five-membered ring, can be easily

answered by inspection of the components dominating the

reaction path direction. Reaction path direction and reac-

tion path curvature are complementary in so far as a local

mode, when making a large contribution to one of the path

quantities, can only make a small contribution to the other.

As shown in Fig. 3 for the reaction path direction of system

4 (HCNO), the approach distances C2C3 and C1O4 dom-

inate the path direction for most of its range. The amplitude

of the mode associated with parameter C2C3 drops to small

values between s = 3 and s = 5 amu1/2 Bohr in phase 3,

which is exactly that location where the C2C3 bond is

formed. A similar decrease in the amplitude of the mode

associated with C1O4 occurs much later in phase 4 when

the C1O4 bond is finalized. Hence, the formation of the

five-membered ring bonds is asynchronous with the less

polar bond C2C3 being formed first in phase 3 (when C1O4

is still resisting bond formation) and the more polar bond

C1O4 later in phase 4.

The less polar bond in 4 is formed by electron pairing in

a soft, homolytic fashion leading to a smaller curvature

enhancement or just a shoulder. For the formation of the

more polar bond, exchange repulsion has to be overcome

and a stronger bond is formed. This leads to a large
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curvature peak, which is enhanced by contributions from

the adjustment steps of the other bonds in the five-mem-

bered ring being formed. In the case of the symmetric

systems 9 and 10, the simultaneous formation of the two

new bonds leads to a large curvature.

The delay between the formation of X2C3 and C1Z4 is

proportional to the electronegativity difference between

termini X and Z. The new bonds are formed at the same

time for systems 9 and 10 (because of symmetry). In the

case of systems 2 and 6, formation takes place almost at the

same time because the electronegativities of groups N and

NH or HC and CH2 are almost the same.

There is a basic difference between reaction systems

1–6 and systems 7–9 because in the former cases a planar

five-membered ring is formed characterized by electron

delocalization, i.e., the new bonds adopt some double-

bond characters whereas in the latter cases puckered rings

are generated with little electron delocalization and the

new bonds being essentially single bonds. Although the

degree of puckering is small (puckering amplitudes [87–

89] q are 0.187 (7), 0.098 (8), and 0.146 Å (9), which

correspond to maximal dihedral angles of 19.0, 9.9, and

14.7�, respectively), it leads to unique ring conformations

(a twist form close to pseudorotation phase angle [87–89]

/ = 342� for 7, an envelope form close to / = 324�
for 8, and a pure envelope form with an axial NH bond

with / = 180� for 9; see bottom of Fig. 1), which are

optimal with regard to anomeric stabilization and bond

staggering.

When these single bonds are finalized, the five-mem-

bered ring adjusts to its equilibrium conformation. This

adjustment does not require significant electronic structure

changes, and therefore, the curvature is small in the last

part of phase 4 of the corresponding cycloaddition reac-

tions (see Fig. 2g–i). In the other six systems (including

also system 10), the last stage of phase 4 corresponds to p-
delocalization, which is connected with a relatively large

curvature. This is also relevant for the reverse reaction: The

splitting of the two bonds requires initially major electron

reorganization, and the scalar curvature starts with a high

value.

Discussion of the reaction energetics The discussion of

the reaction mechanism of cycloaddition systems 1–9

reveals a close mechanistic relationship, which should

make it possible to explain the energetics of these reactions

in a consistent way. Clearly, the fate of the reaction com-

plex with regard to stereochemistry or the sequence of the

bond formation steps is early decided in phase 1 (van der

Waals phase). Orientation of the reactants, charge transfer

to acetylene, and mutual polarization in phase 1, although

decisive, involve only minor energy changes. The major

changes in the electronic structure of the reactants occur in

phase 2 (rehybridization and bending phase), in which via

bending of the XYZ-dipole molecule, the pyramidaliza-

tion of the terminal -CH2 groups (if existent), and bending

of one or both CCH units of acetylene, the radicaloid

centers are prepared so that bond formation becomes

possible.

In all cases investigated, the TS is located in phase 2

always before (or at) the end of this phase given by M2 and

thereby always after the curvature peak. Since at this cur-

vature peak the largest change in energy takes place

(strongest change in the electronic structure) in the

entrance channel, it is reasonable to assume that the energy

difference DEðP2Þ ¼ EðM2Þ � EðM1Þ must be propor-

tional to the activation energy. This hypothesis is con-

firmed by Fig. 5 where calculated DEðP2Þ values are

correlated with the energy barriers. The energy changes in

phase 2 determine the reaction barrier; however, this does

not say that they determine the mechanistic sequence,

which obviously is determined already in phase 1.

There are three electronic factors determining the

barrier.

1. The reaction barriers decrease linearly with (absolutely

seen) increasing dipole moment lz (parallel to the CC

axis of acetylene, see Table 2) where the correlation is

more significant with the more accurate CCSD(T)-F12

barriers. The polarizing power of the 1,3-dipole

expressed in this way has a larger effect for the more

electrophilic dipoles 1, 2, and 3 than for the more

nucleophilic dipoles 7, 8, and 9.

2. The reaction barriers also decrease with increasing

polarizability component azz (see Table 2). This effect

is best developed for the 1,3-dipoles with linear XYZ

unit (1–6) and less for the bent dipoles (the azometh-

ines, see Fig. 1) with a three-dimensional structure.

The larger the polarizability component azz is, the

easier can be the density of the 1,3-dipole molecule

polarized so that radicaloid centers are formed.

3. Also shown in Table 2 are the local mode XYZ

bending force constants ka, which are a measure for the

ease of bending of the heavy atom framework of XYZ

in phase 2. For the diazonium betaines and the

azomethines investigated, a larger bending force

constant (in line with a larger electronegativity differ-

ence between X and Z) leads to a larger barrier. This

effect is, however, outweighed by the charge polari-

zation and polarizability effects in the case of the

nitrilium betaines.

In Table 2, the calculated local mode stretching force

constants ka of bonds C3X2 and C1Z4 of the newly formed

five-membered rings are also given. They confirm that the

more polar bond (formed after the less polar bond) is

always the somewhat stronger (corresponding to a larger ka

value). The sum of these ka values reflects whether a planar

Theor Chem Acc (2014) 133:1423

123 Reprinted from the journal184



ring with a delocalized 6p-system is formed (large sum) or

a (non)planar ring with limited p-delocalization. In the

former case, the barrier for cycloreversion is high.

Differences between the various cycloaddition reactions

Although the reaction mechanisms of the ten cycloaddi-

tions investigated in this work are very similar, there are

also remarkable differences, which become apparent from

the URVA analysis.

1. Differences between the reaction of an electrophilic

and a nucleophilic 1,3-dipole (for the former the

charge transfer ceases already in the entrance channel,

whereas for the latter it has it maximum in the exit

channel);

2. Differences between symmetric and asymmetric 1,3-

dipoles (for the former, phase 3 is a phase to prepare

the reaction complex for bond formation, whereas for

all other reaction systems, phase 3 is the phase for

forming the soft bond via long-range interactions

between radicaloid centers);

3. Similarly, there is a difference between 1,3-dipoles

with termini of similar or strongly different

electronegativities;

4. Diazonium and nitrilium betaine reactions lead to a

different phase 4 compared to that of the azomethine

cycloadditions (the product of the former reactions is a

planar ring with electron delocalization, and therefore,

phase 4 encompasses this process indicated by a large

scalar curvature at the end of the phase. The latter

reaction systems lead to a puckered ring, and therefore,

phase 4 is characterized by a small curvature peak and

small curvature values at the end reflecting a confor-

mational adjustment);

5. If the orientation phase includes conformational

adjustments of the 1,3-dipole, it is characterized by a

larger curvature enhancement. Such a case is given by

system 5 where the orientation leads to a rotational

adjustment of the 1,3-dipole in the reaction complex

(see Fig. 2e);

6. There is a fine distinction between different reaction

systems depending on whether the trans-bending mode

of acetylene is strongly, just weakly, or not at all

excited in the entrance channel so that the radicaloid

centers of acetylene develop with a very different pace

(see below);

7. Systems such as 6 and 8, which possess identical

reaction barriers within calculational accuracy, have

different reaction mechanisms as can be seen from the

curvature diagrams in phase 4 (see Fig. 2f, h). This

reflects that the TS and energy barrier are just

cumulative descriptors of a reaction, which result from

different electronic effects and their changes, but

which do not provide a detailed insight into the

mechanism.

Comparison with other mechanistic studies In the

‘‘Introduction,’’ three mechanistic hypotheses are men-

tioned, which are currently used to explain mechanistic

details of 1,3-dipolar cycloaddition reactions. They are

discussed below.

The distortion energy description Houk et al. [30, 32]

introduced the distortion energy as the energy required to

distort the dipole and the dipolarophile into the TS geom-

etries without allowing any interaction between them. The

total activation energy is the sum of the distortion and

interaction energy of the two distorted fragments frozen in

the TS geometry. These authors found a strong correlation

between the activation energy and the distortion energy for

the reaction of dipoles 1–9 with ethylene and acetylene.

Based on these findings, they concluded that the concerted

mechanism leads to a TS geometry at which the overlap

between the orbitals of the termini of the cycloaddends

directly leads to the cycloadduct without further geometry

distortion. To achieve this, the TS geometry requires dis-

tortion of the dipole, and the distortion is related to the

dipole stability.

These observations are in line with the URVA results in

so far as the TSs of the 1,3-dipolar cycloadditions are

located close to the end of the rehybridization phase, which

is the phase with the energy-consuming electronic structure

changes. In many other cases investigated so far, the TS

occurs at a less prominent position, which would make the

mechanistic interpretation of the distortion energy more

difficult [53, 65–67, 90].

Conventional investigations of chemical reactions focus

on the explanation of the height of the reaction barrier. This

is important, however, that the reaction barrier alone can-

not provide a detailed insight into the reaction mechanism

as presented in this work. As shown above, similar reaction

barriers do present neither a necessary nor sufficient con-

dition for similarity of the reaction mechanism. Likewise,

two reactions may have similar mechanisms although they

have different barriers. The energy barrier of a reaction is

just a cumulative measure of all electronic structure

changes taking place at the position of the TS, and there-

fore, it can only provide indirect and remote insight into the

electronic structure changes taking place during the

reaction.

The bending hypothesis Houk and coworkers concluded

that the correlation of the activation energy with the dis-

tortion energy implies that the vibrational excitation of the

reactants is an important feature of the mechanism [28].

When analyzing the transition vector for the reactions of

the diazonium betaines 1–3 with acetylene or ethylene,

these authors found that the translational vector associated

with the imaginary frequency is dominated by the bending

of the 1,3-dipole (up to 80 %). Classical trajectory calcu-

lations confirmed the dominance of the dipole bending
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excitation, which parallels the trend in the distortion

energies. Barnes and Hase performed variational transition

state calculations for the cycloaddition of diazonium

betaines 1–3 and ethylene [14]. They concluded that the

reaction rate for a fixed temperature will be increased by

selective excitation of the diazonium betaines bending

vibrational modes in line with Houk‘s findings.

The analysis of the reaction path direction reveals that in

none of the reaction systems investigated does bending

dominate the path direction. However, the curvature

enhancements shown in phase 2 are dominated by the

normal mode curvature coupling coefficient associated

with the XYZ and acetylene bending modes. Hence,

pumping up these modes will lead to an acceleration of the

reaction, provided the energy channeled into the bending

modes is not dissipated by Coriolis couplings with other

vibrational modes.

In Fig. 7a, the normal mode frequencies of reaction

complex 4 are given as a function of the reaction parameter

s in the range up to 1200 cm-1, which includes all bending

and torsional modes. Also shown are the avoided crossings

(ACs) between vibrational states of the same symmetry

AC1 to AC14, which are the positions of strong mode–

mode couplings. Clearly, there is the possibility of a con-

tinuous exchange of energy between the vibrational modes

along the reaction path, which should lead to energy dis-

sipation and thereby a reduction in mode-selective rate

enhancement.

If energy dissipation, involving key vibrational modes,

takes place before the TS, mode-selective rate enhance-

ment is quenched. Figure 7a and b shows that in the

entrance channel the XYZ bending mode, # 7, undergoes

Coriolis coupling with the trans-HCCH bending mode, # 9,

at s = -6.85 amu1/2 Bohr (AC1) and at s = -1.80 amu1/2

Bohr (AC4), which leads to a mixing of their characters

and an exchange of energy. Shortly before the TS, there is

another avoided crossing (AC5) involving modes #7 and

#10. This will effectively dissipate any energy pumped into

the XYZ bending mode # 7, which is in contrast to the

hypothesis of Houk [28] and Hase et al. [14].

The analysis of normal modes #7, #9, and #10 reveals

that energy stored in the first two modes can be transferred

to the cis-bending mode of HCCH (see Fig. 7a, b). This

mode must be triggered to establish radical centers at C1

and/or C3. Any energy stored in the XYZ bending mode #7

will activate cis-HCCH bending, which may accelerate the

reaction as long as XYZ bending takes place at the same

time. However, this cannot be guaranteed on the basis of

the mode–mode coupling situation before the TS.

All ten reaction systems investigated exhibit a similar

mode–mode coupling pattern, which leads to an energy

dissipation between those bending modes, which must

be excited for rate acceleration. Hence, the previous

observations of Houk and Hase are confirmed even though

complicated Coriolis coupling patterns as shown in Fig. 7a

normally make mode-selective rate enhancements inef-

fective. It will be interesting to see whether other dipol-

arophiles than acetylene lead to the same effective

mechanism despite a multitude of dissipation possibilities.

The biradical hypothesis Hiberty et al. [12] found a

correlation between the biradical character of 1,3-dipoles

1-9 and their reactivity toward ethylene or acetylene using

the breathing-orbital valence bond ab initio method [20].

Each 1,3-dipole is described as a linear combination of

three valence bond structures, two zwitterions and one

biradical, for which the weights in the total wave function

can be quantitatively estimated.

A reaction mechanism was proposed [12], in which the

1,3-dipole first distorts so as to reach a reactive electronic

state that has a significant biradical character, which then

adds with little or no barrier to the dipolarophile. By

determining the biradical character of the 1,3-dipole either

as the weight of the biradical structure at equilibrium or as

the energy gap between the ground state of the 1,3-dipole

and its biradical diabatic state, they found a useful corre-

lation between the biradical character and the barrier

heights. In line with Houk0s energy distortion/interaction

model, the barrier height for the cycloaddition of a given

1,3-dipole to ethylene or acetylene is dominated by bi-

radical energy, which rationalizes that for both ethylene

and acetylene addition, the barrier heights are nearly the

same despite significant differences in the exothermicity of

these reactions.

Again, this approach provides an energy-counting

argument, which does not necessarily lead to a mechanistic

insight. As shown in this work, the reaction is initiated by a

charge transfer to the dipolarophile and polarization of the

density of the latter. The generation of (a) (bi)radicaloid

center(s) at acetylene is as important as that at the 1,3-

dipole molecule and precedes or is parallel to the bending

of the 1,3-dipole. Also as noted above the major part of the

reaction barrier is due to the rehybridization and (bi)rad-

icaloid formation of the 1,3-dipole. However, mechanisti-

cally more important are the charge transfer, the population

of a pH(HCCH) orbital, and the softening of the bending

motion, which is the prerequisite for radicaloid formation.

In the first phase, the 1,3-dipole polarizes the acetylene

molecule and not vice versa. The difference in electro-

negativities of the 1,3-dipole termini X and Z decides on

the amount of charge transfer and the polarization.

We can distinguish between 1,3-dipolar cycloadditions,

which start with just one radicaloid center (bending of one

CCH group: e.g., system 4) and those which, because of

symmetry or similar electronegativities of X and Z, require

the bending of both CCH groups in acetylene and the

formation of a biradicaloid (e.g., systems 9 or 6). This
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mechanistic differentiation is supported by a sophisticated

energy exchange between 1,3-dipole bending, HCCH

trans-bending, and HCCH cis-bending motions before the

TS. In view of the URVA analysis presented in this work,

it is appropriate to speak in this connection of radicaloid-

and biradicaloid-driven cycloadditions. However, it would

be a simplification to consider just the biradical formation

of the 1,3-dipole molecule excluding the role of the

dipolarophile.

The Hammond–Leffler postulate The Hammond–Leffler

postulate, although not directly formulated in this way [91,

92], derives from the exothermic or endothermic character

of a reaction a characterization of the TS as being early (in

the first case) and late (in the second case). A quantification

of this postulate has turned out to be difficult until recently.

We showed that the TS of a reaction is shifted against the

center of the bond-breaking/forming processes (identified

via scalar curvature and local mode curvature coupling

coefficients) by an amount DsðTSÞ along the reaction path,

which is proportional to the reaction energy, DRE [69, 93].

The larger the shift parameter is, the more exothermic the

reaction is, and the earlier the TS is located in the entrance

channel. For endothermic reactions, the shift parameter

becomes negative [69, 93].

In Fig. 6, the DsðTSÞ values obtained in this work (see

also Table 2) are given in dependence of the calculated

reaction energies DRE. A linear relationship results, which

identifies reaction systems 5, 6, 4, and 9 as having an early

TS. This is a result of forming a stable five-membered ring

(a pyrazole, isoazole, or isoxazole with a delocalized 6p-
electron system) or converting an unstable 1,3-dipole such

as the azomethine ylide of reaction system 9 with high

biradical character into a more stable 2,5-dihydro-pyrrole.

The scalar curvature presents an important tool to verify

and quantify the Hammond–Leffler postulate.

4 Conclusions

This investigation confirms that chemical reactivity is the

result of the mutual polarization of the reactants (propor-

tional to their polarizing power and polarizability) and

charge transfer between them, which leads to a change

in their electronic structure and prepares them for the

reaction.

1. All ten 1,3-dipolar cycloadditions investigated in this

work with URVA follow a 4-phase reaction mecha-

nism with well-defined reaction phases defined by the

scalar curvature of the reaction path and features of the

unified reaction valley. These phases are identified and

characterized in their chemical nature with the help of

the local mode curvature coupling coefficients.

(1) Reaction phase 1 is the orientation phase where

charge transfer and charge polarization are

initiated;

(2) Reaction phase 2 is the rehybridization and bending

phase where radicaloid or biradicaloid struc-

tures are formed;

(3) Reaction phase 3 is the phase where the homolytic

formation of the softer bond starts;

(4) In Reaction phase 4 being characterized by a large

curvature peak, the formation of the harder

(more polar) bond and the finalization of the

new five-membered ring take place, accompa-

nied by p-delocalization (systems 1–6 and 10)

or ring puckering (systems 7–9).

2. The orientation of the 1,3-dipole XYZ relative to

acetylene is a consequence of the shape of the

exchange repulsion envelope around the 1,3-dipole.

This in turn depends on the electronegativity differ-

ence between X and Z. The orientation of the 1,3-

dipole determines the degree of charge transfer and

charge polarization and decides on the asynchronicity

of the formation of the two five-membered ring bonds.

Hence, the mechanism of the cycloaddition reaction is

decided early in the van der Waals range (phase 1). It

is important to note that the bond with larger CX or CZ

distance in the orientation phase is formed first, which

has to do with the fact that two radical centers can

undergo long-range interactions.

3. The driving force of all ten cycloaddition reactions is

the charge transfer from the 1,3-dipole to the acetylene

molecule. This is also true for the electrophilic 1,3-

dipole molecules, which differ from the nucleophilic

dipoles by a reduced charge transfer ability ceasing

before the TS (see Fig. 4b). Consequently, a much

higher energy barrier results. The amount of charge

transfer can be qualitatively predicted by investigating

the frontier orbitals of 1,3-dipole and dipolarophile,

which explains the success of FMO theory for

describing these types of reactions. However, we also

note that the detailed information provided by the

URVA analysis of a reaction (see, e.g., Fig. 4b) cannot

be expected from FMO theory.

4. In separate calculations, we have shown that any

transfer of negative charge into the pH MO of

acetylene leads to trans-bending, which is initiated in

phase 1, although it is in conflict with the actual cis-

bending required later in the reaction. Charge polar-

ization in acetylene as induced by the approaching 1,3-

dipole triggers CCH bending at the more negatively

charged acetylene terminus as could be shown with the

help of the local mode bending force constants.
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5. The 1,3-dipolar cycloaddition reactions are the first

reactions investigated so far [55, 65–69, 74, 90] for

which the mechanistically important electronic struc-

ture changes take place in the phase (here phase 2)

containing the TS so that the reaction barrier is almost

identical to the energy changes in this phase (phase 2;

see Fig. 5). In most other reactions, the location of the

TS is not significant for the individual mechanistic

changes because it is just an accountant for the sum of

all energy changes rather than a descriptor of specific

energy changes associated with individual mechanistic

steps.

6. The energy barrier is determined by mutual charge

polarization of the reactants and therefore directly

related to the polarizing power and the polarizability of

the 1,3-dipole molecule as reflected by its dipole

moment component in the direction of the acetylene

molecule and its polarizability component in the same

direction.

7. Another factor influencing the magnitude of the

reaction barrier is the stiffness of the XYZ-dipole as

measured by the local XYZ bending force constant. A

large (small) force constant implies a large (small)

barrier apart from the nitrilium betaines where mutual

polarization effects dominate the reaction barrier. The

local stretching force constants of the five-membered

rings formed reflect their degree of electron delocal-

ization and they are measures for the height of the

barrier of the cycloreversion reaction.

8. Previous work emphasizing the importance of an

excitation of the XYZ bending vibration for a mode-

specific acceleration of the reaction is confirmed,

however, with some important restrictions. There is a

multitude of Coriolis couplings, which in general

dissipate any mode-specific energy surplus. In the case

of the cycloaddition reactions 1–10, the peculiar

situation exists that XYZ bending couples with trans-

and cis-bending of HCCH in the entrance channel so

that any energy excess in the XYZ bending mode

facilitates the formation of radicaloid centers in the

dipolarophile without guaranteeing that XYZ bending

is enhanced. Future investigations have to clarify

whether this is a more general phenomenon.

9. The center of the chemical processes of bond forming

leading to the five-membered ring is located in the exit

channel. The shift parameter DsðTSÞ measures the

earliness of the TS according to the Hammond–Leffler

postulate and correlates linearly with the exothermicity

of the reaction as described by DRE, thus providing a

quantitative confirmation of this postulate.

The chemical reaction mechanism of the 1,3-dipolar

cycloadditions is determined in the van der Waals range far

off the TS. It is typical of a symmetry-allowed pericyclic

reaction that the energy needed to overcome the reaction

barrier is used to prepare the reactants for the reaction and

that the actual bond formation takes place after the TS in

the exit channel. The stability of the bonds being formed

and the degree of electron delocalization in the five-

membered ring determine the exothermicity of the

reaction.

The many mechanistic details, which the URVA ana-

lysis of the 1,3-dipolar cycloadditions unravels, provide a

solid basis for predictions concerning changes in the

reaction mechanism and the energetics upon replacing the

dipolarophile, substituting 1,3-dipole and/or dipolarophile,

or using metal catalysis to accelerate the cycloaddition

reaction. Any means that (1) increase the charge transfer to

the dipolarophile and/or (2) facilitate its charge polariza-

tion will lower the barrier of the cycloaddition. Substituents

of the 1,3-dipole will lower the barrier if they increase its

polarizability and charge polarization in such a way that

the asynchronicity of bond formation is supported rather

than hindered. The same applies also with regard to steric

effects. In view of the lengths of this work, the detailed

discussion of these effects will be the topic of a forth-

coming publication.
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Abstract The current Active Thermochemical Tables

(ATcT) results for the bond dissociation energies of the

homonuclear diatomics H2, C2, N2, O2, and F2 are reported

and discussed. The role and origin of the distributed prove-

nance of ATcT values is analyzed. Ramifications in terms of

the enthalpies of formation of H, C, N, O, and F atoms, which

are fundamental thermochemical quantities, are presented. In

addition, the current ATcT bond dissociation energies and

enthalpies of formation of HF, CH, CO, CN, NO, OH, CO2,

H2O, and triplet and singlet CH2 are also reported.

Keywords Enthalpy of formation �
Thermochemical network � Theory–experiment

interface � Benchmark values

1 Introduction

Active Thermochemical Tables (ATcT) [1, 2] are a novel

paradigm for obtaining accurate, reliable, and internally

consistent thermochemical values for a broad range of

chemical species, accompanied by statistically sound

uncertainties that conform to the accepted standard in

thermochemistry (95 % confidence intervals). These char-

acteristics of the ATcT thermochemical values make them

very desirable for developing and benchmarking highly

accurate state-of-the-art electronic structure approaches

[3–6].

In a companion paper [7], the Feller–Peterson–Dixon

(FPD) procedure at the highest currently feasible compu-

tational level is applied to H2 and 13 small first- and sec-

ond-row molecules, and the results are compared to

dissociation energies obtained from ATcT. The aim of the

current paper is to report the current ATcT values for the

bond dissociation energies of H2, C2, N2, O2, and F2 and

elucidate their provenances.

Gas-phase homonuclear diatomics of hydrogen, nitro-

gen, oxygen, and fluorine are the thermodynamic reference

states for the corresponding elements. Their dissociation

energies are tightly related to the enthalpies of formation of

the corresponding atoms, which are fundamental thermo-

chemical quantities that belong to the CODATA ‘key’ set

[8]. Since the CODATA evaluation, these quantities have

gained additional relevance: the availability of accurate

and reliable values for enthalpies of formation of atoms has

become a sine qua non for electronic structure methods

that use the total atomization energy route to obtain prac-

tical enthalpies of formation.

2 The approach of Active Thermochemical Tables

As opposed to traditional thermochemistry, which uses a

sequential approach to build a set of thermochemical val-

ues (A begets B, B begets C, and so on), ATcT are based
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on constructing, analyzing, correcting, and solving a ther-

mochemical network (TN) [1, 2]. The TN contains the

available experimental determinations that thermochemi-

cally interconnect the targeted chemical species (such as

bond dissociation energies, reaction enthalpies, constants

of equilibria, ionization energies, and electron affinities),

complemented by similar determinations extracted from

high-level theoretical calculations (such as energies of

various isodesmic reactions, bond dissociation energies,

and total atomization energies). Each determination in the

TN has an initially assigned uncertainty, reflecting its

perceived 95 % confidence interval. Uncertainties are an

important integral component of the TN: they determine

the weight by which each determination contributes to the

overall knowledge content of the TN and thus regulate the

uncertainties of the final results. After the TN is con-

structed and checked for stoichiometric correctness, ATcT

proceed with an iterative statistical analysis that exploits

the available thermochemical cycles in the TN and evalu-

ates all determinations for mutual consistency, producing a

ranked list of potential ‘offenders,’ i.e., determinations

with too optimistic uncertainties, which would unduly

skew the final results if left uncorrected. The uncertainty of

the most likely ‘offender’ is then augmented by a small

increment, and the statistical analysis is repeated until

internal consistency is achieved across the entire TN. Once

the TN is internally consistent, ATcT obtain the final

results by solving it simultaneously for all included

chemical species.

The ATcT TN approach provides a number of signifi-

cant advantages over the traditional sequential approach,

described in more detail elsewhere [1, 2, 9, 10]. Because

the results are obtained by simultaneously satisfying all

relevant determinations present in an internally consistent

TN, the ATcT values are not only more accurate,1 but also

more robust2 than those obtained from a sequential

approach. A typical sequentially obtained thermochemical

value has a critical dependency on the reliability and

integrity of the particular determination that was selected

for its derivation. In contrast, ATcT values typically have a

distributed provenance and thus do not critically depend on

the accuracy and reliability of a single determination.

In rare cases when the ATcT thermochemistry of some

species displays a strong dependency on a single thermo-

chemical determination, the latter is marked as a ‘weak

link,’ and the corresponding section of the TN is earmarked

for fortification by acquiring new experimental and/or

theoretical determinations. The distributed nature of the

provenance,3 together with the fact that all provenance

contributors are brought into mutual consistency before

computing the final solution, are very important aspects of

the ATcT approach that enable ATcT to produce results of

superior accuracy and robustness.

The current ATcT TN (ver. 1.118) spans over a thou-

sand chemical species and contains nearly 16,000 deter-

minations. Describing even a modest fraction of these

determinations is obviously well outside the scope of any

single paper. However, the degree to which each of these

determinations contributes to the enthalpy of formation of a

given species (or to some other related thermochemical

quantity, such as a particular bond dissociation energy) can

be evaluated by performing a variance/covariance decom-

position. This enables us to focus the discussion only on

those determinations that make a prominent contribution to

the provenance of the targeted thermochemical quantity.

3 ATcT results and their discussion

Since gas-phase H2, N2, O2, and F2 are the thermodynamic

reference states for the corresponding elements (having by

definition an enthalpy of formation of zero at all temper-

atures), the enthalpies of formation of the corresponding

atoms are exactly equal to half the bond dissociation

enthalpy of the homonuclear diatomic molecule. The same,

of course, does not hold for C2. For carbon, the thermo-

dynamic reference state is graphite, and thus, the enthalpy

of formation of the carbon atom corresponds to the

enthalpy of vaporization of graphite to monatomic carbon,

while the enthalpy of formation of C2 corresponds to the

enthalpy of vaporization of graphite to diatomic carbon.

The two are related via the dissociation energy of diatomic

carbon. While C2 will be discussed here in pertinent detail,

describing the genesis of the ATcT value for carbon atom

would require a separate discussion that is outside the

scope of the present paper. Nevertheless, for the sake of

completeness, the current ATcT enthalpy of formation of C

atom is also reported here.

Each of the cases discussed below in more detail is

interesting in its own way: (1) H2 is a relatively simple case

devoid of complications that allows us to illustrate some of

1 The term ‘precision’ is normally reserved to describe the spread of

values (i.e., the width of the distribution), without taking into account

the possible bias between the true value and the central value of the

distribution, also known as ‘trueness.’ Occasionally, the term

‘accuracy’ is used as a synonym for ‘trueness.’ In the present paper,

the term ‘accuracy’ encompasses the best estimate of both ‘trueness’

and ‘precision,’ in keeping with ISO 5725 standard.
2 In the present paper, the term ‘robustness’ is used only in a

qualitative sense and implicates a resistance to change if one of the

relevant determinations is removed, or if a new determination of

similar quality is added.

3 ‘Provenance’ is in the present paper used as a quantitative

descriptor; the contribution of an arbitrary determination to the

provenance of an arbitrary thermochemical quantity is defined

numerically as the relative contribution of that determination to the

final value of the variance of the thermochemical quantity in question.
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the important characteristics of ATcT results; (2) C2

illustrates a case that suffers from a dearth of experimental

data; (3) N2 illustrates a case that involves the resolution of

a ‘weak link’ before reliable thermochemistry can be

obtained; (4) O2 illustrates a case where one needs to

include an often ‘forgotten’ correction to experimental data

in order to achieve the final accuracy; (5) F2 provides a

case where the ATcT must use arbitration to resolve

inconsistencies between relevant determinations.

3.1 ATcT values for D0(H2) and DfH�(H)

The current ATcT value for D0(H2) is 432.06806 ±

0.00002 kJ/mol (see Table 1), or, equivalently, DfH�0(H) =
216.03403 ± 0.00001 kJ/mol (217.99788 kJ/mol at 298.15 K;

see Table 2).4 Other than gradually gaining in accuracy as

the TN was expanded over time, these ATcT values have not

changed significantly since the previously reported versions

[1, 3, 4, 9–11]. The CODATA value [8], subsequently

adopted in the popular tables of Gurvich et al. [12, 13] and in

the JANAF Tables5 [14, 15], was already quite accurate,

DfH�298(H) = 217.998 ± 0.006 kJ/mol, and thus in this

particular case, the improvement in accuracy by almost three

orders of magnitude is probably of no practical thermo-

chemical consequence.

The CODATA value for the enthalpy of formation of H

relies entirely on a single measurement: the H2 dissocia-

tion energy of Herzberg [16] (see additional discussion of

the CODATA value in Ruscic et al. [1]). In contrast to

this, the provenance of the ATcT value is significantly

distributed, reflecting a typical outcome of the ATcT TN

approach. The first 90 % of the provenance of

DfH�(H) and/or D0(H2) includes no less than 9 different

determinations, and in order to pedigree 99.9 % of the

provenance, one needs to include 30 different determina-

tions. The most prominent experimental contributors to the

provenance are the determination of the ionization energy

of ortho-H2 of Liu et al. [17], their reevaluation of the

ionization energy of H and of the dissociation energy

of H2
? using the CODATA 2006 constants [18], the

evaluation of the ionization energy of H by Erickson [19]

(additionally rescaled to current values of natural con-

stants), the determination of D0(H2) by Zhang et al. [20],

the evaluation of the same quantity by Stoicheff [21], the

determination of para–ortho separation in H2 by Jennings

et al. [22], and the determination of the ionization energy

of H2
? by de Lange et al. [23]. With respect to theoretical

contributors, the most prominent contributors are the

determinations of D0(H2) and of para–ortho separation in

H2 by Piszczatowski et al. [24], of the Lamb shift in H by

Johnson and Soff [25], of D0(H2
?) by Moss [26], of para–

ortho separation in H2 by Schwartz and Le Roy [27], and

of D0(H2) by Wolniewicz [28] and by Kolos and Rych-

lewski [29].

The list of provenance contributors attests to the fact

that ATcT utilize the knowledge content of available

determinations, irrespective of whether they are of exper-

imental or theoretical origin. One also easily notes that in

addition to being highly distributed, the provenance does

not correspond to a straightforward collection of competing

determinations of D0(H2), but it includes such species as

ortho-H2, H2
?, H?. These two observations illustrate an

important general characteristic of the ATcT approach: the

final values have distributed provenances, reflecting the

fact that they have been obtained by simultaneously satis-

fying all statistically relevant determinations through all

statistically relevant thermochemical cycles available in

the TN.

The determination of D0(H2) by Herzberg [16], which

provided the CODATA/JANAF/Gurvich value for the

enthalpy of formation of H, is included in the TN, but ends

up contributing rather negligibly to the final result. The

primary reason for this is that it seriously lags in accuracy

when compared to the current list of prominent provenance

contributors. Not surprisingly, this is a rather typical situ-

ation for many determinations that might have been the

best available (and hence preferred) at the time of the

CODATA/JANAF/Gurvich evaluations, but have since

become overshadowed by newer and more accurate data.

Within the ATcT TN, the transition of less accurate

determinations toward obsolescence is governed automat-

ically and usually happens gradually: as more accurate

determinations are added to the TN, the less accurate

determinations—though still contributing to the overall

knowledge content of the TN—are slowly eased toward

lower provenance ranks.

3.2 ATcT values for D0(C2) and DfH�(C2)

CODATA [8] did not evaluate C2, ostensibly because the

experimental data available at the time were lacking suf-

ficient accuracy and consistency. JANAF Tables [14, 15]

grounded the thermochemistry of this species on the

spectroscopically based extrapolation of Messerle and

4 The significant digits in the values given in the text and in Tables 1

and 2 are un-subscripted and correspond either to a maximum of three

significant digits after the decimal point or to two significant digits in

the related uncertainty (whichever is less); when given, extra digits

are subscripted.
5 As opposed to Gurvich et al. [12, 13], who adopted the values from

the final CODATA report [8], the third edition of JANAF [14] has

adopted a slightly different set of values from an interim report of the

CODATA Task Group. The fourth edition of JANAF [15] retains the

interim values adopted in the third edition. For H atom, the value

adopted by JANAF is larger by 0.001 kJ/mol, for O atom is lower by

0.010 kJ/mol, for F atom is larger by 0.010 kJ/mol.
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Kraus [30], taking D0(C2) = 589.7 ± 3.8 kJ/mol.6 In

contrast to this, Huber and Herzberg [31] termed the

determination of Messerle and Krauss [30] as ‘somewhat

doubtful’ and listed D0(C2) = 599 kJ/mol (with an implied

uncertainty of about ±9 kJ/mol) based on high-temperature

measurements of Brewer et al. [32] and of Kordis and

Gingerich [33]. Gurvich et al. [12, 13] examined nearly all

high-temperature measurements that were available at the

time [33–40], and ultimately anchored the thermochemistry

of C2 on the same spectroscopic measurement as JANAF,

but reinterpreted it as implying D0(C2) = 600 ± 10 kJ/

mol.

The current ATcT value for D0(C2) is 602.527 ± 0.278
kJ/mol (Table 1). The related 0-K ATcT enthalpy of for-

mation of C2 is 820.263 ± 0.290 kJ/mol (828.729 kJ/mol at

298.15 K, Table 2). The Gurvich et al. [12, 13] value

DfH�0(C2) = 822.4 ± 10 kJ/mol (830.5 kJ/mol at 298.15 K)

and their D0(C2) = 600 ± 10 kJ/mol, as well as the nearly

identical D0(C2) value of Huber and Herzberg [31], are

clearly consistent with the ATcT value, though less accu-

rate by one-and-a-half orders of magnitude. The often

quoted and used JANAF [14, 15] value DfH�0(C2) =

829.3 ± 3.8 kJ/mol (837.7 kJ/mol at 298.15 K) is evi-

dently inconsistent with the current ATcT value. Table 2

also lists the current ATcT enthalpy of formation of carbon

atom, DfH�0(C) = 711.395 ± 0.054 kJ/mol (716.880 kJ/mol

at 298.15 K). The latter value has changed very slightly

since the previously reported [10] interim ATcT value.

The provenance of the ATcT value for D0(C2) is quite

distributed: 90 % of the provenance contribution is due to 23

determinations, and in order to account for 99.9 % of the

provenance, it takes no less than 715 determinations. In spite

of the fact that the presence of C2 is clearly visible in nearly

every hydrocarbon flame (quoting Hoffmann [41]: ‘the

lovely blue color of hot hydrocarbon flames is due in large

part to emission from excited C2 molecules on their way to

soot or CO2’), and in spite of numerous detailed spectro-

scopic studies of this molecule [42–51], there is very little in

terms of accurate experimental determinations that could

help define D0(C2). Among the top fifty provenance con-

tributors to the ATcT value, only four are experimental

Table 1 ATcT values for the 0-K dissociation energies, D0, and 298.15 bond dissociation enthalpies, BDE298, of H2, C2, N2, O2, F2, HF, CH,

CO, CN, NO, OH, CO2, H2O, and triplet and singlet CH2 (in kJ/mol)

Species D0 BDE298 Uncertainty

H2 432.06806 435.99575 ±0.00002

C2 602.527 605.031 ±0.278

N2 941.146 944.870 ±0.047

O2 493.6878 498.4583 ±0.0042

F2 154.575 158.787 ±0.108

HF 565.966 570.082 ±0.008

CH 334.602 338.717 ±0.114

CO 1072.041 1,076.631 ±0.055

CN 745.253 749.314 ±0.141

NO 626.830 630.574 ±0.060

OH 425.625 429.735 ±0.026

CO2
b 526.150 532.182 ±0.025

H2O
c 492.215 497.321 ±0.002

CH2
d (triplet) 417.900 422.641 ±0.140

CH2
e (singlet) 380.233 385.118 ±0.148

The listed values are from ver. 1.118a of the ATcT thermochemical network
a The conversion of DfH�(C2) from 0 K to 298.15 K uses a newly computed ATcT partition function for C2; with the prior partition function for

C2 (from Gurvich et al. [12, 13]), BDE298 value would be 605.430 kJ/mol
b The current total atomization energy of CO2 is TAE0(CO2) = 1,598.191 ± 0.054 kJ/mol (1,608.812 kJ/mol at 298.15 K)
c The current total atomization energy of H2O is TAE0(H2O) = 917.840 ± 0.026 kJ/mol (927.056 kJ/mol at 298.15 K)
d The current total atomization energy of triplet CH2 is TAE0(

3CH2) = 752.502 ± 0.127 kJ/mol (761.358 kJ/mol at 298.15 K)
e The current total atomization energy of singlet CH2 is TAE0(

1CH2) = 714.835 ± 0.135 kJ/mol (723.836 kJ/mol at 298.15 K)

6 Note that there is an inconsistency in the JANAF Tables [14, 15]:

the listed enthalpy of formation of C2 was derived in the third edition

[14] by combining the assumed bond dissociation energy of

589.7 ± 3.8 kJ/mol with an older value for the enthalpy of formation

of C atom, which is lower by 1.7 kJ/mol than the listed value. Thus,

from the listed enthalpies of formation for C2 and C, one nominally

obtains D0(C2) = 593.1 ± 3.9, or 3.4 kJ/mol higher than their

original assumption. The inconsistency stays uncorrected in the

fourth edition [15].
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determinations: the Gibbs energy of vaporization of graphite

to produce C2 as extracted by a third law treatment of the

measurements of Kordis and Gingerich [33], the energy of

dissociation of acetylene to C2 and two H atoms extracted

from the measurements of Urdahl et al. [52], the high-tem-

perature equilibrium constant between C2 and C atoms

determined by Wachi and Gilmatrin [38], and a reinterpre-

tation of the bond dissociation measurements by Messerle

and Kraus [30] that is very similar to that given by Gurvich

et al. [12, 13]. Each of these four experimental determina-

tions individually contributes less than 1 % to the prove-

nance. The other experimental determinations mentioned at

the beginning of the C2 discussion are also included in the

TN, but they occupy even lower provenance ranks. The

primary reasons for a low contribution of experimental

determinations to the provenance are their insufficient

accuracy and poor mutual consistency. Rather than experi-

ment, the relevant provenance contributors in the current

version of ATcT derive from theory: the bond dissociation

energy and the energy for loss of two hydrogen atoms from

acetylene based on W4.4a calculations of Karton et al.

[53–55] and on the FPD method results of Feller et al. [56],

together with the analogous quantities based on slightly

lower levels of theory, such as W4.3, W4.2, and W4 [53,

55], and on an earlier version of the FPD method [57], as

well as the C–H bond dissociation energy of C2H from an

approach that utilized explicitly correlated coupled-cluster

methods [6], as well as the same bond energy from a

CCSD(T)/CBS-based approach [58].

Although the current ATcT value for D0(C2) is domi-

nated by virtual (i.e., computational) determinations, rather

than actual (i.e., experimental) determinations, this was not

necessarily the case in earlier versions of the ATcT TN.

The section of TN relevant to C2 initially contained all the

available experimental data mentioned above, but very few

high-accuracy computational results. The resulting values

for D0(C2) and DfH�(C2) were rather inaccurate, partly

because of the relative paucity of data and partly because

of their limited accuracy. In addition, some of the high-

temperature determinations had a tendency to skew the

resulting bond dissociation energy to higher values,

because at that point, the TN contained a rather limited set

of thermochemical cycles involving C2 and thus ATcT had

no good thermodynamic pathways to check the involved

determinations for consistency. As high-accuracy compu-

tational results have gradually appeared and were inserted

in the TN, they incrementally boosted the TN knowledge

content, allowing ATcT to perform a more rigorous eval-

uation of the relevant TN section for internal consistency.

The resulting D0(C2) and DfH�(C2) were gradually gaining

in accuracy and converging toward the current value, but at

the same time, the newer and increasingly accurate theo-

retical results began pushing the less accurate experiments

down the rank list of provenance contributors.

The thermochemistry of C2 is clearly a case where the

ATcT results benefit immensely from the availability of

high-accuracy state-of-the-art electronic structure methods.

However, it is worth stressing here that although the cur-

rent ATcT thermochemistry of C2 is dominated by theo-

retical determinations, the results presented here are

superior to any of the included computational determina-

tions taken alone. By virtue of the underlying TN approach,

the ATcT results reflect a statistically weighted summary

consensus of the determinations contributing to their ped-

igree—after they were brought into mutual consistency by

statistically evaluating all available thermochemical

cycles—and are thus superior to any of their constituent

determinations taken alone.

3.3 ATcT values for D0(N2) and DfH�(N)

CODATA [8] used a bond dissociation energy of N2 of

941.64 ± 0.60 kJ/mol from Büttenbender and Herzberg

[59] to derive the 298.15 K enthalpy of formation of

Table 2 ATcT enthalpies of formation, DfH�, of H, C, N, O, F, C2,

HF, CH, CO, CN, NO, OH, CO2, H2O, and triplet and singlet CH2 at

0 K and 298.15 K (in kJ/mol)

Species 0 K 298.15 K Uncertainty

H 216.03403 217.99788 ±0.00001

C 711.395 716.880 ±0.054

N 470.573 472.435 ±0.023

O 246.8439 249.2292 ±0.0021

F 77.287 79.393 ±0.053

C2 820.263 828.729
a ±0.290

HF -272.644 -272.691 ±0.053

CH 592.827 596.161 ±0.123

CO -113.802 -110.522 ±0.026

CN 436.715 440.001 ±0.145

NO 90.586 91.090 ±0.062

OH 37.253 37.492 ±0.026

CO2 -393.108 -393.474 ±0.014

H2O -238.928 -241.831 ±0.026

CH2 (triplet) 390.960 391.518 ±0.134

CH2 (singlet) 428.628 429.040 ±0.142

The listed values are from ver. 1.118a of the ATcT thermochemical

network
a The conversion of DfH�(C2) from 0 K to 298.15 K uses a newly

computed ATcT partition function for C2; with the prior partition

function for C2 (from Gurvich et al. [12, 13]), the 298.15 K value

would be 828.330 kJ/mol
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nitrogen atom of 472.68 ± 0.40 kJ/mol, which was then

adopted by Gurvich et al. [12, 13] and JANAF7 [14, 15]. In

the very early stages of the development of the ATcT TN,

when the network was much smaller, the resulting ATcT

enthalpy of formation of N atom was strongly dominated

by the same spectroscopic determination by Büttenbender

and Herzberg [59]. Consequently, this determination was

marked as a ‘weak link’ in the TN, and steps were

undertaken to enhance the TN section surrounding N. More

exhaustive literature searches have subsequently unearthed

the determinations of Carroll and Mulliken [60] and Ron-

cin et al. [61], and the analyses of Lofthus [62] and Le Roy

et al. [63]. However, while their addition to the TN intro-

duced competing values for D0(N2), this enhancement did

not create new thermochemical cycles that would allow

ATcT to perform more exhaustive checks for consistency

in the relevant portion of the TN. A crucial breakthrough

toward alleviating the ‘weak link’ symptom occurred in the

form of a tailored collaborative effort with the group of Ng

[64], where accurate synchrotron-based photoionization

measurements have been used to determine in three sepa-

rate ways the onset of photodissociative ionization of N2

(corresponding to the process N2 ? N? ? N ? e-).

The current ATcT value is D0(N2) = 941.146 ±

0.047 kJ/mol. In contrast to the very early versions of the

TN that suffered from the ‘weak link’ situation, the prov-

enance of D0(N2)—and hence also the provenance of

DfH�(N)—is currently quite distributed, with a distribution

size not dissimilar to that found for D0(C2): it takes 17

determinations to elucidate 90 % of provenance, and as

many as 1,036 determinations to account for 99.9 % of the

provenance. However, as opposed to the situation for C2,

the primary contributors to the current value of D0(N2) are

entirely experimental. The most relevant contributors are

the three collaborative photoionization measurements

mentioned above [64], the measurements of Roncin et al.

[61], the measurement of Carroll and Mulliken [60], as

well as the original determination by Büttenbender and

Herzberg [59].

The corresponding ATcT value for DfH�0(N) =
470.573 ± 0.023 kJ/mol (472.435 kJ/mol at 298.15 K,

Table 2) coincides with the previously reported [10]

interim value. The CODATA [8] value is more than an

order of magnitude less accurate and is 0.24 kJ/mol higher;

perhaps a not entirely unrelated detail is that the bond

dissociation energy explicitly quoted by CODATA should

have produced an uncertainty for the enthalpy of formation

of nitrogen atom of ±0.30 kJ/mol, but in the final analysis,

the CODATA Task Group has decided for some reason to

increase it to ±0.40 kJ/mol. One suspects that the undoc-

umented addition of a safety margin to the uncertainty by

CODATA is related to the fact that D0(N2) was involved in

a very lively controversy during the first half of the

twentieth century (see Gaydon’s book [65] for a historical

overview of this subject).

While the uncertainty of the CODATA value is large

enough to accommodate the current ATcT value in the

lower section of the bound, the actual CODATA value is

outside the ATcT error bar by a substantial margin.8 Both

the shift in the value and the increased accuracy of the

ATcT value are of relevance to high-accuracy theoretical

approaches that utilize the total atomization energy route to

obtain practical enthalpies of formation, particularly for

chemical species that have multiple nitrogen atoms.

3.4 ATcT values for D0(O2) and DfH�(O)

The current ATcT value for D0(O2) = 493.6878 ±

0.0042 kJ/mol (Table 1), and the corresponding DfH�0(O) =
246.8439 ± 0.0021 kJ/mol (249.2292 kJ/mol at 298.15 K,

Table 2); these have not changed from the previous ATcT

version [10].

The CODATA [8] value for the enthalpy of formation of

oxygen atom is based on D0(O2) = 493.58 ± 0.18 kJ/mol

obtained by Brix and Herzberg [66], and the resulting

298.15 K enthalpy of formation for oxygen atom of

249.18 ± 0.10 kJ/mol was adopted by Gurvich et al. [12,

13] and JANAF5 [14, 15]. The provenance of the ATcT

value is reasonably distributed: 90 % of the provenance can

be attributed to 4 determinations, and 99.9 % of the prove-

nance to 106 determinations. The prominent contributors are

the bond dissociation energy determination of Lewis et al.

[67], the ion-pair threshold determination of Martin and

Hepburn [68], and the bond dissociation energies deter-

mined by Gibson et al. [69] and Cosby and Huestis [70].

Some of the (otherwise very accurate) spectroscopic

values for D0(O2) that are found in the literature are—in a

strict thermodynamic sense—incorrect and require an

additional small correction before they can be used for

high-accuracy thermochemical purposes. Namely, the

thermodynamic definition of dissociation energy is that it

corresponds to the energy difference between the lowest

existing rovibrational level of a molecule and the lowest

existing level of the dissociation asymptote. Both Herzberg

[71] and Huber and Herzberg [31] quoted this definition,

7 JANAF [14] explicitly declares that it adopts the CODATA value

for the enthalpy of formation of N, but lists an uncertainty that is

smaller than CODATA’s by a factor of 4, as if the authors failed to

convert it from kcal/mol to kJ/mol. The problem is uncorrected in the

fourth edition [15].

8 While a detailed comparison of quantities with vastly different

accuracies is nontrivial, particularly if the more accurate value is

within the uncertainty bounds of the less accurate value, but the

converse is not true, if one anchors the reference frame to the ATcT

value for DfH�(N), the corresponding CODATA [8] value is too high

by more than 20 standard deviations.
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and yet the dissociation energy of Brix and Herzberg [66]

was given with respect to the nonexistent v = 0,

N = J = 0 level of the X 3Rg
- state. Prima facie, the lowest

existing level in the ground state of O2 would be

1.783 cm-1 lower and would correspond to N = 0, J = 1

(F1), but that level is wiped out by nuclear spin statistics in

the dominant isotopic variant 16O2. The lowest actual

level in X 3Rg
- of 16O2 is N = 1, J = 0 (F3), which is

1.086 cm-1 lower than the nonexistent reference level.

CODATA [8] apparently entirely ignored this (admittedly

small) correction to the Brix and Herzberg D0(O2) value

[66], presumably considering it superfluous in view of the

±15 cm-1 overall uncertainty of that determination.

However, Gibson et al. [69] and Lewis and al. [67] follow

suit and also refer their D0 to the same nonexistent level; in

their case, the correction is relevant since they both quote

sub-cm-1 uncertainties. In a similar vein, Martin and

Hepburn [68] explicitly report their ion-pair formation

threshold relative to the N = 1, J = 2 level of the ground

state of O2, which is 2.1 cm-1 above the lowest existing

level of X 3Rg
- of O2—again a relevant correction in view

of their uncertainty of ±0.7 cm-1.

The ATcT value for DfH�(O) is significantly more

accurate than the value selected by CODATA [8] (by more

than two orders of magnitude) and slightly higher (by

0.05 kJ/mol). As in the case of N atom, the current value

for the O atom is of relevance to high-accuracy theoretical

approaches that utilize the total atomization energy route to

obtain enthalpies of formation.

3.5 ATcT values for D0(F2) and DfH�(F)

The current ATcT value for D0(F2) = 154.575 ± 0.108 kJ/

mol (Table 1), or, equivalently, DfH�0(F) = 77.287 ±

0.053 kJ/mol (79.393 kJ/mol at 298.15 K, Table 2). The

ATcT value for the enthalpy of formation of F atom is

nearly six times more accurate, but otherwise numerically

very similar to the CODATA [8] value of DfH�298(F) =
79.38 ± 0.30 kJ/mol.

The CODATA value for DfH�(F) was obtained by

adopting D0(F2) = 154.56 ± 0.60 kJ/mol from Colbourn

et al. [72]. The latter determination requires additional

discussion. Though often referred to as a spectroscopic

measurement, it is, in fact, an educated estimate based on

spectroscopic observations on F2, rather than a direct

measurement of D0(F2). Colbourn et al. have spectro-

scopically determined the Bv and Gv values from v = 0 to

v = 22 of the X 1Rg
? state of F2. They concluded that the

dissociation limit must be higher than the highest observed

vibrational level. The inference that the v = 22 vibrational

level must be bound was rationalized by noting that the

ground state curve is unlikely to have a barrier on the basis

that both the C6r
-6 and the C8r

-8 terms in the long-range

potential correspond to attraction between the atoms and

thus have the same sign. Colbourn et al. further remarked

that an extrapolation of the vibrational levels beyond v = 22

to the dissociation limit would be difficult because the

intervals between the high vibrational levels vary rapidly

and follow no obvious pattern (a situation not dissimilar to

the case of D0(OH) [73, 74], now apparently considered to

be a classic [75]). Colbourn et al. [72] estimate that the

dissociation limit of F2 is 90 cm-1 higher than the v = 22

vibrational level, with an uncertainty of ±50 cm-1, or

slightly more than half of the incremental interval. The exact

procedure by which Colbourn et al. arrived at this estimate is

not given in their paper, but one suspects that the expertise of

this world-renowned spectroscopic group must have played

an important role during the process.

Several years ago, Bytautas and Ruedenberg [76] care-

fully analyzed the long-range region of the ground state

potential energy function of F2 (obtained by their CEEIS

method). They found that while the London dispersion

interaction, which scales as r-6, is attractive, the interaction

between quadrupoles of the fluorine atoms, which scales as

r-5, is repulsive because of coaxial alignment. There is also

an additional repulsive force due to loss of spin–orbit cou-

pling upon the bond formation. Consequently, their potential

energy curve has a small (*9 cm-1) dissociation barrier at

about 4 Å. The quandary that has arisen immediately after

the work of Bytautas and Ruedenberg was published, con-

cerns the issue of whether the 9 cm-1 barrier affects the D0

estimate of Colbourn et al. [72] or not. Clearly, the barrier is

much too small to vitiate the main stepping stone in the

estimate of Colbourn et al. [72], which is the assumption that

the highest observed vibrational level, 90 cm-1 below the

presumed dissociation limit, is fully bound. Would the

knowledge of the barrier have resulted in an estimate of D0

that was lower by 9 cm-1, or would it have perhaps resulted

in an estimated error bar larger than ±50 cm-1? It is unclear

that it would cause either of the two, particularly since the

estimate of Colbourn et al. explicitly did not rely on a

straightforward extrapolation of the observed vibrational

levels, and likely relied heavily on spectroscopic experience.

An additional and more serious problem surrounding the

correct value of D0(F2) has arisen even before the discov-

ery of the dissociation barrier by Bytautas and Ruedenberg

[76]. Yang et al. [77] have reported the ion-pair forma-

tion threshold of F2 (corresponding to the process

F2 ? F? ? F-), which was obtained by velocity mapping

the F- fragment. When combined with the generally

accepted values for the ionization energy and electron

affinity of F atom, it produced D0(F2) = 154.96 ± 0.10 kJ/

mol; this value was subsequently slightly lowered in an

erratum [78] to 154.92 kJ/mol. The value of Yang et al.

appears six times more accurate than the estimate of Col-

bourn et al. but is 0.36 kJ/mol higher.
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From the perspective of traditional sequential thermo-

chemistry, establishing whether the Colbourn et al. esti-

mate (either uncorrected or lowered by 0.11 kJ/mol on

account of the dissociation barrier) or the higher determi-

nation of Yang et al. is correct is a crucial issue: once one

of the conflicting determinations is selected as the preferred

value, it immediately implies a particular value for

DfH�(F).
However, from the perspective of the ATcT approach,

establishing beforehand which of the possibilities is correct

is not a crucial issue at all. Arbitrating between mutually

inconsistent determinations is one of the things that the

ATcT approach is explicitly designed to do: as long as

there are sufficient alternate thermochemical cycles in the

TN, errant determination(s) will be identified during the

ATcT analysis and brought into consistency with the rest of

the TN by augmenting their uncertainties. As we shall

show in a moment, the TN contains a truly large number of

determinations that can help establish the dissociation

energy of F2 both directly and through alternate thermo-

chemical cycles, and thus ATcT should have no problem

with such arbitration.

In general, the ATcT analysis typically finds that the

optimal solutions are outside the initially assigned uncer-

tainties for roughly 10 % of the determinations (or about

double the expected number if all initial uncertainties truly

corresponded to probabilistically correct 95 % confidence

intervals). Since the introduction of the ion-pair threshold

of Yang et al. [77, 78] into the TN a number of versions

ago (using their original uncertainty of ±8 cm-1 or

±0.096 kJ/mol), the ATcT analysis consistently finds this

determination to be problematic, unless the original

uncertainty is increased by approximately a factor of 3.6,

to ± 0.344 kJ/mol. Other than it being inconsistent with the

remaining knowledge content of the TN (where the latter

consists of the cumulative knowledge of well over a

thousand related determinations, vide infra), it is unclear at

this point what exactly may be the problem with the

threshold of Yang et al. or with its original uncertainty.

As hinted to earlier, the provenance of the ATcT value for

D0(F2) is extremely distributed—even more so than the other

species examined in this report: the top 90 % provenance is

spread out over 78 determinations, while accounting for

99.9 % of the provenance involves 1,197 determinations!

The prominent contributors to the provenance are a mix of

experiment and theory. They include the experimental ion-

pair formation threshold by Yang et al. [77, 78] (with an

uncertainty augmented during the ATcT analysis), the bond

dissociation determination of Colbourn et al. [72], together

with the theoretical bond dissociation energies of Bytautas

et al. [79], Csontos et al. [80], Harding et al. [4], Karton et al.

[5], Feller et al. [56], as well as a large number of other

experimental and theoretical determinations. These include

additional species such as ClF, CF4, Cl, FOF, HF, HCl, CF,

CF2, CF3, COF2, C2F4, CO2, CH4, CH, H2O, H2, and

graphite, through alternative thermochemical cycles that

ATcT find to be of some relevance to establishing the final

result. At first blush, some of these additional species

involved in the provenance may appear surprising, though

they can be all rationalized. For example—to provide just a

few random examples—the enthalpy of reaction of F2 with

Cl atoms to produce ClF and F atoms corresponds to the

difference in the bond dissociation energies of ClF and F2.

When combined with the equilibrium constant for the reac-

tion of F2 and Cl2 to produce ClF, it corresponds to the

difference in the bond dissociation energies of Cl2 and F2. Or,

the calorimetric combustion of graphite in F2 to produce CF4,

when combined with the vaporization enthalpy of graphite

and either with the successive bond dissociation energies of

CF4 or with the total atomization energy of CF4, produces a

net cycle corresponding to two F2 molecules dissociating to

constituent atoms. Taken alone—such as would be the case

in sequential thermochemistry—none of these alternate

thermochemical cycles would be able to sufficiently accu-

rately establish the bond dissociation energy of F2. However,

within the ATcT TN approach, which attempts to satisfy all

available thermochemical cycles simultaneously, the addi-

tional thermochemical cycles synergistically enhance the

overall knowledge about a satisfactory value for D0(F2) in a

way that becomes relevant to the final result.

As mentioned at the beginning of the subsection on F2,

while the ATcT value and the CODATA value for the

enthalpy of formation of F atom differ in their accuracy,

their nominal values are numerically nearly identical—a

fortuitous coincidence in view of the fact that the ATcT

value is highly independent from the D0(F2) value of

Colbourn et al. [72]; the latter determination contributes

only about 3 % to the provenance of the ATcT value. From

the ATcT value for D0(F2), one can infer that the dissoci-

ation limit is located 91 ± 9 cm-1 beyond the last vibra-

tional level observed by Colbourn et al. Their estimate was

90 ± 50 cm-1. The two values are fortuitously in near-

perfect agreement, much better than statistically justified

by the two uncertainties.

Csontos et al. [80] have quite recently confirmed the

existence of the dissociation barrier of Bytautas and Rue-

denberg [76] by using several multi-reference methods, and

have computed D0(F2) = 154.95 ± 0.48 kJ/mol using an

enhanced HEAT-like approach. Csontos et al. [80] noted

that the value of Yang et al. [78] of D0(F2) = 154.92 ±

0.10 kJ/mol and the value of D0(F2) = 154.52 ± 0.12 kJ/

mol based on a previously reported [10] interim ATcT value

for DfH�0(F) = 77.26 ± 0.06 kJ/mol are outside each oth-

er’s error bars, but the uncertainty of their computed bond
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dissociation energy, although remarkably low, was not low

enough for them to be able to make a distinction between

the two values. However, they remarked that their com-

puted value ‘almost precisely agrees’ with the value of

Yang et al. [78], and indicated support for the latter.

Csontos et al. [80] emphasized the fact that neither the

experimental ion-pair threshold nor the computed value

would suffer from the existence of the dissociation barrier

in the ground state of F2, while direct experimental mea-

surements of the dissociation energy which would. Finally,

they conclude that ‘‘the ATcT approach uses D0(F2)

reported by Colbourn and co-workers, which is derived

from extrapolation of the vibrational levels for the ground

state F2 molecule to the dissociation limit’’ and that because

of the neglect of the dissociation barrier ‘‘the uncertainties

[of the ATcT values for D0(F2) and DfH�(F)] … should be

increased.’’ The quoted conclusions of Csontos et al. [80]

are incorrect; these authors assumed that the ATcT result is

derived directly from the value of Colbourn et al. [72],

while in fact, as we have shown above, the provenance of

the ATcT values for D0(F2) and DfH�(F) is highly distrib-

uted and essentially (in fact, 97 %) independent of the

value of Colbourn et al. As discussed above, the numerical

near-coincidence between the estimate of Colbourn et al.

and the roughly five times more accurate ATcT value is

fortuitous. Furthermore, the possible influence of the dis-

sociation barrier on the ATcT result was checked imme-

diately after the result of Bytautas and Ruedenberg [79]

became public. With the possible exception of the estimate

of Colbourn et al. [72], none of the other *1,200 deter-

minations contributing to the provenance of the thermo-

chemistry of F is affected by the dissociation barrier in the

ground state of F2. Furthermore, irrespective of whether the

estimate of Colbourn et al. requires an adjustment or not, its

contribution to the final ATcT result is quite small, and a

small change in that value would negligibly affect the

ATcT value and/or its uncertainty.

3.6 Current ATcT values for D0(HF), D0(CH), D0(CO),

D0(CN), D0(NO), D0(OH), D0(CO2), D0(H2O),

and D0(CH2)

The ATcT bond dissociation energies of HF, CH, CO,

CN, NO, OH, CO2, H2O, and triplet and singlet CH2 are

given in Table 1, and the corresponding enthalpies of

formation are listed in Table 2. The essential ATcT

thermochemistry for H2O has been published recently

[11]. Strictly speaking, the ATcT results for the other

species represent interim values, since the corresponding

sections of the TN have not yet been finalized and ana-

lyzed in earnest. However, it would be quite surprising

if these interim values underwent a substantial change

during the final analysis.

3.7 Benchmarking the benchmarks

The D0 values given in Table 1 are used in the companion

paper [7] for benchmarking highly accurate computational

results obtained by the FPD procedure. These theoretical

results are benchmarks in their own right: the underlying

computations have been carried out at the highest level

currently feasible by the available hardware, and the indi-

vidual sources of error were carefully monitored and mini-

mized during each of the computational steps. It goeswithout

saying that in order to keep the benchmarking procedure as

objective and independent as possible, the FPD computa-

tional results from the companion paper have not been

included in the current TN. The agreement between the

ATcT results and the computed D0 values is very good

indeed: in all cases, the two sets display an abundant overlap

within their uncertainties, except for C2, where the overlap is

rathermarginal. The latter, however, does not come as a great

surprise: the ATcT result for C2 suffers from a paucity of

good experimental data as well as from the fact that the

corresponding TN section is somewhat underdeveloped in

terms of available thermochemical cycles, and, at the same

time, the computational efforts are rendered complex by the

multi-configurational character of C2.

From the viewpoint of ATcT, benchmarking state-of-

the-art theory is a two-way street. Once the fidelity level of

the benchmarked theoretical results is understood, agree-

ment between the computed results and the ATcT values

indirectly also validates the latter. Conversely, if dis-

agreement is found for a particular chemical species, it

signals a problem either with the computation or with the

TN section related to the species in question, or perhaps

both. Furthermore, upon conclusion of the benchmarking

procedure, the ATcT TN is ready to incorporate the just

benchmarked theoretical results, as well as additional

computations that use the newly benchmarked theoretical

approach and target the introduction of new chemical

species into the TN or fortification of underdeveloped

sections of the TN.

4 Conclusions

The current ATcT results for the bond dissociation energies

of the homonuclear diatomics H2, C2, N2, O2, and F2 are

reported and compared to values found in traditional

thermochemical tabulations. The provenance of the ATcT

values, obtained by examining the results of the variance

decomposition approach, is discussed. The results that are

presented here illustrate, inter alia, that the underlying TN

approach produces values that generally have a signifi-

cantly distributed provenance and thus, as opposed to

values obtained by traditional sequential thermochemistry,
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do not critically depend on the reliability of a single

measurement. In addition, the bond dissociation energy of

N2 illustrates a case that involves the resolution of a ‘weak

link’ in the TN by acquiring additional experimental data.

The bond dissociation energy of O2 illustrates a case where

the reported measurements are very accurate, but need

additional corrections in order to conform to the thermo-

chemical definition of a bond dissociation energy. The

thermochemistry of C2 illustrates a case where ATcT rely

on state-of-the-art electronic structure methods because of

a paucity of sufficiently accurate and mutually consistent

experimental measurements, while the bond dissociation

energy of F2 illustrates a case where ATcT use the

cumulative knowledge content of the TN to identify and

resolve an inconsistent piece of information. Ramifications

in terms of enthalpies of formation of atoms, which are

fundamental thermochemical quantities, are also discussed.

The current ATcT bond dissociation energies and enthal-

pies of formation of HF, CH, CO, CN, NO, OH, CO2, H2O,

and triplet and singlet CH2 are also given.
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59. Büttenbender G, Herzberg G (1935) Über die Struktur der zwe-
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Abstract Transition metal atoms require a correct

description of quasi-degeneracy and spin states, which lead

to many closely lying multiplets. Before embarking on the

theoretical description of transition metal complexes, the

problems encountered in the atoms should be shown to be

amenable to a chosen ab initio electronic structure method.

It is usually thought that multi-reference methods should be

a necessity for the correct description of transition metal

multiplets. To the contrary, this paper explores the use of

single-reference coupled-cluster theory in most of its

manifestations. These include a variety of orbital choices

from variationally optimal restricted open-shell references,

to Brueckner orbital references, fractionally occupied ref-

erences, quasi-restricted Hartree–Fock and other choices. In

addition, the equation-of-motion coupled-cluster method

for target multiplet states is considered. Relativistic cor-

rections are obtained from a Douglas–Kroll–Hess fifth-

order approximation which is found to be superior to

effective core potentials, although there is little coupling

between the relativistic effects and electron correlation.

Keywords Transition metals � Coupled cluster �
Multi-reference � Douglas–Kroll–Hess � Equation-of
motion coupled-cluster

1 Introduction

Transition metal (TM) atoms represent the prototype

electronic structure problem that exhibits quasi-degen-

eracy, due to their five degenerate d orbitals and

nearby s level that can be occupied in multiple ways

by different numbers of electrons. The ground states

and the low-lying excited states of the TM atoms have

been the subject of various past [1, 2] and more recent

studies [3, 4] as they pose a unique set of challenges to

quantum chemical methods: multiple spin states and

the potential inadequacy of single-reference-based cor-

relation methods [5] plus non-negligible relativistic

effects. This is also true for larger TM systems and

consequently recent studies have been carried out to

establish benchmarks [6–8] in order to judge the effi-

cacy of the current approaches. Because of their quasi-

degeneracy, the ‘knee-jerk’ reaction from a quantum

chemist is that these systems require multi-reference

techniques for their correct description. It is argued

that only then, can the ‘static’ correlation be correctly

accommodated. However, the great power of single-

reference coupled-cluster (SR-CC) theory is that it

converges to the full CI so efficiently when starting

from even a poor reference determinant, that for many

apparent multi-reference problems SR-CC provides the

best ab initio correlated results obtainable at the basis

set limit. When augmented with the equation-of-motion

CC method which retains the simplicity and ‘black-

box’ nature of SR-CC but now for an expanded number

of problems including excited, ionized, doubly ionized,

electron attached states, many apparent MR problems

can be easily handled within the SR-CC/EOM frame-

work. In this paper, we address this question for TM

multiplets.
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2 Synopsis of theory

2.1 SR-CC

The equations of SR-CC are now well known [9, 10],

E ¼ 0 e�THeT
�� ���

0i ¼ 0 �H 0j ijh
Q �H 0j i ¼ 0

where Q indicates the orthogonal complement to the sin-

gle-determinant reference function, |0i and can be sepa-

rated into different excitation levels such as singles,

doubles, triples (Q1, Q2, Q3). The cluster operator,

T ¼ T1 þ T2 þ T3

is composed of single, double, triple, and higher ‘con-

nected’ cluster excitation operators. At the Tn cluster limit

for n electrons, the exact result is obtained in a given basis

set (full CI). This result is size-extensive and gives a rig-

orous upper bound to the exact energy. It is also completely

invariant to orbital choice. Short of the full CI, CC theory

does not guarantee an upper bound to the energy, but is

always extensive, which is guaranteed by the exponential

wave function ansatz. This property, which is not shared by

CI methods short of the full CI limit, is why SR-CC can

rapidly exhaust most electron correlation effects while

truncated CI methods, even built upon a MR framework,

have zero overlap with the exact correlated wavefunction

for an infinite number of electrons. To the degree that SR-

CC at a given level, CCSD [11], CCSD(T) [12–15],

KCCSD(T) [16], CCSDT [17], approaches the exact result,

further MR extensions are not necessary. Where this point

occurs will vary with the problem addressed. All the CC

methods mentioned are also invariant to occupied–occu-

pied and virtual–virtual orbital transformations, but not to

transformations that mix occupied and virtual orbital space.

However, they are nevertheless ‘insensitive’ to those as

well as we will see later.

Properties in CC theory depend upon generalized

expectation values which are calculated using the 1- and 2-

body density matrices,

ðcNÞqp ¼ 0h jð1þ KÞe�T pþqf geT 0j i
where the de-excitation operator K serves as the left-hand

eigenvector of the non-Hermitian Hamiltonian, �H,

0h jð1þ KÞ �H ¼ 0h jE
and is related to the resolvent of the �H operator,

0h jK ¼ 0h j �HQðE � �HÞ�1
Q

Besides properties, K has a role in the generalized

KCCSD(T) method that is used here.

2.2 CCSDT-3

For the purposes of this paper, the highest computational

level we will consider is CCSDT-3. This means that subject

to projection only onto Q1, Q2, and Q3,

�H ¼ eð�T1�T2�T3ÞHeðT1þT2þT3Þ ¼ ~H þ ~H; T3
� �

~H ¼ eð�T1�T2ÞHeðT1þT2Þ

Then, the CCSDT-3 equations [18] are

Q1
�H 0j i ¼ 0

Q2
�H 0j i ¼ 0

Q3
~H 0j i ¼ 0

These are then iterated to convergence. By avoiding the T3

term in the Q3 projection, the method is an iterative *n7

instead of the *n8 for the full CCSDT. We have seen few

examples where the differences between CCSDT-3 and

CCSDT are significant, and even for those, CCSDT-3

might provide a better approximation due to error cancel-

ation involving T4 than does the full CCSDT method.

We explore the significance of triple excitations in the

CC theory included iteratively or non-iteratively in the

specific context of the energy separation between the clo-

sely spaced TM atomic states.

3 Results and discussion

3.1 Non-relativistic multiplet splitting

Table 1 lists the splitting energies for late first series TM

atoms (Fe-Cu) obtained with non-relativistic CC calcula-

tions at various levels of correlation using a ROHF refer-

ence. They are compared with experimental values

corrected for relativistic contributions as provided in a

previous study [19].

Correlation effects are enormously important, changing

the SCF results by more than a factor of 2. The next sig-

nificant change occurs while moving from CCSD to a

method that includes effects of triple excitations. This

amounts to more than *0.2 eV improvement in the split-

ting values. In general, good accuracy can be achieved with

coupled-cluster methods with triples corrections. Specifi-

cally, the multiplet splitting values obtained with CCSDT-3

are within 0.1–0.2 eV of the non-relativistic experimental

measurements except for the ‘3F–1S’ splitting of Ni, which

will be a continuing theme. KCCSD(T) tends to improve

the agreement to experiment as compared to

CCSD(T) except for the above mentioned case for Ni atom

where even CCSDT-3 performs poorly.
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As the procedure used to obtain these non-relativistic

experimental numbers tends to be arbitrary, a better

approach is to introduce relativistic effects directly into the

ab initio calculation.

3.2 Relativistic corrections

First row TM are not usually thought to manifest very large

relativistic corrections, but for high-accuracy quantum

chemical calculations it remains a necessity [20]. The

easiest way to introduce essential effects would be through

relativistic based effective core potentials (ECP) [21, 22].

This simply removes the inner shell electrons from the

calculation via introducing an ECP. The latter can be

obtained from doing a true Dirac–Fock calculation for the

TM, and generating the pseudo-potential by insisting that

for the remaining electrons their description remains the

same as obtained via the Dirac–Fock calculation. The ECP

used here, Stuttgart 1997 relativistic small core (RSC), has

pseudo-potential parameters adjusted to reproduce atomic

valence-energy spectra obtained from Dirac–Fock calcu-

lations. Of course, the potential limitation of this procedure

would be that only non-correlated theory is employed to

generate the ECP. If the same is done following a

4-component correlated calculation, then one might expect

that the ECP would be better suited to use in highly cor-

related CC calculations, but we know of no such ECP

generation.

Alternatively, there are ways to simplify the full

4-component calculation such as the Douglas–Kroll–Hess

(DKH) procedure [23–25] where by a series of unitary

transformations of the Dirac Hamiltonian, the large

(electronic) and small (positronic) component of the

wavefunction are uncoupled and a block-diagonal Hamil-

tonian is obtained. This block-diagonal Hamiltonian can be

expressed as a sum of a series of ‘even’ terms of orders in

the external potential. The truncation of this series at nth

order defines the DKHn Hamiltonian [26]. Here, we use a

fifth-order approximation that has been implemented [27]

in ACESII [28].

The results of the ROHF-CC calculations with the

Douglas–Kroll–Hess method (DKH5) are shown in

Table 2.

Above all-electron CC calculations with inclusion of

relativistic effect through the DKH5 procedure tend to

approach experimental J-averaged splittings [29] with

CCSDT-3 results being the most accurate. As compared to

the non-relativistic results (Table 1), different correlated

methods display similar general features. One improve-

ment, though, is seen for the hard to describe ‘3F–1S’

splitting of Ni which is now in better agreement with

experiment. The cc-pwCVQZ-DK basis set [30] optimized

for valence 3d and 4s as well as semi-core 3 s and 3p

electrons has been used and was obtained from the EMSL

basis set library [31, 32]. Although we report all-electron

results, no core addition to these bases that are mostly

meant to describe the valence electrons is made.

Similarly, we obtain the following results for ROHF-CC

calculations with relativistic ECP’s (Stuttgart RSC (Rela-

tivistic Small Core) ECP) which include relativistic effects

primarily as a core effect (Table 3)

When we compare the two relativistic results, it is

apparent that the all-electron CC calculations with

inclusion of scalar relativistic effects through the

Table 1 Non-relativistic ROHF-CC calculations on multiplet states of Fe, Co, Ni, and Cu in cc-pwCVQZ (NR) basis set

Excitation DFT (TPSS) DFT (B3LYP) SCF CCSD CCSD(T) KCCSD(T) CCSDT-3 Exp (NR)

Fe 5F(d6s2)–5D (d7s1) -0.46 -0.18 1.838 0.837 0.732 0.714 0.695 0.65

Co 4F(d7s2)–4F(d8s1) -0.47 -0.09 1.552 0.368 0.224 0.198 0.174 0.17

Ni 3F(d8s2)–3D(d9s1) -0.67 -0.31 0.833 -0.409 -0.526 -0.566 -0.486 -0.33
3F(d8s2)–1S (d10) 1.49 1.73 5.117 1.576 1.064 0.896 0.742 1.57

Cu 2D(d9s2)–2S(d10s1) -2.23 -1.86 -0.27 -1.638 -1.807 -1.856 -1.878 -1.85

The DFT results are taken from a study by Furche and Perdew6

Table 2 Relativistic ROHF-CC

(DKH5) calculations on

multiplet states of Fe, Co, Ni,

and Cu in cc-pwCVQZ-DK

basis set

Excitation SCF CCSD CCSD(T) KCCSD(T) CCSDT-3 Exp (eV)

Fe 5F(d6s2)–5D (d7s1) 2.106 1.103 0.993 0.975 0.954 0.87

Co 4F(d7s2)–4F(d8s1) 1.864 0.680 0.532 0.505 0.479 0.42

Ni 3F(d8s2)–3D (d9s1) 1.201 -0.044 -0.168 -0.210 -0.135 -0.03
3F(d8s2)–1S (d10) 5.694 2.180 1.658 1.487 1.299 1.71

Cu 2D(d9s2)–2S(d10s1) 0.153 -1.208 -1.383 -1.434 -1.459 -1.49
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Douglas-Kroll-Hess method performs better compared to

the valence CC calculations using relativistic ECP’s

particularly for Fe and Co states. The quality of the basis

set for the treatment of valence electrons in the ‘Stutt-

gart’ set might contribute to the overall poor perfor-

mance as compared to the all-electron calculations

since fewer functions are allocated to the correlation

treatment.

3.3 Choice of vacuum state

Common to all the SR-CC methods is the vacuum state |0i.
In a properly written CC program, it does not matter what

orbitals are used in the vacuum state, so we have many

choices within SR-CC. If the particular choice buys any-

thing, then SR-CC will benefit from that. That, and the

chosen approximation for the T amplitudes, are really the

only degrees of freedom in a CC calculation. Of course,

other pragmatic simplifications can be made, like dropping

core orbitals or only allowing active orbitals to be involved

in the evaluation of T3 and higher amplitudes to avoid the

excessive scaling that would otherwise ensue, but for this

paper, neither of those choices will be made. Instead, this

will address the differences obtained for different choices

of the vacuum state, |0i.
The obvious choice is to use some flavor of Hartree–Fock

theory. For closed shells that would be spin and spatially

restricted (RHF). For open shells, we can choose unrestricted

(UHF) or if we insist uponmaximum double occupancy up to

the open-shell orbitals, we have restricted open-shell HF

(ROHF). Unlike the former, the latter is a spin eigenfunction.

However, once either is used in a SR-CC calculation the final

result is not a spin eigenfunction. We monitor the spin state

from the generalized expectation value,

S2
� � ¼ 0h jð1þ KÞe�TS2eT 0j i ¼ �Sð�Sþ 1Þ
to define the average multiplicity, M.

M ¼ 2�Sþ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4 S2h iÞ

p
For UHF cases, the projected value is often used,

0h je�TS2eT 0j i ¼ �Sð�Sþ 1Þ
as that is consistent with the ‘projected’ CC theory itself.

But for an ROHF reference for |0i, it is trivially true that S

would be the eigenvalue for the exact spin state since the

h0| would project out any contaminant. The expectation

value does not have that limitation, so its value is more

indicative of the contamination of the actual CC spin state.

In Table 4 we list all the excited and ionized states studied

here with relative energies and spin-expectation values.

For all of these examples, the spin state is essentially

perfect within the error bars of the other components of the

calculation such as the basis set and level of correlation.

So, SRCC, with ROHF or even a UHF Ref. [33], seldom

suffers from large spin contamination [34], especially for

high spin states. Low spin states are another matter.

Because of the Thouless theorem that says any single

determinant of orbitals can be rotated to any other single

determinant up to a normalization constant via exp(T1),

CCSD and beyond have a very convenient insensitivity to

orbital choice. In other words, rather than worrying about

the optimization of the reference determinant, once it is

determined that calculations like CCSD and beyond are to

be done, the CCSD step is expected to automatically fix

most remaining deficiencies in the reference determinant.

This provides flexibility in the choice of the vacuum state

that can be exploited in a wide variety of applications.

Examples might include using a Kohn–Sham determi-

nant [35] when there is a known deficiency in the HF

solution, as occurs frequently for metal systems. Perhaps

we would like to use the first natural determinant

(N) composed of natural orbitals because that determinant

provides the density matrix with maximum overlap to the

exact, correlated density matrix. Maybe we would like to

use the Brueckner determinant [36] (B), which has maxi-

mum overlap with the exact correlated wavefunction.

Another choice pertinent to TM is to use orbitals that are

obtained from a closed-shell calculation (QRHF) [37].

These orbitals are taken from a HF calculation of a related

neutral or ionized state and are not variationally optimal,

but should be readily accommodated by Coupled-cluster

methods. To see how well this works, consider the results

obtained (Table 5)

On the scale of the expected accuracy of these calcu-

lations (*0.2 eV), most of these results are close to those

obtained using the ROHF reference with the differences

being shown in ‘()’ in Table 5. Clearly, the smallest dif-

ferences are for CCSDT-3 results. This is expected as the

Table 3 Relativistic ROHF-CC

calculations on multiplet states

of Fe, Co, Ni, and Cu in

‘Stuttgart 1997 RSC

(Relativistic Small Core) ECP

basis set

Excitation CCSD(T) KCCSD(T) CCSDT-3 Exp(eV)

Fe 5F(d6s2)–5D (d7s1) 1.413 1.353 1.333 0.87

Co 4F(d7s2)–4F(d8s1) 0.911 0.827 0.805 0.42

Ni 3F(d8s2)–3D (d9s1) 0.202 0.082 0.132 -0.03
3F(d8s2)–1S (d10) 2.325 1.856 1.479 1.71

Cu 2D(d9s2)–2S(d10s1) -1.285 -1.438 -1.442 -1.49
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higher the cluster operator, the closer to the full CI results

which would manifest full orbital invariance. When com-

pared directly to experiment, the actual answer using the

closed-shell QRHF orbitals tends to be a bit better in an

absolute sense when there are significant changes from the

ROHF-based calculation. Perhaps this effect can be ascri-

bed to the fact that the target states are now expressed

relative to exactly the same set of orbitals which might

benefit taking relative energy differences.

For TM in particular, or other highly degenerate systems,

another choice for the QRHF orbitals is to generate them via

a HF calculation on an open-shell system by insisting upon

fractional occupations of the valence d orbitals (FON). Such

a calculation provides a spherically symmetric state with

exactly five degenerate d orbitals unlike any normal UHF or

ROHF calculation which would lift the degeneracy. For this

set of orbitals, as was the case in the prior QRHF reference

calculations, the individual multiplets for different

occupancies of the 5 degenerate d orbitals are readily

apparent, instead of being complicated by which of the non-

degenerate orbitals are occupied in a givenmultiplet. Hence,

one set of orbitals can be used to generate all possible mul-

tiplet occupations. One difference that this procedure allows

compared to the priorQRHFcase based upon a nearby closed

shell is the possibility of generatingmultiple sets of reference

orbitals corresponding to the different choices of the occu-

pancies of the d orbitals. Again the fact the orbitals are not

variationally optimal in the fractional occupation case is

expected to be accommodated by CCSD and beyond so that

there is no remaining significant error from using these

orbitals for a subsequent treatment of TM multiplets (see

Table 6).

Here too, most results show modest changes, but for

those that are[0.1 eV, the absolute answers are generally

improved. An advantage here is the access to the states of

Fe and Co atoms. Neither are close to a closed-shell

Table 4 ROHF-CC

calculations on neutral and

cationic states of Fe, Co, Ni, Zn,

and Cu in cc-pwCVQZ-DK

basis set

Relative energies (in eV) are

calculated w.r.t one of the

indicated neutral states

Avg. Mult. CCSD CCSD(T) KCCSD(T) CCSDT-3 EXP (eV)

Fe
5D(d6s2) 4.99996 0.00 0.00 0.00 0.00 0.00
5F(d7s1) 5.00007 1.103 0.993 0.975 0.954 0.87

Fe?

6D(d6s1) 5.99996 7.691 7.840 7.828 7.838 7.90
4F(d7) 4.00009 8.174 8.209 8.192 8.193 8.15

Co
4F(d7s2) 3.99995 0.00 0.00 0.00 0.00 0.00
4F(d8s1) 4.00003 0.681 0.532 0.505 0.479 0.42

Co?

5F(d7s1) 5.00002 8.076 8.229 8.218 8.228 8.28
3F(d8) 2.99988 7.897 7.905 7.884 7.885 7.85

Ni
3D(d9s1) 2.99999 -0.0439 -0.168 -0.210 -0.135 -0.03
3F (d8s2) 2.99997 0.00 0.00 0.00 0.00 0.00
1S (d10) 1.00000 2.180 1.658 1.487 1.299 1.71

Ni?

4F (sd8) 3.99997 8.137 8.350 8.337 8.451 8.67
2D(d9) 1.99978 7.311 7.353 7.322 7.427 7.59

Cu
2S(d10s1) 1.99985 -1.208 -1.383 -1.434 -1.459 -1.49
2D(d9s2) 1.99996 0.000 0.000 0.000 0.000 0.000
2P(d10p1) 1.99076 2.538 2.437 2.398 2.315 2.295

Cu?

3D(d9s1) 2.99998 8.815 8.974 8.967 8.976 9.04
1S (d10) 1.00000 6.249 6.237 6.202 6.206 6.23

Zn
1S(d10s2) 1.00000 0.000 0.000 0.000 0.000 0.000

Zn?

2S(d10s1) 1.99996 9.147 9.305 9.301 9.308 9.39
2D(d9s2) 1.99998 16.903 17.112 17.128 17.130 17.30
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reference where the prior QRHF procedure could be used,

but with orbitals generated using fractional occupation HF

calculation, these high spin open-shell multiplets can be

accessed and the results are quite accurate.

Another choice is the Brueckner set of orbitals in which

the virtual orbitals are rotated in such a way as to make the

single amplitudes zero i.e., T1 = 0. This condition ensures

that overlap between the reference function and the exact

wavefunction is a maximum i.e.,

UBruecknerjWh ij j ¼ max

Again we see modest changes relative to ROHF-based

SRCC calculations (Table 7).

3.4 Relativistic corrections and orbital invariance

An additional aspect of orbital invariance pertains to the

nature of the relativistic correlation corrections. The DKH5

procedure changes the mean-field Hamiltonian and orbitals

for the subsequent CC correlated calculation. So all cou-

pling between relativity and correlation in this approxi-

mation comes from these two effects. Hence, one might ask

does the orbital invariance of CCSD and beyond still apply

even though the Hamiltonian has changed? If it did, then a

non-relativistic calculation can be directly added to the

DKH5 mean-field and the results will be essentially the

same. In Table 8, we show results obtained in that manner.

The results show that the amount of correlation energy

using a particular correlated method with a non-relativistic

Hamiltonian or a relativistic (DKH transformed) Hamilto-

nian is almost the same, and thus, we have orbital invari-

ance in CC theory even when terms have been added to the

non-relativistic Hamiltonian.

3.5 Equation-of-motion CC

One more route to obtaining multiplets of TMs is to use

indirect means based upon the EOM-CC method [38, 39].

Then, depending upon the choice of starting point, these

states can be excited states, ionized, or electron attached

states. Using indirect EOM-CC approaches is particularly

helpful if the reference state is described by a SR-CC for a

closed shell, because then it follows that all accessible

open-shell states are spin eigenfunctions. This is obviously

especially useful for TM multiplets since much of their

complexity arises from their spin properties. It is also

unlike other SR-CC results where \S2[ should be

monitored.

The EOM-CC equations are well known. Once a SR-CC

reference solution is obtained, then all sectors of Fock

space can be assessed by solving

�HRk 0j i ¼ Rkxk 0j i
where xk is the difference in energy between the reference

state and the target excited, or ionized, or attached state.

Furthermore, there is a whole spectrum of target states that

are accessible via diagonalization of the matrix equation.

Like T, for any k,

R ¼ r0 þ R1 þ R2 þ R3 þ � � �
The particular sector of Fock space to be studied is

governed by the meaning of Rp. For excited electronic

states, R1 would correspond to single excitations or 1-

particle, 1-hole operators (1p1h) {a?i}, with R2 being 2p2h

{a?i b?j}, etc. Only for electronic excited states of the

same symmetry as the reference state does r0 have mean-

ing. For ionized states, the excitation into orbital a would

Table 5 QRHF-CC calculations in calculations on neutral and cationic states of Ni, Zn, and Cu in a cc-pwCVQZ-DK basis set

QRHF CCSD CCSD(T) KCCSD(T) CCSDT-3 EXP

Ni 3D (d9s1) 0.1520 (-0.1959) -0.652 (0.484) -0.5491 (0.3391) -0.0748 (-0.0602) -0.03
3F (d8s2) 0.00 0.00 0.00 0.00 0.00
1S (d10) 2.242 (-0.062) 1.244 (0.414) 1.005 (0.482) 1.326 (-0.027) 1.71

Ni? 4F (sd8) 8.514 (-0.377) 8.361 (-0.011) 8.450 (-0.113) 8.597 (-0.146) 8.67
2D(d9) 7.493 (-0.182) 6.892 (0.461) 6.934 (0.388) 7.462 (-0.035) 7.59

Cu 2S (d10s1) -1.356 (0.148) -1.320 (-0.063) -1.460 (0.026) -1.450 (-0.009) -1.49
2D(d9s2) 0.000 0.000 0.000 0.000 0.000
2P(d10p1) 2.425 (0.113) 2.475 (-0.038) 2.352 (0.046) 2.311 (0.004) 2.295

Cu? 3D (d9s1) 8.809 (0.006) 8.968 (0.006) 8.962 (0.005) 8.972 (0.004) 9.04
1S (d10) 6.150 (0.099) 6.263 (-0.026) 6.1486 (0.0534) 6.201 (0.005) 6.23

Zn 1S(d10s2) 0.000 0.000 0.000 0.000 0.000

Zn? 2S (d10s1) 9.171 (-0.024) 9.286 (0.019) 9.293 (0.008) 9.305 (0.003) 9.39
2D(d9s2) 16.970 (-0.067) 17.097 (0.015) 17.192 (-0.064) 17.129 (0.001) 17.30

Relative energies (in eV) are calculated w.r.t. one of the indicated neutral states (dns2) of the Ni, Cu, and Zn atoms. The numerical difference with

the variationally optimal ROHF reference are indicated in ‘( )’
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correspond to the continuum, so R1 is limited to just one-

hole states, {i}|0i and R2 to 2h1p, {ija
?}|0i, etc. For double

ionization, DIP, R2 is the first contributing operator, {ij}|0i,

with R3 being 3h1p operators, {ijka?}|0i. For properties in
target EOM-CC states, the left-hand eigenvector solution is

required,

Table 6 QRHF-CC

calculations based on reference

wave functions composed of

orbitals obtained from

‘fractional occupation’ HF

calculations (FON)

Neutral and cationic states of

Fe, Co, Ni, Zn, and Cu in the cc-

pwCVQZ-DK basis set are

studied. Relative energies (in

eV) are calculated w.r.t neutral

states (dns2) of Fe, Co, Ni, Cu,

and Zn atoms. The numerical

difference with the variationally

optimal ROHF reference CC

results are indicated in ‘( )’

FON CCSD CCSD(T) KCCSD(T) CCSDT-3 EXP

Fe 5D(d6s2) 0.00 0.00 0.00 0.00 0.00
5F(d7s1) 0.972 (0.131) 1.068 (-0.075) 1.019 (-0.044) 0.949 (0.005) 0.87

Fe? 6D(d6s1) 7.673 (0.018) 7.846 (-0.006) 7.841 (-0.013) 7.839 (-0.001) 7.90
4F(d7) 8.103 (0.071) 8.365 (-0.156) 8.336 (-0.144) 8.194 (-0.001) 8.15

Co 4F(d7s2) 0.00 0.00 0.00 0.00 0.00
4F(d8s1) 0.480 (0.201) 0.688 (-0.154) 0.616 (-0.111) 0.493 (-0.014) 0.42

Co? 5F(d7s1) 8.066 (0.01) 8.316 (-0.087) 8.325 (-0.107) 8.230 (-0.002) 8.28
3F(d8) 8.055 (-0.158) 8.210 (-0.305) 8.167 (-0.283) 8.023 (-0.138) 7.85

Ni 3D (d9s1) -0.319 (0.2751) 0.110 (-0.278) 0.001 (-0.211) -0.076 (-0.059) -0.03
3F (d8s2) 0.00 0.00 0.00 0.00 0.00

Ni? 4F (sd8) 8.143 (-0.006) 8.349 (0.001) 8.346 (-0.009) 8.460 (-0.009) 8.67
2D(d9) 7.149 (0.162) 7.504 (-0.151) 7.437 (-0.115) 7.455 (-0.028) 7.59

Cu 2S (d10s1) -1.554 (0.346) -0.966 (-0.417) -1.112 (-0.322) -1.355 (-0.104) -1.49
2D(d9s2) 0.000 0.000 0.000 0.000 0.000
2P(d10p1) 2.277 (0.261) 2.711 (-0.274) 2.625 (-0.227) 2.315 (0.00) 2.295

Cu? 3D (d9s1) 8.828 (-0.013) 8.963 (0.011) 8.967 (0.00) 8.975 (0.001) 9.04
1S (d10) 6.036 (0.213) 6.476 (-0.239) 6.392 (-0.19) 6.255 (-0.049) 6.23

Table 7 Brueckner-CC calculations on neutral and cationic states of Ni, Zn, and Cu in a cc-pwCVQZ-DK basis set

Brueckner CCSD(ROHF) CCSD CCSD(T) CCSDT-3 EXP

Fe 5D(d6s2) 0.00 0.00 0.00 0.00 0.00
5F(d7s1) 1.103 1.071 (0.032) 0.977 (0.016) 0.949 (0.005) 0.87

Fe? 6D(d6s1) 7.691 7.637 (0.054) 7.838 (0.002) 7.838 (0.00) 7.90
4F(d7) 8.174 8.131 (0.043) 8.202 (0.007) 8.193 (0.000) 8.15

Co 4F(d7s2) 0.00 0.00 0.00 0.00 0.00
4F(d8s1) 0.681 0.704 (-0.023) 0.516 (0.016) 0.476 (0.003) 0.42

Co? 5F(d7s1) 8.076 8.068 (0.008) 8.235 (-0.006) 8.232 (-0.004) 8.28
3F(d8) 7.897 7.905 (-0.008) 7.904 (0.001) 7.889 (-0.004) 7.85

Ni 3D (d9s1) -0.0439 -0.010 (-0.0339) -0.190 (0.022) -0.137 (0.002) -0.03
3F (d8s2) 0.00 0.00 0.00 0.00 0.00
1S (d10) 2.180 2.274 (-0.094) 1.540 (0.118) 1.303 (-0.004) 1.71

Ni? 4F (sd8) 8.137 8.128 (0.009) 8.358 (-0.008) 8.456 (-0.005) 8.67
2D(d9) 7.311 7.329 (-0.018) 7.353 (0.000) 7.437 (-0.01) 7.59

Cu 2S (d10s1) -1.208 -1.168 (-0.04) -1.412 (0.029) -1.460 (0.001) -1.49
2D(d9s2) 0.000 0.000 0.000 0.000 0.000
2P(d10p1) 2.538 2.578 (-0.04) 2.424 (0.013) 2.331 (-0.016) 2.295

Cu? 3D (d9s1) 8.815 8.806 (0.009) 8.987 (-0.013) 8.985 (-0.009) 9.04
1S (d10) 6.249 6.272 (-0.023) 6.236 (0.001) 6.220 (-0.014) 6.23

Zn 1S (d10s2) 0.000 0.000 0.000 0.000 0.000

Zn? 2S (d10s1) 9.147 9.140 (0.007) 9.321 (-0.016) 9.320 (-0.012) 9.39
2D(d9s2) 16.903 16.863 (0.04) 17.122 (-0.01) 17.127 (0.003) 17.30

Relative energies (in eV) are calculated w.r.t one of the neutral states of Ni, Cu, and Zn atoms. For iron’s 5D state, there was difficulty in

converging the Brueckner iteration process, so the final rotated t1 amplitudes are\0.08. The numerical difference with the variationally optimal

ROHF reference are indicated in ‘()’
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0h jLk �H ¼ 0h jLkxk

ðcNÞlkqp ¼ 0h jLke�T pþqf geTRl 0j i
as was K for the reference state.

Below (Table 9) are the energies for the ‘dn-2

s2-[ dn-1s1’ excitation calculation using various methods

such as CIS, EOM-MBPT(2), EOM-CCSD, and EOM-

CCSD(T) approaches with the relativistic effects included

at the level of Hamiltonian through the DKH5

transformation.

The EOM-CCSD and EOM-CCSD(T) results are less

accurate as compared to the reference CCSDT-3 values

with error of 0.1–0.3 eV in the excitations studied above.

When we add triples to get EOM-CCSD(T), we normally

expect the excitation energies to improve by *0.2 eV

[40] and it definitely seems to be the case here. A

possible reason for this large correction is the fact that

these are transitions from an open-shell to an open-shell

system. Generally, EOM-CC calculations calculate tran-

sition energies from a closed-shell system to open-shell

systems. Such EOM calculations provide spin eigen-

functions for the target states which is clearly not the

case in the above UHF-reference EOM calculations

where sorting out spin states can be difficult even with

spin-expectation values. On the other hand, the inclusion

of (T) into the EOM calculation indicates that iterative

triples methods will certainly help to improve these

multiplet energies.

A superior approach for EE-EOM-CC for such problems

is the ROHF-based scheme [41] proposed by Szalay and

Gauss, where the target state is guaranteed to be a spin

eigenfunction. Also, the spin-flip variant of EOM-CC of

Krylov [42] could be used for some states.

Other variants of the EOM-CCSD method, IP-EOM-

CCSD, EA-EOM-CCSD, and DIP-EOM-CCSD can be

used to describe selected multiplet states for the copper and

zinc atoms (Table 10) where the transition is from closed

shell to open shells. This can be done in multiple ways

depending upon the chosen reference state and the partic-

ular variant of EOM.

As described in Table 10, the neutral and singly ionized

states of copper are not obtained via a single IP-EOM or

DIP-EOM or an EA-EOM calculation but by a combination

of all three which gives us access to all the studied states

from the starting closed shell (either a Cu- (d10s2) or Cu?

(d10)). A comment on the quality of results is due as we can

see the splittings between the neutral states is not as

numerically precise as compared to the SRCC or the EE-

EOM results. A possible explanation might lie in the use of

non-optimal set of orbitals to describe the states and the

comparative ‘sensitivity’ of EOM results to the choice of

orbitals used. Unlike the SR-CC, the R1 operator in EOM

T
a
b
le

8
T
h
e
co
rr
el
at
io
n
en
er
g
y
co
n
tr
ib
u
ti
o
n
o
b
ta
in
ed

u
si
n
g
n
o
n
-r
el
at
iv
is
ti
c
C
C
S
D

an
d
C
C
S
D
(T
)
ca
lc
u
la
ti
o
n
s
ar
e
ad
d
ed
,
re
sp
ec
ti
v
el
y
,
to

S
C
F
en
er
g
y
(u
si
n
g
D
K
H
5
tr
an
sf
o
rm

ed
H
am

il
to
n
ia
n
)

an
d
co
m
p
ar
ed

to
th
e
re
la
ti
v
is
ti
c
to
ta
l
en
er
g
y
se
p
ar
at
io
n
at

th
es
e
co
rr
el
at
ed

le
v
el
s

E
x
ci
ta
ti
o
n

S
C
F
(D

K
H
5
)

E
c
o
r(
N
R
)
(C
C
S
D

le
v
el
)

E
S
C
F
(D

K
H
5
)
?

E
c
o
r(
N
R
)

C
C
S
D

(D
K
H
5
)

E
c
o
r(
N
R
)
C
C
S
D
(T
)

E
S
C
F
(D

K
H
5
)
?

E
c
o
r(
N
R
)

C
C
S
D
(T
)
(D

K
H
5
)

F
e

5
F
(d

6
s2

) –
5
D

(d
7
s1
)

2
.1
0
6

-
1
.0
0
1

1
.1
0
5

1
.1
0
3

-
1
.1
0
6

1
.0
0
0

0
.9
9
3

C
o

4
F
(d

7
s2
)–

4
F
(d

8
s1
)

1
.8
6
4

-
1
.1
8
4

0
.6
8
0

0
.6
8
0

-
1
.3
2
8

0
.5
3
6

0
.5
3
2

N
i

3
F
(d

8
s2
)–

3
D

(d
9
s1
)

1
.2
0
1

-
1
.2
4
2

-
0
.0
4
1

-
0
.0
4
4

-
1
.3
5
9

-
0
.1
5
8

-
0
.1
6
8

3
F
(d

8
s2
)–

1
S
(d

1
0
)

5
.6
9
4

-
3
.5
4
1

2
.1
5
3

2
.1
8
0

-
4
.0
5
3

1
.6
4
1

1
.6
5
8

C
u

2
D
(d

9
s2
)–

2
S
(d

1
0
s1
)

0
.1
5
3

-
1
.3
6
8

-
1
.2
1
5

-
1
.2
0
8

-
1
.5
3
7

-
1
.3
8
4

-
1
.3
8
3

S
ee

T
ab
le
s
1
an
d
2

Theor Chem Acc (2014) 133:1515

123 Reprinted from the journal210



that mostly accounts for orbital relaxation is linear instead

of exponential, which causes the orbital choice to be more

important.

The ionization potentials obtained through IP-EOM-

CCSD are quite accurate as compared to the experimental

result with an accuracy of 0.1 eV with the exception of the
2S state of Cu and the 1S state of Cu?.

4 Conclusions

A great deal of important chemistry involves TM systems.

Besides the large number of electrons that have to be

described, there are critical degeneracies, spin effects and

relativistic corrections. One objective of this work is to

assess the suitability of SR-CC methods to be able to

correctly describe these systems. Though many of the

complications that are found in smaller systems might be

present to a lesser extent in larger TM systems with

attached ligands that will quench some of these degenera-

cies and spin complications, the prototype for all TM

systems are the TM atoms themselves. Since these atomic

multiplets are fundamental to the chemistry of TM’s, they

need to be accurately described by quantum chemical

methods themselves. We demonstrate the wealth of dif-

ferent SR-CC methods that could be used. In general, the

CCSDT-3 results obtained here provide multiplet splittings

to an accuracy of *0.1 eV with a few exceptions. Also it

does not seem to matter significantly whether ROHF,

QRHF, UHF, FON, or Brueckner orbital-based references

are used. The use of orbitals generated by fractional

occupation-based HF calculations further expands the

accessibility of closed-shell-based QRHF references to any

d occupations as demanded in the case of the Fe and Co

multiplets.

A comparison of all-electron calculations with inclusion

of relativistic effects through DKH5 methods and valence-

electron calculation with relativistic ECP basis is assessed,

with the DKH5 procedure preferred. For a discussion on

the infinite-order generalization of DKH and exact two-

component theories see Barsyz and Sadlej [43]. Their

approach would be the obvious generalization of DKH.

In all these calculations, iterative triple excitations via

CCSDT-3 are found to be essential to obtain accurate

results (*0.1 eV). Even though the SR-CC is not a strict

spin eigenfunction, the computed spin multiplicities for the

SR-CC calculations are quite accurate.

The most difficult multiplets to describe with QRHF are

those that involve d3 to d7 since these are not close to a

suitable closed-shell reference state. For such cases, FON

orbitals offer an attractive alternative that provides a

spherically symmetric set of orbitals which leads to

unambiguous orbital occupations. Finally, the EE-EOM-

CCSD method is used to calculate the energies for dn-2s2-

[ dn-1s1 excitations for the hard to access states. At the

level of EOM-CCSD without triples, these were found to

be not as accurate as the ones calculated through other

approaches using SRCC methods, as the EE-EOM method

would require open-shell to open-shell excitations, which

are less recommended. However, once the non-iterative

triples correction is added, the results are much better.

Table 9 dn-2s2-[ dn-1s1 excitation energies calculated by EE-EOM-CCSD method for Fe, Co, Ni, and Cu atoms in UHF reference, inclusion

of relativistic effects by DKH5 transformation

Excitation (reference-excited) CIS EOM-MBPT(2) EOM-CCSD EOM-CCSD(T) CCSDT-3 (ROHF) Exp(eV)

Fe 5F(d6s2)–5D (d7s1) 4.148 1.406 1.260 1.234 0.954 0.87

Co 4F(d7s2)–4F(d8s1) -1.695 -0.258 0.173 0.580 0.479 0.42

Ni 3F(d8s2)–3D(d9s1) -0.414 -0.095 -0.288 -0.110 -0.135 -0.03

Cu 2D(d9s2)–2S(d10s1) -3.735 -2.065 -1.363 -1.720 -1.459 -1.49

The ‘cc-pwCVQZ-DK’ (uncontracted) basis is used

Table 10 The neutral and cationic states of Cu and Zn atoms

obtained using IP/EA variants of EOM-CCSD method in cc-

pwCVQZ-DK (uncontracted) basis set, and the inclusion of relativ-

istic effects using DKH5

Copper IP/DIP/EA-EOM-CCSD Exp (eV)

Cu 2S (d10s1) -2.177 -1.49
2D(d9s2) 0.00 0.000
2P(d10p1) 1.457 2.295

Cu? 3D (d9s1) 9.062 9.04
1S (d10) 5.127 6.23

Zn 1S d(10s2) 0.000 0.000

Zn? 2S (d10s1) 9.244 9.39
2D(d9s2) 17.269 17.30

In the case of copper atom, we obtain the neutral states 2S (d10s1) and
2D (d9s2) as single ionizations from the copper anionic state (Cu-–1S

(d10s2)) and 2P (d10p1) as an electron addition to the copper cationic

state (Cu? (d10)) using EA-EOM-CCSD. The two cationic states, 3D

(d9s1) and 1S (d10), are obtained as double ionizations from copper

anion (Cu-–1S (d10s2)) using DIP-EOM-CCSD. Similarly in the case

of Zinc, we obtain the cationic states as ionizations from the closed-

shell ground 1S state using IP-EOM-CCSD
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Iterative triples models for EOM-CC, analogous to

CCSDT-3 for the single state, would be recommended.

Closed-shell-based EOM is used in the IP/EA-EOM-CC

methods to obtain the ionization potentials for Cu and Zn

which were generally found to be accurate as compared to

the experimental values.

In summary, for TM multiplets, SR-CC methods such as

CCSDT-3 provide highly accurate results despite their

extensive degeneracy and spin state complications. Once

ligands are added, much of the complexity encountered in

the atoms would be alleviated. Hence, there is little reason

to automatically assume that any TM complex demands a

multi-reference description. All indications are that such

systems can be described as well as other molecules

composed of light atoms, as long as the large number of

electrons is under control. With regard to that number, the

extensivity of CC methods becomes especially pertinent

for large number of electrons. Size-extensive methods

follow a path that is correct from the limit of N non-

interacting molecular units to the electron gas of infinite

electrons, guaranteeing that the linked diagram energy is

linear in either N. CC theory adheres to this all important

path unlike CI methods, or even DFT ones.
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Abstract Both coaxial and perpendicular singlet spin

state structures are found for the dibenzene dimetal com-

plexes (C6H6)2M2 (M = Fe, Mn, and Cr) using density

functional theory. For (C6H6)2M2 (M = Fe, Mn), the

coaxial structure is the lower energy structure, whereas for

(C6H6)2Cr2 the perpendicular structure is the lower energy

structure. These coaxial structures are predicted to have

very short M–M distances of *1.98 Å for (C6H6)2Fe2,

*1.75 Å for (C6H6)2Mn2, and *1.68 Å for (C6H6)2Cr2.

Investigation into the frontier molecular orbitals suggests a

formal 2p Fe=Fe double bond in (C6H6)2Fe2, a r ? 2p
Mn:Mn triple bond in (C6H6)2Mn2, and a r ? 2p ? d
quadruple bond in (C6H6)2Cr2. This gives each metal atom

in these coaxial (C6H6)2M2 (M = Fe, Mn, Cr) derivatives a

16-electron configuration suggesting an 8-orbital d5p3

metal valence orbital manifold without the involvement of

the s orbital. The coaxial (C6H6)2M2 (M = Fe, Mn)

derivatives have ideal sixfold D6h symmetry. However,

distortion of coaxial (C6H6)2Cr2 from D6h symmetry to D2h

symmetry is observed because of involvement of only one

orbital from the {d(xy), d(x2 - y2)} set of d symmetry of

each chromium atom in the formal quadruple bond.

Keywords Dibenzene dimetal compounds � Metal–metal

multiple bonding � Molecular orbitals � Density functional

theory

1 Introduction

The chemistry of metal–metal multiple bonding [1, 2] dates

back nearly a half century to the seminal 1965 work of

Cotton and Harris [3, 4] on the rhenium–rhenium quadru-

ple bond in the octachlorodirhenate(III) dianion Re2Cl8
2-.

Structure determination of this anion in its dipotassium salt

showed four terminal chlorine atoms bonded to each rhe-

nium atom and an unusually short rhenium–rhenium dis-

tance of 2.24 Å suggesting a high-order metal–metal

multiple bond (Fig. 1). A more detailed analysis of the

rhenium–rhenium bonding in Re2Cl8
2- led to the postula-

tion of a formal quadruple bond, thereby giving each rhe-

nium atom only a 16-electron configuration in contrast to

the favored 18-electron configuration in transition metal

organometallic chemistry and related areas of coordination

chemistry [5–9]. The rhenium–rhenium bond in Re2Cl8
2-

represented not only the first example of a metal–metal

multiple bond but also the first example of a quadruple

bond of any type.

Shortly after the identification of the Re–Re quadruple

bond in the purely inorganic anion Re2Cl8
2-, the first
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example of metal–metal multiple bonding in an organo-

metallic system was discovered. Thus, in 1967, King and

Bisnette [10] reported the thermal reaction of Mo(CO)6
with pentamethylcyclopentadiene to give the tetracarbonyl

(g5-Me5C5)2Mo2(CO)4 rather than the expected hexa-

carbonyl (g5-Me5C5)2Mo2(CO)6 analogous to the unsub-

stituted cyclopentadienyl derivative. Formulation of the

metal–metal bond in (g5-Me5C5)2Mo2(CO)4 as the

Mo:Mo triple bond suggested by the 18-electron rule was

later supported by an X-ray structural determination indi-

cating an unusually short metal–metal distance consistent

with a triple bond (Fig. 2). Thus, the metal–metal distance

in (g5-Me5C5)2Mo2(CO)4 was found to be 2.488 Å as

compared to 3.235 Å for (g5-C5H5)2Mo2(CO)6, which

clearly has a metal–metal single bond [11]. Subsequently,

the analogous chromium compounds (g5-R5C5)2Cr2(CO)4
(R=H, [12] Me [13, 14]) were also synthesized and like-

wise found to have relatively short Cr:Cr distances

around 2.24 Å suggesting formal triple bonds. Further

work indicated related formal metal–metal triple bonds to

be stable central units in the binuclear cyclopentadienyl-

metal carbonyls (g5-C5R5)2V2(CO)5 [15, 16] and (g5-C5R5)2
M0

2(CO)3 (M0=Mn, [17] Re [18]) (Fig. 2). In all of these

binuclear cyclopentadienyl metal carbonyl derivatives

containing postulated formal M:M triple bonds, each

metal atom has the favored 18-electron configuration.

The highest known formal metal–metal bond order in a

stable molecule then remained four for 40 years until

the 2005 discovery by Power et al. [19] of a binuclear

chromium(I) aryl of the type ArylCrCrAryl (Aryl=C6H3-

2,6(C6H3-2,6-Pr2
i )2), with an extremely short metal–metal

distance suggesting a formal quintuple bond (Fig. 1). This

seminal discovery stimulated numerous theoretical studies

on high-order metal–metal bonds [20–25]. In addition,

various research groups reported further experimental work

on low oxidation state transition metal aryls of the type

ArylMMAryl [26, 27] as well as chromium(I) amidinate,

[28, 29] 2-amino-pyridine, [30], and diazadiene [31]

complexes, apparently containing formal metal–metal

quintuple bonds. Note that simple electron counting in the

binuclear chromium(I) aryls RCrCrR gives each chromium

atom only a 12-electron configuration, even with a formal

chromium–chromium quintuple bond. Chromium is also a

favorable metal to form binuclear derivatives with formal

quadruple bonds such as in the chromium(II) carboxylates,

Cr2(O2CR)4�2L, which typically have short dis-

tances around 2.3 Å [32].

The available experimental results have led to the dis-

covery of a number of binuclear transition metal deriva-

tives having formal quadruple or quintuple bonds between

the pair of transition metals as noted above. However, in all

such stable compounds, each transition metal atom has less

than the favored 18-electron configuration. In recent years,

we have undertaken a number of theoretical studies in

order to suggest possible systems for the synthesis of stable

binuclear molecules containing metal–metal bonds of

orders four and larger and the generally favored 18-elec-

tron configurations for the metal atoms forming such

multiple bonds. An investigation of the unsaturated nio-

bium carbonyls Nb2(CO)9 and Nb2(CO)8 predicted short

Nb–Nb distances and high WBI values, suggesting the

formal Nb–Nb quadruple and quintuple bonds required to

Fig. 1 First species with metal–

metal quadruple and quintuple

bonds to be synthesized and

characterized structurally by

X-ray crystallography

Fig. 2 Binuclear

cyclopentadienyl metal

carbonyls with formal M:M

triple bonds that have been

structurally characterized by

X-ray crystallography
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give each niobium atom the favored configuration [33].

However, an analysis of the highest lying bonding MOs

suggested formal r ? 2p formal Nb:Nb triple bonds and

16-electron niobium configurations in these species. Thus,

the occupied d bonding orbitals in these species appeared

to be canceled out by filled d* antibonding orbitals so that

the net d bonding in the Nb–Nb bond becomes zero. The

metal d orbitals that would otherwise be used for d bonding
in the Nb–Nb multiple bonds are diverted away from the

Nb–Nb bond for dp ? pp back-bonding to the carbonyl

groups. A related situation appears to occur in the singlet

(C6H6)2Cr2(CO)2 and (C6H6)2Cr2(CO) structures [34].

Dimetallocenes, in which a pair of metal atoms is

sandwiched between two parallel planar carbocyclic rings,

provide additional examples of interesting metal–metal

bonded organometallic systems. Such dimetallocenes can

have coaxial, bent, or perpendicular structures (Fig. 3). The

first coaxial dimetallocene, namely decamethyl-dizinco-

cene (g5-Me5C5)2Zn2, was synthesized by Carmona et al. in

2004 [35]. This dizincocene derivative can be regarded as a

formal zinc(I) derivative with a formal Zn–Zn single bond

leading to the favored 18-electron configuration for each

zinc atom. In order to explore possible metal–metal mul-

tiple bonding in dimetallocenes, the third-row transition

metal derivatives Cp2M2 (Cp = g5-C5H5; M = Os, Re, W,

Ta) [36] were investigated in view of the expected ten-

dencies for such metals to form metal–metal multiple

bonds as indicated by the original rhenium–rhenium qua-

druple bond in Re2Cl8
2- discussed above [3]. Bent dime-

tallocene structures were predicted for all of these systems

with short metal–metal distances suggesting high-order

metal–metal multiple bonds. Of particular interest are the

singlet Cp2M2 (M = Os, Re) systems for which analysis of

the frontier bonding molecular orbitals suggests a formal

Os–Os quintuple bond (r ? 2p ? 2d) in singlet Cp2Os2
and a formal Re–Re sextuple bond (2r ? 2p ? 2d) in

singlet Cp2Re2. Such high formal metal–metal bond orders

give each metal atom in both molecules the favored

18-electron metal configuration.

These Cp2M2 (M = Os, Re, W, Ta) dimetallocenes with

apparent high-order metal–metal multiple bonds all have

bent dimetallocene structures. In order to find linear

dimetallocene structures with possible high-order metal–

metal multiple bonds, the dibenzene dimetal derivatives

(C6H6)2M2 of the first-row transition metals (M = Ti, V,

Cr, Mn, Fe, Co, Ni) were investigated by density functional

theory. Perpendicular dimetallocene structures were found

for all seven (C6H6)2M2 derivatives with bridging benzene

ligands related to the known dibenzene dipalladium dica-

tion (C6H6)2Pd2
2? in (C6H6)2Pd2(AlCl4)2 and (C6H6)2Pd2

(Al2Cl7)2, first reported in 1970 [37]. However, only the

chromium, manganese, and iron derivatives (C6H6)2M2

(M = Cr, Mn, Fe) were found to form coaxial isomers with

terminal benzene ligands and the metal–metal axes

collinear with the C6 axes of the benzene rings. The

(C6H6)2M2 isomers of the remaining four metals (M = Ti,

V, Co, Ni) with terminal benzene ligands were predicted to

have bent dimetallocene structures similar to those of the

bent dimetallocenes Cp2M2 (M = Os, Re, W, Ta), which

were objects of the previous theoretical study on metal–

metal multiple bonding [36].

Application of the 18-electron rule [5–9] predicts formal

high metal–metal bond orders in the coaxial (C6H6)2M2

(M = Cr, Mn, Fe) derivatives ranging from six for the

chromium derivative to four for the iron derivative. The

prospect of synthesizing (C6H6)2Cr2 or other (arene)2Cr2
derivatives is particularly interesting since a formal bond

order of six for the chromium–chromium bond would

exceed the formal bond order of five in the Power Aryl-

CrCrAryl derivatives (Fig. 1). In order to gain insight into

the nature of the metal–metal multiple bonding in the

coaxial (C6H6)2M2 (M = Cr, Mn, Fe) derivatives, we have

investigated the frontier molecular orbitals in these sys-

tems. We come to the somewhat disappointing conclusion

that these (C6H6)2M2 complexes are best regarded as sys-

tems with 16-electron metal configurations rather than

18-electron metal configurations having formal bond orders

ranging from four for the chromium derivative to two for

the iron derivative. The metal d orbitals that could other-

wise be used for components of the metal–metal bond

appear to be preempted for back-bonding into the d anti-

bonding orbitals of the benzene rings.

2 Theoretical methods

The density functional theory (DFT) methods B3LYP [38,

39] and BP86 [40, 41] with double-f plus polarization

(DZP) basis sets were selected for this study similar to our

numerous previous theoretical studies on first-row transi-

tion metal complexes. Thus, for carbon and hydrogen, the

DZP basis set used here adds one set of pure spherical

harmonic d functions with orbital exponents ad(C) = 0.75

and ap(H) = 0.75 to the Huzinaga–Dunning standard

contracted DZ sets designated as (9s5p1d/4s2p1d) for

M

M

M

M
M M

Coaxial Bent Perpendicular

Fig. 3 Coaxial, bent, and perpendicular dimetallocenes
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carbon and (4s1p/2s1p) for hydrogen [42, 43]. For the first-

row transition metals, in our loosely contracted DZP basis

set, the Wachters’ primitive sets were used, but augmented

by two sets of p functions and one set of d functions and

contracted following Hood et al. [44] and designated as

(14s11p6d/10s8p3d).

The geometries of all of the structures were fully opti-

mized using both the DZP B3LYP and DZP BP86 meth-

ods. All of the computations were carried out with the

Gaussian 09 program package [45], in which an ultrafine

integration grid (99, 590) was used. Imaginary vibrational

frequencies of magnitude less than 100i cm-1 are ques-

tionable, because of the limitation of the numerical inte-

gration for the DFT methods [46]. In general, we do not

follow the imaginary eigenvector in search of the minimum

in such cases.

3 Results and discussion

3.1 Metal-ring bonding in benzene metal complexes

Figure 4 shows the benzene frontier molecular orbitals and

the available atomic orbitals of a d-block transition metal

in a coaxial (C6H6)2M2 derivative with which they can

overlap. The coordinate system is chosen so that the z axis

is collinear with the metal–metal bond.

The six p electrons of a neutral benzene ligand in a

coaxial (C6H6)2M2 derivative fill pairwise the lowest lying

non-degenerate A molecular orbital and the immediately

higher lying degenerate E1 molecular orbital pair (Fig. 4).

A benzene–metal bond in such a molecule using these six p
electrons is effectively a formal triple bond with one r
component and two orthogonal p components. The ben-

zene–metal r bond can effectively use a linear hybrid of

the p(z) and d(z2) metal orbitals leaving the other hybrid for

a r component of the metal–metal bond. The metal s

orbital, although of suitable symmetry, is less likely to play

a role in this metal–metal r bond because of its non-

directional nature. Similarly, one of the two orthogonal

benzene–metal p bonds can use a linear hybrid of the

p(x) and d(xz) metal orbitals leaving the other hybrid for a

p component of a metal–metal bond. An second orthogonal

benzene–metal p bond can similarly use a linear hybrid of

the p(y) and d(yz) metal orbitals leaving the other such

hybrid for a second orthogonal p component of a metal–

metal bond. Thus, a d-block transition metal has enough

atomic orbitals in a coaxial (C6H6)2M2 derivative to form a

benzene–metal r ? 2p triple bond and a metal–metal

r ? 2p triple bond.

The r ? 2p forward benzene–metal bonding can be

supplemented by two d metal–benzene back bonds at 45�
angles into the empty E2 benzene antibonding orbitals of d
symmetry using the metal d(xy) and d(x2 - y2) orbitals

(Fig. 4). However, use of these metal orbitals for such

back-bonding makes them unavailable for d components of

quadruple and quintuple metal–metal multiple bonds. Thus

metal-ring back-bonding into the empty E2 benzene orbi-

tals of d symmetry is directly competitive with increasing

the metal–metal formal bond order beyond three by addi-

tion of d components to a r ? 2p formal triple bond.

In summary, the two critical points for understanding

the interplay between metal–benzene bonding and metal–

metal multiple bonding in coaxial (C6H6)2M2 derivatives

of d-block transition metals are the following:

1. The metal d(xy) and d(x2 - y2) orbitals are available

for either metal-ring d back-bonding or the d compo-

nents of formal metal–metal quadruple and quintuple

bonds but not both.

2. The non-directionality of metal s orbitals can remove

them from the metal bonding orbital manifold leaving

an eight-orbital p3d5 manifold corresponding to a

Fig. 4 Orbitals involved in the metal-ring bonding in the coaxial

(C6H6)2M2 structures of the d-block transition metals with the metal–

metal bond as the z axis Fig. 5 Coaxial and perpendicular singlet structures for (C6H6)2Fe2.

In Figs. 5, 6, and 7, the upper distances were obtained by the B3LYP

method and the lower distances by the BP86 method (all bond

distances are in angstroms); the carbon atoms in both C6H6 rings are

anticlockwise labeled
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favored 16-electron rather than a favored 18-electron

configuration.

3.2 Molecular structures

3.2.1 (C6H6)2Fe2

A D6h coaxial (C6H6)2Fe2 structure Fe-1 with two hexa-

hapto g6-C6H6 rings was found with a very short Fe–Fe

distance of 1.950 Å (B3LYP) or 2.005 Å (BP86) (Fig. 5;

Table 1). The perpendicular (C6H6)2Fe2 structure Fe-2

with a longer Fe–Fe distance of 2.238 Å (B3LYP) or

2.241 Å (BP86) is predicted to lie 9.6 kcal/mol (B3LYP)

or 6.7 kcal/mol (BP86) above Fe-1. In Fe-2 the central Fe2
unit is bridged by a g3,g3-C6H6 and a g4,g3-C6H6 ring with

one of the carbon atoms in the latter ring being shared by

both iron atoms.

3.2.2 (C6H6)2Mn2

Similar computations were performed on the singlet

(C6H6)2Mn2 derivatives. A D6h coaxial structure Mn-1 was

found with an ultrashort Mn–Mn distance of 1.729 Å

(B3LYP) or 1.766 Å (BP86) (Fig. 6; Table 2), which is

comparable to the Cr–Mn bond distance of 1.82 Å in a

recently reported heteronuclear compound [47]. In Mn-1,

both g6-C6H6 rings are hexahapto ligands. The perpendicular

structureMn-2 with a somewhat longer Mn–Mn distance of

1.894 Å (B3LYP) or 1.940 Å (BP86) is predicted to lie

12.7 kcal/mol (B3LYP) or 9.2 kcal/mol (BP86) above Mn-

1. In Mn-2 (Fig. 2), each benzene ring bridges the central

Mn2 unit as an g4,g4-C6H6 ligand.

3.2.3 (C6H6)2Cr2

The DFT computations on (C6H6)2Cr2 predict the perpen-

dicular structure Cr-1 to lie 13.9 kcal/mol (B3LYP) or

23.5 kcal/mol (BP86) in energy below the coaxial structure

Cr-2 (Fig. 7; Table 3). The relative energies between the

two (C6H6)2Cr2 structures have been confirmed by a single-

point DFT calculation using a def2-TZVPP basis set, which

gives the same energy ordering as that from the DZP basis

set. Thus, this chromium derivative (C6H6)2Cr2 differs from

(C6H6)2Fe2 and (C6H6)2Mn2 for which the coaxial struc-

tures are the lower energy structures (Tables 1, 2). Also the

coaxial (C6H6)2Cr2 structure Cr-2 has only D2h symmetry

in contrast to the D6h symmetry of the coaxial (C6H6)2M2

(M = Fe, Mn) structures Mn-1 and Fe-1. Thus, in each

benzene ring of Cr-2, the lengths of four of the six C–C

bonds in each benzene ring are *1.45 Å, whereas those of

the remaining two C–C bonds are only *1.41 Å. This

differs from Mn-1 and Fe-1 for which all of the benzene

C–C bonds are predicted to be*1.44 Å. The perpendicular

structure Cr-1 with C2v symmetry has a small imaginary

frequency of 58i cm-1 using the B3LYP/DZP method.

However, vibrational frequency analysis with the def2-

TZVPP basis set gives all real frequencies for Cr-1. The

central Cr2 unit is bridged by the two g3,g3-C6H6 rings.

An important feature of each (C6H6)2Cr2 structure is a

very short Cr–Cr distance. The coaxial structure Cr-2 has a

particularly short Cr–Cr distance of 1.668 Å (B3LYP) or

1.698 Å (BP86), which is very close to the experimental

value for diatomic Cr2 (1.679 Å) [48]. The same Cr–Cr

distance of 1.668 Å (B3LYP) or 1.698 Å (BP86) for D2h

singlet coaxial (C6H6)2Cr2 is also given by Liu et al. [49] in

recent work. In addition, in our previous work, it is shown

that the predicted Cr–Cr distances for the singlet structures

(g6-C6H6)2Cr2(CO)n decrease monotonically as car-

bonyl groups are lost starting from 2.954 Å (BP86) in

Table 1 Fe–Fe distances (in Å), total energies (E, in Hartree), and

relative energies (DE, in kcal/mol) for the two (C6H6)2Fe2 structures

Fe-1 (D6h) Fe-2 (C1)

B3LYP BP86 B3LYP BP86

Fe-1–Fe-2 1.950 2.005 2.238 2.241

-Energy 2,991.93527 2,992.39065 2,991.91996 2,992.38003

DE 0.0 0.0 9.6 6.7

None of these structures has any imaginary vibrational frequencies

Fig. 6 Coaxial and perpendicular singlet structures for (C6H6)2Mn2

Table 2 Mn–Mn distances (in Å), total energies (E, in Hartree), and

relative energies (DE, in kcal/mol) for the (C6H6)2Mn2 structures

Mn-1 (D6h) Mn-2 (D2)

B3LYP BP86 B3LYP BP86

Mn-1–
Mn-2

1.729 1.766 1.894 1.940

-Energy 2,766.48242 2,766.91561 2,766.46220 2,766.90093

DE 0.0 0.0 12.7 9.2

None of these structures has any imaginary vibrational frequencies
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(C6H6)2Cr2(CO)5 to 1.947 Å (BP86) in (C6H6)2Cr2(CO)

[34]. The short Cr–Cr distance in Cr-2 without carbonyl

groups is in accord with the trend. The Cr–Cr distance in

the perpendicular structure Cr-1 of 1.890 Å (B3LYP) or

1.914 Å (BP86), although still extremely short, is *0.2 Å

longer than that in the coaxial structure Cr-2.

3.3 Natural bond orbital (NBO) analysis

Table 4 lists the M–M bond distances, Wiberg’s bond indi-

ces (WBIs), and electron delocalization indices DI(M,M)

[50] using the BP86 method. The WBI value for the Cr–Cr

bond in the coaxial Cr-2 structure has the extraordinarily

high value of 3.40, suggesting a high-order multiple bond.

TheWBIs for themetal–metal bonds in the coaxial structures

(C6H6)2Mn2 (Mn-1) and (C6H6)2Fe2 (Fe-1) are progres-

sively lower at 2.41 and 1.46, respectively, suggesting

decreasing formal orders of the metal–metal bonds in the

sequence Cr[Mn[Fe in accordance with expectation based

on the numbers of metal valence electrons. The DI(M,M)

values [50] are in essential agreement with the WBIs.

3.4 Molecular orbitals in the singlet coaxial (C6H6)2M2

structures (M = Fe, Mn, and Cr)

The short M–M distances and the 18-electron rule [5–9]

suggest formal sextuple, quintuple, and quadruple M–M

bonds in the singlet coaxial (C6H6)2Cr2, (C6H6)2Mn2, and

(C6H6)2Fe2 structures, respectively. In order to gain some

insight into the metal–metal multiple bonding in these

species, the frontier molecular orbitals of the coaxial Fe-1,

Mn-1, and Cr-2 structures have been studied.

Chemical bonding between two atoms is usually dis-

cussed in terms of bonding and antibonding molecular

orbitals (MOs), which are usually constructed using the

valence atomic orbitals (AOs) [20]. The relevant valence

AOs of the transition metal atoms are the five d orbitals,

which can provide the {r, p, d} bonding MOs and the cor-

responding {r*, p*, d*} antibonding MOs (Fig. 4). In a

previous study [36], the metal–metal multiple bonds in the

bent dimetallocene derivatives of the third-row transition

metals, namely Cp2M2 (M = Os, Re, W, Ta), were suc-

cessfully characterized in terms of the frontier MOs. This

approach was used to identify the r ? 2p ? 2d components

of a formal quintuple bond in a singlet bent Cp2Os2 structure

and the 2r ? 2p ? 2d components of a formal sextuple

bond in a singlet bent Cp2Re2 structure. Here, we use a

similar approach to study M–M bonding in the likewise

singlet coaxial (C6H6)2M2 structures (M = Fe, Mn, and Cr).

3.4.1 Molecular orbitals in the singlet coaxial (C6H6)2Fe2
structure (Fig. 8)

The HOMO-7 in the coaxial (C6H6)2Fe2 structure Fe-1

corresponds to the r component of the Fe–Fe bond using a

combination of the metal {d(z2), p(z)} orbitals. The shape

of HOMO-7 suggests that the iron d(z2) atomic orbital is a

major contributor to HOMO-7. However, the HOMO of

Fe-1 is the r* antibonding orbital, which cancels the cor-

responding r bonding orbital (HOMO-7) so that the Fe–Fe

multiple bond in Fe-1 does not have a r component.

The degenerate HOMO-3/HOMO-4 molecular orbital

pair in Fe-1 (Fig. 8) corresponds to two orthogonal p
bonding components of the Fe–Fe multiple bond. These

orthogonal Fe–Fe p bonding components use iron {d(xz),

p(x)} hybrid orbitals for one of the p components and the

iron {d(yz), p(y)} hybrid orbitals for the other p compo-

nent. The degenerate HOMO-8/HOMO-9 molecular orbital

pair corresponds to the benzene–iron p bonding compo-

nents, also using iron {d(xz), p(x)} and {d(yz), p(y)} hybrid

orbitals. The remaining two iron d orbitals, namely the

d(xy) and d(x2 - y2) orbitals, are used for the degenerate d

Fig. 7 Coaxial and perpendicular singlet structures for (C6H6)2Cr2

Table 3 Cr–Cr distances (in Å), total energies (E, in Hartree), and

relative energies (DE, in kcal/mol) for the (C6H6)2Cr2 structures

Cr-1 (C2v) Cr-2 (D2h)

B3LYP BP86 B3LYP BP86

Cr-1–Cr-2 1.890 1.914 1.668 1.698

-Energy 2,553.45219 2,553.84721 2,553.43010 2,553.80983

DE 0.0 0.0 13.9 23.5

Table 4 WBIs and DI(M,M)s for the M–M bonds in the singlet

coaxial (C6H6)2M2 (M = Cr, Mn, and Fe) structures by BP86

Structure M–M

WBI

DI

(M,M)

M–M

distance,

Å

Formal M–M

bond order

(C6H6)2Cr2 Cr-2 3.40 3.38 1.698 4

(C6H6)2Mn2 Mn-1 2.41 2.71 1.766 3

(C6H6)2Fe2 Fe-1 1.46 1.98 2.005 2

Theor Chem Acc (2014) 133:1459

123 Reprinted from the journal218



bonding orbitals (HOMO-5/HOMO-6). However, they are

canceled by the degenerate d* antibonding orbitals

(HOMO-1/HOMO-2) so that the Fe–Fe bond in Fe-1 has

no d component (Fig. 8).

This MO analysis thus suggests a formal Fe=Fe double

bond 2p bond in Fe-1 rather than the quadruple bond

expected from the 18-electron rule. This Fe=Fe double

bond is seen to have no components of r and d symmetries.

A formal Fe=Fe double bond in Fe-1 corresponds to a

16-electron configuration for each iron atom rather than the

normally favored 18-electron configuration. The LUMO of

Fe-1 appears to correspond to the iron s orbitals suggesting

that the s orbitals are not involved in either the iron–iron

bonding or the benzene–iron bonding. This is consistent

with an eight valence orbital d5p3 manifold corresponding

to a 16-electron configuration of each iron atom.

3.4.2 Molecular orbitals in the singlet coaxial (C6H6)2Mn2
structure (Fig. 9)

For the coaxial (C6H6)2Mn2 structure Mn-1, the degenerate

HOMO-2/HOMO-3 pair corresponds to the two d bonding

components of the Mn–Mn bond. However, these bonding

interactions are canceled by the degenerate HOMO/

HOMO-1 pair corresponding to the two d* antibonding

components of the Mn–Mn bond so that the Mn–Mn

multiple bond in Mn-1 has no d components. The degen-

erate HOMO-4/HOMO-5 molecular orbital pair in Mn-1

(Fig. 9) corresponds to two orthogonal p bonding compo-

nents of the Mn–Mn multiple bond. These orthogonal

Mn–Mn p bonding components use manganese {d(xz),

p(x)} hybrid orbitals for one of the p components and

manganese {d(yz), p(y)} hybrid orbitals for the other p
component. The degenerate HOMO-7/HOMO-8 molecular

orbital pair corresponds to the benzene–manganese p
bonding components, also using manganese {d(xz), p(x)}

and {d(yz), p(y)} hybrid orbitals.

The MO pattern for the p and d bonding in the coaxial

(C6H6)2Mn2 structure Mn-1 thus is similar to that in the

coaxial (C6H6)2Fe2 structure Fe-1. However, a significant

difference is found in the r bonding in the two structures.

For Mn-1, HOMO-6 corresponds to the r component of

the Mn–Mn bond using the metal {d(z2), p(z)} orbitals with

a shape suggesting major involvement of the manganese

d(z2) orbital (Fig. 9). However, for Mn-1, unlike Fe-1, the

corresponding r* antibonding orbital is the empty LUMO

HOMO 

Fe-Fe σ* antibonding 

HOMO-1; HOMO-2 
HOMO-3; HOMO-4 

Fe-Fe π bonding 

HOMO-7 

Fe-Fe σ bonding 

HOMO-5; HOMO-6 HOMO-8; HOMO-9 

Fe-ring π bonding 

LUMO
LUMO+2; LUMO+1

Fig. 8 Active MOs related to the two iron atoms in the coaxial (C6H6)2Fe2 structure Fe-1. Pairs of degenerate orbitals are enclosed in brackets
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orbital so that there are no r* antibonding electrons to

cancel the r bonding component of the Mn–Mn bond. This

analysis of the frontier MOs thus suggest a r ? 2p formal

Mn:Mn triple bond in Mn-1, thereby giving each metal

atom a 16-electron configuration similar to that in Fe-1.

The empty LUMO ? 1 of Mn-1 appears to correspond to

the manganese s orbitals suggesting that the s orbitals are

not involved in either the manganese–manganese or the

benzene–manganese bonding. This again is consistent with

an eight valence orbital d5p3 manifold corresponding to a

16-electron configuration of each iron atom. In fact, the

differences between the frontier MOs of the coaxial

(C6H6)2M2 (M = Mn, Fe) relate completely to the pre-

sence of two fewer valence electrons in the manganese

system relative to the iron system.

3.4.3 Molecular orbitals in the singlet coaxial (C6H6)2Cr2
structure (Fig. 10)

The analysis of the chromium–chromium bonding in the

singlet coaxial (C6H6)2Cr2 structure Cr-2 is somewhat

more complicated than that for Fe-1 and Mn-1 owing to

the lower D2h symmetry of Cr-2 relative to the D6h sym-

metry of Fe-1 and Mn-1. The HOMO-5 in the coaxial

(C6H6)2Cr2 structure Cr-2 corresponds to the r component

of the Cr–Cr bond using the metal {d(z2), p(z)} orbitals

(Fig. 10). The degenerate HOMO-3/HOMO-4 molecular

orbital pair in Cr-2 (Fig. 9) corresponds to two orthogonal

p bonding components of the Cr–Cr multiple bond. These

orthogonal Cr–Cr p bonding components use chromium

{d(xz), p(x)} hybrid orbitals for one of the p components

LUMO

LUMO+7; LUMO+6
LUMO+5; LUMO+4

LUMO+3; LUMO+2 LUMO+1

HOMO; HOMO-1 HOMO-2; HOMO-3

HOMO-4; HOMO-5

Mn-Mn π bonding

HOMO-6

Mn-Mn

σ bonding

HOMO-7; HOMO-8

Mn-ring π bonding

Fig. 9 Active MOs related to the two manganese atoms in the coaxial (C6H6)2Mn2 structure Mn-1. Pairs of degenerate orbitals are enclosed in

brackets
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and chromium {d(yz), p(y)} hybrid orbitals for the other p
component. The degenerate HOMO-6/HOMO-7 molecular

orbital pair corresponds to the benzene–chromium p
bonding components, also using chromium {d(xz), p(x)}

and {d(yz), p(y)} hybrid orbitals.

The d components HOMO-1 and HOMO-2 of the Cr–Cr

bond in the coaxial (C6H6)2Cr2 structure Cr-2 (Fig. 10) are

distinctly different from those in the coaxial (C6H6)2M2

(M = Fe, Mn) structures discussed above. Firstly, they are

non-degenerate because of the lower D2h symmetry of

coaxial (C6H6)2Cr2 Cr-2 relative to the coaxial (C6H6)2M2

(M = Fe, Mn) structures with higher D6h symmetry. The

HOMO is a d* Cr–Cr antibonding orbital canceling out one

of the two d components of the Cr–Cr bond. This leaves

one d component to supplement the r ? 2p components of

the Cr–Cr bond leading to a formal r ? 2p ? d quadruple

bond. This gives each chromium atom in Cr-2 a 16-elec-

tron configuration similar to the metal atom configurations

in the other coaxial (C6H6)2M2 (M = Fe, Mn) derivatives

Fe-1 and Mn-1. The diversion of one of the chromium

{d(xy),d(x2 - y2)} orbitals from metal-ring back-bonding

to a single d component of the Cr–Cr quadruple bond in

Cr-2 has the following two effects:

1. The benzene–metal bond is weakened as reflected by

an increase in the M-C (benzene) distances from

*2.04 to *2.08 Å in Fe-1 and Mn-1, respectively, to

*2.13 and *2.22 Å in the (C6H6)2Cr2 structure Cr-2.

2. The use of one of the metal d orbitals of the {d(xy),

d(x2 - y2)} for metal–benzene back-bonding and the

other metal d orbital for the Cr–Cr quadruple bond in

Cr-2 lifts their degeneracy, thereby reducing the

symmetry from D6h in Fe-1 and Mn-1 to D2h in Cr-2.

HOMO-1

Cr-Cr δ bonding

LUMO+8; LUMO+7 LUMO+6; LUMO+5
LUMO+4; LUMO+3

LUMO+2 LUMO+1 LUMO

HOMO HOMO-3; HOMO-4

Cr-Cr π bonding

HOMO-5

Cr-Cr

σ bonding

HOMO-6; HOMO-7

HOMO-2

Cr-Cr δ bonding

Fig. 10 Active MOs related to the two chromium atoms in the coaxial (C6H6)2Cr2 structure Cr-2. Pairs of degenerate orbitals are enclosed in

brackets
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4 Summary

Coaxial and perpendicular singlet spin state structures for

dibenzene dimetal complexes (C6H6)2M2 (M = Fe, Mn,

and Cr) have been investigated. The coaxial structure is the

lower energy structure for (C6H6)2M2 (M = Fe, Mn) but

not for (C6H6)2Cr2. These coaxial structures are predicted

to have very short M–M distances of *1.98 Å for

(C6H6)2Fe2, *1.75 Å for (C6H6)2Mn2, and *1.68 Å

for (C6H6)2Cr2. Investigation into the frontier molecular

orbitals suggests a formal 2p Fe=Fe double bond in

(C6H6)2Fe2, a r ? 2pMn:Mn triple bond in (C6H6)2Mn2,

and a r ? 2p ? d Cr–Cr quadruple bond in (C6H6)2Cr2.

This gives each metal atom in these coaxial (C6H6)2M2

derivatives (M = Fe, Mn, Cr) a 16-electron configuration

suggesting an 8-orbital d5p3 metal valence orbital manifold

without involvement of the s orbital. The coaxial

(C6H6)2M2 (M = Fe, Mn) derivatives have D6h symmetry

but coaxial (C6H6)2Cr2 is distorted from D6h symmetry to

D2h. This observed distortion is attributed to the involve-

ment of only one orbital from the {d(xy), d(x2 - y2)} set of

d symmetry of each chromium atom in the formal Cr–Cr

quadruple bond.
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Abstract The lightest and yet completely unexplored

intermetallic ScTi system has been studied by high-level

ab initio methods and quantitative basis sets. We have

studied in all 21 2S?1K states and constructed potential

energy curves at the MRCI/cc–pvQZ computational level.

The ground state of the system is of 6D symmetry with

re = 2.65 Å and De = 32.4 kcal/mol with respect to the

adiabatic fragments or De
0 = 10.4 kcal/mol with respect to

the ground state atoms while its first excited state seems to

be of 4D symmetry with similar bonding features lying only

3 kcal/mol higher. An exceptional feature is the rather high

Mulliken charge (average value of *0.5 e-) transferred to

Sc but the small calculated dipole moments.

Keywords ScTi � Ab initio � Multireference

1 Introduction

The nine 3d-transition metal elements (M) from Sc

(Z = 21) to Cu (Z = 29) comprise the most emblematic

group of metals on Earth. As a matter of fact, Cu and Fe

mark the dawn of human civilization, dubbed the Copper

and Iron Ages, and perhaps the beginning of what we call

today ‘‘Modern Chemistry.’’ Ironically, and despite the

explosive progress in the physical sciences, we cannot

claim that we understand satisfactorily certain classes of

‘‘small’’ molecular systems. Prominent among them are the

3d-MM0 diatomics (M, M0 = Sc–Cu). Since the early 90 s,

our research group has been engaged in an in-depth theo-

retical study of all 3d-M diatomics, MX0,±, where X = H

[1–3], B [4–8], C [9–27], O [28–33], F [34–36], Al [37], P

[38–40], and Cl [41] through all electron high-level

ab initio calculations. One of the most interesting features

of the MX species is the extremely rich variety of the

binding modes entailed due to the metals’ 3d electrons,

which result in a remarkable density of high spin and

orbital angular momenta atomic 2S?1L states. This large

density of states is the driving force behind the wealthy

chemistry of such systems and is also the root of all

computational problems encountered, which still challenge

all existing state-of-the art theoretical methods. Both fea-

tures are enhanced in the 3d-dimers of either homo-(M2) or

hetero-(MM0) nuclear nature due to the simultaneous pre-

sence of two capricious atoms. There are
9

2

 !
¼ 36

3d intermetallic (MM0) and nine homonuclear diatomics

(M2), a total of 45 molecules each one with a personality of

its own.

In the recent past, we have carefully examined through

multireference variational and single reference methods,

three homonuclear and one heteronuclear diatomics,

namely Sc2 [42–47],1 Ti2 [48], Mn2 [49], and TiFe [50].

Our computational and conceptual difficulties with these

systems are well described in the above four references, so
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retirement.
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1 It is interesting to follow the discussion on the ground state of Sc2,
5Ru

- versus 3Ru
-, and the theoretical methods involved. The dispute

was triggered by Maxtain et al. [47] who erroneously suggested that

the ground state of Sc2 is 3Ru
-. The controversy was settled in

reference [42], see also [44].
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there is no need for repetition. One thing, however, is clear:

the M2 (or MM0) class is an unusual set of molecules,

challenging, therefore interesting, and undisciplined to the

conventional chemical wisdom. While the Cr (4 s13d5, 7S)

and Cu (4s13d10, 2S) atoms whose open structure shows a

proclivity for M2 or MM0 bonding, the 4 s23dn (n = 1–3

and 5–8) ground state configurations of the remaining 3d

metals with ratios of mean 4s and 3d radii
r4sh i
r3dh i ranging from

2.36 to 3.36 [51] do not allow for direct, non-van der Waals

bonding [42, 48–50]. Hence, covalent interaction can only

be expected from at least a 4s2–4s1 distribution, i.e., an M0–
M* interaction where the star (*) refers to an excited state

atom.

Presently, we have examined the first that is the lightest

intermetallic MM0 diatomic ScTi. We are not aware of any

experimental or ab initio investigation on ScTi but a DFT

study by Gutsev et al. [52] who studied all ScM (M = Sc–

Zn) dimers and their anions. Based on a [10s7p4d1f]

Gaussian basis set and through the generalized gradient

approximation for the exchange correlation potential, they

found a 6R? (re = 2.290 Å, De = 2.22 eV, xe =

272 cm-1, l = 0.57 D) ground state with a 2R?

(re = 2.065 Å, xe = 382 cm-1, l = 1.07 D) state lying

just 0.16 eV higher. An NBO analysis revealed that in both

states, the Sc and Ti atoms are in situ excited in their

4s13d2 and 4s13d3 electronic configurations, respectively.

The interaction of the ground state fragments Sc (4s23d1,
2D) ? Ti (4s23d2, 3F) results in 40 molecular states, that is,
2,4(R?[2], R-[3], P[5], D[4], U[3], C[2], H[1]) doublets

and quartets, expected to be of van der Waals type [42, 48,

49]. The first excited dissociation channel Sc (4s23d1,
2D) ? Ti (4s13d3, 5F) located 0.806 eV higher gives rise

also to 40 molecular 2S?1K states of the same spatial

symmetry as before but of quartet and sextet spin multi-

plicities. Finally, the interaction of two excited atoms, i.e.,

Sc (4s13d2, 4F) ? Ti (4s13d3, 5F) at 0.806 [DETi(
5F /

3F)] ? 1.427 [DESc(
4F / 2D)] = 2.233 eV [53] above the

ground state fragments, results in 112 molecular 2S?1K
states of 2,4,6,8(R?[4], R-[3], P[6], D[5], U[4], C[3], H[2],
I) symmetry. Between the first dissociation channel [Sc

(4s23d1, 2D) ? Ti (4s23d2, 3F)] and the one that combines

two excited fragments [Sc (4s13d2, 4F) ? Ti (4s13d3, 5F)],

there are in total 17 channels producing hundreds of

molecular states within an asymptotic energy range of only

2.233 eV [53].

Based on preliminary calculations at the complete active

space self-consistent field (CASSCF) computational

level, we decided to study states of quartet and sextet spin

multiplicity with spatial symmetry ranging from R? to

H (K = 5). For both metal atoms, the Dunning [54] cor-

relation-consistent polarized valence quadruple zeta

(cc–pVQZ) basis set was used generally contracted to

[8s7p5d3f2g1h] [55], consisting of 104 9 2 = 208 spher-

ical Gaussian functions. The internally contracted (ic)

variant of the multireference CISD (MRCI = CASSCF

? 1 ? 2) method was used in all our calculations as

implemented in the MOLPRO 2010.1 code [56]. The one

electron basis set was issued from state average CASSCF

wave functions that in turn resulted by distributing all 7

valence electrons to 15 orbitals correlating with the

(4s ? 3d) 9 2 ? p0(3) valence space of the fragments

supplemented by three p type functions to ‘‘angularly’’

correlate the ‘‘4s’’ electrons. During the CASSCF optimi-

zation, a number of states from all four irreducible repre-

sentations (A1, A2, B1, B2) of the C2v point group were

averaged in order to assure a smooth evolution along the

inter nuclear distance. For the quartet spin multiplicity, the

reference space consisted of *60,000 configuration func-

tions (CF) giving rise to *255 9 106 CFs at the MRCI

level, internally contracted to *12 9 106 CFs. For the

sextet spin multiplicities, the corresponding spaces contain

*17,000 (CASSCF), *91 9 106 (MRCI), and *8 9 106

(icMRCI) CFs. Due to severe technical complications, only

parts of the potential energy curves (PEC) could be cal-

culated. No core–subvalence (3s23p6), relativistic, or spin–

orbit effects were taken into account. Technical difficulties

in the calculation only permitted the Davidson ?Q cor-

rection to be applied to the X 6D ground state.

2 Results and discussion

Table 1 collects the numerical data for 21 states, while

Figs. 1, 2, 3, and 4 display the corresponding PECs. In

what follows, we discuss in some detail the bonding

characteristics of the states studied grouped according to

their symmetry.

X 6D, 6 6R1, 10 6C, 16 6D, 19 6D, 20 6R1, and 21 6C.
The ground state of the ScTi system seems to be of 6D
symmetry. Its most important equilibrium configurations at

the CASSCF level are (only the seven valence electrons

appear in what follows).

X 6Dð6A1Þ
�� � � 0:76 1r22r13r11p1x1p

1
y1d

1
�

��� E
þ 0:21 1r22r15r1ð1p1x2p1y � 2p1x1p

1
yÞ1d1�

��� E
þ 0:18 1r22r15r11p1x1p

1
y1d

1
�

��� E
with 1r & 0.75[4s(Sc)] ? 0.71[4s(Ti)], 2r & - 0.66

[4s(Sc)] ? 0.38[4pz(Sc)] ? 0.66[4s(Ti)] ? 0.32[4pz(Ti)],

3r & 0.39[3dr(Sc)] ? 0.86[3dr(Ti)], 5r & 0.87[3dr(Sc)]

- 0.48[3dr(Ti)], 1p & 0.46[3dp(Sc)] - 0.64[3dp(Ti)], 2p &

Theor Chem Acc (2013) 132:1408

123 Reprinted from the journal224



[3dp(Sc)] ? [3dp(Ti)], 1d- & [3dxy(Ti)]. TheMRCIMulliken

atomic distributions.

4s2:094p0:43z 3d0:40z2 4p0:09x 3d0:40xz 4p0:09y 3d0:40yz 3d0:05xy =Sc; qSc
¼ �0:98

4s0:294p0:07z 3d0:60z2 4p0:08x 3d0:47xz 4p0:08y 3d0:47yz 3d0:94xy =Ti; qTi
¼ þ0:98

hint to an in situ Sc atom in its 4s23d1
z2
(2D, ML = 0) state

and a Ti atom in its 4s13d1xz3d
1
yz3d

1
xy (

5F, ML = ± 2) state,

whereas the two atoms are bound together by two half p
bonds due to a Ti-to-Sc charge transfer of 1 e-, and a r
interaction of four electrons coupled into a triplet. The

above bonding situation can be summarized pictorially by

the following valence bond Lewis (vbL) scheme.

The MRCI(?Q) equilibrium distance and bond energy

are re = 2.647 (2.659) Å and De = 32.4 (36.8) kcal/mol

with respect to Sc(4s23d1, 2D) ? Ti(4s13d3, 5F); see

Table 1. Its MRCI (?Q) binding energy with respect to the

ground state atoms is De
0 = 10.4 (15.3) kcal/mol. Its per-

manent electric dipole moment calculated as an expecta-

tion value is close to zero, l = 0.052 D, surprisingly small

Table 1 Total energies E (hartree), equilibrium distances re (Å),

dissociation energies De (kcal/mol), harmonic frequencies xe and

anharmonic corrections xexe (cm
-1), dipole moment l (Debye), and

energy separations Te (kcal/mol) of 21 molecular states of 45Sc48Ti at

the MRCI(?Q) level of theory

State -E re De xe xexe l Te

X6D 1,608.259 250 2.647 32.4 218.3 0.685 0.05 0.0

(1,608.267 82) (2.659) 36.8 (223.2) (3.816) (0.0)

2 4D 1,608.254 387 2.637 7.4 220.3 -2.458 0.65 3.05

3 4P 1,608.246 750 2.587 2.6 159.6 -0.955 0.16 7.84

4 4U 1,608.242 781 2.773 192.5 8.681 10.33

5 4U 1,608.240 477 2.943 239.4 0.825 11.78

6 6R? 1,608.239 6 2.96 20.1 0.10 12.3

(Local minimum)

1,608.236 578 2.440 238.2 -0.812

7 4C 1,608.239 276 2.787 196.2 3.643 0.24 12.53

8 4D 1,608.238 994 2.927 231.8 5.292 0.27 12.71

9 4P 1,608.238 172 2.351 300.6 0.131 -0.06 13.23

(Local minimum)

1,608.238 054 2.708 201.8 0.994

10 6C 1,608.237 719 3.005 18.9 233.1 6.845 0.09 13.51

11 6P 1,608.237 008 2.940 18.4 180.0 3.299 0.08 13.96

12 6H 1,608.236 484 2.981 18.1 213.5 2.307 -0.14 14.29

13 4R? 1,608.236 155 2.775 195.6 2.764 0.29 14.49

14 6U 1,608.235 912 2.969 17.7 221.1 7.237 0.28 14.64

15 6P 1,608.235 722 2.960 17.6 211.3 2.353 0.19 14.76

16 6D 1,608.233 835 2.969 16.4 211.0 4.012 0.21 15.95

17 6P 1,608.232 718 2.993 15.7 200.1 -3.053 0.05 16.65

18 6U 1,608.232 450 2.985 15.6 219.0 2.935 0.01 16.82

19 6D 1,608.230 819 2.893 14.6 239.3 5.049 0.00 17.84

20 6R? 1,608.227 748 3.031 12.6 269.7 7.965 19.77

21 6C 1,608.226 659 2.992 11.9 20.45
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if one considers the 1e- charge transfer from Ti to Sc.

Perhaps the symmetry defining electron on the 3dxy (Ti)

orbital compensates for the centroid of charge on the Sc

atom created by the charge transfer along the p-frame. It is

interesting at this point to compare the ScTi X 6D state to

the Sc2 X
5Ru

- [42] state. As was discussed in reference 42,

the Sc2 ground state results from a ground Sc (4s23d1, 2D;

ML = 0) and an excited Sc* (4s13d2, 4F; ML = 0) atoms

held together by a 3e--2c (enter) r interaction and two half

p delocalizations due to the inversion symmetry. When a

3dxy electron is attached to the Sc* (4F) state, the ScTi X 6D
state is obtained with similar bonding features.

Two more states of 6D symmetry have been studied,

namely the 16 6D and 19 6D ones, both dissociating adia-

batically to the Sc(2D) ? Ti(5F) fragments. Their equilib-

rium CASSCF wave functions and corresponding MRCI

Mulliken populations read.

166Dð6A1Þ
�� �� 1r22r1½ð0:52Þ5r1�ð0:39Þ7r1�1p1x1p1y1d1�

��� E
�0:31 1r22r13r1ð2p1x1p1y�1p1x2p

1
yÞ1d1�

��� E
4s1:574p0:33z 3d0:53z2 4p0:11x 3d0:31xz 4p0:11y 3d0:31yz 3d0:10xy =Sc; qSc

¼ �0:39

4s0:864p0:13z 3d0:50z2 4p0:10x 3d0:50xz 4p0:10y 3d0:50yz 3d0:90xy =Ti; qTi
¼ þ0:39

and

196Dð6A1Þ
�� � � 0:68 1r22r13r11p1x1p

1
y2d

1
�

��� E
þ 0:25 1r22r13r1ð1p1x2p1y � 2p1x1p

1
yÞ2d1�

��� E
4s1:464p0:37z 3d0:20z2 4p0:10x 3d0:11xz 4p0:10y 3d0:11yz 3d0:86xy =Sc; qSc

¼ �0:33

4s0:944p0:13z 3d0:70z2 4p0:07x 3d0:68xz 4p0:07y 3d0:68yz 3d0:22xy =Ti; qTi
¼ þ0:33

The bonding character in both the 16 and 19 6D states

remains the same as in the X 6D state; however, their

orthogonality imposes a number of changes. The main

CASSCF configuration of the X 6D state (C0 = 0.76) is the

1r22r13r11p1x1p
1
y1d

1
�

��� E
. In 16 6D, the 3r orbital has been

replaced by the [(0.52) 5r–(0.39) 7r] orthogonal orbital

(5r & 0.63[3dr(Sc)] ? 0.24[4pz(Sc)] - 0.55[3dr(Ti)] -

0.26[4pz(Ti)] and 7r & 0.67[3dr(Sc)] - 0.53[4pz(Sc)] ?

Fig. 1 MRCI/cc–pVQZ PECs of the X 6D, 6 6R?, 10 6C, 16 6D, 19
6D, 20 6R?, and 21 6C states Fig. 2 MRCI/cc–pVQZ PECs of the 2 4D, 7 4C, 8 4D, and 13 4R?

states
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0.32[4pz(Ti)]), while in the 19 6D state, the 2d- orbital is

found localized on the Sc atom instead of the Ti (X 6D) one,
or in other words, the transition X 6D ? 19 6D is made

possible through the transfer of the symmetry defining d e-

from the Ti to the Sc atom.

In the 16 6D state, two half p bonds are created through

the transfer of 0.40 9 2 = 0.80 e- from Ti to Sc, while

0.43 e- are back transferred through the r frame. The

Mullikenpopulations reveal an in situSc atom in its 4s23d1 (2D;

ML = 0) electronic configuration as was also found in the

X state, while the Ti atomdefines theK = 2 symmetry through

its 4s13dxz
1 3dyz

1 3dxy
1 configuration. This character resemblance

should be the product of an avoided crossing since the 16 6D
state should correlate adiabatically with a different combina-

tion of fragments, see Table 1 for numerical results.

The main characteristic of the 19 6D state is the different

location of the symmetry defining electron as contrasted to

both the X and 16 6D states. The Mulliken populations

show an in situ Sc atom in its ground 4s23d1 (2D;

ML = ± 2) configuration, while the Ti atom is found in its

4s13dxz
1 3dyz

1 3dr
1 configuration, a 20 %|5F[?80 %|5P[

mixture. The p Ti-to-Sc migration is limited to only

0.20 9 2 = 0.40 e-, while a weak d-bond is created

through a 0.2 e- transfer from Sc to Ti. A ð4s4pz3dz2ÞSc
hybrid helps to relieve the congestion of four r electrons.

Both states appear to have similar equilibrium distances

and bond strengths: re = 2.969 (16 6D) and 2.893 (19
6D) Å, De = 16.4 (16 6D) and 14.6 (19 6D) kcal/mol with

respect to Sc (4s23d1, 2D) ? Ti (4s13d3, 5F).

The next states to be discussed are of 6R? and 6C
symmetry. The 6 6R? state appears to have two minima of

completely different electronic character, Fig. 1. The adi-

abatic PECs of the two 6R? states when properly rear-

ranged define two diabatic PECs that should be considered

simultaneously by a 2 9 2 post-Born–Oppenheimer treat-

ment in order to extract the rovibrational levels of the

system. The CASSCF equilibrium configurations of the

global 6 6R? minimum are

66Rþ�� �
g
� 0:54 1r22r1ð1d1þ1p1x1p1y2d1� þ 2d1þ1p

1
x1p

1
y1d

1
�Þ

��� E
which in connection to its MRCI atomic distributions

4s1:484p0:34z 3d0:07z2 3d0:44x2�y24p
0:09
x 3d0:16xz 4p0:09y 3d0:16yz 3d0:47xy =Sc;

qSc ¼ �0:34

4s0:854p0:13z 3d0:09z2 3d0:53x2�y24p
0:08
x 3d0:70xz 4p0:08y 3d0:70yz 3d0:50xy =Ti;

qTi ¼ þ0:34

suggest a 2D; ML¼� 2
�� �

Sc
� 5F; ML¼� 2
�� �

Ti
asymptotic

combination. The two atoms interact attractively by a

Fig. 3 MRCI/cc–pVQZ PECs of the 3 4P, 4 4U, 5 4U, and 9 4P
states Fig. 4 MRCI/cc–pVQZ PECs of the 11 6P, 12 6H, 14 6U, 15 6P, 17

6P, and 18 6U states
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3e-–2c r interaction between a ð4s4pz3dz2Þ1:9Sc and a

ð4s4pz3dz2Þ1:07Ti hybrids and a 0.25 9 2 = 0.50 e- Ti-to-Sc

p migration, while two d electrons, one at each atom,

maintain the R character of the 1r22r11p1x1p
1
y structure.

The 10 6C state is the orthogonal complement of the 6R?

global minimum, their only difference being a sign change

‘‘-’’ (6C) instead of a ‘‘?’’ (6R?) in their main CASSCF

configurations and with identical Mulliken populations.

Their asymptotic channel is evidently the same as before

but with equal ML projections, i.e.,
2D; ML¼� 2
�� �

Sc
� 5F;
��

ML¼� 2iTi, so as to result in K = 4.

The leading equilibrium configurations of the local 6
6R? minimum are

66Rþ�� �
l
� 1r2½ð0:11Þ2r1 þ ð0:62Þ3r1�1d1þ1p1x1p1y1d1�
��� E
� 0:35 1r23r1ð1d1þ1p1x1p1y2d1� þ 2d1þ1p

1
x1p

1
y1d

1
�Þ

��� E

The ‘‘0.35’’ component is similar to the electronic char-

acter of the global 6 6R? minimum, while the ‘‘first’’

component results from that of the X 6D state by replacing a

r electron by a d? one. This local minimum is a ‘‘reso-

nant’’ hybrid between two structures whose main differ-

ence is the location of the d± electrons. In the ‘‘first’’

component, both are placed on Ti while in the second

(‘‘0.35’’) a d electron is on Sc and the other one on Ti.

Two more states of 6R? and 6C symmetry separated by

*20 kcal/mol from theX 6D state have also been found. They

are of intense multi configuration character that precludes an

easy VB transcription of their bonding characteristics.

2 4D, 7 4C, 8 4D, and 13 4R1. The first excited state of the

ScTi system is of 4D symmetry with bonding features prac-

tically identical to those of theX 6D state lying just 3 kcal/mol

higher. The main CASSCF configurations read as follows

2 4Dð4A1Þ
�� � � 0:56 1r22r13�r11p1x1p

1
y1d

1
�

��� E
þ 0:45 1r22r13r11�p1x1p

1
y1d

1
�

��� E
þ 0:32 1r22r13r11p1x1�p

1
y1d

1
�

��� E
þ 0:14 1r22r13r11p1x1p

1
y1
�d1�

��� E
:

All four configurations differ from the ‘‘0.76’’ CF of the

X 6D state only in the way spins are coupled, both

molecular orbitals and atomic distributions/charges being

the same. So, it is certainly not a surprise that the 4D state is

the first excited state of this diatomic. Both re (2.637 vs

2.647 (X) Å) and xe (220.3 vs 218.3 (X) cm-1) values are

quite similar, an indication of the same binding mode. The

only stunning difference is the dipole moment value

l = 0.65 D versus l = 0.05 D of the X state, an

amazing side effect of the quartet spin multiplicity.

In Fig. 2, the adiabatic potential energy curve of a

second 4D state is shown but with an irregular topology.

This ‘‘fuzziness’’ will play certainly a role in the com-

plexity of the spectrum, but offers little in the discussion of

the chemical bond of the system. One of its most important

characteristics is the avoided crossing with the 2 4D state at

5.9 bohr (Fig. 2), responsible for the excited in situ Ti

character. The last state of (8)4D symmetry presently

studied is unbound with respect to its adiabatic dissociation

limit, i.e., Sc (2D) ? Ti (3F), but features a potential well

of 2.2 kcal/mol, sustaining some vibrational levels. Its

electronic character is of extreme multiconfigurational

character, thus forbiding any attempt to transcribe its

bonding nature into simple vbL structures.

Two more states of quartet spin multiplicity of C and R?

spatial symmetry have been studied. Their PECs shown in

Fig. 2 reveal a parallel evolution within the minimum

energy region. This is also corroborated by the similarity of

the re (2.787 (
4C) versus 2.775 (4R?) Å) and xe (196.2 (

4C)
versus 195.6 (4R?) cm-1) values. Their main CASSCF

equilibrium CFs are

74Cð4A1Þ
�� � � 0:38 1r22r13r11d1þð1p2x � 1p2yÞ

��� E
þ 0:31 1r22r13r11�p1x1p

1
y1d

1
�

��� E
� 0:44 1r22r13r11p1x1�p

1
y1d

1
�

��� E
and

134Rþ�� � � 0:36 1r22r13r11d1þð1p2x � 1p2yÞ
��� E

� 0:29 1r22r13r11�p1x1p
1
y1d

1
�

��� E
þ 0:42 1r22r13r11p1x1�p

1
y1d

1
�

��� E
while their MRCI atomic populations (similar for both

states)

4s1:754p0:38z 3d0:28z2 4p0:08x 3d0:48xz 4p0:08y 3d0:48yz =Sc; qSc ¼ �0:58

4s0:664p0:10z 3d0:73z2 3d0:47x2�y24p
0:08
x 3d0:39xz 4p0:08y 3d0:39yz 3d0:52xy =Ti; qTi

¼ þ0:58

point to an excited Ti atom creating a r and p interaction

with a ground state Sc atom.

3 4P(1), 4 4U(1), 5 4U(2), and 9 4P(2). These four

quartet states correlate adiabatically with the ground state

fragments Sc(2D) ? Ti(3F) although it is evident from their

PECs (see Fig. 3) that their minima are due to excited

atomic states that interact with lower states via numerous

avoided curve crossings.

The equilibrium character of the 34P state is a mixture

of two different structures as can be seen by its main

CASSCF configurations
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34Pð4B1Þ
�� � � 0:45 1r22r13r11p1x1p

2
y

��� E
þ 0:41 1r22r1ð1d1þ1p1x1p2y � 1p2x1p

1
y1d

1
�Þ

��� E
:

The MRCI Mulliken populations are also consistent

with the above structural mixture

4s2:04p0:49z 3d0:21z2 4p0:09x 3d0:45xz 4p0:11y 3d0:62yz =Sc; qSc ¼ �1:11

4s0:184p0:08z 3d0:47z2 3d0:22x2�y24p
0:08
x 3d0:58xz 4p0:10y 3d0:96yz 3d0:22xy =Ti; qTi

¼ þ1:11:

Both of the above data clearly show the difficulty to draw a

simple vbL bonding scheme. Note the remarkable Ti-to-Sc

charge transfer of more than one electron and l = 0.16 D.

The 4 4U state relates to the ‘‘0.41’’ component of the

previously discussed 3 4P state. Its electronic character

at the global minimum is 44Uð4B1Þ
�� �

g
� 0:49 1r22r1

��
ð1d1þ1p1x1p2y þ 1p2x1p

1
y1d

1
�Þi:

Its PEC presents two avoided crossings at 5.6 and

4.7 bohr with a second (5)4U state, where the latter avoided

crossing is due to an incoming third 4U state. The local

minimum appears to be of the same electronic nature.

The 54U state appears to have two potential minima,

both of them due to avoided crossings with the 44U state at

the distances 5.6 and 4.7 bohr mentioned above. The main

CASSCF configurations are as follows

54Uð4B1Þ; 5:6 bohr
�� � � 1r22r1½ð0:55Þ1�p1x2p1x1p1y

���
þð0:40Þ1p1x2p1x1�p1y �

E
and 54Uð4B1Þ;4:7 bohr

�� �� 0:54 1r23r1ð1d1þ1p1x1p2y þ 1p2x

���
1p1y1d

1
�Þi.

The 9 4P state shows two quasi-degenerate minima both

of which result from avoided crossings with nearby curves

of the same symmetry. The nominally global potential

minimum appears at 4.4 bohr and is due to the avoided

crossing with an incoming 3rd 4P state at 4.8 bohr and

with the 34P state at 4.4 bohr, while the second potential

minimum is due to the avoided crossing with a 3rd 4P state

at 5.7 bohr with the repulsive part of the PEC of 3 4P.

Equilibrium configurations are similar at both minima, i.e.,

94Pð4B1Þ
�� �

g
� 0:49 1r23r1ð1d1þ1p1x1p2y � 1p2x1p

1
y1d

1
�Þ

��� E
þ 0:32 1r22r13r11p1x1p

2
y

��� E
and

94Pð4B1Þ
�� �

l
� 0:55 1r22r13r11p1x1p

2
y

��� E
� 0:23 1r22r1ð1d1þ1p1x1p2y � 1p2x1p

1
y1d

1
�Þ

��� E

revealing a resonance between two vbL bonding schemes.

11 6P, 12 6H, 14 6U, 15 6P, 17 6P, and 18 6U. We

have studied three 6P (11, 15, 17), two 6U (14, 18), and

one 6H (K = 5) states all of which correlate adiabatically

with Sc (2D) ? Ti (5F).

The three 6P states are energetically close with Te val-

ues of 13.96, 14.76, and 16.65 kcal/mol and similar equi-

librium bond distances, re = 2.940 (11 6P), 2.960 (15 6P),

and 2.993 (17 6P) Å. At their equilibrium distance, the

main CASSCF configurations are

116Pð6B1Þ
�� ��0:49 1r22r13r1ð1d1þ1p1y2d1�þ2d1þ1p

1
y1d

1
�Þ

��� E
�0:32 1r22r13r11p1xð1d1þ2d1þþ1d1�2d

1
�Þ

�� �
156Pð6B1Þ
�� ��0:45 1r22r1ð1d1þ1p1x1p1y2p1y�1p1x2p

1
x1p

1
y1d

1
�Þ

��� E

and

176Pð6B1Þ
�� �� 0:48 1r22r13r11p1xð1d1þ2d1þ þ 1d1�2d

1
�Þ

�� �
þ 0:33 1r22r13r11p1yð1d1þ2d1� þ 1d1�2d

1
þÞ

��� E
They are of multi configuration nature reflected as well in

the Mulliken populations; thus, a simple vbL picture

cannot be drawn. Along the same lines is the nature of the
6U and 6H states. Their most important equilibrium CFs

are

146Uð6B1Þ
�� ��0:54 1r22r1ð1d1þ1p1x1p1y2p1y�1p1x2p

1
x1p

1
y1d

1
�Þ

��� E

186Uð6B1Þ
�� � � 0:32 1r22r13r15r1ð1p1y1d1� � 1d1þ1p

1
xÞ

��� E
� 0:31 1r22r13r12d1þð1p1y1d1� þ 1d1þ1p

1
xÞ

��� E
þ 0:28 1r22r13r1ð1d1þ1p1y2d1� þ 1p1x1d

1
�2d

1
�Þ

��� E

and

126Hð6B1Þ
�� � � 0:43 1r22r13r1ð1p1x1d1�2d1�

��
�1d1þ2d

1
þ1p

1
x � 1d1þ1p

1
y2d

1
� þ 2d1þ1p

1
y1d

1
�Þ
E

thus rendering very difficult a vbL transcription of the

wave functions. One major characteristic of these states is

their spectroscopic similarities due to the sharing of the

same configurations but with different signs.

3 Conclusions

The ScTi intermetallic diatomic molecule has been studied

by high-level all electron ab initio MRCI calculations, in

conjunction with correlation-consistent basis sets of
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quadruple cardinality. No previous experimental or ab ini-

tio data are available in the literature. We have constructed

PECs for 21 states at the MRCI/cc–pVQZ level; no core,

relativistic, or other corrections have been applied. Due to

severe technical difficulties, our results are of semi-quan-

titative nature. Our general conclusions are the following.

(a) All 21 examined states (13 sextets and 8 quartets) are

of multi reference character and exhibit weak bonding

energies.

(b) The ground state seems to be of 6D symmetry with

re(?Q) = 2.647 (2.66) Å, De(?Q) = 32.4

(36.8) kcal/mol, and xe(?Q) = 218.3 (223) cm-1

featuring two half p bonds and a four electron r
interaction. The first excited state is of 4D symmetry

just 3 kcal/mol higher and with similar binding

characteristics to that of the X 6D state. It is

interesting to note that DFT (GGA) calculations

predict totally different results: a ground state of 6R?

symmetry at re = 2.290 Å and De = 51.2 kcal/mol,

and an excited state (2R?) 3.7 kcal/mol higher at

re = 2.065 Å [52].

(c) In most of the states, a *0.4 e- Ti-to-Sc charge

transfer is recorded. For three of the states, however,

X 6D, 2 4D, and 3 4P, a Mulliken Ti-to-Sc charge

transfer of one electron is observed. Interestingly, the

corresponding electric dipole moments are surpris-

ingly small, that is, l = 0.05, 0.65, and 0.16 D,

respectively.

(d) In all states presently studied, the in situ Ti atom is

found in its first excited 5F (4s13d3) state, a

prerequisite for the development of covalent bonding

between the two atoms.
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Abstract CCSD(T)-F12b benchmark calculations have

been performed for the energetics and barrier heights of

three late-transition metal systems, in increasing order of

size: oxidative additions at bare Pd, a model for the Grubbs

catalyst, and competitive CC/CH activation by a Rh(PCP)

pincer complex. The results depend weakly on the basis set

on the main-group atoms but are rather more sensitive to

the basis set on the metal. An aug-cc-pwCVTZ-PP set on

the metal combined with cc-pVTZ-F12 on the main-group

elements yields barriers that are effectively converged in

the basis set, but even the combination with aug-cc-

pwCVTZ-PP on the metal and cc-pVDZ-F12 on the main

group, or of def2-TZVPP on the metal and def2-TZVP on

the main group, works well enough for most benchmark

purposes. Inner-shell correlation cannot be neglected for

even semi-accurate work. Simple nonempirical (meta-)GGAs

with D3BJ dispersion work quite well for the Grubbs and

pincer cases but break down for the Pd example, which

requires exact exchange. Hybrids of these same function-

als, such as PBE0, TPSS0, and B3PW91, are among the

best performers through rung four on Perdew’s ladder. For

the Grubbs case, dispersion is very important and D3BJ

clearly is superior over D2. Only the DSD double hybrids

consistently perform well in the absence of dispersion

corrections.

Keywords Explicitly correlated methods � Catalysis �
Late-transition metals � Density functional theory �
CCSD(T)-F12 � Basis set convergence

1 Introduction

Homogenous catalysis by late-transition metals is of great

industrial importance [1–11]. Because of the size of typical

ligands involved (dozens to hundreds of atoms), compu-

tational mechanistic studies on such reactions (e.g., olefin

metathesis reactions [12, 13], Heck reactions [14, 15], and

pincer-ligated metal complex catalyzed reactions [16–18])

have traditionally relied on the density functional theory,

usually with a semi-arbitrarily chosen exchange–correla-

tion functional.

Some papers do explore multiple basis sets and

exchange–correlation functionals. Ideally, however, ab ini-

tio benchmarks should be available: since most late-tran-

sition metal complexes of interest in this area are relatively

free of static correlation effects, CCSD(T) [19, 20] can be

considered ‘‘the gold standard1.’’ However, such studies

are very rare (see, e.g., Refs. [21–29] for some examples)

because, with basis sets large enough to yield meaningful

results, the computational cost of CCSD(T) (not to mention

the storage and RAM requirements) quickly becomes

prohibitive.

One way out of this predicament is offered by explicitly

correlated methods (see Refs. [30, 31] for recent reviews),
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which exhibit dramatically accelerated basis set conver-

gence. For basis sets saturated in the angular momenta

present, explicitly correlated methods should have [32]

leading O(L-7) basis set convergence (with L being the

highest angular momentum). In practice, with real-life

basis sets such as the correlation consistent sets pioneered

by Dunning [33, 34], we can expect a gain of 2–3 angular

momentum steps [35]: for example, a CCSD-F12/aug-cc-

pVTZ calculation can be expected to be similar to a CCSD/

aug-cc-pV5Z or even aug-cc-pV6Z calculation in quality.

(See Ref. [36] for a recent example application.)

This means that, using explicitly correlated methods, we

might be able to obtain near-basis set limit benchmark data

for realistically sized catalyst model systems and then assess

the performance ofmore approximatemethods against these.

In this paper, we will present such a study. In the first

stage, wewill consider some small prototypes for C–C, C–H,

H–H, and C–X insertion by atomic Pd. These systems,

which were the subject of a previous benchmark study [37]

using conventional CCSD(T) with basis set extrapolations

[38, 39], are small enough that we can establish convergence

to the basis set limit to within better than 0.1 kcal/mol.

At the second stage, we will consider a model system

(Fig. 2) for the Grubbs catalyst that was previously the

subject of a benchmark study [40] by a layered

MP2:CCSD(T) strategy.

At the third stage,wewill consider competitiveCC andCH

activation in a Rh(I) PCP pincer complex (Fig. 3) [41]. The

explicitly correlated data on this latter system will be pub-

lished separately as part of a paper on pincer complexes [42].

Finally, we will evaluate the performance of a variety of

DFT functionals for a test set consisting of the above three

problems as well as for each problem individually.

The overall purpose of the present paper is twofold. The

first is to establish the smallest basis set that can be used for

reliable CCSD(T)-F12 benchmarks on reactions that are

actually representative of the ones that we face in

homogenous catalysis applications (e.g., [43–45]). The

second is to establish, for systems beyond the grasp of

CCSD(T)-F12, whether commonly used DFT functionals

such as B3LYP [46, 47]2 or PBE0 [48] yield acceptable

accuracy, and whether any of the more recent alternatives

(such as dispersion-corrected functionals [49] and double

hybrids [50]) represent an improvement.

2 Methods

All explicitly correlated coupled cluster calculations were

carried out using MOLPRO [51] 2010.1 and 2012.1

running on the Faculty of Chemistry cluster at the Weiz-

mann Institute of Science. The density functional calcula-

tions were carried out using either Gaussian [52] 09 or

ORCA [53] running on the same hardware.

The orbital basis sets used include the Weigend–Ahl-

richs [54] def2-SVP, def2-TZVP, def2-TZVPP, and def2-

QZVPP basis sets, as well as augmented variants thereof

such as def2-ATZVPP as defined in the MOLPRO basis set

library. These latter basis sets are defined as having one

diffuse function of each angular momentum added with the

exponent obtained by even-tempered extrapolation.

For the Coulomb fitting and the RI-MP2, the program

defaults (Hättig [55, 56], Weigend [57]) were employed

unless noted otherwise. (Details of all auxiliary basis sets

used with any specific orbital basis set can be found in

Table S1 in the ESI).

In addition, for the main-group elements, we employed

the cc-pVnZ-F12 basis sets of Peterson et al. [58] together

with the associated auxiliary basis sets [59, 60]. cc-pVnZ-

F12 are variants, optimized for explicit correlated calcu-

lations, of the venerable correlation consistent basis sets

introduced and developed by Dunning [33, 34, 61–65].

For the second-row transitionmetal atomsRu, Rh, and Pd,

we also applied the cc-pwCVTZ-PP and aug-cc-pwCVTZ-

PP orbital basis sets [66]. (It is perhapsworth noting that both

theWeigend–Ahlrichs basis sets and the (aug-)cc-pwCVnZ-

PP basis sets use the same Stuttgart–Cologne-type relativ-

istic energy-consistent pseudopotentials [67] on the metal

atoms.) The MP2 and CABS basis sets for these elements

were both taken from the very recent paper by Hill [68].

The geminal exponent was left at its default value of 1.0

throughout.

The CCSD-F12b ansatz [69, 70] and the 3C(Fix)

approximation [71] were used throughout for the F12 cal-

culations. For the (T) term, we employed the Marchetti–

Werner approximation [72, 73].

Aside from CCSD-F12 and CCSD(T)-F12, we obtained

MP2-F12, SCS-MP2-F12 [74–76],3 S2-MP2-F12 [77], SCS-

CCSD-F12 [78],4 and SCS(MI)CCSD-F12 [79]5 results as

by-products of the CCSD(T)-F12b calculations.

As all species studied in the present paper are closed-

shell singlets, first-order spin–orbit coupling does not affect

any energetics. We made no attempt to account for second-

order spin–orbit coupling.

In the DFT calculations, we employed the Weigend–

Ahlrichs basis sets exclusively, using no auxiliary basis

2 This paper defines the B3 hybrid exchange functional; the first

published reference to the ‘‘B3LYP’’ combination appears to be in

[47].

3 For a physical interpretation of the SCS-MP2 method in terms of

Feenberg scaling, see [75]; for a review, see [76].
4 Coefficients: cAB = 1.27, cSS = 1.13 for general-purpose

applications.
5 Coefficients: cAB = 1.11, cSS = 1.28, optimized for weak

interactions.
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sets at all in Gaussian and the associated RI-MP2 auxiliary

basis sets [55] for the double-hybrid calculations in ORCA.

The DFT functionals evaluated include (grouped by

rung in the ‘‘Jacob’s Ladder’’ [80]):

• GGAs (second rung): BP86 [81, 82], BLYP [81, 83],

PBE [84], and B97-D [85]

• meta-GGAs (third rung): TPSS [86], M06L [87], and

mPWB95 [88]

• hybrid GGAs (incomplete fourth rung): B3LYP,

B3PW91 [89, 90], PBE0, MPW1K [91], PBEh1PBE

[92], B97-1 [93], and B97-2 [94]

• hybrid meta-GGAs (complete fourth rung): B1B95

[95], BB1K [96], BMK [97], M06 [98], M06-2X [98],

MPW1B95 [99], MPWB1K [99], TPSS0 [100],6 and

TPSS1KCIS [101]

• double hybrids (fifth rung): B2GP-PLYP [102], DSD-

PBEP86 [103], DSD-PBEPBE, and DSD-PBEB95

[104]. These latter three are spin-component-scaled

double hybrids, which come in different parameteriza-

tions for no dispersion correction (‘‘noD’’), D2, and

D3BJ dispersion corrections.

Finally, we included two range-separated functionals,

namely xB97X-D [105] and M11 [106].

Empirical dispersion corrections were computed either

directly in Gaussian or ORCA as appropriate, or using the

DFTD3 external program by Grimme [107, 108].

Reference geometries for the Pd model systems and for

the Grubbs catalyst model were the same as used in the

Refs. [37, 40].

Our largest available nodes have 32 Intel E5-4640 CPU

cores, 512 GB of RAM, and 4 TB of solid-state storage.

Even so, we were unable to run the largest calculations

fully distributed-parallel due to memory requirements and

I/O congestion: hence, we resorted to mixed parallelism in

which we ran 8 or 16 MPI processes on 4 and 2 OpenMP

threads, respectively.

3 Results and discussion

In order to ensure that CCSD(T)-F12b is indeed an adequate

level of theory for these problems, we calculated a number of

diagnostics for nondynamical correlation (see Ref. [109] for

a recent overview) such as the T1 diagnostic [110], the

largest T2 amplitudes, and the percentages of SCF and (T) in

the CCSD(T)-F12b atomization energies, %TAE[SCF] and

%TAE[CCSD(T)-F12b] [111]. Particularly, the latter is

known to be [109, 111] a reliable predictor for the impor-

tance of post-CCSD(T) correlation effects. The indices can

be found in the Electronic Supporting Information (Table S2,

ESI): all of the systems occurring in the present work appear

to be dominated by dynamical correlation, meaning that

CCSD(T) is a ‘‘gold standard’’ in the Dunning sense.

Our ‘‘best estimate’’ energetics for all three systems can

be found in Table 1.

3.1 The Pd prototype insertion systems

A general representation of these oxidative additions and

the stationary points involved is given in Fig. 1.

For these systems, we were able to consider fairly large

basis sets that would be approaching the basis set limit

even in a conventional calculation. The largest basis sets

we did consider for CCSD(T)-F12b were def2-AQZVPP

and awCVTZ-F12. The latter consists of aug-cc-pwCVTZ-

PP basis set on the transition metal combined with cc-

pVTZ-F12 on the main-group elements.

All valence electrons were correlated on the main-group

elements; for the transition metal, in addition to the usual

valence orbitals, it can be argued that the (4s,4p) subva-

lence orbitals are so close to the valence shell that corre-

lation from them must be included. We thus compared

results including these orbitals (labeled ‘‘Pd(4s,4p)’’) and

excluding them (labeled ‘‘default core’’). Full results can be

found in the ESI: error statistics can be found in Table 2.

In order to remove a potential ambiguity, we should

emphasize that error statistics for ‘‘Default core’’ and

‘‘Pd(4s,4p)’’ are relative to the CCSD(T)-F12b result with

the largest available basis set (in this section, def2-AQ-

ZVPP) and the same selection of frozen-core orbitals, i.e.,

‘‘Default core’’ or ‘‘Pd(4s,4p)’’. In other words, they should

reflect nothing but basis set incompleteness for either case.

First of all, both with and without Pd(4s,4p) correlations,

the two largest basis sets yield results very close to each

other, differing by 0.10 and 0.08 kcal/mol RMS, respec-

tively. It should be noted that only the aug-cc-pwCVTZ-PP

basis set is explicitly designed to accommodate subvalence

correlation on the metal: yet, the def2-AQZVPP is appar-

ently flexible enough in the relevant region that it does not

suffer from basis set incompleteness error in this respect.

Second, as we obtain essentially equivalent results with

two very different large basis sets, we can feel confident

that either set is adequate for reference purposes.

Third, while these systems are perhaps too small for a

truly meaningful CPU time comparison, the awCVTZ-F12

basis set is about three times less expensive than def2-AQ-

ZVPP on our hardware (not surprising when basis set sizes

are compared), and in light of the very small differences

between the results, awCVTZ-F12 should be quite adequate

for benchmarking purposes for reactions of this type.

6 This functional, which uses TPSS correlation with a 25:75 mixture

of Hartree–Fock like and TPSS exchange (rather than the 10:90

mixture in TPSSh) appears to have been introduced independently in

[100] and Ref. [37], where it was called TPSS25TPSS.
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Fourth, at 1.7 kcal/molRMS (reaching as large as 2.8 kcal/

mol for the CH3–Pd–CH3 insertion product), the Pd(4s,4p)

contributions to the barrier heights and reaction energies are

clearly too large to be ignored and well exceed basis set

incompleteness errors (see below) for many basis sets.

We will now consider the latter. Removal of the diffuse

functions from def2-AQZVPP only has a very modest

effect (0.07 kcal/mol RMS), since the underlying basis set

is fairly ‘‘diffuse’’ already. In stark contrast, removing the

diffuse functions from just the Pd atom in awCVTZ-F12

causes an error of 1.25 kcal/mol RMS. Quintal et al. [37]

did find them to be quite important in conventional cal-

culations as well, but clearly their importance is amplified

in explicitly correlated ones.

An ordinary def2-TZVPP basis set yields an unaccept-

able basis set incompleteness error of 1.23 kcal/mol, which

drops to 1.09 kcal/mol when Pd(4s,4p) correlation is

excluded. Yet, def2-ATZVPP reproduces the reference

data to 0.10 kcal/mol RMS! While the CPU time cost of

def2-ATZVPP is already only 2/5 of awCVTZ-F12 and 1/8

of def2-AQZVPP, even this basis set may prove too costly

for more realistic-sized transition metal complexes and

thus we considered further economies. Adding diffuse

functions to def2-TZVPP on just the angular momenta that

are occupied in valence states (which we denoted def2-

TZVPP?A) only modestly reduces RMSD from 1.23 to

1.02 kcal/mol. If an additional angular momentum layer is

added, however (denoted def2-TZVPP?AA in the

Table 2), RMSD drops to just 0.16 kcal/mol.

We applied the same ‘‘calendar basis set’’ [112] approach

also for def2-QZVPP, but there the underlying basis set is

extended enough already that it does not matter much.

The def2-TZVPPD basis set [113] yields a disappointing

RMSD = 1.53 kcal/mol: we should note that the standard

definition does not include diffuse functions on any tran-

sition metals, including Pd.

Can we reduce the basis set further? We attempted def2-

TZVP variants, but even def2-ATZVP already has an RMSD

Table 1 Best CCSD(T*)-F12 energetics (kcal/mol) for the Pd prototype reactions, the Grubbs catalyst, and the Rh(PCP) benchmark

Pd ? H2 Pd ? CH4 Pd ? C2H6

(CH ins.)

Pd ? C2H6

(CC ins.)

Pd ? CH3Cl

Pd prototype insertion systemsa

Default core

De (complex) 19.01 8.24 8.60 8.60 12.89

DEforward 5.60 14.58 14.84 27.84 14.36

Reaction energy 6.29 10.92 10.29 6.98 -15.00

Pd(4s,4p)

De (complex) 20.75 9.47 9.87 9.87 14.33

DEforward 4.57 12.99 13.08 26.38 13.93

Reaction energy 4.88 8.46 7.84 4.22 -16.85

1 - PH3 ? C2H4 3-cis 3-trans TS-cis TS-trans 4-cis 4-trans

Grubbs catalyst model systemb

Default core -24.26 -5.76 -16.29 -5.52 -7.67 -18.49 -17.66

Ru(4s,4p) -24.83 -6.78 -16.94 -6.49 -8.38 -19.68 -18.75

2 3 4 2-TS 3-TS

Rh-PCP pincer complexesc

Default core -8.66 -9.42 0.43 0.72 9.16

Rh(4s,4p) -8.51 -9.40 0.31 0.72 9.09

a Calculated with basis set def2-AQZVPP, and all energies are relative to the corresponding reactant complex
b Calculated with basis set awCVTZ-F12, and all energies are relative to (2 ? C2H4)
c Calculated with basis set def2-TZVP(P), and all energies are relative to species 1

A

B

A

B

Pd

A

B

Pd

A

B

Pd
Pd+

Reactants Reactant complex Transition state Product

Where AB = H—H, H—CH3, H—C2H5, CH3—CH3, Cl—CH3

#

Fig. 1 Schematic representation of the prototype oxidative additions

at Pd
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of 1.2 kcal/mol with Pd(4s,4p) correlation included, 1.0 kcal/

mol without. Deleting the diffuse functions increases these

numbers to 2.3 and 1.6 kcal/mol, respectively.

The very simplest and least expensive basis set we tes-

ted, namely def2-SVP, actually yields a surprisingly rea-

sonable performance if Pd(4s,4p) correlation is excluded

(RMSD = 0.8 kcal/mol). Even for F12 methods, however,

such good agreement with the basis set limit for such small

basis sets is almost certainly due to error compensation

between basis set incompleteness error and BSSE (basis set

superposition error). Note that the error shoots up to

2.3 kcal/mol when Pd(4s,4p) correlation is included. If

anything, including diffuse functions makes things worse,

RMSD = 2.9 kcal/mol. Clearly, the metal basis set is

intrinsically too inflexible to deal with the important sub-

valence correlation in this system.

Finally, combining the cc-pVDZ-F12 basis set on main-

group elements with aug-cc-pwCVDZ-PP on the transition

metals yields error statistics (0.42 kcal/mol default core

and 0.71 kcal/mol with Pd subvalence orbitals included)

markedly superior to def2-ASVP. If in addition just the

metal basis set is enlarged to aug-cc-pwCVTZ, the error

relative to the respective basis set limits is reduced below

0.3 kcal/mol both with and without Pd(4s,4p) correlation.

This latter awCVD(T)Z-F12 option thus seems promising

for larger systems (see below).

Considering that, in most transition metal complexes,

the ratio of the number of transition metal atoms to the

number of main-group atoms is quite small, it may be

worthwhile to expand the basis set on just the metal while

retaining a fairly small basis set on the main-group ele-

ments. Calculations with def2-TZVPP?AA basis set on

metal and def2-SVP on other elements yield about

1.0 kcal/mol RMS error with both included and excluded

Pd(4s,4p) correlation.

Howwell do our best explicitly correlated results compare

with the previous orbital-based benchmark data of Quintal

et al. [37]. The RMSD between both sets of results is

0.6 kcal/mol—thismay sound quite small, but is comparable

to the deviation from the reference data that Quintal et al.

found for some DFT functionals! In light of this, revisiting

this dataset with large basis set explicitly correlated calcu-

lations, as done presently, turned out to be worthwhile.

Let us now consider lower-level ab initio electron cor-

relation methods (Table S3, ESI). Our reference here,

again, is the CCSD(T*)-F12/def2-AQZVPP data with

Pd(4s,4p) correlated. Omitting the (T) entirely causes an

RMSD of 4.0 kcal/mol—which is actually worse than

MP2-F12 (3.6 kcal/mol) and especially SCS-MP2-F12

(2.2 kcal/mol). If we forgo the Marchetti–Werner [72]

scaling of the (T) contribution, the results are affected by

0.3 kcal/mol RMS. For the sake of completeness,

RMSD = 20.7 kcal/mol for SCF.

We will now assess the DFT functionals. Double-hybrid

DFT calculations were performed in the def2-QZVPP basis

set using ORCA; all other DFT calculations were per-

formed using Gaussian 09 in a def2-ATZVPP basis set.

RMS errors with respect to the reference values

(CCSD(T*)-F12/def2-AQZVPP) are given in Table 3.

Most pure GGAs and meta-GGAs assessed here (BP86,

BLYP, PBE, TPSS) perform quite poorly (RMSD[4 kcal/

mol), M06L and mPWB95 being the exceptions to that

rule. Hybrids perform much better, and PBE0 is in fact the

best performer of all with RMSD *0.7 kcal/mol. The

stellar performance of PBE0 for this problem had also been

noted by Quintal et al. [37].

‘‘Kinetics-friendly’’ functionals (i.e., hybrid meta-GGA

functionals with high percentages of HF exchange, such as

BMK, M06-2X, MPWB1K, and BB1K) perform badly with

[4.5 kcal/mol RMS error, which is in agreement with

prior observations on the performance of high-Hartree–

Fock functionals for transition metal compounds [37, 98,

114–116]. Hybrid mGGAs with more typical percentages

of HF exchange (B1B95, M06, MPW1B95, mPW25B95,

mPW28B95, TPSS0, TPSS1KCIS, TPSS21KCIS, and

TPSS25KCIS) perform more reasonably, with \2.5 kcal/

mol RMSD. mPW25B95 stands out with an RMS error

0.8 kcal/mol.

Among the double hybrids, B2GP-PLYP and DSD-

PBEP86 perform especially well at *1.0 kcal/mol RMSD.

DSD-PBEhB95 yields a subpar *2.2 kcal/mol RMSD for

this particular problem.

The two range-separated hybrids (M11 and wB97X)

yield very poor results (RMSD *5.0 kcal/mol).

Furthermore, we have evaluated Grimme D2 and D3BJ

dispersion corrections to some of the studied DFT func-

tionals. For the problem at hand, the effect of dispersion

corrections is small; however, for some DFT functionals,

the RMSD decrease is significant, particularly with D3BJ.

These functionals include B3LYP and B3PW91, but also

the already very good RMSD for PBE0 drops below

0.5 kcal/mol, and B2GP-PLYP likewise receives a boost.

Inspection of individual errors reveals that, in general,

functionals yielding RMS errors [4.0 kcal/mol have

comparatively larger errors for the reaction barriers and

reaction energies.

3.2 Grubbs catalyst model system

Let us now consider a somewhat more realistic-sized

problem, namely the Grubbs catalyst model system

(Fig. 2), that was the subject of an earlier benchmark study

by Zhao and Truhlar [40] using conventional orbital-based

correlation methods and an additivity approximation.

The largest basis set we were able to apply in the present

study is awCVTZ-F12, as defined in the previous section.
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These calculations took about 6 days wall-clock (for the

case of 3-cis) on our hardware (using two-layer parallelism

over 8 MPI processes with 4 OpenMP threads each).

CCSD(T*)-F12b/awCVTZ-F12 calculated relative ener-

gies are given in Table 1. Calculated results show that the

trans-bounded p complex (3-trans) is energetically

*10 kcal/mol more stable than the cis-bounded p complex

(3-cis). Furthermore, the transition state for the trans-

pathway (TS-trans) is energetically more favorable than

the cis-pathway (TS-cis). However, cis-Ru-cyclobutane

(4-cis) is energetically more stable than 4-trans. From these

results, one can say that the trans-pathway is kinetically

more favorable; however, thermodynamically cis-pathway

is favorable. These observations agree with those of Zhao

and Truhlar [40].

Here, Ru(4s,4p) core correlation cannot be ignored for

accurate work either (0.91 kcal/mol RMS), but the contri-

bution is, counterintuitively, actually smaller than for the

Pd system. However, it may be that the Pd model systems

are simply too ‘‘bare’’ to be very representative of real-life

situations.

Employing regular cc-pVTZ rather than cc-pVTZ-F12

(which is about the same size as aug-cc-pVTZ) on the

main-group elements has only a small effect (0.18 kcal/mol

RMS; Table 4); a similar further error is incurred by

stripping the diffuse functions off the metal. They are

Table 3 RMSD in kcal/mol for various DFT functionals relative to CCSD(T*)-F12b/def2-AQZVPP for Pd-catalyzed prototype oxidative

addition reactions

B2GP-
PLYP

DSD-
PBEB95

DSD-
PBEP86

DSD-
PBEPBE

BP86 BLYP PBE M06L mPWB95 TPSS B97-1

No disp. 1.07 2.17 0.98 1.37 6.15 4.33 5.94 1.79 2.20 5.53 1.52

DFT-D2 0.73 1.91 1.00 0.98 7.09 4.94 6.55 1.87 6.28 1.32

DFT-D3BJ 0.71 1.95 0.99 0.83 6.81 4.58 6.30 5.86

B97-2 B97D B3LYP B3PW91 MPW1K PBE0 PBEh1PBE B1B95 BB1K BMK M06

No disp. 2.78 2.20 1.54 4.98 0.74 0.70 1.84 4.81 5.33 6.48

DFT-D2 1.79 3.97a 1.39 1.46 0.44 1.17 5.57 6.33

DFT-D3BJ 3.21b 0.90 1.00 0.52 5.51

M06-2X MPW
1B95

mPW
25B95

mPW
28 B95

MPW
B1K

TPSS0 TPSS
1KCIS

TPSS
21KCIS

TPSS
25KCIS

xB97-X M11

No disp. 10.14 2.01 0.83 1.36 5.00 1.53 1.74 1.79 2.44 5.32 4.93

DFT-D2 10.10 0.98 1.96 3.76c 4.78

DFT-D3BJ 1.70 4.71 0.65

a Calculations were performed with the B97D functional and its built-in dispersion correction
b Calculations were performed with the B97D3 functional and its built-in dispersion correction
c Calculations were performed with the xB97X-D functional and its built-in dispersion correction

H2C Ru
Cl

Cl

PH3

NH
HN

H2C Ru
Cl

Cl

NH
HN

Ru
H2C Cl

Cl

NH
HN

Ru

C
H2

Cl

Cl

NH
HN

Ru Cl

Cl

NH
HN

RuCl
Cl
CH2

RuCl
Cl
CH2

NH
HN

NH
HN

RuCl
Cl

NH
HN

1 2

3-cis

3-trans

TS-cis

TS-trans

4-cis

4-trans

C2H4

PH3

C2H4

#

#
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of the model Grubbs catalyst

Theor Chem Acc (2014) 133:1452

123Reprinted from the journal 239



clearly much less important for Ru in this complex than for

the previous problem—where the metal is both more

electron-rich and unrealistically poor in ligands, so their

importance was exacerbated. def2-TZVPP yields an error

of 0.36 kcal/mol, which can be reduced to 0.21 kcal/mol

by adding diffuse functions to s, p, d angular momenta of

main-group elements and s, p, d, f angular momenta of the

metal. As it turns out, reducing the basis set on the main-

group elements to def2-TZVP?AA while leaving the metal

basis set at def2-TZVPP?AA yields comparable errors of

0.22 kcal/mol. This is quite useful, as even a reduction in

the basis set by about 20 % translates into substantial cost

and resource savings in n2N4 methods like CCSD. The

computational cost with def2-TZVP(P)?AA basis set was

about 37 h on 16 CPU cores, which is about one-eighths

the aggregate CPU time of the awCVTZ-F12 basis set

(6 days on 32 cores, see above).

Reducing the basis set still further, we find that def2-

ASVP works surprisingly well—but even the simple def2-

SVP has a relatively mild basis set error of about 1.2 kcal/

mol in this case, and the awCVD(T)Z-F12 combination

discussed above actually outperforms pwCVTZ, at

RMSD = 0.34 kcal/mol with Ru(4s,4p) correlation inclu-

ded. (At the other end, we attempted def2-ATZVPP cal-

culations but those yielded erratic results due to a

numerical problem involving the CABS basis set.)

The RMS difference between our best results and the

previous MP2:CCSD(T) study [40] is 0.64 kcal/mol, on the

one hand validating these earlier results and on the other

hand showing that explicitly correlated methods can yield

results of similar quality using relatively small basis sets

(such as def2-TZVP(P)) and modest computational

resources.

In the spirit of Ref. [40] and of the ccCA approach [117,

118], we attempted layered schemes in which the system is

treated at the MP2-F12 level with a larger basis set and the

CCSD(T*)-F12b—MP2-F12 difference was treated as an

additive correction with a smaller basis set. (Such layered

approximations, while a key ingredient of the ‘‘focal point

analysis’’ [119], arguably go back to the historic work of

Pople et al. [120].) This approach slightly improves on

CCSD(T*)-F12b calculations with the smaller basis set

only (Table 5) but does appear to entail a sacrifice in

accuracy. Combination of def2-SVP calculated CCSD(T*)-

F12b results with MP2-F12/def2-QZVPP, awCVTZ-F12,

and def2-TZVPP yields RMS errors of 0.73, 0.83, and

0.66 kcal/mol, respectively.

As for lower-level ab initio methods, while MP2-F12

yields RMSD = 6.54 kcal/mol and CCSD-F12b 3.53 kcal/

mol, the corresponding SCS methods have much lower

RMSD of 1.96 and 1.52 kcal/mol, respectively (Table S3,

ESI).

Turning now to Table 6 for the DFT performance, the

great importance of dispersion for this particular problem is

immediately apparent. Only the DSD double hybrids per-

form well without any dispersion correction, as does (to a

lesser extent) M06. With the D3BJ correction, TPSS-D3BJ

outshines the other functionals, but PBE-D3BJ and

B3PW91-D3BJ also perform well, as do, to a lesser extent,

BP86-D3BJ, PBE0-D3BJ, and TPSS0-D3BJ. Among DSD

double-hybrid functionals, with the D3BJ correction, DSD-

PBEB95 performs excellently with 0.79 kcal/mol RMS

error. Other double hybrids also acquit themselves well.

With the D2 correction, B2GP-PLYP-D2 renders an

excellent performance with 0.77 kcal/mol RMS error.

Except for double-hybrid methods, all other functionals

with D2 correction yield RMS error more than 1.5 kcal/

mol. It should also be noted that D3BJ is markedly superior

to D2 for this problem, much more so than for the two

other benchmarks here.

Table 4 CCSD(T*)-F12b RMSD in kcal/mol for the Grubbs model system

awCVTZ-F12 awCVTZ pwCVTZ awCVD(T)Z-F12a def2-TZVPP def2-TZVPP?A

RMSD

Default core 0.00 0.24 0.40 0.33 0.35 0.38

Ru(4s,4p) 0.00 0.18 0.37 0.34 0.36 0.36

No. of orbitals 886 758 573 548 556 605

def2-TZVPP?AA def2-TZVP(P)b def2-TZVP(P)?AA def2-SVP def2-ASVP

RMSD

Default core 0.23 0.33 0.27 1.19 0.92

Ru(4s,4p) 0.21 0.32 0.22 1.18 0.56

No. of orbitals 662 450 556 239 345

a aug-cc-pwCVTZ-PP basis set on Ru atom and cc-pVDZ-F12 on all other atoms
b def2-TZVPP basis set on Ru atom and def2-TZVP on all other atoms
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3.3 Rh-PCP pincer complexes

Complexes of late-transition metals and pincer ligands

show remarkable versatility as selective catalysts: for more

details, see the reviews by Rybtchinski and Milstein [121,

122] and by van der Boom and Milstein [123].

Mechanisms, kinetics, and the competition between CC

and CH activation pathways have in the past been studied

computationally in our group [41, 124, 125] using the

B3LYP density functional and rather meager basis sets.

(The relevant chemistry is discussed at length in these

references and in the review articles of Milstein and

coworkers, and this discussion will not be repeated here.) A

detailed re-investigation using explicitly correlated meth-

ods will be published elsewhere: here, we will only present

results for the Rh(PCP) case (Fig. 3) [41].

Initial geometries were taken from the supporting infor-

mation and re-optimized at the PBE0/def2-TZVPP level. At

those geometries, single-point energy calculations were per-

formed at the CCSD(T)-F12b level with various basis sets.

As the ligand system here is much larger than that for

the Grubbs catalyst model system, let alone for the bare-Pd

prototype reactions, hardware limitations (particularly

storage space and central memory) precluded even the

def2-TZVPP?AA basis set. However, since in the previous

section we found an RMSD of just 0.32 kcal/mol for the

smaller def2-TZVP(P) set—i.e., the combination of def2-

TZVPP on the metal atom and def2-TZVP on the

remainder—we attempted this approach here as well.

These calculations ran to completion uneventfully. In

addition, we applied the awCVD(T)Z-F12 combination

that proved successful in the two previous sections: the

RMSD between both sets of results is just 0.23 kcal/mol

with Rh(4s,4p) correlation included. As it is not a priori

clear which is the more reliable set of data, we have given

RMSD relative to both basis set combos in Table 7.

We shall first briefly turn to n-particle convergence. In

this case, omitting (T) causes a relatively small error of

about 1.7 kcal/mol RMSD, compared to 4 kcal/mol for the

bare-Pd systems and 3.5 kcal/mol for Grubbs (Table S3,

Table 5 RMSD (kcal/mol) of MP2-F12:CCSD(T*)-F12b two-layer additivity approximations for Grubbs model systems

Higher def2-QZVPP awCVTZ-F12 def2-TZVPP awCVTZ-F12 def2-QZVPP def2-QZVPP def2-QZVPP

Lower def2-SVP def2-SVP def2-SVP def2-TZVPP def2-TZVPP def2-TZVP(P) def2-TZVP(P)?AA

Default core 0.96 0.95 1.08 0.28 0.19 0.22 0.15

Ru(4s,4p) 0.73 0.82 0.66 0.28 0.20 0.22 0.16

RMSD relative to CCSD(T*)-F12b/awCVTZ-F12

Approximations were done by using equation E ¼ E MP2-F12=Higherð Þ þ E CCSD T�ð Þ-F12b=Lowerð Þ � E MP2-F12=Lowerð Þ

Table 6 RMSD in kcal/mol for various DFT functionals relative to CCSD(T*)-F12b/awCVTZ-F12 for the Grubbs model system

B2GP-

PLYP

DSD-

PBEB95

DSD-

PBEP86

DSD-

PBEPBE

BP86 BLYP PBE M06L mPWB95 TPSS B97-1

No disp. 3.14 1.18 1.24 1.26 6.89 14.72 4.40 3.65 4.50 4.50 6.39

DFT-D2 0.77 1.10 1.48 1.12 2.41 5.80 2.61 2.54 3.77 1.98

DFT-D3BJ 1.56 0.79 1.37 1.19 1.56 7.97 1.31 0.78

B97-2 B97D B3LYP B3PW91 MPW1K PBE0 PBEh1PBE B1B95 BB1K BMK M06

No disp. 9.43 11.30 6.98 4.34 3.56 3.43 4.27 3.80 5.54 1.74

DFT-D2 2.29 6.93a 3.35 2.72 3.28 3.57 7.41 1.56

DFT-D3BJ 8.42b 5.56 1.22 2.00 6.42

M06-2X MPW1B

95

mPW25B95 mPW28B

95

MPWB1K TPSS0 TPSS1KCIS TPSS21

KCIS

TPSS25KCIS xB97X M11

No disp. 5.06 3.05 3.10 3.06 3.47 3.58 6.07 5.71 5.56 3.46 3.77

DFT-D2 4.71 4.52 1.75 3.16c 3.40

DFT-D3BJ 2.22 3.62 2.04

a Calculations were performed with the B97D functional and its built-in dispersion correction
b Calculations were performed with the B97D3 functional and its built-in dispersion correction
c Calculations were performed with the xB97XD functional and its built-in dispersion correction
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ESI). Unlike the latter system, SCS-MP2-F12 does quite

poorly here, with RMSD = 4.6 kcal/mol. SCS-CCSD-F12

however does have an error just below 1 kcal/mol.

Simply reducing the metal basis set to def2-TZVP as

well causes an error of 0.8 kcal/mol RMS, as does stripping

the entire basis set down to def2-ASVP. As clearly the

metal basis set is so important, we tried the combination of

def2-TZVPP on the single metal atom with the simple

def2-SVP basis set on everything else and found that this

causes a surprisingly low error of 0.38 kcal/mol, presum-

ably again due to error compensation between BSSE and

intrinsic basis set incompleteness. For comparison, using

def2-SVP on the metal as well puts one in 1 kcal/mol basis

set error territory.

Yet, it seems that basis set dependence is actually the

weakest of the three problem sets studied here, and inter-

estingly enough, the same is true for the importance of

Rh(4s,4p) correlation. If the latter were excluded, the def2-

ASVP would actually cause a basis set incompleteness error

of just 0.2 kcal/mol and def2-SVP of only 0.5 kcal/mol.

We can now proceed to benchmarking the DFT treat-

ments (for which the def2-TZVPP basis set was used

throughout). The results can be found in Table 8. Here,

dispersion corrections have some effect, but nothing like

what is seen in the Grubbs case. The performance of TPSS-

D3BJ, at RMSD = 0.57 kcal/mol, can only be described as

stunning: without dispersion, this only deteriorates slightly

to 1.1 kcal/mol. But even the uncorrected PBE and BP86

functionals turn in errors below 1 kcal/mol, as do B97-1

and TPSS1KCIS. The double hybrids B2GP-PLYP and

DSD-PBEB95 again turn in very good performances with

or without dispersion corrections. B97D and B97D3 actu-

ally perform very well for this problem, unlike the medi-

ocre performance for bare Pd (where it suffers from not

being a hybrid) and the very poor one for Grubbs.

3.4 DFT functionals assessed jointly for all three

problems

The average RMSD of all three problems combined is

probably a more useful metric of performance for late-

transition metal catalysis than each individually. Table 9

presents these statistics.

CH3
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Rh
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P
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2 3
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P
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Fig. 3 Schematic representation of the stationary points involved in

the CH/CC activation starting from one common intermediate structure

Table 7 CCSD(T*)-F12b RMSD in kcal/mol for Rh-PCP pincer complexes

def2-TZVP(P) awCVD(T)Z-F12a def2-TZVP SVP-TZVPPb def2-SVP def2-ASVP

RMSD w.r.t. CCSD(T*)-F12b/def2-TZVP(P)

Default core 0.00 0.31 0.46 0.38 0.51 0.20

Rh(4s,4p) 0.00 0.23 0.78 0.38 0.98 0.84

RMSD w.r.t. CCSD(T*)-F12b/awCVD(T)Z-F12

Default core 0.31 0.00 0.67 0.28 0.50 0.31

Rh(4s,4p) 0.23 0.00 0.92 0.32 0.84 0.73

a cc-pVDZ-F12 basis set on main-group elements and aug-cc-pwCVTZ-PP basis set on transition metal
b def2-SVP basis set on main-group elements and def2-TZVPP basis set on transition metal
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The ‘‘workhorse’’ functionals BP86 and PBE, combined

with D3BJ dispersion, yield values of about 3 kcal/mol—in

both cases, the average of excellent performance for

Grubbs and Rh(PCP) and apparent inability to cope with

the bare-Pd systems. The same holds true for TPSS. The

hybrids do not suffer from this problem, with PBE0-D3BJ,

TPSS0-D3BJ, and B3PW91-D3BJ clocking in at respect-

able values of 1.6, 1.4, and 1.4 kcal/mol. All three func-

tionals are clearly superior to B3LYP.

With the D2 correction, B97-1 and TPSS1KCIS per-

formed surprisingly well with 1.5 and 1.7 kcal/mol RMS

error, respectively. Only the double hybrids do still better,

the best overall being B2GP-PLYP-D2 at 0.7 kcal/mol.

Heavily parametrized kinetic functionals such as BMK,

M06, and M06-2X clearly are found wanting: the two

range-separated hybrids M11 and wB97X-D do better, but

still are not ‘‘magic bullets’’ for this class of problems.

Functionals with B95 correlation all yield similar RMSDs

of 2–3 kcal/mol.

As the present paper was being finalized for publication,

a study by Chen and coworkers [126] appeared in which

they propose ab initio benchmarks for Zr-mediated

Table 8 RMSD in kcal/mol for various DFT functionals relative to CCSD(T*)-F12b/def2-TZVP(P) for Rh-PCP pincer complexes

B2GP-

PLYP

DSD-

PBEB95

DSD-

PBEP86

DSD-

PBEPBE

BP86 BLYP PBE M06L mPWB95 TPSS B97-1

No disp. 1.07 0.83 1.99 1.73 0.76 1.55 0.89 2.80 1.13 1.09 0.86

DFT-D2 0.71 0.67 1.56 1.13 1.71 1.14 1.49 2.97 0.45 1.19

DFT-D3BJ 0.92 0.56 1.71 1.38 1.18 1.11 1.23 0.57

B97-2 B97D B3LYP B3PW91 MPW1K PBE0 PBEh1PBE B1B95 BB1K BMK M06

No disp. 1.34 1.52 1.08 2.98 1.72 2.06 2.30 3.52 4.12 5.78

DFT-D2 2.38 1.22a 2.30 2.42 2.49 3.30 3.68 5.99

DFT-D3BJ 1.31b 1.97 1.97 2.21

M06-2X MPW

1B95

mPW25

B95

mPW

28B95

MPWB1K TPSS0 TPSS

1KCIS

TPSS21KCIS TPSS25KCIS xB97x M11

No disp. 4.21 2.75 2.30 2.52 3.88 0.91 0.65 1.07 1.36 3.03 2.46

DFT-D2 4.28 2.00 1.43 2.59c 2.64

DFT-D3BJ 3.02 4.15 1.54

a Calculations were performed with the B97D functional and its built-in dispersion correction
b Calculations were performed with the B97D3 functional and its built-in dispersion correction
c Calculations were performed with the xB97X-D functional and its built-in dispersion correction

Table 9 RMSD in kcal/mol for various DFT functionals averaged over the Pd reactions, the Grubbs catalyst, and the Rh-PCP C–C and C–H

activation pathways (see text)

B2GP-

PLYP

DSD-

PBEB95

DSD-

PBEP86

DSD-

PBEPBE

BP86 BLYP PBE M06L mPWB95 TPSS B97-1

No disp. 1.76 1.39 1.41 1.45 4.60 6.87 3.74 2.75 2.61 3.71 2.92

DFT-D2 0.74 1.23 1.35 1.08 3.74 3.96 3.55 2.46 3.50 1.50

DFT-D3BJ 1.06 1.10 1.36 1.13 3.19 4.55 2.95 2.40

B97-2 B97D B3LYP B3PW91 MPW1K PBE0 PBEh1PBE B1B95 BB1K BMK M06

No disp. 4.52 5.01 3.20 4.10 2.01 2.07 2.80 4.04 5.00 4.66

DFT-D2 2.15 4.04 2.35 2.20 2.07 2.68 5.55 4.63

DFT-D3BJ 4.31 2.81 1.39 1.58 5.97

M06-2X MPW1B95 mPW

25B95

mPW28B95 MPWB1K TPSS0 TPSS1KCIS TPSS21KCIS TPSS25

KCIS

xB97x M11

No disp. 6.47 2.60 2.08 2.31 4.12 2.01 2.82 2.86 3.12 3.94 3.72

DFT-D2 6.36 2.50 1.71 3.17 3.61

DFT-D3BJ 2.31 4.16 1.41

Theor Chem Acc (2014) 133:1452

123Reprinted from the journal 243



reactions. Basis set extrapolation [127, 128] of conven-

tional ab initio data with comparatively small basis sets

was used there in conjunction with core–valence correc-

tions obtained from explicitly correlated calculations. For

these early-transition metal systems, they found M06-2X to

be the best performer [126]: the same group had argued

earlier [129–131] that different systems required different

DFT functionals.

4 Conclusions

We have performed CCSD(T*)-F12b benchmark calcula-

tions for the energetics and barrier heights of three late-

transition metal systems, in increasing order of size: oxi-

dative additions at bare Pd, a model for the Grubbs catalyst,

and competition between CC and CH activation by a

Rh(PCP) pincer complex. The results depend weakly on

the basis set on the main-group atoms but are rather more

sensitive to the basis set on the metal. An aug-cc-pwCVTZ-

PP basis set on the metal combined with cc-pVTZ-F12 on

the main-group elements yields barriers that are converged

in terms of the basis set, but two smaller basis set combi-

nations, namely def2-TZVP(P) and awCVD(T)Z-F12,

appear to work well enough for most benchmark purposes.

The former refers to the combination of def2-TZVP on the

main group with def2-TZVPP on the transition metal, the

latter to cc-pVDZ-F12 on the main group combined with

aug-cc-pwCVTZ-PP on the metal. (4s,4p) inner-shell cor-

relation cannot be neglected for even semi-accurate work.

While SCS-CCSD-F12 can approach CCSD(T)-F12b to

within about 1.5 kcal/mol, this is a similar accuracy as can

be obtained from the best DFT functionals, despite the vast

difference in computational cost. Lower-level ab initio

methods are generally not worthwhile.

For the Grubbs case, dispersion is very important and

D3BJ clearly is superior over D2. Only the DSD-‘‘noD’’

double hybrids perform consistently well in the absence of

dispersion corrections.

Simple nonempirical (meta) GGAs with D3BJ disper-

sion work quite well for the Grubbs and pincer cases but

break down for the Pd example: apparently, this latter

situation (low oxidation state, no ligands) requires exact

exchange. Hybrids of these same functionals, such as

PBE0, TPSS0, and B3PW91, are among the best per-

formers. If good performance for main-group barriers and

general thermochemistry are also important, that narrows

the choice to the double hybrids.
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Abstract We report simulations of the X-ray absorption

near edge structure at the Cl K-edge of actinide hexahalides

MCl6
2- (M = U, Np, Pu) and the UOCl5

– complex using

linear response time-dependent density functional theory

extended for core excitations. To the best of our knowl-

edge, these are the first calculations of the Cl K-edge

spectra of NpCl6
2- and PuCl6

2-. In addition, the spectra

are simulated with and without the environmental effects of

the host crystal as well as ab initio molecular dynamics to

capture the dynamical effects due to atomic motion. The

calculated spectra are compared with experimental results,

where available and the observed trends are discussed.

Keywords Actinides � Plutonium � Uranium �
Neptunium � K-edge � Chlorine � X-ray absorption �
Spectroscopy � XAS � XANES

1 Introduction

X-ray absorption spectroscopy (XAS) is a powerful and

widely used technique for probing the local electronic and

geometrical structure properties of matter at the atomic

scale. In XAS, the electrons are excited from an atomic

core state to bound valence or continuum states, and the

spectrum is divided into energetically separate edges. By

convention, the edges are labeled according to the core

electron that is excited (for example, K-edge for 1s, L1-

edge for 2s, L2-edge for 2p1/2 and L3-edge for 2p3/2).

Absorptions near the rising edge, also referred to as X-ray

absorption near edge spectroscopy or X-ray absorption near

edge structure (XANES), involve excitations from the

relevant core state to increasingly high-energy virtual

states. This gives insight into the chemical state of the atom

(for example, coordination, bonding and oxidation state).

Higher energy absorption sufficient to result in photoelec-

tron ejection is called extended X-ray absorption fine

structure or EXAFS. This yields information about atoms

in the vicinity, atomic identity, coordination and solvation

structure of charged ions in solution [1–3].

Since EXAFS involves backscattering from nearby

atoms, the physics is essentially captured by the phase

shifts and scattering amplitudes from which the spectrum

can be calculated using a damped spherical photoelectron

wavefunction approximation. Nowadays, these are rou-

tinely computed using Green’s function-based approaches

[4, 5], and the approach is especially powerful when

combined with ab initio molecular dynamics simulations

(AIMD) [6, 7]. XANES, on the other hand, requires a full

electronic structure treatment of the absorbing center and

neighboring atoms constituting the chemical environment.

Over the years, various approaches have been pioneered

like the static exchange approximation (STEX) and static
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approaches [8, 9]. All these approaches incorporate the

relaxation of the core hole and valence orbitals indirectly

by manual preparation of the core hole state and/or use of

modified core potentials that mimic the core relaxation

when a core electron is excited [10–13]. The absorption

spectra are computed by calculating the transition dipole

elements of the initial and final states of interest. In a

nutshell, these methods are very sensitive to the choice of

initial and final states.

Recently, linear response time-dependent density func-

tional theory (LR-TDDFT) has been extended to treat core-

level excitations [14–18]. The advantage of this approach is

that no manual preparation of the core hole state is needed,

and peak separations and trends are properly captured.

However, the quality of the results is dependent on the

exchange-correlation functional choice [19]. Another

approach is real-time TDDFT (RT-TDDFT) [20]. We have

recently applied our LR-TDDFT approach to several

studies including the K-edges of oxygen, carbon, fluorine

in a number of molecular systems (CO, H2O and fluoro-

benzenes) [18], ruthenium L3-edge in[Ru(NH3)6]
3?,

ruthenium L3-edge in a series of model Ru(II) and Ru(III)

complexes and mixed-valence metal (Ru/Fe) dimers [19],

the K-edges spectra of oxygen, nitrogen and sulfur in

cysteine [21], and the entangled valence electron-hole

dynamics in stimulated attosecond X-ray Raman scattering

[22]. Approaches combining DFT and the restricted open-

shell configuration interaction method have also been

recently reported [23, 24].

Here, we apply our approach to theoretically study the

Cl K-edge spectra of the closed-shell UOCl5
- complex and

the open-shell tetravalent actinide hexahalides series

MCl6
2- (M = U, Np, Pu) formally containing 2, 3 and 4

5f-electrons. Cl K-edge spectroscopy has been used to

study the electronic structure of actinide complexes and to

probe the role of 5f and 6d orbitals in the formation of

covalent bonds [25, 26]. Across the actinides series, the 5f-

orbitals become more contracted and their role in bonding

changes, which we expect to be reflected in the Cl K-edge

spectra [27]. Our study specifically probes the role of the

environment of the host crystal and the dynamical effects

due to atomic motion on the shape of the spectra. The

computed spectra are compared with recent gas-phase

computational results as well as available experiments [25].

The rest of this paper is organized as follows: We first

summarize our computational approach followed by an

analysis and discussion of our results.

2 Computational approach

Within LR-TDDFT, the excitation energies are obtained

as solutions to the frequency domain time-dependent

Kohn–Sham equations (TDKS). The implementation in

the NWChem quantum chemistry program [28, 29] is

based on the iterative subspace Davidson algorithm,

which is an effective approach for valence excitations

[30–34]. However, this approach becomes expensive for

core excitations because the complete excitation matrices

involving a very large number of excited states have to

be constructed and diagonalized. Formally, the numeri-

cal cost of diagonalizing the full TDDFT equations

scales as O(N6), because of the tetradic nature of the

RPA matrix [35]. This problem was overcome via a

restricted excitation window (REW) approach, where

calculations are performed within a smaller model sub-

space of single excitations from the relevant core orbi-

tals that can be selected based on energies or orbital

number [18]. This is a valid Ansatz because core exci-

tation energies are well separated from pure valence–

valence excitations. Similar implementations have also

been reported and validated by other groups [14–17].

Further details of our approach can be found in Ref.

[18], and for the details of TDDFT and the relevant

working equations, we refer the interested reader to

comprehensive reviews on the subject [30–38].

For the Gaussian basis set-based molecular calculations,

the actinide atoms (U, Np and Pu) were represented with

small core Stuttgart relativistic ECPs (replaces 60 core

electrons) and corresponding basis sets containing g-func-

tions [39, 40], while the ligand atoms (Cl and O) were rep-

resented with the aug-cc-pvtz basis [41, 42]. The actinide

basis sets are of triple zeta quality. In general and as expec-

ted, the absolute positions of the core spectra are dependent

on the choice of exchange-correlation functional as well as

the basis set [19].We have tested theB3LYP (20 %HF) [43–

46], PBE0 (25 % HF) [28] and Becke Half-and-Half (50 %

HF) [47] functionals, respectively. The PBE0 functional [58]

gave the best agreement with experiment for all the actinide

complexes considered in this study [25]. The spectra were

shifted by *58.4 eV to match experiment and uniformly

Lorentzian broadened (1.0 eV). Unlike valence and charge-

transfer (CT) excitations where range-separated exchange-

correlation functionals offer significant improvement, they

offer little or no improvement in the strongly localized core

spectra. For the molecular calculations with the environ-

ment, the actinide complex in each case was placed in a set of

point charges (determined using a Mulliken analysis), rep-

resenting the host crystalline solid. The actinide hexahalides

MCl6
2- (M = U, Np, Pu) were performed with unrestricted

DFT (triplet, quartet and quintet), and the calculated ground

state hS2i values were 2.0116 (exact: 2.0), 3.7725 (exact:

3.75) and 6.0833 (exact: 6.0), respectively. The UOCl5
1-

system was calculated with restricted DFT. The observed

small spin contamination could be an indication of the pre-

sence of higher spin state character. In addition, the spin–
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orbit coupling for UCl6
2- and NpCl6

2- is approximately

0.20–0.25 eV [48, 49] and will also result in a number of

closely spaced excited states that may not be experimentally

resolvable [25] as the natural width of Cl K-edge transitions

is*0.64 eV [50]. We cannot assess the importance of these

contributions because our current implementation does not

include spin-orbital and multiple excited-state electronic

configuration effects [51]. However, the key features and the

overall shape of the spectra are in qualitative agreement with

experiment as we will discuss in the Results section.

To capture the role of dynamical motions of the atoms,

planewave-based Car-Parrinello AIMD simulations were

performed with the PBE exchange-correlation functional [52,

53]. Norm-conserving Troullier–Martins pseudopotentials

[54] with relativistic corrections were used for the actinides,

and Hamann pseudopotentials [55] were used for the other

atoms in the system. Other calculation parameters include an

energy cutoff of 100 Ry, density cutoff of 200 Ry, a simula-

tion time step of 0.121 fs, and a fictitious electron mass of

600 au, respectively. The unit cell dimensions, symmetry and

the atomic coordinates were taken from experimental data

[56], [UOCl5
- via private communication with S. Kozimor].

Replacing all hydrogen atoms with deuterium allows for lar-

ger integration time steps. The simulation temperature was set

at 300 Kand controlledusing aNose–Hoover thermostat [57].

Approximately 10 ps of dynamics was collected for each of

the structures. In our sampling, the first 3 ps was considered

the equilibration phase and ignored.

Cl K-edge core absorption spectra calculations using

REW-LR-TDDFT were performed on all the complexes

using: (1) experimental molecular geometries without the

environment, (2) experimental molecular geometries with

the environment, and (3) 100 molecular geometry snap-

shots extracted from periodic AIMD runs, which were

averaged to form the final spectra. Three hundred excited

states from the Cl 1s states were calculated for each sys-

tem. We note that optimized geometries do not change the

overall shape and nature of the spectrum. All calculations

were performed with NWChem 6.3 [28, 29].

3 Results

In this section, we present and discuss our calculated REW-

LR-TDDFT Cl K-edge spectra of actinide hexahalides

MCl6
2- (M = U, Np, Pu). The structures of the different

complexes are presented in Fig. 1.

3.1 UCl6
2-

The ground state is an open-shell triplet (5f2) where the

HOMO/LUMO character of the alpha electrons is

Fig. 1 Crystal structures of a (Ph4P)2UCl6�4CH3CN, b (Ph4P)2NpCl6, c (Ph4P)2PuCl6�4CH3CN and d (Ph4P)2UOCl5 as reported in Refs. ([56],

private communication with S. Kozimor)
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dominated by Cl 3p (HOMO-2), U 5f (HOMO-1), U

5f (HOMO), U 5f (LUMO), U 5f (LUMO?(1–4)), while

orbitals containing U 6d were found at higher energy. For

the beta electrons, we observe the Cl 3p (HOMO-2), Cl

3p (HOMO-1), Cl 3p (HOMO), U 5f ? Cl 3s (LUMO)

and U 5f and U 5f ? Cl 3s/3p (LUMO?(1–4)), respec-

tively. All the higher states are a mixture of U and Cl

states.

The shape of the spectrum (Fig. 2) remains largely

unaffected with and without the environment. The shoulder

between 2,821.75 and 2,823 eV, which consists of two

close peaks separated by *0.75 eV and composed of

excitations from the Cl 1s ? U 5f states, is mostly

smoothened out when the averaged spectrum is calculated

using AIMD snapshots. The prominent peak at *2,824 eV

arises from excitations from the Cl 1s ? U 6d ? Cl 3s/

3p states. On the whole, our calculated spectrum is in better

agreement with experiment, in terms of the peak intensities

and locations, compared with published gas-phase com-

putational results [25].

3.2 NpCl6
2-

The ground state is an open-shell quartet (5f3) where the

HOMO/LUMO character of the alpha electrons is domi-

nated by Cl 3p (HOMO-3), Np 5f (HOMO-2), Np

5f ? Cl 3p (HOMO-1), Np 5f ? Cl 3p (HOMO), Np

5f (LUMO), Np 5f (LUMO?(1–3)). While the 5f orbitals in

uranium were found to be atomic like, a much larger

mixing of 5f with the Cl 3p is found for Np. For the beta

electrons, we observe the Cl 3p (HOMO-3), Cl

3p (HOMO-2), Cl 3p (HOMO-1), Cl 3p (HOMO), and

Np 5f (LUMO) and Np 5f and Np 5f ? Cl 3s/

3p (LUMO?(1–3)), respectively. The Np 6d orbitals are

found above the Np 5f orbitals, and all the higher states are

a mixture of Np and Cl orbitals.

The shoulder (Fig. 2) which is composed of two closely

spaced features in UCl6
2- is clearly separated by *1.5 eV

and red-shifted in NpCl6
2-. The first feature *2,821 eV

arises from transitions from Cl 1s ? Np 5f states, while

the second peak *2,822.5 eV is dominated by transitions

Fig. 2 Cl K-edge spectra of

UCl6
2-, NpCl6

2-, PuCl6
2- and

UOCl5
1- in the gas phase, in the

presence of the host crystal and

including dynamical effects

using AIMD simulations
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from Cl 1s ? Np 5f ? Cl 3s/3p states, respectively. The

third peak *2,824 eV is composed of excitations from Cl

1s ? Np 6d ? Cl 3s/3p states. Although there are differ-

ences with and without the environment and including

dynamics, the overall shape and the number of features are

preserved.

3.3 PuCl6
2-

The ground state is an open-shell quintet (5f4) where the

HOMO/LUMO character of the alpha electrons is domi-

nated by Cl 3p (HOMO-3), Pu 5f ? Cl 3p (HOMO-2),

Pu 5f ? Cl 3p (HOMO-1), Pu 5f ? Cl 3p (HOMO), Pu

5f (LUMO) and Pu 5f (LUMO?(1–2)). A further increase

in mixing of the 5f with the Cl 3p is observed for Pu

compared with both U and Np. For the beta electrons, we

observe the Cl 3p (HOMO-3), Cl 3p (HOMO-2), Cl

3p (HOMO-1), Cl 3p (HOMO), Pu 5f ? Cl 3s/

3p (LUMO) and Pu 5f and Pu 5f ? Cl 3s/

3p (LUMO?(1–2)). The Pu 6d orbitals are found above the

Pu 5f orbitals, and higher states are a mixture of Pu and Cl

orbitals.

There are two clear early features (Fig. 2) separated by

*2.0 eV and further red-shifted compared with NpCl6
2-.

The first feature*2,820 eV arises from transitions from Cl

1s ? Pu 5f states, while the second peak *2,822 eV is

dominated by transitions from Cl 1s ? Pu 5f ? Cl 3s/

3p states, respectively. The third peak *2,824 eV is

composed of excitations from Cl 1s ? Pu 6d ? Cl 3s/

3p states. As in the NpCl6
2- spectra, there are differences

in the spectra; however, the overall nature of the spectrum

remains largely unaffected as in PuCl6
2- even with inclu-

sion of dynamics.

The three actinide hexahalide spectra are compared in

Fig. 3. There is a clear trend in the first and second features

that is a direct consequence of the behavior of the 5f elec-

trons in the actinide series. In addition to not being shielded

by the filled 6s and 6p shells, the 5f electrons also shield

each other poorly from the nucleus resulting in a lowering

of their orbital energies with increasing atomic number.

This is reflected in the increased spacing and red-shifting of

the first and second features as one goes from

UCl6
2- ? PuCl6

2-. The second peak, as discussed above,

is a result of the mixing of the actinide 5f orbitals with the

Cl 3s/3p states, which increases as one moves from U to

Pu. The prominent feature at *2,824 eV is mostly unaf-

fected in the three spectra, reflecting the much smaller shift

in orbital energies compared with the 5f in the U, Np and

Pu series.

3.4 UOCl5
-

The ground state has a closed-shell configuration (5f0)

where HOMO/LUMO character is dominated by Cl

3p states (HOMO-2, HOMO-1, HOMO), while the

unoccupied states are dominated by U 5f orbitals (LUMO,

LUMO?1, LUMO?2 and LUMO?3). Higher states are a

mixture of U, Cl and O orbitals.

The computed Cl K-edge spectra (Fig. 2) show two

prominent features *2,821 eV (Cl 1s ? U 5f) and

*2,822.5 eV (Cl 1s ? U 5f ? Cl 3s ? O 2p) that are

distinct from the UCl6
2- complex. The Cl 1s ? U

Fig. 3 Comparative Cl K-edge spectra of UCl6
2-, NpCl6

2- and

PuCl6
2- in the presence of the host environment. a Compares the

spectra including the host environment. b Compares the spectra

averaged over 100 configurations extracted from AIMD runs. The

three spectra in each figure are normalized relative to each other such

that the peaks *2,826 have the same intensity. Note that the shoulder

in UCl6
2- between *2,821.75 and *2,823 eV, which consists of

two peaks separated by *0.75 eV is mostly smoothened out in the

averaged spectra. These peaks are not resolved in the experimental

data [25]
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6d ? Cl 3s/3p transitions are split into two peaks one at

*2,824 eV and a second (shoulder) at *2,826 eV. These

are similar in nature to the analogs in the actinide hexa-

halide complexes and also located in the same position in

the spectrum. On the whole, the spectra with and without

the host environment and including dynamical effects are

very similar. The agreement with experiment is reasonable.

However, we do not observe the shoulder at*2,820.5 eV

that is clearly visible in the experimental data [25] by either

introducing the crystal field via the host environment or

dynamics. We analyzed this further by asking the question,

what structural changes are needed to reproduce the exper-

imental spectrum and the shoulder in particular?

Experimentally, the axial U–O and U–Cl bonds are 1.78

and 2.43 Å, and the equatorial U–Cl bonds are all 2.54 Å,

respectively. If the axial U–Cl bond is elongated by

*0.25 Å and two of the equatorial U–Cl bonds (opposite to

each other) are elongated by*0.25 Å, all the experimental

features are reasonably captured including the shoulder.

However, these bond length elongations (*10 %) are

unphysical and cannot be accounted for by a weak host

crystal field, dynamics and different oxidation states (which

only accounts for *0.08 Å per charge of charge). It is

possible that this feature may be related to spin-flip effects.

We do not have a way to assess this at the moment as our

TDDFT implementation does not include these effects.

4 Conclusions

In summary, we have applied our recently developed

REW-LR-TDDFT approach to compute the Cl K-edge

spectra of actinide hexahalides MCl6
2- (M = U, Np, Pu)

and the UOCl5
- complex in the gas phase as well as in the

environment of the host crystal. We have reported the

computed Cl K-edge spectra for NpCl6
2- and PuCl6

2- for

the first time. In order to capture the influence of thermal

effects and atomic motion, we have also calculated the

averaged spectra over snapshots extracted from periodic

planewave-based room temperature (300 K) AIMD simu-

lations. We find that our UCl6
2- results are in better

agreement with experiment compared with recently pub-

lished gas-phase computational results [25]. We also dis-

cuss the systematic trends in the spectra over the U, Np and

Pu series as well as the spectrum of the UOCl5
- complex.
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Abstract Interference-corrected explicitly correlated

second-order perturbation theory (INT-MP2-F12) is

applied to accelerate the convergence to the complete-

basis-set limit of coupled-cluster computations. Adding

energy terms obtained from INT-MP2-F12 theory to the

energies obtained from coupled-cluster singles-and-dou-

bles (CCSD) computations yields a mean absolute devia-

tion (MAD) from explicitly correlated CCSD results below

1 kJ/mol for a test set of 106 molecules. A composite

scheme for the computation of atomization energies is

assessed. This scheme is denoted as CCSD(T)?F12?INT

and consists of the CCSD model with perturbative triples

(CCSD(T)) supplemented with INT-MP2-F12 corrections,

using a quadruple-zeta quality basis set (cc-pVQZ-F12).

The composite scheme achieves chemical accuracy with

respect to experimentally derived or computed reference

values. Using Boys localized molecular orbitals, the MAD

of the CCSD(T)?F12?INT/cc-pVQZ-F12 atomization

energies from the reference values is below 1 kJ/mol for

the G2/97 test set.

Keywords Atomization energy � Performance

assessment � Test set � Coupled-cluster theory �
Explicit correlation � Interference effects

1 Introduction

The intrinsic error of an ab initio method (i.e., the differ-

ence between theory and experiment) can only be revealed

by approaching the complete-basis-set (CBS) limit of the

respective method [1, 2]. This can be achieved either by

extrapolations based on a series of computations in a sys-

tematic hierarchy of basis sets (e.g., Dunning’s correlation-

consistent basis sets [3]) or by the use of explicitly corre-

lated wave functions [4–9].

Today, coupled-cluster theory with iterative single and

double excitations followed by a non-iterative, perturbative

treatment of triple excitations to the fifth order (CCSD(T))

[10] constitutes the ‘‘gold standard’’ of quantum chemistry.

However, its inherent high accuracy is only obtained close

to the CBS limit. Rather than computing this limit directly,

for example, by using explicitly correlated coupled-cluster

theory, one can combine small-basis-set CCSD(T) energies

with results from low-level perturbation theory at the CBS

limit, as follows:

dECCSDðTÞ=CBS � dEMP2=CBS þ ðdECCSDðTÞ
� dEMP2Þsmall basis ð1Þ

(the notation dE is used for correlation energies while total

energies will be noted without the d symbol). dEMP2

denotes the second-order Møller–Plesset (MP2) correlation

energy, and typically, a double- or triple-zeta-quality basis

can be regarded as ‘‘small basis.’’ Expressions similar to

Eq. (1) have been used on numerous occasions in the past.

These are too numerous to be discussed here, but some of
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the early works are, for example, mentioned in Refs. [11,

12]. Furthermore, combinations of different ab initio

methods in conjunction with different basis sets, similar to

Eq. (1), are key ingredients to many (modern) composite

schemes such as the Gaussian-n model chemistries of

Curtiss et al. [13–16], the correlation-consistent composite

approach of Wilson et al. [17–19], the CBS methods of

Petersson et al. [20–26], the focal-point analysis of Allen

et al. [27, 28], the multicoefficient correlation methods of

Truhlar et al. [29–31], the HEAT approach of Tajti, Har-

ding et al. [32, 33], and the Weizmann-n theories of Martin

et al. [34–36]. Noteworthy is also the study by Dunning

and Peterson [37] in which various perturbation theories

(e.g., third-order Møller–Plesset theory) are used to

approximate the basis-set dependence of CCSD(T) theory.

The right-hand side of Eq. (1) can be interpreted as the

CCSD(T) energy in a small basis plus a basis-set-truncation

correction from MP2 theory. This correction improves

significantly the accuracy of conventional CCSD(T) atom-

ization energies. For example, in previous work [38], we

have reported for 73 atomization energies a root-mean-

square deviation (RMS) of 23 and 6.5 kJ/mol, without and

with second-order basis-set-truncation corrections, respec-

tively. Experimentally derived values from the Active

Thermochemical Tables (ATcT) [39, 40] were used as

reference. We found that the raw second-order corrections

overestimated the atomization energies. Therefore, their

contribution was scaled down using an empirical factor

f = 0.78, yielding an RMS deviation of only 1.2 kJ/mol for

the same set of molecules.

An alternative approach for scaling down the second-

order corrections is the inclusion of interference factors

[21, 41–43]. Interference factors fij are computed from

first principles from the first-order wave function for

individual orbital pairs i, j. They relate the basis-set-

truncation error of the MP2 energy to the corresponding

error of the CCSD method [44]. In our approach, the

MP2 basis-set-truncation error is calculated as the dif-

ference between the explicitly correlated MP2 energy

(MP2-F12) [45] and the conventional MP2 energy.

Explicitly correlated theory incorporates the electronic-

cusp behavior into the wave function and provides

molecular electronic energies close to the CBS limit [5–

9]. Thus, using interference factors, the CCSD(T)/CBS

correlation energy is estimated as

dECCSDðTÞ=CBS � dECCSDðTÞ þ
X
ij

fij eMP2�F12
ij � eMP2

ij

	 

;

ð2Þ
where eij

MP2-F12 and eij
MP2 are pair-correlation energies. All

terms on the right-hand side of Eq. (2) are computed in the

same basis set, which in the present work is either one of

the cc-pVXZ basis sets of Dunning [3] or one of the cc-

pVXZ-F12 basis sets of Peterson et al. [46].

We rewrite Eq. (2) as

dECCSDðTÞ=CBS � dECCSDðTÞþF12þINT

¼ dECCSDðTÞ þ dEF12 þ dEINT; ð3Þ

dEF12 ¼
X
ij

eMP2�F12
ij � eMP2

ij

	 

; ð4Þ

dEINT ¼
X
ij

fij � 1
� �

eMP2�F12
ij � eMP2

ij

	 

: ð5Þ

Recently, the applicability of this method, denoted as

CCSD(T)?F12?INT, for the accurate description of non-

covalent interactions was studied [47]. The CCSD(T)?

F12?INTmethodwas tested on the S22 benchmark database

(revision S22B) [48, 49], and a mean absolute deviation

(MAD) of 0.06 kcal/mol (0.25 kJ/mol) was reported.

In the present article, we assess the performance of

the CCSD(T)?F12?INT method with respect to com-

putations of atomization energies. Since atomization

energies represent energy differences of systems con-

taining different numbers of paired electrons, they pose

a challenge for pair-electron theories and thus for

interference-corrected MP2. They also require a high

degree of flexibility in the description of the short-range

interactions [50].

Details of the computational protocol are given in

Sect. 2, followed by the calculation of atomization

energies. The statistics for the 106-molecule [51] test

set, the six-membered atomization energy (AE6) test set

of Lynch and Truhlar [52], and the G2/97 [53, 54] test

set are presented in Sect. 3 Finally, a summary is pre-

sented in Sect. 4.

2 Computational details

In this study, the performance of the CCSD(T)?F12?INT

method has been assessed for three test sets. For the

106-molecule test set of Bakowies [51], the equilibrium

geometries of all molecules were obtained from previous

studies [4, 38] at the all-electron CCSD(T) level in the

correlation-consistent core–valence triple-f basis set (cc-

pCVTZ) of Woon and Dunning [3, 55]. For the hydrogens

contained in these molecules, the cc-pVTZ basis was used.

All of these 106 molecules are closed-shell species, and

therefore, a restricted Hartree–Fock (RHF) determinant

was used as reference for the correlation treatments. The

geometries used for the AE6 test set had been obtained at

the QCISD/MG3 level of theory by Truhlar et al. [56]. For

the G2/97 test set, the B3LYP/6-31G(2df, p) geometries

were taken from Ref. [57].
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Unrestricted Hartree–Fock (UHF) references were used

for the open-shell systems and RHF references for the

closed-shell systems. In both cases, point-group symmetry

was used. A ‘‘CABS-singles’’ correction was added to the

Hartree–Fock energy, which is an energy correction

obtained from single excitations into an auxiliary basis set

(see, e.g., Ref. [58]).

All calculations were performed with the TURBOMOLE

program package [59, 60]. Two families of basis sets were

considered: the cc-pVXZ basis sets (X = D, T, Q, 5) of

Dunning [3] and the cc-pVXZ-F12 basis sets (X = D, T, Q)

of Peterson et al. [46]. Both families have been developed

within a correlation-consistent methodology, the second

specifically for explicitly correlated calculations. All cal-

culations were performed in the frozen-core (fc) approxi-

mation. Core/core–valence corrections are added

separately, computed in the cc-pCVQZ-F12 basis [61, 62].

This basis was also chosen for the Li, Be, and Na atoms for

the corresponding systems in the G2/97 test set, because

only the 1s orbital of Na was kept frozen and no orbitals at

all for Li and Be.

As complementary auxiliary basis set (cabs), the ‘‘Op-

tRI’’ sets of Peterson et al. were used [61–63]. The aug-cc-

pwCV(X ? 1)Z cbas basis sets of Hättig [64] (aug-cc-

pV(X ? 1)Z for the hydrogens, cc-pV(X ? 1)Z for Na)

were used for the robust fitting of both the electron-

repulsion and the F12-specific integrals. The auxiliary basis

sets (cbas) of Ref. [64] were also used for the calculations

with the cc-pCVQZ-F12 basis for the core/core-valence

correction. The aug-cc-pV(X ? 1)Z jkbas basis sets of

Weigend [65] were used for the two-electron contributions

to the Fock matrix.

The interference-corrected MP2-F12 calculations

(INT-MP2-F12) were carried out with spin-aligned [21]

canonical or Boys localized orbitals (all terms of our

computational protocol are orbital-invariant except the

dEINT term). For all explicitly correlated calculations

(coupled-cluster and INT-MP2-F12), the orbital-invari-

ant ansatz with full optimization of the F12 amplitudes

was used, including ‘‘spin-flip’’ amplitudes [66–68] for

open-shell systems, with the F?K approximation [45]

for the commutator between kinetic energy and Slater-

type geminal f12 = c-1{1 - exp(- cr12)}. Six Gauss-

ian functions were used to approximate the Slater-type

geminal. Throughout this article, the dEF12 and dEINT

terms were computed with ansatz 2 and approximation

A of F12 theory [45]. The exponents c were taken

from the work of Peterson et al. [61–63]: c = 0.9 a0
-1

for cc-pVDZ-F12, c = 1.0 a0
-1 for cc-pVTZ-F12, and

c = 1.1 a0
-1 for cc-pVQZ-F12. The default exponent

c = 1.4 a0
-1 was used for Dunning’s cc-pVXZ basis

sets.

3 Results and discussion

3.1 106-molecule test set

The 106-molecule test set consists of the 105 molecules

benchmarked by Bakowies [51] plus H2. See Refs. [4, 38]

for further details. In the following two subsections, we

shall first look at the correlation-energy contribution to the

atomization energy (at the CCSD and CCSD(T) levels) and

then look at the total atomization energy (including the

Hartree–Fock energy and other corrections).

3.1.1 Correlation-energy contribution to the atomization

energy

Table 1 reports the statistical analysis of the raw CCSD

correlation-energy contributions to the atomization ener-

gies with respect to the CCSD(F12)/def2-QZVPP reference

values of Ref. [4]. As expected, the deviations from the

reference values are significant due to the slow basis-set

convergence of the conventional CCSD method. In the

quintuple-zeta basis, the RMS is still ca. 10 kJ/mol. All

deviations are positive, which means that the correlation-

energy contributions to the atomization energies are

underestimated at the conventional CCSD level.

Table 2 reports the statistical analysis of the

CCSD?F12 method, in which the correlation energy is

computed according to

dECCSDþF12 ¼ dECCSD þ dEF12: ð6Þ
Addition of only the correction from MP2-F12 theory is

improving the results, but the accuracy is not satisfactory.

Nevertheless, for all basis sets, the MAD and the RMS

values are significantly smaller than without dEF12 term.

The RMS of the cc-pVDZ-F12, cc-pVTZ-F12, and cc-

pVQZ-F12 basis sets is reduced by a factor of four, three,

and two, respectively, compared to the results without

dEF12 term. The negative values of the mean errors indicate

Table 1 Statistics of the deviations (in kJ/mol) of the computed

correlation-energy contributions calculated with the conventional

CCSD for the 106-molecule test set

Basis set Mean

error

MAD RMS Max

error

Molecule

cc-pVDZ 115.48 115.48 122.59 211.88 31 CH4N2O

cc-pVDZ-F12 95.71 95.71 101.53 178.30 72 C4N2

cc-pVTZ 49.89 49.89 52.71 100.91 104 N2O4

cc-pVTZ-F12 40.40 40.40 42.61 75.87 104 N2O4

cc-pVQZ 19.91 19.91 21.12 44.20 104 N2O4

cc-pVQZ-F12 17.17 17.17 18.16 33.51 104 N2O4

cc-pV5Z 9.71 9.71 10.38 22.74 104 N2O4

Theor Chem Acc (2014) 133:1446

123Reprinted from the journal 257



that the addition of only the dEF12 term overestimates the

electron-correlation contribution to the atomization energy.

Much higher accuracy is achieved by adding the dEINT

correction from interference-corrected MP2-F12 theory

(Table 3). The statistics for all basis sets are greatly

improved, in particular for the quadruple- and quintuple-zeta

basis sets. Even the RMS of the triple-zeta basis sets is within

the limits of ‘‘chemical accuracy,’’ that is, below 1 kcal/mol

(4.18 kJ/mol). Figure 1 shows the normal (Gaussian) dis-

tribution of the electron-correlation contributions to the

atomization energies for the 106 molecules with respect to

the CCSD(F12)/def2-QZVPP reference values. The Gaus-

sians corresponding to the CCSD?F12?INT level are

shownwith dashed lines. Figure 1a includes the distributions

obtained in the cc-pVTZ-F12 basis and Fig. 1b in the cc-

pVQZ-F12 basis.

The molecules with the largest errors show large D1

diagnostics [69]. At the CCSD(T)/cc-pVQZ-F12 level, for

example, the D1 values of dinitrogen trioxide (103.N2O3)

and tetraoxide (104.N2O4) are 0.078 and 0.069,

respectively.

In Table 4, we show the statistics of the CCSD(T)?

F12?INT correlation-energy contributions to the atom-

ization energies, computed according to Eq. (2). These

contributions are compared with the corresponding results

of Ref. [4], in which a (T) correction was added to the

CCSD(F12)/def2-QZVPP energy. This (T) correction was

obtained by extrapolating the corresponding energies

computed in the cc-pCVQZ and cc-pCV5Z basis sets. In

the small double- and triple-zeta basis sets, the statistics of

the CCSD?F12?INT approach look somewhat better than

those of the CCSD(T)?F12?INT approach due to the poor

(T)-triples energies in these basis sets, but the performance

of the approaches with and without triples is very similar in

the larger quadruple- and quintuple-zeta basis sets.

We conclude this section by noting that the cc-pVQZ-

F12 basis set yields a mean absolute deviation of about

Table 2 Statistics of the deviations (in kJ/mol) of the computed

correlation-energy contributions calculated with the CCSD?F12

method for the 106-molecule test set

Basis set Mean

error

MAD RMS Max

error

Molecule

cc-pVDZ -45.54 45.54 49.60 127.58 104 N2O4

cc-pVDZ-F12 -23.51 23.51 24.87 52.99 104 N2O4

cc-pVTZ -17.75 17.75 18.88 42.43 104 N2O4

cc-pVTZ-F12 -15.35 15.35 16.16 26.25 66 C3H8

cc-pVQZ -10.73 10.73 11.31 22.28 104 N2O4

cc-pVQZ-F12 -9.66 9.66 10.18 16.77 72 C4N2

cc-pV5Z -6.43 6.43 6.77 13.09 72 C4N2

Table 3 Statistics of the deviations (in kJ/mol) of the computed

correlation-energy contributions calculated with the

CCSD?F12?INT method for the 106-molecule test set

Basis set Mean

error

MAD RMS Max

error

Molecule

cc-pVDZ -2.82 10.31 14.03 44.89 37 C2F4

cc-pVDZ-F12 10.31 10.57 11.96 24.32 70 C4H4

cc-pVTZ 3.09 4.13 4.17 9.87 98 H3NO

cc-pVTZ-F12 2.66 2.83 3.17 7.00 70 C4H4

cc-pVQZ -0.29 0.93 1.27 5.12 39 C2HF3

cc-pVQZ-F12 -0.27 0.67 0.87 3.01 103 N2O3

cc-pV5Z -0.67 0.73 0.92 3.03 103 N2O3
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Fig. 1 Normal distributions of electron-correlation contributions to

atomization energies (in kJ/mol) for CCSD(T) (red), CCSD(T)?F12

(black), and CCSD(T)?F12?INT (green). Dashed lines correspond

to CCSD, full lines to CCSD(T). Results are shown for the basis sets

a cc-pVTZ-F12 and b cc-pVQZ-F12
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1 kJ/mol, that is, it yields CCSD and CCSD(T) electron-

correlation contributions of chemical accuracy (\4.18 kJ/

mol).

3.1.2 Total atomization energy

The total atomization energies of the 106 molecules will be

discussed next. The results of the present work will be

compared with those from Ref. [38]. For 73 of these

molecules, accurate experimentally derived values are

available from the ATcT database (cf. Ref. [38]).

In order to compare with experimentally derived val-

ues, a number of corrections to the total

CCSD(T) energy should be taken into account. These

include higher-order corrections for full triple excitations,

calculated as the difference between CCSDT/cc-pVTZ

and CCSD(T)/cc-pVTZ correlation energies (dET), and

quadruple excitations, calculated as the difference

between CCSDT(Q)/cc-pVDZ and CCSDT/cc-pVDZ

correlation energies (dE(Q)). In addition, scalar relativistic

effects (DEMVD), spin–orbit interactions for the atoms

(DESO), and anharmonic zero-point vibrational energies

(DEZPVE þ DEAnh) must be included. All of these cor-

rections (denoted as ‘‘Other’’ in Table 5) were taken

from Ref. [38] and are added to the present work’s

CCSD(T)?F12?INT energies.

The correction for core/core–valence correlation effects

was not taken from Ref. [38] but rather recomputed in the

course of the present work, in which the cc-pCVQZ-F12

basis was used,

dECV ¼ dEae�CCSDðTÞ=cc�pCVQZ�F12

� dEfc�CCSDðTÞ=cc�pCVQZ�F12: ð7Þ
That is, dECV is obtained as the difference between the all-

electron (ae) and frozen-core (fc) CCSD(T) energies in the

cc-pCVQZ-F12 basis [61]. Table 6 shows dECV values for

a few representative cases in comparison with the values of

Ref. [38], showing that the cc-pCVQZ-F12 basis yields

more accurate values (i.e., closer to the cc-pCV(Q5)Z

extrapolated value) than the cc-pCVQZ basis used in Ref.

[38].

Finally, the CABS-singles correction to the Hartree–

Fock energy, as obtained in the INT-MP2-F12 calculations,

is taken into account. All energy contributions of the

present work’s composite scheme are the following:

EComposite Scheme ¼EHartree�Fock þ DECABS

þ dECCSDðTÞ þ dEF12 þ dEINT

þ dECV þ dET þ dEðQÞ
þ DEZPVE þ DEAnh þ DEMVD þ DESO:

ð8Þ
Table 5 includes the individual components of the present

work’s composite scheme, obtained with the cc-pVQZ-F12

basis set. These components are the ECCSD(T) energy

(which includes the Hartree–Fock energy), the second-

order corrections INT and F12, as they have been described

previously, and the CABS-singles correction. Additionally,

the core/core–valence contributions to the atomization

energies are also given in Table 5 (‘‘CV’’ column). The

remaining corrections of the composite scheme of Eq. (8)

are collected in the column ‘‘Other,’’

DEOther ¼ dET þ dEðQÞ þ DEZPVE þ DEAnh þ DEMVD

þ DESO; ð9Þ
and the column ‘‘Total’’ contains the total atomization

energies after summation of the individual terms. In the

column ‘‘Ref,’’ the atomization energies as computed in

Ref. [38] are shown. The MAD of our composite scheme

from the values of Ref. [38] is 1.3 kJ/mol, with an RMS

value of 1.5 kJ/mol. The last two columns include the

atomization energies from the ATcT database, where

available, and the errors of our composite scheme with

respect to the ATcT values. With respect to these values,

the MAD is 1.75 kJ/mol and the RMS is 2.15 kJ/mol. The

maximum deviation is found for cyclopropane (5.7 kJ/

mol). Hence, our composite scheme does indeed achieve

chemical accuracy. The two previous computational stud-

ies [4, 38] on the atomization energies of this test set

reported MADs of 0.9 and 1.2 kJ/mol, respectively. In the

first of these previous works, an empirical scaling factor

fint = 0.78 was applied. In the second, the main contribu-

tion to the correlation energy was obtained from explicitly

correlated CCSD(F12) calculations.

3.2 AE6 test set

Besides the 106-molecule test set, alternative and more

compact representative test sets exist in the literature.

The six-membered atomization energy (AE6) test set

of Lynch and Truhlar [52] is an example of such a

Table 4 Statistics of the deviations (in kJ/mol) of the computed

correlation-energy contributions calculated with the

CCSD(T)?F12?INT method for the 106-molecule test set

Basis set Mean error MAD RMS Max error Molecule

cc-pVDZ 15.86 17.00 18.70 37.02 98.H3NO

cc-pVDZ-F12 16.93 16.93 18.03 33.74 70.C4H4

cc-pVTZ 7.73 7.85 8.46 16.02 98.H3NO

cc-pVTZ-F12 4.90 4.90 5.22 11.85 104.N2O4

cc-pVQZ 1.32 1.50 1.81 4.56 104.N2O4

cc-pVQZ-F12 0.46 0.66 0.84 3.12 104.N2O4

cc-pV5Z -0.20 0.49 0.64 -2.19 39.C2HF3
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Table 5 Atomization energy components (in kJ/mol) of the 106-molecule test set

Nr.a Molecule CCSD(T) DECABS INTb F12b CV Otherc Total Ref.d ATcT Error

1 CFN Cyanogen fluoride 1,255.8 0.3 -7.3 20.6 8.0 -27.9 1,249.5 1,250.9 1,250.3 ± 1.7 -0.8

2 CFN Isocyanogen fluoride 959.0 0.3 -6.6 19.7 6.2 -22.4 956.2 957.0 959.2 ± 2.7 -3.0

3 CF2 Singlet difluoromethylene 1,069.2 0.3 -4.3 14.3 2.6 -21.9 1,060.2 1,060.0 1,059.1 ± 0.8 1.1

4 CF2O Carbonyl fluoride 1,735.7 0.4 -4.9 23.4 7.1 -43.6 1,718.1 1,717.2 1,718.4 ± 0.9 -0.3

5 CF4 Tetrafluoromethane 1,980.0 0.5 -5.9 25.1 5.9 -56.3 1,949.3 1,949.5 1,947.9 ± 0.6 1.4

6 CHF Singlet fluoromethylene 880.1 0.2 -4.5 12.1 2.3 -33.5 856.7 857.0

7 CHFO Formyl fluoride 1,667.4 0.3 -5.8 21.2 6.5 -58.4 1,631.2 1,631.0 1,631.4 ± 0.9 -0.2

8 CHF3 Trifluoromethane 1,901.9 0.4 -4.4 22.9 5.5 -75.6 1,850.7 1,849.2 1,848.7 ± 0.9 2.0

9 CHN Hydrogen cyanide 1,289.7 0.2 -7.5 18.6 7.4 -41.7 1,266.7 1,268.5 1,268.3 ± 0.2 -1.6

10 CHN Hydrogen isocyanide 1,227.1 0.3 -7.6 18.8 6.6 -41.2 1,204.0 1,205.7 1,207.0 ± 0.6 -3.0

11 CHNO Cyanic acid 1,686.2 0.3 -9.6 27.0 9.4 -57.9 1,655.4 1,657.1 1,657.2 ± 1.0 -1.8

12 CHNO Isocyanic acid 1,788.4 0.3 -8.9 27.5 9.8 -57.3 1,759.8 1,760.4 1,761.0 ± 0.4 -1.2

13 CHNO Formonitrile oxide 1,494.8 0.3 -9.5 26.9 10.2 -50.3 1,472.4 1,473.9 1,474.1 ± 1.2 -1.7

14 CHNO Isofulminic acid 1,437.7 0.4 -9.4 26.2 7.7 -54.7 1,407.9 1,409.4 1,410.2 ± 1.0 -2.3

15 CH2 Singlet methylene 750.0 0.1 -5.1 9.9 1.9 -42.6 714.2 715.4 7,14.9 ± 0.2 -0.7

16 CH2F2 Difluoromethane 1,813.2 0.3 -6.1 20.7 5.3 -91.8 1,741.6 1,741.5 1,741.7 ± 0.8 -0.1

17 CH2N2 Cyanamide 1,997.5 0.4 -11.7 32.6 11.1 -89.9 1,940.0 1,941.5

18 CH2N2 3H-Diazirine 1,821.1 0.3 -11.6 31.5 8.3 -87.0 1,762.6 1,764.3

19 CH2N2 Diazomethane 1,858.0 0.4 -11.0 31.4 10.6 -80.8 1,808.6 1,809.9

20 CH2O Formaldehyde 1,548.4 0.2 -7.3 18.7 5.9 -70.9 1,495.0 1,496.6 1,495.8 ± 0.2 -0.8

21 CH2O Hydroxymethylene 1,332.0 0.3 -7.1 18.3 4.2 -70.8 1,276.9 1,277.9 1,277.8 ± 1.1 -0.9

22 CH2O2 Dioxirane 1,690.7 0.3 -8.9 25.8 5.9 -86.4 1,627.4 1,627.9 1,629.6 ± 1.7 -2.2

23 CH2O2 Formic acid 2,072.7 0.4 -9.3 27.4 7.8 -91.7 2,007.3 2,008.7 2,008.4 ± 0.3 -1.1

24 CH2O3 Performic acid 2,214.4 0.4 -10.0 33.8 8.2 -98.1 2,148.7 2,148.9

25 CH3F Fluoromethane 1,752.4 0.3 -7.1 18.3 5.2 -106.7 1,662.4 1,663.4 1,665.1 ± 0.6 -2.7

26 CH3N Methanimine 1,814.6 0.3 -9.6 24.0 7.2 -104.6 1,731.9 1,733.6 1,733.5 ± 1.0 -1.6

27 CH3NO Formamide 2,343.9 0.4 -11.3 33.0 9.8 -120.3 2,255.5 2,256.6

28 CH3NO2 Methyl nitrite 2,470.6 0.4 -12.4 38.2 8.3 -126.7 2,378.4 2,379.0

29 CH3NO2 Nitromethane 2,479.1 0.5 -11.8 38.9 9.9 -131.1 2,385.5 2,385.3

30 CH4 Methane 1,743.5 0.2 -7.7 15.9 5.3 -118.6 1,638.6 1,640.9 1,642.2 ± 0.1 -3.6

31 CH4N2O Urea 3,104.8 0.6 -15.8 46.9 13.2 -170.1 2,979.6 2,981.0

32 CH4O Methanol 2,125.9 0.3 -9.5 24.3 6.5 -136.7 2,010.8 2,012.4 2,012.7 ± 0.2 -1.9

33 CH5N Methylamine 2,408.7 0.4 -12.0 29.6 7.9 -168.4 2,266.2 2,268.4 2,269.0 ± 0.5 -2.8

34 CO Carbon monoxide 1,072.4 0.2 -4.9 12.7 4.5 -13.9 1,071.0 1,072.5 1,072.1 ± 0.1 -1.1

35 CO2 Carbon dioxide 1,607.3 0.3 -7.7 22.1 8.2 -32.8 1,597.4 1,599.1 1,598.2 ± 0.1 -0.8

36 C2F2 Difluoroacetylene 1,585.4 0.3 -7.4 23.1 12.6 -40.4 1,573.6 1,574.8 1,577.0 ± 1.7 -3.4

37 C2F4 Tetrafluoroethylene 2,432.6 0.5 -8.3 32.2 12.3 -67.4 2,401.9 2,402.2 2,405.2 ± 1.0 -3.3

38 C2HF Fluoroacetylene 1,640.4 0.3 -7.0 20.6 11.4 -55.9 1,609.8 1,610.7 1,612.3 ± 1.0 -2.5

39 C2HF3 Trifluoroethylene 2,415.0 0.5 -5.2 29.9 11.7 -84.9 2,367.0 2,363.5

40 C2H2 Acetylene 1,672.8 0.2 -7.8 18.4 10.3 -70.0 1,623.9 1,625.5 1,626.2 ± 0.2 -2.3

41 C2H2F2 1,1-Difluoroethylene 2,423.5 0.4 -7.2 27.5 11.2 -102.0 2,353.4 2,352.7

42 C2H2O Ketene 2,200.8 0.3 -8.8 25.7 11.9 -84.2 2,145.7 2,146.7 2,147.3 ± 0.2 -1.6

43 C2H2O Oxirene 1,878.1 0.3 -10.3 26.4 10.5 -77.2 1,827.8 1,828.8

44 C2H2O2 Glyoxal 2,620.4 0.3 -12.1 33.7 12.0 -99.5 2,554.8 2,557.1 2,555.3 ± 0.6 -0.5

45 C2H3F Fluoroethylene 2,372.7 0.3 -8.0 25.3 10.5 -118.2 2,282.6 2,282.5 2,278.4 ± 1.7 4.2

46 C2H3FO Acetyl fluoride 2,922.3 0.4 -9.2 33.4 11.9 -133.1 2,825.7 2,825.1

47 C2H3N Acetonitrile 2,544.9 0.3 -11.4 30.7 12.8 -119.8 2,457.5 2,459.2

48 C2H3N Methyl isocyanide 2,443.7 0.3 -11.3 30.5 11.6 -120.4 2,354.4 2,355.6
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Table 5 continued

Nr.a Molecule CCSD(T) DECABS INTb F12b CV Otherc Total Ref.d ATcT Error

49 C2H4 Ethylene 2,334.3 0.2 -10.0 22.9 10.0 -133.5 2,223.9 2,226.3 2,225.9 ± 0.2 -2.0

50 C2H4O Acetaldehyde 2,803.4 0.3 -10.8 31.0 11.3 -147.4 2,687.8 2,688.9 2,688.9 ± 0.4 -1.1

51 C2H4O Oxirane 2,693.9 0.3 -12.0 31.6 11.0 -153.3 2,571.5 2,573.0 2,573.9 ± 0.5 -2.4

52 C2H4O2 Acetic acid 3,323.0 0.5 -12.2 39.6 13.2 -166.0 3,198.1 3,198.5 3,199.3 ± 1.5 -1.2

53 C2H4O2 Methyl formate 3,253.3 0.4 -12.0 38.9 12.5 -166.8 3,126.3 3,126.5 3,125.2 ± 0.6 1.1

54 C2H5F Fluoroethane 2,988.2 0.4 -10.6 30.4 10.4 -181.6 2,837.2 2,838.0 2,838.5 ± 1.9 -1.3

55 C2H5N Aziridine 2,976.9 0.4 -14.1 37.2 12.6 -186.0 2,827.0 2,828.7

56 C2H6 Ethane 2,955.0 0.3 -12.3 28.0 10.3 -198.2 2,783.1 2,786.0 2,787.2 ± 0.2 -4.1

57 C2H6O Dimethyl ether 3,308.5 0.4 -13.7 35.7 11.1 -211.5 3,130.5 3,132.6 3,132.4 ± 0.5 -1.9

58 C2H6O Ethanol 3,358.7 0.4 -12.8 36.3 11.6 -212.3 3,181.9 3,183.0 3,182.8 ± 0.3 -0.9

59 C2N2 Cyanogen 2,059.1 0.3 -12.5 32.6 15.1 -40.9 2,053.7 2,056.5 2,055.8 ± 0.5 -2.1

60 C3H3N Acrylonitrile 3,147.2 0.3 -13.0 37.6 17.6 -133.2 3,056.5 3,057.7

61 C3H4 Allene 2,909.4 0.3 -12.6 29.7 15.4 -146.0 2,796.2 2,798.9 2,800.9 ± 0.5 -4.7

62 C3H4 Cyclopropene 2,816.7 0.3 -11.7 31.0 15.3 -148.8 2,702.8 2,704.3 2,705.1 ± 1.0 -2.3

63 C3H4 Propyne 2,914.9 0.3 -11.4 30.4 15.7 -146.9 2,803.0 2,804.1 2,805.6 ± 0.5 -2.6

64 C3H6 Cyclopropane 3,533.6 0.3 -14.1 36.1 15.7 -217.7 3,353.9 3,356.1 3,359.7 ± 0.6 -5.8

65 C3H6 Propene 3,565.6 0.4 -13.2 35.0 15.2 -209.5 3,393.5 3,395.1 3,395.0 ± 0.4 -1.5

66 C3H8 Propane 4,175.5 0.4 -15.9 39.9 15.3 -272.0 3,943.2 3,945.9 3,944.6 ± 0.4 -1.4

67 C3O2 Carbon suboxide 2,734.0 0.3 -11.7 35.8 18.9 -57.9 2,719.4 2,721.3

68 C4H4 Butatriene 3,491.4 0.3 -14.2 36.8 20.5 -156.9 3,377.9 3,380.1

69 C4H4 Cyclobutadiene 3,386.6 0.4 -15.1 38.8 18.9 -159.8 3,269.8 3,272.3

70 C4H4 Tetrahedran 3,272.1 0.4 -15.3 40.0 21.6 -160.3 3,158.5 3,160.4

71 C4H4 Vinylacetylene 3,526.4 0.3 -13.4 37.3 20.6 -160.8 3,410.4 3,411.6

72 C4N2 Dicyanoacetylene 3,265.3 0.3 -15.9 47.0 26.0 -68.3 3,254.4 3,256.1

73 FH Hydrogen fluoride 587.1 0.2 -2.9 6.7 1.0 -26.8 565.3 565.9 566.0 ± 0.0 -0.7

74 FHO Hypofluorous acid 652.2 0.2 -4.9 12.8 1.2 -37.4 624.1 624.3 624.0 ± 0.4 0.1

75 FHO2 Fluoroperoxide 860.4 0.3 -6.6 19.4 1.6 -47.2 827.9 827.4

76 FH2N Monofluoroamine 1,057.1 0.3 -7.5 19.2 2.5 -73.3 998.3 999.0

77 FH3N2 Fluorohydrazine 1,686.3 0.4 -11.2 32.7 5.5 -119.4 1,594.3 1,594.1

78 FNO Nitrosyl fluoride 880.8 0.3 -6.4 20.1 2.3 -17.3 879.8 878.7

79 F2 Difluorine 156.4 0.1 -2.5 6.0 0.1 -6.0 154.1 153.8 154.6 ± 0.2 -0.5

80 F2N2 Difluorodiazene (cis) 1,029.1 0.3 -8.2 27.3 3.5 -31.2 1,020.8 1,019.7

81 F2N2 Difluorodiazene (trans) 1,023.3 0.3 -8.4 27.2 3.6 -31.1 1,014.9 1,013.5

82 F2O Difluorine monoxide 379.6 0.2 -3.9 12.8 0.4 -13.7 375.4 373.5 373.3 ± 0.7 2.1

83 F2FO2 Perfluoroperoxide 616.2 0.3 -5.4 19.3 0.7 -15.7 615.4 612.3 609.7 ± 0.8 5.7

84 F3N Trifluoroamine 844.3 0.3 -4.6 21.5 1.2 -30.5 832.2 828.9

85 HNO Nitrosylhydride 844.1 0.3 -7.5 18.7 2.7 -35.3 823.0 824.3 823.6 ± 0.1 -0.6

86 HNO2 Nitrous acid (cis) 1,281.2 0.4 -9.4 26.6 3.7 -52.0 1,250.5 1,251.7 1,251.5 ± 0.4 -1.0

87 HNO2 Nitrous acid (trans) 1,282.6 0.4 -9.1 26.5 3.8 -51.6 1,252.6 1,253.0 1,253.3 ± 0.1 -0.7

88 HNO2 Nitrous acid, H-NO2 1,249.3 0.4 -8.9 27.2 4.9 -57.1 1,215.8 1,216.4

89 HNO3 Nitric acid 1,591.7 0.5 -9.4 34.7 6.1 -70.9 1,552.7 1,552.0 1,551.6 ± 0.2 1.1

90 HN3 Hydrogen azide 1,353.4 0.5 -11.5 32.7 7.8 -53.5 1,329.4 1,330.8 1,329.7 ± 0.6 -0.3

91 H2N2 Diazene (cis) 1,195.9 0.4 -10.0 24.8 4.1 -71.5 1,143.7 1,145.4 1,143.5 ± 0.9 0.2

92 H2N2 Diazene (trans) 1,218.4 0.4 -10.2 24.8 4.2 -73.1 1,164.5 1,166.1 1,165.8 ± 0.7 -1.3

93 H2N2 Diazene (iso) 1,114.0 0.3 -9.7 25.2 4.7 -69.3 1,065.2 1,066.1 1,065.1 ± 0.9 0.1

94 H2N2O Nitrosamide 1,586.8 0.4 -11.7 32.8 6.2 -84.2 1,530.3 1,531.4

95 H2O Water 964.3 0.3 -5.7 12.7 1.9 -57.1 916.4 917.6 917.8 ± 0.1 -1.4

96 H2O2 Hydrogen peroxide 1,109.6 0.3 -8.2 19.4 2.4 -70.2 1,053.3 1,055.0 1,055.2 ± 0.1 -1.9
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small set. It has been proposed to represent the 109

atomization energies of the Database/3 data set [70].

The AE6 test set consists of the atomization energies

of six molecules: SiH4, SiO, S2, propyne (C3H4), gly-

oxal (C2O2H2), and cyclobutane (C4H8). The set con-

tains a few but diverse cases, and it seems interesting

to assess the performance of the CCSD(T)?F12?INT

method.

Reference values, obtained at the (frozen-core)

CCSD(T)(F12)/cc-pVQZ-F12 level of theory, were taken

from Ref. [71]. Note that the core/core–valence contri-

butions, higher-order terms (i.e., full triples and pertur-

bative quadruples), and the scalar relativistic and spin–

orbit effects have been subtracted from the values of Ref.

[71] in order to be able to compare directly the

CCSD(T) values.

Table 5 continued

Nr.a Molecule CCSD(T) DECABS INTb F12b CV Otherc Total Ref.d ATcT Error

97 NH3 Ammonia 1,231.7 0.3 -8.0 17.9 3.1 -90.0 1,155.0 1,156.9 1,157.3 ± 0.1 -2.3

98 H3NO Ammonia oxide 1,380.4 0.4 -9.7 25.9 3.9 -108.8 1,292.1 1,290.5

99 H3NO Hydroxylamine 1,483.8 0.4 -9.8 25.4 3.9 -106.4 1,397.3 1,398.7 1,398.7 ± 0.5 -1.4

100 N2H4 Hydrazine 1,806.9 0.5 -12.9 31.2 5.7 -139.9 1,691.5 1,694.0 1,695.6 ± 0.2 -4.1

101 N2 Dinitrogen 936.4 0.2 -7.5 18.9 4.3 -12.7 939.6 940.8 941.1 ± 0.1 -1.5

102 N2O Nitrous oxide 1,104.1 0.4 -9.2 26.9 6.4 -27.3 1,101.3 1,102.8 1,102.0 ± 0.1 -0.7

103 N2O3 Dinitrogen trioxide 1,598.0 0.5 -10.7 40.4 6.6 -41.3 1,593.5 1,592.4 1,591.1 ± 0.2 2.4

104 N2O4 Dinitrogen tetraoxide 1,923.9 0.6 -15.9 48.7 9.1 -60.5 1,905.9 1,908.0 1,908.5 ± 0.2 -2.6

105 O3 Ozone 590.1 0.3 -6.5 18.5 1.4 -8.2 595.6 594.9 596.1 ± 0.1 -0.5

106 H2 Dihydrogen 456.2 0.1 -2.4 4.0 0.0 -26.1 431.8 432.7 432.1 ± 0.0 -0.3

a Same number and same molecule as in Ref. [51] except for dihydrogen
b Second-order corrections from the INT-MP2-F12 method
c Corrections to the electronic energy taken from Ref. [38]. See text for further explanation
d Total energy from Ref. [38]

Table 6 Basis-set convergence of the core/core–valence contribution (in kJ/mol) as obtained at the CCSD(T) level

Nr.a Molecule cc-pCVQZb cc-pCV5Zb cc-pCVQZ-F12 cc-pCV(Q5)Zb

1 CFN Cyanogen fluoride 6.92 7.26 7.21 7.61

9 CHN Hydrogen cyanide 6.59 6.95 6.82 7.32

10 CHN Hydrogen isocyanide 5.78 6.06 5.98 6.35

15 CH2 Singlet methylene 1.59 1.65 1.65 1.71

20 CH2O Formaldehyde 5.21 5.43 5.36 5.65

30 CH4 Methane 4.99 5.19 5.06 5.40

34 CO Carbon monoxide 3.76 3.96 3.90 4.17

35 CO2 Carbon dioxide 7.00 7.33 7.29 7.68

40 C2H2 Acetylene 9.60 10.10 9.86 10.62

73 FH Hydrogen fluoride 0.77 0.77 0.75 0.77

74 FHO Hypofluorous acid 0.64 0.62 0.67 0.60

79 F2 Difluorine -0.29 -0.32 -0.28 -0.35

92 H2N2 Diazene (trans) 3.34 3.44 3.53 3.56

95 H2O Water 1.61 1.63 1.61 1.66

97 NH3 Ammonia 2.71 2.80 2.78 2.88

101 N2 Dinitrogen 3.38 3.55 3.57 3.74

102 N2O Nitrous oxide 5.03 5.21 5.37 5.41

105 O3 Ozone 0.24 0.17 0.38 0.09

The ROHF reference was used for the atoms
a Same number and same molecule as in Ref. [51]
b Data taken from Ref. [38]
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Figure 2 shows the errors of the CCSD(T),

CCSD(T)?F12, and CCSD(T)?F12?INT approaches,

using the cc-pVQZ-F12 basis set, in comparison with the

CCSD(T)(F12)/cc-pVQZ-F12 values of Ref. [71]. Similar to

the 106-molecule test set, the three methods behave simi-

larly for the atomization energies of the six molecules of the

AE6 set. Conventional CCSD(T) energies have errors that

exceed in some cases 20 kJ/mol. Addition of the raw dEF12

term overestimates the atomization energies. The interfer-

ence-corrected CCSD(T)?F12?INT values are very accu-

rate, however, showing a MAD of 0.8 kJ/mol and the RMS

error of 1.0 kJ/mol. The maximum deviation is at about

2 kJ/mol for the S2molecule, whereas the other twomethods

show maximum errors for the cyclobutane molecule.

3.3 G2/97

The last collection of molecules for which the performance

of the CCSD(T)?F12?INT method has been assessed is

the G2/97 test set [53, 54]. It is composed of 148 diverse

molecules. It includes some difficult cases, like the car-

bonyl fluoride (COF2) molecule, whose experimental ref-

erence value has a high uncertainty [72], 29 radicals,

aromatic moieties, some relatively ‘‘large’’ molecules (e.g.,

benzene), and molecules that are composed of atoms not

included in the previous two sets (e.g., Li, Al, Na). All

members of the G2/97 test set are listed in Table 7.

Recently, new theoretical reference values have been

published for the G2/97 test set [73]. These accurate values

have been calculated using a computational protocol based

on explicitly correlated CCSD(T) theory. Corrections for

higher excitations and core/core–valence correlation

effects are accounted for. The main argument for using

these theoretical reference values (and not experimentally

derived ones) is that the high uncertainty of some of the
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Fig. 2 Deviations from the computational reference values of the

AE6 test set

Table 7 Atomization energies of the G2/97 test set (in kJ/mol) from

the CCSD(T)?F12?INT method with canonical and localized orbi-

tals (Boys)

Molecule Canonical Boys Ref.a

AlCl3 Aluminum trichloride 1,310.7 1,304.1 1,307.5

AlF3 Aluminum trifluoride 1,805.9 1,801.6 1,802.9

BCl3 Boron trichloride 1,354.2 1,348.2 1,350.9

BF3 Boron trifluoride 1,964.4 1,960.2 1,961.8

BeH Beryllium monohydride 213.8 211.7 212.0

CCl4 Tetrachloromethane 1,314.1 1,309.9 1,310.2

CF4 Tetrafluoromethane 1,999.5 1,996.3 1,997.1

CH Methylidyne radical 350.5 350.5 350.3

CH2Cl2 Dichloromethane 1,549.6 1,546.3 1,547.1

CH2F2 Difluoromethane 1,827.7 1,825.2 1,825.7

CH2O2 Formic acid 2,091.0 2,088.7 2,089.5

CH2O Formaldehyde 1,559.5 1,558.3 1,558.9

CH2 Singlet carbene 754.5 754.4 754.3

CH2 Triplet carbene 793.7 793.7 793.6

CH3Cl Chloromethane 1,441.8 1,649.1 1,649.7

CH3 Methyl radical 1,282.4 1,282.4 1,282.3

CH3O Hydroxymethyl radical 1,708.5 1,708.4 1,707.5

CH3O Methoxy radical 1,668.3 1,668.0 1,667.3

CH3S Methylthio radical 1,595.2 1,595.4 1,593.9

CH4 Methane 1,751.8 1,752.0 1,752.0

CH4O Methanol 2,140.8 2,139.5 2,139.8

CH4S Thiomethanol 1,981.0 1,979.3 1,979.8

CHCl3 Trichloromethane 1,441.8 1,435.6 1,436.4

CHF3 Trifluoromethane 1,920.9 1,916.2 1,916.8

CHO Formyl radical 1,161.5 1,161.4 1,160.9

CN Cyano radical 743.6 743.3 742.9

CNH Hydrogen cyanide 1,300.9 1,299.9 1,300.4

CNH3O2 Methyl nitrite 2,496.6 2,492.8 2,492.2

CNH3O2 Nitromethane 2,506.5 2,501.9 2,501.7

CNH5 Methylamine 2,426.6 2,425.6 2,425.5

C2Cl4 Tetrachloroethylene 1,963.4 1,958.0 1,960.5

C2F4 Tetrafluoroethylene 2457.0 2452.9 2,453.7

C2H Ethynyl radical 1,097.9 1,097.6 1,097.8

C2H2 Acetylene 1,683.4 1,682.6 1,683.2

C2H2O2 Glyoxal 2,641.9 2,639.3 2,640.4

C2H2O Ketene 2,217.8 2,215.3 2,216.2

C2H3Cl Vinyl chloride 2,265.8 2,262.8 2,263.7

C2H3 Vinyl radical 1,853.0 1,853.0 1,852.4

C2H3F Vinyl fluoride 2,389.8 2,386.9 2387.5

C2H3O Carbonyl methane 2,424.5 2,424.2 2,422.4

C2H3OCl Acetyl chloride 2,788.3 2,782.3 2,783.4

C2H3OF Acetyl fluoride 2,946.7 2,941.8 2,942.6

C2H4 Ethylene 2,347.2 2,346.7 2,347.1

C2H4O2 Acetic acid 3,350.6 3,346.3 3,346.9

C2H4O2 Methyl formate 3,280.3 3,275.8 3,276.4

C2H4O Acetaldehyde 2,823.5 2,820.7 2,821.3

C2H4O Oxirane 2713.4 2,712.1 2,712.3

Theor Chem Acc (2014) 133:1446

123Reprinted from the journal 263



Table 7 continued

Molecule Canonical Boys Ref.a

C2H4S Thiirane 2,608.7 2,606.9 2,607.2

C2H5Cl Ethyl chloride 2,888.4 2,885.2 2,885.7

C2H5 Ethyl radical 2516.0 2,516.1 2,515.3

C2H5O Ethoxy radical 2,908.7 2,907.3 2,906.3

C2H6 Ethane 2,970.7 2,970.5 2,970.5

C2H6O Dimethyl ether 3,330.2 3,328.5 3,328.5

C2H6O Ethanol 3,382.2 3,379.3 3,379.5

C2H6OS Dimethyl sulfoxide 3,574.6 3,570.4 3,570.7

C2H6S Dimethyl sulfide 3,206.2 3,204.1 3,204.3

C2H6S Thioethanol 3,211.8 3,208.6 3,209.0

C2N2 Cyanogen 2,079.1 2,077.2 2,078.2

C2NF3 Trifluoroacetonitrile 2,675.8 2,668.8 2,669.9

C2NH3 Acetonitrile 2,564.3 2,562.2 2,562.7

C2NH5 Aziridine 3,000.1 2,998.6 2,998.4

C2NH5O Acetamide 3,619.2 3,614.7 3,615.0

C2NH7 Dimethylamine 3,628.1 3,626.2 3,625.9

C2NH7 Ethylamine 3,662.1 3,660.2 3,660.1

C3H4 Allene 2,926.2 2,925.5 2,926.2

C3H4 Cyclopropene 2,836.1 2,834.4 2,834.9

C3H4 Propyne 2,933.7 2,931.6 2,932.2

C3H6 Cyclopropane 3555.6 3,554.3 3,554.4

C3H6 Propene 3,587.3 3,585.0 3,585.5

C3H6O Acetone 4,080.7 4,077.3 4,077.8

C3H7Cl 1-Chloropropane 4,117.7 4,113.1 4,113.5

C3H7 Isopropyl radical 3754.8 3,754.7 3,753.5

C3H8O Methoxyethane 4,572.5 4,568.8 4,568.7

C3H8O Isopropyl alcohol 4,626.3 4,622.1 4,622.2

C3H8 Propane 4,199.5 4,197.8 4,197.9

C3NH3 Acrylonitrile 3,171.8 3,168.3 3,169.1

C3NH9 Trimethylamine 4,841.6 4,838.7 4,838.1

C4H10 Isobutane 5,435.0 5,431.5 5,431.5

C4H10 n-Butane 5,427.3 5,425.5 5,425.5

C4H4O Furan 4,142.5 4,138.2 4,138.7

C4H4S Thiophene 4,015.7 4,012.1 4,012.8

C4H6 1,3-Butadiene 4,215.5 4,213.4 4,214.2

C4H6 2-Butyne 4,178.8 4,176.7 4,177.3

C4H6 Bicyclo[1.1.0]butane 4,105.9 4,103.5 4,103.5

C4H6 Cyclobutene 4,169.6 4,167.4 4,167.8

C4H6 Methylenecyclopropane 4,134.0 4,131.3 4,131.6

C4H8 Cyclobutane 4,790.7 4,790.1 4,790.0

C4H8 Isobutene 4,829.7 4,826.8 4,827.1

C4H9 tert-Butyl radical 4,997.4 4,997.5 4,994.7

C4NH5 Pyrrole 4,465.1 4,461.3 4,461.4

C5H8 Spiropentane 5,350.0 5,348.8 5,348.7

C5NH5 Pyridine 5,156.3 5,152.1 5,152.3

C6H6 Benzene 5,696.6 5,693.5 5,693.9

Cl2 Dichlorine 246.4 245.7 245.9

CO Carbon monoxide 1,080.4 1,079.7 1,080.4

Table 7 continued

Molecule Canonical Boys Ref.a

CO2 Carbon dioxide 1,622.0 1,620.3 1,621.6

COF2 Carbonyl fluoride 1,754.6 1,750.2 1,751.3

COS Carbonyl sulfide 1,395.7 1,392.9 1,394.2

CS Carbon monosulfide 712.4 711.3 712.5

CS2 Carbon disulfide 1,162.0 1,159.7 1,161.4

FCl Chlorine monofluoride 2,62.1 259.7 259.7

F2 Difluorine 159.3 158.7 158.2

F3Cl Chlorine trifluoride 537.1 530.2 529.3

HCl Hydrogen chloride 447.9 447.3 448.2

HF Hydrogen fluoride 591.1 590.9 591.3

HOCl Hypochlorous acid 693.1 691.1 691.2

HO Hydroxyl radical 446.8 446.8 446.8

HS Mercapto radical 365.2 365.1 365.2

H2 Dihydrogen 457.9 457.9 457.7

H2O2 Hydrogen peroxide 1,121.1 1,120.7 1,120.6

H2O Water 971.5 971.4 971.8

H2S Hydrogen sulfide 765.9 765.5 766.2

LiF Lithium fluoride 581.5 581.1 581.8

LiH Lithium hydride 242.2 242.2 242.3

Li2 Dilithium 100.7 100.7 101.2

Na2 Disodium 71.1 71.1 71.6

NaCl Sodium chloride 410.5 409.0 411.6

NF3 Trifluoroamine 861.4 857.2 856.4

NH2 Amino radical 760.4 760.4 760.2

NH3 Ammonia 1,241.8 1,241.7 1,241.8

NH Imidogen 346.1 346.0 345.8

NO2 Nitrogen dioxide 942.8 942.6 940.8

NOCl Nitrosyl chloride 794.9 791.2 791.4

NO Nitric oxide 633.0 633.1 632.2

N2 Dinitrogen 948.1 947.4 947.8

N2H4 Hydrazine 1,825.6 1,825.1 1,824.8

N2O Nitrous oxide 1,122.3 1,120.0 1,120.4

OCl Monochlorine

monoxide

268.2 268.1 266.4

OF2 Difluorine monoxide 388.5 386.5 385.6

OS Sulfur monoxide 523.2 523.2 522.4

O2 Dioxygen 500.1 499.8 499.8

O2S Sulfur dioxide 1,081.2 1,078.7 1,079.8

O3 Ozone 602.0 599.4 598.7

P2 Diphosphorus 481.5 480.4 481.2

PF3 Phosphorus trifluoride 1,528.7 1,524.1 1,524.4

PH2 Phosphino radical 643.5 643.6 643.3

PH3 Phosphane 1,009.6 1,009.2 1,009.3

S2 Disulfur 428.6 428.0 428.6

SiCH6 Methylsilane 2,626.6 2624.9 2,625.1

SiCl4 Silicon tetrachloride 1,626.1 1,621.1 1,624.0

SiF4 Silicon tetrafluoride 2,415.2 2,411.8 2,413.4

SiH2 Singlet silylene 642.6 642.4 6,42.4
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experimental data makes the new reference data more

accurate on average [73]. Therefore, the accuracy of our

interference-corrected MP2-F12 model will be analyzed

with respect to the values of Ref. [73]. Note that the ref-

erence values of Ref. [73], as presented in Table 7, do not

contain electron-correlation contributions from higher

excitations nor core/core–valence effects. They are plain

CCSD(T)(F12)/cc-pVQZ-F12 values (cc-pCVQZ-F12 for

Li, Be, and Na).

All results reported in this section have been obtained at

the CCSD(T)?F12?INT/cc-pVQZ-F12 level of theory

(cc-pCVQZ-F12 for Li, Be, and Na) using either canonical

or Boys localized occupied Hartree–Fock orbitals.

Let us first consider the results obtained with canonical

orbitals. The MAD obtained with these orbitals is 1.8 kJ/

mol. This is within the limit of chemical accuracy, but

larger than for the 106-molecule (1.3 kJ/mol) and the AE6

(0.8 kJ/mol) test sets. Table 7 shows that many of the

molecules with large errors in the computed atomization

energy are either linear or have other high molecular

symmetry such as a threefold axis. Examples are F3Cl

(7.8 kJ/mol), CHCl3 (5.4 kJ/mol), NF3 (5.0 kJ/mol), and

C2NF3 (trifluoroacetonitrile, 5.9 kJ/mol).

One drawback of the INT computations is that the

results are not invariant to orbital rotations. This is par-

ticularly unpleasant for cases with degenerate canonical

orbitals, which are not uniquely defined. Therefore, cal-

culations of interference factors usually use localized

occupied Hartree–Fock orbitals [21]. We have applied the

Boys localization procedure to the G2/97 test set and

present the results in Table 7. For open-shell cases, the a-
and b-orbitals are localized separately and the two sets of

orbitals are aligned in space as much as possible [21].

The Boys localization significantly reduces the errors of

most of the cases that showed large deviations when

canonical orbitals were employed. For example, the error

of chlorine trifluoride is reduced from 7.8 to 0.9 kJ/mol and

for pyridine from 4.0 to 0.2 kJ/mol. These corrections are

also reflected in the statistics: The MAD and RMS values

drop below 1 kJ/mol. In particular, the MAD from the

Boys localized orbitals (0.6 kJ/mol) is about three times

smaller than the one obtained with canonical orbitals.

However, there are still a few cases that show errors larger

than 2 kJ/mol: AlCl3, BCl3, SiCl4, and the tert-butyl radi-

cal. It should also be noted that the orbital-invariant MP2-

F12 calculations of the tetrachloroethylene (C2Cl4) and

disodium (Na2) molecules showed numerical problems

with respect to the optimization of the F12 amplitudes (the

B matrix was not positive definite). For these molecules,

the atomization energies shown in Table 7 have been

computed with the fixed-amplitudes ansatz.

4 Summary

The CCSD(T)?F12?INT method performs well in com-

parison with other explicitly correlated coupled-cluster

calculations. The method was tested with respect to the

atomization energies of the molecules of the 106-molecule,

the AE6, and the G2/97 test sets. All mean absolute devi-

ations were below 2 kJ/mol. In particular, for the G2/97

test set, the MAD is 1.8 kJ/mol, when canonical Hartree–

Fock orbitals are used. This value is significantly reduced

to 0.6 kJ/mol when a Boys localization of the occupied

Hartree–Fock orbitals is performed. For the open-shell

cases, the alignment of the a and b-orbitals is important to

uniquely define the interference correction.

To summarize, a thermochemical composite scheme

may be formulated starting from a conventional

CCSD(T) calculation to which a basis-set-truncation cor-

rection is added, obtained from low-order perturbation

theory. With respect to explicitly correlated CCSD(T)(F12)

calculations, the present composite scheme saves computer

time without much loss in accuracy.
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(2004) J Chem Phys 120:4129–4141

35. Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem
Phys 125:144108

36. Karton A, Martin JML (2012) J Chem Phys 136:124114

37. Dunning TH Jr, Peterson KA (2000) J Chem Phys

113:7799–7808

38. Klopper W, Ruscic B, Tew DP, Bischoff FA, Wolfsegger S

(2009) Chem Phys 356:14–24

39. Ruscic B, Pinzon RE, Morton ML, von Laszevski G, Bittner SJ,

Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys

Chem A 108:9979–9997

40. Ruscic B, Pinzon RE, Morton ML, Srinivasan NK, Su MC,

Sutherland JW, Michael JV (2006) J Phys Chem A

110:6592–6601

41. Nyden MR, Petersson GA (1981) J Chem Phys 75:1843–1862

42. Petersson GA, Nyden MR (1981) J Chem Phys 75:3423–3425

43. Vogiatzis KD, Barnes EC, Klopper W (2011) Chem Phys Lett

503:157–161

44. Ranasinghe DS, Petersson GA (2013) J Chem Phys 138:144104
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Abstract Why do variational electron-correlation meth-

ods such as truncated configuration-interaction methods

tend to be non-size-consistent (non-size-extensive)? Why

are size-consistent (size-extensive) methods such as Møl-

ler–Plesset perturbation and coupled-cluster methods non-

variational? We conjecture that the variational and size-

consistent properties are mutually exclusive in an ab initio

electron-correlation method (which thus excludes the

Hartree–Fock and density-functional methods). We ana-

lyze some key examples that support the truth of this

conjecture.

Keywords Electron correlation · Size consistency ·

Size extensivity · Variational principle · Diagrams ·

Coupled-cluster theory · Møller–Plesset perturbation

theory · Configuration-interaction theory

1 Conjecture

Let the ground-state wave function of a molecule, W, be

expanded as a linear combination of Slater determinants,

fUg, constructed with molecular orbitals (MO’s) from the

Hartree–Fock (HF) method [1–3],

W ¼ c0U0 þ Ĉ1U0 þ Ĉ2U0 þ � � � þ ĈnU0 ð1Þ

¼ c0U0 þ
Xocc:
i

Xvirt:
a

cai U
a
i þ

1

ð2!Þ2
Xocc:
i;j

Xvirt:
a;b

cabij U
ab
ij

þ � � � þ 1

ðn!Þ2
Xocc:
i1;...;in

Xvirt:
a1;...;an

ca1���ani1���in U
a1���an
i1���in ; ð2Þ

where Ĉk is the k-electron excitation operator, c’s are the

expansion coefficients, Ua1���ak
i1���ik is a k-electron excited

determinant, “occ.” and “virt.” stand for occupied and vir-

tual orbitals in the ground-state wave function ðU0Þ of the
reference method, and n is the number of electrons. It is

assumed that the number of virtual orbitals is greater than n.
In the context of this article, an ab initio electron-cor-

relation method is considered variational, when the

adjustable parameters in its wave function such as {c} are

determined so as to minimize the energy expectation value,

E ¼ hWjĤ jWi; ð3Þ
with the constraint that W remain normalized,

hWjWi ¼ 1: ð4Þ
It is equivalent to minimizing the following quotient with

no constraint:

E ¼ hWjĤ jWi
hWjWi : ð5Þ
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123

Theor Chem Acc (2014) 133:1440

DOI 10.1007/s00214-013-1440-y

Reprinted from the journal 267



The energy thus obtained is an upper bound of the exact

(full CI) value at a given basis set. In this article, a method

is not variational when this upper-bound property is lost.

Other authors [4, 5] have used the term stationarity to

characterize a method whose energy is not an upper bound

but is otherwise variational. We adopt this terminology.

Variational methods include the HF, approximations in

density-functional theory (DFT), truncated and full

configuration-interaction (CI), multiconfigurational self-

consistent field (MCSCF), complete active space self-

consistent field (CASSCF), and multireference CI (MRCI)

methods. Some of them also use orbitals as variational

parameters, but we do not consider these degrees of

freedom here because they only contribute marginally in

capturing electron correlation.

An MO method is considered size consistent or, synony-
mously, size extensive, when the energy E obtained from it is

asymptotically proportional to the volume V or the number

of electrons n, i.e., E = O(V) = O(n), in the limit

V ! 1ðn ! 1Þ. However, the more rigorous criterion of

size consistency adopted in this work is based on the wave-

vector counting [6, 7], which is equivalent to the well-known

diagrammatic criterion [7, 8]. This criterion is a sufficient

condition for (and thus stricter than) E=O(V)=O(n); there
can be a method that has an extensive energy, but is none-

theless deemed non-size consistent [9]. One of the authors

discussed extensively these rigorous and other less rigorous

size-consistency criteria and widespread misconceptions

about them [7, 10]. Size-consistent methods include the HF,

Møller–Plesset perturbation (MP), and coupled-cluster (CC)

methods [1–3]. DFT is not diagrammatically size consistent,
but its energy is extensive (see the “Appendix”).

We conjecture that an ab initio electron-correlated MO
method cannot be simultaneously variational and size
consistent.

Here, the “method” excludes the HF method, which is

simultaneously variational and size consistent, but does not

describe any electron correlation. In fact, HF is variational

merely with respect to its one-particle basis set; its varia-

tional space for describing electron correlation is null. Also

excluded is DFT because it is not an ab initio MO theory

and not subject to a diagrammatic size-consistency analysis

[7, 10]. It is also more appropriately characterized as sta-

tionary than variational according to the aforementioned

definitions [4] because a DFT energy is not an upper bound

of the exact energy at a given basis set. We can paraphrase

the conjecture as follows: the only simultaneously varia-
tional and size-consistent MO methods are the ones that use
single-determinant wave functions. This version of the

conjecture encompasses DFT.

We do not consider full CI, full CC, or infinite-orderMP as

a counterexample to this conjecture, even though they are

simultaneously variational and size consistent by being exact

at a given basis set. This is because thesemethods do not exist

in the thermodynamic limit except as an abstract concept; they

are not characterized by a finite number of equations with a

finite number of terms at n ¼ 1. They are, therefore, outside

the scope of the usual size-consistency analysis, and some

additional considerations need to be made when discussing

their size consistency, such as the effect of the number (not the

values) of terms in their equations on size consistency (see

below).Worse yet, full CI changes itsmathematical definition

depending on the number of electrons: it is equal to CI singles

and doubles (CISD) for He (n = 2); CI singles, doubles, and

triples for Li (n= 3); etc., and ultimately becomes ill-defined

as n ! 1, where it ceases to be a finite mathematical pro-

cedure. An infinite-order MP method does not even have a

tangible definition. We will revisit full CI as it helps us

understand how a variational method resists size consistency

even near the exact limit.

We also confine ourselves to the methods that lend them-

selves to a second-quantized or diagrammatic description

based on delocalized MO’s in a crystal, to which the rigorous

size-consistency test can be applied.Themethods can be based

on localized orbitals insofar as a basis transformation can be

achieved without altering the nature of its approximations or

obscuring the definition of its variational space (see the

“Appendix”). Stochastic methods such as quantum Monte

Carlo (QMC) [11–15] are not easily subjected to the analyses

that have led to the conjecture, although they do not appear to

be counterexamples, either; in fact, one of the authors with

coauthors has proposed [16–18] a diagrammatically size-

consistent variant of QMC, which is non-variational.

The variational property is useful (if not essential) in the

studies of multiple potential energy surfaces that intersect

and/or couple through vibronic interactions. It also simplifies

the formalisms for an analytical evaluation of energy deriv-

atives and molecular properties. Size consistency or

extensivity is a must in applications to solids, liquids, and

large molecules. It is, therefore, not surprising that theorists

have pursued an electron-correlated method that is simulta-

neously variational and size consistent (e.g., [5, 19] recently).

The objective of this article is to question the very existence of

such a method within the framework of ab initio MO theory,

where we expand a wave function as a linear combination of

Slater determinants constructed with delocalized, symmetry-

adapted MO’s. In what follows, we analyze some key

examples that seem to suggest that they may not exist.

2 Case study 1: CI

A truncated CI is not size consistent [1–3]. Although this is

well known, it is instructive to analyze its origin, which has
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to do with the normalization of its wave function [7, 10]. A

wave function of a crystal in the mth-order truncated CI

approximation (m \ n) is subjected to the standard

normalization,

1 ¼ c0j j2þ
Xocc:
i

Xvirt:
a

X
ki

cai
�� ��2þ 1

ð2!Þ2
Xocc:
i;j

Xvirt:
a;b

X
ki;kj;ka

cabij

��� ���2þ � � �

þ 1

ðm!Þ2
Xocc:
i1;...;im

Xvirt:
a1;...;am

X
ki1 ;...;kam�1

ca1...ami1...im

��� ���2; ð6Þ

where ki is the wave vector of the ith MO. Here, the bold

letter i indicates that it is a composite index of energy band

i and wave vector ki. In the second term of the right-hand

side, the summation over ki is taken, while that over ka is

not. This is because the latter is not independently variable

owing to the periodic symmetry or, equivalently, the

conservation of momentum, which reads

ka ¼ ki þ K; ð7Þ
where K is an arbitrary integer multiple of a reciprocal

lattice vector. Likewise, the conservation of momentum

requires,

ka þ kb ¼ ki þ kj þ K; ð8Þ
in the third term of the right-hand side, which, therefore,

has the summation over ki; kj, and ka, but not over kb.

Each summation over a wave vector contributes to a

factor of V (or n) to the volume (size) dependence of the

term. This is so because the number of independent wave

vectors in the reciprocal unit cell is proportional to the

number of distinct states, which, in turn, bears a linear

relationship with the volume of the crystal. Another way to

understand this is to use the relationship,X
k

¼ V

ð2pÞ3
Z

dk: ð9Þ

With this, we find that expansion coefficients for single-

excited determinants, cai , must have the asymptotic volume

dependence of V−1/2 so that the second term in the right-

hand side of Eq. (6) is V0 just like the left-hand side.

Likewise, cabij scales as V−3/2 and, generally, the expansion

coefficients for kth-order excited determinants (k[ 0) is a

V1/2−k quantity. This has been called “the normalization

theorem” by one of the authors [10].

Diagrammatically, Eq. (6) can be expressed as

ð10Þ

where the 2k-edge square vertex represents the k-electron
excitation operator, Ĉk ðĈy

kÞ. Since each diagram must be

closed (all orbital indexes are summed over) and has

exactly two vertexes (Ĉy and Ĉ), it is also always con-

nected. Each downgoing edge is associated with an

occupied orbital i with a wave vector ki, while an upgoing

edge with a virtual orbital a with a wave vector ka. It can

be shown that there are (nedge − nvertex + 1) distinct (i.e.,

linearly independent) wave vectors in a closed, connected

diagram, satisfying all momentum conservation conditions

[6]. Here, nedge is the number of edges, which is equal to

the number of wave vectors, and nvertex is the number of

vertexes, which is equal to the number of momentum

conservation conditions. Each of these conditions reduces

the number of distinct wave vectors by one. In a connected

diagram, one of the conditions is automatically satisfied if

the remaining (nvertex − 1) conditions are met. This explains

the expression: (nedge − nvertex + 1).

Using this, we can arrive at the same, aforementioned

conclusion that 2k-edge vertex must be a V1/2−k quantity for

Eq. (10) to be satisfied. For example, each vertex in the first

diagram scales as V−1/2. There is (2 − 2 + 1) = 1 distinct

wave vector in this diagram, contributing to a factor of V1

in its volume dependence. Together, this diagram is a V0

quantity. The volume dependence shown right beneath

each diagram in Eq. (10) is based on the assumption of the

V1/2−k dependence of the k-electron excitation CI

coefficients.

The exact electronic Hamiltonian is diagrammatically

given by

ð11Þ

where the first, second, and third terms in the right-hand

side scale as V1, V0, and V−1, respectively. The latter two

scaling expressions are made explicit in Eq. (11). These are

the fundamental properties of the Hamiltonian [7, 10, 20]

and unchangeable by any approximation adopted in elec-

tronic structure theory. They originate from the fact that a

Fock integral (the two-edge, filled-circle vertex) is ther-

modynamically intensive (V0) and an antisymmetrized two-

electron integral (the four-edge vertex) is inversely exten-

sive (V−1) [7, 10, 20].

With these, the energy of a truncated CI given by Eq. (3)

is diagrammatically expressed as

ð12Þ
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ð13Þ

ð14Þ

Each diagram is closed and either connected or discon-

nected. Every closed part is annotated with its volume

dependence. This equation terminates after a finite number

of terms because a diagram consists of exactly two exci-

tation vertexes (one or both of which can be c0) and up to

one Hamiltonian vertex and there are a finite number of

topologically distinct ways to connect and close them.

The terms in the first line, Eq. (12), are all disconnected, and

their sum is EHF. They, therefore, display the V1 dependence,
which is the correct size dependence of an extensive energy.

The diagrams in the second line, Eq. (13), all scale as V0. The
first three of themare identified as the diagrams of an excitation

energy in theCI singles (CIS)method [21, 22].Hence, they also

have the correct size dependence if they are interpreted as an

excitation energy,which is an intensive quantity. The diagrams

in the third line, Eq. (14), correspond to various contributions to

the correlation energy in the ground state. They scale as non-

physicalV1/2, as compared to the correct dependence ofV1. The
V1/2 dependence of the first term can be verified as follows: the

Fock integral (filled circle) scales as V0, while the one-electron
excitation amplitude (open square) as V−1/2. There is only one
distinct wave vector in this diagram, contributing to a factor of

V1. The product of these three factors is V1/2.
To summarize, minimizing the energy expression like

Eq. (3) using {c} as variational parameters is meaningful if

and only if the wave function is normalized; otherwise, the

energy would not be bounded from below and a minimum

would not exist. This normalization requirement demands

that the k-electron excitation amplitudes have the V1/2−k

dependence. This dependence, in turn, makes the correla-

tion energy have the V1/2 dependence, which is in between

extensive and intensive and hence non-physical. The

method then becomes non-size consistent.

The same conclusion can be drawn from using Eq. (5)

instead. This has been shown in many places (e.g., [1, 3,

7]), demonstrating the disconnected nature of the resulting

amplitude equations. It will not be repeated here.

How does then full CI, at least formally or in an abstract

sense, maintain size consistency while being variational?

To answer this, let us consider the simplified example of a

cluster of non-interacting n helium atoms, in which the

effect of one-electron excitation is assumed negligible. For

this system, full CI must take into account up to 2n-elec-
tron excitations. Owing to the non-interacting and identical

nature of the constituent atoms as well as the invariance of

full CI wave function and energy with respect to a unitary

transformation of orbitals, we can switch the basis orbitals

to those localized on atoms, without changing the nature of

the method. Then, the Ĉ2k amplitudes in the localized basis

are the product,
Qk

l¼1 Ĉ
½l�
2 , where Ĉ½l�

2 is the exact two-

electron excitation amplitudes of the lth atom. For exam-

ple, the Ĉ2n amplitude is factored as

ð15Þ

The size consistency of the full CI correlation energy is

entirely due to the energy contribution from the highest

rank, i.e., 2n-electron excitation amplitude, where 2n is the

number of electrons. This can be understood considering

the following reductio ad absurdum: if a lower-ranked

excitation operator could ensure size consistency, a trun-

cated CI containing up to that operator would be size

consistent. The energy diagram involving the 2n-electron
excitation vertex has the form:

ð16Þ

where f. . .g is one disconnected diagram and only the first

and last (nth) diagrams are shown. The right-hand side is a

sum of the n disconnected diagrams, the lth of which

reports the correlation energy of the lth atom. Each ðf. . .gÞ
of the n terms in the right-hand side scales as V0, making

the sum scale as nV0 or V1 (extensive) because V and n are

proportional to each other. This proves the size consistency

of full CI. Hence, the size consistency of full CI comes at

the price of its equations having an infinite number of terms

(in the right-hand side) or its diagrams having an infinite

number of edges (in the left-hand side) in the thermody-

namic limit ðn ¼ 1Þ. In this sense, full CI does not exist as
a finite, well-defined procedure in the thermodynamic

limit, and the statement about its size consistency is as

meaningless as its practicability to an infinitely extended

system. Full CI, therefore, does not qualify as a counter-

example of the conjecture. The same applies to CASSCF,

which performs an orbital-optimized full CI calculation

within an active space.
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3 Case study 2: CC

A CC method uses an approximate wave function obtained

by acting an exponentiated excitation operator on the HF

wave function [1–3, 23]:

WCC ¼ t0 exp T̂1 þ T̂2 þ � � � þ T̂m
� �

U0; ð17Þ
where T̂k is the k-electron excitation operator. The most

successful version of a CC method, the projection CC

method [3, 23, 24], uses the intermediate normalization

(t0 = 1) [7, 10] and determines the excitation amplitudes

non-variationally. It is size consistent [1, 3, 7, 10, 23].

What happens if we instead determine the excitation

amplitudes variationally? That is, what happens if we

minimize the energy expectation value of Eq. (3) in the

above wave function, with the constraint that the latter is

normalized as in Eq. (4)? This leads to variational CC [4, 5,

19, 25–30].

Substituting Eq. (17) into Eq. (4), we obtain a dia-

grammatic equation,

ð18Þ

ð19Þ

where the open-circle vertex with 2k edges designates the

k-electron excitation operator, T̂k ðT̂ y
k Þ. We encounter two

immediate problems. One is the presence of an infinite

number of terms in this equation, making it impossible to

satisfy. That this equation does not terminate [4, 26] can be

understood by the presence of the “accordion” diagrams

such as the last diagram in the first line and the third in the

second line; it is the one that is (or contains) a connected

part with more than two vertexes. An infinite number of

larger accordion diagrams can be generated by repeated

T̂ yT̂ insertions into a smaller one.

The other is the inconsistent volume dependence of the

terms. For the first two diagrams to have the correct V0

dependence (as does the left-hand side), the 2k-edge open-

circle vertex or T̂k must scale as V1/2−k, according to the

identical logic leading to the same scaling for Ĉk [7, 10] (t0
is a V0 quantity). This, however, makes the last (accordion)

diagram in the first line display the incorrect volume

dependence of V−1. The third (accordion) diagram in the

second line also shows inconsistent V−2 dependence. If one

instead chooses one of these accordion diagrams to have

the correct V0 dependence, the inconsistency remains (and,

in fact, gets worse). In other words, accordion diagrams,

with more than two intensive vertexes, violate the intensive

diagram theorem [7, 10].

In this case, however, taking the thermodynamic limit

ðV ! 1Þ seems to help resolve both problems. The

accordion diagrams have incorrect volume dependence in

ways that make them vanish in the V ! 1 limit. There-

fore, in that limit, Eq. (19) is simplified to

ð20Þ

which has a finite number of terms in the argument of the

exponential. Each term in the argument, furthermore,

scales correctly as V0, assuming that a k-electron excitation

amplitude still scales as V1/2−k.

However, this causes inconsistent volume dependence in

the energy expression. Diagrammatically, it is

ð21Þ

ð22Þ

ð23Þ

which again has an infinite number of terms [4]. We can

circumvent this infinity by taking the thermodynamic limit.

In that limit, all accordion diagrams such as the third and

fourth diagrams in the second line (scaling as V−1) vanish.

The remaining terms, still infinitely many, are shown to be

the product of a finite number of closed, connected energy

diagrams and Eq. (20), which is unity, but has an infinite

number of diagrams when expanded. In the thermodynamic

limit, therefore, the above equation reduces to

ð24Þ
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ð25Þ

which consist of only a finite number of closed, connected

diagrams. The diagrams in the first line scale as V0. They

may be considered as having the correct scaling if they are

to be interpreted as intensive excitation energies. The

diagrams in the second line describe the correlation energy

in the ground state, but they scale incorrectly as V1/2.

Hence, variational CC is not size consistent. Note that the

variational CC method of Nakatsuji and Hirao [31] has also

been implicated [26] in the lack of size consistency.

As is well known [4, 26], it is possible to bypass the

issue of normalization altogether by using

E ¼ hWCCjĤ jWCCi
hWCCjWCCi ¼ hWCCjĤ jWCCiconnected: ð26Þ

The rightmost means that only connected diagrams are

retained, namely

ð27Þ

ð28Þ

Since the excitation amplitudes no longer have to satisfy the

normalization condition such as Eq. (4), they are allowed to

have appropriate volume dependence that renders the above

expression extensive. To do so, we require a k-electron
excitation amplitude to have V1−k dependence, according to

the normalization theorem [7, 10]. Thismakes every diagram

in the above equation have the consistent V1 dependence,

which can be verified diagram-by-diagram as before [7].

Note that the accordion diagrams such as the first two in

the second line also have the correct V1 dependence and

cannot be eliminated by taking the thermodynamic limit

unlike in the previous treatment. Since there are an infinite

number of accordion diagrams, there are an infinite number

of terms with correct size dependence in this energy

expression, which, therefore, cannot be evaluated [4, 26].

In this sense, variational CC according to Eq. (26) does not

exist as a finite, well-defined procedure.

The equations determining the excitation amplitudes as

variational parameters are obtained by differentiating the

above energy expression with an amplitude and equating it

with zero. For instance, the differentiation with a one-

electron excitation amplitude yields

ð29Þ

which consists of open, connected diagrams, all of which

scale consistently as V0. However, as has been recognized

by others [4, 26] and expected from the preceding analysis,

there are an infinite number of accordion diagrams in this

equation, too, making this equation unsolvable unless it is

truncated. A truncation would not impair size consistency,

but it would result in the loss of variationality because we

would no longer be satisfying the variational condition,

from which the above equation is obtained.

Nearly all of these findings are already known [4, 26].

However, when put in the context of the conjecture, they

seem to assume much greater significance; we can witness

size consistency and variationality directly undermining

each other in variational CC. Explicit normalization (as

necessary for variationality) results in the loss of size

consistency, while the connected expression leads to non-

truncating equations or the loss of variationality when

truncated.

4 Conclusion

The cause of non-size consistency is concisely explained

by March et al. [6] as follows: “The reason in each case is

that any finite-order wave function is only capable of

describing a finite number of simultaneous pair excitations

while a true many-body wave function must be capable of

describing the simultaneous excitation of an infinite num-

ber of particles for N ! 1.” For a method to be

variational, on the other hand, the weight of every basis

function (a Slater determinant) in the wave function must

be independently variable. These two requirements seem

incompatible, which explains (if not proves) the mutual

exclusion of variationality and size consistency in the

methods examined above. Therefore, the difficulty of sat-

isfying variationality in a size-consistent method tends to

manifest itself as having to deal with an infinite number of

terms or an infinite number of diagrammatic edges.

In truncated CI, the variationality limits the excitations

considered to a finite rank, making the method non-size

consistent. Full CI is formally size consistent and varia-

tional, but at the price of having to have an infinite number

of variational parameters in the thermodynamic limit,
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which is impossible to determine except in an abstract

sense. In projection CC, an exponential wave function

allows excitations of an infinite number of electrons with a

finite number of amplitudes in a size-consistent way.

However, the weights of various excitations (Slater deter-

minants) are coupled and not independently adjustable as

necessary to make the energy variational. In variational

CC, depending on the approach to the solution, one

encounters either the difficulty of infinity or the loss of size

consistency or variationality.
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Appendix: Questions and answers

In the following, we list questions, many of which are from

the reviewers and colleagues who have read a version of

this paper and challenged the conjecture. We offer our

answers to these questions. The answers are increasingly

speculative as we go down the list, and some may not have

the rigor normally expected in a scientific paper. It is our

hope that this serves as a basis of a fuller discussion and the

ultimate proof or disproof of the conjecture.

Q: What is the difference between size consistency
and size extensivity?

A: There is none, as regard to a method that computes

the total energy in the ground state; they are synonymous

and are based on one and the same diagrammatic criterion

[7, 8]. One of the authors has extensively discussed the

inadequacy of the supermolecule criterion often associated

with the term “size consistency” in the past.

Q: Is DFT size consistent and variational?
A: No. DFT is not diagrammatically size consistent, but

its energy is extensive, which can be shown as follows. An

exchange-correlation energy per unit cell in a crystal is

written as
R
f ½qðrÞ�dr, where the domain of integration is

one unit cell and f is the so-called exchange-correlation

functional of electron density ρ. When one increases the

volume of the crystal under the periodic boundary condi-

tion without changing ρ, the exchange-correlation energy

per unit cell remains the same, which means that it is

thermodynamically intensive. This, in turn, proves the

extensivity of the total energy, assuming that the rest of the

energy expressions are formally the same as in HF and are

extensive.

DFT is not variational, but merely stationary, according

to our adopted definitions of these terms [4]. This is

because its energy can go below the full CI energy in the

same basis set. An exception is the optimized effective

potential (OEP) method [32, 33], which is diagrammati-

cally size consistent and variational; OEP is sometimes

viewed as the exact-exchange DFT [34–36]. It does not

describe any electron correlation and is, therefore, not a

counterexample of the conjecture.

Q: Is the Hylleraas functional size consistent and
variational?

A: No. The Hylleraas functional [37, 38] (see also the

Sinanoǧlu equation [39]) is given by

E ¼ hU0jT̂ y
2Ĥ0T̂2jU0i þ 2hU0jT̂ y

2 Ĥ1jU0i; ð30Þ
where Ĥ0 and Ĥ1 are the zeroth-order Hamiltonian and

perturbation operator in the Møller–Plesset partitioning, T̂2
is a two-electron excitation operator, and U0 is the HF

reference wave function. The coefficients in T̂2 are deter-

mined variationally so as to minimize E, which can be

easily shown to be the energy of second-order MP (MP2)

[37, 38]. Being MP2, the Hylleraas functional is size

consistent, but not variational. Extending the variational

space spanned by T̂2 is equivalent to enlarging the basis set.
In this sense and considering the fact that an MP2 energy

can be lower than the full CI energy, we contend that the

Hylleraas functional is only stationary [4].

The Hylleraas functional is often used as a basis of

explicitly correlated MP2 (MP2-F12) [37, 38], in which the

action of T̂2 yields,

T̂2U0 ¼ 1

ð2!Þ2
Xocc:
i;j

Xvirt:
a;b

tabij U
ab
ij þ Q̂12

ð2!Þ3
Xocc:
i;j

Xocc:
k;l

Xvirt:
a;b

Fab
kl t

kl
ij U

ab
ij ;

ð31Þ
with Fab

kl ¼ habjF12jkli, where F12 is an explicit function of

inter-electronic distance r12 such as expð�cr12Þ. SeeRef. [37]
for the definition of Q̂12, which is unimportant here. The

functional ismade stationarywith respect to {tij
ab}, {tij

kl}, and γ
to approach the MP2 energy in the complete-basis-set limit,

which is not an upper bound of the full CI energy. It is,

therefore, still not a counterexample of the conjecture. Note

that two-electron basis functions such as r12 or expð�cr12Þ
can only couple two electrons at a time and span the same

space the two-electron excitation operator does. Hence, they

cannot fundamentally alter the non-variationality or size

consistency of MP2.

In the same token, a method using a single-determinant

wave function multiplied by a Jastrow factor (an expo-

nential of a function of electron–electron and electron–
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nucleus distances) should have the same characteristics as

the projection or variational CC regarding variationality

and size consistency. It cannot, therefore, simultaneously

achieve size consistency and variationality, as we have

seen in Sect. 3. It has been documented [26, 40] that

nuclear calculations using a Jastrow factor do not have the

upper-bound property and are, therefore, not variational

according to our definition of the term. This is known as

the “Emery difficulty” [26, 40].

Q: Can a size-consistency correction to a variational
method restore size consistency?

A: There are size-consistency corrections to non-size-

consistent methods such as CISD [41–46] and MRCI [45,

47]. These corrections, some related to Padé approximants

[45], can “minimize” size-consistency errors and render the

methods “approximately” size consistent, which means they

are not size consistent. They may also be non-variational

because the energies are not expectation values any more.

Q: Is local basis CI size consistent and variational?
A: A truncated CI method combined with an embedded-

fragment scheme [48] can obviously yield an extensive

total energy, giving a false impression that the method is

simultaneously variational and size consistent. It is not

variational because the energy thus obtained, which is not

the energy expectation value in the global wave function,

has no reason to be an upper bound of the exact energy of

the whole molecule except in a special circumstance such

as when there is no interaction between fragments. A

counterexample for a special circumstance is, however, not

a counterexample.

Another example of a variational local basis method is

the generalized valence bond method. It is equivalent to

MCSCF [1], which is not size consistent. Yet another

example of a variational method that can employ a variety

of bases including spatially local ones is the density matrix

renormalization group method [49]. The underlying

approximations in its wave functions are, however, often

full CI [50] and CASSCF [51], neither of which is a

counterexample, as explained in Sect. 2.

We have, however, been unable to generalize the defi-

nition of variationality in this conjecture to encompass all

spaces including the determinant space and one-particle

basis set. Classes of methods such as the Fock-space per-

turbation theory of Refs. [52, 53] are not easily subjected to

this conjecture, though no claim seems to have been made

that it is simultaneously size consistent and variational.

Q: If the conjecture is correct, how have variational
methods been successfully applied to solids?

A: With a scalable algorithm running on a supercom-

puter, variational methods, which cannot be size consistent

if the conjecture is correct, can still be applied to suffi-

ciently large systems to address problems of condensed

matter [11, 54, 55] including the issue of strong electron

correlation in solids. The conjecture does not contradict

this. Nonetheless, it is reasonable to expect a size-consis-

tent method to be more accurate and efficient (these two

properties are interchangeable) for solids than a similar

non-size-consistent method; the development strategy

emphasizing size consistency championed by Bartlett [56]

has been successful in quantum chemistry despite the fact

that it usually deals with relatively small molecules. In fact,

the question of mutual exclusion and the conjecture

emerged as a result of our desire to obtain size-consistent

methods for strong correlation in solids. If a diagrammat-

ically size-consistent method (that may or may not be

variational) exists that can describe strong correlation in

solids, we expect it to outperform the existing methods that

are not size consistent. If a size-consistent method that

works well for strong correlation is shown not to exist, it

may even imply different size dependence of the strongly

correlated portion of the energy.
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Abstract In the present study, we investigate a scheme for

the approximation of quadruple-f (QZ) energies for double-
hybrid density functional theory (DHDFT) procedures,

using smaller double-f and triple-f basis sets. Such an

approach would allow DHDFT/QZ energies to be estimated

in cases where the explicit calculations might be too

demanding computationally. We find this approach, deno-

ted Q[D,T], to be very accurate for the MP2 same-spin

(MP2SS) component and generally reasonable for the MP2

opposite-spin (MP2OS) component. The performance of

the Q[D,T] approximation is quite insensitive to the type of

basis sets used, as well as to the specific DHDFT procedure.

Overall, we find that the approximation, when used in

combination with the maug-cc-pVQ[D,T]Z basis sets, per-

forms well for the calculation of relative energies. The use

of explicit MP2OS/maug-cc-pVQZ energies together with

the Q[D,T] MP2SS energies yields even better agreement

with complete QZ energies, but at a somewhat greater

computational cost. For a representative large system for

DHDFT, namely C60, we find that the Q[D,T] approxima-

tion leads to a reduction in CPU time by more than an order

of magnitude when compared with the corresponding

explicit QZ calculation, with little reduction in accuracy.

Keywords Computational chemistry � Double-
hybrid DFT � MP2SS � MP2OS � Basis-set
extrapolation � C60

1 Introduction

The past few years has seen the rapid development of

double-hybrid density functional theory (DHDFT) proce-

dures [1–19] into a powerful tool for computational

chemists, owing primarily to the generally superior accu-

racy and robustness of these methods when compared to

conventional density functional theory (DFT) [12, 16, 17].

DHDFT procedures include wavefunction-type compo-

nents, namely Hartree–Fock exchange (EHF
X ) and MP2

correlation (EMP2
C ), in addition to exchange-correlation

components from DFT (EDFT
X ;EDFT

C ):

EDHDFT ¼ cDFTXE
DFT
X þ cHFE

HF
X þ cDFTCE

DFT
C þ cMP2E

MP2
C

They are typically formulated by fitting the proportion of

wavefunction-type and DFT components, i.e., the coeffi-

cients c, to certain training sets.

Most commonly, a quadruple-f (QZ) basis set is used in

conjunction with the DHDFT method in the fitting proce-

dure [1–4, 6, 7, 11–13, 17], with the rationale being that the

incorporation of MP2 correlation necessitates the use of

basis sets of such a size to ensure sufficient basis-set

convergence. Goerigk and Grimme have shown that the

performance of a number of DHDFT procedures that are

optimized for a QZ basis set deteriorates significantly when

used together with a triple-f basis set, but there are also
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some DHDFT methods that show a relatively mild basis-set

dependence [12].

The inclusion of MP2 correlation in conjunction with

the typical use of a QZ basis set in DHDFT methods has

led to DHDFT procedures being significantly more

demanding computationally than conventional DFT pro-

cedures. At present, these requirements have restricted the

applicability of DHDFT methods to systems with tens of

atoms. Indeed, we have recently performed a DHDFT/QZ

calculation for C60 [20] and found it to be extremely

demanding on the computational resources. In comparison,

conventional DFT procedures are already applicable to

systems with several hundred atoms.

We note thatmodern theoretical techniques such as theRI-

MP2 approximation [21] can accelerate the computationally

demanding MP2 component of DHDFT calculations. An

alternative way of reducing the computational requirements

for DHDFT methods is to reduce their reliance on large QZ

basis sets. In this regard, a number of DHDFT procedures

have been designed for use with smaller triple-f basis sets [5,
6, 8–10, 14–16, 18, 19], and someof themhave been shown to

perform comparably to DHDFT methods that have been

optimized for QZ basis sets [6, 12, 16].

Nonetheless, most DHDFT procedures, including some of

the latest ones with improved performance [17], have been

designed for QZ basis sets. Although it is possible to refor-

mulate these methods for triple-f basis sets so as to improve

computational efficiency while preserving the general accu-

racy, such an approach would normally require thorough

refitting for each procedure. It would be more desirable to be

able to employ a simpler strategy that is adaptable to a wider

range ofDHDFTprocedures to achieve the samegoal, namely

to obtain the optimal QZ results using smaller basis sets.

To this end, we note that Karton and Martin have

employed explicitly correlated MP2 to enable the use of

triple-f [22] or even double-f [23] basis sets for accurate

DHDFT calculations. In the present study, we attempt to

achieve such a goal using an alternative approach involving

basis-set extrapolation. The application of basis-set extrap-

olation to DHDFT procedures has been investigated previ-

ously [6, 22, 24, 25], but its potential in reducing the demand

on computational resources for a formally QZ calculation

has not yet been exploited. We emphasize that the various

approaches for lowering the computational cost are not

exclusive but can be complementary, and a combination of

these techniques may result in further improvements in the

computational efficiency in future advances.

2 Computational details

Standard wavefunction-type and DFT calculations [26–29]

were carried outwith Gaussian 09 [30]. D2 andD3 dispersion

corrections [31, 32] were obtained with the dftd3 program

[31].Geometries, zero-point vibrational energies and thermal

corrections for 298 K enthalpies that are used in the present

investigationwere taken fromprevious studies [16, 33],while

DHDFT single-point energies were obtained in the current

investigation. The frozen-core approximation was employed

in the evaluation of the MP2 correlation energy.

Basis sets that are external to the Gaussian 09 programwere

obtained from the EMSL basis-set library [34, 35]. We

abbreviate the Dunning basis sets [36] cc-pVnZ as VnZ and

aug-cc-pVnZ asAVnZ,where n = T andQ. The use of aug0 in
a basis set, for example, in aug0-cc-pVTZ, indicates the use of
diffuse functions on non-hydrogen atoms, and we abbreviate

aug0-cc-pVnZ as A0VnZ. The aug0-def2-nZVPP basis-set

description represents the def2-nZVPP basis sets [37] aug-

mented with diffuse functions taken from aug0-cc-pVnZ. They
are abbreviated as A0nZVPP. We have also employed the

minimally augmentedbasis sets ofTruhlar and co-workers, i.e.,

maug-cc-pVnZ [38], and these basis sets are abbreviated as

maVnZ in the present study. They contain only the s and p

components from the A0VnZ basis sets in their diffuse

functions.

Two-point extrapolation schemes with the formula

EL = ECBS ? A L-a were used in the evaluation of the

CBS limit [39], where L is the cardinal number of the basis

set, i.e., 2 for double-f and 3 for triple-f basis sets, etc., and
a is an adjustable parameter. The values of a that were

optimized in the present study were obtained by fitting to

the G2-1 training set [40]. Following previous practice [16,

33, 41], our optimization procedures involved minimizing

the average of the mean absolute deviation (MAD) from

benchmark values and the standard deviation (SD) of these

deviations. All relative energies are reported in kJ mol-1.

3 Results and discussion

3.1 Approach for basis-set approximation

In the present study, we employ the two-point basis-set

extrapolation formula EL = ECBS ? A L-a to estimate QZ

basis-set values using smaller basis sets [39]. Alternative

formulae have been examined for the extrapolation of

DHDFT energies, and it has been found that they yield

similar results [24]. In the specific extrapolation formula

used in the present study, the optimal value for the expo-

nent a depends on the theoretical procedure and the basis

sets. For example, a value of 5 is typically used for the

extrapolation of Hartree–Fock energies [42]. For the

extrapolation of coupled-cluster correlation energies, a

value of 3 is often used for a, for example, in the W2

procedure [42]. However, for the analogous W1 method in

which smaller basis sets are employed, an optimal value of

Theor Chem Acc (2014) 133:1426
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3.22 has been determined by fitting to the W2 correlation

energies [42]. For the extrapolation of MP2 correlation

energies, the optimal a values for the various basis-set

combinations have been determined to be 2.1 (AV[D,T]Z),

2.5 (AV[T,Q]Z), 2.7 (AV[Q,5]Z) and 2.8 (AV[5, 6]Z) [43].

In contrast, optimal a values of *2.9 have been obtained

for the MP2 correlation energies in several DHDFT pro-

cedures, showing only a very mild dependence on the basis

sets employed for the extrapolation [24].

In preliminary investigations, we have found that

approximating the DFT component of the QZ energies

using the corresponding DZ and TZ energies is rather poor.

Thus, we do not recommend the use of the extrapolation

approximation for the DFT component of DHDFT proce-

dures. Our findings are in accord with the results of pre-

vious studies that showed a somewhat erratic basis-set

convergence for some DFT procedures [44, 45]. We note

that only the MP2 correlation energies were extrapolated to

the CBS limit in relevant previous studies [6, 22].

In the present study, we use triple-f and QZ basis sets to

obtain our benchmark CBS energies (CBS[T,Q]). We use

an a value of 3 for the MP2 opposite-spin (MP2OS) and

MP2 same-spin (MP2SS) components. For the CBS

extrapolation with double-f and triple-f basis sets, we

determine the optimal a values for the MP2OS and MP2SS

components by fitting to the corresponding CBS[T,Q]

values. In the ideal case where the resulting CBS[D,T]

values are identical to the CBS[T,Q] values, one can

reverse the formula EL = ECBS ? A L-a and use the

CBS[D,T] values, the triple-f energies and the a[T,Q]
values to obtain the exact QZ energies. The quality of such

an approximation depends, obviously, on the quality of

CBS[D,T] as an approximation to CBS[T,Q].

In principle, it would be appropriate to first rigorously

determine the optimal avalues for theCBS[T,Q] extrapolation,
rather than simply using the typical value of 3 for correlation

energies (MP2). However, the objective of the present study is

not to obtain the most accurate CBS values but to use smaller

double-f and triple-f basis sets to approximate QZ values, and

we find that the quality of the resulting approximate QZ values

is not very sensitive to the choice of a[T,Q] values, as long as
the corresponding a[D,T] values are optimized accordingly.

For instance, for the approximation of the DSD-B-LYP/

A0VQZ procedure, when an a[T,Q] value of 5 is used for the

MP2 components and the associated a[D,T] values are refitted,
the resulting method has an MAD that is virtually identical to

that for the method derived from an a[T,Q] value of 3.

3.2 Approximation of CBS[T,Q] total energies

by CBS[D,T]

We have explored the approximation of CBS[T,Q] energies

by CBS[D,T] for two recent DHDFT procedures, namely

DSD-B-LYP [11] and DSD-PBE-P86 [17], in conjunction

with a number of basis sets. The optimal a[D,T] values for
the G2-1 set are shown in Table 1. We can see that the

optimized a[D,T] values vary slightly for the different basis
sets examined. For the MP2OS component, the optimal

a[D,T] values are all *2.3, while a range of *3.0–3.3 is

found for MP2SS. On the other hand, the optimized a[D,T]
values for DSD-PBE-P86 are remarkably similar to those

for DSD-B-LYP, which is indicative of a very mild

dependence of the optimal extrapolation exponents on the

DHDFT procedure itself.

How good are the CBS[D,T] values as approximations

to CBS[T,Q] (Table 2)? The performance of the CBS[D,T]

approximation is in general quite good, with MADs that are

no larger than 4.2 kJ mol-1 (for MP2OS/A0[D,T]ZVPP).
The approximation is better for MP2SS than for MP2OS,

with MADs of *1–2 kJ mol-1, in general, for the former

and *3–4 kJ mol-1 for the latter. This points toward a

quite smooth and, as we shall see, rapid basis-set conver-

gence for the MP2SS component. Such an observation is

consistent with the theoretical analysis of Kutzelnigg and

Morgan [46], which demonstrated for helium-type species

a more rapid L-6 convergence for SS energies compared

with an L-4 convergence for OS energies. The larger

MADs for MP2OS are also consistent with the fact that

MP2OS energies are typically larger than the

Table 1 Optimized exponents a[D,T] for the MP2OS and MP2SS

components for the approximation of CBS[T,Q] DHDFT energies by

CBS[D,T]

V[D,T]Z maV[D,T]Z A0V[D,T]Z A0[D,T]ZVPP

DSD-B-LYP

MP2OS 2.27 2.22 2.34 2.29

MP2SS 3.06 3.08 3.34 3.17

DSD-PBE-P86

MP2OS 2.26 2.21 2.33 2.29

MP2SS 3.05 3.07 3.34 3.18

Two-point extrapolation with the formula EL = ECBS ? A L-a, for

[T,Q], a = 3 for the MP2 components

Table 2 Mean absolute deviations (kJ mol-1) for the MP2OS and

MP2SS components of the CBS[D,T] DHDFT total energies from the

CBS[T,Q] values for the G2-1 set of species

V[D,T]Z maV[D,T]Z A0V[D,T]Z A0[D,T]ZVPP

DSD-B-LYP

MP2OS 3.6 3.2 2.8 4.2

MP2SS 1.6 0.9 0.9 1.5

DSD-PBE-P86

MP2OS 3.6 3.1 2.8 4.2

MP2SS 1.6 0.9 0.9 1.5
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corresponding MP2SS energies (by approximately a factor

of three) [47]. Notably, we see that the MADs for the two

DHDFT procedures are very close to one another for both

components and all basis sets examined, and this supports

the insensitivity of the approximation to the details of the

DHDFT method. We note that, among the four types of

basis sets examined, the CBS[D,T] approximations per-

form the best when used in conjunction with A0V[D,T]Z,
although the use of other types of basis set does not yield

results that are substantially worse for the MP2

components.

3.3 Performance of the approximate quadruple-f
DHDFT Q[D,T] approach on the G2-1 set

of relative energies

In the previous section, we have seen that the CBS[D,T]

extrapolation provides a quite adequate approximation to

CBS[T,Q] for MP2SS, but the performance is somewhat

less good for the MP2OS component. Accordingly, we also

expect that the quality of the approximate QZ component

energies obtained with the DZ and TZ energies, i.e.,

Q[D,T] energies, to be quite good for MP2SS but less so

for MP2OS when compared with explicit QZ energies.

However, in chemical applications, the calculated total

energies are almost always a means to obtain relative

energies, which usually benefit from error compensation.

How well does the Q[D,T] approximation perform for

relative energies? We have examined the performance of a

range of basis-set approximation schemes for DSD-B-LYP

for the thermochemical properties in the G2-1 set. We note

that the general observations are very similar for DSD-

PBE-P86 (electronic supplementary material). In addition

to the use of the Q[D,T] approximation for one or more

components, we have also investigated the replacement of

QZ energies by TZ energies. The MADs from experimental

benchmarks are shown in Table 3. Before we proceed to a

discussion of the performance of the various approximation

schemes, we first note that the general performance of

DSD-B-LYP is rather insensitive to the type of explicit QZ

basis set used (column A), with the exception of the

expected very poor performance of the VQZ basis set for

electron affinities (EAs) due to the lack of diffuse

functions.

Table 3 Mean absolute

deviations (kJ mol-1) from

experimental benchmark values

for DSD-B-LYP with various

explicit and approximate

quadruple-f basis sets for the

G2-1 set of thermochemical

properties

DHf = heat of formation,

IE = ionization energy,

EA = electron affinity,

PA = proton affinity,

Q = explicit QZ basis set,

Q[D,T] = approximate QZ

basis set obtained from

extrapolation using DZ and TZ

basis sets, T = explicit TZ basis

set

A B C D E F G H

DFT Q Q Q Q Q Q Q T

MP2OS Q Q Q[D,T] Q[D,T] Q T T T

MP2SS Q Q[D,T] Q Q[D,T] T Q T T

VnZ

G2-1 11.5 11.6 11.7 11.9 12.0 14.5 15.2 21.1

DHf 6.3 6.3 6.5 6.6 6.5 9.9 10.4 14.7

IE 7.8 7.8 8.0 8.0 8.2 9.9 10.3 10.9

EA 29.3 30.0 29.8 30.5 30.7 33.6 35.1 52.8

PA 2.7 2.6 2.6 2.5 2.6 2.3 2.3 3.7

maVnZ

G2-1 6.4 6.4 6.5 6.6 6.6 8.4 8.8 9.7

DHf 5.6 5.6 5.6 5.7 5.6 7.6 8.0 10.4

IE 7.4 7.4 7.5 7.5 7.6 9.2 9.5 9.3

EA 7.3 7.5 7.7 7.9 7.9 10.2 10.9 10.8

PA 3.1 3.1 3.1 3.0 3.0 2.5 2.5 2.7

A0VnZ
G2-1 6.3 6.3 6.3 6.3 6.5 8.2 8.5 9.9

DHf 6.0 6.0 6.1 6.2 6.1 8.6 8.9 12.4

IE 7.3 7.2 7.3 7.3 7.5 8.8 9.0 8.8

EA 6.1 6.0 5.9 5.8 6.4 8.0 8.4 8.3

PA 3.6 3.7 3.8 3.8 3.6 3.2 3.2 3.8

A0nZVPP
G2-1 6.2 6.1 5.8 5.7 6.3 7.8 8.0 8.4

DHf 5.7 5.7 5.2 5.3 5.7 7.3 7.5 8.5

IE 7.3 7.2 7.1 7.0 7.5 9.0 9.2 9.1

EA 6.2 6.0 5.4 5.1 6.5 8.2 8.7 8.7

PA 3.4 3.5 3.7 3.8 3.3 2.9 2.9 3.1
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For the various QZ basis-set approximations, we can see

that the use of Q[D,T] for the MP2SS component (column

B) leads to MADs very close to those of the full QZ cal-

culations in nearly all cases. The largest difference occurs

for the EAs for the VQ[D,T]Z basis sets, but even in this

case the MAD for the approximate method (30.0 kJ mol-1)

is still quite close to that for the full QZ calculations

(29.3 kJ mol-1). When the Q[D,T] approximation is

applied to the MP2OS component (column C), the MADs

are also quite close to those for full QZ for all four types of

basis sets. The replacement of full QZ values with Q[D,T]

energies for both MP2OS and MP2SS (column D) leads to

MADs that are again quite close to those in columns A, B

and C.

When the QZ basis set for the MP2SS component is

replaced by a TZ basis set (column E), the resulting

methods have MADs that are quite close to those for the

corresponding full QZ procedures (column A). This is

indicative of a rapid basis-set convergence for this com-

ponent in terms of the calculation of relative energies,

which is in accord with the close agreement between the

corresponding extrapolated methods in column B and the

full QZ procedures. On the other hand, when the QZ

energies for the MP2OS component are replaced by TZ

values (columns F and G), we find significant differences in

the performance when compared with those in column A,

regardless of the type of basis set employed. In addition,

the use of TZ basis sets for all components (column H), i.e.,

conventional TZ calculations, leads to further significant

deviations of the MADs from the full QZ values, and this

points toward a significant overall basis-set effect. By

comparing the results in columns C and F, it can be seen

that the Q[D,T] approximation represents a cost-effective

improvement over TZ calculations for MP2OS.

3.4 Further assessments on larger data sets

We now further evaluate the performance of the Q[D,T]

approximation for the larger G2/97 test set [48, 49]. We

focus on the approximation with the maVQ[D,T]Z basis

sets for the MP2SS component (Table 3, column B), as

well as the one that also uses the same approximation for

MP2OS (column D). We deem these approaches capable of

providing a generally reliable and cost-effective means for

obtaining accurate energies. The results in Table 3 suggest

that such an approximation choice is likely to be also

adequate for the other three types of basis sets. We have

examined four DHDFT procedures, namely DSD-B-LYP

[11], DSD-PBE-P86 [17], DSD-PBE-PBE [17] and DSD-

B-P86 [17]. To obtain the Q[D,T] energies, we use a[D,T]
values obtained as the averages of those for DSD-B-LYP

and DSD-PBE-P86 (Table 1) for all DHDFT procedures,

i.e., 2.217 for MP2OS and 3.073 for MP2SS, as these

values appear to be rather insensitive to the DHDFT

method.

We can see that, for all the DHDFT procedures, the use

of the Q[D,T] approximation only for the MP2SS compo-

nent (block B) leads to MADs that are virtually identical to

those for the corresponding full QZ calculations (block A)

(Table 4). The application of the additional Q[D,T]

approximation to the MP2OS component (block C) leads to

somewhat larger deviations from the MADs for full QZ

calculations, but the respective values in blocks A and C

remain quite close to one another. These results are con-

sistent with the observations in Tables 2 and 3 and support

the use of the approximation of QZ energies by extrapo-

lating DZ and TZ values for the MP2OS and (especially)

MP2SS components for DHDFT procedures. Importantly,

the use of generic a[D,T] values leads to very similar

results for all the DHDFT procedures considered, including

DSD-PBE-PBE and DSD-B-P86 for which the optimal

a[D,T] values are not determined explicitly, which points

toward the general applicability of such approximations.

We note that, while many DHDFT procedures are

parameterized in conjunction with QZ basis sets and may

therefore perform best when used with QZ basis sets (see

[16] for an example of the impact of using a ‘‘mismatched’’

Table 4 Mean absolute deviations (kJ mol-1) from experimental

benchmark values for the various DHDFT procedures with explicit

maVQZ and approximate maVQ[D,T]Z basis sets for the G2/97 set of

thermochemical properties

DSD-B-

LYP

DSD-PBE-

P86

DSD-PBE-

PBE

DSD-B-

P86

(A) Full QZ

G2/

97

7.9 7.3 8.3 7.5

DHf 8.4 7.2 8.4 8.4

IE 8.2 8.6 9.0 7.7

EA 6.7 6.4 7.7 5.7

PA 3.6 2.8 3.6 2.6

(B) DFT(Q) ? MP2OS(Q) ? MP2SS(Q[D,T])

G2/

97

7.9 7.4 8.3 7.6

DHf 8.5 7.2 8.4 8.5

IE 8.1 8.5 9.0 7.7

EA 6.8 6.5 7.7 5.7

PA 3.6 2.8 3.6 2.6

(C) DFT(Q) ? MP2OS(Q[D,T]) ? MP2SS(Q[D,T])

G2/

97

8.1 7.5 8.4 8.0

DHf 8.7 7.5 8.5 9.3

IE 8.2 8.5 8.9 7.7

EA 7.1 6.8 8.1 6.0

PA 3.6 2.7 3.6 2.7
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basis set on the performance of a DHDFT procedure), the

extrapolation to the complete-basis-set (CBS) limit may in

some cases lead to improved results [24, 50]. It is of

interest to ask how the CBS extrapolation performs more

generally when applied to a DHDFT procedure that is fitted

with QZ basis sets. To this end, we have examined the

performance of an approximation to DSD-PBE-P86/CBS

in which the DFT component is obtained with the maVQZ

basis set and the MP2 correlation energies are obtained at

the CBS limit by extrapolating with maVTZ and maVQZ.

For the G2/97 set, this method gives an overall MAD

(11.1 kJ mol-1) that is significantly larger than that for

DSD-PBE-P86/maVQZ (7.3 kJ mol-1). This difference is

dominated by the substantially poorer performance for

DHf
0s for the CBS method (16.0 kJ mol-1) than for the QZ

procedure (7.2 kJ mol-1). The performance for PAs is also

slightly poorer with CBS (3.1 vs. 2.8 kJ mol-1 for QZ), but

the MADs for IEs and EAs are lower with CBS (7.4 and

5.2 kJ mol-1 for IEs and EAs, respectively) than with QZ

(8.6 and 6.4 kJ mol-1 for IEs and EAs, respectively). We

note that these results are consistent with our previous

observations, e.g., that the use of a QZ basis set with a

method that has been fitted with a TZ basis set leads to

poorer performance [16]. In general, we deem the use of a

QZ basis set more appropriate for a DHDFT method

parameterized for QZ, even though in some cases the use

of CBS yields somewhat better performance.

We now investigate the application of the basis-set

approximation schemes for the calculations of relatively

large systems, where the benefit from a reduction in the

demand on computational resources is starting to be

more significant. In a recent study, the heat of formation

of C60 was estimated at the DSD-PBE-B86/VQZ level

by means of isodesmic-type reactions [20]. We will use

a set of 13 reactions from that study to assess the per-

formance of the basis-set approximations. We have

examined the application of the approaches shown in

Table 4, namely (1) full QZ, (2) QZ for DFT and

MP2OS, and Q[D,T] for MP2SS, and (3) QZ for DFT,

and Q[D,T] for MP2OS and MP2SS, to the DSD-PBE-

B86 procedure with the VnZ (A–C) or maVnZ (D–F)

basis sets. The resulting reaction energies are shown in

Table 5.

For the reactions that do not involve C60 (reactions 1–9),

we find that the use of Q[D,T] for MP2SS (columns B and

E) provides very good approximations to the corresponding

full QZ reaction energies in columns A and D, respectively.

Among these cases, the largest deviation (LD) is just

0.3 kJ mol-1 for reactions 4 and 7 with the VnZ basis sets

(column B). When the Q[D,T] approximation is also used

for the MP2OS component (columns C and F), the devia-

tions of the reaction energies from the values in columns A

and D are slightly larger. For reactions 1–9, the LD in

column C is that for reaction 4 (2.0 kJ mol-1), and the

corresponding LD in column F is -1.5 kJ mol-1 for

reaction 9. In general, the use of the maVQ[D,T]Z

approximation (columns E and F) leads to slightly better

agreement with the full maVQZ reaction energies (column

D) than the use of VQ[D,T]Z (columns B and C) for

approximating the full VQZ energies in column A.

Table 5 DSD-PBE-P86 vibrationless reaction energies (kJ mol-1) for a set of 13 isodesmic-type reactions calculated in conjunction with a

variety of explicit and approximate quadruple-f basis sets

Aa B C D E F

DFT VQZ VQZ VQZ maVQZ maVQZ maVQZ

MP2OS VQZ VQZ VQ[D,T]Z maVQZ maVQZ maVQ[D,T]Z

MP2SS VQZ VQ[D,T]Z VQ[D,T]Z maVQZ maVQ[D,T]Z maVQ[D,T]Z

1. C10H8 ? C2H4 ? 2C6H6 -40.0 -40.0 (0.1) -39.6 (0.4) -40.3 -40.2 (0.1) -39.9 (0.3)

2. C14H10 ? 2C2H4 ? 3C6H6 -70.6 -70.4 (0.2) -69.6 (1.0) -71.0 -70.9 (0.1) -70.3 (0.7)

3. C14H10 ? C6H6 ? 2C10H8 9.5 9.5 (0.0) 9.7 (0.2) 9.5 9.5 (0.0) 9.6 (0.1)

4. C18H12 ? 3C2H4 ? 4C6H6 -105.6 -105.2 (0.3) -103.6 (2.0) -106.2 -106.0 (0.2) -104.9 (1.3)

5. C18H12 ? 2C6H6 ? 3C10H8 14.6 14.6 (0.1) 15.3 (0.8) 14.6 14.6 (0.0) 14.9 (0.3)

6. C18H12 ? C10H8 ? 2C14H10 -4.4 -4.4 (0.0) -4.1 (0.3) -4.4 -4.4 (0.0) -4.3 (0.1)

7. C20H10 ? 5C2H4 ? 5C6H6 -368.2 -367.9 (0.3) -366.9 (1.2) -368.9 -368.8 (0.2) -368.3 (0.6)

8. C20H10 ? 5C6H6 ? 5C10H8 -168.0 -168.1 (-0.1) -168.7 (-0.7) -167.6 -167.8 (-0.2) -168.6 (-1.0)

9. C20H10 ? 5C10H8 ? 5C14H10 -215.3 -215.6 (-0.2) -217.2 (-1.9) -215.1 -215.3 (-0.2) -216.6 (-1.5)

10. C60 ? 10C6H6 ? 6C20H10 -483.8 -491.8 (-7.9) -488.0

11. C60 ? 10C10H8 ? 8C20H10 -147.9 -154.3 (-6.5) -150.7

12. C60 ? 10C14H10 ? 10C20H10 282.8 280.1 (-2.7) 282.5

13. C60 ? 10C18H12 ? 12C20H10 669.6 673.8 (4.2) 672.9

Deviations from the corresponding full QZ values are shown in parentheses
a [20]
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For the reactions that involve C60 (reactions 10–13),

somewhat larger deviations are found for the energies in

column C when compared with the full VQZ values (col-

umn A). Presumably, like most approximate methods, a

larger number of species involved in these reactions can

sometimes lead to a greater accumulation of deviations. To

this end, we have analyzed the corresponding deviations

for the G2/97 set of relative energies (DHf, IE, EA and PA).

We find that the deviations are notably larger for DHf

(LD = 9.1 kJ mol-1) than for IE (LD = 1.8 kJ mol-1),

EA (LDs = -2.8 kJ mol-1 for atoms and -2.0 kJ mol-1

for molecules) and PA (LD = -0.6 kJ mol-1). However,

it is noteworthy that, when the Q[D,T] approximation is

applied only to the MP2SS component, the resulting rela-

tive energies deviate from the full QZ values by less than

0.8 kJ mol-1 for all the data in the G2/97 set.

3.5 Illustrative application to larger systems

Having thoroughly evaluated the performance of the Q[D,T]

approach for the approximation of explicit QZ energies and

identified the circumstances under which it works best, we

now apply the approximate method to systems that are par-

ticularly demanding on computational resources when an

explicit QZ basis set is used. Thus, we have calculated the IE

and EA of C60 using the DSD-PBE-P86 procedure, with the

DFT component obtained with the maVQZ basis set and the

MP2OS and MP2SS components calculated using the cor-

responding Q[D,T] approximation. We note that, while the

experimental DHf for C60 is associated with a large uncer-

tainty (2,560 ± 100 kJ mol-1), the experimental IE

(7.57 ± 0.01 eV, 730.4 ± 1.0 kJ mol-1) and EA

(2.666 ± 0.001 eV, 257.2 ± 0.1 kJ mol-1) values for C60

are quite accurate [51]. Our calculated IE (736.5 kJ mol-1)

andEA (255.7 kJ mol-1) at the approximateDSD-PBE-P86/

maVQZ level, i.e., DSD-PBE-P86/maVQ[D,T]Z, are in

reasonably good agreement with the experimental values.

In using the Q[D,T] approximation, what savings in

computational resources have we achieved? For C60, the

explicit DSD-PBE-P86/VQZ calculation involving 3,300

basis functions and performed in the previous study [20]

consumed 3,383 h of CPU time with an allocated memory

of 42 GB and an allocated scratch disk space of 377 GB.

For the reactions in Table 5 that involve C60, the calcula-

tion of C60 itself dominates the computational time. For

example, reaction 13 (C60 ? 10 C18H12 ? 12 C20H10)

took a total CPU time of 3,650 h for the explicit DSD-

PBE-P86/VQZ computation of all three species involved.

In the present study, we placed the same constraints as

in the previous work on the memory and scratch disk for

our calculations for C60, C60
•? and C60

•-, and we recorded the

CPU time for our approximate QZ calculations (Table 6).

For our approximate DSD-PBE-P86/VQ[D,T]Z

calculation, the total CPU time consumed for the DFT/

VQZ, DHDFT/VDZ and DHDFT/VTZ components is

254 h, which represents more than an order of magnitude

of savings when compared with the full VQZ calculation.

Likewise, the total CPU time consumed for the calculation

of reaction 13 is 307 h, which is also an order of magnitude

less than the explicit VQZ calculations. We note that this

computational saving is achieved with little loss of accu-

racy: 673.8 versus 669.6 kJ mol-1 (Table 5). The

maVQ[D,T]Z calculation for C60 took a total CPU time of

514 h, which is approximately twice that for the VQ[D,T]Z

calculation, but it is still substantially less than for the

explicit VQZ calculation, and it has the advantage of

incorporating the effect of diffuse functions, which is

expected to be essential for the calculation of the EA.

The maVQ[D,T]Z calculations for C60
•? and C60

•- con-

sumed a total of 1,529 and 1,065 h of CPU time, respec-

tively. Thus, they are still less costly than the explicit VQZ

calculation for C60. As the explicit VQZ calculation for C60

is more than an order of magnitude more costly than the

corresponding VQ[D,T]Z scheme, we can expect a full

DSD-PBE-P86/maVQZ calculation for C60
•? to be more

than an order of magnitude more costly than the corre-

sponding maVQ[D,T]Z calculation and hence to consume

well over 15,000 h of CPU time! We note that, for the

approximate VQZ calculation for C60 and the approximate

maVQZ calculations for C60 and C60
•-, the longest calcu-

lation in each case is actually the DFT/QZ component

rather than the DHDFT/TZ calculation. On the other hand,

for the approximate maVQZ calculation for C60
•?, the

DHDFT/maVTZ component took notably longer than the

DFT/maVQZ component.

These examples clearly demonstrate the utility of the

Q[D,T] approximation for the MP2 components for

DHDFT procedures, and the considerable cost savings

associated with such a scheme. We reiterate that further

reduction in the demand for computational resources can

Table 6 CPU time (h) for the calculation of C60, C60
•? and C60

•- with

DSD-PBE-P86 (DHDFT) using explicit QZ basis sets, approximate

QZ basis sets (i.e., Q[D,T]Z) and their components (DFT and

DHDFT)

C60 C60
•? C60

•-

DHDFT/VQZ 3,383

DHDFT/VQ[D,T]Z 254

DFT/VQZ 144

DHDFT/VDZ 7

DHDFT/VTZ 103

DHDFT/maVQ[D,T]Z 514 1,529 1,065

DFT/maVQZ 272 575 548

DHDFT/maVDZ 25 96 59

DHDFT/maVTZ 218 859 459
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be achieved with techniques such as the resolution-of-the-

identity approximation for both the DFT and the MP2

components. In the cases where the Q[D,T] approximation

is expected to be less good for the MP2OS component, e.g.,

DHf via atomization energies for large molecules, it may be

more desirable to employ explicit QZ energies for this

component. Such a scheme would involve carrying out

conventional DHDFT calculations with DZ and TZ basis

sets, and an SOS-MP2-type DHDFT/QZ calculation [52].

The SOS-MP2 protocol, as implemented in some com-

putational chemistry packages such as Q-Chem [53], has a

fourth-order scaling as opposed to the fifth-order scaling

for conventional MP2. To this end, we have briefly

examined the use of SOS-RI-MP2/VDZ for the calculation

of C60 in comparison with the corresponding RI-MP2/VDZ

calculation. The Hartree–Fock component in these calcu-

lations consumed *2,081 s of CPU time. The correlation

calculation for SOS-RI-MP2 took 1,685.3 s, while for RI-

MP2 it took 2,635.6 s. Therefore, while the inclusion of an

additional MP2OS/QZ component necessarily increases the

cost, we expect the total computational resources required

for such a protocol to be still notably less than that for full

QZ calculations for large systems. We also reiterate that

the Q[D,T] approximation does not exclude the use of

additional cost-saving techniques for DHDFT calculations,

such as the DB-RI-MP2 procedure of Head-Gordon and co-

workers [54] or the MP2[K] procedure of Deng and Gill

[55].

4 Concluding remarks

In the present study, we have investigated a scheme for the

approximation of QZ energies for double-hybrid DFT

(DHDFT) procedures, using smaller double-f and triple-f
basis sets with a recast of the conventional extrapolation

formula EL = ECBS ? A L-a. The following key findings

emerge from our investigation.

1. The approximation (denoted Q[D,T]) requires different

optimal a exponents for the MP2OS and MP2SS

components. The a values are not very sensitive to the

type of basis set used and are also rather insensitive to

the specific DHDFT procedure. We find that the

performance of the QZ approximation for the MP2

components is not very sensitive to the specific type of

basis sets used.

2. Overall, we find that a DHDFT scheme in which the

DFT component is calculated with the maug-cc-pVQZ

basis set, and the MP2OS/QZ and MP2SS/QZ com-

ponents are approximated by maug-cc-pVQ[D,T]Z,

generally performs well for the evaluation of relative

energies. This scheme employs optimal a[D,T] values

of 2.217 for MP2OS and 3.073 for MP2SS in

conjunction with the standard a[T,Q] value of 3 for

both MP2 components. These parameters are applica-

ble not only to DSD-B-LYP and DSD-PBE-P86 for

which the values are optimized, but also to DSD-PBE-

PBE and DSD-B-P86 for which the values are

independently applied without reoptimization.

3. While the approximation of MP2OS/maug-cc-pVQZ

and MP2SS/maug-cc-pVQZ by the maug-cc-

pVQ[D,T]Z approach, overall, is quite good for the

calculation of relative energies, particularly for the

MP2SS component, the performance is less good for

some species. In these cases, the use of explicit

MP2OS/maug-cc-pVQZ energies can help to over-

come such a shortcoming, while still maintaining

significant savings in computational requirements by

the use, for example, of SOS-MP2.

4. For a prototypical large system for DHDFT, namely

C60, we find that the use of the Q[D,T] approximation

for MP2OS and MP2SS leads to a reduction in CPU

time by more than an order of magnitude when

compared with the explicit DSD-PBE-P86/cc-pVQZ

calculation, with little loss of accuracy. Such a saving

in computer time has enabled the calculation of the

more expensive C60
•? and C60

•- ions at the approximate

DSD-PBE-P86/maug-cc-pVQ[D,T]Z level with

resources notably less than those for the explicit

DSD-PBE-P86/cc-pVQZ calculation for C60.
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Abstract A common perception about molecular systems

with a nonlocal electronic structure (as manifested by a

nonlocal Hartree–Fock (HF) density matrix), such as con-

jugated p-systems, is that they can only be described in

terms of nonlocal molecular orbitals. This view is mostly

founded on chemical intuition, and further, this view is

strengthened by traditional approaches for obtaining local

occupied and virtual orbital spaces, such as the occupied

Pipek–Mezey orbitals, and projected atomic orbitals. In this

article, we discuss the limitations for localizability of HF

orbitals in terms of restrictions posed by the delocalized

character of the underlying density matrix for the molecular

system and by the orthogonality constraint on the molecular

orbitals. We show that the locality of the orbitals, in terms

of nonvanishing charge distributions of orbitals centered far

apart, is much more strongly affected by the orthogonality

constraint than by the physical requirement that the occu-

pied orbitals must represent the electron density. Thus, the

freedom of carrying out unitary transformations among the

orbitals provides the flexibility to obtain highly local

occupied and virtual molecular orbitals, even for molecular

systems with a nonlocal density matrix, provided that a

proper localization function is used. As an additional con-

sideration, we clear up the common misconception that

projected atomic orbitals in general are more local than

localized orthogonal virtual orbitals.

Keywords Local orbitals � Local correlation �
Projected atomic orbitals � Delocalization

1 Introduction

Since the seminal papers by Lennard-Jones and Pople [1]

and Hall [2] on the significance of local occupied orbi-

tals, localized molecular orbitals (MOs) have received an

increasing amount of attention. The use of localized MOs

ranges from understanding concepts related to molecular

bonding to more practical considerations, where the local

orbitals constitute an efficient basis in which electron

correlation effects may be efficiently expressed. Due to

the popularity of the application of localized MOs, a vast

number of localization schemes have been proposed, see

e.g., [3–16]. The most popular of these schemes are the

ones of Edmiston and Ruedenberg [5], Boys [3–5], and

Pipek and Mezey [8]. More recent developments in the

area of orbital localization functions have focused on

imposing strict constraints on the spatial extent of the

orbitals, e.g., by minimizing powers of the orbitals’

second central moments [14] and powers of the orbitals’

fourth central moments [16]. Powers act as a penalty that

ensures all orbitals are local, i.e., no single orbital in the

set is delocalized. As a result, these localization functions

have proven less system dependent than the standard

ones. Until recently, only occupied orbitals could be

localized since the traditional optimization algorithm—

the Jacobi sweeps of iterations—is not capable of local-

izing the more complicated virtual space. However, with

the introduction of the trust-region algorithm for orbital

localization functions [17], both local occupied and local

virtual orbitals may be generated, even for large molec-

ular systems.
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The advances made for localization function optimiza-

tion—as achieved by the trust-region approach and the

introduction of robust localization functions—open up for

explorations of the localizability of orthonormal Hartree–

Fock (HF) orbitals. Such explorations have previously not

been considered, and the concept of MO localizability has

therefore often been overwhelmed by chemical intuition,

especially for ‘‘delocalized’’ systems. By delocalized

systems, chemists refer to e.g., conjugated p-systems,

where the electrons are considered to be delocalized

throughout the p-system. This interpretation is strongly

connected to MO diagrams and associated canonical

orbitals. However, all quantum mechanical observables

calculated at the HF level of theory are invariant to a

unitary transformation among the occupied and among the

virtual HF orbitals. It is precisely this freedom that is used

when localizing HF orbitals. An orbital-invariant defini-

tion of the locality of a molecular system comes from

considering the HF density matrix, i.e., the system is

considered to be delocalized if the HF density matrix (and

hence the physical electron density) is not local in nature.

Thus, through the HF density matrix, which is constructed

from occupied MO coefficients obtained from a HF cal-

culation, the degree of delocalization is tied closely

together with the MOs.

Since the HF optimization condition defines the sepa-

ration of the orbital space into an occupied and a virtual

part, where the occupied HF orbitals describe the HF

density matrix, it represents a physical limitation to the

localizability of the occupied as well as the virtual orbitals.

However, the HF optimization condition is not the only

requirement that is important for orbital locality. The

locality of MOs is also limited by requiring that all orbitals

are orthogonal to each other. The orthogonality require-

ment—a mathematical limitation—provides a convenient

framework to work within, but it is a very strict require-

ment seen from a locality point of view. Orthogonalization

of the orbitals ultimately leads to orbital tails, and nodal

planes are required to fulfill the orthogonality conditions.

Orbital tails result in nonvanishing charge distributions for

orbitals which are centered far apart and consequently

make sparsity, e.g., for local correlation methods more

difficult to achieve. It is therefore of interest to quantify

whether the HF optimization condition or the orthogonality

requirement is the main source of the orbital tails.

In this paper, the physical and mathematical limitations

on the localizability of orthonormal HF orbitals will be

explored and compared by carrying out calculations where

the two effects are separated. To investigate how the

locality of the electronic structure of a molecule (as man-

ifested by the locality of the HF density matrix) impacts the

orbital locality, we will here study two molecules both of

which are made up of carbon and hydrogen, but which are

very different in terms of electronic structure. One mole-

cule is a diamond structure (C331H216), and the other is a

graphene sheet (C106H28), see Fig. 1. Diamond is an

example of a molecule that is an electric insulator and has a

localized electronic structure, while the graphene sheet is a

prototypical example of a delocalized system. Graphene

thus represents a molecular system for which the existence

of local HF orbitals is not an obvious matter. Here, we

investigate the impact of the nonlocal density matrix of

graphene on orbital locality and compare it to the con-

straints accompanying the orthogonality requirement. We

demonstrate that it is indeed possible to localize both

occupied and virtual orbitals for graphene and that the

orthogonality constraint is a bigger restriction on locality

than the HF optimization condition. The common mis-

conception that it is not possible to obtain localized HF

orbitals for delocalized systems is probably also influenced

by the fact that the very system-dependent Pipek–Mezey

orbitals and projected atomic orbitals have traditionally

been used to span the occupied and virtual orbital space,

e.g., in local correlation approaches. We address this issue

by demonstrating that the fourth moment localized orbitals

are in general more local—and much less system depen-

dent—than the Pipek–Mezey orbitals and projected atomic

orbitals.

Fig. 1 A visualization of

diamond (left) and graphene

(right). The least local-occupied

(blue) and least local virtual

(green) LMOs of Sect. 3 are

also shown. The plots are made

using the UCSF Chimera

program package [22]

Theor Chem Acc (2014) 133:1417

123 Reprinted from the journal288



The structure of the paper is as follows. In Sect. 2, the

locality of diamond and graphene is analyzed in the atomic

orbital (AO) basis. In Sect. 3. we compare the locality of

diamond and graphene in the MO basis with emphasis on

the physical and mathematical limitations for orbital

locality. In Sect. 4, we compare the localized orbitals

employed in Sect. 3 to Pipek–Mezey orbitals and projected

atomic orbitals. All illustrations are carried out using

Dunning’s cc-pVDZ basis [18]. In Sect. 5, a summary and

some concluding remarks are given.

2 Background

To emphasize the different physical nature of the diamond

and graphene molecules, we look at the locality of the

systems in the AO basis. In particular, we look at the HF

density matrix and the Fock matrix. Assuming that the HF

optimization condition is satisfied, the HF density matrix is

defined by the elements

Dlm ¼
X
i

CliCmi ð1Þ

where the index i runs over the occupied HF orbitals, l and

m are AO indices, and C is the MO coefficient matrix. The

Fock matrix may be expressed in terms of the density

matrix as

Flm ¼ hlm þ
X
qr

Dqrð2glmqr � glrqmÞ ð2Þ

where hlm is the usual one-electron integral and glmqr
denotes the two-electron integral in a Mulliken notation,

glmqr ¼
Z

vlðr1Þvmðr1Þ
1

r12
vqðr2Þvrðr2Þdr1dr2 ð3Þ

To visualize the spatial locality of the density matrix

(Eq. 1) and the Fock matrix (Eq. 2), we have in Fig. 2

(left) plotted the distance decay of the density matrix

elements, and in Fig. 2 (right), the distance decay of the

Fock matrix elements. The values plotted in Fig. 2 are the

maximum absolute values (max|Dlm| and max|Flm|) as a

function of distance between the atomic orbitals jli and

jmi;Rlm.

The density matrix element decay plotted in Fig. 2 (left)

reflects the different electronic structures of the two mol-

ecules. The density matrix elements for diamond decay

uniformly, while the density matrix element decay for

graphene is very slow, resulting in an increasingly large

gap between the size of density matrix elements for dia-

mond and graphene as the distance Rlm increases. This

shows why graphene is considered to be a molecule with a

delocalized electronic structure. The difference in the

density matrices for diamond and graphene is reflected in

the distance decay of the Fock matrix elements, as seen in

Fig. 2 (right). To identify the terms in the Fock matrix

responsible for the slow distance decay, we have in Fig. 3

plotted the maximum absolute one-electron (hlm), Coulomb

(2
P

qr Dqrglmqr) and exchange (
P

qr Dqrglrqm) contribu-

tions to the AO Fock matrix (see Eq. 2) separately for

diamond (left) and graphene (right). Clearly, the exchange

contribution is dominating at large distances for both sys-

tems, and it is ultimately responsible for the slow Fock

matrix decay for graphene. This happens because the

Coulomb and one-electron terms are killed off by the

charge distribution vl(r)vm(r) that vanishes for large Rlm,

whereas this charge distribution is not present in the

exchange term where the decay is therefore controlled by

the decay of the density matrix, which is slow for graphene.

Thus, the locality of the density matrix (and hence the

Fock matrix) strongly depends on the nature of the elec-

tronic structure of the physical system. The density matrix

is invariant with respect to unitary transformations among

the occupied orbitals. However, in spite of that, the com-

mon perception among chemists is that it is not possible to

describe a delocalized molecular system using highly

localized molecular orbitals. Using diamond and graphene
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as examples, we now explore the impact of the nature of

the density matrix has on the localizability of the HF

orbitals (physical limitation) and compare it to the impact

of requiring the basis of MOs to be orthogonal (mathe-

matical limitation).

3 The localizability of Hartree–Fock orbitals

The goal of this section is to elucidate how the physical and

mathematical restrictions—relative to each other—affect

the localizability of the HF orbitals. In Sect. 3.1, we

introduce the orbital bases which will be used to separate

the physical and mathematical effects from each other.

Locality measures are given in Sect. 3.2, and in Sect. 3.3,

we give numerical illustrations for examining the physical

and mathematical restrictions. In Sect. 3.4, the distance

decay of Fock matrix elements in the MO basis is exam-

ined, since this decay is interesting from a local correlation

point of view.

3.1 Bases used to separate physical and mathematical

effects on orbital locality

To separate the effect on orbital locality imposed by the HF

optimization condition (which separates the orbital space

into an occupied and a virtual orbital space) from the effect

of the orthogonality requirement, bases which exhibits

none, one or both conditions are needed. The AOs, fjlig,
constitute a natural starting point, serving as a basis which

is nonorthogonal and does not satisfy an occupied–virtual

partitioning of the orbital space. To obtain an orthogonal

set of orbitals—which does not satisfy an occupied–virtual

partitioning—we may orthogonalize the set of AOs. In this

work, we consider the Löwdin symmetric orthogonaliza-

tion [19]

j�li ¼
X
m

jmi½S�1�ml ð4Þ

where S is the overlap matrix in the atomic orbital basis,

Slm ¼ hljmi. Although the set fj�lig gives the set of

orthogonalized atomic orbitals (OAOs) which, in a least

squares sense, most closely resembles the AOs [20], they

do not necessarily represent the most spatially local set of

orthogonal orbitals spanning the same space as the AOs. To

improve the spatial locality, we explicitly localize the OAO

set fj�lig by an orthogonal transformation among the

orbitals,

j�lLi ¼
X
m

j�miUml ð5Þ

where the orthogonal transformation matrix U is deter-

mined by minimizing the sum of the second power of the

orbitals’ fourth central moments [16]. We elaborate on this

choice of localization function in Sect. 3.2. The resulting

set of localized orthogonalized atomic orbitals (LOAOs),

fj�lLig, hence represents a set of spatially localized

orthogonal orbitals that does not satisfy an occupied—

virtual partitioning of the orbital space. The improved

locality of LOAOs compared to OAOs is significant, as

will be shown in Sect. 3.3

The AOs and the LOAOs will be used for comparison

with the HF orbitals

jpi ¼
X
l

jliClp ð6Þ

where p; q; . . . denote orbital indices of unspecified

occupation. Henceforth, the indices i; j; . . . are used to

denote occupied orbitals and indices a; b; . . . are used to

denote virtual orbitals. The occupied and virtual HF orbitals

are localized to obtain the localized HF molecular orbitals

(LMOs) using orthogonal transformations among the

occupied orbitals and among the virtual orbitals
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Fig. 3 The distance decay of one-electron, Coulomb and exchange term entering the Fock matrix, plotted for diamond (left) and graphene

(right). Note that there is a factor two on the Coulomb term which is consistent with the definition of the AO Fock matrix in Eq. 2
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jiLi ¼
X
j

jjiU0
ji ð7Þ

jaLi ¼
X
b

jbiU00
ba ð8Þ

where the orthogonal transformation matrices U0 and U00—
as was the case for U in Eq. 5—are determined by mini-

mizing the sum of the second power of the orbitals’ fourth

central moments (see Sect. 3.2). The superscript ‘‘L’’ is

used to differentiate localized HF orbitals from standard

HF orbitals (e.g., canonical MOs). However, for the

remainder of this paper, all HF orbitals considered are

localized and we will for simplicity omit the superscript

‘‘L’’ for the localized HF orbitals.

Hence, we have three different bases—the AOs,

LOAOs, and LMOs—which represents three different

scenarios with respect to the HF optimization criterion and

the orthogonality constraint. For an overview of the nota-

tion and properties of the three bases, see Table 1.

3.2 The orbital localization function and locality

measures

The orthogonal transformations in Eqs. 5, 7 and 8 are

determined by minimizing the second power of the fourth

central moment [16]

n ¼
X
P

huPjðr̂� huPjr̂juPiÞ4juPi2 ð9Þ

where fjuPig refers to the set of LOAOs, occupied LMOs,

or virtual LMOs. The localization function is optimized

using the trust-region implementation described in [17].

The reason for using the fourth central moment localization

function is the spatial compactness of the orbitals obtained,

and the fact that the locality of the orbitals generated using

this function shows minimal basis set and system depen-

dence. The minimal system dependence is especially

important since it is of interest to explore the localizability

of HF orbitals for systems with very different bonding

structures.

To quantify the spatial locality of a normalized orbital

juPi the second and fourth moment orbital spreads may be

used. The second moment orbital spread

rP2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huPjðr̂� huPjr̂juPiÞ2juPi

q
ð10Þ

describes the orbital bulk locality, while the fourth moment

orbital spread [16]

rP4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huPjðr̂� huPjr̂juPiÞ4juPi4

q
ð11Þ

puts more emphasis on the orbital density in the tail region

of the orbital. Comparing the size of r4
P relative to r2

P, thus,

gives an indication of how rapidly the orbital tail is

decaying. If r4
P and r2

P are of comparable sizes, the orbital

density in the tail region is small and consequently the

orbital density distribution has a thin tail. Contrary, if r4
P is

large compared with r2
P the orbital density distribution has

a thick tail.

Although the orbital spreads give detailed information

on the locality of the orbitals, it is useful to supplement this

information by considering how the charge distribution

between two orbitals, uPðrÞuQðrÞ; decay as a function of

the distance, RPQ, between the orbital centers,

RPQ ¼ jhuPjr̂juPi � huQjr̂juQij ð12Þ
Since the overlap between two orthonormal orbitals by

construction is 1 or 0, the overlap of the LOAOs and LMOs

cannot be used as a measure to characterize the charge

distribution. We, therefore, use the numerical overlap, XPQ,

as a measure of the magnitude of the charge distributions,

XPQ ¼
Z

juPðrÞjjuQðrÞjdr ð13Þ

The numerical overlap XPQ will be plotted as a function of

RPQ, and since the orbital sets contain large numbers of

orbitals, only the largest XPQ will be plotted for a given

RPQ distance interval.

3.3 Numerical illustrations for separating physical

and mathematical effects

To separate the physical effect imposed by the HF opti-

mization condition from the orthogonality constraint, we

consider the diamond and graphene molecules introduced

in Sect. 2 and report the locality of the three different bases

(AOs, LOAOs and LMOs) in terms of the maximum orbital

spreads (Eqs. 10 and 11) and numerical overlaps between

orbitals as a function of distance between the orbital cen-

ters (Eq. 13). The orbital spreads are tabulated in Table 2

and the numerical overlaps are plotted in Fig. 4. To get an

idea on the significance of the orbital spreads, the LMOs of

diamond and graphene are illustrated in Fig. 1. In Table 2,

the locality of the Löwdin symmetric orthogonalized AO

(without any explicit localization) is also given, illustrating

that the gain in locality by localization is around 2 a.u. in

terms of orbital spread. This locality improvement is

Table 1 An overview of the notation and properties of the three

bases employed

Basis Notation Orthogonal? Occupied-virtual?

AOs fjlig No No

LOAOs fj�lLig Yes No

LMOs fjpig Yes Yes
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essential to compare the HF orbital locality to that of

orthogonalized AOs. Table 2 also contains information

about the Pipek–Mezey orbitals and projected atomic

orbitals which will be discussed in Sect. 4.

We will now discuss the main points from the results in

Table 2 and Fig. 4. The discussion is separated in separate

discussions about bulk and tail regions of the orbitals.

3.3.1 Bulk locality

The orbital bulks (which are measured by r2) for the

LOAOs and LMOs are, in general, more local than the bulk

of the AOs. This is possible since the LOAOs and LMOs

are combinations of AOs on different centers, and this

provides the flexibility to generate orbitals with more

spatially confined bulks. Looking at the numerical overlaps

in Fig. 4, we see the effect of the improved bulk locality,

since, for small RPQ, the X values for the LOAOs and

LMOs are in general below the X values for the AOs. This

is particularly pronounced for the LOAOs and the occupied

LMOs for diamond. Further, the r2
max of the diamond

occupied LMOs is lower than the r2
max of the LOAOs,

while the virtual orbitals of diamond exhibit slightly larger

r2
max values than the LOAOs. Hence, it is possible to obtain

better bulk locality for the occupied orbitals for diamond

than for the LOAOs. Thus, for diamond, the occupied–

virtual partitioning of the orbital space enables a set of

occupied orbitals that are more local than the LOAOs,

whereas the virtual orbitals necessarily will have a locality

comparable to (or less than) that of the LOAOs. This is

evident since the occupied and virtual orbitals collectively

must span the same space as the LOAOs, and if the HF

optimization conditions leave the occupied space described

by easily localizable orbital components, the virtual space

still has to account for the rest. For graphene, the delo-

calized nature of the system manifests itself in a set of

occupied and virtual orbitals with similar locality and

which is comparable to that of the LOAOs. The reason for

a less local bulk for the graphene occupied orbitals com-

pared to the diamond occupied orbitals is the difference in

bond structure. For diamond, bonding primarily take place

between two carbon atoms, whereas in graphene bonding is

between multiple carbon atoms (see Fig. 1). Hence, the

delocalized character of graphene only requires a small

increase in bulk locality compared with diamond and

consequently the occupied–virtual partitioning does not—

for neither diamond nor graphene—poses a restriction on

bulk locality which is so strong that it is not possible to

obtain a locality similar to that of the LOAOs.

3.3.2 Tail locality compared to the AOs

When considering the tails of the orbitals, we must con-

sider the sizes of r4
max relative to r2

max in Table 2. Since

r2
max& r4

max for the AOs while r4
max[ r2

max for the LOAOs

and LMOs, the LOAOs and LMOs have more orbital

density in the tail region. This is also evident from a

Table 2 The maximum r2 and r4 values for the AOs, LOAOs, and

LMOs, where the LOAOs and LMOs have been localized by mini-

mizing Eq. 9

Diamond Graphene

r2
max (a.u.) r4

max (a.u.) r2
max (a.u.) r4

max (a.u.)

AOs 2.9 3.1 2.9 3.1

OAOs 4.3 5.9 3.9 5.1

LOAOs 2.4 3.4 2.3 3.3

LMOs, occupied 1.8 2.5 2.8 4.1

LMOs, virtual 2.8 4.0 3.1 3.9

PMO, occupied 1.9 2.7 4.1 7.8

PAO 3.1 4.5 6.0 10.3

We also give values for the projected atomic orbitals (PAOs) and

occupied orbitals obtained using the Pipek–Mezey localization

function (PMO) in Eq. 16
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conceptual point of view, since the LOAOs and the LMOs

are orbitals expanded in the basis of AOs, and therefore,

the LOAOs and LMOs contain contributions from AOs on

different atomic centers, with the magnitude of the con-

tribution determined by the expansion coefficients. Since

an AO is a single atom-centered function, it has—in this

context—no tail. This is substantiated by the numerical

overlap plots or the AOs in Fig. 4, where the Xlm values are

seen to rapidly decay to zero (to be more precise, the very

rapid tail decay of the AO tails is governed by the under-

lying Gaussian functions in the cc-pVDZ basis). All sets of

LMOs presented are seen to have similar tail decay

behavior.

To illustrate the effects on the orthogonalization and on

the occupied–virtual splitting explicitly and separately, we

have in Fig. 5 plotted the distance dependence of the size

of X�lL �mL relative to Xlm (red curve), the size of Xij relative

to X�lL �mL (green curve), and the size of Xab relative to X�lL �mL

(blue curve). Hence, the red curve explicitly expresses the

effect of the orthogonalization on the distance decay of

charge distributions, while the green and blue curves

explicitly expresses the effect of requiring the HF optimi-

zation condition to be fulfilled. As is seen from Fig. 5

(right), the dominating curve beyond 6–7 Å for both dia-

mond (left) and graphene (right) is the red curve. Hence,

already for rather small separations, the orthogonalization

effect is seen to be strong and the distance decay of orbital

charge distributions for larger distances is thus governed by

the orthogonalization requirement and not by the physical

separation of the orbitals into an occupied and a virtual

space.

3.4 The impact of orbital localizability on the MO

Fock matrix

In Sect. 2, it was shown that the AO Fock matrix elements

for graphene exhibit a slow decay compared with the AO

Fock matrix elements for diamond, while in the previous

section, we saw that this difference does not impede the

construction of a set of localized HF orbitals for graphene.

However, the localizability of the orbitals was seen to be

strongly restricted by requiring them to be orthogonal. The

purpose of this section is to see the effect of the localiz-

ability of MOs on the distance decay of Fock matrix ele-

ments in the MO basis. The motivation for this

investigation is the importance of LMOs for use in local

correlation methods, where the MO Fock matrix elements

enters, e.g., in the coupled cluster amplitude equations. The

locality of the Fock matrix elements therefore directly

affects the locality of the amplitude equations. The distance

decay of the maximum absolute MO Fock matrix elements

for diamond and graphene is plotted in Fig. 6.

We first consider the occupied–occupied Fock matrix

decay. The slower decay for the AO Fock matrix of

graphene compared with diamond in Fig. 2 (right) is also

manifested for the occupied–occupied Fock matrix ele-

ments in Fig. 6. The matrix elements in the AO and MO

bases are qualitatively of the same order of magnitude, but

the decays in the MO basis are more uniform, leading to a

smaller difference between graphene and diamond in the

MO basis than in the AO basis.

The virtual–virtual Fock matrix elements also decay

systematically and are very similar to graphene and dia-

mond in accordance with their similar r2
max and r4

max values

in Table 2. Interestingly, the virtual–virtual Fock matrix

elements are seen to be one or two orders of magnitude

larger than the corresponding occupied–occupied Fock

matrix elements for diamond. This—in conjunction with

Fig. 2—indicates that it is primarily the underlying AO

Fock matrix decays which dictates the occupied–occupied

Fock matrix decay, while the virtual orbital locality is the

primary source of the decay of the virtual–virtual Fock

matrix elements. An implication of this is that the differ-

ence between the virtual–virtual and AO Fock matrix

decays is much greater for diamond than for graphene.

Thus, the loss of locality in the Fock matrix when going

from the AO to the MO basis is more detrimental for

systems with a localized electronic structure.

Ω Ω

Fig. 5 The ratios
X �lL �mL

Xlm
(red),

Xij
X �lL �mL

(green), and Xab
X �lL �mL

(blue)

plotted as a function of distance

for diamond (left) and graphene

(right)
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4 Comparisons to Pipek–Mezey orbitals and projected

atomic orbitals

It is shown in the previous section that HF orbitals may be

localized irrespective of the locality of the density matrix

using the fourth moment orbital localization function [16].

In this section, we compare the LMOs of the previous

section to orbitals traditionally used, e.g., in local corre-

lation approaches. The occupied LMOs of the previous

section are compared to occupied orbitals obtained using

the Pipek–Mezey localization function [8], while the vir-

tual LMOs are compared to the redundant and nonor-

thogonal projected atomic orbitals (PAOs).

The PAOs are generated by projecting the occupied

space out of the AO basis

jl0i ¼ 1�
X
i

jiihij
 !

jli ð14Þ

In contrast to the iteratively localized LMOs, the locality of

the PAOs is a consequence of their construction from the

AOs. It is a common misconception that PAOs constitute

the most local representation of the virtual orbital space.

Why this is not the case may be seen by rewriting Eq. 14 as

jl0i ¼ jli �
X
mq

jmiDmqSql ð15Þ

From Eq. 15, it is clear that a PAO ðjl0iÞ is an AO ðjliÞ
with a correction which depends on the density matrix

elements through the AO overlap matrix ðPmq jmiDmqSqlÞ.
Hence, jl0i will only be properly local if the density matrix

is local in nature, whereas poor locality of the PAOs is

inevitable if the system has a nonlocal density matrix.

The occupied Pipek–Mezey orbitals (PMOs) are gener-

ated by maximizing the sum of squared orbital populations

[8]

nPM ¼
X
i

X
A

ðQA
iiÞ2 ð16Þ

where A runs over atomic centers and the index i runs over

all occupied orbitals. Traditionally, the orbital population

matrix QA is generated using the Mulliken population

analysis, but it has been shown [21] that the Löwdin

population analysis yields better results. Therefore, the

Pipek–Mezey results presented here have been obtained

using an implementation employing the Löwdin population

analysis.

The locality results for the PAOs and PMOs are pre-

sented in terms of maximum orbital spreads and numerical

overlaps as a function of orbital distance, as introduced in

Sect. 3. The maximum orbital spreads are listed in Table 2,

and the plots of the numerical overlaps are given in Fig. 7.

The occupied and virtual LMOs of Sect. 3 are included for

comparison.

Comparing first the PMOs to the occupied LMOs is seen

that they exhibit very similar r2
max and r4

max values for

diamond. For graphene, on the other hand, the PMOs yield

significantly larger r2
max and r4

max values than the occupied

LMOs. This trend is also evident from Fig. 7, where the

numerical overlaps for diamond decay very similarly for

the two sets of orbitals, while, for graphene, the decay is

slow for the PMOs compared with the occupied LMOs. For

graphene, the PMOs are thus significantly delocalized in

space compared with the LMOs.

A comparison of the PAOs to the virtual LMOs using

Table 2 and Fig. 7 leads to a similar conclusion. For dia-

mond, the PAOs and virtual LMOs exhibit similar locality.

For graphene, the PAOs are delocalized, while the virtual

LMOs are localized in space. In particular, we note that for

graphene, the r4
max value for the PAOs is almost three times

larger than that for the virtual LMOs, indicating that the

PAOs have very long and thick orbital tails. In Fig. 7

(right), this is manifested by the very slow decay of the

numerical overlap for the PAOs. This behavior for the

PAOs is not surprising, considering the very different

decays of the density matrices for diamond and graphene in

Fig. 2 and the direct dependence of the PAOs on the

density matrix shown in Eq. 15.

In conclusion, the locality of the PMOs and PAOs are

strongly system dependent. For non-conjugated systems

like diamond, PMOs and PAOs are local, while they are

delocalized for conjugated systems like graphene. On the

other hand, using a proper localization function, such as the

one in Eq. 9, it is indeed possible to generate localized (and

much less system dependent) HF orbitals. The common

misconception that it is not possible to generate localized
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HF orbitals for delocalized systems may partly be attrib-

uted to the fact that in local correlation methods, PMOs and

PAOs have often been used to span the occupied and vir-

tual orbital spaces.

5 Summary and conclusions

In this paper, the limits on the localizability of HF orbitals

are explored in terms of two limiting effects: the physical

limitation associated with the HF optimization condition

(the occupied HF orbitals must represent the physical

electron density) and the mathematical orthogonality con-

straint. The orthogonality constraint is investigated by

comparing LOAOs to atomic orbitals, while the effect of

the HF optimization condition is analyzed by comparing

localized HF orbitals to LOAOs. Graphene and diamond

structures are used as model systems since they constitute

two different types of molecules. Graphene has a delocal-

ized electronic structure, and this is reflected by the very

slow distance decay of the HF density matrix elements.

Diamond, on the other hand, has a more local electronic

structure as manifested by the relatively rapid distance

decay of the HF density matrix elements.

The results show that the physical constraint (as

imposed by the HF optimization condition) leads to a dif-

ference in bulk locality of diamond and graphene occupied

orbitals, but that the difference is of only 1 a.u. in terms of

orbital spreads. The difference reflects the different bond-

ing structures of graphene and diamond, but it is minor

compared with the differences in locality of the density

matrices for the two systems. The bulk of the virtual

orbitals of both systems is of similar locality, and the tail

decay behaviors for both occupied and virtual orbitals of

graphene and diamond are similar. Thus, there are only

minor differences between the localizability of the HF

orbitals for graphene and diamond.

The loss in locality of the HF orbitals compared with the

localized orthogonalized orbitals is small and is mainly due

to the loss in flexibility, since orbital transformations must

be carried out among the virtual and among the occupied

HF orbitals in contrast to among the entire basis for the

LOAOs. On the other hand, the tails of the LOAOs are seen

to be quite extensive compared with the atomic orbitals.

This substantiates the severity of the orthogonality con-

straint in terms of spatial locality of the orbitals, since

orthogonalization alone yields a slow tail decay. Thus,

outside the bulks of the orbitals—which is only slightly

system dependent—the orthogonality constraint is the

limiting factor for localizability.

Further, standard approaches to obtain local virtual

and local occupied spaces—the projected atomic orbitals

and Pipek–Mezey occupied orbitals—are shown to gener-

ate poorly localized orbitals for graphene but perform well

for diamond. The misconception that projected atomic

orbitals in general generate orbitals of good locality is

pointed out and justified by showing the explicit depen-

dence of projected atomic orbitals on the HF density

matrix. Projected atomic orbitals of poor locality are thus

inevitable for systems with a nonlocal HF density matrix.

This has previously fueled the notion of the limited local-

izability for delocalized systems (such as graphene), but

here it is shown that this effect is merely a result of their

construction and is unrelated to the actual localizability of

molecular orbitals for such systems.

Thus, contrary to common belief, we have demonstrated

that the localizability of HF orbitals is not strongly affected

by the locality of the density matrix. The invariance of the

density matrix with respect to transformations of the

occupied orbitals allows the density matrix to be described

by highly localized molecular orbitals. In contrast, requir-

ing orbitals to be orthogonal pose, a severe restriction on

the form of the orbitals and is the main reason for slowly

decaying orbital tails.
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Abstract Properties of four chiral compounds—(S)-

methyloxirane, (S)-methylthiirane, (S)-2-chloropropioni-

trile, and (M)-dimethylallene—centered in a solvation shell

of six to seven water molecules have been computed using

time-dependent density functional theory at several wave-

lengths using a many-body expansion. Interaction energies,

total system dipole moments, and dynamic dipole polar-

izabilities converge rapidly and smoothly, exhibiting only

minor oscillations with higher-body contributions. At

three-body truncation of the expansion, errors in such

properties as compared to the full cluster typically fall to

less than 1 % (and much smaller in most cases). Specific

optical rotations, however, are found to converge much

more slowly and erratically, requiring five-body contribu-

tions to obtain errors less than 5 % in three of four test

cases, and six-body terms for (S)-methylthiirane. The

source of this behavior is found to be the wide variation of

both magnitude and sign of the specific rotation with

changes in the configuration of individual solute/solvent

clusters. Thus, unlike simpler properties such as energies or

dipole moments, where each fragment makes a small,

same-sign contribution to the total property, specific rota-

tions typically involve much larger contributions that partly

cancel in the many-body expansion. Thus, the

computational costs of molecular dynamics simulations of

explicit solvation, for example, will be only partially

alleviated by such expansions.

Keywords Many-body expansion � Optical rotation �
Solvation � Response properties

1 Introduction

Over the last two decades, the quality with which optical

properties of chiral molecules [1–8] can be computed has

increased dramatically, including optical rotation [3, 9–14],

electronic [15–25], and vibrational [26–33] circular

dichroism, and Raman optical activity [34–44]. In the

16 years, since Polavarapu [9] published the first ab initio

calculations of optical rotation, for example, comparison

with vapor phase experimental measurements [45–51] has

revealed that such response properties often require high

levels of electron correlation [13, 52–55], large one-elec-

tron basis sets (including diffuse functions), [10, 56–59]

and, in some cases, vibrational corrections [52–55, 58, 60–

66]. As a result of this effort, the number of remaining

discrepancies between theory and experiment for gas-phase

measurements of optical rotation has been significantly

reduced [14, 45, 67].

However, the vast majority of experimental measure-

ments of such properties are made in condensed phases,

either in solvent or in the neat state, and attempts to sim-

ulate such environments accurately for chiroptical proper-

ties have seen only limited success. Continuum-based

solvent models [68–71], for example, have been reported to

reproduce experimental trends (as opposed to absolute

values) only for those systems in which electrostatic sol-

ute–solvent interactions are dominant [54, 55, 64, 72, 73].
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However, in cases where molecule-specific interactions are

significant, implicit solvent models are not reliable. Mi-

crosolvation studies by Xu et al. [74, 75] on the paradig-

matic chiral compound methyloxirane have revealed that

both the magnitude and sign of the computed optical

rotation can vary substantially depending on the number

and configuration of solvent molecules in the region closest

to the solute. In addition, combined molecular dynamics

and density functional studies by Beratan et al. [76, 77] on

the same compound in water and benzene have demon-

strated that the solute can produce a surprisingly strong

transfer of chirality to the solvent.

Clearly, a careful accounting of explicit solute–solvent

interactions—at least in the cybotactic region—is vital to the

accurate simulation of the exquisitely sensitive chiroptical

response. However, the cost of such calculations is prohib-

itively expensive at present. Given the high-degree polyno-

mial scaling of conventional quantum chemical methods—

OðN3Þ for Kohn–Sham density functional theory (DFT) [78]

andOðN5Þ for coupled cluster theory [79, 80]—inclusion of

even a few water molecules, much less larger solvents such

as benzene or cyclohexane, is far beyond the current state of

the art. The cost of such computations is further exacerbated

by the need to average properties of large numbers of snap-

shots of solute–solvent configurations along dynamical tra-

jectories. While reduced- or even linear-scaling density

functional and coupled cluster methods exist [81–86], their

prefactors—and thus their algorithmic crossover points—lie

too far out in terms of system size for them to provide any

significant advantage for such computations.

One possible means of reducing the computational cost

of explicit solvation models is to apply a many-body

expansion to the (relatively) weak interactions of the solute

and solvent components. This approach involves decom-

position of the total energy, E, of the complete solute–

solvent system into N-body contributions, viz.

E ¼
XN
I

EI þ
XN
I\J

VIJ þ
XN

I\J\K

VIJK þ � � � ð1Þ

where

VIJ ¼ EIJ � EI � EJ ð2Þ
and

VIJK ¼ EIJK � VIJ � VIK � VJK � EI � EJ � EK ; ð3Þ
etc. In the above equations, EI is the energy of fragment/

monomer I, EIJ is the energy of the dimer composed of

fragments I and J, etc. Thus, the VIJ… represent N-body

corrections, and truncation of the expansion at a particular

term may yield a cost-effective approximation to a compu-

tation on the complete system, provided that the concomitant

loss of accuracy is sufficiently small. Such expansions have

been widely used in quantum chemistry for decades, and we

particularly note numerous applications of such an approach

to water and other molecular clusters [87–92]. Often the

scheme is enhanced by embedding the cluster in an elec-

trostatic (or other simple) potential [90, 93], ormaking use of

theory and/or basis-set hierarchies that treat higher-body

terms using less expensive quantum chemical methods [91,

94]. Furthermore, while most applications of Eq. (1) have

focused on (interaction) energies, extensions to first-order

properties such as dipole moments [90] and energy gradients

[91] have also been recently reported. For the properties

investigated thus far, the many-body expansion is found to

converge rapidly, with truncation at three-body terms

yielding small errors—often a fraction of a percent—relative

to the much more expensive computation performed on the

aggregate system [90, 91].

The goal of the present work is to examine the con-

vergence of the many-body expansion for higher-order

solute properties such as frequency-dependent dipole po-

larizabilities and optical rotations. As test cases, we have

chosen several small chiral compounds whose chiroptical

response has been well studied, both in vapor and in con-

densed phases. However, our purpose here is not to

reproduce experimental measurements, but instead to

determine if truncation of Eq. (1) is still effective for

properties that are much more sensitive to the quality of the

wave function than are energies or first derivatives.

2 Computational details

The molecular dynamics program Gromacs [95] was used

to place each of the four test solutes—(S)-methyloxirane,

(S)-methylthiirane, (S)-2-chloropropionitrile, and (M)-

dimethylallene—in a fixed configuration of water mole-

cules. From these snapshots, only those solvent molecules

lying completely within a sphere of radius of 5.5 Å from the

solute’s geometric center were retained, yielding clusters of

six or seven water molecules surrounding the solute. (See

the supporting information for coordinates of each cluster.)

For each test case, interaction energies, dipole moments,

dipole polarizabilities, and specific optical rotations were

computed using the many-body expansion of Eq. (1).

The specific rotation of a chiral compound may be com-

puted using the Rosenfeld optical activity tensor [1, 96],

G0ðxÞ ¼ � 2x
�h

X
j6¼0

Imðhw0jljwjihwjjmjw0iÞ
x2

j0 � x2
; ð4Þ

where l and m are the electric and magnetic dipole oper-

ators, respectively, and x is the frequency of plane-polar-

ized light. The summation in Eq. (4) runs over the excited

electronic (unperturbed) wave functions, wj, each

Theor Chem Acc (2014) 133:1449

123 Reprinted from the journal298



associated with an excitation frequency, xj0. The Rosen-

feld tensor was computed at four wavelengths—355, 436,

589, and 633 nm—using time-dependent density func-

tional theory (TD-DFT) with the B3LYP [97, 98] func-

tional in Gaussian 09 [99]. Gauge-including atomic orbitals

(GIAOs) [100, 101] were employed with the length rep-

resentation of the electric dipole operator to ensure origin

independence of the computed rotations. All computations

were performed with the aug-cc-pVDZ basis set of Dun-

ning and co-workers based on previous studies of its effi-

cacy, especially for DFT [56, 59].

The specific rotation is related to the trace of the G0

tensor [4],

½a�x ¼ 72:0� 106
� �

�h2NAx

c2m2
eM

� 1

3
TrðG0Þ

� �
ð5Þ

where G0 and x are given in atomic units, NA is Avoga-

dro’s number, c is the speed of light (m/s), me is the

electron rest mass (kg), andM is the molecular mass (amu).

In order to obtain the specific rotation of the solute within

the solvent cluster, the many-body expansion of Eq. (1)

was used to obtain the G0 tensor for the complete solute–

solvent system at a selected truncation level. The coordi-

nate system of the full molecular cluster was held fixed for

all fragment computations to ensure that the separate ten-

sors could be combined. The final specific rotation was

obtained from this composite G0 tensor, with the mass

M taken to be only that of the solute.

In order to automate use of the many-body expansion of

Eq. (1), a local version of the PSI4 [102] program was

modified to generate separate calculations automatically

for all required fragment combinations based on a master

input file containing the coordinates of the complete sol-

vent–solute system. The individual fragment computations

can then be carried out independently and in parallel

fashion. The Python front end of PSI4 was modified to

monitor the status of these automatically generated jobs,

compiling the results as the various tasks complete. When

all data required for a particular truncation level have been

collected, the corrections are automatically computed by

Python functions tied into the PSI4 driver. Furthermore,

these functions are completely general, enabling easy

extension to other properties of interest or higher levels of

theory or approximation.

3 Results and discussion

3.1 (S)-2-Chloropropionitrile

The interaction energy of (S)-2-chloropropionitrile

(Table 1) with seven water molecules in a configuration

extracted from a molecular dynamics simulation is well

represented by the truncated many-body expansion of

Eq. (1). Limiting the expansion to only two-body terms

yields an error of nearly 12 % as compared to a compu-

tation on the full cluster. However, extension to three-body

contributions reduces the error to ca. 1 %, and four-body

terms are accurate to 0.10 %, comparable to the conver-

gence observed for water clusters by Tschumper [103].

For dipole moments, the convergence of the many-body

expansion is somewhat faster, with two-body truncation

yielding percent errors of less than 3 % relative to the full

cluster. Three-body truncation of the dipole moment is

accurate to within 0.11 %, and higher-order terms are

essentially negligible. These results for dipole moments are

consistent with trends observed by Truhlar et al. [90] for

dipole moments of chloride or hydrogen fluoride in aque-

ous solution, as well as for pure hydrogen fluoride clusters.

For solvated chloride, for example, they observed errors of

under 3 % at the two-body truncation (referred to as pair-

wise additive in Ref. [90]) without employing electrostatic

embedding.

The convergence of the expansion for frequency-

dependent polarizabilities (evaluated at 633 nm) starts

even better than interaction energies and dipole moments,

with a simple sum of monomer polarizabilities giving an

error of only 2.5 %. However, extension of the sum to

pairwise contributions actually increases the error slightly

to ca. 3 %. While three-body components quickly reduce

the error to under 0.5 %, subsequent corrections are

somewhat larger than observed for interaction energies and

dipole moments.

Experimental and computational studies of the chirop-

tical properties of (S)-2-chloropropionitrile have been

reported before by Wiberg et al. [50] and by Kowalczyk

et al. [57]. The latter reported modest basis-set dependence

of both DFT (B3LYP) and coupled cluster methods. The

specific rotation of the (S)-2-chloropropionitrile plus water

cluster is found to be significantly larger and of opposite

sign than that of the isolated solute molecule (?156.4 vs.

Table 1 Absolute percent errors for (S)-2-chloropropionitrile in a

cluster of water molecules relative to the full eight-body calculation

N-body

truncation

Interaction

energy

Dipole

moment

Polarizability

(633 nm)

Specific rotation

(633 nm)

1 – 8.46 2.47 106.66

2 11.75 2.55 2.90 26.91

3 1.06 0.11 0.34 13.05

4 0.10 0.01 0.41 13.27

5 0.15 0.01 0.30 4.18

6 0.07 0.01 0.06 1.88

7 0.02 0.00 0.01 0.80
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-12.3 deg dm-1 (g/mL)-1 at 633 nm; see Ref. [57]).

Although the cluster is not energetically optimum, the large

perturbation introduced by the solvent cage is additional

evidence of the importance of molecule-specific interac-

tions on this property.

Unfortunately, convergence of the specific rotation of

the solvated chloropropionitrile with many-body contribu-

tion (Table 2) is substantially slower than observed for the

other properties. Employing solely monomers yields the

incorrect sign of the rotation (e.g., -10.4 vs.

?156.4 deg dm-1 (g/mL)-1 at 633 nm). Incorporation of

dimers in the expansion produces a qualitatively correct

specific rotation, but with a quantitative error of 27–33 %

for the wavelengths considered here. Extension to trimers

cuts this error roughly in half, with the computed rotations

still smaller in magnitude than those obtained for the full

cluster. However, inclusion of four-body terms overshoots

the correct value yielding the same percent error of

approximately 13 %. Only when five-body terms are

employed does the error finally decrease to under 5 % for

the specific rotation and then to under 2 % at the six-body

truncation.

3.2 (S)-Methyloxirane

The many-body expansion converges for the interaction

energy of (S)-methyloxirane (Table 3) with a surrounding

cluster of water molecules slightly faster than for (S)-2-

chloropropionitrile, with the pairwise truncation of Eq. (1)

giving an error of less than 7 %, as shown in Table 3. The

errors are slightly oscillatory for (S)-methyloxirane, how-

ever, with that arising from the four-body expansion

(0.14 %) slightly higher than from the three-body compo-

nents (0.09 %). Nevertheless, the errors beyond trimers are

negligible for the interaction energy.

The dipole moment of the (S)-methyloxirane plus water

cluster requires dimers to reproduce that of the full cluster

to within 2 %, and, unlike the interaction energy, the errors

decay smoothly with the many-body expansion. In addi-

tion, just as for (S)-2-chloropropionitrile, the 633-nm

dipole polarizability of (S)-methyloxirane converges more

slowly than either the dipole moment or interaction energy

expansions, and it exhibits an oscillatory pattern similar to

that observed for the interaction energy.

(S)-methyloxirane has long served as a challenging test

case for quantum chemical models of optical activity [52–

54, 76, 77, 104]. Its vapor-phase specific rotation is small

and bisignate (?7.49 ± 0.30 deg dm-1 (g/mL)-1 at

355 nm and -8.39 ± 0.20 deg dm-1 (g/mL)-1 at 633 nm;

see Ref. 49) and thus exceedingly sensitive not only to the

choice of theoretical method and basis set, but also to the

inclusion of molecular vibrational corrections, which were

found to be necessary to reproduce experimental results. In

addition, the optical activity of (S)-methyloxirane exhibits

strong solvent dependence, such that even the sign of its

liquid-phase specific rotation varies with the choice of

solvent [105].

Like its (S)-2-chloropropionitrile counterpart, the spe-

cific rotation of (S)-methyloxirane contained within a

cluster of seven water molecules (270.7 deg dm-1 (g/

mL)-1 at 633 nm) is larger than that of the isolated mol-

ecule. Furthermore, the rotation is monosignate (positive)

at all wavelengths down to 355 nm, unlike the gas-phase

property. The specific rotation of (S)-methyloxirane con-

verges much more slowly in the many-body expansion

(Table 4) than the other properties considered here, though

the convergence is slightly better relative to (S)-2-chloro-

propionitrile. Monomer, dimer, and trimer truncations

approach the full value from below with the last yielding a

fortuitously small error (as small as 0.08 % at 589 nm).

However, like (S)-2-chloropropionitrile, the series is not

converged at this point: the four-body truncation over-

shoots and the error increases to 5–8 %, depending on the

wavelength. Expansion to six-body terms is necessary to

converge the error relative to the full cluster down to

around 1 %.

Table 2 Specific rotations [deg dm-1 (g/mL)-1] and absolute percent errors (APE) relative to the full eight-body calculation for (S)-2-

chloropropionitrile in water

N-body truncation 355 nm 436 nm 589 nm 633 nm

[a]x APE (a)x APE (a)x APE (a)x APE

1 -52.4 109.23 -27.5 107.88 -12.4 106.81 -10.4 106.66

2 380.6 32.95 246.2 29.35 132.4 27.22 114.3 26.91

3 488.6 13.92 302.2 13.29 158.0 13.19 136.0 13.05

4 642.8 13.24 394.4 13.15 206.2 13.31 177.1 13.27

5 547.4 3.55 336.1 3.58 174.8 3.96 149.9 4.18

6 577.2 1.70 355.1 1.88 184.5 1.41 159.3 1.88

7 572.2 0.81 351.4 0.82 183.7 0.95 157.6 0.80

8 567.6 – 348.5 – 182.0 – 156.4 –
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3.3 (M)-Dimethylallene

The convergence of the many-body expansion for the

interaction energy, dipole moment, and dipole polariz-

ability of (M)-dimethylallene in a cluster of water mole-

cules (Figs. 1, 2; Table 5) is very similar to that observed

for (S)-2-chloropropionitrile and (S)-methyloxirane.

Indeed, for all three properties, the series converges

slightly faster, and the three-body truncation already pro-

vides errors of less than 1% as compared to the full cluster.

The series oscillates only slightly for the interaction energy

and polarizability with a slight increase in the error

between three- and four-body contributions, but the errors

remain small enough to be negligible.

(M)-Dimethylallene is unique among the chiral mole-

cules considered here in that it exhibits a stereogenic axis

rather than a stereogenic center. Its specific rotation was

the subject of a detailed investigation in 2008 by Wiberg

et al. [51] who reported a surprisingly large difference

between its measured values in the neat liquid and vapor.

At long wavelengths (633 and 589 nm), the specific

rotation of the isolated molecule (-108.4 and

-125.1 deg dm-1 (g/mL)-1; see Ref. [51]) is approxi-

mately the same as that of the solute plus water snapshot

extracted from the dynamical simulation. For the shorter

wavelengths, however, the rotation is much larger for the

cluster, suggesting that the lowest excited state shifts to

lower energy due to the interaction with the nearby water

molecules.

The specific rotation of (M)-dimethylallene, on the other

hand, converges more slowly than either (S)-2-chloropro-

pionitrile or (S)-methyloxirane, though the qualitative

behavior is essentially the same (Table 6). At long wave-

lengths, the specific rotation of the cluster is approached

from below (i.e., from more negative values), with

increasing many-body truncation, and the four-body

expansion overshoots as before. The behavior is somewhat

different at shorter wavelengths, however, with the many-

body expansion approaching the full value from above and

exhibiting greater oscillation. This is a result of the fact that

the Rosenfeld tensor diverges in the vicinity of a reso-

nance, and the lowest excitation energy is clearly also

sensitive to the truncation of the series. In the case of (M)-

dimethylallene, errors as large as 20 % (corresponding to

-21 deg dm-1 (g/mL)-1 at 633 nm) remain even at the

five-body truncation level.

3.4 (S)-Methylthiirane

The many-body expansion for the interaction energy,

dipole moment, and dipole polarizability of (S)-methyl-

thiirane in a cluster of six water molecules (Table 7)

converges more smoothly than for (S)-methyloxirane and

(M)-dimethylallene, with no oscillation apparent with

increasing truncation level. The specific rotation of

(S)-methylthiirane plus water, on the other hand, is much

more difficult to model accurately. Vapor-phase specific

rotations were measured in 2005 by Wilson et al. [49] who

reported ?36.5 ± 1.7 deg dm-1 (g/mL)-1 at 633 nm and

?64.7 ± 2.3 deg dm-1 (g/mL)-1 at 355 nm for the

(R) enantiomer. Crawford et al. [61] reported DFT and

coupled cluster specific rotations as well as electronic

Table 3 Absolute percent errors for (S)-methyloxirane in a cluster of

water molecules relative to the full eight-body calculation

N-body

truncation

Interaction

energy

Dipole

moment

Polarizability

(633 nm)

Specific rotation

(633 nm)

1 – 12.34 2.06 69.88

2 6.57 1.80 2.94 19.35

3 0.09 0.22 0.24 0.36

4 0.14 0.09 0.60 7.52

5 0.07 0.04 0.52 3.81

6 0.05 0.01 0.18 1.12

7 0.01 0.00 0.00 0.00

Table 4 Specific rotations (deg dm-1 (g/mL)-1) and absolute percent errors (APE) relative to the full eight-body calculation for (S)-methy-

loxirane in water

N-body truncation 355 nm 436 nm 589 nm 633 nm

(a)x APE (a)x APE (a)x APE (a)x APE

1 408.3 65.08 215.0 67.42 97.1 69.55 81.5 69.88

2 928.0 20.63 528.6 19.89 256.9 19.44 218.3 19.35

3 1,185.3 1.38 666.6 1.02 318.6 0.08 269.7 0.36

4 1,235.2 5.65 696.7 5.59 340.0 6.65 291.0 7.52

5 1,156.0 1.12 647.4 1.89 311.0 2.47 260.4 3.81

6 1,163.6 0.48 662.5 0.40 318.4 0.14 273.7 1.12

7 1,174.7 0.48 661.0 0.18 320.4 0.48 270.7 0.00

8 1,169.1 – 659.8 – 318.8 – 270.7 –
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circular dichroism spectra for (S)-methylthiirane in 2007

and found that vibrational corrections were necessary to

produce reasonable comparison with experiment in the

long wavelength regime, but the same corrections distorted

the comparison for shorter wavelengths.

The specific rotation of (S)-methylthiirane in the cluster of

six water molecules modeled here is bisignate, with a strong

positive Cotton pole as the wavelength of the polarized field

becomes shorter. The specific rotation of the isolated mole-

cule, [61] however, is monosignate according to both exper-

iment and coupled cluster theory, though the B3LYP

functional finds a bisignate dispersion due to its underesti-

mation of the energy of lowest excited state. The convergence

of themany-body expansion of the specific rotation of the (S)-

methylthiirane plus water cluster is more erratic than that of

the other species investigated here. At 633 nm, for example,

the rotation shifts from-42.5 deg dm-1 (g/mL)-1 using only

monomers to ?83.9 deg dm-1 (g/mL)-1 using dimers, and

then back to -23.1 deg dm-1 (g/mL)-1 with trimers. At

355 nm, on the other hand, the variation is even more pro-

nounced (though without concomitant sign changes), with a

one-body truncation of?74.0 deg dm-1 (g/mL)-1, two-body

truncation of ?665.2 deg dm-1 (g/mL)-1, three-body

?1.1 deg dm-1 (g/mL)-1, and four-body ?138.4 deg dm-1

(g/mL)-1, before the series finally begins to approach the

untruncated result. The relatively small total rotations at long

wavelengths produce very large corresponding percent

errors—more than 2,000 % for the pairwise expansion at

589 nm, for example.

4 Conclusions

When describing the interactions between solute and sol-

vent, the venerable many-body expansion converges rapidly

and smoothly for energies, dipole moments, and dipole

polarizabilities—that is, properties that are strongly local-

ized and/or easily partitioned into local contributions. On

the other hand, for properties such as optical rotations,

whose values (both magnitude and sign) depend strongly on

more distant interactions as well as basis-set effects, Eq. (1)

converges much more slowly. We have demonstrated that

for four paradigmatic chiral compounds—(S)-methyloxi-

rane, (S)-methylthiirane, (S)-2-chloropropionitrile, and
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Fig. 1 Absolute percent error in the interaction energy, dipole

moment, polarizability (355 nm), and optical rotation (355 nm) for

(M)-dimethylallene solvated by seven water molecules as a function

of N-body approximation level. The monomer approximation is

excluded due to its large error

Table 5 Absolute percent errors for (M)-dimethylallene in a cluster

of water molecules relative to the full eight-body calculation

N-body

truncation

Interaction

energy

Dipole

moment

Polarizability

(355 nm)

Specific

rotation

(355 nm)

1 – 11.27 2.68 75.66

2 4.97 0.66 2.13 0.12

3 0.43 0.01 0.11 12.99

4 0.03 0.04 0.19 2.33

5 0.06 0.04 0.17 7.78

6 0.04 0.01 0.03 0.42

7 0.01 0.00 0.02 0.15

Fig. 2 (M)-Dimethylallene solvated by seven water molecules within

a 5.5 Å radius of the solute’s geometric center. Coordinates of the

structure are found in the supporting information

Theor Chem Acc (2014) 133:1449

123 Reprinted from the journal302



(M)-dimethylallene—each contained in a small cluster of

water molecules, the expansion is highly oscillatory and

erratically convergent. Admittedly, the appearance of (rel-

atively) strong hydrogen bonding interactions between the

solute and solvent (and between solvent molecules them-

selves) makes the choice of water a worst-case scenario, and

Eq. (1) may exhibit better behavior for more weakly inter-

acting solvents such as cyclohexane. However, even in such

cases, the transfer of chirality from the solute to the solvent

(e.g., through the chiral hole analyzed by Beratan et al. [77])

yields widely disparate optical rotations among the various

N-body fragments. As a result, the many-body expansion

will still be exceedingly sensitive to truncation.

It may be possible to relieve at least some of the

computational burden of explicit solvation models

through, e.g., multi-theory QM/MM schemes [91, 93,

106] or distance-based criteria to eliminate minor con-

tributions to the many-body expansion [107]. However,

the non-locality of chiroptical properties on which such

schemes rely is still poorly understood. This work

suggests that the ‘‘chiral imprint’’ onto the solvent

extends sufficiently far out from the solute as to require

models of condensed phase dynamics that are much

more robust—and potentially much more costly—than

previously hoped. This is particularly discouraging

considering the large number of molecular dynamics

snapshots that must be averaged in the case of optical

rotation to achieve a balanced representation of the

opposing sign contributions from different molecular

configurations [108].

Table 6 Specific rotations [deg dm-1 (g/mL)-1] and absolute percent errors (APE) relative to the full eight-body calculation for (M)-dim-

ethylallene in water

N-body truncation 355 nm 436 nm 589 nm 633 nm

(a)x APE (a)x APE (a)x APE (a)x APE

1 -190.5 75.66 -253.6 25.53 -163.9 23.65 -143.8 32.16

2 -783.4 0.12 -422.7 24.15 -187.6 41.56 -157.0 44.33

3 -884.1 12.99 -394.8 15.96 -156.6 18.17 -129.6 19.15

4 -800.7 2.33 -323.2 5.09 -123.7 6.67 -99.9 8.16

5 -843.4 7.78 -392.6 15.31 -155.5 17.28 -129.8 19.27

6 -785.7 0.42 -334.2 1.86 -133.4 0.67 -108.9 0.13

7 -781.4 0.15 -341.6 0.32 -131.9 0.52 -108.2 0.55

8 -782.5 – -340.5 – -132.5 – -108.8 –

Table 7 Absolute percent

errors for (S) in a cluster of

water molecules relative to the

full seven-body calculation

N-body

truncation

Interaction

energy

Dipole

moment

Polarizability

(589 nm)

Specific rotation

(589 nm)

1 – 11.51 3.37 797.96

2 8.31 1.68 1.98 2,028.61

3 0.37 0.08 0.36 393.10

4 0.10 0.01 0.07 119.60

5 0.03 0.00 0.02 20.76

6 0.01 0.00 0.01 26.76

Table 8 Specific rotations (deg dm-1 (g/mL)-1) and absolute percent errors (APE) relative to the full seven-body calculation for (S) in water

N-body truncation 355 nm 436 nm 589 nm 633 nm

(a)x APE (a)x APE (a)x APE (a)x APE

1 74.0 41.23 -50.7 464.48 -47.3 797.96 -42.5 647.85

2 665.2 428.46 262.0 1,785.14 101.5 2,028.61 83.9 1,574.83

3 1.1 99.12 -35.7 356.77 -26.0 393.10 -23.1 306.56

4 138.4 9.93 7.5 45.71 -11.6 119.60 -10.9 91.30

5 114.4 9.10 14.2 1.83 -4.2 20.76 -4.8 15.05

6 125.5 0.30 12.4 11.11 -6.7 26.76 -6.7 17.24

7 125.9 – 13.9 – -5.3 – -5.7 –
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      1  Introduction 

 Theoretical predictions of ideal-gas molecular energet-
ics are commonplace. The most popular theory in quan-
titative work is coupled-cluster theory with a perturbative 
correction,  CCSD (T) [ 1 ,  2 ]. This is applied together with 
a large one-electron basis set, or a series of sets that can 
be extrapolated to the limit of a complete basis set (CBS). 
This practice has been summarized by Dunning [ 3 ],  Peter-
son  [ 4 ], Feller [ 5 ], and Dixon [ 6 ], to name a few. More 
recently,  “ explicitly correlated ”  treatments of electron cor-
relation [ 7 ] have become easy to use. These new methods 
perform markedly better than conventional calculations 
for basis sets of similar size, reaching the CBS limit faster 
than traditional methods [ 8 ,  9 ]. Following the model of 
Dunning ’ s correlation-consistent basis sets, new basis sets 
have been developed specifi cally for explicitly correlated 
calculations [ 8 ]. 

 In some cases,  CCSD (T) predictions are noticeably less 
accurate than usual. Examples include F 2 , O 3,  and transition 
metal compounds [ 10 ,  11 ]. Often, this is because Hartree –
  Fock  ( HF ) theory produces such a poor description of the 
electronic structure that  CCSD (T), which is built atop the 
 HF   wavefunction , is unable to compensate. To detect this 
problem, many  wavefunction  diagnostics have been pro-
posed. Examples include the  T  1  and  D  1  diagnostics by Lee 
and coworkers [ 12 ,  13 ]; the B1,  GB 1, ROD, and  M  diag-
nostics by  Truhlar  and co-workers [ 14  –  16 ]; %TAE[(T)] 
by Martin and co-workers [ 17 ]; and the natural orbital 
occupation number diagnostic developed by Gordon and 
co-workers [ 18 ]. Recently, a diagnostic for hybrid density 
functional theory has been proposed by  Fogueri  et al. [ 19 ] 
based upon the dependence of atomization energies upon 
the mixing coeffi cient. The informatics analysis derived 
from density matrix  renormalization  group methods also 
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can be used as a diagnostic [ 20 ]. Likewise, the  wavefunc-
tion  variance is promising, albeit expensive [ 21 ]. 

  Wavefunction  diagnostics are increasingly popular. For 
example, the paper presenting the  T  1  diagnostic has accu-
mulated about 1,000 citations [ 13 ]. This refl ects increasing 
demand for information about the reliability of ab  initio  
predictions of molecular properties. Despite the popular-
ity of diagnostics, their interpretation is somewhat vague. 
The most common current interpretation is that triggering 
a diagnostic indicates that there  may  be an unusual prob-
lem with the associated prediction [ 11  –  13 ]. Of course, 
this statement is meaningful only if the  failure  to trigger 
the diagnostic provides a clear signal that the prediction is 
reliable. In other words, to adopt the terminology used in 
medical research, a diagnostic test is valuable to the extent 
that it produces no false negatives. This is a useful interpre-
tation for many applications, where it can be misleading or 
costly if a bad value is taken to be reliable. 

  Wavefunction  diagnostics often disagree; one diagnostic 
indicates a possible problem while another does not. This 
has been shown recently by  Jiang  et al. [ 22 ]. Additional 
examples of confl icting diagnostics can be found through-
out the literature [ 19 ,  23 ,  24 ]. In some cases, pairs of diag-
nostics are believed to complement each other and to work 
best when used together [ 12 ,  25 ]. However, it is unclear 
 how  diagnostics should be combined. 

 In this paper, we seek a quantitative way of using  wave-
function  diagnostics to estimate uncertainties associated 
with computed energetics. We compute the atomization 
energies of molecules in which signifi cant  multireference  
character has been observed. The resulting errors, taken as 
the deviations from precise experimental values, are com-
pared with various  wavefunction  diagnostics. Note that this 
is different from many previous studies of diagnostics, in 
which the focus is on detailed components of the molecular 
energy and not on agreement with experiments. 

    2   Computational strategy 

   2.1   Choice of  wavefunction  diagnostics 

 Eight diagnostics are examined in this study. Four are tra-
ditional or formally published diagnostics: 1  −   c   0  

2   (where 
 c  0  is the largest confi guration expansion coeffi cient in a 
 CASSCF   wavefunction ), the  T  1  and  D  1  diagnostics from 
single-reference coupled-cluster calculations [ 12 ,  13 ], and 
%TAE[(T)] (the fractional difference between atomization 
energies from corresponding  CCSD (T) and  CCSD  calcula-
tions) [ 17 ]. For conciseness, henceforth we shall denote the 
last of these as %(T). The  T  1 ,  D  1 , and %(T) diagnostics are 
particularly interesting because they are obtained with no 
additional effort or computational expense. 

 Non-dynamical correlation is often described as a con-
sequence of near-degeneracy of orbitals [ 26 ]. This suggests 
that the HOMO –  LUMO  gap, labeled here as H – L gap, 
could be a useful diagnostic for estimating uncertainty on 
computed thermochemistry. Alternatively, the vertical exci-
tation energy to the lowest excited state, here labeled  E   vert  , 
might be useful. 

  HF  is a poor description of the  wavefunction  whenever a 
multi-confi guration calculation yields natural orbital occu-
pation numbers that are substantially different from the  HF  
values. The size of this difference could be another diag-
nostic. Here, we use the natural orbital occupation numbers 
from a  multireference  confi guration interaction ( MRCI ) 
calculation (details are in the following section). We defi ne 
the maximum occupation number defect ( MOND ) as the 
largest difference between the  MRCI  and  RHF  occupation 
numbers. A small  MOND  indicates that  HF  gives a good 
description of the  wavefunction . A large  MOND  indicates 
that the  wavefunction  has signifi cant  multireference  char-
acter. This is similar to using natural orbital occupation 
numbers from other theoretical methods. For example,  Bak  
et al. [ 27 ] used a  CCSD (T) density matrix in their study of 
closed-shell thermochemistry. 

 The last diagnostic we consider,  Δ  E   exc  , is one in which 
we attempt to isolate the effect of non-dynamical correla-
tion upon the molecular energy. It is described in the fol-
lowing sub-section. It cannot be a  practical  diagnostic 
because it requires expensive  multireference  calculations. 

 Associated with each diagnostic is a threshold that 
divides calculations into two categories: reliable and unre-
liable. For established diagnostics, we use the following 
thresholds:  T  1   <  0.02 [ 13 ],  D  1   <  0.06 [ 11 ], %(T)  <  10 % 
[ 11 ], and 1  −   c   0  

2    <  0.10 [ 11 ]. Based on the linear correlation 
between 1  −   c   0  

2   and  MOND  (see Online Resource 1, Fig-
ure SI-1), we choose a threshold of  MOND   <  0.12. There 
are no established thresholds for  E   vert   or the H – L gap; we 
choose  E   vert    >  4.50 eV and H – L gap  >  0.58 hartree based 
upon the results presented in this paper. When combining 
two diagnostics, we fi rst divide each value by its corre-
sponding threshold. The resulting  unitless , normalized val-
ues can then be combined mathematically. 

    2.2    Δ  E   exc   as an estimate of  multireference  effects 

 In the complete active space approach, with  n  active elec-
trons distributed throughout  m  active orbitals, a common 
notation is  CASSCF ( n ,  m ), where normally  m   ≤   n   <  2 m . 
(The choice of active space can be challenging; good dis-
cussions have been published by Schmidt and Gordon [ 28 ] 
and by  Veryazov  et al. [ 29 ].) When  m   <   n   <  2 m  − 1, states 
with higher spin have fewer active orbitals that are nomi-
nally vacant. Consequently, fewer low-spin coupled open-
shell confi gurations are possible and one would expect 
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 HF  to be a better description than for low-spin states [ 30 ]. 
High-spin states are generally better described by  HF  
theory because more of the electron correlation is of the 
exchange type, which is included in  HF  theory [ 31 ]. This 
principle has been applied effectively by  Krylov  in devel-
oping spin-fl ip methods [ 32 ]. If the ground state is trouble-
some, a simpler excited state can be used for the  CCSD (T) 
calculations. For example, experimental singlet – triplet 
splittings can be used to correct computed ionization ener-
gies [ 33 ]. Similarly,  Hern á ndez - Lamoneda  et al. [ 34 ] used 
this type of correction for low-spin states of (O 2 ) 2 . 

 Consider a low-spin ground state with signifi cant non-
dynamical correlation and a high-spin excited state with 
negligible non-dynamical correlation. If a single-reference 
method cannot adequately account for non-dynamical 
effects, then it should do well for the excited state but place 
the ground state too high in energy. The excitation energy 
to the high-spin state ( E   exc  ) will be smaller than as calcu-
lated using a comparable  multireference  method. We pro-
pose that this difference in excitation energies ( Δ  E   exc  ) can 
be used as a proxy for  multireference  effects on thermo-
chemistry, as illustrated in Fig.  1 . Expressed as an equation,
     

where  E   exc   is the vibrationless, vertical excitation energy. 
 Δ  E   exc    >  0 suggests that non-dynamical correlation predom-
inates in the ground state (Fig.  1 ), and conversely  Δ  E   exc    <  0 
suggests that dynamical correlation predominates in the 
ground state. It is the former situation that may be problem-
atic for single-reference calculations.        

 We have chosen  CCSD (T*)-F12a/ VTZ -F12 as the sin-
gle-reference method and internally contracted  MRCISD -
F12+Q/ VTZ -F12 ( multireference  confi guration inter-
action [ 35 ] with Davidson correction [ 36 ,  37 ]) as the 

(1)�Eexc = Eexc(multireference) − Eexc(single-reference)

 multireference  method. Although we feel that this is the 
best choice available to us, it is imperfect because these 
methods differ by more than the number of reference con-
fi gurations.  CCSD (T) includes single and double excita-
tions, some triples, a perturbative estimate for other triples, 
some quadruples, and some higher-order excitations [ 1 ,  38 ]. 
Single-reference  CISD +Q includes only singles, doubles, 
and an estimate for some quadruples [ 36 ]. Thus,  CCSD (T) 
includes more dynamical correlation than  CISD +Q. Com-
pared with  CISD +Q,  multireference   MRCISD +Q adds 
non-dynamical correlation and additional dynamical corre-
lation, but may still be expected to include less dynamical 
correlation than  CCSD (T). 

 There is no guarantee that all high-spin excited states 
will automatically have less  multireference  character than 
the ground state. We consider the upper state acceptable if 
it has a smaller  MOND  than the ground state. 

    2.3   Choice of calculations for energetics 

 Our intention here is to investigate the usefulness of diag-
nostics for predicting the accuracy of moderately high-
level atomization energies, as compared with experimen-
tal benchmarks. Atomization reactions break all chemical 
bonds and the associated electron pairs and are challenging 
to predict accurately. Thus, atomization energies are a strin-
gent test of theoretical methods. The energies of  isodesmic  
or  isogyric  reactions, which benefi t more from cancelation 
of errors [ 39 ], are easier to compute accurately. Nonethe-
less, atomization energies remain popular for ab  initio  ther-
mochemistry, presumably because of their convenience. 
Our computational methods are described in the following 
section. 

 In the present study, we use deviations from experi-
mental atomization energies to measure the practical value 
of  wavefunction  diagnostics. This requires experimental 
atomization energies that are suffi ciently precise for the 
deviations to be meaningful. For experimental atomization 
energies, we required relative uncertainties of  ≤ 0.1 %. The 
average fractional uncertainty for the molecules we chose 
was 0.03 %. In absolute terms, the average uncertainty was 
0.2 kJ/mol and the maximum was 1.4 kJ/mol. The scar-
city of high-precision experimental values was a severe 
constraint. 

     3   Computational details 

 Single-reference calculations were frozen-core  RHF -
 UCCSD (T*)-F12a/ VTZ -F12 [ 8 ,  40 ]. The  RHF - UCCSD (T) 
method uses a restricted  HF  reference to perform an unre-
stricted coupled-cluster calculation [ 41 ,  42 ]. This was 
selected based upon observations by  Knizia  et al. [ 40 ] and 

 Fig. 1        Δ  E   exc   is the difference between  multireference  and single-ref-
erence values for the vertical excitation energy from the ground state 
to a higher-spin excited state. This is used as a proxy for  multirefer-
ence  effects  
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by  Bross  et al. [ 43 ], which lead us to expect good per-
formance partly through fortuitous cancelation of small 
errors. Scaling factors for (T*) were taken from  MP 2/ MP 2-
F12 differences, following the software defaults, and 
are slightly different for each system. Because the F12 
approach is so effective, these results are expected to be 
close to the complete basis limit [ 44 ]. The core-valence 
contribution to the atomization energy was estimated at the 
 RHF - UCCSD (T*)-F12a/cc- pCVTZ -F12 level and basis set 
[ 40 ,  45 ] as the difference between frozen- and active-core 
energies. 

  Multireference  calculations were frozen-core, internally 
contracted  MRCI -F12+Q/ VTZ -F12 [ 36 ,  37 ]. All  MRCI  
calculations are from  CASSCF  references; active spaces 
are specifi ed in Online Resource 1, Table SI-2. 

 Our calculations include no relativistic effects. One con-
sequence is that the energies correspond to averages over 
the spin – orbit levels of the ground term. Corrections are 
needed for many atoms and molecules to compensate for 
this over-estimation of their energies. The spin – orbit cor-
rections used here, from section  II .C.2 of the  NIST  Com-
putational Chemistry Comparison and Benchmark Data-
base [ 10 ], are (in kJ/mol): C, 0.354; O, 0.933; F, 1.611;  Cl , 
3.513; OH, 0.833; NO, 0.717;  CH , 0.167; CF, 0.461;  FO , 
1.173. 

 HOMO –  LUMO  gaps were computed using  RHF /aug-
cc- pVTZ  geometries and energies. The lowest vertical 
excitation energy,  E   vert  , was computed using TD-B3 LYP /
aug-cc- pVTZ  at the B3 LYP /aug-cc- pVTZ  geometry. 

 Calculations were performed on the 50 molecules listed 
in Table  1 . The list includes several known  “ problem cases ”  
with signifi cant  multireference  character in the ground state 
[ 11 ,  17 ,  19 ,  22 ,  46 ]. Experimental atomization energies 
were taken from the evaluated data in the Active Thermo-
chemical Tables ( ATcT ) [ 47 ].  

 All  CCSD (T*)-F12a and  MRCI -F12+Q calculations 
were performed using the  MOLPRO  2012.1 software pack-
age [ 48 ].  1   TD-B3 LYP  calculations were performed using 
Gaussian 09 [ 49 ]. 

 For notational convenience, the symbols  Σ  D  e  and  Σ  D  0  
are used to refer to equilibrium and zero-point atomization 
energies, respectively, of polyatomic molecules as well as 
diatomic molecules. 

  Diatomic molecules . The equilibrium geometry was 
computed at the  RHF - UCCSD (T*)-F12a/ VTZ -F12 level. 
Potential energy curves were computed by the same 

  1    Certain commercial materials and equipment are identifi ed in this 
paper in order to specify procedures completely. In no case does such 
identifi cation imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply that the 
material or equipment identifi ed is necessarily the best available for 
the purpose. 

method, up to 1,000 cm  − 1  above the energy minimum 
using a distance increment of 0.5 pm. Spectroscopic con-
stants (  ω    e  ,   ω    e   x   e  ,   ω    e   y   e  ,  B   e  ,   α    e  ) were computed from a fi tted 
 sextic  polynomial, as implemented in  MOLPRO  2012.1 
[ 48 ]. Vibrational zero-point energy ( ZPE ) was computed 
from the spectroscopic constants using a standard formula 
[ 50 ]. 

  Polyatomic molecules.  Geometries and harmonic vibra-
tional frequencies were computed at the  RHF - UCCSD (T*)-
F12a/ VTZ -F12 level except as noted otherwise.  ZPE  was 
estimated using the harmonic approximation (without 
empirical scaling), and applying an anharmonic correc-
tion estimated from vibrational confi guration interaction 
( VCI ) [ 51 ], up to quadruple excitations and three-mode 
couplings (3M- VCISDTQ ), at the B3 LYP /aug-cc- pVTZ  
level using the  Vosko  –  Wilk  –  Nusair   III  ( VWN 3) correlation 
functional ( “ B3 LYP 3 ”  in  MOLPRO ) [ 52 ]. For comparison 
with the  VCI  (see Online Resource 1, Table SI-3), anhar-
monic corrections were also estimated from vibrational 
self-consistent fi eld ( VSCF ) calculations [ 53 ], vibrational 
 MP 2 ( VMP 2) [ 54 ], and second-order vibrational pertur-
bation theory ( VPT 2) [ 55 ], all at B3 LYP /aug-cc- pVTZ  
(spin-restricted for  VSCF ,  VCI ,  VMP 2, spin-unrestricted 
for  VPT 2). The atomization energy at the equilibrium 
geometry ( Σ  D  e ) was computed at the  RHF - UCCSD (T*)-
F12a/ VTZ -F12 level.  VPT 2 calculations were performed in 
Gaussian 09 [ 49 ]; all other calculations were performed in 
 MOLPRO  2012.1 [ 48 ]. 

  Diffi culties and special cases.  Unusual problems were 
encountered in some of the calculations, as described 
below:

   1.      We were unable to fi nd a high-spin state with a lower 
 MOND  than the ground state for seven molecules: 
CO 2 ,  FOOF ,  CH  2 OH,  CH  3 OH, O 2 ,  ClO , H 2 . Conse-
quently, we could not calculate  Δ  E   exc  .   

  2.       MRCI  calculations failed for  HN  3 . Consequently, we 
could not calculate  Δ  E   exc   or  MOND .   

  3.      %(T) cannot be computed for H 2  because it has only 
two electrons.   

  4.       VSCF  calculations failed for  CH  2 ;  ν  2  increased from 
1,092 to 17,650 cm  − 1 .  VPT 2 did not suffer from the 
same problem, so we used  VPT 2 for the anharmonic 
correction to the  ZPE .   

  5.      For NO 3 ,  cis -HO 3 , and  trans -HO 3 , all of the anhar-
monic calculations yielded a  ZPE  greater than the 
harmonic calculation due to low frequencies changing 
drastically (see Online Resource 1 for details, pages 
56 – 58). For this reason, we chose to use only the har-
monic  ZPE  in calculating  Σ  D  0  for these three mol-
ecules.   

  6.      To reduce computational expense on the  VCI  cal-
culations for  CH  2 OH,  CH  3 OH,  ortho - benzyne , and 
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 Table 1       Computed and experimental atomization energies ( Σ  D  0 , kJ/mol), fractional error in  Σ  D  0  compared to the literature ( f ), and diagnostic 
values (HOMO –  LUMO  gap in hartree,  E   vert   in eV,  Δ  E   exc   in kJ/mol, others  unitless ) for 50 molecules  

  Molecule     Σ  D  0  
( calc ) a   

   Σ  D  0  
( ATcT ) b   

   f   ×  10 3      T  1      D  1     %(T)    1  −   c   0  
2   

( CAS )  
   MOND  
( MRCI )  

  H – L gap 
( RHF )  

   E   vert   (TD-
B3 LYP )  

   Δ  E   exc    

    Diatomics    

  H 2     433.1    432.068 c     2.5    0.006    0.009     d     0.012    0.035    0.649    9.93     d   

   CH     335.5    334.6  ±  0.1    2.8    0.009    0.016    1.1    0.046    0.087    0.432    0.47    0.6  

  HCl    429.1    427.644  ±  0.006    3.4    0.007    0.012    1.4    0.012    0.042    0.507    6.75    1.1  

  NH    328.4    327.9  ±  0.2    1.8    0.007    0.010    1.4    0.017    0.044    0.567    1.87    1.8  

   HF     566.9    565.97  ±  0.08    1.7    0.009    0.015    1.5    0.010    0.033    0.683    9.01     − 7.6  

  OH    426.4    425.62  ±  0.03    1.7    0.008    0.014    1.6    0.013    0.038    0.569    4.20    0.2  

  CO    1,073.1    1,072.03  ±  0.06    1.0    0.018    0.037    3.2    0.057    0.064    0.621    5.88     − 4.4  

  CF    546.2    545.5  ±  0.2    1.2    0.018    0.044    3.9    0.088    0.048    0.434    4.00     − 9.0  

  N 2     941.8    941.15  ±  0.05    0.7    0.014    0.028    4.2    0.072    0.079    0.711    7.25     − 2.1  

   CN     744.5    745.3  ±  0.2     − 1.0    0.053    0.149    5.9    0.107    0.097    0.592    1.13     − 1.0  

  NO    626.9    626.83  ±  0.07    0.1    0.021    0.051    6.3    0.064    0.088    0.482    5.67    1.7  

   Cl  2     239.5    239.242  ±  0.004    1.0    0.009    0.020    7.6    0.024    0.068    0.470    2.46    9.7  

  O 2     491.8    493.688 c      − 3.8    0.008    0.014    7.7    0.030    0.054    0.610    1.53     e   

   ClF     253.3    252.50  ±  0.09    3.3    0.012    0.029    8.4    0.028    0.067    0.535    2.70    2.5  

   ClO     264.7    265.35  ±  0.04     − 2.3    0.046    0.156    9.8    0.034    0.062    0.514    3.62     e   

   FO     211.6    213.8  ±  0.2     − 10.4    0.029    0.099    13.2    0.048    0.079    0.657    4.24    1.3  

  C 2     604.0    602.5  ±  0.1    2.5    0.039    0.088    13.3    0.291    0.373    0.343     − 2.27 f      − 5.7  

  F 2     153.4    154.5  ±  0.1     − 7.4    0.012    0.029    19.8    0.069    0.124    0.748    2.95     − 5.4  

    Triatomics    

   CH  2     753.1    752.5  ±  0.2    0.7    0.012    0.020    0.5    0.026    0.036    0.434    0.44     − 3.1  

  NH 2     715.2    713.7  ±  0.2    2.0    0.008    0.012    1.4    0.026    0.042    0.514    2.27    0.1  

  H 2 O    918.9    917.8  ±  0.2    1.2    0.009    0.017    1.5    0.022    0.038    0.541    6.53     − 8.0  

   HCN     1,270.1    1,268.32  ±  0.06    1.4    0.015    0.030    3.0    0.076    0.083    0.529    5.94     − 7.8  

  CO 2     1,600.3    1,598.18  ±  0.06    1.3    0.018    0.045    3.6    0.079    0.067    0.594    7.55     e   

   HOCl     658.4    656.36  ±  0.03    3.2    0.011    0.024    4.1    0.038    0.070    0.468    2.84    4.4  

   ClCN     1,171.5    1,166.5  ±  0.5    4.2    0.014    0.030    4.5    0.076    0.080    0.513    5.77     − 261  

  HO 2     694.3    694.5  ±  0.2     − 0.3    0.037    0.128    4.6    0.051    0.066    0.534    1.13    3.3  

   HNO     824.9    823.6  ±  0.1    1.7    0.016    0.043    5.0    0.078    0.105    0.447     − 0.44 f     1.4  

   HOF     624.9    624.5  ±  0.2    0.6    0.013    0.035    5.2    0.058    0.093    0.563    3.24    1.3  

  N 2 O    1,103.3    1,102.0  ±  0.1    1.2    0.020    0.046    7.1    0.097    0.096    0.563    5.24    1.9  

  NO 2     927.0    927.35  ±  0.07     − 0.4    0.025    0.065    8.7    0.095    0.113    0.559    2.94    1.0  

  OF 2     373.2    374.4  ±  0.3     − 3.2    0.016    0.041    14.8    0.092    0.098    0.662    2.87    6.8  

   FOO     537.1    544.0  ±  0.3     − 12.7    0.044    0.144    16.0    0.167    0.240    0.662    2.07    4.3  

  O 3     589.0    596.13  ±  0.04     − 12.0    0.027    0.076    17.9    0.168    0.249    0.489     − 1.43 f     6.5  

    Tetratomics    

  NH 3     1,159.5    1,157.24  ±  0.04    1.9    0.008    0.015    1.3    0.031    0.040    0.456    5.63     − 14.6  

  H 2 CO    1,498.4    1,495.6  ±  0.1    1.8    0.015    0.044    2.1    0.048    0.081    0.467    3.25     − 5.4  

   HCCH     1,627.9    1,625.9  ±  0.2    1.2    0.014    0.031    2.1    0.089    0.087    0.447    5.11     − 3.2  

   HOOH     1,056.0    1,055.21  ±  0.06    0.8    0.012    0.023    3.3    0.058    0.079    0.512    4.57    5.6  

   HN  3     1,332.8    1,329.7  ±  0.6    2.3    0.020    0.053    5.7    0.114     g     0.434    4.25     e   

   cis -HO 3     922.4 h     922  ±  1    0.0    0.043    0.157    7.6    0.118    0.131    0.558    2.37    5.4  

   trans -HO 3     923.3 h     924.4  ±  0.7     − 1.3    0.043    0.148    8.2    0.140    0.173    0.543    2.42    5.1  

   ONNO     1,254.8    1,262.0  ±  0.2     − 5.7    0.020    0.053    10.7    0.235    0.315    0.403     − 0.38 f     0.9  

  NO 3     1,129.2 h     1,131.8  ±  0.2     − 2.2    0.020    0.086    11.4    0.169    0.155    0.637    1.48     − 37  

   FOOF     609.7    610.9  ±  0.4     − 1.9    0.027    0.092    17.9    0.189    0.174    0.625    3.12     e   
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benzene, we included only two-mode couplings (the 
 “  ZPVE  ”  macro in  MOLPRO  ’ s surface generation pro-
gram).   

  7.      To further reduce computational expense on the  VCI  
calculations for  ortho - benzyne  and benzene, anhar-
monic corrections were computed using the aug-cc-
 pVDZ  basis set rather than aug-cc- pVTZ .   

  8.      TD-B3 LYP  predicts triplet electronic states lower than 
the singlet ground states of C 2 ,  HNO , O 3 , and  ONNO ; 
therefore,  E   vert   is negative for these molecules.     

    4   Results 

   4.1   Correlation of diagnostics with fractional error 
in atomization energy 

 Table  1  contains  Σ  D  0  (calculated and experimental), the 
fractional error of the calculated atomization energy com-
pared to experiment (denoted as  f , Eq.  2 ), and values of 
 wavefunction  diagnostics:  T  1 ,  D  1 , %(T), 1  −   c   0  

2  ,  MOND , 
H – L gap,  E   vert  , and  Δ  E   exc  .
      

 Our test set consists of 18 diatomic molecules, 15 tria-
tomic, 10 tetratomic, and 7 larger  polyatomics . The test 
set includes molecules traditionally considered  “ problem 
cases ”  with regard to  multireference  character, such as 
C 2 , O 3 , HO 3 , NO dimer ( ONNO ), formaldehyde  O -oxide 

(2)f ≡

(
�D0,calc − �D0,expt

)
�D0,expt

=

�D0,calc

�D0,expt
− 1

( CH  2  OO ), and  ortho - benzyne  (C 6 H 4 ) [ 18 ,  30 ,  56  –  62 ]. 
Details of the calculations for each molecule (electronic 
energies,  ZPE , spin – orbit and core-valence corrections, 
excitation energies, and ground and excited state  wavefunc-
tion  diagnostics) can be found in Online Resource 1, Table 
SI-1. 

 Figure  2  shows the correlation of the unsigned fractional 
error in the calculated atomization energy, | f |, with %(T) 
(Fig.  2 a) and  T  1  (Fig.  2 b). Correlation of all diagnostics to 
both the unsigned (| f |) and signed ( f ) errors can be found in 
Online Resource 1, Figure SI-2. Threshold values for the 
diagnostics are marked with a vertical red line.        

 As stated in Sect.  1 , a diagnostic is most useful if it pro-
duces no false negatives. Let  RMS   neg   be the  RMS  value of 
 f  for all molecules with negative diagnostics. We defi ne a 
false negative as a calculation with negative diagnostic and 
| f |  >  2  ×   RMS   neg  . Table  2  contains the number of false neg-
atives and the fraction of negatives that are false for each 
diagnostic for our test set of 50 molecules. All of the diag-
nostics contain only one or two false negatives (2 – 8 % of 
the negatives are false).  

 An even more useful diagnostic would not only be free 
of false negatives, but would also only be triggered when 
there is a problem with the calculated atomization energy; 
in other words, it would be free of false positives. Table  2  
contains the number of false positives and the fraction of 
positives that are false for each diagnostic for our test set 
of 50 molecules. We defi ne a false positive as a calculation 
with a positive diagnostic and | f |  <  2  ×   RMS   neg  . Here, %(T) 
performs best, with only four false positives (44 % of the 
positives are false).  MOND  is second best (7 false positives, 

  a     CCSD (T*)-F12a/ VTZ -F12, with core-valence and spin – orbit corrections, anharmonic  ZPE  

  b    Ref. [ 47 ] 

  c    Uncertainty on  Σ  D  0  ( ATcT ) for H 2  and O 2  reported as  <  ± 0.0005 kJ/mol 

  d    Since  CCSD  is equivalent to  FCI  for H 2 , %(T) and  Δ  E   exc   were not calculated 

  e    Suitable high-spin states were not found for O 2 ,  ClO , CO 2 ,  HN  3 ,  FOOF ,  CH  3 OH, or  CH  2 OH 

  f    TD-B3 LYP  calculation predicted states lower in energy than the ground state for C 2 ,  HNO , O 3 , and  ONNO  

  g     MRCI  calculations failed for  HN  3 , therefore,  MOND  was not calculated 

  h    Harmonic  ZPE  used to calculate  Σ  D  0  for  cis -HO 3 ,  trans -HO 3 , and NO 3  

Table 1    continued

  Molecule     Σ  D  0  
( calc ) a   

   Σ  D  0  
( ATcT ) b   

   f   ×  10 3      T  1      D  1     %(T)    1  −   c   0  
2   

( CAS )  
   MOND  
( MRCI )  

  H – L gap 
( RHF )  

   E   vert   (TD-
B3 LYP )  

   Δ  E   exc    

   Larger  polyatomics    

   CH  4     1,644.5    1,642.08  ±  0.08    1.4    0.008    0.013    0.7    0.039    0.042    0.577    9.35    1.3  

  C 2 H 4     2,229.8    2,225.8  ±  0.2    1.8    0.012    0.034    1.3    0.043    0.097    0.414    4.17     − 1.5  

   CH  3 OH    2,016.3    2,012.2  ±  0.2    2.1    0.009    0.020    1.3    0.050    0.040    0.479    6.01     e   

   CH  2 OH    1,619.4    1,616.1  ±  0.4    2.1    0.017    0.054    1.6    0.041    0.043    0.380    3.38     e   

  Benzene    5,470.7    5,463.8  ±  0.4    1.3    0.011    0.030    2.0    0.113    0.108    0.368    3.84     − 119  

   o - Benzyne     4,672.2    4,663  ±  1    2.0    0.014    0.042    2.8    0.188    0.173    0.385    1.47     − 1.6  

  H 2 COO    1,526.9    1,524  ±  1    2.1    0.044    0.177    4.7    0.108    0.144    0.435    0.99    1.2  
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or 64 % of the positives are false). For the remaining diag-
nostics, 75 % or more of the positives are false. 

 Figure  2  includes error bars refl ecting the uncertainties 
in the experimental atomization energies reported in the 
 ATcT  [ 47 ]. In most cases, the error bars do not cross the 
2  ×   RMS   neg   boundary, suggesting that better experiments 
for these molecules will not produce additional false posi-
tives or false negatives. 

    4.2   Assessment of diagnostic performance 

 For a diagnostic to convey information, it must divide the 
molecules into two groups (negative diagnostic, positive 
diagnostic) with a statistically signifi cant difference in the 
distribution of fractional errors. This fundamental require-
ment is met if the two groups differ in mean, variance, or 
both. 

 We test whether the mean fractional errors of the two 
groups are unequal using Welch ’ s  t  test [ 63 ]. This is simi-
lar to the well-known Student ’ s  t  test, but does not assume 
equal variances for the groups. We test whether the vari-
ances of the two groups are unequal using the Brown –
  Forsythe  test [ 64 ,  65 ]. This is similar to the better-known 
 F  test, but is more robust to non-normality. For both sta-
tistical tests, the null hypothesis is that the two groups 
have the same distribution. Both tests produce a  p  value, 
which is the probability of obtaining a test statistic equal 
to or greater than that observed if the two groups actually 
do have the same distribution. Table  3  contains the statis-
tical results for each diagnostic. At the 95 % confi dence 
level, all of the diagnostics except  Δ  E   exc   successfully 
partition the data into groups with different error distribu-
tions. Thus, all the diagnostics except  Δ  E   exc   merit further 
analysis.  
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 Fig. 2       Relationship of unsigned fractional error on atomization 
energy, | f |, with diagnostics: %(T) (Fig.  2 a) and  T  1  (Fig.  2 b). Thresh-
olds for diagnostics are marked with a  vertical dashed line  [ 11 ,  13 ]. 

The  horizontal dashed line  marks twice the  RMS  value of  f  for mol-
ecules with negative diagnostics (i.e., below threshold). Experimental 
uncertainties from  ATcT  [ 47 ] are shown by the  error bars   

 Table 2        RMS  values of  f  
for negative and positive 
diagnostics, contrast ratio, 
number of false negatives 
and positives, and fraction 
of negative and positive 
diagnostics that are false  

  Diagnostic    Thresh    10 3   ×   RMS   neg      10 3   ×   RMS   pos      Contrast 
ratio  

  False 
 Neg   

  False 
 Pos   

  % Neg  
false  

  % Pos  
false  

   MOND     0.12    2.6    6.2    2.4    1    7    3    64  

  1  −   c   0  
2      0.10    2.9    5.4    1.9    2    11    5    85  

   T  1     0.02    2.6    5.5    2.1    2    12    6    80  

   D  1     0.06    2.5    5.9    2.3    2    10    5    77  

  %(T)    10 %    1.9    7.7    4.0    1    4    2    44  

   Δ  E   exc      0 kJ/mol    2.5    4.3    1.7    1    26    5    87  

   E   vert      4.5 eV    1.9    4.3    2.3    1    29    6    85  

  H – L gap    0.58 au    5.4    2.9    0.5    1    36    8    97  

   A [%(T),  T  1 ]    1.0    2.0    5.8    2.9    1    11    3    69  

   G [%(T),  T  1 ]    1.0    2.0    6.0    3.0    1    10    3    67  

   Q [%(T),  T  1 ]    1.0    2.0    5.8    2.9    1    11    3    69  

   H [%(T),  T  1 ]    1.0    2.3    6.3    2.8    1    8    3    67  

   max [%(T),  T  1 ]    1.0    2.1    5.5    2.7    1    13    3    72  

   min [%(T),  T  1 ]    1.0    2.7    7.7    2.8    2    3    5    50  
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 The estimate of uncertainty on computed thermochem-
istry is most meaningful for the  “ best performing ”  diagnos-
tic. Three metrics of diagnostic performance that we con-
sider are as follows:

   1.      The fraction of all negatives that are false, and the frac-
tion of all positives that are false, as described in the 
previous section.   

  2.       RMS   neg  . Smaller values of  RMS   neg   allow us to assign a 
smaller uncertainty to a computed value when the diag-
nostic is not triggered.   

  3.      The ratio of  RMS  for molecules that trigger/do not 
trigger the diagnostic, denoted here as the contrast 
ratio. A large contrast ratio indicates a meaningful 
difference in uncertainty when the diagnostic is trig-
gered, whereas a contrast ratio of 1 indicates that the 
diagnostic does not convey any additional information 
about uncertainty.     

 From Table  2 , we note that %(T) performs best accord-
ing to these metrics (smallest fraction of false negatives, 
smallest fraction of false positives, smallest  RMS   neg  , 
largest contrast ratio). The other diagnostics, includ-
ing  T  1  and  D  1  (the other two diagnostics obtained  “ for 
free ”  from a  CCSD (T) calculation), perform worse than 
%(T) in all of these categories. For the %(T) diagnostic, 
 RMS   neg   = 0.19 %. 

 Note that although we chose a H – L gap threshold of 
0.58 hartree (which minimizes the  p  value for Welch ’ s 
 t  test for out test set), the contrast ratio is always  < 1, 
regardless of threshold. Because of this poor perfor-
mance, we do not consider the H – L gap to be a useful 
diagnostic. 

    4.3   Combinations of diagnostics 

 As stated in Sect.  1 , there have been recommendations to 
consider multiple diagnostics when determining the reli-
ability of a computed property. Here, we consider combi-
nations of  T  1 ,  D  1 , %(T),  MOND , and 1  −   c   0  

2  . Because the 
diagnostics use different numerical scales, we fi rst nor-
malize the values to the diagnostic threshold. The reduced 
diagnostic  x  is defi ned as
     

where  X  is the value of the diagnostic and  X  0  is the diag-
nostic threshold from Table  2 . 

 We examined the following simple combinations for 
pairs of diagnostics: arithmetic mean ( A [ x  1 ,  x  2 ]), geometric 
mean ( G [ x  1 ,  x  2 ]), harmonic mean ( H [ x  1 ,  x  2 ]), quadratic mean 
( Q [ x  1 ,  x  2 ]), maximum of the reduced diagnostics ( max [ x  1 ,  
x  2 ]), and minimum of the reduced diagnostics ( min [ x  1 ,  x  2 ]). 
The threshold for each combined diagnostic was 1.
     

     

     

      

 Table  2  compares the performance of %(T) to the six 
combinations of %(T) with  T  1 . (Values of the combined 

(3)x =

X

X0

(4)A =

x1 + x2

2

(5)G =

√

x1x2

(6)
H =

2

x−1
1 + x−1

2

(7)Q =

√
x2

1 + x2
2

2

 Table 3       Test variables ( t ,  W ), 
degrees of freedom ( DOF ), and 
 p  values for tests of statistical 
signifi cance for inequality of 
means (Welch ’ s  t  test) and 
variances (Brown –  Forsythe )  

   a    For the Brown –  Forsythe  
test, degrees of freedom were 
1 and 48 

  Diagnostic    Thresh    Welch ’ s  t  test    Brown –  Forsythe  test a   

   t      DOF      p  value     W      p  value  

   MOND     0.12    2.3    11.1    0.0409    15.1    0.0003  

  1  −   c   0  
2      0.10    1.7    14.6    0.1167    5.0    0.0299  

   T  1     0.02    2.4    16.7    0.0266    6.2    0.0165  

   D  1     0.06    2.6    13.7    0.0218    7.9    0.0071  

  %(T)    10 %    4.3    8.2    0.0024    31.5    0.0000  

   Δ  E   exc      0 kJ/mol    1.4    46.9    0.1557    2.5    0.1229  

   E   vert      4.5 eV    3.1    40.1    0.0037    8.7    0.0049  

  H – L gap    0.58 au    2.7    14.9    0.0159    7.1    0.0102  

   A [%(T),  T  1 ]    1.0    4.0    16.0    0.0011    23.1    0.0000  

   G [%(T),  T  1 ]    1.0    3.9    14.8    0.0015    24.9    0.0000  

   Q [%(T),  T  1 ]    1.0    4.0    16.0    0.0011    23.1    0.0000  

   H [%(T),  T  1 ]    1.0    3.4    12.0    0.0053    15.7    0.0002  

   max [%(T),  T  1 ]    1.0    3.8    18.4    0.0012    20.4    0.0000  

   min [%(T),  T  1 ]    1.0    2.6    5.2    0.0473    8.6    0.0051  
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diagnostics for each molecule, and plots of | f | and  f  versus 
the six combinations for all pairs of the individual diagnos-
tics can be found in Online Resource 1 Table SI-4 and Fig-
ure SI-3, and Online Resource 2 Spreadsheet SI-1). None 
of these combinations of diagnostics perform better than 
%(T), based on the metrics in the previous section. 

    4.4   Estimation of atomization energy uncertainty based 
on %(T) 

 %(T) was the best performing diagnostic according to the 
metrics in the previous sections; therefore, we use it for our 
atomization energy uncertainty analysis. We estimate the 
uncertainty (twice the relative standard uncertainty) to be 
2  ×   RMS   neg   for molecules that do not trigger the %(T) diag-
nostic (this interval includes 98 % of the molecules with 
negative diagnostics). Similarly, we use 2  ×   RMS   pos   as the 
uncertainty for molecules that do trigger the diagnostic (this 
interval includes all molecules with a positive diagnostic). 
This translates to uncertainties in atomization energies of 
 ± 0.4 % for %(T)  <  10 %, and  ± 1.5 % for %(T)  >  10 %. 

     5   Discussion 

   5.1   Limitations of our study 

 One of the most severe limitations that our study faces is 
the lack of precise experimental atomization energies. The 
 ATcT  [ 47 ] provided us with atomization energies known to 
0.1 %; however, we were limited to relatively small mol-
ecules containing only H, C, N, O, F, and  Cl . Extension of 
our work to other classes of molecules, such as transition 
metals, would require more precise experimental studies. 

 Our main result in this work is an estimation of uncer-
tainties on computed atomization energies based on  wave-
function  diagnostics. To this end, the uncertainties that 
we estimate ( ± 0.4 % for %(T)  <  10 % and  ± 1.5 % for 
%(T)  >  10 %) are strictly applicable only to the method that 
we used:  RHF - UCCSD (T*)-F12a/ VTZ -F12 geometries and 
energies, with core-valence, spin – orbit, and anharmonic  ZPE  
corrections. We did not include scalar relativistic effects, 
diagonal Born – Oppenheimer corrections ( DBOC ), or higher-
order terms such as  T  4  +  T  5 . These effects can be signifi cant 
with respect to the atomization energies obtained. Feller 
et al. [ 66 ] and  Karton  et al. [ 67 ] computed these additional 
contributions for a number of molecules, including 43 of the 
molecules in this study. The root-mean-square magnitude of 
these contributions to atomization energy for molecules in 
our test set was 0.7 % (absolute value of 3.6 kJ/mol). These 
contributions correlate linearly with  f  (see Online Resource 
2, Spreadsheet SI-2). It has been shown that %(T) correlates 
well with the  T  4  +  T  5  contribution [ 17 ], which may explain 

the strong performance of %(T) as a diagnostic for our com-
puted atomization energies. 

 It should be reiterated that the purpose of our study 
was to use  wavefunction  diagnostics to assess atomization 
energy uncertainties, and not to perform a benchmark study 
on the performance of cutting-edge theory. Despite neglect-
ing scalar relativistic effects,  DBOC , and higher-order 
effects, our computed atomization energies were within 
0.4 % (2  ×   RMS ) of the experimental data for molecules 
that do not trigger the %(T) diagnostic. Furthermore, 44 
of the 50 computed atomization energies were within 4 kJ/
mol of the experimental value. It is likely that this agree-
ment is obtained from fortuitous cancelation of errors in the 
 CCSD (T*)-F12a method, as suggested by  Knizia  et al. [ 40 ] 
and by  Bross  et al. [ 43 ]. 

    5.2    Multireference  character versus  multireference  effects 

 In this work, we have attempted to quantify the effects 
of  multireference  character by  Δ  E   exc  . One interpretation 
of  wavefunction  diagnostics is that they are a measure of 
 multireference  character [ 12 ,  13 ,  23 ]. Given this interpre-
tation, we can ask whether  multireference   character  (i.e., 
the diagnostic value) correlates with  multireference   effects  
(i.e.,  Δ  E   exc  ). We do not observe any meaningful correla-
tion between  Δ  E   exc   and the other diagnostics (see Online 
Resource 1, Figure SI-1). A possible reason for this is 
that  multireference  character is not necessarily a predic-
tor of  multireference  effects. A second possible reason is 
that  Δ  E   exc   is not a good measure of  multireference  effects, 
since  CCSD (T) and  MRCISD +Q differ in the amounts of 
dynamical and non-dynamical correlation that they account 
for (see Computational Strategy section). 

    5.3   Correlation of diagnostics with raw errors 
in atomization energy 

 Many benchmark studies of thermochemical methods use 
the raw error (with units of kJ/mol) in energetic proper-
ties as the performance metric rather than fractional error 
(which is  unitless ). Some examples include studies by  Jiang  
et al. [ 22 ], Martin and co-workers [ 17 ], and  Pople , Curtiss, 
and co-workers [ 68 ,  69 ]. If we use raw errors in our analy-
sis of diagnostics, then 1  −   c   0  

2   appears to perform best, as it 
has the smallest  RMS   neg   (1.9 kJ/mol) and the largest contrast 
ratio (2.7), although it has more false negatives than  MOND , 
%(T),  Δ  E   exc  , or  E   vert  . Combinations of the 1  −   c   0  

2   and  MOND  
diagnostics yield slightly better performance, although these 
diagnostics would be impractical since they require expensive 
 MRCI  calculations. Combining the 1  −   c   0  

2   and %(T) diagnos-
tics offers no improvement over 1  −   c   0  

2   alone. All of the indi-
vidual diagnostics divide the molecules into two groups with 
means, variances, or both that are statistically signifi cantly 
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different. Tables of diagnostic performance and statistical sig-
nifi cance using raw energies in the analysis can be found in 
Online Resource 1, Tables SI-5 and SI-6. 

 Although one might conclude that 1  −   c   0  
2   should be the 

diagnostic of choice based on the analysis of raw errors, 
this conclusion may not be general. Raw energetic proper-
ties scale with the size of the system. For example, Feller 
et al. [ 66 ] have shown that for  n -alkanes, the following 
properties scale with molecule size:  DBOC , T  −  (T) cor-
rection, higher-order corrections, and uncertainty of the 
atomization energy in the  CCSD (T)/CBS limit. Similarly, 
our data show correlation between the raw error and the 
atomization energy (plotted in Online Resource 1, Fig-
ure SI-5). However, none of the diagnostics studied in 
this work are size-extensive. Therefore, as system size 
increases, the absolute error in atomization energy will 
increase without a corresponding increase in the diagnos-
tic, and any relationship between the two will be lost. In 
contrast, the fractional error in atomization energy has the 
same scaling behavior as the diagnostics. For this reason, 
we base our conclusions on the analysis using fractional 
errors. 

     6   Conclusions 

 We have investigated how  wavefunction  diagnostics can 
be used to make quantitative estimates of the uncertainty 
on computed atomization energies. For our test set of 50 
molecules and eight diagnostics (1  −   c   0  

2  ,  MOND ,  T  1 ,  D  1 , 
%(T),  Δ  E   exc  ,  RHF  HOMO –  LUMO  gap, and  E   vert  ), we fi nd 
that %(T) performs best according to our metrics: low-
est fraction of negatives/positives which are false, lowest 
 rms  of  f  for molecules below the diagnostic threshold, and 
largest ratio between the  rms  of  f  for molecules above and 
below the diagnostic threshold. Six simple combinations 
(arithmetic mean, geometric mean, harmonic mean, quad-
ratic mean, max, min) of pairs of normalized diagnostics 
(1  −   c   0  

2  ,  MOND ,  T  1 ,  D  1 , %(T)) did not perform better than 
%(T) alone. 

 On the basis of our %(T) data, we estimate the uncer-
tainty on  RHF - UCCSD (T*)-F12a/ VTZ -F12 atomization 
energies, including core-valence, spin – orbit, and anhar-
monic  ZPE  corrections, to be  ± 0.4 % when %(T)  <  10 %, 
and  ± 1.5 % when %(T)  >  10 % (2  ×   RMS  in each region). 
The uncertainties on atomization energies from other com-
putational models may be different. 
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Abstract We performed intra- and inter-molecular

charge transfer (CT) excitation calculations of H2N–

(CH=CH)n–NO2 (a) and its equidistant H2N–H���H–NO2

(b) using EOM-CCSD (n = 1–9), time-dependent (TD)

long-range corrected (LC) density functional theory

(DFT) (n = 1–10). It was shown that LC-BOP and

LCgau-BOP outperform all the tested DFT functionals on

inter- and intra-CT excitation energy and oscillator

strength, regardless of CT interaction distance (R).

Decomposition of TD-DFT optical excitation energies of

(a) and (b) into HOMO–LUMO gap and excitonic

binding energy disclosed that HOMO–LUMO gap

reduction resulting from delocalization of HOMO and

LUMO through bridged polyene conjugation is mainly

responsible for the decreasing of intra-molecular CT

excitation energy with chain number, while inter-molec-

ular CT increases linearly with -1/R, which is wholly

due to the decrease in excitonic energy between HOMO

and LUMO. We found that success of exchange corre-

lation functional on long-distanced intra-molecular CT

calculations depends on correct descriptions of (1) Ko-

opmans’ energy of donor and acceptor and (2) excitonic

energy between donor and acceptor, and (3) correct far-

nucleus asymptotic behavior, -1/R. We found that LC

scheme can satisfy (3), but needs an appropriate choice of

long-range parameter able to satisfy (1) and (2). On the

other hand, the pure, conventional hybrid, and screened

hybrid functionals show near-zero intra- and inter-

molecular excitonic energy regardless of R, which means

optical band gap coincide with HOMO–LUMO gap.

Therefore, we conclude that 100 % long-range Hartree–

Fock exchange inclusion is indispensable for correct

descriptions of intra-molecular CT excitations as well as

inter-molecular CT.

Keywords Range separation � Long-range corrected

DFT � Charge transfer excitation � TD-DFT � HOMO–

LUMO gap � Excitonic energy � LC-DFT

1 Introduction

Charge transfer (CT) excitation is a core mechanism in

photochemical process, such as photosynthesis, nonlinear

optics, and photovoltaics. Modern researches on photo-

chemistry demand theoretical chemists’ well-predictive

theoretical tools for inter-molecular and intra-molecular

CT (inter-CT and intra-CT, respectively) excitation ener-

gies on both finite systems and condensed state materials

[1, 2]. When we try to invent well-predictive theoretical

methods, we should keep in mind that comprehending

theoretical reasons behind the experimental phenomena

precedes suggesting appropriate theoretical methods.

We have been well-acquainted with failures of con-

ventional density functional theory (DFT) [3] in predicting

meaningful inter-CT excitations, which result from

incompetence of DFT exchange correlation functional to

provide correct far-nucleus asymptotic behavior like
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lim
R!1

vrxcðRÞ ¼ � 1

R
; ð1Þ

where vxc
r is exchange correlation potential, R is the

distance vector between donor (D) and acceptor (A), and

R = |R| [4, 5]. Recently, we suggested the long-range

corrected (LC) [6, 7] DFT whose exchange potential

operator is separated into DFT and Hartree–Fock (HF)

exchange using an error function as

1

r12
¼ 1� erfðlr12Þ

r12
DFT

þ erfðlr12Þ
r12
HF

ð2Þ

LC-DFT can provide correct asymptotic behavior of

Eq. (1) and, therefore, can reproduce inter-CT excitation

energy and its oscillator strength successfully [8].

However, when it comes to ‘‘intra-molecular’’ CT

excitation, several questions remain about applicability of

DFT functionals to intra-CT excitations. One of them is

why intra-CT excitation energy decreases as R increases

while inter-CT energy increases having an asymptotic

behavior of Eq. (1) (see Fig. 2) [9–12]. Moreover, there has

been no rigorous study to answer about whether 100 %

long-range HF exchange of LC-DFT is indispensable for

describing correct intra-CT excitations. Actually, some

reported that Coulomb-attenuating method (CAM) B3LYP

[13] which does not have a 100 % HF exchange in long

range can reproduce intra-CT excitations [14–16]. In

addition, there are some reports that smaller-range sepa-

ration parameter (l) than our determined value (0.47) is

favored for intra-CT excitation of polyacene, polythio-

phene, polyparaphenylene, and so on [11, 12, 17–19].

However, to the best of our knowledge, no rigorous theo-

retical study was performed to find out whether 100 %

long-range HF exchange is indispensable for describing

correct intra-CT excitations of long-chained conjugated

molecules or not and why intra-CT energy decreases with

R, contrary to inter-CT excitation energy.

In this sense, polyene which has double bond conjuga-

tion is thought to be an appropriate system to study these

points [20, 21]. However, it has not been studied in com-

parison with high-accuracy electron correlation method,

such as EOM-CCSD method [22–27], even though it is the

simplest conjugation structure in chemistry. Of course,

EOM-CCSD method is not an absolute reference for

excitation energy and oscillator strength calculations of

polyene [28], and EOM-CCSD is reported not to be perfect

-1/R asymptotic behavior of charge transfer excitation

energies due to its not fully size-extensive problem.

However, EOM-CCSD is a valuable accessible method to

examine CT excitations of TD-DFT. In addition, numerical

deviations from -1/R asymptotic behavior are expected to

be small enough to be neglected [29].

In this article, we will perform high-accuracy EOM-

CCSD calculations of intra-CT excitations of polyene

having –NH2 and –NO2 as electron–donor and acceptor

with increasing chain number. Then, we will check whe-

ther 100 % long-range HF exchange is essential in intra-

CT energy by comparing the results of a variety of LC-

DFT, CAM-B3LYP, and conventional hybrid functionals

with EOM-CCSD ones. Then, we will decompose excita-

tion energy obtained using time-dependent (TD) DFT into

Koopmans’ orbital energies and excitonic binding energy

[10] to find out what makes intra-CT excitation energy

differ from inter-CT excitation energy and what factors are

essential for exchange correlation functional to describe

intra-CT excitations correctly.

2 Theory

From Refs. [12, 17], we can approximately get optical CT

excitation gap between HOMO and LUMO as

xTD
CT ¼ eLUMO�eHOMO � HH O r12ð Þj jLLð Þ

þ HL O r12ð Þj jHLð Þ: ð3Þ
Here, O(r12) is HF exchange operator. For example, O(r12)

of B3LYP is cx/r12 (cx = 0.2), that of LC-DFT is erf(lr12)/
r12, that of CAM-B3LYP is [a ? berf(lr12)]/r12, and that of
pure functional is 0. Normally, optical CT excitation gap

obtained using TD-DFT is smaller than ID - AA

fundamental gap (ID is the vertical ionization potential of

the D and AA is the vertical electron affinity of the A). The

difference is known to result from binding energy between

the interacting excited electron and hole pair which is called

exciton. Here, we will call this excitonic binding energy.

Therefore, excitonic binding energy between D and A is

Eexciton ¼ xTD
CT � ðID � AAÞ; ð4Þ

where Eexciton is excitonic energy between two orbitals

(e.g., HOMO and LUMO) [10, 30].

In LC-DFT calculations, it is reported that negative Kohn–

Sham (KS) orbital energy of HOMO is close to ID and that of

LUMO is close to AA. In our previous study, we showed that

HOMO–LUMO gaps of tested molecules predicted by LC-

BOP and LCgau-BOP are very close to their corresponding

fundamental gaps calculated by CCSD(T) [31]. We also

showed KS HOMO of LC functionals appropriately incor-

porates both relaxation and correlation effects. Hence, we can

assume that LC-DFT can provide applicable ID - AA fun-

damental gaps with KS HOMO–LUMO gaps. Therefore, in

the exact DFT exchange correlation functional,

ðID � AAÞ ¼ eLUMO � eHOMO: ð5Þ
and
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Eexciton ¼ xTD
CT � ðeLUMO�eHOMOÞ: ð6Þ

In CT excitation case,

Eexciton ¼ � HH O r12ð Þj jLLð Þ ð7Þ
because (HL|O(r12)|HL) will disappear quickly with

increase in R, in that overlap between HOMO and

LUMO is too small. However, excitonic energies of pure

and screened hybrid DFT functionals become zero, in that

(HH|O(r12)|LL) also disappear quickly. In case of LC-DFT,

(HH|O(r12)|LL) becomes -1/R. Therefore, inter-CT

excitations, excitonic energy of LC functionals [31–33]

will be like

Eexciton � �1=R: ð8Þ

3 Computational details

To get appropriate geometries of amino (NH2–) and nitro

(NO2–) end-caped polyene for intra-CT excitations, we

optimized geometries of H2N–(CH=CH)n–NO2 (n = 1–10)

using LCgau-BOP/cc-pVDZ [34]. LCgau functional is one

of the LC functionals, in which the short-range HF

exchange integral is included by incorporating a Gaussian

attenuation with two parameters (a and k). In G2 set [35]

and polyene geometry test, LCgau-BOP was found to

provide the lowest error [36, 37] and good bond length

alterations [38], respectively. With LCgau-BOP-optimized

geometries, we performed EOM-CCSD calculations of

H2N–(CH=CH)n–NO2 using cc-pVDZ (n = 1–9) and cc-

pVTZ (n = 1–5) basis sets to obtain standard intra-CT

excitations. We also note that there is a recent report saying

that CAM-B3LYP reproduces BLA values of polyenes

without end-caps most close to CCSD(T)/6-31G* [39].

To make geometries for inter-CT excitation between

–NH2 and –NO2 with distances identical to those of intra-

CT excitation, we first eliminated bridged polyene with

–NH2 and –NO2 end-caps remained and added –H with the

bond distance of 1.0 Å to –NH2 and –NO2. Then, we

performed EOM-CCSD calculations to obtain inter-CT

excitations between NH3 and HNO2.

Then, we performed TD-DFT calculations (n = 1–10)

of H2N–(CH=CH)n–NO2 and its equidistant H2N–H���H–
NO2 using cc-pVTZ basis set. Exchange correlation func-

tionals assessed for CT excitations are LC-BOP [40–42],

LC-BOP12 [37], LCgau-BOP [34], LCgau-B97 [19],

LC(0.33)-BOP [8], LC-xPBE [43], xB97X [44], CAM-

B3LYP [13], B3LYP [45], HSE [46], Gau-PBEh [47], and

PBE [48] functional. Note that optimized range separation

parameters (l) used for LC-BOP, LC-BOP12, LCgau-

BOP, LC-xPBE, xB97X, LC(0.33)-BOP and CAM-

B3LYP, and LCgau-B97 are l = 0.47, l = 0.42,

l = 0.42, l = 0.4, l = 0.3, l = 0.33, and l = 0.20,

respectively.

The LCgau scheme and OP correlation functional [49]

calculations were performed on the development version of

Gaussian09 program, and other calculations were executed

on the official version of Gaussian09 program [50].

4 Results and discussions

4.1 Oscillator strength

Figure 1 shows the oscillator strengths obtained using HF,

CIS, EOM-CCSD, and various TD-DFT calculations. As

seen in the figure, calculated oscillator strengths can be

classified into three groups: the first group is underesti-

mated ones of PBE, B3LYP, HSE, and Gau-PBEh, the

second is slightly overestimated ones of HF and CIS, and

the third is appropriately estimated ones of LC functionals,

such as LC-BOP, LC-BOP12, LCgau-BOP, LCgau-B97,

and CAM-B3LYP. This shows that LC scheme is essential

for obtaining correct oscillation strengths. Of the well

estimated ones, CAM-B3LYP shows the smallest oscillator

strengths. LC-BOP12 and LCgau-BOP with l = 0.42

show the closest oscillator strengths to EOM-CCSD/cc-

pVTZ ones.

We should note that the strongest transitions are CT

excitations between HOMO and LUMO in n = 1–10, but,

from some larger chain number, excitations showing the

strongest oscillator strength can be transferred to other CT

or local transition band as expected in Ref. [21]. For

example, in the EOM-CCSD excitations from HOMO to

LUMO ? 1 which has inner double bond character,

Fig. 1 Oscillator strengths of CT excitations calculated using TD-

HF, CIS, EOM-CCSD, and various TD-DFTs over the distance (R; Å)

between –NH2 and –NO2 of polyene (n = 1–10)
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oscillator strength of polyene with n = 3 is 0.0477, but that

with n = 9 is 0.6097.

4.2 Excitation energy

Tables 1 and 2 show inter-CT excitation energies increase

as R increases, but intra-CT energies decrease. Figure 2

shows that these behaviors of both intra- and inter-CT

energies are linearly dependent on 1/R. It is noticeable that

deviations of intra-CT energies of various DFT functionals

from EOM-CCSD are smaller than those of inter-CT

energies, in that intra-CT energies are smaller than inter-

CT energies.

Interestingly, HF, CIS, and LC functionals with various

l values show almost identical slopes of inter-CT energies

versus 1/R. On the other hand, the DFT functionals without

100 % long-range HF exchange show slower slopes to -1/

R than LC functionals. For example, CAM-B3LYP shows a

slower slope than LC functionals. Screened hybrid func-

tionals, such as Gau-PBEh and HSE, and pure functional,

PBE, show near-zero slope versus 1/R. In contrast, all of

the calculated intra-CT energies equally decrease linearly

with -1/R [9], even though the slopes become stable from

n = 3–5 (Fig. 2b).

Based on the slope of CT energies versus 1/R, calculated

intra-CT energy results of all the methods can also be

classified into three groups, which are similar with those of

oscillator strengths: the first ones are DFT functionals with

LC scheme, such as PBE, B3LYP, HSE, and Gau-PBEh,

which underestimate intra-CT energies and have the

steepest slope to -1/R, the second one consists of HF and

CIS, which show slightly overestimated intra-CT energy

and steeper slope to -1/R than LC functionals, and the

third ones are LC functionals, which show the slope similar

with the EOM-CCSD ones.

Actually, LC functionals also slightly underestimate

intra-CT energies, compared with EOM-CCSD/cc-pVDZ.

However, intra-CT energies of LC-BOP with l = 0.47 are

closer to EOM-CCSD/cc-pVTZ rather than EOM-CCSD/

cc-pVDZ, in that intra-CT energy of EOM-CCSD/cc-

pVTZ is lower than EOM-CCSD/cc-pVDZ by about

0.1 eV, even though only CT energies of polyenes of

n = 1–5 are available for comparison. Therefore, of all the

tested functionals, LC-BOP provides both intra- and inter-

CT excitation energies closest to EOM-CCSD ones

regardless of R. LC-BOP12 and LCgau-BOP show similar

tendency for inter- and intra-CT excitation energies with

the EOM-CCSD ones. On the other hand, LC functionals

with small range separation parameter, such as LCgau-B97

and LC(0.33)-BOP (l = 0.2 and l = 0.33, respectively),

and CAM-B3LYP with incomplete long-range HF

exchange provide underestimated intra- and inter-CT

excitation energies. The pure, conventional hybrid and

screened hybrid functionals, such as PBE, B3LYP, HSE,

and Gau-PBEh, show quite underestimations.

4.3 Decomposition of CT excitation energies

to Koopmans and excionic energies

Let us see first inter-CT excitation energies. HOMO–

LUMO energy gaps (eLUMO - eHOMO) calculated using all

the tested DFT functionals and HF method are nearly

constant, independently of change of R (Fig. 3a). However,

the inter-CT excitonic energies increase as a -1/R shape

and equally converge to zero as R goes to infinity (Fig. 4a).

In detail, the inter-CT excitonic energy change with R of

LC functionals is the identical and has the same slope

versus -1/R.1 In other words, inter-CT excitonic energies

of LC functionals are independent of l parameter. On the

other hand, the slopes of inter-CT excitonic energies of

B3LYP and CAM-B3LYP versus -1/R are cB3LYP = 0.2

and cCAM-B3LYP = 0.65, respectively, which were obtained

Table 1 CT excitation energies (eV) between NH3 and HNO2 calculated using TD-HF, CIS, EOM-CCSD, and various TD-DFTs

n Distance,

R

EOM-

CCSD

CIS HF LC-

BOP

LCgau-

BOP

LC-

xPBE
xB97X LCgau-

B97

CAM-

B3LYP

B3LYP Gau-

PBEh

HSE PBE

1 3.67721 7.78 9.54 9.54 7.26 7.00 6.77 6.22 5.05 5.20 3.46 4.78 3.72 2.04

2 6.11327 8.91 10.47 10.47 8.20 7.95 7.73 7.17 5.86 5.69 3.36 4.43 3.54 1.71

3 8.56319 9.45 10.99 10.99 8.72 8.48 8.26 7.70 6.38 6.00 3.40 4.34 3.49 1.63

4 11.01565 9.77 11.31 11.31 9.04 8.80 8.58 8.02 6.70 6.20 3.44 4.31 3.46 1.60

5 13.47082 9.99 11.53 11.53 9.25 9.01 8.79 8.23 6.92 6.33 3.47 4.30 3.45 1.59

6 15.92723 10.14 11.68 11.68 9.41 9.16 8.94 8.38 7.07 6.43 3.50 4.29 3.44 1.58

7 18.38685 10.25 11.79 11.79 9.52 9.28 9.05 8.49 7.18 6.50 3.52 4.28 3.44 1.58

8 20.84318 10.34 11.88 11.88 9.60 9.36 9.14 8.58 7.27 6.55 3.53 4.28 3.43 1.58

9 23.30343 10.41 11.95 11.95 9.67 9.43 9.21 8.65 7.34 6.60 3.54 4.28 3.43 1.57

10 25.76305 10.46 12.00 12.00 9.73 9.49 9.27 8.70 7.39 6.63 3.55 4.28 3.43 1.57

1 See Supplementary Material.
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by estimating slopes of Eexciton of Eq. (8) versus -1/R and

assuming cLC-DFT to be 1 [30]. Note that the slopes are

exactly identical with the parameter values for HF

exchange inclusion of hybrid functionals (Those of B3LYP

and CAM-B3LYP are cHF = 0.2 and a ? b=0.65, respec-
tively). The c values of pure and screened hybrid func-

tionals are almost zero. These results indicate that 100 %

long-range HF exchange inclusion is indispensable for

achieving exact -1/R asymptotic behavior of inter-CT

energy.

Meanwhile, we should note that, in inter-CT excita-

tions, the errors from HOMO–LUMO gaps are shown to

be larger than those from excitonic energy. Therefore, the

performances of DFT exchange correlation functionals on

inter-CT excitation energy seem to mainly depend on

accurate assumptions of Koopmans’ orbital energies of D

and A.T
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Fig. 2 Dependence of CT excitation energies (eV) calculated using

TD-HF, CIS, EOM-CCSD, and various TD-DFTs over 1/R (Å-1)

a between –NH2 and –NO2 of polyene (n = 1–10) and b between

NH3 and HNO2
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On the other hand, unlike the case of inter-CT excita-

tions, HOMO–LUMO gaps of intra-CT excitations

decrease linearly with -1/R (Fig. 3b). This shows that, D

and A are connected with conjugated polyene chain in

intra-CT excitation cases, and therefore, Koopmans’ orbital

energies of D and A are deeply affected by conjugation

polyene chain length, R. From the point that the excitonic

energies normally increase or remain constant with

increase in R, we can deduce that decreasing of HOMO–

LUMO gaps with R is mainly responsible for decreasing of

intra-CT excitation energy with R.

Figure 5 shows why HOMO and LUMO gaps decrease

with R in intra-CT excitations. The shapes of HOMO and

LUMO of LC-BOP are similar with those of HF, and those

of B3LYP are similar with those of PBE. That is, the

HOMO and LUMO shapes of PBE and B3LYP are delo-

calized more than those of HF and LC-BOP. Since orbital

delocalization decreases its orbital energy, we can easily

rationalize that HOMO and LUMO gaps of PBE and

B3LYP are smaller than those of HF and LC-BOP.

Therefore, HOMO and LUMO delocalization through

bridged double bond results in the decrease in intra-CT

excitation energy. Note that the HOMO–LUMO gaps of

H2N–CH=CH–NO2 (n = 1) are very similar with those of

inter-CT excitations. This shows that correct estimations of

HOMO–LUMO gaps affected by combinations of D and A

are indispensable for accurate calculations of intra-CT

excitation energy, let alone inter-CT.

As the case of inter-CT excitation calculations, pure,

screened hybrid, and conventional hybrid functionals show

constantly near-zero excitonic energies, irrespective of

R [9] (Fig. 4b). This shows that pure, screened hybrid, and

conventional hybrid functionals reproduce optical CT

excitation energies which are quite similar with HOMO–

LUMO gap [51]. This actually means that no excitonic

energy is included in optical CT excitation energies

obtained from these functionals irrespective of R. On the

(a)

(b)

Fig. 3 Dependence of HOMO–LUMO gaps (eV) of HF and various

DFTs over 1/R (Å-1) a between –NH2 and –NO2 of polyaene

(n = 1–10) and b between NH3 and HNO2

(a)

(b)

Fig. 4 Differences between CT excitation energies and HOMO–

LUMO gaps (eV) over 1/R (Å-1) a between –NH2 and –NO2 of

polyaene (n = 1–10) and b between NH3 and HNO2
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other hand, LC functionals are shown to provide excitonic

energy which increases with R. However, unlike inter-CT

excitation cases, intra-CT excitonic energies obtained from

LC functionals depend on l parameter. In detail, LC

functionals with large l value show largely negative mul-

titude of excitonic energy.

To explain l dependency of intra-CT excitonic energy

obtained fromLC functionals, we can consider (HH|O(r12)|LL)

term in Eq. (7). In inter-CT excitations, HOMOandLUMOare

localized to D and A, which makes (HH|O(r12)|LL) dependent

only on the distance, R, between D and A. Consequently,

(HH|O(r12)|LL) will become Coulombic interaction having

distance of R, between two point charges centered on D and A.

However, in intra-CT excitations, HOMO and LUMO are de-

localized broadly through conjugation chain as seen in Fig. 5.

Therefore, (HH|O(r12)|LL) cannot become simply Coulombic

interaction between two point charges, but rather

(HH|O(r12)|LL) depends on l value since O(r12) includes l
parameter. Overlapping between HOMO and LUMO of intra-

CT excitation is larger than that of inter-CT excitation, which

consequently will increase (HH|O(r12)|LL).

Finally, overall intra-CT excitonic energies obtained from

LC functionals are non-negligibly large, in contrast with

inter-CT excitation. Therefore, correct estimations of

excitonic energy, let alone HOMO–LUMO gap, are impor-

tant in accurate calculations of intra-CT excitation energy. In

addition, in intra-CT excitations, both of excitonic energy

and HOMO–LUMO gap are deeply related to l value.

5 Conclusions

In this study, we compared TD-DFT results of intra-

molecular charge transfer excitations between polyene

bridged NH2 and NO2 and inter-molecular charge transfer

excitations between equidistant NH3 and HNO2 with EOM-

CCSD results and tried to find out why intra-molecular

charge transfer energy differs from inter-molecular charge

transfer. We found that the differences between inter- and

inter-molecular charge transfer excitations result mainly

from delocalization of HOMO and LUMO through polyene

conjugation chain, which reduces HOMO–LUMO gap and

increases the multitude of negative excitonic energy of

intra-molecular charge transfer energy. As a result, intra-

molecular charge transfer excitation energy decreases. On

the other hand, since energy gaps between HOMO and

LUMO which are not connected with polyene conjugation

bridges do not change with R increases, inter-molecular

Fig. 5 Shapes of HOMO of a HF, b PBE, c LC-BOP, and d B3LYP
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charge transfer excitation energy is affected only by exci-

tonic energy when R increases.

LC-BOP functional showed the intra- and inter-molec-

ular charge transfer excitation energy and oscillator

strength of tested systems closest to EOM-CCSD ones. The

successful factors of LC-BOP are inclusion of long-range

100 % HF exchange and appropriate l value of 0.47 from

the point that CAM-B3LYP and LC functionals with small

l value fail in reproducing correct intra- and inter-molec-

ular charge transfer excitation energies.

In inter-molecular charge transfer excitations, the LC

scheme with l larger than 0.2 can provide a correct

asymptotic behavior of -1/R between donor and acceptor

which provides correct excitonic energy. However, to

describe correct intra- and inter-molecular charge transfer

excitation energies, a proper choice of l value for LC

scheme is compulsory, in that a proper l value enables LC

scheme to provide not only appropriate HOMO–LUMO

gaps for both inter- and intra-molecular charge transfer

excitations, but also correct excitonic energy for intra-

molecular charge transfer excitations. On the other hand,

the pure, conventional hybrid, and screened hybrid func-

tionals show near-zero excitonic energy irrespective of R,

which makes no difference between HOMO–LUMO gap

and optical charge transfer excitation energy.

From this study, we are keenly aware that correct charge

transfer excitation calculations of LC functionals on various

chemical systems are deeply dependent on l value, which is

one of the problems the LC scheme is facing [52]. Eagerly

hoping to propose an improved LC schemewhich is free from

a choice of range separation parameter, we will continue to

study intra- and inter-molecular charge transfer excitations of

various conjugation systems and with various combinations

of donor and acceptor end-caps using LC-DFT functionals as

a future work. In addition, it was reported that differences

between EOM-CCSD and EOM-CC3 [53] in polyenes

without end-caps are not so small [54]. Therefore, we also

hope to assess TD-DFT functionals with higher electron

correlation methods, such as EOM-CC3, for long-chained

–NH2 and –NO2 end-capped polyenes in the near future.
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Abstract We examine theoretically the three channels

that are associated with the detachment of a single water

molecule from the aqueous clusters of the alkaline earth

dications, [M(H2O)n]
2?, M = Mg, Ca, Sr, Ba, n B 6.

These are the unimolecular water loss (M2?(H2O)n-1 ?

H2O) and the two hydrolysis channels resulting the loss of

hydronium ([MOH(H2O)n-2]
? ? H3O

?) and Zundel

([MOH(H2O)n-3]
? ? H3O

?(H2O)) cations. Minimum

energy paths (MEPs) corresponding to those three channels

were constructed at the Møller–Plesset second order per-

turbation (MP2) level of theory with basis sets of double-

and triple-f quality. We furthermore investigated the water

and hydronium loss channels from the mono-hydroxide

water clusters with up to four water molecules, [MOH

(H2O)n]
?, 1 B n B 4. Our results indicate the preference

of the hydronium loss and possibly the Zundel-cation loss

channels for the smallest size clusters, whereas the uni-

molecular water loss channel is preferred for the larger

ones as well as the mono-hydroxide clusters. Although the

charge separation (hydronium and Zundel-cation loss)

channels produce more stable products when compared to

the ones for the unimolecular water loss, they also require

the surmounting of high-energy barriers, a fact that makes

the experimental observation of fragments related to these

hydrolysis channels difficult.

Keywords Alkaline earth dication aqueous clusters �
Unimolecular dissociation � Potential energy curve �
Electronic structure � Hydrolysis channel

1 Introduction

The structure and stability of small aqueous clusters of

alkaline earth metal dications (Mg2?, Ca2?, Sr2?, and

Ba2?) has been the subject of numerous experimental

[1–18] and theoretical [4, 8, 11, 14–36] studies aimed at

providing archetypal models for their aqueous solvation. It

is generally accepted that the first solvation shell of these

ions in water is saturated with six water molecules [6, 10,

11, 13, 14]. The speciation of these metal cations in an

aqueous environment depends both upon their electronic

properties as well as the characteristics of the aqueous

environment [37]. The second ionization potential (IP) of

the alkaline earth metals (save Mg) [38] is below the first

(2B1) IP of water (12.6206 ± 0.0020 eV) [39], and this

determines the position of the lower asymptote that cor-

relates with the formation of the aqueous complex [36].

Depending on the pH of an aqueous solution, the speciation

ranges [37] from M2?(H2O)n to [Mx(OH)y]
(2x-y)?,

M = Mg, Ca, Sr or Ba. The following two channels:

M2þ H2Oð Þn! M H2Oð Þn�1

� �2þþH2O ð1Þ
M2þ H2Oð Þn! MOH H2Oð Þn�2

� �þþH3O
þ ð2Þ

describe the unimolecular dissociation and hydrolysis

mechanisms, respectively. The first one corresponds to the

process of pure water loss originating from the exchange of
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special collection of articles celebrating his career upon his

retirement.
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ligands between the first and second solvation shells,

whereas the second one is usually referred to as the charge

separation reaction in the literature. In the latter case, the

escaping water molecule initially creates a hydrogen bond

with one of the other water molecules attached to the metal

in the first solvation shell and subsequently detaches a H?

ion from one of the first shell ligands producing H3O
?. In

the following, we will refer to this second channel as the

one corresponding to the loss of hydronium. The remaining

singly charged metal hydroxide cluster and hydronium

fragments experience Coulombic repulsion and can break

apart [11, 14, 16, 17, 29]. It has been demonstrated that the

net charge on the metal remains practically unchanged

revealing a bonding picture of the type [24, 29]

M2?(H2O)m(OH
-). It should be mentioned that the charge

separation pathway has been observed experimentally only

for the lighter metal clusters [1, 6, 7, 12]. For instance, the

[Ca(H2O)]
2? complex was elusive during collision-induced

experiments until recently [16], due to the charge sepa-

ration [Ca(H2O)]
2? ? H2O ? CaOH? ? H3O

? reaction

[1, 12]. Similarly, the largest cluster size for which this

reaction has been reported to occur [7] is four water mol-

ecules for Mg and two for the other three metals.

Experimentally, doubly charged aqueous clusters of the

alkaline earth metal ions were produced by electrospray

ionization, and special effort has been devoted to the

measurement of their hydration energies. To this end,

Armentrout and co-workers have recently employed the

collision-induced dissociation (CID) combined with the

guided ion beam tandem mass spectrometry techniques to

study the aqueous clusters of Mg, Ca, and Sr [11, 14, 16,

17]. CID was also used by Barran et al. [6] to examine the

Mg clusters, while Williams and co-workers applied the

blackbody infrared dissociation (BIRD) methodology to

study the aqueous clusters of all four metals [5, 9]. Finally,

Kerbale and co-workers used high-pressure mass spec-

trometry (HPMS) to also study clusters of all four metal

dications [2, 3].

From the theoretical point of view, most of the previous

calculations have been reported using the density func-

tional theory (DFT) with a variety of functionals and basis

sets [8, 11, 14, 16, 17, 27–30, 33–35]. Ab initio results have

been reported at the (restricted) Hartree–Fock (RHF) and

Møller–Plesset second order perturbation (MP2) levels of

theory [4, 8, 11, 16, 17, 19–21, 23–25, 31, 33, 35]. The

previous theoretical results reported in the literature have

mainly focused on obtaining the optimal geometries of the

[M(H2O)n]
2? clusters, including their various isomers, and

their energies with emphasis in estimating their hydration

energies. The majority of the previous studies have dealt

with the clusters of the first two metal atoms, Ca and Mg

[4, 8, 11, 16, 17, 19–21, 23, 25, 27–35], while considerably

less attention has been paid to aqueous clusters of Sr

[14, 19–21, 23, 29] and Ba [19, 23, 29] dications. The

structures and hydration energies of the [M(H2O)n(OH)]
?

ions have also been reported in the literature for M = Mg,

Ca, and Ba [18, 22, 26]. Finally, we would like to mention

that only a handful of studies have previously theoretically

examined the charge separation process described by

reaction (2). Specifically, Beyer et al. [29] in 1999 studied

both of the chemical reactions (1) and (2) for all four

metals, while Peschke et al. [28] in the same year reported

analogous results for the cases of Mg and Ca. In both

articles, transition states and energy barriers were reported

for clusters with just two water molecules. More than

10 years later, Armentrout and co-workers examined the

stationary points (equilibrium structures and transition

states) of the [Mg(H2O)3,4]
2?, [Ca(H2O)2,3]

2?, and

[Sr(H2O)2]
2? systems [14, 16, 17]. However, no minimum

energy paths (MEPs) have yet been reported in the litera-

ture for those and larger clusters.

In the present study, we report the MEPs for the reac-

tions (1) and (2), for all four alkaline earth metals with

n = 2, 3 water molecules at the MP2 level of theory. For

Mg, we additionally included the MEPs for n = 4. In the

cases of n = 3, 4, we also constructed the MEPs relative to

the following reaction, which involves the Zundel cation

(Zundel-cation loss channel):

M2þ H2Oð Þn! MOH H2Oð Þn�3

� �þþH3O
þ H2Oð Þ: ð3Þ

Reactions (2) and (3) can be both considered as charge

separation processes. For n[ 4, we report only the relative

energetics of the reactants and products of reactions (1),

(2), and (3). Furthermore, the full MEPs for the removal

of one additional water molecule from the product

[M(H2O)m(OH)]
? cations for m = 2 are reported. We

show that the water loss reaction prevails for this case, as

the charge separation reaction leading to M(OH)2 ? H3O
?

is not energetically favorable.

The article is organized as follows: In Sect. 2, we outline

the computational methods used in the present study. In

Sect. 3, we describe the MEPs for the [M(H2O)n]
2? spe-

cies, where M = Mg, Ca, Sr, Ba and n = 2, 3, or 4 (only

for Mg). In Sect. 4, we present the results of the energetics

of reactions (1–3) for all four metals up to six water mol-

ecules. Finally, in Sect. 5, we examine the water loss

process of the [M(H2O)n-1(OH)]
? species. Section 6

summarizes our findings.

2 Computational details

All calculations reported in this study were carried out at

the Møller–Plesset second order perturbation level of the-

ory (MP2). The 1s orbitals of oxygen and the 1s2s2p orbi-

tals of Mg and Ca were kept frozen. We used two different

Theor Chem Acc (2014) 133:1450
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basis sets of double- and triple-f quality for H, O, Mg, and

Ca. Specifically, for O and H, we used Dunning’s aug-cc-

pVDZ and aug-cc-pVTZ basis sets [40, 41], for Mg, the cc-

pV(D ? d)Z and cc-pV(T ? d)Z [42], and for Ca, the cc-

pVDZ and cc-pVTZ basis sets [43]. For Sr and Ba, we used

the small-core relativistic pseudopotentials ECP28MDF

and ECP46MDF, which replace the 1s2s2p3s3p3d and

1s2s2p3s3p3d4s4p4d electrons, respectively [44]. These

pseudopotentials are combined with the 8s8p5d4f and

9s9p6d4f Gaussian functions to construct the molecular

orbitals of the remaining electrons [44]. From now on, we

use the acronyms ADZ and ATZ to denote the various

basis sets as follows: ADZ = cc-pV(D ? d)Z/(Mg), cc-

pVDZ/(Ca), ECP28MDF-f/(Sr), ECP46MDF-f/(Ba), aug-

cc-pVDZ/(O,H) and ATZ = cc-pV(T ? d)Z/(Mg), cc-

pVTZ/(Ca), ECP28MDF/(Sr), ECP46MDF/(Ba), aug-cc-

pVTZ/(O,H).

All calculations, including the geometry optimizations,

were performed with no symmetry constraints to exclude

any artificially converged highly symmetric structures. To

further verify that the located structures are real minima,

we also calculated the harmonic vibrational frequencies at

the equilibrium structures at the MP2/ADZ level. These

structures compare very well with the ones already repor-

ted in the literature (when available). Zero-point energy

(ZPE) corrections were estimated using these harmonic

frequencies, i.e., no anharmonicities are included. For the

frequencies, we used the atomic mass of the most abundant

isotope, namely 1.00783 (1H), 15.9949 (16O), 23.98505

(24Mg), 39.9626 (40Ca), 87.9056 (88Sr), and 137.905

(138Ba). The MEPs as a function of the R(M–O) distance

are obtained at the MP2/ADZ level of theory by optimizing

the rest of the internal coordinates for each value of R. The

MP2/ATZ//MP2/ADZ energetics of the various stationary

points of the MEPs are used in the discussion of their

features. All calculations were performed with the MOL-

PRO [45] and Gaussian09 [46] electronic structure codes.

3 Minimum energy paths of [M(H2O)n]
21

In the following, we report the MEPs for the systems with

the following stoichiometry: [Mg(H2O)2,3,4]
2? (Sect. 3.1),

[Ca(H2O)2,3]
2? (Sect. 3.2), and [Sr(H2O)2,3]

2?,

[Ba(H2O)2,3]
2? (Sect. 3.3). All optimized structures, their

energies, and harmonic vibrational frequencies are given in

the Supporting Information.

3.1 [Mg(H2O)2,3,4]
2?

Figure 1 shows the MEPs at the MP2/ADZ level of theory

for both the water loss and the charge separation channels

of the [Mg(H2O)2]
2? system. The MEP was constructed by

pulling one water molecule (bearing the O1 atom) away

from the ion and optimizing the rest of the geometrical

parameters for every Mg–O1 distance. Along the unimo-

lecular water loss channel, this ligand can be detached

either with or without making a hydrogen bond with the

second water molecule. These two possibilities are shown

in the MEP of Fig. 1: The dotted line with the solid circles

for R(Mg–O)[3 Å traces the (higher energy) path along

which no hydrogen bond is formed. On the other hand,

there is a lower energy path for 3 Å\R(Mg–O1)\ 4 Å

due to the formation of a hydrogen bond followed by an

increase in the energy to the [Mg(H2O)]
2? ? H2O

asymptote (dashed line with open circles in Fig. 1). This

hydrogen-bonded minimum lies 31.4 kcal/mol higher in

energy than the Mg2?(H2O)2 global minimum; and it is

stabilized with respect to that global minimum by a small

barrier of 2.3 kcal/mol. By forcing the water molecule to

be further detached from the ion, the charge separation

channel [reaction (2)] opens up, facilitated by the loss of a

H? ion from the first solvation shell. This MEP is shown

with a solid line and filled square symbols in Fig. 1 (for

R(Mg–O)[4 Å). Observe that the charge separation MEP

is always lower in energy than the water loss MEPs.

Moving from the H-bonded structure and after surmounting

a barrier of 8.5 kcal/mol at R(Mg–O) *5.5 Å, the charge

separation MEP falls off as 1/R to the MgOH? ? H3O
?

asymptote due to Coulombic repulsion. Due to the

1/R dependence, even for a distance of R(Mg–O) *15 Å,

the energy is 20 kcal/mol higher than the asymptotic limit,

which lies 4.7 kcal/mol lower than the energy of the

Mg2?(H2O)2 minimum.

Our MP2 relative energies compare favorably with the

DFT values of Peschke et al. [28] and Beyer et al. [29]. In

particular, relative to the equilibrium structure, our

Fig. 1 Minimum energy paths of the [Mg(H2O)2]
2? system

Theor Chem Acc (2014) 133:1450

123Reprinted from the journal 331



H-bonded minimum is at 31.4 kcal/mol, whereas B3LYP

gives a value of 31.5 kcal/mol [29]. The transition state of

the charge separation reaction at *5.5 Å is presently at

39.9 kcal/mol, while B3LYP with two different basis sets

gives 36.3 [28] and 39.4 kcal/mol [29], respectively. It

should be mentioned that those DFT barriers included zero-

point energy corrections (unlike ours, since we performed

ZPE corrections only for the minima). To summarize, the

lowest energy path for the detachment of a water molecule

from the Mg2?(H2O)2 minimum corresponds first to the

formation of a hydrogen bond, Mg2?(H2O)…H2O and then

to the dissociation to MgOH? ? H3O
?, i.e., it starts off as

a unimolecular water loss and ends up to the charge sep-

arated products.

We turn now to the [Mg(H2O)3]
2? case and the corre-

sponding MEPs shown in Fig. 2. In that case, we have

three different adiabatic channels: (a) the water loss,

reaction (1), (b) the hydronium loss, reaction (2), and

(c) the Zundel-cation loss, reaction (3) channels. In the

former two cases, the distance R of the x axis is measured

from the Mg center to the oxygen atom of the departing

water molecule, as in Fig. 1. In the latter case, we, how-

ever, measure the distance R from the Mg center to the

oxygen atom of the Zundel cation further away from Mg.

We would like to remind once again that all other geo-

metrical parameters are optimized along the MEPs for

every R(Mg–O) value without the use of any symmetry

constraints.

We first describe the MEPs of Fig. 2 for the

[Mg(H2O)2]
2? ? H2O water loss channel starting from

large R distances and moving down to the global minimum

at R(Mg–O) *2 Å. As before, the water can approach the

Mg2? positively charged center by interacting or not with

the rest of the water molecules. The solid line (filled

squares) starting from the Mg2?(H2O)3 equilibrium struc-

ture and ending in the Mg2?(H2O)2 ? H2O asymptote

represents the path where there are no hydrogen bonds of

the departing water with any of the other ligands. On the

other hand, the formation of a H-bond makes the

[Mg(H2O)2]
2?…H2O attractive interaction more efficient,

and thus, the respective MEP (dotted line, open circles)

decreases faster going to the H-bonded shallow minimum

at *4 Å. Pushing the water molecule of the second sol-

vation shell further toward the metal center leads to the

global Mg2?(H2O)3 minimum via a negligible barrier.

For the lowest [Mg(H2O)(OH)]
? ? H3O

? adiabatic

path (dashed line, filled circles in Fig. 2), there is a Cou-

lombic repulsion responsible for the 1/R shape of the MEP

for R(Mg–O) [5.8 Å. At this distance, the positively

charged hydronium experiences the negative local charge

of the oxygen atom of the OH group. Recall that the

Mg2?(H2O)(OH
-) bonding picture has been previously

suggested in the literature [24, 29]. At this point, one of the

hydrogen atoms of H3O
? migrates to the oxygen of the OH

group and the MEP turns over decreasing in energy. By the

time the H atom has moved close to OH, we have the

formation of a H-bond, and therefore, this path crosses the

MEP coming from the [Mg(H2O)2]
2? ? H2O channel

(dotted line, open circles).

We finally examine the MgOH? ? H3O
?(H2O)

channel which lies *15.8 kcal/mol higher than the

[Mg(H2O)(OH)]
? ? H3O

? asymptote. For reasons of

clarity in Fig. 2, for this case, we show the MEP in terms of

the distance R between the Mg center and the oxygen atom

of the more distant water molecule. For long distances, we

again observe the 1/R repulsive behavior (solid line, open

squares). As the Zundel-cation approaches, the negative

charge of OH is not screened anymore from the Mg2?

center, and one of its hydrogen atoms moves to the nega-

tively charged OH group, as in the previous case. As a

result, the cluster with two hydrogen bonds, schematically

drawn as Mg2?(H2O)…(H2O)…(H2O), is formed (this is

the minimum located at R = 4.2 Å lying 54.6 kcal/mol

above the lowest asymptote). By pushing further in the

most distant water molecule, i.e., decreasing R, that mol-

ecule eventually is attached to Mg producing the

[Mg(H2O)2]
2?…H2O minimum (last ligand in the second

solvation shell of the Mg center). Notice that now since

R corresponds to the distance between Mg and the O of the

first shell, the minimum is at R = 1.9 Å. This interaction is

reported here for the first time in the literature.

In summary, removing a water molecule from the

[Mg(H2O)3]
2? minimum structure leads to the [MgOH

(H2O)]
? ? H3O

? fragments. This process is facilitated via

Fig. 2 Minimum energy paths of the [Mg(H2O)3]
2? system. The

dashed line with the filled circles dissociates to [MgOH(H2O)]
? ?

H3O
?, whereas the solid line with the open squares to [MgOH]? ?

H3O
?(H2O)
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the formation of a hydrogen-bonded intermediate, and its

subsequent decomposition over a barrier lying 23.7 and

40.7 kcal/mol above the Mg2?(H2O)3 minimum, respec-

tively. The corresponding numbers at the DFT [B3LYP/6-

311 ? G(2d,2p)//B3LYP/6-311 ? G(d,p)] level, corrected

for ZPE, are 22.5 and 38.7 kcal/mol [17], in good agree-

ment with our present results. The dissociation energies for

reactions (1–3) are 2.3, 18.5, 56.9 kcal/mol, respectively.

Estimates of 0.2 and 55.2 kcal/mol for the first and third

channels have been previously reported by Carl et al. [16].

We next consider the case with four water molecules.

The corresponding MEPs are shown in Fig. 3, and they

describe the same channels as the ones in Fig. 2 for the

n = 3 case; in this respect, the MEPs of the two figures

bear similar features. One difference is that the energy gaps

between the first dissociation channel (hydronium loss) and

the next two (Zundel cation and water loss) have now

decreased appreciably from 15 and 55 kcal/mol for the

n = 3 case, now being 5 and 35 kcal/mol, respectively. As

a result, the MEPs for the n = 4 case are packed closer

together than for n = 3. Along the channel that removes a

water molecule from the Mg2?(H2O)4 minimum, the

hydrogen-bonded intermediate [Mg(H2O)3]
2?…H2O at

R = 4 Å and energy 7.7 kcal/mol (cf. Fig. 3) is initially

formed. Compared to Fig. 2, the MEP leading to hydro-

nium loss (dashed line with filled circles in Fig. 3) lies

above the one leading to water loss (dotted line with open

circles) for distances between 4 and 8 Å; this will certainly

play an important role in the overall dynamics and kinetics

of processes (1) and (2). Taking into account the Zundel-

cation loss channel, which also passes through the above

H-bonded structure, will further add to the complexity. The

relative energetics of the several stationary points in

Fig. 3 are within*4 kcal/mol with the DFT results of Carl

et al. [17].

A few interesting observations regarding the MEPs of

[Mg(H2O)n]
2?, n = 2, 3, 4 (Figs. 1, 2, 3) are in order. First,

the transition from the Mg2?(H2O)n to the

[Mg(H2O)n-1]
2?…H2O structure becomes easier with

increasing n, since the energy difference decreases from

31.3, to 23.7, to 18.0 kcal/mol. In contrast, the barrier from

[Mg(H2O)n-1]
2?…H2O to [Mg(H2O)n-2(OH)]

2?…H3O
?

increases with n, from 8.7 (n = 1) to 17.0 (n = 2) to 28.7

(n = 3) kcal/mol. The MEPs of Figs. 1, 2, and 3 demon-

strate the in situ formation of [Mg(H2O)n]
2? from

[Mg(H2O)n-1]
2? ? H2O. However, although the binding

energy of the water molecule decreases with n mostly due

to the increasing steric repulsion, the binding energy of the

Mg2?(H2O)n global minimum with respect to the lowest

energy fragments (hydronium loss asymptote) is increas-

ing, from -4.5 (n = 1) to 2.5 (n = 2) to 10.3 (n = 3) kcal/

mol, i.e., the hydrated metal cluster is becoming more

stable with respect to the lowest dissociation asymptote.

3.2 [Ca(H2O)2,3]
2?

The MEPs of the [Ca(H2O)2]
2? and [Ca(H2O)3]

2? systems

are shown in Figs. 4 and 5, respectively. We adopt the

same definition for the distance R as for the Mg case (vide

supra). Similar to Mg, the MEP connecting the Ca2?(H2O)n
with the Ca2?(H2O)n-1 ? H2O is smooth when no

hydrogen-bonded intermediates are formed (see the solid

lines with the filled symbols in Figs. 4, 5). The formation

of the hydrogen-bonded intermediate results in an energy

lowering and alters the MEPs for R[ 3 Å (dashed line

Fig. 3 Minimum energy paths of the [Mg(H2O)4]
2? system. The

dashed line with the filled circles dissociates to [MgOH(H2O)2]
? ?

H3O
?, whereas the solid line with the open squares to

[MgOH(H2O)]
? ? H3O

?(H2O)

Fig. 4 Minimum energy paths of the [Ca(H2O)2]
2? system. The

dotted line with the filled squares dissociates to [CaOH]? ? H3O
?
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with open circles in Fig. 4 and dotted line with open circles

in Fig. 5).

The Ca2?(H2O)…H2O hydrogen-bonded complex can

further dissociate via two different paths: an endothermic

one leading to Ca2?(H2O) ? H2O and an exothermic one

to [CaOH]? ? H3O
? overcoming a barrier of 19.7 kcal/

mol. This energy barrier is at least twice as much as the one

for the Mg case (8.7 kcal/mol). The difference between the

energy levels of Ca2?(H2O)2 and [CaOH]? ? H3O
? is

5.0 kcal/mol, very similar to that for Mg.

As regards the Ca2?(H2O)2…H2O hydrogen-bonded

intermediate, it can follow three different routes to disso-

ciation. The first one to Ca2?(H2O)2 ? H2O requires an

energy of 25.5 kcal/mol, while the other two leading to the

hydronium or Zundel-cation loss are exothermic by

roughly the same amount, 11.0 and 9.5 kcal/mol, albeit

with rather large energy barriers, 27.6 and 33.8 kcal/mol,

respectively. The former barrier height is larger than that of

Mg (17.0 kcal/mol), whereas the latter one is smaller than

the one for Mg (42.7 kcal/mol). The Zundel-cation channel

loss proceeds via the [Ca(H2O)]
2?…H2O…H2O interme-

diate (solid line with open squares in Fig. 5), which lies

43.5 kcal/mol above the Ca2?(H2O)3 global minimum. Our

relative energetics are in agreement with the ZPE-corrected

DFT values of Peschke et al. [28], Beyer et al. [29], and

Carl and Armentrout [16].

3.3 [Sr(H2O)2,3]
2? and [Ba(H2O)2,3]

2?

For the Sr and Ba dications, we first examine the cases with

two water molecules, the MEPs of which are shown in

Figs. 6 and 7. The stationary points of these MEPs have

been previously reported by Beyer et al. [29] and Carl et al.

[14] at the DFT level of theory with the B3LYP functional.

The energy differences between Sr2?(H2O)2 and

Sr2?(H2O)…H2O (H-bonded intermediate) and between

Sr2?(H2O)…H2O and the transition state to Sr?(OH) ?

H3O
? are 13.8 (vs. 13.5 [29], 13.6 [14]) kcal/mol and 27.4

(vs. 23.2 [29], 24.1 [14]) kcal/mol. The corresponding

values for Ba are 9.6 (vs. 9.5 [29]) and 32.3 (vs. 29.2 [29])

kcal/mol. The H-bonded intermediate was found to be

stabilized monotonically from Mg to Ba with respect to the

global M2?(H2O)n minimum, while the barrier to the dis-

sociation to hydronium increases from Mg to Ba. However,

the final dissociation energy from the equilibrium aqueous

Fig. 5 Minimum energy paths of the [Ca(H2O)3]
2? system. The

dashed line with the filled circles dissociates to [CaOH(H2O)]
? ?

H3O
?, whereas the solid line with the open squares to [CaOH]? ?

H3O
?(H2O)

Fig. 6 Minimum energy paths of the [Sr(H2O)2]
2? system. The

dotted line with the filled squares dissociates to [SrOH]? ? H3O
?

Fig. 7 Minimum energy paths of the [Ba(H2O)2]
2? system. The

dotted line with the filled squares dissociates to [BaOH]? ? H3O
?
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complex to the hydronium products remains small within

the range of ±5 kcal/mol.

Similar trends are observed for the tri-coordinated

aqueous metal clusters. The respective MEPs are depic-

ted in Figs. 8 and 9, and to the best of our knowledge,

there is no previous reference regarding their stationary

points in the literature. Briefly, the M2?(H2O)3 mini-

mum lies 12.0/8.4 kcal/mol (M = Sr/Ba) below the

M2?(H2O)2…H2O intermediate (albeit not a real mini-

mum for Ba), which in turn is 26.1/24.4 kcal/mol below

the water loss asymptote. The transition from

M2?(H2O)2…H2O to the MOH(H2O)]
? ? H3O

? asymp-

tote proceeds over a barrier of 36.0/42.6 kcal/mol, while

the channel leading to MOH? ? H3O
?(H2O) proceeds

via a smaller energy barrier (29.8/29.6 kcal/mol) and is

associated with a larger exothermicity (9.6/8.2 kcal/mol).

When going from Mg2? to Ba2?, the ionic radii increase

and consequently the charge density decreases along this

direction, therefore weakening the interaction between

M2?(H2O)2 and H2O. Consequently, the binding energy is

expected to become smaller going from Mg to Ba in

complete agreement with Figs. 2, 5, 8, and 9. In addition,

the H-bonded M2?(H2O)2…H2O intermediate energeti-

cally approaches the equilibrium M2?(H2O)3 structure at

the same time decreasing the already small barrier between

those two stationary points. Indeed, according to

Fig. 9, this transition for Ba is barrierless, and the

Ba2?(H2O)2…H2O ‘‘intermediate’’ is not a local minimum.

The case is exactly the same for the ‘‘doubly’’ H-bonded

intermediate, M2?(H2O)…H2O…H2O, which is 57.1 kcal/

mol higher than the M2?(H2O)3 minimum for Mg and

decreases to 46.1, 32.6, and 22.9 kcal/mol for Ca, Sr, and

Ba, respectively. The barrier from the former to the latter

structure is also decreasing and it actually vanishes for Sr

and Ba. A final remark has to do with the relative order of

the hydronium and Zundel-cation fragments: For Mg, the

hydronium loss channel produces fragments that are lower

in energy by 16.3 kcal/mol. On the other hand, Ba prefers

the Zundel-cation loss process by 10.0 kcal/mol; Ca and Sr

are somewhere in-between.

4 Energetics of the channels corresponding

to the water, hydronium, and Zundel-cation loss

In this section, we report the energetics of reactions (1),

(2), and (3) as a function of both the metal atom M and the

number n of water molecules in the cluster. The absolute

energies and geometric structures of all molecular species

involved in this section are reported in the Supporting

Information. Setting as zero of the energy scale, the energy

of the M2?(H2O)n minima, the energies of the products of

reactions (1), (2), and (3) are listed in Table 1. Besides our

own values, we also include available theoretical and

experimental ones from the literature for reaction (1). The

available data for reaction (2) are limited in the literature to

the smallest clusters and have already been discussed ear-

lier. We are not aware of any data related to reaction (3)

previously reported in the literature.

In Table 1, we list our MP2 results using two different

basis sets of double- and triple-f quality (MP2/ADZ and

MP2/ATZ, see Sect. 2). In general, the two basis sets give

values differing no more than a couple of kcal/mol in the

Fig. 8 Minimum energy paths of the [Sr(H2O)3]
2? system. The

dashed line with the filled circles dissociates to [SrOH(H2O)]
? ?

H3O
?, while the solid line with the open squares to [SrOH]? ?

H3O
?(H2O)

Fig. 9 Minimum energy paths of the [Ba(H2O)3]
2? system. The

dashed line with the filled circles dissociates to [BaOH(H2O)]
? ?

H3O
?, while the solid line with the open squares to [BaOH]? ?

H3O
?(H2O)
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water loss channel for all four metals; our results are in

agreement with previous MP2 calculations with different

basis sets. The value of 24.9 kcal/mol for the Mg case with

n = 6 given by Ref. [33] differs appreciably from our 30.7

and 30.3 kcal/mol values. Our numbers agree, however,

better with the 28.5 kcal/mol value of Ref. [23] at the MP2/

6-311 ? G* level of theory. Our ZPE uncorrected energy

differences are always larger than the experimental

hydration energies (see Table 1), as expected, but there is

better agreement when ZPE is included. Especially for the

smaller clusters, our ZPE-corrected values are within the

experimental error. For larger clusters, the difference

between our values and experiment is of the order of

2–3 kcal/mol and it is due to the fact that our calculations

are still missing some portion of electron correlation.

The two channels described by reactions (2) and (3)

involve the mono-hydroxides of the four metals under con-

sideration and the hydronium or the hydrated hydronium

(Zundel) cations. An interesting observation is the lowering

of the energy difference between M2?(H2O)n and the

Table 1 Energy differences (kcal/mol) between the M2?(H2O)n
minima (set as the zero of the energy scale) and the asymptotes

corresponding to the unimolecular water loss M2?(H2O)n-1 ? H2O,

the hydronium loss [MOH(H2O)n-2]
? ? H3O

?, and the Zundel-

cation loss [MOH(H2O)n-3]
? ? H3O

?(H2O) channels, M = Mg, Ca,

Sr, Ba and n = 1–6

n MP2/

ADZ

MP2/ATZa Theoryb Expt.c MP2/ADZ MP2/ATZa MP2/ADZ MP2/ATZa

[Mg(H2O)n-1]
2? ? H2O [Mg(H2O)n-2(OH)]

? ? H3O
? [Mg(H2O)n-3(OH)]

? ? H3O
?(H2O)

1 77.9 78.7 (76.8) 78.3

2 69.6 69.8 (67.6) 69.5 -4.7 -5.3 (-7.3)

3 56.9 57.3 (54.9) 56.9 53.3 (3.0) 2.3 2.0 (-0.4) 18.5 17.9 (14.1)

4 46.8 46.8 (44.4) 46.2 42.4 (2.5) 10.0 9.7 (7.8) 15.3 14.7 (10.5)

5 32.8 32.4 (29.4) 31.6 27.7 (2.1) 11.1 10.4 (8.0) 9.0 8.0 (3.6)

6 30.7 30.3 (27.8) 24.9 23.3 (1.8) 19.1 18.3 (15.6) 8.0 6.6 (2.3)

[Ca(H2O)n-1]
2? ? H2O [Ca(H2O)n-2(OH)]

? ? H3O
? [Ca(H2O)n-3(OH)]

? ? H3O
?(H2O)

1 58.1 57.1 (55.3) 53.9

2 50.7 49.9 (47.9) 47.1 49.6 (4.2) -5.1 -8.2 (-8.8)

3 46.6 45.2 (43.0) 43.0 40.6 (2.1) 6.2 4.1 (3.3) 7.8 2.9 (0.6)

4 41.8 40.3 (38.6) 37.3 33.7 (2.1) 15.6 13.8 (13.3) 14.4 10.3 (8.4)

5 33.7 32.6 (30.3) 30.6 26.8 (1.8) 19.8 18.2 (17.3) 15.5 12.3 (10.0)

6 30.6 30.3 (28.5) 25.3 23.5 (2.1) 24.5 25.1 (24.4) 16.6 14.4 (12.2)

[Sr(H2O)n-1]
2? ? H2O [Sr(H2O)n-2(OH)]

? ? H3O
? [Sr(H2O)n-3(OH)]

? ? H3O
?(H2O)

1 46.5 48.2 (46.6) 48.1 48.2 (1.4)

2 40.6 41.7 (39.9) 43.1 41.0 (1.2) -1.8 -5.6 (-6.4)

3 38.1 39.1 (37.3) 39.0 34.4 (1.2) 8.7 5.7 (5.0) 2.6 -0.5 (-2.5)

4 33.9 34.3 (32.7) 35.2 29.7 (1.2) 16.4 13.9 (13.7) 8.9 5.8 (4.1)

5 28.9 28.7 (26.5) 29.3 24.4 (0.9) 21.2 18.4 (17.7) 11.6 8.5 (6.6)

6 26.8 26.5 (24.7) 26.8 22.4 (0.7) 26.1 23.8 (23.5) 14.3 10.8 (8.9)

[Ba(H2O)n-1]
2? ? H2O [Ba(H2O)n-2(OH)]

? ? H3O
? [Ba(H2O)n-3(OH)]

? ? H3O
?(H2O)

1 38.9 41.0 (39.5) 41.3

2 33.8 35.3 (33.6) 37.2 1.0 -5.0 (-6.1)

3 32.8 33.9 (32.3) 33.7 10.1 5.5 (5.1) 0.0 -5.2 (-7.4)

4 29.1 29.8 (28.4) 30.5 25.6 (0.9) 16.0 12.9 (13.2) 5.5 1.2 (-0.1)

5 25.3 25.3 (23.5) 26.2 21.1 (0.6) 19.8 17.1 (17.6) 7.6 4.1 (3.2)

6 23.0 23.3 (21.8) 23.9 17.9 (0.6) 23.3 21.6 (22.6) 9.0 6.3 (5.8)

a ZPE-corrected values are given in parentheses
b Ab initio values from the literature. Values for Mg and Ca are from Ref. 33 (MP2/6-311 ??G(3d,3p)//MP2/6-311 ??G(3,3)), while values

for Sr and Ba are from Ref. 23 (MP2/6-31 ? G*//RHF/6-31 ? G*)
c Experimental hydration enthalpies from the literature. Mg values from Ref. 17 (CID), Ca values from Ref. 16 (CID), Sr values from Ref. 14

(CID), and Ba values from Ref. 5 (BIRD). Uncertainties are reported in parentheses
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asymptotes of the two channels going from the ADZ to the

ATZ basis sets. This holds true for all four metals, and it can

be up to 5.2 kcal/mol for the Ba2?(H2O)n ? [Ba(OH)]? ?

H3O
?(H2O) energy difference. A similar conclusion was

previously noted by Rao et al. [33] for similar systems: ‘‘An

increase in the quality of the basis set from double-f to triple-
f has a significant effect on the sequential binding energies,
irrespective of the geometries used.’’

Figures 10, 11, 12 and 13 display pictorially the MP2/

ATZ results of Table 1. The x axis traces the number n of

the water molecules while the y axis the relative energy

(kcal/mol). In those figures, the dashed lines correspond to

the energy of the M2?(H2O)n minima (set as the zero of the

energy scale), the plain solid lines to the products of the

water loss reaction (1), the solid lines with the closed

squares indicate the hydronium loss reaction (2), the

dashed lines with the filled squares indicate the barrier

height going from the reactants to the products of reaction

(2), and finally, the solid and dashed lines with the ‘‘9’’

symbol pertain to the products and the transition state of

the Zundel-cation loss reaction (3), respectively. The bar-

rier heights are taken from Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9

at the MP2/ADZ level of theory. The various asymptotes

are also listed on the right hand side of Figs. 10, 11, 12, and

13. In general, the trends with n shown in Figs. 10, 11, 12,

and 13 are similar for all metals, except for the channel

described by reaction (3) for Mg (shown with the solid

lines with the ‘‘9’’ symbol) that crosses the one described

by reaction (2) between n = 4 and 5. We will discuss the

origin of this difference in the subsequent Sect. 5.

It is clear that the water loss channel is endothermic for

every possible case of M and value of n. Note that this

channel is, as expected, less endothermic for large n values

since the insertion of a water molecule to the larger

ion–water complexes causes additional steric repulsion.

Additionally, for the same value of n, the water loss channel

follows a monotonic decrease in the binding energy of the

complex going from Mg to Ba. The reason is that all four

metals bear the same charge but have a different ionic

radius. For instance, the charge density on Ba2? is smaller

than that of Mg2? due to its larger size. Therefore, the

‘‘affinity’’ between Ba2? and water is smaller.

The two other channels are competitive for Mg and Ca,

whereas for Sr and Ba, the Zundel loss channel produces

more stable products (for n C 3). However, the hydronium

and Zundel-cation loss fragments are more difficult to

Fig. 10 Relative energies of the [Mg(H2O)n]
2? (dashed line at zero

energy), [Mg(H2O)n-1]
2? ? H2O (plain solid lines), [MgOH

(H2O)n-2]
? ? H3O

? (solid lines with filled squares), and [MgOH

(H2O)n-3]
? ? H3O

?(H2O) (solid lines with cross symbols) species.

The dashed lines with the filled square symbols correspond to the

barriers of the hydronium loss channel and the dashed lines with the

cross symbols to the barriers of the Zundel-cation loss channel

Fig. 11 Similar to Fig. 10, but for Ca

Fig. 12 Similar to Fig. 10, but for Sr

Fig. 13 Similar to Fig. 10, but for Ba
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observe experimentally. The reason that the water loss

channel is almost exclusively observed experimentally can

be mainly attributed to the large energy barriers that need to

be surmounted in order to produce the fragments described

by reactions (2) and (3). Specifically, for Mg, the ground-

state products [Mg(OH)(H2O)n-2]
? ? H3O

? for n = 2, 3,

and 4 are lower by at least 40 kcal/mol from the

Mg2?(H2O)n-1 ? H2O asymptote (see Fig. 10). For n = 4,

however, the barrier height is comparable to the dehydration

energy, and therefore, the two channels described by reac-

tions (1) and (2) are competitive. Judging from the trends

observed for n = 1–3, we expect the barrier heights to be

larger than the dissociation energy to neutral water for larger

n. Consequently, the highest number for reaction (2) to be

observed is n = 4, in complete agreement with the experi-

mental observations [7]. Following the same premise and

noting that the energy barriers follow an increasing trend as

n goes from2 to 3 (Figs. 11, 12, 13), we can speculate that the

cluster size for the reactions (2) and (3) to occur are n = 2 for

Ca, Sr, and Ba. The only case where the Zundel cation can

appear for Ca, Ba, or Sr is for n = 3. More accurate pre-

dictions necessitate the calculation of the transition states for

larger n values, also including ZPE corrections.

Observe that the energy difference between the two

charge separation channels (hydronium and Zundel-cation

loss reactions) is bigger for larger clusters and for heavier

metal cations. For the same reasons discussed earlier,

the binding energy of a single water molecule to a

[MOH(H2O)n]
? cluster is decreasing with increasing n and

atomic number of the metal. Hence, a water molecule

prefers (when n or the atomic number increase) to stay

more attached to H3O
? with a binding energy of 33.7 kcal/

mol (at MP2/ATZ) rather than to [MOH(H2O)n]
?.

5 Mono-hydroxide [M(H2O)n(OH)]1 clusters

In this section, we examine the case of the mono-hydroxide

water complexes of the titled metal dications, [MOH

(H2O)n]
?. We specifically report the energy needed to

detract a water molecule from these species (see Table 2).

Additionally, for the case of n = 2, we constructed the

corresponding MEPs (see Fig. 14). It is shown that for

n = 2 the lowest energy path is the plain water loss

channel and that the products of the hydronium loss pro-

cess, M(OH)2 ? H3O
?, are much higher in energy.

In Table 2, we list the dissociation energies of the fol-

lowing reaction:

MOH H2Oð Þn
� �þ! MOH H2Oð Þn�1

� �þþH2O: ð4Þ
Similar to the case of the M2?(H2O)n clusters, the dis-

sociation energy is a decreasing function of both n and the

ionic radii. Namely, it is larger for Mg, which has the

smallest ionic radius, and smaller for Ba. It is also larger

for n = 1 and smaller for n = 4. Interestingly, the range of

the binding energies, i.e., the difference between the n = 1

and n = 4 cases, is larger for Mg (27.6 kcal/mol),

decreasing to 9.6 (Ca), 6.8 (Sr), and 4.5 (Ba) kcal/mol. In

general, we observe smaller differences between the results

with the ADZ and ATZ basis sets than for the case of the

M2?(H2O)n clusters. Our ATZ results for Ba are in

agreement with the CCSD(T) results of Ref. [18], while

Table 2 Water detachment energies (kcal/mol) corresponding to the

reaction [MOH(H2O)n]
? ? [MOH(H2O)n-1]

? ? H2O, M = Mg, Ca,

Sr, Ba and n = 1–4

n MP2/

ADZ

MP2/

ATZa
Theoryb MP2/

ADZ

MP2/

ATZa
Theoryb

Mg Ca

1 50.0 50.0 (48.0) 59.1 35.3 33.0 (30.9) 36.7

2 39.1 39.1 (36.3) 46.2 32.5 30.6 (28.6) 34.3

3 31.7 31.7 (29.1) 38.4 29.5 28.2 (26.3) 31.7

4 22.6 22.4 (20.2) 27.8 25.9 23.4 (21.4)

Sr Ba

1 27.6 27.9 (26.0) 23.7 23.4 (21.1) 23.8

2 26.1 26.0 (24.0) 23.2 22.4 (20.3) 21.4

3 24.1 24.2 (22.4) 21.5 21.1 (19.1) 20.3

4 21.8 21.1 (18.9) 19.5 18.9 (16.8)

a ZPE-corrected values are given in parentheses
b Ab initio values from the literature: Ref. 22 for Mg (MP4SDTQ/6-

31G*//SCF/6-31G*), Ref. 26 for Ca (MP2//SCF, 9s7p3d/(Ca),

6-31G*/(O,H)), and Ref. 18 for Ba (CCSD(T)//DFT/mPW1PW91)

Fig. 14 Minimum energy paths for the [MOH(H2O)2]
? clusters,

where M = Mg, Ca, Sr, and Ba. The dashed lines on the top part of

the Figure mark the various M(OH)2 ? H3O
? asymptotes
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they differ more than 5 kcal/mol for Mg from the

MP4SDTQ results of Ref. [22]. The MP2 results from Ref.

[26] for Ca are in good agreement with ours.

It is noteworthy that a water molecule binds stronger to

M2?(H2O)n?1 compared to [MOH(H2O)n]
? (see Tables 1, 2)

due to the stronger Coulombic interaction with a doubly

charged metal core. The suggested [24, 29] electronic

structure M2?(H2O)n(OH
-) indicates the same charge–

dipole interaction between the additional water and the

metal center for the two systems. However, the negatively

charged OH- group can cause the opposite effect by

reducing the binding energy.

The results of Table 2 further explain the qualitative

difference seen in the trend of the energetics of channel (3)

for Mg (indicated by the solid lines with the ‘‘9’’ symbol in

Fig. 10) when compared to the rest of the metals (Figs. 11,

12, 13). The energy levels of reaction channel (3) cross the

ones for channel (2) between n = 4 and 5 for Mg, whereas

for all other metals, there is no such crossing. The reason is

that the [MOH(H2O)n]
? water detachment energies for the

Mg n = 1 and 2 clusters (cf. Table 2) are larger than the

hydronium–water interaction energy (33.7 kcal/mol at

MP2/ATZ), whereas for all other metals, they are smaller

than this value, and therefore, the energy levels for channel

(3) always lie below the ones for channel (2) for Ca, Sr,

and Ba.

In Fig. 14, we show the MEPs corresponding to the

removal of one water molecule from [MOH(H2O)2]
?.

These MEPs are constructed by fixing the distance between

the metal and the oxygen of the departing water molecule

at different lengths and optimizing all other geometrical

parameters. After a plateau of width larger than 1 Å for

distances R[ 3 Å, the MEPs converge smoothly to the

[MOH(H2O)]
? ? H2O asymptote. The aforementioned

plateau is caused by the hydrogen bond between the water

that is attached to the metal and the one that is departing.

The energy of the fragments M(OH)2 ? H3O
? is shown

with dashed lines for the various metals and ranges from

*38 kcal/mol (Mg) to *78 kcal/mol (Ba) above the

[MOH(H2O)]
? ? H2O lowest energy asymptote.

The hydration energy of 33.7 kcal/mol (MP2/ATZ) for

H3O
? is generally larger (except for Mg and n = 2) than

the binding energy of a water to [MOH(H2O)n-1]
? indi-

cating that the M(H2O)n-3(OH)2 ? H3O
?(H2O) fragments

will be closer in energy to the [MOH(H2O)n-1]
? ? H2O

ones. Therefore, the possibility exists for [MOH(H2O)n]
?

(n C 3) to dissociate to M(H2O)n-3(OH)2 ? H3O
?(H2O),

especially for Ba and large n. The Supporting Information

includes the geometries and energies of the M(OH)2 mol-

ecules as well as the energy required to detach a hydroxide

from [M(H2O)n(OH)]
?, i.e., the dissociation energies for

the [M(H2O)n(OH)]
? ? [M(H2O)n]

2? ? OH- reaction.

6 Synopsis

We examined the MEPs along which a water molecule can

be detached from the pure and mono-hydroxide water

complexes of the alkaline earth metals Mg2?, Ca2?, Sr2?,

and Ba2?. Three different channels were investigated: one

leading to the unimolecular water loss and two leading to

the loss of a hydronium and a Zundel (singly hydrated

hydronium) cation. For the cases with two, three, and four

(only for Mg) water molecules, we constructed MEPs at the

MP2/ADZ level of theory, while for the larger systems, we

investigated only the reactants and products of the above

three processes at the MP2/ATZ level. In the case of the

mono-hydroxide compounds, we report the MEPs for the

systems with two water molecules and the energetics with

up to four water molecules.

Despite the voluminous work reported in the literature

for the systems studied presently, this is the first systematic

work encompassing all four metals with up to six water

molecules and three dissociation channels. Our results are

consistent with several experimental observations, such as

the fact that only the small clusters dissociate to fragments

involving the hydronium cation. Additionally, we propose

the possibility of the production of the Zundel cation for

the heavier metals with three water molecules. The large

energy barriers of the charge separation channels for the

largest complexes prevent them from being observed,

although they are more exothermic than the water loss

ones. Finally, mono-hydroxide water clusters prefer the

pure water loss channel, because it is energetically more

favorable.

Acknowledgments We acknowledge useful discussions with Drs.

Nikolai Petrik and Gregory Kimmel of PNNL. This work was sup-

ported by the US Department of Energy, Office of Basic Energy

Sciences, Division of Chemical Sciences, Geosciences and Biosci-

ences. Pacific Northwest National Laboratory (PNNL) is a multi-

program national laboratory operated for DOE by Battelle. This

research used resources of the National Energy Research Scientific

Computing Center, which is supported by the Office of Science of the

US Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. Spears KG, Fehsenfeld FC (1972) J Chem Phys 56:5698

2. Blades AT, Jayaweera P, Ikonomou MG, Kerbale P (1990) J

Chem Phys 92:5900

3. Peschke M, Blades AT, Kerbale P (1998) J Phys Chem A

102:9978

4. Pye CC, Rudolph WW (1998) J Phys Chem A 102:9933

5. Rodriguez-Cruz SE, Jockush RA, Williams ER (1999) J Am

Chem Soc 121:8898

6. Barran PE, Walker NR, Stace AJ (2000) J Chem Phys 112:6173

7. Shvartsburg AA, Michael Sin KW (2001) J Am Chem Soc

123:10071

Theor Chem Acc (2014) 133:1450

123Reprinted from the journal 339



8. Markham GD, Glusker JP, Bock CW (2002) J Phys Chem B

106:5118

9. Wong RL, Paech K, Williams ER (2004) Int J Mass Spectrom

232:59

10. Bush MF, Saykally RJ, Williams ER (2007) Chem Phys Chem

8:2245

11. Carl DR, Moison RM, Armentrout PB (2007) Int J Mass Spec-

trom 265:308

12. Carl DR, Moison RM, Armentrout PB (2009) J Am Soc Mass

Spectrom 20:2312

13. Bush MF, O’Brien JT, Prell JS, Wu C-C, Saykally RJ, Williams

ER (2009) J Am Chem Soc 131:13270

14. Carl DR, Chatterjce BK, Armentrout PB (2010) J Chem Phys

132:044303

15. Cabavillas-Vidosa I, Rossa M, Pino GA, Ferrero JC, Cobos CJ

(2012) Phys Chem Chem Phys 14:4276

16. Carl DR, Armentrout PB (2012) J Phys Chem A 116:3802

17. Carl DR, Armentrout PB (2013) Chem Phys Chem 14:681

18. Cabavillas-Vidosa I, Rossa M, Pino GA, Ferrero JC, Cobos CJ

(2013) J Phys Chem A 117:4997

19. Kaupp M, Schleyer PR (1992) J Phys Chem 96:7316

20. Klobukowski M (1992) Can J Chem 70:589

21. Bauschlicher CW Jr, Sodupe M, Partridge H (1992) J Chem Phys

96:4453

22. Watanabe H, Iwata S, Hashimoto K, Misaizu F, Fuke K (1995) J

Am Chem Soc 117:755

23. Glendening ED, Feller D (1996) J Chem Phys 100:4790

24. Kaufman Katz A, Glusker JP, Beebe SA, Bock CW (1996) J Am

Chem Soc 118:5752

25. Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW

(1996) J Chem Phys 100:3488

26. Watanabe H, Iwata S (1997) J Phys Chem A 101:487

27. Pavlov M, Siegbahn EM, Sandström M (1998) J Phys Chem A

102:219

28. Peschke M, Blades AT, Kebarle P (1999) Int J Mass Spectrom

185/186/187:685

29. Beyer M, Williams ER, Bondybey VE (1999) J Am Chem Soc

121:1565

30. Dudev T, Lim C (1999) J Phys Chem A 103:8093

31. Merrill GN, Webb SP, Bivin DB (2003) J Phys Chem A 107:386

32. Dang LX, Schenter GK, Glezakou VA, Fulton JL (2006) J Phys

Chem B110:23644

33. Sirinivasa Rao J, Dinadayalane TC, Leszczynski J, Narahavi

Sastry G (2008) J Phys Chem A 112:12944

34. Lei XL, Pan BC (2010) J Phys Chem A 114:7595

35. Gonzalez JD, Florez E, Romero J, Reyes A, Restrepo A (2013) J

Mol Model 19:1763

36. Miliordos E, Xantheas SS (2013) Phys Chem Chem Phys. doi:10.

1039/c3cp53636j

37. Baes CFJ, Mesmer RE (1986) The hydrolysis of cations. Krieger

Publishing Company, Malabar, FA

38. Moore CE (1971) Atomic energy levels as derived from the

analysis of optical spectra. COM-72-50283, US Department of

Commerce, National Technical Information Service, National

Bureau of Standards, Washington, DC

39. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD,

Mallard WG (1988) J Phys Chem Ref Data 17(Suppl 1):1

40. Dunning TH Jr (1989) J Chem Phys 90:1007

41. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys

96:6796

42. Woon DE, Peterson KA, Dunning TH Jr, in preparation, and as

implemented in MOLPRO (ref [45])
43. Koput J, Peterson KA (2002) J Phys Chem A 106:9595

44. Lim IS, Stoll H, Schwerdtfeger P (2006) J Chem Phys

124:034107

45. MOLPRO, version 2010.1, a package of ab initio programs,

Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani
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Abstract The potential energy surface of the stacked

5-bromouracil/uracil (BrU/U) dimer has been investigated

in the gas phase and in solution (water and 1,4-dioxane),

modeled by a continuum solvent using the polarizable

continuum model. Minima and transition states were

optimized using DFT (the M06-2X density functional and

the 6-31?G(d) basis set). Six stacked gas-phase BrU/U

minima were located: four in the face-to-back orientation

and two face-to-face. The global minimum in the gas phase

is a face-to-face structure with a twist angle of 60� and a

zero-point energy-corrected interaction energy of

-10.7 kcal/mol. The BrU/U potential energy surface is

geometrically and energetically similar to that of U/U

(Hunter and Van Mourik in J Comput Chem 33:2161,

2012). Energy calculations were also performed on

experimental geometries of stacked dimers (47 containing

BrU stacking with either adenine, cytosine, guanine or

thymine and 51 containing thymine also stacking with one

of those four bases) taken from DNA structures in the

Protein Data Bank. Single-point interaction energies were

computed at different levels of theory including MP2,

CCSD(T) and DFT using the mPW2PLYP-D double-

hybrid functional augmented with an empirical dispersion

term, using basis sets ranging from aug-cc-pVDZ to aug-

cc-pVQZ. No strong evidence was found for the suggestion

that the mutagenicity of BrU is due to enhanced stacking of

BrU compared to the corresponding stacked dimers

involving thymine.

Keywords 5-Bromouracil � DFT � Density
functional theory � Stacking � Dispersion �
Mutagenicity

1 Introduction

The structure of DNA is crucial for its replicatory function.

One of the two major forces determining the structure of

the helix—the better understood one—is the specific

Watson–Crick base pairing (interstrand hydrogen bonding)

of adenine (A) with thymine (T) and of guanine (G) with

cytosine (C). However, it is by now well established that

the intrastrand p-stacking of adjacent bases is also crucial

and may be quantitatively even more significant than base

pairing as a thermodynamic driving force for the stabil-

ization of DNA [1–4].

A comprehensive understanding of stacking in vivo is

yet to be achieved, since it turns out to be a rather subtle

blend of electrostatic, dispersive, solvent-driven and other

effects, and is highly geometry-dependent. However,

recent progress on both the theoretical and experimental

sides has been impressive—see, e.g., Šponer et al. [4, 5] for

reviews of insights from quantum chemical studies, and

Kool [1] for an earlier review of experimental knowledge.

To investigate the balance of different energetic con-

tributions to stacking, one very fruitful experimental

approach has been to substitute bases from beyond the

natural set of nucleic acid components [uracil (U), thymine

(T), adenine (A), cytosine (C) and guanine (G)]. For
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retirement.
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example, Kool et al. [6] studied the effects of adding var-

ious natural and non-natural dangling nucleosides into

DNA 7-mers (dangling nucleosides lie at the end of a DNA

strand but have no hydrogen bonding partner on the other

strand, i.e., they take part in stacking but not base pairing).

They found that stacking strength correlates quite well with

surface area, and to a certain extent with polarizability, but

does not appear to require a large dipole moment (in fact it

decreases with polarity for constant surface area).

Despite recent progress, the challenge of correctly

describing stacking interactions in computational chemis-

try remains non-trivial and is a key criterion in the devel-

opment and assessment of new correlated electronic

structure methods (especially density functionals).

The London dispersion force, a second-order correlation

effect, is undoubtedly a major stabilizing component of

stacking [1, 4, 7–10] (and of aromatic interactions in

general) [11], but it represents a particular difficulty for

DFT. Most standard GGA and hybrid GGA functionals,

such as B3LYP, do not capture dispersion at all and cannot

be used for p-stacked systems [5, 12, 13]. MP2 does cap-

ture dispersion, but tends to overbind these kinds of com-

plexes as it approaches the complete basis set limit, unless

the coupled cluster correction (the difference between MP2

and, typically, CCSD(T) calculated in a small basis set) is

included [5, 14].

Along with some other methods, MP2 is also highly

susceptible to basis set superposition error (BSSE) when

small basis sets are used, causing an artificial attraction

which is often highly geometry-dependent and can there-

fore produce false energy minima or hide true ones [15–

17]. The counterpoise procedure (CP) of Boys and Ber-

nardi [18] is therefore recommended.

In this study of the stacking of 5-bromouracil, uracil and

thymine, we use the highly parameterized non-local density

functional M06-2X [19] and the dispersion-corrected

double-hybrid functional RI-mPW2PLYP-D [20, 21].

M06-2X contains a large number of parameters obtained

through the use of training sets that contain dispersion-

dominated complexes. It is therefore expected to describe

dispersion effects well, and recent studies have supported

this [22–27]. Hunter and Van Mourik used this functional

to explore the energy landscapes of the stacked U/U (ura-

cil) and T/T (thymine) dimers, and found an extremely

good agreement between the CP-corrected M06-2X/6-

31?G(d) interaction energies and the available CCSD(T)/

CBS data [28]. In preliminary calculations for the present

study, we calculated the interaction energies of five of

Hunter and Van Mourik’s M06-2X/6-31?G(d)-optimized

U/U and T/T dimers using RI-mPW2PLYP-D/aug-cc-

pVTZ, and noted that they were all reproduced to within

0.5 kcal/mol.

Our group is interested in the thymine analogue 5-bro-

mouracil (BrU) due to its well-established mutagenicity

[29–32]. The mutagenic behavior of BrU is believed to be a

result of its ability to incorporate into DNA in place of

thymine, and then mispair with guanine, rather than ade-

nine. The conventional model of the BrU-G mispair con-

tains BrU in its enolized form (containing a hydroxyl group

at O4), paired with guanine in pseudo-Watson–Crick

fashion via three hydrogen bonds (Scheme 1, left). The

assumption is that the bromine substituent somehow sta-

bilizes the enol tautomer, and the enol-containing mispair

is protected against enzymatic repair due to its stereo-

chemical match to the correct G-C pair, hence the greater

tendency of BrU to form stable mutagenic mispairs.

Arguing against the enol model, however, various

experimental groups have noted that the observed BrU-G

mispairs in synthetic polynucleotides contain BrU hydro-

gen bonding with G in wobble pair (non-Watson–Crick)

fashion, implying the canonical keto tautomer of BrU

(Scheme 1, right). They have suggested that the stabiliza-

tion of the mispair is caused by enhanced stacking com-

pared to the corresponding T-G and U-G mispairs, and that

this, rather than tautomerization, lies behind the mutage-

nicity of BrU [30–32].

The present paper describes a comprehensive search of

the energy landscape of the stacked dimer formed by BrU

and U, stacking in both face-to-back and face-to-face ori-

entations (see below for the definition of these terms). This

work complements the earlier study by Hunter and Van

Mourik, in which all minima and most transition states

Scheme 1 The enolized (left) and wobble pair (right) structures of the 5-bromouracil-guanine base mispair
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(TSs) for the stacked U/U and T/T dimers were located

[28]. In the current paper, we will also present calculations

comparing the relative stacking strengths of BrU and T in

fixed (non-optimized) geometries taken from experimental

DNA structures, which contain only face-to-back stacking.

Considered together, these studies allow us to explore the

effect of a bromine substituent on the stacking behavior of

pyrimidine-type nucleic acid bases.

2 Methodology

2.1 BrU/U dimers

5-Bromouracil/uracil stacked structures were created by

placing the two base molecules in a parallel configura-

tion. Two geometries were considered: face-to-back (one

molecule exactly on top of the other) and face-to-face

(with U rotated by 180� around the C2–C5 axis so that

its N1 and N3 atoms are above the N3 and N1 atoms,

respectively, of BrU; see Scheme 2 for the atom label-

ing). Dummy atoms (X) were placed in the geometric

centers of each ring. The vertical separation between the

bases was chosen as 3.4 Å, as this is a typical value in

B-form DNA [33]. Rotational energy profiles were cre-

ated by rotating one base around the geometric center of

its ring, while keeping the other fixed, by varying the

O2(BrU)–X(BrU)–X(U)–O2(U) torsion angle (stwist)
between 0 and 355� with a step size of 5�. All other

geometrical parameters were held constant.

Interaction energies were calculated at each step using

the M06-2X [19] functional and the 6-31?G(d) basis set.

The counterpoise (CP) method [18] was used to correct for

BSSE. The CP-corrected interaction energies follow from:

DECP ¼ ECP
BrU=UðBrU/UÞ � EBrU BrUð Þ � EUðU) ð1Þ

The subscripts refer to the molecular system, while the

round brackets indicate whether the calculation was done at

the optimized geometry of the stack (BrU/U) or at the

monomer-optimized geometries (BrU and U). The CP-

corrected stacked dimer energies are obtained as follows:

ECP
BrU=U ¼ EnoCP

BrU=UðBrU/UÞ�BSSE ð2Þ

BSSE ¼ E
fBrU=Ug
BrU ðBrU/UÞ þ E

fBrU=Ug
U ðBrU/UÞ

� E
fBrUg
BrU ðBrU/UÞ � E

fUg
U ðBrU/UÞ ð3Þ

The superscripts in curly brackets indicate whether the

calculation is done in the basis set of the dimer, {BrU/

U}, or in the monomer basis sets, {BrU} and {U}. The

monomer geometries in the scans were taken to be M06-

2X/6-31?G(d)-optimized geometries (optimized in the

gas phase for the gas-phase scans or in the corresponding

solvent in the solution-phase scans described below).

With this choice of monomer geometries, E
fBg
B ðBrU/UÞ

and EBðBÞ (B = U or BrU) are identical in Eqs. 1–3.

The calculations were performed using the ‘‘Scan’’ and

‘‘Counterpoise’’ keywords in Gaussian 09 [34].

The calculations were performed in the gas phase and

also in solution. The solution was modeled by the

polarizable continuum model (PCM), using the integral

equation formalism variant (IEFPCM), via the ‘‘SCRF’’

keyword in Gaussian 09. The cavity containing the solute

was constructed by placing spheres around each solute

atom (including all hydrogens) using universal force field

(UFF) radii. Note that this procedure does not yield the

free energy of stacking in solution, but rather a modified

electronic energy that differs from the gas phase term due

to the electrostatic interaction of the solute with the

reaction field of the solvent, the screening of the elec-

trostatic interaction of the bases, and other effects such as

that associated with creating the solute cavity [4]. Two

different solvents were used: water (dielectric constant

e = 78.3553) and 1,4-dioxane (e = 2.2099), the latter of

which was chosen because it is a typical solvent of low

dielectric constant used in the crystallization of bio-

organic compounds.

The minima obtained in the potential energy scans were

subsequently fully geometry-optimized at the same level of

theory, M06-2X/6-31?G(d). TSs were located by using the

synchronous transit-guided quasi-newton (STQN) method

[35], using the QSTn (n = 2 or 3) keywords, in some cases

followed by conventional transition state searches using the

‘‘Opt = TS’’ keyword. The geometry optimizations and

transition state searches were carried out using Gaussian’s

‘‘Tight’’ convergence criteria. All calculations employed

Gaussian’s ‘‘Ultrafine’’ integration grid (containing 99

radial shells and 590 angular points per shell). Harmonic

vibrational frequencies were computed at the same levels

of theory to verify the nature of the stationary points

(minima or TSs) and to compute zero-point energy (ZPE)

corrections to the interaction energies.

N1

C2

N3C4

C5

C6

O2

O4

X

lower

upper

Br

Scheme 2 Atom labeling in the stacked BrU/U dimer
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In the gas-phase calculations, the counterpoise correc-

tion was applied throughout the geometry optimizations

and transition state searches. In the PCM calculations, the

counterpoise correction was applied only to the (non-

counterpoise) optimized structures, in separate calculations

without the ‘‘SCRF’’ keyword, as it is not possible to

implement counterpoise during a PCM calculation.

In addition to the optimized twist angle, we also com-

puted the vertical distance between two stacked bases

(analogous to the rise of a helical base step), the horizontal

displacement from the position where one base is exactly on

top of the other (analagous to the slide) and the angle

between the two planes (analogous to the tilt) of the opti-

mized stacked dimers. The fixed values of these parameters

during the rotational scans had been as follows: vertical

separation = 3.4 Å, horizontal separation = 0 Å and angle

between planes = 0�. The optimized geometrical parame-

ters were calculated with an in-house Fortran 90 program,

using a method that has also been previously described in

Ref. 28. The vertical distance was calculated as the scalar

product of the vector connecting the midpoints of the base

rings (m1m2
���!; calculated as the average of the atomic coor-

dinates of the C2, C4 and C6 atoms) and the plane vector of

one of the bases (where a plane is defined by the C2, C4 and

C6 atoms). This corresponds to the component of m1m2
���! that

is perpendicular to the base plane. As the two bases are not

completely parallel in the optimized structures, this scalar

product depends on which base’s plane vector is used. The

vertical distance presented herein is therefore computed as

the average of the two values obtained when using the first

or the second base’s plane vector. The horizontal distance is

calculated as the component of the vector connecting the

two midpoints (m1m2
���!) that is in the plane of one base. Like

for the vertical separation, the horizontal separation is cal-

culated as the average of the two values obtained when

using the first or the second base’s plane vector. The angle

between the planes of the two bases is simply the angle

between their plane vectors.

The gas-phase minima obtained with M06-2X/6-

31?G(d) were subsequently re-optimized with the disper-

sion-corrected double-hybrid functional RI-mPW2PLYP-D

[20, 21] using ORCA 2.8 [36]. This functional, developed

by Grimme, consists of a modified Perdew–Wang

exchange term with a 55 % Hartree–Fock contribution, a

LYP correlation term with a 25 % perturbative (RI-MP2)

contribution employing resolution of the identity (RI) [37]

and a D2-type dispersion correction [38]. The optimiza-

tions were performed using the aug-cc-pVDZ basis set.

Additionally, single-point energies were calculated using

the aug-cc-pVTZ basis set, both for the re-optimized

structures and for the original structures obtained with

M06-2X.

2.2 Experimental BrU and T stacked structures

To obtain further information on the stacking strength of

BrU relative to the naturally occurring DNA bases, we

have also performed energy calculations on experimental

geometries of stacked dimers taken from DNA structures in

the Protein Data Bank (PDB) [39]. To this end, we located

28 PDB entries for experimental DNA molecules con-

taining dBrU nucleotides in the chain. From these struc-

tures, 47 different stacked dimers containing BrU stacking

with either A, C, G or T were created. These dimers were

created by isolating two adjacent nucleotides within a

strand (i.e., deleting all other nucleotides, as well as any

waters), then removing all the sugar-phosphate backbone

atoms, and saturating the bases by adding hydrogen atoms

in positions corresponding to the canonical tautomers. The

monomers were not methylated at any position: the N1

atoms were simply capped with hydrogen. The hydrogen

positions were optimized as described below.

Since we are concerned with DNA (as opposed to

RNA), the most relevant comparison to be made is between

the stacking strengths of BrU and T—in the context of

BrU’s mutagenicity, it is necessary to explain why the

BrU-G mispair is more stable than the T-G mispair in

DNA. We therefore also isolated 51 dimers containing T

stacking with A, C, G or T, from 17 separate DNA poly-

nucleotides in the PDB (four of which were also among the

BrU-containing entries). All the PDB entries used to gen-

erate structures in this study are listed in the Supplementary

Material, Table S1. The resulting total of 98 stacked dimers

can be sorted into fifteen types according to sequence:

A/BrU, BrU/A, C/BrU, BrU/C, G/BrU, BrU/G, T/BrU,

BrU/T, A/T, T/A, C/T, T/C, G/T, T/G and T/T. The base

listed first lies toward the 50 end of the strand, while the

base listed second lies toward the 30 end. Note that in DNA,
any given base pair of type X/Y (using this notation) is

geometrically distinct from Y/X.

To perform the calculations, firstly, the H atomic posi-

tions were geometry-optimized, while keeping all other

atoms frozen, using the ‘‘ModRedundant’’ keyword in

Gaussian 09. These partial optimizations were performed

on the stacked base dimers (rather than the isolated

monomers) at the M06-2X/6-31?G(d) level of theory. The

absence of full optimization of the dimers results in the use

of unrelaxed experimental geometries, meaning that any

experimental errors will also be present in the structures

used in the calculations.

Single-point interaction energies of the 98 stacked

dimers were then calculated at the RI-mPW2PLYP-D/aug-

cc-pVTZ level of theory. The counterpoise-corrected

interaction (stacking) energies Eint were defined as:

Eint ¼ EAB � EA � EB ð4Þ
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where EAB, EA and EB are the energies of the complete

dimer, the first base (toward the 50 end of the helix) and the

second base (toward the 30 end), respectively. The energies
of each isolated monomer were calculated in the presence

of ghost orbitals associated with the other monomer. This

‘‘vertical’’ counterpoise method takes into account BSSE

but not deformation energy, which we have neglected

because the monomers are in non-optimized geometries

taken directly from experimental data. Due to memory

issues, the counterpoise correction for one of the A/T

dimers (PDB 1A35) could not be performed with RI-

mPW2PLYP.

Single-point interaction energies were also calculated at

the following levels of theory: df-MP2/aug-cc-pVDZ, df-

MP2/aug-cc-pVQZ and df-LCCSD(T0)/aug-cc-pVDZ.

These calculations, which employed the density fitting (df)

and (for coupled cluster only) local (L) orbital approxi-

mations [40], were performed using MOLPRO 2010.1 [41].

The T0 extension in df-LCCSD(T0) indicates the inclusion

of perturbative noniterative local triple excitations [42, 43].

Orbital localization was carried out according to the Pipek-

Mezey procedure [44]. The vertical counterpoise correction

was applied through the use of ghost orbitals, as above. By

focal-point analysis [45], assuming that the coupled cluster

correction to df-MP2 is already converged at the aug-cc-

pVDZ basis set level, the df-LCCSD(T0)/aug-cc-pVQZ

energies of each dimer and monomer were estimated as:

E
aug�cc�pVQZ

df�LCCSD T0ð Þ � E
aug�cc�pVQZ
df�MP2 þ E

aug�cc�pVDZ

df�LCCSDðT0Þ
� E

aug�cc�pVDZ
df�MP2 ð5Þ

where the quantity [E
aug�cc�pVDZ

df�LCCSDðT0Þ � E
aug�cc�pVDZ
df�MP2 ] is the

coupled cluster correction, DCC. It is established that this

correction converges with respect to basis set faster than

the coupled cluster energy itself does [5, 46]. The MP2

method systematically overbinds aromatic stacked clusters,

but DCC (which is nearly always repulsive) is known to

remedy this [5, 14].

3 Results

3.1 BrU/U dimers

Figure 1 shows the M06-2X/6-31?G(d) gas-phase inter-

action energy of the face-to-back BrU/U stacked dimer as a

function of the stwist angle. The BSSE is fairly large,

varying between 3.05 kcal/mol (when stwist = 320�) and

3.67 kcal/mol (when stwist = 95�). Energy minima are

located at stwist = 85�, 170�, 205� and 290�. Energy

maxima are located at stwist = 5�, 120�, 185� and 240�.
The interaction energies around the highest maximum, at

5�, are positive (repulsive), presumably due to the use of a

rigid scan. Full relaxation of the monomer geometries and

intermonomer geometry would lead to negative interaction

energies. Note that all fully optimized minima and TSs

(including the one near 5� (with stwist = 9�) )have negative
interaction energies (Table 1).

Figure 2 shows the interaction energies of the face-to-

back BrU/U stacked dimer in PCM solvent (water and 1,4-

dioxane) as a function of the stwist angle. The BSSE must

be calculated without taking into account the influence of

the solvent. In both solvents, there are four minima, located

at stwist = 90�, 155�, 210� and 295� in water and 90�, 165�,
205� and 290� in 1,4-dioxane. The maxima are at 0�, 125�,
180� and 245� in water and 5�, 120�, 185� and 245� in 1,4-

dioxane.

The water curve is much flatter than the gas and 1,4-

dioxane curves, with only 2.3 kcal/mol separating the

highest maximum (at 0�) from the deepest minimum (at

295�). This reduction in the twist dependence of stacking in
a highly polar solvent has been observed before and is due

to solvent screening, which contributes a free energy term

that is stabilizing for geometries with unfavorable elec-

trostatic interactions and vice versa, and thus largely

compensates for the electrostatic contribution to stacking

[4].

Full geometry optimization of the four gas-phase min-

ima yielded three distinct structures, since optimization

from stwist = 165� and stwist = 205� yielded identical

structures. All three optimized minima were confirmed as

true minima by the absence of negative frequencies of the

calculated harmonic vibrational modes. Table 1 shows the

interaction energies and geometrical parameters of all face-

to-back minima (and TSs) in the gas phase. All interaction

energies are negative, including those of the TSs. The most

stable structure has a twist angle of 287�, and its CP-cor-

rected, ZPE-corrected M06-2X/6-31?G(d) interaction

energy is -9.8 kcal/mol. However, it is almost isoenergetic

with the minimum at stwist = 184�, which has an

Gas-phase, face-to-back

Fig. 1 Interaction energies as a function of the twist angle for the

gas-phase face-to-back BrU/U stacked dimer calculated at the M06-

2X/6-31?G(d) level of theory
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interaction energy of -9.5 kcal/mol. The third minimum is

less stable (DECP = - 7.2 kcal/mol). None of these

structures are perfectly planar or parallel, as can be seen

from the nonzero values of the horizontal separation of the

two bases and the angles between their planes. All three

minima also exhibit a decrease in vertical separation, to

*3.1 Å, compared with the fixed value of 3.4 Å in the

rotational scans.

Transition states were successfully located by launching

QSTn searches from three of the four maxima in the gas-

phase energy profile. However, the TS obtained from

stwist = 120� (optimized twist: 189�) has an interaction

energy of -7.7 kcal/mol, more negative than the minimum

obtained with stwist = 68� (-7.2 kcal/mol), suggesting that

it does not connect that minimum with any other. By

‘‘following the imaginary frequency’’—performing geom-

etry optimizations on structures obtained from the TS by

adding or subtracting the magnitudes of the displacement of

each atom in the imaginary vibrational mode—two mini-

mum-energy structures were obtained: one was identical to

the minimum with stwist = 184�, while the other was sim-

ilar to that one (stwist = 183�) but with a larger horizontal

separation (2.37 Å as opposed to 1.51 Å) and a stabilization

energy of -8.2 kcal/mol. This structure thus represents a

fourth minimum on the BrU/U gas-phase face-to-back

stacking energy surface. It is presumably linked to the

minimum with stwist = 184� via the TS with stwist = 189�,
which has an intermediate horizontal separation of 1.92 Å.

The optimized minima and TSs are depicted in Fig. 3.

Four energy minima and four TSs were obtained in the

case where water was used as a PCM solvent. Their geo-

metrical parameters and interaction energies are listed in

Table 2. The most stable minimum has an optimized twist

of 293� and an interaction energy of -5.2 kcal/mol, i.e., it

is geometrically similar to the gas-phase minimum but less

tightly bound. Note that the TS obtained from stwist = 245�
has an optimized twist angle of 313�, which does not lie

between those of the minima it apparently connects (242�
and 293�).

The situation with the optimized face-to-back structures

in 1,4-dioxane, as shown in Table 3, is more complicated.

Only three distinct energy minima were found, because

optimization from stwist = 205� yielded the same structure

as starting from stwist = 290�, with an optimized twist of

288�. Optimization from the minimum with stwist = 90�
originally yielded a structure with one imaginary fre-

quency, but ‘‘following’’ this frequency with one set of

imaginary atomic displacements resulted in optimization to

a true minimum (the one shown in the table). (Using the

other set of displacements resulted in another, similar

structure with one imaginary frequency.)

Four distinct TSs in 1,4-dioxane were found. However,

one of these, located by starting from stwist = 245�, was
not stacked but L-shaped (angle between planes = 98�),
with an apparent N–H_Br interaction. ‘‘Following’’ the

imaginary frequency of this TS yielded, for one set of

displacements, the already-discovered energy minimum

structure with stwist = 288�, and for the other set of dis-

placements, a structure which was planar and appeared to

contain a bifurcated hydrogen bond involving bromine.

Table 1 Interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the face-to-back BrU/U minima and

transition states in the gas phase calculated at the M06-2X/6-31?G(d) level of theory

stwist (initial) stwist (final) Angle between planes Vertical separation Horizontal separation Im. Freq.a DECP DE0
CP

5 9 18 2.94 3.72 1 -5.7 -5.3

85 68 20 3.12 0.91 0 -7.9 -7.2

120 189 4 3.15 1.92 1 -8.3 -7.7

115b 183 2 3.00 2.37 0 -8.9 -8.2

205 184 9 3.09 1.51 0 -10.1 -9.5

240 226 6 3.22 0.69 1 -7.5 -7.0

290 287 12 3.06 0.89 0 -10.6 -9.8

a Number of imaginary frequencies
b This minimum was obtained by ‘‘following’’ the imaginary frequency of the transition state listed above it

water, face-to-back

1,4-dioxane, face-to-back

Fig. 2 Interaction energies as a function of the twist angle for the

face-to-back BrU/U stacked dimer in PCM solvent (water and 1,4-

dioxane) calculated at the M06-2X/6-31?G(d) level of theory
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Figure 4 shows the gas-phase interaction energy of the

face-to-face BrU/U stacked dimer as a function of the stwist
angle. The interaction energies are negative throughout. The

BSSE is again fairly large, varying between 2.92 kcal/mol

(when stwist = 45�) and 3.58 kcal/mol (when stwist = 270�).
Energy minima are located at stwist = 55�, 210� and 290�.
Energy maxima are located at stwist = 130�, 235� and 355�.

Figure 5 shows the interaction energies of the face-to-

face BrU/U stacked dimer in PCM solvents as a function of

the stwist angle. All energies are negative throughout. In

water, there are four minima, located at stwist = 80�, 210�,
270� and 330�, and four maxima, at 5�, 120�, 245� and

290�. In 1,4-dioxane, there are also four minima, at 50�,
215�, 290� and 325�, and four maxima, at 130�, 240�, 295�
and 355�. The water curve is again much flatter than the

gas and 1,4-dioxane curves.

For the face-to-face gas-phase structures, only two distinct

energy minima could be located, because the optimizations

starting from stwist = 210� and stwist = 290� yielded the same

structure, with a twist angle of 296� and an interaction energy

BrU/U face-to-back
τtwist = 68°

BrU/U face-to-back
τtwist = 183°

BrU/U face-to-back
τtwist = 184°

BrU/U face-to-back
τtwist = 287°

BrU/U face-to-back
TS τtwist = 9°

BrU/U face-to-back
TS τtwist = 189°

BrU/U face-to-back
TS τtwist = 226°

Fig. 3 Structures of the stacked

face-to-back BrU/U minima

(top) and transition states

(bottom) optimized in the gas

phase at the M06-2X/6-

31?G(d) level of theory

Table 2 Interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the face-to-back BrU/U minima and

transition states in water PCM solvent calculated at the M06-2X/6-31?G(d) level of theory

stwist (initial) stwist (final) Angle between planes Vertical separation Horizontal separation Im. Freq. DECP DE0
CP

0 331 10 3.10 2.24 1 -4.3 -4.0

90 67 6 3.15 1.41 0 -4.4 -4.0

125 122 1 3.10 1.18 1 -4.3 -4.0

155 130 2 3.16 1.19 0 -5.1 -4.7

180 182 1 3.24 0.23 1 -3.5 -3.3

210 242 3 3.16 1.13 0 -4.6 -4.1

245 313 5 3.17 1.87 1 -3.8 -3.6

295 293 6 3.09 1.12 0 -5.5 -5.2

Table 3 Interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the face-to-back BrU/U minima and

transition states in 1,4-dioxane PCM solvent calculated at the M06-2X/6-31?G(d) level of theory

stwist (initial) stwist (final) Angle between planes Vertical separation Horizontal separation Im. Freq. DECP DE0
CP

5 2 3 3.14 1.47 1 -2.3 -2.1

90 74 13 3.14 0.52 0 -5.7 -5.3

120 95 6 3.13 0.67 1 -5.5 -5.2

165 183 6 3.08 1.58 0 -7.7 -7.3

185 221 2 3.17 1.07 1 -6.0 -5.7

245 355 98 3.36 4.50 1 -5.7 -5.3

290 288 9 3.04 1.03 0 -7.9 -7.6
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of -8.5 kcal/mol. The other minimum, with an optimized

twist angle of 60�, has the most negative CP-corrected, ZPE-

corrected M06-2X/6-31?G(d) interaction energy of any

structure found in this study (-10.7 kcal/mol), and therefore

appears to be the global minimum for the BrU/U stacked

dimer. Because only two minima were located, we were only

able to perform two QST3 transition state searches (starting

from stwist = 130� and 355�), both of which were successful.
However, a standard transition state search starting from

stwist = 235� yielded an L-shaped TS (angle between

planes = 71�). ‘‘Following’’ the imaginary frequency yiel-

ded, for one set of atomic displacements, a planar hydrogen

(H)-bonded energy minimum structure, and for the other set

of displacements, another L-shaped structure (angle between

planes = 65�), this one an energy minimum. The optimized

minima and TSs are shown in Fig. 6.

As with the face-to-back structures, the value of the

vertical separation decreased from 3.4 to *3.1 Å during

all optimizations and transition state searches of face-to-

face structures, i.e., the two bases moved closer together.

All the energies and geometries of the gas-phase face-to-

face structures are listed in Table 4.

For the face-to-face structures in water, four energy

minima and four TSs were obtained, as listed in Table 5.

As in the face-to-back case, the interaction energies of the

optimized face-to-face structures are smaller in the two

solvents than in the gas phase.

For the face-to-face structures in 1,4-dioxane, three

distinct energy minima were located from the first round of

geometry optimizations, as the optimization starting from

stwist = 330� yielded the same minimum as that starting

from 290�, with an optimized twist angle of 298�. Three
TSs were located. However, two of these (obtained by

starting from stwist = 130� and 240�) have slightly greater

stabilization energies (-4.02 and -4.12 kcal/mol respec-

tively) than the minimum obtained from stwist = 215�
(-3.99 kcal/mol), though they would both be expected to

connect this minimum with another and therefore lie

Gas-phase, face-to-face

Fig. 4 Interaction energies as a function of the twist angle for the

gas-phase face-to-face BrU/U stacked dimer calculated at the M06-

2X/6-31?G(d) level of theory

water, face-to-face
1,4-dioxane, face-to-face

Fig. 5 Interaction energies as a function of the twist angle for the

face-to-face BrU/U stacked dimer in PCM solvent (water and 1,4-

dioxane) calculated at the M06-2X/6-31?G(d) level of theory

BrU/U face-to-face
τtwist = 60°

BrU/U face-to-face
τtwist = 296°

BrU/U face-to-face
TS τtwist = 98°

BrU/U face-to-face
TS τtwist = 197°

BrU/U face-to-face
TS τtwist = 315°

Fig. 6 Structures of the stacked

face-to-face BrU/U minima

(top) and transition states

(bottom) optimized in the gas

phase at the M06-2X/6-

31?G(d) level of theory
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energetically above it. Furthermore, the optimized twist

angle of the TS obtained from stwist = 240� is 196�, which
does not lie between those of the optimized minima it

would be expected to connect (209� and 298�).
For the TS with optimized stwist = 165�, ‘‘following’’ the

imaginary frequency yielded two new stacked energyminima

with optimized twist angles of 136� and 178�, the former

having a large horizontal separation (2.96 Å). Both of these

minima are more stable than the respective TS. However, for

the TS with optimized stwist = 196�, the same procedure

yielded the minimum with stwist = 178� and the already-

discovered minimum with stwist = 209�. The latter structure
has a very slightly greater stabilization energy than the TS (by

0.01 kcal/mol) before the zero-point and counterpoise cor-

rections are applied, but these corrections actually reverse the

order of stability, such that the TS with stwist = 196�
(DE0

CP = - 4.1 kcal/mol) is 0.1 kcal/mol more stable than

the minimum with stwist = 209� (DE0
CP = - 4.0 kcal/mol),

even though the attempt to optimize the TS along the

appropriate reaction coordinate led to that minimum. Clearly,

the use of PCM renders this area of the potential energy

surface extremely flat, leading to complications in the iden-

tification of turning points, which is exacerbated by the

necessity to apply both the energetic corrections (zero-point

and counterpoise) to the optimized energies a posteriori. In

addition, the counterpoise correction is not entirely accurate

as it cannot be applied in combination with the PCMmethod.

All optimized structural parameters and energies for face-to-

face stacking in 1,4-dioxane are listed in Table 6.

We also note that the TS that was located by starting

from a twist angle of 295� had a rather different optimized

twist angle (214�).
Table 7 shows the RI-mPW2PLYP-D/aug-cc-pVTZ

interaction energies of the gas-phase structures, using the

geometries obtained from M06-2X/6-31?G(d) as well as

those re-optimized with RI-mPW2PLYP-D/aug-cc-pVDZ.

Re-optimization of the face-to-face minimum with

stwist = 296� resulted in its rearrangement into a planar

H-bonded structure. The other five minima remained

stacked and only underwent slight geometrical changes.

The interaction energies for those five minima always

agree to within 1.0 kcal/mol with the corresponding M06-

2X/6-31?G(d) energies. The ordering of the two lowest-

energy face-to-back structures is changed by RI-

mPW2PLYP-D: the minimum with stwist = 184� is now

the most stable. However, the difference is negligible,

being less than 0.2 kcal/mol even for the re-optimized

structures.

Note that the RI-mPW2PLYP-D calculations included

corrections for BSSE but not for deformation energies or

zero-point vibrations (since the energies were not calcu-

lated at the same level of theory as the optimizations). With

M06-2X, the ZPE corrections to the interaction energies

range from 0.6 to 0.8 kcal/mol in the face-to-back struc-

tures and from 0.7 to 0.9 kcal/mol in the face-to-face

structures (these are not the ZPE corrections to the total

energies but to the energy of interaction, i.e., EZPE
B1/B2 (B1/

B2) - EZPE
B1 (B1) - EZPE

B2 (B2)).

Table 4 Interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the face-to-face BrU/U minima and

transition states in the gas phase calculated at the M06-2X/6-31?G(d) level of theory

stwist (initial) stwist (final) Angle between planes Vertical separation Horizontal separation Im. Freq. DECP DE0
CP

55 60 12 3.04 0.87 0 -11.5 -10.7

130 98 14 3.14 2.36 1 -6.5 -6.1

235 197 71 3.15 3.73 1 -6.2 -5.7

290 296 18 3.11 1.23 0 -9.1 -8.5

355 315 10 3.10 2.23 1 -7.8 -7.3

Table 5 Interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the face-to-face BrU/U minima and

transition states in water PCM solvent calculated at the M06-2X/6-31?G(d) level of theory

stwist (initial) stwist (final) Angle between planes Vertical separation Horizontal separation Im. Freq. DECP DE0
CP

5 43 10 3.10 1.09 1 -4.8 -4.6

80 71 6 3.08 1.14 0 -5.6 -5.2

120 119 1 3.16 1.31 1 -4.3 -4.0

210 181 6 3.19 1.28 0 -4.5 -4.0

245 250 5 3.21 1.17 1 -3.9 -3.6

270 254 3 3.14 1.30 0 -4.8 -4.2

295 336 3 3.17 1.13 1 -4.2 -4.0

330 17 2 3.10 1.10 0 -5.1 -4.6
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3.2 Experimental BrU and T stacked structures

Table 8 shows the mean RI-mPW2PLYP-D/aug-cc-pVTZ

interaction energies of each of the 15 types of experimental

stacked dimer investigated, whereas Table 9 shows the df-

MP2/aug-cc-pVDZ, df-MP2/aug-cc-pVQZ, df-LCCSD(T0)/

aug-cc-pVDZ and estimated df-LCCSD(T0)/aug-cc-pVQZ

interaction energies. The number of data points contributing

to each mean value for df-MP2 and df-LCCSD(T0) (i.e., the

number of representative structures of each type of dimer) is

as follows: 8 9 A/BrU, 8 9 BrU/A, 4 9 C/BrU, 4 9 BrU/

C, 8 9 G/BrU, 7 9 BrU/G, 3 9 T/BrU, 5 9 BrU/T, 9 9 A/

T, 5 9 T/A, 5 9 C/T, 8 9 T/C, 7 9 G/T, 7 9 T/G and

10 9 T/T. As mentioned in the Methodology section, the

counterpoise correction for one of the A/T dimers could not

be performed with RI-mPW2PLYP, so the mean stacking

energy for dimers of this type is calculated from eight rather

than nine data points for this method.

It can be seen that the average RI-mPW2PLYP-D

stacking interaction is stronger in each type of BrU-con-

taining dimer than in the corresponding type of

Table 6 Interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the face-to-face BrU/U minima and

transition states in 1,4-dioxane PCM solvent calculated at the M06-2X/6-31?G(d) level of theory

stwist (initial) stwist (final) Angle between planes Vertical separation Horizontal separation Im. Freq. DECP DE0
CP

50 63 10 3.03 1.04 0 -8.6 -8.0

130 165 14 3.28 1.72 1 -4.1 -4.0

130a 178 10 3.19 1.24 0 -4.5 -4.2

130a 136 21 3.04 2.96 0 -6.4 -6.0

215 209 9 3.19 0.30 0 -4.1 -4.0

240 196 12 3.22 0.34 1 -4.2 -4.1

295 214 18 3.16 2.61 1 -2.5 -2.2

325 298 11 3.07 1.48 0 -6.7 -6.3

355 341 2 3.15 1.27 1 -5.1 -4.9

a These minima were obtained by ‘‘following’’ the imaginary frequency of the transition state listed above them

Table 7 RI-mPW2PLYP-D/aug-cc-pVTZ interaction energies (in kcal/mol) and structural parameters (distances in Å, angles in degrees) of the

six gas-phase BrU/U minima identified above

DECP (RI-mPW2PLYP-D) Twist Angle between planes Vertical separation Horizontal separation

M06-2X geom.a Re-optimizedb

Face-to-back minima

-9.9 (-10.1) -10.0 184 (184) 10 (9) 3.10 (3.09) 1.51 (1.51)

-9.7 (-10.6) -9.8 287 (287) 12 (12) 3.09 (3.06) 0.87 (0.89)

-7.9 (-7.9) -8.1 67 (68) 22 (20) 3.24 (3.12) 0.68 (0.91)

-8.5 (-8.9) -8.6 183 (183) 2 (2) 3.05 (3.00) 2.34 (2.37)

Face-to-face minima

-9.1 (-9.1) -22.0c n/a (296) n/a (18) n/a (3.11) n/a (1.23)

-11.1 (-11.5) -11.2 59 (60) 12 (12) 3.08 (3.04) 0.76 (0.87)

In parentheses are the original counterpoise-corrected, nonzero-point-corrected energies and optimized structural parameters from M06-2X/6-

31?G(d) geometry optimizations
a M06-2X/6-31?G(d)-optimized geometries
b RI-mPW2PLYP-D/aug-cc-pVDZ-optimized geometries
c Planar H-bonded

Table 8 Mean RI-mPW2PLYP-D/aug-cc-pVTZ interaction energies

DEmean (kcal/mol) of different types of experimental stacked dimer

Type X/Y DEmean Type Y/X DEmean All X?Ya DEmean

BrU/A -6.4 A/BrU -6.6 BrU?A -6.5

T/A -5.4 A/T -6.3 T?A -5.9

BrU/C -4.2 C/BrU -7.6 BrU?C -5.9

T/C -3.9 C/T -5.6 T?C -4.6

BrU/G -5.6 G/BrU -4.9 BrU?G -5.2

T/G -4.6 G/T -4.7 T?G -4.7

BrU/T -3.0 T/BrU -4.3 BrU?T -3.5

T/T -3.2 T?T -3.2

X = T or BrU; Y = A, C, G or T
a All combinations of X and Y
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T-containing dimer for all except one case (BrU/T vs. T/T).

But the differences are mostly marginal: only in two cases

does BrU stack more strongly than T by greater than

1 kcal/mol on average (C/BrU vs. C/T with a difference of

2.0 kcal/mol and T/BrU vs. T/T with a difference of

1.2 kcal/mol). The table also shows the mean stacking

energies for all combinations of T and BrU with A, C, G

and T, i.e., collapsing the distinction between dimers of

type X/Y and Y/X. When the data are grouped in this

fashion, mean stacking energies are always higher for BrU

than for T, but only in the case of cytosine does the dif-

ference exceed 1 kcal/mol.

Focusing on the estimated df-LCCSD(T0)/aug-cc-pVQZ

energies (Table 9), the average stacking is stronger in BrU-

containing dimers than in the corresponding T-containing

dimers in all except one case (A/BrU vs. A/T). But again

the differences are small: the biggest differences are C/BrU

versus C/T (with a difference of 1.8 kcal/mol), T/BrU

versus T/T (1.6 kcal/mol) and BrU/A versus T/A (1.2 kcal/

mol). When X/Y and Y/X dimers are grouped together (T/

A with A/T, BrU/A with A/BrU etc.), the mean stacking

energies are always higher for BrU, but the largest differ-

ence (for cytosine) is only 1.1 kcal/mol.

4 Discussion and conclusions

We have investigated the potential energy surface of the

stacked BrU/U dimer in the gas phase and in PCM solvent.

When considered in combination with data that were pre-

viously obtained on the U/U dimer, these results allow us to

examine the energetic effect of a bromine substituent on

the stacking behavior of uracil. We have supplemented

these data with a comparison of the interaction energies of

experimental structures of stacked dimers in DNA con-

taining BrU and/or thymine. This information may be

useful in elucidating the cause of BrU’s tendency to mi-

spair with guanine in DNA, resulting in point mutations.

If BrU stacks significantly more strongly than U and T,

this could account for the greater stability of the BrU-G

mispair against enzymatic repair (which is implied by the

mutagenicity of BrU), regardless of the mispair’s hydro-

gen-bonding pattern. The conventional view is that BrU-G

mispairing is driven by enolization of the brominated base,

forming a tautomer that mimics cytosine in its hydrogen

bonding. However, the greater stacking strength of BrU—if

proved real—would provide indirect evidence against this

view, by making it unnecessary to invoke the formation of

a non-canonical enol tautomer of BrU (which is disfavored,

at least in the gas phase).

The notion that brominated pyrimidines engage in

stronger p–p stacking interactions than their non-bromi-

nated counterparts makes intuitive physical sense: bro-

mination tends to increase molecular polarizability, and, as

mentioned in the Introduction, Kool et al. [6] demonstrated

a qualitative correlation between polarizability and stack-

ing strength. Further supporting the importance of polar-

izability, it was shown in the 1960s and 1970s that

halogenation at the 5-position causes a marked increase in

the association tendency of uracil with adenine (in order of

increasing van der Waals radius of the halogen) [47], that

bromination of uracil stabilizes polymers of adenine and

uracil [48], and that bromination of cytosine stabilizes

polymers of inosine and cytosine [49]. On the theoretical

side, Hobza et al. [50] calculated that the parallel-displaced

dimers of C6Br6 and C6Cl6 (which adopt a stacking-like

geometry) are considerably more strongly bound than those

of C6H6 or C6F6, and by DFT-SAPT analysis they

Table 9 Mean df-MP2/aug-cc-pVDZ, df-MP2/aug-cc-pVQZ, df-

LCCSD(T0)/aug-cc-pVDZ and estimated df-LCCSD(T0)/aug-cc-

pVQZ interaction energies (kcal/mol) for each type of experimental

dimer

Type DEmean(df-MP2) DEmean(df-LCCSD(T0))

Aug-cc-

pVDZ

Aug-cc-

pVQZ

Aug-cc-

pVDZ

Aug-cc-

pVQZ

Type X/Y

BrU/A -7.1 -7.5 -6.2 -6.7

T/A -5.9 -6.5 -4.9 -5.4

BrU/C -5.0 -5.4 -4.1 -4.5

T/C -4.7 -5.3 -3.7 -4.3

BrU/G -6.3 -6.8 -5.5 -6.0

T/G -5.4 -5.8 -5.0 -5.3

BrU/T -4.0 -4.8 -3.1 -3.9

T/T -4.0 -4.7 -3.2 -3.8

Type Y/X

A/BrU -8.2 -9.1 -7.0 -7.9

A/T -7.7 -8.5 -7.4 -8.1

C/BrU -8.2 -8.9 -7.2 -7.9

C/T -6.1 -6.7 -5.4 -6.0

G/BrU -6.7 -7.4 -5.5 -6.3

G/T -5.9 -6.7 -4.8 -5.6

T/BrU -5.5 -6.1 -4.7 -5.4

All X?Ya

BrU?A -7.6 -8.3 -6.6 -7.3

T?A -7.1 -7.7 -6.5 -7.2

BrU?C -6.6 -7.2 -5.6 -6.2

T?C -5.2 -5.8 -4.4 -5.0

BrU?G -6.5 -7.1 -5.5 -6.1

T?G -5.7 -6.2 -4.9 -5.4

BrU?T -4.6 -5.3 -3.7 -4.5

T?T -4.0 -4.7 -3.2 -3.8

X = T or BrU; Y = A, C, G or T
a All combinations of X and Y
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attributed this extra stabilization to a greater dispersion

energy related to the increased polarizability.

We have located six stacked energy minima for BrU/U

in the gas phase: four in the face-to-back orientation and

two face-to-face. We have also located a number of TSs on

the BrU/U stacking energy surface. The global minimum

on the gas-phase M06-2X/6-31?G(d) stacking energy

surface of BrU/U is a face-to-face structure with a stwist
angle of 60� and a counterpoise-corrected, zero-point-cor-

rected interaction energy of -10.7 kcal/mol. This dimer is

geometrically similar to the U/U global minimum previ-

ously located by Hunter and Van Mourik [28], which has a

stwist angle of 48�, but the BrU/U stacking energy of

-10.7 kcal/mol is modestly greater than the U/U energy,

which is -8.9 kcal/mol at the same level of theory. In the

BrU/U global minimum, the Br atom sits atop the H6 atom

of U, and the C=O groups of the two bases are staggered

such that no oxygen atom sits atop another. This arrange-

ment presumably minimizes steric and electronic repulsion

while still allowing a large favorable dispersive interaction

between the p-systems. Due to the replacement of the H5

atom in uracil with bromine in BrU, the symmetry of the

U/U rotational profile is lost, and all the gas-phase minima

are energetically distinct. Generally speaking, however,

there are no large differences between the interaction

energies of the two systems.

Intrastrand stacking interactions in DNA are face-to-

back, and typical twist angles range from 25� to 40� [33].
(Note that face-to-face stacking occurs in cross-strand

stacking interactions). The BrU/U gas-phase minimum that

is most representative of intrastrand stacking in vivo is

therefore the face-to-back structure with a twist angle of

68�. This dimer has an M06-2X/6-31?G(d) stabilization

energy of -7.2 kcal/mol. The equivalent U/U structure

from the previous study [28] has a twist angle of 72� and a

stabilization energy of -7.5 kcal/mol. This suggests that

BrU may actually stack less strongly than U in physio-

logically relevant conformations, though it should be

remembered that stacked dimer geometries in vivo do not

generally correspond to gas-phase minima.

Turning to the experimentally derived dimers, the fairly

consistent result from all levels of theory is that on average

BrU stacks more strongly than T against each type of base,

but only by a small amount (typically \1 kcal/mol).

Therefore, our results do not provide any strong evidence

to support the view, proposed by some experimental groups

as an alternative to the conventional ‘‘rare tautomer’’ model

of BrU-G mispairing [30–32], that the mutagenicity of BrU

is caused by an enhanced stacking ability compared to

thymine.
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      1  Introduction 

 The increasing use of non-traditional petroleum-based fuels 
presents new challenges for combustion modeling. Under-
standing the energetics of elementary reactions that lead to 
or delay  autoignition  of  biodiesel  is critical to modeling the 
related combustion phenomena [ 1  –  3 ]. During low-tempera-
ture combustion processes, alkenes tend to lose a hydrogen 
atom from allylic sites to form allylic radicals that subse-
quently undergo reaction with O 2  to produce allylic peroxy 
radicals. As temperature increases, peroxy radicals become 
thermally unstable and undergo various transformations 
that can contribute to  autoignition  making them critical 
intermediates in spontaneous combustion [ 4 ,  5 ]. The addi-
tion of O 2  to various allylic radicals and subsequent reac-
tions have been studied both experimentally and theoreti-
cally [ 6 ,  7 ]. 

 A recent study of 2-butene-1-peroxy radical reaction 
channels [ 8 ] suggested that the 2-butene-1-peroxy radical, 
like other allylic peroxy radicals, appears to lose O 2  rather 
than undergo unimolecular reactions. The 1, 6-H-shift 
is the only reaction with the potential to compete to any 
extent with O 2 -loss and contribute to  autoignition  (Reac-
tions  1 ,  2 ).
      

(1)

                     Abstract     Owing to importance in combustion processes, 
O 2 -loss and 1, 6-H-shift in  cis -2-butene-1-peroxy radical have 
been investigated. Energies for these processes and the barrier 
height of the latter are computed using the diffusion Monte 
 Carlo  ( DMC ) method. The  DMC  energy for the 1, 6-H-shift 
was determined to be 4.56  ±  0.19 kcal/mol with barrier 
height of 26.79  ±  0.20 kcal/mol. The energy for O 2 -loss 
was found to be 14.93  ±  0.24 kcal/mol. Quantitative differ-
ences between the fi ndings of the present study and previous 
CBS- QB 3 results indicate a discrepancy between high-level 
methods for the resonance-stabilized radicals. Further study 
is needed to identify the origin of these differences. 

  Dedicated to Professor  Thom  Dunning and published as part of 
the special collection of articles celebrating his career upon his 
retirement.  

  Electronic supplementary material     The online version of this 
article (doi:  10.1007/s00214-014-1541-2    ) contains supplementary 
material, which is available to authorized users.  

                                              Z. Wang   ·   W. A. Lester Jr.   (  *  )  
 Chemical Sciences Division   ,  Lawrence Berkeley National 
Laboratory    ,  Berkeley   ,  CA     94720   ,  USA  
 e-mail: walester@lbl.gov    

  Present Address:
  Z. Wang  
 Molecular Foundry   ,  Lawrence Berkeley National Laboratory    , 
 Berkeley   ,  CA     94720   ,  USA   

  D. Y. Zubarev   ·   W. A. Lester Jr.  
 Department of Chemistry, Kenneth S.  Pitzer  Center 
for Theoretical Chemistry   ,  University of California    ,  Berkeley   ,  
CA     94720-1460   ,  USA   

  Present Address:
  D. Y. Zubarev  
 Department of Chemistry and Chemical Biology   ,  Harvard 
University    ,  Cambridge   ,  MA     02138   ,  USA   

Reprinted from the journal 355



 Theor Chem Acc (2014) 133:1541

1 3

       

 From calculations using the composite CBS- QB 3 method 
[ 8 ], the barrier height for 1,6-H-shift is ~3 kcal/mol higher 
than the endothermic energy for  barrierless  O 2 -loss. That 
such a small energy difference can be reliably achieved was 
demonstrated in a recent study of the OH bond dissociation 
energy in phenol where the difference between highly corre-
lated theoretical levels was of order 4 kcal/mol [ 9 ]. 

 To clarify the fate of the 2-butene-1-peroxy radical, we 
used fi xed-node diffusion Monte  Carlo  ( FN   DMC ) to com-
pute the barrier height and energy of the 1,6-H-shift and 
energy of O 2 -loss. In the following sections, we describe 
the computational methodology used in this study and dis-
cuss the fi ndings. 

    2   Computational details 

 Coordinates of reactants and products of the two pertinent 
channels as well as the transition state of 1, 6-H-shift were 
taken from Ref. [ 8 ]. Following the methodology of Ref. 
[ 8 ], zero-point energy ( ZPE ) corrections for the  FN   DMC  
results were determined at B3 LYP /6-311G(d, p) level and 
the  ZPE  values were scaled by a factor of 0.99. 

 The  FN   DMC  [ 10  –  12 ] trial wave functions were a prod-
uct of antisymmetric and symmetric components. The for-
mer was chosen as a single determinant constructed from 
 Kohn  – Sham orbitals. The latter was a 29-parameter  Schmit -
 Moskowitz -Boys-Handy ( SMBH ) correlation function [ 13 , 
 14 ]. This expansion includes electron – electron and electron –
 nucleus terms and increases computational effi ciency by 
reducing the variance of the local energy. The  SMBH  corre-
lation function parameters were energy optimized using the 
linear optimization  VMC  algorithm of Toulouse and  Umri-
gar  [ 15 ,  16 ]. The  GAMESS  [ 17 ] ab  initio  package was used 
to generate the restricted open-shell ( RO ) B3 LYP  [ 18 ,  19 ] 
orbitals using the triple-zeta energy-consistent  pseudopoten-
tials  and basis sets of  Burkatzki  et al. [ 20 ]. 

 An  FN   DMC  algorithm with small time-step errors was 
employed [ 21 ]. To maintain a high acceptance ratio, the 

(2)

electrons were moved one at a time. A simple branching 
algorithm [ 22 ] was used to duplicate walkers with large 
weights and to eliminate those with small weights. All  QMC  
calculations were performed using the Zori code [ 23 ]. A  FN  
 DMC  simulation ensemble of ~200,000 walkers was cho-
sen to ensure reduction of the population bias. Calculations 
were performed at 0.04, 0.02, 0.01, and 0.005 Hartree  − 1  
time steps and were run until the stochastic error bars were 
below 0.0003 Hartree  − 1 . Weighted quadratic least-squares 
fi ts were used to extrapolate energy values to zero time step. 

 A set of benchmark  FN   DMC  calculations provide a 
context for assessing the accuracy of the present results 
[ 24 ]. In that work,  FN   DMC  computations performed for 
extended G1 molecular test set relied on single-determinant 
trial wave functions that were constructed using Stevens –
  Basch  –  Krauss  ( SBK )  pseudopotentials  and a valence basis 
set of quality similar to 6-311++G(2d,2p). The study 
reported the mean absolute deviation (MAD) of 3 kcal/
mol for atomization energies and acknowledged the type 
of  pseudopotential  as one of the error sources. It also esti-
mated the error associated with the use of  SBK   pseudopo-
tential  in  FNDMC  as 2 kcal/mol. 

 The present study relies on  BFD   pseudopotential  and 
basis set which were optimized specifi cally for  FN   DMC  
calculations in order to reduce the errors associated with 
 pseudopotentials  developed for wave function-based quan-
tum-chemical methods and  DFT  [ 20 ]. The performance of 
the  BFD   pseudopotential  and basis sets was assessed with 
respect to V5Z/ CCSD (T) calculations of binding energies 
for a set of 26 diatomic molecules. The MAD of 0.5 kcal/
mol was reported. 

 A recent evaluation of the atomization energies for the 
G2 set [ 25 ] found MAD of 3 kcal/mol in the case of sin-
gle-determinant trial wave functions formed from canoni-
cal orbitals and using  BFD   pseudopotential  and basis sets. 
The errors associated with the subset of carbon based mol-
ecules, however, did not exceed 2 kcal/mol. 

    3   Results and discussion 

 Results of the  FN   DMC  calculations are reported in 
Table  1  along with the fi ndings of Ref. [ 8 ]. Results of  RO -
B3 LYP  calculations that were obtained in trial wave func-
tion preparation are also included. The  FN   DMC  energy 

 Table 1       Reaction energies 
( E   rxn  ) and barrier height ( E  0 ) 
with different methods  

  Method     E   rxn  (O 2 -loss), kcal/mol     E   rxn  (H-shift), kcal/mol     E  0 (H-shift), kcal/mol  

   RO -B3 LYP / VTZ - ECP     19.39    6.64    26.81  

   FN   DMC     19.32  ±  0.24    5.48  ±  0.19    30.18  ±  0.20  

   FN   DMC  +  ZPE     14.93  ±  0.24    4.56  ±  0.19    26.79  ±  0.20  

  CBS- QB 3, Ref. [ 8 ]    17.70    0.79    20.90  
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of O 2 -loss is 14.93  ±  0.24 kcal/mol and that of H-shift is 
4.56  ±  0.19 kcal/mol with a barrier 26.79  ±  0.20 kcal/mol, 
all  ZPE -corrected.  

 First, we note that  FN   DMC  values before  ZPE  cor-
rection are in reasonable agreement with  RO -B3 LYP  cal-
culations for the trial wave function (Table  1 ). Reaction 
energies lie within 1.2 kcal/mol, and the barrier heights 
are within 3.4 kcal/mol. This means that the  RO -B3 LYP  
and  FN   DMC  approaches recover comparable amounts of 
dynamic correlation for the system of interest. 

 Second, there is an unexpected quantitative difference 
between  ZPE -corrected  FN   DMC  and CBS- QB 3 values. 
The energies of O 2 -loss and H-shift disagree by 2.77 and 
3.77 kcal/mol, respectively, and H-shift barriers disagree by 
6.89 kcal/mol. This is surprising in view of a recent study 
of phenoxy-radical formation, where comparable levels of 
ab  initio  computation predicted dissociation energies within 
0.4 kcal/mol of each other [ 9 ]. Here, the aforementioned 
discrepancies mean that  FN   DMC  barrier of the H-shift is 
higher than the endothermic energy of O 2 -loss by 11.86 kcal/
mol, which signifi cantly exceeds the value of 3.2 kcal/mol 
from the CBS- QB 3 calculation. The  FN   DMC  predicts a 1, 
6-H-shift energy of 4.56 kcal/mol which is 3.77 kcal/mol 
larger than the CBS- QB 3 prediction of 0.79 kcal/mol. 

 Considering the competition between the 1, 6-H-shift 
isomerization of  cis -2-butene-1-peroxy radical and the O 2 -
loss channel, the absolute values of the differences between 
 FN   DMC  and CBS- QB 3 predictions are large enough to 
change the qualitative picture. The barrier height of the 
H-shift reaction is increased by 5.89 kcal/mol at the  FN  
 DMC  level of theory relative to CBS- QB 3. A decrease in the 
barrier height by the same amount yields 15.01  ±  0.20 kcal/
mol which is statistically indistinguishable from the O 2 -loss 
reaction energy of 14.93  ±  0.24 kcal/mol (see Table  1 ). 

 To resolve the discrepancy between  FN   DMC  and CBS-
 QB 3 results, it would be insightful to investigate the use 
of alternative trial functions for  DMC  including restricted 
and unrestricted open-shell functions. In addition, it may 
be informative to optimize orbitals using the variational 
Monte  Carlo  method. The present methodology is typical 
for the majority of  FN   DMC  studies. 

    4   Conclusions 

 We have used  FN   DMC  to study the fate of an impor-
tant intermediate in spontaneous combustion,  cis -2-bu-
tene-1-peroxy radical, with specifi c consideration of 
two critical channels: 1, 6-H-shift isomerization and 
O 2 -loss. The  DMC  energy for the 1, 6-H-shift was deter-
mined to be 4.56  ±  0.19 kcal/mol with barrier height of 
26.79  ±  0.20 kcal/mol. The energy for O 2 -loss was found 
to be 14.93  ±  0.24 kcal/mol. The differences between the 

fi ndings of the present study and previous CBS- QB 3 results 
indicate a discrepancy between two high-level methods for 
the resonance-stabilized radicals. This fi nding suggests that 
an accurate assessment of how competitive the 1, 6-H-shift 
is can benefi t from further study. 
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