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Light scattering by densely packed inhomogeneous media is a particularly chal-
lenging optics problem. In most cases, only approximate methods are used for the
calculations. However, in the case where only a small number of macroscopic scat-
tering particles are in contact (clusters or aggregates) it is possible to obtain exact
results solving Maxwell’s equations. Simulations are possible, however, only for a
relatively small number of particles, especially if their sizes are larger than the wave-
length of incident light. The first review chapter in Part I of this volume, prepared
by Yasuhiko Okada, presents modern numerical techniques used for the simulation
of optical characteristics of densely packed groups of spherical particles. In this
case, Mie theory cannot provide accurate results because particles are located in
the near field of each other and strongly interact. As a matter of fact, Maxwell’s
equations must be solved not for each particle separately but for the ensemble as
a whole in this case. The author describes techniques for the generation of shapes
of aggregates. The orientation averaging is performed by a numerical integration
with respect to Euler angles. The numerical aspects of various techniques such
as the T-matrix method, discrete dipole approximation, the finite difference time
domain method, effective medium theory, and generalized multi-particle Mie solu-
tion are presented. Recent advances in numerical techniques such as the grouping
and adding method and also numerical orientation averaging using a Monte Carlo
method are discussed in great depth.

The second chapter in Part I of this volume, prepared by Sandra Jacquier and
Frédéric Gruy, also considers the scattering properties of aggregates. The authors
consider particles with radii both much smaller and larger as compared to the
wavelength of the incident light. In the least case the methods based on the direct
solution of Maxwell’s equations cannot be used due to computational problems.
Therefore, various approximate techniques are introduced and thoroughly discussed
in the chapter. They include the anomalous diffraction approximation developed by
van de Hulst, the Berry—Percival-Khlebtsov method, effective medium technique,
and a compact sphere method. The performance of these methods (where it is
possible) is evaluated against exact computations. As an application of theoretical
techniques, the authors consider the process of agglomeration of small primary
particles in a homogeneous suspension and its monitoring using measurements of
turbidity.

Part IT of this book deals with radiative transfer theory. This theory is used to
describe reflectance and transmittance of turbid media such as the atmosphere and
the ocean. It is based on solution of the vector radiative transfer equation (VRTE).
Usually the VRTE is solved using the approximation of horizontally homogeneous
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media. However, such an approach cannot be used in many cases (e.g., in the vicin-
ity of cloud edges) and the 3-D VRTE must be formulated and solved. Céline Cornet
and co-authors describe one possible way of solving the 3-D VRTE. It is based on
the Monte Carlo approach. The technique implemented in the developed software
(code 3DMCpol) is described together with validation using the adding-doubling
method and also the Spherical Harmonics Discrete Ordinate Method (SHDOM).
The code is applied to study the Stokes vector of reflected light for a synthetic
heterogeneous cloud field.

The authors of the second chapter in Part II, Holger Walter and Jochen Land-
graf, deal with 3-D radiative transfer as well. However, they ignore polarization
characteristics of light and concentrate their efforts on the solution of the radiative
transfer equation in a spherical geometry, which is of importance for atmospheric
remote sensing, including satellite limb measurements. The Picard iteration method
is used with validation from reference Monte Carlo calculations. Also, the authors
perform the linearization of the radiative transfer problem in the spherical geome-
try. The forward and adjoint radiative transfer equations (ARTE) are introduced.
ARTE differs from the standard radiative transfer equation by the sign of the
streaming term d/ds (also the directions in the scattering function are reversed).
An important point is that ARTE can be solved using the same radiative transfer
solver as applied for the solution of the standard forward radiative transfer equation
(by exchanging and reversing the incoming and outgoing directions). The solutions
of the forward and adjoint radiative transfer equations are used to estimate the
impact of change in the atmospheric state on the light intensity in a given direc-
tion, which is of great importance both for sensitivity studies and for the inverse
problem solution.

The next chapter (Chapter 5) prepared by Vladimir Budak and co-authors, de-
scribes a method for solving the radiative transfer problem with strongly anisotropic
scattering (e.g., relevant to light propagation in the ocean, where the asymmetry
parameter can reach 0.99). The subject is very important, and the authors offer
an original and very effective solution based on a separation of regular (smooth)
and highly anisotropic components. Comparison with a well-established discrete
ordinate code (DISORT) is given. This confirms a high accuracy of the developed
code (and, in addition, it has much higher speed as compared to DISORT in the
case of the highly elongated in the forward direction phase functions). To eliminate
the anisotropic part of the solution of the radiative transfer equation the authors
used the small-angle approximation in Goudsmit—Saunderson form. It results in
a boundary-value problem for the regular part of the solution that is similar to
the initial problem, but with the modified source function on the right-hand side
of equation and the modified boundary conditions. The solution of the obtained
equation for the regular part is found by the discrete ordinates method. In the case
of plane-parallel geometry this problem has the analytical solution as a matrix ex-
ponential. The authors also generalized their approach to account for the vector
nature of light and solved VRTE using the same methodology. Moreover, the 3-
D radiative transfer has also been considered in the framework of the generalized
Goudsmit—Saunderson approximation.

Chapter 6, by Lyapustin and co-authors, provides an overview of the publicly
available radiative transfer code SHARM. Among rigorous scalar codes, SHARM
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is one of the most numerically efficient and is based on the method of spherical
harmonics. Following descriptions of the algorithm and interface of the code, the
chapter describes the code SHARM-3D, which is designed for computations with
non-homogeneous anisotropic surfaces. SHARM-3D uses a rigorous 3-D Green’s
function solution for radiance in combination with the linear kernel model of the
land surface bi-directional reflectance. In this case, the top-of-the-atmosphere radi-
ance analytically depends on the surface BRDF parameters. This provides superior
numerical efficiency, because when the atmosphere can be considered horizontally
homogeneous, the atmospheric Green’s function and the related functions need
to be calculated only once. To handle the ‘adjacency’ effect, SHARM-3D uses a
comprehensive pre-computed look-up table (LUT) of the 3-D optical transfer func-
tion (OTF) developed for different atmospheric conditions and geometries. OTF
is a Fourier transform of the atmospheric 3-D Green’s function. Certain symmetry
properties of the OTF allow for a small LUT and a fast OTF-restore algorithm
for arbitrary atmospheric conditions, geometry, and spatial resolution (currently
>30m). Comparisons of SHARM-3D with rigorous 3-D code SHDOM showed an
agreement to 0.5-1%. At the same time, SHARM-3D is much faster (a factor of
~10?) and, contrary to SHDOM, allows the processing of large scenes (side dimen-
sion of 10-10%) on a common laptop.

As we see, all the chapters in Part II touch upon 3-D radiative transfer prob-
lems, which is a hot topic of modern radiative transfer research. Usually, light
propagation in media with arbitrary spatial distributions of optical characteristics
is studied using numerical calculations and it is a difficult matter to derive ana-
lytical results in this case. One possibility of the simplification of the 3-D solution
is based on the principles of invariance. These principles were introduced in the
radiative transfer theory by V. A. Ambartsumian, who derived the nonlinear inte-
gral radiative transfer equation for a semi-infinite layer using the fact that adding
an additional layer at the top with the same properties as the medium itself will
not change the reflected light intensity (by definition of a semi-infinite layer). Fur-
ther, the principles of invariance have been explored by a number of prominent
scientists such as S. Chandrasekhar and R. Bellman. In the concluding chapter
of Part I, Nikolai Rogovtsov describes the physical and mathematical foundations
of the general invariance relations reduction method (GIRRM). GIRRM is one
of the most general methods of the solution for both direct and inverse radiative
transfer problems. The method can be used as the basis for the development of
both effective numerical schemes and analytical solutions of 3-D radiative transfer
problems for arbitrary phase functions and spatial distributions in turbid media of
various configurations. In addition, using the described approach, the author de-
rived a new approximate representation for the reflection function of a semi-infinite
plane-parallel medium. The asymptotic solutions valid if the characteristic dimen-
sions of the disperse medium are much larger as compared to the photon mean
path length in the medium are derived for a number of light scattering objects.
In particular, disperse media with shapes of sphere, cube, cylinder, and spheroid
have been considered. The derived results can be utilized, for example, for testing
various numerical methods and Monte Carlo solutions of the 3-D problem.

The book concludes with Part IIT aimed at applications. Bonnie Light presents
a comprehensive summary of sea ice optical properties and their relationships with
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the structural properties of sea ice. Here the focus is not on light polarization and 3-
D effects but rather on the quantification of the impact of various ice impurities such
as brine inclusions, precipitated salt crystals, inclusions of biogenic and lithogenic
origin, and bubbles on light scattering and radiative transfer in sea ice. The main
problem here is the size and shape of inclusions, and also their refractive index.
Inclusions can be several centimeters long and have irregular shapes. The sizes,
shapes, and also refractive indices of some inclusions (e.g., brine) in ice strongly
depend on temperature. Clearly, ice is a very difficult turbid medium to study in
the field. Therefore, the author concentrated her study on the quantification of ice
optical and microphysical properties in the cold laboratory, which resulted in the
development of a physically based structural-optical model for first-year Arctic sea
ice. The results of this comprehensive work are invaluable for the development of
new methods of satellite remote sensing of ice, which are needed to quantify the
effects of global change in the Arctic.

Ice is often covered by snow and, therefore, understanding snow optical prop-
erties in relation to the snow grain size, density, wetness, and level of pollution
is also of great importance. This subject is explored by Jouni Peltoniemi and co-
authors. Both theoretical methods (ray tracing) and comprehensive measurement
field campaigns together with relevant instrumentation and data processing are
described. The authors show not only the snow bi-directional reflection function
but also the spectral and directional dependencies of the measured degree of polar-
ization, which is low in the visible and increases dramatically in the vicinity of ice
absorption bands in the near-infrared. The potential of optical methods for snow
melt monitoring is discussed.

The next chapter, Chapter 10, prepared by Per Edstrom, is aimed at the mod-
eling of light scattering in paper. Paper is close in appearance to snow and this is
due to the fact that scattering elements are weakly absorbing and strong multiple
scattering takes place. However, there are also some differences due to the size,
shape, and refractive index of scattering elements in paper. The author describes
various models used currently in the paper industry to understand and optimize pa-
per appearance and spectral reflectance. They include Kubelka—Munk theory, the
discrete ordinates method, the Monte Carlo technique, and asymptotic radiative
transfer solutions.

The last chapter of this volume is also aimed at studies of reflection but for
planetary regoliths. Their brightness is much smaller compared to snow, ice, and
paper. As stated by Karri Muinonen and his co-authors, two ubiquitous phenom-
ena are observed for the planetary regoliths near opposition (where the direction
of illumination almost coincides with the viewing direction and backscattering ef-
fects dominate): negative linear polarization and nonlinear surge of brightness. The
phenomena are observed at sun—object—observer angles of less than 30 and 10 de-
grees, respectively, sometimes showing up at extremely small phase angles within a
degree from opposition. Coherent backscattering and shadowing mechanisms have
been introduced to explain the phenomena. The authors have studied interference
mechanisms in scattering by single particles capable of explaining such intensity
and polarization phenomena. The presented modeling constitutes an important
advance in the interpretation of the observations of atmosphereless solar-system



Preface XXVII

objects. As shown by the authors, their observed scattering characteristics can be
linked to the physical characteristics of submicrometer-scale scatterers.

In conclusion, I thank all the contributors for the preparation of the excellent
papers presented in this volume. I am also indebted to Clive Horwood, Publisher,
for advice, patience, and encouragement.

Bremen, Germany Alexander A. Kokhanovsky
October, 2009
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1 Numerical simulations of light scattering and
absorption characteristics of aggregates

Y. Okada

1.1 Introduction

A non-sphericity of a particle plays an important role in light scattering processes,
resulting in different scattering and absorption of incident light compared with
spherical particles. Among various non-spherical shapes of particles, aggregates of
small particles are often applied as model shapes to particles observed actually in
nature, such as dust from cometary nuclei, soot aerosols floating in the Earth’s
atmosphere, and microbiocells composed of sets of small organic cells.

The distinct difference between light scattering properties of aggregates and
those of a single particle (e.g., compact spheres, spheroids, and hexagonal prisms)
is that the aggregates multiply scatter incident light by composing particles. Be-
cause of this difference, aggregates and a single particle have totally different light
scattering properties, which will cause largely different estimation of physical prop-
erties from the same observational data when the light scattering properties are
used for the interpretation. Therefore it is important to investigate light scattering
properties of aggregates when applied to particles likely having aggregated struc-
tures.

Light scattering properties can be investigated based on two methods: (1) lab-
oratory measurements and (2) numerical light scattering simulations.

In the former method (i.e., laboratory measurements), aggregates with sizes
much larger than actual ones are used for the study. Those large aggregates can be
used to study the light scattering properties of small aggregates on the condition
that the aggregate sizes compared with the observing wavelength are the same, that
is, for the same size parameter x = 27r/\ where r is the radius of the aggregate, A
is the observing wavelength (see discussion about the scale invariance rule in [49]).
Therefore, the small aggregates observed at the visible wavelength can be studied
in laboratory measurements by investigating larger aggregates at the microwave
wavelength (i.e., microwave analog method [27,28]).

In contrast to laboratory measurement, in numerical light scattering simula-
tions, the light scattering processes on aggregates are simulated on computers based
on the computational solution methods of Maxwell’s equations. Different solution
methods for Maxwell’s equations have been developed and used as shown later in
section 1.3. Numerical light scattering simulations have the advantages of being
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capable of treating homogeneity in the physical properties of the aggregate, such
as the size, material composition, alignment of composing particles.

Despite the advantage of treating homogeneity in physical properties of the
aggregate, numerical light scattering simulations still have limitations (e.g., the
maximum treatable size, treatable complexity in the shape of the particle, longer
computational time, and accuracy). Therefore, various methods are still being de-
veloped and improved in order to overcome these limitations so that numerical
light scattering simulations will be fully applicable to the interpretation of actually
observed aggregates, whose sizes and complex shapes are currently located outside
the treatable region of the numerical light scattering simulations.

In this chapter, we will introduce various results of the numerical light scattering
simulations, which are applicable to fractal aggregates. This chapter is composed
as follows. In section 1.2, various parameters defined for numerical light scattering
simulations are introduced. In section 1.3, numerical light scattering simulation
methods proposed from the 1960s to the 1990s are briefly introduced. Then, meth-
ods widely used in recent light scattering studies are presented with the applicabil-
ity to aggregates. In section 1.4, we introduce the improvements of the numerical
light scattering simulations for the aggregates and a few sample results from the
simulations. Section 1.5 summarizes this chapter.

1.2 Properties of aggregates used in numerical simulations

1.2.1 Physical and light scattering properties

We introduce parameters for physical properties of an aggregate and those for their
light scattering properties obtained from the numerical light scattering simulations.
Table 1.1 summarizes the physical properties of an aggregate and conditions used
in the simulations.

Table 1.1. Physical properties of an aggregate and conditions of the simulations

Monomer radius: Tm
Wavelength of incident light: A

2
Monomer size parameter: Tm = T
Number of monomers: N
Volume equivalent size parameter of the aggregate: x, = VN
Complex refractive index: m=n+ik
Shape of the aggregate: BPCA and BCCA

(see section 1.2.2)

The composing particles of an aggregate are called monomers. The size of the
monomer is described by the size parameter of the monomer x,, (= 27r,,/A) where
Tm is the monomer radius, and A\ the wavelength of incident light. r,, and X\ are
treated in the same unit (e.g., pm or nm).
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The number of monomers composing the aggregate is defined with N. From z,,
and N, we can calculate the volume equivalent size parameter of the aggregate x,,
(see Table 1.1 for the equation).

The material composition of the aggregate is described by the complex refractive
index m = n+ik. k is related to the absorption coefficients of the aggregate defined
as 4wk /X (see Eq. 2.69 in [31]). Throughout this chapter, we only treat an aggregate
of a single material composition. However, it is also possible to treat a composite
aggregate whose monomers have different material compositions.

From the light scattering simulations with the above physical properties of
the aggregate, we can obtain the light scattering properties of the aggregate. As
integrated light scattering properties, we have efficiencies for absorption (Qaps),
scattering (Qscq ), and extinction (Qeqt), where Qezt = Qsca + Qaps- The efficiencies
are equal to cross-sections (Cyps) divided by the geometrical cross-section (7r2)
where 7, denotes the radius calculated from z, and .

In addition to the integrated light scattering properties, we also obtain angular
light scattering properties called the phase matrix. The phase matrix of an aggre-
gate averaged over random orientations is defined in the following equation for the
Stokes vector [I,Q,U,V]T (see chapter 4 of [48]).

Isea a1(®) b1(©) 0 0 Jine
Qsca bl(@) 0/2(@) 0 0 Qz’nc
Usca X 0 0 a3(@) bQ(@) Uinc ) (11)
yrsca 0 0 —by(0) au(®)| |Vine

where © is the scattering angle, which is defined by directions of incidence and
scattering of light. ©® = 0° denotes forward scattering and @ = 180° backward
scattering. inc and sca denote incident and scattered components of the Stokes
vector, respectively.

The a; element of the phase matrix is called the phase function. a; describes
the angular distribution of incident light energy when the normalization condition
in the following equation holds:

1 s
5/ dO sin®a,(O) = 1. (1.2)
0

The degree of linear polarization P(©) for the unpolarized incident light (i.e.,
Q"¢ = Une = Vine = () is defined as follows (see p. 28-29 of [48]):

P(O) = —b1(0)/a1(O). (1.3)

Table 1.2. Parameters of the integrated light scattering properties

Extinction efficiency: Qext = Cezt/(m*g)
Scattering efficiency: Qsca = Csea/(mr2)
Absorption efficiency: Qabs = C’abs/(mﬂg)
Cross-sections: Cezty Csea, and Cups have the unit of (length)2

Asymmetry parameter: g = {cos(O@)) = %fjl d(cos ©)a1(O) cos O

Single scattering albedo:  wo = Qsca / Qext

7y is a radius of volume-equivalent-sphere calculated from x, and A
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1.2.2 Shapes of aggregates

There are several types of aggregates with different alignments of monomers. We
only consider aggregates composed of spheres. However, it is possible to consider
aggregates composed of spheroids and other shapes in the numerical light scattering
simulations (e.g., [82]).

Aggregates having different structures can be described using the fractal dimen-
sion Dy. Dy = 2 and 3 denote structures close to 2-D (plane) and 3-D (sphere),
respectively. By investigating aggregates with these two extreme cases of Dy, the
light scattering properties of aggregates having intermediate D¢ can be constrained.

Aggregates having Dy of around 2 and 3 are prepared based on sequential
ballistic collisions of monomers or of small aggregates. We use two models called
BPCA (Ballistic Particle-Cluster Aggregate) and BCCA (Ballistic Cluster-Cluster
Aggregate) [55].

The BPCA is created as follows. Firstly, one monomer collides with another
monomer generating a bisphere. Then one monomer after another collides with the
bisphere from random directions resulting in a single large aggregate.

The BCCA is created as follows:

— collision of two monomers,

— collision of two bispheres produced in the previous step,

— collision of two aggregates produced in the previous step,

— recursive collisions of two aggregates produced in the previous step until all the
monomers are gathered into a single large aggregate.

The BPCA has Dy of 2.98 4 0.02 while the BCCA has D of 1.93 & 0.07
[65]. The porosities of the BPCA and BCCA are defined with characteristic radius
rq = 1/b/3rg, where r, denotes the radius of gyration, which is obtained from the
following equation [56]:

N
1
e’ = N2 Z(ri —1j)%, (1.4)
1,7

where r; and rj denote position vectors of the 7th and jth monomers.

The porosity of the BPCA is around 85% while that of the BCCA is greater
than 99% (see table 1 of [36]).

Fig. 1.1 shows examples of 3-D images of the BPCA and BCCA composed
of 128, 256, 512, and 1024 monomers. Note that the structures of the aggregates
become different for different generations of the aggregate (e.g., five generations
for BPCA with N = 128). However, all the aggregates with different generations
can be described with similar fractal dimension Dy, which result in similar light
scattering properties between generations of a fixed shape model with the same N
(e.g., BPCA512a, BPCA512b, and BPCA512¢).

The BCCA stretches outward largely compared with the BPCA because of the
larger porosities (e.g., >99%). The differences in porosities between the BPCA and
BCCA influence the light scattering properties.

The BPCA and BCCA can commonly be treated in numerical light scattering
simulations only by changing the file describing the positions of all the monomers
(the shape file). Light scattering properties of aggregates having the same x,,, and
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BPCA128 BPCA256 BPCAb512 BPCA1024

¥ | #

BCCA128 BCCA256 BCCAb12

Fig. 1.1. Shape models; the BPCA and BCCA (after Y. Okada et al., JQSRT, 109,
2613-2627, 2008).

the same m, but the different shapes of aggregates can be studied by changing the
shape file.

1.2.3 Aggregate orientation

Light scattering properties are obtained for either

— a fixed orientation of the aggregate (a fixed direction of incident light),
— random orientation averaging.

The result of a fixed orientation is used to study an aggregate when the aggre-
gate under observation is fixed with respect to the direction of incident light during
the whole observation time. For example, fixed orientation results can be used to
study the interstellar extinction of dust particles, which are possibly aligned by
interstellar magnetic fields [32].

Results of random orientation averaging are used when the aggregate is ro-
tated randomly during the observation time, or for an ensemble of particles whose
monomers have similar shapes but have different orientations, seen in the observa-
tional field of view [47].

The orientation of the aggregate is defined with three Euler angles (i.e., «, 3,
and ) with respect to three fundamental axes of a selected coordinate system [47]
(see also Fig. 1.2).

Light scattering properties of random orientation averaging can be obtained by
integrating results of fixed orientations (e.g., sets of («, 8, v)). The values of the
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Fig. 1.2. Rotation of the aggregate using the Euler angles (a, 3, 7). N denotes the line
of node. Small capitals (z, y, 2) denote orientation of the aggregate before the rotation.
Capital letters (X, Y, Z) denote the orientation after the rotation.

random orientation averaging are calculated with the following equation:

27 T 27
(A) = 8%/0 /0 /0 da sin BdB dyA(a, 3,7), (1.5)

where A denotes light scattering properties (e.g., cross-sections and phase matrix
elements).

Random orientation averaging can be carried out based on two methods:
(1) AOA (analytical orientation averaging), and (2) NOA (numerical orientation
averaging). When the analytical solution for the orientation averaging is used,
the random orientation averaging procedure can be carried out more efficiently.
Therefore, deriving an analytical solution for the orientation averaging is an active
research topic for the numerical light scattering simulations of irregularly shaped
particles (see references in [51,52,86]).

The AOA is efficient for random orientation averaging. However, there are sev-
eral numerical methods for light scattering simulations developed for a fixed orien-
tation of the aggregate without the AOA solutions. When researchers use numerical
methods of light scattering simulations developed only for a fixed orientation of the
aggregate, they need to carry out the NOA to obtain results of random orientation
averaging.

1.3 Methods for numerical light scattering simulations

We introduce numerical methods for simulating light scattering of aggregates. We
focus on aggregates with x,,, < 2 because aggregates with z,, = 2 and N = 200
are still currently difficult to be treated in rigorous numerical simulations.

Table 1.3 lists methods proposed by various researchers from the 1960s to the

1990s. Around the 1970s, numerical simulation methods were only applicable to
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Table 1.3. Methods for multiple spheres proposed from the 1960s to the 1990s

e Liang and Lo (1967)
— Proposed multipolar expansion method utilizing translational addition theorem
for VSWF (vector spherical wave function)
— Applicable to monomer radius less than 3\/4
e Bruning and Lo (1969), Bruning and Lo (1971a), and Bruning and Lo (1971b)
— Derived recursion relation for translation coefficients in translational addition the-
orem
— Applicable to monomer radius up to 10\
e Jones (1979)
— Derived a system of 3N linear equations for clusters of particles
— Applicable to monomers in the Rayleigh region
e Borghese et al. (1979)
— Proposed a method based on Debye potentials and mathematical technique to
incorporate multiple scattering influence
— Applicable to a system of molecules (radius less than 5 A)
e Gérardy and Ausloos (1980)
— Proposed a theory taking into account all multipolar orders
— Applicable to N dielectric spheres embedded in dielectric matrix
e Gérardy and Ausloos (1982)
— Incorporated higher-order multipolar interaction effects
— Applicable to aggregated metal spheres
e Borghese et al. (1984a)
—  Derived a general addition theorem for vector Helmholtz harmonics
e Borghese et al. (1984b)
— Utilized group theory for multipolar expansion of the light scattering simulations
e Fuller et al. (1986)
— Incorporated an approach to treat non-interacting spheres
e Fuller and Kattawar (1988a), Fuller and Kattawar (1988b)
— Proposed a method based on the OoS (order-of-scattering) technique
e Mackowski (1991)
— Devised a new recurrence relation in the addition theorem for efficient implemen-
tation of the OoS technique
e  Wang and Chew (1993)
—  Proposed RATMA (recursive aggregate T-matrix algorithm)
e Fuller (1994)
— Proposed a method based on summation over pairwise cross-sections for calcula-
tions of cross-sections
e Borghese et al. (1992), Borghese et al. (1994), Fuller (1995)
— Proposed a method for a sphere containing sub-sphere inclusions

simpler shapes, such as bispheres, and aggregates composed of up to five monomers,
or the application was limited to aggregates composed of monomers whose sizes
are in the Rayleigh region. Those methods were gradually improved for increased
numbers of monomers and for increased sizes of monomers. Also, the computational
efficiency of the numerical simulation method has been gradually improved.

Table 1.3 only lists the methods focusing on the treatment of multiple spheres.
However, methods for shapes other than multiple spheres were also studied during
the same period. For example, Mishchenko (1991) proposed a method for light scat-
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tering by randomly oriented axially symmetric particles [46]. In his paper, rigorous
analytical solution for the orientation averaging is introduced. The work improved
the T-matrix method originally proposed in [75,76] (see [51,52,86] and references
therein).

Now we move our focus to methods recently used in light scattering studies.
Table 1.4 shows several numerical methods widely used in recent light scattering
simulation studies applied to aggregates.

Table 1.4. Methods widely used in recent light scattering studies of aggregates

1. Discrete dipole approximation (DDA) [16,84,85]

2. Finite difference time domain method (FDTD) [68,69,83]

3. T-matrix method for clusters of spheres (CTM) [42,43]

4. Generalized multiparticle Mie-solution (GMM) [79, 80]

5. Effective medium theory combined with Mie theory (EMT-+Mie) [12,13]

In terms of the accuracy, we may divide the methods into two types: (1) rigorous
and (2) approximate methods. Rigorous means that the solution for the numerical
light scattering simulations are obtained rigorously, which produces final results
with high accuracy. On the other hand, the approximate methods include approx-
imations in the numerical light scattering simulations, which should be treated
carefully to obtain results with the desired accuracy. We may group the CTM and
GMM as rigorous methods, and the DDA, FDTD, and EMT as approximate ones.

1.3.1 The DDA and FDTD

The DDA and FDTD are methods based on volume integral formulations of
Maxwell’s equations. In the volume integral formulations, a particle is divided into
an array of sub-volumes, then electromagnetic interactions between sub-volumes
are treated in the simulations. Because of the treatment of the particle shape with
sub-volumes, the DDA and FDTD can be used for various shapes of particles.

In the DDA, the particle is divided into an array of polarizable point dipoles.
Electromagnetic interactions of the dipoles are calculated in the simulation with
prescriptions for dipole polarizability (e.g., LDR; Lattice Dispersion Relation [16],
SCLDR; Surface Corrected Lattice Dispersion Relation [14], GKLDR; LDR cor-
rected in [29]).

The FDTD is based on replacement of temporal and spatial derivations of
Maxwell’s equations. The particle is divided into an array of small cubic cells.
The FDTD uses the so-called ABL (absorbing boundary layer) to truncate the
computational domain. The light interactions of the cells are calculated in the time
domain. The vectors for electric and magnetic fields are treated at each discretized
grid cell. Then, the time evolution of the electric and magnetic fields is simulated
in the time domain until the state of convergence is obtained. Light scattering
properties obtained in the time domain are converted into those in the frequency
domain, that is, at different wavelengths (see [68,69,83] for further details of the
FDTD).
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In the DDA, errors are studied using the parameter |m/|(27/\)d, where m is the
complex refractive index, A the wavelength of incident light, d the dipole separa-
tion. In the FDTD, errors are studied with the grid size described using A (e.g.,
A/10 and A/20). The accuracy of the DDA and FDTD is often investigated by
comparing them with those obtained using rigorous methods. For example, results
for a compact sphere described with an array of sub-volumes are investigated by
comparison with those obtained using Mie theory (e.g., [17,18,68]).

Draine and Flatau [19] recommended |m|(27/\)d < 1.0 for the efficiencies (e.g.,
Qext) and |m|(2m/A)d < 0.5 for the phase function in order to suppress the errors
less than a few percent for a compact sphere. For the FDTD, Sun and Fu [68] have
shown that the grid cell size with A/20 produces results with an error of less than
1% in Qeyt and Qe and of less than 5% in phase function. From these two papers
and other related studies, it is shown that the size of sub-volumes should be less
than a certain value to obtain results with the desired accuracy.

If the monomers are very small (z, < 1.0), each spherical monomer can be
represented with a single sub-volume (a dipole or a cubic cell) in the numerical
simulations. On the other hand, when x,, becomes larger (e.g., z,, = 1.0), each
spherical monomer should be represented with an array of sub-volumes to obtain
results with errors less than a few percent. However, the discretization of each
monomer into an array of sub-volumes causes a limitation in the computable size
parameter of the aggregate and requires longer computation time.

1.3.2 The CTM and GMM

In the CTM and GMM, incident electric field (E‘¢) and scattered electric field
(E*°*) are both expanded in vector spherical wave functions (VSWF; aka VSH;
vector spherical harmonics) as in the following equations [43,79]:

>
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where m and n denote the order and degree, respectively. p denotes the mode of
electromagnetic waves (i.e., TM and TE).

The relation between expansion coefficients of E™¢ (I,,,,,) and those of E%¢
(@mnp) is given by the T-matrix (translation matrix). Light scattering properties of
the aggregate can be calculated from the T-matrix of the aggregate as described in
[43]. In both the GMM and CTM, solutions for the analytical orientation averaging
(AOA) are obtained [43,79,80].

The GMM and CTM are very similar in the formulation for a fixed direction of
incident light. On the other hand, they are remarkably different in the formulations
for the AOA [81]. The GMM deals directly with precise phase relations of both
incident and scattered waves, while the CTM expresses both phase factors in terms
of infinite series expansions [81]. The CTM is used for aggregates of spheres while
the GMM can be applied to aggregates of non-spherical monomers on the condition
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that the T-matrix of each monomer can be obtained. A comparative study between
the GMM and CTM is given in [81].

The CTM and GMM are highly accurate because of the rigorous nature of the
methods. However, the limitation exists in the largest value of monomer size pa-
rameter x,,, not because of the formulations, but because of the computational
aspect. That is, the memory requirement increases very rapidly for the increase in
T, because higher orders of expansion coefficients in the VSWF become impor-
tant in the light scattering properties for larger values of z,,. Also the memory
requirement becomes larger for the increase in V.

1.3.3 The EMT

In the EMT, the light scattering properties of irregularly shaped particles having
refractive index m are approximated by the light scattering properties of homo-
geneous particles (e.g., a compact sphere) having a so-called effective refractive
index (m.ss) obtained from m and the porosity of the particles based on selected
EMT formulations (e.g., the Maxwell-Garnett mixing rule and the Bruggeman
rule) [13]. After calculating m.ss, Mie theory is used to obtain the approximate
light scattering properties.

The simulations based on the EMT+Mie (i.e., the combination of the EMT and
Mie) are much faster than other numerical methods for light scattering simulations.
This, combined with its simplicity, has led to the EMT+Mie being widely used
to study light scattering properties of irregularly shaped particles. However, the
accuracy of the EMT+Mie needs to be considered.

Previous studies [73,77,78] have shown that Qs.q and Qups obtained from the
EMT+Mie deviate greatly from those obtained using the DDA when the size pa-
rameter of voids or monomers is larger than around 2.0 (e.g., figs. 4-6 of [77]). The
review of the EMT by Chylek et al. [13] concluded that errors in Qe,: and Qseq
are typically 10% and 15%, respectively, for x,, values up to 2.0.

The inaccuracy is caused by violation of the assumption in EMT formulations
of negligible forward scattering by voids and inclusion particles [13]. The typical
presence of forward-scattering peaks for larger voids and inclusions [8] invalidates
the EMT method.

In addition to the inaccuracy of Q... and Qups, there are large inaccuracies
in phase matrix elements obtained from the EMT+Mie. Therefore, this method
should be used for small particles to obtain Q... and Q.ps and not phase matrix
elements unless other types of EMT formulations are derived that take the forward
scattering by voids and inclusions into account.

1.3.4 Future extensions of the numerical methods

As described above, various methods—both approximate and rigorous—can be ap-
plied to numerical light scattering simulations, depending on the desired accuracy,
acceptable computation time, and available computer resources.

Related to the computation time, we need to treat the random orientation
averaging of the aggregate. The CTM and GMM have the advantage that values
of random orientation averaging can be obtained immediately after obtaining the
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T-matrix of the aggregate. On the other hand, the DDA and FDTD are used for a
fixed orientation of the aggregate. For random orientation averaging, simulations
using the DDA and FDTD should be carried out repeatedly for the number of
orientations required to reach convergence where further increase in the number of
orientations does not influence the results.

Accurate numerical simulations of light scattering by realistic particles require
the following improvements to the currently proposed methods:

1. Increasing the accuracy of approximate methods.

2. Speeding up simulations with approximate methods for a fixed orientation of

the aggregate.

Speeding up procedures for the random orientation averaging.

4. Increasing the largest allowable monomer size in both approximate and rigorous
methods.

5. Increasing the treatable number of monomers of the aggregate in both approx-
imate and rigorous methods.

R

1.4 Improved numerical simulations

1.4.1 Grouping and adding method (GAM)

One of the limitations in the numerical light scattering simulations of aggregates
is the largest number of monomers N, which can be treated. N is limited because
of memory and computation time. The computation time can be reduced with the
advent of workstations having higher performance (e.g., multiple core system). On
the other hand, the memory limitation is sometimes difficult to solve even with the
evolution of computer hardware, because the higher N is, the higher the orders
of scattering functions that should be treated in the numerical light scattering
simulations.

In this circumstance, we have proposed a method to reduce the maximum mem-
ory required in numerical light scattering simulations. We call the method GAM
(Grouping and Adding Method) [58]. Following is the procedure of the GAM:

1. Divide the target aggregate into Npry groups of sub-aggregates
2. Calculate efficiencies (Qscq and Qqps) of each sub-aggregate
3. Sum the efficiencies of all the sub-aggregates

The GAM has a feature to reduce required memory by treating one group of
sub-aggregates at one time. Because of this division, we can carry out simulations
for larger aggregates, which originally would have required memory larger than our
computer resources.

The GAM is combined with a fixed orientation version of numerical methods
for light scattering simulations. We used a fixed orientation version of the CTM
[43].

The summation of light scattering properties of all the groups is possible. This is
because the total efficiencies of an aggregate can be obtained based on superposition
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principle of those from all the monomers as shown in the following equations [42]:

ggf - Zcewt ) (1~8)

ng = anbe ) (19)

where C' denotes the cross-section. agg denotes cross-sections of the aggregate. 4
represents a contribution from ¢th monomer.

The GAM takes advantage of the feature that monomers with larger x,, start to
have strong forward scattering (see Fig. 1.3). With the strong forward scattering by
one monomer (hereafter called the ith monomer), light incident on the ¢th monomer
will be scattered mostly into the forward direction. Then, monomers located at a
distance in the side direction from the ith monomer rarely contribute to the multiple
interactions of the light, which is first scattered by the ith monomer.
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Fig. 1.3. Scattering phase function p11(©) of a single monomer as a function of the size
parameter of the sphere, x,,, where m = 1.540.1¢. Each scattering function is normalized
to its value at © = 0° (after Y. Okada et al., JQSRT, 108, 65-80, 2007). p11 is obtained
from a1 shown in section 1.2.1

Fig. 1.4 shows schematic figures of the grouping of an aggregate. The division
of the aggregate is carried out based on a plane perpendicular to the direction of
incident light. With this way of division, we can take advantage of the forward
scattering feature occurring for larger monomer size. For the grouping, we use the
K-means method [45].

When we calculate light scattering properties of one group, we treat monomers
of the group, together with monomers of surrounding regions. We call the sur-
rounding region the buffer region (see Fig. 1.4(b)). Table 1.5 shows the parameters
of the GAM.
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The light scattering properties of the buffer region (N, goﬂt monomers) are not
obtained accurately because of the absence of monomers outside the buffer region
(Norg — NGt — N ). Therefore multiple scattering between monomers in the buffer
regions and those in outer surrounding regions becomes insufficient compared with
when the aggregate is not divided into groups.

For each group, we carry out one simulation using N, ;ﬁ monomers of the group
and N, qoft monomers of the buffer region. Then we store the light scattering prop-
erties only of IV, ;’T‘ monomers for future summations of all the groups. We discard
results of Ngofft monomers of the buffer region because of the inaccuracy. How-
ever, the monomers selected as the buffer region (No*) in the simulation of one
group will be treated as monomers of the group (N, ;’T‘) in the simulation of another
group. Then in the summation of the results of all the groups, we can obtain results
contributed from all the monomers.

Table 1.5. Parameters of the GAM

Norg : Number of all the monomers of the original aggregate
Npry : Number of groups

Ngi? : Number of monomers in the selected group

Ng¥ : Number of monomers in the buffer region

The GAM will cause errors because the absence of monomers outside the buffer
region will exclude the influence of (Norg — NN, ;? - N, 5;“5) monomers on multiple
light scattering of N;;} monomers. However, we expect that those errors will be-
come smaller for larger x,,, because of forward scattering characteristics. We have
investigated the errors by using aggregates treatable with memory size of our com-
puters (2GB) for N = 512 and z,, up to around 4.5.

The errors are estimated by comparing between efficiencies of the aggregate (1)
with the GAM and (2) without the GAM:

|QGAJV[ _ Qorg|
(e}

Qo9

where GAM is the results with the GAM. org denotes results without the GAM.

The size of the buffer region influences the accuracy of light scattering properties
of N, gi? monomers. Errors caused by the GAM are investigated for different values
of the ratio No*-to-Nopg. It is found that an Ng“-to-Noy, of 1/8 will have errors
of up to 15% for z,, of up to 4.5, Norg = 512, Npry = 60 and for various sets
of (n, k) (see Fig. 1.5). For absorbing monomers (i.e., higher k values), the ratio
Ng(’:ft—to—Norg can be taken as 1/16 for errors of up to 15%.

For errors for different values of Npyy and for other details of the GAM, refer
to our paper [58]. Sample code using the GAM is available at [88].

Error(%) = x 100, (1.10)
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Fig. 1.4. Schematics of grouping of the aggregate (a and a’) and of the buffer region (b
and b') for EMs propagating in the Z direction. The original aggregate (BCCA512) is
grouped with Npry = 10. In panels b and b, gray and black shaded circles are the N;’Z
monomers in the group and N;fft monomers in the buffer region, respectively, and the
large solid circle and dashed one denote the maximum radius of group 4 and buffer region
for the group, respectively. The direction of the incident light is shown at the bottom
right of each panel (after Y. Okada et al., JQSRT, 108, 65-80, 2007).

1.4.2 Numerical orientation averaging using a quasi-Monte-Carlo
method (QMC)

Light scattering properties of random orientation averaging of an aggregate are
obtained by integrating results over a large number of orientations analytically or
numerically (see section 1.2.3). Numerical orientation integration of results using
fixed orientation code is traditionally performed by using multiple sets of orienta-
tions changed with some certain steps in each of three Euler angles. Hereafter we
call the division of orientations with certain steps the LAT (lattice grid division).

Computational efficiency of the numerical orientation integration depends on
how multiple orientations are selected (i.e., their number and their distribution in
angular space). The LAT is easy to treat; however, it is not necessarily the best
way to efficiently carry out the integration.
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Fig. 1.5. Maps of errors in Qups and Qscq for n vs k for different x,,. The buffer region
has an No**~t0-Nmono ratio of 1/8, and Nmono = 512 and Nprv = 60 (after Y. Okada et

al., JQSRT, 108, 65-80, 2007).
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Efficient methods for integrations over the 1-D, 2-D, and 3-D have been studied,
which resulted in a so-called QMC (Quasi Monte-Carlo) method for an efficient
integration. We have proposed to apply the QMC for random orientation averaging
of the light scattering properties in [59].

The QMC is similar to a Monte—Carlo method using random numbers, which
is conventionally called the CMC (Crude Monte—Carlo) method [57]. By using the
CMC or QMC, the orientation integration is carried out as the following equation:

Nint—1
[ =5 > I (111)

where A denotes the area of the considered region, ds the area element in A, and
x; the position of the ith point, f(x;) is the value of the function at this point, and
Nine the number of points used for the integration.

It is known that the CMC converges with O(y/loglog N/v/N) [57]. Hence the
accuracy of the CMC increases only slowly as O(1/v/N).

The QMC is developed to increase the convergence efficiency compared with
the CMC. In the QMC, instead of the random numbers used in the CMC, a number
sequence called the LDS (Low-Discrepancy Sequence) is used.

The LDS comprises a uniform number sequence between 0 and 1. Among various
LDSs, we used the so-called HS (Halton sequence) for two-dimensional variables.
The HS is generated by a one-dimensional van der Corput sequence. The van der
Corput sequence g, (k) can be recursively obtained as [57]:

9(0) = %7 (1.12)
gulbn+7) = 3 (a(n) +0(r), (113)

where b is the base, and ¢ a permutation of natural numbers ranging from 0 to
b—1 (ie,o0={0,1,...,b—1}).

For example, a van der Corput sequence with base of 3 (i.e., g3(k) with b = 3)
can be calculated as follows. g3(0) = ¢(0)/(3 — 1) = 0/(3 — 1) = 0 according to
Eq. (1.12). g3(1) is considered as ¢g3(3+ 0+ 1) with n =0 and r =1 in Eq. (1.13).
Then, g3(3+ 0+ 1) = 1(g3(0) + (1)) = £(0 + 1) = 3. Recursively we can obtain
g3(k) = %,%,%,g,...} for (k=1,2,3,4,...).

The HS for 2-D is produced by a combination of two van der Corput sequences
with two different bases. For example, we can use 2 and 3 as bases for the two
orientation angles (« and ) of the Euler angles. The number sequence ranging
between 0 and 1 produced from the HS is converted into the full range of the angle
(e.g., 0 to 27) used for the orientation rotations.

Fig. 1.6 shows the difference in orientation distributions using above methods.
In Fig. 1.6 we compare:

1. CMC using random number generator (rand) commonly implemented in For-
tran compilers,

2. CMC using MT (Mersenne Twister) [44],

3. QMC using HS with bases of 2 and 3.
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The one prominent difference between rand and the MT is the length of peri-
odicity of random numbers. The periodicity of the MT is much longer than that of
rand, making the CMC with the MT more secure for use in integrations of higher
dimensional space. However, the above two methods using the CMC show point
distributions whose uniformity is not as good as those of the QMC-based method
(see Fig. 1.6). This difference in the uniformity of orientation distribution causes a
difference in convergence efficiencies among these three methods.

The efficiency of convergence of the QMC is mathematically known as
O[(log N)?/N] where s is dimension (e.g., s = 2 for two angles) [57]. Therefore
the convergence efficiency of the QMC (x O(1/N)) is better than that of CMC
(x O(1/V/N)).

Fig. 1.7 shows the comparison of convergence of the light scattering properties
as a function of the number of orientations between three methods for orientation
selections for the NOA (i.e., LAT, CMC with MT, and QMC with HS). We used
a fixed orientation version of the CTM to obtain the light scattering properties
of each orientation of the aggregate. Only phase functions at several scattering
angles of BPCA128 (i.e., BPCA composed of 128 monomers) are shown (see [59] for
comparisons of other light scattering properties, and for other shapes of aggregates
such as bisphere, BCCA4, and BCCA128).

The bold gray lines in Fig. 1.7 are results obtained using the AOA version of
the CTM (see Table 1.4). Therefore, the approach of results to the bold lines for
an increased number of orientations denotes the convergence of the NOA.

The convergence efficiencies are better in the QMC followed by the CMC. The
convergence efficiency of the LAT is the worst among the three methods for the
phase function shown in Fig. 1.7. The convergence efficiencies depend on types of
light scattering properties (e.g., Qups, polarization at some scattering angles, and
9); however, the general tendency has the same trends as shown in Fig. 1.7.

From these studies, it is shown that the QMC method can be used for efficient
numerical orientation averaging of the light scattering properties of aggregates.
Sample Fortran code to generate the HS is available at [89].

1.4.3 Extended calculation of light scattering properties with
numerical orientation averaging

T, and N of an aggregate treatable in the light scattering simulations are limited
mainly because of the computer memory. For example, when we use the AOA
version of the CTM on computers with 2 GB memory, the maximum value of N
becomes around 200 for z,, =~ 1.7. Because of these limitations in the CTM and
those in other methods for numerical light scattering simulations (e.g., the DDA,
the GMM), studies of the light scattering properties of fractal aggregates have been
confined to a certain range of parameter space. Fig. 1.8 shows the parameter space
(N and z,,) considered in previous studies of the light scattering properties of
aggregates.

In Fig. 1.8, it is shown that values of N with z,, =~ 1.7 are confined to be
less than around 200 in most studies. This limitation in parameter space clearly
limits our understanding of the light scattering properties of aggregates. Also it
is not clear whether or not the light scattering properties of the aggregates with
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Fig. 1.6. Comparison of distribution of two variables (z and y). (a) CMC+rand: crude
Monte-Carlo method with random number generator (rand()) implemented in For-
tran compiler. (b) CMC+MT: crude Monte-Carlo method with Mersenne Twister. (c)
QMC+HS: quasi Monte—Carlo method with Halton sequence. From top to bottom show
results for 100, 1000 and 10000 points (after Y. Okada, JQSRT, 109, 1719-1742, 2008).

N < 200 are representative of those of aggregates realistically existing in nature
(e.g., cometary dust, microbiocells, soot aerosols). It is important to investigate
the validity of these light scattering properties by comparing them with results of
aggregates having increased N.

In order to increase N and x,, treatable in the numerical light scattering simu-
lations, we have proposed to use a fixed orientation version of the CTM combined
with the NOA instead of the AOA in the random orientation averaging.

Public Fortran codes of the fixed orientation version and AOA version of the
CTM are available on the Web [87]. We used two Fortran codes (i.e., scsmfolb.for
and scsmtml.for) for the fixed orientation version and the AOA version of the
CTM, respectively.

The two versions of the CTM are different in memory usage because the former
treats only the fixed orientation. Also this version uses optimization for memory



1 Numerical simulations of light scattering 21
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Fig. 1.7. Comparison of intensities at scattering angle of 10 degrees obtained using three
different methods for the NOA. S11 denotes phase function (i.e., a1 in section 1.2.1). z,
denotes the size parameter of a sphere with equivolume to the aggregate. X axis denotes
number of orientations (i.e., a combination of zenith and azimuth angles) used for the
NOA. Gray lines are values obtained from the AOA. Two dashed lines are error bounds
estimated from the value of the AOA. (After Y. Okada, JQSRT, 109, 1719-1742, 2008)
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Kozasa et al., 1993 A & A (DDA) [15]
Petrova et al., 2000 Icarus (TMM) [16]
Kimura et al., 2001 JQSRT (TMM) [17]

Xu et al., 2001 JQSRT (GMM) [18]

Lumme et al., 2003 ELSVII (DDA) [19]
Tishkovets et al. 2004 JQSRT (TMM) [20]
Kimura et al., 2004 JQSRT (TMM) [21]
Kimura et al., 2004 JQSRT (al-term) [21]
Petrova et al., 2004SSR (TMM) [22]

Petrov et al., 2004AMSM (DDA) [23]

Lasue et al., 2006 JQSRT (DDA) [24]

Bertini et al., 2007 A & A (DDA) [25]
Petrova et al., 2007 Icarus (TMM) [26]

Liu and Mishchenko, 2005 JGR (TMM) [27]
Mishchenko and Liu., 2007 JQSRT (TMM) [28]
Mishchenko et al., 2007 Opt. Exp.(TMM) [29]
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Fig. 1.8. Parameter space in past studies of the light scattering properties of fractal
aggregates. Note that the reference numbers on the right-hand side are those in the
original paper (after Y. Okada et al., JQSRT, 109, 2613-2627, 2008).

usage by compaction into the amplitude matrix devised for the fixed orientation
version (see a document found at [87]). On the other hand, the AOA version requires
memory for random orientation averaging, which is much larger than that required
for the fixed orientation version. This difference in the memory usage between the
two versions of the CTM will cause a difference of the upper limitations in N
and x,,.

Fig. 1.9 shows the improvements of the parameter space by using the fixed
orientation version of the CTM (scsmfolb.for) from those of the AOA version of
the CTM (scsmtml.for). It is clear that the fixed orientation version of the CTM
increases IV and x,, greatly compared to the AOA version of the CTM. When we use
the fixed orientation version, we need to carry out the random orientation averaging
numerically using the NOA. As introduced in section 1.4.2, we recommend the
QMC for an efficient random orientation averaging with the NOA.

Some results of numerical light scattering simulations based on this technique
for a medium comprising spherical particles are given in [61].

A software package named NAOPC (numerical averaging of optical properties
of clusters) using the techniques in this section and section 4.2 are available at [90].

1.4.4 Scattering and absorption of BCCA composed of tens
to thousands of monomers

We introduce light scattering properties of BCCA composed of tens to thousands of
monomers using our proposed methods. The fixed orientation version of the CTM
can be used for N < 512 when we consider monomers of z,,, = 4.5 on computers
with 2 GB RAM. As written in section 1.4.1, the maximum N can be increased by
the GAM. Errors caused by the GAM are less for absorbing materials than those
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Fig. 1.9. Improvements in parameter space by using fixed orientation version of the CTM
instead of the AOA version of the CTM (After Y. Okada et al., JQSRT, 109, 2613-2627,
2008).

of low to intermediately absorbing materials. Therefore, for absorbing materials,
we can use the GAM with the ratio Ng*-to-N,yq of 1/16, while for other refractive
indices we used the ratio of 1/8 to obtain results with errors of less than 15%.

We consider three materials: (1) silicate, (2) pyroxene, and (3) amorphous car-
bon (see Table 1.6 for their refractive indices). The pyroxene is actually one type of
silicate. However, we call them silicate and pyroxene to denote low-absorbing and
intermediately absorbing materials, respectively.

Table 1.6. Refractive index of materials

Silicate: m = 1.48 + 0.000028i [54]
Pyroxene: m = 1.635 + 0.0042; [15]
Amorphous carbon: m = 2.03 + 0.77¢ [66]

Fig. 1.10 shows Qups and Q. obtained from our simulations. Results with
N < 512 are obtained using the CTM without the GAM; those with N > 1024 are
obtained using the CTM combined with the GAM.

Note that the simulation results are obtained for a single fixed orientation of
the aggregate, not for random orientation averaging.

Results clearly show a linear relationship between N and efficiency values (i.e.,
Qabs and Qseq). In results with N of 128 and 256, there are some deviations from
the linear relationship. However, results are obtained for a single orientation, not
random orientation averaging. We consider that these deviations may be caused
by specific alignment of monomers for a single orientation, and may disappear for
random orientation averaging.

We obtained the regression of the relations between N and efficiency values
(Qabs and Qscq). The obtained regression equations are shown in Table 1.7. The
correlation coefficient of each linear regression line is shown in brackets in Table 1.7.
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Fig. 1.10. Log-log plots of Qubs and Qscqe of aggregates composed of up to 8192
monomers, where z,,, = 4.5 for silicate, pyroxene, and amorphous carbon. The lines are
the regression line for each material. The aggregates with N < 512 are calculated without
the GAM while those with N > 1024 are calculated with the GAM. All the results are ob-
tained for one orientation of the aggregate. Table 1.7 lists the equations of the regression
lines (after Y. Okada et al., JQSRT, 108, 65-80, 2007).

All the correlation coefficients show very high values (i.e., >0.990) denoting strong
correlation between N and efficiency values for all the materials.

It is also noted that exponential slopes of regression lines of different materials
are very similar (i.e., 0.293 4+ 0.008). Therefore, we consider that the relationship
between N and efficiency values does not depend on the material composition,
rather it depends on other physical properties of the BCCA; one possibility is the
shape of the aggregate.

Other details of the simulations are discussed in [58].

Table 1.7. Equations of regression lines in Fig. 1.10 for silicate (Si), pyroxene (Py) and
amorphous carbon (Ac). The numbers in brackets represent the correlation coefficient of
the regression, and y represents the efficiencies (i.e., Qabss and Qsca), respectively (after
Y. Okada et al., JQSRT, 108, 65-80, 2007).

Qabs Qsca
Si | y=0.000811 x N>292 (0.998) | y=2.35x N°2%2  (0.990)
Py | y =0.133 x N°287 (0.997) | y=1.82x N°2%  (0.994)
Ac | y=0.831 x N8 (0.995) | y = 0.864 x N°39  (0.996)

1.4.5 Intensity and polarization of light scattered by
silicate aggregates

The intensity and polarization of light scattered by fractal aggregates are important
light scattering properties utilized to interpret observational data of cometary dust.
Numerical light scattering simulations have been utilized to study the light scat-
tering properties of cometary dust using fractal aggregates as their shape models
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(e.g., [1,2,34,35,37,39,62-64,70,71]). However, as shown in section 1.4.3, aggregates
studied before have been limited by N < 200 with z,, ~ 1.7. It is important to
study light scattering properties of the aggregates with increased N because realis-
tic dust particles are considered to have a much larger number of sub-components
(e.g., one million) as deduced from the image of IDP (Interplanetary dust particles)
(see fig. 3 of [30], for example).

In this part, we show sample results of the light scattering properties of the
BPCA and BCCA with increased N obtained from our extended numerical light
scattering simulations [60]. We consider the wavelength A of 0.6 pm, and refractive
index of silicate m = 1.68+0.03i [38]. We treat the BPCA and BCCA composed of
128, 256, 512, and 1024 monomers. We consider different values of monomer radius
rm. Results with N > 512 can be obtained by using a fixed orientation version
of the CTM on our computer resources (2 GB RAM). We investigate results of
random orientation averaging obtained using the NOA procedure with the fixed
orientation version of the CTM.

Figs 1.11 and 1.12 show the intensity (a;(©) in Eq. (1.1)) and polarization
(P(O©) in Eq. (1.3)) of the BPCA and BCCA with N ranging from 128 to 1024.
Curves with different styles correspond to results with different V.

Intensity

The results of intensity (i.e., left panels of Figs 1.11 and 1.12) show the following
two impacts of N:

— Forward scattering amplitudes at scattering angle of 0° for the BPCA and
BCCA increase with V. The BCCA shows a larger increase of the amplitudes
with N compared with that of the BPCA.

— A bump around the scattering angles of 10-20° becomes noticeable for the
BPCA with increased N (i.e., 256-1024). The scattering angle of the bump
shifts from 20° to 10° as N increases. Also the bump becomes sharper for the
BPCA with increased N. In the case of the BCCA, the bump is not seen even
with N = 1024.

We consider that the increase of forward scattering amplitudes of the BPCA
and BCCA is caused by increased multiple light scattering between monomers.
Because of the difference in the structures of the BPCA and BCCA, the influence
of N on the intensity is different.

There are several mechanisms of multiple light scattering between monomers,
such as CB (coherent backscattering) effect [53], SH (shadow hiding) effect [67],
near-field effect [65]. These different mechanisms work differently for aggregates
having different structures.

As introduced in section 1.2.2, the BPCA has a porosity of around 85% while
the BCCA has a porosity greater than 99%. That is, the BPCA is more compact
compared with the BCCA.

The second feature of the intensity (i.e., the bump around scattering angles
of 10-20°) becomes clearly noticeable for the BPCA with larger N (e.g., 1024).
Therefore, we shall consider that the bump is caused by a mechanism which works
effectively for compact aggregates (BPCA) with higher orders of multiple scatter-
ing, and which does not work for sparse ensembles (BCCA).
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One possible mechanism causing above two intensity features is the near-field
effect. According to Petrova et al. [65], the near-field effect works more for com-
pact structures while the CB effect works effectively for sparse ensembles. Future
studies of different mechanisms of multiple light scattering inside an aggregate are
interesting to further understand results of numerical light scattering simulations
of aggregates.

Polarization

Middle and right panels of Figs 1.11 and 1.12 show degree of polarization by the
BPCA and BCCA. The right panels represent polarization values at scattering
angles of 150-180° in order to concentrate on the negative branch of the polariza-
tion.

Hereafter we use symbols listed in Table 1.8 for discussion of the polarization
characteristics. Influence of N on the polarization is as follows:

1. Influence of N on P,,.4:
(a) Ppaz at scattering angles of around 90° decreases as N increases.
(b) The increase of N greatly reduces Py,q, for the BPCA while it reduces
P,z little for the BCCA.
2. Influence of N on the NPB (negative polarization branch):
(a) Opin shifts to larger scattering angles as N increases. This influence is
commonly seen for the BPCA with r,, of 0.11, 0.13, and 0.15 um.
(b) Ppin changes for different values of N. This influence is clear for the BPCA
and not clear for the BCCA.

The decrease of P4, for increased N (items 1(a) and 1(b) of the above list)
is explained by the depolarization effect due to the increased orders of multiple
light scattering between monomers (see section 13.4 of [50]). Since the BPCA is
more compact than the BCCA, we consider the influence of the depolarization to
be larger for the BPCA than the BCCA.

As regards item 2(a) of the above list, ©,,;, shifts from around 165° to around
175°. This shift is less pronounced for the BPCAs with r,, = 0.11 and 0.13 pm,
but quite clear for the BPCA with r,, = 0.15 pm.

Volten et al. [72] have performed laboratory measurements of polarization ob-
tained for several fluffy aggregate samples. The polarization data are obtained for
the scattering angles up to around 175°.

The polarization curves in [72] have a feature that the value of P decreases for
larger scattering angles. The minimum value of the polarization is located at the
largest scattering angle attainable in their laboratory measurements (i.e., 175°).
Opin Was not clear in the measurements because the largest scattering angle was
limited. However, we can expect from their measurements that ©,,;, will be located
at scattering angles of 175-180°. This similar trend of ©,,;, between laboratory
measurements and numerical light scattering simulations is interesting for future
study of the NPB.

Now we focus on item 2(b) of the above list. With the increase of N, P
changes differently for BPCAs having different values of r,,:
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—  P,,in monotonously increases for the BPCA having 7, of 0.11 um,
—  Pin temporarily increases, then decreases for the BPCA having r,,, of 0.13 pm
— P monotonously decreases for the BPCA having r,, of 0.15 um

The NPB is generated by some mechanisms of multiple light scattering between
monomers (e.g., CB, SH, and near-field effect). Properties of multiply scattered
light depend on how each monomer scatters the light impinging on it. We consider
that monomers of BPCAs having different r,, somewhat differently scatter the
impinging light causing the different behavior of the NPB with increase of N.

Compared to the BPCA, the BCCA does not show a clear influence of N on
the NPB. The right-hand panels of Fig. 1.12 show a small variation in the NPB
for different values of V. However, the variation is not monotonous for the increase
of N. We do not currently know whether this variation is actually caused by the
different values of IV or by other variation occurring during the generation of the
BCCA (e.g., a small-scale variation between BCCAs having the same values of N).

We need further investigation on the influence of N and other physical proper-
ties on the intensity and polarization of the aggregates to better understand how
the several mechanisms of multiple light scattering inside an aggregate work.

Table 1.8. Symbols of the polarization characteristics

The maximum value of the polarization: Prax
The scattering angle of the Ppqz: Omax
The minimum value of the polarization seen at the NPB:  Ppin
The scattering angle of the Pin: Omin

The NPB denotes a negative polarization branch at backscattering angles.

1.5 Summary

In this chapter, we have introduced methods for numerical light scattering simu-
lations applicable to aggregates whose size is small to moderate compared to the
wavelength of the incident light.

Methods developed around the 1970s as shown in section 1.3 were applicable
to aggregates with a small number of monomers (e.g., five monomers) and to those
with small monomers in the Rayleigh region. Those methods were later improved to
be applicable to aggregates with a larger number of monomers and with increased
monomer sizes. Also in section 1.3, the methods widely used in recent numerical
light scattering studies of aggregates were briefly described. These methods are
applied to aggregates composed of hundreds of spheres when the monomer size
parameter is less than around 2.0. Further improvements of these methods are
required for the full application of light scattering properties obtained from the
numerical simulations for the interpretation of observational data.

In section 1.4, we presented techniques for improving the numerical light scat-
tering simulations published in recent years. They include:



28 Y. Okada
(a) T = 0.11 um
104§ T T T — 1.0 T T T T T
£ — BPCA128| 1 r 1
3 — 256 1 0.8+ 4 0.10
10°§ 3 8 | \
i 1 Ros g 0051 i
N><> 102? 3 .‘E r E
7 - S 0.0
— L 4 Gy N [=}
N 1 °© L a
<+ 10F E “—
: E ) g 005F 1
[ ] @ g
o 7
10°¢ = 00 8 0100 .
al | . | . N I . | | . ]
109 60 120 180 0% 60 120 180 150 160 170 180
Scattering angle (degrees) Scattering angle (degrees) Scattering angle (degrees)
(b) rm = 0.13 ym
104§ . . T —3 1.0 i T i T T
b — BPCA128| 1 r 1
. g ] 0sl ] 0.10
10 512 3 g |
“ 107 105 | 3
~ E | - 00,
N 1 ,;* 04 Tg
- 10 3 8 02 g-o.os— ~ 1
0; \7/; 2 [ ‘5”
107 1 % oo 2 0.0} .
-17 1 L 1 L ] I L 1 L 1 L ]
10 60 oo 10 % 60 120 180 150 160 170 180
Scattering angle (degrees) Scattering angle (degrees) Scattering angle (degrees)
(¢) rm = 0.15 ym
104§ ' T T 3 10 T T
¥ — BPCA128] 1 r
. S ] osh ] 0.10
10 512 ER - R
SN B ] g o005
" 10 1 5 3
T 1% o4l 1§ o00
= [ ] o o)
S 10'F EEE| =
E E o
E E © 02 g-o.os
10 \/ 00 2 .0.10
al ] } L \
00 60 120 180 % 60 120 180 150160 10180

Scattering angle (degrees)

Scattering angle (degrees)

Scattering angle (degrees)

Fig. 1.11. Intensity and polarization of BPCA for various numbers of monomers. Left
and middle panels: intensity and polarization at all the scattering angles. Right panels:
Polarization in negative polarization branch (After Y. Okada et al., JQSRT, 109, 2613—
2627, 2008).
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— the grouping and adding method (to increase number of monomers),

— the quasi Monte-Carlo method (to efficiently carry out random orientation
averaging),

— Numerical orientation averaging (to extend treatable parameter space, i.e., the
size and number of monomers).

Improvements in numerical light scattering simulations enable us to improve
understanding of the light scattering properties of aggregates, and also to interpret
the observational data of various objects having an aggregate structure (e.g., dust
in space, microbiocells, and atmospheric particles).
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Abbreviations

AOA : analytical orientation averaging

BCCA : ballistic cluster—cluster aggregate
BPCA : ballistic particle—cluster aggregate
CB : coherent backscattering

CMC : crude Monte—Carlo

CTM : T-matrix method for clusters of spheres
DDA : discrete dipole approximation

EMT : effective medium theory

FDTD : finite difference time domain method
GAM : grouping and adding method

GMM : generalized multiparticle Mie-solutions
HS : Halton sequence

LAT : lattice grid division

LDS : low-discrepancy sequence

MT : Mersenne Twister

NOA : numerical orientation averaging
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NPB : negative polarization branch
QMC : quasi-Monte—Carlo

SH : shadow hiding

VSWF : vector spherical wave function
VSH : vector spherical harmonics
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2 Application of scattering theories to the
characterization of precipitation processes

Sandra Jacquier and Frédéric Gruy

2.1 Introduction

Solid-liquid suspensions are frequently used in industrial processes. These suspen-
sions usually contain aggregates made up of solid primary particles. Many char-
acterization tools of these suspensions are based on light scattering (Mie theory).
However, Mie theory (1908) is not always applicable to practical problems since
the scatterer must be a homogeneous sphere. The ordinary particle sizers that use
this theory do not make it possible to measure non-spherical particle geometri-
cal characteristics. Extensions of the Mie theory for arbitrary shaped particles or
particle aggregates are available nowadays (the T-matrix method, the Generalized
Multiparticle Mie (GMM)-solution, etc.). But the computing times of the optical
properties via these exact theories do not allow for a real-time analysis. This chap-
ter is therefore dedicated to the search for approximate methods for the estimation
of aggregate optical properties, particularly their scattering cross-section.

This chapter is split into five main sections. Section 2.2 concerns the aggre-
gation process and, more generally, the precipitation process, to provide a better
understanding of the framework of this study. Precipitation is the formation of a
solid in a solution during a chemical reaction. The morphology of particles cur-
rently observed during precipitation or particle synthesis will be described. The
relationship between optics and particle technology will be recalled. Section 2.3
outlines briefly the different approximate methods used for the case of spherical
and non-spherical particles. Section 2.4 presents selected approximations for light
scattering cross-sections in the case of aggregates. The quality of each approxima-
tion will be discussed by comparison with the exact theory. Practical cases will
be presented. Section 2.5 is an extension of the previous section to the light pres-
sure cross-section. Section 2.6 is an attempt to relate the scattering properties of
aggregates to their geometrical characteristics.

In the next section we describe the context of the need for approximate methods
for scattering cross-section of aggregates.
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2.2 Aggregate formation

Materials are often made from inorganic particles. These are formed by reactions
in the gas phase or, more commonly, in liquid phases. The main process is called
precipitation.

2.2.1 Precipitation and particle synthesis

The classical situation is the following: a solution consisting of a solute A and a
solvent is mixed with another one consisting of a solute B and the same solvent.
The two solutes react to form a solid product denoted AB.

A+B«< AB.

A and B are often ions.

If equilibrium between the solid phase and the solutes is reached, thermody-
namics tells us that this equilibrium (saturated solution) is characterized by the
solubility of the solid phase. However, when the concentrations of A and B are
high enough to produce solid particles, the initial solution is supersaturated. So,
the ratio of the actual concentration and the equilibrium concentration (solubility),
called supersaturation, is the key parameter of the dynamics of precipitation. The
higher the supersaturation, the higher the precipitation rate. Particle formation
can be distinguished into three stages: nucleation, growth and agglomeration.

Nucleation is the birth of particles that are large enough to grow (nuclei). Parti-
cles that are too small are unstable and dissolve in the solution. The nucleation rate,
JN, is defined as the number of created nuclei per unit volume and per unit time.
The formed nuclei are characterized by a so-called critical size. Typical critical size
values are within the range 1-50 nm. The nucleation rate is a nonlinear increasing
function of supersaturation. The nucleation stage in a precipitation process is often
difficult to observe. If light is used as a probe to study precipitation, nuclei can
be treated as Rayleigh scatterers. Considering the nuclei concentration, interaction
between light and suspension is usually below the detector threshold. Other meth-
ods (for instance, small-angle X-ray scattering) are preferred, but are more difficult
to apply. Details about the nuclei are not known. Hence, nuclei leading to inorganic
particles are often considered as amorphous and spherical.

The following stage is the growth of the nuclei. They may additionally convert
to crystals. Crystals present facets, the occurrence of which can be explained from
crystallography and thermodynamics. However, depending on the precipitation re-
action, only amorphous particles (i.e., hydroxylated compounds) can be found.
Usually, the growth rate is defined as the derivative of crystal characteristic length
(e.g., the diameter) with time. The growth rate increases with the supersaturation.
Most often the relation between growth rate and supersaturation is linear.

For different reasons (one is the decrease of supersaturation during precipitation,
due to the mass transfer from solution to crystals), an upper size limit for the
growing crystals is observed. At the end of the second stage, crystal or particle size
ranges between 0.1 and 10 um. During this period, particles become large enough
to scatter light effectively. Thus, light scattering methods are suitable for studying
the growth of crystals or primary particles in suspension.
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Before or after reaching the end of growth, crystals or amorphous particles can
form clusters or agglomerates. Agglomeration requires the collision of particles and
their subsequent adhesion due to attractive forces (for instance, van der Waals
forces). Consolidation between primary particles or crystals can take place by crys-
talline growth from the contact point. In quiescent liquids, the particle collisions
are due to their Brownian motion. For flowing suspensions, collisions are due to
Brownian motion for small particles or crystals (smaller than about 0.2 ym) and
to local shear for larger particles.

When the agglomerate increases in size, it becomes fragile. Then, break-up takes
place and a limit size is reached (with values in the range 5-100 ym). The stress
acting on the agglomerate results from the shear, but also the transition between
viscous and inertial turbulent regimes. This often leads to agglomerates containing
only a few primary particles (less than one hundred primary particles).

Summarizing: inorganic solutes can lead to solid particles in a batch precipita-
tion vessel, provided that the solution is initially supersaturated. Nucleation, i.e.
the birth of nuclei with a critical size, takes place, while supersaturation decreases
as a consequence. Finally, supersaturation becomes too small, to produce new nu-
clei. Thus, there is a mass transfer from solution to the nuclei surface leading to
the growth of nuclei. In this way, crystals or amorphous particles are formed. As
supersaturation tends to one, growth stops. Depending on the surface charge of
particles, their agglomeration may occur throughout the growth period.

2.2.2 Particle shapes during precipitation

Images from electron microscopy often show the complexity of particle structure.
Particles formed by growth from solution can be crystals with well-defined crys-
talline faces, but may be agglomerates of smaller (nanometric) particles. In this
case, agglomeration can be due to Brownian motion and the subsequent collision
of particles, but also to the contact of specific crystalline faces belonging to two
particles. The first situation leads to random agglomerate with spherical symmetry.
The second phenomenon, also called orientated agglomeration, leads to regularly
shaped particles (i.e., cylinders as disks stack). It must be underlined that the mech-
anism of orientated agglomeration is still being studied. Whatever the structure of
particle, crystals, random or ordered agglomerate of nanoparticles, their geometric
characteristics are easily determined by image analysis of electron micrographs.

However, these particles are rarely separate. They form agglomerates after col-
lision due to Brownian motion and/or shear flow. The structure of agglomerates is
disordered and is often considered as fractal-like. However, the reader must keep
in mind that these agglomerates consist of only a few particles.

Fig. 2.1 presents agglomerates of SrMoQ,, strontium molybdate, crystals
(Cameirao et al., 2008). They are obtained by precipitation:

SrCly + NagMoO4 — SrMoQOy4 + 2NaCl.

Bipyramidal crystals in the size range 3-10 um are formed. Agglomerate size is in
the range 20-80 pym.
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Fig. 2.1. Agglomerate of SrMoOy4 crystals.
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Fig. 2.2. Multi-scale ZnS agglomerate.

Fig. 2.2 presents agglomerates of zinc sulphide particles (Mekki-Berrada et al.,
2005). They are obtained by homogeneous precipitation:

ZnSO, + CH;CSNH; + 2H;,0 1 7nS + CH;COoH + NH{HSO; .

ZnS particles are sphere-like with a mean size equal to 3 um. They consist of
nanoparticles, 30 nm sized (one may observe an intermediate structure in the range
100...300nm). Micro-particles seem relatively dense. However, porosity and inner
structure depend on the acidity and temperature. Micro-particles collide to form
agglomerates in the range 20-60 pm.
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Fig. 2.3 shows ordered agglomerates resulting from the stacking of Ni(OH),
nanosized disks (Coudun et al., 2007). They are obtained by precipitation from
nickel di-dodecylsulfate and ammonia:

Ni(DS) + 20H™ goié Ni(OH), + 2DS~ .

wu 0oc

Fig. 2.3. Ni(OH)2 nanosized agglomerates.

2.2.3 Dynamics of precipitation: modelling

In order to manage the complexity of precipitation dynamics, each particle in the
precipitation reactor is characterized by space coordinates (x,y, z) and internal co-
ordinates p; (i.e. radius, characteristic lengths of crystal, volume, porosity, gyration
radius, fractal dimension, ...) with 1 <i < P.

The larger the number P, the more comprehensive the description of the
particles. So, the population density function n(x,y,z,p1...pp) is such that
dN =ndxdydzdp, ...dpp represents the number of particles with z in the range
[x;  + dx], p; in the range [p;p; + dp;].

This population density obeys the population balance equation (PBE), that can
be formally written as:

P
% = ﬁ.(m)f; 8ii(ai(5)n)+JN(s)6(p1—plc)...6(pp—ppc)+Vag, (2.1)

where ¥ is the particle velocity, ¢ is the time, G; is the growth rate for the p;
parameter [G; = (dp;/dt)], 0 is the Dirac function, p;. is the internal parameter
corresponding to the critical nucleus, Jy(5) is the nucleation rate as a function of
the supersaturation S, and V,, is the agglomeration rate.

More often, the following assumptions are used:

—  homogeneous suspension
— only one internal parameter (particle radius)
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— agglomeration taken into account only at the end of nucleation and growth
— fractal-like agglomerates with constant fractal dimension

For fractal-like agglomerates, the relation between the number j of primary parti-
cles inside the agglomerate and its outer radius R; is:

j 1/DF

where a is the radius of the primary particle. Dg and S,. are respectively the fractal
dimension and the structure factor, which is a function of Dp.

Attempts to consider two internal parameters (radius and length for particles
such as a needle, solid volume and surface area for porous particles) have also been
made (Tandon and Rosner, 1999; Kostoglou et al., 2006).

Summing up, precipitated particles have a multi-scale structure. One commonly
observes three characteristic length values: 20nm, 2 um, 20 gm. Sometimes, only
two (2 pm, 20 um) are observed. The smallest particles are most often dense and
spherical. The intermediate particles are relatively dense and have a well-defined
shape (i.e. sphere, cylinder, ellipsoid, etc.). The largest scale corresponds to dis-
ordered or random agglomerates. The reader interested in details of precipitation
and population balance may refer to Sugimoto (2000) and Randolph and Larson
(1988).

2.2.4 Particle sizing during precipitation

Considerable efforts are made to understand the precipitation mechanisms and
to predict the change of the particle morphology with time. On the other hand,
industrialists need to monitor and control the precipitation process. Off-line size
measurements (i.e. using filtration, powder drying and scanning electron micro-
scope (SEM) observations or suspension sampling and sizing with granulometers)
are now avoided because these operations modify the particle morphology. On-line
measurements (i.e., using a recirculation loop with a measurement cell in a granu-
lometer) are possible, but representative sampling is difficult to carry out. In-line
measurements are preferred. They are often based on light extinction and are ob-
tained from turbidimetric sensors. So, turbidimetry will be at the centre of this
chapter.

Typically, the optical sensor for particle sizing is not the only one in the precip-
itating suspension. The temperature probe and concentration sensors are always
introduced into it. Thus, supersaturation and solid fraction (via mass balancing
from solute concentration) are deduced and, as a consequence, are known.

A turbidimetric sensor records the transmitted light intensity I;. One defines
the extinction coefficient or turbidity! as (see, for instance, Elimelech et al., 1995):

T = 1 In I

g (2.3)

! Definitions and notations in Egs. (2.3)—(2.5) are used by researchers in the field of par-
ticle sizing concerning suspensions. Other researchers prefer these ones: 7* = —In(I;/1)
and oege(A) = 7°(A)/L where 7% and oeqt are the optical thickness and the extinction
coefficient, respectively.
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Iy and L are the incident light intensity and the geometrical thickness of the
medium, respectively. For a monodisperse diluted suspension, the turbidity obeys
the equation:

T(A) = N(@5,Ys, 25,01 - - PP) Cezt (A, p1 - - . PP) (2.4)

The functions N and C¢,; are the particle number concentration and the extinction
cross-section of the particles. (xs,ys, z5) are the coordinates of the sensor in the
reactor.

For a complex diluted suspension, turbidity contains the contribution of each
kind of particles:

T(A) = /[ ] n(Ts,Ys, 25,01 - - - 0P) Cewt(NiD1 ... pp)dp1 ... dpp . (2.5)
p1...pPP

Thus, the turbidity monitoring gives information on the population density change
with time during the precipitation process.
Two strategies can be considered for the analysis of turbidity signals:

— inversion of the integral equation (Eq.(2.5)) in order to get the population
density. Then, comparison to PBE (Eq.(2.1)) solution and identification of
unknown physicochemical and morphological parameters (i.e., fractal dimen-
sion ...)

— PBE (Eq. (2.1)) solving; calculation of 7(A) (Eq. (2.5)); comparison with experi-
mental turbidity for deducing the unknown physicochemical and morphological
parameters

For numerical reasons, the last one is preferred. However, whatever the strategy,
the knowledge of Cept(A,p1...pp) is needed.

The extinction cross-section is dependent on the relative refractive index m,
which is the ratio between the refractive indices of the material and the suspending
medium. Three typical cases can be envisaged: low optical contrast m—1 value
(0 < m—1 < 0.1), moderate contrast m-1 value (0.1 < m-1 < 0.5) and high
optical contrast m—1 value (m—1 > 0.5). Corresponding materials (suspended in
water) could be, respectively, silica SiOg (m = 1.08), alumina Al,O3 (m = 1.20)
and titania TiOg (m = 2).

We will focus our work on non-absorbing (in the visible range) materials that
are most commonly found in the precipitation process. Thus, scattering Cs., and
extinction Ce, cross-sections are equal.

It is obvious that PBE solving, cross-section calculation and optimization pro-
cedure require great computational efforts and make it difficult to get results in a
short time. Therefore, any rapid calculation of the optical cross-sections would be
a step forward. The accuracy of approximations has to fit the measurement accu-
racy. In the case of turbidity, measurements within 3% error can be considered as
satisfactory.
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The need for approximations is particularly important for agglomerates?. Fast
calculations have to be based on known approximations coming from light scatter-
ing theory. The next section briefly recalls them.

2.3 Approximations for non-spherical particles

The scattering cross-section is a function of the dimensionless particle size param-
eter z (= ka for a sphere), the particle and the medium optical refractive indices
respectively denoted n, and n,,, the wavelength A (and the wave number k = 27/X)
of the incident light in the medium and the orientation of the incident light in the
relation of the particle position. The relative refractive index m, which is used in
the following equations, is the ratio between the material refractive index n, and
the medium refractive index n,,.

The exact theory was developed for a sphere in 1908 by G. Mie (see van de Hulst,
1981) and for spheroids by several authors (Asano and Yamamoto, 1975; Asano,
1979; Asano and Sato, 1980; Voshchinnikov and Farafonov, 1992; Farafonov et al.,
1999).

In this section, three classical approximations are recalled: the Rayleigh approx-
imation, the Rayleigh—Gans—Debye approximation and the Anomalous Diffraction
approximation. Principles are presented and an application is given for a sphere.
The reader interested in details on scattering theories may refer to Van de Hulst
(1981) and Kokhanovsky (2001).

2.3.1 Rayleigh approximation

The Rayleigh approximation that considers the scatterer as an oscillating dipole
has a validity range of x < 1, |mxz| < 1. So, the scattering efficiency factor for a

sphere is:

2 2

m* —1
m2+ 2

8 4

Qsca = gx

(2.6)

and the scattering cross-section is Cseq = QscaG (G represents the particle pro-
jected area, for a sphere G = 7a?).

A comparison between this approximation and the Mie exact theory shows
that the validity range, in terms of maximum size, varies according to the relative
refractive index and the scattering angle (Mishchenko et al., 2002, 2004).

2.3.2 Rayleigh—Gans—Debye approximation

The validity range of the Rayleigh—Gans—Debye approximation (RGD) is: 2z|m —
ll<1land |m—1| < 1.

2The term aggregation corresponds to the formation of a cluster, the primary particles
of which only interact by physical forces such as van der Waals forces. On the other
hand, agglomeration is aggregation followed by strengthening at the contact point in a
supersaturated solution. Aggregate and agglomerate optical properties will be treated in
the same way.
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Fig. 2.4 represents a particle with an unspecified shape lit by a plane wave
being propagated along the axis z’. It is supposed that each volume element is a
Rayleigh scatterer and behaves independently of the other particle volume elements.
The scattering waves of all these volume elements interfere. The phases of all these
scattering waves are ascribed to a common coordinates reference in order to handle
their amplitude.

Fig. 2.4. RGD approximation.

The expression of the contribution, of the volume element AV located out of
O, to the scattering field by the particle is:

i kr—ik-z
AEH,sca _ Sy 0\ e . AV E||,inc ’
AE_L,sca 0 Sl —i-k-r EJ_,inc
The contribution of a volume element located in O’ will be:
ik(r—
AEIH,sca _ Sy 0 61‘ (r—2) AV eié EH,inc -
A-EJ_,sca 0 Sl —i-k-r EJ_,inc

with § = kR e (e, — é,) and R= O—O; S1 and Sy are the amplitude functions per
volume unity:

1.3 1.3
—i(m— 1) and Sp ~ IR
27

S
! 2

%

(m—1) cosé.

0 is the scattering angle.
Integration is done with respect to particle volume V' to obtain the total field
in the direction €. So, the amplitude functions for the particle are:

ik® ik?
S =——(m—1)Vf and So = ———(m — 1)V f cosf.
2m 27

The form factor f obeys:
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L
f—V/Ve v, (2.7)

that becomes for a sphere:

3. ,
flu) = E(smu—u cosu), u=2x sin 5«

It follows for a spherical particle (Van de Hulst, 1981) that:

= " 7Ta2 a
Quea = / F(6)d/6(ra?), (2.80)

where,

4
F(0) = ﬂ-a2§|m — 1%z f? <2:1: sin g) (1+cos®0) sinf. (2.8b)

2.3.3 Anomalous Diffraction approximation

This approximation, due to Van de Hulst, bears the name of anomalous diffrac-
tion (AD) because, for low optical contrast, the light passing through the particle
(transmitted without deflection) interferes with that diffracted, then producing a
diffraction known as anomalous (Fig. 2.5).

Let us consider particles such as: > 1 and |m, — 1| < 1 (see the discussion
of Videen and Chylek (1998) and Liu (1998)).

The second condition implies that the rays are not deviated when they cross
the interface particle-medium and that the reflection is negligible with the same
interface. Extinction is therefore due to:

— absorption of the light passing through the particles
— interferences between the light passing through the particle and that passing
around it

NENEEEE

Fig. 2.5. Anomalous Diffraction approximation; ray passing through a sphere.
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Following Van de Hulst (1981), one derives:

47

Cemt = k2

2
Re {S(0)} with S(0) ;i // (1 — e~k n=D1y gy 1
Y8
[Sp]

Integration is performed over the particle projected area .S, on a plane perpen-
dicular to the propagation direction. [ is the computed path of light through the
particle, which is a function of the projection coordinates z and y. The integrand
represents the subtraction with ‘the part of shade’ (value 1) of the rays passing
through the particle (e~#*(m=1b),

If m is real,

Cseqa =2 // [1— cos(kl(m —1))] dS,. (2.9)
(S

Therefore, it follows for a sphere
4 4
Qsca :Qemt =2-- Slnp+7(1—COSp)7 (210)
P P

where p = 2z(m — 1).

The anomalous diffraction was applied to a sphere and an infinitely long cir-
cular cylinder (Van de Hulst, 1981), a prism column (Chylek and Klett, 1991), a
hexagonal crystal of ice (Sun and Fu, 1999), ellipsoids (Lopatin and Sid’ko, 1988;
Streekstra and Hoekstra, 1994), a short cylinder (Liu et al., 1998) and other various
forms (Sun and Fu, 2001; Yang et al., 2004).

A comparison between AD and the exact theory (Liu et al., 1998) suggests that
AD estimates the extinction more precisely in the case of a random orientation of
non-spherical particles than for spheres.

The next section treats approximations for the case of clusters of spheres. The
derived approximations are directly related to the previous ones.

2.4 Approximations for aggregate scattering cross-section

This part begins with a short summary of the exact methods. It is followed by
a study of the relation between aggregate scattering cross-section and physical
characteristics. Finally, four approximations are described and an illustration in
the field of precipitation is presented.

2.4.1 Exact theory for non-spherical particles and aggregates

The presented summary (see Table 2.1) of the different exact methods is not exhaus-
tive. But we try to show several methods used to calculate the optical properties
of an aggregate. We invite the reader to consult the article of Kahnert (2003) to
have a more complete range of these methods and the papers series of Mishchenko
et al. (2007, 2008). It is rather difficult to classify them precisely and especially to
enumerate all of them. Nevertheless one can classify them in three main categories:
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Table 2.1. Methods for treating the light scattering by a non-spherical particle or an
aggregate (N is the number of operations in the algorithm (Kahnert, 2003))

Name

Principle

Applications

Strong and weak
points

Methods based on partial derivative equations

SVM
Separation
of Variable
Method

FDTD
Finite
Differences
Time
Domain

FEM
Finite
Element
Method

PMM
Point-
Matching
Method

Method applied in the case
of the Mie theory; it can be
applied when the boundary
of the considered particle
coincides with the reference
frame.

This method consists of
discretizing the Maxwell
equations, in space and
time. Then to solve them it
is necessary to start from
the initial values (Yang and
Liou, 2000).

This method consists in
discretizing the Helmholtz
equation in space and
solving numerically using
the boundary conditions
(Coccioli et al., 1996).

In this method, the in-
ternal and external fields
are expressed as a spheri-
cal harmonic vector. The
tangential field at the
boundary of a particle must
be continuous for a fixed
number of points belonging
to the particle surface.

In any reference
frame, where the
variables separa-
tion can be applied.
Asano and Ya-
mamoto (1975) used
this technique to
determine the opti-
cal properties of a
spheroid.

All particle shapes.

All particle shapes.

Normally all par-
ticle shapes, but
problems are known
for the elongated
geometries.

— The solution ob-
tained is known as
exact but calcula-
tions are long

— the operation for
each orientation
must be repeated

- N =~ O(z?)

— the operation for
each orientation
must be repeated

- N = O(z*)

— the operation for
each orientation
must be repeated

— the precision de-
pends on the grid
which must be se-
lected according to
the particle shapes

~ N =~ 0(z")

— this method is
limited to the
quasi-spherical
particles, it has a
dubious conver-
gence, and thus,
requires a long
CPU time (Wriedst,
1998).
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Table 2.1. (Continued)

Name Principle Applications Strong and weak
points

Volume or surface integration

VIEM The field inside and outside Inhomogeneous, — MOM and DDA

Volume the volume is expressed in anisotropic particles. have a long CPU

Integral terms of incident and inter- time

Equation nal fields for the selected — the operation for

Method volume. each orientation
— the internal field is eval- must be repeated
uated by considering, for — N =~ 0(z2)

each volume element, as
being constant: MOM
(Method of Moments)
(Harrington, 1968). Alter-
natively,

— each element is regarded
as a dipole: DDA (Discrete
Dipole Approximation)
(Draine and Flatau, 1994)

1. Methods based on the partial derivative equations which calculate the scattering
field by solving the Maxwell equations or the Helmholtz equation. They are
subjected to the boundary conditions suitable in the time or the frequency
domain.

2. Methods based on integration over volume or surface of equations derived from
the Maxwell equations. Thus, the boundary conditions are automatically in-
cluded in the solution.

3. The other methods are known as hybrids since they derive from the various
approaches.

It is important to specify the meaning of the ‘T-matrix method’ expression
which is found in a lot of publications. In the T-matrix method, the incident and
scattering fields are expressed in the form of a series of spherical vector wave func-
tions. This approach is named the T-matrix method when the expansion coefficients
of the incident wave and the scattering wave are connected by a linear transfor-
mation (T is for transition). This matrix T contains all the information on the
particle’s optical properties for a given wavelength. It is a function of the size pa-
rameter, the shape, and the optical refractive index of the considered particles, but
it does not depend on the incident field. Thus this matrix is not to be computed
at each particle orientation change or change of the incident wave direction.

To classify the publications set relying on this method, a database review was
carried out by Mishchenko et al. (2004, 2007, 2008). This method is, in fact, a
technique of calculation, which is found associated with various methods (e.g.,
SVM). Thus, any method making it possible to formulate the problem in the way
of a matrix T is called the T-matrix method.



50 Sandra Jacquier and Frédéric Gruy

The solving by separation of variables (SVM) for only one sphere can be en-
larged to an aggregate of spheres by using the translation theorem for the spherical
wave vector functions which expresses them in various bases of coordinates, and,
by applying a superposition principle. The total scattering field for an aggregate is
then represented by the superposition of the individual scattering fields resulting
from each particle in the knowledge that these fields are interdependent. Moreover,
one can formulate the problem as a T-matrix. This method is very precise but
its computation time depends on the number and the size parameter of primary
particles.

We will use in the continuation of this text a method which is in fact a particular
case of the T-matrix method (Mishchenko et al., 2004) bearing the name of GMM
(Generalized Multi-particle Mie-solution).

We did not find a comparison of the various methods, except for an article of
Hovenier et al. (1996) which compared the T-matrix (method by surface integra-
tion), SVM and DDA. This article shows that the last is not completely in agree-
ment with the two other methods. As no study was undertaken in this direction,
the work presented in this article is achieved with a method which seems, closest to
the one used for a simple sphere and validated by experiment (Xu and Gustafson,
2001): GMM. The details of GMM are given by Xu (1995, 1996, 1997a,b, 1998a).

2.4.2 Main features of the scattering properties of aggregates

We present a summary of the main features of the scattering properties of ag-
gregates. Results come from the calculated optical properties of aggregates such
as:

— aggregates of spherical primary particles

— number of primary particles in the aggregate N € [1, 100]

— primary particle size parameter (z) in the range: [0.013, 9.25].

— three different materials (SiO3, Al;O3, TiO2); non-absorbing materials

Optical properties are calculated by using GMM theory.
First of all it is interesting to study the effect of the inter-particle distance on
the scattering cross-section.

2.4.2.1 The case of a two-sphere set

The evolution of the scattering cross-section of a two-sphere set according to the
type of material, their size parameter and the center to center distance has already
been studied by Mishchenko et al. (1995) and Quirantes et al. (2001).

The Kx,, parameter for different materials was used. K x,, is defined as the ratio
between the scattering cross-section of an aggregate and the sum of scattering cross-
sections of N primary particles which form this aggregate (so, the denominator
assumes non-interacting and non-interfering spheres).

CxunN
Ky = —XwN_ 2.11
X NCisien (2.11)
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The two spheres, denoted i and j, were gradually separated (center to center) by
a factor Fj; proportional to their diameter, until they did not interact any more
(Kxy is equal to 1). As the separation distance is denoted d;;, the factor obeys the
relation:

Fij = dij/(2a) ,

where a is the radius of the primary particle.

According to Fig. 2.6, for size parameter smaller than 0.5, the smaller the pri-
mary particle is, the greater the distance factor must be to obviate any interaction.
We therefore endorse the conclusion of Kolokolova and Gustafson (2001): a sus-
pension consisting of Rayleigh scatterers as primary particles has to have a very
weak volume fraction to avoid multiple scattering, whatever the relative refractive
index.

Interaction between particles cannot be ignored even if F;; > 4 (for the whole
range of the size parameter).

For spheres in contact, K x, (Fig. 2.6) increases with decreasing size parameter
up to a value close to 2. When the two spheres are large enough, the deviation from
the non-interacting limit is negligible (e.g., Kx, < 1.1 for > 5).

It therefore appears useful to evaluate the critical inter-particle distance for
which interaction is negligible. An approximate method for aggregate optics calcu-
lation could take it into account.

2.4.2.2 The case of aggregate (N > 2)

Auger et al. (2003) studied the relation between the extinction cross-section of an
aggregate, its shape (linear or compact configuration) and the number of primary
particles (2, 4, 8, 13) in the case of titania TiOs (the optical refractive index be-
ing equal to 2.8). In this article, the average extinction cross-section (average on
the polarization and the incident wave direction) divided by the aggregate volume
(made up of monosized spheres) is calculated, according to their particle radius
(between 0.04 ym and 0.132 pm). It is found that there exist two size ranges (for
A = 0.546 um). For a primary particle radius smaller than 0.08 ym-0.09 um, an
isolated primary particle scatters less than if it was contained in an aggregate.
Primary particles belonging to the second range behave in an opposite way. They
show that there exist two size ranges concerning the effect of aggregate shape:
in the first range, a compact configuration scatters more than linear configura-
tion, and conversely for the second range. Lastly, a comparison with the equivalent
sphere approximation shows that the latter is not suitable. Auger et al. (2005)
and Jacquier and Gruy (2007a) perform similar studies in the way that they com-
pare the scattering cross-section for various configurations. The Auger et al. (2005)
study is based on the distribution of randomly generated aggregates by classical
mechanisms of aggregation.

Jacquier (2006) and Jacquier and Gruy (2007a) enlarged the study using differ-
ent optical refractive indices, a greater range of the primary particle size parameter,
and different configurations. They noted the effect of the primary particle number
and the aggregate morphology. The results are summarized in the two next para-
graphs.
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Fig. 2.6. Evolution of Kx, according to the size parameter and the distance factor
ranging between 1 and 100 for the three materials (SiO2, AloOs, TiO2).
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o Effect of the number of primary particles on the scattering cross-section

In the paper of Jacquier and Gruy (2007a), two extreme configurations were com-
pared (linear and compact configuration). For each configuration, Jacquier and
Gruy noticed that there exist two ranges. The first is for Kx, larger than 2, and
the second is for Ky, ranging between 0 and 2. The value of the size parameter
of the primary particles corresponding to the range boundary is a weak function
of the optical refractive index, the primary particle number and the configuration.
However, the authors suggest the first range for x € [0, 2] (Fig. 2.7(a)) and the sec-
ond one for z € [2,10] (Fig. 2.7(b)) (the limit of their study is for a size parameter
smaller than 10). They conclude (as shown in Fig. 2.7):

yl 2
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Fig. 2.7. Kx, as a function of the size parameter for the linear configuration with N
primary particles (2, 4, 8, 16) and for SiO2 (Jacquier and Gruy, 2007a): (a) for the range
z € [0,2] and (b) z € [2,10].

— for x € [0,2], the larger the number of primary particles, the larger the scatter-
ing cross-section whatever the configuration. Indeed, in the case of very small
size parameter, the aggregate scattering cross-section is proportional to the
particle number square and to the primary particle scattering cross-section
(Cxu,n x N 2C’Mie,l). This relation is checked on a lesser scale by aggregates
with high refractive index (e.g., TiOz). In addition the decrease of Kx,(x)
seems to depend on the configuration.

— for z € [2,10], Kx,(z) is not yet equal to 1 (Fig. 2.7(b)), i.e. the aggregate
scattering cross-section is not the sum of the scattering cross-sections of each
primary particle.

o Effect of the aggregate morphology on scattering cross-section

As illustrated in Fig. 2.8, it is possible to establish a classification of the configura-
tions according to their scattering cross-section. In the x-domain, where Kx, > 1,
the scattering cross-section of the compact configuration is higher than that of the
plane configuration, itself higher than that of pl and p2 configurations (which are
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Fig. 2.8. Kx. as a function of the size parameter for aggregates with four primary
particles (linear, compact, plan, p1, p2) for Al,Os.

very close Fig. 2.9). The linear configuration is the weakest. The order is reversed
for the other z-domain (Kx, < 1). Thus, there are two extreme configurations,
linear and compact, between which are other configurations.

& § 83

compact  linear plan pl p2

Fig. 2.9. Different aggregate configurations in the case of four primary particles.

The primary particles arrangement, i.e. the aggregate configuration, is not with-
out effect on the scattering cross-section, nevertheless, the number of primary par-
ticles in it is the prevailing parameter in the range x € [0;2]. In the second range
(z € [2;10]), the configuration is more important than the number of primary
particles.

2.4.2.3 Conclusion on aggregate scattering cross-section

The study of scattering (Cs.,) cross-sections of aggregates obtained with the exact
method revealed that:

— the distance between particles is a relevant parameter for Cieq,

— different aggregate configurations, following its shape or the number of primary
particles which it contains, are perfectly distinguishable,

— the number of primary particles is the relevant parameter in the case of small
size parameter z (z — 0, Cxy N < N2Chric1),
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— there exists, for an aggregate with a given number of primary particles, two
extreme configurations (linear and compact) between which the cross-sections
of the others are located.

2.4.3 Approximate methods (CS, BPK, AD, ERI) for aggregates

In this subsection, we describe different approximate methods: the Compact
Sphere method (CS), the Berry—Percival-Khlebtsov method (BPK), the Anoma-
lous Diffraction method (AD), and the Effective Refractive Index method (ERI).
A first comparison between these four methods was published by Gruy (2001) in
connection with aggregation of SiO5 micro-particles in water.

The study of the parameters influencing the optical properties of aggregate
began with Fuller and Kattawar (1988a,b). Rouleau (1996) compared several ap-
proximate methods for optical properties based on:

— RGD approximation

— Non-interacting spheres

— Equivalent volume sphere

— Equivalent projected area sphere

This study was carried out only for compact aggregates with 30 primary particles
whose size parameter was smaller than 0.6 and the refractive index was kept con-
stant (m = 1.7 + 0.17). He concluded that the abovementioned methods are not
efficient except the one using the projected area.

The differences between the methods quoted in the next paragraphs are evalu-
ated in Table 2.2. We chose to differentiate porosity and arrangement. The validity
range of all these methods is normally the whole size parameter range except for
AD, which, as already mentioned in subsection 2.3.3, is to be used only in the case
of large particles.

Table 2.2. Comparison of approximate methods

Method Does it take into account: Does it use:

the arrangement?  the interactions? Maxwell-Garnett equation?

(porosity)
CS no no no
ERI yes no yes
BPK yes yes no
AD yes yes no

In the next subsections, scattering cross-section values from the approximate
method (Chethoa,n) and the exact method (Cx, n) will be compared. Then, the
ratio K, is defined as:

Omethod N
K, = ———— 2.12
" Cxu,N (2.12)
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2.4.3.1 The Compact Sphere (CS) method

This method has to be mentioned because it is used as the first coarse approx-
imation by investigators and by particle sizer manufacturers. One finds it under
the name of equivalent sphere (in volume), and it will be compared with the other
methods.

N=l \ (P n=8
R __l' -
. — -
Equivalent ( 1‘:2
sphere (=

C,.n=8)=C,_ (N=1) C, (n=8)=C,_ (N=1)

Fig. 2.10. The Compact Sphere method.

The aggregate is regarded as a full sphere, i.e. containing all the matter
(Fig. 2.10). This method can be valid for aggregates of high compactness. The
scattering cross-section Ccg, n is then evaluated with the theory of Mie.

As shown in Fig. 2.11, the CS method overestimates the scattering cross-section
for < 7, whatever the configuration. As we will see in subsection 2.4.3.3, an ag-
gregate can be considered as a (porous) sphere with an effective refractive index.
Whatever the chosen equivalent sphere, the value of the scattering cross-section cal-
culated by Mie theory is always smaller than the one obtained from the CS method.
Moreover, this method does not take into account the interactions (interference and
interaction).
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Fig. 2.11. The Compact Sphere approximation: K,, as function of the size parameter
for SiO2 (a) linear configuration, (b) compact configuration.
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2.4.3.2 The Berry—Percival-Khlebtsov (BPK) method

This method originates from the work of Berry and Percival (1986) and Khlebtsov
(1996). The three following points constitute the stages of the BPK method.

Step 1: Evaluation of the angular contribution of each primary particle to the

scattering cross-section:
Fi(6) = Catie. F(6), (2.13)
Crep,1
where F(6) comes from the RGD approximation for a sphere (see Eq. (2.8b)). F;(6)
is the corrected function for F(#) in order to verify: f(;r F1(0) df = Chsie,1-

Step 2: Calculation of the interferences of scattering waves for each pair of
primary particles leading to a structure factor S which does not depend on polar-
ization. The structure factor is related to the aggregate morphology through the
inter-particle distances.

N
S@O)=|N+ > Ry /N?, (2.14a)

i=j=1,i#]

e (2t 5in (5)) -

A
2kd;; sin <2>

and d;; is the distance between ¢ and j particles.
Step 3: Use of a corrective coefficient d taking into account the multiple scat-
tering (Berry and Percival, 1986)

where

3 (3 ’
d_1 = |:1 — ﬁ(—aﬂpr — arlpi):| + [W(arlpr - ailpi):| ’ (215)

with

ar1 and a;; are the real and imaginary parts of the first Mie coefficient aq

N
pr=2 Z pr1(kdij)
J>iyi=1
N

pi=2 Y pu(kdy)

pri(z) = (cos:cfl(ac) - Sinfﬂfz(ﬂf))/ﬂ62
pi(z) = (sinz fi(z) + cosa:fg(m))/:r2

fi(z) =sinz — gf(x) + 1 (f(x) B Sinx)

T T
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Fig. 2.12. The BPK approximation: K,, as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.

sinx

fa(x) = - f(x)

x

3.

flz) = ﬁ(smx — I cosx)

Conclusion of steps:
Cppr.n = N%d / F1(0)S(0) do (2.16)
0

Fig. 2.12 shows that the BPK method is a satisfactory approximation of the
exact method for the small size parameter (z < 2). The BPK method leads to an
error smaller than 10% for a size parameter ranging between 0 and 2 in the case
of SiO2 and of AlyO3. For higher refractive index (i.e. TiO2), the error increases
until it reaches 30% (for more restricted size parameter range [0; 1]). The BPK
method shows that the pair interactions must be taken into account only for small
size parameters; their contribution in scattering cross-section calculation is less in
the case of large aggregated primary particles.

2.4.3.3 The Effective Refractive Index (ERI) method

We have shown in subsection 2.4.2.2, that the location of the primary particles
inside an aggregate and its shape had an effect on the scattering cross-section.
The effective refractive index (ERI) method considers the shape. Knowing that the
projected area of the scattering body (on the plane (E, H) of the incident wave) is
a relevant parameter in optics, we consider an equivalent sphere starting from the
aggregate projected area (Fig. 2.13).

Projection is carried out according to several successive planes (plane perpen-
dicular to the incident wave vector). This corresponds to random rotation that
takes place in a real situation (for instance, aggregate in a turbulent flow). Then,
an average projected area (Sp)¢ is calculated and an equivalent projected area
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(Xn- Yn- Zn) = *

Fig. 2.13. Projected area representation.

sphere is defined. Successively, it can be deduced, the equivalent radius ay ., the
solid volume fraction inside the sphere ¢, = (Na})/ a?v’e, the effective refractive
index m, using the Maxwell-Garnett theory

mgfl:6 m? —1
m2 +2 “m2+27

and then the extinction cross-section C'r gy v by means of Mie theory. This method
is more efficient than the other equivalent sphere methods, because the solid volume
fraction in this sphere is always high (0.1 < ¢, < 1).

ERI method behaves differently according to the configuration for small size pa-
rameter (Fig. 2.14). Indeed, Csca value calculated with this method is higher than
the scattering cross-section calculated with the exact method for a linear configura-
tion (Fig. 2.14(a)). This deviation can be taken in consideration and calculation has
to be corrected in order to reduce the deviation between ERI and exact methods.

Jacquier and Gruy (2007a,b) proposed a corrective factor F'(x,d;/a) for the
scattering cross-section Cgry . This is written as:

CIC?O]Q?N ZOERLN/F(J?,dl/a), (2.17)
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Fig. 2.14. The ERI approximation: K,, as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.
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where d; is a morphological parameter defined as:

1
dy = N D izjdij (2.18)

2.4.3.4 The Anomalous Diffraction (AD) method

In subsection 2.4.2.2 it has been already mentioned that morphology becomes more
important for large size parameters. The anomalous diffraction approximation, clar-
ified in subsection 2.3.3 (Van de Hulst, 1981), accounts for the aggregate morphol-
ogy by means of the intercept (chord) of a light ray and the aggregate (Fig. 2.15).

Fig. 2.15. Definition of a chord.

The various possible chords I, 5 ... were evaluated and introduced as [ = El l;
into Eq. (2.19)

Cabn :2{{4 (1—cos2;l(m—1)> dydzzQ{{é (1 - cosz(l/a)(m — 1)) dydz.

(2.19)
[Sp] is the projection plane. Details or examples on expressions relating {/a and
(y, z) can be found in Yang et al. (2004) and Gruy and Jacquier (2008).

This calculation is repeated while rotating the aggregate or changing the pro-
jection plane. So, a mean value of scattering cross-section is deduced (Fig. 2.16). As
expected, the AD method is not suitable for small size parameters but proves to be
a good approximation for a size parameter higher than 2. It is important to recall
that AD is strongly related to the configuration (morphology) since it includes in
its formulation the chord length distribution of the aggregate.
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Fig. 2.16. The AD approximation: K., as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.

2.4.3.5 Summary

Approximate methods facilitate the estimation of the aggregate scattering cross-
section in a short computation time. Jacquier and Gruy (2007a) evaluated the
performance of these four approximate methods with respect to the exact method:

— Methods replacing an aggregate by a compact sphere (CS) are inappropriate.

—  The BPK (Berry—Percival-Khlebtsov) method is valid for 0 < # < 2 with an
error which increases with the material refractive index.

— The corrected ERI (Effective Refractive Index) method is the approximate
method capable of efficiency over all size parameters. The error for a scattering
cross-section is always smaller than 5%.

—  The AD (Anomalous Diffraction) method works fairly well for 2 < z < 10 and
is less sensitive to refractive index variation.

2.4.4 Application: turbidity versus time during
the agglomeration process

As mentioned in section 2.2, nucleation and growth lead to (primary) particles with
a size between 0.1 ym and 10 pm. Then, these particles collide and agglomerate
by Brownian motion and/or local shear. So, let us consider agglomeration of small
monosized primary particles in a homogeneous suspension. Agglomeration proceeds
as a bimolecular reaction, the kinetic constant of which can be expressed in terms
of known quantities. Generally, the kinetic constant is a function of the sizes of
the two colliding particles. However, in the case of Brownian agglomeration or
shear agglomeration (but not for shear aggregation, i.e without consolidation of
the particle cluster), the kinetic constant K,, weakly depends on the particle size,
so that we may consider it as not dependent on particle size. Following Kruyt
(1952), modeling of agglomeration with constant K,, leads to simple expressions
for number concentrations in the agglomerate:
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Ny = No(t/tey (1 +t/t) 1. (2.20a)

Nj; is the number concentration in agglomerate consisting of j primary particles.
Ny is the number concentration in primary particles at time ¢ = 0. There is no
agglomerate at t = 0. t. is the characteristic time of agglomeration. It obeys:

te =2/(KogNo) . (2.20b)

For instance, t. = 3u/(4kT Noa) for Brownian agglomeration. T, k and p are the
temperature, the Boltzmann constant and the dynamic viscosity, respectively. a is a
non-dimensional parameter representing the agglomeration efficiency (0 < a < 1).
For the sake of simplicity, we consider this parameter as a constant throughout the
agglomeration process.

It will be pointed out that ¢, and then /N; do not depend on the agglomerate
morphology. The previous expressions are approximate, but are considered as a
first and realistic approach to agglomeration dynamics.

At a given time, the turbidity of the suspension contains the contribution of
each j-agglomerate:

ZN Pl ) Com (N m,pl . pl). (2.21)

Following the ERI method, the internal coordinates relevant for scattering cross-
section are a (the primary particle radius), j, (Sp)o. Even if the characteristic time
does not depend on the morphology, it appears that large agglomerates have a
fractal-like structure. Depending on the agglomeration mechanism, simulations give
values of fractal dimension between 1.8 and 2.6. Due to restructuring of agglomer-
ates, the fractal dimension is larger than 2. As the fractal dimension is larger than
2, the outer radius of the agglomerate is equal to the radius ag ; of the ‘projected
area’ equivalent sphere. Small agglomerates do not have the fractal-like structure.
However, we have shown (Gruy, 2001) that they can be described by means of a
power law relating ags ; and j:

asy _ ({50 \"* _ (1) (2.22)
a ma? S, ' '

Later on, we will consider Eq. (2.22) suitable for a wide range of primary particle
numbers. Then,

t) = Nj(t,te)Ceat(A,m, j,a, D). (2.23)

Figs 2.17 and 2.18 represent the change of turbidity (normalized by 7o(\) =
NoCrerzt(A,m,a)) with time (normalized by t.) for agglomeration of silica (m =
1.08). Figs 2.17 and 2.18 show the effect of two fractal dimensions (Dp = 2.1;
Dp = 2.5) and two primary particle radii (a = 0.1 um; a = 1 um) respectively at
A=04pm and A = 0.8 um.
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Fig. 2.17. Normalized turbidity versus time; agglomeration of silica in water; A = 0.4 um.
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Fig. 2.18. Normalized turbidity versus time; agglomeration of silica in water; A = 0.8 pm.



64 Sandra Jacquier and Frédéric Gruy
2.5 Approximation for radiation pressure cross-section

2.5.1 Introduction

Often, precipitation leads to concentrated suspensions. On the one hand, transmit-
ted light intensity becomes very weak making backscattering sensors more suitable
than turbidimetric ones. On the other hand, multiple scattering takes place. What-
ever the considered signal (backscattered, side-scattered or transmitted light), the
interpretation has to account for multiple scattering. The most popular theory
which considers this phenomenon is the radiative transfer theory, particularly its
diffusion approximation (Ishimaru, 1978). The relevant phenomena associated with
backscattering measurement are either coherent or incoherent ones. The first type
result from interference caused by the double passage of the wave through the same
particle (Tsang and Ishimaru, 1984, 1985; Wolf et al., 1988; Akkermans et al., 1988;
de Wolf, 1991; Helfenstein et al., 1997). The angular width of the measured intensity
peak is proportional to the transport mean free path Lt = (NC)p,.) !, where N is
the particle number concentration and (), is the radiation pressure cross-section.
The second type only considers the multiple scattering: scattered light intensity is
also a function of the transport mean free path. Theoretical calculations were com-
pared to on- (off-) line experimental data for transmittance (Ishimaru et al., 1983)
and retroreflectance (Kuga and Ishimaru, 1984; Nichols et al., 1997) experiments
with suspensions of spherical beads, and a fairly good agreement between both was
found.

The radiation pressure cross-section is expressed as a function of the extinction
and scattering cross-sections, and also the asymmetry parameter (g = (cos6)):

Cpr = Uext — Csca *g-
In the case of non absorbing material:
Cpr: sca(]-*g)'

The asymmetry parameter for spheres has been calculated and analytical or em-
pirical expressions have been derived in the framework of different approximations,
e.g. geometrical optics and RGD approximations. Empirical expressions for large
randomly oriented non-spherical particles were also proposed (see Kokhanovsky,
2001). Rigorous calculations were achieved by different authors (see, for instance,
Xu (1998b)).

Up to now, calculations of radiation pressure cross-section for aggregates have
been mainly motivated by the calculation of forces acting on interstellar dust illu-
minated by stars (Kimura and Mann, 1998; Kimura et al., 2002; Iati et al., 2004).
Radiation pressure plays a key role in the dynamical behavior of submicrometer-
size grains in the stellar radiation and gravitational fields. Kimura and Mann (1998)
studied aggregates composed of 256 primary particles, the radius of which is 0.01 pm
and that are illuminated by visible light and infrared. The considered materials are
silicate and amorphous carbon as representatives of weakly and strongly absorbing
materials, respectively. Calculations for randomly oriented fractal-like aggregates
(with Dp = 2 and Dy = 3) were performed by means of the DDA method. Au-
thors showed that the asymmetry parameter smoothly increases with increasing
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size parameter x (decreasing wavelength) of the primary particle and increases as
the fractal dimension decreases if x < 0.16 (for « > 0.16, g ~ 0.7). The asymmetry
parameter for aggregates is higher than for volume-equivalent spheres, irrespective
of the constituent material. The authors point out that aggregates with small frac-
tal dimension present a large fluctuation in g for different aggregate orientations.
Kimura et al. (2002) extended the previous study to larger aggregates (N < 2048).
They compare radiation pressure cross-sections calculated from the DDA method,
Mie theory applied to volume-equivalent sphere (CS method) and Mie theory com-
bined with the Bruggeman mixing rule. CS is a rough approximation for the two
materials and two fractal dimensions. Mie/Bruggeman approximation is a good
approximation for compact aggregates, but performs weakly for loose aggregates,
especially with non-absorbing primary particles. The authors showed that Cp, is
less dependent on the porosity of aggregates while the values strongly vary with the
material composition. Iati et al. (2004) computed, through the T-matrix method,
optical properties of cosmic dust grains. Grains are aggregates consisting of 31
non-identical spheres. Materials are also silicate and amorphous carbon. Primary
particle size distribution is assumed to be Gaussian-like. The radius of the volume-
equivalent sphere is equal to 0.14 yum. For both materials, aggregation leads to a
sharp increase in the extinction and radiation pressure cross-sections. Subsections
2.5.2 and 2.5.3 are respectively devoted to the main features of C,, for aggregates
and approximate methods for estimating Cp,.

2.5.2 Main features of radiation pressure cross-section
2.5.2.1 Single sphere

The variation of the asymmetry parameter is presented for spherical particles of
various chemical compositions in Fig. 2.19.
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Fig. 2.19. Asymmetry parameter for three materials as function of the size parameter.
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The asymmetry parameter is close to zero for very small size parameters, what-
ever the refractive index. Then, it increases to a plateau close to 1 in the case
of SiO5 and AlyOs, i.e. the light is scattered predominantly in the forward direc-
tion. A spherical particle of TiO5 has a mean scattering angle which varies less
monotonously according to the size parameter. Indeed, for a size parameter equal
to 4, the asymmetry parameter is close to zero, the scattering can be then de-
scribed as dipole-like, while for a size parameter of about 6 the scattering seems
to happen in a privileged direction. Fig. 2.20 represents Cp, as a function of the
size parameter for a sphere and the three different materials. In the size parameter
range [0; 10], the radiation pressure cross-section increases as the optical refractive
index increases.
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Fig. 2.20. Radiation pressure cross-section for three materials as function of the size
parameter.

2.5.2.2 Aggregate of spheres

The variations of C, for an aggregate have been examined according to: the number
of primary particles, their size parameter, the relative optical refractive index and
the aggregate shape. Simulations were performed by means of the GMM method
(Xu, 1998b).

The simulation results are presented as previously: effect of the number of pri-
mary particles within the aggregate and effect of the aggregate shape on the func-
tion Px,(z). Px, is the ratio between Cp, value of an aggregate (Cpy x. n) and
one of its N primary particles considered as independent NCp, nrie,1:

Cpr,Xu,N

Px, = .
NCpnMieJ
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2.5.2.2.1 Effect of the number of primary particles on the radiation
pressure cross-section

Fig. 2.21 represents Px, as a function of the size parameter for a chain-aggregate
of SiOy primary particles. The variation of Cp, with primary particle size param-
eter is similar to that one corresponding to the scattering cross-section. Two size
parameter ranges can be defined. In the z-range [0; 2|, constructive interferences
and multiple scattering (or interaction between primary particles) are important.
In the z-range [2; 10], the radiation pressure cross-section is close to the Cp, of a
set of spheres without interaction. However, multiple scattering still occurs at some
extend.
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Fig. 2.21. Px, as a function of the size parameter for the linear configuration with N
primary particles (2, 4, 8, 16) and for SiOs: (a) for the range = € [0, 3] and (b) z € [0, 10].

However, the radiation pressure cross-section of an aggregate made up of pri-
mary particles whose size parameter is higher than 1.5 seems to be proportional
(by a factor p(N,z)N) to the primary particle radiation pressure cross-section.
p(N,z)N is a weak function of z for SiOy (more dependent on z for TiOs). As
expected, Px,(z) is similar to Kx,, () in the z-range [0; 1] because the asymmetry
factor of the primary particle is smaller than 0.25. But, Py, () must not be related
to Kxq(x) in the z-range [1; 10].

2.5.2.2.2 Effect of the aggregate morphology on radiation pressure
cross-section

Fig. 2.22 represents Px,, for different configurations of aggregates consisting of four
primary particles arranged according to Fig. 2.9. Similar variations are obtained.
The deviation between the two extreme configurations is about 10.7%, which is a
smaller value than that obtained with Cy.,. But Cp, is a little more sensitive to
configurations which are close each other, since the average deviation between the
pl and p2 configurations is about 1.3% compared with 0.8% for Cieq.



68

Sandra Jacquier and Frédéric Gruy

45 _ 20 -
10 50, ~ - - lnear 1 sio,
3'5 RN — — compact 15
\,‘\ \ plan . Il
30—y o 161
25— ) 2,
&, Y p2 [ il
20 < |
A\ i
15 A 12—
N |
10 > T e o e 10 L
05 N Qe m e mim o s o i
0 HK;‘X”.T.‘T}_.'.'._.T_‘._T‘_ ......
3 2 S S S S 08 + t - |
00 05 10 15 20 25 0 0 2 4 B 8 10
X X

Fig. 2.22. Px, as a function of the size parameter for different configurations of 4-aggre-
gates (linear, compact, plane, pl, p2) for SiOs.

2.5.3 Approximate methods for aggregates
2.5.3.1 The ERI method

In the same way that we showed the effectiveness of the ERI approximate method,
for calculation of Cj.q, we evaluated (Jacquier and Gruy, 2007b) its performances
for the calculation of Cp,.. The ratio of the radiation pressure cross-sections obtained
on the one hand with the exact (GMM) method and on the other hand with the
ERI method is denoted L,,:
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Fig. 2.23. L,, function with z € [0;10] for linear aggregate (SiO2).
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The deviation of L,, from 1 (Fig. 2.23) leads to the search for a corrective factor
in order to reduce it. Jacquier and Gruy (2007b) proposed a corrective factor as
a multi-parameter function G(z, N, d;/a) for the radiation pressure cross-section
Cpr.err,N- Thus, the corrected radiation pressure cross-section obeys the expres-
sion:

wrEri,N = Cpr.eriN/G(z, N, di/a). (2.24)

Later on, this method is called ERI/G.

2.5.3.2 Other methods

We noticed in subsection 2.5.2.2 that Px, of any configuration of soft particles
does not vary with x for z higher than 1.5. The value of Px,(;>1.5) depends on the
aggregate morphology that can be characterized through N and d;/a. However,
Pxu(z>1.5) may be a weak function of x for hard material (Fig. 2.24). We can
observe that variations of Px(;>1.5) are similar to those for a two-sphere aggregate.
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Fig. 2.24. Px, as a function of the size parameter for the compact configuration with N
primary particles (2, 4, 8, 16) and for TiOs: z € [0, 10].

These comments suggest the two approximate methods:

— method Ppl: Cp, xu,n proportional to Cp, of a primary particle: Cp, arie,1
— method Pp2: Cp, xy,n proportional to Cp, of a doublet: Cpy x4,2

The proportionality factors, denoted respectively p; and ps, can be expressed as
a function of a single parameter: 3 = N/ /d1/a. Corresponding expressions can
be found in (Jacquier and Gruy, 2007b). Table 2.3 presents the performances of
ERI/G, Ppl and Pp2. It appears that the ERI/G method is not as efficient as Ppl
and Pp2 but ERI/G presents the biggest advantage to be used over all the size
range.
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Table 2.3. Approximate method performance for the calculation of Cp, for different
materials with = € [1.5;10]. m and o are respectively the mean value and the standard
deviation for the corresponding dataset

method Linear configuration Compact configuration
material SiOs Al O3 TiO» SiO» Al,O53 TiO,

m o m o m o m o m o m o
Ppl 1.01 0.05 1.05 0.11 1.06 0.17 1.01 0.04 1.00 0.11 1.08 0.17
Pp2 0.98 0.04 096 0.08 094 0.12 097 0.04 093 0.10 0.93 0.11

ERI/G 093 0.17 090 0.15 1.07 023 092 0.13 090 0.11 1.06 0.30

2.5.4 Conclusion

We have presented different ways to calculate approximately the radiation pressure
cross-section of aggregates. The corresponding expressions can be used to study
dense suspensions. For instance, Tontrup et al. (2000) performed an experimental
work about the aggregation of TiOs micro-particles in water by using a backscat-
tering sensor. They deduced the change of the transport mean free path with time.
SEM observations showed that the aggregates contain few primary particles. Ap-
proximations could be used to determine some characteristics of the aggregates.

2.6 Scattering properties versus geometrical parameters
of aggregates

The main question that appears when studying the formation of particles or aggre-
gates is: which is the relevant morphological parameter related to the measurement?
The answer mainly depends on the particle size and is partially included in theories
and modeling leading to scattering cross-section calculations.

So, when we consider the Mie theory for homogeneous spheres, the solving
method and the results are dependent only on the relative refractive index and
the boundary conditions for the Helmholtz equation. From a geometrical point
of view, the mathematical function describing the particle surface is the relevant
parameter. The case of non-spherical convex bodies is similar. As the physics is
always based on the Maxwell and Helmholtz equations, the corresponding solution
for a natural incident light depends only on the body surface that is characterized
by the equation f(z,y,z) = 0.

If we are interested in the orientation average of the scattering cross-section, a
function describing the body and being invariant to rotation will be preferred. So,
the pair distance distribution density (PDDD) could be an interesting approach to
describing the shape. It is a well-known function in physics and can be defined for
liquids as:

dN = g(r)dmr? dr.

dN represents the number of molecules distant from a given (tagged) molecule with
the distance in the range [r,r + dr]. In the case of liquid, the distribution is nearly
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isotropic. This function clearly appears in RGD approximation for convex bodies
(distribution density is connected to | f|?) and BPK approximation for multi-sphere
aggregate (in Eqgs (2.14a) and (2.14Db)).

In the first case (RGD), we consider any pair of volume elements in the scat-
tering body. The pair distance distribution density is a continuous function of the
distance between volume elements. In our context, we chose the notation D, (r).
Then, the orientation-averaged scattering cross-section can be written as (Gruy,

2009):
Rm,az

2
Crap, = g/~:4V2(m - 1)2/ F(kr)D,(r) dr (2.25)
an'in

with
F(z) = 3[cos(2x)(—1+5x_2—3x_4)+sin(2x)(2x_1—6x_3)+1+x_2+3x_4} /(4x2) .

The distribution density function is normalized:

Roas
/ D,(r)dr =1 (2.26)
Rpin

Fig. 2.25 presents the function D, (r) for a sphere and various spheroids. The pair
distribution function for a sphere with radius a obeys the expression:
3 .
aDpU):anu@Q::igu%u3—12u4%1® (2.27)
with u =7/a and 0 < u < 2.
In the second case (BPK), equations contain the inter-particle distance d;;. This
function is not continuous; as far as a cluster of point scatterers is concerned:

Dp@qA“A}_1)§;5@~dﬁ). (2.28)

¢ is the Dirac function.
A particular case is the fractal-like aggregate, the PDDD of which obeys the
equation (continuous form):

Dy(r) oc rPr=3, (2.29)

According to subsection 2.4.3.2, the BPK approximation gives good results when
the size parameter of the primary particle is smaller than 2. Thus, the PDDD is
the relevant morphological parameter.

It has been shown by Gruy (2009) that this function associated with BP ap-
proximation (Berry and Percival, 1986) for aggregates of Rayleigh scatterers allows
for an estimation of the scattering cross-section of convex bodies. This method is
proved efficient for spheres and spheroids as the scattering efficiency is smaller than
1 and as the material is optically either soft or hard.

The non-corrected ERI method is based only on the average projected area
(Sp)o of the body. However, it is not suitable for elongated aggregates with small
size parameter. (S,)p can be expressed as a function of the number of primary
particles and of the mean inter-particle distance (Jacquier and Gruy, 2008a,b):
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Fig. 2.25. Pair distance distribution density for sphere, oblate spheroid (axis ratio equal
to 2) and prolate spheroid (axis ratio equal to 2). a is the smallest semi-axis length.

<Sp>0 = 7TR2

D

(2.30)

with R, = a(dl/Qa)1/5N1/3d}5/8 and N < 100; dg is the space dimension; d; is the
relevant morphological parameter. It is directly related to the first moment of the
distribution D, (r):

M, = / D, (r)rdr
0
e 1
2¥)

1
1.7

It would be possible to choose other moments of the distribution for describing
geometrical and optical properties of aggregates. For instance, the second-order
moment is directly related to the gyration radius, that is a well-known parameter
used to define a fractal-like aggregate. However, there was no noticeable change and
thus no improvement was found when choosing another mean distance definition for
the aggregate. Thus, we chose the lowest-order distribution moment. The corrected
ERI method also uses the d; distance parameter.

For large size parameter (z > 2), the AD approximation becomes efficient.
In this case, the relevant line is the chord. Expression of the average scattering
cross-section can be rewritten by introducing the chord length distribution D;(l)
(Jacquier and Gruy, 2008a,b):
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(Cap,N) = <2 // (1 —coskl(m —1))dy dz>
[Sp]

2(5,) /Olm (1 — cos ki(m — 1)) Dy(1) di (2.32)

1

The chord length distribution (CLD) is defined as follows: D;(l) dl represents the
number fraction of the chord length in the range [,1 + dl]. Thus, D;(l) obeys the
normalization equation:

/ T D) dl =1 (2.33)
0

lmaz 18 the maximum chord length of an aggregate.

Fig. 2.26 presents the D;(l) function for an aggregate consisting of 16 primary
particles. One observes three very distinct peaks or modes, each one characterized
by a chord length range:

— [0;2a] corresponds to primary particles (distribution density D; 1(1))
—  [2a;4a] corresponds to pair of particles in contact (distribution density D; (1))
[4a;lmaz] corresponds to the aggregate superstructure (distribution density

Dyc(1))

D (1) contains the contributions of each distribution density. These are weighted
by the coefficients &1, &5, &3¢

16 spheres in compact configuration
2 T T T T T T T T T
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Fig. 2.26. D;(l) for compact aggregate with 16 primary particles. [ is normalized by the
radius of the primary particle.
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D;5(l € [2a;4a D, (1 € [4a; lmax
Dy(l) = & Dia(l) + &2 l’24(a, | D Se l?(u [ -
Dis(l) di L Dia(l) di

2a

(2.34a)

with
S+&+éa=1. (2.34b)

The distribution densities D;1(I) and D;o(l) are given by analytical expressions
(Jacquier and Gruy, 2008a,b). D; ¢(1) is an empirical function, the same for all the
aggregates. Only weighting coefficients depend on the aggregate morphology. Re-
sults shown in Fig. 2.26 for a particular aggregate are representative for aggregates
with primary particle number up to one hundred. Coeflicients &1, &2, £o depend on
N,d1,dg (Jacquier and Gruy, 2008a,b).

The calculation of the scattering cross-section using Eqgs (2.32) to (2.34b)) is
much faster than that based on Eq. (2.19).

Certain presented approximations are characterized by a decoupling or separa-
tion between optics and geometry. This separation allows for a faster calculation
of the optical properties. To our knowledge, the relationship between chord length
distribution (as defined by Fig. 2.15) and pair distance distribution is not triv-
ial, particularly for aggregates, and requires complementary works in the field of
integral geometry. Moreover, the transition between the different geometrical char-
acteristics, i.e PDD and CLD, as the primary particle size increases is not yet
quantitatively understood.

2.7 Conclusion

The analysis of turbidimetric data during the precipitation process is a challenge for
researchers working in the field of light scattering by particles. The variety of sizes,
shapes and optical contrast requires several approaches for the calculation of their
optical properties. Performance criteria are the calculation speed and the accuracy
fitted with the measurement accuracy. Accurate calculations performed with so-
phisticated numerical methods will always be needed and used for the purpose of
validation. Difficulties remain for certain particles with a complex morphology. For
instance, one observes precipitated zinc sulphide particles in the size range [0.5 pm;
5 pm]| exhibiting sand rose (i.e., gypsum flower) morphology. The typical multi-scale
morphology of many precipitated particles firstly needs tools coming from integral
geometry in order to be described with a minimum number of parameters. Know-
ing this parameter set, optical properties will be calculated with exact theories.
The parameter number coming from geometrical analysis can be reduced when the
optical properties of the particles are appropriately considered for the formulation
of approximate theories to the calculation of scattering properties. An example for
such an approach has been presented, but further advances are needed.
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3 Using a 3-D radiative transfer Monte—Carlo
model to assess radiative effects on polarized
reflectances above cloud scenes

C. Cornet, L. C-Labonnote, and F. Szczap

3.1 Introduction

In the near future, more and more spaceborne or airborne instruments will be able
to measure polarized reflectance issued from the atmosphere. To give some ex-
amples, currently, the POLarization and Directionality of the Earth’s Reflectance
instrument POLDER3/ PARASOL, which is the successor of POLDER2/ADEOS2
and POLDER/ADEOS (Deschamps et al., 1994) measures, since 2005, the polar-
ized signal in the visible spectral range with up to 14 viewing directions. The
airborne version of this instrument, called OSIRIS (observing system including
polarization in the solar infrared spectrum (Auriol et al., 2008)), is nowadays ex-
tended to the near-infrared range and will maybe, in the future, generate a space-
borne version. The Aerosol Polarimetry Sensor (APS), the spaceborne version of
the Research Scanning Radiometer (RSP) will be able to measure reflected total
and polarized light in visible, near infrared, and short-wave infrared and should be
launched in the framework of the Glory mission in 2010 (Mishchenko et al., 2007).

Measurements of polarized reflectances allow better retrieval of cloud and
aerosol properties. Indeed, multi-angular polarimetric data can, for instance, be
used to retrieve cloud phase (Gouloub et al., 2000; Riedi et al., 2001), cloud par-
ticle size (Bréon and Goloub, 1998; Bréon and Doutriaux-Boucher, 2005) or infor-
mation on cloud particle shape (Chepfer et al., 2001; Herman et al., 2005; Sun et
al., 2006). To retrieve these atmospheric properties accurately, or at least to assess
the error which can be made with the classical retrieval algorithm, it is important
to be able to model radiative transfer in a realistic way. Today, most of the code
handling the polarization of light is based on the assumption of a plane-parallel
atmosphere (de Haan et al., 1987; Stamnes et al., 1988; Rozanov and Kokhanovsky,
2006; Lenoble et al., 2007). However, it had been shown that this assumption can
lead to non-negligible error in radiative quantities, especially in cloudy atmosphere
(Marshak and Davis, 2005) and thus in the retrieved cloud properties (Loeb and
Coakley, 1998; Varnai and Marshak, 2001; Iwabuchi and Hayasaka, 2002; Zinner
and Mayer, 2006; Marshak et al., 2006; Cornet and Davies, 2008). These different
studies deal with total reflectances and, so far, nobody has looked at the effects of
cloud variabilities on polarized reflectances. The first step for doing these studies
is to develop a model able to simulate polarized reflectances issued from a 3-D
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atmosphere. Although polarization has been included recently in the Monte—Carlo
code MYSTIC (Emde et al., 2009), most of the 3-D radiative transfer models ex-
isting now, either based on an explicit representation of the computations (Evans,
1998; Ferlay and Isaka, 2006) or on a statistical representation as are the models
using the Monte-Carlo methods (Iwabuchi, 2006; Mayer, 2009), compute only to-
tal reflectances. Note that concerning the differences between the two methods, a
comparative study between SHDOM (Evans, 1998) and one Monte-Carlo model
can be found in Pincus and Evans (2009).

In order to study 3-D cloud radiative effects, we have also recently developed a
three-dimensional and polarized radiative transfer Monte Carlo model called 3DM-
Cpol (Cornet et al., 2009). This code is based on forward Monte—Carlo techniques
and performs monochromatic calculations limited to the solar wavelength region:
scattering and absorption processes are included, but not emission. It computes the
complete Stokes vector (I,Q,U,V) in a 3-D atmosphere composed of cloud, aerosols
and molecules for different view zenith and azimuth angles and hence allows the
computation of the total and polarized reflectances. In this chapter, we present the
model with additional tests concerning its validity and show two examples concern-
ing the effects of cloud variabilities on polarized radiances. The chapter is organized
as follows. After recalling the definitions concerning polarized light, the second sec-
tion presents succinctly the polarized radiative transfer model, 3DMCpol (Cornet
et al., 2009). Comparisons with a 1-D radiative transfer model are presented in
section 3.3. In section 3.4, we show results of 3-D simulations obtained from 3-D
synthetic clouds. Conclusions are given in section 3.5.

3.2 Including the polarization in a 3-D Monte—Carlo
atmospheric radiative transfer model

3.2.1 Description of radiation and single scattering:
Stokes vector and phase matrix

This section provides the description and the definition required to understand
polarization of an electromagnetic radiation and how it can be modified by a scat-
tering event. More details can be found in Hansen and Travis (1974) and Van de
Hulst (1980).

3.2.1.1 Description of a beam of light

Light cannot be described by its intensity alone. Due to its wave nature, a complete
description of light is obtained by taking into account its polarization state. Indeed,
the radiation usually measured is often partially polarized and a beam of light
consists of a polarized and an unpolarized part:

I = Ipol + I’u/npol . (31)

As the electric field describing the polarization of light draw an ellipse, the
polarization part of the light can moreover be separated into a linearly polarized
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part I;, and a circularly polarized part I, as:

Lpo = \J It + 12, (3.2)

A beam of light is totally polarized only if the orientation and the ellipticity of
the polarization ellipse is the same for each simple wave. On the other hand, light
composed of uncorrelated waves and having no preferred direction for its electric
field such as solar radiation is unpolarized.

We consider a parallel beam of light of wavelength A traveling in the positive
direction z and being scattered by particles of any shape. The scatterer is in the
cartesian coordinate system (x, y, z) attached to the photon with origin in the
center of the scatterer. Note that the light is scattered in all directions of the space
but for simplicity we will focus and describe scattering process in the direction
defined by the vector e,. The plane defined by vectors e, and z is called the
scattering plane and is used, in the following, as the reference plane. The angle ©
between directions e, and z is the zenith scattering angle. The scattering azimuth
angle ¢ is the angle between the scattering plane and the x axis. The complex
components of the electric field, parallel and perpendicular to the scattering plane
are noted respectively E| and E . The incident electric field can then be written
as:

E,=E) +E;, =Ee +EeL, (3.3)

where e and e are the unit vector parallel and perpendicular to the scattering
plane and such as e X e1 = z.

The scattering wave is a spherical wave with an amplitude inversely proportional
to the distance r. Moreover, as only linear processes happen when the incident field
is modified in the scattered field, we can write (Van de Hulst, 1980):

E. e—ikr—i—ikz A A B
s|| - 2 3 il 4
(ESJ_ ) ikr (A4 Ay ) < E; ) ’ (34)

where k is the wavenumber and z the location.

This equation shows that scattering by particles, in every directions, is com-
pletely described by its amplitude matrix A. The elements of this matrix are com-
plex and are function of the optical properties of the scatterer and of the scattering
angles ©, ¢.

3.2.1.2 The Stokes parameters

The complete description of the polarization state of electromagnetic radiation
can be obtained by the Stokes parameters. These parameters are the quantities
computed in the radiative transfer model described in this chapter. If we consider
a plane wave with parallel and perpendicular components (Chandrasekar, 1960),
the Stokes parameters are (Van de Hulst, 1980):

I = EHEIT +LE, EY
QZE”E‘T -E B
U= E”Ei + EJ_E‘T

V =i(BE} - ELE})
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The asterisk stands for the complex conjugate. The component parallel and per-
pendicular of the electric field are described by their amplitudes a and a and
their phases ¢ and e, chosen at (z =0, t = 0) by:
Ey=a e—ieue—ikz-‘riwt’
EH_ — a‘lJ_efielefiksziwt (36)
)
where w is the frequency of the wave, k the wavenumber, 2z the location and ¢ the
time. From this expression, equation (3.5) becomes:
_ 42 2
I= aH2—|— a Jé
@=ay—al (3.7)
U = 2aay cosd
V = 2a)aysind

where § = ¢ — €.

I represents the intensity or normalized total reflectance. The other parameters
having the same dimension, it allows them to be summed for a mixture of separate
independent waves. Note that for clarity reasons, a constant factor common to all
four parameters is omitted in these equations.

The Stokes parameters can also be represented by a geometric description.
Indeed, the endpoints of the electric field vector draw an ellipse with semi-major
axis and semi-minor axis called a and b respectively. The ellipticity is defined by
an angle [ such that:

tan = ig , (3.8)

with —7/4 < 8 < m/4.

The sign of § gives the direction in which the ellipse is described, with positive
sign corresponding to right-handed polarization. The angle between the major axis
and the parallel direction (e|) of the electric field is denoted by x (0 < x < ).

The Stokes parameters can then be expressed by the parameters 3 and x which
define the shape and the orientation of the ellipse (Fig. 3.1; Van de Hulst, 1980)
by:

Fig. 3.1. Polarization ellipse. a and b are respectively the semi-major and the semi-minor
axis. The direction of propagation is into the page and the sense of polarization indicated
corresponds to right-handed polarization.
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1=25

Q = Sopcos2[cos 2y
U = Sypcos2Fsin 2y
V = Sypsin 20

(3.9)

where S is the total intensity of the beam of light and p the degree of polarization.
From this equation, it is possible to find characteristics of the polarization ellipse
for the Stokes parameters by:

B = 1 arctan <V>
2 V@ + U (3.10)

1acta v
= —arctan | —

The exact relations between a|, ay, ¢ in equation (3.7) and Sp, B, and x in
equation (3.9) can be found in Van de Hulst (1980).

Another way to understand the meaning of the Stokes parameters consists of
looking at their measurements. If we suppose that E) has a constant delay ¢ with
respect to B, and that I(y,e) is the intensity of light due to vibrations in the
direction making an angle ¢» with e)|. The Stokes parameters can be obtained from
(Hansen and Travis, 1974):

I =1(0°,0) + I(90°,0) = Ij + I,
Q = 1(0°,0) — I(90°,0) = I, — I,
U = I(45°,0) — I(135°,0)

V = I(45°, %) — I(135°, %)

(3.11)

I represents the total intensity. Q is the difference between the intensity of light
measured with a polarizer in the parallel direction with respect to the reference
plane (v = 0°) and the intensity measured in the perpendicular direction (¢p = 90°).
U has a similar definition to Q but the difference is between intensity for ¢ = 45°
and for ¢ = 135°. Finally, V is the difference between a right-handed circular
polarization and a left-handed circular polarization.
For monochromatic light, which is fully polarized, we obtain from equation
(3.7):
P=Q*+U?+V? (3.12)
For natural light, because this is a mixture of uncorrelated simple waves with no

preferred direction of vibration, there exists no phase relation between the parallel
and perpendicular fields. Thus, we have

Q=U=V=0 (3.13)

Light is thus unpolarized and I is sufficient to describe it. But usually, the light is
partially polarized and :
I’>Q*+U?+Vv? (3.14)

As already mentioned, a beam of light can thus be considered as the sum of
polarized and unpolarized light (equation 3.1) with the intensity of polarized light
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equal to: .
Lo = (Q* +U* +V?)2 (3.15)

From the Stokes parameters, the following quantities are also defined:

— the degree of polarization (equation (3.9)): p = 7W

— the intensity of linearly polarized light \/@Q? + U?
— the intensity of circularly polarized light: V'

3.2.1.3 The phase matrix

We can see in equation (3.4) that the scattered electric field is obtained from the
incident electric field by a simple multiplication with the amplitude matrix of the
scatterer. When working with the Stokes parameters, we use in the same way the
phase matrix P(©) which allows us to transform the incident Stokes vector in the
scattered Stokes vector:

I P11 Pia P13 Py I;

Qs | _ 1 | Por P Pa3 P Qi (3.16)
U, k2R2 | P31 P32 P33 P3y U |~ '
Vs Py Py Pyz Py Vi

where k = 27/\ and R is the distance between the observer and the particles. As
only linear processes happen, it is possible to express the elements of the phase
matrix as functions of the elements of the amplitude matrix (Van de Hulst, 1980).
In the phase matrix, note that P;; corresponds to the phase function used in the
scalar approach and describes the probability of a photon being scattered along
the direction defined by © with respect to the incident direction. It is normalized
as:

/27T /1 P11(O)dcos(O)dp = 4r (3.17)
o Jo

Under some assumptions, the phase matrix of a group of particles can be ex-
pressed as the sum of each individual phase matrix. Consequently, Van de Hulst
(1980) showed thus that a group of particles leads to symmetry relationships which
allow the simplification of the phase matrix of the ensemble.

For example, a cloud composed of randomly oriented particles with no opti-
cally active sphere leads to a phase matrix with a maximum of six independent
parameters function of ©, and can be written as:

P Py O 0
0 0 Ps3 Pay
0 0 —Psy Pu

P= (3.18)

In addition, for spherical particles, we have:

P11(0) = Pyy(0)
Ps3(0) = Pua(0) (3.19)
P} (0) — P35(0) — PR(0) — P3,(0) = 0
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In Fig. 3.2, we have plotted the elements of the phase matrix at a wavelength
of 865 nm for three types of scattering:

— Rayleigh scattering for small particles, which is principally used to model
gaseous molecular scattering.

— Mie scattering used for spherical particles such as water cloud droplets. The
phase matrix is computed from a log-normal distribution with an effective radius
of 10 pm and an effective variance of 0.02. The real part of the refractive index
is 1.33 and the imaginary part is null.

— Scattering by non-spherical particles such as ice particles obtained with the IHM
particles (Inhomogeneous Hexagonal Monocrystal model (C-Labonnote et al.,
2001)). This model consists in computing the scattering of light by an ensemble
of randomly oriented hexagonal ice crystals containing spherical impurities of
air bubbles. The real part of the refractive index is 1.304 and the imaginary
part is null.

Concerning Rayleigh scattering, the evolution of the phase matrix components
as functions of the scattering angle is very smooth with important side scattering.
They are simply expressed by:

1+ cos2@ —sin?6O 0 0
3| —sin?@ 1+cos’0@ 0 0
Proy(©) = 7 0 0 2080 0 (3.20)
0 0 0 2cos @

Concerning spherical particles, we note that the relations expressed in equa-
tion (3.19) are respected. Another important characteristic is the variation of the
parameter P for © larger than 130°. The large maxima near 140° corresponds
to the so-called primary cloudbow and is characteristic of water cloud. It is used
among others tests for cloud phase detection (Riedi et al., 2001). In addition, the
positions of the secondary maximas and minimas between 145°and 165° are used to
retrieve size parameters of cloud particles (Bréon and Doutriaux-Boucher, 2005).
Note that the presence of these secondary cloudbows are only visible for relatively
narrow size distribution. Here, the effective variance of the distribution is 0.02 for
an effective radius of 10 ym.

For heterogeneous non-spherical particles, because of irregularities (inclusion or
surface roughness), side scattering is larger comparing to liquid spherical particles
and thus the assymetry parameter is smaller. Moreover, note that Py # P;; and
P4 # Ps3. The ice phase function (IHM) chosen here is just an example and does
not reflect the diversity of ice crystal found in cirrus cloud. Indeed, depending of
the ice crystal shape, the elements of the phase matrix can have very different
behavior (Sun et al., 2006).

3.2.2 Description of the radiative transfer model, 3DMCpol

The radiative transfer model called 3DMCpol (Cornet et al., 2009) follows the
standard approach of a forward Monte—Carlo model (Cashwell and Everett, 1959;
Avery and House, 1969; Marchuk et al., 1980; Evans and Marshak, 2005; Iwabuchi,
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Fig. 3.2. Examples of scattering phase matrix components for a wavelength of 865 nm
and for three types of scattering: Rayleigh scattering for small particles, Mie scattering for
spherical particles (Refy = 10 pm and Veyy = 0.02) and randomly oriented non-spherical
particles. The last is obtained with the IHM model (C-Labonnote et al., 2001).
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2006; Mayer, 2009). A flowchart describing the progression for each photon is pre-
sented in Fig. 3.3. The output of the model is the normalized reflectance in percent
noted:
T.R
pofo
where R is the reflected radiance in Wm=2sr~! and poFy the incoming solar flux.

Computation of polarized reflectances (vector approach) does not change the
general scheme of the code. Instead of scalar quantities, e.g. radiances (I), the
Stokes vector S = (I,Q,U, V) that completely describe the polarized state of the
light (Chandrasekar, 1960) is computed. The phase function is thus substituted
by the 4 x 4 phase matrix P(©). Otherwise, two important differences exist: one
concerns the computation of the scattering azimuth angle and the other concerns
the rotation of the electric field characterizing the polarization.

Indeed, first, the scattering azimuth angle for each scattering event, depends
on the scattering zenith angle © and on the state of polarization of the incident
photon. The uniform PDF of ¢ is replaced by a conditional PDF f(¢|©), which
is the probability of ¢ given ©, whereas in the scalar approach, this angle is cho-
sen randomly between —m and w. The azimuth angle ¢ is found by resolving the
following expression (more details can be found in Cornet et al. (2009)):

I =

x 100, (3.21)

yets— (sin22¢Qi + U; sin? ¢> D,(6), (3.22)

where (4 is a uniform random number between 0 and 1.

Concerning the rotation of the Stokes vector S, because it is defined with respect
to the meridian plane whereas the phase matrix is defined in the scattering plane,
two rotations are needed. Therefore, in order to deal with a scattering event from
the incident direction defined by (6, ) to a new direction defined by (Gl, gal), the
incident Stokes vector S; must be multiplied by the matrix Z (Chandrasekar, 1960;
Hansen and Travis, 1974; Ramella-Roman et al., 2005):

Z(0,0', 0 — ¢') = R(m — i) P(O)R(—i1), (3.23)

where O is the zenith scattering angle and i; and s are two rotation angles defined
as follows (Hovenier, 1969; Hansen and Travis, 1974):

COSi] = COS P

. —cos 8 + cos @' cos © (3.24)
CcoSig =
2 =+ sin O sin ¢’ ’

where ¢ is the scattering azimuth angle. The sign 4+ depends of the sign of the
relative azimuth angle (¢ — ¢').
The rotation matrix R is given by:

1 0 0 O

. 0 cos2: sin2: 0
RO =0 _sin2i cos2i 0 | - (3.25)

0 0 0 1
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Fig. 3.3. Flowchart of the standard Monte—Carlo radiative transfer model for the pro-
gression of one photon. The gray boxes correspond to the steps where the principal mod-
ifications of the code take place in order to account for the state of polarization of the
light.



3 Polarized Monte—Carlo RTM to assess radiative 3D effects 91

Note that, so far, the polarized 3-D model used here allows only the computation
of reflectances from a medium composed of randomly oriented particles and it does
not handle the polarization in the case of surface reflection. Some modifications will
be included later in order to allow computation of oriented particles and polarized
surface reflection.

3.3 Total and polarized reflectances in the case
of homogeneous clouds (1-D)

When the work described in this chapter was done, no 3-D atmospheric models ac-
counting for the state of polarization of the light in the visible part of the spectrum
were available. The validation of 3DMCPOL directly with 3-D polarized cases was
therefore not possible. Consequently, the model was validated, on the one hand, for
total reflectances in 3-D cases (see one example in subsection 3.4.2) and on the other
hand, for polarized reflectances from 1-D homogeneous cloud (next subsection).

3.3.1 Validation of the MC polarized model

In this subsection, several comparisons made with the well-known Adding-Doubling
code (de Haan et al., 1987) are shown for 1-D homogeneous cases for total and po-
larized reflectances. Concerning the Monte-Carlo simulations, 5.10° photons were
launched.

The first comparison concerns Rayleigh scattering which is one of the sim-
plest kinds of scattering. This case is a good validation for our code, first, because
the phase matrix and its exact decomposition in Legendre polynomials used in
the Adding-Doubling code is numerically known and, secondly, because Rayleigh
scattering is known to highly polarize the light. Results are shown in Fig. 3.4. Re-
flectances are computed for a cloud with optical thickness 5 using the Rayleigh
phase matrix, for different view zenith angles (0°, 30° and 60°) and for different
view azimuth angles between 0° (backward direction) and 180° (forward direction).
The sun incidence is 60°. Note that we only consider the cloud layer which means
that, in this example, atmospheric molecular scattering was not accounted for. As
the last component V is zero for Rayleigh scattering, we present results for the first
three components of the Stokes vector (I,Q,U) respectively in Fig. 3.4(a), (c¢) and
(e). Comparisons obtained for the polarized reflectance I, that is commonly used
in retrieval algorithms are also plotted in Fig. 3.4(g). This last quantity describes
the amount of polarized light:

I, =eV/Q*+ U2+ V? (3.26)

where ¢ = +1 represents the sign of the polarized reflectances which is expressed in
(C-Labonnote et al., 2001), but note that, in the solar plane, it corresponds simply
to the sign of Q. In Fig. 3.4(b), (d), (f), (h), we report the relative difference in
percent obtained between the two codes.

We see that, whatever the viewing angle, the agreement between the two models
is very good for all the components of the Stokes vector as well as for the polarized
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Fig. 3.4. Comparisons between Monte—Carlo and Adding-Doubling simulations for a
homogeneous cloud with 7 = 5 using a Rayleigh phase matrix. 8, = 60°, 6, = 0°, 30° or
60° and ¢, between 0° (backward scattering) and 180° (forward). Figs (a), (c), (e), and
(g) present results for the Stokes parameters respectively I, @, U and for the polarized
reflectances I,,. All these quantities are presented in percent. Figs (b), (d), (f), and (h)
present the relative differences in percent for the same quantities.



3 Polarized Monte—Carlo RTM to assess radiative 3D effects 93

reflectances. Except when the value is close to zero, the relative differences are very
small: below 0.12% for total reflectances and below 0.6% for polarized reflectances.

Because it will be used further in the chapter, we present also results obtained
for a homogeneous cirrus cloud in Fig. 3.5. The cirrus cloud has an optical thick-
ness of 2 and is located between 7 and 9km. In this example, we account for
atmospheric molecular (Rayleigh) scattering computed for a wavelength of 865 nm
between 0 and 20 km but not for atmospheric absorption. The phase matrix used
in the simulation comes from the THM (Inhomogeneous Hexagonal Monocrystal)
model (C-Labonnote et al., 2001). The error is below £1% for I and about £4-5%
for @, U and I,. The differences observed for @}, U and I, can be explained, on
the one hand, by the small values reached by the polarized reflectances. Note, for
that matter, that the value of polarized reflectances is much lower in the case of ice
scattering than in case of Rayleigh scattering. The second reason concerns the dif-
ferent treatments of the phase matrix used in the two models. In the Monte-Carlo
model, the exact phase matrix is used whereas in the Adding-Doubling code, for
computational time reasons concerning the zenithal integration, some approxima-
tion like delta-M scaling or truncation of the phase function are made that could
introduce a-physical behavior in the computed Stokes vector.
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Fig. 3.5. Comparisons of the total reflectances (a) and the polarized reflectances (b) in
percent of a homogeneous cirrus cloud with 7 = 2 computed with the Monte-Carlo code
(MC) or with the Adding-Doubling code (AD). 6s = 60°, 6, = 0°, 30° or 60° and ¢,
between 0° (backward) and 180° (forward). From Cornet et al. (2009).

The last comparison presented concerns a homogeneous water cloud with an
optical thickness of 10 (Fig. 3.6). Again, we add molecular scattering for the atmo-
sphere. The results are presented in the solar plane as a function of the scattering
angle. In this case, the sign of the polarized reflectance corresponds to the sign of
the second component of the Stokes vector () as the third parameter U in the solar
plane is null. The comparison shows that our model can well reproduce the pri-
mary cloudbow near 140° used for cloud phase detection and the secondary bows
which are used to retrieve size particles of water cloud (Bréon and Goloub, 1998;
Bréon and Doutriaux-Boucher, 2005). One can notice that the differences given by
the two codes are very small whatever the direction. These differences are larger
in the forward direction and are certainly due to the decomposition of the phase
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Fig. 3.6. Comparisons of the total reflectances (a) and the polarized reflectances (b) in

percent of a homogeneous water cloud with 7 = 10 computed with the Monte—Carlo code

(MC) or with the Adding-Doubling code (AD). 6s = 60° and reflectances are plotted as

functions of the scattering angle 0° (forward) and 180° (backward).

matrix in Legendre polynomials and to the number of integration points used in
the Adding-Doubling code.

We recall that in this subsection, we have only shown comparisons on polar-
ized reflectances obtained for 1-D homogeneous cloud. Examples of comparisons
for total reflectances obtained for 3-D inhomogeneous cloud are presented in sub-
section 3.4.2.

3.3.2 Reflectances of homogeneous clouds as a function
of the optical thickness

Fig. 3.7 presents, for homogeneous cirrus clouds, total and polarized reflectances
as a function of optical thickness for a sun zenith angle of 60°, a zenith observation
angle of 0° (a,b) and of 60° (c,d) and an azimuth angle of 0° (backward scatter-
ing direction). Under the homogeneous assumption (solid line), we recognize the
well-known nonlinear relationship between reflectances and optical thickness. This
nonlinear relationship exists for both total and polarized reflectances but, as al-
ready pointed out, we note that polarized reflectances saturate for relatively small
optical thickness of about 3—4. This is because the final polarization state comes
from the first few orders of scattering. This particularity is fundamental and makes
the polarized measurements very useful in retrieving information on cloud parti-
cle shapes or size. Indeed, as polarized reflectances are less sensitive to multiple
scattering, information contained in the measurement comes essentially from the
particles’ scattering properties via their phase matrix.

3.4 Total and polarized reflectances in the case
of 3-D cloud fields

3.4.1 Description of the 3-D cloud fields used

In this subsection, we present computations of total and polarized reflectances ob-
tained from 3-D clouds that are an inhomogeneous cirrus and a stratocumulus
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Fig. 3.7. Total (a,c) and polarized (b,d) reflectances in function of optical thickness
computed for homogeneous cirrus clouds (solid line) and for the heterogeneous cirrus
cloud presented in Fig. 3.8 (dot) with 7 = 2. An IHM phase matrix is used. The sun
zenith angle 60°, the azimuth observation angle is 0° and the zenith observation angle is
0° (a, b) or 60° (c,d).

cloud. The clouds were simulated with a stochastic cloud model called ‘3DCloud’
and described in Szczap (2009) and Cornet et al. (2009). The simulations are done
at a wavelength of 865 nm. The two cloud fields are composed of 128 x 128 pixels.
The optical thickness of the cirrus cloud is a gamma PDF with a mean of 2, an
inhomogeneity parameter p of 0.6, a fractional cloud cover of 1 and a wind shear
of 2ms~!. The inhomogeneity parameter is defined as the standard deviation of
the 2-D horizontal optical depth fields divided by its mean (Szczap et al., 2000).
The optical thickness of the cirrus cloud integrated along the z-axis is presented
in Fig. 3.8(a) and the integration on the extinction coefficient along the y-axis in
Fig. 3.8(b). The other cloud is a stratocumulus cloud with a mean optical thick-
ness of 10, an inhomogeneity parameter of 0.7 and a fractional cloud cover of 1.
It is presented in Fig. 3.8(c) and (d). As in subsection 3.3.1, the cirrus cloud mi-
crophysics is modelized by an IHM particles phase function computed with a real
part of the refractive index set to 1.304. The stratocumulus cloud microphysics is
modeled with spherical particles with a log-normal size distribution, an effective
radius of 10 um and an effective variance of 0.02. The real part of the refractive
index is 1.33.
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Fig. 3.8. Synthetic clouds used for the radiative transfer. (a) and (b) cirrus cloud with a
mean optical thickness of 2. (c) and (d) stratocumulus cloud with a mean optical thickness
of 10. Optical thickness integrated along the z-axis (a) and (c), and along the y-axis (b)
and (d). (a) and (b) are from Cornet et al. (2009). [For the color version of this figure,
see the color section.]

3.4.2 Comparisons with SHDOM and time considerations

In this subsection, we show comparisons obtained for the 3-D cirrus cloud presented
in Fig. 3.8 with another widely used 3-D radiative transfer model, the Spherical
Harmonics Discrete Ordinate Method (SHDOM, (Evans, 1998)). Radiative transfer
calculations were performed for a solar zenith angle of 60. The medium is described
by 128 x 128 x 44 pixels with a size of 78 m along the x and y-axis. Along the z-
axis, the pixel size is 78 m inside the cloud and 2 km outside the cloud to account
for molecular scattering between 0 and 20km. For all the calculations, the wave-
length is 865 nm. We assume a black underlying surface. The results are presented
in Fig. 3.9 for a zenith observation angle of 30° and a relative azimuth angle of 180°
(forward direction). The simulations were performed with 108 photons divided in
20 batches which makes it possible to compute the statistical error of the Monte—
Carlo calculations (Evans and Marshak, 2005). For this simulation, the absolute
Monte—Carlo statistical errors for the total and polarized normalized reflectances
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Fig. 3.9. Total (a) and polarized (b) reflectances at 78 m resolution for 6s; = 60°;
6, = 30 and ¢, = 180° (forward direction) for the cirrus cloud presented in Fig. (3.8).
The wavelength is 865 nm. The mean values are indicated above the figures for the 3-D
cirrus cloud (hete) and for the homogeneous cloud (homo). (¢) and (d) comparisons with
SHDOM for the total reflectance value: (c) horizontal cut along the line 75 corresponding
to about 6 km and (d) scatterplot between SHDOM and 3DMCPOL reflectances for the
entire field presented in (a). Error bars correspond to the statistical errors of Monte—Carlo
simulations. (a) and (b) are from Cornet et al. (2009). [For the color version of this figure,
see the color section.]

are respectively +1 and 40.12 which corresponds to relative statistical errors re-
spectively below 5% and below 10% for the majority of the pixels. When averaging
on the entire field, we obtain respectively statistical errors of 1.5% and 3%. Com-
parisons with SHDOM are presented in Fig. 3.9(c) and (d) where a horizontal cut
along the line 75 and a scatterplot of the entire field are shown. We can see that
Monte—Carlo and SHDOM results are in very good agreement with on average an
absolute error of 0.5 corresponding to a relative error of 1.5%.

One of the main drawbacks of Monte—Carlo calculations concerns the large
computer time which is required to reach a good accuracy. In our case, because
we take into account the state of polarization of the light and all the computation
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required for it, such as the determination of the scattering azimuth angle and
the rotation of the Stokes vector, the simulations are slowed down by a factor of
almost 2 compared to a model using the scalar approach. One way to reduce this
computing time is to not compute the four elements of the Stokes vector when
possible. Typically, atmospheric processes or interactions lead to linearly polarized
light; therefore the fourth coefficient (V') of the Stokes vector is very small and
can be neglected. Consequently we can compute just the first three elements of the
Stokes vector which reduces the computation time by a factor of 1.2. This factor
becomes 1.5 if we compute only the first two elements when calculations take place
in the solar plane.

In subsection 3.3.1, we showed that the polarized Monte—Carlo model gives
accurate results for polarized reflectances over different types of homogeneous cloud
cases. In this section, we showed that the agreement is good for total reflectances
over a 3-D cloud scene. Therefore, we can have confidence in results obtained for
both total and polarized reflectances above 3-D scenes.

3.4.3 High spatial resolution (80 m): illumination and shadowing effects

Cloud heterogeneity effects can often be separated into two according to the scale
being studied. In this subsection, we present results obtained for a high resolu-
tion of 80 m, which is close to what can be obtained by airborne measurements.
Total and polarized reflectances are respectively presented in Fig. 3.9(a) and (b).
We see that the two reflectances fields reproduce well the variability of the optical
thickness fields. However, one can be surprised by the values reached by polarized
reflectances. Indeed, as we saw in Fig. 3.7, in the case of homogeneous cloud, po-
larized signal saturates for optical thickness of about 3—-4. This appears no more
true in the case of variable 3-D cloud fields as it is confirmed in Fig. 3.7(b) and (d)
where are plotted the reflectances obtained for this 3-D cloud as a function of the
optical thickness. Both total and polarized 3-D reflectances are dispersed around
the 1-D relationship and one can notice that the dispersion is more important for
a zenith observation angle of 60° than for a zenith angle of 0°. Two effects can
explained this dispersion. One is a well-known 3D effects already observed at high
resolution on total reflectances (Varnai and Davies, 1999; Varnai and Marshak,
2002) and due to illumination and shadowing effects. This effect appears whatever
the observation angle. It explained that, for a given optical thickness, reflectance
values can be below or above the 1-D curve, which implies one part of the observed
dispersion. For a zenith observation angle of 60°, another effect appears and comes
from the fact that reflectances are the result of energy coming along the oblique
path defined by the observation angle whereas the optical thickness is integrated
along the vertical axis (Varnai and Davies, 1999). Regarding these results, we can
conclude that at high resolution polarized reflectances are affected by 3-D effects in
the same way as total reflectances. People need therefore to be cautious when using
polarized measurements above variable cloud scenes because, in addition to erro-
neous retrieved values, illumination effects can lead to situations with no solution
in the framework of homogeneous cloud layers. To better understand illumination
and shadowing effects, one can refer to Cornet et al. (2009) where reflectances
simulated from a step cloud are analyzed.
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3.4.4 Medium spatial resolution (10 km):
sub-pixel heterogeneity effects

To assess the sub-pixel heterogeneity effects at a larger resolution, we averaged
spatially the total and polarized reflectance fields to obtain mean values over a
10 x 10 km pixel size, which is close to the POLDER, pixel resolution. This spatial
average of the total and polarized reflectances is plotted in Fig. 3.10 (dashed lines)
for the 3-D cirrus cloud presented in Figs 3.8(a) and (b) and in Fig. 3.11 (dashed
lines) for the 3-D stratocumulus cloud presented in Figs 3.8(c) and (d). In addition,
we report also in these figures the reflectance obtained from a 1-D model, which is
usually used in classical retrieval. We assume the same microphysical model and
the averaged optical thickness over the 3-D domain. The cirrus cloud microphysics
is thus represented by the IHM model with an optical thickness of 2 and the stra-
tocumulus cloud by a log-normal distribution with r, = 10 um and v, = 0.02,
and an optical thickness of 10. Reflectances values are plotted as a function of the
scattering angle, which allow us to obtain the characteristic angular signature of
water clouds with the cloudbow near 140° and all the supernumary bows observ-
able between 145° and 165°. Error bars corresponding to the statistical errors of
the Monte-Carlo simulations are also plotted, which allows us to be sure that the
deviation observed between 3-D and 1-D are real and outside the statistical noise
of the computation. In the case of the polarized reflectances, we computed them
from AQ and AU using:

_1QIAQ + [U]AU
. .

P

AL (3.27)

The non-linearity of reflectances as a function of the optical thickness implies
the so-called plane-parallel bias (Fig. 3.7) (Cahalan et al., 1994), which means
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Fig. 3.10. Total (a) and polarized (b) reflectances for 6, = 60° as a function of the
scattering angles (© = 180° corresponding to backward scattering). Solid lines are for
a homogeneous cirrus cloud of optical thickness 2 and dashed lines for the spatial mean
reflectance values for the cirrus cloud presented in Fig. 3.8. Error bars corresponds to the
statistical error of Monte—Carlo computations. Modified from Cornet et al. (2009). [For
the color version of this figure, see the color section.]
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that the 3-D mean total reflectances are smaller than the corresponding 1-D ho-
mogeneous reflectances in the two cases (Fig. 3.10(a) and Fig. 3.11(a)) for all the
scattering angles. Concerning the cirrus cloud, the relative differences for total re-
flectances are between 0 and —8% and tend to decrease with the scattering angle.
In Fig. 3.10(b), we note that this overestimation of reflectances under the 1D as-
sumption exists also for the polarized reflectances of the cirrus cloud (Fig. 3.10(b))
with relative differences ranging from 7% to 8% whatever the viewing direction.
Concerning the water cloud, the relative differences range between —2% and —14%
for the total reflectances and in contrast to the cirrus cloud, overestimation of polar-
ized reflectances under the homogeneous assumption does not exist (Fig. 3.11(b)).
However, we can notice that the statistical error is important and does not allow
us to be sure of the result. This is due to the strong forward peak of the Mie phase
function which leads to very noisy reflectances fields. This can be avoided using
a truncated phase function. Studies need therefore to be pursued to confirm this
result and to understand why the plane-parallel bias appears only for the cirrus
case. But, as polarized reflectances saturate quite quickly with optical thickness,
this may be due to the difference in optical thickness values which are larger for
the stratocumulus cloud.

Nevertheless, this result could be very interesting for cloud water microphysical
retrieval because it tends to show that the sub-pixel optical thickness heterogeneity
does not modify the microphysical signature of liquid water cloud. The retrieval of
cloud size particles based on the angular signature (Bréon and Goloub, 198; Bréon
and Doutriaux-Boucher, 2005) would thus give correct results even in the presence
of variable cloud, as long as they have sufficient optical thickness. However, as
macrophysical heterogeneity is often linked with microphysical heterogeneity, other
studies are necessary to get a complete understanding of the heterogeneity effect
on the polarized signal.
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Fig. 3.11. Comparisons between 1-D and 3-D computations of total (a) and polarized
reflectances (b) as a function of the scattering angles for the stratocumulus cloud presented
in Fig. 3.8(c) and (d). Error bars correspond to the statistical error of Monte—Carlo
computations.



3 Polarized Monte—Carlo RTM to assess radiative 3D effects 101
3.5 Conclusions and perspectives

As polarized measurements are very suitable for obtaining properties of atmo-
spheric components and as several instruments are currently developed to make
these type of measurements, it becomes very important to have realistic atmo-
spheric radiative transfer model handling the polarization and able to reproduce
all the complexity of the atmosphere and especially of cloudy atmosphere. In Cornet
et al. (2009), we presented a model based on Monte-Carlo methods, which allows
us to simulate total and polarized reflectances above tri-dimensional medium. In
this chapter, we recall the general scheme of this Monte-Carlo model and espe-
cially the particularities introduced by the account of the polarization. This model
is tested without polarization for 3-D cases by comparing results with SHDOM
simulations and is successfully validated with polarization for homogeneous cloud
cases by comparing it with an Adding-Doubling model. In order to have a com-
plete model, it remains to include, in the near future, the surface polarization in
the calculation.

In this chapter, examples of 3-D radiative transfer inside clouds are presented.
The clouds were created with a stochastic cloud model (Szczap, 2009). Total and
polarized reflectances of two clouds, a cirrus cloud and a water cloud, were com-
puted and analyzed. The results show that polarized reflectances can be sensitive
to 3-D effects in the same way as total reflectances.

For the cirrus cloud, at high resolution and with an oblique sun illumination, we
observed 3-D effects such as illumination and shadowing effects which respectively
enhance or reduce the reflectances. Values higher than those predicted by the ho-
mogeneous assumption can thus be reached. In addition, at a medium resolution
of 10km, total as well as polarized reflectances of the cirrus cloud are overesti-
mated under the homogeneous assumption because of the so-called plane-parallel
bias. Concerning the water cloud with a mean optical thickness of 10, in contrast,
and surprisingly, the plane-parallel bias does not appear for polarized reflectances.
This may be due to the larger optical thicknesses used, given that the polarized
reflectances saturate for quite small values of it. The average polarized reflectance
is thus equal to the value obtained with the homogeneous model. This can be an
important result for issues concerning cloud size particles retrieval because, if it
is confirmed, that means that, given a sufficient resolution, microphysics retrieval
from multi-viewing measurements might not be influenced by the sub-pixel optical
thickness heterogeneity.

In this chapter, only two examples were studied; the work needs to be pursued
with other kind of clouds, including fractional cloud cover and clouds with micro-
physical heterogeneity. The model used in this chapter is an essential tool to get a
better knowledge of the limitation of using the 1-D assumption to infer cloud micro-
physics from multi-viewing polarized measurements and to exploit measurements
of polarized reflectances that will be acquired by the future sensors.
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4 Linearization of radiative transfer in spherical
geometry: an application of the forward-adjoint
perturbation theory

Holger H. Walter and Jochen Landgraf

The remote sensing of atmospheric constituents with limb-viewing satellite instru-
ments or with nadir viewing instruments at large solar zenith angles requires a for-
ward model that simulates the backscattered radiance taking the spherical shape
of the Earth atmosphere into account. In addition, many retrieval schemes are
based on a linearization of such a forward model. Whenever it is important to take
multiple scattering into account (e.g. due to light scattering air molecules, aerosols
and clouds) the linearization of the measurement simulation with respect to the
parameters to be retrieved is not trivial. Here, the forward-adjoint perturbation
theory provides a general method to linearize radiative transfer. In the first part
of this review chapter we provide the theoretical background of the linearization
approach for a radiative transfer problem in a spherical model atmosphere which
is illuminated by a collimated solar beam. Using an operator formulation of ra-
diative transfer allows one to express the linearization approach in a universally
valid notation. Depending on the particular formulation of the radiative transfer
problem the perturbation of internal sources has to be taken into account in addi-
tion. The needed adjoint calculation corresponds to a so-called searchlight problem
that requires the use of three-dimensional radiative transfer simulations in gen-
eral. Subsequently we show how symmetries of the forward radiation field and a
proper choice of the radiation sources can be used to simplify the needed adjoint
calculations substantially.

As an example we present the linearization of a numerical radiative transfer
model for a spherical shell atmosphere in the second part of this article. It al-
lows the interpretation of limb measurements in the ultraviolet and visible spectral
range. Here, the scalar radiative transfer problem is solved in its forward and ad-
joint formulation. Subsequently, we apply the perturbation theory approach in the
calculation of the derivatives of the radiance at the top of the atmosphere with re-
spect to the absorption properties of a trace gas species in the case of a limb-viewing
satellite instrument.

4.1 Introduction

Current and future satellite instruments, which observe the Earth’s atmosphere in
limb viewing geometry in the ultraviolet (UV) and visible (VIS) spectral range,
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provide information about the distribution of atmospheric trace constituents with
high vertical resolution. For example the Scanning Imaging Absorption Spectrom-
eter for Atmospheric Chartography (SCTAMACHY) [5], launched in 2002 on board
of ESA’s ENVISAT satellite, measures backscattered limb radiances in the wave-
length range from 240 to 2380 nm. In limb-viewing geometry, SCTAMACHY verti-
cally scans the atmosphere from ground level up to an altitude of approximately
100km in steps of 3km at tangent height. This enables the retrieval of a variety
of atmospheric trace constituents in high vertical resolution. Furthermore, SCIA-
MACHY offers the unique possibility of observing an air volume in nadir as well
as in limb-viewing geometry. It is expected that the combination of both viewing
geometries will facilitate a higher accuracy in the retrieval of atmospheric trace
gas profiles in the troposphere and stratosphere [56]. In 2001 the Canadian Optical
Spectrograph and Infrared Imager System (OSIRIS) [38] was launched on board
the Odin satellite. The instrument observes the backscattered radiances in limb
viewing geometry and comprises a UV /VIS spectrograph covering the wavelength
range from 280 to 800 nm and three 30 nm wide infrared (IR) channels at 1260 nm,
1270 nm and 1280 nm. The vertical distribution of e.g. O3, NO5, OCIO, BrO and
aerosols can be retrieved from OSIRIS limb measurements. Also, the Ozone Map-
ping and Profiler Suite (OMPS) [14], to be launched on NPOESS in 2010 by the
United States of America, is dedicated to monitoring the global ozone distribution
from space. This instrument consists of a nadir sensor with a wide field-of-view
telescope and a limb sensor. The nadir spectrometer observes the backscattered ra-
diance between 300 and 380 nm, whereas the limb sensor measures the along-track
limb-scattered solar radiance in the spectral range from 290 to 1000 nm.

In order to retrieve an atmospheric parameter x from such limb observations
with standard least squares methods [39, 41, 51], one has to simulate both the
radiance ITO4 at the top of the model atmosphere (TOA) and its derivative with
respect to the parameter to be retrieved. This corresponds to a linearization of
the radiative transfer problem, given by a Taylor expansion around a first-guess
parameter xg:

ITOA

0
TOA _ 7TOA

(z0)Az + O(Az ?). (4.1)

Here, O(Ax?) represents higher-order terms in Ax = x — .

For the simulation of limb radiance measurements in the UV and VIS spectral
range, radiative transfer models, which take the multiple scattering of radiation in
a spherical model atmosphere into account, are required. In general, such spher-
ical radiative transfer models are complex and computationally highly expensive.
The Monte Carlo technique [29] provides a straightforward approach to solving
this type of radiative transfer problem (see e.g. [1,11, 36,40, 50]). However, due
to its statistical nature, Monte Carlo models require a considerable computational
effort in order to achieve a reasonable accuracy. Therefore alternative techniques
have been developed in order to solve the spherical radiative transfer equation
in a more efficient manner. [46] gives a general overview about different solution
techniques in curved media. Here, applications such as radiative transfer in stellar
atmospheres are discussed. For the simulation of radiative transfer in a spheri-
cal planetary atmosphere, [49] and [48] suggested an efficient solution approach,
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in which the first-order scattering is calculated exactly, whereas the higher-order
scattering is approximated by the use of the first two terms of a Legendre expan-
sion of the scattering phase function only. [47] applied this method to determine
the source function and brightness of a spherical planetary atmosphere. Further-
more, several radiative transfer approaches have been suggested [2,3,12,24] for the
simulation of the azimuthally-averaged radiation field in a spherical atmosphere.
However, remote sensing in limb-viewing geometry requires the simulation of the
azimuthal dependence of the radiation field. This angular dependence is fully taken
into account by the model of [18], which employs a Gauss—Seidel iteration scheme
to solve the integral form of the radiative transfer equation. Here, the assumption
of a constant ratio of single scattering to multiple scattering along a conical bound-
ary facilitates the efficient calculation of the multiple-scattering source function in
spherical geometry. However, due to this approximation the radiation field can only
be calculated in cases in which the single-scattering terms are not zero. [42] pre-
sented an alternative radiative transfer model which is based on a Picard iteration
scheme. A radiation field, which is calculated in pseudo-spherical approximation,
serves as an initial guess in order to integrate the radiative transfer equation along
discrete lines in spherical geometry in subsequent iterations. Corresponding meth-
ods have been developed independently in order to solve the multiple scattering
problem in spherical geometry [13,31,59]. [27] shows a quantitative comparison
of currently available radiative transfer models, suited for the simulation of limb
radiance measurements.

Minor attention has been given to the linearization of spherical radiative trans-
fer. The linearization of the spherical radiative transfer models has been performed
either by the finite difference method or by approximate methods so far. In the
finite difference method (see e.g. [31]) two radiative transfer calculations are uti-
lized to approximate the derivative of IT9%: one for an unperturbed atmosphere
and one for an atmosphere for which the desired atmospheric parameter x has been
perturbed by a small amount. For trace gas profile retrieval such an approach leads
to many repetitive computations, as for every perturbation of the trace gas con-
centration at a different altitude a new radiative transfer calculation is required.
The combination of this method with the complex spherical radiative transfer mod-
els in an iterative retrieval approach requires considerable computational resources.
Therefore the use of a (quasi-)analytical linearization of spherical radiative transfer
is desirable. The pseudo-spherical approximation, for example, found a wide ap-
plication in the remote sensing of atmospheric parameters (compare e.g. [43,44]).
Furthermore, [19] has presented a linearized spherical radiative transfer model, tak-
ing two orders of scattering into account, which is suited for a concise trace gas
profile retrieval in atmospheric scenarios with a low fraction of multiple scattered
radiation. Recently, [40] presented a linearized vector radiative transfer model for
a spherically symmetrical atmosphere, which is based on the Monte Carlo estima-
tion technique [29]. Therein the derivative of the radiance at TOA with respect to
a trace gas number density is calculated using the same Markov chain as for the
calculation of the radiance itself, which makes the model very efficient. Details may
be found in [29] and [40].

Alternatively the linearization of a radiative transfer problem can be achieved
using the forward-adjoint perturbation theory, which is known from neutron trans-
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port theory [4]. This technique can be used for the linearization with respect to
absorption and scattering properties of the atmosphere. In addition, the approach
is independent of the solution method of the radiative transfer equation and there-
fore any radiative transfer model, which simulates the internal forward and ad-
joint radiation field, can be linearized by means of the method presented here.
Moreover, the perturbation theory can be applied in a straightforward manner
to radiative transfer problems, which take the polarization of radiation into ac-
count. The perturbation theory approach was firstly used by [28], who applied it
to plane-parallel atmospheric radiative transfer. A great variety of different appli-
cations of the forward-adjoint perturbation theory in plane-parallel geometry has
been developed (e.g. [6], [53-55], [45], [23], [17] and [16]). Due to the fact that the
perturbation theory approach can be formulated for an arbitrary geometry [4], it
can be applied also to the full spherical radiative transfer problem in a straight-
forward manner. This was demonstrated by [57] and [59]. In this review article we
give a detailed outline how to employ the forward-adjoint perturbation theory in
spherical geometry.

In Section 4.2 the forward and the adjoint formulations of radiative transfer
in spherical geometry are introduced. Both formulations of radiative transfer are
needed in subsection 4.2.3 to derive an analytical linearization of the spherical
radiative transfer problem. Any spherical radiative transfer model, which simulates
the internal forward and adjoint radiation field, can be linearized by means of the
approach presented here. Section 4.3 discusses symmetries which can be used to
simplify the calculation of the forward and adjoint radiation field. Finally, in Section
4.4 the linearization with respect to the amount of trace gases at different altitudes
is demonstrated for a simplified spherical radiative transfer problem, which yields
a radiation field that does not depend on the global azimuth.

4.2 Forward-adjoint perturbation theory
in spherical geometry

4.2.1 The forward radiative transfer equation

We consider a planetary atmosphere that is illuminated symmetrically by parallel
solar beams in downward direction of the global zenith Zg (see Fig. 4.1). As we are
interested in the ultraviolet and visible part of the solar spectrum, thermal emission
will not be taken into account in the following description of the radiative transfer
processes. Any refractional effects of radiation are neglected, therefore it can be
assumed that light travels along straight lines. Because a scalar approximation of
radiative transfer simplifies the notation of the associated equations substantially,
polarization is not taken into account in the remainder. Depending on atmospheric
composition, observation geometry and wavelength, this approximation, however,
can lead to errors of up to 10% in the simulated radiance [32]. For these cases the
scalar radiative transfer equation and also the corresponding expressions for the
forward-adjoint perturbation theory can be extended to a vector formulation in a
straightforward manner, as is shown by [15].

Basically, the radiative transfer equation is a detailed balance equation which
locally describes the change of radiation in a certain direction due to sinks and
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sources in the atmosphere. The loss of radiation is caused by extinction processes
as a result of absorption and scattering of photons out of the propagation direction
of the light. Sources of radiation are the scattering of photons from other directions
into the propagation direction, emission sources within the atmosphere and external
radiation sources like the sun. The time-independent, monochromatic radiative
transfer equation for an isotropic medium in local thermodynamic equilibrium can
be written in operator form [6,28] as

LI = S, (4.2)

where I(r, €2) is the spectral radiance at position r in direction © and Sy is the solar
radiation source. The vectors r and €2 constitute the phase space of the radiative
transfer problem. For radiative transfer in spherical geometry it is convenient to
represent the position r in the atmosphere by spherical coordinates, i.e. the radius
r, the global zenith angle ¥ and the global azimuth angle @. The transport operator
L is given by

L = /dQ{ [js +ﬁe(r)] (R —-Q) - BZ—S:)P@, Q,0)}, (4.3)
4
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Fig. 4.1. Schematic overview of the geometry used for the description of radiative transfer
in a spherical atmosphere. In a spherical coordinate system the radiation field is a function
of the three spatial coordinates r, ¥, ® and the two directional coordinates # and ¢. The
incident solar radiation illuminates the upper hemisphere of the planet. Here, the solar
zenith angle 0y is defined locally at the top of the model atmosphere with respect to the
inner normal.
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where d/ds is the derivative along the pathlength s in direction € and may be also
expressed as - V. The directional vector Q = (8, ) is specified by the local zenith
angle 6, defined with respect to the outer normal, and the local azimuth angle .
Further dQ) = sindf d. § is the Dirac-delta function with

50— 0) 5(p — ). (4.4)

o2 -Q) = sin 0
In the transport operator (4.3) surface reflection has been neglected. Such effects,
however, may be included in a straightforward manner, as shown by [22]. Finally, 5.
is an extinction coefficient, (3, is a scattering coefficient and P denotes the scattering
phase function. In general all three quantities vary depending on position.

The solar radiation source Sy, which illuminates the upper hemisphere of the
Earth’s atmosphere (see Fig. 4.1), may be expressed as

S()(I‘7 Q) = /J,QF()é(’I“ — TTOA)(S(Q — Qo)@ (p,o) . (45)

Here, Fj is the extraterrestrial flux, rroa is the distance from the center of the
Earth to the top of the model atmosphere and Q¢ = (g, ¢o) describes the direction
of the solar beam. Here, 0y is the local solar zenith angle and ¢( the local solar
azimuth angle. Further, 6, is defined with respect to the inner normal, in order to
ensure comparability with common plane-parallel radiative transfer theory. g is the
cosine of the local solar zenith angle 6. The Heaviside step function © (uo) in (4.5)
accomplishes the illumination of only one hemisphere of the Earth’s atmosphere.
The radiation field I is subject to the free surface boundary conditions of no
incoming radiation at the top (TOA) and bottom (BOA) of the atmosphere,

I(rroa,f2) = 0 for —1<pu<0
I(rgoa,?) = 0 for O0<pu<Ll (4.6)

Here, 1 = cos 6.

For a solution of (4.2) three-dimensional radiative transfer calculations are
needed in general. Here, the streaming term in (4.3) can be expanded in spher-
ical coordinates (see e.g. [42] and references therein) which yields

d 0 JrsirMQcosgoi sinfising 0  sinf 9
ds or r ov rsin¥ 0P r 00
_sinfsinpcot¥ 9

" 95 (4.7)
Because of the complex structure of the streaming term, up to now no solution
method other than the Monte Carlo technique [29] has been available to solve
the radiative transfer problem in a three-dimensional inhomogeneous, spherical at-
mosphere. The Monte Carlo technique is with respect to the geometry and the
atmospheric composition the most versatile approach [36,40, 50]. Other solution
methods — as discussed in the introduction — generally make use of different sim-
plifications of the radiative transfer problem.

Once the internal radiance field I(r, §2) has been calculated with the help of a
numerical radiative transfer model, any radiative effect E — in general the observ-
able — might be obtained by an evaluation of the inner product [6, 28]
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E = (R|I), (4.8)

where the inner product describes an integration over the full phase space [4], viz.

(RII) = [ dv [ dQ R(r,Q)I(r,9). (4.9)
/]

Here, dV represents a differential volume element. R is the so-called response func-
tion which is defined by the measurement. In the context of satellite remote sensing,
the radiative effect under investigation is the radiance at the top of the model at-
mosphere in the viewing direction of the instrument, thus F = I(r,, Q,) = [TOA.
Here, Q, = (0y,¢y) describes the viewing direction of the satellite instrument,
where 6, is the viewing zenith angle and ¢, is the viewing azimuth angle, both
defined at the location of the satellite at ry.! For a measurement of ITO* with a
satellite, the appropriate response function is given by the direction of the instru-
ment’s line-of-sight

R(r,Q) = d(r —ry)o(Q2 — ), (4.10)
with
O0(r —ry) =6(r —rToA) %(5(@ -, rsilny'/(s(@ —-P,) (4.11)

in the representation of spherical coordinates.

4.2.2 The adjoint formulation of radiative transfer

The linearization of spherical radiative transfer with the forward-adjoint perturba-
tion theory requires the solution of an adjoint transfer equation in addition. The
adjoint transfer equation corresponds to a backward formulation of radiative trans-
fer in space and can be derived from the forward radiative transfer equation (4.2).
In order to derive the adjoint transfer equation, we refer to the theoretical approach
introduced by [4]. (See also [57] for details.)

The adjoint transfer equation needed for a linearization is given in operator
notation by

L'IT = R, (4.12)

where I denotes the adjoint intensity field, R is the response function from (4.10)
and LT is the transport operator adjoint to the forward transport operator L. The
adjoint transport operator L is defined by the following equation:

(LTI L) = (I|LIL) (4.13)

for two arbitrary intensity fields I; and I5. It can be shown that the adjoint operator
is given by [4]

Here, r, is given by the radius rroa, the global zenith angle ¥, and the global azimuth
angle &,.
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Lt = /dQ{ {—(Z +ﬁe(r)} i(Q-Q) - ﬁi—;ﬂp(r,n,ﬂ) oo (4.14)

4

Thus, in the adjoint problem the sign of the streaming term d/ds is negative and
the directions in the scattering phase function are reversed. Like the forward trans-
port operator, the adjoint transport operator includes all scattering and extinction
processes of the adjoint problem. However, the adjoint operator L also differs from
the forward transport operator L; in other words L is not self-adjoint.

The adjoint intensity IT has to satisfy the boundary conditions of no outgoing
adjoint intensity at the top and the bottom of the atmosphere,

IT(rTOA,Q) =0 for 0<pu<l1
I'(rgoa, Q) = 0 for —1<pu<0. (4.15)

With the help of the resulting adjoint intensity field from (4.12), the radiative effect
E as defined in (4.8) can be expressed in an alternative way [6, 28]:

E = (I'|Sy). (4.16)

This shows that if the satellite response function R acts as an adjoint radiation
source, the resulting adjoint intensity field has a clear physical meaning. Then, If
can be interpreted as the importance [4,26] of scattered photons within the atmo-
sphere for a given measurement. In that way the adjoint field concisely describes
the domain of influence of a satellite observation. Hence, the adjoint problem and
the forward problem become closely related.

In general, the solution of (4.12) also requires three-dimensional radiative trans-
fer calculations. Here, an algorithm might be needed which is independent of the
algorithm to solve the forward radiative transfer problem (4.2). However, due to
the reciprocal nature of light, the adjoint transfer problem can be transformed into
a pseudo-forward problem, which allows one to utilize the same radiative trans-
fer model for the solution of the forward radiative transfer equation (4.2) as well
as for the solution of the adjoint transfer equation (4.12) [4,10]. By exchanging
and reversing the incoming and outgoing direction, the adjoint transport operator
transforms into the forward one. That is, the lightpath can simply be reversed.
This reciprocity principle can be expressed by a symmetry relation for the phase
function [4], viz.

P(I‘,Ql,ﬂg) = P)(I'7 —Qg,—Ql). (417)

All atmospheric scatterers (i.e. molecules, aerosols, liquid water droplets and ice
crystals) fulfill the symmetry relation (4.17).2 Therefore we can substitute the
adjoint intensity field IT by the pseudo-forward intensity field &, which is defined
as

£r,Q) = If(r,—Q). (4.18)

2In cases where the polarization of radiation plays an important role, e.g. for the
description of scattering by ice crystals, the symmetry relation (4.17) can be extended to
a corresponding symmetry relation for the phase matrix. For details, see e.g. [33].
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Then it is possible to write for (4.12) in its pseudo-forward formulation
L = S (4.19)
with L the forward transport operator and
Se(r,2) = R(r, —) (4.20)

as a new radiation source. Subsequently, the pseudo-forward transport equation
(4.19) can be solved with the same radiative transfer model which is employed in
the solution of the forward transport equation. For it only the radiation source has
to be exchanged, viz. S¢ instead of S.

The pseudo-forward formulation (4.19) is also known as the backward formu-
lation of radiative transfer. Here, the satellite instrument is assumed to emit pho-
tons in the viewing direction into the atmosphere. A narrow light beam, which
illuminates the atmosphere, could serve as an example. As a consequence, the
pseudo-forward formulation defines a so-called searchlight problem. In the case of
three-dimensional radiative transfer this results in an adjoint field, which is highly
peaked and concentrated around the satellite’s line-of-sight (see Fig. 4.2, upper
right). The actual shape of this radiation field crucially depends on the absorption
and scattering properties of the atmosphere.

-

Fig. 4.2. Qualitative illustration of the forward radiation field and its importance. The
left upper graph illustrates the diffuse forward radiation field due to the solar illumination
at the top of the atmosphere. The graph in the upper right shows the two-dimensional
section of the pseudo-forward radiation field for a limb-viewing satellite instrument. The
combination of both fields in the lower graph shows where the highest sensitivity with
respect to atmospheric changes exists. Here, the pseudo-forward field has been transformed
in its corresponding adjoint field by a reversal of directions. Additional perturbations of
internal sources and changes in the response function are not shown here, but can be
illustrated in the same manner.




114 Holger H. Walter and Jochen Landgraf

For further details we refer to [4] and [57]. The combination of the forward field
and the adjoint field enables the calculation of a sensitivity of the measurement
with respect to a perturbation of the atmosphere. Such an approach can be used to
linearize any spherical radiative transfer model that calculates the internal forward
and adjoint intensity fields.

4.2.3 Perturbation theory in spherical coordinates

With the solution Iy and Ig of the forward and the adjoint transfer problem for
a given atmospheric state xg, it is possible to determine the impact of a change
Az = x — z on the radiative effect E, (4.8), to first order® by

E(x) = E(x0)+ AE + O(Az?) (4.21)
with
AE = —(I}|ALIy) + (I}|AS) + (AR|I,). (4.22)

Here, O(Ax?) represents second- and higher-order terms. A perturbation of zo by

an amount Az to x = xg + Az causes a change of the transport operator L, of the

source function S and of the response funtion R by AL, AS, and AR, respectively.

The derivation of (4.22) is analogous to that presented by [28], [6,7] and [53-55].
The perturbation AL may be calculated to first order by

AL = LjAx (4.23)

where L is the first derivative of L with respect to the state vector x. Analogous
expressions hold for the perturbation AS and AR with derivatives S and Ry,. This
leads to the first order approximation

AE = —Ax(I}|LyLo) + Az (I} Sh) + Aw(Ry|Io). (4.24)

Finally, a comparison of (4.24) with a corresponding Taylor expansion of the radia-
tive effect E' around x( yields the analytical expressions for the derivatives of F.
Taking into account that the desired radiative effect is the radiance at the top of the
atmosphere in the viewing direction of the satellite instrument, the corresponding
derivatives are given by

8ITOA : ;
5 (x0) = —(Ig|Lolo) + (Ig]Sp) + (Bo|Lo)- (4.25)

If the state vector x represents the number density of an absorbing trace gas in an
atmospheric volume AV the derivative Lj, is given by

L6 = F(r)gabs(r)a (426)

3Higher-order perturbation theory, which might be needed for large perturbations or
in situations where the first-order contribution disappears, generally requires the use of a
Green’s function formalism, which makes its application more complex. For a discussion
of higher-order perturbation theory in radiation transport please see e.g. [8], [52], [21],
and [60].
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with

I(r) =

{1 . reAV (4.27)

0 : rgAV

and o,ps(r) is the absorption cross section of the considered trace gas species.
Therefore the evaluation of (4.25) — in contrast to frequently employed finite dif-
ference schemes — does not depend on the perturbation Ax itself. If S and R are
defined as internal sources, which is the case for example in the pseudo-spherical
approximation [58], their contribution to (4.25) due to a perturbation Az has to
be taken into account. However, if S and R are defined as surface sources, they
do not experience any change due to a perturbation Az within the atmospheric
volume and the last two contributions in (4.25) vanish.

For a qualitative interpretation of (4.25) one can say, that where the importance
and the forward radiation field show high values (see Fig. 4.2), a change of the
atmospheric state vector will have a large effect on the satellite measurement too.
As a consequence the calculated sensitivity in (4.25) will be large. Where either one
of the fields or both show low values, also the sensitivity with respect to changes in
the trace gas number density will be small. In case of internal sources this reasoning
can be adopted in straightforward manner.

Equation (4.25) allows one to efficiently calculate derivatives for different per-
turbations of the atmosphere. Two radiative transfer calculations are sufficient for
the complete determination of the Jacobian, because the forward and the adjoint
intensity field in (4.25) stay the same for all perturbations and do not need to be re-
calculated. The perturbations only affect the perturbed transport operator AL, the
radiation source S and the response function R, and in turn the calculation of all
required derivatives is reduced to the repeated evaluation of the inner products in
(4.25). Compared to the forward and the adjoint radiative transfer simulations, the
computational costs for the numerical evaluation of the inner product are very low.
This results in an efficient linearization approach for spherical radiative transfer
compared to, for example, a finite difference scheme.

The approach presented in this subsection can be used to linearize any spherical
radiative transfer model that calculates the internal forward and adjoint intensity
fields. It is independent of the specific solution method and contains no further ap-
proximations. Further details on the perturbation theory approach may be found
in [28], [4], [6,7], [54], [23], [58], [57] and [59]. Equation (4.25) provides the lineariza-
tion of a spherical radiative transfer model with respect to a trace gas density in its
most general form. Depending on the formulation of the radiative transfer problem
further simplifications are possible. This will be the subject of the following section.

4.3 Symmetry properties

Symmetry properties of a model atmosphere combined with symmetries of the
external illumination may ease the solution of a radiative transfer problem signif-
icantly. For instance, a common assumption in spherical radiative transfer is to
consider a model atmosphere which consists of homogeneous spherical shells. Fur-
thermore, the solar source Sy in (4.5) shows an axial symmetry with respect to the
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global zenith. It is due to both symmetries that the forward radiation field I in such
a case does not depend on the global azimuth angle @ [25,48]. Another well-known
example with a high degree of symmetry is the plane-parallel radiative transfer
problem assuming horizontally homogeneous layers with a uniform illumination at
the top of the model atmosphere. Again, it is due to the symmetry of the model
atmosphere and the symmetry of the radiation source that the forward radiation
field shows a dependence only on height and on the direction of the radiation. Thus,
the calculation of the forward radiation field is facilitated in both cases by virtue of
the imposed symmetry relations. However, these simplifications cannot be adopted
in a straight-forward manner in the calculation of the adjoint or pseudoforward ra-
diation field due to the fundamental difference between the solar source Sy and the
response function R. In general, the response function has fewer symmetries and, in
the case of the response function from (4.10), the full three-dimensional searchlight
problem has to be solved, even for plane-parallel radiative transfer. Nevertheless,
the symmetries of a radiative transfer problem can be used in a different manner
in order to simplify the formulation of the adjoint transfer problem. Here, we make
use of the fact that the response function is not uniquely determined if the forward
radiation field, as depicted above, is subject to symmetry properties.

For example, for a spherical shell atmosphere that is illuminated by a collimated
solar beam the resulting radiation field is symmetric around the global zenith and
therefore becomes independent from the global azimuth angle . In such a man-
ner the three-dimensional radiative transfer equation reduces to a two-dimensional
problem in space and the spatial dependence of the radiation field can be described
by the radius r and the global zenith angle ¥ only. This eases the solution of the
radiative transfer equation significantly. In turn, the original response function R
from (4.10) as well as its integration over the redundant variables

1
R0,9) = 5 / dBR(r, ¥, , ()
iy

1
= ———0(r— 0¥ —W,)o(22 — € 4.28
27TT2 Sinw (T‘ TTOA) ( ) ( ) ( )
describe the same radiative effect E. Thus, in contrast to (4.8), the radiative effect
FE might be calculated via

E = (R*|I)

_ / v / i R (r, 0, Q) I(r, ¥, Q). (4.29)
|4 4

The equivalent response function R* represents, in comparison to the response
function R from (4.10), an adjoint source which illuminates the top of the model
atmosphere on a circle centered around the global zenith. This, in turn, introduces
symmetries into the adjoint formulation analogous to those of the forward formu-
lation. Therefore it suffices to perform adjoint and hence pseudo-forward calcula-
tions which obey the same simplified dependencies as the forward calculation. This
corresponds to a reduction in dimensionality. Thus, R* used as a pseudo-forward
source eases significantly the model calculations in the pseudo-forward formulation
of radiative transfer, (4.19). Similar, in the case of plane-parallel radiative trans-
fer, the associated pseudo-forward or searchlight problem may be replaced by a
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corresponding radiative transfer problem with uniform illumination at the top of
the model atmosphere. This leads to a concise formulation of the forward-adjoint
perturbation theory in plane-parallel geometry [6,23].

Generally speaking, any symmetry of the forward radiative transfer problem can
be mirrored to the adjoint formulation using the concept of an equivalent response
function. This concept will be of use in the following section, in order to investigate
a radiative transfer problem in simplified spherical geometry.

4.4 Linearization of a radiative transfer model for a
spherical shell atmosphere by the forward-adjoint
perturbation theory

In this section, we develop a numerical radiative transfer model for the interpreta-
tion of limb measurements in the ultraviolet and visible spectral range. We apply
the method as presented in Sections 4.2 and 4.3 to linearize a multiple-scattering
radiative transfer problem for a spherical shell atmosphere [1], which is illuminated
by a collimated solar beam. There is no restriction with respect to solar or viewing
geometries, which makes this approach highly versatile. To solve the correspond-
ing radiative transfer equation one can consider its integrated form, which serves
as a starting point for several iterative solution approaches [13,18,42,59]. In the
following the numerical solution of the forward and the adjoint radiative transfer
equation is achieved by a Picard iteration scheme [42]. We compare the forward
simulation with Monte Carlo reference calculations for different viewing scenarios.
To verify the adjoint model we compare forward and adjoint simulations using the
reciprocity principle. Subsequently, we apply the perturbation theory approach to
calculate the derivatives of the radiance at the top of the atmosphere with respect
to the absorption properties of a trace gas species in the case of a limb-viewing
satellite instrument. The calculated derivatives are verified with finite difference
calculations.

As the planetary atmosphere is approximated by homogeneous spherical shells,
horizontal inhomogeneities in the optical parameters of the model atmosphere — like
horizontally changing trace gas concentrations, clouds or a varying surface albedo
— cannot be taken into account in the simulations. An estimation of the errors
in the calculation of the radiation field due to neglecting these inhomogeneities is
discussed by [35]. Therein also a parameterization to correct for the effects of a
horizontally varying surface albedo for spherical shell radiative transfer models has
been developed. For the retrieval of stratospheric compounds using limb measure-
ments in the ultraviolet spectral range only, the effects of a varying surface albedo
are small, and radiative transfer calculations for a spherical shell atmosphere should
be sufficient in general.
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4.4.1 Solution of the radiative transfer equation
by a Picard iteration method

4.4.1.1 The forward radiative transfer model

In the following we describe a numerical solution of the spherical radiative transfer
equation based on a Picard iteration method. Here we follow the outline given
by [13].

In order to solve the radiative transfer equation (4.2) including its boundary
conditions (4.6) it is convenient to shift the solar source Sy into the boundary
conditions, which yields the homogeneous ordinary differential equation (ODE)

LI = 0, (4.30)
with

I(rroa, ) = Fy 6(Q2 — Qo) for —1<pu<0
I(rBOA; Q) =0 for 0 < w< 1. (431)

Note that the cosine factor ug in Sy no longer occurs in the corresponding boundary
condition, which can be explained by a change of the volume source Sy into a
surface source, according to the principle of general reciprocity [9]. A detailed
derivation of the boundary conditions (4.31) is given in Appendix A. After splitting
the intensity field I in its direct and diffuse components Ig;, and Ig;g, respectively,
the homogeneous ODE (4.30) can be integrated formally along a characteristic
line, which is given by the straight line between the point r; and a second point in
direction €. This provides the direct component

Iair(r1,Q2) = I(rroa, )Ty, a(stoa), (4.32)

with the transmission function

Trals) = o (- [ 8. (433)

along a characteristic line through point r in direction 2. Here, s denotes the
pathlength along the line with respect to point r. Hence, stoa in (4.32) represents
the full pathlength from point r; till the upper model boundary. Equation (4.32),
together with the boundary condition (4.31), allows the calculation of the direct
component Ig; in a straightforward manner.

The diffuse component can be expressed by

Liig(r1, Q) = Igg(r, )T, o(s2)
/ ds'Ty, (8" ) [Jmse(r(s'), Q) + Jssc(r(s"), 2)].  (4.34)

Here, sy is the pathlength between the points r; and point ro. The multiple
and the single scattering source function Jysc and Jgc, respectively, in (4.34) are
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given by
Jmse(r(5), Q) = %—S:) / dQP(r, Q, Q) Lyg (r, Q), (4.35)
47
Juse(r(s), Q) = BZ—E:)P(T,QO,Q)Idir(r, Q). (4.36)

In contrast to the direct component, the diffuse intensity field from (4.34) has to
be solved with a numerical radiative transfer model and needs therefore further
discussion. Equation (4.34) represents an integral equation for the diffuse intensity
field, which can be solved iteratively using the integrations of a representive set of
characteristic lines. For the full three-dimensional radiative transfer problem with-
out any symmetry properties, the required number of characteristic lines is large,
which hampers any numerical implementation. However, the azimuthal symmetry
for the radiative transfer problem at hand simplifies the numerical solution signif-
icantly. The intensities at point r; and r in (4.34) can be identified with those in
the @ = 0 plane, where the path integrals have to be determined along a three-
dimensional path, which starts in the @ = 0 plane at r; in direction 2 and ends at
the intersection point with a spherical shell of radius |rz|. This allows one to build
up an iteration scheme based on the intensity in the @ = 0 plane only.

For a numerical implementation we discretize the model atmosphere in NV
equidistant, optically homogeneous spherical shells with radii 7, (n = 0,..., N).
In the global zenith direction we use a discretization in M different axes ¥,,
(m=1,...,M). This yields a discretization of the atmosphere in elements, where
the corners of one cell are denoted by the index pairs (m,n), (m+1,n), (m+1,n—1)
and (m,n — 1) (see Fig. 4.3).

Furthermore, the directional dependence of the radiation field in each of these
grid points is discretized by K = K; - K5 characteristic lines, where K; is the

number of local zenith directions, 0, (k1 = 1,..., K1), which are equally spaced
in pp, = cosfy, and Ky represents an even number of equally spaced streams for
the local azimuth directions, ¢k, (k2 = 1,...,K3). For such a discretization the

integration of a function f over the solid angle can be approximated by

K
[dor@ =Y w (437
k=1

with the weight wy, = 47/ K.

Due to the solar illumination which is symmetric around the global zenith, it
suffices to consider only one hemisphere in the radiative transfer calculations as
depicted in Fig. 4.3. However, this introduces the global zenith axis at ¥; = 0°
and ¥, = 180° as a new model boundary into the radiative transfer problem. In
order to reduce the discretized domain, the model boundary in the shadow region
can be shifted towards the edge of the shadow zone, as any radia