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Preface

Light scattering by densely packed inhomogeneous media is a particularly chal-
lenging optics problem. In most cases, only approximate methods are used for the
calculations. However, in the case where only a small number of macroscopic scat-
tering particles are in contact (clusters or aggregates) it is possible to obtain exact
results solving Maxwell’s equations. Simulations are possible, however, only for a
relatively small number of particles, especially if their sizes are larger than the wave-
length of incident light. The first review chapter in Part I of this volume, prepared
by Yasuhiko Okada, presents modern numerical techniques used for the simulation
of optical characteristics of densely packed groups of spherical particles. In this
case, Mie theory cannot provide accurate results because particles are located in
the near field of each other and strongly interact. As a matter of fact, Maxwell’s
equations must be solved not for each particle separately but for the ensemble as
a whole in this case. The author describes techniques for the generation of shapes
of aggregates. The orientation averaging is performed by a numerical integration
with respect to Euler angles. The numerical aspects of various techniques such
as the T-matrix method, discrete dipole approximation, the finite difference time
domain method, effective medium theory, and generalized multi-particle Mie solu-
tion are presented. Recent advances in numerical techniques such as the grouping
and adding method and also numerical orientation averaging using a Monte Carlo
method are discussed in great depth.

The second chapter in Part I of this volume, prepared by Sandra Jacquier and
Frédéric Gruy, also considers the scattering properties of aggregates. The authors
consider particles with radii both much smaller and larger as compared to the
wavelength of the incident light. In the least case the methods based on the direct
solution of Maxwell’s equations cannot be used due to computational problems.
Therefore, various approximate techniques are introduced and thoroughly discussed
in the chapter. They include the anomalous diffraction approximation developed by
van de Hulst, the Berry–Percival–Khlebtsov method, effective medium technique,
and a compact sphere method. The performance of these methods (where it is
possible) is evaluated against exact computations. As an application of theoretical
techniques, the authors consider the process of agglomeration of small primary
particles in a homogeneous suspension and its monitoring using measurements of
turbidity.

Part II of this book deals with radiative transfer theory. This theory is used to
describe reflectance and transmittance of turbid media such as the atmosphere and
the ocean. It is based on solution of the vector radiative transfer equation (VRTE).
Usually the VRTE is solved using the approximation of horizontally homogeneous



XXIV Preface

media. However, such an approach cannot be used in many cases (e.g., in the vicin-
ity of cloud edges) and the 3-D VRTE must be formulated and solved. Céline Cornet
and co-authors describe one possible way of solving the 3-D VRTE. It is based on
the Monte Carlo approach. The technique implemented in the developed software
(code 3DMCpol) is described together with validation using the adding-doubling
method and also the Spherical Harmonics Discrete Ordinate Method (SHDOM).
The code is applied to study the Stokes vector of reflected light for a synthetic
heterogeneous cloud field.

The authors of the second chapter in Part II, Holger Walter and Jochen Land-
graf, deal with 3-D radiative transfer as well. However, they ignore polarization
characteristics of light and concentrate their efforts on the solution of the radiative
transfer equation in a spherical geometry, which is of importance for atmospheric
remote sensing, including satellite limb measurements. The Picard iteration method
is used with validation from reference Monte Carlo calculations. Also, the authors
perform the linearization of the radiative transfer problem in the spherical geome-
try. The forward and adjoint radiative transfer equations (ARTE) are introduced.
ARTE differs from the standard radiative transfer equation by the sign of the
streaming term d/ds (also the directions in the scattering function are reversed).
An important point is that ARTE can be solved using the same radiative transfer
solver as applied for the solution of the standard forward radiative transfer equation
(by exchanging and reversing the incoming and outgoing directions). The solutions
of the forward and adjoint radiative transfer equations are used to estimate the
impact of change in the atmospheric state on the light intensity in a given direc-
tion, which is of great importance both for sensitivity studies and for the inverse
problem solution.

The next chapter (Chapter 5) prepared by Vladimir Budak and co-authors, de-
scribes a method for solving the radiative transfer problem with strongly anisotropic
scattering (e.g., relevant to light propagation in the ocean, where the asymmetry
parameter can reach 0.99). The subject is very important, and the authors offer
an original and very effective solution based on a separation of regular (smooth)
and highly anisotropic components. Comparison with a well-established discrete
ordinate code (DISORT) is given. This confirms a high accuracy of the developed
code (and, in addition, it has much higher speed as compared to DISORT in the
case of the highly elongated in the forward direction phase functions). To eliminate
the anisotropic part of the solution of the radiative transfer equation the authors
used the small-angle approximation in Goudsmit–Saunderson form. It results in
a boundary-value problem for the regular part of the solution that is similar to
the initial problem, but with the modified source function on the right-hand side
of equation and the modified boundary conditions. The solution of the obtained
equation for the regular part is found by the discrete ordinates method. In the case
of plane-parallel geometry this problem has the analytical solution as a matrix ex-
ponential. The authors also generalized their approach to account for the vector
nature of light and solved VRTE using the same methodology. Moreover, the 3-
D radiative transfer has also been considered in the framework of the generalized
Goudsmit–Saunderson approximation.

Chapter 6, by Lyapustin and co-authors, provides an overview of the publicly
available radiative transfer code SHARM. Among rigorous scalar codes, SHARM
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is one of the most numerically efficient and is based on the method of spherical
harmonics. Following descriptions of the algorithm and interface of the code, the
chapter describes the code SHARM-3D, which is designed for computations with
non-homogeneous anisotropic surfaces. SHARM-3D uses a rigorous 3-D Green’s
function solution for radiance in combination with the linear kernel model of the
land surface bi-directional reflectance. In this case, the top-of-the-atmosphere radi-
ance analytically depends on the surface BRDF parameters. This provides superior
numerical efficiency, because when the atmosphere can be considered horizontally
homogeneous, the atmospheric Green’s function and the related functions need
to be calculated only once. To handle the ‘adjacency’ effect, SHARM-3D uses a
comprehensive pre-computed look-up table (LUT) of the 3-D optical transfer func-
tion (OTF) developed for different atmospheric conditions and geometries. OTF
is a Fourier transform of the atmospheric 3-D Green’s function. Certain symmetry
properties of the OTF allow for a small LUT and a fast OTF-restore algorithm
for arbitrary atmospheric conditions, geometry, and spatial resolution (currently
≥30m). Comparisons of SHARM-3D with rigorous 3-D code SHDOM showed an
agreement to 0.5–1%. At the same time, SHARM-3D is much faster (a factor of
∼103) and, contrary to SHDOM, allows the processing of large scenes (side dimen-
sion of 103–104) on a common laptop.

As we see, all the chapters in Part II touch upon 3-D radiative transfer prob-
lems, which is a hot topic of modern radiative transfer research. Usually, light
propagation in media with arbitrary spatial distributions of optical characteristics
is studied using numerical calculations and it is a difficult matter to derive ana-
lytical results in this case. One possibility of the simplification of the 3-D solution
is based on the principles of invariance. These principles were introduced in the
radiative transfer theory by V. A. Ambartsumian, who derived the nonlinear inte-
gral radiative transfer equation for a semi-infinite layer using the fact that adding
an additional layer at the top with the same properties as the medium itself will
not change the reflected light intensity (by definition of a semi-infinite layer). Fur-
ther, the principles of invariance have been explored by a number of prominent
scientists such as S. Chandrasekhar and R. Bellman. In the concluding chapter
of Part II, Nikolai Rogovtsov describes the physical and mathematical foundations
of the general invariance relations reduction method (GIRRM). GIRRM is one
of the most general methods of the solution for both direct and inverse radiative
transfer problems. The method can be used as the basis for the development of
both effective numerical schemes and analytical solutions of 3-D radiative transfer
problems for arbitrary phase functions and spatial distributions in turbid media of
various configurations. In addition, using the described approach, the author de-
rived a new approximate representation for the reflection function of a semi-infinite
plane-parallel medium. The asymptotic solutions valid if the characteristic dimen-
sions of the disperse medium are much larger as compared to the photon mean
path length in the medium are derived for a number of light scattering objects.
In particular, disperse media with shapes of sphere, cube, cylinder, and spheroid
have been considered. The derived results can be utilized, for example, for testing
various numerical methods and Monte Carlo solutions of the 3-D problem.

The book concludes with Part III aimed at applications. Bonnie Light presents
a comprehensive summary of sea ice optical properties and their relationships with
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the structural properties of sea ice. Here the focus is not on light polarization and 3-
D effects but rather on the quantification of the impact of various ice impurities such
as brine inclusions, precipitated salt crystals, inclusions of biogenic and lithogenic
origin, and bubbles on light scattering and radiative transfer in sea ice. The main
problem here is the size and shape of inclusions, and also their refractive index.
Inclusions can be several centimeters long and have irregular shapes. The sizes,
shapes, and also refractive indices of some inclusions (e.g., brine) in ice strongly
depend on temperature. Clearly, ice is a very difficult turbid medium to study in
the field. Therefore, the author concentrated her study on the quantification of ice
optical and microphysical properties in the cold laboratory, which resulted in the
development of a physically based structural-optical model for first-year Arctic sea
ice. The results of this comprehensive work are invaluable for the development of
new methods of satellite remote sensing of ice, which are needed to quantify the
effects of global change in the Arctic.

Ice is often covered by snow and, therefore, understanding snow optical prop-
erties in relation to the snow grain size, density, wetness, and level of pollution
is also of great importance. This subject is explored by Jouni Peltoniemi and co-
authors. Both theoretical methods (ray tracing) and comprehensive measurement
field campaigns together with relevant instrumentation and data processing are
described. The authors show not only the snow bi-directional reflection function
but also the spectral and directional dependencies of the measured degree of polar-
ization, which is low in the visible and increases dramatically in the vicinity of ice
absorption bands in the near-infrared. The potential of optical methods for snow
melt monitoring is discussed.

The next chapter, Chapter 10, prepared by Per Edström, is aimed at the mod-
eling of light scattering in paper. Paper is close in appearance to snow and this is
due to the fact that scattering elements are weakly absorbing and strong multiple
scattering takes place. However, there are also some differences due to the size,
shape, and refractive index of scattering elements in paper. The author describes
various models used currently in the paper industry to understand and optimize pa-
per appearance and spectral reflectance. They include Kubelka–Munk theory, the
discrete ordinates method, the Monte Carlo technique, and asymptotic radiative
transfer solutions.

The last chapter of this volume is also aimed at studies of reflection but for
planetary regoliths. Their brightness is much smaller compared to snow, ice, and
paper. As stated by Karri Muinonen and his co-authors, two ubiquitous phenom-
ena are observed for the planetary regoliths near opposition (where the direction
of illumination almost coincides with the viewing direction and backscattering ef-
fects dominate): negative linear polarization and nonlinear surge of brightness. The
phenomena are observed at sun–object–observer angles of less than 30 and 10 de-
grees, respectively, sometimes showing up at extremely small phase angles within a
degree from opposition. Coherent backscattering and shadowing mechanisms have
been introduced to explain the phenomena. The authors have studied interference
mechanisms in scattering by single particles capable of explaining such intensity
and polarization phenomena. The presented modeling constitutes an important
advance in the interpretation of the observations of atmosphereless solar-system
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objects. As shown by the authors, their observed scattering characteristics can be
linked to the physical characteristics of submicrometer-scale scatterers.

In conclusion, I thank all the contributors for the preparation of the excellent
papers presented in this volume. I am also indebted to Clive Horwood, Publisher,
for advice, patience, and encouragement.

Bremen, Germany Alexander A. Kokhanovsky
October, 2009





Part I

Optical Properties of Small Particles
and their Aggregates



1 Numerical simulations of light scattering and
absorption characteristics of aggregates

Y. Okada

1.1 Introduction

A non-sphericity of a particle plays an important role in light scattering processes,
resulting in different scattering and absorption of incident light compared with
spherical particles. Among various non-spherical shapes of particles, aggregates of
small particles are often applied as model shapes to particles observed actually in
nature, such as dust from cometary nuclei, soot aerosols floating in the Earth’s
atmosphere, and microbiocells composed of sets of small organic cells.

The distinct difference between light scattering properties of aggregates and
those of a single particle (e.g., compact spheres, spheroids, and hexagonal prisms)
is that the aggregates multiply scatter incident light by composing particles. Be-
cause of this difference, aggregates and a single particle have totally different light
scattering properties, which will cause largely different estimation of physical prop-
erties from the same observational data when the light scattering properties are
used for the interpretation. Therefore it is important to investigate light scattering
properties of aggregates when applied to particles likely having aggregated struc-
tures.

Light scattering properties can be investigated based on two methods: (1) lab-
oratory measurements and (2) numerical light scattering simulations.

In the former method (i.e., laboratory measurements), aggregates with sizes
much larger than actual ones are used for the study. Those large aggregates can be
used to study the light scattering properties of small aggregates on the condition
that the aggregate sizes compared with the observing wavelength are the same, that
is, for the same size parameter x = 2πr/λ where r is the radius of the aggregate, λ
is the observing wavelength (see discussion about the scale invariance rule in [49]).
Therefore, the small aggregates observed at the visible wavelength can be studied
in laboratory measurements by investigating larger aggregates at the microwave
wavelength (i.e., microwave analog method [27,28]).

In contrast to laboratory measurement, in numerical light scattering simula-
tions, the light scattering processes on aggregates are simulated on computers based
on the computational solution methods of Maxwell’s equations. Different solution
methods for Maxwell’s equations have been developed and used as shown later in
section 1.3. Numerical light scattering simulations have the advantages of being
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capable of treating homogeneity in the physical properties of the aggregate, such
as the size, material composition, alignment of composing particles.

Despite the advantage of treating homogeneity in physical properties of the
aggregate, numerical light scattering simulations still have limitations (e.g., the
maximum treatable size, treatable complexity in the shape of the particle, longer
computational time, and accuracy). Therefore, various methods are still being de-
veloped and improved in order to overcome these limitations so that numerical
light scattering simulations will be fully applicable to the interpretation of actually
observed aggregates, whose sizes and complex shapes are currently located outside
the treatable region of the numerical light scattering simulations.

In this chapter, we will introduce various results of the numerical light scattering
simulations, which are applicable to fractal aggregates. This chapter is composed
as follows. In section 1.2, various parameters defined for numerical light scattering
simulations are introduced. In section 1.3, numerical light scattering simulation
methods proposed from the 1960s to the 1990s are briefly introduced. Then, meth-
ods widely used in recent light scattering studies are presented with the applicabil-
ity to aggregates. In section 1.4, we introduce the improvements of the numerical
light scattering simulations for the aggregates and a few sample results from the
simulations. Section 1.5 summarizes this chapter.

1.2 Properties of aggregates used in numerical simulations

1.2.1 Physical and light scattering properties

We introduce parameters for physical properties of an aggregate and those for their
light scattering properties obtained from the numerical light scattering simulations.
Table 1.1 summarizes the physical properties of an aggregate and conditions used
in the simulations.

Table 1.1. Physical properties of an aggregate and conditions of the simulations

Monomer radius: rm
Wavelength of incident light: λ

Monomer size parameter: xm =
2π

λ
rm

Number of monomers: N

Volume equivalent size parameter of the aggregate: xv =
3
√
Nxm

Complex refractive index: m = n+ ik
Shape of the aggregate: BPCA and BCCA

(see section 1.2.2)

The composing particles of an aggregate are called monomers. The size of the
monomer is described by the size parameter of the monomer xm(= 2πrm/λ) where
rm is the monomer radius, and λ the wavelength of incident light. rm and λ are
treated in the same unit (e.g., μm or nm).
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The number of monomers composing the aggregate is defined with N . From xm
and N , we can calculate the volume equivalent size parameter of the aggregate xv
(see Table 1.1 for the equation).

The material composition of the aggregate is described by the complex refractive
index m = n+ik. k is related to the absorption coefficients of the aggregate defined
as 4πk/λ (see Eq. 2.69 in [31]). Throughout this chapter, we only treat an aggregate
of a single material composition. However, it is also possible to treat a composite
aggregate whose monomers have different material compositions.

From the light scattering simulations with the above physical properties of
the aggregate, we can obtain the light scattering properties of the aggregate. As
integrated light scattering properties, we have efficiencies for absorption (Qabs),
scattering (Qsca), and extinction (Qext), whereQext =Qsca +Qabs. The efficiencies
are equal to cross-sections (Cabs) divided by the geometrical cross-section (πr2v)
where rv denotes the radius calculated from xv and λ.

In addition to the integrated light scattering properties, we also obtain angular
light scattering properties called the phase matrix. The phase matrix of an aggre-
gate averaged over random orientations is defined in the following equation for the
Stokes vector [I,Q, U, V ]T (see chapter 4 of [48]).⎡⎢⎢⎣

Isca

Qsca

Usca

V sca

⎤⎥⎥⎦ ∝
⎡⎢⎢⎣
a1(Θ) b1(Θ) 0 0
b1(Θ) a2(Θ) 0 0
0 0 a3(Θ) b2(Θ)
0 0 −b2(Θ) a4(Θ)

⎤⎥⎥⎦
⎡⎢⎢⎣
Iinc

Qinc

U inc

V inc

⎤⎥⎥⎦ , (1.1)

where Θ is the scattering angle, which is defined by directions of incidence and
scattering of light. Θ = 0◦ denotes forward scattering and Θ = 180◦ backward
scattering. inc and sca denote incident and scattered components of the Stokes
vector, respectively.

The a1 element of the phase matrix is called the phase function. a1 describes
the angular distribution of incident light energy when the normalization condition
in the following equation holds:

1
2

∫ π
0

dΘ sinΘ a1(Θ) = 1. (1.2)

The degree of linear polarization P (Θ) for the unpolarized incident light (i.e.,
Qinc = U inc = V inc = 0) is defined as follows (see p. 28–29 of [48]):

P (Θ) = −b1(Θ)/a1(Θ). (1.3)

Table 1.2. Parameters of the integrated light scattering properties

Extinction efficiency: Qext = Cext/(πr
2
v)

Scattering efficiency: Qsca = Csca/(πr
2
v)

Absorption efficiency: Qabs = Cabs/(πr
2
v)

Cross-sections: Cext, Csca, and Cabs have the unit of (length)
2

Asymmetry parameter: g = 〈cos(Θ)〉 = 1
2

R 1

−1 d(cosΘ)a1(Θ) cosΘ
Single scattering albedo: ω0 = Qsca / Qext

rv is a radius of volume-equivalent-sphere calculated from xv and λ
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1.2.2 Shapes of aggregates

There are several types of aggregates with different alignments of monomers. We
only consider aggregates composed of spheres. However, it is possible to consider
aggregates composed of spheroids and other shapes in the numerical light scattering
simulations (e.g., [82]).

Aggregates having different structures can be described using the fractal dimen-
sion Df . Df = 2 and 3 denote structures close to 2-D (plane) and 3-D (sphere),
respectively. By investigating aggregates with these two extreme cases of Df , the
light scattering properties of aggregates having intermediateDf can be constrained.

Aggregates having Df of around 2 and 3 are prepared based on sequential
ballistic collisions of monomers or of small aggregates. We use two models called
BPCA (Ballistic Particle-Cluster Aggregate) and BCCA (Ballistic Cluster-Cluster
Aggregate) [55].

The BPCA is created as follows. Firstly, one monomer collides with another
monomer generating a bisphere. Then one monomer after another collides with the
bisphere from random directions resulting in a single large aggregate.

The BCCA is created as follows:

– collision of two monomers,
– collision of two bispheres produced in the previous step,
– collision of two aggregates produced in the previous step,
– recursive collisions of two aggregates produced in the previous step until all the

monomers are gathered into a single large aggregate.

The BPCA has Df of 2.98 ± 0.02 while the BCCA has Df of 1.93 ± 0.07
[55]. The porosities of the BPCA and BCCA are defined with characteristic radius
ra =

√
5/3rg, where rg denotes the radius of gyration, which is obtained from the

following equation [56]:

rg
2 =

1
2N2

N∑
i,j

(ri − rj)2, (1.4)

where ri and rj denote position vectors of the ith and jth monomers.
The porosity of the BPCA is around 85% while that of the BCCA is greater

than 99% (see table 1 of [36]).
Fig. 1.1 shows examples of 3-D images of the BPCA and BCCA composed

of 128, 256, 512, and 1024 monomers. Note that the structures of the aggregates
become different for different generations of the aggregate (e.g., five generations
for BPCA with N = 128). However, all the aggregates with different generations
can be described with similar fractal dimension Df , which result in similar light
scattering properties between generations of a fixed shape model with the same N
(e.g., BPCA512a, BPCA512b, and BPCA512c).

The BCCA stretches outward largely compared with the BPCA because of the
larger porosities (e.g., ≥99%). The differences in porosities between the BPCA and
BCCA influence the light scattering properties.

The BPCA and BCCA can commonly be treated in numerical light scattering
simulations only by changing the file describing the positions of all the monomers
(the shape file). Light scattering properties of aggregates having the same xv, and
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BPCA128 BPCA256 BPCA512 BPCA1024

BCCA128 BCCA256 BCCA512 BCCA1024

Fig. 1.1. Shape models; the BPCA and BCCA (after Y. Okada et al., JQSRT, 109,
2613–2627, 2008).

the same m, but the different shapes of aggregates can be studied by changing the
shape file.

1.2.3 Aggregate orientation

Light scattering properties are obtained for either

– a fixed orientation of the aggregate (a fixed direction of incident light),
– random orientation averaging.

The result of a fixed orientation is used to study an aggregate when the aggre-
gate under observation is fixed with respect to the direction of incident light during
the whole observation time. For example, fixed orientation results can be used to
study the interstellar extinction of dust particles, which are possibly aligned by
interstellar magnetic fields [32].

Results of random orientation averaging are used when the aggregate is ro-
tated randomly during the observation time, or for an ensemble of particles whose
monomers have similar shapes but have different orientations, seen in the observa-
tional field of view [47].

The orientation of the aggregate is defined with three Euler angles (i.e., α, β,
and γ) with respect to three fundamental axes of a selected coordinate system [47]
(see also Fig. 1.2).

Light scattering properties of random orientation averaging can be obtained by
integrating results of fixed orientations (e.g., sets of (α, β, γ)). The values of the
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Fig. 1.2. Rotation of the aggregate using the Euler angles (α, β, γ). N denotes the line
of node. Small capitals (x, y, z) denote orientation of the aggregate before the rotation.
Capital letters (X, Y , Z) denote the orientation after the rotation.

random orientation averaging are calculated with the following equation:

〈A〉 = 1
8π2

∫ 2π

0

∫ π
0

∫ 2π

0

dα sinβ dβ dγA(α, β, γ), (1.5)

where A denotes light scattering properties (e.g., cross-sections and phase matrix
elements).

Random orientation averaging can be carried out based on two methods:
(1) AOA (analytical orientation averaging), and (2) NOA (numerical orientation
averaging). When the analytical solution for the orientation averaging is used,
the random orientation averaging procedure can be carried out more efficiently.
Therefore, deriving an analytical solution for the orientation averaging is an active
research topic for the numerical light scattering simulations of irregularly shaped
particles (see references in [51,52,86]).

The AOA is efficient for random orientation averaging. However, there are sev-
eral numerical methods for light scattering simulations developed for a fixed orien-
tation of the aggregate without the AOA solutions. When researchers use numerical
methods of light scattering simulations developed only for a fixed orientation of the
aggregate, they need to carry out the NOA to obtain results of random orientation
averaging.

1.3 Methods for numerical light scattering simulations

We introduce numerical methods for simulating light scattering of aggregates. We
focus on aggregates with xm � 2 because aggregates with xm � 2 and N � 200
are still currently difficult to be treated in rigorous numerical simulations.

Table 1.3 lists methods proposed by various researchers from the 1960s to the
1990s. Around the 1970s, numerical simulation methods were only applicable to
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Table 1.3. Methods for multiple spheres proposed from the 1960s to the 1990s

• Liang and Lo (1967)
– Proposed multipolar expansion method utilizing translational addition theorem

for VSWF (vector spherical wave function)
– Applicable to monomer radius less than 3λ/4

• Bruning and Lo (1969), Bruning and Lo (1971a), and Bruning and Lo (1971b)
– Derived recursion relation for translation coefficients in translational addition the-

orem
– Applicable to monomer radius up to 10λ

• Jones (1979)
– Derived a system of 3N linear equations for clusters of particles
– Applicable to monomers in the Rayleigh region

• Borghese et al. (1979)
– Proposed a method based on Debye potentials and mathematical technique to

incorporate multiple scattering influence
– Applicable to a system of molecules (radius less than 5 Å)

• Gérardy and Ausloos (1980)
– Proposed a theory taking into account all multipolar orders
– Applicable to N dielectric spheres embedded in dielectric matrix

• Gérardy and Ausloos (1982)
– Incorporated higher-order multipolar interaction effects
– Applicable to aggregated metal spheres

• Borghese et al. (1984a)
– Derived a general addition theorem for vector Helmholtz harmonics

• Borghese et al. (1984b)
– Utilized group theory for multipolar expansion of the light scattering simulations

• Fuller et al. (1986)
– Incorporated an approach to treat non-interacting spheres

• Fuller and Kattawar (1988a), Fuller and Kattawar (1988b)
– Proposed a method based on the OoS (order-of-scattering) technique

• Mackowski (1991)
– Devised a new recurrence relation in the addition theorem for efficient implemen-

tation of the OoS technique
• Wang and Chew (1993)

– Proposed RATMA (recursive aggregate T-matrix algorithm)
• Fuller (1994)

– Proposed a method based on summation over pairwise cross-sections for calcula-
tions of cross-sections

• Borghese et al. (1992), Borghese et al. (1994), Fuller (1995)
– Proposed a method for a sphere containing sub-sphere inclusions

simpler shapes, such as bispheres, and aggregates composed of up to five monomers,
or the application was limited to aggregates composed of monomers whose sizes
are in the Rayleigh region. Those methods were gradually improved for increased
numbers of monomers and for increased sizes of monomers. Also, the computational
efficiency of the numerical simulation method has been gradually improved.

Table 1.3 only lists the methods focusing on the treatment of multiple spheres.
However, methods for shapes other than multiple spheres were also studied during
the same period. For example, Mishchenko (1991) proposed a method for light scat-
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tering by randomly oriented axially symmetric particles [46]. In his paper, rigorous
analytical solution for the orientation averaging is introduced. The work improved
the T-matrix method originally proposed in [75, 76] (see [51, 52, 86] and references
therein).

Now we move our focus to methods recently used in light scattering studies.
Table 1.4 shows several numerical methods widely used in recent light scattering
simulation studies applied to aggregates.

Table 1.4. Methods widely used in recent light scattering studies of aggregates

1. Discrete dipole approximation (DDA) [16,84,85]
2. Finite difference time domain method (FDTD) [68,69,83]
3. T-matrix method for clusters of spheres (CTM) [42,43]
4. Generalized multiparticle Mie-solution (GMM) [79,80]
5. Effective medium theory combined with Mie theory (EMT+Mie) [12,13]

In terms of the accuracy, we may divide the methods into two types: (1) rigorous
and (2) approximate methods. Rigorous means that the solution for the numerical
light scattering simulations are obtained rigorously, which produces final results
with high accuracy. On the other hand, the approximate methods include approx-
imations in the numerical light scattering simulations, which should be treated
carefully to obtain results with the desired accuracy. We may group the CTM and
GMM as rigorous methods, and the DDA, FDTD, and EMT as approximate ones.

1.3.1 The DDA and FDTD

The DDA and FDTD are methods based on volume integral formulations of
Maxwell’s equations. In the volume integral formulations, a particle is divided into
an array of sub-volumes, then electromagnetic interactions between sub-volumes
are treated in the simulations. Because of the treatment of the particle shape with
sub-volumes, the DDA and FDTD can be used for various shapes of particles.

In the DDA, the particle is divided into an array of polarizable point dipoles.
Electromagnetic interactions of the dipoles are calculated in the simulation with
prescriptions for dipole polarizability (e.g., LDR; Lattice Dispersion Relation [16],
SCLDR; Surface Corrected Lattice Dispersion Relation [14], GKLDR; LDR cor-
rected in [29]).

The FDTD is based on replacement of temporal and spatial derivations of
Maxwell’s equations. The particle is divided into an array of small cubic cells.
The FDTD uses the so-called ABL (absorbing boundary layer) to truncate the
computational domain. The light interactions of the cells are calculated in the time
domain. The vectors for electric and magnetic fields are treated at each discretized
grid cell. Then, the time evolution of the electric and magnetic fields is simulated
in the time domain until the state of convergence is obtained. Light scattering
properties obtained in the time domain are converted into those in the frequency
domain, that is, at different wavelengths (see [68, 69, 83] for further details of the
FDTD).
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In the DDA, errors are studied using the parameter |m|(2π/λ)d, where m is the
complex refractive index, λ the wavelength of incident light, d the dipole separa-
tion. In the FDTD, errors are studied with the grid size described using λ (e.g.,
λ/10 and λ/20). The accuracy of the DDA and FDTD is often investigated by
comparing them with those obtained using rigorous methods. For example, results
for a compact sphere described with an array of sub-volumes are investigated by
comparison with those obtained using Mie theory (e.g., [17, 18,68]).

Draine and Flatau [19] recommended |m|(2π/λ)d < 1.0 for the efficiencies (e.g.,
Qext) and |m|(2π/λ)d < 0.5 for the phase function in order to suppress the errors
less than a few percent for a compact sphere. For the FDTD, Sun and Fu [68] have
shown that the grid cell size with λ/20 produces results with an error of less than
1% in Qext and Qsca and of less than 5% in phase function. From these two papers
and other related studies, it is shown that the size of sub-volumes should be less
than a certain value to obtain results with the desired accuracy.

If the monomers are very small (xm � 1.0), each spherical monomer can be
represented with a single sub-volume (a dipole or a cubic cell) in the numerical
simulations. On the other hand, when xm becomes larger (e.g., xm � 1.0), each
spherical monomer should be represented with an array of sub-volumes to obtain
results with errors less than a few percent. However, the discretization of each
monomer into an array of sub-volumes causes a limitation in the computable size
parameter of the aggregate and requires longer computation time.

1.3.2 The CTM and GMM

In the CTM and GMM, incident electric field (Einc) and scattered electric field
(Esca) are both expanded in vector spherical wave functions (VSWF; aka VSH;
vector spherical harmonics) as in the following equations [43,79]:

Einc =
∞∑
n=1

n∑
m=−n

2∑
p=1

limnpMmnp, (1.6)

Esca =
∞∑
n=1

n∑
m=−n

2∑
p=1

aimnpNmnp, (1.7)

where m and n denote the order and degree, respectively. p denotes the mode of
electromagnetic waves (i.e., TM and TE).

The relation between expansion coefficients of Einc (lmnp) and those of Esca

(amnp) is given by the T-matrix (translation matrix). Light scattering properties of
the aggregate can be calculated from the T-matrix of the aggregate as described in
[43]. In both the GMM and CTM, solutions for the analytical orientation averaging
(AOA) are obtained [43,79,80].

The GMM and CTM are very similar in the formulation for a fixed direction of
incident light. On the other hand, they are remarkably different in the formulations
for the AOA [81]. The GMM deals directly with precise phase relations of both
incident and scattered waves, while the CTM expresses both phase factors in terms
of infinite series expansions [81]. The CTM is used for aggregates of spheres while
the GMM can be applied to aggregates of non-spherical monomers on the condition
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that the T-matrix of each monomer can be obtained. A comparative study between
the GMM and CTM is given in [81].

The CTM and GMM are highly accurate because of the rigorous nature of the
methods. However, the limitation exists in the largest value of monomer size pa-
rameter xm, not because of the formulations, but because of the computational
aspect. That is, the memory requirement increases very rapidly for the increase in
xm because higher orders of expansion coefficients in the VSWF become impor-
tant in the light scattering properties for larger values of xm. Also the memory
requirement becomes larger for the increase in N .

1.3.3 The EMT

In the EMT, the light scattering properties of irregularly shaped particles having
refractive index m are approximated by the light scattering properties of homo-
geneous particles (e.g., a compact sphere) having a so-called effective refractive
index (meff ) obtained from m and the porosity of the particles based on selected
EMT formulations (e.g., the Maxwell–Garnett mixing rule and the Bruggeman
rule) [13]. After calculating meff , Mie theory is used to obtain the approximate
light scattering properties.

The simulations based on the EMT+Mie (i.e., the combination of the EMT and
Mie) are much faster than other numerical methods for light scattering simulations.
This, combined with its simplicity, has led to the EMT+Mie being widely used
to study light scattering properties of irregularly shaped particles. However, the
accuracy of the EMT+Mie needs to be considered.

Previous studies [73, 77, 78] have shown that Qsca and Qabs obtained from the
EMT+Mie deviate greatly from those obtained using the DDA when the size pa-
rameter of voids or monomers is larger than around 2.0 (e.g., figs. 4–6 of [77]). The
review of the EMT by Chylek et al. [13] concluded that errors in Qext and Qsca
are typically 10% and 15%, respectively, for xm values up to 2.0.

The inaccuracy is caused by violation of the assumption in EMT formulations
of negligible forward scattering by voids and inclusion particles [13]. The typical
presence of forward-scattering peaks for larger voids and inclusions [8] invalidates
the EMT method.

In addition to the inaccuracy of Qsca and Qabs, there are large inaccuracies
in phase matrix elements obtained from the EMT+Mie. Therefore, this method
should be used for small particles to obtain Qsca and Qabs and not phase matrix
elements unless other types of EMT formulations are derived that take the forward
scattering by voids and inclusions into account.

1.3.4 Future extensions of the numerical methods

As described above, various methods—both approximate and rigorous—can be ap-
plied to numerical light scattering simulations, depending on the desired accuracy,
acceptable computation time, and available computer resources.

Related to the computation time, we need to treat the random orientation
averaging of the aggregate. The CTM and GMM have the advantage that values
of random orientation averaging can be obtained immediately after obtaining the
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T-matrix of the aggregate. On the other hand, the DDA and FDTD are used for a
fixed orientation of the aggregate. For random orientation averaging, simulations
using the DDA and FDTD should be carried out repeatedly for the number of
orientations required to reach convergence where further increase in the number of
orientations does not influence the results.

Accurate numerical simulations of light scattering by realistic particles require
the following improvements to the currently proposed methods:

1. Increasing the accuracy of approximate methods.
2. Speeding up simulations with approximate methods for a fixed orientation of
the aggregate.

3. Speeding up procedures for the random orientation averaging.
4. Increasing the largest allowable monomer size in both approximate and rigorous
methods.

5. Increasing the treatable number of monomers of the aggregate in both approx-
imate and rigorous methods.

1.4 Improved numerical simulations

1.4.1 Grouping and adding method (GAM)

One of the limitations in the numerical light scattering simulations of aggregates
is the largest number of monomers N , which can be treated. N is limited because
of memory and computation time. The computation time can be reduced with the
advent of workstations having higher performance (e.g., multiple core system). On
the other hand, the memory limitation is sometimes difficult to solve even with the
evolution of computer hardware, because the higher N is, the higher the orders
of scattering functions that should be treated in the numerical light scattering
simulations.

In this circumstance, we have proposed a method to reduce the maximum mem-
ory required in numerical light scattering simulations. We call the method GAM
(Grouping and Adding Method) [58]. Following is the procedure of the GAM:

1. Divide the target aggregate into NDIV groups of sub-aggregates
2. Calculate efficiencies (Qsca and Qabs) of each sub-aggregate
3. Sum the efficiencies of all the sub-aggregates

The GAM has a feature to reduce required memory by treating one group of
sub-aggregates at one time. Because of this division, we can carry out simulations
for larger aggregates, which originally would have required memory larger than our
computer resources.

The GAM is combined with a fixed orientation version of numerical methods
for light scattering simulations. We used a fixed orientation version of the CTM
[43].

The summation of light scattering properties of all the groups is possible. This is
because the total efficiencies of an aggregate can be obtained based on superposition
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principle of those from all the monomers as shown in the following equations [42]:

Caggext =
N∑
i=1

Cext
i, (1.8)

Caggabs =
N∑
i=1

Cabs
i, (1.9)

where C denotes the cross-section. agg denotes cross-sections of the aggregate. i
represents a contribution from ith monomer.

The GAM takes advantage of the feature that monomers with larger xm start to
have strong forward scattering (see Fig. 1.3). With the strong forward scattering by
one monomer (hereafter called the ith monomer), light incident on the ith monomer
will be scattered mostly into the forward direction. Then, monomers located at a
distance in the side direction from the ith monomer rarely contribute to the multiple
interactions of the light, which is first scattered by the ith monomer.
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Fig. 1.3. Scattering phase function p11(Θ) of a single monomer as a function of the size
parameter of the sphere, xm, where m = 1.5+0.1i. Each scattering function is normalized
to its value at Θ = 0◦ (after Y. Okada et al., JQSRT, 108, 65–80, 2007). p11 is obtained
from a1 shown in section 1.2.1

Fig. 1.4 shows schematic figures of the grouping of an aggregate. The division
of the aggregate is carried out based on a plane perpendicular to the direction of
incident light. With this way of division, we can take advantage of the forward
scattering feature occurring for larger monomer size. For the grouping, we use the
K-means method [45].

When we calculate light scattering properties of one group, we treat monomers
of the group, together with monomers of surrounding regions. We call the sur-
rounding region the buffer region (see Fig. 1.4(b)). Table 1.5 shows the parameters
of the GAM.
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The light scattering properties of the buffer region (Noutgr monomers) are not
obtained accurately because of the absence of monomers outside the buffer region
(Norg−Noutgr −N ingr ). Therefore multiple scattering between monomers in the buffer
regions and those in outer surrounding regions becomes insufficient compared with
when the aggregate is not divided into groups.

For each group, we carry out one simulation using N ingr monomers of the group
and Noutgr monomers of the buffer region. Then we store the light scattering prop-
erties only of N ingr monomers for future summations of all the groups. We discard
results of Noutgr monomers of the buffer region because of the inaccuracy. How-
ever, the monomers selected as the buffer region (Noutgr ) in the simulation of one
group will be treated as monomers of the group (N ingr ) in the simulation of another
group. Then in the summation of the results of all the groups, we can obtain results
contributed from all the monomers.

Table 1.5. Parameters of the GAM

Norg : Number of all the monomers of the original aggregate
NDIV : Number of groups
N ingr : Number of monomers in the selected group
Noutgr : Number of monomers in the buffer region

The GAM will cause errors because the absence of monomers outside the buffer
region will exclude the influence of (Norg − N ingr − Noutgr ) monomers on multiple
light scattering of N ingr monomers. However, we expect that those errors will be-
come smaller for larger xm because of forward scattering characteristics. We have
investigated the errors by using aggregates treatable with memory size of our com-
puters (2GB) for N = 512 and xm up to around 4.5.

The errors are estimated by comparing between efficiencies of the aggregate (1)
with the GAM and (2) without the GAM:

Error(%) =
|QGAM −Qorg|

Qorg
× 100, (1.10)

where GAM is the results with the GAM. org denotes results without the GAM.
The size of the buffer region influences the accuracy of light scattering properties

of N ingr monomers. Errors caused by the GAM are investigated for different values
of the ratio Noutgr -to-Norg. It is found that an N

out
gr -to-Norg of 1/8 will have errors

of up to 15% for xm of up to 4.5, Norg = 512, NDIV = 60 and for various sets
of (n, k) (see Fig. 1.5). For absorbing monomers (i.e., higher k values), the ratio
Noutgr -to-Norg can be taken as 1/16 for errors of up to 15%.

For errors for different values of NDIV and for other details of the GAM, refer
to our paper [58]. Sample code using the GAM is available at [88].
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Fig. 1.4. Schematics of grouping of the aggregate (a and a′) and of the buffer region (b
and b′) for EMs propagating in the Z direction. The original aggregate (BCCA512) is
grouped with NDIV = 10. In panels b and b

′, gray and black shaded circles are the N ingr
monomers in the group and Noutgr monomers in the buffer region, respectively, and the
large solid circle and dashed one denote the maximum radius of group 4 and buffer region
for the group, respectively. The direction of the incident light is shown at the bottom
right of each panel (after Y. Okada et al., JQSRT, 108, 65–80, 2007).

1.4.2 Numerical orientation averaging using a quasi-Monte-Carlo
method (QMC)

Light scattering properties of random orientation averaging of an aggregate are
obtained by integrating results over a large number of orientations analytically or
numerically (see section 1.2.3). Numerical orientation integration of results using
fixed orientation code is traditionally performed by using multiple sets of orienta-
tions changed with some certain steps in each of three Euler angles. Hereafter we
call the division of orientations with certain steps the LAT (lattice grid division).

Computational efficiency of the numerical orientation integration depends on
how multiple orientations are selected (i.e., their number and their distribution in
angular space). The LAT is easy to treat; however, it is not necessarily the best
way to efficiently carry out the integration.
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Fig. 1.5. Maps of errors in Qabs and Qsca for n vs k for different xm. The buffer region
has an Noutgr -to-Nmono ratio of 1/8, and Nmono = 512 and NDIV = 60 (after Y. Okada et
al., JQSRT, 108, 65–80, 2007).
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Efficient methods for integrations over the 1-D, 2-D, and 3-D have been studied,
which resulted in a so-called QMC (Quasi Monte–Carlo) method for an efficient
integration. We have proposed to apply the QMC for random orientation averaging
of the light scattering properties in [59].

The QMC is similar to a Monte–Carlo method using random numbers, which
is conventionally called the CMC (Crude Monte–Carlo) method [57]. By using the
CMC or QMC, the orientation integration is carried out as the following equation:

1
A

∫
A

f(s) ds =
1

Nint

Nint−1∑
i=0

f(xi), (1.11)

where A denotes the area of the considered region, ds the area element in A, and
xi the position of the ith point, f(xi) is the value of the function at this point, and
Nint the number of points used for the integration.

It is known that the CMC converges with O(
√
log logN/

√
N) [57]. Hence the

accuracy of the CMC increases only slowly as O(1/
√
N).

The QMC is developed to increase the convergence efficiency compared with
the CMC. In the QMC, instead of the random numbers used in the CMC, a number
sequence called the LDS (Low-Discrepancy Sequence) is used.

The LDS comprises a uniform number sequence between 0 and 1. Among various
LDSs, we used the so-called HS (Halton sequence) for two-dimensional variables.
The HS is generated by a one-dimensional van der Corput sequence. The van der
Corput sequence gb(k) can be recursively obtained as [57]:

gb(0) =
σ(0)
b− 1 , (1.12)

gb(bn+ r) =
1
b
(gb(n) + σ(r)), (1.13)

where b is the base, and σ a permutation of natural numbers ranging from 0 to
b− 1 (i.e., σ = {0, 1, . . . , b− 1}).

For example, a van der Corput sequence with base of 3 (i.e., g3(k) with b = 3)
can be calculated as follows. g3(0) = σ(0)/(3 − 1) = 0/(3 − 1) = 0 according to
Eq. (1.12). g3(1) is considered as g3(3 ∗ 0 + 1) with n = 0 and r = 1 in Eq. (1.13).
Then, g3(3 ∗ 0 + 1) = 1

3 (g3(0) + σ(1)) =
1
3 (0 + 1) =

1
3 . Recursively we can obtain

g3(k) = { 13 , 23 , 19 , 49 , . . . } for (k = 1, 2, 3, 4, . . . ).
The HS for 2-D is produced by a combination of two van der Corput sequences

with two different bases. For example, we can use 2 and 3 as bases for the two
orientation angles (α and β) of the Euler angles. The number sequence ranging
between 0 and 1 produced from the HS is converted into the full range of the angle
(e.g., 0 to 2π) used for the orientation rotations.

Fig. 1.6 shows the difference in orientation distributions using above methods.
In Fig. 1.6 we compare:

1. CMC using random number generator (rand) commonly implemented in For-
tran compilers,

2. CMC using MT (Mersenne Twister) [44],
3. QMC using HS with bases of 2 and 3.
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The one prominent difference between rand and the MT is the length of peri-
odicity of random numbers. The periodicity of the MT is much longer than that of
rand, making the CMC with the MT more secure for use in integrations of higher
dimensional space. However, the above two methods using the CMC show point
distributions whose uniformity is not as good as those of the QMC-based method
(see Fig. 1.6). This difference in the uniformity of orientation distribution causes a
difference in convergence efficiencies among these three methods.

The efficiency of convergence of the QMC is mathematically known as
O[(logN)s/N ] where s is dimension (e.g., s = 2 for two angles) [57]. Therefore
the convergence efficiency of the QMC (∝ O(1/N)) is better than that of CMC
(∝ O(1/√N)).

Fig. 1.7 shows the comparison of convergence of the light scattering properties
as a function of the number of orientations between three methods for orientation
selections for the NOA (i.e., LAT, CMC with MT, and QMC with HS). We used
a fixed orientation version of the CTM to obtain the light scattering properties
of each orientation of the aggregate. Only phase functions at several scattering
angles of BPCA128 (i.e., BPCA composed of 128 monomers) are shown (see [59] for
comparisons of other light scattering properties, and for other shapes of aggregates
such as bisphere, BCCA4, and BCCA128).

The bold gray lines in Fig. 1.7 are results obtained using the AOA version of
the CTM (see Table 1.4). Therefore, the approach of results to the bold lines for
an increased number of orientations denotes the convergence of the NOA.

The convergence efficiencies are better in the QMC followed by the CMC. The
convergence efficiency of the LAT is the worst among the three methods for the
phase function shown in Fig. 1.7. The convergence efficiencies depend on types of
light scattering properties (e.g., Qabs, polarization at some scattering angles, and
g); however, the general tendency has the same trends as shown in Fig. 1.7.

From these studies, it is shown that the QMC method can be used for efficient
numerical orientation averaging of the light scattering properties of aggregates.
Sample Fortran code to generate the HS is available at [89].

1.4.3 Extended calculation of light scattering properties with
numerical orientation averaging

xm and N of an aggregate treatable in the light scattering simulations are limited
mainly because of the computer memory. For example, when we use the AOA
version of the CTM on computers with 2 GB memory, the maximum value of N
becomes around 200 for xm ≈ 1.7. Because of these limitations in the CTM and
those in other methods for numerical light scattering simulations (e.g., the DDA,
the GMM), studies of the light scattering properties of fractal aggregates have been
confined to a certain range of parameter space. Fig. 1.8 shows the parameter space
(N and xm) considered in previous studies of the light scattering properties of
aggregates.

In Fig. 1.8, it is shown that values of N with xm ≈ 1.7 are confined to be
less than around 200 in most studies. This limitation in parameter space clearly
limits our understanding of the light scattering properties of aggregates. Also it
is not clear whether or not the light scattering properties of the aggregates with
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a) CMC + rand b) CMC + MT c) QMC + HS
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Fig. 1.6. Comparison of distribution of two variables (x and y). (a) CMC+rand: crude
Monte–Carlo method with random number generator (rand()) implemented in For-
tran compiler. (b) CMC+MT: crude Monte–Carlo method with Mersenne Twister. (c)
QMC+HS: quasi Monte–Carlo method with Halton sequence. From top to bottom show
results for 100, 1000 and 10 000 points (after Y. Okada, JQSRT, 109, 1719–1742, 2008).

N � 200 are representative of those of aggregates realistically existing in nature
(e.g., cometary dust, microbiocells, soot aerosols). It is important to investigate
the validity of these light scattering properties by comparing them with results of
aggregates having increased N .

In order to increase N and xm treatable in the numerical light scattering simu-
lations, we have proposed to use a fixed orientation version of the CTM combined
with the NOA instead of the AOA in the random orientation averaging.

Public Fortran codes of the fixed orientation version and AOA version of the
CTM are available on the Web [87]. We used two Fortran codes (i.e., scsmfo1b.for
and scsmtm1.for) for the fixed orientation version and the AOA version of the
CTM, respectively.

The two versions of the CTM are different in memory usage because the former
treats only the fixed orientation. Also this version uses optimization for memory



1 Numerical simulations of light scattering 21

a) Lattice grid b) Monte Carlo
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Fig. 1.7. Comparison of intensities at scattering angle of 10 degrees obtained using three
different methods for the NOA. S11 denotes phase function (i.e., a1 in section 1.2.1). xv
denotes the size parameter of a sphere with equivolume to the aggregate. X axis denotes
number of orientations (i.e., a combination of zenith and azimuth angles) used for the
NOA. Gray lines are values obtained from the AOA. Two dashed lines are error bounds
estimated from the value of the AOA. (After Y. Okada, JQSRT, 109, 1719–1742, 2008)
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Fig. 1.8. Parameter space in past studies of the light scattering properties of fractal
aggregates. Note that the reference numbers on the right-hand side are those in the
original paper (after Y. Okada et al., JQSRT, 109, 2613–2627, 2008).

usage by compaction into the amplitude matrix devised for the fixed orientation
version (see a document found at [87]). On the other hand, the AOA version requires
memory for random orientation averaging, which is much larger than that required
for the fixed orientation version. This difference in the memory usage between the
two versions of the CTM will cause a difference of the upper limitations in N
and xm.

Fig. 1.9 shows the improvements of the parameter space by using the fixed
orientation version of the CTM (scsmfo1b.for) from those of the AOA version of
the CTM (scsmtm1.for). It is clear that the fixed orientation version of the CTM
increasesN and xm greatly compared to the AOA version of the CTM.When we use
the fixed orientation version, we need to carry out the random orientation averaging
numerically using the NOA. As introduced in section 1.4.2, we recommend the
QMC for an efficient random orientation averaging with the NOA.

Some results of numerical light scattering simulations based on this technique
for a medium comprising spherical particles are given in [61].

A software package named NAOPC (numerical averaging of optical properties
of clusters) using the techniques in this section and section 4.2 are available at [90].

1.4.4 Scattering and absorption of BCCA composed of tens
to thousands of monomers

We introduce light scattering properties of BCCA composed of tens to thousands of
monomers using our proposed methods. The fixed orientation version of the CTM
can be used for N � 512 when we consider monomers of xm = 4.5 on computers
with 2 GB RAM. As written in section 1.4.1, the maximum N can be increased by
the GAM. Errors caused by the GAM are less for absorbing materials than those
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Fig. 1.9. Improvements in parameter space by using fixed orientation version of the CTM
instead of the AOA version of the CTM (After Y. Okada et al., JQSRT, 109, 2613–2627,
2008).

of low to intermediately absorbing materials. Therefore, for absorbing materials,
we can use the GAM with the ratio Noutgr -to-Norg of 1/16, while for other refractive
indices we used the ratio of 1/8 to obtain results with errors of less than 15%.

We consider three materials: (1) silicate, (2) pyroxene, and (3) amorphous car-
bon (see Table 1.6 for their refractive indices). The pyroxene is actually one type of
silicate. However, we call them silicate and pyroxene to denote low-absorbing and
intermediately absorbing materials, respectively.

Table 1.6. Refractive index of materials

Silicate: m = 1.48 + 0.000028i [54]
Pyroxene: m = 1.635 + 0.0042i [15]
Amorphous carbon: m = 2.03 + 0.77i [66]

Fig. 1.10 shows Qabs and Qsca obtained from our simulations. Results with
N ≤ 512 are obtained using the CTM without the GAM; those with N ≥ 1024 are
obtained using the CTM combined with the GAM.

Note that the simulation results are obtained for a single fixed orientation of
the aggregate, not for random orientation averaging.

Results clearly show a linear relationship between N and efficiency values (i.e.,
Qabs and Qsca). In results with N of 128 and 256, there are some deviations from
the linear relationship. However, results are obtained for a single orientation, not
random orientation averaging. We consider that these deviations may be caused
by specific alignment of monomers for a single orientation, and may disappear for
random orientation averaging.

We obtained the regression of the relations between N and efficiency values
(Qabs and Qsca). The obtained regression equations are shown in Table 1.7. The
correlation coefficient of each linear regression line is shown in brackets in Table 1.7.
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Fig. 1.10. Log–log plots of Qabs and Qsca of aggregates composed of up to 8192
monomers, where xm = 4.5 for silicate, pyroxene, and amorphous carbon. The lines are
the regression line for each material. The aggregates with N ≤ 512 are calculated without
the GAM while those with N ≥ 1024 are calculated with the GAM. All the results are ob-
tained for one orientation of the aggregate. Table 1.7 lists the equations of the regression
lines (after Y. Okada et al., JQSRT, 108, 65–80, 2007).

All the correlation coefficients show very high values (i.e., ≥0.990) denoting strong
correlation between N and efficiency values for all the materials.

It is also noted that exponential slopes of regression lines of different materials
are very similar (i.e., 0.293 ± 0.008). Therefore, we consider that the relationship
between N and efficiency values does not depend on the material composition,
rather it depends on other physical properties of the BCCA; one possibility is the
shape of the aggregate.

Other details of the simulations are discussed in [58].

Table 1.7. Equations of regression lines in Fig. 1.10 for silicate (Si), pyroxene (Py) and
amorphous carbon (Ac). The numbers in brackets represent the correlation coefficient of
the regression, and y represents the efficiencies (i.e., Qabs and Qsca), respectively (after
Y. Okada et al., JQSRT, 108, 65–80, 2007).

Qabs Qsca

Si y = 0.000811×N0.292 (0.998) y = 2.35×N0.282 (0.990)

Py y = 0.133×N0.287 (0.997) y = 1.82×N0.293 (0.994)

Ac y = 0.831×N0.298 (0.995) y = 0.864×N0.304 (0.996)

1.4.5 Intensity and polarization of light scattered by
silicate aggregates

The intensity and polarization of light scattered by fractal aggregates are important
light scattering properties utilized to interpret observational data of cometary dust.
Numerical light scattering simulations have been utilized to study the light scat-
tering properties of cometary dust using fractal aggregates as their shape models
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(e.g., [1,2,34,35,37,39,62–64,70,71]). However, as shown in section 1.4.3, aggregates
studied before have been limited by N � 200 with xm ≈ 1.7. It is important to
study light scattering properties of the aggregates with increased N because realis-
tic dust particles are considered to have a much larger number of sub-components
(e.g., one million) as deduced from the image of IDP (Interplanetary dust particles)
(see fig. 3 of [30], for example).

In this part, we show sample results of the light scattering properties of the
BPCA and BCCA with increased N obtained from our extended numerical light
scattering simulations [60]. We consider the wavelength λ of 0.6μm, and refractive
index of silicate m = 1.68+0.03i [38]. We treat the BPCA and BCCA composed of
128, 256, 512, and 1024 monomers. We consider different values of monomer radius
rm. Results with N ≥ 512 can be obtained by using a fixed orientation version
of the CTM on our computer resources (2 GB RAM). We investigate results of
random orientation averaging obtained using the NOA procedure with the fixed
orientation version of the CTM.

Figs 1.11 and 1.12 show the intensity (a1(Θ) in Eq. (1.1)) and polarization
(P (Θ) in Eq. (1.3)) of the BPCA and BCCA with N ranging from 128 to 1024.
Curves with different styles correspond to results with different N .

Intensity

The results of intensity (i.e., left panels of Figs 1.11 and 1.12) show the following
two impacts of N :

– Forward scattering amplitudes at scattering angle of 0◦ for the BPCA and
BCCA increase with N . The BCCA shows a larger increase of the amplitudes
with N compared with that of the BPCA.

– A bump around the scattering angles of 10–20◦ becomes noticeable for the
BPCA with increased N (i.e., 256–1024). The scattering angle of the bump
shifts from 20◦ to 10◦ as N increases. Also the bump becomes sharper for the
BPCA with increased N . In the case of the BCCA, the bump is not seen even
with N = 1024.

We consider that the increase of forward scattering amplitudes of the BPCA
and BCCA is caused by increased multiple light scattering between monomers.
Because of the difference in the structures of the BPCA and BCCA, the influence
of N on the intensity is different.

There are several mechanisms of multiple light scattering between monomers,
such as CB (coherent backscattering) effect [53], SH (shadow hiding) effect [67],
near-field effect [65]. These different mechanisms work differently for aggregates
having different structures.

As introduced in section 1.2.2, the BPCA has a porosity of around 85% while
the BCCA has a porosity greater than 99%. That is, the BPCA is more compact
compared with the BCCA.

The second feature of the intensity (i.e., the bump around scattering angles
of 10–20◦) becomes clearly noticeable for the BPCA with larger N (e.g., 1024).
Therefore, we shall consider that the bump is caused by a mechanism which works
effectively for compact aggregates (BPCA) with higher orders of multiple scatter-
ing, and which does not work for sparse ensembles (BCCA).
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One possible mechanism causing above two intensity features is the near-field
effect. According to Petrova et al. [65], the near-field effect works more for com-
pact structures while the CB effect works effectively for sparse ensembles. Future
studies of different mechanisms of multiple light scattering inside an aggregate are
interesting to further understand results of numerical light scattering simulations
of aggregates.

Polarization

Middle and right panels of Figs 1.11 and 1.12 show degree of polarization by the
BPCA and BCCA. The right panels represent polarization values at scattering
angles of 150–180◦ in order to concentrate on the negative branch of the polariza-
tion.

Hereafter we use symbols listed in Table 1.8 for discussion of the polarization
characteristics. Influence of N on the polarization is as follows:

1. Influence of N on Pmax:
(a) Pmax at scattering angles of around 90◦ decreases as N increases.
(b) The increase of N greatly reduces Pmax for the BPCA while it reduces

Pmax little for the BCCA.
2. Influence of N on the NPB (negative polarization branch):

(a) Θmin shifts to larger scattering angles as N increases. This influence is
commonly seen for the BPCA with rm of 0.11, 0.13, and 0.15μm.

(b) Pmin changes for different values of N . This influence is clear for the BPCA
and not clear for the BCCA.

The decrease of Pmax for increased N (items 1(a) and 1(b) of the above list)
is explained by the depolarization effect due to the increased orders of multiple
light scattering between monomers (see section 13.4 of [50]). Since the BPCA is
more compact than the BCCA, we consider the influence of the depolarization to
be larger for the BPCA than the BCCA.

As regards item 2(a) of the above list, Θmin shifts from around 165◦ to around
175◦. This shift is less pronounced for the BPCAs with rm = 0.11 and 0.13μm,
but quite clear for the BPCA with rm = 0.15μm.

Volten et al. [72] have performed laboratory measurements of polarization ob-
tained for several fluffy aggregate samples. The polarization data are obtained for
the scattering angles up to around 175◦.

The polarization curves in [72] have a feature that the value of P decreases for
larger scattering angles. The minimum value of the polarization is located at the
largest scattering angle attainable in their laboratory measurements (i.e., 175◦).
Θmin was not clear in the measurements because the largest scattering angle was
limited. However, we can expect from their measurements that Θmin will be located
at scattering angles of 175–180◦. This similar trend of Θmin between laboratory
measurements and numerical light scattering simulations is interesting for future
study of the NPB.

Now we focus on item 2(b) of the above list. With the increase of N , Pmin
changes differently for BPCAs having different values of rm:
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– Pmin monotonously increases for the BPCA having rm of 0.11μm,
– Pmin temporarily increases, then decreases for the BPCA having rm of 0.13μm
– Pmin monotonously decreases for the BPCA having rm of 0.15μm

The NPB is generated by some mechanisms of multiple light scattering between
monomers (e.g., CB, SH, and near-field effect). Properties of multiply scattered
light depend on how each monomer scatters the light impinging on it. We consider
that monomers of BPCAs having different rm somewhat differently scatter the
impinging light causing the different behavior of the NPB with increase of N .

Compared to the BPCA, the BCCA does not show a clear influence of N on
the NPB. The right-hand panels of Fig. 1.12 show a small variation in the NPB
for different values of N . However, the variation is not monotonous for the increase
of N . We do not currently know whether this variation is actually caused by the
different values of N or by other variation occurring during the generation of the
BCCA (e.g., a small-scale variation between BCCAs having the same values of N).

We need further investigation on the influence of N and other physical proper-
ties on the intensity and polarization of the aggregates to better understand how
the several mechanisms of multiple light scattering inside an aggregate work.

Table 1.8. Symbols of the polarization characteristics

The maximum value of the polarization: Pmax
The scattering angle of the Pmax: Θmax
The minimum value of the polarization seen at the NPB: Pmin
The scattering angle of the Pmin: Θmin

The NPB denotes a negative polarization branch at backscattering angles.

1.5 Summary

In this chapter, we have introduced methods for numerical light scattering simu-
lations applicable to aggregates whose size is small to moderate compared to the
wavelength of the incident light.

Methods developed around the 1970s as shown in section 1.3 were applicable
to aggregates with a small number of monomers (e.g., five monomers) and to those
with small monomers in the Rayleigh region. Those methods were later improved to
be applicable to aggregates with a larger number of monomers and with increased
monomer sizes. Also in section 1.3, the methods widely used in recent numerical
light scattering studies of aggregates were briefly described. These methods are
applied to aggregates composed of hundreds of spheres when the monomer size
parameter is less than around 2.0. Further improvements of these methods are
required for the full application of light scattering properties obtained from the
numerical simulations for the interpretation of observational data.

In section 1.4, we presented techniques for improving the numerical light scat-
tering simulations published in recent years. They include:
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(b) rm = 0.13μm
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(c) rm = 0.15μm
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Fig. 1.11. Intensity and polarization of BPCA for various numbers of monomers. Left
and middle panels: intensity and polarization at all the scattering angles. Right panels:
Polarization in negative polarization branch (After Y. Okada et al., JQSRT, 109, 2613–
2627, 2008).
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(a) rm = 0.11μm
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(b) rm = 0.13μm
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(c) rm = 0.15μm
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Fig. 1.12. Same as Fig. 1.11 but for BCCA.
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– the grouping and adding method (to increase number of monomers),
– the quasi Monte–Carlo method (to efficiently carry out random orientation

averaging),
– Numerical orientation averaging (to extend treatable parameter space, i.e., the

size and number of monomers).

Improvements in numerical light scattering simulations enable us to improve
understanding of the light scattering properties of aggregates, and also to interpret
the observational data of various objects having an aggregate structure (e.g., dust
in space, microbiocells, and atmospheric particles).
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Abbreviations

AOA : analytical orientation averaging
BCCA : ballistic cluster–cluster aggregate
BPCA : ballistic particle–cluster aggregate
CB : coherent backscattering
CMC : crude Monte–Carlo
CTM : T-matrix method for clusters of spheres
DDA : discrete dipole approximation
EMT : effective medium theory
FDTD : finite difference time domain method
GAM : grouping and adding method
GMM : generalized multiparticle Mie-solutions
HS : Halton sequence
LAT : lattice grid division
LDS : low-discrepancy sequence
MT : Mersenne Twister
NOA : numerical orientation averaging
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NPB : negative polarization branch
QMC : quasi-Monte–Carlo
SH : shadow hiding
VSWF : vector spherical wave function
VSH : vector spherical harmonics

References

1. Andersen, A.C., H. Mutschke, T. Posch, M. Min, and A. Tamanai, 2006: Infrared
extinction by homogeneous particle aggregates of SiC, FeO and SiO2: Comparison of
different theoretical approaches, J. Quant. Spectrosc. Rad. Transfer, 100, 4–15.

2. Bertini, I., N. Thomas, and C. Barbieri, 2007: Modeling of the light scattering prop-
erties of cometary dust using fractal aggregates, Astron. Astrophys., 461, 351–364.

3. Borghese, F., P. Denti, G. Toscano, and O.I. Sindoni, 1979: Electromagnetic scattering
by a cluster of spheres, Appl. Opt., 18, 116–120.

4. Borghese, F., P. Denti, R. Saija, G. Toscano, and O.I. Sindoni, 1984a: Multiple elec-
tromagnetic scattering from a cluster of spheres. I. Theory, Aerosol Sci. Technol., 4,
227–235.

5. Borghese, F., P. Denti, R. Saija, G. Toscano, and O.I. Sindoni, 1984b: Use of group
theory for the description of electromagnetic scattering from molecular systems, J.
Opt. Soc. Am. A, 1, 183–191.

6. Borghese, F., P. Denti, and R. Saija, 1992: Optical properties of spheres containing
a spherical eccentric inclusion, J. Opt. Soc. Am. A, 9, 1327–1335.

7. Borghese, F., P. Denti, and R. Saija, 1994: Optical properties of spheres containing
several spherical inclusions, Appl. Opt., 33, 484–493.

8. Bohren, C.F., and D.R. Huffman, 1983: Absorption and Scattering of Light by Small
Particles, New York: Wiley.

9. Bruning, J.H., and Y.T. Lo, 1969: Multiple scattering by spheres, Antenna Laboratory
Rep. 69-5 (Antenna Laboratory, Department of Electrical Engineering, Engineering
Experiment Station, University of Illinois, Urbana, Illinois).

10. Bruning, J.H., and Y.T. Lo, 1971a: Multiple scattering of EM waves by spheres,
Part I – Multiple expansion and ray-optical solutions, IEEE Trans. Antennas Propag.,
AP-19, 378–390.

11. Bruning, J.H., and Y.T. Lo, 1971b: Multiple scattering of EM waves by spheres,
Part II – Numerical and experimental results, IEEE Trans. Antennas Propag.,
AP-19, 391–400.

12. Chylek, P., and V. Srivastava, 1983: Dielectric constant of a composite inhomogeneous
medium. Phys. Rev. B., 27, 5098–5106.
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2 Application of scattering theories to the
characterization of precipitation processes

Sandra Jacquier and Frédéric Gruy

2.1 Introduction

Solid–liquid suspensions are frequently used in industrial processes. These suspen-
sions usually contain aggregates made up of solid primary particles. Many char-
acterization tools of these suspensions are based on light scattering (Mie theory).
However, Mie theory (1908) is not always applicable to practical problems since
the scatterer must be a homogeneous sphere. The ordinary particle sizers that use
this theory do not make it possible to measure non-spherical particle geometri-
cal characteristics. Extensions of the Mie theory for arbitrary shaped particles or
particle aggregates are available nowadays (the T-matrix method, the Generalized
Multiparticle Mie (GMM)-solution, etc.). But the computing times of the optical
properties via these exact theories do not allow for a real-time analysis. This chap-
ter is therefore dedicated to the search for approximate methods for the estimation
of aggregate optical properties, particularly their scattering cross-section.

This chapter is split into five main sections. Section 2.2 concerns the aggre-
gation process and, more generally, the precipitation process, to provide a better
understanding of the framework of this study. Precipitation is the formation of a
solid in a solution during a chemical reaction. The morphology of particles cur-
rently observed during precipitation or particle synthesis will be described. The
relationship between optics and particle technology will be recalled. Section 2.3
outlines briefly the different approximate methods used for the case of spherical
and non-spherical particles. Section 2.4 presents selected approximations for light
scattering cross-sections in the case of aggregates. The quality of each approxima-
tion will be discussed by comparison with the exact theory. Practical cases will
be presented. Section 2.5 is an extension of the previous section to the light pres-
sure cross-section. Section 2.6 is an attempt to relate the scattering properties of
aggregates to their geometrical characteristics.

In the next section we describe the context of the need for approximate methods
for scattering cross-section of aggregates.
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2.2 Aggregate formation

Materials are often made from inorganic particles. These are formed by reactions
in the gas phase or, more commonly, in liquid phases. The main process is called
precipitation.

2.2.1 Precipitation and particle synthesis

The classical situation is the following: a solution consisting of a solute A and a
solvent is mixed with another one consisting of a solute B and the same solvent.
The two solutes react to form a solid product denoted AB.

A + B↔ AB .

A and B are often ions.
If equilibrium between the solid phase and the solutes is reached, thermody-

namics tells us that this equilibrium (saturated solution) is characterized by the
solubility of the solid phase. However, when the concentrations of A and B are
high enough to produce solid particles, the initial solution is supersaturated. So,
the ratio of the actual concentration and the equilibrium concentration (solubility),
called supersaturation, is the key parameter of the dynamics of precipitation. The
higher the supersaturation, the higher the precipitation rate. Particle formation
can be distinguished into three stages: nucleation, growth and agglomeration.

Nucleation is the birth of particles that are large enough to grow (nuclei). Parti-
cles that are too small are unstable and dissolve in the solution. The nucleation rate,
JN, is defined as the number of created nuclei per unit volume and per unit time.
The formed nuclei are characterized by a so-called critical size. Typical critical size
values are within the range 1–50 nm. The nucleation rate is a nonlinear increasing
function of supersaturation. The nucleation stage in a precipitation process is often
difficult to observe. If light is used as a probe to study precipitation, nuclei can
be treated as Rayleigh scatterers. Considering the nuclei concentration, interaction
between light and suspension is usually below the detector threshold. Other meth-
ods (for instance, small-angle X-ray scattering) are preferred, but are more difficult
to apply. Details about the nuclei are not known. Hence, nuclei leading to inorganic
particles are often considered as amorphous and spherical.

The following stage is the growth of the nuclei. They may additionally convert
to crystals. Crystals present facets, the occurrence of which can be explained from
crystallography and thermodynamics. However, depending on the precipitation re-
action, only amorphous particles (i.e., hydroxylated compounds) can be found.
Usually, the growth rate is defined as the derivative of crystal characteristic length
(e.g., the diameter) with time. The growth rate increases with the supersaturation.
Most often the relation between growth rate and supersaturation is linear.

For different reasons (one is the decrease of supersaturation during precipitation,
due to the mass transfer from solution to crystals), an upper size limit for the
growing crystals is observed. At the end of the second stage, crystal or particle size
ranges between 0.1 and 10μm. During this period, particles become large enough
to scatter light effectively. Thus, light scattering methods are suitable for studying
the growth of crystals or primary particles in suspension.
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Before or after reaching the end of growth, crystals or amorphous particles can
form clusters or agglomerates. Agglomeration requires the collision of particles and
their subsequent adhesion due to attractive forces (for instance, van der Waals
forces). Consolidation between primary particles or crystals can take place by crys-
talline growth from the contact point. In quiescent liquids, the particle collisions
are due to their Brownian motion. For flowing suspensions, collisions are due to
Brownian motion for small particles or crystals (smaller than about 0.2μm) and
to local shear for larger particles.

When the agglomerate increases in size, it becomes fragile. Then, break-up takes
place and a limit size is reached (with values in the range 5–100μm). The stress
acting on the agglomerate results from the shear, but also the transition between
viscous and inertial turbulent regimes. This often leads to agglomerates containing
only a few primary particles (less than one hundred primary particles).

Summarizing: inorganic solutes can lead to solid particles in a batch precipita-
tion vessel, provided that the solution is initially supersaturated. Nucleation, i.e.
the birth of nuclei with a critical size, takes place, while supersaturation decreases
as a consequence. Finally, supersaturation becomes too small, to produce new nu-
clei. Thus, there is a mass transfer from solution to the nuclei surface leading to
the growth of nuclei. In this way, crystals or amorphous particles are formed. As
supersaturation tends to one, growth stops. Depending on the surface charge of
particles, their agglomeration may occur throughout the growth period.

2.2.2 Particle shapes during precipitation

Images from electron microscopy often show the complexity of particle structure.
Particles formed by growth from solution can be crystals with well-defined crys-
talline faces, but may be agglomerates of smaller (nanometric) particles. In this
case, agglomeration can be due to Brownian motion and the subsequent collision
of particles, but also to the contact of specific crystalline faces belonging to two
particles. The first situation leads to random agglomerate with spherical symmetry.
The second phenomenon, also called orientated agglomeration, leads to regularly
shaped particles (i.e., cylinders as disks stack). It must be underlined that the mech-
anism of orientated agglomeration is still being studied. Whatever the structure of
particle, crystals, random or ordered agglomerate of nanoparticles, their geometric
characteristics are easily determined by image analysis of electron micrographs.

However, these particles are rarely separate. They form agglomerates after col-
lision due to Brownian motion and/or shear flow. The structure of agglomerates is
disordered and is often considered as fractal-like. However, the reader must keep
in mind that these agglomerates consist of only a few particles.

Fig. 2.1 presents agglomerates of SrMoO4, strontium molybdate, crystals
(Cameirao et al., 2008). They are obtained by precipitation:

SrCl2 +Na2MoO4 → SrMoO4 + 2NaCl .

Bipyramidal crystals in the size range 3–10μm are formed. Agglomerate size is in
the range 20–80μm.
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Fig. 2.1. Agglomerate of SrMoO4 crystals.

Fig. 2.2. Multi-scale ZnS agglomerate.

Fig. 2.2 presents agglomerates of zinc sulphide particles (Mekki-Berrada et al.,
2005). They are obtained by homogeneous precipitation:

ZnSO4 +CH3CSNH2 + 2H2O
H+

−→
80◦C

ZnS + CH3CO2H+NH+
4 HSO

−
4 .

ZnS particles are sphere-like with a mean size equal to 3μm. They consist of
nanoparticles, 30 nm sized (one may observe an intermediate structure in the range
100 . . . 300 nm). Micro-particles seem relatively dense. However, porosity and inner
structure depend on the acidity and temperature. Micro-particles collide to form
agglomerates in the range 20–60μm.
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Fig. 2.3 shows ordered agglomerates resulting from the stacking of Ni(OH)2
nanosized disks (Coudun et al., 2007). They are obtained by precipitation from
nickel di-dodecylsulfate and ammonia:

Ni(DS)2 + 2OH− NH3−→
60◦C

Ni(OH)2 + 2DS− .

Fig. 2.3. Ni(OH)2 nanosized agglomerates.

2.2.3 Dynamics of precipitation: modelling

In order to manage the complexity of precipitation dynamics, each particle in the
precipitation reactor is characterized by space coordinates (x, y, z) and internal co-
ordinates pi (i.e. radius, characteristic lengths of crystal, volume, porosity, gyration
radius, fractal dimension, . . . ) with 1 ≤ i ≤ P .

The larger the number P , the more comprehensive the description of the
particles. So, the population density function n(x, y, z, p1 . . . pP ) is such that
dN = ndx dy dz dp1 . . . dpP represents the number of particles with x in the range
[x;x+ dx], pi in the range [pipi + dpi].

This population density obeys the population balance equation (PBE), that can
be formally written as:

∂n

∂t
= −
∇· (
vn)−

P∑
i=1

∂

∂pi
(Gi(S)n)+JN (S)δ(p1−p1c) . . . δ(pP −pPc)+Vag , (2.1)

where 
v is the particle velocity, t is the time, Gi is the growth rate for the pi
parameter [Gi = (dpi/dt)], δ is the Dirac function, pic is the internal parameter
corresponding to the critical nucleus, JN (S) is the nucleation rate as a function of
the supersaturation S, and Vag is the agglomeration rate.

More often, the following assumptions are used:

– homogeneous suspension
– only one internal parameter (particle radius)
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– agglomeration taken into account only at the end of nucleation and growth
– fractal-like agglomerates with constant fractal dimension

For fractal-like agglomerates, the relation between the number j of primary parti-
cles inside the agglomerate and its outer radius Rj is:

Rj = a

(
j

Sr

)1/DF

, (2.2)

where a is the radius of the primary particle. DF and Sr are respectively the fractal
dimension and the structure factor, which is a function of DF .

Attempts to consider two internal parameters (radius and length for particles
such as a needle, solid volume and surface area for porous particles) have also been
made (Tandon and Rosner, 1999; Kostoglou et al., 2006).

Summing up, precipitated particles have a multi-scale structure. One commonly
observes three characteristic length values: 20 nm, 2μm, 20μm. Sometimes, only
two (2μm, 20μm) are observed. The smallest particles are most often dense and
spherical. The intermediate particles are relatively dense and have a well-defined
shape (i.e. sphere, cylinder, ellipsoid, etc.). The largest scale corresponds to dis-
ordered or random agglomerates. The reader interested in details of precipitation
and population balance may refer to Sugimoto (2000) and Randolph and Larson
(1988).

2.2.4 Particle sizing during precipitation

Considerable efforts are made to understand the precipitation mechanisms and
to predict the change of the particle morphology with time. On the other hand,
industrialists need to monitor and control the precipitation process. Off-line size
measurements (i.e. using filtration, powder drying and scanning electron micro-
scope (SEM) observations or suspension sampling and sizing with granulometers)
are now avoided because these operations modify the particle morphology. On-line
measurements (i.e., using a recirculation loop with a measurement cell in a granu-
lometer) are possible, but representative sampling is difficult to carry out. In-line
measurements are preferred. They are often based on light extinction and are ob-
tained from turbidimetric sensors. So, turbidimetry will be at the centre of this
chapter.

Typically, the optical sensor for particle sizing is not the only one in the precip-
itating suspension. The temperature probe and concentration sensors are always
introduced into it. Thus, supersaturation and solid fraction (via mass balancing
from solute concentration) are deduced and, as a consequence, are known.

A turbidimetric sensor records the transmitted light intensity It. One defines
the extinction coefficient or turbidity1 as (see, for instance, Elimelech et al., 1995):

τ = − 1
L
ln
It
I0
. (2.3)

1Definitions and notations in Eqs. (2.3)–(2.5) are used by researchers in the field of par-
ticle sizing concerning suspensions. Other researchers prefer these ones: τ∗ = − ln(It/I0)
and σext(λ) = τ∗(λ)/L where τ∗ and σext are the optical thickness and the extinction
coefficient, respectively.
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I0 and L are the incident light intensity and the geometrical thickness of the
medium, respectively. For a monodisperse diluted suspension, the turbidity obeys
the equation:

τ(λ) = N(xs, ys, zs, p1 . . . pP )Cext(λ, p1 . . . pP ) (2.4)

The functions N and Cext are the particle number concentration and the extinction
cross-section of the particles. (xs, ys, zs) are the coordinates of the sensor in the
reactor.

For a complex diluted suspension, turbidity contains the contribution of each
kind of particles:

τ(λ) =
∫
[p1...pP ]

n(xs, ys, zs, p1 . . . pP )Cext(λip1 . . . pP ) dp1 . . . dpP . (2.5)

Thus, the turbidity monitoring gives information on the population density change
with time during the precipitation process.

Two strategies can be considered for the analysis of turbidity signals:

– inversion of the integral equation (Eq. (2.5)) in order to get the population
density. Then, comparison to PBE (Eq. (2.1)) solution and identification of
unknown physicochemical and morphological parameters (i.e., fractal dimen-
sion . . . )

– PBE (Eq. (2.1)) solving; calculation of τ(λ) (Eq. (2.5)); comparison with experi-
mental turbidity for deducing the unknown physicochemical and morphological
parameters

For numerical reasons, the last one is preferred. However, whatever the strategy,
the knowledge of Cext(λ, p1 . . . pP ) is needed.

The extinction cross-section is dependent on the relative refractive index m,
which is the ratio between the refractive indices of the material and the suspending
medium. Three typical cases can be envisaged: low optical contrast m–1 value
(0 < m − 1 < 0.1), moderate contrast m–1 value (0.1 < m–1 < 0.5) and high
optical contrast m–1 value (m–1 > 0.5). Corresponding materials (suspended in
water) could be, respectively, silica SiO2 (m = 1.08), alumina Al2O3 (m = 1.20)
and titania TiO2 (m = 2).

We will focus our work on non-absorbing (in the visible range) materials that
are most commonly found in the precipitation process. Thus, scattering Csca and
extinction Cext cross-sections are equal.

It is obvious that PBE solving, cross-section calculation and optimization pro-
cedure require great computational efforts and make it difficult to get results in a
short time. Therefore, any rapid calculation of the optical cross-sections would be
a step forward. The accuracy of approximations has to fit the measurement accu-
racy. In the case of turbidity, measurements within 3% error can be considered as
satisfactory.
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The need for approximations is particularly important for agglomerates2. Fast
calculations have to be based on known approximations coming from light scatter-
ing theory. The next section briefly recalls them.

2.3 Approximations for non-spherical particles

The scattering cross-section is a function of the dimensionless particle size param-
eter x (= ka for a sphere), the particle and the medium optical refractive indices
respectively denoted np and nm, the wavelength λ (and the wave number k = 2π/λ)
of the incident light in the medium and the orientation of the incident light in the
relation of the particle position. The relative refractive index m, which is used in
the following equations, is the ratio between the material refractive index np and
the medium refractive index nm.

The exact theory was developed for a sphere in 1908 by G. Mie (see van de Hulst,
1981) and for spheroids by several authors (Asano and Yamamoto, 1975; Asano,
1979; Asano and Sato, 1980; Voshchinnikov and Farafonov, 1992; Farafonov et al.,
1999).

In this section, three classical approximations are recalled: the Rayleigh approx-
imation, the Rayleigh–Gans–Debye approximation and the Anomalous Diffraction
approximation. Principles are presented and an application is given for a sphere.
The reader interested in details on scattering theories may refer to Van de Hulst
(1981) and Kokhanovsky (2001).

2.3.1 Rayleigh approximation

The Rayleigh approximation that considers the scatterer as an oscillating dipole
has a validity range of x � 1, |mx| � 1. So, the scattering efficiency factor for a
sphere is:

Qsca =
8
3
x4
∣∣∣∣m2 − 1
m2 + 2

∣∣∣∣2 (2.6)

and the scattering cross-section is Csca = QscaG (G represents the particle pro-
jected area, for a sphere G = πa2).

A comparison between this approximation and the Mie exact theory shows
that the validity range, in terms of maximum size, varies according to the relative
refractive index and the scattering angle (Mishchenko et al., 2002, 2004).

2.3.2 Rayleigh–Gans–Debye approximation

The validity range of the Rayleigh–Gans–Debye approximation (RGD) is: 2x|m−
1| � 1 and |m− 1| � 1.

2The term aggregation corresponds to the formation of a cluster, the primary particles
of which only interact by physical forces such as van der Waals forces. On the other
hand, agglomeration is aggregation followed by strengthening at the contact point in a
supersaturated solution. Aggregate and agglomerate optical properties will be treated in
the same way.
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Fig. 2.4 represents a particle with an unspecified shape lit by a plane wave
being propagated along the axis z′. It is supposed that each volume element is a
Rayleigh scatterer and behaves independently of the other particle volume elements.
The scattering waves of all these volume elements interfere. The phases of all these
scattering waves are ascribed to a common coordinates reference in order to handle
their amplitude.

Fig. 2.4. RGD approximation.

The expression of the contribution, of the volume element ΔV located out of
O, to the scattering field by the particle is:(

ΔE‖,sca
ΔE⊥,sca

)
=
(
S2 0
0 S1

)
ei·k·r−i·k·z

−i · k · r ΔV
(
E‖,inc
E⊥,inc

)
.

The contribution of a volume element located in O′ will be:(
ΔE‖,sca
ΔE⊥,sca

)
=
(
S2 0
0 S1

)
ei·k(r−z)

−i · k · r ΔV e
iδ

(
E‖,inc
E⊥,inc

)
.

with δ = k 
R • (
ez − 
er) and 
R =
−−→
OO′. S1 and S2 are the amplitude functions per

volume unity:

S1 ≈ − ik
3

2π
(m− 1) and S2 ≈ − ik

3

2π
(m− 1) cos θ .

θ is the scattering angle.
Integration is done with respect to particle volume V to obtain the total field

in the direction 
er. So, the amplitude functions for the particle are:

S1 = − ik
3

2π
(m− 1)V f and S2 = − ik

3

2π
(m− 1)V f cos θ .

The form factor f obeys:
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f =
1
V

∫
V

eiδ dV , (2.7)

that becomes for a sphere:

f(u) =
3
u3
(sinu− u cosu), u = 2x sin θ

2
.

It follows for a spherical particle (Van de Hulst, 1981) that:

Qsca =
∫ π
0

F (θ) d
/
θ(πa2) , (2.8a)

where,

F (θ) = πa2
4
9
|m− 1|2x4f2

(
2x sin

θ

2

)
(1 + cos2 θ) sin θ . (2.8b)

2.3.3 Anomalous Diffraction approximation

This approximation, due to Van de Hulst, bears the name of anomalous diffrac-
tion (AD) because, for low optical contrast, the light passing through the particle
(transmitted without deflection) interferes with that diffracted, then producing a
diffraction known as anomalous (Fig. 2.5).

Let us consider particles such as: x � 1 and |mr − 1| � 1 (see the discussion
of Videen and Chylek (1998) and Liu (1998)).

The second condition implies that the rays are not deviated when they cross
the interface particle-medium and that the reflection is negligible with the same
interface. Extinction is therefore due to:

– absorption of the light passing through the particles
– interferences between the light passing through the particle and that passing

around it

Fig. 2.5. Anomalous Diffraction approximation; ray passing through a sphere.
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Following Van de Hulst (1981), one derives:

Cext =
4π
k2
Re {S(0)} with S(0) = k2

2π

∫∫
[Sp]

(1− e−ik(m−1)l) dy dz .

Integration is performed over the particle projected area Sp on a plane perpen-
dicular to the propagation direction. l is the computed path of light through the
particle, which is a function of the projection coordinates x and y. The integrand
represents the subtraction with ‘the part of shade’ (value 1) of the rays passing
through the particle (e−ik(m−1)l).

If m is real,

Csca = 2
∫∫
[Sp]

[
1− cos(kl(m− 1))] dSp . (2.9)

Therefore, it follows for a sphere

Qsca = Qext = 2− 4
ρ
sin ρ+

4
ρ2
(1− cos ρ) , (2.10)

where ρ = 2x(m− 1).
The anomalous diffraction was applied to a sphere and an infinitely long cir-

cular cylinder (Van de Hulst, 1981), a prism column (Chylek and Klett, 1991), a
hexagonal crystal of ice (Sun and Fu, 1999), ellipsoids (Lopatin and Sid’ko, 1988;
Streekstra and Hoekstra, 1994), a short cylinder (Liu et al., 1998) and other various
forms (Sun and Fu, 2001; Yang et al., 2004).

A comparison between AD and the exact theory (Liu et al., 1998) suggests that
AD estimates the extinction more precisely in the case of a random orientation of
non-spherical particles than for spheres.

The next section treats approximations for the case of clusters of spheres. The
derived approximations are directly related to the previous ones.

2.4 Approximations for aggregate scattering cross-section

This part begins with a short summary of the exact methods. It is followed by
a study of the relation between aggregate scattering cross-section and physical
characteristics. Finally, four approximations are described and an illustration in
the field of precipitation is presented.

2.4.1 Exact theory for non-spherical particles and aggregates

The presented summary (see Table 2.1) of the different exact methods is not exhaus-
tive. But we try to show several methods used to calculate the optical properties
of an aggregate. We invite the reader to consult the article of Kahnert (2003) to
have a more complete range of these methods and the papers series of Mishchenko
et al. (2007, 2008). It is rather difficult to classify them precisely and especially to
enumerate all of them. Nevertheless one can classify them in three main categories:
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Table 2.1. Methods for treating the light scattering by a non-spherical particle or an
aggregate (N is the number of operations in the algorithm (Kahnert, 2003))

Name Principle Applications Strong and weak
points

Methods based on partial derivative equations

SVM
Separation
of Variable
Method

Method applied in the case
of the Mie theory; it can be
applied when the boundary
of the considered particle
coincides with the reference
frame.

In any reference
frame, where the
variables separa-
tion can be applied.
Asano and Ya-
mamoto (1975) used
this technique to
determine the opti-
cal properties of a
spheroid.

– The solution ob-
tained is known as
exact but calcula-
tions are long

– the operation for
each orientation
must be repeated

– N ≈ O(x3)

FDTD
Finite
Differences
Time
Domain

This method consists of
discretizing the Maxwell
equations, in space and
time. Then to solve them it
is necessary to start from
the initial values (Yang and
Liou, 2000).

All particle shapes. – the operation for
each orientation
must be repeated

– N ≈ O(x4)

FEM
Finite
Element
Method

This method consists in
discretizing the Helmholtz
equation in space and
solving numerically using
the boundary conditions
(Coccioli et al., 1996).

All particle shapes. – the operation for
each orientation
must be repeated

– the precision de-
pends on the grid
which must be se-
lected according to
the particle shapes

– N ≈ O(x7)

PMM
Point-
Matching
Method

In this method, the in-
ternal and external fields
are expressed as a spheri-
cal harmonic vector. The
tangential field at the
boundary of a particle must
be continuous for a fixed
number of points belonging
to the particle surface.

Normally all par-
ticle shapes, but
problems are known
for the elongated
geometries.

– this method is
limited to the
quasi-spherical
particles, it has a
dubious conver-
gence, and thus,
requires a long
CPU time (Wriedt,
1998).
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Table 2.1. (Continued)

Name Principle Applications Strong and weak
points

Volume or surface integration

VIEM
Volume
Integral
Equation
Method

The field inside and outside
the volume is expressed in
terms of incident and inter-
nal fields for the selected
volume.
– the internal field is eval-
uated by considering, for
each volume element, as
being constant: MOM
(Method of Moments)
(Harrington, 1968). Alter-
natively,
– each element is regarded
as a dipole: DDA (Discrete
Dipole Approximation)
(Draine and Flatau, 1994)

Inhomogeneous,
anisotropic particles.

– MOM and DDA
have a long CPU
time

– the operation for
each orientation
must be repeated

– N ≈ O(x9)

1. Methods based on the partial derivative equations which calculate the scattering
field by solving the Maxwell equations or the Helmholtz equation. They are
subjected to the boundary conditions suitable in the time or the frequency
domain.

2. Methods based on integration over volume or surface of equations derived from
the Maxwell equations. Thus, the boundary conditions are automatically in-
cluded in the solution.

3. The other methods are known as hybrids since they derive from the various
approaches.

It is important to specify the meaning of the ‘T-matrix method’ expression
which is found in a lot of publications. In the T-matrix method, the incident and
scattering fields are expressed in the form of a series of spherical vector wave func-
tions. This approach is named the T-matrix method when the expansion coefficients
of the incident wave and the scattering wave are connected by a linear transfor-
mation (T is for transition). This matrix T contains all the information on the
particle’s optical properties for a given wavelength. It is a function of the size pa-
rameter, the shape, and the optical refractive index of the considered particles, but
it does not depend on the incident field. Thus this matrix is not to be computed
at each particle orientation change or change of the incident wave direction.

To classify the publications set relying on this method, a database review was
carried out by Mishchenko et al. (2004, 2007, 2008). This method is, in fact, a
technique of calculation, which is found associated with various methods (e.g.,
SVM). Thus, any method making it possible to formulate the problem in the way
of a matrix T is called the T-matrix method.
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The solving by separation of variables (SVM) for only one sphere can be en-
larged to an aggregate of spheres by using the translation theorem for the spherical
wave vector functions which expresses them in various bases of coordinates, and,
by applying a superposition principle. The total scattering field for an aggregate is
then represented by the superposition of the individual scattering fields resulting
from each particle in the knowledge that these fields are interdependent. Moreover,
one can formulate the problem as a T-matrix. This method is very precise but
its computation time depends on the number and the size parameter of primary
particles.

We will use in the continuation of this text a method which is in fact a particular
case of the T-matrix method (Mishchenko et al., 2004) bearing the name of GMM
(Generalized Multi-particle Mie-solution).

We did not find a comparison of the various methods, except for an article of
Hovenier et al. (1996) which compared the T-matrix (method by surface integra-
tion), SVM and DDA. This article shows that the last is not completely in agree-
ment with the two other methods. As no study was undertaken in this direction,
the work presented in this article is achieved with a method which seems, closest to
the one used for a simple sphere and validated by experiment (Xu and Gustafson,
2001): GMM. The details of GMM are given by Xu (1995, 1996, 1997a,b, 1998a).

2.4.2 Main features of the scattering properties of aggregates

We present a summary of the main features of the scattering properties of ag-
gregates. Results come from the calculated optical properties of aggregates such
as:

– aggregates of spherical primary particles
– number of primary particles in the aggregate N ∈ [1, 100]
– primary particle size parameter (x) in the range: [0.013, 9.25].
– three different materials (SiO2, Al2O3, TiO2); non-absorbing materials

Optical properties are calculated by using GMM theory.
First of all it is interesting to study the effect of the inter-particle distance on

the scattering cross-section.

2.4.2.1 The case of a two-sphere set

The evolution of the scattering cross-section of a two-sphere set according to the
type of material, their size parameter and the center to center distance has already
been studied by Mishchenko et al. (1995) and Quirantes et al. (2001).

TheKXu parameter for different materials was used.KXu is defined as the ratio
between the scattering cross-section of an aggregate and the sum of scattering cross-
sections of N primary particles which form this aggregate (so, the denominator
assumes non-interacting and non-interfering spheres).

KXu =
CXu,N
NCMie,1

. (2.11)
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The two spheres, denoted i and j, were gradually separated (center to center) by
a factor Fij proportional to their diameter, until they did not interact any more
(KXu is equal to 1). As the separation distance is denoted dij , the factor obeys the
relation:

Fij = dij/(2a) ,

where a is the radius of the primary particle.
According to Fig. 2.6, for size parameter smaller than 0.5, the smaller the pri-

mary particle is, the greater the distance factor must be to obviate any interaction.
We therefore endorse the conclusion of Kolokolova and Gustafson (2001): a sus-
pension consisting of Rayleigh scatterers as primary particles has to have a very
weak volume fraction to avoid multiple scattering, whatever the relative refractive
index.

Interaction between particles cannot be ignored even if Fij > 4 (for the whole
range of the size parameter).

For spheres in contact, KXu (Fig. 2.6) increases with decreasing size parameter
up to a value close to 2. When the two spheres are large enough, the deviation from
the non-interacting limit is negligible (e.g., KXu < 1.1 for x > 5).

It therefore appears useful to evaluate the critical inter-particle distance for
which interaction is negligible. An approximate method for aggregate optics calcu-
lation could take it into account.

2.4.2.2 The case of aggregate (N > 2)

Auger et al. (2003) studied the relation between the extinction cross-section of an
aggregate, its shape (linear or compact configuration) and the number of primary
particles (2, 4, 8, 13) in the case of titania TiO2 (the optical refractive index be-
ing equal to 2.8). In this article, the average extinction cross-section (average on
the polarization and the incident wave direction) divided by the aggregate volume
(made up of monosized spheres) is calculated, according to their particle radius
(between 0.04μm and 0.132μm). It is found that there exist two size ranges (for
λ = 0.546μm). For a primary particle radius smaller than 0.08μm–0.09μm, an
isolated primary particle scatters less than if it was contained in an aggregate.
Primary particles belonging to the second range behave in an opposite way. They
show that there exist two size ranges concerning the effect of aggregate shape:
in the first range, a compact configuration scatters more than linear configura-
tion, and conversely for the second range. Lastly, a comparison with the equivalent
sphere approximation shows that the latter is not suitable. Auger et al. (2005)
and Jacquier and Gruy (2007a) perform similar studies in the way that they com-
pare the scattering cross-section for various configurations. The Auger et al. (2005)
study is based on the distribution of randomly generated aggregates by classical
mechanisms of aggregation.

Jacquier (2006) and Jacquier and Gruy (2007a) enlarged the study using differ-
ent optical refractive indices, a greater range of the primary particle size parameter,
and different configurations. They noted the effect of the primary particle number
and the aggregate morphology. The results are summarized in the two next para-
graphs.
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Fig. 2.6. Evolution of KXu according to the size parameter and the distance factor
ranging between 1 and 100 for the three materials (SiO2, Al2O3, TiO2).
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• Effect of the number of primary particles on the scattering cross-section
In the paper of Jacquier and Gruy (2007a), two extreme configurations were com-
pared (linear and compact configuration). For each configuration, Jacquier and
Gruy noticed that there exist two ranges. The first is for KXu larger than 2, and
the second is for KXu ranging between 0 and 2. The value of the size parameter
of the primary particles corresponding to the range boundary is a weak function
of the optical refractive index, the primary particle number and the configuration.
However, the authors suggest the first range for x ∈ [0, 2] (Fig. 2.7(a)) and the sec-
ond one for x ∈ [2, 10] (Fig. 2.7(b)) (the limit of their study is for a size parameter
smaller than 10). They conclude (as shown in Fig. 2.7):

a b

Fig. 2.7. KXu as a function of the size parameter for the linear configuration with N
primary particles (2, 4, 8, 16) and for SiO2 (Jacquier and Gruy, 2007a): (a) for the range
x ∈ [0, 2] and (b) x ∈ [2, 10].

– for x ∈ [0, 2], the larger the number of primary particles, the larger the scatter-
ing cross-section whatever the configuration. Indeed, in the case of very small
size parameter, the aggregate scattering cross-section is proportional to the
particle number square and to the primary particle scattering cross-section
(CXu,N ∝ N2CMie,1). This relation is checked on a lesser scale by aggregates
with high refractive index (e.g., TiO2). In addition the decrease of KXu(x)
seems to depend on the configuration.

– for x ∈ [2, 10], KXu(x) is not yet equal to 1 (Fig. 2.7(b)), i.e. the aggregate
scattering cross-section is not the sum of the scattering cross-sections of each
primary particle.

• Effect of the aggregate morphology on scattering cross-section
As illustrated in Fig. 2.8, it is possible to establish a classification of the configura-
tions according to their scattering cross-section. In the x-domain, where KXu > 1,
the scattering cross-section of the compact configuration is higher than that of the
plane configuration, itself higher than that of p1 and p2 configurations (which are
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a b

Fig. 2.8. KXu as a function of the size parameter for aggregates with four primary
particles (linear, compact, plan, p1, p2) for Al2O3.

very close Fig. 2.9). The linear configuration is the weakest. The order is reversed
for the other x-domain (KXu < 1). Thus, there are two extreme configurations,
linear and compact, between which are other configurations.

compact linear plan p1 p2 

Fig. 2.9. Different aggregate configurations in the case of four primary particles.

The primary particles arrangement, i.e. the aggregate configuration, is not with-
out effect on the scattering cross-section, nevertheless, the number of primary par-
ticles in it is the prevailing parameter in the range x ∈ [0; 2]. In the second range
(x ∈ [2; 10]), the configuration is more important than the number of primary
particles.

2.4.2.3 Conclusion on aggregate scattering cross-section

The study of scattering (Csca) cross-sections of aggregates obtained with the exact
method revealed that:

– the distance between particles is a relevant parameter for Csca,
– different aggregate configurations, following its shape or the number of primary

particles which it contains, are perfectly distinguishable,
– the number of primary particles is the relevant parameter in the case of small

size parameter x (x→ 0, CXu,N ∝ N2CMie,1),
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– there exists, for an aggregate with a given number of primary particles, two
extreme configurations (linear and compact) between which the cross-sections
of the others are located.

2.4.3 Approximate methods (CS, BPK, AD, ERI) for aggregates

In this subsection, we describe different approximate methods: the Compact
Sphere method (CS), the Berry–Percival–Khlebtsov method (BPK), the Anoma-
lous Diffraction method (AD), and the Effective Refractive Index method (ERI).
A first comparison between these four methods was published by Gruy (2001) in
connection with aggregation of SiO2 micro-particles in water.

The study of the parameters influencing the optical properties of aggregate
began with Fuller and Kattawar (1988a, b). Rouleau (1996) compared several ap-
proximate methods for optical properties based on:

– RGD approximation
– Non-interacting spheres
– Equivalent volume sphere
– Equivalent projected area sphere

This study was carried out only for compact aggregates with 30 primary particles
whose size parameter was smaller than 0.6 and the refractive index was kept con-
stant (m = 1.7 + 0.1i). He concluded that the abovementioned methods are not
efficient except the one using the projected area.

The differences between the methods quoted in the next paragraphs are evalu-
ated in Table 2.2. We chose to differentiate porosity and arrangement. The validity
range of all these methods is normally the whole size parameter range except for
AD, which, as already mentioned in subsection 2.3.3, is to be used only in the case
of large particles.

Table 2.2. Comparison of approximate methods

Method Does it take into account: Does it use:

the arrangement? the interactions? Maxwell–Garnett equation?
(porosity)

CS no no no
ERI yes no yes
BPK yes yes no
AD yes yes no

In the next subsections, scattering cross-section values from the approximate
method (Cmethod,N ) and the exact method (CXu,N ) will be compared. Then, the
ratio Km is defined as:

Km =
Cmethod,N
CXu,N

(2.12)
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2.4.3.1 The Compact Sphere (CS) method

This method has to be mentioned because it is used as the first coarse approx-
imation by investigators and by particle sizer manufacturers. One finds it under
the name of equivalent sphere (in volume), and it will be compared with the other
methods.

Fig. 2.10. The Compact Sphere method.

The aggregate is regarded as a full sphere, i.e. containing all the matter
(Fig. 2.10). This method can be valid for aggregates of high compactness. The
scattering cross-section CCS,N is then evaluated with the theory of Mie.

As shown in Fig. 2.11, the CS method overestimates the scattering cross-section
for x < 7, whatever the configuration. As we will see in subsection 2.4.3.3, an ag-
gregate can be considered as a (porous) sphere with an effective refractive index.
Whatever the chosen equivalent sphere, the value of the scattering cross-section cal-
culated by Mie theory is always smaller than the one obtained from the CS method.
Moreover, this method does not take into account the interactions (interference and
interaction).

a b

Fig. 2.11. The Compact Sphere approximation: Km as function of the size parameter
for SiO2 (a) linear configuration, (b) compact configuration.
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2.4.3.2 The Berry–Percival–Khlebtsov (BPK) method

This method originates from the work of Berry and Percival (1986) and Khlebtsov
(1996). The three following points constitute the stages of the BPK method.

Step 1: Evaluation of the angular contribution of each primary particle to the
scattering cross-section:

F1(θ) =
CMie,1
CRGD,1

F (θ) , (2.13)

where F (θ) comes from the RGD approximation for a sphere (see Eq. (2.8b)). F1(θ)
is the corrected function for F (θ) in order to verify:

∫ π
0
F1(θ) dθ = CMie,1.

Step 2: Calculation of the interferences of scattering waves for each pair of
primary particles leading to a structure factor S which does not depend on polar-
ization. The structure factor is related to the aggregate morphology through the
inter-particle distances.

S(θ) =

⎡⎣N +
N∑

i=j=1,i �=j
Rij(θ)

⎤⎦/N2 , (2.14a)

where

Rij(θ) =
sin
(
2kdij sin

(
θ

2

))
2kdij sin

(
θ

2

) (2.14b)

and dij is the distance between i and j particles.
Step 3: Use of a corrective coefficient d taking into account the multiple scat-

tering (Berry and Percival, 1986)

d−1 =
[
1− 3

2N
(−ai1pr − ar1pi)

]2
+
[
3
2N

(ar1pr − ai1pi)
]2
, (2.15)

with

ar1 and ai1 are the real and imaginary parts of the first Mie coefficient a1

pr = 2
N∑

j>i,i=1

pr1(kdij)

pi = 2
N∑

j>i,i=1

pi1(kdij)

pr1(x) =
(
cosx f1(x)− sinx f2(x)

)
/x2

pi1(x) =
(
sinx f1(x) + cosx f2(x)

)
/x2

f1(x) = sinx− x

3
f(x) +

1
x

(
f(x)− sinx

x

)
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a b

Fig. 2.12. The BPK approximation: Km as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.

f2(x) =
sinx
x

− f(x)

f(x) =
3
x3
(sinx− x cosx)

Conclusion of steps:

CBPK,N = N2d

∫ π
0

F1(θ)S(θ) dθ (2.16)

Fig. 2.12 shows that the BPK method is a satisfactory approximation of the
exact method for the small size parameter (x < 2). The BPK method leads to an
error smaller than 10% for a size parameter ranging between 0 and 2 in the case
of SiO2 and of Al2O3. For higher refractive index (i.e. TiO2), the error increases
until it reaches 30% (for more restricted size parameter range [0; 1]). The BPK
method shows that the pair interactions must be taken into account only for small
size parameters; their contribution in scattering cross-section calculation is less in
the case of large aggregated primary particles.

2.4.3.3 The Effective Refractive Index (ERI) method

We have shown in subsection 2.4.2.2, that the location of the primary particles
inside an aggregate and its shape had an effect on the scattering cross-section.
The effective refractive index (ERI) method considers the shape. Knowing that the
projected area of the scattering body (on the plane (
E, 
H) of the incident wave) is
a relevant parameter in optics, we consider an equivalent sphere starting from the
aggregate projected area (Fig. 2.13).

Projection is carried out according to several successive planes (plane perpen-
dicular to the incident wave vector). This corresponds to random rotation that
takes place in a real situation (for instance, aggregate in a turbulent flow). Then,
an average projected area 〈Sp〉0 is calculated and an equivalent projected area
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Fig. 2.13. Projected area representation.

sphere is defined. Successively, it can be deduced, the equivalent radius aN,e, the
solid volume fraction inside the sphere φa = (Na31)/a

3
N,e, the effective refractive

index ma using the Maxwell–Garnett theory

m2
a − 1

m2
a + 2

= φa
m2 − 1
m2 + 2

,

and then the extinction cross-section CERI,N by means of Mie theory. This method
is more efficient than the other equivalent sphere methods, because the solid volume
fraction in this sphere is always high (0.1 < φa < 1).

ERI method behaves differently according to the configuration for small size pa-
rameter (Fig. 2.14). Indeed, Csca value calculated with this method is higher than
the scattering cross-section calculated with the exact method for a linear configura-
tion (Fig. 2.14(a)). This deviation can be taken in consideration and calculation has
to be corrected in order to reduce the deviation between ERI and exact methods.

Jacquier and Gruy (2007a, b) proposed a corrective factor F (x, d1/a) for the
scattering cross-section CERI,N . This is written as:

CcorrERI,N = CERI,N/F (x, d1/a) , (2.17)

a b

Fig. 2.14. The ERI approximation: Km as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.
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where d1 is a morphological parameter defined as:

d1 =
1

N(N − 1)
∑
i,j

dij (2.18)

2.4.3.4 The Anomalous Diffraction (AD) method

In subsection 2.4.2.2 it has been already mentioned that morphology becomes more
important for large size parameters. The anomalous diffraction approximation, clar-
ified in subsection 2.3.3 (Van de Hulst, 1981), accounts for the aggregate morphol-
ogy by means of the intercept (chord) of a light ray and the aggregate (Fig. 2.15).

Fig. 2.15. Definition of a chord.

The various possible chords l1, l2 . . . were evaluated and introduced as l =
∑
i li

into Eq. (2.19)

CAD,N = 2
∫∫
[Sp]

(
1− cos 2π

λ
l(m− 1)

)
dy dz = 2

∫∫
[Sp]

(
1− cosx(l/a)(m− 1)) dy dz .

(2.19)
[Sp] is the projection plane. Details or examples on expressions relating l/a and
(y, z) can be found in Yang et al. (2004) and Gruy and Jacquier (2008).

This calculation is repeated while rotating the aggregate or changing the pro-
jection plane. So, a mean value of scattering cross-section is deduced (Fig. 2.16). As
expected, the AD method is not suitable for small size parameters but proves to be
a good approximation for a size parameter higher than 2. It is important to recall
that AD is strongly related to the configuration (morphology) since it includes in
its formulation the chord length distribution of the aggregate.
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a b

Fig. 2.16. The AD approximation: Km as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.

2.4.3.5 Summary

Approximate methods facilitate the estimation of the aggregate scattering cross-
section in a short computation time. Jacquier and Gruy (2007a) evaluated the
performance of these four approximate methods with respect to the exact method:

– Methods replacing an aggregate by a compact sphere (CS) are inappropriate.
– The BPK (Berry–Percival–Khlebtsov) method is valid for 0 < x < 2 with an

error which increases with the material refractive index.
– The corrected ERI (Effective Refractive Index) method is the approximate

method capable of efficiency over all size parameters. The error for a scattering
cross-section is always smaller than 5%.

– The AD (Anomalous Diffraction) method works fairly well for 2 < x < 10 and
is less sensitive to refractive index variation.

2.4.4 Application: turbidity versus time during
the agglomeration process

As mentioned in section 2.2, nucleation and growth lead to (primary) particles with
a size between 0.1μm and 10μm. Then, these particles collide and agglomerate
by Brownian motion and/or local shear. So, let us consider agglomeration of small
monosized primary particles in a homogeneous suspension. Agglomeration proceeds
as a bimolecular reaction, the kinetic constant of which can be expressed in terms
of known quantities. Generally, the kinetic constant is a function of the sizes of
the two colliding particles. However, in the case of Brownian agglomeration or
shear agglomeration (but not for shear aggregation, i.e without consolidation of
the particle cluster), the kinetic constant Kag weakly depends on the particle size,
so that we may consider it as not dependent on particle size. Following Kruyt
(1952), modeling of agglomeration with constant Kag leads to simple expressions
for number concentrations in the agglomerate:
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Nj = N0(t/tc)j−1(1 + t/tc)−j−1 . (2.20a)

Nj is the number concentration in agglomerate consisting of j primary particles.
N0 is the number concentration in primary particles at time t = 0. There is no
agglomerate at t = 0. tc is the characteristic time of agglomeration. It obeys:

tc = 2/(KagN0) . (2.20b)

For instance, tc = 3μ/(4kTN0α) for Brownian agglomeration. T , k and μ are the
temperature, the Boltzmann constant and the dynamic viscosity, respectively. α is a
non-dimensional parameter representing the agglomeration efficiency (0 < α < 1).
For the sake of simplicity, we consider this parameter as a constant throughout the
agglomeration process.

It will be pointed out that tc and then Nj do not depend on the agglomerate
morphology. The previous expressions are approximate, but are considered as a
first and realistic approach to agglomeration dynamics.

At a given time, the turbidity of the suspension contains the contribution of
each j-agglomerate:

τ(λ, t) =
∞∑
j=0

Nj(p
j
1 . . . p

j
p, t)Cext(λ,m, p

j
1 . . . p

j
p) . (2.21)

Following the ERI method, the internal coordinates relevant for scattering cross-
section are a (the primary particle radius), j, 〈Sp〉0. Even if the characteristic time
does not depend on the morphology, it appears that large agglomerates have a
fractal-like structure. Depending on the agglomeration mechanism, simulations give
values of fractal dimension between 1.8 and 2.6. Due to restructuring of agglomer-
ates, the fractal dimension is larger than 2. As the fractal dimension is larger than
2, the outer radius of the agglomerate is equal to the radius aS,j of the ‘projected
area’ equivalent sphere. Small agglomerates do not have the fractal-like structure.
However, we have shown (Gruy, 2001) that they can be described by means of a
power law relating aS,j and j:

aS,j
a

=
( 〈Sp〉0
πa2

)1/2

=
(
j

Sr

)1/DF

. (2.22)

Later on, we will consider Eq. (2.22) suitable for a wide range of primary particle
numbers. Then,

τ(λ, t) =
∞∑
j=0

Nj(t, tc)Cext(λ,m, j, a,DF ) . (2.23)

Figs 2.17 and 2.18 represent the change of turbidity (normalized by τ0(λ) =
N0Cext(λ,m, a)) with time (normalized by tc) for agglomeration of silica (m =
1.08). Figs 2.17 and 2.18 show the effect of two fractal dimensions (DF = 2.1;
DF = 2.5) and two primary particle radii (a = 0.1μm; a = 1μm) respectively at
λ = 0.4μm and λ = 0.8μm.
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Fig. 2.17. Normalized turbidity versus time; agglomeration of silica in water; λ = 0.4μm.

Fig. 2.18. Normalized turbidity versus time; agglomeration of silica in water; λ = 0.8μm.
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2.5 Approximation for radiation pressure cross-section

2.5.1 Introduction

Often, precipitation leads to concentrated suspensions. On the one hand, transmit-
ted light intensity becomes very weak making backscattering sensors more suitable
than turbidimetric ones. On the other hand, multiple scattering takes place. What-
ever the considered signal (backscattered, side-scattered or transmitted light), the
interpretation has to account for multiple scattering. The most popular theory
which considers this phenomenon is the radiative transfer theory, particularly its
diffusion approximation (Ishimaru, 1978). The relevant phenomena associated with
backscattering measurement are either coherent or incoherent ones. The first type
result from interference caused by the double passage of the wave through the same
particle (Tsang and Ishimaru, 1984, 1985; Wolf et al., 1988; Akkermans et al., 1988;
de Wolf, 1991; Helfenstein et al., 1997). The angular width of the measured intensity
peak is proportional to the transport mean free path Ltr = (NCpr)−1, where N is
the particle number concentration and Cpr is the radiation pressure cross-section.
The second type only considers the multiple scattering: scattered light intensity is
also a function of the transport mean free path. Theoretical calculations were com-
pared to on- (off-) line experimental data for transmittance (Ishimaru et al., 1983)
and retroreflectance (Kuga and Ishimaru, 1984; Nichols et al., 1997) experiments
with suspensions of spherical beads, and a fairly good agreement between both was
found.

The radiation pressure cross-section is expressed as a function of the extinction
and scattering cross-sections, and also the asymmetry parameter (g = 〈cos θ〉):

Cpr = Cext − Csca · g .
In the case of non absorbing material:

Cpr = Csca(1− g) .
The asymmetry parameter for spheres has been calculated and analytical or em-

pirical expressions have been derived in the framework of different approximations,
e.g. geometrical optics and RGD approximations. Empirical expressions for large
randomly oriented non-spherical particles were also proposed (see Kokhanovsky,
2001). Rigorous calculations were achieved by different authors (see, for instance,
Xu (1998b)).

Up to now, calculations of radiation pressure cross-section for aggregates have
been mainly motivated by the calculation of forces acting on interstellar dust illu-
minated by stars (Kimura and Mann, 1998; Kimura et al., 2002; Iati et al., 2004).
Radiation pressure plays a key role in the dynamical behavior of submicrometer-
size grains in the stellar radiation and gravitational fields. Kimura and Mann (1998)
studied aggregates composed of 256 primary particles, the radius of which is 0.01μm
and that are illuminated by visible light and infrared. The considered materials are
silicate and amorphous carbon as representatives of weakly and strongly absorbing
materials, respectively. Calculations for randomly oriented fractal-like aggregates
(with DF = 2 and DF = 3) were performed by means of the DDA method. Au-
thors showed that the asymmetry parameter smoothly increases with increasing
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size parameter x (decreasing wavelength) of the primary particle and increases as
the fractal dimension decreases if x < 0.16 (for x > 0.16, g � 0.7). The asymmetry
parameter for aggregates is higher than for volume-equivalent spheres, irrespective
of the constituent material. The authors point out that aggregates with small frac-
tal dimension present a large fluctuation in g for different aggregate orientations.
Kimura et al. (2002) extended the previous study to larger aggregates (N < 2048).
They compare radiation pressure cross-sections calculated from the DDA method,
Mie theory applied to volume-equivalent sphere (CS method) and Mie theory com-
bined with the Bruggeman mixing rule. CS is a rough approximation for the two
materials and two fractal dimensions. Mie/Bruggeman approximation is a good
approximation for compact aggregates, but performs weakly for loose aggregates,
especially with non-absorbing primary particles. The authors showed that Cpr is
less dependent on the porosity of aggregates while the values strongly vary with the
material composition. Iati et al. (2004) computed, through the T-matrix method,
optical properties of cosmic dust grains. Grains are aggregates consisting of 31
non-identical spheres. Materials are also silicate and amorphous carbon. Primary
particle size distribution is assumed to be Gaussian-like. The radius of the volume-
equivalent sphere is equal to 0.14μm. For both materials, aggregation leads to a
sharp increase in the extinction and radiation pressure cross-sections. Subsections
2.5.2 and 2.5.3 are respectively devoted to the main features of Cpr for aggregates
and approximate methods for estimating Cpr.

2.5.2 Main features of radiation pressure cross-section

2.5.2.1 Single sphere

The variation of the asymmetry parameter is presented for spherical particles of
various chemical compositions in Fig. 2.19.

Fig. 2.19. Asymmetry parameter for three materials as function of the size parameter.
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The asymmetry parameter is close to zero for very small size parameters, what-
ever the refractive index. Then, it increases to a plateau close to 1 in the case
of SiO2 and Al2O3, i.e. the light is scattered predominantly in the forward direc-
tion. A spherical particle of TiO2 has a mean scattering angle which varies less
monotonously according to the size parameter. Indeed, for a size parameter equal
to 4, the asymmetry parameter is close to zero, the scattering can be then de-
scribed as dipole-like, while for a size parameter of about 6 the scattering seems
to happen in a privileged direction. Fig. 2.20 represents Cpr as a function of the
size parameter for a sphere and the three different materials. In the size parameter
range [0; 10], the radiation pressure cross-section increases as the optical refractive
index increases.

Fig. 2.20. Radiation pressure cross-section for three materials as function of the size
parameter.

2.5.2.2 Aggregate of spheres

The variations of Cpr for an aggregate have been examined according to: the number
of primary particles, their size parameter, the relative optical refractive index and
the aggregate shape. Simulations were performed by means of the GMM method
(Xu, 1998b).

The simulation results are presented as previously: effect of the number of pri-
mary particles within the aggregate and effect of the aggregate shape on the func-
tion PXu(x). PXu is the ratio between Cpr value of an aggregate (Cpr,Xu,N ) and
one of its N primary particles considered as independent NCpr,Mie,1:

PXu =
Cpr,Xu,N
NCpr,Mie,1

.
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2.5.2.2.1 Effect of the number of primary particles on the radiation
pressure cross-section

Fig. 2.21 represents PXu as a function of the size parameter for a chain-aggregate
of SiO2 primary particles. The variation of Cpr with primary particle size param-
eter is similar to that one corresponding to the scattering cross-section. Two size
parameter ranges can be defined. In the x-range [0; 2], constructive interferences
and multiple scattering (or interaction between primary particles) are important.
In the x-range [2; 10], the radiation pressure cross-section is close to the Cpr of a
set of spheres without interaction. However, multiple scattering still occurs at some
extend.

Fig. 2.21. PXu as a function of the size parameter for the linear configuration with N
primary particles (2, 4, 8, 16) and for SiO2: (a) for the range x ∈ [0, 3] and (b) x ∈ [0, 10].

However, the radiation pressure cross-section of an aggregate made up of pri-
mary particles whose size parameter is higher than 1.5 seems to be proportional
(by a factor p(N, x)N) to the primary particle radiation pressure cross-section.
p(N, x)N is a weak function of x for SiO2 (more dependent on x for TiO2). As
expected, PXu(x) is similar to KXu(x) in the x-range [0; 1] because the asymmetry
factor of the primary particle is smaller than 0.25. But, PXu(x) must not be related
to KXu(x) in the x-range [1; 10].

2.5.2.2.2 Effect of the aggregate morphology on radiation pressure
cross-section

Fig. 2.22 represents PXu for different configurations of aggregates consisting of four
primary particles arranged according to Fig. 2.9. Similar variations are obtained.
The deviation between the two extreme configurations is about 10.7%, which is a
smaller value than that obtained with Csca. But Cpr is a little more sensitive to
configurations which are close each other, since the average deviation between the
p1 and p2 configurations is about 1.3% compared with 0.8% for Csca.
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Fig. 2.22. PXu as a function of the size parameter for different configurations of 4-aggre-
gates (linear, compact, plane, p1, p2) for SiO2.

2.5.3 Approximate methods for aggregates

2.5.3.1 The ERI method

In the same way that we showed the effectiveness of the ERI approximate method,
for calculation of Csca, we evaluated (Jacquier and Gruy, 2007b) its performances
for the calculation of Cpr. The ratio of the radiation pressure cross-sections obtained
on the one hand with the exact (GMM) method and on the other hand with the
ERI method is denoted Lm:

Lm =
Cpr,ERI,N
Cpr,Xu,N

.

Fig. 2.23. Lm function with x ∈ [0; 10] for linear aggregate (SiO2).
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The deviation of Lm from 1 (Fig. 2.23) leads to the search for a corrective factor
in order to reduce it. Jacquier and Gruy (2007b) proposed a corrective factor as
a multi-parameter function G(x,N, d1/a) for the radiation pressure cross-section
Cpr,ERI,N . Thus, the corrected radiation pressure cross-section obeys the expres-
sion:

Ccorrpr,ERI,N = Cpr,ERI,N/G(x,N, d1/a) . (2.24)

Later on, this method is called ERI/G.

2.5.3.2 Other methods

We noticed in subsection 2.5.2.2 that PXu of any configuration of soft particles
does not vary with x for x higher than 1.5. The value of PXu(x>1.5) depends on the
aggregate morphology that can be characterized through N and d1/a. However,
PXu(x>1.5) may be a weak function of x for hard material (Fig. 2.24). We can
observe that variations of PXu(x>1.5) are similar to those for a two-sphere aggregate.

Fig. 2.24. PXu as a function of the size parameter for the compact configuration with N
primary particles (2, 4, 8, 16) and for TiO2: x ∈ [0, 10].

These comments suggest the two approximate methods:

– method Pp1: Cpr,Xu,N proportional to Cpr of a primary particle: Cpr,Mie,1
– method Pp2: Cpr,Xu,N proportional to Cpr of a doublet: Cpr Xu,2

The proportionality factors, denoted respectively p1 and p2, can be expressed as
a function of a single parameter: β = N/

√
d1/a. Corresponding expressions can

be found in (Jacquier and Gruy, 2007b). Table 2.3 presents the performances of
ERI/G, Pp1 and Pp2. It appears that the ERI/G method is not as efficient as Pp1
and Pp2 but ERI/G presents the biggest advantage to be used over all the size
range.
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Table 2.3. Approximate method performance for the calculation of Cpr for different
materials with x ∈ [1.5; 10]. m and σ are respectively the mean value and the standard
deviation for the corresponding dataset

method Linear configuration Compact configuration

material SiO2 Al2O3 TiO2 SiO2 Al2O3 TiO2

m σ m σ m σ m σ m σ m σ

Pp1 1.01 0.05 1.05 0.11 1.06 0.17 1.01 0.04 1.00 0.11 1.08 0.17
Pp2 0.98 0.04 0.96 0.08 0.94 0.12 0.97 0.04 0.93 0.10 0.93 0.11
ERI/G 0.93 0.17 0.90 0.15 1.07 0.23 0.92 0.13 0.90 0.11 1.06 0.30

2.5.4 Conclusion

We have presented different ways to calculate approximately the radiation pressure
cross-section of aggregates. The corresponding expressions can be used to study
dense suspensions. For instance, Tontrup et al. (2000) performed an experimental
work about the aggregation of TiO2 micro-particles in water by using a backscat-
tering sensor. They deduced the change of the transport mean free path with time.
SEM observations showed that the aggregates contain few primary particles. Ap-
proximations could be used to determine some characteristics of the aggregates.

2.6 Scattering properties versus geometrical parameters
of aggregates

The main question that appears when studying the formation of particles or aggre-
gates is: which is the relevant morphological parameter related to the measurement?
The answer mainly depends on the particle size and is partially included in theories
and modeling leading to scattering cross-section calculations.

So, when we consider the Mie theory for homogeneous spheres, the solving
method and the results are dependent only on the relative refractive index and
the boundary conditions for the Helmholtz equation. From a geometrical point
of view, the mathematical function describing the particle surface is the relevant
parameter. The case of non-spherical convex bodies is similar. As the physics is
always based on the Maxwell and Helmholtz equations, the corresponding solution
for a natural incident light depends only on the body surface that is characterized
by the equation f(x, y, z) = 0.

If we are interested in the orientation average of the scattering cross-section, a
function describing the body and being invariant to rotation will be preferred. So,
the pair distance distribution density (PDDD) could be an interesting approach to
describing the shape. It is a well-known function in physics and can be defined for
liquids as:

dN = g(r)4πr2 dr .

dN represents the number of molecules distant from a given (tagged) molecule with
the distance in the range [r, r+ dr]. In the case of liquid, the distribution is nearly
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isotropic. This function clearly appears in RGD approximation for convex bodies
(distribution density is connected to |f |2) and BPK approximation for multi-sphere
aggregate (in Eqs (2.14a) and (2.14b)).

In the first case (RGD), we consider any pair of volume elements in the scat-
tering body. The pair distance distribution density is a continuous function of the
distance between volume elements. In our context, we chose the notation Dp(r).
Then, the orientation-averaged scattering cross-section can be written as (Gruy,
2009):

CRGD,1 =
2
3π
k4V 2(m− 1)2

∫ Rmax

Rmin

F (kr)Dp(r) dr (2.25)

with

F (x) = 3
[
cos(2x)(−1+5x−2−3x−4)+sin(2x)(2x−1−6x−3)+1+x−2+3x−4

]
/(4x2) .

The distribution density function is normalized:∫ Rmax

Rmin

Dp(r) dr = 1 (2.26)

Fig. 2.25 presents the function Dp(r) for a sphere and various spheroids. The pair
distribution function for a sphere with radius a obeys the expression:

aDp(r) = Dp,u(u) =
3
16
u2(u3 − 12u+ 16) (2.27)

with u = r/a and 0 < u < 2.
In the second case (BPK), equations contain the inter-particle distance dij . This

function is not continuous; as far as a cluster of point scatterers is concerned:

Dp(r) =
1

N(N − 1)
∑
i,j

δ(r − dij) . (2.28)

δ is the Dirac function.
A particular case is the fractal-like aggregate, the PDDD of which obeys the

equation (continuous form):
Dp(r) ∝ rDF−3 . (2.29)

According to subsection 2.4.3.2, the BPK approximation gives good results when
the size parameter of the primary particle is smaller than 2. Thus, the PDDD is
the relevant morphological parameter.

It has been shown by Gruy (2009) that this function associated with BP ap-
proximation (Berry and Percival, 1986) for aggregates of Rayleigh scatterers allows
for an estimation of the scattering cross-section of convex bodies. This method is
proved efficient for spheres and spheroids as the scattering efficiency is smaller than
1 and as the material is optically either soft or hard.

The non-corrected ERI method is based only on the average projected area
〈Sp〉0 of the body. However, it is not suitable for elongated aggregates with small
size parameter. 〈Sp〉0 can be expressed as a function of the number of primary
particles and of the mean inter-particle distance (Jacquier and Gruy, 2008a,b):
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Fig. 2.25. Pair distance distribution density for sphere, oblate spheroid (axis ratio equal
to 2) and prolate spheroid (axis ratio equal to 2). a is the smallest semi-axis length.

〈Sp〉0 = πR2
p , (2.30)

with Rp = a(d1/2a)1/5N1/3d
1/8
E and N < 100; dE is the space dimension; d1 is the

relevant morphological parameter. It is directly related to the first moment of the
distribution Dp(r):

M1 =
∫ ∞

0

Dp(r)r dr

=
∫ ∞

0

1
N(N − 1)

∑
i,j

δ(r − dij)r dr

=
1

N(N − 1)
∑
i,j

dij = d1 . (2.31)

It would be possible to choose other moments of the distribution for describing
geometrical and optical properties of aggregates. For instance, the second-order
moment is directly related to the gyration radius, that is a well-known parameter
used to define a fractal-like aggregate. However, there was no noticeable change and
thus no improvement was found when choosing another mean distance definition for
the aggregate. Thus, we chose the lowest-order distribution moment. The corrected
ERI method also uses the d1 distance parameter.

For large size parameter (x > 2), the AD approximation becomes efficient.
In this case, the relevant line is the chord. Expression of the average scattering
cross-section can be rewritten by introducing the chord length distribution Dl(l)
(Jacquier and Gruy, 2008a,b):
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〈CAD,N 〉 =
〈
2
∫∫
[Sp]

(
1− cos kl(m− 1)) dy dz〉

� 2〈Sp〉
∫ lmax

0

(
1− cos kl(m− 1))Dl(l) dl (2.32)

The chord length distribution (CLD) is defined as follows: Dl(l) dl represents the
number fraction of the chord length in the range [l, l + dl]. Thus, Dl(l) obeys the
normalization equation: ∫ lmax

0

Dl(l) dl = 1 . (2.33)

lmax is the maximum chord length of an aggregate.
Fig. 2.26 presents the Dl(l) function for an aggregate consisting of 16 primary

particles. One observes three very distinct peaks or modes, each one characterized
by a chord length range:

– [0; 2a] corresponds to primary particles (distribution density Dl,1(l))
– [2a; 4a] corresponds to pair of particles in contact (distribution density Dl,2(l))
– [4a; lmax] corresponds to the aggregate superstructure (distribution density

Dl,G(l))

Dl(l) contains the contributions of each distribution density. These are weighted
by the coefficients ξ1, ξ2, ξ3:

Fig. 2.26. Dl(l) for compact aggregate with 16 primary particles. l is normalized by the
radius of the primary particle.
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Dl(l) = ξ1Dl,1(l) + ξ2
Dl,2(l ∈ [2a; 4a])∫ 4a

2a

Dl,2(l) dl
+ ξG

Dl,G(l ∈ [4a; lmax])∫ lmax

4a
Dl,G(l) dl

(2.34a)

with
ξ1 + ξ2 + ξG = 1 . (2.34b)

The distribution densities Dl,1(l) and Dl,2(l) are given by analytical expressions
(Jacquier and Gruy, 2008a,b). Dl,G(l) is an empirical function, the same for all the
aggregates. Only weighting coefficients depend on the aggregate morphology. Re-
sults shown in Fig. 2.26 for a particular aggregate are representative for aggregates
with primary particle number up to one hundred. Coefficients ξ1, ξ2, ξG depend on
N, d1, dE (Jacquier and Gruy, 2008a,b).

The calculation of the scattering cross-section using Eqs (2.32) to (2.34b)) is
much faster than that based on Eq. (2.19).

Certain presented approximations are characterized by a decoupling or separa-
tion between optics and geometry. This separation allows for a faster calculation
of the optical properties. To our knowledge, the relationship between chord length
distribution (as defined by Fig. 2.15) and pair distance distribution is not triv-
ial, particularly for aggregates, and requires complementary works in the field of
integral geometry. Moreover, the transition between the different geometrical char-
acteristics, i.e PDD and CLD, as the primary particle size increases is not yet
quantitatively understood.

2.7 Conclusion

The analysis of turbidimetric data during the precipitation process is a challenge for
researchers working in the field of light scattering by particles. The variety of sizes,
shapes and optical contrast requires several approaches for the calculation of their
optical properties. Performance criteria are the calculation speed and the accuracy
fitted with the measurement accuracy. Accurate calculations performed with so-
phisticated numerical methods will always be needed and used for the purpose of
validation. Difficulties remain for certain particles with a complex morphology. For
instance, one observes precipitated zinc sulphide particles in the size range [0.5μm;
5μm] exhibiting sand rose (i.e., gypsum flower) morphology. The typical multi-scale
morphology of many precipitated particles firstly needs tools coming from integral
geometry in order to be described with a minimum number of parameters. Know-
ing this parameter set, optical properties will be calculated with exact theories.
The parameter number coming from geometrical analysis can be reduced when the
optical properties of the particles are appropriately considered for the formulation
of approximate theories to the calculation of scattering properties. An example for
such an approach has been presented, but further advances are needed.
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précipitation homogène (Récents Progrès en Génie des Procédés) Edition Lavoisier,
Paris.

Mishchenko, M. I., D.W. Mackowski, L.D. Travis, 1995: Scattering of light by bispheres
with touching and separated components, Appl. Optics, 34(21), 4589–4599.

Mishchenko, M. I., L.D. Travis, and A.A. Lacis, 2002: Scattering, Absorption, and Emis-
sion of Light by Small Particles, Cambridge University Press, Cambridge.

Mishchenko, M. I., G. Videen, V.A. Babenko, N.G. Khlebtsov, T. Wriedt, 2004: T-matrix
theory of electromagnetic scattering by particles and its applications: a comprehensive
reference database, J. Quant. Spectr. Rad. Transfer, 88, 357–406.

Mishchenko, M. I., G. Videen, V.A. Babenko, N.G. Khlebtsov, T. Wriedt, 2007: Com-
prehensive T-matrix reference database: A 2004–06 update, J. Quant. Spectr. Rad.
Transfer, 106, 304–324.

Mishchenko, M. I., G. Videen, N.G. Khlebtsov, T. Wriedt, N.T. Zakharova, 2008: Com-
prehensive T-matrix reference database: A 2006–07 update, J. Quant. Spectr. Rad.
Transfer, 109, 1447–1460.

Nichols, M.G., E. L. Hull, T.H. Forster, 1997: Design and testing of a white-light, steady-
state diffuse reflectance spectrometer for determination of optical properties of highly
scattering systems, Appl. Optics, 36, 93–104.

Quirantes, A., F. Arroyo, et al., 2001: Multiple light scattering by spherical particle sys-
tems and its dependence on concentration; a T-matrix study, J. Colloid Interf. Sci.,
240, 78–82.

Randolph, A.D., and M.A. Larson, 1988: Theory of Particulate Processes, Academic
Press, New York.

Rouleau, F., 1996: Electromagnetic scattering by compact clusters of spheres, Astron.
Astrophys., 310, 686–698.

Streekstra, G. J., A.G. Hoekstra, et al., 1994: Anomalous diffraction by arbitrarily ori-
ented ellipsoids: applications in ektacytometry, Appl. Optics, 33, 7288–7296.

Sugimoto, T., 2000: Fine Particles: Synthesis, Characterization, and Mechanisms of
Growth, (Surfactant Science Series, Vol. 92), Marcel Dekker, New York.

Sun, W. and Q. Fu, 1999: Anomalous diffraction theory for arbitrarily oriented hexagonal
crystals, J. Quant. Spectr. Rad. Transfer, 63, 727–737.

Sun, W. and Q. Fu, 2001: Anomalous diffraction theory for randomly oriented nonspheri-
cal particles: a comparison between original and simplified solutions, J. Quant. Spectr.
Rad. Transfer, 70, 737–747.

Tandon, P., D. E. Rosner, 1999: Monte Carlo Simulation of Particle Aggregation and
Simultaneous Restructuring, J. Colloid and Interf. Sci., 213, 273–286.

Tontrup, C., F. Gruy and M. Cournil, 2000: Turbulent aggregation of titania in water, J.
Colloid and Interf. Sci., 229, 511–525.

Tsang, L., and A. Ishimaru, 1984: Backscattering enhancement of random discrete scat-
terers, J. Opt. Soc. Am., 1, 836–839.

Tsang L., and A. Ishimaru, 1985: Theory of backscattering enhancement of random dis-
crete isotropic scatterers based on the summation of all ladder and cyclical terms, J.
Opt. Soc. Am. A, 2, 1331–1338.

Van de Hulst, H.C., 1981: Light Scattering by Small Particles, Dover publications Inc.,
New York.

Videen, G. and P. Chylek, 1998: Anomalous diffraction approximation limits, Atmos. Res.,
49, 77–80.

Voshchinnikov, N.V. and V.G. Farafonov, 1992: Optical properties of spheroidal particles,
Astrophys. Space Sci., 204, 19–86.



78 Sandra Jacquier and Frédéric Gruy

Wolf, P. E., G. Maret, E. Akkermans, R. Maynard, 1988: Optical coherent backscattering
by random media: an experimental study, J. Phys. Fr., 49, 63–75.

Wriedt, T., 1998: A review of elastic light scattering theories, Part. Part. Syst. Charact.,
15, 67–74.

Xu, Y.-L., 1995: Electromagnetic scattering by an aggregate of spheres, Appl. Optics,
34(21), 4573–4588.

Xu, Y.-L., 1996: Calculation of the addition coefficients in electromagnetic multisphere-
scattering theory, J. Comput. Phys., 127, 285–298.

Xu, Y.-L., 1997a: Electromagnetic scattering by an aggregate of spheres: far field, Appl.
Optics, 36(36), 9496–9508.

Xu, Y.-L., 1997b: Fast evaluation of gaunt coefficients: recursive approach, J. Comput.
Appl. Math., 85, 53–65.

Xu, Y.-L., 1998a: Efficient evaluation of vector translation coefficients in multiparticle
light-scattering theories, J. Comput. Phys., 139, 137–165.

Xu, Y.-L., 1998b: Electromagnetic scattering by an aggregate of spheres: asymmetry pa-
rameter, Phys. Lett. A, 249, 30–36

Xu, Y.-L. and B.A. S. Gustafson, 2001: A generalized multiparticle Mie-solution: further
experimental verification, J. Quant. Spectr. Rad. Transfer, 70, 395–419.

Yang, P. and K. Liou, 2000: Finite difference time domain method for light scattering by
nonspherical and inhomogeneous particles. In Light Scattering by Nonspherical Parti-
cles: Theory, Measurements, and Applications, eds. M. I. Mishchenko, J.W. Hovenier,
and L.D. Travis, Academic Press, San Diego.

Yang, P., Z. Zhang, B.A. Baum, H. L. Huang, Y.X. Hu, 2004: A new look at anomalous
diffraction theory (ADT): Algorithm in cumulative projected-area distribution domain
and modified ADT, J. Quant. Spectr. Rad. Transfer, 89, 421–442.



Part II

Modern Methods in Radiative Transfer



3 Using a 3-D radiative transfer Monte–Carlo
model to assess radiative effects on polarized
reflectances above cloud scenes

C. Cornet, L. C-Labonnote, and F. Szczap

3.1 Introduction

In the near future, more and more spaceborne or airborne instruments will be able
to measure polarized reflectance issued from the atmosphere. To give some ex-
amples, currently, the POLarization and Directionality of the Earth’s Reflectance
instrument POLDER3/ PARASOL, which is the successor of POLDER2/ADEOS2
and POLDER/ADEOS (Deschamps et al., 1994) measures, since 2005, the polar-
ized signal in the visible spectral range with up to 14 viewing directions. The
airborne version of this instrument, called OSIRIS (observing system including
polarization in the solar infrared spectrum (Auriol et al., 2008)), is nowadays ex-
tended to the near-infrared range and will maybe, in the future, generate a space-
borne version. The Aerosol Polarimetry Sensor (APS), the spaceborne version of
the Research Scanning Radiometer (RSP) will be able to measure reflected total
and polarized light in visible, near infrared, and short-wave infrared and should be
launched in the framework of the Glory mission in 2010 (Mishchenko et al., 2007).

Measurements of polarized reflectances allow better retrieval of cloud and
aerosol properties. Indeed, multi-angular polarimetric data can, for instance, be
used to retrieve cloud phase (Gouloub et al., 2000; Riedi et al., 2001), cloud par-
ticle size (Bréon and Goloub, 1998; Bréon and Doutriaux-Boucher, 2005) or infor-
mation on cloud particle shape (Chepfer et al., 2001; Herman et al., 2005; Sun et
al., 2006). To retrieve these atmospheric properties accurately, or at least to assess
the error which can be made with the classical retrieval algorithm, it is important
to be able to model radiative transfer in a realistic way. Today, most of the code
handling the polarization of light is based on the assumption of a plane-parallel
atmosphere (de Haan et al., 1987; Stamnes et al., 1988; Rozanov and Kokhanovsky,
2006; Lenoble et al., 2007). However, it had been shown that this assumption can
lead to non-negligible error in radiative quantities, especially in cloudy atmosphere
(Marshak and Davis, 2005) and thus in the retrieved cloud properties (Loeb and
Coakley, 1998; Varnai and Marshak, 2001; Iwabuchi and Hayasaka, 2002; Zinner
and Mayer, 2006; Marshak et al., 2006; Cornet and Davies, 2008). These different
studies deal with total reflectances and, so far, nobody has looked at the effects of
cloud variabilities on polarized reflectances. The first step for doing these studies
is to develop a model able to simulate polarized reflectances issued from a 3-D
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atmosphere. Although polarization has been included recently in the Monte–Carlo
code MYSTIC (Emde et al., 2009), most of the 3-D radiative transfer models ex-
isting now, either based on an explicit representation of the computations (Evans,
1998; Ferlay and Isaka, 2006) or on a statistical representation as are the models
using the Monte-Carlo methods (Iwabuchi, 2006; Mayer, 2009), compute only to-
tal reflectances. Note that concerning the differences between the two methods, a
comparative study between SHDOM (Evans, 1998) and one Monte–Carlo model
can be found in Pincus and Evans (2009).

In order to study 3-D cloud radiative effects, we have also recently developed a
three-dimensional and polarized radiative transfer Monte Carlo model called 3DM-
Cpol (Cornet et al., 2009). This code is based on forward Monte–Carlo techniques
and performs monochromatic calculations limited to the solar wavelength region:
scattering and absorption processes are included, but not emission. It computes the
complete Stokes vector (I,Q,U,V) in a 3-D atmosphere composed of cloud, aerosols
and molecules for different view zenith and azimuth angles and hence allows the
computation of the total and polarized reflectances. In this chapter, we present the
model with additional tests concerning its validity and show two examples concern-
ing the effects of cloud variabilities on polarized radiances. The chapter is organized
as follows. After recalling the definitions concerning polarized light, the second sec-
tion presents succinctly the polarized radiative transfer model, 3DMCpol (Cornet
et al., 2009). Comparisons with a 1-D radiative transfer model are presented in
section 3.3. In section 3.4, we show results of 3-D simulations obtained from 3-D
synthetic clouds. Conclusions are given in section 3.5.

3.2 Including the polarization in a 3-D Monte–Carlo
atmospheric radiative transfer model

3.2.1 Description of radiation and single scattering:
Stokes vector and phase matrix

This section provides the description and the definition required to understand
polarization of an electromagnetic radiation and how it can be modified by a scat-
tering event. More details can be found in Hansen and Travis (1974) and Van de
Hulst (1980).

3.2.1.1 Description of a beam of light

Light cannot be described by its intensity alone. Due to its wave nature, a complete
description of light is obtained by taking into account its polarization state. Indeed,
the radiation usually measured is often partially polarized and a beam of light
consists of a polarized and an unpolarized part:

I = Ipol + Iunpol . (3.1)

As the electric field describing the polarization of light draw an ellipse, the
polarization part of the light can moreover be separated into a linearly polarized
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part Ilp and a circularly polarized part Icp as:

Ipol =
√
I2lp + I2cp . (3.2)

A beam of light is totally polarized only if the orientation and the ellipticity of
the polarization ellipse is the same for each simple wave. On the other hand, light
composed of uncorrelated waves and having no preferred direction for its electric
field such as solar radiation is unpolarized.

We consider a parallel beam of light of wavelength λ traveling in the positive
direction z and being scattered by particles of any shape. The scatterer is in the
cartesian coordinate system (x, y, z) attached to the photon with origin in the
center of the scatterer. Note that the light is scattered in all directions of the space
but for simplicity we will focus and describe scattering process in the direction
defined by the vector er. The plane defined by vectors er and z is called the
scattering plane and is used, in the following, as the reference plane. The angle Θ
between directions er and z is the zenith scattering angle. The scattering azimuth
angle φ is the angle between the scattering plane and the x axis. The complex
components of the electric field, parallel and perpendicular to the scattering plane
are noted respectively E‖ and E⊥. The incident electric field can then be written
as:

Ei = Ei‖ +Ei⊥ = Ei‖e‖ + Ei⊥e⊥ , (3.3)

where e‖ and e⊥ are the unit vector parallel and perpendicular to the scattering
plane and such as e‖ × e⊥ = z.

The scattering wave is a spherical wave with an amplitude inversely proportional
to the distance r. Moreover, as only linear processes happen when the incident field
is modified in the scattered field, we can write (Van de Hulst, 1980):(

Es‖
Es⊥

)
=
e−ikr+ikz

ikr

(
A2 A3

A4 A1

) (
Ei‖
Ei⊥

)
, (3.4)

where k is the wavenumber and z the location.
This equation shows that scattering by particles, in every directions, is com-

pletely described by its amplitude matrix A. The elements of this matrix are com-
plex and are function of the optical properties of the scatterer and of the scattering
angles Θ, φ.

3.2.1.2 The Stokes parameters

The complete description of the polarization state of electromagnetic radiation
can be obtained by the Stokes parameters. These parameters are the quantities
computed in the radiative transfer model described in this chapter. If we consider
a plane wave with parallel and perpendicular components (Chandrasekar, 1960),
the Stokes parameters are (Van de Hulst, 1980):⎧⎪⎪⎪⎨⎪⎪⎪⎩

I = E‖E∗
‖ + E⊥E∗

⊥
Q = E‖E∗

‖ − E⊥E∗
⊥

U = E‖E∗
⊥ + E⊥E∗

‖
V = i(E‖E∗

⊥ − E⊥E∗
‖)

(3.5)



84 C. Cornet, L. C-Labonnote, and F. Szczap

The asterisk stands for the complex conjugate. The component parallel and per-
pendicular of the electric field are described by their amplitudes a‖ and a⊥ and
their phases ε‖ and ε⊥ chosen at (z = 0, t = 0) by:

E‖ = a‖e−iε‖e−ikz+iωt ,
E⊥ = a⊥e−iε⊥e−ikz+iωt ,

(3.6)

where ω is the frequency of the wave, k the wavenumber, z the location and t the
time. From this expression, equation (3.5) becomes:⎧⎪⎪⎨⎪⎪⎩

I = a2‖ + a
2
⊥

Q = a2‖ − a2⊥
U = 2a‖a⊥ cos δ
V = 2a‖a⊥ sin δ

(3.7)

where δ = ε‖ − ε⊥.
I represents the intensity or normalized total reflectance. The other parameters

having the same dimension, it allows them to be summed for a mixture of separate
independent waves. Note that for clarity reasons, a constant factor common to all
four parameters is omitted in these equations.

The Stokes parameters can also be represented by a geometric description.
Indeed, the endpoints of the electric field vector draw an ellipse with semi-major
axis and semi-minor axis called a and b respectively. The ellipticity is defined by
an angle β such that:

tanβ = ± b
a
, (3.8)

with −π/4 ≤ β ≤ π/4.
The sign of β gives the direction in which the ellipse is described, with positive

sign corresponding to right-handed polarization. The angle between the major axis
and the parallel direction (e‖) of the electric field is denoted by χ (0 ≤ χ ≤ π).

The Stokes parameters can then be expressed by the parameters β and χ which
define the shape and the orientation of the ellipse (Fig. 3.1; Van de Hulst, 1980)
by:

a

b

e

e

E

Fig. 3.1. Polarization ellipse. a and b are respectively the semi-major and the semi-minor
axis. The direction of propagation is into the page and the sense of polarization indicated
corresponds to right-handed polarization.
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I = S0
Q = S0p cos 2β cos 2χ
U = S0p cos 2β sin 2χ
V = S0p sin 2β

(3.9)

where S0 is the total intensity of the beam of light and p the degree of polarization.
From this equation, it is possible to find characteristics of the polarization ellipse

for the Stokes parameters by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
β =

1
2
arctan

(
V√

Q2 + U2

)

χ =
1
2
arctan

(
U

Q

) (3.10)

The exact relations between a‖, a⊥, δ in equation (3.7) and S0, β, and χ in
equation (3.9) can be found in Van de Hulst (1980).

Another way to understand the meaning of the Stokes parameters consists of
looking at their measurements. If we suppose that E‖ has a constant delay ε with
respect to E⊥ and that I(ψ, ε) is the intensity of light due to vibrations in the
direction making an angle ψ with e‖. The Stokes parameters can be obtained from
(Hansen and Travis, 1974):

I = I(0◦, 0) + I(90◦, 0) = I‖ + I⊥
Q = I(0◦, 0)− I(90◦, 0) = I‖ − I⊥
U = I(45◦, 0)− I(135◦, 0)
V = I(45◦, π2 )− I(135◦, π2 )

(3.11)

I represents the total intensity. Q is the difference between the intensity of light
measured with a polarizer in the parallel direction with respect to the reference
plane (ψ = 0◦) and the intensity measured in the perpendicular direction (ψ = 90◦).
U has a similar definition to Q but the difference is between intensity for ψ = 45◦

and for ψ = 135◦. Finally, V is the difference between a right-handed circular
polarization and a left-handed circular polarization.

For monochromatic light, which is fully polarized, we obtain from equation
(3.7):

I2 = Q2 + U2 + V 2 (3.12)

For natural light, because this is a mixture of uncorrelated simple waves with no
preferred direction of vibration, there exists no phase relation between the parallel
and perpendicular fields. Thus, we have

Q = U = V = 0 (3.13)

Light is thus unpolarized and I is sufficient to describe it. But usually, the light is
partially polarized and :

I2 ≥ Q2 + U2 + V 2 (3.14)

As already mentioned, a beam of light can thus be considered as the sum of
polarized and unpolarized light (equation 3.1) with the intensity of polarized light
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equal to:
Ipol = (Q2 + U2 + V 2)

1
2 (3.15)

From the Stokes parameters, the following quantities are also defined:

– the degree of polarization (equation (3.9)): p =
√
Q2+U2+V 2

I

– the intensity of linearly polarized light
√
Q2 + U2

– the intensity of circularly polarized light: V

3.2.1.3 The phase matrix

We can see in equation (3.4) that the scattered electric field is obtained from the
incident electric field by a simple multiplication with the amplitude matrix of the
scatterer. When working with the Stokes parameters, we use in the same way the
phase matrix P (Θ) which allows us to transform the incident Stokes vector in the
scattered Stokes vector:⎛⎜⎜⎝

Is
Qs
Us
Vs

⎞⎟⎟⎠ =
1

k2R2

⎛⎜⎜⎝
P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

⎞⎟⎟⎠
⎛⎜⎜⎝
Ii
Qi
Ui
Vi

⎞⎟⎟⎠ , (3.16)

where k = 2π/λ and R is the distance between the observer and the particles. As
only linear processes happen, it is possible to express the elements of the phase
matrix as functions of the elements of the amplitude matrix (Van de Hulst, 1980).
In the phase matrix, note that P11 corresponds to the phase function used in the
scalar approach and describes the probability of a photon being scattered along
the direction defined by Θ with respect to the incident direction. It is normalized
as: ∫ 2π

0

∫ 1

0

P11(Θ) d cos(Θ) dϕ = 4π (3.17)

Under some assumptions, the phase matrix of a group of particles can be ex-
pressed as the sum of each individual phase matrix. Consequently, Van de Hulst
(1980) showed thus that a group of particles leads to symmetry relationships which
allow the simplification of the phase matrix of the ensemble.

For example, a cloud composed of randomly oriented particles with no opti-
cally active sphere leads to a phase matrix with a maximum of six independent
parameters function of Θ, and can be written as:

P =

⎛⎜⎜⎝
P11 P12 0 0
P12 P22 0 0
0 0 P33 P34
0 0 −P34 P44

⎞⎟⎟⎠ . (3.18)

In addition, for spherical particles, we have:⎧⎨⎩
P11(θ) = P22(θ)
P33(θ) = P44(θ)
P 2
11(θ)− P 2

33(θ)− P 2
12(θ)− P 2

34(θ) = 0
(3.19)
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In Fig. 3.2, we have plotted the elements of the phase matrix at a wavelength
of 865 nm for three types of scattering:

– Rayleigh scattering for small particles, which is principally used to model
gaseous molecular scattering.

– Mie scattering used for spherical particles such as water cloud droplets. The
phase matrix is computed from a log-normal distribution with an effective radius
of 10μm and an effective variance of 0.02. The real part of the refractive index
is 1.33 and the imaginary part is null.

– Scattering by non-spherical particles such as ice particles obtained with the IHM
particles (Inhomogeneous Hexagonal Monocrystal model (C-Labonnote et al.,
2001)). This model consists in computing the scattering of light by an ensemble
of randomly oriented hexagonal ice crystals containing spherical impurities of
air bubbles. The real part of the refractive index is 1.304 and the imaginary
part is null.

Concerning Rayleigh scattering, the evolution of the phase matrix components
as functions of the scattering angle is very smooth with important side scattering.
They are simply expressed by:

Pray(Θ) =
3
4

⎛⎜⎜⎝
1 + cos2Θ − sin2Θ 0 0
− sin2Θ 1 + cos2Θ 0 0

0 0 2 cosΘ 0
0 0 0 2 cosΘ

⎞⎟⎟⎠ (3.20)

Concerning spherical particles, we note that the relations expressed in equa-
tion (3.19) are respected. Another important characteristic is the variation of the
parameter P12 for Θ larger than 130◦. The large maxima near 140◦ corresponds
to the so-called primary cloudbow and is characteristic of water cloud. It is used
among others tests for cloud phase detection (Riedi et al., 2001). In addition, the
positions of the secondary maximas and minimas between 145◦and 165◦ are used to
retrieve size parameters of cloud particles (Bréon and Doutriaux-Boucher, 2005).
Note that the presence of these secondary cloudbows are only visible for relatively
narrow size distribution. Here, the effective variance of the distribution is 0.02 for
an effective radius of 10μm.

For heterogeneous non-spherical particles, because of irregularities (inclusion or
surface roughness), side scattering is larger comparing to liquid spherical particles
and thus the assymetry parameter is smaller. Moreover, note that P22 �= P11 and
P44 �= P33. The ice phase function (IHM) chosen here is just an example and does
not reflect the diversity of ice crystal found in cirrus cloud. Indeed, depending of
the ice crystal shape, the elements of the phase matrix can have very different
behavior (Sun et al., 2006).

3.2.2 Description of the radiative transfer model, 3DMCpol

The radiative transfer model called 3DMCpol (Cornet et al., 2009) follows the
standard approach of a forward Monte–Carlo model (Cashwell and Everett, 1959;
Avery and House, 1969; Marchuk et al., 1980; Evans and Marshak, 2005; Iwabuchi,
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Fig. 3.2. Examples of scattering phase matrix components for a wavelength of 865 nm
and for three types of scattering: Rayleigh scattering for small particles, Mie scattering for
spherical particles (Reff = 10μm and Veff = 0.02) and randomly oriented non-spherical
particles. The last is obtained with the IHM model (C-Labonnote et al., 2001).
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2006; Mayer, 2009). A flowchart describing the progression for each photon is pre-
sented in Fig. 3.3. The output of the model is the normalized reflectance in percent
noted:

I =
π.R

μ0F0
× 100 , (3.21)

where R is the reflected radiance in Wm−2 sr−1 and μ0F0 the incoming solar flux.
Computation of polarized reflectances (vector approach) does not change the

general scheme of the code. Instead of scalar quantities, e.g. radiances (I), the
Stokes vector S = (I,Q, U, V ) that completely describe the polarized state of the
light (Chandrasekar, 1960) is computed. The phase function is thus substituted
by the 4 × 4 phase matrix P (Θ). Otherwise, two important differences exist: one
concerns the computation of the scattering azimuth angle and the other concerns
the rotation of the electric field characterizing the polarization.

Indeed, first, the scattering azimuth angle for each scattering event, depends
on the scattering zenith angle Θ and on the state of polarization of the incident
photon. The uniform PDF of φ is replaced by a conditional PDF f(φ|Θ), which
is the probability of φ given Θ, whereas in the scalar approach, this angle is cho-
sen randomly between −π and π. The azimuth angle φ is found by resolving the
following expression (more details can be found in Cornet et al. (2009)):

2πζφ = φ−
(
sin 2φ
2

Qi + Ui sin2 φ
)
Dp(Θ) , (3.22)

where ζφ is a uniform random number between 0 and 1.
Concerning the rotation of the Stokes vector S, because it is defined with respect

to the meridian plane whereas the phase matrix is defined in the scattering plane,
two rotations are needed. Therefore, in order to deal with a scattering event from
the incident direction defined by (θ, ϕ) to a new direction defined by (θ

′
, ϕ

′
), the

incident Stokes vector Si must be multiplied by the matrix Z (Chandrasekar, 1960;
Hansen and Travis, 1974; Ramella-Roman et al., 2005):

Z(θ, θ′, ϕ− ϕ′) = R(π − i2)P (Θ)R(−i1) , (3.23)

where Θ is the zenith scattering angle and i1 and i2 are two rotation angles defined
as follows (Hovenier, 1969; Hansen and Travis, 1974):

cos i1 = cosφ

cos i2 =
− cos θ + cos θ′ cosΘ

± sinΘ sin θ′ ,
(3.24)

where φ is the scattering azimuth angle. The sign ± depends of the sign of the
relative azimuth angle (ϕ− ϕ′).

The rotation matrix R is given by:

R(i) =

⎛⎜⎜⎝
1 0 0 0
0 cos 2i sin 2i 0
0 − sin 2i cos 2i 0
0 0 0 1

⎞⎟⎟⎠ . (3.25)
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Fig. 3.3. Flowchart of the standard Monte–Carlo radiative transfer model for the pro-
gression of one photon. The gray boxes correspond to the steps where the principal mod-
ifications of the code take place in order to account for the state of polarization of the
light.
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Note that, so far, the polarized 3-D model used here allows only the computation
of reflectances from a medium composed of randomly oriented particles and it does
not handle the polarization in the case of surface reflection. Some modifications will
be included later in order to allow computation of oriented particles and polarized
surface reflection.

3.3 Total and polarized reflectances in the case
of homogeneous clouds (1-D)

When the work described in this chapter was done, no 3-D atmospheric models ac-
counting for the state of polarization of the light in the visible part of the spectrum
were available. The validation of 3DMCPOL directly with 3-D polarized cases was
therefore not possible. Consequently, the model was validated, on the one hand, for
total reflectances in 3-D cases (see one example in subsection 3.4.2) and on the other
hand, for polarized reflectances from 1-D homogeneous cloud (next subsection).

3.3.1 Validation of the MC polarized model

In this subsection, several comparisons made with the well-known Adding-Doubling
code (de Haan et al., 1987) are shown for 1-D homogeneous cases for total and po-
larized reflectances. Concerning the Monte–Carlo simulations, 5.106 photons were
launched.

The first comparison concerns Rayleigh scattering which is one of the sim-
plest kinds of scattering. This case is a good validation for our code, first, because
the phase matrix and its exact decomposition in Legendre polynomials used in
the Adding-Doubling code is numerically known and, secondly, because Rayleigh
scattering is known to highly polarize the light. Results are shown in Fig. 3.4. Re-
flectances are computed for a cloud with optical thickness 5 using the Rayleigh
phase matrix, for different view zenith angles (0◦, 30◦ and 60◦) and for different
view azimuth angles between 0◦ (backward direction) and 180◦ (forward direction).
The sun incidence is 60◦. Note that we only consider the cloud layer which means
that, in this example, atmospheric molecular scattering was not accounted for. As
the last component V is zero for Rayleigh scattering, we present results for the first
three components of the Stokes vector (I,Q,U) respectively in Fig. 3.4(a), (c) and
(e). Comparisons obtained for the polarized reflectance Ip that is commonly used
in retrieval algorithms are also plotted in Fig. 3.4(g). This last quantity describes
the amount of polarized light:

Ip = ε
√
Q2 + U2 + V 2 (3.26)

where ε = ±1 represents the sign of the polarized reflectances which is expressed in
(C-Labonnote et al., 2001), but note that, in the solar plane, it corresponds simply
to the sign of Q. In Fig. 3.4(b), (d), (f), (h), we report the relative difference in
percent obtained between the two codes.

We see that, whatever the viewing angle, the agreement between the two models
is very good for all the components of the Stokes vector as well as for the polarized
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a)

c)

e)

d)

f )

h)

b)

g)

Fig. 3.4. Comparisons between Monte–Carlo and Adding-Doubling simulations for a
homogeneous cloud with τ = 5 using a Rayleigh phase matrix. θs = 60

◦, θv = 0◦, 30◦ or
60◦ and ϕv between 0

◦ (backward scattering) and 180◦ (forward). Figs (a), (c), (e), and
(g) present results for the Stokes parameters respectively I, Q, U and for the polarized
reflectances Ip. All these quantities are presented in percent. Figs (b), (d), (f), and (h)
present the relative differences in percent for the same quantities.
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reflectances. Except when the value is close to zero, the relative differences are very
small: below 0.12% for total reflectances and below 0.6% for polarized reflectances.

Because it will be used further in the chapter, we present also results obtained
for a homogeneous cirrus cloud in Fig. 3.5. The cirrus cloud has an optical thick-
ness of 2 and is located between 7 and 9 km. In this example, we account for
atmospheric molecular (Rayleigh) scattering computed for a wavelength of 865 nm
between 0 and 20 km but not for atmospheric absorption. The phase matrix used
in the simulation comes from the IHM (Inhomogeneous Hexagonal Monocrystal)
model (C-Labonnote et al., 2001). The error is below ±1% for I and about ±4–5%
for Q, U and Ip. The differences observed for Q, U and Ip can be explained, on
the one hand, by the small values reached by the polarized reflectances. Note, for
that matter, that the value of polarized reflectances is much lower in the case of ice
scattering than in case of Rayleigh scattering. The second reason concerns the dif-
ferent treatments of the phase matrix used in the two models. In the Monte–Carlo
model, the exact phase matrix is used whereas in the Adding-Doubling code, for
computational time reasons concerning the zenithal integration, some approxima-
tion like delta-M scaling or truncation of the phase function are made that could
introduce a-physical behavior in the computed Stokes vector.

a) b)

Azimuth angle (º) Azimuth angle (º)

0.0

1.0

2.0

3.0

Fig. 3.5. Comparisons of the total reflectances (a) and the polarized reflectances (b) in
percent of a homogeneous cirrus cloud with τ = 2 computed with the Monte-Carlo code
(MC) or with the Adding-Doubling code (AD). θs = 60◦, θv = 0◦, 30◦ or 60◦ and ϕv
between 0◦ (backward) and 180◦ (forward). From Cornet et al. (2009).

The last comparison presented concerns a homogeneous water cloud with an
optical thickness of 10 (Fig. 3.6). Again, we add molecular scattering for the atmo-
sphere. The results are presented in the solar plane as a function of the scattering
angle. In this case, the sign of the polarized reflectance corresponds to the sign of
the second component of the Stokes vector Q as the third parameter U in the solar
plane is null. The comparison shows that our model can well reproduce the pri-
mary cloudbow near 140◦ used for cloud phase detection and the secondary bows
which are used to retrieve size particles of water cloud (Bréon and Goloub, 1998;
Bréon and Doutriaux-Boucher, 2005). One can notice that the differences given by
the two codes are very small whatever the direction. These differences are larger
in the forward direction and are certainly due to the decomposition of the phase
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a) b)

Azimuth angle (º)Azimuth angle (º)

Fig. 3.6. Comparisons of the total reflectances (a) and the polarized reflectances (b) in
percent of a homogeneous water cloud with τ = 10 computed with the Monte–Carlo code
(MC) or with the Adding-Doubling code (AD). θs = 60

◦ and reflectances are plotted as
functions of the scattering angle 0◦ (forward) and 180◦ (backward).

matrix in Legendre polynomials and to the number of integration points used in
the Adding-Doubling code.

We recall that in this subsection, we have only shown comparisons on polar-
ized reflectances obtained for 1-D homogeneous cloud. Examples of comparisons
for total reflectances obtained for 3-D inhomogeneous cloud are presented in sub-
section 3.4.2.

3.3.2 Reflectances of homogeneous clouds as a function
of the optical thickness

Fig. 3.7 presents, for homogeneous cirrus clouds, total and polarized reflectances
as a function of optical thickness for a sun zenith angle of 60◦, a zenith observation
angle of 0◦ (a,b) and of 60◦ (c,d) and an azimuth angle of 00 (backward scatter-
ing direction). Under the homogeneous assumption (solid line), we recognize the
well-known nonlinear relationship between reflectances and optical thickness. This
nonlinear relationship exists for both total and polarized reflectances but, as al-
ready pointed out, we note that polarized reflectances saturate for relatively small
optical thickness of about 3–4. This is because the final polarization state comes
from the first few orders of scattering. This particularity is fundamental and makes
the polarized measurements very useful in retrieving information on cloud parti-
cle shapes or size. Indeed, as polarized reflectances are less sensitive to multiple
scattering, information contained in the measurement comes essentially from the
particles’ scattering properties via their phase matrix.

3.4 Total and polarized reflectances in the case
of 3-D cloud fields

3.4.1 Description of the 3-D cloud fields used

In this subsection, we present computations of total and polarized reflectances ob-
tained from 3-D clouds that are an inhomogeneous cirrus and a stratocumulus
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Fig. 3.7. Total (a,c) and polarized (b,d) reflectances in function of optical thickness
computed for homogeneous cirrus clouds (solid line) and for the heterogeneous cirrus
cloud presented in Fig. 3.8 (dot) with τ = 2. An IHM phase matrix is used. The sun
zenith angle 60◦, the azimuth observation angle is 0◦ and the zenith observation angle is
0◦ (a, b) or 60◦ (c,d).

cloud. The clouds were simulated with a stochastic cloud model called ‘3DCloud’
and described in Szczap (2009) and Cornet et al. (2009). The simulations are done
at a wavelength of 865 nm. The two cloud fields are composed of 128× 128 pixels.
The optical thickness of the cirrus cloud is a gamma PDF with a mean of 2, an
inhomogeneity parameter ρ of 0.6, a fractional cloud cover of 1 and a wind shear
of 2m s−1. The inhomogeneity parameter is defined as the standard deviation of
the 2-D horizontal optical depth fields divided by its mean (Szczap et al., 2000).
The optical thickness of the cirrus cloud integrated along the z-axis is presented
in Fig. 3.8(a) and the integration on the extinction coefficient along the y-axis in
Fig. 3.8(b). The other cloud is a stratocumulus cloud with a mean optical thick-
ness of 10, an inhomogeneity parameter of 0.7 and a fractional cloud cover of 1.
It is presented in Fig. 3.8(c) and (d). As in subsection 3.3.1, the cirrus cloud mi-
crophysics is modelized by an IHM particles phase function computed with a real
part of the refractive index set to 1.304. The stratocumulus cloud microphysics is
modeled with spherical particles with a log-normal size distribution, an effective
radius of 10μm and an effective variance of 0.02. The real part of the refractive
index is 1.33.
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Fig. 3.8. Synthetic clouds used for the radiative transfer. (a) and (b) cirrus cloud with a
mean optical thickness of 2. (c) and (d) stratocumulus cloud with a mean optical thickness
of 10. Optical thickness integrated along the z-axis (a) and (c), and along the y-axis (b)
and (d). (a) and (b) are from Cornet et al. (2009). [For the color version of this figure,
see the color section.]

3.4.2 Comparisons with SHDOM and time considerations

In this subsection, we show comparisons obtained for the 3-D cirrus cloud presented
in Fig. 3.8 with another widely used 3-D radiative transfer model, the Spherical
Harmonics Discrete Ordinate Method (SHDOM, (Evans, 1998)). Radiative transfer
calculations were performed for a solar zenith angle of 60. The medium is described
by 128 × 128 × 44 pixels with a size of 78m along the x and y-axis. Along the z-
axis, the pixel size is 78m inside the cloud and 2 km outside the cloud to account
for molecular scattering between 0 and 20 km. For all the calculations, the wave-
length is 865 nm. We assume a black underlying surface. The results are presented
in Fig. 3.9 for a zenith observation angle of 30◦ and a relative azimuth angle of 1800

(forward direction). The simulations were performed with 108 photons divided in
20 batches which makes it possible to compute the statistical error of the Monte–
Carlo calculations (Evans and Marshak, 2005). For this simulation, the absolute
Monte–Carlo statistical errors for the total and polarized normalized reflectances
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Fig. 3.9. Total (a) and polarized (b) reflectances at 78m resolution for θs = 60◦;
θv = 30 and ϕv = 180◦ (forward direction) for the cirrus cloud presented in Fig. (3.8).
The wavelength is 865 nm. The mean values are indicated above the figures for the 3-D
cirrus cloud (hete) and for the homogeneous cloud (homo). (c) and (d) comparisons with
SHDOM for the total reflectance value: (c) horizontal cut along the line 75 corresponding
to about 6 km and (d) scatterplot between SHDOM and 3DMCPOL reflectances for the
entire field presented in (a). Error bars correspond to the statistical errors of Monte–Carlo
simulations. (a) and (b) are from Cornet et al. (2009). [For the color version of this figure,
see the color section.]

are respectively ±1 and ±0.12 which corresponds to relative statistical errors re-
spectively below 5% and below 10% for the majority of the pixels. When averaging
on the entire field, we obtain respectively statistical errors of 1.5% and 3%. Com-
parisons with SHDOM are presented in Fig. 3.9(c) and (d) where a horizontal cut
along the line 75 and a scatterplot of the entire field are shown. We can see that
Monte–Carlo and SHDOM results are in very good agreement with on average an
absolute error of 0.5 corresponding to a relative error of 1.5%.

One of the main drawbacks of Monte–Carlo calculations concerns the large
computer time which is required to reach a good accuracy. In our case, because
we take into account the state of polarization of the light and all the computation
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required for it, such as the determination of the scattering azimuth angle and
the rotation of the Stokes vector, the simulations are slowed down by a factor of
almost 2 compared to a model using the scalar approach. One way to reduce this
computing time is to not compute the four elements of the Stokes vector when
possible. Typically, atmospheric processes or interactions lead to linearly polarized
light; therefore the fourth coefficient (V ) of the Stokes vector is very small and
can be neglected. Consequently we can compute just the first three elements of the
Stokes vector which reduces the computation time by a factor of 1.2. This factor
becomes 1.5 if we compute only the first two elements when calculations take place
in the solar plane.

In subsection 3.3.1, we showed that the polarized Monte–Carlo model gives
accurate results for polarized reflectances over different types of homogeneous cloud
cases. In this section, we showed that the agreement is good for total reflectances
over a 3-D cloud scene. Therefore, we can have confidence in results obtained for
both total and polarized reflectances above 3-D scenes.

3.4.3 High spatial resolution (80m): illumination and shadowing effects

Cloud heterogeneity effects can often be separated into two according to the scale
being studied. In this subsection, we present results obtained for a high resolu-
tion of 80m, which is close to what can be obtained by airborne measurements.
Total and polarized reflectances are respectively presented in Fig. 3.9(a) and (b).
We see that the two reflectances fields reproduce well the variability of the optical
thickness fields. However, one can be surprised by the values reached by polarized
reflectances. Indeed, as we saw in Fig. 3.7, in the case of homogeneous cloud, po-
larized signal saturates for optical thickness of about 3–4. This appears no more
true in the case of variable 3-D cloud fields as it is confirmed in Fig. 3.7(b) and (d)
where are plotted the reflectances obtained for this 3-D cloud as a function of the
optical thickness. Both total and polarized 3-D reflectances are dispersed around
the 1-D relationship and one can notice that the dispersion is more important for
a zenith observation angle of 60◦ than for a zenith angle of 0◦. Two effects can
explained this dispersion. One is a well-known 3D effects already observed at high
resolution on total reflectances (Varnai and Davies, 1999; Varnai and Marshak,
2002) and due to illumination and shadowing effects. This effect appears whatever
the observation angle. It explained that, for a given optical thickness, reflectance
values can be below or above the 1-D curve, which implies one part of the observed
dispersion. For a zenith observation angle of 60◦, another effect appears and comes
from the fact that reflectances are the result of energy coming along the oblique
path defined by the observation angle whereas the optical thickness is integrated
along the vertical axis (Varnai and Davies, 1999). Regarding these results, we can
conclude that at high resolution polarized reflectances are affected by 3-D effects in
the same way as total reflectances. People need therefore to be cautious when using
polarized measurements above variable cloud scenes because, in addition to erro-
neous retrieved values, illumination effects can lead to situations with no solution
in the framework of homogeneous cloud layers. To better understand illumination
and shadowing effects, one can refer to Cornet et al. (2009) where reflectances
simulated from a step cloud are analyzed.
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3.4.4 Medium spatial resolution (10 km):
sub-pixel heterogeneity effects

To assess the sub-pixel heterogeneity effects at a larger resolution, we averaged
spatially the total and polarized reflectance fields to obtain mean values over a
10× 10 km pixel size, which is close to the POLDER pixel resolution. This spatial
average of the total and polarized reflectances is plotted in Fig. 3.10 (dashed lines)
for the 3-D cirrus cloud presented in Figs 3.8(a) and (b) and in Fig. 3.11 (dashed
lines) for the 3-D stratocumulus cloud presented in Figs 3.8(c) and (d). In addition,
we report also in these figures the reflectance obtained from a 1-D model, which is
usually used in classical retrieval. We assume the same microphysical model and
the averaged optical thickness over the 3-D domain. The cirrus cloud microphysics
is thus represented by the IHM model with an optical thickness of 2 and the stra-
tocumulus cloud by a log-normal distribution with re = 10μm and ve = 0.02,
and an optical thickness of 10. Reflectances values are plotted as a function of the
scattering angle, which allow us to obtain the characteristic angular signature of
water clouds with the cloudbow near 140◦ and all the supernumary bows observ-
able between 145◦ and 165◦. Error bars corresponding to the statistical errors of
the Monte–Carlo simulations are also plotted, which allows us to be sure that the
deviation observed between 3-D and 1-D are real and outside the statistical noise
of the computation. In the case of the polarized reflectances, we computed them
from ΔQ and ΔU using:

ΔIp =
|Q|ΔQ+ |U |ΔU

Ip
. (3.27)

The non-linearity of reflectances as a function of the optical thickness implies
the so-called plane-parallel bias (Fig. 3.7) (Cahalan et al., 1994), which means
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Fig. 3.10. Total (a) and polarized (b) reflectances for θs = 60◦ as a function of the
scattering angles (Θ = 180◦ corresponding to backward scattering). Solid lines are for
a homogeneous cirrus cloud of optical thickness 2 and dashed lines for the spatial mean
reflectance values for the cirrus cloud presented in Fig. 3.8. Error bars corresponds to the
statistical error of Monte–Carlo computations. Modified from Cornet et al. (2009). [For
the color version of this figure, see the color section.]
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that the 3-D mean total reflectances are smaller than the corresponding 1-D ho-
mogeneous reflectances in the two cases (Fig. 3.10(a) and Fig. 3.11(a)) for all the
scattering angles. Concerning the cirrus cloud, the relative differences for total re-
flectances are between 0 and −8% and tend to decrease with the scattering angle.
In Fig. 3.10(b), we note that this overestimation of reflectances under the 1D as-
sumption exists also for the polarized reflectances of the cirrus cloud (Fig. 3.10(b))
with relative differences ranging from 7% to 8% whatever the viewing direction.
Concerning the water cloud, the relative differences range between −2% and −14%
for the total reflectances and in contrast to the cirrus cloud, overestimation of polar-
ized reflectances under the homogeneous assumption does not exist (Fig. 3.11(b)).
However, we can notice that the statistical error is important and does not allow
us to be sure of the result. This is due to the strong forward peak of the Mie phase
function which leads to very noisy reflectances fields. This can be avoided using
a truncated phase function. Studies need therefore to be pursued to confirm this
result and to understand why the plane-parallel bias appears only for the cirrus
case. But, as polarized reflectances saturate quite quickly with optical thickness,
this may be due to the difference in optical thickness values which are larger for
the stratocumulus cloud.

Nevertheless, this result could be very interesting for cloud water microphysical
retrieval because it tends to show that the sub-pixel optical thickness heterogeneity
does not modify the microphysical signature of liquid water cloud. The retrieval of
cloud size particles based on the angular signature (Bréon and Goloub, 198; Bréon
and Doutriaux-Boucher, 2005) would thus give correct results even in the presence
of variable cloud, as long as they have sufficient optical thickness. However, as
macrophysical heterogeneity is often linked with microphysical heterogeneity, other
studies are necessary to get a complete understanding of the heterogeneity effect
on the polarized signal.
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Fig. 3.11. Comparisons between 1-D and 3-D computations of total (a) and polarized
reflectances (b) as a function of the scattering angles for the stratocumulus cloud presented
in Fig. 3.8(c) and (d). Error bars correspond to the statistical error of Monte–Carlo
computations.
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3.5 Conclusions and perspectives

As polarized measurements are very suitable for obtaining properties of atmo-
spheric components and as several instruments are currently developed to make
these type of measurements, it becomes very important to have realistic atmo-
spheric radiative transfer model handling the polarization and able to reproduce
all the complexity of the atmosphere and especially of cloudy atmosphere. In Cornet
et al. (2009), we presented a model based on Monte–Carlo methods, which allows
us to simulate total and polarized reflectances above tri-dimensional medium. In
this chapter, we recall the general scheme of this Monte–Carlo model and espe-
cially the particularities introduced by the account of the polarization. This model
is tested without polarization for 3-D cases by comparing results with SHDOM
simulations and is successfully validated with polarization for homogeneous cloud
cases by comparing it with an Adding-Doubling model. In order to have a com-
plete model, it remains to include, in the near future, the surface polarization in
the calculation.

In this chapter, examples of 3-D radiative transfer inside clouds are presented.
The clouds were created with a stochastic cloud model (Szczap, 2009). Total and
polarized reflectances of two clouds, a cirrus cloud and a water cloud, were com-
puted and analyzed. The results show that polarized reflectances can be sensitive
to 3-D effects in the same way as total reflectances.

For the cirrus cloud, at high resolution and with an oblique sun illumination, we
observed 3-D effects such as illumination and shadowing effects which respectively
enhance or reduce the reflectances. Values higher than those predicted by the ho-
mogeneous assumption can thus be reached. In addition, at a medium resolution
of 10 km, total as well as polarized reflectances of the cirrus cloud are overesti-
mated under the homogeneous assumption because of the so-called plane-parallel
bias. Concerning the water cloud with a mean optical thickness of 10, in contrast,
and surprisingly, the plane-parallel bias does not appear for polarized reflectances.
This may be due to the larger optical thicknesses used, given that the polarized
reflectances saturate for quite small values of it. The average polarized reflectance
is thus equal to the value obtained with the homogeneous model. This can be an
important result for issues concerning cloud size particles retrieval because, if it
is confirmed, that means that, given a sufficient resolution, microphysics retrieval
from multi-viewing measurements might not be influenced by the sub-pixel optical
thickness heterogeneity.

In this chapter, only two examples were studied; the work needs to be pursued
with other kind of clouds, including fractional cloud cover and clouds with micro-
physical heterogeneity. The model used in this chapter is an essential tool to get a
better knowledge of the limitation of using the 1-D assumption to infer cloud micro-
physics from multi-viewing polarized measurements and to exploit measurements
of polarized reflectances that will be acquired by the future sensors.
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4 Linearization of radiative transfer in spherical
geometry: an application of the forward-adjoint
perturbation theory

Holger H. Walter and Jochen Landgraf

The remote sensing of atmospheric constituents with limb-viewing satellite instru-
ments or with nadir viewing instruments at large solar zenith angles requires a for-
ward model that simulates the backscattered radiance taking the spherical shape
of the Earth atmosphere into account. In addition, many retrieval schemes are
based on a linearization of such a forward model. Whenever it is important to take
multiple scattering into account (e.g. due to light scattering air molecules, aerosols
and clouds) the linearization of the measurement simulation with respect to the
parameters to be retrieved is not trivial. Here, the forward-adjoint perturbation
theory provides a general method to linearize radiative transfer. In the first part
of this review chapter we provide the theoretical background of the linearization
approach for a radiative transfer problem in a spherical model atmosphere which
is illuminated by a collimated solar beam. Using an operator formulation of ra-
diative transfer allows one to express the linearization approach in a universally
valid notation. Depending on the particular formulation of the radiative transfer
problem the perturbation of internal sources has to be taken into account in addi-
tion. The needed adjoint calculation corresponds to a so-called searchlight problem
that requires the use of three-dimensional radiative transfer simulations in gen-
eral. Subsequently we show how symmetries of the forward radiation field and a
proper choice of the radiation sources can be used to simplify the needed adjoint
calculations substantially.

As an example we present the linearization of a numerical radiative transfer
model for a spherical shell atmosphere in the second part of this article. It al-
lows the interpretation of limb measurements in the ultraviolet and visible spectral
range. Here, the scalar radiative transfer problem is solved in its forward and ad-
joint formulation. Subsequently, we apply the perturbation theory approach in the
calculation of the derivatives of the radiance at the top of the atmosphere with re-
spect to the absorption properties of a trace gas species in the case of a limb-viewing
satellite instrument.

4.1 Introduction

Current and future satellite instruments, which observe the Earth’s atmosphere in
limb viewing geometry in the ultraviolet (UV) and visible (VIS) spectral range,
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provide information about the distribution of atmospheric trace constituents with
high vertical resolution. For example the Scanning Imaging Absorption Spectrom-
eter for Atmospheric Chartography (SCIAMACHY) [5], launched in 2002 on board
of ESA’s ENVISAT satellite, measures backscattered limb radiances in the wave-
length range from 240 to 2380 nm. In limb-viewing geometry, SCIAMACHY verti-
cally scans the atmosphere from ground level up to an altitude of approximately
100 km in steps of 3 km at tangent height. This enables the retrieval of a variety
of atmospheric trace constituents in high vertical resolution. Furthermore, SCIA-
MACHY offers the unique possibility of observing an air volume in nadir as well
as in limb-viewing geometry. It is expected that the combination of both viewing
geometries will facilitate a higher accuracy in the retrieval of atmospheric trace
gas profiles in the troposphere and stratosphere [56]. In 2001 the Canadian Optical
Spectrograph and Infrared Imager System (OSIRIS) [38] was launched on board
the Odin satellite. The instrument observes the backscattered radiances in limb
viewing geometry and comprises a UV/VIS spectrograph covering the wavelength
range from 280 to 800 nm and three 30 nm wide infrared (IR) channels at 1260 nm,
1270 nm and 1280 nm. The vertical distribution of e.g. O3, NO2, OClO, BrO and
aerosols can be retrieved from OSIRIS limb measurements. Also, the Ozone Map-
ping and Profiler Suite (OMPS) [14], to be launched on NPOESS in 2010 by the
United States of America, is dedicated to monitoring the global ozone distribution
from space. This instrument consists of a nadir sensor with a wide field-of-view
telescope and a limb sensor. The nadir spectrometer observes the backscattered ra-
diance between 300 and 380 nm, whereas the limb sensor measures the along-track
limb-scattered solar radiance in the spectral range from 290 to 1000 nm.

In order to retrieve an atmospheric parameter x from such limb observations
with standard least squares methods [39, 41, 51], one has to simulate both the
radiance ITOA at the top of the model atmosphere (TOA) and its derivative with
respect to the parameter to be retrieved. This corresponds to a linearization of
the radiative transfer problem, given by a Taylor expansion around a first-guess
parameter x0:

ITOA(x) = ITOA(x0) +
∂ITOA

∂x
(x0)Δx+O(Δx 2). (4.1)

Here, O(Δx2) represents higher-order terms in Δx = x− x0.
For the simulation of limb radiance measurements in the UV and VIS spectral

range, radiative transfer models, which take the multiple scattering of radiation in
a spherical model atmosphere into account, are required. In general, such spher-
ical radiative transfer models are complex and computationally highly expensive.
The Monte Carlo technique [29] provides a straightforward approach to solving
this type of radiative transfer problem (see e.g. [1, 11, 36, 40, 50]). However, due
to its statistical nature, Monte Carlo models require a considerable computational
effort in order to achieve a reasonable accuracy. Therefore alternative techniques
have been developed in order to solve the spherical radiative transfer equation
in a more efficient manner. [46] gives a general overview about different solution
techniques in curved media. Here, applications such as radiative transfer in stellar
atmospheres are discussed. For the simulation of radiative transfer in a spheri-
cal planetary atmosphere, [49] and [48] suggested an efficient solution approach,
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in which the first-order scattering is calculated exactly, whereas the higher-order
scattering is approximated by the use of the first two terms of a Legendre expan-
sion of the scattering phase function only. [47] applied this method to determine
the source function and brightness of a spherical planetary atmosphere. Further-
more, several radiative transfer approaches have been suggested [2,3,12,24] for the
simulation of the azimuthally-averaged radiation field in a spherical atmosphere.
However, remote sensing in limb-viewing geometry requires the simulation of the
azimuthal dependence of the radiation field. This angular dependence is fully taken
into account by the model of [18], which employs a Gauss–Seidel iteration scheme
to solve the integral form of the radiative transfer equation. Here, the assumption
of a constant ratio of single scattering to multiple scattering along a conical bound-
ary facilitates the efficient calculation of the multiple-scattering source function in
spherical geometry. However, due to this approximation the radiation field can only
be calculated in cases in which the single-scattering terms are not zero. [42] pre-
sented an alternative radiative transfer model which is based on a Picard iteration
scheme. A radiation field, which is calculated in pseudo-spherical approximation,
serves as an initial guess in order to integrate the radiative transfer equation along
discrete lines in spherical geometry in subsequent iterations. Corresponding meth-
ods have been developed independently in order to solve the multiple scattering
problem in spherical geometry [13, 31, 59]. [27] shows a quantitative comparison
of currently available radiative transfer models, suited for the simulation of limb
radiance measurements.

Minor attention has been given to the linearization of spherical radiative trans-
fer. The linearization of the spherical radiative transfer models has been performed
either by the finite difference method or by approximate methods so far. In the
finite difference method (see e.g. [31]) two radiative transfer calculations are uti-
lized to approximate the derivative of ITOA: one for an unperturbed atmosphere
and one for an atmosphere for which the desired atmospheric parameter x has been
perturbed by a small amount. For trace gas profile retrieval such an approach leads
to many repetitive computations, as for every perturbation of the trace gas con-
centration at a different altitude a new radiative transfer calculation is required.
The combination of this method with the complex spherical radiative transfer mod-
els in an iterative retrieval approach requires considerable computational resources.
Therefore the use of a (quasi-)analytical linearization of spherical radiative transfer
is desirable. The pseudo-spherical approximation, for example, found a wide ap-
plication in the remote sensing of atmospheric parameters (compare e.g. [43, 44]).
Furthermore, [19] has presented a linearized spherical radiative transfer model, tak-
ing two orders of scattering into account, which is suited for a concise trace gas
profile retrieval in atmospheric scenarios with a low fraction of multiple scattered
radiation. Recently, [40] presented a linearized vector radiative transfer model for
a spherically symmetrical atmosphere, which is based on the Monte Carlo estima-
tion technique [29]. Therein the derivative of the radiance at TOA with respect to
a trace gas number density is calculated using the same Markov chain as for the
calculation of the radiance itself, which makes the model very efficient. Details may
be found in [29] and [40].

Alternatively the linearization of a radiative transfer problem can be achieved
using the forward-adjoint perturbation theory, which is known from neutron trans-
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port theory [4]. This technique can be used for the linearization with respect to
absorption and scattering properties of the atmosphere. In addition, the approach
is independent of the solution method of the radiative transfer equation and there-
fore any radiative transfer model, which simulates the internal forward and ad-
joint radiation field, can be linearized by means of the method presented here.
Moreover, the perturbation theory can be applied in a straightforward manner
to radiative transfer problems, which take the polarization of radiation into ac-
count. The perturbation theory approach was firstly used by [28], who applied it
to plane-parallel atmospheric radiative transfer. A great variety of different appli-
cations of the forward-adjoint perturbation theory in plane-parallel geometry has
been developed (e.g. [6], [53–55], [45], [23], [17] and [16]). Due to the fact that the
perturbation theory approach can be formulated for an arbitrary geometry [4], it
can be applied also to the full spherical radiative transfer problem in a straight-
forward manner. This was demonstrated by [57] and [59]. In this review article we
give a detailed outline how to employ the forward-adjoint perturbation theory in
spherical geometry.

In Section 4.2 the forward and the adjoint formulations of radiative transfer
in spherical geometry are introduced. Both formulations of radiative transfer are
needed in subsection 4.2.3 to derive an analytical linearization of the spherical
radiative transfer problem. Any spherical radiative transfer model, which simulates
the internal forward and adjoint radiation field, can be linearized by means of the
approach presented here. Section 4.3 discusses symmetries which can be used to
simplify the calculation of the forward and adjoint radiation field. Finally, in Section
4.4 the linearization with respect to the amount of trace gases at different altitudes
is demonstrated for a simplified spherical radiative transfer problem, which yields
a radiation field that does not depend on the global azimuth.

4.2 Forward-adjoint perturbation theory
in spherical geometry

4.2.1 The forward radiative transfer equation

We consider a planetary atmosphere that is illuminated symmetrically by parallel
solar beams in downward direction of the global zenith ZS (see Fig. 4.1). As we are
interested in the ultraviolet and visible part of the solar spectrum, thermal emission
will not be taken into account in the following description of the radiative transfer
processes. Any refractional effects of radiation are neglected, therefore it can be
assumed that light travels along straight lines. Because a scalar approximation of
radiative transfer simplifies the notation of the associated equations substantially,
polarization is not taken into account in the remainder. Depending on atmospheric
composition, observation geometry and wavelength, this approximation, however,
can lead to errors of up to 10% in the simulated radiance [32]. For these cases the
scalar radiative transfer equation and also the corresponding expressions for the
forward-adjoint perturbation theory can be extended to a vector formulation in a
straightforward manner, as is shown by [15].

Basically, the radiative transfer equation is a detailed balance equation which
locally describes the change of radiation in a certain direction due to sinks and
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sources in the atmosphere. The loss of radiation is caused by extinction processes
as a result of absorption and scattering of photons out of the propagation direction
of the light. Sources of radiation are the scattering of photons from other directions
into the propagation direction, emission sources within the atmosphere and external
radiation sources like the sun. The time-independent, monochromatic radiative
transfer equation for an isotropic medium in local thermodynamic equilibrium can
be written in operator form [6,28] as

LI = S0, (4.2)

where I(r,Ω) is the spectral radiance at position r in directionΩ and S0 is the solar
radiation source. The vectors r and Ω constitute the phase space of the radiative
transfer problem. For radiative transfer in spherical geometry it is convenient to
represent the position r in the atmosphere by spherical coordinates, i.e. the radius
r, the global zenith angle Ψ and the global azimuth angle Φ. The transport operator
L is given by

L =
∫
4π

dΩ̃ {
[
d

ds
+ βe(r)

]
δ(Ω− Ω̃)− βs(r)

4π
P (r, Ω̃,Ω) } , (4.3)
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Fig. 4.1. Schematic overview of the geometry used for the description of radiative transfer
in a spherical atmosphere. In a spherical coordinate system the radiation field is a function
of the three spatial coordinates r, Ψ, Φ and the two directional coordinates θ and ϕ. The
incident solar radiation illuminates the upper hemisphere of the planet. Here, the solar
zenith angle θ0 is defined locally at the top of the model atmosphere with respect to the
inner normal.
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where d/ds is the derivative along the pathlength s in direction Ω and may be also
expressed as Ω ·∇. The directional vector Ω = (θ, ϕ) is specified by the local zenith
angle θ, defined with respect to the outer normal, and the local azimuth angle ϕ.
Further dΩ̃ = sin θ̃dθ̃ dϕ̃. δ is the Dirac-delta function with

δ(Ω− Ω̃) = 1
sin θ

δ(θ − θ̃) δ(ϕ− ϕ̃). (4.4)

In the transport operator (4.3) surface reflection has been neglected. Such effects,
however, may be included in a straightforward manner, as shown by [22]. Finally, βe
is an extinction coefficient, βs is a scattering coefficient and P denotes the scattering
phase function. In general all three quantities vary depending on position.

The solar radiation source S0, which illuminates the upper hemisphere of the
Earth’s atmosphere (see Fig. 4.1), may be expressed as

S0(r,Ω) = μ0F0δ(r − rTOA)δ(Ω−Ω0)Θ (μ0) . (4.5)

Here, F0 is the extraterrestrial flux, rTOA is the distance from the center of the
Earth to the top of the model atmosphere and Ω0 = (θ0, ϕ0) describes the direction
of the solar beam. Here, θ0 is the local solar zenith angle and ϕ0 the local solar
azimuth angle. Further, θ0 is defined with respect to the inner normal, in order to
ensure comparability with common plane-parallel radiative transfer theory. μ0 is the
cosine of the local solar zenith angle θ0. The Heaviside step function Θ (μ0) in (4.5)
accomplishes the illumination of only one hemisphere of the Earth’s atmosphere.

The radiation field I is subject to the free surface boundary conditions of no
incoming radiation at the top (TOA) and bottom (BOA) of the atmosphere,

I(rTOA,Ω) = 0 for − 1 ≤ μ < 0
I(rBOA,Ω) = 0 for 0 < μ ≤ 1. (4.6)

Here, μ = cos θ.
For a solution of (4.2) three-dimensional radiative transfer calculations are

needed in general. Here, the streaming term in (4.3) can be expanded in spher-
ical coordinates (see e.g. [42] and references therein) which yields

d

ds
= cos θ

∂

∂r
+
sin θ cosϕ

r

∂

∂Ψ
+
sin θ sinϕ
r sinΨ

∂

∂Φ
− sin θ

r

∂

∂θ

− sin θ sinϕ cotΨ
r

∂

∂ϕ
. (4.7)

Because of the complex structure of the streaming term, up to now no solution
method other than the Monte Carlo technique [29] has been available to solve
the radiative transfer problem in a three-dimensional inhomogeneous, spherical at-
mosphere. The Monte Carlo technique is with respect to the geometry and the
atmospheric composition the most versatile approach [36, 40, 50]. Other solution
methods – as discussed in the introduction – generally make use of different sim-
plifications of the radiative transfer problem.

Once the internal radiance field I(r,Ω) has been calculated with the help of a
numerical radiative transfer model, any radiative effect E – in general the observ-
able – might be obtained by an evaluation of the inner product [6, 28]
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E = 〈R|I〉, (4.8)

where the inner product describes an integration over the full phase space [4], viz.

〈R|I〉 =
∫
V

dV

∫
4π

dΩ R(r,Ω)I(r,Ω). (4.9)

Here, dV represents a differential volume element. R is the so-called response func-
tion which is defined by the measurement. In the context of satellite remote sensing,
the radiative effect under investigation is the radiance at the top of the model at-
mosphere in the viewing direction of the instrument, thus E = I(rv,Ωv) ≡ ITOA.
Here, Ωv = (θv, ϕv) describes the viewing direction of the satellite instrument,
where θv is the viewing zenith angle and ϕv is the viewing azimuth angle, both
defined at the location of the satellite at rv.1 For a measurement of ITOA with a
satellite, the appropriate response function is given by the direction of the instru-
ment’s line-of-sight

R(r,Ω) = δ(r− rv)δ(Ω−Ωv), (4.10)

with

δ(r− rv) = δ(r − rTOA) 1
r
δ(Ψ − Ψv) 1

r sinΨ
δ(Φ− Φv) (4.11)

in the representation of spherical coordinates.

4.2.2 The adjoint formulation of radiative transfer

The linearization of spherical radiative transfer with the forward-adjoint perturba-
tion theory requires the solution of an adjoint transfer equation in addition. The
adjoint transfer equation corresponds to a backward formulation of radiative trans-
fer in space and can be derived from the forward radiative transfer equation (4.2).
In order to derive the adjoint transfer equation, we refer to the theoretical approach
introduced by [4]. (See also [57] for details.)

The adjoint transfer equation needed for a linearization is given in operator
notation by

L†I† = R, (4.12)

where I† denotes the adjoint intensity field, R is the response function from (4.10)
and L† is the transport operator adjoint to the forward transport operator L. The
adjoint transport operator L† is defined by the following equation:

〈L†I2|I1〉 = 〈I2|LI1〉 (4.13)

for two arbitrary intensity fields I1 and I2. It can be shown that the adjoint operator
is given by [4]

1Here, rv is given by the radius rTOA, the global zenith angle Ψv and the global azimuth
angle Φv.
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L† =
∫
4π

dΩ̃ {
[
− d

ds
+ βe(r)

]
δ(Ω− Ω̃)− βs(r)

4π
P (r,Ω, Ω̃) } . (4.14)

Thus, in the adjoint problem the sign of the streaming term d/ds is negative and
the directions in the scattering phase function are reversed. Like the forward trans-
port operator, the adjoint transport operator includes all scattering and extinction
processes of the adjoint problem. However, the adjoint operator L† also differs from
the forward transport operator L; in other words L is not self-adjoint.

The adjoint intensity I† has to satisfy the boundary conditions of no outgoing
adjoint intensity at the top and the bottom of the atmosphere,

I†(rTOA,Ω) = 0 for 0 ≤ μ < 1
I†(rBOA,Ω) = 0 for − 1 < μ ≤ 0. (4.15)

With the help of the resulting adjoint intensity field from (4.12), the radiative effect
E as defined in (4.8) can be expressed in an alternative way [6, 28]:

E = 〈I†|S0〉. (4.16)

This shows that if the satellite response function R acts as an adjoint radiation
source, the resulting adjoint intensity field has a clear physical meaning. Then, I†

can be interpreted as the importance [4,26] of scattered photons within the atmo-
sphere for a given measurement. In that way the adjoint field concisely describes
the domain of influence of a satellite observation. Hence, the adjoint problem and
the forward problem become closely related.

In general, the solution of (4.12) also requires three-dimensional radiative trans-
fer calculations. Here, an algorithm might be needed which is independent of the
algorithm to solve the forward radiative transfer problem (4.2). However, due to
the reciprocal nature of light, the adjoint transfer problem can be transformed into
a pseudo-forward problem, which allows one to utilize the same radiative trans-
fer model for the solution of the forward radiative transfer equation (4.2) as well
as for the solution of the adjoint transfer equation (4.12) [4, 10]. By exchanging
and reversing the incoming and outgoing direction, the adjoint transport operator
transforms into the forward one. That is, the lightpath can simply be reversed.
This reciprocity principle can be expressed by a symmetry relation for the phase
function [4], viz.

P (r,Ω1,Ω2) = P (r,−Ω2,−Ω1). (4.17)

All atmospheric scatterers (i.e. molecules, aerosols, liquid water droplets and ice
crystals) fulfill the symmetry relation (4.17).2 Therefore we can substitute the
adjoint intensity field I† by the pseudo-forward intensity field ξ, which is defined
as

ξ(r,Ω) = I†(r,−Ω). (4.18)

2In cases where the polarization of radiation plays an important role, e.g. for the
description of scattering by ice crystals, the symmetry relation (4.17) can be extended to
a corresponding symmetry relation for the phase matrix. For details, see e.g. [33].
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Then it is possible to write for (4.12) in its pseudo-forward formulation

Lξ = Sξ (4.19)

with L the forward transport operator and

Sξ(r,Ω) = R(r,−Ω) (4.20)

as a new radiation source. Subsequently, the pseudo-forward transport equation
(4.19) can be solved with the same radiative transfer model which is employed in
the solution of the forward transport equation. For it only the radiation source has
to be exchanged, viz. Sξ instead of S.
The pseudo-forward formulation (4.19) is also known as the backward formu-

lation of radiative transfer. Here, the satellite instrument is assumed to emit pho-
tons in the viewing direction into the atmosphere. A narrow light beam, which
illuminates the atmosphere, could serve as an example. As a consequence, the
pseudo-forward formulation defines a so-called searchlight problem. In the case of
three-dimensional radiative transfer this results in an adjoint field, which is highly
peaked and concentrated around the satellite’s line-of-sight (see Fig. 4.2, upper
right). The actual shape of this radiation field crucially depends on the absorption
and scattering properties of the atmosphere.

Fig. 4.2. Qualitative illustration of the forward radiation field and its importance. The
left upper graph illustrates the diffuse forward radiation field due to the solar illumination
at the top of the atmosphere. The graph in the upper right shows the two-dimensional
section of the pseudo-forward radiation field for a limb-viewing satellite instrument. The
combination of both fields in the lower graph shows where the highest sensitivity with
respect to atmospheric changes exists. Here, the pseudo-forward field has been transformed
in its corresponding adjoint field by a reversal of directions. Additional perturbations of
internal sources and changes in the response function are not shown here, but can be
illustrated in the same manner.
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For further details we refer to [4] and [57]. The combination of the forward field
and the adjoint field enables the calculation of a sensitivity of the measurement
with respect to a perturbation of the atmosphere. Such an approach can be used to
linearize any spherical radiative transfer model that calculates the internal forward
and adjoint intensity fields.

4.2.3 Perturbation theory in spherical coordinates

With the solution I0 and I
†
0 of the forward and the adjoint transfer problem for

a given atmospheric state x0, it is possible to determine the impact of a change
Δx = x− x0 on the radiative effect E, (4.8), to first order3 by

E(x) = E(x0) + ΔE +O(Δx2) (4.21)

with

ΔE = −〈I†0 |ΔLI0〉+ 〈I†0 |ΔS〉+ 〈ΔR|I0〉. (4.22)

Here, O(Δx2) represents second- and higher-order terms. A perturbation of x0 by
an amount Δx to x = x0+Δx causes a change of the transport operator L, of the
source function S and of the response funtion R by ΔL, ΔS, and ΔR, respectively.
The derivation of (4.22) is analogous to that presented by [28], [6, 7] and [53–55].

The perturbation ΔL may be calculated to first order by

ΔL = L′
0Δx (4.23)

where L′
0 is the first derivative of L with respect to the state vector x. Analogous

expressions hold for the perturbation ΔS and ΔR with derivatives S′0 and R
′
0. This

leads to the first order approximation

ΔE = −Δx〈I†0 |L′
0I0〉+Δx〈I†0 |S′0〉+Δx〈R′

0|I0〉. (4.24)

Finally, a comparison of (4.24) with a corresponding Taylor expansion of the radia-
tive effect E around x0 yields the analytical expressions for the derivatives of E.
Taking into account that the desired radiative effect is the radiance at the top of the
atmosphere in the viewing direction of the satellite instrument, the corresponding
derivatives are given by

∂ITOA

∂x
(x0) = −〈I†0 |L′

0I0〉+ 〈I†0 |S′0〉+ 〈R′
0|I0〉. (4.25)

If the state vector x represents the number density of an absorbing trace gas in an
atmospheric volume ΔV the derivative L′

0 is given by

L′
0 = Γ(r)σabs(r), (4.26)

3Higher-order perturbation theory, which might be needed for large perturbations or
in situations where the first-order contribution disappears, generally requires the use of a
Green’s function formalism, which makes its application more complex. For a discussion
of higher-order perturbation theory in radiation transport please see e.g. [8], [52], [21],
and [60].
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with

Γ(r) =
{
1 : r ∈ ΔV
0 : r �∈ ΔV (4.27)

and σabs(r) is the absorption cross section of the considered trace gas species.
Therefore the evaluation of (4.25) – in contrast to frequently employed finite dif-
ference schemes – does not depend on the perturbation Δx itself. If S and R are
defined as internal sources, which is the case for example in the pseudo-spherical
approximation [58], their contribution to (4.25) due to a perturbation Δx has to
be taken into account. However, if S and R are defined as surface sources, they
do not experience any change due to a perturbation Δx within the atmospheric
volume and the last two contributions in (4.25) vanish.

For a qualitative interpretation of (4.25) one can say, that where the importance
and the forward radiation field show high values (see Fig. 4.2), a change of the
atmospheric state vector will have a large effect on the satellite measurement too.
As a consequence the calculated sensitivity in (4.25) will be large. Where either one
of the fields or both show low values, also the sensitivity with respect to changes in
the trace gas number density will be small. In case of internal sources this reasoning
can be adopted in straightforward manner.

Equation (4.25) allows one to efficiently calculate derivatives for different per-
turbations of the atmosphere. Two radiative transfer calculations are sufficient for
the complete determination of the Jacobian, because the forward and the adjoint
intensity field in (4.25) stay the same for all perturbations and do not need to be re-
calculated. The perturbations only affect the perturbed transport operator ΔL, the
radiation source S and the response function R, and in turn the calculation of all
required derivatives is reduced to the repeated evaluation of the inner products in
(4.25). Compared to the forward and the adjoint radiative transfer simulations, the
computational costs for the numerical evaluation of the inner product are very low.
This results in an efficient linearization approach for spherical radiative transfer
compared to, for example, a finite difference scheme.

The approach presented in this subsection can be used to linearize any spherical
radiative transfer model that calculates the internal forward and adjoint intensity
fields. It is independent of the specific solution method and contains no further ap-
proximations. Further details on the perturbation theory approach may be found
in [28], [4], [6,7], [54], [23], [58], [57] and [59]. Equation (4.25) provides the lineariza-
tion of a spherical radiative transfer model with respect to a trace gas density in its
most general form. Depending on the formulation of the radiative transfer problem
further simplifications are possible. This will be the subject of the following section.

4.3 Symmetry properties

Symmetry properties of a model atmosphere combined with symmetries of the
external illumination may ease the solution of a radiative transfer problem signif-
icantly. For instance, a common assumption in spherical radiative transfer is to
consider a model atmosphere which consists of homogeneous spherical shells. Fur-
thermore, the solar source S0 in (4.5) shows an axial symmetry with respect to the
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global zenith. It is due to both symmetries that the forward radiation field I in such
a case does not depend on the global azimuth angle Φ [25,48]. Another well-known
example with a high degree of symmetry is the plane-parallel radiative transfer
problem assuming horizontally homogeneous layers with a uniform illumination at
the top of the model atmosphere. Again, it is due to the symmetry of the model
atmosphere and the symmetry of the radiation source that the forward radiation
field shows a dependence only on height and on the direction of the radiation. Thus,
the calculation of the forward radiation field is facilitated in both cases by virtue of
the imposed symmetry relations. However, these simplifications cannot be adopted
in a straight-forward manner in the calculation of the adjoint or pseudoforward ra-
diation field due to the fundamental difference between the solar source S0 and the
response function R. In general, the response function has fewer symmetries and, in
the case of the response function from (4.10), the full three-dimensional searchlight
problem has to be solved, even for plane-parallel radiative transfer. Nevertheless,
the symmetries of a radiative transfer problem can be used in a different manner
in order to simplify the formulation of the adjoint transfer problem. Here, we make
use of the fact that the response function is not uniquely determined if the forward
radiation field, as depicted above, is subject to symmetry properties.

For example, for a spherical shell atmosphere that is illuminated by a collimated
solar beam the resulting radiation field is symmetric around the global zenith and
therefore becomes independent from the global azimuth angle Φ. In such a man-
ner the three-dimensional radiative transfer equation reduces to a two-dimensional
problem in space and the spatial dependence of the radiation field can be described
by the radius r and the global zenith angle Ψ only. This eases the solution of the
radiative transfer equation significantly. In turn, the original response function R
from (4.10) as well as its integration over the redundant variables

R∗(r, Ψ,Ω) =
1
2π

∫
dΦR(r, Ψ, Φ,Ω)

=
1

2πr2 sinΨ
δ(r − rTOA)δ(Ψ − Ψv)δ(Ω−Ωv) (4.28)

describe the same radiative effect E. Thus, in contrast to (4.8), the radiative effect
E might be calculated via

E = 〈R∗|I〉
=
∫
V

dV

∫
4π

dΩ R∗(r, Ψ,Ω)I(r, Ψ,Ω). (4.29)

The equivalent response function R∗ represents, in comparison to the response
function R from (4.10), an adjoint source which illuminates the top of the model
atmosphere on a circle centered around the global zenith. This, in turn, introduces
symmetries into the adjoint formulation analogous to those of the forward formu-
lation. Therefore it suffices to perform adjoint and hence pseudo-forward calcula-
tions which obey the same simplified dependencies as the forward calculation. This
corresponds to a reduction in dimensionality. Thus, R∗ used as a pseudo-forward
source eases significantly the model calculations in the pseudo-forward formulation
of radiative transfer, (4.19). Similar, in the case of plane-parallel radiative trans-
fer, the associated pseudo-forward or searchlight problem may be replaced by a
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corresponding radiative transfer problem with uniform illumination at the top of
the model atmosphere. This leads to a concise formulation of the forward-adjoint
perturbation theory in plane-parallel geometry [6, 23].

Generally speaking, any symmetry of the forward radiative transfer problem can
be mirrored to the adjoint formulation using the concept of an equivalent response
function. This concept will be of use in the following section, in order to investigate
a radiative transfer problem in simplified spherical geometry.

4.4 Linearization of a radiative transfer model for a
spherical shell atmosphere by the forward-adjoint
perturbation theory

In this section, we develop a numerical radiative transfer model for the interpreta-
tion of limb measurements in the ultraviolet and visible spectral range. We apply
the method as presented in Sections 4.2 and 4.3 to linearize a multiple-scattering
radiative transfer problem for a spherical shell atmosphere [1], which is illuminated
by a collimated solar beam. There is no restriction with respect to solar or viewing
geometries, which makes this approach highly versatile. To solve the correspond-
ing radiative transfer equation one can consider its integrated form, which serves
as a starting point for several iterative solution approaches [13, 18, 42, 59]. In the
following the numerical solution of the forward and the adjoint radiative transfer
equation is achieved by a Picard iteration scheme [42]. We compare the forward
simulation with Monte Carlo reference calculations for different viewing scenarios.
To verify the adjoint model we compare forward and adjoint simulations using the
reciprocity principle. Subsequently, we apply the perturbation theory approach to
calculate the derivatives of the radiance at the top of the atmosphere with respect
to the absorption properties of a trace gas species in the case of a limb-viewing
satellite instrument. The calculated derivatives are verified with finite difference
calculations.

As the planetary atmosphere is approximated by homogeneous spherical shells,
horizontal inhomogeneities in the optical parameters of the model atmosphere – like
horizontally changing trace gas concentrations, clouds or a varying surface albedo
– cannot be taken into account in the simulations. An estimation of the errors
in the calculation of the radiation field due to neglecting these inhomogeneities is
discussed by [35]. Therein also a parameterization to correct for the effects of a
horizontally varying surface albedo for spherical shell radiative transfer models has
been developed. For the retrieval of stratospheric compounds using limb measure-
ments in the ultraviolet spectral range only, the effects of a varying surface albedo
are small, and radiative transfer calculations for a spherical shell atmosphere should
be sufficient in general.
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4.4.1 Solution of the radiative transfer equation
by a Picard iteration method

4.4.1.1 The forward radiative transfer model

In the following we describe a numerical solution of the spherical radiative transfer
equation based on a Picard iteration method. Here we follow the outline given
by [13].

In order to solve the radiative transfer equation (4.2) including its boundary
conditions (4.6) it is convenient to shift the solar source S0 into the boundary
conditions, which yields the homogeneous ordinary differential equation (ODE)

LI = 0, (4.30)

with

I(rTOA,Ω) = F0 δ(Ω−Ω0) for − 1 ≤ μ < 0
I(rBOA,Ω) = 0 for 0 < μ ≤ 1. (4.31)

Note that the cosine factor μ0 in S0 no longer occurs in the corresponding boundary
condition, which can be explained by a change of the volume source S0 into a
surface source, according to the principle of general reciprocity [9]. A detailed
derivation of the boundary conditions (4.31) is given in Appendix A. After splitting
the intensity field I in its direct and diffuse components Idir and Idiff , respectively,
the homogeneous ODE (4.30) can be integrated formally along a characteristic
line, which is given by the straight line between the point r1 and a second point in
direction Ω. This provides the direct component

Idir(r1,Ω) = I(rTOA,Ω)Tr1,Ω(sTOA), (4.32)

with the transmission function

Tr,Ω(s) = exp
(
−
∫ s
0

βe(s′) ds′
)
. (4.33)

along a characteristic line through point r in direction Ω. Here, s denotes the
pathlength along the line with respect to point r. Hence, sTOA in (4.32) represents
the full pathlength from point r1 till the upper model boundary. Equation (4.32),
together with the boundary condition (4.31), allows the calculation of the direct
component Idir in a straightforward manner.

The diffuse component can be expressed by

Idiff(r1,Ω) = Idiff(r2,Ω)Tr1,Ω(s2)

+
∫ s2
0

ds′Tr1,Ω(s
′)[Jmsc(r(s′),Ω) + Jssc(r(s′),Ω)]. (4.34)

Here, s2 is the pathlength between the points r1 and point r2. The multiple
and the single scattering source function Jmsc and Jssc, respectively, in (4.34) are
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given by

Jmsc(r(s),Ω) =
βs(r)
4π

∫
4π

dΩ̃P (r, Ω̃,Ω)Idiff(r, Ω̃), (4.35)

Jssc(r(s),Ω) =
βs(r)
4π

P (r,Ω0,Ω)Idir(r,Ω). (4.36)

In contrast to the direct component, the diffuse intensity field from (4.34) has to
be solved with a numerical radiative transfer model and needs therefore further
discussion. Equation (4.34) represents an integral equation for the diffuse intensity
field, which can be solved iteratively using the integrations of a representive set of
characteristic lines. For the full three-dimensional radiative transfer problem with-
out any symmetry properties, the required number of characteristic lines is large,
which hampers any numerical implementation. However, the azimuthal symmetry
for the radiative transfer problem at hand simplifies the numerical solution signif-
icantly. The intensities at point r1 and r2 in (4.34) can be identified with those in
the Φ = 0 plane, where the path integrals have to be determined along a three-
dimensional path, which starts in the Φ = 0 plane at r1 in direction Ω and ends at
the intersection point with a spherical shell of radius |r2|. This allows one to build
up an iteration scheme based on the intensity in the Φ = 0 plane only.

For a numerical implementation we discretize the model atmosphere in N
equidistant, optically homogeneous spherical shells with radii rn (n = 0, . . . , N).
In the global zenith direction we use a discretization in M different axes Ψm
(m = 1, . . . ,M). This yields a discretization of the atmosphere in elements, where
the corners of one cell are denoted by the index pairs (m,n), (m+1, n), (m+1, n−1)
and (m,n− 1) (see Fig. 4.3).

Furthermore, the directional dependence of the radiation field in each of these
grid points is discretized by K = K1 · K2 characteristic lines, where K1 is the
number of local zenith directions, θk1 (k1 = 1, . . . ,K1), which are equally spaced
in μk1 = cos θk1 and K2 represents an even number of equally spaced streams for
the local azimuth directions, ϕk2 (k2 = 1, . . . ,K2). For such a discretization the
integration of a function f over the solid angle can be approximated by∫

dΩf(Ω) =
K∑
k=1

wkf(Ωk) (4.37)

with the weight wk = 4π/K.
Due to the solar illumination which is symmetric around the global zenith, it

suffices to consider only one hemisphere in the radiative transfer calculations as
depicted in Fig. 4.3. However, this introduces the global zenith axis at Ψ1 = 0◦

and ΨM = 180◦ as a new model boundary into the radiative transfer problem. In
order to reduce the discretized domain, the model boundary in the shadow region
can be shifted towards the edge of the shadow zone, as any radiative contribu-
tion from outside of the boundary will be almost zero. Therefore, the new model
boundary can be constituted at ΨM = Ψshadow. At the model boundaries appro-
priate boundary conditions have to be imposed. Fig. 4.3 illustrates the individual
boundary conditions. Incoming radiation is defined as entering an atmospheric el-
ement from outside the discretized domain. Accordingly, outgoing radiation leaves
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Ψshadow

Symmetry

TOA

n−1

n

BOA

m−1

m

m+1

k

k

Earth shadow

Ψm

Fig. 4.3. Illustration of the model atmosphere, which is discretized in N spherical shells
(n = 0, . . . , N) and m = 1, . . . ,M zenithal axes Ψm. One atmospheric element can be
characterized by its corner points (m,n), (m + 1, n), (m + 1, n − 1) and (m,n − 1). The
radiation field at a point (m,n) can be described by k = 1, . . . ,K streams, which provide
a discretization of the full solid angle. Streams with same indices k at different locations
point in the same global direction. Also appropriate boundary conditions are indicated in
the sketch. There is no incoming diffuse radiation at the top of the atmosphere (TOA). At
the lower boundary (BOA) surface reflection may be included. Further, the radiation field
is symmetric around the global zenith. In the shadow region for Ψ > Ψshadow the boundary
condition is approximated by no incoming radiation. After Walter et al. (2006), [59].

the atmospheric element. At TOA and for all axes Ψm no incoming diffuse radiation
is allowed. At BOA the effects of a reflecting surface can be included, otherwise
incoming radiation is set to zero. The zenith boundary condition at Ψ1 = 0◦ is
characterized by a symmetric radiation field at all levels n; outgoing radiation in
direction Ωk = (θk1 , ϕk2) is equal to incoming radiation in the mirrored direction
Ωk′ = (θk1 , ϕk′2) with ϕk′2 = ϕk2 + 180

◦. In contrast, the shadow region at Ψshadow
is subject of no incoming radiation.

For a further evaluation of the diffuse intensity field Idiff(m,n, k) at a grid point
(m,n) in the direction of a stream k with (4.34) we separate its single scattering
(ssc) and multiple scattering (msc) contribution,

Idiff(m,n, k) = Issc(m,n, k) + Imsc(m,n, k). (4.38)

Here, the single scattering solution is given by
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Issc(m,n, k) =
∫ s
0

ds′
βs(s′)
4π

P	k(s′)F0Tmn	(s0(s′))Tmnk(s′), (4.39)

where P	k(s) describes the scattering of photons from the solar direction � into
direction k at a position on the characteristic line, which is given by the pathlength
s. Tmnk is the discretized form of the transmission function (4.33). The solar path-
length s0(s) through the atmosphere, and hence the transmission function Tmn	,
depend on the location on the characteristic line s. For the evaluation of (4.39)
we integrate the solar contribution along the full path of the characteristic line
in direction k, i.e. until a model boundary is reached. This corresponds to a so-
called long characteristic method [13,20]. In this manner, the single scattering part
Issc(m,n, k) can be calculated at every grid point in the atmosphere in every di-
rection. The single scattering contribution is needed to initialize the calculation of
the multiple scattering part.

For the evaluation of the multiple scattering part we follow a different strategy.
Here we relate the diffuse intensity Idiff(m,n, k) at grid point (m,n) in direction k
to the intensity at the intersection point rp of the corresponding characteristic line
with the spherical shell above or below that grid point using (4.34) (see Fig. 4.4).
In general, the intersection point rp cannot be assigned to one of the regular grid
points of the chosen discretization. Therefore, we determine Idiff(rp, k) via a linear
interpolation between its neighbouring values defined on the discretization grid.
In contrast to (4.39) this approach corresponds to a so-called short characteristic
method [13,20], and offers the possibility of an efficient calculation of the multiple
scattering radiation field. Furthermore, we assume that the vertical discretization
of the model atmosphere is fine enough, so that we can approximate the diffuse
intensity field in (4.35) by its layer average

Idiff(m,n, k) =
1
2
[Idiff(m,n, k) + Idiff(rp, k)] . (4.40)

Thus, the multiple scattered contribution of the diffuse intensity field at grid
point (m,n) in direction k can be approximated by

Imsc(m,n, k) ≈ Imsc(rp, k)Tmnk(sp)

+
K∑
k̃=1

wk̃
βns
4π
Pn
k̃,k
Idiff(m,n, k̃)

∫ sp
0

ds′Tmnk(s′). (4.41)

Here, sp is the pathlength from grid point (m,n) to the intersection point rp. The
multiple scattering part Imsc(rp, k) is again determined via a linear interpolation
between the neighbouring values. βns denotes the constant scattering coefficient
in the spherical shell with radius rn and Pnk̃,k denotes the corresponding scatter-

ing phase function for photon scattering from direction k̃ into direction k. Equa-
tions (4.38)–(4.41) in concert with the boundary conditions enable one to compute
the multiple-scattering radiance field by an iterative approach. First the radiative
transfer model is initialized with the precalculated single scattering radiance field.
Subsequently, the two-dimensional Picard iteration method starts with calculating
the multiple scattered radiance with the help of (4.41) in all directions k at the first
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rp
sp

A

B

C

k

(m+1,n)

(m,n)

(m+1,n−1)

(m,n−1)

Fig. 4.4. Section of a three-dimensional spherical shell. The characteristic line for down-
ward direction k crosses the spherical shells in the points at (m,n) and rp. The pathlength
sp between these crossing points is calculated taking the three-dimensional geometry into
account. In the short characteristics model for the multiple-scattering computation, any
radiative quantity at rp in direction k can be calculated by a linear interpolation of the
neighbouring values at points A and B in the same direction. Due to the imposed symme-
try properties it follows that the radiation field at point A and B is equal to the radiation
field at (m,n−1) and (m+1, n−1), which are located in the Φ = 0 plane. In that manner
all radiative quantities can be mapped to the Φ = 0 plane, and the linear interpolation
for the determination of the radiative quantity at rp ultimately takes place at position C
between gridpoints (m,n− 1) and (m+ 1, n− 1).

axis Ψm (m = 1) at the boundary of the uppermost spherical shell n = 0 (TOA)
and proceeds till the lower boundary at n = N .

Then, the corresponding values at all levels for the neighbouring axis Ψm+1

are calculated, taking the updated values of the preceding axis into account. This
operation proceeds until the lower boundary of the last axis in the shadow region
Ψshadow is reached. The whole procedure corresponds to one iteration step. The
iterations are repeated until the radiation field has converged. For details regarding
the Picard iteration approach we refer to [42] and [13].

4.4.1.2 Verification of the forward radiative transfer model

In order to verify the proposed radiative transfer model we compare calculated
radiances at the top of the model atmosphere with those calculated by a Monte
Carlo reference code. General information on the concept of Monte Carlo calcula-
tions and their application in radiative transfer simulations are given by e.g. [29]
and [30]. The McScia Monte Carlo reference code [50], which has been used for
the following comparisons, is based on a backward formulation and takes the full
spherical geometry of the radiative transfer problem into account. In a backward
Monte Carlo approach, the radiance is calculated by simulating photon trajectories
travelling from the detector to the sun. The statistical information related to the in-
dividual photon paths allows one to estimate the statistical error of the simulation.
McScia is the first radiative transfer model, which uses the equivalence theorem
[37], to separate scattering from absorption for limb measurements. The McScia
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Monte Carlo code compares well to other 3-D limb codes for different observational
scenarios and is described in detail by [50].

For all simulations we assume a model atmosphere of 100 km geometrical thick-
ness, which has been divided into spherical shells of 1 km vertical extension, thus
N = 100. The global zenith direction has been discretized in M = 50 axes Ψm. A
total of K = 48 streams (K1 = 8,K2 = 6) were used for the representation of the
directional dependence of the radiation field. The computations are performed for
observation geometries equal to those used in [27] in order to enhance comparability
with other spherical radiative transfer codes. Thus, we assume the satellite instru-
ment to be located directly at the top of the model atmosphere and all angles are
given at the tangent point of the satellite’s line-of-sight. The US-Standard atmo-
sphere [34] has been used for the simulations. Only Rayleigh scattering and ozone
absorption have been taken into account. The calculations were performed for two
different wavelengths at 325 nm and 345 nm. The first case represents a scenario
with moderate ozone absorption (σabs = 1.451 · 10−20 cm2, σsca = 4.022 · 10−26

cm2), whereas the second case corresponds to no absorption but still a relatively
large amount of scattering (σsca = 3.120 · 10−26 cm2).

Fig. 4.5 shows a comparison between the proposed radiative transfer model and
a Monte Carlo reference simulation for no surface reflection and an Earth radius of
rTOA = 6371 km. The solar zenith angle is 15◦ and the viewing azimuth angle is 90◦.
That is, the satellite’s line-of-sight forms a 90◦ angle with the solar illumination.
The radiance ITOA is normalized to the incoming solar flux F0. The graphs on the
left-hand side show the reflected radiance as a function of tangent height for two
different wavelengths (upper 325 nm, lower 345 nm).

The increase of the reflected radiance with lower tangent heights can be seen
clearly. As the lower parts of the atmosphere are optically thicker, the large amount
of scattering leads to the observed increase. The graphs on the right-hand side
display the relative difference of the Picard iterative method towards the Monte
Carlo reference calculations as a function of tangent height. For both wavelengths
the differences are smaller than ±1%, and for most tangent heights the deviations
are within or just outside the standard deviation of the Monte Carlo computations.

Fig. 4.6 (325 nm) and 4.7 (345 nm) give an overview of the relative difference
between the proposed numerical approach and the Monte Carlo model for different
viewing and solar geometries. The solar zenith angles are 80◦ and 90◦. In addition
to an azimuth angle of 90◦ also azimuth angles of 20◦ and 160◦ are considered. In
the first case the satellite’s line-of-sight points towards the sun with a 20◦ offset,
whereas in the second case the line-of-sight points away from the sun with the
corresponding 160◦ offset. In general, the agreement of the Picard iterative method
with the Monte Carlo computations is good and differences stay below ±3% for
all tangent heights. The only exception occurs at a solar zenith angle of 90◦ for
both wavelengths. Here, for the azimuth angles of 20◦ and 160◦ relative errors of
up to −5% can be observed. For these cases the line of sight crosses atmospheric
regions in the vicinity of the shadow region, where a strong gradient in the radiation
field is present. The ability of the radiative transfer model to resolve this gradient,
strongly depends on the employed discretization. Thus, the observed deviations
can be explained by a too rough gridding in this atmospheric region. Further, the
larger relative errors can be explained by the circumstance that the absolute values
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Fig. 4.5. Upper left: Radiance at the top of the model atmosphere ITOA normalized
to the incoming solar flux as a function of tangent height (TH). The calculations are
performed with the proposed numerical model for a wavelength of 325 nm. The solar
zenith angle (SZA) is 15o, the viewing azimuth angle (AZI) is 90◦, both are defined at
the tangent point of the satellite’s line-of-sight. Upper right: Relative difference ΔITOA

of the Picard iterative method with respect to the Monte Carlo reference calculation as a
function of tangent height (solid line). The dashed lines represent the standard deviation
of the Monte Carlo computations. After Walter et al. (2006), [59]. Lower: same as before,
but for a wavelength of 345 nm.

of the backscattered radiance are very small in these cases. Therefore, already small
absolute deviations lead to big relative errors.

The presented results are similar to those reported in [27]. With the verification
conducted in this section, we conclude that the proposed spherical radiative transfer
model is well-suited for calculating the radiation field with sufficient accuracy.
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Fig. 4.6. Relative difference (solid line) of the proposed numerical method compared to
the Monte Carlo reference calculations for different solar zenith angles (80◦ and 90◦) and
viewing azimuth angles (20◦, 90◦ and 160◦). The dashed lines represent the standard de-
viation of the Monte Carlo computations. All calculations are performed for a wavelength
of 325 nm. After Walter et al. (2006), [59].
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Fig. 4.7. Same as Fig. 4.6, but for a wavelength of 345 nm.

4.4.2 Solution of the pseudo-forward transfer equation

In order to calculate the derivatives of the reflected radiance using (4.25), one has
to solve the radiative transfer problem in its pseudo-forward formulation (4.19)
in addition. The approach to solve the pseudo-forward problem is similar to that
of the forward problem, which was discussed in the previous section, with the
only difference in the initialization of the diffuse radiation field. For it we use the
equivalent response function R∗ from (4.28) as radiation source, taking the needed
reversal of directions into account. Analogous to the forward problem we then shift
this radiation source into corresponding boundary conditions, which provides the
homogeneous equation

Lξ = 0 (4.42)
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with the boundary conditions

ξ(rTOA,Ω) =
1

cos θv
1

2πr2TOA sinΨv
δ(Ω−Ωv)

1
dΨv

(4.43)

for −1 ≤ μ < 0 and Ψv < Ψ < Ψv + dΨv, otherwise zero, and

ξ(rBOA,Ω) = 0 (4.44)

for 0 < μ ≤ 1. In (4.43) we expressed the Dirac delta function by a Boxcar function
of infinitesimally small width dΨv, viz.

δ(Ψ − Ψv) = 1
dΨv

[Θ(Ψ − Ψv)−Θ(Ψ − (Ψv + dΨv))] . (4.45)

Analogous to the forward case, a splitting of the pseudo-forward intensity field ξ
in its direct and diffuse components ξdir and ξdiff leads to two coupled differential
equations for the direct beam and the diffuse radiation field. An integration over
the pathlength of a characteristic line yields for the direct component

ξdir(r1,Ω) = ξ(rTOA,Ω)Tr1,Ω(sTOA) (4.46)

with sTOA the full pathlength. This solution can be thought to consist of many
satellite lines-of-sight, which are rotated around the global zenith. It therefore con-
stitutes a one-sheeted hyperboloid (see Fig. 4.8).

Zs

Ys

Xs
LOS

φ

dΨv

Fig. 4.8. One-sheeted hyperboloid on which the direct component ξdir of the pseudo-
forward intensity field is defined. It can be thought to consist of a rotation Φ of the
satellite’s line-of-sight (LOS) around the global zenith at Zs. The actual shape of the
hyperboloid depends on the local viewing angles θv and ϕv of the satellite instrument.
The thickness of the hyperboloid is given by the infinitesimal small width dΨv. After
Walter et al. (2006), [59].
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The formal solution for the pseudo-forward diffuse radiation field is given by

ξdiff(r1,Ω) = ξdiff(r2,Ω)Tr1,Ω(s2)

+
∫ s2
0

ds′Tr1,Ω(s
′) [J∗msc(r(s

′),Ω) + J∗ssc(r(s
′),Ω)] . (4.47)

Here, J∗msc and J
∗
ssc denote the pseudo-forward source function for the multiple and

single scattering intensity, respectively. They are defined analogous to (4.35) and
(4.36).

Again, the diffuse pseudo-forward intensity may be split in its multiple and sin-
gle scattering contribution, respectively. For the calculation of the pseudo-forward
single scattering contribution ξssc(m,n, k) we determine the intersections of each
characteristic line k with the hyperboloid. Depending on position (m,n) and direc-
tion k either no, one or two intersections may occur (see Fig. 4.9). At the intersec-
tion points the single scattering source function provides a contribution along the
infinitesimal small pathlength elements dsc. Taking only intersections into account
that are located within the atmosphere, yields

ξssc(m,n, k) =
1

cos θv
1

2πr2TOA sinΨv

cmax∑
c=1

dsc
dΨv

βs(sc)
4π

Pvk(sc)

Tmnv(l(sc))Tmnk(sc), (4.48)

where sc is the pathlength characterizing an intersection point of the line-of-sight
with the hyperboloid and cmax = 0, 1, 2 indicates the number of intersections. Fur-
ther, Pvk describes the scattering of photons from the satellite’s viewing direction
Ωv into direction k. In (4.48) v indicates the viewing direction Ωv. The path-
length along the satellite’s line-of-sight l(sc) ranges from TOA to the intersection
point at sc. The derivative dsc/dΨv in (4.48) describes the dependence of the path-
length element dsc, along which the direct radiation is scattered in direction k,
on the width of dΨv in the boundary condition (4.43). We determine the deriva-
tive dsc/dΨv numerically by approximating it to its differential quotient Δsc/ΔΨv.
Here, we consider two one-sheeted hyperboloids, separated by ΔΨv and determine
the pathlength Δsc along an intersecting line-of-sight (see Fig. 4.9). Finally, the
single scattering contribution (4.48) is used to initialize the radiative transfer model
for the calculation of the multiple scattered radiation field. The calculation of the
latter is performed analogously to the calculation of the multiple scattered forward
radiation field, as described in subsection 4.4.1.1.

4.4.3 Verification of the adjoint radiation field

Once the pseudo-forward radiance field ξ(r,Ω), and therefore the adjoint intensity
field I†(r,−Ω), has been calculated, their accuracy can be verified with the help
of (4.16), i.e. the alternative evaluation of the radiative effect, which is in our case
the radiance at the top of the atmosphere

ITOA = 〈I†|S0〉
= 2πr2TOA

∫
dΨ sinΨ cosΨF0I†(rTOA, Ψ,Ω0), (4.49)
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Fig. 4.9. Section of the hyperboloid. Shown are the intersections of an internal character-
istic line with the hyperboloid, which are needed for the calculation of the pseudo-forward
single scattering contribution. At these points, the illuminated pathlength elements Δs1
and Δs2 are determined numerically. They are proportional to the angular distance ΔΨv.

where we made use of the fact, that μ0 = cos θ0 = cosΨ . For the discretized model
atmosphere, (4.49) can be approximated by a summation over all axes Ψm

ITOA ≈ 2πr2TOA
M∑
m=2

ΔΨm sinΨm cosΨmF0I
†
(m, 0,�), (4.50)

where Ψm = (Ψm−1 + Ψm)/2 denotes the averaged global zenith angle and ΔΨm =
Ψm − Ψm−1. The averaged adjoint intensity I

†
(m, 0,�) at the top of the model

atmosphere in solar direction is given by

I
†
(m, 0,�) = 1

2
(I†(m− 1, 0,�) + I†(m, 0,�)). (4.51)

The calculation of the individual contributions I†(m, 0,�), m = 1, . . . ,M , takes
place analogously to Eqs (4.38)–(4.41), i.e. an integration of the diffuse adjoint
source function along the corresponding characteristic line in solar direction. There-
fore, any error in the calculation of the internal adjoint intensity field will imme-
diately affect the accuracy of the calculated radiance at the top of the atmosphere
according to (4.50).

Table 4.1 shows a comparison of the radiance ITOA for different tangent heights
calculated with (4.50) and with the forward radiative transfer model for the two
wavelengths 325 nm and 345 nm. The discretization of the model atmosphere is the
same as in the previous section. The solar zenith angle has been chosen as 60◦,
due to a significant contribution of multiple scattering to ITOA. The local azimuth
angles are 180◦, 140◦ and 100◦. For ϕv = 180◦ the satellite’s line-of-sight points
straight away from the sun. For the two azimuth angles ϕv = 180◦ and 140◦, the
relative difference ΔITOA between the two approaches ranges between −2% and
+2% for both wavelengths and all tangent heights. Larger deviations appear for a
local azimuth angle of 100◦. In this case, differences of up to ±8% may occur.
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Table 4.1. Verification of the adjoint radiative transfer calculations for the wavelengths
325 nm and 345 nm. The verification is performed at different tangent heights (TH) for a
solar zenith angle (SZA) of 60◦ and three different local azimuth angles ϕv = 180

o, 140◦

and 100◦. All angles are given at the tangent point. The table shows the the relative
difference ΔITOA between the radiance at the top of the atmosphere computed with the
forward radiative transfer model ITOAFWD and the adjoint mode ITOAADJ .

SZA 60◦ 325 nm 345 nm

ϕv [
◦] TH [km] ΔITOA [%] ΔITOA [%]

10 0.2 −1.4
180 25 0.6 −1.0

50 0.2 1.3

10 −0.8 −1.6
140 25 1.4 1.1

50 0.9 1.9

10 1.3 −1.9
100 25 −7.4 7.9

50 7.8 6.9

The difference between the adjoint and the forward simulation of ITOA is caused
by the particular form of the adjoint radiation source. Here, the single scattering
contribution of the adjoint field at position r in direction Ω is only non-zero if the
corresponding line-of-sight intersects with the hyperboloid of the direct beam. For
the discretized problem this can result in a significant error for the single scattering
field in case that the discretization cannot account properly for the spatial exten-
sion of the hyperboloid. For example, the number of streams K and by that the
number of characteristic lines has a strong influence on the accuracy of the adjoint
calculations. If the sterical resolution is small, the hyperboloid volume that is il-
luminated by ξdir cannot be resolved properly. This discretization error may lead
to an over- or underestimation of the corresponding single scattering contribution.
Such effects do not occur for the forward radiative transfer model. Furthermore,
Fig. 4.10 shows the diffuse forward and adjoint intensity field, averaged over solid
angle, as a function of radius r and zenith angle Ψ . Due to the smooth solar il-
lumination at the top of the atmosphere the forward intensity field is a relatively
smooth function, which varies only over one order of magnitude in the relevant spa-
tial domain. In contrast, the pointlike adjoint radiation source leads to an adjoint
radiation field which is highly peaked. Depending on the absorption and scattering
properties of the atmosphere, the main contribution to the adjoint diffuse intensity
due to the adjoint source takes place at or just before the tangent point of the
satellite’s line-of-sight and then decreases by several orders of magnitude within a
relatively small distance around its maximum. To resolve this feature in the diffuse
adjoint field a fine spatial discretization in r and Ψ is needed, which is in conflict
with an efficient numerical performance of the model. The effect of the described
discretization errors becomes larger, the more local and peaked the adjoint field
is. Especially, if the local azimuth angle ϕv approaches 90◦ the hyperboloid starts
to deform. This deformation enhances the local character of the adjoint radiation
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Fig. 4.10. The graphs show the averaged diffuse forward (upper) and adjoint (lower)

intensity field I
†
diff =

PK
k=1 wkI

†
diff(m,n, k), respectively. Each intensity field is normalized

to its largest value. The simulations are performed for a solar zenith angle of 60o, a
local azimuth angle of 140◦ and a tangent height of 25 km. The wavelength is 325 nm. A
discretization of N = 100 spherical shells, M = 50 zenithal axes Ψm and K = 80 streams
is used. The highly peaked character of the adjoint field is evident.
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field, which additionally complicates its proper discretization in all three variables,
i.e. Ω, r and Ψ . This is the main cause for the increased deviations in Table 4.1
for the ϕv = 100◦ case. However, for a very fine discretization these deviations
can also be reduced and the result will converge to the solution from the forward
calculations.

4.5 Linearization of the spherical radiative transfer model

For a given forward and pseudo-forward radiance field, (4.25) provides an analytical
approach for calculating the derivative of the reflected radiance with respect to the
trace gas number density x in a model layer n. As the solar source and the equivalent
response function, Eqs (4.5) and (4.20), are both defined as surface sources, they
do not experience any perturbation for a change in the trace gas number density x
within the atmospheric volume and therefore the two last terms of (4.25) vanish.

Therefore, substitution of (4.26) in (4.25), whilst taking (4.18) into account,
yields the derivatives for a satellite observation of the radiance at the top of the
atmosphere

∂ITOA

∂x
(x0) = −

∫
ΔV

dV σabs(r)
∫
4π

dΩ ξ0(r,−Ω)I0(r,Ω). (4.52)

Due to the symmetry in the global azimuth Φ of the forward and pseudo-forward
problem, (4.52) reduces to

∂ITOA

∂x
(x0) = 2π

σnabs
2

rn∫
rn−1

dr r2
π∫
0

dΨ sinΨ
∫
4π

dΩ

ξ0(r, Ψ,−Ω)I0(r, Ψ,Ω). (4.53)

Here, σnabs is the absorption cross-section of the considered trace gas species
in a model layer n. The radiance field I0(r, Ψ,Ω) and the pseudo-forward field
ξ0(r, Ψ,−Ω) in (4.53) are the solutions of the forward and the pseudo-forward ra-
diative transfer problem for the unperturbed atmospheric parameter x0. The per-
turbation integrals in (4.53) can be evaluated numerically with low computational
costs. For this purpose the integral expressions are approximated by correspond-
ing summations of the discretized contributions of the forward and pseudo-forward
field, viz.

∂ITOA

∂x
(x0) ≈ −2πσ

n
abs

2
Δrnr2n

[
M∑
m=2

ΔΨm sinΨm(
K∑
k=1

wkξ0(m,n,−k)I0(m,n, k)
)]

. (4.54)

Here, rn = (rn−1 + rn)/2 denotes the averaging over the model layer n and Ψm =
(Ψm + Ψm−1)/2 the averaging over the zenithal axes m. Further, Δrn = rn−1 − rn
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and ΔΨm = Ψm − Ψm−1. The quantities ξ0 and I0 in (4.54) are averaged over the
model layer n and over the axis m, respectively. The direction −k is the direct
opposite of direction k, thus reversed by 180◦.

In order to verify the proposed approach, we choose ozone as the relevant trace
gas species to be investigated. For reference purposes we use the finite difference
approach

ITOA(x0 +Δx)− ITOA(x0)
Δx

−→ ∂ITOA

∂x

∣∣∣∣
x0

for Δx→ 0, (4.55)

which converges to the derivative for small perturbations in the ozone number den-
sity Δx. The perturbed and the unperturbed radiance at the top of the model
atmosphere, ITOA(x0 +Δx) and ITOA(x0), are calculated with the forward mode
of the spherical radiative transfer model described in subsection 4.4.1.1. The mag-
nitude of the perturbation Δx was chosen in such a manner that a stable be-
haviour in the numerical calculation of the differential quotient in (4.55) could be
achieved. This has been controlled by different calculations with varying values for
Δx. Fig. 4.11 shows the derivative ∂ITOA/∂x calculated with the spherical per-
turbation theory approach as well as its relative deviation to the finite difference
method for a wavelength of 325 nm. The sensitivity of ITOA with respect to changes

Fig. 4.11. Left panel: Derivative of the reflected radiance ITOA normalized to the incom-
ing solar flux with respect to the ozone density at different altitude levels at 325 nm. The
derivative is calculated with the spherical perturbation theory approach from (4.54). The
solid line denotes the total scattering contribution (TSC). The dashed line represents the
single scattering part (SSC), whereas the dash-dotted line only represents the contribu-
tion which results from multiple scattering (MSC). The calculation of the derivative is
performed for a tangent height of 50 km, a solar zenith angle of 60◦ and a local azimuth
angle of 140◦. The computations are for clear sky conditions. Right panel: Relative dif-
ference δ between computed derivatives using the spherical perturbation theory and the
finite difference scheme (4.55). After Walter et al. (2006), [59].
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in the ozone number density shows an increasing behaviour for decreasing altitudes.
Slightly above the tangent height of 50 km a distinctive peak in the sensitivity can
be observed. The peak is caused by the very high extinction of radiation along the
line-of-sight in the tangent layer. This peak appears in both, the single scattering
and the multiple scattering contribution to the sensitivity. In general, the multi-
ple scattering fraction constitutes approximately one-third of the total sensitivity
above the tangent height, which demonstrates the necessity to explicitly take this
contribution into account in the linearization of the forward model. Below the tan-
gent height the sensitivity is determined by multiple scattering only and drops to
very small values for this case.

The relative difference between the perturbation theory approach and the finite
difference method is displayed on the right-hand side of Fig. 4.11. Both approaches
agree very well in the altitude range from 50 km to 100 km. At the tangent height,
just below the maximum sensitivity, the spherical perturbation theory underesti-
mates the reference value by approximately −4%. This is due to the layer averaging
property in the perturbation integrals in (4.54), with which it is not possible to
take the strong gradient around the tangent height into account. Larger deviations
occur below the tangent height of 50 km, where the linearization is based on the
multiple-scattering contribution only. In this altitude range, the accompanying ra-
diation fields become very small. As a consequence errors in the calculation of these
radiation fields immediately affect the accuracy of the calculated derivatives for the
finite difference scheme as well as for the spherical perturbation theory approach.
For the latter, discretization errors especially in the calculation of the diffuse ad-
joint intensity field have a large impact. This can be seen clearly, if one uses the
direct-diffuse splitting of the associated radiation fields.

Then, in the approximated perturbation integral, (4.54), products of the diffuse
and direct components have to be evaluated, viz.

ξ0I0 = (ξdiff,0 + ξdir,0)(Idiff,0 + Idir,0)
= ξdiff,0Idiff,0 + ξdiff,0Idir,0 + ξdir,0Idiff,0 + ξdir,0Idir,0. (4.56)

The last term on the right-hand side generally vanishes, unless the satellite instru-
ment looks directly into the sun. As the component ξdir,0 is always zero below the
tangent height, the third term only contributes above the tangent height. It de-
notes the direct observation of the diffuse radiation field by the satellite and has a
relatively large contribution to the perturbation integral. Thus, below the tangent
height only the first two terms of (4.56) contribute to the derivative. Both include
the diffuse pseudo-forward intensity field ξdiff,0, which is affected by discretization
errors as discussed in subsection 4.4.3. Therefore errors in the calculation of the
diffuse pseudo-forward field will dominate the total error in the calculated deriva-
tives below the tangent height. This leads to errors of up to 8% in the derivative.
However, these errors are related to very small sensitivities and are therefore of
minor importance in a trace gas profile retrieval.

Figs 4.12 and 4.13 show the same comparison, but for a tangent height of 25 km
and 10 km, respectively. In Fig. 4.12 the distinctive peak of the derivatives at the
tangent height is again the dominant feature. But also a smoothed sensitivity be-
tween approximately 25 km and 40 km can be seen. It results from the relatively
large extinction of radiation at the considered wavelength in this atmospheric al-
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Fig. 4.12. Same as Fig. 4.11, but for a tangent height of TH = 25 km. After Walter et
al. (2006), [59].

Fig. 4.13. Same as Fig. 4.11, but for a tangent height of TH = 10 km. After Walter et
al. (2006), [59].
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titude range. In addition, the multiple scattering contribution to the sensitivity
increases as the satellite’s line-of-sight senses lower parts of the atmosphere. The
behaviour of the relative difference resembles the one from Fig. 4.11. There is a
very good agreement above the tangent height and increasing deviations below the
tangent layer. Here, relative errors of up to ±3% can be observed. In contrast to
Fig. 4.11 and Fig. 4.12, the distinctive peak in the sensitivity disappears for a tan-
gent height of 10 km (Fig. 4.13). Extinction due to absorption and scattering is for
this wavelength and altitude range so large, that the smoothing effect dominates
the sensitivity. The large pathlength of the line-of-sight in the tangent layer is of
no importance anymore, as most radiation already gets attenuated in the layers
above. Therefore, if this derivative were to be used in a limb remote sensing appli-
cation, the vertical resolution of the retrieved trace gas profiles, which depends on
the sharply peaked sensitivity, would be rather bad. In such a case it is advisable
to shift to another wavelength where less extinction takes place, in order to retain
the sharp resolution of a limb weighting function again. Additionally, for altitudes
below 20 km multiple scattering effects are more important for the sensitivity than
single scattering processes, as can be seen in Fig. 4.13. Here, the relative error
remains rather small for all altitudes, as the influence of the discretization error,
which originates from the single scattering initialization of the multiple scattering
calculation, is reduced by a large number of multiple scattering events. The error
reaches a maximum of 4% at the tangent height.

In order to investigate the influence of the spatial and directional discretization
on these linearization errors, we calculate derivatives for different model setups.
Fig. 4.14 displays the relative difference of the perturbation theory approach with
respect to the finite difference method using different discretizations in the number
of streams, the number of zenithal axes and the number of spherical shells. In each
case we vary the discretization of one variable, whereas we keep the discretization
of the other two variables constant. The calculations are performed for the solar
and viewing geometry of Fig. 4.12, thus for a solar zenith angle of 60◦, an azimuth
angle of 140◦ and a tangent height of 25 km. For the first comparison (left-hand
side of Fig. 4.14) we kept the number of spherical shells and the number of zenithal
axes constant at N = 100 andM = 50, respectively, whereas we varied the number
of streams, viz. K = 80, 48, 24. As expected, with a decreasing number of streams
the linearization error becomes bigger. Remarkable is, that even for a very low
number of streams the linearization error above the tangent height stays relatively
small. For a number of 24 streams only a small offset of approximately 1% can be
observed. This again confirms that in this altitude region the main contribution
to the derivative is due to the direct observation of the diffuse radiation field, as
discussed in connection with (4.56). The direct component of the adjoint field only
weakly depends on the used discretization. It is likely, that the observed offset can
be attributed to errors in the multiple scattered adjoint field, which is transmitted
from lower atmospheric regions. In contrast, larger errors in the calculation of the
derivative appear beneath the tangent height. Here, the maximum deviations reach
up to 30%. With a decreasing number of streams, the calculation of the associated
diffuse adjoint field is dominated by discretization errors. The reason is, as already
mentioned before, that the local adjoint radiation source can no longer be resolved
properly.
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Fig. 4.14. Discretization errors in the calculated derivatives for a solar and viewing geom-
etry as in Fig. 4.12. The graphs show the relative difference of the spherical perturbation
theory approach to the finite difference approach. Left: calculations are performed for
a different number of streams, viz. 24, 48 and 80 streams. The number of axes for the
discretization of the global zenith was kept constant at 50 axes. For the vertical discretiza-
tion of the model atmosphere, 100 spherical shells were employed. Middle: development of
the linearization error for a different number of zenithal axes. The calculations were per-
formed using 15, 25 and 50 axes. Here, a constant number of 80 streams and 100 spherical
shells were used. Right: error for a different number of spherical shells, viz. 25, 50 and
100 levels. In these cases 80 streams and 50 zenithal axes were used for the calculations.
After Walter et al. (2006), [59].

The graph in the middle of Fig. 4.14 shows the linearization error for a varying
number of zenithal axes M = 50, 25 and 15. The number of of spherical shells and
the number of streams are kept constant at N = 100 andK = 80, respectively. Here
also for a decreasing number of axes, the linearization error becomes bigger. For 25
axes only a small increase in the relative difference can be seen. However, in the case
of only M = 15 zenithal axes clear deviations appear. Above the tangent height
again an offset of approximately 1% can be seen, whereas below the tangent height
large deviations occur. Finally, the graph on the right-hand side of Fig. 4.14 shows
the evolution of the relative error for different vertical discretizations. Here, we used
N = 100, 50 and 25 spherical shells, while we kept the number of zenithal axes at
M = 50 and the number of streams at K = 80. With decreasing vertical resolution,
inaccuracies in the calculation of the derivatives mainly at and below the tangent
height occur. For too coarse a vertical grid, the assumption of a layer averaged
diffuse adjoint field according to (4.40) fails, which leads to errors especially in those
regions where the vertical gradient of the diffuse radiaton field becomes important,
e.g. at the tangent height.

Hence, it is necessary to choose a fine discretization for each of the three inves-
tigated variables, i.e. for the directional dependence, the zenith variable and the
vertical dimension. With a corresponding finer discretization it is possible to re-
solve smaller structures in the adjoint field, leading to a more accurate calculation
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of the derivatives. Altogether, the investigation of the linearization error showed,
that the proposed approach for the calculation of the needed derivatives, although
affected by a discretizational bias, is consistent and converges to the exact solu-
tion. Discretizational errors appear mainly below the tangent height, where the
absolute value of the derivatives is in general very small. Therefore these errors
are not expected to negatively influence a trace gas profile retrieval. Thus, despite
the observed deviations, it is demonstrated that the spherical perturbation the-
ory approach is suitable for a sufficiently accurate calculation of the derivatives
∂ITOA/∂x.

Fig. 4.15 shows an example of the calculated derivatives of a limb viewing sce-
nario for different tangent heights at a wavelength of 325 nm. Here, the derivatives
of the radiance at the top of the atmosphere with respect to the ozone number
density have been determined with (4.54). The narrow peaks of the derivatives
at the corresponding tangent heights are the reason for the high vertical resolu-
tion that can be achieved in a trace gas profile retrieval from limb measurements.
Especially below each individual tangent height only minor contributions to the
sensitivity can be seen. In Fig. 4.15 the maximum sensitivity for the considered
wavelength appears around an altitude of approximately 35 km. For shorter wave-
lengths with stronger ozone absorption the corresponding maximum will be shifted

Fig. 4.15. Calculated derivatives or weighting functions of a limb measurement simulation
with respect to the ozone number density as a function of height. Here, calculations are
performed at a wavelength of 325 nm for tangent heights ranging from 20 km up to 80 km
in steps of 5 km. The narrow peaks in the corresponding derivatives enable one to achieve
a good vertical resolution in the retrieval of stratospheric ozone profiles.
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towards higher altitudes, whereas for longer wavelengths with weaker absorption
the maximum appears lower in the atmosphere. Thus, with the vertical sampling
and using the wavelength dependence of the corresponding sensitivities it is possible
to gain detailed information on the vertical composition of the atmosphere.

4.6 Conclusions

In this study we show that the forward-adjoint perturbation theory approach for
radiative transfer in a spherical atmosphere provides a new manner of calculating
the derivatives of the backscattered radiance, which are needed in the retrieval
of trace gas profiles using satellite limb observations. The proposed perturbation
theory approach can be used to linearize any spherical radiative transfer code that
calculates the internal forward and adjoint radiation field. In general, the solution
of the adjoint problem requires three-dimensional radiative transfer calculations.
By the use of an equivalent response function we presented how symmetries of the
forward problem can be used to ease the solution of the adjoint problem substan-
tially. Here, we made use of the fact that the response function is not uniquely
determined if the forward radiation field is subject to symmetry properties. For
example, the assumption of homogeneous spherical shells and a solar illumination,
that is symmetric around the global zenith, leads to a forward radiation field that
is independent of the global azimuth angle Φ. Therefore the equivalent response
function R∗ which comprises an integration over the global azimuth angle can be
used to describe the same radiative effect E. This equivalent response function R∗

represents, in comparison to the unchanged response function R, an adjoint source
which illuminates the top of the model atmosphere on a circle centered around
the global zenith. Such an illumination introduces symmetries into the adjoint for-
mulation analogous to those of the forward formulation, i.e. the resulting diffuse
adjoint field will be independent of the global azimuth angle Φ. Subsequently, this
modified adjoint transfer problem can be easily transformed into a pseudo-forward
problem, which allows one to use the same computational algorithm as for the
calculation of the forward radiation field. In the framework of the forward-adjoint
perturbation theory also the impact of a perturbation of internal sources and of
the response function onto the derivatives can be taken into account easily. Thus,
the forward-adjoint perturbation theory provides a linearization of atmospheric
radiative transfer in its most general form.

In order to demonstrate the capability of this method we developed a linearized
radiative transfer model for a spherical shell atmosphere. The corresponding radia-
tive transfer equation for the forward mode has been solved by a Picard iteration
method. By the use of the equivalent response function it is possible to determine
also the adjoint field in a corresponding manner. Here, we describe the limb ob-
servation not by a point-like response function directed along the line-of-sight, but
by an adjoint source, which is shaped like a one-sheeted hyperboloid. As a result,
the adjoint problem reduces to a two-dimensional instead of a three-dimensional
radiative transfer formulation in space.

The forward mode of the model is verified with Monte Carlo reference simula-
tions for different solar and viewing geometries at two wavelengths in the ultraviolet
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spectral range at 325 nm and 345 nm. The calculated radiances show in general an
agreement of approximately ±3%. Only for very large solar zenith angles deviations
of up to −5% are observed. The accuracy of the adjoint mode is verified by compar-
ing the limb radiance simulations at the top of the atmosphere, calculated with the
adjoint model, with those from the forward mode. Differences are in general below
±2%; however, they can increase up to ±8% for particular viewing geometries. The
latter errors are related to an adjoint radiation field with a very local behaviour
and therefore discretizational errors in the adjoint model become more important.
Hence, the influence of these discretizational errors on the calculation of the ad-
joint field depends on the observation geometry. The more local the adjoint field
is defined, for example if the local azimuth angle approaches 90◦, an increasingly
fine discretization of the adjoint problem is needed in order to retain a required
accuracy.

As surface sources were employed in the description of radiative transfer only
the perturbation of the transport operator had to be taken into account in the eval-
uation of the perturbation integrals. The accuracy of the derivatives of the reflected
radiance with respect to the vertical distribution of ozone was investigated for dif-
ferent limb viewing scenarios. The derivatives calculated with the perturbation
theory approach were verified with numerical calculations using a finite difference
scheme. The calculated derivatives show an excellent agreement above the tangent
height of the limb observations. At the tangent height and below, the differences
increase. However, it is shown that these errors are mainly due to a deficient di-
rectional and spatial discretization of the adjoint intensity field. The errors can be
reduced by a finer descretization and therefore do not represent any fundamental
restriction of the forward-adjoint perturbation theory approach. For a trace gas
profile retrieval the observed differences are of minor relevance, as the sensitivity
in the corresponding altitude range is generally at least one order of magnitude
smaller than above the tangent height. Therefore the absolute contribution in an
actual retrieval is very small.

Appendix A: Transformation of a volume source into a
surface source

The ordinary differential equation (ODE) for the intensity, (4.2), is given in volume
source notation, viz.

LI = S0, (4.57)

that is, the solar source S0 represents a radiation source, which is virtually situated
within the atmosphere, just beneath the upper boundary:

S0(r,Ω) = μ0F0δ(r − rTOA)δ(Ω−Ω0)Θ (μ0) . (4.58)

The boundary conditions for the intensity are given by

I(rTOA,Ω) = 0 for − 1 ≤ n ·Ω < 0
I(rBOA,Ω) = 0 for − 1 ≤ n ·Ω < 0, (4.59)
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where n is a unit vector in the direction of the outward normal at position r on the
boundary. Any radiation with n·Ω < 0 crosses the boundary in an inward direction,
and vice versa. Equation (4.57) is a nonhomogeneous ODE and cannot be solved in
a straightforward manner. Therefore we will use the principle of general reciprocity
to shift the volume source into a surface source, which subsequently appears in
the boundary conditions. This in turn transforms the nonhomogeneous ODE into
a homogeneous one, which can be solved easily.

Basically the principle of general reciprocity states, that photon interactions
take place in the same sample volume. As this interaction volume does not change
when using a different notation, the principle of general reciprocity can be used to
relate radiation fields and their sources (volume and surface sources) at different
locations in the atmosphere. It is given by [4, 9]∫

A

dA

∫
n·Ω<0

dΩ|n ·Ω| [I2(rTOA,Ω)I1(r,−Ω)− I1(rTOA,Ω)I2(r,−Ω)]

=
∫
V

dr
∫
dΩ [I2(r,−Ω)S1(r,Ω)− I1(r,Ω)S2(r,−Ω)] . (4.60)

Here, I1 and I2 are radiation fields, I1(rTOA,Ω) and I2(rTOA,Ω) represent the
illumination of the upper boundary and therefore surface sources, whereas S1 and
S2 are volume sources.

∫
A
dA denotes the integration over the bounding surface

and
∫
V
dr represents the integration over the whole volume. From (4.60) several

reciprocity principles may be derived, e.g. the well-known optical or Helmholtz
reciprocity, which is of great importance in the context of Green’s functions [9].

If we set I1(rTOA,Ω) = 0, S2 = 0 and if we identify the remaining I1, I2
with the radiation field I, respectively, as well as S1 with S0, (4.60) can be used
to derive a relation, which provides the transformation of a volume source into a
surface source. Thus, we get∫

A

dA

∫
n·Ω<0

dΩ|n ·Ω|I(rTOA,Ω)I(r,−Ω)

=
∫
V

dr
∫
dΩI(r,−Ω)S0(r,Ω). (4.61)

It is easy to see, that the two integrations in (4.61) are only equal if

I(rTOA,Ω) =
1

|n ·Ω|S0(r,Ω) =
1

cos θ0
S0(r,Ω). (4.62)

Therefore one is allowed to write

LI = 0, (4.63)

with the new boundary conditions

I(rTOA,Ω) =
1

cos θ0
S0(r,Ω) for − 1 ≤ n ·Ω < 0

I(rBOA,Ω) = 0 for − 1 ≤ n ·Ω < 0. (4.64)
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Equations (4.63) and (4.64) describe a scenario, in which the boundary is illumi-
nated from outside the atmosphere. The transformation of the volume source into
a surface source led to an additional 1/ cos θ0 factor in the boundary conditions.
Equations (4.63) and (4.64) form a homogeneous ODE, which can be solved in a
straightforward manner by standard mathematical methods.
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5 Convergence acceleration of radiative
transfer equation solution at strongly
anisotropic scattering

Vladimir P. Budak, Dmitriy A. Klyuykov, and Sergey V. Korkin

5.1 Introduction

All the numerical methods of the radiative transfer equation (RTE) solution are
based on the replacement of scattering integral by the finite sum. The main problem
of such scattering integral representation is the presence of singularities in the
radiance angular distribution (RAD): they cannot be included in any quadrature
formula in essence (Krylov, 2006). To solve this problem various methods are used
by different researchers: Wiscombe (1977), Thomas and Stamnes (2002), Rozanov
et al. (2005) and others. The physical model of radiative transfer theory is the
ray approximation. In this approximation any break in the boundary conditions
spreads into the depth of the medium and generates singularities in the RAD.
Scattering in the medium gives, along with the singularities, an anisotropic part
in the light field. The difficulties in the calculation of the anisotropic part of the
solution led to various truncation methods of the scattering anisotropy that are
not completely true: in the general 3-D medium geometry the core of the problem
is not the scattering, but the presence of singularities in the RAD. Krylov (2006)
showed that the most effective and accurate way of including the singularities in
the quadrature formula is their analytical, perhaps approximate, representation
and an analytical integration – the method of singularities elimination.

For eliminating the anisotropic part of the solution we proposed to use the small-
angle approximation in the Goudsmit–Saunderson form. It results in a boundary-
value problem for the regular part of the solution that is similar to the initial
problem, but with the source function on the right-hand side of the equation and
modified boundary conditions. The solution of the obtained equation for the regular
part is found by the discrete ordinates method. In the case of the plane-parallel
geometry this problem has the analytical solution as a matrix exponential. The
final solution in this case has the form of the transfer matrix through a slab with
a column of sources. On the basis of the matrix-operator method it allows us to
proceed to the solution of the problem for the case of a plane-parallel slab composed
of several homogeneous layers.

To use the proposed method in the arbitrary 3-D medium geometry we should
generalize the Goudsmit–Saunderson approximation. We proposed this approach
in our previous work and called it the small-angle modification of the spherical
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harmonics method (MSH). From the analysis of the angular spectrum of the radi-
ance distribution, it is possible to formulate the approximate equation describing
an anisotropic part of the solution: in the neighborhood of the singularity the
spectrum slowly decreases with the number of harmonics. MSH includes all the
singularities of the exact solution of the radiative transfer equation. This approach
makes it possible to eliminate analytically the singularities from the RTE solution
and to state the boundary-value problem for the regular part of the solution. The
regular part of the solution is found numerically by the finite element method,
which enables us to extend this approach to the arbitrary medium geometry.

For the generalization of this approach in the case of the vectorial RTE (VRTE)
for polarized light transfer we used the polarization determination in the basis of the
circular polarization (CP-presentation, (Kuščer and Ribarič, 1959). Unfortunately
in CP-presentation all the coefficients in VRTE become complex and that creates
difficulties for the use of effective numerical solution methods. Therefore for the
VRTE solution we follow the following steps:

– convert equation to CP-presentation,
– subtract vectorial MSH,
– obtain the equation for the smooth part,
– apply the addition theorem for generalized spherical harmonic,
– return to SP-presentation,
– solve the obtained equation.

5.2 Singularities of the solution of the
radiative transfer equation

The physical model of the radiative transfer theory is the light field theory based
on the ray approximation of light radiation (Dolin, 1964; Apresyan and Kravtsov,
1996; Mishchenko, 2008). In optics, the ray approximation is inapplicable for the
description of processes at scales smaller than the wavelength of light (Born and
Wolf, 1975). On the other hand, ray approximation describes the light propagation
accurately enough except for some special cases.

Ray optics is a rigorous closed theory; it can be developed on a phenomeno-
logical basis as the theory of the light field of the responses of an optical detector
placed at a certain point of this field. The optical detector responds to the square
magnitude of the electromagnetic field and averages values in time and space that
substantially exceed the period and length of the light wave. The light field consists
of independent rays penetrating each point of space and transferring light energy.
The measure of the power density in the ray bundle propagating in the direction l̂
from the point r is the radiance of the light field L(r, l̂). (Hereinafter we mark the
unit vector with symbol: ˆ).

At the transition from wave optics to ray optics, Maxwell equations are con-
verted to the radiative transfer equation (Apresyan and Kravtsov, 1996; Mishchenko,
2008; Lommel, 1889; Chwolson, 1889) describing the radiance of the light field
L(r, l̂):

(l̂,∇)L(r, l̂) = −kextL(r, l̂) + ω0kext
4π

∮
p(l̂, l̂′)L(r, l̂′) dl̂′ + q(r, l̂) , (5.1)
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where kext is the attenuation coefficient, kext = kabs + ksca; kabs, ksca are the
absorption and the scattering coefficients accordingly; ω0 = ksca/kext is the sin-
gle scattering albedo; p(l̂, l̂′) is the phase function of the elementary volume of a
scattering medium; q(r, l̂) is the source function of the intrinsic emission of the
elementary medium volume. The integration in equation (5.1) is by the full solid
angle 4π, and dl̂′ is an elementary solid angle in the direction l̂′.

To have a single solution, RTE (5.1) must have the boundary conditions. Let
us analyze the field inside the volume V , and the radiation Le(r, l̂) is incident on
the outer boundary Σ of V (Fig.1). Then the boundary conditions are:

L(r, l̂)
∣∣∣
r∈Σ, (N̂ ,l̂)≥0

= Le(r, l̂) , (5.2)

where N̂ is the inner normal to the surface Σ in the point r (Fig. 5.1).

( )V

( )�

N̂

l̂

ˆ( , )
e
L r l

Fig. 5.1. The boundary conditions for the radiative transfer equation.

The distinctive feature of the ray approximation is the following: if there is
a break (singularity) in the radiance spatial-angular distribution Le(r, l̂) of the
boundary conditions (5.2) it spreads into the medium depth and has a place for the
distribution L(r, l̂). The most striking example of this phenomenon is the abrupt
radiance junction at the border of light and shade. Note that in wave optics, there
are no angular singularities due to diffraction.

Since practically all light sources have limited spatial-angular light distribution,
there are always singularities in the RTE solution. The most effective solution
method of the boundary problems of transport theory is the Green function method
(Case et al., 1967), where the solution of (5.1) with conditions (5.2) is presented in
the form of the superposition of the solution for the elementary sources

L(r, l̂) =
∫
(V )

∮
G(r0, l̂0 → r, l̂)q(r0, l̂0) dl̂0 d3r0

+
∫
(Σ)

∮
GΣ(rΣ , l̂Σ → r, l̂)Le(rΣ , l̂Σ) dl̂Σ d2rΣ , (5.3)

where G, GΣ are the volume and surface Green functions connected with each
other (Case and Zweifel, 1967).
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All the real problems are reduced to some elementary sources: point unidi-
rectional, point diffuse, point isotropic and plane unidirectional (Germogenova,
1986). Because the elementary sources have bounded light distribution their radi-
ance spatial-angular distribution contains the singularities that are shown in Ta-
ble 5.1 (Germogenova, 1986). The presence of solution singularities causes some
difficulties to solve (5.1). Indeed, any numerical solution method is based on the
replacement of the scattering integral in (5.1) by the finite sum. This cannot be
done with singularities since the singularities for their presentation in any basis
require an infinite number of elements.

Table 5.1. Singularities of RTE solution for elementary source (Germogenova, 1986)

Order of Point Point Plane
scattering unidirectional isotropic unidirectional

0
δ(ω̂ − l̂0)δ(l̂ − l̂0)

|r − r0|2
δ(ω̂ − l̂0)
|r − r0|2

δ(l̂ − l̂0)
|μ0| e

− kextz
μ0

1
δ(ψ − η)

ρ

q
1− (ω̂, l̂0)2

1

|r − r0|
q
1− (ω̂, l̂0)2

2
ln (ρ |ψ − η| s)q
1− (ω̂, l̂0)2

ln
“
|r − r0| (1− (ω̂, l̂0)2)

”

3
1q

1− (ω̂, l̂0)2

where μ = (l̂, ẑ), l̂ = {μ · cosψ, μ · sinψ, μ}, ψ is the azimuth in the XOY -plane;

r = {ρ, z, η}, ω̂ =
r − r0
|r − r0| , s =

q
1− (ω̂, l̂).

One of the boundary problems of RTE is the light field in the scattering medium
slab with the depth d irradiated by plane unidirectional sources at an angle θ0 to
the normal of the slab border. It corresponds to the problem of the light field de-
termination in the atmosphere or in the ocean when the Sun is seen from the Earth
at small angle size (∼ 32′). In this case, if we introduce the Cartesian coordinate
system OXYZ with the axis OZ along inner normal to the upper slab border:

r = xx̂+ yŷ + zẑ, μ = (l̂, ẑ),

l̂ = {
√
1− μ2 cosϕ,

√
1− μ2 sinϕ, μ},

L ≡ L(z, μ, ϕ) : (l̂,∇)L = μ
∂L

∂z
, (5.4)

that reduces the problem solution to the boundary one
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μ
∂L

∂τ
+ L(τ, μ, ϕ) =

ω0
4π

∮
p(l̂′, l̂)L(τ, μ′, ϕ′) dl̂′,

L(τ, μ, ϕ)|τ=0, μ>0 = δ(l̂− l̂0), L(τ, μ, ϕ)|τ=τ0, μ<0 = 0;
(5.5)

where τ =
z∫
0

kext(z′) dz′ is the optical depth, τ0 =
d∫
0

kext(z′) dz′ is the optical thick-

ness of slab, l̂0 =
{√

1− μ20 cosϕ0,
√
1− μ20 sinϕ0, μ0

}
, μ0 = cos θ0. Everywhere

else, except the special cases, we consider the slab as homogeneous (τ = kextz) and
for simplicity assume that ϕ0 = 0.

It is seen from the boundary conditions (5.5) that they have δ-singularity in
the angular distribution. To eliminate them, Milne (1926) proposed to subtract the
direct nonscattered radiation from the full radiance of the light field

L(τ, μ, ϕ) = e−τ/μ0δ(l̂− l̂0) + Ld(τ, μ, ϕ) (5.6)

and to formulate the boundary problem only for the diffuse light field component:⎧⎪⎨⎪⎩
μ
∂Ld
∂τ

+ Ld(τ, μ, ϕ) =
ω0
4π

∮
p(l̂′, l̂)Ld(τ, μ′, ϕ′) dl̂′ +

ω0
4π
e−τ/μ0p(l̂0, l̂),

Ld(τ, μ, ϕ)|τ=0, μ>0 = 0, Ld(τ, μ, ϕ)|τ=τ0, μ<0 = 0.
(5.7)

This approach was developed by Chandrasekhar (1950) who applied them for the
solution of different problems with isotropic and Rayleigh phase functions. How-
ever, all the scattering media, whether in the atmosphere or in the ocean, have
suspended particles of sizes much greater than the wavelength. According to Mie
theory this results in strong anisotropic light scattering. The application of this
approach to anisotropic scattering encounters the serious difficulties that the dif-
ferent procedures of smoothing or truncation of the phase function (Thomas and
Stamnes, 2002) tried to overcome.

It is not difficult to understand that the scattering integral is the convolution
by the solid angle on the sphere of the two functions: the phase function p(l̂, l̂′)
and the radiance distribution L̃(r, l̂′). The calculation accuracy depends on the
accuracy of presentation of both functions. If we turn to Table 5.1, we see that the
RAD for the elementary sources contains the angular singularities, not only in the
direct radiation but also in the first two orders of scattering.

The optimal method to remove the anisotropy problem in the RAD is the
approximate presentation of the anisotropic part of the solution La(τ, μ, ϕ) and
the presentation of the full solution as the sum:

L(τ, μ, ϕ) = La(τ, μ, ϕ) + L̃(τ, μ, ϕ), (5.8)

This results to the boundary problem⎧⎪⎪⎨⎪⎪⎩
μ
∂L̃

∂τ
+ L̃(τ, μ, ϕ) =

ω0
4π

∮
p(l̂′, l̂)L̃(τ, μ′, ϕ′) dl̂′ + S(τ, μ, ϕ),

L̃(τ, μ, ϕ)
∣∣∣
τ=0, μ>0

= 0, L̃(τ, μ, ϕ)
∣∣∣
τ=τ0, μ<0

= −La(τ0, μ, ϕ),
(5.9)
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where the source function (RTE discrepancy that is due to an inaccuracy of the
anisotropy part) is:

S(τ, μ, ϕ) =
ω0
4π

∮
p(l̂′, l̂)La(τ, μ′, ϕ′) dl̂′ − μ∂La

∂τ
− La(τ, μ, ϕ). (5.10)

The modification of the boundary conditions (as it will be shown below) was nec-
essary because the forward radiation is taken into account in the anisotropic part
very strictly while the backscattering radiation is taken approximately. So, this in-
accuracy has to be compensated to make the boundary conditions (5.7) and (5.9)
equivalent.

Note that the requirements of the scattering integral presentation accuracy are
determined by the most slowly varying function. Therefore, if the anisotropic part
is extracted from the solution accurately enough, then the requirements of the
scattering integral presentation will be determined by the smooth regular part,
irrespective of the scattering anisotropy.

5.3 Small angle modification of the
spherical harmonics method

To extract the anisotropic part from the solution, one has to state its distinguishing
feature. It could be much easier, if we come over to the spectral representation of
the angular distribution, i.e. to the angular spectrum of the radiance distribution.
For the function given on the sphere (zenith θ and azimuth ϕ angles), the spectral
representation is the expansion in series on surface harmonics (Vilenkin, 1965), that
is used at the RTE solution by the spherical harmonics (SH) method. This method
was used by Lorentz (1916) for electron transfer theory. This method was modified
for the RTE solution in the discussion between Jeans (1917) and Eddington (1916),
and its final formulation in a modern form was proposed by Gratton (1939). The
anisotropic part of the solution at the small optical depth has to be approximately
symmetrical with respect to the incident direction l̂0. Therefore, in contrast to the
traditional presentation, we expand the RAD in series with respect to l̂0:

La(τ, μ, ϕ) =
∞∑
k=0

∞∑
m=−∞

2k + 1
4π

√
(k −m)!
(k +m)!

Cmk (τ)P
m
k (ν) e

imϕ

=
∞∑
k=0

∞∑
m=−∞

2k + 1
4π

Cmk (τ)Q
m
k (ν) e

imϕ . (5.11)

where ν = (l̂, l̂0), μ = νμ0 +
√
1− ν2

√
1− μ20 cosϕ, Pnl (μ) is the associated Leg-

endre polynomial, and P 0
l (μ) ≡ Pl(μ) is the Legendre polynomial;

Qnl (μ) =

√
(l − n)!
(l + n)!

Pnl (μ)

is the renormalized Legendre polynomial.
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We substitute the presentation (5.8), (5.11) in RTE (5.5), multiply it by
Qmk (ν) e

imϕ and integrate it over the complete solid angle. Taking into account
the orthogonality, the recurrence relationships, and the addition theorems for the
Legendre polynomials (Vilenkin, 1965) we get the coupled differential equations

μ0
d

dτ

[√
(k −m)(k +m)Cmk−1(τ) +

√
(k +m+ 1)(k −m+ 1)Cmk+1(τ)

]
+

√
1− μ20
2

d

dτ

{[√
(k −m+ 1)(k −m+ 2)Cm−1

k+1 (τ)

−
√
(k +m)(k +m− 1)Cm−1

k−1 (τ)
]

+
[√
(k +m+ 1)(k +m+ 2)Cm+1

k+1 (τ)

−
√
(k −m− 1)(k −m)Cm+1

k−1 (τ)
]}

= −(2k + 1)(1− ω0pk)Cmk (τ) , (5.12)

where pk are the expansion coefficients of the phase function on the Legendre
polynomials:

p(l̂, l̂′) =
Nx∑
k=0

(2k + 1)pkPk(l̂ · l̂′) , (5.13)

Nx is the series term number in the expansion of the phase function on the Legendre
polynomials. We assume for simplicity that pk ≡ 0 at k > Nx.

The developed system is different from the conventional one used in the SH
method for plane unidirectional source (Budak and Sarmin, 1990) by the different
spherical coordinate system in the direction space of radiance sighting with respect
to an axis l̂0 instead of ẑ.

Since the radiance of the anisotropic part of the solution part changes quickly
with the angle of sight, its spectrum Cmk (τ) has conversely a slow dependence on
the index k. It allows us to make the following assumptions.

Continuous dependence of the expansion coefficients (5.11) on the harmonic
number Cmk (τ) = Cm(τ, k), which is a slowly monotonous function owing to the
angular anisotropy that makes it possible to present it as

Cm(τ, k ± 1) ≈ Cm(τ, k)± ∂Cm(τ, k)
∂k

; (5.14)

Terms with the numbers k � 1 makes the major contribution to the series (5.11),
and the degree of anisotropy is substantially larger than its azimuthal asymmetry
(k � m) that allows us to make the approximations:√

(k −m)(k +m) ≈ k;√
(k +m+ 1)(k −m+ 1) ≈ k + 1;√
(k −m+ 1)(k −m+ 2) ≈ κ− (m−1)(2k+1)

2κ ;√
(k +m)(k +m− 1) ≈ κ+ (m−1)(2k+1)

2κ ;√
(k +m+ 1)(k +m+ 2) ≈ κ+ (m+1)(2k+1)

2κ ;√
(k −m)(k −m− 1) ≈ κ− (m+1)(2k+1)

2κ ;

where κ =
√
k(k + 1).
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By substituting these assumptions in (5.12) and by replacing k with κ we get:

μ0
∂Cm

∂τ
+

√
1− μ20
2

∂

∂τ

[
∂Cm+1

∂k
+
∂Cm−1

∂k
+
1
κ

(
(m+ 1)Cm+1 − (m− 1)Cm−1

)]
= −(1− ω0pk)Cm(τ, κ) . (5.15)

In equation (5.15) the term with the second derivation is removed taking into ac-
count the condition k � 1 and the assumption of the slowly monotonic dependence
Cm on the number k.

We introduce a function f(τ, l0⊥,κ) with its azimuthal spectrum equal to the
required function

f(τ, l0⊥, κ) =
∞∑

m=−∞
Cm(τ, κ) eimψ, (5.16)

where

Cm(τ, κ) =
1
2π

2π∫
0

f(τ, l0⊥, κ) e−imψ dψ .

It is not difficult to derive the following properties of the series (5.16):

∞∑
m=−∞

Cm±1(τ, κ) eimψ = e∓iψf(τ, l0⊥,κ),

∞∑
m=−∞

(m± 1)Cm±1(τ, κ) eimψ = −i e∓iψ ∂f(τ, l0⊥,κ)
ψ

. (5.17)

We multiply equation (5.15) by eimψ and sum it over m from −∞ to +∞. Having
in mind the properties (5.17) we get the followings expression

∞∑
m=−∞

[
∂Cm+1

∂κ
+
∂Cm−1

∂κ
+
1
κ
((m+ 1)Cm − (m− 1)Cm)

]
eimψ

= 2
(
cosψ

∂f

∂κ
− sinψ

κ

∂f

∂ψ

)
= 2(l̂0⊥,∇κ)f ,

that changes equation (5.15) to

∂

∂τ
[μ0f + (l0⊥,∇κ)f ] = −(1− ω0pk)f(τ, l0⊥, κ) . (5.18)

The result obtained has a complicated analytical solution. It is important for us to
achieve a simple analytical solution with the formulation of the boundary problem
for the regular part of (5.9). The item (l0⊥,∇κ)f determines the relationship be-
tween the harmonic amplitudes Cmk (τ) and different azimuthal numbers m. This
allows us to describe the effect of the maximum RAD rotation from the incident
light direction to the vertical direction in deep layers of the medium.

This phenomenon could be ignored when solving the anisotropic part, since the
angular distribution ceases to be anisotropic in the light depth mode. Neglecting
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this item we get the following equation:

μ0
∂

∂τ
Cmk (τ) = −(1− ω0pk)Cmk (τ) , (5.19)

Eliminating the item (l0⊥,∇κ) in equation (5.18) means that we neglect the path
variance of the scattering rays and the backscattering in the solution. Thus we have
the boundary conditions for equation (5.19):

Cmk (0) = 1 .

Taking into account this boundary condition the solution of equation (5.19) has a
simple analytical expression

Cmk (τ) = exp (−(1− ω0pk)τ/μ0) ≡ Zk(τ) , (5.20)

or for the anisotropic part of the radiance angular distribution:

La(τ, μ, ϕ) =
∞∑
k=0

∞∑
m=−∞

2k + 1
4π

Zk(τ)Qmk (ν) e
imϕ . (5.21)

It is easy to see from equation (5.20) that RAD has an axial symmetry and all the
angular coefficients do not depend on the azimuthal index m.

For further analysis it is more convenient to return in (5.21) to the coordinate
system (μ,ϕ) relative to axis OZ that is orthogonal to the medium border since we
will find the regular supplement L̃(τ, μ, ϕ) in this coordinate system:

La(τ, μ, ϕ) =
∞∑
l=0

l∑
n=−l

2l + 1
4π

Znl (τ)Q
n
l (μ) e

inϕ . (5.22)

The expression (5.22) has no symmetry relative to axis OZ and in this case the
coefficients Znl (τ) depend on the azimuthal index n.

Multiply (5.21) and (5.22) by Qnl (μ) e
−inϕ and integrate them over entire solid

angle. Since Qnl (μ) e
inϕ is orthogonal we get from the equality of (5.21) and (5.22):

Znl (τ) =
∞∑
k=0

∞∑
m=−∞

2k + 1
4π

Zk(τ)
∮
Qmk (l̂l̂0) e

imϕQnl (l̂ẑ) e
−inϕ dl̂ . (5.23)

It is not difficult to compute the last expression on the basis of the addition theorem
for the Legendre polynomials:

Zmk (τ) = Zk(τ)Qmk (μ0) . (5.24)

Below we call the obtained algorithm of the determination of the anisotropic part
of the solution as the small angle modification of the spherical harmonics method,
in short: the modification of the spherical harmonics method (MSH) (Budak and
Sarmin, 1990; Budak and Korkin, 2008a). The solution obtained is in good agree-
ment with the small angle approximation (SA) in the Goudsmit–Saunderson form
(Goudsmit and Saunderson, 1940).
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5.4 Small angle approximation in transport theory

SA appeared for the first time in Wentzel (1922) in the analysis of electron multiple
scattering in a solid body. The analysis was carried out on the basis of the expression
for the arbitrary order of scatterings, which can be written in our designation for
the radiance of the n-order scattering light in the form:

Ln(τ, l̂) =
(ω0
4π

)n ξn∫
0

· · ·
ξ1∫
0︸ ︷︷ ︸

n

∮
· · ·
∮

︸ ︷︷ ︸
n

exp

(
−ξ −

n∑
k=1

ζk

)

· p(l̂, l̂n) · . . . · p(l̂2, l̂1)L0(l̂1) dl̂1 · · · dl̂n dζ1 · · · dζn . (5.25)

The ray trajectory at the n-order scattering is a polyline from the n + 1 seg-
ments. The optical depth and the direction of the first n segments from plane
unidirectional source are designated by ζi, l̂i respectively. The last segment adja-

cent to the detector has a length ξ = τ/μ −
n∑
k=1

ζk. Since the electron scattering

has a strongly anisotropic character, the length variance of the scattering ray path
for small angles can be neglected (Wentzel, 1922)

ξ +
n∑
k=1

ζk ≈ τ

μ0
, (5.26)

With substitution of (5.26) the equation (5.25) is transformed to

Ln(τ, l̂) =
1
n!

(
ω0τ

4πμ0

)n
exp
(
− τ

μ0

)∮
· · ·
∮

︸ ︷︷ ︸
n

p(l̂, l̂1)·. . .·p(l̂n−1, l̂n)L0(l̂n) dl̂1 · · · dl̂n .

Thus, the radiance of a multiply scattered light can be described as:

L(τ, l̂) =
∞∑
n=0

Ln(τ, l̂)

= e−τ/μ0
∞∑
n=0

(ω0τ/μ0)n

n!

(
1
4π

)n ∮
· · ·
∮

︸ ︷︷ ︸
n

p(l̂, l̂n) · . . . · p(l̂2, l̂1) dl̂1 · · · dl̂n

= e−τ/μ0
∞∑
n=0

(ω0τ/μ0)n

n!
Φn(l̂) . (5.27)

It seems to be obvious that small angle approximation is equivalent to the RTE
(5.1) transformation to

(l̂0,∇)L(τ, l̂) = −L(z, l̂) + ω0
4π

∮
p(l̂, l̂′)L(τ, l̂′) dl̂′ . (5.28)

In this case the equation for the plane unidirectional source has the following form
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μ0
∂L

∂τ
= −L(τ, μ) + ω0

4π

∮
p(l̂, l̂′)L(τ, μ′) dl̂′ , (5.29)

or that is equivalent in the integral form to the next equation (for μ > 0):

L(τ, μ) = δ(l̂− l̂0) e−τ/μ0 + ω0
4πμ0

τ∫
0

e−ξ/μ0
∮
p(l̂, l̂′)L(τ, μ′) dl̂′dξ . (5.30)

Now we can ascertain that the solution of equation (5.30) coincides with the ex-
pression (5.27) by the straightforward calculation.

It could be seen from (5.27) that the central problem in SA is the computation
of the multi-dimensional convolution over solid angle on the sphere Φn(l̂). There
are three ways of solving the problem.

In the first approach (Bothe, 1929), the field radiance in the direction l̂′ was
presented in the expanded form of a Taylor series

L(z, r, l̂′) =
∞∑
n=0

(l̂′ − l̂)n
n!

∇nl L .

These series are substituted in the scattering integral of RTE (5.28) where the
first three terms are preserved and with the assumption that the phase function
is sharper angle function than the radiance distribution. As the result, the RTE
(5.28) is reduced to the equation of Fokker–Planck type (diffuse approximation):

(l̂0,∇)L(z, l̂) + κL(z, l̂) =
〈
ϑ2
〉

2
ΔlL, (5.31)

where

Δl =
∂2

∂l2x
+
∂2

∂l2y

is Laplacian in the space of the radiation sighting direction and lx, ly are the
projections of the vector l̂ on the plane perpendicular to the direction l̂0.

The solution of (5.29) is just the gaussoid on the sighting angle. Here ∇nl is the
gradient in the space of the radiation sighting direction, and

〈
ϑ2
〉
=
1
4π

∮
p(l̂l̂′)(l̂− l̂′)2 dl̂′ ≈ 1

2

π∫
0

p(cosϑ)ϑ2 sinϑdϑ .

The additional assumption about the greater anisotropic degree of the phase
function in comparison with the RAD smooths strongly all the solution singulari-
ties. But this is valid only for the small angles range in deep layers of a scattering
medium.

Another form of SA based on the addition theorem for Legendre polynomials
was presented by Goudsmit and Saunderson, (1940). If L0(r, l̂) and x(l̂ · l̂′) are
presented as the series on the surface functions similar to (5.13) then the expression
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of convolution for plane unidirectional source is

Φn(l̂) =
∞∑
k=0

2k + 1
4π

pnkPk(l̂ · l̂0) . (5.32)

It follows from (5.30) that

L(τ, l̂) = e−τ/μ0
∞∑
k=0

2k + 1
4π

exp
(
ω0τpk
μ0

)
Pk(l̂ · l̂0) . (5.33)

The third SA form was presented a long time ago (Kompaneets, 1947; Molière,
1948; Snyder and Scott, 1949). In those works, along with the neglect of the ray
path variance, it was assumed that in the range of small angles, convolution over
the sphere (rotation) can be replaced by convolution over the plane tangent to the
sphere in l̂0 (plane translation):

Φn(l̂) ≈
+∞∫

−∞
· · ·

+∞∫
−∞︸ ︷︷ ︸

n

p(l⊥ − l⊥n) · . . . · p(l⊥2 − l⊥1)L0(z, l⊥1) dl⊥1 · · · dl⊥n . (5.34)

Here l⊥ is the projection of l̂ on the plane tangent to the sphere in l̂0.
As the result of the conversion to the Fourier transform of L0(z, l̂) and p(l⊥−l′⊥)

we obtain for plane unidirectional source on the basis of the convolution theorem:

L(τ, l⊥) = e−τ/μ0
+∞∫

−∞
L0(k) exp

(
ω0τp(k)
μ0

)
J0(kl⊥)k dk , (5.35)

where J0(·) is the zero-order Bessel function.
In Wang and Guth (1951), the relationship between the three SA forms and

the comparison of their accuracy were considered. It was shown that the second
SA form is the most consistent and accurate, since it neglects only the ray path
variance. However, it does not allow generalizing for other sources since, due to the
symmetry of plane unidirectional source, L0(l̂) does not depend on ξ. The third
SA form could be derived from the second one for small angles when it is possible
to replace rotations on a sphere with plane translation:

Pk(cosϑ) ≈ J0(kϑ),
∞∑
k=0

2k + 1
4π

→ 1
2π

+∞∫
−∞

k dk . (5.36)

The transition from the second and third SA forms to the first one is based on the
expansion of pk or p(k) in a Taylor series with the preservation of the first three
terms. It should be noted that the presentation (5.26) is not compatible with the
exact boundary conditions (Wang ad Guth, 1951), and SA neglects backscattering
in the boundary conditions.
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It can be seen from this review that the first SA form (Bothe, 1929) cannot be
used for removing the anisotropic part of the solution, since it smooths all singular-
ities of the exact solution. The third SA form is the most flexible: in its frameworks,
the solution for all elementary sources was achieved and the generalization in the
case of polarization was carried out (Muehlschlegel and Koppe, 1958). However,
its analytical form as a Hankel transformation results in an extremely inconvenient
source function (5.10) that makes finding the smooth part of (5.9) a more complex
problem than the original boundary value problem (5.7).

The second SA form (Goudsmit and Saunderson, 1940) has a simple analytical
form that does not complicate the original boundary value problem but in the form
developed by Goudsmit and Saunderson (1940) it is acceptable only for solution of
plane unidirectional source problem. The final form of MSH developed in (5.11)–
(5.24) give the same results as those developed by Goudsmit and Saunderson (1940)
for the case of the plane unidirectional source. However, the approach itself is easily
generalized in the case of the arbitrary geometry with polarization.

We show that MSH contains all the singularities of the exact solution. Thereto
we expand the expression for Zk(τ) in (5.22) into a Taylor series in terms of powers
of ω0 that corresponds to the radiance expansion in terms of orders of scattering.
Then for the first two orders of scattering we have

L(0)
a (τ, μ, ϕ) =

∞∑
l=0

l∑
n=−l

2l + 1
4π

Qnl (μ0)Q
n
l (μ) e

inϕ e−τ/μ0

= δ(μ− μ0)δ(ϕ) e−τ/μ0 , (5.37)

L(5.1)
a (τ, μ, ϕ) =

ω0τ

μ0

∞∑
l=0

l∑
n=−l

2l + 1
4π

plQ
n
l (μ0)Q

n
l (μ) e

inϕ e−τ/μ0

=
ω0τ

4πμ0
p(l̂0, l̂) e−τ/μ0 . (5.38)

It is easy to see that (5.37) coincides completely with the direct nonscattered radi-
ation of a plane unidirectional source containing the angular δ-singularity. For the
analysis of (5.38) we write the exact expression of the single scattering radiance for
the case of a plane unidirectional source (Van de Hulst, 1948):

L1(τ, l̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω0
4π
e−τ/μ0

μ0
μ0 − μp(l̂, l̂0)

[
1− exp

(
τ
μ− μ0
μμ0

)]
, μ ≥ 0;

ω0
4π
e−τ/μ0

μ0
μ0 − μp(l̂, l̂0)

[
exp

(
τ
μ− μ0
μμ0

)
− exp

(
τ0
μ− μ0
μμ0

)]
, μ < 0.

(5.39)
Neglecting the scattered ray path variance that is equivalent in (5.37) to the passage
to the limit τ μ−μ0μμ0

→ 0 we get

L1(τ, μ) =

⎧⎪⎪⎨⎪⎪⎩
ω0τ

4πμ
e−τ/μ0p(l̂, l̂0), μ ≥ 0

ω0(τ − τ0)
4πμ

e−τ/μ0p(l̂, l̂0), μ < 0
(5.40)
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that has the same result as (5.38) in neglecting the scattered ray path variance
μ ≈ μ0.

A similar approach is valid for higher orders of scattering. All of them result
from the exact expressions in neglecting the scattered ray path variance. Therefore,
it is reasonable to expect that, after subtracting the regular part of the solution,
L̃(τ, μ, ϕ) will be a very smoothly varying function of the sighting angle. And
the solution of the boundary value problem will not present difficulties for any
numerical method: SH, the discrete coordinate method (DOM), Monte Carlo etc. –
a review of almost every known method is given in Lenoble (1985) and Sushkevich
(2005). To solve the boundary value problem (5.9) we select the DOM that has split-
hair accuracy, has a clear ray interpretation that allows a simple generalization in
the case of arbitrary boundary conditions and allows us to use analytical methods in
the case of a plane unidirectional source. Such an approach, developed on the basis
of the Goudsmith–Saunderson approximation and the numerical solution (5.9) by
the DOM was for the first time proposed by Romanova (1962a,b) and was widely
used by Irvine (1968). Unlike them, we determine an anisotropic part on the basis
of MSH that allows us to extend the approach to the arbitrary medium geometry,
to include polarization effects, and to get an analytical solution in the case of a
plane unidirectional source.

5.5 Determination of the solution of the regular part
in a plane unidirectional source problem

To get the regular part of the solution it is necessary to solve the RTE boundary
problem (5.9) with the source function S(τ, μ, ϕ). It is easy to compute the expres-
sion (5.10) for the source function using (5.22), (5.24), and the addition theorem
for the spherical functions:

S(τ, μ, ϕ) =
∞∑

m=−∞

K∑
k=0

2k + 1
4π

smk (τ)Q
m
k (μ) e

imϕ , (5.41)

where dk = 1− ω0pk,

smk (τ) =

√
(k −m+ 1)(k +m+ 1)

(2k + 1)μ0
dk+1Q

m
k+1(μ0)Zk+1(τ)

+

√
(k −m)(k +m)
(2k + 1)μ0

dk−1Q
m
k−1Zk−1 − dkQmk Zk . (5.42)

The boundary problem (5.9) for the regular part L̃(τ, μ, ϕ) is solvable by the
arbitrary numerical method. However, the most effective method uses the problem
plane symmetry as much as possible. Firstly note that the differential transfer op-
erator does not depend on the azimuthal angle ϕ. Therefore, the unknown function
is expanded in Fourier series on azimuth

L̃(τ, μ, ϕ) =
m=M∑
m=−M

Cm(τ, μ) eimϕ =
m=M∑
m=0

(2− δm0)Cm(τ, μ) cosmϕ. (5.43)

Note that azimuthal symmetry is used in (5.43).
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With the substitution of (5.43) in the RTE of the boundary problem (5.9),
using (5.13) and admitting the orthogonality of the azimuthal harmonics we get
the equation:

μ
dCm(τ, μ)

dτ
= −Cm(τ, μ) + ω0

2

Nx∑
k=m

(2k + 1)pkQmk (μ)

1∫
−1

Qmk (μ
′)Cm(τ, μ′) dμ′

+
∞∑
k=0

2k + 1
4π

smk (τ)Q
m
k (μ) . (5.44)

Any solution method of the integro-differential equation (5.44) is based on the re-
placement of an integral with the finite sum. The method of discrete ordinates is
the most effective one where an integral is presented as the Gaussian quadrature
(Krylov, 2006). At first, it was used in Wick (1943) and then developed by Chan-
drasekhar (1950) and Thomas and Stamnes (2002). Since the solution regular part
L̃(τ, μ, ϕ) is the smooth angular function, it can be approximately presented by
the finite set of its N values or ordinates. Note that in case of the homogeneous
slab, the radiative transfer is symmetrical with respect to the upward (μ < 0) and
downward (μ > 0) streams of radiation (Stamnes and Swanson, 1981). Therefore,
for the best integral representation in the equation (5.44) the Gaussian quadrature
in the following form (Stamnes and Swanson, 1981; Sykes, 1951) is used:

1∫
−1

Qmk (μ
′)Cm(τ, μ′) dμ′ ≈ 1

2

N/2∑
j=1

wjC
−
j (τ)Q

m
k (μ

−
j ) +

1
2

N/2∑
j=1

wjC
+
j (τ)Q

m
k (μ

+
j ) ,

(5.45)
where μ−j = (μj − 1)/2, μ+j = (μj + 1)/2, μj are zeros of the Legendre polynomials
PK(μ), wj are the weighting coefficients of the Gaussian quadrature; C±

j (τ) ≡
Cmj (τ, μ

±
j ). Notice that N must be even. The additional advantage of this scheme

is the search of only N/2 roots.
In this case the set (5.44) could be replaced by the set of N ordinary differential

equations

μ±i
dC±
i (τ)
dτ

= −C±
i (τ)

+
ω0
4

N/2∑
j=1

wj

Nx∑
k=m

(2k + 1)pkQmk (μ
±
i )
(
C−
j (τ)Q

m
k (μ

−
j ) + C

+
j (τ)Q

m
k (μ

+
j )
)
+ S±i (τ),

(5.46)

where

S±i (τ) =
K∑
k=m

2k + 1
4π

smk (τ)Q
m
k (μi) ,

K is the number of terms in the anisotropic part solution presentation. It is difficult
to point out the unique selection rule of the value K: it depends both on the
scattering anisotropy and on the absorption in the medium determined by ω0.
However, it is always K > Nx.



162 Vladimir P. Budak, Dmitriy A. Klyuykov, and Sergey V. Korkin

Let values of {μ±i } be in ascending order of the cosine modulus of the sighting
angle. We define the column vectors


C+ =

⎡⎢⎣ C
+
1
...
C+
N/2

⎤⎥⎦, 
C− =

⎡⎢⎣ C
−
1
...
C−
N/2

⎤⎥⎦,
↔
S+ =

⎡⎢⎢⎣
S+1
/
μ+1

...
S+N/2

/
μ+N/2

⎤⎥⎥⎦, ↔
S− =

⎡⎢⎢⎣
S−1
/
μ−1

...
S−N/2

/
μ−N/2

⎤⎥⎥⎦, (5.47)

and the matrices

↔
X =

ω0
4

[
K∑
k=m

(2k + 1)pkQmk (μ
±
i )Q

m
k (μ

+
j )

K∑
k=m

(2k + 1)pkQmk (μ
±
i )Q

m
k (μ

−
j )
]
,

↔
M =

[
μ+i 0
0 μ−i

]
,

↔
W = diag(wi) ,

that allows rewriting (5.46) in the matrix form

d

dτ

[

C+


C−

]
= −↔

M
−1

(
↔
1 − ↔

X
↔
W )

[

C+


C−

]
+
[

F+

F−

]
. (5.48)

From here on the over symbol ‘→’ denotes a column vector and the over symbol
‘↔’ denotes a square matrix of the corresponding size.

Now the matrix has the following structure:

↔
X =

[
x1 x2
x2 x1

]
,

↔
W =

[
w 0
0 w

]
,

↔
M

−1

=
[
m 0
0 −m

]
, m =

{
1
μ+i

}
.

This allows us to write down expressions

↔
X

↔
W =

[
x1w x2w
x2w x1w

]
,

↔
M

−1

(
↔
1 − ↔

X
↔
W ) =

[
m(1− x1w) −mx2w
mx2w −m(1− x1w)

]
=

[
↔
α −↔

β
↔
β −↔

α

]
≡ ↔
B .

(5.49)

From (5.49) and (5.46) the matrix equation (5.48) can be rewritten as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
C+

dτ
= −α
C+ + β 
C+ + 
S+ ,

d 
C−
dτ

= −β 
C+ + α
C− + 
S− .

(5.50)
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The solution of the set (5.50) has the form

−
[

C+(0)

C−(0)

]
+ e

↔
Bτ0

[

C+(τ0)

C−(τ0)

]
=

τ0∫
0

e
↔
Bt

[ ↔
S+(t)
↔
S−(t)

]
dt . (5.51)

The set (5.51) contains N equations with 2N unknowns. Missing N equations
can be found from the boundary conditions:

C(0, μi)|∀i: μi≥0 = 0, C(τ0, μi)|∀i: μi≤0 = −La(τ0, μi) , (5.52)

or in the matrix form[
↔
1 0
0 0

] [

C+(0)

C−(0)

]
=
[
0
0

]
,

[
0 0
0

↔
1

] [

C+(τ0)

C−(τ0)

]
= −

[
0

La(τ0)

]
,


La(τ0) ≡ {La(τ0, μi)} . (5.53)

The item La(τ0, μi) at the bottom boundary condition is connected with the phys-
ical lack of fit of MSH solutions because of the neglect of the backscattering.

The matrix exponent could be represented in the form (Sykes, 1951)

e
↔
Bτ =

↔
Ue

↔
Γ τ

↔
U
−1

, (5.54)

where

↔
Γ =

[ ↔
Γ− 0

0
↔
Γ+

]
,

↔
Γ± = diag{γi} , and e

↔
Γ τ =

⎡⎣ e↔Γ−τ 0
0 e

↔
Γ+τ

⎤⎦ , {γi}
are the eigenvalues that are sorted by ascending γi < γi+1,

↔
U is the eigenvector

matrix of the matrix
↔
B.

Taking into account (5.49), for the matrix
↔
B it is possible to state the eigenvalue

problem (Stamnes and Swanson, 1981)[
↔
α −↔

β
↔
β −↔

α

] [

u+

u−

]
= γ

[

u+

u−

]
, (5.55)

that allows rewriting it differently as the equation set{
↔
α
u+ −

↔
β
u− = γ
u+,

↔
β
u+ − ↔

α
u− = γ
u−.
(5.56)

Let us add and subtract in pairs the equations of the set (5.56) that results in
the new equation set {

(↔α +
↔
β)(
u+ − 
u−) = γ(
u+ + 
u−) ,

(↔α − ↔
β)(
u+ + 
u−) = γ(
u+ − 
u−) .

(5.57)
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By expressing (
u+ − 
u−) from the lower equation and by substituting it in the
upper one we get the eigenvalues problem

(↔α +
↔
β)(↔α − ↔

β)(
u+ + 
u−) = γ2(
u+ + 
u−) . (5.58)

We define the eigenvalues γ and corresponding eigenvectors (
u++
u−) from equation
(5.58). Using the obtained values from the lower equation of the set (5.57) we define

the eigenvectors (
u+ − 
u−) that allow us to compute the matrices
↔
Γ and

↔
U .

Now, using (5.40) we rewrite the set (5.51) as:

−
[

C+(0)

C−(0)

]
+

↔
U e

↔
Γ τ0

↔
U
−1
[

C+(τ0)

C−(τ0)

]
=

↔
U

∞∑
k=0

2k + 1
4π

τ0∫
0

e
↔
Γ tsmk (t) dt

↔
U
−1
[

q+

q−

]
,

(5.59)
where [


q+

q−

]
=
[
Qmk (μ

±
i )
]
.

If we introduce the designation

↔
i k ≡

τ0∫
0

exp
[
−
(
dk
μ0
− ↔
Γ

)
t

]
dt =

[
↔
1 − exp

[
−
(
dk
μ0

↔
1 − ↔

Γ

)
τ0

]](
dk
μ0

↔
1 − ↔

Γ

)−1

,

(5.60)
the integral in equation (5.59) can be represented by the expression

τ0∫
0

e
↔
Γ tsmk (t) dt =

1
(2k + 1)μ0

[√
(k −m+ 1)(k +m+ 1)dk+1Q

m
k+1(μ0)

↔
i k+1(τ)

+
√
(k −m)(k +m)dk−1Q

m
k−1(μ0)

↔
i k−1

]
− dkQmk (μ0)

↔
i k ≡

↔
I k(τ0). (5.61)

The system matrix conditionality decreases quickly with the medium depth.
To eliminate this effect we use the scale transformation (Karp et al., 1980) and

multiply (5.59) by matrix
↔
S
↔
U
−1

that reduces the system to the form

−↔
S
↔
U
−1
[

C+(0)

C−(0)

]
+

↔
H

↔
U
−1
[

C+(τ0)

C−(τ0)

]
=

∞∑
k=0

2k + 1
4π

↔
S
↔
I k(τ0)

↔
U
−1
[

q+

q−

]
, (5.62)

where

↔
S =

[
0 e−

↔
Γ+τ0

↔
1 0

]
,

↔
H =

↔
Se

↔
Γ τ0=

[
0 e−

↔
Γ+τ0

↔
1 0

]⎡⎣ e↔Γ−τ0 0

0 e
↔
Γ+τ0

⎤⎦=[ 0 ↔
1

e
↔
Γ−τ0 0

]
,

(5.63)

and the integrals in the multiplier
↔
S
↔
I k(τ0) are:
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↔
S
↔
i k(τ0)

=

⎡⎢⎢⎣
↔
0

(
e−

↔
Γ+τ0−↔

1e−dkτ0/μ0
)(
dk
μ0

↔
1−↔

Γ+

)−1

(
↔
1−e

↔
Γ−τ0e−dkτ0/μ0

)(
dk
μ0

↔
1−↔

Γ−
)−1 ↔

0

⎤⎥⎥⎦.
(5.64)

The equation set (5.62) with the boundary conditions (5.53) can be reduced and
written only with respect to reflected 
C−(0) and transmitted 
C+(τ0) components.
Let us open the left-hand members in the equation set

−↔
S
↔
U
−1

C(0) +

↔
H

↔
U
−1

C(τ0) = −

[
e−

↔
Γ+τ0↔u21 e−

↔
Γ+τ0↔u22

↔
u11

↔
u12

] [

C+(0)

C−(0)

]

+

[ ↔
u21

↔
u22

e
↔
Γ−τ0↔u11 e

↔
Γ−τ0↔u12

] [

C+(τ0)

C−(τ0)

]
, (5.65)

that changes set (5.62) to⎡⎣ −e−↔
Γ+τ0↔u22

↔
u21

−↔
u12 e

↔
Γ−τ0↔u11

⎤⎦[ 
C−(0)

C+(τ0)

]

=
[

J+

J−

]
+

⎡⎣ e−↔
Γ+τ0↔u21 −↔

u22
↔
u11 −e

↔
Γ−τ0↔u12

⎤⎦[ 
C+(0)

C−(τ0)

]
, (5.66)

where

↔
U
−1

≡
[ ↔
u11

↔
u12

↔
u21

↔
u22

]
,

[

J+

J−

]
≡

∞∑
k=0

2k + 1
4π

↔
S
↔
I k(τ0)

↔
U
−1
[

q+

q−

]
.

The equation set (5.66) can be simplified at the analysis of the practically
important case of the reflection from the semi-infinite slab – ‘ocean’. In this case
τ0 →∞ and the relations are

e−
↔
Γ+τ0 → 0, e

↔
Γ−τ0 → 0, 
C+(τ0)→ 0, 
C−(τ0) = −
La(τ0)→ 0,

↔
J−(τ0)→ 0 .

(5.67)
So the solution gets a very simple form


C−(0) = −↔
u
−1

12

J− =

−↔
u
−1

12

4πμ0

Nz∑
k=0

(1− ω0pk)Qmk (μ0)
↔
I−
(
↔
u11

↔
m−
q− +

↔
u12

↔
m+
q+

)
,

(5.68)
where

↔
I− =

√
(k −m+ 1)(k +m+ 1)Qmk+1(μ0)

↔
j k+1

+
√
(k −m)(k +m)Qmk−1(μ0)

↔
j k−1 − (2k + 1)Qmk (μ0)

↔
j k,

↔
j k

= dk

(
dk

↔
1 − μ0

↔
Γ−
)−1

,
↔
m± = diag

(
1
/
μ±i
)
.
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It is obvious that the expression (5.68) is the analytical solution of the Ambart-
sumian problem of radiation reflection from a semi-infinite medium at an arbitrary
phase function for the discrete RTE (5.46).

Solving equation (5.66) with respect to reflected 
C−(0) and transmitted 
C+(τ0)
components we get[


C−(0)

C+(τ0)

]
=
[

F−

F+

]
+

[ ↔
R−

↔
T−

↔
T+

↔
R+

] [

C+(0)

C−(τ0)

]
, (5.69)

where [

F−

F+

]
≡ ↔
A
−1
[

J+

J−

]
,

[ ↔
R−

↔
T−

↔
T+

↔
R+

]
≡ ↔
A
−1

⎡⎣ e−↔
Γ+τ0↔u21 −↔

u22
↔
u11 −e

↔
Γ−τ0↔u12

⎤⎦ ,
↔
A
−1

≡
⎡⎣ −e−↔

Γ+τ0↔u22
↔
u21

−↔
u12 e

↔
Γ−τ0↔u11

⎤⎦ .
The expression (5.69) defines the radiative transfer through the slab: the reflected

C−(0) and the transmitted 
C+(τ0) radiation are expressed by the radiation incident
on the slab border from above 
C+(0) and from below 
C−(τ0). The merit of (5.69) is
the possibility of translation to a vertically inhomogeneous, stratified slab dividing
it into an arbitrary quantity of homogeneous slabs. In this case, two adjoining slabs
can be replaced by one slab that is described by the equivalent expression (5.69)
that has effective parameters expressed by the original slab parameters. Thereby,
the property of the radiative transfer by a slab possesses invariance (Stokes, 1862),
and the matrix elements of the united slab are determined with the help of the
matrix-operator method (Plass et al., 1973) .

We consider the case of the two-layer medium from two adjacent slabs[

C1
−

C1
+

]
=
[

F 1
−

F 1
+

]
+

[ ↔
R1−

↔
T 1−

↔
T 1+

↔
R1+

][

C1
↓

C1
↑

]
,

[

C2
−

C2
+

]
=
[

F 2
−

F 2
+

]
+

[ ↔
R2−

↔
T 2−

↔
T 2+

↔
R2+

][

C2
↓

C2
↑

]
, (5.70)

where the subscript defines an upper (5.1) or lower (5.2) slab. The radiation incident
on the slab from above or from below is designated by the vertical arrows.

Note that since the slabs are adjoining


C1
+ = 
C2

↓ ≡ 
C↓, 
C2
− = 
C1

↑ ≡ 
C↑ , (5.71)

we could rewrite (5.70) as[

C1
−

C↓

]
=
[

F 1
−

F 1
+

]
+

[ ↔
R1−

↔
T 1−

↔
T 1+

↔
R1+

][

C1
↓

C↑

]
,

[

C↑

C2
+

]
=
[

F 2
−

F 2
+

]
+

[ ↔
R2−

↔
T 2−

↔
T 2+

↔
R2+

][

C↓

C2
↑

]
. (5.72)
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Solving equation set (5.70) for reflected 
C1
− and transmitted 
C2

+ radiation
through the radiation incident on the slab 
C1

↓ and 
C
2
↑ we will get:


C1
− = 
F 1

− +
↔
T 1−

(↔
1 − ↔

R2−
↔
R1+

)−1 ↔
R2− 
F 1

+ +
↔
T 1−

(↔
1 − ↔

R2−
↔
R1+

)−1

F 2
−

+
[
↔
R1− +

↔
T 1−

(↔
1 − ↔

R2−
↔
R1+

)−1 ↔
R2−

↔
T 1+

]

C1
↓ +

↔
T 1−

(↔
1 − ↔

R2−
↔
R1+

)−1 ↔
T 2− 
C2

↑

(5.73)

C2
+ =

↔
T 2+

(↔
1 − ↔

R1+

↔
R2−

)−1

F 1
+ +

↔
T 2+

(↔
1 − ↔

R1+

↔
R2−

)−1 ↔
R1+


F 2
− + 
F 2

+

+
↔
T 2+

(↔
1 − ↔

R1+

↔
R2−

)−1 ↔
T 1+


C1
↓ +

[
↔
R2+ +

↔
T 2+

(↔
1 − ↔

R1+

↔
R2−

)−1 ↔
R1+

↔
T 2−

]

C2
↑

(5.74)
By introducing designations

↔
α =

(↔
1 − ↔

R2−
↔
R1+

)−1

, (5.75)

we write (5.73)–(5.74) in the matrix form[

C1
−

C2
+

]
=

⎡⎣ 
F 1
− +

↔
T 1−

↔
α
(↔
R2− 
F 1

+ + 
F 2
−
)

↔
T 2+

↔
α
(

F 1
+ +

↔
R1+


F 2
−
)
+ 
F 2

+

⎤⎦
+

[ ↔
R1− +

↔
T 1−

↔
α
↔
R2−

↔
T 1+

↔
T 1−

↔
α
↔
T 2−

↔
T 2+

↔
α
↔
T 1+

↔
R2+ +

↔
T 2+

↔
α
↔
R1+

↔
T 2−

][

C1
↓

C2
↑

]
. (5.76)

To count the multilayer systems one has to replace the expression for the angular
spectrum of the anisotropic part in (5.20) by the expression

Zk(τ) = Z0k exp
{
− (1− ω0pk)τ

μ0

}
, (5.77)

where Z0k are the expansion coefficients on the Legendre polynomials of RAD on
the upper slab border. In the case of a plane unidirectional source on the upper
border, Z0k = 1. In case of the multilayer slab, the lower layer in MSH is irradiated
from above:

Z0ik = exp

{
− (1− ω

(i−1)
0 p

(i−1)
k )τi−1

μ0

}
,

where i is the number of the current layer.

5.6 Reflection and transmittance on the boundary
of two slabs

At first we handle the special case for the slab illuminated from above by a plane
unidirectional source and reflected diffusely from the bottom with the reflectance
ρ and get

L(τ0, l̂)
∣∣∣
μ<0

=
ρ

π

∫
(μ>0)

L(τ0, l̂′)μdl̂′ . (5.78)
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If we substitute the radiance representation as a Fourier series (5.43) in the form of
a discrete ordinate while the integral (5.78) is presented by a Gaussian quadrature
we get

C0(τ0, μ−i ) = 2ρ
N/2∑
j=1

C0(τ0, μ+j )μ
+
j wj , ∀m > 0 : Cm(τ0, μ−i ) = 0 , (5.79)

or in the matrix form

m = 0 : 
C−(τ0) = 2ρ
↔
RL 
C+(τ0); ∀m > 0 : 
C−(τ0) = 0, (5.80)

where the Lambertian reflection matrix
↔
RL consist of the N/2 same rows

{
μ+j wj

}
.

In correspondence with matrix-operator method (5.76), we get for the reflected
component of the zero harmonic:


C−(0) = 
F− + 2ρ
↔
T−
(↔
1 − 2ρ↔RL

↔
R
)−1 ↔

RL 
F+, (5.81)

where the superscript 1 relating to the slab is omitted everywhere. All other az-
imuthal harmonics for m > 0 are determined by the expression for the single-layer
medium (5.69).

However, this approach cannot be straightly applied to the refraction boundary
since the ordinate directions (‘rays’) are changed on the border by the Snell law

n1 sin θ1 = n2 sin θ2 , (5.82)

where n1, n2 are refractive indices of media, and the correspondence of ordinate
directions is broken. The solution of this problem is given in Nakajima and Tanaka
(1986).

Here we handle in detail the refraction for the practically important case, when
n1 < n2. Let us call the first slab ‘atmosphere’ (every symbol referring to it will be
designated by index a) and assume na = 1; and call the second slab ‘ocean’ (index
o) and assume no > 1. The cosines of the angles between the rays and the axis OZ
in both media in correspondence with (5.82) are related by the expression

μa =
√
1− n2o(1− μ2o) . (5.83)

It can be seen from (5.83) that for μo < μt ≡
√
1− 1/n2o the total reflection region

appears in the ocean when the light rays do not quit the ocean but are perfectly
reflected back to the ocean. There are no problems in formulating the boundary
conditions in the total reflection region. Let us analyze the integral (5.45) by region:

1∫
−1

Qmk (μ
′)Cm(τ, μ′) dμ′ =

−μt∫
−1

Qmk (μ
′)Cm(τ, μ′) dμ′ +

μt∫
−μt

Qmk (μ
′)Cm(τ, μ′) dμ′

+

1∫
μt

Qmk (μ
′)Cm(τ, μ′) dμ′ . (5.84)
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The first and the third integrals are connected with the refraction region, and the
second is related to the total reflection region. For the second integral, we can make
the transformation

μt∫
−μt

Qmk (μ
′)Cm(τ, μ′) dμ′ =

1∫
−1

Qmk (ν)C
m(τ, ν)dν, μ′ = μtν, (5.85)

that makes it possible to use the double Gaussian quadrature with Nt knots and
later come over to the two streams of ordinates in this region 
Ct+,


Ct−, that are
interconnected to each other on the border by ideal reflection.

For the first and the last integrals in (5.84), we make the transformation of the
integration variable to μa by the expression (5.83)

μo =

√
1− 1− μ

2
a

n2o
, dμo =

μa dμa√
n2o − (1− μ2a)

(5.86)

that transforms the integrals into the form

−μt∫
−1

Qmk (μo)C
m(τ, μo) dμo =

0∫
−1

Qmk (μo)C
m(τ, μo)

μa dμa√
n2o − (1− μ2a)

,

μo = −
√
1− 1− μ

2
a

n2o
, (5.87)

1∫
μt

Qmk (μ2)C
m(τ, μ2) dμ2 =

1∫
0

Qmk (μo)C
m(τ, μo)

μa dμa√
n2o − (1− μ2a)

,

μo =

√
1− 1− μ

2
a

n2o
. (5.88)

It is easy to see that at the conversion to the discrete ordinates, perfect coincidence
appears between the atmospheric 
Ca+, 
C

a
− and oceanic ordinates 
C

o
+, 
C

o
−. Thus, for

the ocean, quadrature formula weights change as:

woi = wai
μi√

n2o − (1− μ2i )
, (5.89)

where μi are the roots of the polynomial of degree N .
If we introduce vectors 
Cocn+ =

[

Ct+; 
C

o
+

]
, 
Cocn− =

[

Co−; 
C

t
−
]
where square

brackets designate a set of vectors that are combined in one with the summary
dimension in accordance with the rules of the Matlab system, then all the relations
(5.48)–(5.69) will be valid. Accordingly, for the introduced variables it is possible
to write down the condition on the coupled interface of atmosphere–ocean:
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Ca−

Cocn+

]
=

[ ↔
R

↔
T ao

↔
T oa

↔
Roo

] [

Ca+

Cocn−

]
,

↔
T ao ≡ [ ↔T ↔

0 ],
↔
T oa ≡

[ ↔
0
↔
T

]
,

↔
Roo ≡

[ ↔
0

↔
1

↔
R

↔
0

]
, (5.90)

where
↔
R,

↔
T are the Fresnel matrices.

The expression (5.90) allows us to use the matrix-operator method. It is not dif-
ficult to see that in the case of semi-infinite ocean with Fresnel border the radiance
of the reflected diffuse radiation will get the form


C− = −
[

↔
T

↔
0
] (↔
1 + ↔

u
−1

12
↔
u11

↔
Roo

)−1 ↔
u
−1

12

J− . (5.91)

In Fig. 5.2 the comparison of the radiance calculation by the ordinary DOMwith
the subtraction only of the direct radiation and our approach with the removing of
the anisotropic part of the solution made on the basis of MSH is shown. Here we
use for the calculation the Henyey–Greenstein phase function:

pHG(γ) =
1− g2

(1 + g2 − 2g cos γ)3/2 , (5.92)

that depends on only one parameter g – the average cosine of the scattering angle.
All the calculations in this chapter were executed under the condition that∫

(l̂,l̂0)≥0

L(τ, l̂)(l̂, l̂0) dl̂ = 1.

The parameters of the medium: τ0 = 1, θ0 = 60◦, ωw = 0.99, g = 0.98 are used
in this calculation. The calculation parameters are equal in the both the programs:
N = 81, M = 8, Nx = 451, K = Nx. Of course, if N = Nx andM = 64 are used in
the ordinary DOM, its calculation results are identical to the suggested approach
but the calculating time is increased by more than 100 times. It is easy to see that
the algorithm used essentially increases the solution convergence that considerably
raises the calculating speed.

In Fig. 5.3 the numerical comparison of the angular distribution calculation of
the radiation transmitted (a, c, e) and reflected (b, d, a) by the slab of two codes
are shown: DOM (the proposed algorithm, a solid line) and the well-known code
DISORT (a dotted line with black circles, ftp://climate1.gsfc.nasa.gov/wiscombe/
Multiple Scatt/). The charts are connected with the different types of scattering:
Fig. 5.3(a,b), Water Haze L; (c,d), Water Cloud C1 (Deirmendjian, 1969); (e,f),
ocean waters (Mobley et al., 2002). The physical model of Water Haze L and Water
Cloud C1 by Deirmendjian (1969) is scattering on the ensemble of the spherical
water drops with the modified gamma particle size distribution:

dN(r)
dr

= arα−1(α− γbrγ) exp(−brγ) ,

where N(r) is the number of spherical particles with a radius smaller than r. We
use the wavelength λ = 0.7μm, and the refractive index of water drops n = 1.33.
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Fig. 5.2. The comparison of the radiance calculation by the two different numerical
methods: (a) reflected radiation, (b) transmitted radiation. The new suggested method is
designated by the solid line, the ‘ordinary’ DOM is designated by the dashed line. The
calculation parameters are equal in the both programs: N = 81, M = 8, Nx = 451,
K = Nx. Of course, if N = Nx andM = 64 are used in the ordinary DOM, its calculation
results are identical to the suggested approach but the calculating time increases more
than 100 times.
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Fig. 5.3. The numerical comparison of the angular distribution of the radiation reflected
and transmitted by the slab was obtained using two codes: DOM and DISORT. The
underlying surface albedo is ρ = 0. Figures (c) and (e) show the obvious advantage of the
proposed method in the calculation of the forward sharp peak at the strong anisotropic
scattering. It might be supposed that DISORT has a limitation in using the number of
azimuth harmonics M , because its calculation time increases greatly, but we used the
program as we downloaded it.



5 Convergence acceleration of RTE solution 173

45 50 55 60 65 70 75
0

5

10

15

20

25

30

35

40

45

50

Water Cloud C1: τ
0
=1.0, θ

0
=60.0

o
, ω

0
=0.99

R
a
d

ia
n

c
e

Sighting angle, degrees

DOM

DISORT

c)

90 105 120 135 150 165 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Water Cloud C1: τ
0
=1.0, θ

0
=60.0

o
, ω

0
=0.99

R
a
d

ia
n

c
e

Sighting angle, degrees

DOM

DISORT

d)

Fig. 5.3. Continued.
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Fig. 5.3. Continued.
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The parameters of the particle size distribution were: a = 4.9757 · 106, α = 2,
b = 15.1186, γ = 0.5 for Water Haze L and a = 2.373, α = 6, b = 1.5, γ = 1 for
Water Cloud C1.

The calculation parameter N = 152 (the number of ordinates) was equal for the
both codes. The calculation time (PC, CPU Intel Core2Quad Q9550 @ 2.83 GHz,
RAM 4Gbyte, Windows XP) for DOM (Matlab 2009a): Water Haze L, 0.1 s; Water
Cloud C1, 0.13 s; Ocean, 1.3 s; for DISORT (Intel Visual Fortran 11): Water Haze L,
14.7 s; Water Cloud C1, 57.4 s; Ocean, 487.4 s. It is easy to see that for Water Haze
L the both algorithms are equivalent in accuracy, but for the more anisotropic
scattering the code DISORT demands essentially more calculation time for the
same accuracy.

Of course, the comparison obcodes is very relative, as they are realized in dif-
ferent programming systems. However, it is definitely possible to state that the
computational results of the proposed algorithm are more stable and smooth func-
tions, especially in the case of strong anisotropic scattering.

5.7 Generalization for the vectorial case
of polarized radiation

The spatial distribution of the Stokes vector 
L(τ, l̂) =
[
I Q U V

]T describes all
the optical properties of a light beam (Rozenberg, 1977). The components of the
Stokes vector can be measured experimentally and determined by the responses Ji
of four optical detectors with different polarization filters (Rozenberg, 1977)

I = 2J1, Q = 2(J1 − J2), U = 2(J3 − J1), V = 2(J4 − J1) , (5.93)

where J1 is the neutral filter with the transmittance τ = 0.5; J2 is the polariza-
tion analyzer with the optical axis and the direction of radiation propagation that
determine the reference plane; J3 is the polarization analyzer with axis angularly
45◦ to the reference plane; J4 is the complex filter composed of quarter-wave plate
and the polarization analyzer with axis angularly 45◦ to the reference plane.

Then the response of the arbitrary detector can be expressed in the following
form

J = 0.5τ(I +Q cos 2ϕ+ sin 2ϕ(U cos δ + V sin δ)) = 0.5τ
{
1, 
D

}

L , (5.94)

where τ is the optical system transmittance, {1, 
D} is the 4-D vector; ϕ is the angle
between the polarization analyzer and the reference plane; δ is the phase shift of
the phase plate; 
D = {cos 2ϕ, sin 2ϕ cos δ, sin 2ϕ sin 2δ} is the vector of polarization
features of the receiving system.

Thus, the Stokes vector is the generalization of the radiance in the case of polar-
ization. This Stokes vector submits to the boundary problem for the vectorial RTE
(VRTE) and a slab irradiated by a plane unidirectional source (Chandrasekhar,
1950) similar to (5.5)⎧⎪⎪⎨⎪⎪⎩

μ
∂
L(τ, l̂)
∂τ

+ 
L(τ, l̂) =
ω0
4π

∮
↔
S(l̂l̂′)
L(τ, l̂′) dl̂′;


L(0, l̂)
∣∣∣
μ≥0

= 
L0δ(l̂− l̂0); 
L(τ0, l̂)
∣∣∣
μ≤0

= 0,
(5.95)



176 Vladimir P. Budak, Dmitriy A. Klyuykov, and Sergey V. Korkin

where the local transformation matrix
↔
S(l̂l̂′) has the following form including the

rotation of a reference plane while the scattering act occurs

↔
S(l̂l̂′)=

↔
R(l̂× l̂′ → l̂0×ẑ)↔p(l̂l̂′)

↔
R(l̂0×ẑ → l̂× l̂′)=

↔
R(χ)↔p(l̂l̂′)

↔
R(χ′) , (5.96)

↔
R(·) is the rotator, χ is a dihedral angle between the l̂× l̂′ and l̂0×ẑ planes, ↔p(l̂l̂′)
is a scattering matrix, 
L0 is the Stokes vector for the top boundary condition.

As in the scalar case, one of the main difficulties in the VRTE solution is the
scattering integral evaluation. However, in the vectorial case, there is still another
problem: the reference planes of the incident and scattering rays as well as the scat-
tering plane do not coincide (Kuščer and Ribarič, 1959). Therefore, it is necessary

to use the rotator
↔
R that disturbs the transformation symmetry of the different

Stokes parameters and makes it impossible to use the addition theorem for the
surface harmonics.

For the case of polarized radiation transfer, the well-known circular basis
(Kuščer and Ribarič, 1959) is the only form to evaluate the scattering inte-
gral for any type of scattering matrix. This form is called the CP-representation
(Circular Polarization) and can be obtained from the real-number energetic SP-
representation (Stokes Polarization) using the known matrix transformation con-
taining complex numbers. Thus CP-representation is the complex basis but it makes
it possible to diagonalize the rotation matrix in (5.96) as

↔
RCP (χ) =

↔
TS

↔
RSP (χ)

↔
T
−1

S

=
1
2

⎡⎢⎢⎣
0 1 −i 0
1 0 0 −1
1 0 0 1
0 1 i 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cos 2χ sin 2χ 0
0 − sin 2χ cos 2χ 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0 1 1 0
1 0 0 1
i 0 0 −i
0 −1 1 0

⎤⎥⎥⎦
= diag

[
ei2χ 1 1 e−i2χ

]
= diag

[
e+i2χ e+i0χ e−i0χ e−i2χ

]
. (5.97)

In the complex circular basis, the spatial spectrum of the desired Stokes vector and
the scattering matrix are always written as the general spherical function (GSF)
(Gelfand et al., 1963) expansion


L(τ, l̂) =
∞∑

m=−∞

∞∑
k=0

2k + 1
4π

↔
Y
k

m(μ)
f
k
m(τ) exp(imϕ) ,

[
↔
p(l̂l̂′)

]
r,s
=

∞∑
k=0

(2k + 1)xkr,sP
k
r,s(l̂l̂′) , (5.98)

with indices r and s running through all n = +2, +0, −2, −0 simultaneously
and independently in accordance with the exponential powers in (5.97) with the
generalized Legendre polynomials P km,n having the matrix form (Ustinov, 1988):

↔
Y
k

m(μ) = diag
[
P km,+2(μ); P

k
m,+0(μ); P

k
m,−0(μ); P

k
m,−2(μ)

]
. (5.99)

We use the following definition for the GSF (Gelfand et al., 1963)
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P km,n(μ) =
(−1)k−min−m
2k(k −m)!

√
(k −m)!(k + n)!
(k +m)!(k − n)!

· (1− μ)−n−m
2 (1 + μ)−

n+m
2

dk−n

dμk−n
[
(1− μ)k−m(1 + μ)k+m] .

The special form of the addition theorem is correct for GSF (Gelfand et al., 1963):

e−imχP lmn(l̂ · l̂′) e−inχ
′
=

l∑
q=−l

(−1)qP lmq(l̂ · ẑ)P lqn(ẑ · l̂′) eiq(ϕ−ϕ
′) . (5.100)

The diagonalization of the rotation matrix (5.97) of the VRTE together with
(5.98), the addition theorem (5.100) and some recurrent formulas for the GSF
allow us to derive a system of the vectorial differential equations for the spherical
harmonics (Ustinov, 1988) or the discrete ordinates (Siewert, 2000) methods. The
solution of the system becomes possible only after addition of some boundary
conditions – Mark’s form for the boundary conditions (Mark, 1947) that is widely
used. To improve the conditionality of the system matrix and eliminate the solution
oscillation one has to apply the scaling transformation (Karp et al., 1980) for the
system obtained.

In order to generalize MSH for the vectorial case of polarized radiation we will
change the reference frame of the sighting direction counting from l̂(μ, ϕ)to the
reference frame l̂(ν, ψ), where ν is counted from the top of the slab irradiance
direction l̂0, and ψ lies in the perpendicular to the l̂0 plane. The mutual relation
for this systems is given after (5.11). This relation gives the transformation of the
differential the item of the VRTE: both the item with a sighting angle cosine ν and
an item with a sighting angle sine

√
1− ν2 originate from the described frame of

the reference change. We convert both of the above-mentioned items using some
formulas derived from (Gelfand et al., 1963) and expand the scattering integral
using the method described in (Kuščer and Ribarič, 1959; Ustinov, 1988). Finally,
we obtain a system of equations for the desired coefficients in CP-representation in
the following form

1
2k + 1

∂

∂τ

{
μ0

[
↔
A
k+1

m

fk+1
m (τ) +

↔
B
k

m

fkm(τ) +

↔
A
k

m

fk−1
m (τ)

]
+
i

2

√
1− μ20

[↔
h1 
f

k−1
m−1(τ) +

↔
h2 
f

k
m−1(τ) +

↔
h3 
f

k+1
m−1(τ)

+
↔
h4 
f

k−1
m+1(τ) +

↔
h5 
f

k
m+1(τ) +

↔
h6 
f

k+1
m+1(τ)

]}
+(

↔
1 − ω0↔pk)
fkm(τ) = 
0, (5.101)

where (n runs through +2, +0, −2, −0, and δ is the Kronecker symbol)[
↔
A
k

m

]
r,s

=
1
k

√
(k2 −m2)(k2 − s2)δr,s;

[
↔
B
k

m

]
r,s

=
ms

k(k + 1)
(2k + 1)δr,s
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↔
h1 = diag

[√
(k + n+ 1)(k − n+ 1)(k +m)(k +m+ 1)

(k + 1)

]
,

↔
h2 = −diag

[
n(2k + 1)

√
(k +m)(k −m+ 1)
k(k + 1)

]
↔
h3 = −diag

[√
(k + n)(k − n)(k −m)(k −m+ 1)

k

]
;

↔
h6 = −diag

[√
(k + n)(k − n)(k +m)(k +m+ 1)

k

]
↔
h5 = diag

[
n(2k + 1)

√
(k +m+ 1) (k −m)
k (k + 1)

]
,

↔
h4 = diag

[√
(k + n+ 1) (k − n+ 1) (k −m) (k −m+ 1)

(k + 1)

]

The significant anisotropy of the phase function and the feature of a light field
inside the slab (δ-singularity due to the sight direction) allow us to assume the scalar
case that the light field is an essentially elongated function along the direction of
the incident light. Therefore, its spatial spectrum coefficients (5.98) are the smooth
functions via the GSF order number k. If we assume a continuous dependence
of 
fm instead of the discrete one with k as an argument we will be able to cut
the Taylor expansion of this function to two terms due to its smoothness. In the
vectorial form, as we did with expression (5.14), we can write as:


fm(τ, k ± 1) ≈ 
fm (τ, k)± ∂ 
fm (τ, k)
∂k

. (5.102)

We note here that more than two terms in (5.102) lead to significant analytical
evaluation problems. In addition to that, the anisotropy of the light field is much
greater than its asymmetry. This fact can be expressed in a simple way in the
chosen frame of reference as k � m > n (k belongs to the ν-expansion, m belongs
to the ψ-expansion, n is the polarization index). The above-mentioned inequality
and the reassignment for κ (5.14) allow us to simplify matrices in (5.101) and to
write them as

↔
A
k

m ≈ k
↔
1;

↔
B
k

m=
2 (2k + 1)m
k (k + 1)

↔
O;

↔
O=diag

[
1 0 0 −1 ]; ↔

h1 ≈
(
κ+

(2k + 1)m
2κ

)
↔
1;

↔
h2 ≈ −2 (2k + 1)

κ

↔
O;

↔
h3 ≈ −

(
κ− (2k + 1)m

2κ

)
↔
1;

↔
h4 = −

↔
h3;

↔
h5 = −

↔
h2;

↔
h6 = −

↔
h1,

Along with (5.102), we convert (5.101) into the expression:
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μ0
∂ 
fm(τ, κ)

∂τ
+

∂

∂τ

{
μ0

(
∂ 
fm(τ, κ)
2κ∂κ

+
2m
κ2

↔
O
fkm(τ, κ)

)
+

+

√
1− μ20
2

[
−
(
∂ 
fm−1(τ, κ)

∂κ
+
∂ 
fm+1(τ, κ)

∂κ

)

+
m

κ

(

fm−1(τ, κ)− 
fm+1(τ, κ)

)
+
2
κ

↔
O(
fm+1(τ, κ)− 
fm−1(τ, κ))

]}
= −(↔1 − ω0↔pk)
fm(τ, κ) . (5.103)

We use the method of scalar small angle modification of spherical harmonics (5.16)
to find the solution of the expression (5.103). To do this, we introduce a special
function 
ω = 
ω(τ, ψ, k) such as its Fourier-spectrum is the desired coefficients 
fm:


w(τ, ψ, κ) =
∞∑

m=−∞

fm(τ, κ) exp(imψ); 
fm(τ, κ) =

1
2π

2π∫
0


w(τ, ψ, κ) exp(−imψ) dψ

(5.104)
Some properties of (5.104) can be proved according to (5.17). The expressions
(5.104) with the directional derivation of the projection of the incident direction to
the plane of the ψ-angle can be written as

(l0⊥,∇κ)
w(τ, ψ, κ) =
√
1− μ20

(
cosψ

∂

∂κ

w(τ, ψ, κ) +

sinψ
κ

∂

∂ψ

w(τ, ψ, κ)

)
.

Now we can transform (5.103) into a simple equation

∂

∂τ

[
μ0 − i(l̂0⊥,∇κ)

]

w(τ, ψ, κ) = −(↔1 − ω0↔pk)
w(τ, ψ, κ) . (5.105)

Since by equation (5.105) we seek only the anisotropic part of the complete solu-
tion and then will solve the boundary value problem for the regular part, one of
the requirements to the MSH solution is analytical simplicity. But the solution of
equation (5.105) is not very simple. Therefore, we go from (5.105) to the simpler
equation that follows from (5.101) if the terms containing

√
1− μ20 are neglected,

or the equivalent form of the approximation μ0 → 1 is assumed. In this case, we
get from (5.101) a simple vectorial differential equation just as we get from (5.19):

μ0
∂ 
fm(τ, k)

∂τ
+ (

↔
1 − ω0↔pk)
fm(τ, k) = 0 , (5.106)

that for the depth-homogeneous media has the solution in the following simple
form


fm(τ, k) = exp(−(↔1 − ω0↔pk)τ
/
μ0)
fm(0, k) . (5.107)

In CP-representation we have


LCPMSH(τ, ν, ψ) =
∑

m=−2,0,2

∞∑
k=0

2k + 1
4π

↔
Y
m

k (ν)

· exp
{
−(↔1 − ω0↔pk)τ

/
μ0

}
exp(imψ)
fmk (0) . (5.108)
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with the boundary conditions in CP


f−2(0) =
[
0; 0; 0; p

]T ;

f 0(0) =

[
0; 1− q; 1− q; 0 ]T ;


f+2(0) =
[
p; 0; 0; 0

]T
,

where p is the degree of linear polarization, q is the ellipticity.
In SP we have

↔
Zk(τ) =

↔
TSC exp

{
−(↔1 − ω0↔pk)τ

/
μ0

}↔
TCS

= exp
{
−(↔1 − ω0

↔
TSC

↔
pk

↔
TCS)τ

/
μ0

}
= exp

{
−(↔1 − ω0↔χk)τ

/
μ0

}
, (5.109)

and the MSH itself has the form


LSPMSH(τ, l̂, l̂0)

=
∞∑
k=0

2k + 1
2π

{
↔
P
k,0

R

↔
Zk(τ)
f 0(0)− ↔

P
k,2

R (ν)
↔
Zk(τ)
f2(0) −

↔
P
k,2

I (ν)
↔
Zk(τ)
f−2(0)

}
,

(5.110)

with the vectors


f−2(0) =
[
0 p sin 2ϕ′ p cos 2ϕ′ 0

]T ;

f 0(0) =

[
1 0 0 q

]T ;

f+2(0) =

[
0 p cos 2ϕ′ p sin 2ϕ′ 0

]T
,

where ϕ′ = ψ − ϕ0 – azimuth deviation.
Matrix polynomials are

↔
P
k,m

R (μ) =

⎡⎢⎢⎣
Qmk (μ) 0 0 0
0 Rmk (μ) 0 0
0 0 Rmk (μ) 0
0 0 0 Qmk (μ)

⎤⎥⎥⎦ ;
↔
P
k,m

I (μ) =

⎡⎢⎢⎣
0 0 0 0
0 0 Tmk (μ) 0
0 −Tmk (μ) 0 0
0 0 0 0

⎤⎥⎥⎦ , (5.111)

with the notation Rk2(ν) = 0.5im(P k2,2(ν) + P k2,−2(ν)) T k2 (ν) = 0.5im(P k2,2(ν) −
P k2,−2(ν)) (Siewert, 2000). SP-representation of (5.110) could have a different form
with the analytically evaluated exponential matrix (Astakhov et al., 1994). How-
ever, the form (5.110) with direct computation is more useful.
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5.8 Evaluation of the vectorial regular part

Following the scalar case, we represent the complete solution of (5.36) in the fol-
lowing form (Budak and Korkin, 2008a,b,c)


L(τ, l̂) = 
LMSH(τ, l̂) + L̃(τ, l̂). (5.112)

The expansion (5.112) allows us to reduce the complete VRTE boundary problem
to the one for the regular part only⎧⎪⎨⎪⎩ μ

∂L̃(τ, l̂)
∂τ

+ L̃(τ, l̂) =
ω0
4π

∮
↔
S(l̂l̂′)L̃(τ, l̂′) d l̂′ + 
Δ(τ, l̂);

L̃(0, μ > 0, ϕ) = 0; L̃(τ0, μ ≤ 0, ϕ) = −
LMSH(τ0, μ ≤ 0, ϕ),
(5.113)

where 
Δ(τ, l̂) is the source function built upon the MSH. We substitute (5.112) in
the VRTE (5.113) and obtain the following expression for the source function


Δ(τ, l̂, l̂0) = −μ ∂
∂τ

LMSH(τ, l̂, l̂0)− 
LMSH(τ, l̂, l̂0)+ ω04π

∮
↔
S(l̂l̂′)
LMSH(τ, l̂′, l̂0) dl̂′.

(5.114)
We especially note here that the source function upon the MSH does not change the
form of the boundary problem as the classical approach does. Hence, the evaluation
of the smooth part could be carried out with any of the modern well-developed
methods of VRTE solution: discrete ordinates method (DOM), spherical harmonics
method, Monte Carlo simulation (Marchuk et al., 1980) and so on. In the present
chapter, we use DOM (modified by double Gaussian quadratures (Sykes, 1951))
for both scalar and vectorial problems. To solve (5.113) for this method it is very
convenient to include boundary conditions with complicated geometry in the Mark
form.

We evaluate the scattering integral of the VRTE in CP-basis that allows us to
diagonalize the rotation matrix. While evaluating the scattering integral we follow
the well-known routine: we substitute (5.98) in the scattering integral (5.113), and
we use the addition theorem and the orthogonal properties of the GSF. After
expanding the scattering integral we must use the scaling transformation to make
the solution well-conditioned. For this purpose we use the universal transformation
from the complex-numbered CP- to the real-numbered SP-basis. Further on we will
illustrate the main steps of the abovementioned algorithm.

We denote the SP-to-CP transformation matrix with
↔
TCS and with

↔
T
−1

SC =
↔
TCS

- the universal matrix (5.97). Let’s represent the addition theorem in the following
form

↔
R(χ)

↔
Y
k

2(l̂ · l̂′)
↔
R(χ′) =

k∑
m=−k

(−1)m↔
Y
k

2m(l̂ · ẑ)
↔
Y
k

m2(ẑ · l̂′) eim(ϕ−ϕ′) ,

and the local transformation matrix (5.96) as

↔
RCP (χ)

[
pkrsP

k
r,s(l̂l̂

′)
] ↔
RCP (χ′) =

k∑
m=−k

(−1)m eim(ϕ−ϕ′)↔Y
k

m(μ)
↔
pk

↔
Y
k

m(μ
′) ,
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where ↔
pk =

[
xkrs
]
. Using this we rewrite the scattering integral as


ISP =
ω0
4π

∞∑
k=0

(2k + 1)
k∑

m=−k
(−1)m↔

TSC
↔
Y
k

m(μ)
↔
pk

·
∮
eim(ϕ−ϕ′)↔Y

k

m(μ
′)
↔
TCSL̃SP (τ, l̂′) dl̂′. (5.115)

Equation (5.115) can be written in more symmetric form by getting the transfor-
mation matrix:


ISP =
ω0
4π

∞∑
k=0

(2k + 1)
k∑

m=−k
(−1)m↔

TSC
↔
Y
k

m(μ)
↔
TCS

↔
TSC

↔
pk

↔
TCS

·
∮
eim(ϕ−ϕ′)↔TSC

↔
Y
k

m(μ
′)
↔
TCSL̃SP (τ, l̂′) dl̂′ .

We define new matrices: ↔
χk ≡

↔
TSC

↔
pk

↔
TCS ,

↔
P
k

m(μ) ≡
↔
TSC

↔
Y
k

m(μ)
↔
TCS , and trans-

form the scattering integral to the following form


ISP =
Λ

4π

∮ ( ∞∑
k=0

(2k + 1)
k∑

m=−k
exp(−im(ϕ− ϕ′))↔P

k

m(μ)
↔
χk

↔
P
k

m(μ)

)
L̃(τ, l̂′) d l̂′.

(5.116)
Then we represent matrix polynomials as the sum of their real and imaginary parts
(5.111)

↔
P
k

m(μ) =

⎡⎢⎢⎣
Qmk (μ) 0 0 0
0 Rmk (μ) −iTmk (μ) 0
0 iTmk (μ) R

m
k (μ) 0

0 0 0 Qmk (μ)

⎤⎥⎥⎦ = ↔
P
k,m

R (μ) + i
↔
P
k,m

I (μ). (5.117)

We made the subsequent transformations of the scattering integral (5.116) after
combining all real and imaginary parts taking into account (5.117) and the Euler
formula for the complex azimuth-dependent exponent in (5.116). Then we use the
even properties of trigonometric functions. After some algebraic transformations
we substitute equation (5.114) by


ISP =
ω0
4π

∮ ∞∑
k=0

(2k + 1)
k∑
m=0

(2− δ0,m)×

×
[↔
C
m

k (μ, μ
′) cosm(ϕ− ϕ′) + ↔

S
m

k (μ, μ
′) sinm(ϕ− ϕ′)

]
L̃(τ, l̂′) d l̂′,

(5.118)

where

↔
C
m

k (μ, μ
′) =

↔
P
k,m

R (μ)↔χk
↔
P
k,m

R (μ′)− ↔
P
k,m

I (μ)↔χk
↔
P
k,m

I (μ′),
↔
S
m

k (μ, μ
′) =

↔
P
k,m

I (μ)↔χk
↔
P
k,m

I (μ′) +
↔
P
k,m

R (μ)↔χk
↔
P
k,m

R (μ′).
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Equation (5.118) is valid for the arbitrary form of the phase matrix. But for its
widely used block diagonal form (Van de Hulst, 1957; Deirmendjian, 1969; Hovenier
et al., 2004) one can simplify (5.118) by introducing the following matrices (Siewert,
2000)

ϕ1(ϕ) = diag [cosϕ , cosϕ , sinϕ , sinϕ] ,
ϕ2(ϕ) = diag [− sinϕ , − sinϕ , cosϕ , cosϕ] ,

↔
D1 = diag

[
1 1 0 0

]
,

↔
D2 = diag

[
0 0 1 1

]
.

Using it we simplify the scattering integral as


ISP =
ω0
4π

∮ ∞∑
k=0

(2k + 1)
k∑
m=0

(2− δ0,m)×

×
[
↔
ϕ1(m(ϕ− ϕ′))

↔
A
m

k (μ, μ
′)

↔
D1 +

↔
ϕ2(m(ϕ− ϕ′))

↔
A
m

k (μ, μ
′)

↔
D2

]
,

(5.119)

where
↔
A
k

m(μ, μ
′) =

↔
Π
k

m(μ)
↔
χk(τ)

↔
Π
k

m(μ
′), and real-numbered matrix polynomials

have the form

↔
Π
k

m(μ) =

⎡⎢⎢⎣
Qmk (μ) 0 0 0
0 Rmk (μ) −Tmk (μ) 0
0 −Tmk (μ) Rmk (μ) 0
0 0 0 Qmk (μ)

⎤⎥⎥⎦ . (5.120)

Following (5.119) we write the form of the solution as

L̃(τ, l̂) =
∞∑
m=0

(2− δ0,m)
[
ϕ1(mϕ)
L1(τ, μ) + ϕ2(mϕ)
L2(τ, μ)

]
, (5.121)

But before solving (5.113) we must bring it and the MSH into the same frame
of reference in order to formulate the source function and the bottom boundary
condition upon the MSH. The normal frame of reference is very convenient. So
we must transform the MSH (5.110) to the normal frame of reference. In order to
transform the MSH from the ‘along incident ray’ frame of reference {ν, ψ} to the
normal frame of reference {μ, ϕ} we use the rotator. We omit some transformations
and write:


LMSH(τ, l̂) =
∑
c=1,2

∞∑
k=0

2k + 1
4π

k∑
m=0

(2− δ0,m)↔ϕc(mϕ)
↔
B
k

m(μ, μ0, τ)
↔
Dc
L0 , (5.122)

where δ0,m is the Kronecker symbol; the exponential matrix
↔
Zk(τ) is defined in

(5.109); and
↔
B
k

m(μ, μ0, τ) =
↔
Π
k

m(μ)
↔
Zk(τ)

↔
Π
k

m(μ0).
The area of validity of (5.120) is restricted to the block-diagonal form of the

phase matrix. Meanwhile the more general form of the phase matrix needs to use
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another real-matrix SP-polynomial. We substitute (5.122) into (5.114), differentiate
with respect to optical depth, and use the recurrence formula for matrix polyno-

mials
↔
Π
k

m(μ) that can be obtained from the recurrence formula for P km,n and has
the form:

μ
↔
Π
k

m(μ) =
1

2k + 1

[
↔
A
m

k+1

↔
Π
k+1

m (μ) +
↔
B
m

k

↔
Π
m

k (μ) +
↔
A
m

k

↔
Π
k−1

m (μ)
]
,

[
↔
A
k

m

]
rs

=
1
k

√
(k2 −m2) (k2 − s2)δrs;[

↔
B
k

m

]
rs

= − 2m
k (k + 1)

(2k + 1) δr,−s; r, s = +0,+2,−2,−0 .

For azimuth recurrence one can easily derive[
Rm+1
k (μ)

Tm+1
k (μ)

]
=

√
(2m+ 1)(m+ 1)
(2m− 2)(m+ 3)

√
1− μ2

[
Rmk (μ)
Tmk (μ)

]
,

R−m
k (μ) = (−1)mRmk (μ); T−m

k (μ) = −(−1)mTmk (μ) .
The expressions obtained allow us to use the same route as we did in the scattering
integral: we eliminate the complex functions by combining real and imaginary parts
and obtain the following form for the source function in the energetic SP-basis and
the normal frame of the reference


Δ(τ, l̂, l̂0) =
1
4π

∑
c=1,2

∞∑
k=0

k∑
m=0

(2− δ0,m)×

×
[
1
μ0

↔
ϕc(mϕ)

{
↔
A
m

k+1

↔
Π
k+1

m (μ)+
↔
B
m

k

↔
Π
m

k (μ)+
↔
A
m

k

↔
Π
k−1

m (μ)
}
(
↔
1−Λ↔

χk)
↔
Zk

↔
Π
k

m(μ0)
↔
Dc−

−↔
ϕc(mϕ)(2k + 1)

↔
Π
k

m(μ)(
↔
1 − ↔

χk)
↔
Zk

↔
Π
k

m(ω0μ0)
↔
Dc

]

L0 . (5.123)

The source function (5.123), together with the previously evaluated scattering in-
tegral (5.113), give us the system of equations for DOM expanded in hemispheres,
that can be written as usual for each of m-azimuth terms independently:

μ±i
∂

∂τ

Lmc (τ, μ

±
i ) = −
Lmc (τ, μ±i ) +

ω0
4

K∑
k=0

N/2∑
j=1

(2k + 1)wj ×

×
[
↔
Π
k

m(μ
±
i )

↔
χk

↔
Π
k

m(μ
−
j )
L

m
c (τ, μ

−
j ) +

↔
Π
k

m(μ
±
i )

↔
χk

↔
Π
k

m(μ
+
j )
L

m
c (τ, μ

+
j )
]
+

+ 
Δmc (τ, μ
±
i ) .

(5.124)

The form of (5.124) gives an opportunity to use a matrix operator method com-
pletely. We will not repeat it here – the reader can be referred to the scalar case.
But we only mention here that the solution for the Milne–Ambartsumian problem
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for the arbitrary scattering matrix can be obtained by the matrix-operator method
in the following form (with the subsequent azimuth-index summation)


Lm− (0) = −↔
u
−1

12

Sm− . (5.125)

Now we come to some numerical examples. Fig. 5.4 shows the zenith angle θ de-
pendence for the Q-component of the Stokes vector for the radiance transmitted
through the slab. For the sake of the numerical modeling it is convenient to use the
special form of the phase matrix (Zege and Chaikovskaya, 1981)

↔
pHG(γ) = pHG(γ)

⎡⎢⎢⎣
1 Pm(1− γ2) 0 0
Pm(1− γ2) 0.25 (1 + γ)2 0 0
0 0 0.25 (1 + γ)2 Qm(1− γ2)
0 0 −Qm(1− γ2) 1

⎤⎥⎥⎦ ,
(5.126)

that is called the Henyey–Greenstein scattering matrix.
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MSH+DOM (VDOM), M = 6

Fig. 5.4. The Q-component is evaluated by the classical and new approaches.

The Henyey–Greenstein scattering matrix is unrealistic, but it is very useful in
the numerical simulation of the polarization field in scattering media, because it
depends on only three parameters: g, Pm, Qm are the average scattering cosine,
the maximum linear and circular polarization degree within a single scattering act
respectively.

In our calculation the Henyey–Greenstein scattering matrix was used with the
parameters: g = 0.9, Pm = 0.5, Qm = 0. The total optical thickness τ = 1 and the
single scattering albedo is Λ = 0.8. The slab is illuminated by natural light and
the angle of incidence is θ0 = 40◦. The solid line represents the proposed method
MSH + DOM and circle-markers give the classical DOM solution with the only
singular part subtracted. As one can see from Fig. 5.4, the proposed method is not
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so sensitive to azimuth m-expansion: M = 20 for azimuth harmonics are needed
to obtain the classical solution and only M = 6 for our method with anisotropic
part subtraction. The minimum azimuthal harmonics was obtained from the fact
that for this optical thickness the Q-component for exactly forward scattered light
must be zero. The bottom boundary is assumed to be non-reflecting.

The results for polarization degree defined with respect to parallel (l) and per-
pendicular (r) components as

p(θ) =
Ll(θ)− Lr(θ)
Ll(θ) + Lr(θ)

=
Q(θ)
I(θ)

(5.127)

are shown in Fig. 5.5 (backward hemisphere of the top boundary – the radiation
reflected from the slab). The reflectance coefficients are: ρ = 0 (solid line), ρ = 0.3
(dash-dot), ρ = 0.7 (dashed), and ρ = 1 (dots). One can see that depolarization
properties of the bottom reflectance greatly influence the polarization state of ra-
diation. In this case the Haze L model is used for the approximation of the phase
function, ω0 = 0.9 and τ = 1.
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Fig. 5.5. Degree of polarization vs. phase angle within the backward hemisphere for Mie
scattering – Haze L with different reflectance coefficients of the underlying surface ρ. The
phase angle is the angle between the direction of slab irradiance and the direction of
observation.

In Fig. 5.6 Rayleigh scattering for different single scattering albedos of the slab
is shown. We set τ = 1, ω0 = 0.9 (dash-dot), ω0 = 0.5 (dashed), ω0 = 0.1 (solid).
Angle ϕ is the phase angle between the direction of irradiance of the slab and the
direction of observation. The lines in the figure are polar-phase curves. The charts
demonstrate the action of Umov (1905): the higher the surface albedo, the lower
the degree of polarization.
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Fig. 5.6. Degree of polarization, Rayleigh scattering, τ = 1, natural light illumination,
polar curves in dependence on the different single scattering albedos.
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Fig. 5.7. Degree of polarization dependence for Rayleigh scattering: MSH computational
aspects.

And finally Fig. 5.7 shows the zenith distribution of the degree of polarization
at the optical depth τ = 0.1 for quite smooth Rayleigh scattering matrix obtained
by the MSH itself. In spite of smooth scattering there is a good agreement because
of the boundary problem singularity. The MSH describes some known facts for
Rayleigh scattering: the greater the scattering angle (to be exact the zenith angle
of observation) the higher the polarization state of the scattered radiation. The
radiation scattered forward for the normal irradiance is nonpolarized and the de-
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gree of polarization culmination for the Rayleigh scattering is 90◦. An insignificant
deviation of the MSH and the single scattering occurred together with the sight
angle increasing caused by the increase of the optical thickness for the inclined
directions (the greater the inclination the higher the deviation).

5.9 MSH in arbitrary medium geometry

In order to generalize the above-mentioned approach upon the arbitrary three-
dimensional (3-D) geometry of the scattering medium it is necessary to find the
anisotropic part solution for a point unidirectional source of light radiation. A
point unidirectional source provides the most general fundamental form for the
RTE boundary problem solution with arbitrary boundary conditions. In order to
obtain the anisotropic part it is enough to explore the radiation distribution from
the point unidirectional source in an infinite medium since the anisotropic part is
determined by the local value of the medium situated close to the line of sight of
the source from a detector position.

Let us take the following frame of reference in the phase space of the radiative
transfer (Fig. 5.8):

η = (q̂, r̂) = cosα; μ = (l̂, r̂) = cosβ; r; ϕ

where q̂ is the emission direction of the point unidirectional source.
Accordingly, L(r, l̂) = L(r, η, μ, ϕ) and we could write for the differential oper-

ator of RTE (5.1):

(l̂,∇)L = dL

ds
=
∂L

∂r

dr

ds
+
∂L

∂α

dα

ds
+
∂L

∂β

dβ

ds
+
∂L

∂ϕ

dϕ

ds
,

Dihedral angle

q̂

l̂

�

���

�

r

Fig. 5.8. The geometry of the boundary value problem for the point unidirectional source.
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where s is the distance along the ray (the natural frame of reference).
It is not too hard to see that

dr

ds
= (l̂,∇)r = (l̂, r̂) = μ ;

dα

ds
=

1
sinα

d cosα
ds

= − 1
sinα

(l̂,∇) (q̂, r)
r

= − 1
sinα

(
l̂,− 1

r2
(l̂, r̂) +

q̂

r

)
=

= − 1√
1− η2

(
−ημ
r
+
ημ−√(1− η2)(1− μ2) cosϕ

r

)
=

√
(1− μ2)
r

cosϕ ;

dβ

ds
= − 1

sinβ
d cosβ
ds

= − 1√
1− μ2 (l̂,∇)

(l̂, r)
r

= − 1
sinβ

(
l̂,− 1

r2
(l̂, r̂) +

1
r

)
= −

√
1− μ2
r

;

dϕ

ds
=

1
sinα

d

ds

cos γ − cosα cosβ
sinα sinβ

=

=
dα
ds (sinα cosβ + cosα sinβ cosϕ)− dβ

ds (cosα sinβ − sinα cosβ cosϕ)
sinϕ sinα sinβ

= −cosα sinβ
r sinα

sinϕ = −
√
1− μ2√
1− η2

sinϕ
r
η ;

where cos γ = (q̂, l̂) = μη −√(1− η2)(1− μ2) cosϕ. We also take into account
that cos γ doesn not change along the ray.

Based on the obtained results we can write the RTE for the point unidirectional
source:

μ
∂L

∂r
+
1− μ2
r

∂L

∂μ
−
√
1− μ2
r

(√
1− η2 ∂L

∂η
cosϕ+

η√
1− η2

∂L

∂ϕ
sinϕ

)

= −kextL(r, η, μ, ϕ) + ω0kext
4π

∮
L(r, η, μ′, ϕ′)p(l̂, l̂′)dl̂′ . (5.128)

Let us represent the required solution as the expansion in series on the spherical
functions

L(r, η, μ, ϕ)

=
1
2π

∞∑
l=0

∞∑
k=0

∞∑
m=−∞

2k + 1
2

2l + 1
2

√
(k −m)!
(k +m)!

√
(l −m)!
(l +m)!

Cmkl (r)P
m
k (μ)P

m
l (η)e

imϕ ,

(5.129)

or in the equivalent form
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L(r, η, μ, ϕ)

=
1√
2π

∞∑
l=0

∞∑
k=0

∞∑
m=−∞

√
2k + 1
2

2l + 1
2

√
(l −m)!
(l +m)!

Cmkl (r)Ykm(l̂)P
m
l (η) e

imϕ

(5.130)

=
1√
2π

∞∑
l=0

∞∑
k=0

∞∑
m=−∞

√
2l + 1
2

2k + 1
2

√
(k −m)!
(k +m)!

Cmkl (r)Ylm(q̂)P
m
k (μ)e

imϕ.

(5.131)

We substitute the radiance distribution (5.129) and the phase function Legendre
polynomials expansion in the RTE (5.128). Then we multiply the RTE (5.128) by
Qmk (μ)Q

m
l (η) e

−imϕ and integrate it over the complete space for μ, η, ϕ. After that
the orthogonal properties for the spherical functions are employed to obtain the
infinite system of the coupled differential equations for the spherical harmonics
method

d

dr

[√
(k −m)(k +m)Cmk−1,l(r) +

√
(k +m+ 1)(k −m+ 1)Cmk+1,l(r)

]
+
1
r

[
(k+2)

√
(k+m+1)(k−m+1)Cmk+1,l(r)−(k−1)

√
(k+m)(k−m)Cmk−1,l(r)

]
+
1
2r

{√
(l +m)(l −m+ 1)[√

(k −m+ 1)(k −m+ 2)Cm−1
k+1,l(r)−

√
(k +m)(k +m− 1)Cm−1

k−1,l(r)
]

+
[√
(k +m+ 1)(k +m+ 2)Cm+1

k+1,l(r)−
√
(k −m− 1)(k −m)Cm+1

k−1,l(r)
]

√
(l −m)(l +m+ 1)

}
= −(2k + 1)kext(1− ω0pk)Cmkl (r) .

(5.132)

Let us use the main features of the MSH method to solve the obtained system for
the point unidirectional source (5.132). In such a case, the generalization of MSH
is not trivial since the system has two expansion indices: k, l. That is why the
subsequent development of MSH method is necessary here. To do this we assume
(Budak et al., 2008) the following:

– the continuous dependence of the expansion coefficients in (5.128) on the har-
monics number, i.e.

Cmkl (r) = Cm(k, l, r) ;

– the weak and monotonic dependence of the function Cm(k, l, r) on k, l, that
allows us to present the solution in the following form

Cm(k ± 1, l, r) ≈ Cm(k, l, r)± ∂Cm(k, l, r)
∂k

;

– the basic contribution in the expansion (5.129) belongs to the terms with
k, l� 1 and k, l� m, so the following transformations are justified:√

(l +m)(l −m+ 1) =
√
l(l + 1)−m(m− 1) ≈

√
l(l + 1) ;
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(l −m)(l +m+ 1) =

√
l(l + 1)−m(m+ 1) ≈

√
l(l + 1) ;√

(k +m)(k −m) =
√
k2 −m2 ≈ k ;√

(k −m+ 1)(k +m+ 1) =
√
k(k + 1) + (m− 1)2 + (m− 1)(2k + 1)

≈
√
k(k + 1) + (m− 1) 2k + 1

2
√
k(k + 1)

;

√
(k −m+ 1)(k −m+ 2) =

√
k(k + 1) + (m− 1)2 − (m− 1)(2k + 1)

≈
√
k(k + 1)− (m− 1) 2k + 1

2
√
k(k + 1)

;

√
(k −m− 1)(k −m) =

√
k(k + 1) + (m− 1)2 − (m+ 1)(2k + 1)

≈
√
k(k + 1)− (m+ 1) 2k + 1

2
√
k(k + 1)

;

√
(k +m+ 1)(k −m+ 2) =

√
k(k + 1) + (m− 1)2 + (m+ 1)(2k + 1)

≈
√
k(k + 1) + (m+ 1)

2k + 1
2
√
k(k + 1)

.

We use these assumptions in equation (5.132) to represent it as follows

∂Y m

∂r
+
2k(k + 1)
2k + 1

1
r

∂Y m

∂k
+

√
l(l + 1)
2r

[
2
√
k(k + 1)
2k + 1

×

×
(
∂Y m+1

∂k
+
∂Y m−1

∂k

)
1√

k(k + 1)

(
(m+ 1)Y m+1 − (m− 1)Y m−1

)]
= −kext(1− ω0pk)Y m(k, l, r), (5.133)

with

Cm(k, l, r) =
Y m(k, l, r)

r2
.

Now we change the following variables

λ =
√
l(l + 1) ;κ =

√
k(k + 1) ;

Then with the representation

∂

∂k
=

2k + 1
2
√
k(k + 1)

∂

∂κ
,

we get an equation:

∂Y m

∂r
+
κ

r

∂Y m

∂κ
+
λ

2r

[
∂Y m+1

∂κ
+
∂Y m−1

∂κ
+
1
κ

(
(m+ 1)Y m+1 − (m− 1)Y m−1

)]
= −kext(1− ω0p(k))Y m(k, l, r) . (5.134)
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We introduce in our evaluations a new function depending on the two vectors
in a plain f(r,κ,λ); the solution Y m(r,κ,λ) is the Fourier ψ-spectrum between the
vectors κ and λ, i.e.

f(r, κ, λ) =
m=+∞∑
m=−∞

Y m(r, κ, λ) eimψ . (5.135)

One can easily notice the following properties for the expansion series (5.135):

m=+∞∑
m=−∞

Y m±1(r, κ, λ)eimψ = e∓iψf(r, κ, λ),

m=+∞∑
m=−∞

(m±)Y m±1(r, κ, λ) eimψ = −i e∓iψ ∂f(r, κ, λ)
∂ψ

. (5.136)

Using the properties of the Fourier expansion we can obtain the expression for
Y m(r, κ, λ) via f(r,κ,λ):

Y m(r, κ, λ) =
1
2π

2π∫
0

f(r, κ, λ) e−imψ dψ .

We multiply equation (5.134) by eimψ and sum it up with m from −∞ to +∞.
Then with the properties (5.136) we have the relation

λ

2r

m=+∞∑
m=−∞

[
∂Y m+1

∂κ
+
∂Y m−1

∂κ
+
1
κ

(
(m+ 1)Y m+1 − (m− 1)Y m−1

)]
eimψ =

=
λ

2r

[
eiψ

∂f

∂κ
+ e−iψ

∂f

∂κ
+
1
κ

(
i eiψ

∂f

∂ψ
− i e−iψ ∂f

∂ψ

)]
=
λ

r

(
cosψ

∂f

∂κ
− sinψ

κ

∂f

∂ψ

)
=
1
r
(λ,∇)f(r, κ, λ) .

that allows us to transform equation (5.134) to the following form

∂f

∂r
+
κ

r

∂f

∂κ
+
1
r
(λ,∇)f = −kext(1− ω0p(κ))f(r, κ, λ) . (5.137)

Note that the relation that appears to be obvious

κ

r

∂f

∂κ
=
1
r
(κ,∇)f(r, κ, λ) ,

provides the transformation of (5.137) to the following form

∂f

∂r
+
1
r
(κ+ λ,∇)f = −kext(1− ω0p(κ))f(r, κ, λ) . (5.138)

We seek the solution in the following form

f(r, κ, λ) = exp (−kextr + kextω0rF (κ, λ)) . (5.139)
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From (5.137) we have an equation

F + (κ+ λ,∇)F (κ, λ) = p(κ) . (5.140)

We will solve equation (5.140) by the integration along the characteristic curve

κ′ = −λ+ κ+ λ
|κ+ λ|ξ ,

and transform (5.140) to an ordinary differential equation

F (ξ) + ξ
dF

dξ
= p

(∣∣∣∣−λ+ κ+ λ
|κ+ λ|ξ

∣∣∣∣) ,

with the solution in the following form

F (κ, λ) =
1

|κ+ λ|

|κ+λ|∫
0

p

(∣∣∣∣−λ+ κ+ λ
|κ+ λ|ξ

∣∣∣∣) dξ +
C0

|κ+ λ| ,

The continuity condition of F (κ,λ) for κ = −λ gives us C0 = 0.
From this result and (5.139) we get

f(r, κ, λ) = exp

⎡⎣−kextr + kextω0r 1∫
0

p (|(κ+ λ)ζ − λ|) dζ
⎤⎦ .

From this equation we can write:

Cmkl (r) =
e−kextr

2πr2

2π∫
0

exp (−imψ + ω0kextrχ(k, l, ψ)) dψ, (5.141)

with

χ(k, l, ψ) ≡
1∫

0

p

(√
l(l+1)(1−ζ)2+k(k+1)ζ2−2ζ(1−ζ)

√
l(l+1)k(k+1) cosψ

)
dζ.

The equation obtained is quite difficult for direct analysis. We evaluate the
radiation distribution for a point isotropic source:

L(r, μ) =
∞∑
k=0

2k + 1
4π

Ck(r)Pk(μ) , (5.142)

where L(r, l̂) = L(r, μ), μ = (l̂, r)
/
r.

The coefficients Ck(r) for the point isotropic source (5.142) have the following
evident relation with the coefficients Cmkl (r) for point unidirectional:

Ck(r) = C0
k0(r) =

e−kextr

r2
exp

⎡⎢⎢⎣ ω0kextr√
k(k + 1)

√
k(k+1)∫
0

p(ζ) dζ

⎤⎥⎥⎦ . (5.143)
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In order to make the analytical analysis of the obtained solution features we
expand (5.140) with respect to the orders of scattering that is equivalent to the
expansion of (5.143) in a Taylor series for the powers of ωwkextr. For the first three
orders of scattering we have

L0(r, μ) =
∞∑
k=0

2k + 1
4πr2

e−kextrPk(μ) =
e−kextr

2πr2
δ(1− μ) , (5.144)

L1(r, μ) =
∞∑
k=0

2k + 1
4πr2

e−εr

⎧⎨⎩kscarq
q∫

0

p(ξ) dξ

⎫⎬⎭Pk(μ), q =√k(k + 1) , (5.145)

L2(r, μ) =
∞∑
k=0

2k + 1
4πr2

e−εr

⎧⎨⎩kscarq
q∫

0

p(ξ) dξ

⎫⎬⎭
2

Pk(μ) . (5.146)

As can be seen from (5.144) the zero-order scattering has the δ-singularity of the
RTE solution. As far as we are interested in the ‘behavior’ of (5.145) and (5.146) in
the area around the singular point μ = 1, the basic contribution could be given by
the terms with k � 1. According to the Debye localization principle in Mie theory
(Deirmendjian, 1969) one can write the relation for the case of an arbitrary phase
function

q∫
0

x(ζ) dζ −→
k→∞

C0 ,

where C0 is a constant value.
So, for the case μ ∼ 1 the expansion series (5.145) and (5.146) have the following

forms

L1(r, μ) =
kscaC0

2πr
e−kextr

∞∑
k=0

Pk(μ),

L2(r, μ) =
k2scaC

2
0

4π
e−kextr

∞∑
k=0

(
1

k + 1
+
1
k

)
Pk(μ) ,

with the approximation 2
√
k(k + 1) ≈ 2k + 1 at k � 1.

It is not difficult to sum up the above-mentioned series using the properties of
the generic function for the Legendre polynomials. As a result we have

L1(r, μ) =
kscaC0

2πr
e−kextr

1√
2(1− μ) , L2(r, μ) =

k2scaC
2
0

2πr
e−kextr (− ln(1− μ)) .

Comparing the result obtained with the one from the Table 5.1 that shows the
singularities of the exact solution (Germogenova, 1986) it is possible to conclude
that the RTE solution in MSH (5.143) keeps all the singularities of the exact solu-
tion. In the same way, it is not hard to show that the orders of scattering of more
than two are the smooth functions. Therefore the MSH describes all the orders of
scattering with a different accuracy. Thus, the zero-order scattering (direct non-
scattered light) is described exactly and the scattering of higher orders is described
approximately.
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5.10 Regular part computation
in arbitrary medium geometry

The representation of (5.8) indeed makes the rest L̃(r, l̂) a smooth, slowly varying
function in the space of its arguments. Our analysis has shown that in practically
any case the zenith directions amount corresponds to N < 51, and the azimuth
harmonics amount to M < 8. According to a finite element method (Mitchell and
Wait, 1976), it allows us to construct in the space the tetrahedron or hexahedron
mesh to store in every vertex the discrete ordinate of the decomposition coefficients
in the series of the azimuth angular distribution. The values between the nodes are
calculated using one of the approximation schemes (Mitchell and Wait, 1976). The
suggested method of RTE solution allows us to solve problems in the transport
theory in media with the arbitrary 3-D geometry. However, the total number of
equations in the gained set can be as large as hundreds of thousands.

The best technique for the solution of such a coupled system of equations is
the method of iterations. This could be done by employing an integral transfer
equation obtained from the boundary-value problem by the formal solution in the
assumption of the known right-hand member.

After the anisotropic part elimination

L(r, l̂) = La(r, l̂) + L̃(r, l̂) (5.147)

RTE in the arbitrary medium geometry has the form

(l̂,∇)L̃(r, l̂) = −kextL̃(r, l̂) + ω0kext
4π

∮
p(l̂, l̂′)L̃(r, l̂′) dl̂′ + S(r, l̂), (5.148)

where

S(r, l̂) = (l̂,∇)La(r, l̂) + kextLa(r, l̂)− ω0kext
4π

∮
p(l̂, l̂′)La(r, l̂′) dl̂′

is the anisotropic part misalignment that is easily computed since La(r, l̂) is always
presented analytically in MSH as the series on the surface functions.

For the transition to the Peierls integral RTE we deal with the formal solution
of (5.148) assuming that the integral term is the known function. We make the
transition to the variables along the ray from the point R in the directionl̂. Then
an arbitrary point r on the ray at the distance ξ from R along the ray must satisfy
the relation

r = R+ ξl̂ ,

As the result, equation (5.148) is:

d

dξ
L̃(R+ ξl̂, l̂) + εL̃(R+ ξl̂, l̂) = F (R+ ξl̂, l̂) , (5.149)

where
F (r, l̂) ≡ ω0kext

4π

∮
p(l̂, l̂′)L̃(r, l̂′) dl̂′ + S(r, l̂) .

The expression (5.149) is the linear inhomogeneous differential equation relative
to the variable ξ the solution of which can be written as
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L̃(R+ ξl̂, l̂) =
(
Le(R0, l̂)− La(R0, l̂)

)
e−kextξ0 +e−kextξ0

ξ0∫
0

F (R+ ζ l̂, l̂) ekextζ dζ ,

(5.150)
where ξ0 is the distance along the ray from the observation point r to the medium
border; R0 is the intersection point of the ray with the medium border; Le(R, l̂)
is the outer radiation incident on the border. The subtraction of La(R0, l̂) is as-
sociated with the fact that MSH neglects the backscattering, and the radiance in
MSH on the border inside the medium is nonzero.

With the known form of the function F (r, l̂), equation (5.150) can be rewritten
in the form of the integral equation

L̃(R+ ξl̂, l̂) = L0(R+ ξl̂, l̂) +
ω0kext
4π

ξ0∫
0

ekext(ζ−ξ0)
∮
p(l̂, l̂′)L̃(R+ ζ l̂′, l̂′) dl̂′ dζ ,

(5.151)
where

L0(R+ ξl̂, l̂) =
(
Le(R0, l̂)− La(R0, l̂)

)
e−kextξ0 +

ξ0∫
0

ekext(ζ−ξ0)S(R+ ζ l̂, l̂) dζ .

Equation (5.151) is the Fredholm integral equation of the II kind, the which solution
is represented in the Neumann series

L̃(r, l̂) =
∞∑
n=0

Ln(r, l̂) , (5.152)

where

Ln(R+ ξl̂, l̂) =
ω0kext
4π

ξ0∫
0

ekext(ζ−ξ0)
∮
p(l̂, l̂′)Ln−1(R+ ζ l̂′, l̂′) dl̂′ dζ . (5.153)

Every nth term of the series (5.152) represents physically the radiance of the nth
order of scattering of the regular part. The expression (5.153) presents the definite
integral over the ray by dζ of the convolution over the solid angle of RAD of the
previous order of scattering with the phase function. To calculate (5.153) let us
divide the bulk of medium into the mesh (Fig. 5.9) of the hexagonal cells (Mitchell
and Wait, 1976), in each node rij of which we will store the radiance discrete values
by the fixed direction l̂pq in accordance with the selected quadrature formula of the
integration over the solid angle (Koch and Becker, 2004). At first, the convolution
over the solid angle is calculated in every node, and when making the calculation of
the integral over the ray the integral convolution values are interpolated between
the nodes using one of the approximation schemes.

We show in Fig. 5.10 the comparison of the calculation results of the integral
convolution over the complete solid angle in the cases of the subtraction from
the complete solution of the direct nonscattering radiation only and of the whole
the anisotropic part. It is not difficult to see that the proposed approach of the
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Fig. 5.9. The mesh cell to approximate the radiance values between nodes.
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Fig. 5.10. The angular distribution of the scattering integral at the depth τ = 1.0: by
eliminating from RAD (a) only the direct radiation, (b) the whole anisotropic part by
MSH. The medium parameters: g = 0.9, ω0 = 0.8, τ0 = 5.0.

whole anisotropic part elimination solution changes the residual part solution into
a considerably smoother function. This essentially reduces requirements for the
mesh of the finite element method and computational resources.

We look at the proposed algorithm using the example of the plane unidirectional
source field in the scattering medium slab. In this case, the Peierls integral RTE
(5.151) takes the form
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L̃(τ, l̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δ(τ, l̂) +

ω0
4πμ

τ∫
0

e−(τ−t)/μ
∮
p(l̂, l̂′)L̃(t, l̂′)dl̂′dt, μ ≥ 0;

Δ(τ, l̂) +
ω0
4π |μ|

τ0∫
τ

e−(τ−t)/μ
∮
p(l̂, l̂′)L̃(t, l̂′) dl̂′ dt, μ < 0 ;

(5.154)

where the source function is:

Δ(τ, l̂) =
∞∑
k=0

2k + 1
4π

Δk(τ, μ)Pk(l̂ · l̂0) ,

Δk(τ, μ) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0ω0pk
μ0 − dkμ

{
exp
[
(μ0 − dkμ) τ

μμ0

]
− 1
}
e−τ/μ − exp

(
−dk τ

μ0

)
+ exp(−τ/μ0) ,

μ ≥ 0 ;
(
μ0ω0pk
μ0 − dkμ

{
1− exp

[
(μ0 − dkμ) τ0 − τ

μμ0

]}
− 1
)
exp
(
−dk τ

μ0

)
+ exp(−τ/μ0) ,

μ < 0 .
(5.155)

We used the set of the coaxial cylinders in the capacity of the mesh. The results
of the radiance calculation of the reflected radiation are shown in Fig. 5.11 with
the few iterations that are compared with the exact solution (a solid line) (5.69).

90 105 120 135 150 165 180
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
0
=5.0, 

0
=0

o
,

0
=0.8, g=0.9

 R
a
d

ia
n

c
e

Sighting angle, degrees

1

2

4

8

Fig. 5.11. Convergence of the method of iteration for the reflected radiation at τ0 = 5.0,
θ0 = 0, ω0 = 0.8, g = 0.9. The solid curve is the exact solution. Numbers near the dotted
curves give the number of the iteration.
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Fig. 5.12. The radiance angle distribution of the light field of the point isotropic source
at the slab boundary. ρ is the distance to the point from the origin in the XOY -plane.

Note that the convergence for the downward radiation is essentially better and the
amount of iterations does not exceed 2–4.

Now we go to the simplest 3-D boundary-value problem of a point isotropic
source in the scattering medium slab. Using expressions (5.142) and (5.143), and
the coaxial cylindrical mesh, we calculated RAD on one slab bound from a point
isotropic source allocated on the other bound in the origin. The position of all the
points in the space is specified by (τ , ρ) where ρ is the distance to the point from
the origin in XOY -plane. The results are given in the Fig. 5.12 for the slab with
optical parameters: ω0 = 0.8, τ = 1.0 and g = 0.9.

Notice that in the calculation program only the source function L0(r, l̂) is
changed while the rest of the program remains unchangeable. Generally speaking,
the suggested approach of the anisotropic part of the solution elimination could
be combined with any numerical method of the boundary method solution for the
regular part.

5.11 Conclusion

From the analysis of the angular spectrum of the radiance distribution, it is pos-
sible to formulate the approximate equation describing an anisotropic part of the
solution as the small-angle modification of the spherical harmonic method (MSH).
This approach makes it possible to eliminate analytically the singularities from the
RTE solution and to state the boundary-value problem for the regular part of the
solution. The analytic form of MSH as a decomposition on the surface harmonic
essentially simplifies the calculation of the source function in the equation for the
regular part.

Within the bounds of MSH we could get the solution of RTE for all the funda-
mental sources that allows us to use this approach for eliminating the anisotropic
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part of the solution in the arbitrary medium geometry. The role of the singularities
of the radiance angular distribution essentially grows by the solution of the 3-D
problems of the radiative transfer theory. In the conditions of the confined source
presence or, what is equivalent, the sharp changes of the medium parameters in
the case of the arbitrary three-dimensional geometry there are singularities in the
radiance angular distribution, not only in the direct radiation, but also in the first
two orders of scattering.

However, in the vectorial case there is still another problem: the reference planes
of the incident and scattered rays as well as the scattering plane do not coincide.
Therefore it is necessary to apply the rotator

↔
R(χ) that disturbs the transforma-

tion symmetry of different Stokes parameters and makes it impossible to use the
addition theorem for the surface harmonics. Kuščer and Ribarič (1959) proposed
the polarization determination on the basis of the circular polarization, which is
connected with Stokes polarization by the linear relation. In this case the rotator
takes a simpler form that makes it possible to use for every polarization component
the generalized spherical harmonic, for which its own form of the addition theorem
is correct. Unfortunately in CP-presentation all the coefficients in VRTE become
complex, which makes difficulties for using the effective numerical solution meth-
ods, which are based on the sorting algorithm. Therefore with the VRTE solution
at first we convert equation to CP-presentation, subtract MSH, get the equation for
the regular part of the solution, apply the addition theorem for generalized spher-
ical harmonics, then we return to SP-presentation and finally solve the obtained
equation by DOM.

The regular part of the solution is found numerically by the finite element
method that enables us to extend the solution to the arbitrary medium geometry.
The application of the developed method for the solution of the simple problem of
the medium slab showed its high performance. However, its expansion to the case
of the arbitrary medium geometry demands the development of the mesh-building
technique for the numerical determination of the regular part of solution.
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6 Code SHARM: fast and accurate radiative
transfer over spatially variable anisotropic
surfaces

Alexei Lyapustin, Tolegen Muldashev and Yujie Wang

Numerous numerical methods have been developed to solve a plane-parallel radia-
tive transfer problem, including discrete ordinates (Stamnes et al., 1988; Spurr et
al., 2001), spherical harmonics (Dave, 1975; Benassi et al., 1984), adding-doubling
(Hansen and Hovenier, 1971; Twomey, 1985), successive orders of scattering (Leno-
ble et al., 2007) etc. An extended reference to numerical methods and publicly
available codes can be found in Lenoble (1985), Ricchiazzi et al. (1998), Mayer and
Kylling (2005) and Cahalan (2005). In this chapter, we describe the method of
spherical harmonics (MSH), in particular its very efficient implementation devel-
oped by Karp et al. (1980) and, later, Muldashev et al. (1999). From a numerical
standpoint, here are several main components of the spherical harmonics solution:
(1) obtaining the system of linear differential equations of MSH, (2) its reduction to
the system of linear algebraic equations using singular value decomposition (SVD),
(3) use of a system’s matrix symmetry to halve its size for SVD transformation
with ∼8 times gain in speed, and finally, (4) angular smoothing of the solution
for radiance calculations in arbitrary directions. The detail of MSH for the 1-D
radiative transfer problem with a uniform surface, and for the 3-D problem with a
spatially variable surface, are presented in sections 6.1 and 6.5, respectively. Section
6.2 provides an overview of the 1-D radiative transfer code SHARM (Muldashev
et al., 1999; Lyapustin and Wang, 2005) which is one of the most numerically ef-
ficient scalar codes. SHARM performs simultaneous monochromatic calculations
for multiple sun-view geometries, and allows the user to make multi-wavelength
calculations in one run. The code is user-friendly, featuring built-in aerosol models
and the most popular models of the bi-directional reflectance factor (BRF) of land
and wind-ruffled water surface. Comparisons of SHARM with the benchmark code
DISORT showed agreement to 0.02%.

With all its efficiency, a numerical solution cannot be used for atmospheric
correction of large volumes of space-borne data. The spectral surface bi-directional
reflectance and albedo are primary inputs for many higher level products of the land
processing, which is an important component of the Earth Observing System (EOS)
(King and Greenstone, 1999). Accurate and operationally viable atmospheric cor-
rection requires an analytically explicit approach to derive the parameters of a
surface BRF model. In section 6.3, we use the Green’s function method to obtain
an accurate semi-analytical solution for the top-of-atmosphere (TOA) radiance,
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which explicitly depends on parameters of the linear kernel BRF model (Roujean
et al., 1992). This solution is used to build very efficient algorithms of aerosol re-
trievals and atmospheric correction from the EOS Moderate Resolution Imaging
Spectroradiometer (MODIS).

Land surfaces are not homogeneous. Variability of surface brightness gives rise
to the horizontal fluxes of radiation in the atmosphere directed from the brighter
to the darker areas, which is commonly called the ‘adjacency’ effect. This 3-D ef-
fect becomes more important with the increase in the resolution of space-borne
imaging systems. An analytical 3-D Green’s function solution for the TOA radi-
ance over a variable surface with anisotropic reflectance is derived in section 6.4.
Practical application of the derived formula relies on the knowledge of the 3-D
atmospheric Green’s function, or its Fourier transform called the optical transfer
function (OTF). The MSH method of computing the OTF is described in section
6.5. These developments led to the creation of code SHARM-3D described in section
6, which is designed for radiance computations over spatially variable anisotropic
surfaces with laterally homogeneous atmosphere. SHARM-3D uses accurate pa-
rameterizations of the Green’s function solution and a pre-computed look-up table
(LUT) of OTF which makes it very fast. Comparisons between SHARM-3D and
the rigorous 3-D code SHDOM (Evans, 1998) showed an agreement to within 0.5–
1%. At the same time, SHARM-3D is at least a thousand times faster and allows
the processing of large scenes with the side dimension of 103–104 on an ordinary
laptop, whereas SHDOM’s memory requirements limit the size to about 32 to 64
pixels.

6.1 The method of spherical harmonics:
homogeneous surface

Let us consider a plane-parallel radiative transfer problem with a uniform surface.
Scattering and absorbing properties of the atmosphere, described by the optical
thickness 0 ≤ τ ≤ τ0, single scattering albedo ω(τ), and scattering function χ(γ, τ),
where γ is the scattering angle, may vary vertically. Directions are defined in the
spherical coordinate system (τ , μ = cos θ, ϕ) where θ and ϕ are zenith and az-
imuthal angles. The polar axis τ starts at the top of atmosphere (TOA), so μ > 0
for the downward directions and μ < 0 for the upward directions. The intensity of
diffuse radiation I(τ ; μ, ϕ) is a solution of the following boundary-value problem:

μ
∂I(τ, μ, ϕ)

∂τ
+ I(τ, μ, ϕ) =

ω

4π

∫ 2π

0

dϕ′
∫ 1

−1

χ(τ, γ)I(τ, μ′, ϕ′)dμ′

+ Sλ
ω

4
χ(τ, γ0) exp

(
− τ

μ0

)
(6.1)

I(0;μ, ϕ) = 0, μ > 0 (6.1a)

I(τ0, μ, ϕ) = Sλμ0ρ(μ0, μ, ϕ− ϕ0)e−τ0/μ0

+
1
π

∫ 2π

0

dϕ′
∫ 1

0

ρ(μ′, μ, ϕ− ϕ′)I(τ0, μ′, ϕ′)μ′dμ′, μ < 0 (6.1b)
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Here, ρ is a unitless surface BRF and πSλ is the extraterrestrial spectral solar irra-
diance. The scattering function is normalized to unity, 1

2

∫ π
0
χ(γ) sin γ dγ = 1. To

solve problem (6.1), the scattering function is expanded into a Legendre polynomial
series,

x(γ) =
L∑
n=0

χnPn(cos γ), χk =
2k + 1
2

∫ 1

−1

χ(y)Pk(y) dy. (6.2)

Application of the addition theorem gives an azimuthal series for the phase function,

χ(τ, γ) = (2− δ0,m)
∞∑
m=0

χm(τ, μ, μ′) cosm(ϕ− ϕ′),

χm(τ, μ, μ′) =
∞∑
k=m

χk(τ)Y mk (μ)Y
m
k (μ

′), (6.3)

where Y mk (μ) are associated Legendre polynomials, and δ0,m is the Kronecker sym-
bol. By analogy, radiance and surface bi-directional reflectance are expanded into
a Fourier series:

I(τ, μ, ϕ) = (2− δ0,m)
∞∑
m=0

Im(τ, μ) cosmϕ,

ρ(μ0, μ, ϕ) = (2− δ0,m)
∞∑
m=0

ρm(μ0, μ) cosmϕ. (6.4)

Substitution of (6.3), (6.4) into (6.1) gives the problem for the mth Fourier com-
ponent of intensity:

μ
∂Im(τ, μ)

∂τ
+ Im(τ, μ) =

1
2

∫ 1

−1

χm(τ, μ′, μ)Im(τ, μ′) dμ′

+
1
4
Sλχ

m(τ, μ0, μ) e−τ/μ0 , (6.5)

Im(0, μ) = 0, μ > 0, (6.5a)

Im(τ0, μ) = Sλμ0ρ
m(μ0, μ)eτ0/μ0

+ 2
∫ 1

0

ρm(μ′, μ)μ′Im(τ0, μ′) dμ′, μ < 0. (6.5b)

Next, Im(τ, μ) is expanded into Legendre series:

Im(τ, μ) =
Lm∑
k=m

2k + 1
2

ϕmk (τ)Y
m
k (μ), ϕmk (τ) =

∫ 1

−1

Im(τ, μ)Y mk (μ) dμ, (6.6)

where the choice of parameter Lm will be explained later. Using expansions (6.6),
(6.3) and equation (6.5), one can obtain a system of linear differential equations for
the moments of intensity ϕmk (τ). To this end, equation (5) is multiplied by Y

m
k (μ)
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for k = m, m + 1, . . . , Lm and integrated over μ from −1 to 1. This leads to the
system of differential equations, which can be written in matrix form:

Am
d
ϕm(τ)
dτ

+ Cm
ϕm(τ) = eτ/μ0 
fm(τ), (6.7)

where Am is a symmetrical matrix of the order (Lm −m + 1) with non-zero off-
diagonal elements,

Am =

⎛⎜⎜⎜⎜⎜⎜⎝

0 a1 0 0

a1 0 a2
...

0 a2 0

0 · · ·
. . . aLm−m

aLm−m 0

⎞⎟⎟⎟⎟⎟⎟⎠ , ak =
√
k(2m+ k),

and Cm is a diagonal matrix, Cm = diag[2m+ 1− χm(τ), 2m+ 3− χm+1(τ), . . . ,
2Lm + 1− χLm

(τ)].
Vectors 
ϕm(τ), 
fm(τ) have the form 
fm(τ) = [fmm (τ), f

m
m+1(τ), . . . , f

m
Lm
(τ)]T ,

and elements of vector 
fm(τ) are equal to fmm+k(τ) =
Sλ
2 χm+k(τ)Y mm+k(μ0). To

conclude the system, we set ϕmLm+1(τ) = 0 in the last equation of system (6.7).
Parameter Lm is selected such that the order of system (6.7) is even to ensure
continuity of vector 
ϕm(τ) on the boundaries of atmospheric layers. In particular,
if L0 is odd, then Lm = L0 + δm, where δm = 0 if m is even, and δm = 1 if m is
odd.

We use Marshak’s form of the boundary conditions (Marshak, 1947; Dave,
1975). For example, the lower boundary condition is written as follows (Lyapustin
and Muldashev, 2000):

(I − 2Nmod)
ϕmod(τ0) + (Gm − 2Nmev)
ϕmev(τ0) = 2Sλeτ0/μ0 
Qm(μ0). (6.8)

Here, I is an identity matrix, 
ϕmod(τ0) and 
ϕ
m
ev(τ0) are vectors consisting of the odd

and even elements of vector 
ϕm(τ0), and vector 
Qm(μ′) is defined as follows:

Qml (μ
′) =

∫ 0

−1

μ′ρm(μ′, μ)Y mm−δm+2l−1(μ) dμ. (6.9a)

Gm, Nmod, N
m
ev are quadratic matrices with elements

Gml,k = −(4k − 3)
∫ 1

0

Y mm−δm+2l−1(μ)Y
m
m+δm+2k−2(μ) dμ, (6.9b)

(Nmev)l,p = (4p+ 2m+ 2δm − 3)
∫ 1

0

Qml (μ
′)Y mm+δm+2p−2(μ

′) dμ′, (6.9c)

(Nmod)l,p = (4p+ 2m− 2δm − 1)
∫ 1

0

Qml (μ
′)Y mm−δm+2p−1(μ

′) dμ′,

l, p = 1, 2, . . . ,
Lm −m+ 1

2
. (6.9d)

Matrix G is calculated using recurrence formulas of Dave (1975), while vector Q
and matrices Nmod, N

m
ev are computed numerically using Gaussian quadrature.
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With described boundary conditions, the problem for vector 
ϕm(τ) becomes:

Am
d
ϕm(τ)
dτ

+ Cm
ϕm(τ) = eτ/μ0 
fm(τ), (6.10)


ϕmod(0)−Gm
ϕmev(0) = 0, (6.10a)

(I − 2Nmod)
ϕmod(τ0) + (Gm − 2Nmev)
ϕmev(τ0) = 2Sλe−τ0/μ0 
Qm(μ0). (6.10b)

When surface is Lambertian, problem (6.1) splits into two problems: one is for
the path radiance D(τ, μ, ϕ) with zero boundary conditions and the other one
for a diffuse atmospheric transmittance (Muldashev et al., 1998). In many applied
problems, including atmospheric correction, it is convenient to have these functions
separately along with other radiative transfer characteristics including fluxes and
spherical albedo of the atmosphere. Below, we describe solution for path radiance,
which is a particular case of problem (6.10) with zero matrices Nmod, N

m
ev and zero

vector 
Qm(μ0).

6.1.1 Solution for path radiance

One of the most efficient solutions of problem (6.10) was developed by Karp et
al.(1980). Using singular value decomposition (SVD), the system of linear differen-
tial equations of MSH is initially reduced to the system of linear algebraic equations.
Further, due to its symmetry, the size of the system’s matrix is effectively halved,
reducing computing time by a factor of ∼8.

Let the atmosphere consist of homogeneous layers, each of an arbitrary optical
thickness Δτi = τi− τi−1, i = 1, . . . , n, and a constant matrix C(τ) = Ci. Since the
problems for different m are solved independently, index m is omitted in following
discussion. Integration of Eq. (6.10) within the layer [τi−1, τi] gives an analytical
solution at the interfaces:

eBiΔτi 
ϕ(τi)− 
ϕ(τi−1) = βi, Bi = A−1Ci, βi =
∫ τi
τi−1

eBi(t−τi−1)A−1e−
t

μ0 
f(t) dt.

(6.11)
To comply with boundary conditions, a unitary transformation P0 is defined which
sorts a vector into the odd and even parts,

P0
ϕ =
(
ϕev
ϕod

)
= 
g =

(
gt

gb

)
.

Multiplication of (6.11) by P0 gives the following problem:

−
gi−1 + P0eBiΔτiPT0 
gi = P0βi, i = 1, 2, . . . , n (6.12)


g b0 = G
g t0, 
g bn = −G
g tn. (6.12a)

The next step is to find matrix exponential eBiΔτi . One efficient way is to use a
singular value decomposition of matrix B. When ω < 1, B has different eigenvalues



210 Alexei Lyapustin, Tolegen Muldashev and Yujie Wang

and a complete set of linearly independent eigenvectors. In this case, it can be
written as a product

B = U

(
Λ+ 0
0 Λ−

)
U−1,

where Λ± are diagonal matrices, Λ+ = diag{λ1, . . . , λ(Lm−m+1)/2}, Λ− = −Λ+,
and ±λk are the eigenvalues of matrix B, and U is a matrix of eigenvectors. When
ω = 1, B has two zero eigenvalues +λ1 = −λ1 = 0, which are associated with only
one eigenvector. In this case, matrix B can be reduced to the Jordan form

B = UJU−1, J =
(
Λ+ R
0 Λ−

)
, (6.13)

where the missing eigenvector is replaced by a principal vector (defined as a vector
which satisfies (B − λI)2
x = 0) (Karp et al., 1980). All elements of matrix R are
equal to zero, except for R11 = r. When ω → 1 then λ1 → 0, and eigenvectors 
u1
and 
u2 corresponding to +λ1 and −λ1 become nearly parallel. This results in poor
conditioning of matrix U and in unstable matrix inversion. Replacing 
u2 = 
u1−
u2
corrects matrix U , and preserves decomposition (6.13) for matrix B. Thus, the
Jordan form provides a uniform decomposition of matrix B and its continuous
dependence on parameter ω.

Now, it is easy to exponentiate matrix B:

eBΔτ = UeJΔτU−1, (6.14)

where

eJΔτ =
(
eΛ+Δτ T
0 eΛ−Δτ

)
,

and
T11 =

r

2λ1
(eλ1Δτ − e−λ1Δτ ), T11 = rΔτ for λ1 = 0.

The other elements of matrix T are equal to zero. Substituting (6.14) into (6.12)
and multiplying the result by SU−1PT0 , where S is a scaling matrix,

S =
(

0 I
eΛ−Δτ 0

)
,

we finally obtain

−SiWi
gi−1 +HiWi
gi = 
di, i = 1, 2, . . . , n, (6.15)

where W = (P0U)−1, and

H = SeJΔτ =
(

0 I
eΛ−Δτ 0

)(
eΛ+Δτ T
0 eΛ−Δτ

)
=
(
0 eΛ−Δτ

I eΛ−ΔτT

)
.

The last equation shows that the scaling transformation (Karp et al., 1980) elimi-
nates positive exponents in the coefficients of system (6.15). Along with the bound-
ary conditions (6.12a), equation (6.15) represents a linear system of equations with
a block matrix which is solved by a Gauss elimination method. The problem (6.10)
with anisotropic surface reflectance differs only in the low boundary condition and
is solved similarly.
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6.1.2 Correction function of MSH

Once moments are found, the mth Fourier harmonic of intensity can be found from

um(τ, μ) =
Lm∑
k=m

2k + 1
2

ϕmk (τ)Y
m
k (μ).

For arbitrary μ, this solution has an oscillating error around the exact value due to
truncation of the scattering function, reduction of the order of MSH system, and
due to an approximate form of boundary conditions. The amplitude of oscillations
is largest at the boundaries of layers. It decreases with the increase of the order of
approximation L, yet the computing time grows as ∼L3. For this reason, special
smoothing procedures are applied as a tradeoff between the speed of computations
and the desired accuracy.

One of the most precise smoothing methods is integration of the source func-
tion (ISF) (Dave and Armstrong, 1974; Karp, 1981), where computed moments
ϕmk (τ) are only used to find the source function. Since this source function is in-
tegrated with exact boundary conditions and since the scattering function in the
single scattering term can be represented accurately, the ISF solution is smooth
and much more accurate than function um(τ, μ). With its high accuracy, the ISF
method is rather time-consuming. Even in a form of Karp (1981) that avoids nu-
meric integration, it needs matrix inversion for each atmospheric layer and for each
direction μ.

Muldashev et al. (1999) developed a ‘correction function’ method which pre-
serves the accuracy of ISF but is considerably faster. Let us obtain a radiative
transfer equation for an approximate solution um(τ, μ). To this end, we multiply
each kth equation of system (6.7) by Y mm+k(μ)/2, k = 0, 1, . . . , Lm −m, and sum
up all equations with the following result:

μ
∂um(τ, μ)

∂τ
+ um(τ, μ) =

1
2

∫ 1

−1

χm(τ, μ′, μ)um(τ, μ′)dμ′ +
1
4
Sλχ

m(τ, μ0, μ)eτ/μ0

+
1
2

√
(Lm −m+ 1)(Lm +m+ 1)Y mLm+1(μ)

dϕmLm
(τ)

dτ
.

(6.16)

If Im(τ, μ) is an exact solution, then wm(τ, μ) = um(τ, μ) − Im(τ, μ) is the error
of approximate solution (correction function). Let us rewrite (6.16) for function
wm(τ, μ) with the boundary conditions:

μ
∂wm(τ, μ)

∂τ
+ wm(τ, μ) =

1
2

∫ 1

−1

χm(τ, μ, μ′)wm(τ, μ′) dμ′

+ Fm1 (τ, μ) + F
m
2 (τ, μ), (6.17)

wm(0, μ) = um(0, μ), μ > 0; wm(τ0, μ) = um(τ0, μ), μ < 0. (6.17a)

Here, Fm1 (τ, μ) =
1
4Sλ{χm(τ, μ0, μ) − pm(τ, μ0, μ)}e−τ/μ0 is an error of expansion

of the right hand side of equation (6.5), where pm(τ, μ0, μ) stands for the exact
mth azimuthal harmonic of the phase function;
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Fm2 (τ, μ) =
1
2

√
(Lm −m+ 1)(Lm +m+ 1)Y mLm+1(μ)

dϕmLm
(τ)

dτ

is an expansion error of derivative μ[∂um(τ, μ)]/∂τ , and um(0, μ), um(τ0, μ) are the
inaccuracies of Marshak’s boundary conditions. The main error comes from trun-
cations of the expansion series and appears in the single scattering term. Higher
orders of scattering are considerably smoothed in angle. For this reason, it is suffi-
cient to solve (6.17) in the single scattering approximation. For simplicity, we will
write the solution for a homogeneous atmosphere:

wm1 (τ, μ) = e−τ/μum(0, μ)

+
1
4
Sλ

μ0
μ0 − μ (e

−τ/μ0 − e−τ/μ)[χm(τ, μ0, μ)− pm(τ, μ0, μ)]

+
√
(Lm −m+ 1)(Lm +m+ 1)

Y mLm+1(μ)
2μ

×
{
ϕmLm

(τ)− e− τ
μϕmLm

(0)− 1
μ

∫ τ
0

e(t−τ)/μϕmLm
(t) dt

}
, μ > 0, (6.18)

and

wm1 (τ, μ) = eτ0−τ/μum(τ0, μ)

+
1
4
Sλ

μ0
μ0 − μ (e

−τ/μ0 − eτ0−τ/μe−τ0/μ0)[χm(τ, μ0, μ)− pm(τ, μ0, μ)]

+
√
(Lm −m+ 1)(Lm +m+ 1)

Y mLm+1(μ)
2μ

×
{
ϕmLm

(τ)− eτ0−τ/μϕmLm
(τ0)− 1

μ

∫ τ
τ0

e(t−τ)/μϕmLm
(t) dt

}
, μ < 0.

(6.19)

The integrals in (6.18)–(6.19) can be computed analytically using recurrent formula
given by Muldashev et al. (1999). The final solution is a sum of an approximate
solution and correction function:

ũm(τ, μ) = um(τ, μ)− wm1 (τ, μ). (6.20)

Such a correction using wm1 (τ, μ) gives an exact contribution of the single scattering
regardless of the order of approximation of MSH. For a uniform atmosphere, this
method is twice as fast as the ISF method. This advantage increases in computa-
tions for multiple-layer atmospheres and multiple sun-view geometries.

6.2 Code SHARM

The described MSH solution was implemented in code SHARM (Lyapustin and
Wang, 2005) which solves the monochromatic unpolarized plane-parallel 1-D prob-
lem with vertically non-uniform atmosphere and several broadly used models of
the land/ocean surface bi-directional reflectance. This code (as well as 3-D code
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SHARM-3D) is available at http://neptune.gsfc.nasa.gov/bsb/subpages/index.php?
section=Projects&content=SHARM. SHARM computes radiance and fluxes at the
interfaces of atmospheric layers in the shortwave spectral region (0.4–2.5μm). When
the surface is Lambertian, it computes path radiance, upward atmospheric trans-
mittance, spherical albedo of the atmosphere and the total radiance separately.
SHARM performs simultaneous calculations for different solar zenith angles (SZA),
view zenith angles (VZA), and view azimuths, and allows the user to handle multi-
ple wavelengths in one run. Molecular scattering is added automatically according
to the wavelength, surface height above the sea level, and selected atmospheric
profile. The molecular absorption for each atmospheric layer should be provided by
the user.

The code comes in a package with program Phase, which computes Legendre
expansion coefficients of aerosol/cloud phase function, and automatically normal-
izes it. The rational spline interpolation is used to compute the phase function in
the quadrature angles required for the Legendre expansion, and in the directions
required for the single scattering calculations. The rational spline provides an ac-
curate smooth interpolation for the most anisotropic phase functions, where the
conventional cubic spline often develops an oscillating error. The current version
of Phase calculates up to 2000 non-zero Legendre coefficients using the high-order
Lobatto quadrature.

The input data are arranged in three files:

– Configuration file (config.par) defines wavelengths, the order of MSH, the
incidence-view geometry, the file names of input atmospheric and surface prop-
erties, and governs printing of the results.

– Atmospheric Properties file describes the model of atmosphere and optical prop-
erties of aerosols or clouds. The input for aerosol/clouds can be arranged ei-
ther in generic form or using microphysical properties. In the first case, the
user should provide optical thickness (Δτ), single scattering albedo (ω), and
scattering function of aerosols/clouds for each atmospheric layer with Legen-
dre expansion computed by program Phase. In the second case, the aerosols
are assumed to be polydisperse spherical or spheroidal particles with bi-modal
lognormal size distribution. The user input includes size distribution parame-
ters and refractive index. The aerosol properties in this case are assumed to
be constant with altitude but aerosol concentration may vary according to the
specified vertical profile. This model is quite realistic and well suited for the re-
mote sensing studies of atmospheric aerosol and surface reflectance. The single
scattering albedo and phase function of aerosol are computed internally with
the fast kernel model (Dubovik et al., 2006), followed by automatic Legendre
expansion.

– Surface Properties file describes the model and parameters of surface re-
flectance. The details of parameters and input format are documented in
‘SHARM Manual’.

Codes Phase, SHARM and SHARM-3D, described in section 6.6, share a com-
mon library of files and are written in C language with C++ features.

The Rayleigh scattering is computed automatically according to specified sur-
face pressure and a vertical profile of pressure and temperature, which can be se-
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lected from six standard atmospheric profiles (Kneizys et al., 1996) (Tropical, Mid-
latitude Summer, Midlatitude Winter, SubArctic Summer, SubArctic Winter, 1976
US Standard). The integral over altitude is evaluated with the gaussian quadrature.
The Rayleigh scattering cross-section is calculated with the algorithm of Bodhaine
et al. (1999), which has a uniformly high accuracy from UV to the shortwave IR.

Three broadly recognized BRF models of land surface reflectance are built in
code SHARM: Rahman et al. (1993) (RPV) model, modified RPV (MRPV) (Mar-
tonchik et al., 1998) model, and a Li Sparse – Ross Thick reciprocal (LSRT) (Lucht
et al., 2000) model. The LSRT and MRPV models are used in the operational land
reflectance algorithms of MODIS (Schaaf et al., 2002) and MISR (Martonchik et al.,
1998), respectively. All of these models are described by three parameters. They are
also reciprocal and rotationally invariant, i.e. they depend only on relative azimuth.

The ocean surface reflectance can be modeled either with the azimuthally-
independent model of Nakajima and Tanaka (1983) (NT), or with the Cox and
Munk (1954) model with Grams–Charlier expansion (CM). Both models include bi-
directional wave-shadowing factor of Nakajima and Tanaka (1983). The NT model
depends only on the wind speed, whereas the CM model additionally depends on
the wind direction. The details of surface BRF models are given in ‘SHARM Man-
ual’.

6.2.1 Accuracy, convergence and speed of SHARM

Code SHARM was extensively validated against code DISORT (Lyapustin, 2002)
and was tested experimentally, e.g., over the dark ocean (Gatebe et al., 2005). The
most important parameter that controls the accuracy of the solution is the order
of MSH (parameter nb = L) specified by the user. The single-scattered radiance
in SHARM is calculated using an exact formula and does not depend on nb. The
solution for the multiple scattering converges to the true one at the increase of nb;
however, the computing time also grows approximately as nb3.

Generally, higher nb is required for more asymmetric phase function and for high
zenith angles in order to achieve a given accuracy. For typical continental/marine
aerosols, 0.2–0.3% accuracy of radiance is achieved at nb = 24− 36 for view/solar
zenith angles up to 75–80◦. The value of nb = 128 ensures the accuracy of ≈0.02%.
Flux calculations require lower nb. For example, fluxes at nb = 12−24 are typically
accurate to the fourth significant digit.

For radiance calculations with strongly asymmetric phase functions typical of
clouds, we implemented the Delta-M method (Wiscombe, 1977) that achieves ac-
curacy of about 1% at relatively low orders of MSH, nb = 32 − 64, except for the
aureole region and some transitional area around it (Lyapustin, 2002). Fig. 6.1
illustrates convergence of SHARM solution for a cirrus cloud with and without
Delta-M method.

The performance of code SHARM was tested against code DISORT. In the
single angle calculations over a Lambertian surface, the speed of SHARM was found
to be a factor of 1.5–6 higher than that of DISORT, depending on the number of
atmospheric layers and on the selected order of solution (with nb = Nstreams).
This difference increases several times when the surface reflects anisotropically
(Lyapustin, 2002). Because SHARM solves the radiative transfer problem for all



6 Code SHARM 215

Fig. 6.1. Convergence of SHARM (left) and SHARM with Delta-M method (right) for
cirrus cloud (from Lyapustin, 2005). The results are shown as a relative error (%) of
SHARM radiance for different orders of MSH calculated with respect to the solution
with nb = 512. Calculations were performed for τ = 0.8 and SZA = 60◦. The solid and
dashed lines represent the relative azimuth of 0◦ and 180◦ respectively. The negative and
positive values on x-axis relate to the upward radiance at the top of the atmosphere,
and to the diffuse sky radiance incident on surface, respectively. The cirrus cloud phase
function at λ = 0.66μm corresponds to ice particles with an effective diameter of 10μm
(http://www.ssec.wisc.edu/∼baum/Cirrus/IceCloudModels.html).
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sun-view angles simultaneously, it offers a particular advantage in calculations with
complex geometries.

6.3 Green’s function method and its applications

In spite of the demonstrated ability of numerical codes for forward simulations,
without an analytical solution for non-Lambertian surfaces an efficient atmospheric
correction is not possible. This inconvenience transpires in problem of iterative BRF
retrieval from multi-angle radiance measurements, e.g. as reported by Lyapustin
and Privette (1999). Given atmospheric conditions, the full radiative transfer prob-
lem had to be solved anew in each iteration because the lower boundary condition
changed.

Below, the Green’s function (GF) method is used to derive an analytical solu-
tion for the radiance over an anisotropic surface. In the physical sense, the Green’s
function represents bi-directional atmospheric transmission for the unitary radi-
ance source located at the bottom of the atmosphere. The concept of the Green’s
function, developed in neutron transport several decades ago (Bell and Glasstone,
1970), offers a powerful approach to solving the radiative transfer problem with
complex boundary conditions and internal sources (e.g., Gerstl, 1982; Germogen-
ova, 1986; Sushkevich et al., 1990; Ioltukhovsky, 1999; Landgraf et al., 2002; Qin
and Box, 2005; Davis et al., 2009). Below, we use the GF method to derive a semi-
analytical solution for TOA radiance as a function of surface BRF (Lyapustin and
Knyazikhin, 2001). When used with the linear kernel BRF model (Lucht et al.,
2000), this solution yields a formula for TOA radiance which explicitly depends on
the BRF model parameters (Lyapustin and Wang, 2005).

6.3.1 Formal solution with the Green’s function method

Let us introduce an operator form of notation with differential operator [L̂1 =
μ/(∂/∂τ) + 1], and integral operators of scattering [Ŝ = (ω/4π)

∫
Ω
ds′χ(τ, γ). . . ]

and of surface reflection [R̂ = 1
π

∫
Ω+ ds

′ρ(s′, s)μ′ . . . ], where s = (θ, ϕ) is a vector of
direction. The subscripts/superscripts (+) and (−) will be used to indicate down-
ward (μ > 0) and upward (μ < 0) directions, respectively. For example, expression
J−(τ0) = R̂J+(τ0) is equivalent to J(τ0; s) = (1/π)

∫
Ω+ J(τ0; s′)ρ(s′, s)μ′ ds′ at

μ < 0.
The Green’s function technique allows us to separate the lower boundary con-

dition from calculations of atmospheric functions. First, the TOA radiance is sep-
arated into the path radiance D(τ, s0, s) and surface-reflected radiance J(τ ; s0, s):

I(τ ; s0, s) = D(τ ; s0, s) + J(τ ; s0, s). (6.21)

These components obey the following problems:

L̂1D = ŜD + Sλ
ω(τ)
4
χ(τ ; γ0) exp(−τ/μ0), (6.22)

D+(0) = 0, D−(τ0) = 0; (6.22a)
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and
L̂1J = ŜJ, (6.23)

J+(0) = 0, J−(τ0) = R̂J
(0)
+ (τ0) + R̂J+(τ0). (6.23a)

In (6.23a), J (0)+ (τ0) is surface irradiance due to directly transmitted sunlight and
path radiance,

J
(0)
+ (τ0) = πSλ exp(−τ0/μ0)δ(s− s0) +D(τ0; s0, s), μ > 0. (6.24)

The term R̂J
(0)
+ (τ0) = J

(1)
− (τ0) describes the first-order reflection, and the term

R̂J+(τ0) describes the multiple photon reflections between the surface and the
atmosphere. The solution of (6.23) can be represented as a series in orders of
reflection from the surface:

J(τ ; s) =
∑
k≥1

J (k)(τ ; s). (6.25)

The different orders of reflection (k ≥ 1) obey the following recurrent system of
sub-problems:

L̂1J
(k) = ŜJ (k), (6.26)

J
(k)
+ (0) = 0, J

(k)
− (τ0) = R̂J

(k−1)
+ (τ0). (6.26a)

The solution of (6.26) can be analytically expressed with the Green’s function
G(τ ; s1, s) of the second kind and boundary values as

J (k)(τ ; s) =
∫
Ω−

G(τ ; s1, s)J (k)(τ0; s1)ds1, (6.27)

where G(τ ; s1, s) satisfies the problem which no longer depends on surface proper-
ties:

L̂1G = ŜG, (6.28)

G+(0) = 0, G−(τ0) = δ(s− s1), μ < 0. (6.28a)

Thus the Green’s function describes the solely atmospheric radiative transport
and serves to find radiance in an arbitrary direction and altitude in the atmo-
sphere given its angular distribution at the surface (6.27). Separation of the dif-
fuse (continuous) component Gd(τ ; s1, s) and the direct (discontinuous) compo-
nent of the Green’s function, G(τ ; s1, s) = Gd(τ ; s1, s) at μ >0, and G(τ ; s1, s) =
exp(−(τ0 − τ)/|μ1|)δ(s − s1) + Gd(τ ; s1, s) at μ < 0, gives the transport problem
for the diffuse Green’s function:

L̂1G
d = ŜGd +

ω(τ)
4π

χ(τ ; γ1) exp(−(τ0 − τ)/|μ1|), (6.29)

Gd+(0) = 0, Gd+(τ0) = 0, (6.29a)

where γ1 is angle of scattering from the original direction of propagation s1 into
direction s. Problem (6.29) is adjoint to the problem for path radiance (6.22),
provided that the source of irradiation is unitary (πSλ = 1) and located at the
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bottom of atmosphere. Therefore, the diffuse Green’s function can be computed
with the existing numerical codes for the path radiance by reversing the direction
of light propagation or, in other words, by setting the atmospheric layers in reverse
order, and normalizing the result by πSλ.

Let us now introduce an integral operator Γ̂τ (s) corresponding to integral trans-
formation (6.27), Γ̂τ (s) =

∫
Ω− ds1G(τ ; s1, s) . . . . According to accepted notation,

operators Γ̂+
τ0 and Γ̂

−
0 describe the bidirectional atmospheric transmittance in back-

ward (μ > 0) and forward (μ < 0) directions, respectively, for the source illuminat-
ing the atmosphere from below (μ1 < 0). Using these operators, one can establish
the recurrent relation between successive orders of upwelling radiance at the surface
level:

J
(k)
− (τ0) = R̂Γ̂+

τ0J
(k−1)
− (τ0). (6.30)

The total surface-reflected radiance is the sum of all orders of reflection:

J−(τ0) =
∑
k≥1

J
(k)
− (τ0) =

{∑
k≥0

(R̂Γ̂+
τ0)
k

}
R̂J

(0)
+ (τ0) = (Î − R̂Γ̂+

τ0)
−1R̂J

(0)
+ (τ0),

(6.31)
where Î is a unitary operator. Now, the TOA radiance can be written as

I(τ = 0; s0, s) = D(0; s0, s) + Γ̂−
0 (Î − R̂Γ̂+

τ0)
−1R̂J

(0)
+ (τ0), μ < 0. (6.32)

Equation (6.32) (Lyapustin and Knyazikhin, 2001) generalizes the well-known
formula of Chandrasekhar (1960), originally derived for a Lambertian surface.
The inverse operator (Î − R̂Γ̂+

τ0,s)
−1 describes multiple reflections of photons

between the surface and the atmosphere. When surface is Lambertian, (6.32)
transforms into Chandrasekhar’s equation with spherical albedo of atmosphere
c0 = 1/π

∫
Ω+ μ

′ ds′
∫
Ω− G

d(τ0; s1, s′) ds1 and upward atmospheric transmittance

T (μ) =
∫
Ω−

G(0; s1, s) ds1 = exp(−τ0/|μ|) +
∫
Ω−

Gd(0; s1, s) ds1.

Let us re-write (6.32) for the TOA radiance in the integral form:

I(s0, s) = D(s0, s) + exp(−τ0/|μ|)J(τ0; s) +
∫
Ω−

Gd(0; s1, s)J(τ0; s1)ds1, μ < 0.

(6.33)
The total surface-reflected signal is represented by sum (6.31), with the first-order
radiance,

J (1)(τ0; s) = Sλμ0 exp(−τ0/μ0)ρ(s0, s) + 1
π

∫
Ω+

D(τ0; s0, s′)ρ(s′, s)μ′ds′. (6.34)

The higher orders of reflection can be computed using (6.30):

J (k)(τ0; s) =
1
π

∫
Ω−

H(τ0; s1, s)J (k−1)(τ0; s1) ds1, (6.35)
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where supplementary function H is given by

H(τ0; s1, s) =
∫
Ω+

Gd(τ0; s1, s′)μ′ρ(s′, s) ds′. (6.36)

The Green’s function technique is closely related to the adding-doubling method,
e.g. (Hansen and Hovenier, 1971; Twomey, 1985), resulting in similarity of the
derived operator equations and the corresponding matrix equations of the adding-
doubling method.

6.3.2 Practical considerations

The derived analytical formulas (6.33)–(6.36) can be used to compute atmospheric
radiance with accuracy depending on the order of quadrature of integration as well
as on the number of multiple reflection terms retained. Computation of successive
orders of reflection using (6.35) is impractical, especially over bright surfaces when
large number of terms may be required. In practice, significant acceleration can be
achieved by using a maximum eigenvalue parameterization. One of the theorems of
the linear operator analysis (Vladimirov, 1963; Riesz, Sz.-Nagy, 1990) states that
for a continuous linear operator T defined for positive functions u, the following
relation holds, starting from some k > 0:

T ku(s)/u(s) ∼= ηk, (6.37)

where η is a maximal eigenvalue of operator T . In our case, the lower boundary
condition (6.23a) can be represented as a Fredholm equation of the second kind
with operator T = R̂Γ̂+

τ0 and u = J(τ0; s). Therefore, relationship (6.37) can be
used to evaluate the term k+1 via term k:

J
(k+1)
− (τ0) = (R̂Γ̂+

τ0)J
(k)
− (τ0) ∼= ηJ

(k)
− (τ0), (6.38)

where η is the maximum eigenvalue of operator R̂Γ̂+
τ0 , i.e., it is a function of surface

reflectance and atmospheric parameters only and does not depend on the view-
illumination geometry.

Fig. 6.2 illustrates the total radiance and the first five orders of the surface-
reflected radiance computed for grasses in the near-IR range of spectrum (0.75μm).
At solar zenith angle of 60◦ and an atmospheric optical thickness of 0.53, the albedo
of grasses is 0.48, so nearly half of the incident solar energy is reflected back into the
atmosphere in each instance of reflection. The nonlinear reflection terms in Fig. 6.2
are scaled to show a close similarity in angular shape, starting from the second
order of reflection. We found that relation (6.38) holds at k ≥ 2 to an accuracy of
several tenths of a percent for common land surface types, including vegetation,
soil, sand and snow. It should be mentioned, however, that the convergence slows
down for a ruffled water surface because of a much higher anisotropy of reflectance.
In this case, as many as 4–5 orders of reflection may be needed before a constant
ratio can be assumed.

This result allows us to introduce an accurate parameterization:

J(τ0; s) = J (1)(τ0; s) +
J (2)(τ0; s)
1− η , (6.39)
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Fig. 6.2. Different orders of the surface-reflected radiance as function of view zenith angle
(VZA) at SZA = 60◦ and ϕ = 180◦ (from Lyapustin and Knyazikhin, 2001). Calculations
were done in the near-IR for continental aerosols with optical thickness 0.5 with surface
BRF of grasses. The higher orders of reflection (2–5) are multiplied by a factor of 8 to fit
the same scale.

which shows that the surface-reflected radiance over land can be found from the first
three orders of reflection, in which the third order is used only to evaluate parameter
η. Our analysis for realistic land-cover types showed that with an uncertainty of up
to a factor of 2, parameter η can be evaluated in the Lambertian approximation,
η ≈ q(μ0)c0, where q is surface albedo. This approximation becomes more accurate
as albedo or anisotropy of the BRF decreases.

Equation (6.39) can be further simplified to avoid computing the second-order
term. Let us use operator notation and separate incident radiance into the direct
beam Iδ+ = πSλ exp(−τ0/μ0)δ(s− s0) and path radiance:

J(τ0; s) = R̂[Iδ+ +D+(τ0)] +
R̂Γ̂+
τ0R̂[I

δ
+ +D+(τ0)]
1− η . (6.40)

The reflected diffuse radiance R̂D+(τ0) in the last term is a smooth function
in angles, which can be parameterized by the maximum eigenvalue method,
R̂Γ̂+
τ0R̂D+(τ0) ≈ ηR̂D+(τ0). Next, the integration order can be reduced in the

term:

R̂Γ̂+
τ0R̂I

δ
+ = Sλμ0 exp(−τ0/μ0)R̂Γ̂+

τ0ρ(s0, s)

= Sλμ0 exp(−τ0/μ0) 1
π

∫
Ω+
ρ(s′, s)

{∫
Ω−
Gd(τ0; s1, s′)ρ(s0, s1) ds1

}
μ′ ds′.

(6.41)

This can be done approximately by taking the average value of the Green’s function,
multiplied by the cosine of the incidence angle, outside of both integral signs:
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R̂Γ̂+
τ0R̂I

δ
+ ≈ Sλμ0 exp(−τ0/μ0)

[
1
π

∫
Ω+

μ′ ds′
∫
Ω−
Gd(τ0; s1, s′) ds1

/
(∫

Ω+
ds′
∫
Ω−

ds1

)]
×
∫
Ω+

ρ(s′, s) ds′
∫
Ω−

ρ(s0, s1)ds1

= Sλμ0 exp(−τ0/μ0)c0ρ1(μ)ρ2(μ0), (6.42)

where

ρ1(μ) =
∫
Ω+

ρ(s′, s) ds′
/∫

Ω+
ds′ =

1
2π

∫
Ω+

ρ(s′, s) ds′,

ρ2(μ0) =
1
2π

∫
Ω−

ρ(s0, s) ds. (6.43)

Using assessment η ≈ q(θ0)c0, we arrive at the final formula for the surface-reflected
radiance:

J(τ0; s) ∼= Sλμ0 exp(−τ0/μ0)
{
ρ(s0, s) + αc0ρ1(μ)ρ2(μ0)

}
+
α

π

∫
Ω+

D(τ0; s0, s′)ρ(s′, s)μ′ ds′, (6.44)

where α = (1 − qc0)−1 is a multiple reflection factor. Recalling from (6.33), the
total TOA radiance is given by:

I(s0, s) = D(s0, s) + exp(−τ0/|μ|)J(τ0; s) +
∫
Ω−

Gd(0; s1, s)J(τ0; s1) ds1, μ < 0.

(6.45)
The surface albedo is defined as a ratio of reflected and incident radiative fluxes at
the surface:

q(μ0) = FUp(μ0)/FDown(μ0), (6.46)

FDown(μ0) = πSλμ0 e
−τ/μ0 +

∫
Ω+

Ds(s0, s′)μ′ ds′

= FDirs (μ0) + FDifs (μ0), (6.44a)

FUp(μ0) = πSλμ0 e
−τ/μ0q2(μ0) +

∫
Ω+

μ′q2(μ′)Ds(s0, s′) ds′,

q2(μ0) =
1
π

∫
Ω−

ρ(s0, s)μds. (6.44b)

Parametric model (6.41)–(6.44) has a high accuracy, usually within 0.1% to 0.5%
for natural landcovers in the bright near-IR region, and better in the visible part
of spectrum.

6.3.3 Expression for TOA reflectance using LSRT BRF model

Based on the described semi-analytical solution, we can express TOA reflectance as
an explicit function of parameters of the BRF model. We will use a semi-empirical
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Li Sparse – Ross Thick (LSRT) BRF model (Lucht et al., 2000). This is a linear
model, represented as a sum of Lambertian, geometric-optical, and volume scat-
tering components:

ρ(μ0, μ, ϕ) = kL + kGfG(μ0, μ, ϕ) + kV fV (μ0, μ, ϕ). (6.45)

It uses predefined geometric functions (kernels) fG, fV to describe different angular
shapes. The kernels are independent of the land conditions. The BRF of a pixel is
characterized by a combination of three kernel weights, 
K = {kL, kG, kV }T . The
LSRT model is used in the MODIS BRF/albedo algorithm (Schaaf et al., 2002).

The substitution of equation (6.45) into (6.41)–(6.44) and normalization to the
reflectance units (R = Iλ/(μ0Sλ)) gives the following expressions: the surface-
reflected signal at the bottom of atmosphere (6.42) becomes

Rs(τ0;μ0, μ, ϕ) = e−τ/μ0
{
kL+kGfG(μ0, μ, ϕ)+kV fV (μ0, μ, ϕ)+αc0ρ1(μ)ρ2(μ0)

}
+αμ−1

0

{
kLEd0 (μ0) + k

GD1
G(μ0, μ, ϕ) + k

VD1
V (μ0, μ, ϕ)

}
. (6.46)

The surface signal diffusely transmitted through the atmosphere (the last term of
(6.45)) is given by:

Rds(μ0, μ, ϕ) = e−τ/μ0 ×
{
[kLGav(μ) + kGG1

G(μ0, μ, ϕ) + k
VG1

V (μ0, μ, ϕ)]

+ αc0[kLGav(μ) + kGG11
G (μ) + k

VG11
V (μ)]ρ2(μ0)

}
+ αμ−1

0

{
kLEd0 (μ0)G

av(μ) + kGH1
G(μ0, μ, ϕ) + k

VH1
V (μ0, μ, ϕ)

}
.

(6.47)

The surface albedo is written as:

q(μ0) = E−1
0 (μ0)

{
μ0 e

−τ/μ0q2(μ0)+kLEd0 (μ0)+k
GD3

G(μ0)+k
VD3

V (μ0)
}
. (6.48)

Different functions of these equations represent different integrals of the incident
path radiance (Ds) and atmospheric Green’s function (G) with the BRF kernels
which are computed using numerical integration. Below, we only give the integral
expressions:

ρ1(μ) = kL + kGf1G(μ) + k
V f1V (μ), (6.49a)

ρ2(μ0) = kL + kGf2G(μ0) + k
V f2V (μ0), (6.49b)

q2(μ0) = kL + kGf3G(μ0) + k
V f3V (μ0), (6.49c)

D1
k(μ0, μ, ϕ− ϕ0) =

1
π

∫ 1

0

μ′ dμ′
∫ 2π

0

dϕ′Ds(μ0, μ′, ϕ′ − ϕ0)fk(μ′, μ, ϕ− ϕ′),
(6.50a)

D3
k(μ0) =

1
π

∫ 2π

0

dϕ′
∫ 1

0

μ′f3k (μ
′)Ds(μ0, μ′;ϕ′) dμ′, (6.50b)

Gav(μ) =
∫ 0

−1

dμ1

∫ 2π

0

Gd(μ1, μ, ϕ− ϕ1) dϕ1, (6.51a)
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G11
k (μ) =

∫ 0

−1

f1k (μ1)dμ1
∫ 2π

0

Gd(μ1, μ, ϕ− ϕ1) dϕ1, (6.51b)

G1
k(μ0, μ, ϕ− ϕ0) =

∫ 0

−1

dμ1

∫ 2π

0

Gd(μ1, μ, ϕ− ϕ1)fk(μ0, μ1, ϕ1 − ϕ0) dϕ1,
(6.51c)

H1
k(μ0, μ, ϕ− ϕ0) =

∫ 0

−1

dμ1

∫ 2π

0

Gd(μ1, μ, ϕ− ϕ1)D1
k(μ0, μ1, ϕ1 − ϕ0) dϕ1.

(6.52)
The subscript k in the above expressions refers to either geometric-optical (G) or
volumetric (V ) kernels, and the supplementary functions of the BRF kernels are
given by:

f1k (μ) =
1
2π

∫ 1

0

dμ′
∫ 2π

0

fk(μ′, μ, ϕ′ − ϕ) dϕ′, (6.53a)

f2k (μ0) =
1
2π

∫ 0

−1

dμ1

∫ 2π

0

fk(μ0, μ1, ϕ1 − ϕ0) dϕ1, (6.53b)

f3k (μ
′) =

1
π

∫ 0

−1

μdμ

∫ 2π

0

fk(μ′, μ, ϕ− ϕ′) dϕ. (6.53c)

The diffuse and total spectral surface irradiance are calculated from respective
fluxes (6.44a) as:

Ed0 (μ0) = FDif (μ0)/(πSλ), E0(μ0) = FDown(μ0)/(πSλ). (6.54)

Let us re-write these equations separating the kernel weights. First, single out small
terms proportional to the product c0ρ2(μ0) into the nonlinear term:

Rnl(μ0, μ) = αc0ρ2(μ0) e−τ/μ0
{
e−τ/|μ|ρ1(μ) + kLGav(μ) + kGG11

G (μ) + k
VG11

V (μ)
}
.

(6.55)
Second, collect all remaining multiplicative factors for the kernel weights:

FL(μ0, μ) = (e−τ/μ0 + αμ−1
0 Ed0 (μ0))(e

−τ/|μ| +Gav(μ)), (6.56)

F k(μ0, μ;ϕ) =
{
e−τ/μ0fk(μ0, μ, ϕ) + αμ−1

0 D1
k(μ0, μ, ϕ)

}
e−τ/|μ|

+ e−τ/μ0G1
k(μ0, μ, ϕ) + αμ

−1
0 H1

k(μ0, μ, ϕ), k = V, G. (6.57)

With these notations, the TOA reflectance becomes:

R(μ0, μ, ϕ) = RD(μ0, μ, ϕ) + kLFL(μ0, μ) + kGFG(μ0, μ, ϕ)
+ kV FV (μ0, μ, ϕ) +Rnl(μ0, μ). (6.58)

This equation represents TOA reflectance as an explicit function of the BRF model
parameters providing the means for an efficient atmospheric correction. Equation
(6.67) is used in the AERONET-based Surface Reflectance Validation Network
(ASRVN) to derive spectral surface BRF and albedo from operational MODIS
data at AERONET locations (Wang et al., 2009). The developed algorithm uses
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AERONET (Holben et al., 1998) aerosol and water vapor data to perform atmo-
spheric correction. The released ASRVN dataset (MODIS product MODASRVN)
contains MODIS TERRA and AQUA data since 2000 and 2002, respectively, for
50 × 50 km2 area of ∼100 AERONET stations globally. This dataset can be used
for different applications, including validation and science analysis.

Developed analytical theory also became a foundation for the Multi-Angle
Implementation of Atmospheric Correction algorithm (MAIAC) (Lyapustin and
Wang, 2009) which uses time series analysis of MODIS data to simultaneously
retrieve surface BRF/albedo and properties of atmospheric aerosol at high 1 km
resolution.

6.4 Green’s function solution for anisotropic inhomogeneous
surface

Land surface is not homogeneous. Spatial variability of surface reflectance gives
rise to horizontal radiative fluxes in the atmosphere directed from the bright to the
dark surface areas. These three-dimensional (3-D) effects reduce the apparent top-
of-the-atmosphere surface contrast by decreasing the radiance over bright pixels and
increasing the brightness of the dark pixels (Otterman and Fraser, 1979; Mekler and
Kaufman, 1980; Diner and Martonchik, 1985). This blurring effect is systematic and
thus becomes important for the remote sensing applications developed for use with
either dark or bright targets. Lyapustin (2001) and Lyapustin and Kaufman (2001)
showed that 3-D effects may cause a systematic overestimation of the retrieved
aerosol optical thickness over land by the dark dense vegetation method and a non-
negligible systematic error in the land surface albedo at a broad range of sensor
resolutions in many climatically important regions with medium-to-high contrast
of surface.

One of the first numerical solutions for problem with nonhomogeneous non-
Lambertian boundary was obtained by Diner and Martonchik (1984a,b). A number
of studies were done with Monte Carlo techniques (Pearce, 1977; Marchuk et al.,
1980) using Lambertian surface model. One of the most versatile codes for 3-D
analysis, the spherical harmonic discrete ordinates method (SHDOM), was devel-
oped by Evans (1998). SHDOM handles the complete 3-D problem with the lateral
variability of both surface and atmospheric optical properties.

An exact semi-analytical solution obtained with the Green’s function method
along with the method of successive surface interactions (Lyapustin and Knyazikhin,
2002) is described next. Following methodology used in the 1-D case (section 3),
parameterizations are developed which allow a fast numerical implementation with
high accuracy suitable for the remote sensing applications.

6.4.1 Operator solution of the 3-D radiative transfer problem

The diffuse solar radiation in the horizontally homogeneous atmosphere with non-
uniform non-Lambertian surface is a solution of the following 3-D boundary-value
problem:
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[(
ν 
∇) + α(z)]I(z; r; s) = σ(z)
4π

∫
Ω

χ(z, γ)I(z; r; s′) ds′

+
Sλ
4
σ(z)χ(z; γ0) exp(−τ(z)/μ0), (6.59)

I(0; r; s) = 0, μ > 0, (6.59a)

I(H; r; s) = Sλμ0 exp(−τ0/μ0)ρ(r; s0, s)
+
1
π

∫
Ω+

I(H; r; s′)ρ(r; s′, s)μ′ ds′, μ < 0. (6.59b)

Here, σ(z) and α(z) are scattering and extinction coefficients of the atmosphere
at altitude z, respectively, 
ν = (

√
1− μ2 cosϕ,

√
1− μ2 sinϕ, μ) is vector of direc-

tion, 
∇ = (∂/∂x, ∂/∂y, ∂/∂z) is vector of gradient, and r = (x, y) is a horizontal co-
ordinate. As before, we separate the path radiance D(z, s0, s) and surface-reflected
radiance J(r; z; s) in the total signal, and will use the operator notations with the
3-D differential operator [L̂3 = (
ν 
∇) +α(z)] and integral operators of atmospheric
scattering [

Ŝ =
σ(z)
4π

∫
Ω

ds′χ(z, γ) . . .
]

and of surface reflection [
Rr =

1
π

∫
Ω+

ds′μ′ρ(r; s′, s) . . .
]
.

With these notations, the problem for the surface-reflected radiance becomes:

L̂3J(z; r; s) = ŜJ(z; r; s), (6.60)

J+(0; r) = 0, J−(H; r) = RrJ
(0)
+ (H) +RrJ+(H; r). (6.60a)

Expansion of solution in a series of surface interactions:

J(z; r; s) =
∑
k≥1

J (k)(z; r; s), (6.61)

generates a set of recursive problems for different orders of reflection J (k):

L̂3J
(k)(z; r; s) = ŜJ (k)(z; r; s), (6.62)

J
(k)
+ (0; r) = 0; J

(k)
− (H; r) = RrJ

(k−1)
+ (H; r). (6.62a)

As before, the solution is expressed via 3-D surface Green’s function G3(z; r −
r′; s1, s) and the boundary values of radiance J (k)(H; r; s1):

J (k)(z; r; s) =
∫ +∞

−∞
dr′
∫
Ω−

G3(z; r − r′; s1, s)J (k)(H; r′; s1) ds1. (6.63)

The substitution of (6.63) into problem (6.62) shows that the Green’s function thus
introduced does not depend on the reflective properties of the surface and satisfies
a classical searchlight problem originally introduced by Chandrasekhar (1958):
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L̂3G3 = ŜG3, (6.64)

G+3(0; r − r′) = 0, G−3(H; r − r′) = δ(r − r′)δ(s− s1). (6.64a)

The lower boundary condition shows that function G3(z; r − r′; s1, s) is an atmo-
spheric response to the unitary mono-directional localized perturbation on its lower
boundary. For this reason, function G3 is also called a point-spread function (PSF).

Let us introduce an operator corresponding to integral transformation (6.63)

Γ̂ 3
z;r(s) =

∫ +∞

−∞
dr′
∫
Ω−

ds1G3(z; r − r′; s1, s) . . . . (6.65)

The operators Γ̂ 3+
H;r ≡ Γ̂ 3

H;r(μ > 0, ϕ) and Γ̂ 3−
0;r ≡ Γ̂ 3

z=0;r(μ < 0, ϕ) represent
atmospheric transmittance for radiance in the backward and forward directions,
respectively, upon illumination of the atmosphere from below. Now we can establish
the relation between successive orders of interaction of light with inhomogeneous
surface. At the surface level, the downward radiance of the reflection order (k),
J
(k)
+ (H; r), is a result of atmospheric backscattering of the upward radiance of the
same order, J (k)+ (H; r) = Γ̂ 3+

H;rJ
(k)
− (H; r). The upward radiance of the order (k+1)

can be expressed via its precursor of the order (k) as:

J
(k+1)
− (H; r) = RrJ

(k)
+ (H; r) = RrΓ̂

3+
H;rJ

(k)
− (H; r). (6.66)

Based on this result, the total upward surface-reflected radiance in series (6.61)
becomes

J−(H; r) =
∑
k≥1

J
(k)
− (H; r) =

∑
k≥0

(RrΓ̂ 3+
H;r)

kRrJ
(0)
+ (H)

= (Î −RrΓ̂ 3+
H;r)

−1RrJ
(0)
+ (H). (6.67)

This formula gives an exact formal solution in the operator form for the reflected
radiance at the surface level. The relationships between successive orders of in-
teraction k → k + 1 are described by the operator RrΓ̂ 3+

H;r, which represents the
following integral transformation:

J (k+1)(H; r; s) =
1
π

∫
Ω+

ds′μ′ρ(r; s′, s)

×
∫ +∞

−∞
dr′
∫
Ω−

G3(H; r − r′; s1, s′)J (k)(H; r′; s1) ds1. (6.68)

At an arbitrary altitude z in the atmosphere, the surface-reflected radiance in the
upward direction can be found from (6.63):

J−(z; r − rs) = Γ̂ 3−
z;r−rs(Î −RrΓ̂ 3+

H,r)
−1RrJ

(0)
+ (H), (6.69)

where rs = {(H − z) |tgθ| cosϕ; (H − z) |tgθ| sinϕ} is a shift in the horizontal
coordinate at slant observations.
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6.4.2 Linearized solution

An exact solution (6.69) accounts for all orders of interaction of light with spatially
variable surface BRF. In further analysis, it is convenient to separate the mean value
[f̄ ] and the spatial variation [f̃(r)] in surface BRF and in radiance. We will further
analyze (6.69) in the linear approximation in BRF’s spatial variation. It will allow
us to develop a fast parametric solution and to use an earlier-derived parametric
formula for the mean component of radiance (section 6.3). The linearized solution
has a sufficiently high accuracy for practical purposes. The non-linear contribution
J̃nl(z; r; s) is typically small. For example, when the surface is Lambertian, the
non-linear contribution is bounded (Sushkevich et al., 1990):

J̃nl(z; r; s)/J̃(z; r; s) ≤ qmaxc0
1− q̄c0 , (6.70)

where qmax is a maximal albedo value in the image. In clear-sky conditions,
J̃nl(z; r; s) does not exceed several percent of the radiance variation and is even
smaller with respect to the total signal.

Let us divide the surface reflection operator (Rr) into the mean (R̄) and varia-
tion (R̃r) components, and linearize the surface-reflected radiance (equation (6.67)):

J−(H; r) =
∑
k≥0

([R̄+ R̃r]Γ̂ 3+
H;r)

k[R̄+ R̃r]J
(0)
+ (H) ∼= J̄−(H)

+
∑
k≥0

(R̄Γ̂ 3+
H;r)

kR̃rJ
(0)
+ (H)

+
∑
k≥0

k∑
l=0

(R̄Γ̂ 3+
H;r)

k−lR̃rΓ̂ 3+
H;r(R̄Γ̂

3+
H;r)

lR̄J
(0)
+ (H). (6.71a)

In this formula, the first term J̄−(H) is the mean reflected radiance corresponding
to the mean BRF. Let us rewrite the third term as

∑
k≥0

k∑
l=0

(R̄Γ̂ 3+
H;r)

k−lR̃r(Γ̂ 1+
H R̄)lΓ̂ 1+

H R̄J
(0)
+ (H). (6.71b)

Here, we used the fact that the 3-D operator Γ̂ 3+
H;r, when applied to the mean signal

R̄J
(0)
+ (H), turns into a 1-D operator Γ̂ 1+

H related to the 1-D Green’s function

G1(z; s1, s) =
∫ +∞

−∞
G3(z; r − r′; s1, s) dr′, (6.72)

that obeys the boundary-value problem (6.28). Now, series (6.71b) can be summed
analytically as follows. Let us fix index l = l0 (l0 = 0, 1, . . . ), and sum the series
in index k from k = l0 to k = ∞. When the residual series is summed in index l
including the second term of formula (6.71a), it gives the following expression for
the variation of surface-reflected radiance:

J̃−(H; r) ∼= (Î − R̄Γ̂ 3+
H;r)

−1R̃r(Î − Γ̂ 1+
H R̄)−1J

(0)
+ (H). (6.73)
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This equation shows that in the linear approximation, the variation of the surface-
reflected radiance is formed as follows. First comes the mean incident radi-
ance that includes all orders of interaction with the mean surface BRF, (Î −
Γ̂ 1+
H R̄)−1J

(0)
+ (H). The incident radiance is then reflected from the BRF variation,

R̃r(Î − Γ̂ 1+
H R̄)−1J

(0)
+ (H). Finally, the variation of reflected signal is enhanced in

the process of subsequent multiple interactions with the mean BRF.
Applying a spatial Fourier transform, we can write an expression for the spatial

Fourier spectrum of radiance variation at altitude z:

J̃−(z; p) = F [J̃−(z; r)] = Γ̂ 3−
z;p (Î − R̄Γ̂ 3+

H;p)
−1R̃p(Î − Γ̂ 1+

H R̄)−1J
(0)
+ (H). (6.74)

Here, the Fourier transform is defined for spatial frequency p = (px, py) as F [y(r)] =
y(p) =

∫ +∞
−∞ y(r) exp(ipr) dr, and operator Γ̂ 3−

z;p is defined as

Γ̂ 3−
z;p =

∫
Ω−

ds1G3(z; p; s1, s) . . . , μ < 0 (6.75)

The Fourier transform of PSF, G3p ≡ G3(z; p; s1, s), is called an optical trans-
fer function (OTF) of the atmosphere. The boundary-value problem for OTF is
obtained by applying a Fourier transform to the problem for PSF (6.64):

L̂3pG3p = ŜG3p, (6.76)

G+3p(0) = 0; G−3p(H) = δ(s− s1), (6.76a)

where L̂3p = μ∂/∂z − i
√
1− μ2 × {px cosϕ + py sinϕ} + α(z). In the downward

direction, OTF is a purely diffuse function Gd3p, and it has both direct and diffuse
components in the upward direction:

G3(z; p; s1, s)

= exp(iprs)
{
Gd3(z; p; s1, s), μ > 0
exp(−[τ0 − τ(z)]/ |μ1|)δ(s− s1) +Gd3(z; p; s1, s), μ < 0 . (6.77)

Since operator L̂3p is complex, the diffuse component of OTF is also a complex
function and can be expressed via its amplitude A and phase Φ, Gd3(z; p; s1, s) =
A(z; p; s1, s) exp(iΦ(z; p; s1, s)).

The total radiance at altitude z can be obtained using inverse Fourier transform:

I(z; r; s) = D(z; s0, s) + J̄(z; s0, s) + F−1[J̃(z; p; s)]. (6.78)

Let us now consider a linearized solution in application to a Lambertian surface,
which has been rather well studied both in theory (Sushkevich et al., 1990; Zege et
al., 1991) and in numerical experiments (Lyapustin, 2001; Lyapustin and Mulda-
shev, 2001). This exercise will serve a twofold purpose. On the one hand, we will
show that the Lambertian approximation is a particular case of a general solution
(6.74). On the other hand, based on the Lambertian solution, we will introduce im-
portant parameterizations that will allow us to significantly accelerate calculations
in the general case of anisotropic surface reflectance.
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6.4.3 Lambertian approximation

In the case of isotropic surface reflectance, formula (6.74) transforms as follows.

(1) The variation of the reflected radiance becomes

R̃p(Î − Γ̂ 1+
H R̄)−1J

(0)
+ (H) = R̃p

∑
k≥0

(Γ̂ 1+
H R̄)kJ (0)+ (H)

= q̃(p)
∑
k≥0

(c0q̄)kE0(μ0)

= q̃(p)αE0(μ0), (6.79a)

where surface irradiance

E0(μ0) = Sλμ0 exp(− τ0
μ0
) +

1
π

∫
Ω+

D(H; s0, s)μds,

and α = (1− q̄c0)−1.
(2) Operator R̄Γ̂ 3+

H;p, coupling atmospheric backscattering and reflection from the
mean BRF, modifies variation of surface-reflected radiance as follows:

(R̄Γ̂ 3+
H;p)R̃p(Î − Γ̂ 1+

H R̄)−1J
(0)
+ (H)

=
q̄

π

∫
Ω+

∫
Ω−

μ′Gd3(H; p; s1, s
′)ds1ds′ × q̃(p)αE0(μ0)

= {q̄c(p)}q̃(p)αE0(μ0), (6.79b)

where
c(p) =

1
π

∫
Ω+

μ′ds′
∫
Ω−

Gd3(H; p; s1, s
′) ds1

is a spherical albedo of atmosphere at spatial frequency p. At p → 0, it turns
into a 1-D spherical albedo of atmosphere, c0 ≡ c(0).

Equation (6.79b) allows us to express the linear variation of surface-reflected
radiance as:

J̃(H; r; s) =
∑
k≥0

(R̄Γ̂ 3+
H;r)

kR̃p(Î − Γ̂ 1+
H R̄)−1J

(0)
+ (H)

=
∑
k≥0

{q̄c(p)}k × q̃(p)αE0(μ0) = q̃m(p)αE0(μ0), (6.79c)

where q̃m(p) = [q̃(p)]/[1− q̄c(p)] is the Fourier transform of albedo variation
corrected for multiple interactions between the atmosphere and the mean sur-
face albedo.

(3) Since the angular distribution of reflected radiance J̃(H; r; s) is isotropic, op-
erator Γ̂ 3−

z;p becomes a scalar function

Γ̂ 3−
z;p (I − R̄Γ̂ 3+

H;p)
−1R̃p(Î − Γ̂ 1+

H R̄)−1J
(0)
+ (H)

= q̃m(p)αE0(μ0)
∫
Ω−

G3(z; p; s1, s)ds1

= q̃m(p)αE0(μ0)Ψ(z; p; s). (6.79d)
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Here,

Ψ(z; p; s) =
∫
Ω−

G3(z; p; s1, s) ds1

= exp(iprs)
{ ∫

Ω− G
d
3(z; p; s1, s)ds1, μ > 0

exp(−[τ0 − τ(z)]/ |μ|+
∫
Ω− G

d
3(z; p; s1, s)ds1, μ < 0

,

(6.79e)

is atmospheric OTF for the problem with Lambertian surface. From (6.79e)
and (6.76) it follows that function Ψp ≡ Ψ(z; p; s) obeys the problem with
isotropic unitary source on the lower boundary:

L̂3pΨp = ŜΨp, (6.80)

Ψ+
p (0) = 0, Ψ−

p (H) = 1. (6.80a)

(4) Finally, the inverse Fourier transform of Eq. (6.79d) gives the radiance variation
in the upward direction,

Ĩ(z; r; s) = αE0(μ0)
{
q̃m(r − rs) exp(−[τ0 − τ(z)]/ |μ|)

+
1

(2π)2

∫ +∞

−∞
q̃m(p)A(z; p; s) exp(−i[p(r − rs)− Φ(z; p; s)]) dp

}
,

(6.81)

where A and Φ are the amplitude and phase of the diffuse component of OTF
Ψ(z; p; s).

The boundary-value problem (6.80) defining OTF Ψ(z; p; s), and solution
for the radiance variation (6.81) were obtained earlier for the linearized ra-
diative transfer problem with Lambertian lower boundary (Sushkevich et al.,
1990). Our independent derivation thus shows that the Lambertian solution is
a particular case of a general solution (6.74).

6.4.4 Numerical aspects

Equation (6.74) cannot be used in practice. The evaluation of multiple reflections
from surface (inverse operator) and the Fourier transforms are the major compu-
tational challenge. Several parameterizations can be introduced that accelerate the
solution dramatically while keeping the accuracy sufficiently high for most appli-
cations.

First, we will use the maximum eigenvalue method to parameterize multiple
reflections in the term

R̃p(Î − Γ̂ 1+
H R̄)−1J

(0)
+ (H) = R̃pJ

(0)
+ (H) + R̃p

∑
k≥1

(Γ̂ 1+
H R̄)kJ (0)+ (H). (6.82a)

Separating the incident radiance J (0)+ (H) into the direct solar beam I+δ and incident
path radiance D+, we can rewrite the last term as (see derivation (6.40)–(6.41))
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R̃p
∑
k≥0

(Γ̂ 1+
H R̄)kΓ̂ 1+

H R̄J
(0)
+ (H) ∼= R̃pΓ̂

1+
H R̄(I+δ +D

+)
1− η̄ , (6.82b)

where η̄ is a maximum eigenvalue of operator Γ̂ 1+
H R̄. Next, following derivation of

section 6.3, we can write:

R̃pΓ̂
1+
H R̄I+δ ≈ Sλμ0 exp(−τ0/μ0)c0ρ̃1(p;μ)ρ̄2(μ0), and R̃pΓ̂ 1+

H R̄D+ ≈ η̄R̃pD+,
(6.82c)

where ρ1(μ), ρ2(μ0) are given by (6.43). Evaluation of the maximum eigenvalue η̄
in Lambertian approximation (η̄ ≈ q̄(μ0)c0) allows us to rewrite (6.82a) as:

R̃p(Î − Γ̂ 1+
H R̄)−1J

(0)
+ (H) ∼= Sλμ0 exp

(
− τ0
μ0

){
ρ̃(p; s0, s) + αc0ρ̃1(p; s)ρ̄2(s0)

}
+
α

π

∫
Ω+

D(H; s0, s′)ρ̃(p; s′, s)μ′ ds′,

α = (1− q̄(μ0)c0)−1. (6.82d)

Equation (6.82d) gives the linearized variation of the surface reflected radiance
J̃(H; p; s) without the multiple reflection contribution from the term (Î−R̄Γ̂ 3+

H;p)
−1.

Neglecting this term for now, and recalling (6.77)–(6.78), we can express the TOA
variation of radiance as:

J̃(0; r; s) ∼= F−1[exp(iprs){J̃(H; p; s) exp(−τ0/ |μ|)
+
∫
Ω−

Gd3p(0; p; s1, s)J̃(H; p; s1) ds1}]. (6.83)

A quick analysis of this equation shows that the Fourier transformation of the BRF
variation is a major computational issue. For example, separate direct and inverse
FFT operations are required not only for a given solar angle and view directions,
but also for all directions of numerical quadrature necessary for integration over
the hemispheres Ω+, Ω−, which would make this method completely impractical.
However, all of the burden in practice can be reduced to a single direct and inverse
Fourier transform.

To demonstrate this, let us consider the second (diffuse) term in formula (6.83).
In the physical sense, it represents photons collected from a large elliptic area sur-
rounding the pixel (r−rs). These photons fall into the line of sight after a single out
or several acts of scattering in the atmosphere. In each instance of scattering, they
‘lose memory’ of the original direction of propagation. The photons also arrive from
different surface points, each of which is characterized by its unique bi-directional
reflectance and geometry of reflection. Thus, combination of the horizontal and an-
gular averaging due to scattering in the atmosphere produces an effective smoothing
of the diffuse transmission of the variation of reflected radiance. Thus, the diffuse
term of (6.83) can be modeled in the Lambertian approximation (second term of
(6.81)). To this end, we introduce an effective Lambertian surface with albedo dis-
tribution defined from the condition of conservation of the specific reflected flux in
each surface point:

q(μ0; r) = F ↑(H; r)/F̄ ↓(H;μ0), (6.84a)
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F̄ ↓(H;μ0) = πE0(μ0) = πSλμ0 exp(−τ0/μ0) +
∫
Ω+

D(H; s0, s′)μ′ ds′, (6.84b)

F ↑(H; r) =
∫
Ω−

μds{Sλμ0 exp(−τ0/μ0)ρ(r; s0, s)

+
1
π

∫
Ω+

μ′ρ(r; s′, s)D(H; s0, s′) ds′}. (6.84c)

In the next step of eliminating multiple Fourier transforms, we also neglect the
multiple reflection term (Î − R̄Γ̂ 3+

H;p)
−1 in the directly transmitted variation of

the surface-reflected radiance. Then, the final expression for the TOA radiance
becomes:

I(r − rs; s0, s) ∼= D(0; s0, s) + exp(−τ0/ |μ|)J(H; r; s) +
∫
Ω−
Gd1(0; s1, s)J̄(H, s1) ds1

+
αE0(μ0)
(2π)2

∫ +∞

−∞

q̃(μ0, p)A(0; p; s)
1− q̄(μ0)c(p) exp(−i[p(r − rs)− Φ(0; p; s)]) dp,

(6.85)

where surface-reflected radiance is given by

J(H; r; s) ∼= Sλμ0 exp(−τ0/μ0)
{
ρ(r; s0, s) + αc0ρ1(r;μ)ρ̄2(μ0)

}
+
α

π

∫
Ω+

D(H; s0, s′)ρ(r; s′, s)μ′ ds′. (6.86)

Equation (6.85) shows that the TOA radiance is represented physically as a sum of
path radiance and surface-reflected radiance that is directly and diffusely transmit-
ted through the atmosphere. The diffusely transmitted component is additionally
split into the diffuse transmission of the mean value and of variation of the surface-
reflected radiance.

Radiance simulations over spatially varying anisotropic surface based on (6.85)–
(6.86) require a set of 1-D functions, including path radiance, 1-D Green’s function,
incident and reflected surface fluxes and spherical albedo of atmosphere, which are
computed with code SHARM. It also requires a 3-D optical transfer function of
atmosphere, solution for which, by the method of spherical harmonics obtained by
Lyapustin and Muldashev (2001), is described next.

6.5 MSH solution for the optical transfer function

Let us consider the boundary-value problem for OTF (6.80). For simplicity, we
assume that surface reflectance changes only in the x-direction, which gives a 2-D
problem in coordinates (z, p = px). Let us re-write (6.80), dividing the equation by
extinction coefficient α(z) and defining parameter p1 = p/α(z):

μ
∂ψ(τ ; p; s)

∂τ
+ [1− ip1

√
1− μ2 cosϕ]ψ(τ ; p; s) = ω(τ)

4π

∫
Ω

χ(τ, γ)ψ(τ ; p; s′) ds′

(6.87)
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ψ(0; p; s) = 0, μ > 0; ψ(τ0; p; s) = 1, μ < 0. (6.87a)

Expansion of the scattering function (6.3) and the OTF into azimuthal Fourier
series,

ψ(τ ; p; s) = (2− δ0,m)
∞∑
m=1

ψm(τ ; p;μ) cosmϕ, (6.88)

provides an equation for the mth azimuthal harmonic ψm:

μ
∂ψm

∂τ
+ ψm − ip1

√
1− μ2 1 + δ0,m

2
(ψm−1 + ψm+1) =

ω

2

∫ +1

−1

ψmχm dμ′ (6.89)

ψm(0; p;μ) = 0, μ > 0; ψm(τ0; p;μ) = δ0,m, μ < 0, m = 0, . . . ,M. (6.89a)

Contrary to the 1-D problem for mean intensity, in this case equations at different
m are chained, so system (6.89) can only be solved simultaneously for all m =
0, . . . ,M .

The solution for the OTF is a complex function, ψm = ψmRe + iψ
m
Im. From the

fact that there are no internal sources in (6.89), and from the form of boundary
conditions, it follows that ψ2k+1

Re = 0, and ψ2k
Im = 0, k = 0, . . . ,M/2. So we can

define a new real function Φ according to the rule: Φ2k = ψ2k
Re, and Φ

2k+1 = ψ2k+1
Im .

It obeys the real problem

μ
∂Φm

∂τ
+ Φm + (−1)mp1

√
1− μ2 1 + δ0,m

2
(Φm−1 + Φm+1) =

ω

2

∫ +1

−1

Φmχmdμ′

(6.90)
and boundary conditions (6.89a). The total number of harmonics M + 1 must be
even, so that the number of even and odd Φm is equal.

Next, let us expand harmonics χm and Φm into Legendre polynomial series

χm(τ, μ, μ′) =
Lm∑
k=m

χk(τ)Y mk (μ)Y
m
k (μ

′),

Φm(τ, p, μ) =
Lm∑
k=m

2k + 1
2

Φmk (τ, p)Y
m
k (μ). (6.91)

Next, let us define a vector of moments Φm(τ, p) = [Φmm, Φ
m
m+1, . . . , Φ

m
Lm
]T for the

mth harmonic, and a total vector of solution Φ = {Φ0, Φ1, . . . , ΦM}T . Now we can
obtain the system of linear differential equations for the moments Φmk (τ, p). To
this end, expansions (6.91) are substituted into (6.90), which is then multiplied by
Y mp (μ) for p = m, m + 1, . . . , Lm, m = 0, . . . ,M , and integrated over μ from −1
to 1. The resulting system of ordinary differential equations for mth harmonic can
be written as

Am
dΦm(τ, p)

dτ
+Cm(τ)Φm(τ, p)+(−1)mp1 1 + δ0,m2

((Dm−1)TΦm−1+DmΦm+1) = 0

(6.92a)
Combining all equations at different m, we can rewrite the system of equations in
the following matrix form,
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∂Φ(τ, p)
∂τ

+A−1[C(τ) + p1D]Φ(τ, p) = 0, (6.92b)

where A and C are block-diagonal matrices A = diag {A0, A1, . . . , AM}, C =
diag {C0, C1, . . . , CM}, consisting of standard submatrices Am and Cm (see section
6.1). Matrix D has the following form:

D =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0 2D0 0
−D0T 0 −D1

D1T 0 D2

−D2T 0 · · ·
· · · · · · DM−1

0 −(DM−1)T 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with

Dm =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d0 0
0 d1
e0 0 d2
0 e1 0 d3
... · · · · · · · · ·
0 · · · 0 eLm−m−2 0 dLm−m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and dk =
√
(2m+ k + 1)(2m+ k + 2), ek=-

√
(k + 1)(k + 2). For eachm in (6.92a),

we assume that the last moment is zero, ΦmLm+1 = 0.
Equation (6.92a) is complemented with Marshak’s boundary conditions:

Φmod(0)−GmΦmev(0) = 0, (6.92c)

Φmod(τ0) +G
mΦmev(τ0) = 2
hδ0,m, 
h = (G0

1,1, G
0
2,1, G

0
(L0+1)/2,1)

T . (6.92d)

One of the methods of solving (6.92b) is to assume that the atmosphere consists
of n homogeneous layers, each of them having a constant matrix Ci. Then this
equation can formally be integrated within the layer to yield:

−Φi−1 + eR(τi−τi−1)Φi = 0, R = A−1[Ci + p1D], (6.93)

where R is a matrix of the layer. Finding matrix exponent eR(τi−τi−1) is a major
part of the solution. Similarly to the 1-D MSH solution (section 6.1), this is done
using a singular-value decomposition of matrix R. We also use matrix symmetry
to reduce its size by a factor of 2, thus achieving a gain in speed by a factor of
approximately 8.

6.6 Similarity transformations

Let us first multiply (6.93) by a block-diagonal matrix T0 = diag {P0, P0, . . . , P0},
where P0 is a unitary matrix of dimension L0 sorting a vector into even and odd
components. Matrix T0 will transform vector Φ into a vector y1 = [(Φ0t , Φ

0
b), . . . ,

(ΦMt , Φ
M
b )]

T , in which Φmt and Φ
m
b consist of even and odd elements of vector Φ

m

if m is even, and vice versa if m is odd. Matrix R will turn into a matrix G:
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G = T0RT
T
0 = T0A

−1TT0 [T0CiT
T
0 + p1T0DT

T
0 ],

where each submatrix of A−1, C and D, corresponding to the mth harmonic, will
be changed according to the rule Xm → P0X

mPT0 . Specifically, diagonal matrix
Cm will be sorted into even and odd components,

P0C
mPT0 =

(
Cmt 0
0 Cmb

)
.

Matrix Dm will be sorted accordingly,

P0D
mPT0 =

(
Dmt 0
0 Dmb

)
,

where

Dmt =

⎛⎜⎜⎝
dmm 0
emm dmm+2

0 emm+2 · · ·
0 0 emLm−3 dmLm−1

⎞⎟⎟⎠ ,
and

Dmb =

⎛⎜⎜⎝
dmm+1 0
emm+1 dmm+3

0 emm+3 · · ·
0 0 emLm−2 dmLm

⎞⎟⎟⎠ .
Matrix (Am)−1 will be transformed into a matrix

P0(Am)−1PT0 = (
0 Am1
AmT1 0 ).

Matrices Am1 can be found analytically without matrix inversion due to a simple
structure of Am. For example, for L0 = 6,

Am1 =

⎛⎝ a−1
1

−a2
a1a3

a2a4
a1a3a5

0 a−1
3

−a4
a3a5

0 0 a−1
5

⎞⎠ ,
where elements ai of matrix Am were defined in section 6.1.

Next, we apply a unitary transformation P̂ to the modified equation (6.93).
Matrix P̂ is designed to sort vector y1 = [(Φ0t , Φ

0
b), . . . , (Φ

M
t , Φ

M
b )]

T into the top
and bottom parts

y = P̂ y1 = [(Φ0t , Φ
1
t , . . . , Φ

M
t ), (Φ

0
b , Φ

1
b , . . . , Φ

M
b )]

T = (yt, yb)T . (6.94)

Therefore, P̂ is just a sorting matrix of size (M + 1) × (M + 1), having as its
elements the following submatrices of dimension (L0/2)× (L0/2): identity matrices
I in place of units, and zero matrices in place of zeroes. For example, for M = 3,

P̂ =

⎛⎜⎜⎝
I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

⎞⎟⎟⎠ .
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These similarity transformations bring (6.93) to the form:

−
(
yt
yb

)
i−1

+ exp(FΔτi)×
(
yt
yb

)
i

= 0, (6.95)

where yt, yb are defined by (6.94),

F =
(
0 B
T 0

)
,

and matrices T , B have the form

T =

0
BBBBBBBB@

A0T1 C
0
t p1A

0T
1 D

0
t 0 · · · 0

−p1A1T1 D0T
t /2 A1T1 C

1
t −p1A1T1 D1

t /2
.
.
.

0 p1A
2T
1 D

1T
t /2 A2T1 C

2
t · · · 0

.

.

. · · · · · · p1(A
M−1
1 )TDM−1

t /2

0 · · · 0 −p1AMT
1 (DM−1

t )T /2 AMT
1 CM

t

1
CCCCCCCCA
,

B =

0
BBBBBBBB@

A01C
0
b p1A

0
1D

0
b 0 · · · 0

−p1A11D0T
b /2 A11C

1
b −p1A11D1

b/2
.
.
.

0 p1A
2
1D

1T
b /2 A21C

2
bt · · · 0

.

.

. · · · · · · p1A
M−1
1 DM−1

b /2

0 · · · 0 −p1AM
1 (DM−1

b )T /2 AM
1 C

M
b

1
CCCCCCCCA
.

6.6.1 Singular value decomposition

Matrix F possesses a symmetry necessary to decrease its size by a factor of 2 in the
SVD problem. Suppose that SVD was found for matrix F , which is our ultimate
purpose:

F = ZΛ1Z
−1, (6.96)

where Z is a matrix of eigenvectors, and Λ1 is a diagonal matrix of eigenvalues.
Consider matrix

F 2 =
(
BT 0
0 TB

)
= ZΛ2

1Z
−1, (6.97)

which is block-diagonal, has the same eigenvectors as matrix F and has squared
eigenvalues of matrix F . Matrices BT and TB have the same eigenvalues, and
their matrices of eigenvectors are related by a linear matrix transformation. So, it
is sufficient to find the SVD for only one of them, for example BT = UΛ2U−1.
Then, eigenvalues of F are ±√λ2i , where λ2i are eigenvalues of both BT and of F 2,
and

Λ1 =
(
Λ 0
0 −Λ

)
.

After that, we can reconstruct matrix Z as

Z =
(
U U
V V−

)
,

where unknown matrices V and V− correspond to positive and negative eigenvalues.
These matrices can be found from SVD (6.96) FZ = ZΛ1, which gives: V−=-V ,
and V = TUΛ−1. In order to find the SVD for matrix BT , we use QR algorithm
with a preliminary reduction of matrix to the Hessenberg form.
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6.6.2 Solution for moments

Now we can find the matrix exponential of (6.95) explicitly:

exp

{(
0 B
T 0

)
Δτi

}
= Z exp

{(
Λ 0
0 −Λ

)
Δτi

}
Z−1, where

Z =
(
U U
V −V

)
, Z−1 =

1
2

(
U−1 V −1

U−1 −V −1

)
. (6.98)

With this decomposition and multiplication of (6.95) by 2SZ−1, where the scaling
transformation S is defined as

S =
(
0 I
e−ΛΔτ 0

)
,

we obtain
−SiZ−1

i yi−1 +HiZ−1
i yi = 0, i = 1, 2, . . . , n, (6.99)

where

H = S exp

{(
Λ 0
0 −Λ

)
Δτi

}
=
(
0 e−ΛΔτ

I 0

)
.

At highM and L0, when the real parts of maximal eigenvalues are large, the scaling
transformation S stabilizes system of equations (6.99) by extinguishing positive
exponents in its coefficients.

Finally, let us denote Ei = exp(−ΛΔτi) and rewrite (6.99) as follows:

−U−1yti−1 + V
−1ybi−1 + EiU

−1yti − EiV −1ybi = 0 (6.100a)

−EiU−1yti−1 − EiV −1ybi−1 + U
−1yti + V

−1ybi = 0. (6.100b)

This set of equations along with boundary conditions (6.92) provides a closed sys-
tem of linear equations in n atmospheric layers, which is efficiently solved with the
Gauss elimination method.

6.6.3 Solution for the OTF

Once moments are found, the OTF can be reconstructed by summing series (6.91)
and (6.88). Similarly to the 1-D case, truncation of these series at M and L0 leads
to the errors in solution, which appear as non-physical oscillations of the OTF in
zenith and azimuthal angles as well as in parameter p. To compensate for these
errors, we use a smoothing method of integration of the source function. In order
to describe the algorithm, let us integrate (6.87) from τi to τi+1 to obtain a relation
between OTF values at the interfaces of ith layer:

Ψi(τ, p;μ, ϕ) = e−
αΔτi

μ Ψi+1(τ, p;μ, ϕ) +
1
μ

∫ τi+1

τi

e−
α(τ−τi)

μ J(τ, p;μ, ϕ) dτ, (6.101)

where α = 1− ip1
√
1− μ2 cosϕ, and J(τ, p;μ, ϕ) is a right-hand side of (6.87),



238 Alexei Lyapustin, Tolegen Muldashev and Yujie Wang

J(τ, p;μ, ϕ) = ω(τ)
M∑
m=0

2− δ0,m
2

cosmϕ
Lm∑
k=m

χk(τ)ψmk (τ, p)Y
m
k (μ). (6.101a)

The integral in the right-hand side of (6.101) contains integrals from the moments∫ τi+1

τi

e−
α(τ−τi)

μ Φmk dτ.

To find these terms, multiply equation for moments (6.92a) for each m by
e−[α(τ−τi)/μ] and integrate it within a homogeneous layer from τi to τi+1:

Am
{
e−

α(τi+1−τi)
μ (Φm)i+1 − (Φm)i

}
+
{
α

μ
Am + Cmi

}∫ τi+1

τi

e−
α(τ−τi)

μ Φm dτ

+(−1)mp1 1 + δm2
{
(Dm−1)T

∫ τi+1

τi

e−
α(τ−τi)

μ Φm−1 dτ +Dm
∫ τi+1

τi

e−
α(τ−τi)

μ Φm+1 dτ

}
= 0;

(6.102)

Next, multiply (6.102) by (Am)−1 and denote

Sm =
∫ τi+1

τi

e−
α(τ−τi)

μ Φm dτ, βm = e−
α(τi+1−τi)

μ (Φm)i+1 − (Φm)i.

Defining vectors S = {S0, S1, . . . , SM}, and β = {β0, β1, . . . , βM}, we can rewrite
the above equation as

(
α

μ
+R)S = −β, (6.103)

where R is a matrix of layer introduced by formula (6.93). Thus, we have obtained
a linear algebraic system of equations for the integral of the moments S, which can
be solved, for example, using the Gauss elimination method. In practice, we first
apply similarity transformations in order to use the SVD found before. This allows
us to substitute operation of matrix inversions for each atmospheric layer and each
viewing direction by an operation of matrix multiplication. As a result, calculation
of the OTF in arbitrary directions takes only a small part of the total computer
time even at a considerable number of view angles.

The smoothing procedure described ensures a rapid convergence of the solution
with the increase of orders of azimuthal and Legendre polynomial expansions. As a
result, acceptable accuracy of about 1% at |μ| ≥ 0.3, p ≤ 3–10 is already achievable
in a wide range of atmospheric conditions at M = 9–15, L0 = 23–35. The specified
range of zenith view angles satisfies virtually all possible applications of the optical
transfer function, and a wider range of spatial frequencies may be required only in
the presence of extremely dense and geometrically thin aerosol layers.

Fig. 6.3 illustrates the behavior of the amplitude and phase of the OTF, and
of the spherical albedo of the atmosphere in different atmospheric and viewing
conditions.

The algorithm developed works reliably for low and medium spatial frequencies,
p ≤ 2–10, depending on aerosol stratification in the atmosphere. At higher p,
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Fig. 6.3. Amplitude and phase of OTF and spherical albedo of atmosphere as a function of
spatial frequency (from Lyapustin and Muldashev, 2001). The results shown were obtained
for the continental aerosol atmosphere for clear (τ = 0.2) and hazy (τ = 0.8) conditions.
The stark difference of 3-D solution from 1-D values is the dependence of the 3-D result
on the vertical profile. Here, calculations are shown for three heights of aerosol layer – 1,
2, and 5 km.
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oscillations of the complex term degrade convergence of the algorithm. On the
other hand, the multiple scattering fraction of the solution quickly decreases with
the increase of p. For this reason, at p > pss = 2 the OTF is computed in the single
scattering as was proposed by Ioltukhovskii (1999). Analysis of the full solution
(6.87) for a variety of scenes shows that the error due to this approximation is
negligible.

6.7 Code SHARM-3D

The described development of the 3-D Green’s function method and of the numer-
ical solution for the OTF led to the creation of code SHARM-3D (Lyapustin and
Wang, 2005). This code performs fast and accurate simulations of the monochro-
matic radiance at the top of atmosphere over spatially variable surfaces with Lam-
bertian or anisotropic reflectance. The atmosphere is assumed to be laterally uni-
form across the image, and consisting of two layers with aerosols contained in the
bottom layer. Such a model plays an important role in the space-borne remote
sensing of atmospheric aerosol and surface reflectance. Far from localized sources,
aerosols vary on a much coarser scale than the surface reflectance, typically at
50–60 km (Anderson et al., 2003). Within such distances, the aerosol amount in
the atmospheric column and its radiative properties can often be considered ap-
proximately uniform, and all of the spatial and angular variability of the measured
signal can be attributed to the variable surface reflectance. The GF method devel-
oped offers a particular advantage when the atmosphere is laterally homogeneous,
because the atmospheric radiative functions need to be obtained only once for the
whole area of interest.

6.7.1 Parameterized SHARM-3D solution

The Green’s function solution for the top-of-atmosphere radiance was given earlier
by equations (6.85)–(6.86). Formula (6.84) is used to compute the albedo of a spa-
tially heterogeneous surface, and equation (6.42) is used to compute the average
surface-reflected radiance. Several parameterizations discussed earlier greatly sim-
plify the radiative transfer algorithm and gain a speed advantage of up to a factor
of 103 as compared to SHDOM, yet retaining the high accuracy, which is generally
better than 1% (Lyapustin, 2002).

Further improvement in speed is achieved by the use of the LSRT model which
parameterizes the GF-solution into a weakly nonlinear function of spatially variable
kernel weights with angular-dependent coefficients that need to be calculated only
once for the whole image. Using functions (6.49)–(6.54) introduced earlier, the
second and third terms of (6.85) (the surface-reflected radiance directly transmitted
at TOA, and the mean surface-reflected radiance diffusely transmitted at TOA) can
be written as follows:

Ls(r; s0, s) ∼= Sλμ0 e
−τ( 1

μ0
+ 1
|μ| ){ρ(r;μ0, μ, ϕ) + αc0ρ1(r;μ)ρ̄2(μ0)}

+ e−τ/|μ|α[kL(r)Ed0 (μ0) + k
G(r)D1

G(μ0, μ, ϕ) + k
V (r)D1

V (μ0, μ, ϕ)];
(6.104)
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L̄ds(μ0, μ, ϕ) = Sλμ0 e
−τ/μ0{[k̄LGav(μ) + k̄GG1

G(μ0, μ, ϕ) + k̄
VG1

V (μ0, μ, ϕ)]
+ αc0[k̄LGav(μ) + k̄GG11

G (μ) + k̄
VG11

V (μ)]ρ̄2(μ0)}
+ α[k̄LEd0 (μ0)G

av(μ) + k̄GH1
G(μ0, μ, ϕ) + k̄

VH1
V (μ0, μ, ϕ)].

(6.105)

The surface albedo is written as:

q(r;μ0) = E−1
0 (μ0){μ0 e−τ/μ0q2(r;μ0) + kL(r)Ed0 (μ0)
+ kG(r)D3

G(μ0) + k
V (r)D3

V (μ0)}. (6.106)

The algorithm described uses two different solutions of 1-D code SHARM. The
first one is a standard solution with the atmosphere illuminated at the top. It
provides the path radiance at TOA along with its azimuthal harmonics at the bot-
tom of the atmosphere, surface irradiance, atmospheric transmittance and spherical
albedo. In the second solution, the atmosphere is illuminated from the bottom; in
other words, it corresponds to a reversed order of atmospheric layers. This solution
provides azimuthal harmonics of the Green’s function in the multiple scattering.
Because aerosol scattering may cause the Green’s function to be very asymmetric in
the aureole region, the harmonics of the single-scattering term are calculated sepa-
rately using the high-order Gaussian quadrature for azimuthal angle (NSS = 129).
With this separation, a relatively low order of MSH (nb = 24–36) can be used in
the multiple scattering calculations. This approach reduces the overall computing
time and preserves the total accuracy. The zenith angle integration uses Gaussian
quadrature of the order Nq = nb/2 + 10. Because the Legendre polynomial of the
order 2N is integrated exactly with the quadrature of the order N , and the ker-
nels fG, fV can be approximated by the low-order polynomials, the quadrature Nq
warrants accurate integration.

Computing the last term of (6.85) requires knowledge of the atmospheric OTF.
Because computing OTF for given atmospheric conditions consumes a lion’s share
of the time required by the SHARM-3D algorithm, we pre-computed a look-up
table (LUT) of certain functions and developed an algorithm which reconstructs
the full OTF from the LUT based on the symmetry and scaling properties of the
OTF. The detail of the OTF LUT algorithm can be found in (Lyapustin and Wang,
2005).

With the OTF known, computing the last variational term of (6.85) requires two
2-D Fourier transforms: the first (direct) transform calculates spatial spectrum of
variation of surface albedo, and the second (inverse) transform restores the spatial
variation of the TOA radiance. These operations are efficiently performed with the
FFT algorithm (Press et al., 1992) that takes N log2N operations for the image
with N2 pixels. The selected Fourier-transform approach based on OTF is more
efficient than the approach with spatial integration of the atmospheric PSF that
requires ∼ N2 operations. In summary, for small images the computing time is
entirely defined by the 1-D radiative transfer calculations of code SHARM. For
large images, the overall time is affected by calculation of the last variational term
of (6.85).

The use of the linear LSRT model and of the pre-computed LUT of the OTF
raises the computational speed of simulating the Earth’s outgoing spectral radiance
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to its practical limit, when any further speed improvements can only be of an
incremental nature.

6.8 Discussion

Similarly to the 1-D code SHARM, the input files for SHARM-3D include a con-
figuration file and files of atmospheric and surface properties. The details on the
input parameters are provided in the document ‘SHARM Manual’.

The LSRT BRF model is used to simulate anisotropic reflectance of land sur-
faces. In order to realistically model reflectance of inland rivers and lakes, especially
in the glint area, we are using the model of Nakajima and Tanaka (1983). The wind
speed is assumed constant across the image. To approximately model reflectance of
suspended matter or reflectance from the shallow bottom, a variable Lambertian
offset can be specified for the water pixels.

Because it neglects the nonlinear interactions in the variation of surface re-
flectance, code SHARM-3D should not be used at resolutions or scales of inho-
mogeneity typical of establishing the 1-D regime, e.g. 3–5 km. In these conditions,
SHARM-3D produces systematic biases for pixels that are brighter or darker than
the average. The magnitude of biases, which tend to reduce the contrast of cal-
culated radiance, may reach several percent. This is easy to demonstrate using an
example of Lambertian surface. Over the large homogeneous areas of the image, the
multiple reflections from the surface enhance the surface-reflected radiance propor-
tionally to the albedo of this particular area, (1−qareac0)−1. At the same time, the
linearized solution (6.85) calculates this enhancement as proportional to the albedo
averaged over the whole image, (1− q̄c0)−1, which leads to the biases mentioned.

To allow the user make calculations in the 1-D regime, we implemented an
independent pixel approximation (IPA) as a separate mode of calculations. The
mode is specified in the surface properties file (*.sfc) by parameter szDimRT, which
can take a value of either ‘1D’ or ‘3D’. The algorithm behind the IPA is a rigorous 1-
D Green’s function method (equations (6.33)–(6.36)) which has the same accuracy
as code SHARM, but becomes progressively faster with the increase of the image
size. The IPA algorithm does not use parameterizations. Instead, it achieves a
rigorous convergence for the series of multiple reflections for each surface pixel. For
this reason, the ‘1D’ mode is considerably slower than the ‘3D’ mode.

A relative accuracy of SHARM-3D and IPA with respect to SHDOM is shown
in Fig. 6.4 for a particular surface realization from the Landsat-7 scene for the
Oklahoma site. At the time of acquisition (April 4, 2000), the scene’s primary
composite elements were the plowed fields (dark) and spring grasses (bright). In
this test, we used the image subset of 64 × 64 pixels in the near-IR band 4 in
order to generate realistic surface reflectance with BRF shape assigned according
to the surface brightness (Lyapustin, 2002). The simulations were performed at 30
m resolution in clear atmospheric conditions (τ = 0.2) in the near-IR channel. The
nadir TOA radiance calculated by SHARM-3D is shown on the left. The middle
image shows the relative difference between SHARM-3D and SHDOM calculations.
One can see that the agreement of these codes is better than ∼1% for over 90% of
the pixels. For comparison, the right image shows that the equivalent 1-D solution
(SHDOM – IPA)/ SHDOM has the range of errors of ±17%.
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Fig. 6.4. Comparison of code SHARM-3D with SHDOM and independent pixel approxi-
mation (IPA) (from Lyapustin, 2002). The left image shows SHARM-3D simulated TOA
radiance. The 64×64 pixels surface area at 30-m resolution was modeled using Landsat-7
reflectance in band 4 over the Oklahoma site on April 4, 2000. The middle and right
images show the relative difference of SHARM-3D and IPA solutions with SHDOM. [For
the color version of this figure, see the color plate section.]

As a brief summary, let us list the main features of code SHARM-3D. It was
developed for rapid simulations of TOA radiance over spatially variable surfaces
with Lambertian or anisotropic reflectance with high accuracy of ∼1%. The code
also computes surface albedo corresponding to given solar zenith angle, atmospheric
conditions, and spatial distribution of BRF. The surface boundary condition is
periodic. The atmosphere is laterally uniform, and consists of two vertical slabs with
aerosols in the bottom layer. Code SHARM-3D performs simultaneous calculations
for all specified incidence-view geometries, and multiple wavelengths in one run.
The range of view zenith angles is at present limited by the maximal value of μ =
−0.3 (θ ≤ 72.5◦) in the look-up table of the pre-computed OTF. Also, the maximal
LUT value of the total optical thickness of atmosphere is 0.9. If τ > 0.9, we assume
that OTF(τ) = OTF(0.9). This assumption has little impact on the accuracy of
radiance calculations because (1) all other terms are calculated accurately, (2) the
path radiance dominates the total TOA radiance at high optical thickness, and (3)
the relative contribution of the variational term decreases with τ proportionally to
the decrease of the surface irradiance.
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7 General invariance relations reduction method
and its applications to solutions of radiative
transfer problems for turbid media of various
configurations

Nikolai N. Rogovtsov

7.1 Introduction

While solving different theoretical and applied problems of planetary atmosphere
optics (Sobolev, 1975; van de Hulst, 1980; Yanovitskij, 1997; Liou, 2002; Kokha-
novsky, 2004; Hovenier et al., 2004; Garcia et al., 2008), astrophysics (Mihalas,
1978; Dolginov et al., 1995; Leroy, 2000; Nagirner, 2001), scattering media optics
and biophysics (Yi et al., 1992; Tuchin, 1997, 2000; Klose, 2009), signal and image
transfer (Zege et al., 1991; Gibson et al., 2005), nuclear plant physics (Davison,
1958; Marchuk, 1961; Marchuk and Lebedev, 1971; Sanchez and McCormick, 1982;
Ganapol and Kornreich, 1995; Ganapol, 2008), etc., one should investigate the ra-
diative (neutron) transfer process through macroscopically homogeneous and inho-
mogeneous, absorbing and scattering media (in particular, through turbid media).
The study of the features of this process in various real and artificial absorbing
and scattering media requires accounting for their shapes, locations of external
and internal sources, kinds of functional dependences of local characteristics of the
said media on spatial and angular coordinates. Besides, there should be taken into
consideration the physical (optical) and geometrical properties of boundary sur-
faces and surroundings of absorbing and scattering media. Due to a wide variety
of the mentioned characteristics and properties, it is rather difficult to construct
unified and effective enough multidimensional (over spatial variables) boundary-
value problems of the radiative (neutron) transfer theory. It is most difficult to
solve such problems when the shapes of media and the location of sources therein
do not possess any constructive symmetry. Among the methods that are universal
in many respects, one should note various numerical methods (the description and
the evaluation of the opportunities of these methods are given, for example, in the
works of Marchuk (1961), Marchuk and Lebedev (1971), Sushkevich et al. (1990),
Morel et al. (1996), Adams and Larsen (2002), Santandrea and Sanchez (2002),
Sanchez and McCormick (2004), Marshak and Davis (2005), Ganapol and Kornre-
ich (2005) and Nikolaeva et al. (2007)) and the Monte Carlo method (Marchuk et
al., 1980; Mikhailov, 1987). Among the analytical (semi-analytical) strict methods
enabling one to totally (or at least partially) investigate the properties of the solu-
tions to problems of the radiative (neutron) transfer theory for cases of media and
sources having no plane-parallel symmetry, note the method of integral transfor-
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mations (Ershov and Shikhov 1972; Kolesov, 1983; Nagirner, 1986, 1994a, 1994b;
Ganapol, 2003; Freimanis, 2005), the method of boundary functions (Latishev,
1984), the Case method (Case and Zweifel, 1967; Marchuk and Lebedev, 1971;
Kolesov, 1986), and the methods based on the usage of concepts and construc-
tions of functional analysis (Shikhov, 1973; Germogenova, 1986; Germogenova and
Pavelyeva, 1991, 1994; Pavelyeva, 1990). Besides, a number of general useful strict
expressions and equations have been obtained in the radiative (neutron) transfer
theory for macroscopically homogeneous and inhomogeneous media by means of
the classical version of the invariant embedding method (Bellman, 1986; Yanovit-
skij, 1997). It should be noted still that in the radiation transfer theory (RTT) and
in the neutron transport theory different combined methods are used rather widely.
These methods allow one to take into account a specific character of problem state-
ment and simultaneously to use advantages of the methods mentioned above (see,
for example, the following publications: Sobolev, 1975; Ganapol, 1976; Rogovtsov
and Samson, 1976; Larsen et al., 1980; Rogovtsov, 1980, 1981a; McCormick and
Sanchez, 1981; Sanchez and Ganapol, 1983; Garcia and Siewert, 1983; Adomian
et al., 1988; Ganapol and Myneni, 1992; Ganapol et al., 1994; Ganapol and Pom-
raning, 1996; Yanovitskij, 1997; Ganapol and McCormick, 1997; Rogovtsov, 1999;
Kascas et al., 2000; Anisimov and Rogovtsov, 2002; Ganapol and Kornreich, 2005;
Cassell and Williams, 2006, 2007; Ganapol, 2008; Rogovtsov and Borovik, 2009;
and references therein. Together with numerical methods, Monte Carlo methods,
strict methods, etc., the radiative transfer theory also widely uses rather simple ap-
proximate analytical methods (see references, for example, in the publications Zege
et al. (1991), Tuchin (1997, 2000) and Gorodnichev et al. (2006)). The accuracy of
these approximate analytical methods, however, is not high enough always, owing
to a number of a priori assumptions utilized in their construction, and cannot be
evaluated within the scope of the methods themselves.

In addition to the above-said strict (analytical and semi-analytical) methods for
solving direct (in particular, multidimensional over spatial variables) and inverse
problems of the RTT, one can use the general invariance relations reduction method
(GIRRM) that have been proposed by Rogovtsov and Samson (1976); Rogovtsov
(1980, 1981a, 1981b, 1981c, 1983, 1985a, 1985b, 1985d, 1989) and presented in the
most general form in the monograph (Rogovtsov, 1999). A number of particular,
but essentially close results have been obtained in the papers (Pikichian, 1982a,
1982b, 1983, 1989). The general invariance principle (Rogovtsov, 1981a, 1981b,
1999) was the foundation for the general invariance relations reduction method.
The important particular consequences of the general invariance principle are the
invariance principles by Ambartsumian (1943a, 1943b) and Chandrasekhar (1950),
the classical version of the invariant embedding principle (Bellman and Kalaba,
1956), and various generalizations of the said principles that have been stated in
the nineteen-sixties to the ninteen-eighties in a number of publications (see, for ex-
ample, the references in the monographs Yanovitskij (1997) and Rogovtsov (1999)).
The distinctive features of the general invariance relations reduction method are,
in particular, its heuristicity, constructiveness, and opportunity to get, on its basis,
analytical (semi-analytical) solutions to boundary-value problems for the radiative
transfer equation (RTE) for the case of an arbitrary phase function and turbid
media of complex configurations. With the help of this method, analytical (in par-
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ticular asymptotic) or numerical solutions of a number of complex multidimensional
boundary-value problems of RTT can be obtained in fact without direct solving of
these problems. In essence the general invariance relations reduction method allows
one to reduce solving initial boundary-value problems of RTT to the analysis of
essentially simpler problems. It should be noted that the construction of GIRRM
had been realized using not only general mathematical and physical notions but
invoking model considerations of ray optics and probabilistic interpretation of RTT.

The objective of this chapter is the description of main statements of the general
invariance relations reduction method and the illustration of its opportunities by
means of examples of solving rather complicated multi-dimensional boundary-value
problems of the RTT. The layout of this chapter is as follows. Section 7.2 presents
briefly the essence of the general invariance relations reduction method. There are
given the statements of boundary-value problems for the scalar radiative transfer
equation in subsection 7.2.1 for the cases of stationary and non-stationary sources.
The general invariance principle (GIP) is formulated in subsection 7.2.2 as applied
to the radiative transfer theory. In subsection 7.2.3, a number of the general invari-
ance relations (GIRs), which are the direct consequences of the GIP, are derived.
These relations connect together the solutions to similar or different boundary-
value problems for the radiative transfer equation. Subsection 7.2.4 gives briefly
the description of the scheme, how one can apply the GIP and the GIRs to solve
the said problems. A number of general examples illustrating the opportunities of
the general invariance relations reduction method are presented in section 7.3 for
reducing the original boundary-value problems to the solution to essentially simpler
boundary-value problems. Moreover, the analog of the Kirchhoff law for the case of
non-equilibrium radiation is obtained in this section and, on the basis of the gen-
eral invariance relations for the monochromatic fluxes, the strict lower and upper
estimations for these fluxes and for mean emission durations of turbid media of non-
concave shapes are found. There are derived a number of explicit strict asymptotical
and approximate analytical solutions to specific boundary-value problems for the
scalar radiative transfer equation in section 7.4 by means of the above-said method
(GIRRM). In subsection 7.4.1, the strict expression for the azimuth-averaged re-
flection function for the case of an semi-infinite plane-parallel non-conservatively
scattering turbid medium (its phase function can describe isotropic scattering or
be forward extended) is found. There are derived a number of analytical expres-
sions for monochromatic radiation fluxes and luminosity values for turbid media
of various shapes in subsection 7.4.2. The opportunities providing by the general
invariance relations reduction method to analytically describe depth regimes of ra-
diation fields and to derive mean emission durations of optically thick turbid media
are briefly given in subsection 7.4.3.

The main reasons providing sufficient generality, the heuristicity, and the ef-
fectiveness of the general invariance relations reduction method are pointed out
in the Conclusion (section 7.5). Besides, there are noted the application areas of
this method and possible directions of its development. The Appendix contains
a brief description of general mathematical notations, conceptions, and construc-
tions, without which it is practically impossible to state strictly the GIP and derive
the GIRs. Note that learning the contents of the Appendix can greatly simplify the
reader’s understanding of the essence of the GIP, the GIRs, and the GIRRM.
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7.2 Main statements of the general invariance relations
reduction method

7.2.1 Statement of boundary-value problems of the scalar radiative
transfer theory

Consider a turbid medium, which occupies a part of the space and does not change
its physical (optical) and geometrical characteristics with time (except for char-
acteristics of radiation sources that can, generally, depend on time). Let such a
medium be denoted by Vβ , where β belongs to a subscript set B. Subscript β
determines symbolically the location, surrounding, internal and external sources,
as well as physical (optical), geometrical and other properties of Vβ . We will also
use below the terms of turbid bodies and objects (or simply bodies and objects)
instead of the term of a turbid medium. Note here that, in the following, all the
objects that are identical each other in geometrical and physical senses at all corre-
sponding points will be always assumed equal and be denoted by the same symbol
of the Vβ kind. Turbid bodies of various shapes (they can be multi-connected, be
disconnected, or be a part of other bodies) can represent Vβ . Let Sβ be a boundary
of a turbid body Vβ , the boundary being assumed to possess physical (optical) and
geometrical properties. Note that generally any portion of boundary Sβ cannot be-
long to body Vβ (i.e. [Vβ ] = Vβ is not valid always, where [Vβ ] is the closure of set
Vβ within a topology based on the conception of a distance between points in the
three-dimensional Euclidean point space E3; see, for example, Faure et al. (1964)).
Let the conditions that will be imposed on geometrical properties of boundary Sβ
be specified. Assume that Sβ can be represented as a union of a finite or countable
set of simple pieces of surfaces, for which a conception of a side and a normal can be
introduced at all their internal points (the normals cannot exist at the boundaries
of these pieces). In such a case, the direction of an external normal at a specific
point of Sβ for a selected side of its simple piece should agree with the transition
operation through the surface to the other side of the said simple piece of boundary
Sβ . Let V0

β be an internal part of body Vβ (i.e. V
0
β = Vβ\Sβ , where the symbol

‘\’ determines the difference operation of sets Vβ and Sβ). Denote a set of all sides
of all simple pieces of the surfaces (their union is Sβ), which osculate with V0

β , via
Sβ(V0

β). Symbols 
n = 
n
(

rSβ

)
and 
n′ = 
n′

(

r ′Sβ

)
will everywhere below stand for

the unit external normals to the selected sides of simple pieces of boundary Sβ at
points, specified by radius-vectors 
rSβ

and 
r ′Sβ
, respectively (they determine Sβ in

some specified right-handed Cartesian rectangular coordinate system OXYZ ).
Real and model turbid media can contain underlying surfaces at the external

boundary or inside themselves. For such surfaces, local (i.e. determined in certain
neighborhoods of points lying on the surfaces) reflection and transmission oper-
ators, R̂ and T̂ , cannot be simultaneously zero (i.e. in these neighborhoods, the
surface does not reflect radiation at all) and unity (i.e. in these neighborhoods, the
surface transmits radiation without changing its characteristics), respectively. The
local operators can depend on the selection of a side on simple pieces of an underly-
ing surface. From a geometrical viewpoint, some of the underlying surfaces may not
be included in the boundary Sβ of body Vβ . We will assume, however, that these
underlying surfaces possess the above-said geometrical properties of the boundary
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Sβ . Note also that the occurrence of the underlying surfaces is related with the
presence of discontinuities of optical characteristics inside the turbid media or at
their boundaries.

Let now the scalar radiative transfer equation (SRTE) and boundary-value
problems for it be stated under the assumptions that photon frequency does not
change (monochromatic scattering) and that local optical characteristics inside tur-
bid medium Vβ are isotropic at points, which do not lie on underlying surfaces.
Besides, it will be assumed that the local optical characteristics at the said points
of body Vβ do not depend on the radiation field.

7.2.1.1 The case of non-stationary internal and external sources

Let the above assumptions be valid. Assume that refraction index m(
r) in turbid
medium Vβ outside of boundary Sβ and of underlying surfaces is a differentiable,
rather slow changing function of argument 
r (radius-vector 
r specifies an observa-
tion point of V0

β in some selected right-handed rectangular Cartesian coordinate
system; the ‘observation’ point should not lie on the underlying surfaces). Besides
we believe that the inequality of

∣∣∣(d
Ω/dτ) · ∇�ΩI(
r, 
Ω, t; Vβ)∣∣∣ � I
(

r, 
Ω, t; Vβ

)
is

valid everywhere in V0
β . Here 
Ω is the unit vector (i.e. |
Ω| = 1) that specifies the

propagation direction of a light ray (this vector defines the direction, correspond-
ing to the ray propagation direction, of a tangent line to the curved trajectory of
the light ray in a point set by the end of the radius-vector 
r); I(
r, 
Ω, t; Vβ) is the
radiation intensity in turbid medium Vβ at time moment t; dτ = κext(
r) dl, where
κext(
r) is the extinction coefficient and dl is the length of an infinitesimal element
along curved trajectory of the light ray (dτ has the sense of the optical length of
this element); ∇�Ω is the Hamiltonian operator acting only on the variable 
Ω. This
inequality imposes essentially the restraint on the curvature of a light ray at any
observation point. The curvature should be small enough in regions near boundary
Sβ near underlying surfaces, and close to the positions of highly anisotropic radi-
ation sources (i.e. changes in the refraction index in such regions should be small
enough; however, the refractive index can substantially change, while one goes from
one side of a simple piece of boundary Sβ (or of an underlying surface) to another
its side). Within the scope of the made assumptions, the SRTE obtained by Bekefi
(1966) and by Minin (1988) takes the following form:

1
v (
r)

∂I
(

r, 
Ω, t; Vβ

)
∂t

+m2 (
r)
(

Ω · ∇�r

)((
m (
r)−2

)
I
(

r, 
Ω, t; Vβ

))
= −κext (
r) I

(

r, 
Ω, t; Vβ

)
+
κsca (
r)
4π

∫
Ω

p
(

r; 
Ω · 
Ω′

)
I
(

r, 
Ω, t; Vβ

)
dΩ′

+g
(

r, 
Ω, t; V0

β

)
, t ∈ (−∞, +∞) . (7.1)

Here, ∇�r is the Hamiltonian operator acting only on the variable 
r; v (
r) is the
light velocity in the turbid medium Vβ ; κsca (
r) is the scattering coefficient; Ω is
the unit sphere; 
Ω′ is the unit vector

(|
Ω| = |
Ω′| = 1); p (
r; μ) is the phase function,
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which is nonnegative and which for all 
Ω ∈ Ω and for all admissible 
r satisfies the
normalization condition (4π)−1 ∫

Ω
p
(

r; 
Ω · 
Ω′ ) dΩ′ = 1 (
Ω · 
Ω′ = μ ∈ [−1, 1] ; 
Ω · 
Ω′

is the scalar product of vectors 
Ω and 
Ω′ ); symbol 
Ω ·∇�r means the differentiation
operation with respect to the direction of unit vector 
Ω; function g

(

r, 
Ω, t; V0

β

)
specifies the density of internal sources in V0

β . In Eq. (7.1), function I
(

r, 
Ω, t; Vβ

)
is unknown and all other functions are supposed to be specified. Generally, all the
functions entering Eq. (7.1) can be dependent on frequency ν as a parameter.

The strict mathematical statement of boundary-value problems for Eq. (7.1)
not only requires one to form the boundary conditions imposed on boundary Sβ of
body Vβ and of underlying surfaces, but also supposes the indication of all func-
tion classes entering this equation. With this, the selected function classes should
agree with each other, so that the solution to Eq. (7.1) will exist in the respec-
tive function class. As with any other equation comprising differential operations,
Eq. (7.1) imposes only general restrictions on the function class, where the solution
I
(

r, 
Ω, t; Vβ

)
is sought. To isolate required and physically reasonable solutions, a

number of additional conditions should be added to Eq. (7.1).
While stating a general boundary-value problem for Eq. (7.1), one should take

into account that external sources and surrounding of turbid medium Vβ affect
the radiation field in the medium (in particular, Vβ may be a part of another
turbid medium). Besides, radiation incident on Sβ(V

0
β) (or on underlying surfaces,

if they are in Vβ) from the interior of body Vβ can again strike the same turbid
medium. Radiation exiting from the interior of such a medium (i.e. from V0

β) can,
for example, again partially or totally come to V0

β as a result of reflection, trans-
mission, refraction, or ‘shooting’ (‘shooting’ means mutual irradiation of the same
object through spatial regions not belonging to Vβ). Therefore, radiation exiting
V0
β near a point specified by 
rs does not necessarily come to V

0
β again from the

neighborhood of the same point.
Accounting for the above, consider a turbid medium Vβ , the boundary Sβ of

which includes all underlying surfaces of Vβ . Introduce hemispheres Ω± = Ω±(
rs) of
a unit sphere Ω, which are determined by conditions 
n (
rs)·
Ω > 0 and 
n (
rs)·
Ω < 0,
respectively (vector 
n in these inequalities can be replaced by 
n′ = 
n′

(

r ′Sβ

)
with

the simultaneous replacement of 
rSβ
by 
r′Sβ

). General boundary conditions can be
stated, if spatial region E3\V0

β possesses so properties that, by the intensity spec-
ified on Sβ(V

0
β) for hemispheres of the Ω+ kind, one can unambiguously find the

radiation intensity on Sβ(V
0
β) for hemispheres of the Ω− kind. The above consid-

erations within the scope of the assumptions on the independence of optical and
other properties (except for the properties of internal and external sources) of body
Vβ and its surrounding from the radiation field and time enable one to write down
the following boundary condition for function I

(

r, 
Ω, t; Vβ

)
:

I
(

rSβ

− 0
n, 
Ω, t; Vβ
)
= Iext

(

rSβ

− 0
n, 
Ω, t; Vβ
)

+
∫∫

Sβ(V0
β)

dS′
∫
Ω+

dΩ′
t∫

−∞
R∗
(

rSβ

− 0
n; 
Ω;
r ′, 
Ω′; t− t′; Vβ
)
I
(

r ′,
−→
Ω′, t′; Vβ

)
dt′.

(7.2)
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Here 
Ω ∈ Ω− (
rS) = Ω−; t ∈ (−∞,+∞) ; 
rSβ
− 0
n is the radius-vector defining

a point lying on Sβ(V
0
β) (i.e. on the infinitesimal distance from Sβ); Iext(. . . ) is

the specified intensity of external radiation transmitted through the boundary Sβ ;
R∗(. . . ) is the known function characterizing optical and geometrical properties of
the boundary Sβ and of the surrounding of body Vβ (the surrounding is in E3\V0

β).
The surface integral of Eq. (7.2) is being taken over all the sides of simple pieces of
surfaces, the union of which is Sβ and which osculate with V0

β . The independence of
the characteristics of body Vβ and its surrounding from time and the homogeneity
of time itself give rise to the fact that function R∗(. . . ) should depend on the
difference (t− t′) only (this fact is just included in Eq. (7.2)). Partial cases of
Eq. (7.2) are boundary conditions specified by Germogenova (1986); Rogovtsov
(1999).

Since Eq. (7.1) comprises the partial derivative of the first order with respect
to t, it is also necessary to set the initial condition in V0

β

I
(

r, 
Ω, t; Vβ

)|t=t0−0 = a
(

r, 
Ω

)
, (7.3)

where t0 ∈ (−∞,+∞) and a
(

r, 
Ω

)
is the specified function.

In the radiative transfer theory, the first boundary-value problem plays an im-
portant role. The problem stands for a problem of solving Eq. (7.1) with accounting
for the boundary condition of Eq. (7.2) at R∗(. . . ) ≡ 0 and the initial condition
of Eq. (7.2). The second boundary-value problem will be a problem for solving
Eq. (7.1) with accounting for the initial condition of Eq. (7.3) and the bound-
ary condition of Eq. (7.2), when function I

(

rSβ

, 
Ω, t; Vβ
)
on Sβ(V

0
β) is assumed

to be specified for all t ∈ (−∞, t0) and 
Ω ∈ Ω+

(

rSβ

)
, and Iext(. . .) ≡ 0 for all

t ∈ (−∞,+∞). The problem of Eqs (7.1)–(7.3) without the above restraints is
called as a general boundary-value problem. Basic results concerning the qualita-
tive mathematical investigations of boundary-value problems and other problems
of the radiative (neutron) transfer theory were obtained, in particular, by Maslen-
nikov (1968); Vladimirov (1971); Marchuk and Lebedev (1971); Shikhov (1973);
Germogenova and Shulaya (1976); Germogenova (1986); Germogenova and Pave-
lyeva (1989); Rogovtsov and Borovik (2009). Although these results will not be
described explicitly in the following, some of them will be accounted for, while
stating the general invariance relations reduction method (GIRRM) and while de-
riving the solutions to specific boundary-value problems for Eq. (7.1).

As for a lot of topics of mathematical physics, the Green functions for Eq. (7.1)
play an important role in the linear radiative transfer theory. Let us define these
functions. Volume Green function G∗(
r, 
Ω, 
r ′, 
Ω′, t; Vβ) for Eq. (7.1) will be
stood for a solution to the second boundary-value problem under the following
assumptions: (i) I

(

r, 
Ω, t; Vβ

)|t<0 ≡, 0 for all points in V0
β and on Sβ(V

0
β) as well

as for all 
Ω ∈ Ω; (ii) g
(

r, 
Ω, t; V0

β

)
= δ

(

r − 
r ′)δ(
Ω − 
Ω′) δ(t), where 
r ′ speci-

fies a point in V0
β , and δ(. . .) is the Dirac function (see, for example, Case and

Zweifel (1967) and Vladimirov (1979). Note that functionE00G∗(
r, 
Ω, 
r ′, 
Ω′, t; Vβ)
determines the radiation intensity in body Vβ , when there is a point mono-
directional radiation source inside the body, which emits instantaneously energy
E00 at time moment t = 0 within unit spectral range. Surface Green function
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GSβ
(
r, 
Ω, 
r ′Sβ−0
n′, 
Ω′, t; Vβ) for Eq. (7.1) is the solution to the general boundary-

value problem of Eqs (7.1)–(7.3), when the following conditions are fulfilled: (i)
I
(

r, 
Ω, t; Vβ

)|t<0 ≡ 0 for all point in V0
β and on Sβ(V

0
β) as well as for all 
Ω ∈ Ω;

(ii) g
(

r, 
Ω, t; V0

β

)|t∈(−∞,+∞) ≡ 0 for all points in V0
β and for all 
Ω ∈ Ω; (iii)

Iext
(

rSβ

− 0
n, 
Ω, t; Vβ
)
= δSβ

(

rSβ

− 
r ′Sβ

)
δ(
Ω−
Ω′) δ(t), where 
n = 
n (
rs), 
n′ ·
Ω′ < 0(


n′ = 
n′
(

r ′Sβ

))
, and δSβ

(. . .) is the surface delta function (Case and Zweifel (1967)
and Vladimirov (1971)). Function I0GSβ

(
r, 
Ω, 
r ′Sβ
− 0
n′, 
Ω′, t; Vβ) specifies radia-

tion intensity in body Vβ , when a surface mono-directional instantaneous radiation
source with surface density I0

∣∣
n′(
r ′Sβ

) · 
Ω′∣∣δSβ

(

rSβ

− 
r ′Sβ

)
δ(
Ω− 
Ω′) δ(t) is one the

internal side of a simple piece of the body boundary (i.e. on Sβ(V
0
β)).

If turbid medium Vβ is irradiated by internal and external sources, is discon-
nected or is embedded in another medium (in particular, in a turbid medium), and
contains underlying surfaces, then, generally, the derivation of functions Iext(. . . )
and R∗(. . . ) entering the boundary condition of Eq. (7.2) and the solution to
boundary-value problems for Eq. (7.1) are rather problematic. For such situations,
the radiative transfer should be treated simultaneously in turbid medium Vβ itself
and in its surrounding. Then the boundary condition of Eq. (7.2) takes the simplest
form, when function R∗(. . . ) with respect to (t− t′) is proportional to δ (t− t′).

Let body Vβ be surrounded by a medium that is able to only absorb (or not
absorb) radiation (but not to scatter it) and to contain specified external sources.
If optical properties of all underlying surfaces included in Vβ and characteristics
of external sources are known, then, in principle, one can find explicit expressions
for functions Iext(. . . ) and R∗(. . . ). Besides, the solution to the general boundary-
value problem of Eqs (7.1)–(7.3) in this case can be written down in the following
form:

I
(

r, 
Ω, t; Vβ

)
=

∫∫
Sβ(V0

β)

dS′
∫
Ω−

dΩ′
t∫

−∞
GSβ

(

r; 
Ω;
r ′, 
Ω′; t− t′; Vβ

)
Iext

(

r ′,
−→
Ω′, t′; Vβ

)
dt′

+
∫∫∫
V0

β

dV′
∫
Ω

dΩ′
t∫

−∞
G∗
(

r; 
Ω;
r ′, 
Ω′; t− t′; Vβ

)
g
(

r ′, 
Ω′; t′; V0

β

)
dt′, (7.4)

where t ∈ (−∞,+∞) , 
Ω ∈ Ω. For this, radius vector 
r of Eq. (7.4) specifies points
in V0

β .
In the radiative transfer theory, it is sometimes useful to use equations of the

integral form instead of the SRTE. Let body Vβ is non-concave, does not contain
any underlying surfaces, and is not imbedded in another turbid medium. At this,
a non-concave body stands for a body, which, together with any two of its points,
contains completely the line segment connecting them. Apply now the Laplace
transform to Eq. (7.1). One obtains finally

m2(
r)
(

Ω · ∇�r

)((
m
(

r
))−2

Ī
(

r, 
Ω, σ; Vβ

))
+κ∗ext (
r, σ) Ī

(

r, 
Ω, σ; Vβ

)
= Φ̄

(

r, 
Ω, σ; Vβ

)
.

(7.5)



7 General invariance relations reduction method 257

Here σ is the parameter of the Laplace transform f̄ (σ) = L̂ (f) (σ) =∫ +∞
−ε f(t) exp (−σt) dt of function f(t) (it will be assumed below that σ is al-
ways a nonnegative number, and ε will stand for an infinitesimal positive number);
κ∗ext (
r; σ) = κext (
r) + σ (v (
r))

−1;

Φ̄
(

r, 
Ω, σ; Vβ

)
=

κsca (
r)
4π

∫
Ω

p
(

r; 
Ω · 
Ω′ )Ī(
r, 
Ω′, σ; Vβ

)
dΩ′

+ ḡ
(

r, 
Ω, σ; V0

β

)
+
(
v (
r)

)−1
I
(

r, 
Ω,−0;Vβ

)
.

If function Īext
(

rSβ

− 0
n (
rSβ

)
, 
Ω, σ; Vβ

)
is assumed to be known for all 
rSβ

and for
all 
Ω ∈ Ω−

(

rSβ

)
, then, using Eq. (7.5) and the definition of function Φ̄

(

r, 
Ω, σ; Vβ

)
,

one can get the following equation of the integral form (Rogovtsov, 1981a, 1999):

Φ̄
(

r, 
Ω, σ; Vβ

)
= (v (
r))−1

I
(

r, 
Ω,−0;Vβ

)
+ ḡ
(

r, 
Ω, σ; V0

β

)
+(4π)−1

κsca (
r)
∫∫

Sβ

(
V0

β

)m1

(

r, 
r ′

)
p
(

r; 
Ω · 
ρ)Īext(
r ′, 
ρ, σ; Vβ)

· exp (−η (
r, 
r ′, σ)) |
n′ · 
ρ| dS
′

ρ21

+(4π)−1
κsca (
r)

∫∫∫
V0

β

m1

(

r, 
r ′

)
p
(

r; 
Ω · 
ρ)

· exp (−η (
r, 
r ′, σ)) Φ̄ (
r ′, 
ρ, σ; Vβ) dV
′

ρ21
. (7.6)

Here radius-vector 
r specifies points in V0
β ; 
Ω ∈ Ω, 
ρ = (
r − 
r ′) ρ−1

1 , ρ1 = |
r − 
r ′|;
η (
r, 
r ′, σ) =

∫ ρ1
0
κ∗ext (
r − ξ
ρ, σ) dξ, 
n′ = 
n′

(
r′β
)
; m1 (
r, 
r′) = (m (
r) /m (
r′))2.

Functions I
(

r, 
Ω,−0;Vβ

)
and ḡ

(

r, 
Ω, σ; V0

β

)
are assumed in Eq. (7.6) to be known

for any points of V0
β and for all 
Ω ∈ Ω. If Eq. (7.6) is solved with respect to func-

tion Φ̄
(

r, 
Ω, σ; Vβ

)
, then, using Eq. (7.5) and the definition of this function, one

can derive the following expression for function Ī
(

r, 
Ω, σ; Vβ

)
:

Ī
(

r, 
Ω, σ; Vβ

)
= m1

(

r, 
r − ξ0
Ω

)
Īext

(

r − ξ0
Ω, 
Ω, σ; Vβ

)
exp

⎛⎝− ξ0∫
0

κ∗ext(
r − ξ′
Ω, σ)dξ′
⎞⎠+

+

ξ0∫
0

m1

(

r, 
r − ξ′
Ω) exp

⎛⎜⎝− ξ′∫
0

κ∗ext(
r − ξ′′
Ω, σ)dξ′
⎞⎟⎠ Φ̄(
r − ξ′
Ω, 
Ω, σ; Vβ)dξ.

(7.7)

Here radius-vector 
r specifies points in V0
β ; 
Ω ∈ Ω,

(

r − ξ0
Ω

)
is the radius-vector

of the intersection point of the straight line passing through the end of radius vector

r to the direction of vector (−
Ω) with surface Sβ .
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If in Eqs (7.6) and (7.7) one comes from Laplacian images Φ̄
(

r, 
Ω, σ; Vβ

)
and

Ī
(

r, 
Ω, σ; Vβ

)
to their originals Φ

(

r, 
Ω, t; Vβ

)
and I

(

r, 
Ω, t; Vβ

)
we get (Rogovtsov,

1981a, 1999) the following:

Φ
(

r, 
Ω, t; Vβ

)
= (v (
r))−1

I
(

r, 
Ω,−0;Vβ

)
δ(t) + g

(

r, 
Ω, t; V0

β

)
+ (4π)−1

κsca (
r)
∫∫

Sβ(V0
β)

m1 (
r, 
r ′)p
(

r; 
Ω · 
ρ) exp

⎛⎝− ρ1∫
0

κext(
r − ξ
ρ)dξ
⎞⎠

× Θ

⎛⎝t− ρ1∫
0

(v(
r − ξ
ρ))−1dξ + ε

⎞⎠
× Iext

⎛⎝
r ′, 
ρ, t− ρ1∫
0

(v(
r − ξ
ρ))−1dξ; Vβ

⎞⎠ |
n′ · 
ρ| dS′
ρ21

+ (4π)−1
κsca (
r)

∫∫∫
V0

β

m1 (
r, 
r ′)p
(

r; 
Ω · 
ρ) exp

⎛⎝− ρ1∫
0

κext(
r − ξ
ρ)dξ
⎞⎠

× Θ (t− t1 (
r, 
ρ; ρ1) + ε)Φ (
r ′, 
ρ, t− t1 (
r, 
ρ; ρ1) ; Vβ) dV
′

ρ21
; (7.8)

I
(

r, 
Ω, t; Vβ

)
= m1

(

r, 
r − ξ0
Ω

)
exp

⎛⎝− ξ0∫
0

κext(
r − ξ′
Ω)dξ′
⎞⎠Θ (t− t1 (
r, 
Ω; ξ0)+ ε)

× Iext
(

r − ξ0
Ω, 
Ω, t− t1

(

r, 
Ω; ξ0

)
; Vβ

)
+

ξ0∫
0

m1

(

r, 
r − ξ′
Ω

)
exp

⎛⎜⎝− ξ′∫
0

κext(
r − ξ′′
Ω)dξ′′
⎞⎟⎠

× Θ
(
t− t1

(

r, 
Ω; ξ′

)
+ ε
)
Φ
(

r − ξ′
Ω, 
Ω, t− t1

(

r, 
Ω; ξ′

)
; Vβ

)
dξ′.

(7.9)

Here t1
(

r,
b;u

)
=
∫ u
0

(
v
(

r − ξ
b))−1

dξ, where
∣∣
b∣∣ = 1; Θ (x) = 1 for any x ∈

[0, +∞) and Θ (x) = 0 for any x < 0.

7.2.1.2 The case of stationary internal and external sources

If external and internal sources are independent of time t, the investigation of radia-
tive transfer through turbid media of various configurations becomes considerably
simpler. State the stationary analogs of the equations, definitions, and relations
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that have been given above for the case of non-stationary sources. At this, let all
the above-made assumptions not concerning the radiation sources be valid.

The stationary analog of Eq. (7.1) is the following:

m2 (
r)
(

Ω · ∇�r

)(
m (
r)−2

I
(

r, 
Ω;Vβ

))
= −κext (
r) I

(

r, 
Ω;Vβ

)
+(4π)−1

κsca (
r)
∫
Ω

p
(

r, 
Ω · 
Ω′)I(
r, 
Ω′; Vβ

)
dΩ′ + g

(

r, 
Ω;V0

β

)
. (7.10)

Here I
(

r, 
Ω;Vβ

)
is the radiation intensity in turbid medium V0

β ; g
(

r, 
Ω;V0

β

)
is the

density of internal stationary sources in V0
β .

The stationary analog of the general boundary conditions of Eq. (7.2) is

I
(

rSβ

− 0
n, 
Ω;Vβ
)
= Iext

(

rSβ

− 0
n, 
Ω;Vβ
)

+
∫∫

Sβ(V0
β)

dS′
∫
Ω+

R∗
(

rSβ

− 0
n, 
Ω;
r ′, 
Ω′; Vβ
)
I
(

r ′; 
Ω′; Vβ

)
dΩ′,

(7.11)

where R∗
(

rSβ

− 0
n, 
Ω;
r ′, 
Ω′; Vβ
)
=
∫ +∞
0

R∗
(

rSβ

− 0
n, 
Ω;
r ′, 
Ω′; t; Vβ
)
dt, 
Ω ∈

Ω− (
rS) = Ω−, and Iext
(

rSβ

− 0
n, 
Ω;Vβ
)
is the radiation intensity generated by

the external stationary sources.
The first boundary-value problem for the case of stationary sources stands

for a problem of solving Eq. (7.10) with accounting for the boundary condition
of Eq. (7.11) at R∗ (. . .) ≡ 0 (Germogenova, 1986). The second boundary-value
problem is, respectively, a problem of solving Eq. (7.10) with accounting for the
boundary condition of Eq. (7.11) at Iext (. . .) ≡ 0 (Germogenova, 1986). The vol-
ume Green function G∗(
r, 
Ω; 
r ′, 
Ω′; Vβ) for Eq. (7.10) is a solution to the second
boundary-value problem, when g

(

r, 
Ω;V0

β

)
= δ (
r − 
r ′) δ(
Ω− 
Ω′), 
r and 
r ′ specify

points in V0
β . The surface Green function GSβ

(

r, 
Ω, 
r′Sβ

− 0
n′, 
Ω′; Vβ
)
for Eq. (7.10)

is a solution to the general boundary-value problem, when g
(

r, 
Ω;V0

β

) ≡ 0 and
Iext(
rSβ

− 0
n, 
Ω;Vβ) = δSβ

(

rSβ

− 
r′
Sβ

)
δ
(

Ω− 
Ω′), where 
n′ · 
Ω′ < 0

(

n′ = 
n′

(

r′
Sβ

))
.

The stationary analog of Eq. (7.4) is

I
(

r, 
Ω;Vβ

)
=

∫∫
Sβ(V0

β)

dS′
∫
Ω−

GSβ

(

r; 
Ω;
r ′, 
Ω′; Vβ

)
Iext

(

r ′,
−→
Ω′; Vβ

)
dΩ′

+
∫∫∫
V0

β

dV′
∫
Ω

G∗
(

r; 
Ω;
r ′, 
Ω′; Vβ

)
g
(

r ′, 
Ω′; V0

β

)
dΩ′, (7.12)

where 
Ω ∈ Ω, and 
r specifies points in V0
β .

The stationary analog of Eqs (7.6) and (7.8) is (Rogovtsov, 1981a, 1999)
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Φ
(

r, 
Ω;Vβ

)
= g
(

r, 
Ω,V0

β

)
+ (4π)−1

κsca (
r)
∫∫

Sβ(V0
β)

m1

(

r, 
r ′

)
p
(

r; 
Ω · 
ρ)Iext (
r ′; 
ρ; Vβ)

× exp (−η (
r, 
r ′, 0)) |
n′ · 
ρ| dS
′

ρ21

+ (4π)−1
κsca (
r)

∫∫∫
V0

β

m1

(

r, 
r ′

)
p
(

r; 
Ω · 
ρ)

× exp (−η (
r, 
r ′, 0))Φ (
r ′, 
ρ; Vβ) dV
′

ρ21
. (7.13)

Here 
r specifies points in V0
β , 
Ω ∈ Ω, and the desired function Φ

(

r, 
Ω;Vβ

)
is

determined by

Φ
(

r, 
Ω;Vβ

)
= (4π)−1

κsca (
r)
∫
Ω

p
(

r, 
Ω · 
Ω′)I(
r, 
Ω′; Vβ

)
dΩ′ + g

(

r, 
Ω;Voβ

)
. (7.14)

The stationary analog of Eqs (7.7) and (7.9) is

I
(

r, 
Ω;Vβ

)
= m1

(

r, 
r − ξ0
Ω

)
Iext

(

r − ξ0
Ω, 
Ω;Vβ

)
exp

⎛⎝− ξ0∫
0

κext(
r − ξ′
Ω) dξ′
⎞⎠

+

ξ0∫
0

m1

(

r, 
r − ξ′
Ω) exp

⎛⎜⎝− ξ′∫
0

κext(
r − ξ′′
Ω) dξ′′
⎞⎟⎠Φ(
r − ξ′
Ω, 
Ω;Vβ) dξ′,

(7.15)

where 
r specifies points in V0
β , 
Ω ∈ Ω, and number ξ0 has the same sense as in

Eq. (7.7).

7.2.2 Statement of the general invariance principle as applied to
radiative transfer theory

Let the problems related with using a conception of the invariance in the radiative
transfer theory and with stating the general invariance principle (GIP) be consid-
ered now. The GIP was first stated by Rogovtsov (1981a, 1981b) to enable the study
of the radiative transfer through turbid media of various configurations from rather
general viewpoints. The configuration always stands below for not only a shape of
a turbid medium, but also a type of location or distribution of radiation sources
inside or outside the medium. The most common treatment of the GIP embracing
all the most essential aspects of the invariance (symmetry) principles utilized in
physics and mathematics was made by Rogovtsov (1999). The features of the GIP
(Rogovtsov, 1981a, 1981b, 1999) are its heuristicity, efficiency, and applicability to
the solution to comprehensive boundary-value problems of the radiative (neutron)
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transfer theory and to other problems of mathematical physics. Besides, on the
basis of the GIP, one succeeds in realizing the relations and differences existing
between ways of using the invariance conceptions in mathematics, in theoretical
physics, and in radiative transfer theory itself. In particular, it has been strictly
proved by Rogovtsov (1981a, 1981b, 1999) that the GIP is not a symmetry prin-
ciple within the scope of radiative transfer theory (for example, all the invariance
principles underlying the foundations of modern physics are symmetry principles).

Theoretical investigation of the radiative transfer through turbid media of com-
plex configurations requires accounting for their shapes, local optical properties of
underlying surfaces and of internal portions of these media, types of location and
angular patterns of internal and external radiation sources, etc. Due to the inte-
gral character of the radiative transfer, radiation fields in turbid media can sub-
stantially change with the above characteristics and properties of such media. An
enormous number of real and artificial turbid media, which essentially differ from
each other, makes rather comprehensive the construction of universal analytical
and semi-analytical methods for solving boundary-value problems of the radia-
tive transfer theory. One of such ways is the general invariance relations reduction
method (GIRRM) being based on the general invariance principle.

Now a number of evidences, which will be utilized for stating the GIP as applied
to the radiative transfer theory, will be given. The definitions and constructions
concerning the general treatment of the GIP are presented by Rogovtsov (1999).

Consider a set {Vβ}β∈B, the elements of which are arbitrary turbid media
(bodies, objects) Vβ . Any of the elements of set {Vβ}β∈B can be a part of another
body. Let set {Vβ}β∈B include all abstract-realizable objects that can be mentally
constructed with various algebraic operations being described below. Assume that
the restraints pointed out in subsection 7.2 before the statement of Eq. (7.1) are
imposed on all elements of Vβ and their boundaries Sβ as well as on underlying
surfaces. Besides, assume that Vβ1 �= Vβ2 , if β1 �= β2. Let a set {Ξ}j∈J of surfaces,
each of which has zero measure at arbitrary time moment t in any bounded subset
of three-dimensional Euclidean point space E3, be specified (the measure here and
below stands for a measure in this space). In addition to surfaces, curves and finite
(countable) sets of points have zero measure in E3 too. Symbol J is assumed to be a
subscript set. Let all the surfaces of the Ξj type possess the geometrical properties
inherent to boundaries Sβ (the properties are described in subsection 7.2). Assume
that the positions of the elements of sets {Vβ}β∈B and {Ξj}j∈J are being specified
with respect to the same coordinate system related unambiguously with system
OXYZ. It should be noted that really existing turbid media and artificially made
objects are always completely separated in the space or have physically interacting
common parts between them (e.g. a body may be a part of another body). But
mentally created objects in the same coordinate system can be, in an abstract sense,
totally or partially superposed with each other and simultaneously (depending on
the purposes of the investigation) be provided, to one degree or another, with
the ability ‘to interact’ with other bodies (for example, with original bodies being
the base for the construction). Due to the above-said, the set {Vβ}β∈B should be
understood as a potentially (not actually) existing set. This fact adds flexibility to
the GIRRM proposed by Rogovtsov and Samson (1976); Rogovtsov (1980, 1981a,
1981b, 1981c, 1983, 1985a, 1985b, 1985d, 1989, 1999).
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One of the most important steps that should be made while designing this
general method was the construction of a set of unary algebraic operations that
are defined on the set {Vβ}β∈B and leave radiation fields in turbid bodies invariant
almost everywhere (these bodies are the elements of set {Vβ}β∈B). Here, the unary
algebraic operations stands for the mappings of set {Vβ}β∈B into the set {Vβ}β∈B
itself (the definition of the unary algebraic operations is given, for example, in Faure
et al., 1964; also see the Appendix). There were introduced the under-mentioned
sets of unary algebraic operations (each of which should be made instantaneously)
on set {Vβ}β∈B by Rogovtsov (1980, 1981a, 1981b, 1989, 1999).
(i) Section of each body Vβ ∈ C (C is any non-empty subset of the set {Vβ}β∈B)

by surface (Ξj ∩ Vβ), which does not introduce additional discontinuities in
physical characteristics to the discontinuities already existing in Vβ . The ele-
ments belonging to {Vβ}β∈B \C remain unchanged.

(ii) Replacement of the effect of boundary Sβ of any body Vβ (Vβ ∈ D, where D
is any non-empty subset of the set {Vβ}β∈B) on radiation field in Vβ by the
effect of other boundary, which coincides with Sβ in the geometrical sense and
on which absorbers and radiators are located. The absorbers totally absorb
radiation incident on them from any direction. The radiators emit the same
radiation as has been implemented in original body Vβ and as propagates from
Sβ(V0

β) at any point, selected on this surface, in the directions specified by the
rays, emerging from the surface and intersecting all the regions V0

β ∩O (O is
any neighbor of the given point in E3). With this, the elements belonging to
{Vβ}β∈V \D remain unchanged.

(iii) Replacement of the effect of portion S×β
(
S×β ⊂ Sβ

)
of boundary Sβ of any

body Vβ (Vβ ∈ H, where H is any non-empty subset of the set {Vβ}β∈B) on
radiation field in Vβ by the effect of other surface S∗β , which coincides with
S×β in the geometrical sense. At this, there are absorbers and radiators on
surface S∗β . The absorbers totally absorb radiation incident on them from any
direction. The radiators emit the same radiation as has been implemented in
original body Vβ and as propagates from Sβ(V0

β) at any point, selected on
this surface, in the directions specified by the rays, emerging from the surface
and intersecting all the regions V0

β ∩O or (E3\Vβ)∩ O (O is any neighbor of
the given point in E3). The elements of set {Vβ}β∈B\H remain unchanged.

(iv) Any ordered sequence of the operations defined by items (i) to (iii).

Let the above statements be additionally simplified. The standard notations
applied in mathematics (see, for example, Fraenkel and Bar-Hillel, 1958; Faure
et al., 1964; Kuratowski and Mostowski, 1967; also see the Appendix) were used,
while stating the unary algebraic operations of items (i) to (iv). In particular, ex-
pression A ∩ B has the sense of the operation result of the intersection of sets A
and B, and symbol A ⊂ B has the sense of the inclusion relation of set A into set
B (see additional explanations in the Appendix). Assume that, after the section
of body Vβ by surface (Vβ ∩ Ξj), the points of the latter do no belong to the
body obtained as a result of operation (i). At this, a new body can generally differ
by its topological properties from Vβ . It should be noted that the equal unary
algebraic operations of types (i) to (iv) are stood for operations that map equal



7 General invariance relations reduction method 263

bodies to equal ones. Absorbers and radiators should be realized as mental objects
located at places of the replaceable boundaries and ‘infinitesimally distanced’ from
the sides of simple pieces of the surfaces, from which these boundaries (or their
portions) are composed. Conceptions of absorbers and radiators introduced above
have only an abstract sense. This is due to their constructive implementation as
the materialized objects is impossible. To understand this, it is sufficient to recall
that a physical body absorbing incident radiation totally will necessarily emit ra-
diation, i.e. it cannot generally be an absorber in the above sense. However, mental
operations and experiments carried out using these conceptions lead to valid and
mathematically correct results enabling one to get nontrivial consequences. More
detailed explanations and evidences in this respect were given by Rogovtsov (1980,
1981a, 1981b, 1981c, 1983, 1985d, 1989, 1999). These publications also provided the
detailed explanation of the ways one could constructively utilize unary algebraic
operations (i)–(iv). In particular, it was pointed out that, using these operations,
one could geometrically and physically isolate parts of a turbid medium from an
original turbid medium without destroying the characteristics of radiation fields
in regions outside original and artificially made boundaries. Besides, there were
constructed the general procedures connecting operations of physical isolation and
redefinition in the said works. Just these procedures enable one to correctly make
the imbedding of turbid media of complex configurations in other, more volumetric
turbid media having simpler shapes.

Fig. 7.1 illustrates one of the simplest examples of the action of operation (i) on
set {Vβ}β∈B, when one takes a single its element (i.e. a single body Vβ ; C = {Vβ})
as a subset C. Solid arrows and lines limiting the arrows show schematically angular
patterns of the radiation intensity that goes through some arbitrarily selected points
(they coincide with the centers of the black circles) lying on boundary Sβ (or Sβ′)
and inside body Vβ (or Vβ′), respectively. Symbol (Ξj ∩Vβ) is meant as a surface
that is the intersection of some surface Ξj with body Vβ . The left and right parts
of Fig. 7.1 coincide with each other in physical and geometrical senses, except
that there is an additional surface (Ξj ∩ Vβ) in the right part (this means that
boundary Sβ′ of body Vβ′ is a union of boundary Sβ and surface (Ξj ∩ Vβ), i.e.
Sβ′ = Sβ∪(Ξj∩Vβ). It should be noted that the two parts of Fig. 7.1 are artificially
separated to better understand the essence of operation (i). In reality, bodies Vβ
and Vβ′ occupy the same space portion with the accuracy of the differences between
boundaries Sβ and Sβ′ . Note once more that the centers of the black circles in
Fig. 7.1 can be at any points lying on Sβ and (Ξj ∩Vβ), respectively.

Fig. 7.2 illustrates the action of operation (ii) on set {Vβ}β∈B, when one takes
only a single body Vβ (i.e. D = {Vβ}) as a subset D. The bold line in the right-
hand part of Fig. 7.2 represents absorbers and boundary (in geometrical sense) of
body Vβ1 . The dotted line in the right-hand part of Fig. 7.2 shows schematically
radiators (they are on the inner portion of boundary Sβ1 , i.e. on Sβ1

(
V0
β1

)
). For

clearness, the dotted line is noticeably moved to the interior of body Vβ1 (in reality,
this line should be at the infinitesimal distance from the bold line, i.e. from the
absorbers). It should be especially noted that, in physical and geometrical senses,
the interior portions of bodies Vβ and Vβ1 coincide (i.e. V

0
β = V

0
β1
), although they

are separated from each other in Fig. 7.2. Solid arrows and lines limiting the arrows
in the both parts of Fig. 7.2 have the same sense as in Fig. 7.1.
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Fig. 7.1. Example of operation (i)

0

Fig. 7.2. Example of operation (ii)

Fig. 7.3 illustrates one of the simplest examples of the action of operation (iii) on
the {Vβ}β∈B, when one takes a single its element (i.e. a single body Vβ ; H = {Vβ})
as a subset H. Solid arrows and lines limiting the arrows in both parts of Fig. 7.3
have the same sense as in Fig. 7.1 and Fig. 7.2. The bold line in the right-hand part
of Fig. 7.3 represents absorbers. The dotted line in the right-hand part of Fig. 7.3
shows schematically radiators. For clearness, the dotted line is noticeably moved to
the interior of body Vβ′′ (in reality, this line should be at the infinitesimal distance
from the bold line, i.e. from S∗β). In physical geometrical, the interior portions of
bodies Vβ and Vβ′′ coincide (i.e. V0

β = V0
β′′), although they are separated from

each other in Fig. 7.3.
Let a set of the above-described unary algebraic operations on {Vβ}β∈B be

denoted by R. Elements r ∈ R specify the following mappings of r: {Vβ}β∈B →
{Vβ}β∈B. Set R is a semi-group with respect to a binary algebraic operation of
the composition of mappings. Operation (iii), when an empty set is taken as por-
tion S×β boundary Sβ of any body Vβ ∈ {Vβ}β∈B , is an unit (neutral) element e
that coincides with the identical mapping (that does not change the elements of
set {Vβ}β∈B). The general analysis of mathematical properties of the solutions to
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boundary-value problems of the radiative transfer theory as well as physical consid-
erations and conceptions used in this theory unambiguously confirm the validity of
the following general invariance principle (Rogovtsov (1981a, 1981b, 1989, 1999)):

The radiation field in any bounded subset of each Vβ ∈ {Vβ}β∈B is almost every-
where invariant with respect to unary algebraic operations being the elements of
semi-group R.

It should be especially underlined that in the overwhelming majority of scien-
tific publications, where the classic conceptions on invariance (covariance) and on
symmetry were utilized for solving particular or general problems of physics, math-
ematics, technology, etc., the invariance and symmetry principles stood for general
statements establishing the invariance (i.e. the constancy in some specific or ab-
stract sense) of certain objects, laws, systems, constructions, art and architecture
products, etc. with respect to sets of algebraic operations forming a group (in par-
ticular, the Lie group). The fundamental role, which was played by the classic con-
ceptions on invariants, invariance and symmetry principles in mathematics, physics,
and art as well as specific applications of the conceptions for solving various prob-
lems, was thoroughly analyzed, for example, by Klein (1926); Weyl (1952, 1968);
Einstein (1965, 1966); Wigner (1970); Ovsyannikov (1982); Ibragimov (1985); Bo-
golyubov and Shirkov (1976); Rogovtsov (1999); Kovalev and Shirkov (2008).

The general invariance principle stated above does not allow a treatment sim-
ilar to a classic invariance principle establishing the invariance of some objects,
quantities, etc. with respect to a set of operations that is a group (Lie group).
This is due to the fact that semi-group R cannot be imbedded into a group (the
evidence for this statement was given by Rogovtsov (1981b, 1989, 1999)). It should
be noted that the GIP refers to the statements, in which the invariance of physical
and mathematical objects, systems, constructions, etc. with respect to operations
having the sense of ‘partitions’, ‘redefinitions’, and ‘imbeddings’ (the classic invari-
ance principles sometimes partially use operations of the ‘partition’ kind too). It

(iii)

Fig. 7.3. Example of operation (iii)
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follows from the above-said that the properties and the invariance principles should
be generally understood as the statements on the invariance or partial invariance
of some set M (of objects, systems, constructions, solutions, etc.) with respect to
some set W of operations (actions) that can be provided with certain algebraic
properties (however, W needs not to necessarily be a group or even a semi-group).
More detailed explanations of this topic were made by Rogovtsov (1999).

The GIP, as any formalized and balanced system of postulated statements too,
comprises a considerable part of the information (partially in implicit form) that
should be gathered by making various constructions and conclusions. At this, it is
rather useful to utilize the physical conceptions of ray optics and the probabilistic
treatment of the radiative transfer theory (Sobolev, 1951; Ueno, 1957, 1958; Minin,
1988). Let a consequence of the GIP, which can be derived by these physical con-
ceptions and probabilistic treatment, be stated. This consequence is essentially a
property of the invariance. Consider some body Vβ ∈ {Vβ}β∈B . At a certain time
moment t = t0 − 0, apply operation (ii) to the body Vβ , when D = {Vβ} (since
D is a set, then symbol Vβ is posed in the curly brackets according to the nota-
tion used in the theory of sets). Due to the operation, Vβ will be mapped into
another body Vβ1 ∈ {Vβ}β∈B , which differs from Vβ only in the presence of ab-
sorbers and radiators, but there is a valid equality V0

β = V
0
β1
inside the body Vβ

(the equality is understood in the geometrical and physical senses). Assume men-
tally that the absorbers are instantaneously removed from Vβ1 at the time moment
t = t0 − 0 without destroying the structure of the turbid medium and to radiation
field (the boundary of the body becomes completely transparent for radiation after
this). Thereafter, the body Vβ1 will be mapped onto the body Vβ2 , the boundary of
which transmits all the incident radiation without any changes, and V0

β2
= V0

β from
the viewpoints of optical properties of the medium, presence of internal sources in
V0
β2
, and initial (at time moment t0−0) distribution of the radiation field. However,

the optical properties of the boundaries of the bodies Vβ and Vβ2 can differ from
each other. Besides, there are the radiators on Sβ2

(
V0
β2

)
. At t > t0, the radiation

field in V0
β2
can change, if the photons intersecting Sβ2 are able to again return

back to V0
β2
. Consider now at some time moment t, at any point of V0

β2
, the whole

set of photons that were emitted, during the time duration from t0− 0 to t, by the
radiators and by the internal sources of V0

β2
or that were in flight at t0− 0 and did

not intersect the boundary Sβ2 during their random walk. The non-intersection of
a boundary of some body will be everywhere below understood as the absence of
the reflection from the boundary or of the transmission by it. The removal of other
photons from consideration is equivalent to the operation that is made by an ab-
sorber, which removes all the photons incident on it. The validity of the statement
follows from the above discussion and from the GIP (Rogovtsov, 1981a, 1999):

That part of the radiation field, which is being formed or has been formed due to
the random walk of photons emitted, during the time interval from t0−0 to t, where
t > t0, by the radiators and the internal sources or being in flight in V0

β at time
moment t = t0− 0 exclusively inside the interior V0

β of body Vβ, coincides with the
true radiation field implemented in V0

β.

This property of the invariance will be utilized in subsection 7.2.3 for deriving
the general invariance relations (GIRs).
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Now the scientific publications, in which important results have been obtained
to be, to a certain degree, the original basis for stating the GIP and construct-
ing the GIRRM, will be pointed out. Also, the papers, in which the particular
versions of the GIP have been stated or announced and the formal interrelations
between the problems of the radiative transfer theory and other topics of physics
and mathematical physics have been noted, will be indicated. The first fundamen-
tal investigations of the RTT problems for the case of plane-parallel and exclusively
one-dimensional media have been fulfilled by Ambartsumian (1943a, 1943b, 1944a,
1944b, 1947, 1948) using explicitly the invariant properties of radiation field char-
acteristics with respect to certain operations. The first invariance principle for the
RTT has been formulated as two statements in the papers (Ambartsumian, 1943a;
1943b) to get, on this basis, the nonlinear integral equations for the reflection func-
tion (for a semi-infinite plane-parallel macroscopically homogeneous medium and
arbitrary phase function) and the auxiliary functions, through which the reflection
function is expressed. Moreover, the analytical relations for the reflection and trans-
mission functions of a plane-parallel slab with a finite optical thickness have been
written down in the paper (Ambartsumian, 1943a) for the case of isotropic scatter-
ing and the nonlinear integral equations for corresponding auxiliary functions have
been stated. Nontrivial applications of the said invariance principle to the solu-
tions to some boundary-value problems of the RTT for the cases of a plane-parallel
medium with large optical thickness and of a semi-infinite plane-parallel medium
have been given by (Ambartsumian (1944a, 1948). However, the papers (Ambart-
sumian, 1943a, 1943b, 1944a, 1948) used explicitly only the invariance properties
of radiation field characteristics at the boundaries of macroscopically homogeneous
plane-parallel media with respect to the operations of addition (or addition and
subtraction) of layers with a finite or an infinitesimal optical thickness. It should be
especially noted that the same papers by Ambartsumian (1944b, 1947) utilized, be-
sides the above-said invariance properties, essentially (but generally implicitly) the
particular versions of the operations of kinds (i) and (ii) defined in subsection 7.2.2.
The constructive procedures exploited in all the papers by Ambartsumian (1943a,
1943b, 1944a, 1944b, 1947, 1948) were then combined under the general name of
the ‘layer adding method’. The essence of this method was explained in detail
by Ambartsumian (1944b and 1947) using rather simple and instructive exam-
ples (they refer to the RTT problems for the case of exclusively one-dimensional
isotropic and non-isotropic media). Really, Ambartsumian’s papers first showed,
how, on the basis of using the invariance properties (in explicit or implicit forms),
one can state and solve functional equations (in particular, integral ones) for de-
sired radiation field characteristics at the boundaries of exclusively one-dimensional
or plane-parallel media with any optical thickness. It should be noted, as the merit
of the approach proposed and implemented by Ambartsumian while solving some
boundary-value problems of the RTT for the case of macroscopically homogeneous
plane-parallel media, that this approach provided its evolution and generalization
over a wide variety of directions. One can especially isolate the paper (Stokes, 1862)
among the earlier publications, where the constructions similar to the layer adding
method have been used. The problem of deriving the reflection and transmission
coefficients of a pile of the same plates (here an absorbing homogeneous medium is
supposed to be between the plates) by the known respective coefficients of a single
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plate has been solved there. In spite of the striking resemblance of the functional
equations for the reflection and transmission coefficients obtained by Stokes (1862)
and by Ambartsumian (1944b, 1947) while solving different problems, the consider-
ations used by them have differed from each other essentially. In the paper by Stokes
(1862), the functional equations were derived by means of successive treatment and
summation of the contributions of all the events of light interaction (their number
was infinite) with each of the two subsystems of the plate piles, by which the origi-
nal plate pile were partitioned, to the reflection and transmission coefficients. In the
papers of Ambartsumian (1944b, 1947), the invariance properties of the radiation
field, having formed in an exclusively one-dimensional medium, with respect to the
particular cases of the operations of kinds (i) and (ii) (see subsection 7.2.2) were
partially used (although in the implicit form) to derive the functional equations.
Besides, in the said works by Ambartsumian, there has been constructively used the
information on the radiation field characteristics in a composite media formed by
combining two one-dimensional media. It should be noted that some starting ideas
being the foundation of the classical version of the invariant imbedding method
have been essentially outlined in a particular form in the papers by Stokes (1862)
and Ambartsumian (1944b, 1947). The substantial contribution to the develop-
ment of the basic ideas and constructions of this version of the invariant imbedding
method was made by Chandrasekhar (1950), Redheffer (1954), Bellman (1954),
Bellman and Kalaba (1956) and Sobolev (1956). First nontrivial applications of
this method were given in the papers by Bellman and Kalaba (1956) and Sobolev
(1956), who considered the radiative transfer process through macroscopically inho-
mogeneous plane-parallel media. The paper (Bellman and Kalaba, 1956) has stated,
in rather general form, the classical version of the invariant imbedding principle on
the base of more abstract treatment of the ideas and the constructions used in the
above-mentioned publications. One can find various applications and reviews of the
papers, where the principle has been utilized, in the publications (for example, An-
gel and Bellman (1972), Bellman (1986), Klyatskin (1986) and Rogovtsov (2008)).
After the investigations performed by Ambartsumian on the basis of using the in-
variance principles and the layer adding method stated by him, the next step was
made by Chandrasekhar (1950). Remaining within the frame of the consideration
of RTT problems, Chandrasekhar has stated four invariance principles. These prin-
ciples establish essentially the validity of four balance relations, which connect the
radiation intensity (generally, at optical thickness τ inside a plane-parallel slab with
optical thickness τ0) for the case of external mono-directional illumination with the
reflection or transmission coefficients, which can correspond to plane-parallel slabs
with, generally, different optical thickness (this thickness can assume one value
from the set of τ , τ1, τ1 – τ). The relations derived by Chandrasekhar (1950) can
be treated as the invariance relations being the consequences of not only the defi-
nition of the reflection and transmission functions (Chandrasekhar, 1950), but also
of the invariance of the radiation intensity in a plane-parallel medium with respect
to the particular operations of kinds (i) and (ii) (see subsection 7.2.2). It should
be noted that, in the monograph (see Chandrasekhar, 1950), there have been first
obtained the invariance relations comprising the radiation field characteristics in-
side macroscopically homogeneous plane-parallel media. Moreover, Chandrasekhar
first showed the applicability of the usage of the invariance relations for solving
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boundary-value problems for the vector radiative transfer equation. It should be
added to the above-said that he first derived the equation set for the reflection and
transmission functions comprising first partial derivatives from these functions with
respect to the optical thickness of a slab (i.e. he was the first who obtained the first
important constructive result referring essentially to the statement of the starting
equations of the invariant embedding method). The paper (Kadomtsev, 1957) made
the first attempt to reformulate the invariance principle of Ambartsumian (1943a)
for the case of a macroscopically homogeneous medium of an arbitrary geometri-
cal shape. After the classical publications by Ambartsumian and Chandrasekhar,
many researchers on the basis of these relations over about three decades have not
only obtained more general invariance relations (they are often called invariance
principles), but also proposed effective analytical and numerical methods for calcu-
lating the reflection and transmission functions and the characteristics of internal
radiation fields in plane-parallel media (not necessarily macroscopically homoge-
neous), which can comprise internal radiation sources. Among these publications,
see in particular (van de Hulst, 1963, 1980; Sobolev, 1968, 1975; Shimizu, 1968;
Hansen, 1969; Hunt and Grant, 1969a, 1969b; Yengibarian and Mnatsakanian, 1974;
Ivanov, 1975; Ivanov and Volkov, 1978; Domke, 1976, 1978a, 1978b; Yanovitskij,
1979, Rogovtsov, 1980; Domke and Yanovitskij, 1981, Viik, 1982; Nikoghossian
and Haruthyunian, 1989; Yengibarian and Melkonian, 1989). More detailed bibli-
ographical references can be found, for example, in the monographs (Yanovitskij,
1997; Rogovtsov, 1999). All the above-mentioned publications used explicitly or
implicitly the invariance of radiation fields with respect to particular cases of the
operations of (i) and (ii) (see subsection 7.2.2). Moreover, the papers (Ivanov, 1975;
Rogovtsov, 1980; Yanovitskij, 1979, 1981) utilized once more the property of the in-
variance (it is the consequence of the GIP). The essence of this invariance property
is substantially reduced to the statement on the invariance of the radiation field in
an isolated sublayer of an original plane-parallel slab with respect to the particular
version of the operation of kind (ii) and on the equality of the radiation field in
the isolated part (sublayer) with the corresponding external sources (‘radiators’) at
its boundaries to the radiation field at respective points of the original slab. If one
looks more abstractly at the considerations and constructions utilized in the above-
mentioned works, it can be concluded that therein have been essentially used the
operations of the isolation of a part of an object from a whole object and the op-
erations of embedding and redefinition. These operations in the substantially more
general form are the foundation of the GIP. Note two additional important aspects
that differ from the approach based on the usage of the invariance properties in the
radiative transfer theory from other methods. One of these aspects was mentioned
by Bellman and Kalaba (1956); Yengibarian and Mnatsakanian (1974). Its sense
is that, even remaining within the frame of the consideration of RTT problems for
the case of plane-parallel media, one can establish the presence of the relationships
of this approach with the semi-group theory. The second aspect was discussed in
detail by Mnatsakanian (1982), Shirkov (1989), Rogovtsov (1999) and Kovalev and
Shirkov (2008). It is related with the formal resemblance, established and evaluated
in the papers (Mnatsakanian, 1982; Shirkov, 1989), between the equations derived
in the nonlinear radiative transfer theory by means of the above-said approach and
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the equations, which are used in the theory of interacting quantized fields within
the frame of the renormgroup approach (Kovalev and Shirkov, 2008).

In a number of works (Kadomtsev (1957), Rogovtsov (1989), Nikoghossian
(2009)) there were pointed out and stated connections among Ambartsumian’s
invariance principle and variation principles and a group operation (translation).
These connections exist for the case of macroscopically homogeneous media. In
Nikoghossian (2009) it is asserted that Ambartsumian’s invariance principle is a
consequence of a variation principle whose formulation uses Lagrangian density not
depending explicitly on the coordinates of an observation point. In addition Am-
bartsumian’s invariance principle is considered by Nikoghossian as a conservation
law. This law has been obtained using a generalization of Nöether’s theorem for
the case of integro-differential equations. It should be noted that in Ambartsum-
ian (1943a, 1943b, 1944a, 1944b, 1947, 1948), in solving particular boundary-value
problems of RTT for the case of plane parallel media on the basis of Ambartsum-
ian’s invariance principle and the layer adding method, a more essential role was
played by the use of particular cases of semi-group operations of the sort (i) and
(ii), although in a implicit form. It was this general special feature of Ambartsum-
ian’s invariance principle and the layer adding method that was one of points in
formulating GIP and the derivation of GIRs. It should be noted once more that
constructing GIRRM on the basis of GIP and GIRs allows one to solve boundary-
value problems of RTT for the case of homogeneous and inhomogeneous dispersion
media of different configurations. These media can be limited to underlying sur-
faces and can contain underlying surfaces in it. In addition their configuration and
optical characteristics cannot possess any substantial symmetry. It is important
that the GIRRM method allows one to obtain different integral relations (conver-
sation laws) for the case of absence of the symmetry pointed out. Examples of
such integral relations (some of them are vector integral relations) were obtained
in works (Rogovtsov, 1993, 1994, 1999). However in the derivation of these inte-
gral relations in some cases it is necessary to use the homogeneous property of the
point Euclid space (in fact it is a symmetry property) and the independence of their
structure on the selection of a coordinate system. In other words, although the use
of semi-group operations is a basis of GIP and GIRRM, it is very important in
solving boundary-value problems of RTT to take into account internal symmetries
in stating these problems and symmetry properties of coordinate systems used.

7.2.3 General invariance relations and their physical interpretation

The scheme of the derivation and of the application of the general invariance rela-
tions (GIRs) for solving boundary-value problems of the radiative transfer theory
(RTT) will now be described. These relations are the consequences of the GIP. The
sequence of the considerations that will be utilized for deriving the GIRs is essen-
tially independent (except for the outward details) of the physical essence of single
absorption, scattering and emission events. It is, however, required that the condi-
tions for the applicability of ray optics conceptions and of the probabilistic interpre-
tation of the radiative transfer process (see, for example, Rozenberg, 1977; Sobolev,
1951; Ueno, 1957, 1958) will be satisfied. The scheme of the derivation of the GIRs
proposed by Rogovtsov (1980, 1981a, 1981b, 1981c, 1983, 1985a, 1985b, 1985c, 1989,
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1999) includes a procedure of the papers (Pikichian, 1982a, 1982b, 1983, 1989) as a
particular case. Procedures enabling one to get consequences from the GIRs them-
selves should be also utilized, while solving specific boundary-value problems of the
radiative transfer theory. These procedures were constructively used by Rogovtsov
(1980, 1981a, 1981c, 1983, 1985a, 1985b, 1985c, 1986a, 1986b, 1986c, 1988a, 1988b,
1988c, 1988d, 1990a, 1990b, 1991a, 1991b, 1991c, 1992a, 1992b, 1993, 1997, 1999,
2002, 2007); Pikichian (1982b, 1983, 1989); Rogovtsov and Samson (1985a, 1985b,
1987); Anisimov and Rogovtsov (2002); Rogovtsov and Karpuk (2003), while solv-
ing analytically or semi-analytically specific, rather complex problems of the RTT
for turbid media of various configurations. Besides, more abstract treatment of
the said schemes and procedures (in the spirit of the general approach proposed
by Rogovtsov, 1999) has enabled a number of complex problems of mathematical
physics to be solved in an analytical form. In particular, the Cauchy problem for
an infinite set of linear differential equations, which describes the collision-free pro-
cess of the molecule excitation (Rogovtsov, 1990c), has been solved in a analytical
form, and the solution to a family of nonlinear boundary-value problems for ordi-
nary differential and integro-differential equations has been reduced to the solution
to the Cauchy problem (Rogovtsov (2008)). Moreover, the usage of the ideas of
the approach elaborated by Rogovtsov (1980, 1981a, 1981b, 1981c, 1983, 1985a,
1985b, 1985d, 1999) enabled one to get the solution to the characteristic equation
of the RTT (Rogovtsov, 1996; Rogovtsov and Borovik, 2009) in the analytical form
for a case of an arbitrary phase function. Due to the above, the said scheme and
procedures can be regarded as rather substantial and constructive ones.

The scheme of the derivation of the GIRs is illustrated by an example of
monochromatic scattering within the scope of the scalar radiative transfer the-
ory. Let all the above-mentioned assumptions on the geometrical properties of the
boundaries of turbid bodies, the optical and geometrical properties of the interiors
of these bodies and of underlying surfaces located therein be additionally assumed
to be fulfilled. Note that the scheme outlined below of the derivation of the GIRs is
formally applicable too for cases where the polarization characteristics of radiation
and the frequency redistribution processes should be taken into account.

7.2.3.1 Derivation of the general invariance relations for the case of
non-stationary sources

Let there be radiation sources inside body Vβ ∈ {Vβ}β∈B , the density of which
is specified by function gβ

(

r, 
Ω, t; V0

β

)
, and the radiation intensity in V0

β be
I
(

r, 
Ω, t0 − 0;Vβ

)
at time moment t = t0 − 0 (t0 ∈ (−∞,+∞)). Assume that

local optical characteristics of turbid medium V0
β are independent of the radiation

field, but can be dependent on the radiation field on boundary Sβ and outside Vβ .
At time moment t = t0 − 0, apply operation (ii) to {Vβ}β∈B with D = {Vβ}.
The radiation field does not change with this (see the GIP), but body Vβ will be
mapped to object Vβ1(β1 ∈ B) that differs from Vβ only in the boundary proper-
ties. Let body Vβ2 be Vβ1 , from which the absorbers are removed at time moment
t = t0−0, and there is ‘positioned’ an underlying or another surface Sβ2 with spec-
ified linear local reflection and transmission operators instead of the absorbers.
From {Vβ}β∈B one can always select a body Vβ3 that contains a part identical to
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Vβ2 from the viewpoint of the properties of and the sources of the medium. Assume
for simplicity that gβ3

(

r, 
Ω, t; V0

β3

) ≡ 0 outside of the part Vβ2 of body Vβ3 . At
this, in part Vβ3\Vβ2 , the properties of body Vβ3 are independent of the radiation
field. Moreover, let there be no radiation field in part Vβ3\Vβ2 of body Vβ3 at time
moment t = t0 − 0 and the body Vβ3 itself be not irradiated by external radiation
at time interval from t0 − 0 to +∞. Apply then operation (i) with C = {Vβ3} and
Ξj = Sβ2 to Vβ ∈ {Vβ}β∈B (the equality is understood in the geometrical sense
only). This operation partitions Vβ3 by three subsystems V

0
β2
, Sβ2 , and Vβ3\Vβ2 .

Radiation intensity I
(

r, 
Ω, t; Vβ3

)
in body Vβ3 can be represented in two ways,

if one partitions the photon ‘trajectories’ by different topological types and ac-
counts for the ‘interaction’ of these subsystems. Note that the presence of an
initial radiation field in part Vβ2 of body Vβ3 at time moment t = t0 − 0 is
equivalent at t > t0 to specifying the density of internal radiation sources of
kind ΘV0

β
(
r) I

(

r, 
Ω, t0 − 0;Vβ

)
(v (
r))−1

δ (t− t0), where ΘM (
r) is the character-
istic function of set M (ΘM (
r) is unity, when 
r specifies points of M, and is zero
otherwise). Radiation intensity I

(

r, 
Ω, t; Vβ3

)
in body Vβ3 at t > t0 is completely

defined by the internal radiation sources in V0
β2
, which are described by density

g×
(

r, 
Ω, t; V3

)
= ΘV0

β
(
r)
[
gβ
(

r, 
Ω, t; Voβ

)
+ I
(

r, 
Ω, t0 − 0;Vβ

)(
v (
r)

)−1
δ (t− t0)

]
,

by the radiators located on Sβ2
(
V0
β2

)
, and by volume Green function

G∗
(

r, 
Ω;
r′, 
Ω′; t; Sβ2 ; Vβ4

)
of the radiative transfer equation of Eq. (7.1) for the

case of body Vβ4 . Body Vβ4 stands for body Vβ3 , from which the radiators and
the internal sources determined by density g× (. . .) are removed at time moment
t = t0−0. Symbol Sβ2 is introduced explicitly in the notation for the volume Green
function G∗ (. . .), since there will be considered various situations, in which the
properties of Sβ2 should be changed. The intensity of the radiation field in Vβ3 can
be also represented, at t > t0, as a sum of terms

(
I1
(

r, 
Ω, t; Vβ3

)
+ I2

(

r, 
Ω, t; Vβ3

))
.

To do so, the ‘interaction’ of the above-said subsystems should be considered. The
first term I1

(

r, 
Ω, t; Vβ3

)
is equal to ΘV0

β
(
r) I

(

r, 
Ω, t; Vβ

)
. It coincides with the

portion of the radiation intensity in Vβ3 that is due to photons emitted by the
radiators and the internal sources in body Vβ2 (their density is specified by func-
tion g×

(

r, 
Ω, t; V3

)
) and not intersecting the boundary Sβ2 during the random walk

until they come to an ‘observation’ point in V0
β2
(it follows from the GIP and the in-

variance property stated in subsection 7.2.2). The second term I2
(

r, 
Ω, t; Vβ3

)
gives

the portion of the contribution to the total radiation field from photons, which are
formed at t > t0 in Vβ3 due to the exit outside of V

0
β2
and subsequent random

walk in the whole body Vβ3 and which initially generate the term I1
(

r, 
Ω, t; Vβ3

)
.

By equalizing the expressions for the radiation intensity I
(

r, 
Ω, t; Vβ3

)
obtained in

the above two ways, one concludes the following general invariance relation (GIR)
(Rogovtsov, 1981a, 1981b, 1989, 1999):
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ΘV0
β
(
r) I

(

r, 
Ω, t; Vβ

)
=
∫∫∫
V0

β

dV′
∫
Ω

dΩ′
t∫

t0−0

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t′; Sβ2 ; Vβ4

)
gβ

(

r ′, 
Ω′, t′; V0

β

)
dt′

−
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′) dΩ′

t∫
t0−0

G∗
(

r; 
Ω;
r ′, 
Ω′, t− t′; Sβ2 ; Vβ4

)
I
(

r ′, 
Ω′, t′; Vβ

)
dt′

+
∫∫∫
V0

β

dV′
∫
Ω

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t0; Sβ2 ; Vβ4

)
(v (
r ′))−1

I
(

r ′, 
Ω′, t0 − 0;Vβ

)
dΩ′,

t > t0. (7.16)

This GIR is valid for any 
Ω ∈ Ω and any 
r specifying points in body Vβ4 not
belonging to Sβ and to the underlying surfaces (at these surfaces, the characteristics
of the radiation field can have no clear physical sense).

Equation (7.16) is one of the most common GIRs in the integral form (from a
viewpoint of structure, not of accounting for the comprehensive laws of radiation
interaction with the medium). For a plane-parallel turbid medium, the considera-
tions similar to the above, while deriving the GIR of Eq. (7.16), were first utilized
by Rogovtsov (1980). Another GIR that is one of the most common ones was de-
rived by Rogovtsov (1981b, 1999) using unary operation (iii) (see the GIP). This
GIR enables one to reduce the original boundary-value problem for the SRTE of
Eq. (7.1) to a more simple boundary-value problem, if one knows the intensity at
all the sides of the simple pieces composing portion S×β of boundary Sβ of body
Vβ . Notice particularly that the said GIRs connect the solutions to different or
similar boundary-value problems for the SRTE of Eq. (7.1). Since one can take any
elements from set {Vβ}β∈B and specify the properties of Sβ , Sβ2 , Vβ , Vβ4 , etc.
as necessary, then it is possible from the said GIRs, in principle, to derive many
more particular invariance relations reasonable for using to solve various specific
boundary-value problems of the RTT. Just the common character of such GIRs
enables one to select various, convenient for studying, pairs of the solutions to
boundary-value problems for the SRTE. In this respect, it is possible to get the in-
formation on these solutions in analytical, semi-analytical or other forms using the
GIRs and their consequences. It should be especially underlined that the number
of GIRs and their consequences is generally unlimited in principle due to the pres-
ence of an infinite set of algebraic operations (see the GIP) that remain radiation
fields invariant almost everywhere. This aspect was not realized and was ignored
in radiative transfer theory for a long time. Therefore, there were stated a whole
number of the invariance principles (IPs) for plane-parallel media in the RTT (see,
for example, publications (Ambartsumian, 1943a, 1943b; Chandrasekhar, 1950; van
de Hulst, 1963; Shimizu, 1968; Hansen, 1969; Hunt and Grant, 1969a; Yengibarian
and Mnatsakanian, 1974; Ivanov, 1975; Ivanov and Volkov, 1978; Yanovitskij, 1979,
1981; Viik, 1982 and references therein) on the basis, often, of the practically sim-
ilar algebraic operations and actions (their algebraic nature was first simplified in
the general form by Rogovtsov (1981a, 1981b)). It has already been mentioned that
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such IPs are the particular cases of the GIP or its consequences. It will be useful to
underline that the conclusions, which have been reached in the majority of these
publications and which have been usually named as the invariance principles, are
essentially statements on the existence of expressions of a balanced kind that con-
nect together the solutions to different or related problems (these relations are, in
fact, the invariance ones in their essence). The said IPs established the existence of
partitions or representations of radiation field characteristics in plane-parallel me-
dia (sometimes in spherically symmetrical media) as certain unions (these unions
were made by addition, subtraction, multiplication, and integration operations,
etc.), the original elements of these unions being the solutions to boundary-value
problems of the RTT for plane-parallel (or spherically symmetrical) media. In other
words, these IPs as well as the GIP refer to a kind of statements that cannot be
treated within the scope of the general theoretical group approach widely used in
theoretical physics, mathematics, etc. (a more detailed explanation of this topic is
given in Rogovtsov (1999)).

Now let a number of important particular cases of the general invariance relation
of Eq. (7.16) be stated. The integration in Eq. (7.16) should be generally made over
the whole unit sphere Ω. For solving a number of specific boundary-value problems
of the RTT, it is useful to utilize the general invariance relations, in which the
integration is made over hemispheres Ω±.

Let Sβ be an absorber, i.e. the boundary of body Vβ totally absorbs radiation
incident on it. Note that such a situation occurs, for example, when body Vβ
is a non-concave one to be surrounded by the vacuum or by a purely absorbing
medium and Sβ is a totally radiation-transparent boundary. In this case, the GIR
of Eq. (7.16) takes the form of the invariance relation of the ‘first intersection’ of
the following general kind (Rogovtsov, 1981c, 1989, 1999):

ΘV0
β

(

r
)
I
(

r, 
Ω, t; Vβ

)
=
∫∫∫
V0

β

dV′
∫
Ω

dΩ′
t∫

t0−0

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t′; Sβ2 ; Vβ4

)
gβ
(

r ′, 
Ω′, t′; V0

β

)
dt′

−
∫∫

Sβ(V0
β)

dS′
∫
Ω+

(

n′ · 
Ω′)dΩ′

t∫
t0−0

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t′; Sβ2 ; Vβ4

)
I
(

r ′,
−→
Ω′, t′; Vβ

)
dt′

+
∫∫∫
V0

β

dV′
∫
Ω

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t0; Sβ2 ; Vβ4

)
(v (
r ′))−1

I
(

r ′, 
Ω′, t0 − 0;Vβ

)
dΩ′,

t > t0. (7.17)

Let boundary Sβ partition body Vβ on two bodies Vβ∗ and Vβ∗∗ (Vβ = Vβ∗ ∪
Vβ∗∗ ; symbol ∪ has the sense of the operation of the union of two sets). Denote the
common boundary of these bodies by Sβ∗,β∗∗

(
Sβ∗,β∗∗ ⊂ Sβ

)
and select Vβ4 and

Sβ2 so that V
0
β4
= V0

β and surface S
× = Sβ2\Sβ∗,β∗∗ is an absorber. Then the GIR

of Eq. (7.17) is an analog of the invariance relation of the ‘first intersection’ from
the paper (Pikichian, 1982a).
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If one takes an absorber as Sβ2 in Eq. (7.16) and requires the fulfillment of
the condition of V0

β4
= V0

β , then the invariance relation of the ‘last intersection’ is
obtained in the general form. This particular case of the GIR of Eq. (7.16) has the
form (Rogovtsov, 1981c, 1989, 1999):

I
(

r, 
Ω, t; Vβ

)
=
∫∫∫
V0

β

dV′
∫
Ω

dΩ′
t∫

t0−0

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t′; Sβ2 ; Vβ4

)
gβ
(

r ′, 
Ω′, t′; V0

β

)
dt′

−
∫∫

Sβ(V0
β)

dS′
∫
Ω−

(

n′ · 
Ω′)dΩ′

t∫
t0−0

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t′; Sβ2 ; Vβ4

)
I
(

r ′,
−→
Ω′, t′; Vβ

)
dt′

+
∫∫∫
V0

β

dV′
∫
Ω

G∗
(

r; 
Ω;
r ′, 
Ω′; t− t0; Sβ2 ; Vβ4

)
(v (
r ′))−1

I
(

r ′, 
Ω′, t0 − 0;Vβ

)
dΩ′,

t > t0, (7.18)

where 
r specifies points in V0
β (but these points should not lie on underlying

surfaces). If body Vβ is represented as a union of bodies Vβ∗ and Vβ∗∗ (i.e.
Vβ = Vβ∗ ∪ Vβ∗∗ ) and the common part of the boundaries of these bodies be-
longs to Sβ , then the GIR of Eq. (7.18) is a analog of the invariance relations of
the ‘last intersection’ from the paper (Pikichian, 1982a).

For the case of plane-parallel media and stationary sources, the invariance rela-
tions of the ‘first and last intersections’ were analyzed in detail by Ivanov (1976).

The generalization of the invariance relations of Eqs (7.17) and (7.18) is the
invariance relations of the mixed type, in which, at one portion S×β (V

0
β) of set

Sβ(V0
β), the integration is made over the hemispheres of the Ω+ kind and, at the

other portion S××
β (V0

β), it is made over the hemispheres of the Ω− kind (at this,
S×β (V

0
β) ∩ S××

β (V0
β) is the curve or the empty set). The GIRs of such a type were

first derived in the paper (Rogovtsov, 1981c).
Let body Vβ be really a part of body Vβ4 and Sβ2 possesses the same optical

characteristics as those of Sβ (it follows from this, in particular, that the prop-
erties of Sβ do not depend on the radiation field). Also let gβ

(

r ′, 
Ω′, t′; V0

β

)
=

δ (
r ′ − 
r1) δ
(

Ω′ − 
Ω1

)
δ (t). Under the said conditions, the GIR of Eq. (7.16) as-

sumes the following form (Rogovtsov , 1989):

ΘV0
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(
r)G∗

(
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Ω1, t; Sβ2 ; Vβ4

)
= ΘV0

β
(
r1)G∗

(
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)
−
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Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′) dΩ′

t∫
−0

G∗
(

r; 
Ω;
r ′, 
Ω′, t− t′; Sβ2 ; Vβ4

)
× G∗

(

r ′, 
Ω′, 
r1, 
Ω1, t

′; Sβ2 ; V
0
β

)
dt′, t > 0, (7.19)

where t > 0 and radius vectors 
r, 
r1 specify points outside the boundary Sβ . Note
here that the GIRs of the type of Eq. (7.19) enable one to find the normalization
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constants of the asymptotic formulae for the Green functions of Eq. (7.1) for the
case of turbid media of various configurations (see, for example, Rogovtsov, 1986a,
1986c, 1988a, 1988c, 1988d, 1990a, 1990b, 1991a, 1991c, 1992a).

There were derived a number of other GIRs in the publications (Rogovtsov,
1980, 1981a, 1983, 1985b, 1986b, 1989, 1993, 1999; Pikichian, 1982a, 1982b, 1983,
1989), which, in principle, are the consequences of the GIR of Eq. (7.16). Some of
these consequences will be given in subsection 7.2.4. Beside such types of the GIRs,
there were derived the GIRs, which comprise functions Φ

(

r, 
Ω, t; Vβ

)
, Φ
(

r, 
Ω;Vβ

)
(or the source functions (Bekefi, 1966; Sobolev, 1975)) or the truncated Green func-
tions for Eq. (7.1) (the general definitions of these functions are given by Rogovtsov
(1980, 1981a).

7.2.3.2 General invariance relations for the case of stationary sources

Let internal and external sources are independent of time. The other assumptions
that have been used to derive the GIRs of Eqs (7.16)–(7.19) are believed to be
valid. Write down the stationary analogs of these GIRs.

The stationary analogs of the GIRs of Eqs (7.16)–(7.19) are the following (Ro-
govtsov 1981a, 1989, 1999):
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dΩ′; (7.20)
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(7.23)

Note that all the GIRs mentioned and written down above can be derived by
means of formal mappings too, based on the usage of the invariant redefinition
method and the Fourier transform theory. This was done by Rogovtsov and Samson
(1976); Rogovtsov (1980, 1981a). Besides, the relationships between the said formal
mappings and the GIRs were established in these papers.

Let us turn now to the fact that some particular versions of the GIRs for station-
ary sources can be formally derived by means of the surface pseudo-sources method
(Beauwens and Devooght, 1968; Laletin, 1969). However, the pseudo-sources do not
always have a physical sense. Note, among the most prominent results obtained
before the statement of the GIP and the derivation of the GIRs, an important
relation (using the GIP, it can be interpreted as the invariance relation) that com-
prises the volume Green functions of Eq. (7.10) for the case of infinite and finite
media, when m (
r) ≡ 1. This relation was formally derived by Case (1969) di-
rectly from the fundamental identity. The identity was obtained by Case (1957)
for m (
r) ≡ const by using Eq. (7.10) without attracting any physical considera-
tions. The results obtained by Case (1969); Beauwens and Devooght (1968); Laletin
(1969) are directly connected with Placzek’s lemma proven in the book by Case,
Hoffman, and Placzek (1953). There it is stated that the solution to Eq. (7.10) with
m (
r) ≡ 1 inside some body V remains unchanged, if, together with the internal
sources contained therein, it is ‘imbedded into an infinite medium and if, simultane-
ously, corresponding ‘pseudo sources’ (they should be negative) will be introduced
on the boundary of body V. None of these publications, however, considered me-
dia of complex configurations that can have arbitrary underlying surfaces (their
portions, in particular, can be two- or one-sided ones). Besides, these publications
provided no physical interpretation; they derive any analytical or semi-analytical
solutions to boundary-value problems of the RTT for media that did not possess
the plane-parallel symmetry.

7.2.4 Scheme of using the general invariance principle
and the general invariance relations

While solving specific boundary-value problems of the RTT on the basis of the
GIP, reasonable GIRs should be constructed by means of algebraic operations (see
subsection 7.2.2) and using the selection procedure of bodies of the kind Vβ and
Vβ4 from set {Vβ}β∈B possessing required properties (the selection procedure is
substantially similar to the redefinition and embedding procedures). These GIRs
should relate a desired solution (or characteristics of the solution) to a specific
boundary-value problem of the RTT for the case of bodies of the kind Vβ4 . When
searching for the required GIRs, it is helpful to utilize a number of features of the
GIP and the general physical conceptions of the radiative transfer process. In par-
ticular, a convenient accessory means for finding the required GIRs is the partition
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of photon ‘trajectories’, which randomly walk in media of bodies of the kind Vβ
and Vβ4 , on topologically different classes. Moreover, it should be accounted for
the relative character of the boundary conception for the same body and the pos-
sibility to change the conception while implementing the procedure of imbedding
body Vβ into body Vβ4 . Such a situation is due to the presence of an infinite set
R of operations, with which the geometrical and physical sense imposed on the
boundaries of bodies Vβ and Vβ4 can be changed. Note also that the above written
down relations or relations derived in the said publications can be, for example,
taken as the GIRs. Second, since the GIRs and their consequences include usually
the characteristics of radiation fields in bodies of similar and different shapes, then,
by changing the configuration of, at least, one body, it is possible to reduce the
solution to complex boundary-value problems of the RTT to the investigation of
simpler boundary-value problems of the RTT that can be solved, if only partially.
This enables one to establish a certain hierarchy of boundary-value problems of the
RTT and to start the solution from the very simplest ones. After the solution to
these simple problems, it is possible, with using the GIRs, to come to the investi-
gation of the properties of radiation fields in media of more and more complicated
configurations. Third, on the base of any information on the properties of bodies
of kind Vβ and Vβ4 and on some quantities (in particular, on the Green function)
entering the GIRs, it is possible to derive more particular invariance relations. It is
desirable for this that the relations themselves have direct physical and mathemat-
ical interest and can be utilized for getting the information on the desired solutions
to boundary-value problems of the RTT in analytical, semi- analytical or other
forms. The GIRs and these particular invariance relations as well as the derivation
of particular consequences from them should be evaluated by accounting for the
structure of the GIRs (in particular, when 
r = 
rSβ

− 0
n, many of the GIRs are the
integral equations for the desired solutions to original boundary-value problems)
and of the said particular invariance relations themselves. Besides, it is useful to
take into account the possibility to isolate, from the Green functions entering the
said relations, their principal parts describing analytically the main contribution to
the radiation field in certain regions of bodies of the kind Vβ and Vβ4 . In particular,
such situations occur in those regions of the above bodies, where the depth regimes
are established. Fourth, while using the GIRs and their consequences, it is useful to
put into attention the exact solutions or the strict inequalities and simultaneously
to take into account the availability of various mathematical methods for solving
the equations of different types. Moreover, the general physical information on the
radiative transfer process within the frame of the original boundary-value problem
of the RTT often enables the ways for getting analytical or semi-analytical informa-
tion from the particular invariance relations and from their various modifications
to be more effectively found. Among the advantages of an approach based on the
GIP, there should be mentioned its common character, heuristicity, and sufficient
flexibility and constructive nature, while solving boundary-value problems of the
RTT for media of various configurations. The drawback of the same approach as
well as of the majority of other general RTT methods is that it cannot provide the
equivalent consideration of all the problems arising in the applications. However,
the possibility of deriving the solutions (in analytical or semi- analytical forms)
to the whole classes of multidimensional boundary-value problems of the RTT on
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this basis points to its wide opportunities that supplement the capabilities of the
numerical methods and the Monte Carlo method.

The evidence described in subsections 7.2.2 and 7.2.3 and the monograph (Ro-
govtsov, 1999) comprise the basis of the general invariance relations reduction
method (GIRRM). A lot of specific examples of using the GIRRM for solving direct
and inverse problems of the RTT have been given, in particular, by Rogovtsov and
Samson (1976, 1985a, 1985b, 1987); Rogovtsov (1980, 1981a, 1981b, 1981c, 1983,
1985a, 1985b, 1985c, 1985d, 1986a, 1986b, 1986c, 1988a, 1988b, 1988c, 1988d, 1989,
1990a, 1990b, 1991a, 1991b, 1992a, 1992b, 1993, 1997, 1999, 2002, 2007); Anisi-
mov and Rogovtsov (2002); Pikichian (1982a, 1982b, 1983, 1989); Rogovtsov and
Karpuk (2003); Rogovtsov and Borovik (2009). A number of the results illustrat-
ing the capabilities of the GIRRM will be presented in the next subsections of this
chapter.

7.3 Some general examples of using the general invariance
relations reduction method

The above GIRs are of rather a general character and, therefore, allow various
simplifications, modifications, and combinations with each other. By making one
or another assumptions on the properties of turbid media (in particular, on their
configurations), it is possible, on the basis of these GIRs, to get a lot of various
particular versions that will reduce the original boundary-value problem of the RTT
to the solution to simpler problems. Moreover, such relations can connect together
physically important characteristics of radiation fields in turbid media of complex
configurations to enable the analytical expressions and estimations to be obtained
for various quantities. This section will provide a number of such examples.

7.3.1 Doubling formulae

Consider a macroscopically homogeneous non-concave medium Vβ , which boundary
Sβ is totally transparent for radiation (i.e. R̂ = 0̂ and T̂ = Ê). Let body Vβ be
such that, after the section of this body by surface Ξj

(

b
)
that is obtained from

Sβ with the translation at any vector 
b inside the turbid medium, one is able to
isolate, from Vβ , a part Vβ∗

(

b
)
of body Vβ that is identical to the initial body Vβ

by its shape. As an example of such a body, indicate a body having the shape of a
semi-infinite cylindrical region bounded by a non-concave surface. One gets for the
surface Green function GSβ

(

r; 
Ω;
rSβ

− 0
n, 
Ω1, t; Vβ
)
of Eq. (7.1) the formula from

the GIR of Eq. (7.18) with accounting for the properties of body Vβ (Rogovtsov,
1981c):
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Ω−

dΩ′
t∫

−0

GSβ

(

r −
b, 
Ω;
r ′, 
Ω′, t− t′; Vβ

)
× GSβ

(

r ′ +
b, 
Ω′;
rSβ

− 0
n, 
Ω1; t′; Vβ
)
dt′, (7.24)



280 Nikolai N. Rogovtsov

where t > 0, 
r specifies points inside body Vβ∗
(

b
)
, and 
n · 
Ω1 < 0

(

n = 
n

(

rSβ

))
.

One can replace 
rSβ
− 0
n in Eq. (7.24) by 
rSβ

, because body Vβ does not comprise
any underlying surfaces. If one sets 
r = 
rSβ

+ 2
b in Eq. (7.24), then we will obtain
the below doubling formula for t > 0 and 
n · 
Ω1 < 0:

GSβ

(

rSβ

+ 2
b, 
Ω;
rS, 
Ω1, t; Vβ
)

=
∫∫

Sβ(V0
β)

dS′
∫
Ω−

dΩ′
t∫

−0

GSβ

(

rSβ

+
b, 
Ω;
r ′, 
Ω′; t− t′; Vβ
)

× GSβ

(

r ′ +
b, 
Ω′;
rSβ

, 
Ω1; t′; Vβ
)
dt′, (7.25)

This formula is the generalization of the known doubling formulae (see, for example,
Yanovitskij, 1997) derived for plane-parallel turbid media irradiated by stationary,
infinitely wide, mono-directional radiation sources. The formula enables one to
reduce the computation time, while searching for GSβ

(. . . ) for bodies of the said
shape. It is also useful for deriving the asymptotic formulae for the surface Green
functions under depth regimes.

Let turbid medium Vβ be not irradiated by external radiation and be imbedded
in ‘vacuum’ or in a purely absorbing medium. Assume that boundary Sβ of body
Vβ is non-concave and totally transparent for radiation. Besides, we will believe
that there are no underlying surfaces inside Vβ (i.e. inside V0

β), but there is a
radiation ‘source’ with density δ (
r − 
r1) δ

(

Ω− 
Ω1

)
δ (t) (the word ‘source’ is put in

inverted commas, since the density has no dimensional density). Under the above
conditions, it follows from the GIR of Eq. (7.16) (Rogovtsov, 1983):

G∗
(

r, 
Ω;
r1, 
Ω1; t1 + t2; Sβ ; Vβ

)
=
∫∫∫
V0

β

dV′
∫
Ω

G∗
(

r, 
Ω;
r ′, 
Ω′; t1; Sβ ; Vβ

)
× G∗

(

r ′, 
Ω′;
r1, 
Ω1; t2; Sβ ; Vβ

)
(υ (
r ′))−1

dΩ′, (7.26)

where 
r specifies points in V0
β , and t1 > 0, t2 > 0. Eq. (7.26) enables the volume

Green function at time moment (t1 + t2) to be found, if it is known in time mo-
ments t1 and t2 at any points lying in V0

β . It is helpful to use Eq. (7.26) for the
derivation of the normalization constants of the asymptotic formulae for function
G∗
(

r, 
Ω;
r1, 
Ω1; t; Sβ ; Vβ

)
at t → +∞. If t1 = t2, then Eq. (7.26) is the doubling

formula for the case of non-stationary sources.

7.3.2 On the relationship between the volume Green functions
and the generalized reflection function

Let there be a ‘source’ with density δ (
r − 
r1) δ
(

Ω− 
Ω1

)
δ (t) in a turbid medium

Vβ , which is of a non-concave shape and does not comprise any underlying surfaces.
We will assume that the surrounding of body Vβ is a purely absorbing medium or
vacuum that does not affect the radiation field in Vβ . Take a medium, which also
does not comprise any underlying surfaces and is of a non-concave shape, as body
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Vβ4 . It is really assumed that there are no discontinuities of the refractive index
in Vβ and Vβ4 . Since no essential limitations on the spatial dependences of other
local optical characteristics of Vβ and Vβ4 are imposed, then the assumption on
their non-concave character does not limit the commonality of the consideration.

Using Eq. (7.1) (or Eq. (7.5)), the properties of the Dirac δ-function, and the
classical principle of the optical reciprocity (Case and Zweifel, 1967) for the case
of media with m (
r) ≡ const, one can show that the following equality is valid:

m1 (
r1, 
r)G∗
(

r, 
Ω;
r1, 
Ω1, t; Sβ ; Vβ

)
= m1 (
r, 
r1)G∗

(

r1,−
Ω1;
r,−
Ω; t; Sβ ; Vβ

)
.

(7.27)
If the refractive index of turbid medium Vβ is constant, then Eq. (7.27) takes the
form of the classical principle of the optical reciprocity.

Within the scope of the assumptions made, by twofold use of the GIR of
Eq. (7.16) and the expression of Eq. (7.27), it is possible to verify the validity
of the following formulae:

G∗
(

r, 
Ω;
r1, 
Ω1; t; Sβ ; Vβ

)
= G∗

(

r; 
Ω;
r1, 
Ω1, t; Sβ ; Vβ4

)
−

∫∫
Sβ(V0

β)

dS′
∫
Ω+

(

n · 
Ω′

)
dΩ′

t∫
−0

G∗
(

r; 
Ω;
r ′, 
Ω′, t− t′; Sβ ; Vβ4

)
× G∗

(

r, 
Ω;
r1, 
Ω1, t

′; Sβ ; Vβ
)
dt′, (7.28)

G∗
(

r′Sβ

, 
Ω′;
r1, 
Ω1, t; Sβ ; Vβ
)
= G∗

(

r′Sβ

, 
Ω′;
r1, 
Ω1, t; Sβ ; Vβ4
)

− 1
π

∫∫
Sβ(V0

β)

dS′′
∫
Ω+

(

n′′ · 
Ω′′

)
dΩ′′

t∫
−0

G∗
(

r ′′,−
Ω′′;
r1, 
Ω1, t− t′; Sβ ; Vβ4

)
× R

(

r′Sβ

, 
Ω′;
r ′′,−
Ω′′; t′; Sβ ; Vβ
)
dt′. (7.29)

Here R
(

r ′Sβ ,


Ω′;
r ′′Sβ ,−
Ω′′; t; Sβ ; Vβ
)

= π
(∣∣
n′′ · 
Ω′′∣∣)−1

GSβ

(

r′Sβ

, 
Ω′;
r′′Sβ
,−
Ω′′, t;

Sβ ; Vβ
)
is the generalized reflection function; radius-vector 
r specifies points in

V0
β . The generalized reflection function characterizes radiation exiting body Vβ ,

when an infinitely narrow mono-directional beam of external radiation is incident
on boundary Sβ .

It follows from Eqs (7.28) and (7.29) that it is sufficient to know the volume
Green function for Eq. (7.1) for the case of body Vβ4 and the generalized reflection
function R(. . . ) to find the volume Green function for Eq. (7.1) for the case of body
Vβ . The formulae of Eqs (7.28) and (7.29) are most interesting for situations, when
Vβ and Vβ4 are the macroscopically homogeneous turbid bodies and when infinite
turbid medium V∞ is being taken as Vβ4 . The infinite turbid medium V∞ is under-
stood everywhere below as a medium, for which integral

∫ +∞
0

κext
(

r − ξ
Ω) dξ di-

verges for any 
Ω ∈ Ω and 
r. Equations (7.28) and (7.29) coincide with the relations
derived earlier by Rogovtsov (1981c) for the particular case, when m (
r) ≡ const
in Vβ . Some stationary analogs of these relations have been considered in detail by
Rogovtsov and Samson (1985a, 1985b).
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7.3.3 Analog of the Kirchhoff law for the case of non-equilibrium
radiation in turbid media

Let Vβ be a turbid medium of an arbitrary shape. Assume that all the real sur-
rounding of body Vβ is a turbid medium or a medium that does not scatter radia-
tion at all. We will believe that there are no discontinuities of the refractive index
in body Vβ and in its real surrounding (i.e. there are no underlying surfaces).
Besides, assume that body Vβ and its real surrounding can be positioned in an
infinite or finite part E30 of space E

3, the part E30 is non-concave and is bounded by
surface Ξ∗. Additional to the assumptions made, it is required that body Vβ and
its real surrounding can be embedded in infinite medium V∞ without changing the
characteristics of radiation fields in them. Now, it is believed that the scalar radia-
tive transfer theory is applicable to body Vβ , its surrounding, and V∞. Such an
embedding can be, for example, implemented by positioning an absorbing medium
without any radiation sources in a part (E3\E30) of space E3. Fig. 7.4 shows one
of the possible versions to position turbid medium Vβ and its real surrounding (in
this example, body Vβ is disconnected, and Vβ = Vβ′ ∪ Vβ′′ ∪ Vβ′′′ , i.e. Vβ is
the union of set Vβ′ , Vβ′′ , and Vβ′′′). All the space E3 illustrated in Fig. 7.4 is
filled by medium V∞. The latter is the union of body Vβ , its surrounding located
in (E3

0\Vβ), and an absorbing medium (difference E30\Vβ of sets E30 and Vβ is
understood in the geometrical sense).

Fig. 7.4. Example of positioning body Vβ , its surrounding, and absorbing medium outside
of non-concave surface Ξ∗ bounding part E30 of space E

3.

To derive the desired analog of the Kirchhoff law and a number of other re-
sults, we require the exact solutions to the SRTE of Eq. (7.1) (or of Eq. (7.5) and
Eq. (7.6)) that are written down for infinite medium V∞. Assume that in such a
medium there are distributed the radiation sources with density g

(

r, 
Ω, t; V0

∞
)
=[

(κext (
r)− κsca (
r))ϕ (t) + (v (
r))−1
ϕ′(t)

]
m2 (
r), where function ϕ (t) is nonnega-

tive and is equal to zero for t < ε (here ε is an infinitesimal positive number). Let
the initial radiation field be absent in V∞. i.e. I

(

r, 
Ω,−0;V∞

) ≡ 0. Now account
for that function Īext (. . .) in Eq. (7.6) should be assumed to be identically zero
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for the case of medium V∞. Besides, let Eq. (7.6) have a single solution under
the condition of

∫ +∞
0

κext
(

r − ξ
Ω) dξ = +∞ for any 
r and 
Ω (this condition is

fulfilled for medium V∞). Within the frame of the made assumption, it is easy to
be convinced that the exact solution to Eq. (7.6) has the following form:

Φ̄
(

r, 
Ω, σ; V∞

)
= ϕ̄ (σ)

(
κext (
r) + σ (v(
r))

−1) (m (
r))2 . (7.30)

In its own turn, using the formulae of Eqs (7.7) and (7.30), it can be shown
that under the above conditions the exact solution to Eq. (7.5) is

Ī
(

r, 
Ω, σ; V∞

)
= (m (
r))2 ϕ̄ (σ) . (7.31)

The normalization condition for the phase function

(4π)−1
∫
Ω

p
(

r; Ω · 
Ω′) dΩ′ =

1
2

1∫
−1

p (
r;μ) dμ ≡ 1

was taken into account, while deriving Eqs (7.30) and (7.31). It follows from
Eqs (7.30) and (7.31) that the following equalities are valid:

Φ̄
(

r, 
Ω, t; V∞

)
=
(
κext (
r)ϕ (t) + (v(
r))

−1
ϕ′ (t)

)
(m (
r))2 , (7.32)

Ī
(

r, 
Ω, t; V∞

)
=
(
m2 (
r)

)2
ϕ (t) , t ≥ −ε. (7.33)

Let all the above-mentioned assumptions be satisfied, and let there be a point
mono-directional source with density δ (
r − 
r1) δ

(

Ω− 
Ω1

)
ϕ (t) inside V∞ (i.e. in

V0
β) or in region (E

3
0\Vβ). Now use the GIR of Eq. (7.19), when an infinite medium

V∞ is taken as body Vβ4 . Apply first the Laplace transform to this GIR and
multiply the result by function (m (
r))−2 (

κext(
r) + σ (v (
r))
−1 − κsca(
r)

)
γϕ̄(σ),

where γ is the constant having the dimension inversely proportional to the product
of distance squared by time. Then integrate the obtained expression over variables

Ω and 
r of sets Ω and V∞, respectively. If one takes into account Eq. (7.27), the
definition of the volume Green function for Eq. (7.1), and Eqs (7.30)–(7.33), then
the following analog of the Kirchhoff law is deduced from the relation derived by
the above-said way:

Ī1
(

r1,−
Ω1, σ; Vβ∗

)(
α1
(

r1, 
Ω1, σ; Vβ∗

))−1 = γϕ̄ (σ) , (7.34)

where

Ī1
(

r1,−
Ω1, σ; Vβ∗

)
= γϕ̄ (σ)

∫∫∫
V0

β

dV
∫
Ω

Ḡ1
∗
(

r1,−
Ω1, 
r, 
Ω;σ; Sβ ; V∗

∞
)(
κ∗ext (
r;σ)− κsca(
r)

)
dΩ

= γϕ̄ (σ) Ī×
(

r1,−
Ω1;σ; Sβ ; V∗

∞
)
; (7.35)
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α1
(

r1, 
Ω1;σ; Vβ∗

)
= ΘV0

β
(
r)−

∫∫
Sβ(V0

β)

ds′
∫
Ω

(

n′ · 
Ω′)Ḡ1

∗
(

r ′, 
Ω′;
r1, 
Ω1;σ; Sβ ; V∗

∞
)
dΩ′. (7.36)

Function Ḡ1
∗
(

r, 
Ω;
r1, 
Ω1;σ; Sβ ; V∗

∞
)
of Eq. (7.35) stands for the Laplace image of

the volume Green function for Eq. (7.1), where the identity ofm (
r) ≡ const is valid
for any 
r. Here, however, the real velocity of light in a medium (i.e. in body Vβ and
outside of it) should be understood as a function v (
r). Function Ḡ1

∗(. . . ) satisfies
Eq. (7.5), in which one should assume that m (
r) ≡ const and I(
r, 
Ω,−0;Vβ) ≡ 0
and replace ḡ

(

r, 
Ω, σ; V0

β

)
byδ
(

r − 
r1

)
δ
(

Ω− 
Ω1

)
. It should be noted that function

σ (v (
r))−1 entering Eq. (7.5) as a term of κ∗ext (
r;σ) has the sense of temporal ab-
sorption. This term was explained in detail by Case and Zweifel (1967). In its turn,
symbol V∗

∞ is understood as a model turbid medium, which has the same local
optical characteristics as V∞, except for the refractive index. If turbid medium
V∞ is macroscopically homogeneous and σ = 0, then V∗

∞ = V∞ from the view-
point of local optical properties. Now let constant γ be selected, so that quantity
γϕ̄ (σ) coincides with the radiation intensity of the absolutely black body. Then
functions Ī1

(
r̄1,−Ω̄1, σ; Vβ∗

)
and α1

(

r1, 
Ω1;σ; Vβ∗

)
with nonnegative parameter σ

can be interpreted as the radiative and absorptive abilities of some model turbid
medium Vβ∗ (it is a portion of V∗

∞). The complete analogy of Eq. (7.34) with
the Kirchhoff law occurs when refractive index m (
r) ≡ const and σ = 0 in the
medium V∞. It is also useful to note that there is a simple relationship between the
volume Green functions Ḡ1

∗
(

r ′, 
Ω′;
r, 
Ω;σ; Sβ ; V∗

∞
)
and Ḡ∗

(

r ′, 
Ω′;
r, 
Ω;σ; Sβ ; V∞

)
,

which correspond to media V∗
∞ and V∞. It is expressed by the following formula

(Rogovtsov, 1999):

Ḡ1
∗
(

r ′, 
Ω′;
r, 
Ω;σ; Sβ ; V∗

∞
)
= m1 (
r, 
r′) Ḡ∗

(

r ′, 
Ω′;
r, 
Ω;σ; Sβ ; V∞

)
. (7.37)

Various particular cases of Eq. (7.34) have been obtained earlier by Sobolev (1973a,
1973b) and Rogovtsov (1981a, 1989).

7.3.4 General invariance relations for monochromatic radiation fluxes

To find monochromatic and integral (i.e. integrated over the frequency) radiation
fluxes through surfaces that are the boundaries of turbid media or lie inside them
is an important problem of the radiative transfer theory. The radiation energy ab-
sorbed by the whole turbid medium or by its portion is, in particular, expressed via
these fluxes, which we need to know, for example, to derive the spherical albedo
of planetary atmospheres (Sobolev, 1975) and to solve a problem on radiative ex-
change in the cloudy atmosphere (Minin, 1974, 1988; Avaste et al., 1978; Romanova,
1985).

Consider a turbid medium Vβ , whose boundary Sβ can be an underlying sur-
face. Assume that Sβ includes all the underlying surfaces contained in Vβ . Do not
however, let any simple piece of surface Sβ osculate with the interior portion V0

β

of body Vβ with both its sides simultaneously. Fig. 7.5 shows examples of the
admissible and inadmissible shapes of bodies Vβ and types of its boundaries. Let
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the values of the refractive index are independent of the position of an observa-
tion point on Sβ

(
V0
β

)
. Let there be in V0

β distributed internal radiation sources
specified by density ΘV0

β
(
r) gβ

(

r, 
Ω, t; V0

β

)
. Body Vβ can also be illuminated by

external radiation and, at the initial time moment t0 = −0, there can exist some
radiation intensity distribution ΘV0

β
(
r) I

(

r, 
Ω,−0;Vβ

)
in V0

β that will be believed
to be specified. Assume also that turbid medium Vβ is not an infinite one.

Fig. 7.5. Examples of admissible (a, b, c) and inadmissible (d, e, f) shapes of bodies Vβ
and types of its boundaries (Vβ = Vβ′ ∪Vβ′′ and Sβ = Sβ′ ∪ Sβ′′).

Take the difference between the monochromatic power values (they correspond
to a unit spectral range) that exit V0

β and enter V
0
β through Sβ(V

0
β) at time moment

t as a quantity being investigated. This quantity equals

F1
(
Sβ
(
V0
β

)
, t
)
=

∫∫
Sβ(V0

β)

dS

∫
Ω

(

n · 
Ω)I(
r, 
Ω; t; Vβ) dΩ. (7.38)

Quantity F1
(
Sβ
(
V0
β

)
, t
)
is everywhere below named as a monochromatic flux

through the boundary of body Vβ or simply as a monochromatic radiance of
body Vβ . Now write down the GIR for F1

(
Sβ
(
V0
β

)
, t
)
. To do this, use the GIR

of Eq. (7.16) at t0 = 0 and the above-made assumptions. Then take a totally
radiation-transparent surface (in the geometrical sense, it coincides with Sβ) as
Sβ2 in the GIR of Eq. (7.16). Respectively, take a body, which has no underlying
surfaces and contains a portion identical to the interior portion of body Vβ (i.e.
V0
β) by its geometrical and optical properties, as body Vβ4 in the GIR of Eq. (7.16).

Assume also that body Vβ4 is an infinite turbid medium or has a non-concave shape
and can be embedded in V∞.
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Now introduce a surface Sβ∗ that lies in V0
β and is obtained from Sβ by

using continuous deformation of the shape of the latter. Surface bounds some
body Vβ∗ (Vβ∗ ⊂ V0

β). If one first transforms the GIR of Eq. (7.16) at t0 = 0
with using the Laplace transform and then multiplies the obtained expression by(

n
(

rSβ∗

) · 
Ω)(
m (
rSβ∗ ))−2 and integrates over variables 
r and 
Ω on Sβ∗
(
V0
β∗
)
and

on Ω, respectively, we get to the following relation∫∫
Sβ∗(V0

β∗)

(m (
r))−2
dS

∫
Ω

(

n · 
Ω)̄I(
r, 
Ω;σ; Vβ) dΩ

=
∫∫

Sβ∗(V0
β∗)

(m (
r))−2
dS

∫
Ω

(

n · 
Ω) dΩ ∫∫∫

V0
β

dV′
∫
Ω

Ḡ∗
(

r, 
Ω;
r ′, 
Ω′;σ; Sβ2 ; Vβ4

)

× ḡ∗β
(

r ′, 
Ω′, σ; V0

β

)
dΩ′ −

∫∫
Sβ(V0

β)

dS′
∫
Ω

(

n′ · 
Ω′)

×

⎡⎢⎢⎣ ∫∫
Sβ∗(V0

β∗)

(m (
r))−2
dS

∫
Ω

(

n · 
Ω)Ḡ∗

(

r, 
Ω;
r ′, 
Ω′;σ; Sβ2 ; Vβ4

)
dΩ

⎤⎥⎥⎦
× Ī

(

r ′, 
Ω′;σ; Vβ

)
dΩ′, (7.39)

where ḡ∗β
(

r ′, 
Ω′, σ; V0

β

)
= ΘV0

β
(
r)
(
ḡβ
(

r, 
Ω, σ; t; V0

β

)
+ (v (
r))−1 I

(

r, 
Ω;−0;Vβ

))
.

The expression in the square brackets of Eq. (7.39) can be transformed to the below
form with using the considerations similar to those utilized in subsection 7.3.3 and
the accounting for the reciprocity principle (see Eq. (7.27)):∫∫

Sβ∗(V0
β∗)

(m (
r))−2
dS

∫
Ω

(

n · 
Ω)Ḡ∗

(

r, 
Ω;
r ′, 
Ω′;σ; Sβ2 ; Vβ4

)
dΩ

= − (m (
r ′))−4
∫∫∫
V0

β∗

(m (
r))2 dV
∫
Ω

Ḡ∗
(

r ′,−
Ω′;
r, 
Ω;σ; Sβ2 ; Vβ4

)
× (κ∗ext(
r, σ)− κsca (
r)) dΩ. (7.40)

While deriving Eq. (7.40), one takes into account that radius-vector 
r ′ specifies a
point outside of body Vβ∗ (more exactly, on Sβ

(
V0
β

)
). If one allows Sβ∗

(
V0
β∗
)
to

approach Sβ
(
V0
β

)
by continuous deformation and takes into account the constancy

of the refractive index on Sβ
(
V0
β

)
, then the below GIR for the Laplace image

F̄1
(
Sβ
(
V0
β

)
, σ
)
of the energy radiance F1

(
Sβ
(
V0
β

)
, t
)
follows from Eq. (7.39):

F̄1
(
Sβ
(
V0
β

)
, σ
)
= F̄2

(
Sβ
(
V0
β

)
, σ; Vβ4

)
+
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′)̄I××(
r ′,−
Ω′;σ; Sβ2 ; Vβ4

)̄
I
(

r ′, 
Ω′;σ; Vβ

)
dΩ′, (7.41)
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where

F̄2
(
Sβ
(
V0
β

)
, σ; Vβ4

)
=

∫∫
Sβ(V0

β)

dS

∫
Ω

(

n · 
Ω

)
dΩ
∫∫∫
V0

β

dV′
∫
Ω

Ḡ∗
(

r, 
Ω;
r ′, 
Ω′;σ; Sβ2 ; Vβ4

)
× ḡ∗β

(

r ′, 
Ω′, σ; V0

β

)
dΩ′, (7.42)

Ī××
(

r ′,−
Ω′;σ; Sβ2 ,Vβ4

)
= (m (
r ′))−2

∫∫∫
V0

β

(m (
r))2 (κ∗ext(
r;σ)− κsca (
r)) dV

×
∫
Ω

Ḡ∗
(

r ′,−
Ω′;
r, 
Ω;σ; Sβ2 ; Vβ4

)
dΩ. (7.43)

At this, one should believe that m (
r ′) ≡ m = const on Sβ
(
V0
β

)
in Eq. (7.41).

Function Ī××(
r ′,−
Ω′;σ; Sβ2 ,Vβ4
)
defined by Eq. (7.43) is a dimensionless quan-

tity for any nonnegative σ, any 
r ′ and any 
Ω′. Besides, all its values belong to
[0, 1]. Due to the importance of this conclusion, let its substantiation be given
for deriving important consequences of the GIR of Eq. (7.41). First, function
Ḡ1
∗
(

r, 
Ω;
r1, 
Ω1;σ; Sβ2 ; Vβ∗4

)
= m1

(

r1, 
r

)
Ḡ∗
(

r, 
Ω;
r1, 
Ω1;σ; Sβ2 ; Vβ4

)
is the Laplace

image of the volume Green function for Eq. (7.1) for model medium Vβ∗4 . This
medium differs from Vβ4 only in that it has m (
r) ≡ m = const for any 
r spec-
ifying points in Vβ∗4 (but function v (
r) should correspond to the real velocity
of light in a turbid medium). The validity of the above interpretation of func-
tion Ḡ1

∗
(

r, 
Ω;
r1, 
Ω1;σ; Sβ2 ; Vβ∗4

)
directly follows from Eq. (7.1), when function

ḡ
(

r, 
Ω, t; V0

β

)
is replaced in it by δ (
r − 
r1) δ

(

Ω− 
Ω1

)
δ (t), and from the prop-

erties of the δ-functions. Note that the above interrelation between functions
Ḡ1
∗
(

r, 
Ω;
r1, 
Ω1;σ; Sβ2 ; Vβ∗4

)
and Ḡ∗

(

r, 
Ω;
r1, 
Ω1;σ; Sβ2 ; Vβ∗4

)
is formally similar to

Eq. (7.37). Second, the validity of the inequality below follows from this interrela-
tion and Eq. (7.43), when σ is a nonnegative number:

Ī××(
r ′,−
Ω′;σ; Sβ2 ,Vβ4
)

≤
∫∫∫
V∗∞

(κ∗ext(
r, σ)− κsca (
r)) dV
∫
Ω

Ḡ1
∗
(

r ′,−
Ω′;
r, 
Ω;σ; Sβ2 ; Vβ4

)
dΩ. (7.44)

This inequality is valid for any 
r ′ specifying points in Vβ4 and for any 
Ω
′ ∈ Ω. In

Eq. (7.44), function Ḡ1
∗
(

r, 
Ω;
r1, 
Ω1;σ; Sβ2 ; V

∗
β

)
should stand for the Laplace image

of the Green function of Eq. (7.1) for the case of infinite model medium V∗
∞,

in which m (
r) ≡ m = const for any 
r specifying points in V∗
∞. Here, V

∗
∞ should

comprise a portion that is identical to Vβ∗4 by its optical and geometrical properties.
Third, by using the considerations similar to those utilized in subsection 7.3.3,
the expression in the right-hand side of Eq. (7.44) can be shown to be identically
unity. Fourth, from the definition of function Ī××(
r ′,−
Ω′;σ; Sβ2 ,Vβ4

)
and from the
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nonnegativity of σ, the nonnegativity of this function for any 
r ′ specifying points
in Vβ4 and for any 
Ω

′ ∈ Ω follows. The above sequence of considerations gives the
validity of the two-sided inequality of 0 ≤ Ī××(
r ′,−
Ω′;σ; Sβ2 ,Vβ4

) ≤ 1 for any

r ′ specifying points in Vβ4 and for any 
Ω

′ (but for nonnegative σ). Because Vβ is
not infinite turbid medium V∞ according to the original assumption, then function
Ī××(
r ′,−
Ω′;σ; Sβ2 ,Vβ4

)
will assume values that are strictly less than unity for any

above-said 
r ′ and 
Ω′.
The stationary analogs of Eqs (7.41)–(7.43) are the following formulae:

F1
(
Sβ
(
V0
β

))
= F2

(
Sβ
(
V0
β

)
; Vβ4

)
+
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′)I××(
r ′,−
Ω′; Sβ2 ,Vβ4

)
I
(

r ′, 
Ω′; Vβ

)
dΩ′,

(7.45)

F2
(
Sβ
(
V0
β ; Vβ4

))
=

∫∫
Sβ(V0

β)

dS

∫
Ω

(

n · 
Ω)dΩ ∫∫∫

V0
β

dV′
∫
Ω

G∗
(

r, 
Ω;
r ′, 
Ω′; Sβ2 ; Vβ4

)
× gβ

(

r ′, 
Ω′; V0

β

)
dΩ′, (7.46)

I××
(

r ′,−
Ω′; Sβ2 ,Vβ4

)
=
∫∫∫
V0

β

m1 (−→r , 
r ′) (κext(
r)− κsca (
r)) dV

×
∫
Ω

G∗
(

r ′,−
Ω′;
r, 
Ω; Sβ2 ; Vβ4

)
dΩ, (7.47)

where m (
r ′) ≡ m = const on Sβ
(
V0
β

)
. Equation (7.45) is the GIR for monochro-

matic radiance F1
(
Sβ
(
V0
β

))
. It equals the right-hand side of Eq. (7.38), when func-

tion I
(

r, 
Ω; t,Vβ

)
is replaced by radiation intensity I

(

r, 
Ω;Vβ

)
in body Vβ that

is illuminated by internal or external stationary radiation sources. The physical
interpretation of the GIRs of Eqs (7.41) and (7.45), when m (
r) ≡ m = const in
V0
β , was made by Rogovtsov (1986b).

7.3.5 Inequalities for monochromatic radiation fluxes and mean
emission durations of turbid bodies

Note some consequences of the GIR of Eqs (7.41) and (7.45). Assume first that
turbid medium Vβ does not contain any underlying surfaces, has a non-concave
shape, and is illuminated by internal stationary radiation sources only. Note that
the investigation of the radiative transfer process in turbid media illuminated by
external sources is reduced to studying of this process in the media comprising
internal radiation sources of particular kinds (see, for example, the monographs
(Sobolev, 1975; Yanovitskij, 1997)). Denote the least upper bound of the set of
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values, which are assumed by function I××(
r ′,−
Ω′; Sβ2 ,Vβ4
)
, with 
r ′ specifying

points on Sβ
(
V0
β

)
and 
Ω′ ∈ Ω+ (
r′S) = Ω+, via a(Sβ). Denote the greatest lower

bound of the set of values, which are assumed by the same function with the
same restraints of 
r ′ and 
Ω′, via b(Sβ) (b(Sβ) ≤ a(Sβ)). Then, accounting for the
absence of the external illumination and the definition of monochromatic radiance
F1
(
Sβ
(
V0
β

))
, one gets the following two-sided inequality from the GIR of Eq. (7.45):

F2
(
Sβ
(
V0
β

)
; Vβ4

)
(1− b (Sβ))−1 ≤ F1

(
Sβ
(
V0
β

))
≤ F2

(
Sβ
(
V0
β

)
; Vβ4

)
(1− a (Sβ))−1 (7.48)

For turbid media, where there is no change in the refractive index (i. e. where
m (
r) ≡ m = const), various versions of the inequalities of Eq. (7.48) have been
firstly derived by Rogovtsov (1983, 1985b, 1986b). It follows from the results of
these papers that, for macroscopically homogeneous turbid media having constant
or forward-extended phase functions, quantity a(Sβ) does not exceed 1

2ω0, where
ω0 is the single scattering albedo. At this, if the optical dimensions of homogeneous
body Vβ bounded by a smooth surface Sβ with a non-zero curvature at any point
do not change, then the quantities a(Sβ) and b(Sβ) will decrease as the forward
extension of the phase function increases. It follows from the above conclusions
and from Eq. (7.48) that, for macroscopically homogeneous turbid media having
constant or forward-extended phase functions, the simple inequalities below are
valid (Rogovtsov, 1986b):

F2
(
Sβ
(
V0
β

)
; V∞

) ≤ F1 (Sβ (V0
β

)) ≤ (1− 2−1ω0
)−1

F2
(
Sβ
(
V0
β

)
; V∞

)
. (7.49)

A macroscopically homogeneous infinite medium having the same optical charac-
teristics as those of body Vβ should stand for V∞ of Eq. (7.49). It follows immedi-
ately from Eq. (7.49) that quantity F1

(
Sβ
(
V0
β

))
differs from F2

(
Sβ
(
V0
β

)
; V∞

)
by

not more than two times for any albedo values ω0 (ω0 ∈ [0, 1]). Monochromatic flux
F2
(
Sβ
(
V0
β

)
; V∞

)
can be generally found for any phase functions and any isotropic

internal sources in body Vβ bounded by any non-concave surface Sβ . This can be
made by, for example, the results of the papers (Rogovtsov, 1996, 1997; Rogovtsov
and Borovik, 2009).

Now let a non-concave body Vβ comprises no underlying surfaces and contains a
point mono-directional non-stationary radiation source with density ϕ (t) δ (
r − 
r1)
δ
(

Ω− 
Ω1

)
. We will assume that there was no radiation field in body Vβ before time

moment t = 0 and that function ϕ (t) satisfies the following conditions, namely
(i) ϕ (t) is a piecewise smooth function; (ii) ϕ′ (t) ≥ 0 for any t ≥ 0; and (iii)
there exists the limit of limt→+∞ ϕ (t) = ϕ0 (ϕ0 = const > 0). Under the above
assumptions, one can get the following inequalities from the GIR of Eq. (7.41) and
from the inequalities of Eqs (7.48) with using the Laplace transform:

F2
(
Sβ
(
V0
β

)
; t,Vβ4

) ≤ F1
(
Sβ
(
V0
β

)
, t
)

≤ F2
(
Sβ
(
V0
β

)
; +∞; Vβ4

)
(1− a (Sβ))−1

. (7.50)

The inequalities of Eq. (7.50) are valid for any t > 0. A monochromatic flux through
surface Sβ , when there is a stationary point mono-directional radiation source with
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density ϕ0δ (
r − 
r1) δ
(

Ω− 
Ω1

)
in portion Vβ of body Vβ4 , should be understood

as F2
(
Sβ
(
V0
β

)
; Vβ4

)
= ϕ0

∫∫
Sβ

(
V0

β

) dS ∫Ω (
n · 
Ω)G∗
(

r, 
Ω;
r1, 
Ω1; Sβ2 ; Vβ4

)
dΩ where

Sβ2 = Sβ . The inequalities of Eq. (7.50) enable, in principle, the monochromatic
radiance F1

(
Sβ
(
V0
β

)
, t
)
of body Vβ to be analytically estimated, when Vβ can be

embedded in an infinite macroscopically homogeneous medium V∞.
The derivation of exact or approximate analytical solutions to the boundary

value problems of Eq. (7.1) for media with rather complicated configurations is
quite a labor-consuming problem. Therefore, it is sometimes useful to find various
averaged (integral) characteristics of radiation fields in such media. One can take,
as such characteristics, for example, the time moments of monochromatic radiance
F1
(
Sβ
(
V0
β

)
, t
)
of body Vβ , through which the mean emission durations of body

Vβ are expressed under the illumination by non-stationary radiation sources or
under the interruption of such an illumination at some instant of time. The papers
of Irvine (1968), Katsev (1969), Rogovtsov and Samson (1975) are devoted to the
design of methods for calculating the time moments for various non-stationary
radiation fields in macroscopically homogeneous absorbing and scattering media.
The general expressions and inequalities written down in subsections 7.3.3 and 7.3.4
as well as in this subsection enable one to get a number of strict and asymptotic
formulae and inequalities for the above-said time moments and mean emission
durations t∗.

Let all the conditions imposed on the properties of bodies Vβ and Vβ4 , while
deriving the GIR of Eq. (7.41) be satisfied. Besides, we will assume that the zero
and first time moments of functions, which have been obtained by the integration of
the densities of internal and external sources over spatial (within Vβ) and angular
(within Ω), are finite quantities. At this, the below integrals will be stood for time
moments Mr (f) of order r from function f(t)defined at t > 0

Mr (f) =
∫ +∞

−ε
trf (t) dt; r = 0, 1, 2, . . . . (7.51)

The quantity below will be understood as the mean emission duration

t∗ =M1(f) (M0(f))
−1

. (7.52)

If one takes the monochromatic radiance F1
(
Sβ
(
V0
β

)
, t
)
of body Vβ as function f(t),

then we can get the following relations using the GIR of Eq. (7.41), the Laplace
transform, and Eqs (7.40)–(7.43), (7.47), (7.51), and (7.1)

M0(F1) = U0 +
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′

)
I××(
r ′,−
Ω′; Sβ2 ,Vβ4

)
dΩ′

×
+∞∫
−ε

I
(

r ′, 
Ω′, t; Vβ

)
dt, (7.53)
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M1(F1) = U1 +
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′)I××(
r ′,−
Ω′; Sβ2 ,Vβ4

)
dΩ′

×
+∞∫
0

tI
(

r ′, 
Ω′, t; Vβ

)
dt, (7.54)

where

U0 =
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ0
(

r ′, 
Ω′; V0

β

)(
1− I××(
r ′,−
Ω′; Sβ2 ,Vβ4

))
dΩ′,

(7.55)

U1 =
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ1
(

r ′, 
Ω′; V0

β

)
Λ
(

r ′,−
Ω′; Sβ2 ,Vβ4

)
dΩ′

+
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ0
(

r ′, 
Ω′; V0

β

)
dΩ′

∫∫∫
Vβ4

m1

(

r ′′, 
r ′

) dV′′

v (
r ′′)

×
∫
Ω

G∗
(

r ′,−
Ω′;
r ′′, 
Ω′′; Sβ2 ; Vβ4

)
Λ
(

r ′′, 
Ω′′; Sβ2 ,Vβ4

)
dΩ ′′

−
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′)dΩ′

+∞∫
−ε

I
(

r ′, 
Ω′, t; Vβ

)
dt

∫∫∫
Vβ4

m1 (
r ′′, 
r ′)
dV′′

v (
r ′′)

×
∫
Ω

G∗
(

r ′,−
Ω′;
r ′′, 
Ω′′; Sβ2 ; Vβ4

)
Λ
(

r ′′, 
Ω′′; Sβ2 ,Vβ4

)
dΩ ′′. (7.56)

Functions χ0
(

r ′, 
Ω′; V0

β

)
, χ1

(

r ′, 
Ω′; V0

β

)
, Λ
(

r ′, 
Ω′; Sβ2 ,Vβ4

)
entering Eqs (7.55)

and (7.56) are defined by the following expressions:

χ0
(

r ′, 
Ω′; V0

β

)
= ΘV0

β
(
r ′)

⎡⎣ +∞∫
−ε

gβ
(

r ′, 
Ω′, t; Vβ

)
dt+

(
v (
r ′)

)−1
I
(

r ′, 
Ω′,−0;Vβ

)⎤⎦,
χ1
(

r ′, 
Ω′; V0

β

)
= ΘV0

β
(
r ′)

+∞∫
0

tgβ
(

r ′, 
Ω′, t; V0

β

)
dt,

Λ
(

r ′, 
Ω′; Sβ2 ,Vβ4

)
= ΘV0

β
(
r ′)− I××(
r ′, 
Ω′; Sβ2 ; Vβ4

)
. (7.57)

A number of strict expressions, inequalities, or asymptotic formulae for mean emis-
sion duration t* of turbid bodies of various configurations can be derived by using
Eqs (7.52)–(1.57). Below are a number of such examples.

Let body Vβ have no underlying surfaces and be a non-concave (recall that
the identity of m

(

rSβ

) ≡ m = const is valid on the boundary Sβ of body Vβ)
and a conservatively scattering one (i.e. κext (
r) ≡ κsca (
r)). Besides, assume that,



292 Nikolai N. Rogovtsov

starting from time moment t = −ε, the turbid medium is illuminated by internal
radiation sources only or is not illuminated at all. Then one gets the following
relation from Eqs (7.52) and (7.53), (7.54), when the body Vβ is taken as Vβ4 :

t∗ =

[∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ1

(

r ′, 
Ω′; V0

β

)
dΩ′

+
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ0

(

r ′, 
Ω′; V0

β

)
dΩ′

×
∫∫∫
Vβ

m1 (
r ′′, 
r ′)
dV′′

v (
r ′′)

∫
Ω

G∗
(

r ′,−
Ω′;
r ′′, 
Ω′′; Sβ ; Vβ

)
dΩ ′′

]

×
[∫∫∫

V0
β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ0

(

r ′, 
Ω′; V0

β

)
dΩ′
]−1

. (7.58)

It follows from Eq. (7.58) that, for the above conditions, the volume Green function
of Eq. (7.10), which corresponds to the case of stationary sources, is enough to
be found for calculating t∗. A particular case of Eq. (7.58), when m (
r) ≡ m =
const in the whole body Vo, has been obtained in the papers (Rogovtsov, 1985c;
Rogovtsov and Samson, 1985a). Eq. (7.58) can be, in particular, utilized for deriving
the asymptotic relations for quantity t∗, when turbid medium Vβ is an optically
thick one. Optically thick turbid medium Vβ everywhere below stands for such a
medium that comprises regions positioned at large optical distances from all points
of boundary Sβ of body Vβ . In its own turn, optical distance τ0

(

r0, 
rSβ

)
from a

point specified by 
r0 to a point lying on Sβ and specified by 
rSβ
is stood for integral∫ |�r0−�rSβ |

0 κext
(

r0 − ξ(
r0 − 
rSβ

)
∣∣
r0 − 
rSβ

∣∣−1)
dξ. A number of certain examples of

using Eq. (7.58) have been given in the papers (Rogovtsov, 1985c; Rogovtsov and
Samson, 1985a).

Let body Vβ satisfy to the conditions of the preceding paragraph and have
a finite optical thickness along any straight line intersecting it. Take a totally
radiation-transparent surface as Sβ2 and infinite turbid medium V∞ as body Vβ4 .
Within the frame of these assumptions, it follows from Eqs (7.52)–(7.57) the validity
of the below formula for the mean emission time of body Vβ :

t∗ = (U0)
−1
U1 (7.59)

U0 =
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ0
(

r ′, 
Ω′; V0

β

)
dΩ′, (7.60)
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U1 =
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ1
(

r ′, 
Ω′; V0

β

)
dΩ′

+
∫∫∫
V0

β

m1

(

rSβ

, 
r ′
)
dV′

∫
Ω

χ0
(

r ′, 
Ω′; V0

β

)
dΩ′

×
∫∫∫
Vβ

m1 (
r ′′, 
r ′)
dV′′

v (
r ′′)

∫
Ω

G∗
(

r ′,−
Ω′;
r ′′, 
Ω′′; Sβ2 ; V∞

)
dΩ ′′

−
∫∫

Sβ(V0
β)

dS′
∫
Ω

(

n′ · 
Ω′)̄I(
r ′, 
Ω′, 0;Vβ

)
dΩ′

×
∫∫∫
V0

β

m1 (
r ′′, 
r ′)
dV′′

v (
r ′′)

∫
Ω

G∗
(

r ′,−
Ω′;
r ′′, 
Ω′′; Sβ2 ; V∞

)
dΩ′′. (7.61)

In Eq. (7.61), function Ī
(

r ′, 
Ω′, 0;Vβ

)
=
∫ +∞
−ε I

(

r′Sβ

, 
Ω′, t; Vβ
)
dt with 
Ω ∈ Ω+

(

rSβ

)
is the reduction of the solution to Eq. (7.5) at σ = 0 to boundary Sβ of body Vβ . At
this, the said equation should be solved taking account of the boundary condition
of Ī
(

r ′, 
Ω′, 0;Vβ

)
=0 for any 
Ω ∈ Ω−

(

rSβ

)
and any 
rSβ

specifying points on Sβ .
In fact, Eqs (7.59)–(7.61) reduce the problem of calculating the mean emission
duration t∗ of a turbid, conservatively scattering medium with any non-concave
shape and with a finite optical thickness to the derivation of two functions. The first
one is the volume Green function for RTE of Eq. (7.10) for an infinite medium V∞
comprising a point isotropic radiation source. The second function is the radiation
intensity exiting body Vβ . At this, the body comprises internal sources that are
specified by density α

[
ḡ
(

r, 
Ω, 0;V0

β

)
+
(
v (
r)

)−1
I
(

r, 
Ω,−0;Vβ

)]
ΘV0

β
(
r), where α is

a quantity being equal to unity and having the dimension reciprocal to time. Note
that analytical expressions have been derived for the said Green function for the
case of an infinite macroscopically homogeneous turbid medium in the literature
(Kolesov, 1983; Rogovtsov, 1986a, 1986b). It should also be emphasized that to
find functions G∗

(

r, 
Ω;
r1, 
Ω1; Sβ2 ; V∞

)
and Ī

(

rSβ

, 
Ω, 0;Vβ
)
entering Eqs (7.59) and

(7.61) is a substantially simpler problem than to find time moment M1(F1) and
quantity t∗ on the basis of the direct solution to the original boundary value problem
for Eq. (7.1).

Consider now a non-concave, non-conservatively scattering turbid medium Vβ
having no underlying surfaces and not being illuminated by external radiation
sources at t > −ε. There will be imposed no restraints on the optical dimensions
of body Vβ . Under these conditions, one gets the following two-sided inequalities
from Eqs (7.52)–(7.54):

(1− a (Sβ))U1 ((1− b (Sβ))U0)
−1 ≤ t∗ ≤ (1− b (Sβ))U1 ((1− a (Sβ))U0)

−1
.

(7.62)
If m (
r) ≡ m = const at any point of turbid medium Vβ , then the inequalities of
Eq. (7.62) come to the inequalities derived earlier by Rogovtsov (1983, 1994). In
these works, there were derived a number of useful consequences of the particular
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cases of the GIRs of Eqs (7.41) and (7.45) and of Eqs (7.48), (7.49), and (7.62) as
applied to macroscopically homogeneous turbid media of various configurations.

Two-sided inequalities have only been written down for monochromatic fluxes
(radiances) and mean emission durations of turbid bodies. One can derive the
two-sided inequalities for radiation intensities, mean radiation intensities, mean
numbers of photon scattering events, and for a number of other quantities by
using the GIRs and the above inequalities. Additional evidence referring to the
derivation of the two-sided inequalities for these quantities are given, in particular,
in Rogovtsov (1985b, 2002) and Rogovtsov and Samson (1987).

7.4 Strict, asymptotic and approximate analytical solutions
to boundary-value problems of the radiative transfer
theory for turbid media of various configurations

The derivation of exact, asymptotic and approximate analytical solutions (but
rather correct solutions having an a priori estimation of correctness) to boundary-
value problems of the radiative transfer theory for the case of arbitrary phase
functions and turbid media of various configurations is connected with finding the
solutions to rather comprehensive general and particular mathematical problems.
The general invariance relations reduction method enables one to cope with these
problems due to its commonality and heuristicity. A whole number of examples of
such a kind will be given in this section. At this, we will mainly focus our attention
at the establishment of final results obtained on the basis of using the GIRRM
for solving specific boundary-value problems of the RTT for the case of macro-
scopically homogeneous turbid media. Besides, the refractive index m (
r) will be
believed everywhere below to be independent of an ‘observation’ point in turbid
media (i.e. m (
r) ≡ m = const).

7.4.1 Application of the general invariance relations reduction method
to the derivation of azimuth-averaged reflection function for a
macroscopically homogeneous plane-parallel semi-infinite turbid
medium

Let a semi-infinite macroscopically homogeneous isotropic turbid medium V[0,+∞)

be illuminated by a mono-directional, infinitely wide beam of external radiation.
Assume that the density of the incident light flux on the area perpendicular to
the beam is equal to F (F ≡ const) at the top of the turbid medium. Hence,
the intensity of the external radiation is equal to Fδ

(

Ω− 
Ω1

)
, where unit vec-

tors 
Ω and 
Ω1 specify the radiation propagation direction in medium V[0,+∞) and
external radiation beam, respectively. Radiation intensity I

(

r, 
Ω;V[0,+∞)

)
in tur-

bid medium V[0,+∞)

(
I
(

r, 
Ω;V[0,+∞)

) ≡ I(z, 
Ω; 
Ω1; V[0,+∞)

))
is the solution to the

following boundary-value problem:
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μ
∂I
(
z, 
Ω; 
Ω1; V[0,+∞)

)
∂z

= −κextI
(

z, 
Ω; 
Ω1; V[0,+∞)

)
+
κsca
4π

∫
Ω

p
(

Ω · 
Ω′)I(
z, 
Ω′; 
Ω1; V[0,+∞)

)
dΩ′; (7.63)

I
(
+0, 
Ω; 
Ω1; V[0,+∞)

)∣∣∣
μ1∈(0,1]

= Fδ
(

Ω− 
Ω1

)
. (7.64)

Here z ∈ (0,+∞); κext (
r) ≡ κext = const; κsca (
r) ≡ κsca = const; p
(

r; 
Ω · 
Ω′) ≡

p
(

Ω · 
Ω′); z is the depth of an ‘observation’ point inside medium V[0,+∞) (z is

the shortest distance from the ‘observation’ point to boundary S[0,+∞) of medium
V[0,+∞); μ1 = −(
n · 
Ω1

)
, where 
n is the unit external normal to S[0,+∞). The

radiation intensity exiting through boundary S[0,+∞) can be expressed via the
reflection function R

(

Ω, 
Ω1

)
(Sobolev, 1975; Yanovitskij, 1997) by means of the

relation:
I
(
0, 
Ω; 
Ω1; V[0,+∞)

)∣∣∣
μ1∈[−1,0)

=
F

π
R
(

Ω, 
Ω1

)
μ1, (7.65)

where μ = −(
n · 
Ω), R(
Ω, 
Ω1

)
= R (|μ| , ϕ, μ1, ϕ1) (ϕ and ϕ1 are the azimuths

corresponding to vectors 
Ω and 
Ω1). The physical sense of the reflection function
R (|μ| , ϕ, μ1, ϕ1) is explained in detail by Sobolev (1975) and Kokhanovsky (2006).

Fig. 7.6. Geometry of problem

Fig. 7.6 gives the graphical explanations of the above-introduced quantities.
Quantity I0

(
z, μ;μ1; V[0,+∞)

)
= (2π)−1 ∫ 2π

0
I
(
z, 
Ω; 
Ω1; V[0,+∞)

)
dϕ that due to the

isotropic local characteristics of medium V[0,+∞) is independent of azimuth ϕ1 will
stand for the azimuth-averaged radiation intensity. Azimuth-averaged radiation
intensity I0

(
0,−|μ|;μ1; V[0,+∞)

)
exiting V[0,+∞) is expressed via azimuth-averaged

reflection function R0 (|μ| , μ1) = (2π)−1 ∫ 2π
0
R (|μ| , ϕ, μ1, ϕ1) dϕ by the relation of
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I0
(
0,−|μ|;μ1; V[0,+∞)

)
= F
πR

0 (|μ| , μ1)μ1. Function R0 (|μ| , μ1) can be found in
essentially analytical form for any albedo ω0

(
ω0 = κsca (κext)

−1) and any phase
function p (μ) (μ ∈ [−1, 1]) by using the particular version of the GIR of Eq. (7.21).
The general expression for this function for the case of the conservative scattering
(ω0 = 1) and the calculation algorithm have been obtained and given in detail by
Rogovtsov and Borovik (2009).

To describe briefly the simplest version of the method for deriving R0 (|μ| , μ1)
for the case of non-conservative scattering, we will start from the particular version
of the GIR of Eq. (7.21) that has the following form (Rogovtsov and Borovik, 2009):

R0 (|μ| , μ1, ω0) = 1
2
G̃∞;0 (+0,− |μ| ; 0, μ1;ω0)

−
1∫

0

μ′G̃∞;0 (+0,− |μ| ; 0,−μ′;ω0)R0 (μ′, μ1, ω0) dμ′. (7.66)

Here |μ| ∈ (0, 1] , μ1 ∈ (0, 1] ; R0 (|μ| , μ1, ω0) is the azimuth-averaged reflection
function corresponding to single scattering albedo ω0 (ω0 ∈ (0, 1));
G̃∞;0 (τ, μ; τ1, μ1;ω0) is the Green function of the dimensionless RTE for the case
of an macroscopically homogeneous isotropic infinite turbid medium V∞ compris-
ing a ‘source’ with density δ (τ − τ1) δ (μ− μ1) (τ and τ1 are the optical thickness
values, where the ‘observation’ point and the ‘source’ are located, respectively).
The said Green function is the solution to the following problem:

μ
∂G̃∞;0 (τ, μ; τ1, μ1;ω0)

∂τ
= −G̃∞;0 (τ, μ; τ1, μ1;ω0)

+
ω0
2

1∫
−1

P0 (μ, μ′) G̃∞;0 (τ, μ′; τ1, μ1;ω0) dμ′

+δ (τ − τ1) δ (μ− μ1) . (7.67)

lim
|τ−τ1|→+∞

G̃∞;0 (τ, μ; τ1, μ1;ω0) = 0, τ, τ1 ∈ (−∞,+∞) , μ ∈ [−1, 1] ,
μ1 ∈ [−1, 0) ∪ (0, 1] . (7.68)

Function P0 (μ, μ′) of Eq. (7.27) is defined by the relation

P0 (μ, μ′) =
+∞∑
S=0

(2s+ 1) fsPs (μ)Ps (μ′) , (μ, μ′) ∈ [−1, 1]× [−1, 1] , (7.69)

where (2s+ 1) fs are the coefficients of the series expansion of phase function p (μ)
in Legendre polynomials Ps (μ), i.e. p (μ) =

∑+∞
s=0 (2s+ 1) fsPs (μ). While getting

Eq. (7.66), the local optical characteristics of media V[0,+∞) and V∞ are assumed
to coincide with each other. The relations of the kind of Eq. (7.66) have been first
derived by independent and different ways by Ivanov (1976), Rogovtsov and Sam-
son (1976) and Domke (1976). In this respect, Rogovtsov and Samson (1976) and
Domke (1976) have shown that invariance relations of the kind of Eq. (7.66) can
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be effectively utilized to find the radiation intensity exiting plane-parallel media.
The detailed physical interpretation of these relations has been given by Ivanov
and Volkov (1978). The invariance relations of Eq. (7.66) is an integral equa-
tion (IE) with respect to unknown function R0 (|μ| , μ1, ω0), if one assumes that
the Green function G̃∞;0 (τ, μ; 0, μ1;ω0) is known, when τ = +0, μ = − |μ| and
μ1 ∈ [−1, 0)∪ (0, 1]. The analytical expressions for this Green function for the case
of an arbitrary phase function have been derived by Rogovtsov and Borovik (1993,
2009). Furthermore, in Rogovtsov (1996) and Rogovtsov and Borovik (2009) the
algorithms for calculating the said Green function, the discrete roots, and the eigen-
functions of the reduced characteristic equations of the radiative transfer theory
have been proposed.

Now use the results of the papers (Rogovtsov, 1996; Rogovtsov and Borovik,
2009) and the reduction procedure to reduce the IE of Eq. (7.66) to another inte-
gral equation that can be effectively solved by the iteration method. To do this,
transform the integral equation of Eq. (7.66) taking account of the representation
below of the Green function G̃∞;0 (τ, μ; 0, μ′;ω0) (Rogovtsov and Borovik, 2009):

G̃∞;0 (τ, μ; 0, μ′;ω0) = c1 (ω0; 0)Φ0 (−ik1 (0) , μ)Φ0 (−ik1 (0) , μ′) exp (−k1 (0) τ)
+G̃∗

∞;0 (τ, μ; 0, μ
′;ω0) , τ > 0. (7.70)

Here Φ0 (−ik1 (0) , μ) is the eigenfunction of the reduced characteristic equations
of the RTT corresponding to the zeroth azimuthal harmonics (see, for example,
Rogovtsov, 1996); k1 (0) is the least positive root of the equation of ℘0

(−k2; 0) = 0,
where function

℘0
(−k2; 0) = [1; −q0 (0) k2

1
;
−q1 (0) k2

1
, . . .

]
is the infinite continued fraction (see, for example, Jones and Thron (1980) and Ro-
govtsov and Borovik (2009)), in which ql(0) = (l + 1)

2 [ (2l + 1) (2l + 3) (1− ω0fl)
(1− ω0fl+1)

]−1 for all l = 0, 1, 2, . . . ; c1 (ω0; 0) =
[∫ 1

−1
μ (Φ0 (−ik1 (0) , μ))2 dμ

]−1

is the normalization constant (here, the function itself Φ0 (−ik1 (0) , μ) is normal-
ized by the condition of

∫ 1
−1
Φ0 (−ik1 (0) , μ) dμ = 1). Note that the representation

of Eq. (7.70) in some other form has been also used by Ivanov and Volkov (1978);
Rogovtsov and Samson (1985a). Now use the representation of Eq. (7.70) to reduce
the IE of Eq. (7.66) to the following form:

R0 (|μ| , μ1, ω0)
=

1
2
G̃∞;0 (+0,− |μ| ; 0, μ1;ω0)− c1 (ω0; 0)β (μ1;ω0)Φ0 (−ik1 (0) ,−|μ|)

−
∫ 1

0

μ′G̃∗
∞;0 (+0,− |μ| ; 0,−μ′;ω0)R0 (μ′, μ1, ω0) dμ′, (7.71)

where β (μ1;ω0) =
∫ 1
0
μ′Φ0 (−ik1 (0) ,−μ′)R0 (μ′, μ1, ω0) dμ′. Equation (7.71) can

also be regarded as the integral equation with respect to function R0 (|μ| , μ1, ω0).
As first shown by Rogovtsov and Samson (1976), such an equation can be most
effectively solved, if one first treats the value β (μ1;ω0) as known and then finds it
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just after the formal solution to these integral equations. Using such a technique
of the solution, the following linear integral operator plays an important role:

K̂ (f) (μ) = −
∫ 1

0

K (μ, μ′) f (μ′) dμ′, μ ∈ [0, 1] , (7.72)

where K (μ, μ′) stands for function Q1 (|μ| , |μ′| , ω0) =
( |μ′| G̃∗

∞;0(+0,− |μ| ;
0,−|μ′|;ω0)

)
. Let K̂l denote the lth power of operator K̂. This power is defined by

the relation of K̂l (f) (μ) = K̂
(
K̂l−1 (f)

)
(μ), where l ∈ {1, 2, 3, . . . } and μ ∈ [0, 1].

Symbol K̂0 is understood as the identity operator (i.e. K̂0 (f) (μ) = f (μ)). Let
the integral operator K̂ be a contraction operator (Riesz and Sz.-Nagy, 1972;
Richtmyer, 1978; Yosida, 1980) in some normalized space X of functions defined
on segment [0, 1]. This means that, for all functions f (μ) ∈ X, an inequality
||K̂ (f) ||X ≤ q|| (f) ||X holds, where q is some positive constant less than unity (by
symbol || . . . ||X is meant the norm in space X). Taking into account the definition
of integral operator K̂ and of quantity β (μ1;ω0), and the principle of contract-
ing mappings (see, for example, Edwards (1965)), the formal solution to the IE of
Eq. (7.71) in analytical form can be written down as follows:

R0 (|μ|, μ1, ω0) = 2−1Υ−
1;tot (|μ|, μ1, ω0)− 2−1c1 (ω0; 0)Υ−

1 (|μ|, ω0)

×
⎛⎝ 1∫

0

μ′Φ0 (−ik1 (0) ,−μ′)Υ−
1;tot (μ

′, μ1, ω0) dμ′

⎞⎠
×
⎛⎝1 + c1 (ω0; 0) 1∫

0

μ′Φ0 (−ik1 (0) ,−μ′)Υ−
1 (μ

′, ω0) dμ′

⎞⎠−1

.

(7.73)

Functions Υ−
1;tot (|μ|, μ1, ω0) and Υ−

1 (|μ|, ω0) in Eq. (7.73) can be calculated by
the iteration method to be formally defined by expressions Υ−

1;tot (|μ|, μ1, ω0) =∑+∞
r=0 K̂

r(G̃∞;0) (|μ|) and Υ−
1 (|μ|, ω0) =

∑+∞
r=0 K̂

r(Φ0;1) (|μ|). Here, symbols G̃∞;0

and Φ0;1 should be understood as functions G̃∞;0 (+0,− |μ| ; 0, μ1;ω0) and
Φ0 (−ik1 (0) ,−|μ|), respectively.

The presentation of the solution to the IE of Eq. (7.71) in the form of Eq. (7.73)
is possible, if there holds the inequality of

sup
μ1∈(0,1]

‖Q1‖L1(0,1) = sup
μ1∈(0,1]

[∫ 1

0

|Q1 (μ, μ1, ω0)| dμ
]
≤ q < 1

(or ‖Q1‖L2(0,1) =
[∫ 1

0
dμ
∫ 1
0
(Q1 (μ, μ1, ω0))

2
dμ1
] 1
2 ≤ q1 < 1 ). The term

supμ1∈(0,1] [f (μ1)] is for the least upper bound of the set of values, which are
accepted by function f (μ1) on half-interval (0, 1]). When the above inequality is
valid, there will exist a unique solution to the IE of Eq. (7.71) within the class of
absolutely integrable functions on [0, 1] (i.e. in the class of L1 (0, 1) or the class of
square summable functions on [0, 1] (i.e. in the class of L2 (0, 1)). Also, this solution
can be represented in the form of Eq. (7.73). The fulfillment of these inequalities
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should be verified for each phase function selected. Note that the general physi-
cal considerations and specific calculations indicate that supμ1∈(0,1] ‖Q1‖L1(0,1) (or
‖Q1‖L2(0,1)) assumes values, which are about an order of magnitude less (in decimal
notation) than unity for the cases of isotropic and forward-extended geophysical
phase functions. This fact has also been noted in Rogovtsov and Samson (1976) for
the case of isotropic scattering. Besides, there has been shown by Rogovtsov and
Borovik (2009) that, for the case of the water cloud C.1 model (λ = 0.6457μm;
lambda is the wavelength), value supμ1∈(0,1] ‖Q1‖L1(0,1) is approximately 0.1055
(for this model the single scattering albedo ω0 is equal to 1). If ω0 is less than unity,
then supμ1∈(0,1] ‖Q1‖L1(0,1) will be further less. Table 7.1 gives, for illustration, the
estimations of supμ1∈(0,1] ‖Q1‖L1(0,1) for the case of the Henyey–Greenstein phase
function with g = f1 = 0.9.

Table 7.1. Estimations of value supμ1∈(0,1] ‖Q1‖L1(0,1) for various values ω0 for the case
of the Henyey–Greenstein phase function with parameter g = 0.9

ω0 0.1 0.2 0.3 0.4 0.5

‖Q1‖L1(0,1) 0.1466 · 10−3 0.6461 · 10−3 0.1619 · 10−2 0.3245 · 10−2 0.5813 · 10−2
ω0 0.6 0.7 0.8 0.9 0.99
‖Q1‖L1(0,1) 0.9899 · 10−2 0.1619 · 10−1 0.2696 · 10−1 0.4778 · 10−1 0.9410 · 10−1
ω0 0.999 0.9999 0.99999 0.999999
‖Q1‖L1(0,1) 0.1026 0.10353 0.10363 0.10364

Table 7.2 gives the nonnegative smallest element k1(0) of the discrete spectrum
of the characteristic equation of the RTT and the normalization constants for
various values of single scattering albedo ω0 for the case of the Henyey–Greenstein
phase function with parameter g = 0.9.

Table 7.2. Values of k1(0) and normalization constants c1(�0;0)

ω0 0.1 0.2 0.3 0.4 0.5

k1 (0) 0.94971 0.87827 0.79928 0.71489 0.62576
c1 (ω0; 0) 0.75198·10−1 0.13989 0.20717 0.28291 0.37362
ω0 0.6 0.7 0.8 0.9 0.99
k1 (0) 0.53185 0.43247 0.32580 0.20636 0.56047 · 10−1
c1 (ω0; 0) 0.48981 0.65240 0.91433 0.14815·101 0.53808·101
ω0 0.999 0.9999 0.99999 0.999999 0.9999999
k1 (0) 0.17362 · 10−1 0.54785 · 10−2 0.17321 · 10−2 0.54772·10−3 0.17321·10−3
c1 (ω0; 0) 0.17289·102 0.54762·102 0.17320·103 0.54772·103 0.17321·104

It follows from what has been said above and from Table 7.1 that the itera-
tion procedures, which should be utilized for deriving functions Υ−

1;tot (|μ|, μ1, ω0)
and Υ−

1 (|μ|, ω0), will be very effective. Their efficiency was demonstrated, in par-
ticular, by Rogovtsov and Borovik (2009) for the case of conservative scattering.
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While deriving functions Υ−
1;tot (|μ|, μ1, ω0) and Υ−

1 (|μ|, ω0) by means of the itera-
tion procedures, functions G̃∞;0 (+0,− |μ| ; 0, μ1;ω0) and Φ0 (−ik1 (0) ,−|μ|) should
be taken as initial ones. The analytical expressions and the algorithms for finding
these functions have been obtained and described in Rogovtsov (1996) and Ro-
govtsov and Borovik (2009). So, we will succeed in the effective reduction of the
problem on deriving the function R0 (|μ|, μ1, ω0) to the search of particular values of
the Green function for the RTE for a plane-parallel medium infinite turbid medium
V∞ by using the reduction procedure of one of the general invariance relations. In
its turn, the analytical representations of this Green function have been obtained
by Rogovtsov and Borovik (1993, 2009).

It follows from the above and from Table 7.1 that, for obtaining rather exact
approximate analytical solutions for function R0 (|μ|, μ1, ω0), it is enough to replace
functions Υ−

1;tot (|μ|, μ1, ω0) and Υ−
1 (|μ|, ω0) by functions G̃∞;0 (+0,− |μ| ; 0, μ1;ω0)

and Φ0 (−ik1 (0) ,−|μ|), respectively (here, however, inequality 1− ω0 � 1 should
not be valid).

Table 7.3 gives spherical albedo As(ω0) values for various ω0 for the case
of Henyey–Greenstein phase function with parameter g = 0.9. These values
were obtained with using Eq. (7.73), the definition of As(ω0) (see, for exam-
ple, Sobolev, 1975), and algorithms for calculating functions Q1 (|μ|, μ1, ω0)and
G̃∞;0 1 0

(1993, 2009).

Table 7.3. Values of spherical albedo As(ω0)

ω0 0.1 0.2 0.3 0.4 0.5

As 0.20561 · 10−2 0.46210 · 10−2 0.79046 · 10−2 0.12249 · 10−1 0.18254 · 10−1
ω0 0.6 0.7 0.8 0.9 0.99
As 0.35520 · 10−1 0.41226 · 10−1 0.67430 · 10−1 0.13259 0.49342
ω0 0.999 0.9999 0.99999 0.999999
As 0.79543 0.92975 0.97719 0.99273

The algorithm presented in this subsection can be used even for the case of
phase functions highly extended in the forward direction (to approximate such a
phase function it is necessary to use several thousands of addends in its expansion
in Legendre polynomials). It should be noted that the algorithms presented in
this subsection and in the literatur (Loyalka, 1974; Rogovtsov and Samson, 1976;
Domke, 1976; Ganapol and Kornreich, 2005; Rogovtsov and Borovik, 2009) have a
number of general features. All algorithms presented there use Fredholm equations
that have been obtained in essence with the help of related procedures and can be
solved with the help of effective iterative methods. In addition, these algorithms
directly use (in explicit or implicit form) relations connecting Green’s functions (or
functions related to Green’s functions) of the radiative (neutron) transfer equation
for the case of infinite plane-parallel medium with solutions of initial boundary-
value problems for the cases of semi-infinite or finite plane-parallel layers.

(+0,− |μ| ; 0, μ ;ω ) described by Rogovtsov (1996) and Rogovtsov and Borovik
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7.4.2 Asymptotic and approximate analytical expressions for
monochromatic radiation fluxes exiting macroscopically
homogeneous non-concave turbid bodies

Assume that all the conditions used for deriving the two-sided inequalities of
Eq. (7.48) are fulfilled. Then monochromatic radiance F1

(
Sβ
(
V0
β

))
of body Vβ

can be approximately calculated by the following formula (Rogovtsov, 1983, 1994):

F1
(
Sβ
(
V0
β

)) ≈ [
1− 2−1 (b (Sβ) + a (Sβ))

]
× [(1− b (Sβ)) (1− a (Sβ))]−1

F2
(
Sβ
(
V0
β

)
; Vβ4

)
. (7.74)

At this, the relative error of this relation will not exceed the quantity e0 =
(2 (1− a (Sβ)))−1 (a (Sβ)− b (Sβ)). Equation (7.74) is most interesting for the
case when body Vβ4 coincides with macroscopically homogeneous infinite turbid
medium V∞. This is due to the fact that quantities F2

(
Sβ
(
V0
β

)
; Vβ4

)
, b (Sβ), and

a
(
Sβ
)
in this case can be found in an explicit form or, at least, be estimated.

Usage of the two-sided inequalities of Eq. (7.49) enables quantity F1
(
Sβ
(
V0
β

))
to be estimated with the following approximate simple formula (Rogovtsov, 1994):

F1
(
Sβ
(
V0
β

)) ≈ (4− ω0) (2 (2− ω0))−1
F2
(
Sβ
(
V0
β

)
; Vβ4

)
. (7.75)

The relative error of Eq. (7.75) does not exceed e0 = (2 (2− ω0))−1
ω0 (e0 ≤ 2−1

for all ω0 ∈ (0, 1)). Equation (7.75) can only be used for the case of macroscopi-
cally homogeneous turbid bodies and phase functions that are constant or forward-
extended.

Equation (7.74) can be effectively utilized to find quantity F1
(
Sβ
(
V0
β

))
in

situations, at least, when Vβ4 = V∞ and a macroscopically homogeneous non-
concave turbid body Vβ is bounded by a smooth surface Sβ . Moreover, Eq. (7.34)
is an asymptotic formula for monochromatic radiance F1

(
Sβ
(
V0
β

))
for the case

of nearly conservatively-scattering optically-thick medium. Such a turbid medium
stands for body Vβ , for which two conditions are fulfilled. First, the minimal
positive element k1 (0) of the discrete spectrum of the characteristic equation of
the RTT (see, for example, Rogovtsov (1996) and Rogovtsov and Borovik (2009)
corresponding to the zeroth azimuthal harmonics should satisfy the inequality of

υ = (k1 (0)) (3 (1− f1))−1 � 1 (i.e. υ0 =
√
(1− ω0) (3 (1− f1))−1 � 1). Second,

the inequality of k1 (0)κextl (Sβ) � 1 should hold, where l (Sβ) is the greatest
lower bound of the set of all values of the curvature radii corresponding to the
points belonging to boundary Sβ of body Vβ . Write down the asymptotic formula
for quantity F1

(
Sβ
(
V0
β

))
for the case of the turbid medium with the above-said

properties. To do so, introduce first quantity τ0
(

rSβ
; Sβ
)
, which has the sense of

the least upper bound of the set of optical radius values of spheres that are tangent
to surface Sβ at a point specified by radius-vector 
rSβ

and are fully contained in
body Vβ (the optical lengths in macroscopically homogeneous turbid media, which
differ from a slab in shape, everywhere below stand for the products of κext by the
geometrical lengths). In its turn, denote the greatest lower bound of the set of val-
ues τ0

(

rSβ
; Sβ
)
that it assumes, when the end of radius-vector 
rSβ

goes through all
the points of surface Sβ , via τ0 (Sβ). There has been shown by Rogovtsov (1988a,
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1991c, 1994) that, for the case of nearly conservatively-scattering, optically-thick,
macroscopically homogeneous turbid medium Vβ and the limited phase function,
the following asymptotic formulae are valid:

a (Sβ) = 2−1 +O
(
k1 (0) + (k1 (0) τ0 (Sβ))

−1
)
,

b (Sβ) = 2−1 +O
(
k1 (0) + (k1 (0) τ0 (Sβ))

−1
)
, (7.76)

where υ → 0, k1 (0) τ0 (Sβ)→ +∞.
Within the frame of the accepted assumptions, one obtains the asymptotic

formula below from Eqs (7.34) and (7.76) (Rogovtsov, 1988a, 1991c, 1994):

F1
(
Sβ
(
V0
β

)) ∼ 2F2 (Sβ (V0
β

)
; V∞

)
, υ → 0, k1 (0) τ0 (Sβ)→ +∞. (7.77)

It follows from the above relation for the e0 value, which gives the upper estima-
tion of the a priori relative error of Eq. (7.74), that the relative error of Eq. (7.77)
has the order of the residual terms of Eq. (7.76). It should be especially noted
that the asymptotic formula of Eq. (7.77) is one of the few analytical solutions to
boundary-value problems for the RTT for the case of non-concave macroscopically
homogeneous turbid bodies, the shape of which can have no symmetry at all. This
conclusion becomes more convincing, if one takes into account that monochromatic
flux F2

(
Sβ
(
V0
β

)
; V∞

)
through surface Sβ of body Vβ comprising arbitrary internal

radiation sources and being imbedded together with the sources in infinite medium
V∞ can be analytically found. The corresponding formula for F2

(
Sβ
(
V0
β

))
will be

given below.
If turbid medium Vβ is a plane-parallel layer of optical thickness τ0, then more

substantial asymptotics formulae, as compared with Eq. (7.76), can be derived for
quantities b (Sβ) and a (Sβ) for the case of nearly conservative scattering. These
asymptotic formulae have been obtained by using the representation of Eq. (7.70)
and asymptotic expressions for quantities c1 (ω0, 0) and Φ0 (−ik1 (0) , μ) (see, for
example, the publications (Sobolev, 1975; Yanovitskij, 1997; Rogovtsov and Sam-
son, 1985a; Rogovtsov, 1991b)). The said asymptotic formulae have the following
form (Rogovtsov, 1986b, 1994):

b (Sβ) = 2−1 (1− exp (−k1 (0) τ0)) (1− 3υ0) +O(υ20),
a (Sβ) = 2−1 (1− exp (−k1 (0) τ0)) +O(υ20), υ0 → 0. (7.78)

The formulae of Eqs (7.78) are valid for any values τ0 > 0 and any phase func-
tions. Although value k1 (0), for rather small values of (1− ω0), will be too small
(for k1 (0), there holds the asymptotic formula of k1 (0) ∼

√
3 (1− f1) (1− ω0)

at υ0 → 0; see, for example, Sobolev (1975)), product k1 (0) τ0 can assume,
in principle, any positive values at rather large values of optical thickness τ0
of layer Vβ . Due to the above-said, quantities b (Sβ) and a (Sβ) will approach
2−1 (1− exp (−k1 (0) τ0)) at υ0 → 0. Using Eqs (7.74) and (7.78), it can be shown
that the following asymptotic formula is valid for any τ0 > 0:

F1
(
Sβ
(
V0
β

)) ∼ 2 (1 + exp (−k1 (0) τ0))−1

× [1− 2−13υ0 tanh
(
2−1k1 (0) τ0

)]
F2
(
Sβ
(
V0
β

)
; V∞

)
, υ0 → 0.

(7.79)
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Moreover, the following asymptotic formula holds for upper estimation e∗0 of the
relative error of Eq. (7.79):

e∗0 = 3υ02
−1tanh

(
2−1k1 (0) τ0

)
+O(υ20), υ0 → 0. (7.80)

While deriving Eqs (7.74), (7.75), (7.79), and (7.80), it was assumed that the
monochromatic power of all internal stationary radiation sources in turbid medium
Vβ is a finite quantity (i.e. the inequality of P

(
V0
β

)
=
∫∫∫
V0

β

dV
∫
Ω
gβ
(

r, 
Ω;V0

β

)
dΩ <

+∞ holds). If body Vβ has the shape of a plane slab comprising internal sources
with the plane-parallel symmetry yet, then one can refuse this limitation. Let
gβ
(
z, 
Ω;V0

β

)
be a density of internal sources in such a slab Vβ (z is the shortest

distance from an ‘observation’ point to its first boundary; assume, for the unambi-
guity, that the Z-axis is directed from its first boundary to the second one and is
orthogonal to them). Then all Eqs (7.74), (7.75), (7.79), and (7.80) are valid. How-
ever, quantity F1

(
Sβ
(
V0
β

))
of Eqs (7.74), (7.75), and (7.79) should be understood as

the monochromatic radiation power exiting the slab through the end faces of cylin-
der Vβ∗ with the unit section (the said end faces should lie on the corresponding
boundaries of the plane-parallel slab). Respectively, quantity F2

(
Sβ
(
V0
β

)
; V∞

)
of

the said formulae should be understood as the sum of the radiation fluxes through
the end faces of the above cylinder, which lies inside slab Vβ and, together with it,
is embedded into macroscopically homogeneous infinite medium V∞ (while calcu-
lating the radiation fluxes through each end face, one should consider the external
unit normals to them).

Assume that quantity P
(
V0
β

)
is a finite one (P

(
V0
β

)
is the monochromatic

power of all radiation sources in V0
β). Then the difference of Ea

(
V0
β

)
=
(
P
(
V0
β

)
− F1

(
Sβ
(
V0
β

)))
has the sense of the radiation energy that is absorbed per unit

time in unit frequency range by the whole turbid body Vβ . If body Vβ is
bounded by a smooth surface and is a nearly conservatively scattering and optically
thick medium, then one gets the following asymptotic formula taking account of
Eq. (7.77):

Ea
(
V0
β

) ∼ ∫∫∫
V0

β

dV

∫
Ω

gβ
(

r, 
Ω;V0

β

)
dΩ− 2F2

(
Sβ
(
V0
β

)
; V∞

)
,

k1 (0) (3 (1− f1))−1 → 0, k1 (0) τ0 (Sβ)→ +∞. (7.81)

If Vβ is a plane slab with optical thickness τ0 and P
(
V0
β

)
< +∞, then one finds

the following asymptotic formula taking account of Eq. (7.79):

Ea
(
V0
β

) ∼ ∫∫∫
V0

β

dV

∫
Ω

gβ

(

r, 
Ω;V0

β

)
dΩ− 2F2

(
Sβ
(
V0
β

)
; V∞

)
1 + exp (−k1 (0) τ0)

×
[
1− 3

2
υ0tanh

(
k1 (0) τ0
2

) ]
, υ0 → 0. (7.82)

Now let Vβ be a slab comprising internal sources described by density gβ
(
z, 
Ω;V0

β

)
(i.e. the internal sources possess the plane-parallel symmetry). Then P

(
V0
β

)
= +∞.

Therefore, Eq. (7.84) should be replaced by the following asymptotic formula:
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Ea
(
V0
β∗
) ∼ ∫ z0

0

dz

∫
Ω

gβ
(
z, 
Ω;V0

β

)
dΩ− 2F2

(
Sβ∗
(
V0
β∗
)
; V∞

)
1 + exp (−k1 (0) τ0)

×
[
1− 3

2
υ0 tanh

(
k1 (0) τ0
2

)]
, υ0 → 0. (7.83)

Here F2
(
Sβ∗
(
V0
β∗
)
; V∞

)
is the sum of the radiation fluxes through the end faces of

cylinder Vβ∗ (at this, the end faces lie on the respective boundaries of slab Vβ that
is embedded into medium V∞); z0 is the geometrical thickness of slab Vβ . Some
particular consequences (they refer to the case of the illumination of the slab Vβ by
external sources) have been derived earlier by Rogovtsov (1991b, 1994); Yanovitskij
(1991).

Equations (7.74), (7.75), (7.77), (7.79), and (7.81)–(7.83) can be construc-
tively utilized, if one knows an effective method to find both the monochro-
matic flux F2

(
Sβ
(
V0
β

)
; Vβ4

)
through the whole boundary Sβ of body Vβ and the

sum of the radiation fluxes through the end faces of cylinder Vβ∗ , i.e. quantity
F2
(
Sβ∗
(
V0
β∗
)
; V∞

)
. Such a method has been proposed by Rogovtsov (1988a, 1991b,

1991c, 1994, 1997) for the case of macroscopically homogeneous body Vβ . This
method is based on using the following expression:

F2
(
Sβ
(
V0
β

)
; V∞

)
=
∫∫∫
V0

β

dV

∫
Ω

(
1− I××(
r,−
Ω; Sβ ; V∞

))
gβ
(

r, 
Ω;V0

β

)
dΩ,

(7.84)
where I××(
r,−
Ω; Sβ ; V∞

)
is defined by Eq. (7.47), where one should assume that

m (
r) ≡ m = const, κext (
r) ≡ κext = const, κsca (
r) ≡ κsca = const, and Sβ2 = Sβ .
Equation (7.84) has been derived on the basis of using the definition for quan-
tity F2

(
Sβ
(
V0
β

)
; V∞

)
(see Eq. (7.46)) and of the stationary analog of Eq. (7.74).

Function I××(
r, 
Ω; Sβ ; V∞
)
can be represented as follows for the case of a macro-

scopically homogeneous medium:

I××(
r, 
Ω; Sβ ; V∞
)
= (κext − κsca)

∫∫∫
V0

β

G∗
(

r, 
Ω;
r ′; V∞

)
dV ′, (7.85)

where G∗
(

r, 
Ω;
r ′; V∞

)
is the Green function of Eq. (7.10) for the case of infi-

nite macroscopically homogeneous medium V∞, which comprises a point isotropic
source with density δ (
r − 
r ′). Due to the spherical symmetry inherent in the
radiation field produced by such a ‘source’ in medium V∞, this Green func-
tion can be written as G∗

(

r, 
Ω;
r ′; V∞

)
= G∗

(|
r − 
r ′| , (
ρ · 
Ω); V∞
)
, where 
ρ =

(|
r − 
r ′|)−1 (
r − 
r ′). Various analytical representations of function
G̃∗
(|
τ − 
τ ′| , μ; Ṽ∞

)
= (κext)

−2
G∗
(|
r − 
r ′| , (
ρ · 
Ω);V∞

)
have been obtained by

Kolesov (1983), Rogovtsov (1986a, 1988b) and Freimanis (2005). Quantities 
τ , 
τ ′

and μ are stood for 
τ = κext
r, 
τ ′ = κext
r
′, and μ = (|
τ − 
τ ′|)−1 (|
τ − 
τ ′| · 
Ω),

respectively, and Ṽ∞ is stood for the image of body V∞ under the use of the
transformation of 
r → κext
r. Using the analytical representations of the above-said
works and Eqs (7.84) and (7.85), one can get the analytical relations for quan-
tity F2

(
Sβ
(
V0
β

)
; V∞

)
. The simplest analytical expressions for F2

(
Sβ
(
V0
β

)
; V∞

)
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have been obtained in the papers (Rogovtsov, 1988a, 1994, 1997) within the
scope of the assumptions on the isotropy of internal radiation sources in V0

β (i.e.
gβ
(

r, 
Ω;Vβ

) ≡ gβ
(

r; V0

β

)
). In particular, quantity F2

(
Sβ
(
V0
β

)
; V∞

)
can be repre-

sented as follows (Rogovtsov, 1994):

F2
(
Sβ
(
V0
β

)
; V∞

)
=
1−(0

(κext)
3

∫∫∫
Ṽ0

β

gβ
(

τ ′; Ṽ0

β

)
d
V

∫∫∫
Ṽ∞\Ṽβ

G̃∗
(

τ ′, 
τ ; 
V∞

)
dṼ . (7.86)

Here g̃β
(

τ ′; Ṽ0

β

)
= gβ

(
(κext)

−1

τ ′; V0

β

)
, Ṽ0
β is an image of body V

0
β under the trans-

formation of 
r → κext
r, and function G̃∗
(

τ ′, 
τ ; Ṽ∞

)
is defined by the following

relation:

G̃∗
(

τ ′, 
τ ; Ṽ∞

)
= − (|
τ ′ − 
τ |)−1 ∂

∂τ∗

[∫ 1

−1

dμ

∫ 1

−1

G̃∞;0 (τ∗, μ; 0, μ′;(0) dμ′
]∣∣∣∣
τ∗=|�τ ′−�τ |

= G̃∗
( |
τ ′ − 
τ | ; Ṽ∞

)
. (7.87)

Equation (7.87) comprises the Green function G̃∞;0 (. . .) for the dimensionless RTE
(7.67) for the case of an infinite homogeneous plane-parallel medium Ṽ∞ contain-
ing a ‘source’ with density δ (τ) δ (μ− μ′). A number of analytical representations
of this function have been obtained by Rogovtsov and Borovik (1993, 2009) for the
case of an arbitrary phase function (in particular, for forward extended phase func-
tions). The simplest expression for the function in the square brackets of Eq. (7.87)
has been derived in the papers (Rogovtsov, 1994, 1997). It has the following form:∫ 1

−1

dμ

∫ 1

−1

G̃∞;0 (τ, μ; 0, μ′;ω0) dμ′

=
∫ +∞

1

s−1 exp (−sτ) ds

+
1
2π

∫ +∞

−∞

(
2A0

(
α2
)−M (α)

)
exp (−iατ) dα = G̃∞;0 (τ, ω0) . (7.88)

Here τ > 0, A0

(
α2
)
=
(
(1− ω0)℘

(
α2
))−1; ℘

(
α2
)
is the infinite continued fraction

that is defined by the following relation:

℘
(
α2
)
= 1 +

q0 (0)α2

1 +
q1 (0)α2

1 + . . .

; (7.89)

and function M (α) is equal to
∫ 1
−1
(1− iαμ)−1

dμ. The definitions of quantities
ql (0) for any l = 0, 1, 2, . . . are given in the explanations to Eq. (7.70). It
is important to emphasize that the integrand function of the second integral of
the right-hand side of Eq. (7.88) is a limited function for any ω0 ∈ (0, 1), any
α ∈ (−∞,+∞), and any τ ∈ (−∞,+∞). Besides, there exists the asymptotic for-
mula of 2A0

(
α2
) − M (α) = O

(
α−2

)
for |α| → +∞. This fact is useful to be

accounted for, while calculating the second integral of the right hand of Eq. (7.88).
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The contour integration method and the information on the analytical properties
of infinite continued fraction ℘0

(
α2
)
(see, for example, Rogovtsov (1994, 1996)

and Rogovtsov and Borovik (2009) can be also used to find this integral for the
case of an arbitrary phase function. If Vβ is a plane-parallel turbid medium, then
quantity F2

(
Sβ
(
V0
β

)
; V∞

)
can be calculated for any function gβ

(
z, 
Ω;V0

β

)
and for

any phase function by means of the general analytical expressions derived in the
papers (Rogovtsov, 1991b, 1994) and of the analytical representations of the Green
function G̃∞;0 (τ, μ; 0, μ′;ω0). Various analytical formulae for this Green function
were derived by Rogovtsov and Borovik (1993, 2009).

To illustrate the opportunities of the GIRRM in obtaining rather simple an-
alytical solutions to boundary-value problems of the RTT, let us give a num-
ber of asymptotic formulae for monochromatic luminosity F1

(
Sβ
(
V0
β

))
and for

quantity F2
(
Sβ
(
V0
β

)
; V∞

)
that have been deduced in the papers (Rogovtsov,

1988a, 1994, 1997). Let macroscopically homogeneous turbid medium Vβ (body
Vβ can generally have a concave shape) contain an internal point isotropic source
with power P

(
V0
β

)
. Hence, the radiation density corresponding to this source

is gβ
(
z, 
Ω; Ṽ0

β

)
= (4π)−1 (κext)

3
P
(
V0
β

)
δ (
τ − 
τ∗) (
τ = κext
r, 
τ

∗ = κext
r
∗). Place

the origin of a dimensionless rectangular right-hand Cartesian coordinate system
OX̃Ỹ Z̃ into the point where the source is (i.e. assume that 
τ∗ = 
0). Denote the
optical distance from point O along a straight line to boundary Sβ via τSβ

(θ, ϕ)
(the direction of this ray is set by angles θ, ϕ in the spherical coordinate system
matching with system OX̃Ỹ Z̃). At this, let the source be disposed in such a way
that any ray originating from point O intersects Sβ only once. For the above as-
sumptions, one can prove the validity of the below formula (Rogovtsov, 1994) by
using Eqs (7.86)–(7.88):

F2
(
Sβ
(
V0
β

)
; V∞

)
=
1− ω0
4π

P
(
V0
β

) 2π∫
0

dϕ

×
π∫
0

sin θ

⎡⎢⎣τSβ
(θ, ϕ) G̃∞;0

(
τSβ

(θ, ϕ) , ω0
)
+

+∞∫
τSβ (θ,ϕ)

G̃∞;0 (τ ′, ω0) dτ ′

⎤⎥⎦ dθ.
(7.90)

Quantity F2
(
Sβ
(
V0
β

)
; V∞

)
can be calculated for any phase function by means of

Eqs (7.88) and (7.90). Equation (7.90) is convenient to find the asymptotic formulae
for quantityF2

(
Sβ
(
V0
β

)
; V∞

)
. Denote the least upper bound of the set of the values

of functionτSβ
(θ, ϕ), when θ ∈ [0, π] and ϕ ∈ [0, 2π], via τ1 (Sβ). One can get the

following asymptotic formula from Eq. (7.90) (Rogovtsov, 1994, 1997):

F2
(
Sβ
(
V0
β

)
; V∞

)
=
1− ω0
4π

P
(
V0
β

)
×
⎡⎣ r∑
l=1

cl (ω0; 0)

2π∫
0

dϕ

π∫
0

(
τSβ

(θ, ϕ) + (kl (0))
−1) exp (−kl (0) τSβ

(θ, ϕ)
)
sin θ dθ

⎤⎦
+ O (Δ) , τ1 (Sβ)→ +∞ or ω0 → 1. (7.91)
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Here r is the number of the found roots of equation ℘0
(−k2; 0) = 0 (this equation

has at least one root); cl (ω0; 0) =
[∫ 1

−1
μ (Φ0 (−ikl (0) , μ))2 dμ

]−1 is the normaliza-
tion constant corresponding to root kl (0) ∈ (0, 1) (eigenfunctions Φ0 (−ikl (0) , μ) of
the reduced characteristic equation of the RTT are normalized by the condition of∫ 1
−1
Φ0 (−ikl (0) , μ) dμ = 1); Δ = (1− ω0)P

(
V0
β

) ∫ 2π
0

dϕ
∫ π
0

(
τSβ

(θ, ϕ) + (k∗)−1)
× exp (−k∗τSβ

(θ, ϕ)
)
sin θ dθ, where k∗ is any number belonging to (kr(0), 1), if

there exist only r roots; and k∗ = kr+1 (0), if there exist more than r roots. The
asymptotic formula of Eq. (7.91) is substantially simplified, if surface Sβ has con-
structive symmetry with respect to the position of the point isotropic source.

If Sβ is a sphere with optical radius τ0 and the source is disposed in the sym-
metry center, then Eq. (7.91) assumes the form:

F2
(
Sβ
(
V0
β

)
; V∞

)
= (1− ω0)P

(
V0
β

) r∑
l=1

cl (ω0; 0)
(
τ0 + (kl (0))

−1
)

× exp (−kl (0) τ0) +O (Δ) , (7.92)

where τ0 → +∞ or ω0 → 1, Δ = (1− ω0)P
(
V0
β

)(
τ0 + (k∗)

−1) exp (−k∗τ0).
Let body Vβ be a spheroid with optical lengths of its semi-axes being ã, ã, c̃

(boundary Sβ of this body is set by equation x̃2 (ã)
−2 + ỹ2 (ã)−2 + z̃2 (c̃)−2 = 1

in system OX̃Ỹ Z̃). If the point isotropic source is disposed in the center of the
spheroid, then one gets the following asymptotic formulae (Rogovtsov, 1994, 1997)
from Eq. (7.91) by means of the generalized Laplace method (see, for example,
Olver, 1974):

F2
(
Sβ
(
V0
β

)
; V∞

) ∼ (1− ω0) c1 (ω0; 0) (k1 (0) (1− ζ2)−1)
P
(
V0
β

)
× exp (−k1 (0) c̃) ,

k1 (0) c̃→ +∞ (ζ ∈ (0, 1)); (7.93)

F2
(
Sβ
(
V0
β

)
; V∞

) ∼ (1− ω0) c1 (ω0; 0) ξ (ξ2 − 1)− 1
2
(
(2k1 (0))

−1
πã
) 1
2P
(
V0
β

)
× exp (−k1 (0) ã) ,

k1 (0) ã→ +∞ (ξ ∈ (1;+∞)). (7.94)

One should assume that c̃ = ζã in Eq. (7.93) (in this case, Vβ is an ‘oblate’
spheroid). Respectively, quantity c̃ = ξã in Eq. (7.94) (in this case Vβ is a ‘prolate’
spheroid). Note the the asymptotic formulae of Eqs (7.93) and (7.94) are also valid
when ω0 → 1.

If one lets parameter ξ tend to infinity in Eq. (7.94), then the asymptotic formula
for the case of an infinite circular cylinder with optical radius ã is obtained (the
point isotropic source is disposed on its symmetry axis). This formula has the
following form:

F2
(
Sβ
(
V0
β

)
; V∞

) ∼ (1− ω0) c1 (ω0; 0)((2k1 (0))−1
πã
) 1

2
P
(
V0
β

)
× exp (−k1 (0) ã) , k1 (0) ã→ +∞. (7.95)
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Assume now that body Vβ has a cubic shape, in the symmetry center of which there
is disposed a point isotropic source. Then one can get the following asymptotic
formula (Rogovtsov, 1994) from Eq. (7.91) by means of the generalized Laplace
method and of a number of elementary transformations:

F2
(
Sβ
(
V0
β

)
; V∞

) ∼ 3 (1− ω0) c1 (ω0; 0) (k1 (0))−1
P
(
V0
β

)
× exp

(−2−1k1 (0) d̃
)
, k1 (0) d̃→ +∞. (7.96)

where d̃ is the optical length of the cube side.
As the conclusion of this subsection, let us give the simplest asymptotic for-

mulae for monochromatic luminosity values of non-concave, optically thick, almost
conservatively scattering, turbid bodies containing point isotropic sources at large
optical distances from all points of their boundaries. For this, we will assume that
the phase function is constant (it equals to unity to correspond to the isotropic
scattering) or is forwardly extended. Taking into account Eqs (7.77), (7.91)–(7.95),
the definition of normalization constant c1 (ω0; 0), and the asymptotic formula of
function Φ0 (−ik1 (0) , μ) for ω0 → 1 (see, for example, Sobolev (1975) and Yanovit-
skij (1997)), one gets the following asymptotic formulae for the above-mentioned
conditions (Rogovtsov, 1994, 1997):

F1
(
Sβ
(
V0
β

)) ∼ 2k1 (0) τ0P (V0
β

)
exp (−k1 (0) τ0) , υ0 → 0, k1 (0) τ0 → +∞.

(7.97)
(Vβ has the shape of a sphere);

F1
(
Sβ
(
V0
β

)) ∼ 2 (1− ζ2)−1
P
(
V0
β

)
exp (−k1 (0) c̃) , υ0 → 0, k1 (0) c̃→ +∞.

(7.98)
(Vβ has the shape of a oblate spheroid);

F1
(
Sβ
(
V0
β

)) ∼ ξ (ξ2 − 1)− 1
2 (2πk1 (0) ã)

1
2 P

(
V0
β

)
exp (−k1 (0) ã) ,

υ0 → 0, k1 (0) ã→ +∞. (7.99)

(Vβ has the shape of an prolate spheroid);

F1
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)) ∼ (2πk1 (0) ã) 12 P (V0
β

)
exp (−k1 (0) ã) , υ0 → 0, k1 (0) ã→ +∞.

(7.100)
(Vβ has the shape of an infinite circular cylinder);
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)) ∼ (2π)−1
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β

) 2π∫
0

dϕ

π∫
0

τSβ
(θ, ϕ)

× exp
(−k1 (0) τSβ

(θ, ϕ)
)
sin θdθ,

υ0 → 0, k1 (0) τ0 (Sβ)→ +∞, (7.101)

(Vβ is a non-concave body).
Quantity k1 (0) can be replaced by (3 (1− f1) (1− ω0))1/2 in all Eqs (7.97)–

(7.101). These asymptotic expressions demonstrate the effect of the shape of a
turbid medium on monochromatic luminosity F1

(
Sβ
(
V0
β

))
in the explicit and sim-

ple analytical form.
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The asymptotic formulae of Eqs (7.97) to (7.101) describe the dependences of
radiances of turbid bodies on dimensionless optical parameters defining the shape
and optical sizes of these bodies. On the basis of these formulae, one can get the
asymptotic expressions for mean radiative flux leaving turbid media via the portions
of their boundaries with unit area. The said mean radiative flux is defined by the
following relation Fmid

(
Sβ
(
V0
β

))
=
(
Ar (Sβ)

)−1
F1
(
Sβ
(
V0
β

))
, where Ar (Sβ) is the

area of boundary Sβ of body Vβ . Using this definition, explicit expressions for the
areas of the boundaries of spheroids, and asymptotic formulae of Eqs (7.98) and
(7.99), one derives the following asymptotic relations:

Fmid
(
Sβ
(
V0
β

))∼ 2 (κext)
2
P
(
V0
β

)
(c̃)−2 exp (−k1(0)c̃)

πγ21
[
2ζ−2 + γ−1

1 ln ((1 + γ1) / (1− γ1))
] , υ0 → 0, k1 (0) c̃→ +∞;

(7.102)

Fmid
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)) ∼ (κext)
2 (k1 (0))

1
2 P

(
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β

)
(ã)−

3
2 exp (−k1(0)ã)√

2πξ [(π/2)− arccos (ξ−1γ2) + ξ−2γ2]
,

υ0 → 0, k1 (0) ã→ +∞; (7.103)

where γ1 =
(
1− ζ2)1/2 , γ2 = (

ξ2 − 1)1/2. Equation (7.102) corresponds to the
case of an oblate spheroid, and Eq. (7.103) does the same for the case of a prolate
spheroid.

If body Vβ has a spherical shape, then the validity of the asymptotic formula
follows from Eq. (7.97) and the definition of quantity Fmid

(
Sβ
(
V0
β

))
:

Fmid
(
Sβ
(
V0
β

)) ∼ (2π)−1 (κext)
2
P
(
V0
β

)
k1 (0) τ−1

0 exp (−k1(0)τ0) ,
υ0 → 0, k1 (0) τ0 → +∞.

Due to the spherical symmetry of the problem statement, this formula is also an
asymptotic relation for the true radiative flux leaving any unit-area portion of the
boundary of sphere Vβ .

Note in addition that, via the right-hand parts of all the above-written asymp-
totic relations for mean radiation fluxes, one can easily find the lower-bounded
estimates of the main terms of the asymptotics for mean radiation densities at the
boundaries of turbid media having the shapes of oblate or prolate spheroids and
sphere. To do so, it is enough to divide the said right-hand parts by the velocity of
light in the turbid media indicated.

7.4.3 On the depth regimes of radiation fields and on the derivation of
asymptotic expressions for mean emission durations of optically
thick, turbid bodies

The depth regimes of radiation fields is intended to mean situations where radi-
ation sources and regions with observation points are spaced from each other at
large optical distances. For such situations, the simplification of functional depen-
dences of radiation field characteristics on spatial, angular, temporal and other
variables can occur due to a large number of mean scattering events, in which pho-
tons emitted by the sources and coming to an observation point participate. The
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most substantial simplifications arise when the shape of a turbid medium, angular
patterns, and radiation source dispositions possess by the same kind of symmetry.
In this case, the total or partial separation of variables in the main terms of the
asymptotic expressions for radiation field characteristics occurs. Such a separation
is implemented, in particular, under the depth regimes for optically thick, turbid
media having configurations with the plane-parallel, spherical or cylindrical sym-
metry (see, for example, the publications (Sobolev, 1975; Kolesov, 1983, 1985, 1986;
Rogovtsov and Samson, 1985a; Yanovitskij, 1997; Kokhanovsky, 2006) and refer-
ences therein). It should be noted that boundary-value problems of the RTT are
essentially one-dimensional ones with respect to spatial variables, provided that the
said symmetry is in place. Investigation of the depth regimes for multi-dimensional
(over spatial variables) boundary-value problems of the RTT is a much more com-
plicated problem as compared with the solutions to the similar problems for turbid
media, having configurations with the above-mentioned kind of the symmetry. The
study of the depth regimes, when the initial boundary-value problem is a multi-
dimensional one, is interesting for testing various versions of numerical methods
and the Monte Carlo procedure designed to solve problems of the RTT for turbid
media with complicated configurations. On the other hand, while considering the
depth regimes, it is often possible to derive analytical (semi-analytical) forms of
the relationships for multiple light scattering in turbid media of various configura-
tions. The asymptotic radiative transfer theory, which enables one to completely or
partially describe the depth regimes for arbitrary phase functions and turbid media
of complex configurations, has been elaborated in the papers (Rogovtsov, 1986c,
1988a, 1988c, 1988d, 1990b, 1991a, 1992a, 1994) on the basis of the GIRRM and
in the papers (Germogenova and Pavelyeva, 1991; Pavelyeva,1990; Germogenova
and Pavelyeva, 1994) by using functional analysis techniques. It has been proved
in these publications that the investigation of the depth regimes of radiation fields
for a number of initial three-dimensional (over spatial variables) boundary-value
problems of the RTT can be reduced to the solution of the two- or one-dimensional
boundary-value problems for the scalar radiative transfer equations that corre-
spond to some model anisotropically absorbing turbid media having the shape of
a plane-parallel slab or of the infinite cylindrical body. Moreover, in the papers
(Rogovtsov, 1986c, 1988a, 1988d, 1990b), there have been detected situations, in
which the main terms of the asymptotic formulae for radiation intensities can be
expressed explicitly via elementary functions, the solution to the Milne problem
(Sobolev, 1975; Yanovitskij, 1997), and the first eigenfunction of the reduced char-
acteristic equation of the RTT that corresponds to the zeroth azimuthal harmonics.
It should be especially emphasized that the normalization factors of all the main
terms of the above-said asymptotic formulae for the depth regimes were derived by
using the GIRRM only.

In publications (Rogovtsov, 1986c, 1988a, 1988c, 1988d, 1990a, 1990b, 1991a,
1991c, 1992a) it has been shown that on the basis of the GIRRM the depth regimes
can be investigated for the following cases:

(i) Vβ is a semi-infinite (in particular, two-layer) turbid medium, limited by a
specularly reflecting surface and exposed by a point mono-directional source
(see Fig. 7.7; in Fig. 7.7 τ0 is optical depth; τ0 � 1).
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Fig. 7.7. Geometry of problems for case (i).

(ii) Vβ is an optically thick, turbid layer exposed by a point mono-directional
source (see Fig. 7.8; in Fig. 7.8 τ0 is optical thickness layer; τ0 � 1).

Fig. 7.8. Geometry of problems for case (ii).

(iii) Vβ is a sphere containing a point mono-directional source at the center (see
Fig. 7.9; τ0 is the optical radius of this sphere; τ0 � 1).

Fig. 7.9. Geometry of problems for case (iii).

(iv) Vβ is a circular, infinite cylinder containing a linear mono-directional source
at the symmetry axis (see Fig. 7.10; τ0 is the optical radius of this cylinder;
τ0 � 1).

Fig. 7.10. Geometry of problems for case (iv)
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(v) Vβ is a cylindrical, turbid medium radiating a point mono-directional source
(τ0 is the minimal optical distance between this source and an observation
point; τ0 � 1). In Fig. 7.11(a) Vβ is an infinite cylindrical medium. In
Fig. 7.11(b) Vβ is a semi-infinite cylindrical medium. In Fig. 7.11(c) Vβ is
an optically thick, cylindrical medium.

b) c)a)

Fig. 7.11. Geometry of problems for case (v).

There have been derived a number of strict general expressions and double-
sided inequalities for mean emission times t∗ of turbid media in subsection 7.3.5
on the basis of original constructions of the GIRRM. At this, the said quantities
have been expressed or estimated (from both the top and the bottom) via the so-
lutions to the boundary-value problems for Eq. (7.10). Note now once more the
important analytical result that occurs for the case of an arbitrary limited phase
function and almost conservatively scattering, optically thick, macroscopically ho-
mogeneous turbid medium Vβ bounded by a smooth surface Sβ (let Sβ be not an
underlying surface) and containing non-stationary sources. For these conditions,
taking into account the asymptotic formulae of Eq. (7.76), there follows from the
inequalities of Eq. (7.62) the validity of the asymptotic expression: t∗ ∼ U1(U0)−1,
υ → 0, k1(0)τ0(Sβ) → +∞. In this expression, quantities U0 and U1 should
be found by using the formulae of Eq. (7.55) and (7.56), in which Sβ2 = Sβ and
Vβ4 = V∞ should be set. Note particularly that, although this expression formally
resembles Eq. (7.59) (it is valid for conservative scattering only), quantities U0 and
U1 differ from the relations of Eqs (7.60) and (7.61). Note also that the publications
(Rogovtsov, 1988b, 1994, 2002) derived a number of simple asymptotic formulae
and double inequalities for quantity t∗ for the case of conservatively scattering,
optically thick, turbid media having the shape of a spheroid (in particular, of a
sphere). Besides, on the basis of the GIRRM, there have been obtained a number
of generalizations of the flux integral and the K-integral (see, for example, Sobolev
(1975) and Yanovitskij (1997)) for the case of turbid media of complicated config-
urations illuminated by non-stationary sources in Rogovtsov (1993). Anisimov and
Rogovtsov (2002) use the result of Rogovtsov (1993) for solving an inverse problem
on the determination of the absorption coefficient.
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7.5 Conclusion

The main ideas and constructions of the GIRRM have been stated in this chapter.
In addition using the GIRRM, a number of analytical, semi-analytical and numer-
ical solutions to various boundary value problems of the RTT for turbid media of
different configurations are here described and derived. It should be noted that the
heuristicity and the efficiency of the GIRRM are due to several reasons. First, rather
an abstract treatment of the GIP exceeded the limit of the classical considerations
of the invariance principles, which were stated in theoretical physics, mathematics,
and radiative transfer theory, was assumed as a basis of the GIRRM. This fact
enables one to immediately treat the whole class of boundary-value problems of
the RTT and to select them as a function of the conditions of the statements of
specific RTT problems. Second, the GIP that is the basic element of the GIRRM
permits simple enough physical interpretation. Third, the scheme of getting the
GIRs within the scope of the GIRRM is rather flexible to be closely connected
with the main considerations of ray optics and probabilistic interpretation of the
RTT. Fourth, the GIRRM enables a certain hierarchy and relationship between
the solutions to boundary-value problems of the RTT for turbid media of various
configurations to be set forth. This fact provides an opportunity to reduce the so-
lution to complicated boundary-value problems of the RTT to the consideration of
simpler boundary-value problems of the RTT. Fifth, no assumptions on the sym-
metry and on the problem dimension with respect to spatial and other variables are
initially laid down on the GIRRM constructions while the boundary-value prob-
lems are stated. This feature of the GIRRM has enabled a number of analytical
and semi-analytical solutions to RTT problems to be obtained for turbid media,
the configurations of which possess no substantial symmetry. The presence of sym-
metry of such a kind can just give additional opportunities for using the GIRRM.
Sixthly, the GIRMM allows one to reformulate diverse complex direct and inver-
sion problems of disperse medium optics and essentially to decrease the volume of
mathematical calculations as compared with the volume needed to fulfill in direct
solving the initial problems.

Results derived on the basis of the GIRRM can, in particular, be utilized for
testing various numerical methods and Monte Carlo procedures. Besides, they per-
mit one to qualitatively and quantitatively estimate the effect of the configuration
of a turbid medium on radiation field characteristics therein. Moreover, having any
meaningful information of the properties of the solutions to boundary-value prob-
lems of the RTT for a turbid medium of a certain configuration, it is possible, in
principle, to get information on the similar or other solution properties of more
complicated RTT problems by means of the GIRRM. In should also be mentioned
that, by using the GIRRM, one can design a new version of the invariant em-
bedding method suitable for solving various problems of mathematical physics (in
particular, for solving multi-dimensional boundary-value problems of the RTT). A
number of results in this direction have been obtained by Rogovtsov (1992b, 2008).
It should be added to the above that RTT problems can be effectively solved by
using the GIRRM for cases, when the boundaries of turbid media are underlying
surfaces.
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Appendix A: Main mathematical notations, conceptions,
and constructions used while stating the general invariance
principle and deriving the general invariance relations

A set is one of the major general mathematical notions. If A is a finite set, it will
be written in the form of A = {a1, a2, . . . , an}, where a1, a2, . . . , an are its
elements and n is the number of elements belonging to A. The belonging relation
of an element b to a set B is denoted by a symbol ∈ (i.e. b ∈ B). A general way to
write any set X is the following presentation: X = {x|C (x)}, where C (x) is some
condition (or their collections), to which the elements of this set should satisfy. If
condition C (x) does not hold (or C (x) is a false assertion), we write x /∈ X (i.e.
x does not belong to X). In set theory, symbols ⊂, ∪, ∩, \ are used. Notation
A ⊂ B means that any element of the set A belongs to the set B (i.e. A is a subset
of the set B). Sets A and B are considered to be equal, i.e. A = B, if relations
A ⊂ B, B ⊂ A hold simultaneously. Symbol ∪ means the union operation of sets. It
means that A∪B = {x|x ∈ A or x ∈ B }, i.e. set A∪B consists of all the elements
belonging to set A, set B, or to the both these sets simultaneously. Expression A∩B
defines an intersection of the sets, i.e. A∩B = {x|x ∈ A andx ∈ B }. Construction
A\B means a difference of sets i.e. A\B = {x|x ∈ A and x /∈ B }. An empty set, ∅,
is thought to be a set containing no elements.

Another major general mathematical conception is a notion of map (function,
operator) of set A into set B. Symbolically a map f is written as f : A → B.
Symbol f is thought to be a rule (law, algorithm), according to which a single, at
least, element b ∈ B is specified for all a ∈ D (f) (D (f) ⊂ A). Symbol D (f) is
thought to be the domain of map f. For all a ∈ D (f), the map f defines one of the
elements of set B or their collection. If b = f (a), where a ∈ D (f) and b ∈ B, then a
is a prototype of element b and b is an image of element a. Image Imf of set A into
set B is referred to as a set Imf = {b| b is the image of element a of the set D (f)}.
Set Imf is the range of map f : A → B. The map f : A → B is referred to as
a simple one, if for all a ∈ D (f) there exists the unique image b = f (a) ∈ B.
This chapter considers simple maps only. Map f : A → B is said to be injective,
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if for all b ∈ Imf there exists only a single prototype a ∈ D (f) (b = f (a)). The
maps, utilized while stating the GIP, should not necessarily be injective ones. If
map f : A → B is an injective one, D (f) = A, and Imf = B, a map is said
to be a bijective map of set A onto set B. Map f : A → B generates an inverse
map. By definition, the inverse map f−1 : B → A to the map f : A → B stands
for such a map, in which an element a ∈ A is an image of an element b ∈ B, iff
f (a) = b (in addition to b ∈ Imf). A map that is an inverse one to a simple map
is not always a simple one. The maps utilized while stating the GIP are just such
maps. But a map that is an inverse one to a bijective map is always a simple one.
If relation M ⊂ D(f) is satisfied, then symbol f (M) will be further assumed as set
f (M) = {x|x = f (a) and a ∈ M }.

The map concept can be used for stating the sets themselves. Let B be some
set, which one names as an indexing set. Assume that there is stated a simple map
f : B → V , for which D (f) = B and Imf = V . In this case, for all β ∈ B
there exists a single element Vβ ∈ V , for which f (β) = Vβ . At this, the equality
of V = {Vβ |β ∈ B} is valid. If one considers any element Vβ ∈ V as a set, then
set V can be represented as a set coinciding with the union of all such elements,
i.e. V = ∪

β∈B
Vβ . Usually, this equality is written in the form of V = {Vβ}β∈B.

Note that the simplest example of stating the sets by the above-described means
is specifying numerical sequences {xn}n∈N = {x1, x2, x3, . . .}, where N is the set
of the natural numbers.

Once more important general mathematical concept is the notion of an algebraic
operation. A unary algebraic operation specified on set A is meant as a simple map
f : A → A, for which D (f) = A. This operation maps any element a of set
A to a single element f (a) of the same set. Denote a set of all unary algebraic
operations specified on set A via WA. Let f1, f2 ∈ WA (i.e. maps f1 : A → A
and f2 : A → A are simple maps and D (f1) = D (f2) = A). Then a composition
f3 = (f2f1) of these two unary algebraic operations will be assumed as a map
f3 : A → A that assigns any element a ∈ A to a single element c ∈ A according
to the rule of c = f3(a) = f2 (f1(a)), where b = f1(a) ∈ A. It follows from the
definition of a unary (algebraic) operation that this composition is also a unary
operation specified on set A. Fig. 7.12 simplifies graphically the sense of unary
operations f2, f1 and their composition (f2f1).

Fig. 7.12. Graphical illustration of operation f2, f1 and (f2f1).
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It follows from the above-said that (f2f1) ∈ WA. The composition operation
of two maps belonging to set WA represents an important example of a binary
algebraic operation. State the general definition of a binary algebraic operation. Let
X be a non-empty set. We will say that a binary algebraic operation ∗ is specified
on set X, if any ordered pair (a, b), where a, b ∈ X, is assigned to a single element
c ∈ X, i.e. the equality of c = a ∗ b is valid. An operation ∗ is called an associative
one, if the equality of (a∗b)∗c = a∗(b∗c) is true for all a, b, c ∈ X. A binary algebraic
operation ∗ is named as a commutative one, if the equality of a∗b = b∗a is true for
all a, b ∈ X. Especially note that a binary algebraic operation of the composition of
two unary operations is an associative one (see, for example, Birkhoff and Bartee,
1970). Due to this, the equality of (fα1fα2)fα3 = fα1(fα2fα3) is valid for any
fα1 , fα2 , fα3 ∈ WA. However, generally speaking, this composition operation is
not a commutative one. Since any non-empty set, on which an associative binary
algebraic operation is specified, is a semi-group by definition, set WA introduced
above is a semi-group too. It should be underlined that semi-group R introduced
in subsection 7.2.2 can be treated as a subsemi-group of semi-group WA, when one
takes set {Vβ}β∈B as set A. At this, a subsemi-group of some semi-group stands
for any of its subset that is a semi-group itself.

The conception of an invariant as well as symmetry (invariance) properties and
principles play an important role in various scientific fields. Their descriptions and
statements are usually made with using the notions of a group and a relation of
equivalence. Set X is named as a group, if it is a semi-group and the following
conditions are satisfied:

1. there exists a neutral element e in set X, i.e. the equalities of e ∗ a = a ∗ e = a
are true for all a ∈ X;

2. for all a ∈ X, there exists an inverse element a−1, for which the equalities of
a−1 ∗ a = a ∗ a−1 = e are true.

Groups, the elements of which are bijective maps (transformations) of sets to
themselves, occupy a special position among groups widely utilized while studying
and defining symmetry (invariance) properties of various objects, constructions,
geometrical figures, equation solutions, etc. In addition, various subgroups of such
groups (any subset of a group, that is a group itself, stands for a subgroup of
the original group) are used for the same purposes. Go to the definition of a rela-
tion of equivalence specified on some non-empty set X. The relation conception as
well as the set, the map, and the algebraic operation relations is one of the most
general and important mathematical notions. We will assume binary relation χ
(or simply relation) as any non-empty subset of a set of ordered pairs (i.e. of set
X × X = {(a,b)|a ∈ X and b ∈ Y}). Let expressions (a, b) ∈ χ and aχb be equiv-
alent (interchangeable). The examples of the relations written down in the form
of aχb are a = b, a < b, a > b. Relation χ is called reflexive one, if there occurs
aχa for any a ∈ X. Relation χ is called symmetric, if it follows bχa from aχb for
any a, b ∈ X. Relation χ is called transitive, if it follows aχc from aχb and bχc for
any a, b, c ∈ X. Relation θ specified on non-empty set X will be called a relation
of equivalence if it is reflexive, symmetric and transitive. Relation θ of equivalence
partitions set X by non-intersecting subsets (classes of equivalence). These classes
in pairs do not have common elements. Each of these classes of equivalence con-
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sists of all elements of set X that are related by the relation θ of equivalence with
some fixed element of the given class. The exclusive importance of the relation-of-
equivalence conception is due to its specifying the generalized form of the equality
of all objects (elements) from the same class of equivalence. This means that, in
some sense, elements of the same class of equivalence possess the same properties.
An invariant is often assumed in mathematics as a map f : X→ A, where X is a
non-empty set with relation θ of equivalence specified on it. At this, all elements
of any selected class of equivalence of set X should be mapped into a single ele-
ment of set A. Different elements of set A should, however, correspond to different
classes of equivalence of set X. Sometimes, while treating applied problems, an
invariant is intended as the whole population of elements of A, into which set X
with a relation of equivalence specified on it is mapped. It should be pointed out
that the study of invariants is connected with classification problems for objects
of one or another type. Notice that, in various scientific fields, one can provide
the invariance (unchanging in some sense) conception with a sense that does not
always coincide with the above-given classical definition of the invariance. It has
been noted earlier that the conceptions of a group, of a relation of equivalence, and
of symmetry (invariance) principles are connected with each other. This should
be added with that group operations of groups (and of their subgroups) are often
utilized as one of general and constructive elements, while specifying and stating
relations of equivalences on sets. This is connected, in particular, with the fact that
there is a bijective correspondence between the two conception sets of {reflexivity;
symmetry; transitivity} and {identical transformation; direct and inverse transfor-
mations; composition of transformations}. The notions belonging to the first set
are inherent to the relation of equivalence and the notions of the second set are
used while defining groups of bijective maps. Symmetry (invariance) principles in
mathematics and physics stand usually for statements pointing to the invariance
(unchanging in some sense) of mathematical or physical objects, constructions, etc.
with respect to one or another transformation groups.

As has been noted and proved by Rogovtsov (1981a, 1981b, 1989, 1994, 1999),
not all the invariance principles can be regarded as symmetry principles. Generally,
the invariance principles should be understood as statements postulating the in-
variance of sets of objects, constructions, solutions, properties, relations, etc. with
respect to operations (actions) belonging to some set W (this set can generally
be not a group and even a semi-group). Just such a general treatment was used,
while stating the GIP, deriving the GIRs, and constructing the GIRRM. It should
be added to the above that operations (actions) from set W can generally lead to
some partial losses in the properties of original objects, constructions, solutions,
relations, etc. Besides, operations (actions) from W can partially change one or
another characteristic of the above-mentioned original sets. A situation of such a
kind is implemented, in particular, under the action of operations belonging to semi-
group R on set {Vβ}β∈B (see the statement of the GIP in subsection 7.2.2). Once
more two general mathematical conceptions were utilized, while stating the GIP.
These conceptions are ‘bounded subset’ and ‘almost everywhere’. Term ‘bounded
subset’ in subsection 7.2.2 is to be understood as any set in the three-dimensional
Euclidean point space E3 (see, for example, Faure et al. (1964)) that can be com-
pletely included in a sphere with a finite radius. The notion ‘almost everywhere’
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is closely related with the conceptions of a measure and of a measurable set (see,
for example Kolmogorov and Fomin (1968) and Richtmyer (1978)). The ‘measure’
notion is the natural generalization of the concepts of a length of line segment, a
plane figure area, a spatial figure volume, an increment of a non-decreasing function
on a semi-open interval, etc. A set is called a measurable (according to Lebesgue),
if one can uniquely, according to a certain rule, assign a measure to it (the strict
definition of a measure is given, for example, by Kolmogorov and Fomin (1968)). A
measure is a nonnegative function defined on a set of measurable sets and possess-
ing the additivity property (i.e. a measure of a union of non-intersecting measurable
sets is equal to the sum of the measures of each one of the sets). We will say that
some property is fulfilled almost everywhere on set X, if the property is valid for
all elements x ∈ X, except for, maybe, elements belonging to some subset A of
set X, the measure of this subset being zero. A measure in the three-dimensional
Euclidean point space E3 was used, while stating the GIP (see subsection 7.2.2).
Within the frame of this measure, curves, surfaces, and countable sequences of
points have the measure equal to zero. It should be clarified that the operations
of kinds (ii) and (iii) introduced in subsection 7.2.2 do not make radiation fields
invariant (unchangeable) on sets of zero measure in E3.
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Part III

Optical Properties of Bright Surfaces and
Regoliths



8 Theoretical and observational techniques
for estimating light scattering in first-year
Arctic sea ice

Bonnie Light

8.1 Introduction

Earth’s climate is known to be sensitive to the light scattering properties of sea
ice across the Arctic Basin. For the purpose of understanding its interactions with
shortwave radiation, sea ice can be described as a multiply scattering medium whose
microstructural properties govern the quantity and quality of light scattering. The
ice is populated with numerous inclusions of brine, air, precipitated salt crystals,
and impurities embedded within a matrix of pure ice (e.g., see Weeks and Ackley,
1982). The multiple scattering caused by these inclusions in thick, bare sea ice gen-
erally causes more than half of the incident solar radiation to be backscattered to
the atmosphere (Perovich, 1990). However, the structure of this composite material
is complex and so the optical properties of sea ice have proven difficult to quantify
and generalize. Since the liquid brine contained in sea ice must remain in freezing
equilibrium with the ice, temperature changes can produce significant changes in
the size and number distributions of these inclusions which determine the backscat-
tering, absorption, and transmission of shortwave radiation at the frozen surface of
the ocean.

The objective of this review is to summarize our quantitative understanding
of the relationships between the structural and optical properties of sea ice. The
work is based on direct laboratory observations of the response of both the ice
microstructure and its optical properties to changes in temperature. Relationships
between the ice microstructure and its inherent optical properties are defined and
explored through the development of a structural-optical model for sea ice.

8.2 Background

The visual appearance of sea ice, from bright white to milky or translucent gray, is
indicative of varying degrees of multiple scattering. Areas less than a square kilo-
meter typically include ice types with varying age and thickness. Thick multiyear
white ice has a relatively high albedo and small transmissivity, whereas thin, newly
formed ice may backscatter much less light and transmit significant amounts of
light to the ocean. Variations in ice thickness, age, and growing conditions promote
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vertical gradients in salinity and temperature, which in turn cause vertical gradients
in the size and number distribution of liquid and gas inclusions in the ice. Seasonal
changes cause substantial temporal changes in the optical properties of sea ice as
well. The onset of melt during the summer season produces dramatic changes in
the optical properties when the snow melts and the highly reflective surface gives
way to areas of bare melting ice, ponded ice, and a substantially thinner summer
ice pack.

Direct measurements of inherent optical properties (IOPs), including the scat-
tering coefficient (σ), scattering phase function (often represented by its asymmetry
parameter, g), and absorption coefficient (κ), are difficult to make within multi-
ply scattering media. One approach for obtaining these IOPs is to calculate them
directly from information on the microstructure of the ice. The IOPs can then
be incorporated into radiative transfer models and tested using measurements of
apparent optical properties (AOPs).

A theoretical framework relating the physical properties of sea ice to the IOPs
was laid out by Grenfell (1983, 1991). In this formulation, sea ice is modeled as
a system consisting of pure ice, liquid brine inclusions, gas bubbles, precipitated
salt crystals, and inclusions of biogenic or lithogenic origin. Absorption in sea ice is
attributed to the pure ice matrix, the bulk brine volume fraction, and any partic-
ulate or biological inclusions present; scattering is assumed to be caused primarily
by inclusions of brine, gas, and precipitated salts found within the ice. It is as-
sumed that the individual inclusions scatter independently so that κ, σ, and g can
be determined for each type of scatterer and combined incoherently.

Inclusions in sea ice occur over a wide range of scales. The largest brine in-
clusions may be centimeters long, whereas precipitated salt crystals can have edge
lengths on the order of micrometers (Light, 1995). The size, refractive index con-
trast, and shape of an inclusion dictate how it scatters light. While these properties
vary with inclusion type, they can also depend strongly on ice temperature. Changes
in temperature produce changes in the size and salinity of brine inclusions. The
refractive index of brine depends on its concentration (Maykut and Light, 1995),
as does the precipitation or dissolution of a variety of solid salt crystals (Nelson
and Thompson, 1954; Richardson, 1976; Marion et al., 1999).

Because natural sea ice typically exhibits large vertical and horizontal variations
in structure, apparent optical properties measured in the field are usually not repre-
sentative of ice with uniform IOPs, making it difficult to validate structural-optical
models using field data. To address this problem, a laboratory study was developed
to measure the optical and structural properties of sea ice under temperature-
controlled conditions. In this review we present results from these studies, along
with the development of a physically-based structural-optical model for first-year
Arctic sea ice.

8.3 Approach

The foundation for this structural-optical model rests on laboratory experiments
designed to quantify relationships between the structural and optical properties of
natural sea ice. Fig. 8.1 shows a schematic of the approach. Structural and optical



8 Estimating light scattering in first-year Arctic sea ice 333

data were collected concurrently in a temperature-controlled freezer laboratory us-
ing two isothermal samples of interior, first-year ice taken from adjacent locations
in the same ice core. Varying the temperature of these samples produced large
structural changes, allowing us to document the optical response of the ice under
a wide range of conditions. Optical samples 5 cm in height were taken from the
middle of the core where visual inspection indicated that the ice was relatively
homogeneous. Observations of the microstructure (Fig. 8.1, A1) were made on ver-
tical and horizontal thin sections using a high-resolution zoom lens and a black and
white digital video camera. Numerous images were recorded, detailing the size and
number density of brine tubes, brine pockets, gas bubbles, and to a limited extent,
precipitated salt crystals. The various inclusions were counted and their size dis-
tributions parameterized. An equivalent spheres treatment (Grenfell and Warren,
1999) was applied and a temperature-dependent effective cross-sectional area ψ(T)
estimated for each type of inclusion. Details of the microstructure observations are
described in section 8.4 (see also Light et al., 2003a).

Concurrent AOP observations (Fig. 8.1, B1) were made on cylindrical core
sections 10 cm in diameter and 5 cm thick. Transmitted, backscattered, and side
scattered spectral radiances were recorded at temperatures between −1 and −35◦C.
Temperature was normally varied in 2–5◦C increments, and the ice allowed to
equilibrate for at least 24 hours before new measurements were made. Details of
the optical observations are presented in section 8.5.

Optical measurements were interpreted using a two-dimensional Monte Carlo
model (Fig. 8.1, B2) developed specifically to treat radiative transfer in multiply
scattering domains with cylindrical geometry. The development and application of
this model are summarized in section 8.6 (see Light et al., 2003b for full model
description).

The structural-optical model (Fig. 8.1, A2) developed here is based on the theo-
retical framework of Grenfell (1983). The model uses direct observations of inclusion
number densities and size distributions obtained from the microstructure obser-
vations to predict temperature and wavelength-dependent absorption coefficients
[κ(T, λ)], temperature-dependent scattering coefficients [σ(T )], and temperature-
dependent scattering asymmetry parameters [g(T )] for brine inclusions, gas bub-

Fig. 8.1. Schematic of experimental approach.
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bles, and precipitated salt crystals. Fundamental physical relationships between the
ice structure and its optical properties are deduced from the AOP data (Fig. 8.1,
B3) along with predictions from the structural-optical model (Fig. 8.1, A3). Sec-
tion 8.7 details the development and refinement of the structural-optical model (see
also Light et al., 2004).

8.4 Sea ice microstructure

This section presents a description of direct laboratory observations of sea ice mi-
crostructure that serve as the fundamental basis for estimating the scattering co-
efficients for the sea ice samples measured in this study.

8.4.1 Overview

Sea ice is distinguished from fresh water ice by the way it grows, its crystal charac-
teristics, and its inclusions of liquid brine. These brine inclusions form when small
ice bridges grow between advancing ice platelets (see Weeks and Ackley, 1982). Ini-
tially, the salinity of the brine trapped in the ice is close to that of the seawater from
which the ice formed (typically 32–35 parts per thousand by mass; hereafter ). As
the ice sheet grows thicker, the interior ice becomes more insulated from the warm
ocean water and brine inclusions are subjected to progressively lower temperatures,
causing the brine to become more concentrated to maintain its freezing-equilibrium
salinity. To maintain equilibrium, water from the brine freezes to the surrounding
ice lattice, reducing the size of the inclusions and causing the brine salinity to
increase. As the brine concentrates, it becomes saturated with respect to certain
salts which begin to precipitate. Conversely, increases in temperature cause ice to
melt from the walls of brine inclusions, thus reducing brine salinity and causing
the dissolution of solid salt crystals.

Cox and Weeks (1983) developed parameterizations for the bulk volumes of
brine, gas, and precipitated salt as a function of ice temperature, density, and
salinity. While knowledge of these equilibrium relationships is necessary for under-
standing how the physical properties of the ice respond to changes in temperature,
detailed information about the size, number density, and spatial arrangement of
these inclusions is also required for understanding how the optical properties of sea
ice behave.

8.4.1.1 Brine inclusions

Measurements of brine inclusion size and number distributions have been made
by imaging thin sections from both laboratory-grown and natural sea ice samples
(e.g., Arcone et al., 1986; Eicken, 1993; Perovich and Gow, 1991; Perovich and
Gow, 1996; Light, 1995; Cole and Shapiro, 1998; Eicken et al., 2000). Fig. 8.2
shows a photograph of a vertical thick section cut from a depth of approximately
80 cm in naturally grown first-year Arctic sea ice. In this low resolution view, both
brine and gas inclusions are visible. A majority of the visible features are elongated
brine inclusions, and while there appears to be considerable small-scale spatial
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Fig. 8.2. Vertical thick section taken from interior first-year ice at a depth of approxi-
mately 80 cm. Sample thickness is approximately 5mm.

variability, the overall structure is remarkably uniform. Observations from higher
resolution imagery on horizontal thin sections from first-year sea ice (Perovich
and Gow, 1996) indicate that average brine inclusion number densities range from
1.0 to 4.5 permm3 and cross-sectional areas of individual inclusions range from
0.0012 to 1.0mm2. Cole and Shapiro (1998), however, demonstrated that additional
information about ice microstructure could be obtained by complementing the data
from horizontal thin sections with high-resolution data from vertical thin sections.
They found, for example, that brine inclusion shapes ranged from nearly spherical
to elongated cylinders with vertical extent exceeding 15 times the diameter. While
such studies have provided general information about brine inclusions, they do not
address the role of gas bubbles and precipitated salts.

8.4.1.2 Gas bubbles

The density of sea ice increases above that of pure ice (0.917 g cm−3 at −5◦C) as
its salinity is increased, and decreases as its gas content is increased. The bulk
density of first-year sea ice typically ranges between 0.89–0.93 g cm−3 (Perovich et
al., 1998), where the lower end of this estimate corresponds to sea ice containing
significant amounts of gas. Bubbles can be entrained into sea ice at the growth
interface during the freezing process when gas dissolved in seawater comes out of
solution. Void spaces can also form in ice above the freeboard level due to melt
water drainage during the summer. In addition, gas bubbles are expected to form
in brine inclusions as the ice warms and lower density ice melts into higher density
liquid, forming a void within the inclusion. This suggests that there should be two
primary types of bubbles in sea ice: those that occur within the ice lattice itself,
and those that form within brine inclusions.
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8.4.1.3 Precipitated salt crystals

As sea ice cools, brine in the liquid inclusions concentrates and becomes satu-
rated with respect to certain salts. Observational and theoretical studies have been
conducted to detail the species, precipitation temperatures, and total masses of
salt that precipitate (Ringer, 1928; Gitterman, 1937; Nelson and Thompson, 1954;
Richardson, 1976; Marion et al., 1999). The mass of precipitated salt is a unique
function of temperature and ice salinity. The two most abundant salts are mirabilite
(Na2SO4 · 10H2O) which begins to precipitate above −8◦C, and hydrohalite (NaCl
· 2H2O) which begins to precipitate at about −23◦C. As shown in Fig. 8.3, the pre-
cipitation of each salt occurs gradually over a range of temperatures; the total mass
of hydrohalite precipitated from seawater is more than 4 times that of mirabilite.
These two hydrated salts are known to form monoclinic crystals, but there are no
direct observations of their sizes or precipitation patterns within sea ice. Roedder
(1984) suggested that hydrohalite crystals in fluid inclusions are commonly small
(∼1μm). Although crystal sizes are expected to range over some distribution, at
this point we only have estimates of effective crystal sizes in sea ice that are based
on comparison of observed and modeled optical properties. Light (1995) utilized
this method to estimate an effective edge length of 8–9μm for precipitated salt
crystals in laboratory-grown sea ice.

Fig. 8.3. Mass of mirabilite and hydrohalite precipitated from a kilogram of freezing
seawater as a function of temperature. Salinity is 35 . Data are from Richardson (1976).
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8.4.2 Laboratory observations

While the previous observations provide a general picture of the microstructure of
sea ice, many aspects of the structure which could affect light scattering remain
uncertain due to the limited spatial resolution used in these earlier studies. The
highest resolution study (Perovich and Gow, 1996), for example, could only detect
inclusions larger than 0.05mm. Many of the earlier data were also obtained from
horizontal thin sections (e.g., Perovich and Gow, 1991, 1996; Eicken, 1993: Light,
1995), restricting the information to inclusion cross-sections and masking the three-
dimensional nature of the microstructure. In addition, there is little information
about how inclusions interact as temperature changes. Of particular interest are the
formation and growth of bubbles within brine inclusions, the merging and coalescing
of brine inclusions at higher temperatures, and the precipitation characteristics of
salt crystals. Such information is needed in the formulation of a more comprehensive
structural-optical model for sea ice.

To address these shortcomings, a laboratory experiment was designed to obtain
very high resolution imagery of natural sea ice samples under a wide range of
temperatures, the focus being on first-year ice. Because of the need for accurate
temperature control, measurements were carried out in a laboratory cold room,
rather than in situ. Ice cores used in this study were extracted from shorefast
ice near Point Barrow, Alaska in May 1994. The ice was 1.65– 1.75m thick. The
temperature was about −5.5◦C at the ice surface and increased linearly with depth
to the freezing point at the base of the ice. Measured ice salinity profiles were
typically C-shaped with values ranging from 7–9 near the surface, 4–5 in the
interior, and about 10 near the bottom. Calculated brine volumes ranged from
5–12 %. Gas volumes were about 4 % in the upper 10 cm of the ice, but less than 1%
below this (see Perovich et al., 1998). Cores, 10 cm in diameter, were removed from
the upper meter of the ice, shipped to Seattle in dry ice, and stored in a laboratory
freezer at the University of Washington at −20◦C. While it is not known how
shipping core samples in dry ice and subsequent long-term storage affect the ice
microstructure, we proceeded to analyze these samples for their microstructural
and optical properties.

Cores were cut into thin sections for laboratory examination. Samples were
taken from the lower portions of the cores, corresponding to a depth of 60–80 cm
in the ice. These samples had relatively small gas volumes and brine inclusions
which tended to be isolated, unlike ice near the growth interface or upper surface.
Because the vertical dimension of brine inclusions is often much larger than their
horizontal dimension, vertically oriented, 8×8 cm slabs were cut from the cores and
microtomed to a thickness of approximately 2mm. The sections were prepared at
−15◦C to minimize brine drainage. Thin sections were sealed between clear glass
plates which allowed them to be mounted vertically for monitoring the thermal
evolution of the ice. The sealed glass plates kept the structure intact, even at
high temperatures where the porosity was high and the samples extremely fragile.
Samples were mounted on an x-y translation stage, allowing them to be moved as
much as 3 cm laterally and 3 cm vertically, and then returned to a predetermined
position. This made it simple to revisit and photograph specific scenes in the ice
as conditions changed. Image sizes were calibrated using a grid with ruled lines
separated by 50 micrometers.
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To record the microstructure, a black and white CCD video camera (Pana-
sonic model WV-BP500) with 682 by 492 pixel resolution and a high magnification
zoom lens (Leica MonoZoom 7 Optical System) was used. The high magnifica-
tion lens (coupled with a 3X amplifier) gave us the ability to resolve inclusions as
small as 0.01mm, considerably smaller than in previous studies. A majority of our
images were made with the zoom lens set to record approximately 0.003mm per
pixel, while some higher resolution images were made at 0.002mm per pixel. Our
objective, however, was to monitor features and processes that are important to
understanding the optical properties of the ice, not necessarily to document the
smallest features possible. Images obtained by the CCD camera were fed to a high
resolution monitor visible through the cold room window. This monitor was used to
select and focus images. Images were also fed to a MacIntosh Power PC, equipped
with a video frame grabber (Scion VG-5) and image processing software (NIH Im-
age 1.57). To facilitate alignment and reduce the effects of vibrations, components
in the cold room were mounted on a 2m long optical rail (see Fig. 8.4).

Fig. 8.4. Schematic of imaging system used for observing ice microstructure. The optical
rail, sample, light source, diffusely reflecting target, and CCD camera are in the cold room.
The focusing monitor and computer with frame grabber are outside of the cold room.

Information on crystallography is best obtained from images recorded in po-
larized light, whereas inclusions of brine and gas are best viewed in transmitted
or reflected natural light. Experiments with both types of illumination indicated
that high contrast images with uniform lighting could be obtained with transmit-
ted light from a diffuse source. To achieve this, an incandescent light was aimed
at a diffusely reflecting Spectralon panel mounted directly behind the sample.
The source was baffled to prevent direct radiation from illuminating or heating the
sample.
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8.4.3 Microstructure at −15◦C
Structural observations to determine size distributions for brine inclusions and gas
bubbles in cold ice were initially made at −15◦C where changes in microstructure
are not highly sensitive to changes in temperature. About 100 images were recorded
from three different thin sections. Fig. 8.5 shows photomicrographs of one sample
illuminated in transmitted light. On the left is a mosaic composed of 30 individual
images. After registering the 30 images, the dimensions of the composite scene
are approximately 4.7 × 12.1mm. Several types of features stand out distinctly:

Fig. 8.5. Photomosaic of vertical thin section of first-year ice in transmitted light at
−15◦C. Ten boxed subregions were used for counting inclusions. Overall dimensions of
scene are 12.1 × 4.7mm, with 2mm thickness. Arrows indicate examples of (1) brine
tubes, (2) brine pockets, (3) bubbles, (4) drained inclusions, (5) transparent areas, and
(6) poorly defined inclusions. (right) An enlargement of box outlined with dashed line.
Arrows indicate (A) solitary brine pocket, (B) cluster of small pockets, and (C) string of
pockets.
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elongated brine tubes (arrow 1), smaller, isolated brine pockets (arrow 2), and
gas bubbles within brine inclusions (arrow 3). Brine features that appear to have
excessively high contrast were considered to be inclusions that were cut open and
drained during sample preparation (e.g., arrow 4). Gas bubbles within brine pockets
have similarly high contrast but can usually be discerned by their nearly spherical
shape. There are also areas where no inclusions exist in the ice, and the ice appears
highly transparent (arrow 5). The horizontal stripes across the image are scratches
produced by the microtome blade. Microtome cuts were intentionally made across
the sample (rather than down it) to avoid creating artifacts that might interfere
with resolving features in the vertically oriented structure.

8.4.3.1 Brine inclusions

Data were collected on the maximum horizontal and vertical dimensions of brine
inclusions visible within the ten boxed areas shown in Fig. 8.5. These areas were
selected for sampling because they appeared to be representative of the overall
structure. The sample volume within these boxes was 48.8mm3 and more than 1600
inclusions were counted. The sizes of individual inclusions ranged from 0.01mm to
8.0mm in length (l), and 0.01mm to 0.230mm in diameter. Inclusions with l smaller
than 0.50mm were arbitrarily classified as brine pockets. Examples of these features
are shown in the enlargement on the right-hand side of Fig. 8.5. The large brine
pocket (arrow A) has length 0.40mm, diameter 0.11mm, and a length-to-diameter
aspect ratio (γ) of 3.6. Numerous small pockets are also visible in this same image;
for example, arrow B points to an area of concentrated pockets whose recorded
length and diameter are 0.01mm with γ = 1.0. Pockets frequently appeared in
clusters (arrow B) or in vertical strings (arrow C), and were always oriented with
their long dimension in the vertical. Inclusions with l ≥ 0.50mm were classified
as brine tubes. All observed tubes had near-vertical orientation. Since tubes were
uncommon compared to pockets, the entire mosaic (sample volume 84.5mm3) was
used to estimate their number density.

The observed size distribution of the brine inclusions is shown in Fig. 8.6. The
data were binned by inclusion length and the number density, N(l), was adjusted
to account for the width of each bin. The data are well represented (r2 = 0.92) by
a power law:

N(l) = 0.28l−1.96, (8.1)

where 0.01mm ≤ l ≤ 8mm. Integrating Eq. (8.1) between these limits yields a
total number density of 24 brine inclusions permm3. This appears to be represen-
tative for the sample as a whole, although individual boxes in Fig. 8.5 had number
densities as large as 50 inclusions permm3. There is also a clear dependence of the
aspect ratio on l as shown in Fig. 8.7. This relationship can also be approximated
(r2 = 0.77) by a power law:

γ(l) = 10.3l0.67, (8.2)

where 1 ≤ γ ≤ 70 and l > 0.03mm. Nearly all the 1244 brine pockets observed to be
less than 0.03mm in diameter were recorded as spherical (γ = 1) with l = 0.01mm,
and are indicated by a single point in Fig. 8.7. Because inclusions this size were
near the limit of our resolution, we assume that γ = 1 for all inclusions with
l < 0.03mm.
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Fig. 8.6. Observed size distribution for brine inclusions at −15◦C as a function of inclu-
sion length. The solid line corresponds to a power law fit (r2 = 0.92), and the dotted line
divides pockets from tubes.

Fig. 8.7. Vertical-to-horizontal aspect ratio as a function of inclusion length for observed
brine inclusions at −15◦C. The solid line corresponds to a power law fit (r2 = 0.77), and
the dotted line indicates the parameterization for small inclusions used in this study. The
solid square represents the numerous small inclusions that were at the resolution limit;
open squares represent brine pockets, and solid circles represent brine tubes.



342 Bonnie Light

These results can be compared with the observations of Perovich and Gow
(1996) and Cole and Shapiro (1998), both of whom studied ice extracted at the
same time and location as the cores used here. Cole and Shapiro measured brine
inclusion sizes in both vertical and horizontal thin sections taken from interior ice
at a depth of 0.8m. They observed inclusions with an average diameter of 0.27mm
in the horizontal plane and an average length of 2.4mm in the vertical, values
within the range we observed. However, they were not able to resolve individual
inclusions smaller than 0.1mm and did not estimate the size distribution or average
number density. Perovich and Gow (1996) reported size distributions based on
cumulative distributions of inclusion cross sections derived from horizontal thin
sections. To compare our results with those of Perovich and Gow, we estimated
horizontal cross-sectional areas of the inclusions in our images using the maximum
observed diameter for each inclusion. Because Perovich and Gow observed mean
horizontal axis ratios of 1:4 in their observations of inclusions with cross-sectional
area greater than 0.002mm2, we examined imagery of a horizontal cross-section
cut adjacent to the vertical thin section shown in Fig. 8.5. While this imagery
was not examined for inclusion size and number distribution, it was scrutinized for
information about the horizontal aspect ratio of the inclusions. While many of the
inclusions did not have circular cross-section, there was no clear indication that
horizontal aspect ratios were elongated in a particular direction. As a result, brine
inclusions were initially assumed to have average horizontal aspect ratios equal to
unity. Our average number density of 24 per mm3 is 15 times larger than the value
of 1.6 per mm3 observed by Perovich and Gow. This difference is due primarily to
the detection of smaller inclusions in our images.

Besides the absence of small inclusions in the Perovich and Gow observations,
there are other differences between the two size distributions. Perovich and Gow
found cross-sectional areas up to 1mm2 which correspond to inclusion diameters of
1.1mm. In our study, the largest diameter measured was 0.23mm (corresponding
to an area of 0.04mm2). Number densities in our sample were as much as a factor
of 2 smaller where the two distributions overlap (0.01–0.04mm2). We suspect our
sampling technique may have selectively avoided larger tubes and know that it
avoided brine channels because vertical thin sections are difficult to keep intact
when such features are present. Perovich and Gow sampled a volume of 282mm3,
more than three times greater than our sample volume. It is, therefore, reasonable
to expect that their results may better represent the number density of larger
brine tubes in first-year ice. But it should also be noted that the Perovich and
Gow sample was imaged at −5.7◦C and had a brine volume of 5.5%, while our
samples were measured at −15◦C and had a visible brine volume of only 1.2%.
This visible brine volume was calculated by assuming that all the inclusions were
isometric in the horizontal plane. Because the Perovich and Gow sample had such
large brine volume, we might expect that their number density curve would shift
to somewhat smaller cross-sectional areas if their measurements had been made at
−15◦C, bringing it into closer agreement with our observations.

Fig. 8.8 shows the relative volume of visible brine in our sample for several
inclusion size categories. The bin widths are arbitrary, however, the smallest bin
represents brine pockets that were below the resolution of the Perovich and Gow
study; the smallest three bins include all the pockets, while the largest three bins
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Fig. 8.8. Percentages of brine volume (Vbrine) and equivalent cross-sectional area (ψ)
for several size categories of brine inclusions at −15◦C. Bin widths are arbitrary, but the
distinction between pockets and tubes is indicated. The smallest bin represents pockets
not resolved in the Perovich and Gow (1996) study.

represent the tubes. While they are the most numerous (79% by number), inclusions
in the smallest bin contain only a small fraction of the total brine volume. Although
tubes contained about 90% of the brine seen in the thin section, there is reason
to believe that they may account for an even larger percentage of brine volume
in the ice as a whole. The ice from which the thin section was extracted had an
average salinity of 4.7 and a density of 0.915 g cm−3, resulting in a predicted
brine volume of 1.9% at −15◦C, significantly larger than the total visible brine
volume of 1.2%.

It is likely that the missing brine was contained either in larger brine tubes
that existed in the core sample but not in the thin section, or within visible inclu-
sions whose volume was underestimated as a result of the assumption of horizontal
isotropy. The supposition that larger tubes existed in the core sample is consistent
with Perovich and Gow’s size distribution which shows inclusions with large cross-
sectional areas that were not present in our thin sections. Extrapolating our size
distribution to include tubes up to 15mm in length would produce a total brine
volume of 1.9%. In this case, 94% of the total brine volume would be in tubes
and only 6% in pockets. If, instead of extending the distribution out to include
longer tubes, existing tubes are taken to be anisometric in the horizontal plane,
the missing brine can also be accounted for. If a horizontal aspect ratio of 1.64
and a maximum inclusion length of 8mm are assumed, the observed brine volume
would also be 1.9%. In all likelihood, both factors are probably involved, but it
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is difficult to assess their relative importance without further detailed study of
additional sample material.

8.4.3.2 Equivalent cross-sectional area

Basic objectives of the structural observations were: (i) to obtain data which could
be used to develop more accurate predictions of light absorption and scattering in
sea ice, and (ii) to determine the optical importance of different elements in the
microstructure. To make a quantitative comparison of the effects of various types
of inclusions on radiative transfer, we represent all inclusions as equivalent spheres
and calculate their total equivalent cross-sectional area (ψ):

ψ = π

∫ l2
l1

r2eq(l)Neq(l) dl, (8.3)

where ψ is per unit length, req(l) is the equivalent spherical radius for inclusions
of length l, and Neq(l) is the corresponding number of equivalent spheres per unit
volume. The optical scattering coefficient is proportional to ψ when inclusion sizes
are much larger than the wavelength of the light. The scattering coefficient specifies
how much light is scattered within a domain, but it does not specify the degree to
which scattering is forward or backward directed. Redirection of light is tied to the
scattering phase function and depends on the size, shape, and relative refraction
of scatterers.

A variety of approaches has been applied to the calculation of equivalent spheres.
When the total volume of all inclusions is conserved, absorption is accurately rep-
resented. However, scattering is generally underestimated because spheres of equal
volume have less surface area than the original ellipsoids or cylinders. To accurately
represent the scattering, the total surface area must also be conserved. According
to Grenfell and Warren (1999), a collection of randomly oriented cylindrical inclu-
sions can be represented by a collection of equivalent spheres with radius req and
number density Neq whose total surface area and volume are the same as the orig-
inal population. Fig. 8.9(a) shows calculated req values as a function of observed
inclusion length and aspect ratio for the three different conservation schemes. All
req are about the same for small brine pockets since they are approximately spher-
ical to begin with. As inclusion length increases, conservation of both total surface
area and volume produces substantially smaller req but larger Neq values than are
obtained by conserving surface area alone. The value of req decreases as it becomes
necessary to increase the number of equivalent spheres per inclusion to conserve
both. The discontinuity in req(l) arises because prolate ellipsoids with major axis l
were used to calculate the volume and surface area for pockets (l < 0.5mm), and
cylinders with height l were used to represent the tubes. In Fig. 8.9(b), values of
Neq per inclusion show that when req is approximately equal to l/2, which holds
for l ≤ 0.03mm, there is approximately one equivalent sphere per inclusion. As
inclusions increase in size and aspect ratio, the number of equivalent spheres per
inclusion increases to its maximum value of 18 for l = 8mm. Values of ψ reported
below will always be calculated conserving both volume and surface area.

When integrated over all brine pockets (l = 0.01–0.5mm), Eq. (8.3) predicts
that ψ = 30m−1; similarly, ψ = 80m−1 for brine tubes (l = 0.5–8mm), giving a
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Fig. 8.9. (a) Equivalent spherical radius as a function of inclusion length as computed
using equal surface area, equal volume, and simultaneous equal surface area and volume
methods for the empirical fits describing lengths and aspect ratios observed in this study.
(b) Number of equivalent spheres per inclusion for inclusion lengths and aspect ratios
observed in this study. The discontinuities at l = 0.50mm result from treating brine
pockets as prolate ellipsoids and tubes as cylinders.

total ψ = 110m−1 for all brine inclusions. Contributions made to ψ by various sub-
categories are shown in Fig. 8.8. While ψ due to the tubes is larger, the contribution
from the pockets is significant. For example, even though only 10% of the brine
volume is contained in pockets, it appears from this analysis that these pockets ac-
count for 25% of the light scattering due to the brine inclusions observed at −15◦C.
These estimates are sensitive to the assumption that brine inclusions are isometric
in the horizontal plane. If the horizontal asymmetry parameter were increased to
the value (1.64) needed to explain the brine volume of the bulk core sample, the
estimated value of ψ for brine tubes alone would increase 37% to 110m−1.

8.4.3.3 Gas bubbles

The boxed areas in Fig. 8.5 were also used to estimate the size distribution of gas
bubbles. All of the observed bubbles (about 60) were nearly spherical and all were
contained within brine inclusions; none were observed in the ice itself. Gas bubble
radius (rgb) ranged from 0.004 to 0.07mm at −15◦C. Fig. 8.10 shows the observed
distribution as a function of rgb; also shown are results from three other studies.
As with the brine inclusions, a power law provides a good fit (r2 = 0.94) to the
observed distribution in this study:

N(rgb) = 0.06(rgb)−1.5. (8.4)

When integrated over the observed size limits, the total number density was 1.3 per
mm3. This number density is only 5% of the number density for brine inclusions,
indicating that while all bubbles were observed to be within brine inclusions, such
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Fig. 8.10. Observed gas bubble size distributions for first-year ice in this study, first-year
ice at the SHEBA field site, freezing lead ice (Grenfell, 1983), and ‘bubbly’ ice (Gavrilo
and Gaitskhoki, 1970). Power law fits are also shown for the data in this study (r2 = 0.94,
solid line) and for Grenfell (1983) (dashed line). Here rgb is the gas bubble radius, and
N(rgb) is the gas bubble number density.

compound inclusions were relatively rare compared to brine inclusions with no
bubble.

Since the bubbles are mostly spherical, use of equivalent spheres is greatly
simplified and the effective radius is generally equal to the observed radius. The
value of ψgb integrated between the observed bubble size limits was 2m−1, only
about 3% of the integrated value for all brine inclusions.

8.4.3.4 Mirabilite crystals

Mirabilite crystals were frequently seen at temperatures below −8◦C (e.g.,
Fig. 8.11). Crystals were observed in piles at the bottom of brine tubes (arrow
1), in clusters strewn throughout the tubes (arrow 2), and stuck at narrow pinches
in tubes (arrow 3). When piled at the bottom of brine tubes, the crystals often ap-
peared to have tunneled downwards, extending the bottom of the tube. Mirabilite
crystals were rarely observed in smaller brine pockets, presumably because the
crystals were too small to resolve. The largest crystal in Fig. 8.11(b) has a diame-
ter of 0.14mm while the smallest measured diameter was 0.015mm. The crystals
tended to have rounded edges and irregular shapes, and may have coarsened after
initial precipitation. Light (1995) inferred an effective crystal size of 0.009mm for
mirabilite, and this supports the conclusion that crystals in most brine pockets were
too small to resolve. The smallest brine inclusion that could grow a single 0.01mm
mirabilite crystal would necessarily have a volume corresponding to l ≥ 0.06mm,
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Fig. 8.11. (a) Photomicrograph of thin section showing individual mirabilite crystals at
−15◦C. (b) Enlargement of box in (a).

based on our observations of γ(l). Because there were many brine inclusions with
l < 0.06mm, we believe there must be many crystals with edge length <0.01mm.
In addition, the refractive index contrast of mirabilite crystals relative to brine is
smaller than that for brine inclusions in ice, so a brine inclusion with l = 0.01mm
may be visible in an image while a mirabilite crystal with the same size may not be.
Temperature-dependent relative refractive indexes of the various types of inclusions
responsible for light scattering in sea ice are presented in Table 8.1.

To estimate an effective optical cross-sectional area for mirabilite, we followed
Light (1995) and simply assumed an effective crystal edge length of 0.01mm since a
direct estimate of the size distribution was not feasible. We also assumed a sample
salinity of 3 commensurate with the visible brine volume (1.2%) of the thin sec-
tion at −15◦C. For this salinity, the predicted mass fraction of precipitate at −15◦C
is 0.58 g kg−1. Taking a density of 1.464 g cm−3 for mirabilite (Porter and Spiller,
1956), along with the monoclinic characteristics of the crystals, we estimated the
total number density of crystals to be approximately 270mm−3 at −15◦C. Appli-
cation of the equivalent spherical treatment to the mirabilite crystals at −15◦C
yielded ψ = 50m−1. This value is larger than that for brine pockets, about 60% of
the value for brine tubes, and much larger than ψ for gas bubbles.

8.4.4 Temperature-dependent changes

While microstructural data described in the previous sections should allow the cal-
culation of equivalent cross-sectional areas and, ultimately, scattering coefficients
for first-year sea ice at −15◦C, a general treatment should also be able to describe
how these properties evolve with temperature. When the ice cools, the laws of freez-
ing equilibrium predict that brine pockets and gas bubbles will shrink, mirabilite
crystals will begin to precipitate below −8◦C and hydrohalite crystals precipitate
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Table 8.1. Temperature-dependent refractive index (n) for brine and relative refractive
indexes (m) for the various inclusion types in sea ice. All values are for wavelength 589 nm.

Temperature n for m brine m air m air m mirabilite m hydrohalite
(◦C) brine relative relative relative relative relative

to ice to ice to brine to brine to brine

−32 1.400 1.068 0.763 0.714 0.997 1.022
−30 1.397 1.067 0.763 0.716 0.999 1.023
−28 1.394 1.064 0.763 0.717 1.001 1.026
−26 1.390 1.061 0.763 0.719 1.004 1.029
−24 1.386 1.058 0.763 0.721 1.007 1.032
−22 1.383 1.055 0.763 0.723 1.010 1.034
−20 1.380 1.053 0.763 0.725 1.012 1.036
−18 1.376 1.051 0.763 0.727 1.014 1.039
−16 1.373 1.048 0.763 0.728 1.017 1.041
−14 1.370 1.046 0.763 0.730 1.019 1.044
−12 1.367 1.043 0.763 0.732 1.022 1.046
−10 1.363 1.040 0.763 0.734 1.024 1.049
−8 1.358 1.037 0.763 0.736 1.028 1.053
−6 1.354 1.033 0.763 0.739 1.031 1.056
−4 1.348 1.029 0.763 0.742 1.035 1.061
−2 1.342 1.024 0.763 0.745 1.041 1.066

at −23◦C. When warmed, brine pockets and gas bubbles enlarge, and precipitated
salts gradually dissolve. However, these laws do not predict how the size distri-
butions of the various inclusions change or how these inclusions interact, factors
which are likely to affect how the optical properties of the ice respond to changes
in temperature. To obtain such information, ice samples were first cooled from −15
to −30◦C, then warmed to −2◦C. Changes in microstructure were monitored at
2–5◦C intervals. The samples were cooled first, then warmed, to prevent the irre-
versible changes that occur when the ice becomes very warm from affecting the
observations. Limitations in temperature regulation of the cold room produced a
±1◦C uncertainty in actual sample temperatures. While the size of brine and gas
inclusions in thin sections was observed to adjust rapidly (on the order of minutes)
to changes in temperature, it is not clear whether salt precipitation and dissolu-
tion occurred as quickly. Rapid warming experiments (Adams and Gibson, 1930)
suggest that these processes may require a few hours to reach equilibrium. For this
reason, samples were held at each temperature for a minimum of 24 hours before
measurements were taken.

8.4.4.1 Cooling sequence

Fig. 8.12 shows an example of structural changes observed in a 2.0× 1.5mm area
of ice as it was cooled from (a) −15◦C to (b) −20◦C to (c) −25◦C. The area
contained three large brine tubes and numerous brine pockets. At −15◦C, two of
the tubes were observed to contain bubbles (arrows 1 and 2), as were several of
the smaller pockets. The tube in the center of the image also contained several
large crystals of mirabilite that had settled on top of the bubble (arrow 3). As the
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Fig. 8.12. Sequence showing changes in microstructure as the ice is cooled from (a) −15◦C
to (b) −20◦C to (c) −25◦C; (right) high magnification views of the (left) boxed areas in
the larger images. Brine tubes, pockets, bubbles, and mirabilite crystals are observed to
undergo significant evolution as the temperature changes. Arrows 1 and 2 point to bubbles
within tubes, arrows 3 and 4 point to mirabilite crystals, and arrow 5 indicates a tube
that has likely filled with hydrohalite slush.

sample was cooled to −20◦C, each of the brine and gas inclusions shrunk in size.
In fact, some bubbles disappeared altogether. All the tubes decreased in diameter.
Pockets generally shrank in size while maintaining approximately constant γ. At
−20◦C, freezing equilibrium relationships predict that each brine inclusion should
have about 82% of its volume at −15◦C; at −25◦C, this volume drops to 42%. If
the tubes are assumed to be azimuthally symmetric and to have constant length,
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the observed decreases are to 81% at −20◦C and 57% at −25◦C; 57% is the volume
predicted at −24◦C and it is likely that the temperature of the ice was closer
to this value at the time the bottom photograph was taken. Note that the ice-
brine refractive boundaries appear more distinct because the refractive index (n)
of the brine increases from 1.370 at −15◦C to 1.379 at −20◦C (Maykut and Light,
1995). This change increases the contrast between brine and ice (nice = 1.30 to
1.32 at visible wavelengths), but decreases the contrast between mirabilite crystals
(n = 1.396) and brine.

The size and number of mirabilite crystals increased between −15 and −20◦C.
For example, a new group of mirabilite crystals is visible below the bubble in the
center tube (arrow 4). Few sulfate ions remain in solution at −20◦C and there was
little additional change in the size or number of mirabilite crystals at −25◦C. Fur-
ther increases in n for the brine also mean less contrast for mirabilite crystals in
brine, making them harder to see and reducing their light scattering. No individual
hydrohalite crystals were identified in our images. Nevertheless, the brine tube on
the left side of Fig. 8.12(c) became entirely opaque (arrow 5) and this is almost
certainly due to the precipitation of hydrohalite crystals. Laboratory experiments
(Maykut and Light, 1995) suggest that, on the macroscale, hydrohalite and ice fre-
quently form a closely-knit crystalline compound. Unlike mirabilite, which always
appeared to remain separate from the ice, the formation of hydrohalite crystals was
observed to be closely associated with ice crystal formation. It might be expected
that this association would normally lead to brine inclusions being filled with an
ice-hydrohalite slush, as appears to be the case in Fig. 8.12(c). However, the for-
mation of this slush was only occasionally observed in tubes and rarely in brine
pockets, even at −30◦C. Whether hydrohalite crystals tended to nucleate on pocket
walls or whether they remained separate from the ice is unclear, but it appears that
hydrohalite crystals do not generally exceed 0.01mm in pockets or tubes.

8.4.4.2 Warming sequence

Fig. 8.13 shows how a group of brine pockets responded as temperature was in-
creased from (a) −13◦C to (b) −8◦C to (c) −4◦C, then decreased to (d) −13◦C.
Initially the four large inclusions were separate, having an average γ of 1.7 and
sizes varying between 0.1 and 0.2mm in length. Two of the inclusions contained
bubbles, but no mirabilite crystals were visible. The predicted increase in brine
volume between −13 and −8◦C is 45%. The observed increases for the four pockets
ranged between 32% and 57%, with the average being 48%. Volume estimates were
made by assuming that the inclusions had horizontal aspect ratios of unity and
grew the same amount in all horizontal directions. Both the horizontal and vertical
dimensions of the pockets were observed to increase. The vertical dimension gen-
erally increased slightly faster, resulting in a small increase of γ. Examination of
other pockets elsewhere in the same thin section showed similar results. It appears
that a slight increase in γ was typical when the pockets became fairly warm. Al-
though existing bubbles increased appropriately in size as the ice warmed, no new
bubbles were observed to form in the pockets. Based on the observed increase in
brine volume between −13 and −8◦C and the difference in brine and ice densities,
the pocket at the top of the image, if it were isometric in the horizontal plane,
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Fig. 8.13. Warming sequence showing changes in ice structure at (a) −13◦C, (b) −8◦C,
and (c) −4◦C. Note enlargement and merging of the three brine pockets in the center of
the image. The sample was then cooled to (d) −13◦C. Arrow 1 indicates merged inclusions,
and arrow 2 indicates an isolated pocket with reversible changes. Hysteresis is evident as
the large inclusion in (d) remained merged after it had again cooled.

should have formed a bubble with a diameter of approximately 0.028mm. Such a
bubble would have been large enough to be easily resolved and would have been
readily apparent. The failure of new bubbles to nucleate in enlarging brine pockets
is surprising, but typical of all the scenes examined.

Merging of inclusions was common at high temperature. Note, for example, the
third inclusion from the top in Fig. 8.13(b) which combined with a small inclusion
below it to produce a single inclusion of irregular shape (arrow 1). When the sample
was then warmed to −4◦C, three of the four prominent inclusions merged to form
a single inclusion with γ = 6. Because these small inclusions typically form in
vertical strings, it was common to observe strings of pockets being transformed to
tubes as the ice warmed. This process tends to make the anisotropy of the structure
more pronounced at higher temperatures, but it is not immediately clear how this
evolution affects the optical properties of the ice.

When the sample was subsequently cooled from −4 to −13◦C, the bubble in the
newly merged inclusion disappeared, while the merged inclusion remained intact.
No new mirabilite crystals were visible. The pocket at the bottom of the image (ar-
row 2) underwent changes that seem reversible, whereas the other three underwent
changes that do not appear to be immediately reversible. Grenfell (1983) suggested
that inclusions of large aspect ratio may divide up into smaller inclusions when
cooled, but this was not observed in our laboratory samples.

Fig. 8.14 presents a series of lower magnification images that show a broader
range of structural changes as the ice was warmed from −15 to −5 to −2◦C. At
−15◦C the inclusions were distinct and well-separated but, as the sample warmed,
the inclusions became plump and rounded, and many began to merge. The net
effect is that inclusions of brine and gas grew larger, yet decreased in number.
These decreased numbers were a direct result of merging, as all inclusions were
accounted for. Between −15 and −5◦C, brine pocket density decreased from 51
per mm3 to 46 per mm3 and bubble density decreased from 5.4 per mm3 to 4.7
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Fig. 8.14. Sequence of images showing changes in the microstructure of first-year conge-
lation ice during warming: (a) −15◦C, (b) −5◦C, and (c) −2◦C. All inclusions enlarged
with shapes becoming more plump and rounded. Image width is 3.5mm.
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per mm3. Between −5 and −2◦C, these values further decreased to 35 per mm3

(69% of the value at −15◦C) and 2.7 per mm3 (50% of the value at −15◦C) for
brine pockets and bubbles respectively. Number densities in this particular scene
are quite large and should not be taken to represent overall averages.

8.4.4.3 Temperature-dependent equivalent cross-sectional area

The temperature dependence of ψ for the various types of scatterers in sea ice
was estimated using the freezing equilibrium parameterizations of Cox and Weeks
(1983) and guidance from the warming and cooling image sequences. Although
brine pockets were observed to become slightly more spherical upon cooling and
slightly more elongated upon melting, the overall change in average aspect ratio was
small. A model which specifies that melting and freezing take place equally on all
inclusion surfaces would produce decreasing aspect ratios for melting and increasing
aspect ratios for freezing, contrary to the observations. To estimate ψbp(T ) for
brine pockets, inclusion volumes were allowed to increase as specified by freezing
equilibrium but γ was held constant at the value observed at −15◦C. No merging
between inclusions was considered. This has the effect of shifting the γ curve in
Fig. 8.7 to the right as the population warms. Values for req and Neq were then
computed at various temperatures, treating all brine pockets as prolate ellipsoids.
The resulting ψbp(T ) is shown in Fig. 8.15. It can be seen that, as brine pockets
grow larger, the scattering cross-sectional area increases, the increase being most
pronounced above −5◦C.

Fig. 8.15. Model results of temperature-dependent equivalent cross-sectional area for
brine pockets, tubes, gas bubbles, mirabilite crystals, and hydrohalite crystals.
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Tubes showed a different behavior than pockets when the temperature was
changed. In general, melting caused tube diameters to increase while tube lengths
remained approximately constant. Freezing caused tube diameters to decrease while
lengths again remained nearly unchanged. Based on these observations, ψbt(T ) was
calculated by representing the tubes as cylinders and requiring that cylinder length
be conserved. The effect of this assumption is that the γ curve in Fig. 8.7 would
shift upwards with increasing temperature. The resulting ψbt(T ) is also shown in
Fig. 8.15. The population of tubes visible in the sample clearly has a larger cross-
sectional area than the pockets but the calculated values of ψbp and ψbt exhibit
similar dependence on temperature.

To estimate ψgb(T ) for the bubbles, we first assumed that all bubbles were
spherical, that they were located within brine inclusions, and that no new bubbles
formed during warming. The change in volume of an existing gas bubble depends
on the volume of the brine inclusion in which it resides. Upon warming, more ice
melts in a large pocket than in a small one. This means that the volume of a bubble
in a large pocket can increase more than if the bubble were located in a smaller
pocket. To simplify the problem of determining how req depends on temperature,
the volume of bubbles observed at −15◦C was specified to shrink or grow at the
bulk rate specified by the freezing-equilibrium relations with fixed bulk density.
The resulting ψgb(T ) is shown in Fig. 8.15. The largest values occur at the highest
temperatures but, even then, ψgb does not exceed 3% of the total for the brine
inclusions.

These observations were not particularly useful for determining whether pre-
cipitated salt crystals tend to grow more in size or number as the ice cools. As
a result, we assumed that salt crystals have constant size (0.01mm edge length)
and that changes in temperature cause the crystal number to vary in proportion
to changes in the total mass of precipitated mirabilite and hydrohalite. Predicted
values of ψm(T ) and ψh(T ) for mirabilite and hydrohalite under these assumptions
are shown in Fig. 8.15. The maximum ψh is almost 6 times larger than ψm despite
the fact that only 4 times more mass precipitates for the hydrohalite. The stronger
effect on ψh is due to the fact that the hydrohalite unit cell is closer to equidimen-
sional than the mirabilite unit cell (see Light, 1995). The more equidimensional
crystal has higher surface area relative to its volume, and this increases the mag-
nitude of ψ. Had we chosen a smaller crystal size, ψm and ψh would have been
somewhat larger since the total crystal surface area would increase. Of course, the
unit cell structure does not uniquely determine the crystal morphology, but lacking
specific information on actual crystal dimensions, we used the unit cell as a guide.

8.4.5 Summary of microstructure observations

It can be seen in Fig. 8.15 that equivalent cross-sectional areas for brine pockets,
brine tubes, and mirabilite crystals have comparable magnitudes at −15◦C. As
pointed out earlier, tubes contained about 90% of the brine in our samples (see
Fig. 8.8), leaving only 10% distributed among pockets. However, Fig. 8.8 also shows
that tubes account for only 75% of the total cross-sectional area attributable to
brine inclusions. Relative to the tubes, the pockets produce about 3.5 times more
equivalent cross-sectional area per unit volume. It is clear from Fig. 8.15 that
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tubes provide the largest contribution to ψ of any constituent in the ice at −15◦C,
accounting for roughly half the total in our samples. At −15◦C, the cross-sectional
area for all observed bubbles was an order of magnitude smaller than that for brine
pockets, and was only 1% of the total ψ. This is primarily due to the fact that only
5% of all brine inclusions were observed to contain a bubble.

Since the total volume occupied by mirabilite crystals is small (only about
3% of the brine volume at −15◦C) there was no direct way to determine a size
distribution for these crystals, as was done for the brine and gas inclusions. Because
the salts precipitate in response to freezing equilibrium, and because their size is
generally small compared to the brine inclusions, their presence is tightly tied
to the chemical properties of sea ice, and only loosely tied to the inclusion size
distributions for tubes, pockets, and gas bubbles. While the observations indicate
that mirabilite crystals too large to form in smaller inclusions do sometimes occur
in larger brine tubes, most of the precipitated salt crystals do not appear to grow
larger than 0.01mm. In general, we believe the precipitation patterns of crystals
to be independent not only of processes occurring at the growth interface, but also
of the age and type of the ice. Rather, crystal characteristics are likely to depend
primarily on the ice temperature and the chemical composition of the included
brine.

Fig. 8.15 shows three distinct temperature regimes: (i) T < −23◦C, (ii)
−23◦C ≤ T < −8◦C, and (iii) T ≥ −8◦C. Below −23◦C, the total ψ is increasingly
dominated by the precipitation of hydrohalite crystals. While we do not yet have
detailed information on the size and number distributions of these crystals, it is
clear from visual observation that their presence causes the ice to become highly
scattering at these temperatures (Light, 1995). The cross-sectional area for hydro-
halite shown in Fig. 8.15 was predicted using an effective crystal edge length of
0.01mm at all temperatures. It is still unclear whether hydrohalite crystals tend
to nucleate on inclusion walls or within the brine, whether the crystals become
incorporated into the ice as the inclusions shrink, or what conditions promote the
formation of slush-filled tubes. Furthermore, it is not clear to what extent the brine
may become supersaturated with respect to hydrohalite. Regardless of the exact
details, the precipitation of hydrohalite is clearly the major factor determining the
total cross-sectional area in cold ice, although the role of scattering by individual
crystals, in contrast to scattering created by an ice-hydrohalite slush has not been
investigated.

The estimated magnitude of ψ is fairly sensitive to our treatment of the salt
crystals. Higher values of ψ for the salts would result from smaller, more numerous
crystals since the total mass of the precipitate is constrained by the salinity and
temperature of the ice. The assumption that the effective crystal edge length is
independent of temperature is likely an over-simplification. In fact, the imagery
shows both examples of mirabilite crystal growth and additional crystal nucleation
as the ice was cooled below −15◦C (Fig. 8.12). By assuming a constant crystal size,
we preclude the possibility of crystal growth at temperatures below −15◦C. If we
were to permit individual crystals to grow as the ice cools, ψ would increase less
rapidly than the calculation shown in Fig. 8.15. However, at temperatures below
−15◦C the change in ψm would be small because few additional sulfate ions are
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available to precipitate, regardless of whether new crystals nucleate or existing
crystals grow.

At temperatures higher than −8◦C, ψ(T ) is dominated by changes in the geom-
etry of the brine inclusions. Values shown in Fig. 8.15 are based strictly on observed
and calculated changes in the size of individual tubes and pockets, without regard
to possible merging among neighboring inclusions. A realistic structural-optical
model, however, may need to take into account the effects of such merging (Gren-
fell, 1983). How inclusions enlarge determines how l changes with temperature,
but how inclusions merge affects how number densities change with temperature.
Merging depends strongly on the spatial distribution of inclusions. Tightly packed
inclusions were observed to begin merging at moderate temperatures (T < −8◦C),
while more widely-spaced inclusions did not begin to merge until T reached −2
or −3◦C. Between −15 and −5◦C, number density was observed to decrease from
26mm3 to 20 per mm3 (23%) for the mosaic in Fig. 8.5. In another scene, number
density decreased by 65% between −5 and −2◦C. Such decreases in number density
could reduce the predicted increases in ψ(T ).

At intermediate temperatures between −23 and −8◦C, the change in ψ with
temperature is surprisingly weak due to competing effects from the brine inclusions
and mirabilite crystals. Warming causes brine inclusions to enlarge and increase
their cross-sectional area while, at the same time, mirabilite crystals dissolve and
decrease their cross-sectional area. These two effects tend to offset one another. In
this regime, the microstructure and the chemistry are of nearly equal importance.
Although changes in ψ(T ) are sensitive to the assumed crystal size, the estimates
shown in Fig. 8.15 assume that the size of the mirabilite crystals is constant at
0.01mm. Reducing the average crystal size would result in a greater total surface
area, a larger cross-sectional areagor the mirabilite, and a steeper change in the
total ψ(T ). A larger crystal size would reduce the temperature dependence of the
total ψ even further. The balance between the competing effects appears to be
largely independent of salinity because both effects are predicted to strengthen
as the salinity increases. Regardless, in this temperature regime, the mitigating
influences of the mirabilite and brine volume yield a ψ(T ) with considerably less
temperature dependence than that of colder or warmer ice.

These observations of the microstructure were employed in the development
of the structural-optical model. We will now describe the observation of apparent
optical properties of the ice samples.

8.5 Apparent optical property observations

Inherent optical properties (IOPs) for sea ice (e.g., scattering and absorption co-
efficients, phase functions) are generally estimated using a plane-parallel radia-
tive transfer model and field data on albedo and transmissivity. This approach
becomes problematic, however, when structural or thermal gradients prevent the
ice from being accurately characterized by homogeneous scattering properties. To
avoid such problems, we made apparent optical property (AOP) measurements
(e.g., backscattered and transmitted radiances) on natural ice core samples in a
temperature-controlled laboratory cold room. The samples appeared fairly homo-
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geneous, suggesting that IOPs could be directly related to the observed microstruc-
ture of the ice.

Observations of the AOPs were made on cylindrical core sections 10 cm in di-
ameter and 5 cm thick. Transmitted, backscattered, and side-scattered spectral ra-
diances were recorded at temperatures between −1 and −35◦C. Temperature was
normally varied in 2–5◦C increments, and the ice allowed to equilibrate for at least
24 hours before new measurements were made.

Samples for the optical observations were prepared at −15◦C. Cylinders 5 cm
in height (H) and 10 cm in diameter were cut from depths of 70–90 cm within the
same ice cores used for the microstructural observations described in section 8.4.
The top and bottom faces of the cylinder were initially cut with a band saw and
then microtomed. The side walls of the core were hand-polished to remove any frost
accumulation. Apparent optical property measurements were made by illuminating
the top surface of the cylindrical sample with a normally-incident, collimated direct
beam of white light (Fig. 8.16). The incident radiation was supplied by a 500-
watt incandescent bulb mounted in a parabolic reflector with a glass faceplate,
approximately 3 meters horizontally from the sample. By placing the light source as
far from the sample as possible within the laboratory, the sample surface presented
a small solid angle to the incident light, causing light incident on the sample to be
approximately collimated. As the beam was wider than the sample, it illuminated
the entire top surface. A mirror set at a 45◦ angle reflected the light vertically
downward onto the top surface of the sample. The sample rested on a 3mm thick
transparent glass plate. Black baffling was used to reduce stray light reaching the
sample surfaces.

Measurements of diffuse light backscattered and transmitted by the sample were
made using a single fiber optic probe that could be positioned to monitor 5 different
radiances: backscattered at 30◦ (Lα30) and 70◦ (Lα70) from zenith, transmitted at
30◦ (Lt30) and 67◦ (Lt67) from nadir, and sidescattered radiance (Ls) normal to
the side surface at H/2. Transmission measurements were made at 67◦ instead
of 70◦ to avoid interference from the instrument housing. These particular zenith
and nadir angles were selected because they are the ordinate angles for a 4-point
Gaussian quadrature (see Eq. (8.6)).

The fiber optic probe was coupled to a Spectron Engineering spectrophotometer
(Model SE 590) which recorded light at wavelengths between 400 and 1000 nm with
a spectral resolution of about 3 nm. A personal computer was used to control the
instrument and record observed spectra. The optical probe was designed to have
a narrow field of view so that it could be used to monitor radiance. The radiance
probe was fitted with a collimating lens so that the footprint of the sensor would
always fit on the sample.

Since absolute radiometric measurements were not necessary, relative radiance
measurements were made. A target made of Spectralon , a material with pre-
cisely known spectral albedo (αcal = 0.99 at visible wavelengths) was used to both
calibrate the probe and monitor the incident irradiance. The albedo of the target
is given by

αtarget = 0.99 =

∫
2π
L̃(θ) cos(θ) dΩ∫

2π
Linc(θ) cos(θ) dΩ

, (8.5)
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Fig. 8.16. Schematic showing the configuration of incident light, sample, and detector
used to collect the optical data.

where L̃(θ) is the axially-symmetric radiance field backscattered from the target
and dΩ is the solid angle element over which the radiance field is integrated. Total
backscattered irradiance from the target can be estimated from radiance measure-
ments L̃′i made at specified angles θi using a Gaussian quadrature:∫

2π

L̃(θ) cos(θ) dΩ ≈ 2π
∑
i

aiμix L̃
′
i, (8.6)

where μi = cos θi, ai are known quadrature weighting factors (Abramowitz and
Stegun, 1965), and x represents the unknown probe throughput which accounts for
differences between measured and actual radiances resulting from probe optical
characteristics and experiment geometry, i.e. L̃ = xL̃′. Measured radiances L′i
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emanating from the surface of the ice at the quadrature angles can likewise be
used to estimate the backscattered irradiance from the ice sample:∫

2π

L(θ) cos(θ) dΩ ≈ 2π
∑
i

aiμixL
′
i. (8.7)

The following expression shows how the relative (normalized by the incident irra-
diance) radiance L̂i can be calculated from the measured radiance L′i, the value of
αtarget, and measurements of backscattered radiance from the target:

L̂i =
xL′i∫

2π
Linc cos(θ) dΩ

= L′i
αt arg et

2π
∑
i

aiμiL̃′i
. (8.8)

Each time optical measurements were made, the calibration target was initially
positioned over the sample and L̃′α30 and L̃

′
α70 recorded. The target was then

removed to allow measurement of L′α30, L
′
α70, L

′
t30, L

′
t67, and L

′
s. Finally, the

target was replaced and a second calibration carried out to verify the stability of
the source during the measurement sequence. An empirical correction of 4% was
made to account for the difference in distance between the probe and the surfaces
of the calibration target and ice sample.

Data on spectral radiances were recorded for the ice sample as it was progres-
sively cooled from −15 to −20, −25, and −33◦C, then warmed to −15, −11, −7,
−5, −4, −2, and −1◦C. Typical results are illustrated by the transmission spectra
Lt30(λ, T ) shown in Fig. 8.17. Error bars shown on the T = −15◦C curve indi-
cate uncertainties of ±2%, estimated from the standard deviation of a series of
repeated radiance measurements. This variability resulted primarily from random

Fig. 8.17. Temperature-dependent changes in spectral radiance transmitted at 30◦ from
nadir. Radiances were measured through the glass plate used to support the sample, then
normalized by the incident irradiance. [For the color version of this figure, see the color
plate section.]
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errors associated with the position of the probe within the probe holders. Nor-
malized Lt30(λ, T ) radiance maxima generally occurred at 530–545 nm and peak
values ranged from 0.175 at −33◦C to 0.251 at −5◦C. Radiances recorded at lower
temperatures showed large variability; those recorded at high temperature tended
to be more tightly clustered. All transmitted radiances were measured through the
glass plate used to support the sample.

After optical measurements were completed, bulk physical properties were de-
termined for the sample. The salinity and density of the optical sample were mea-
sured to be 4.7 and 0.915 ± 0.020 g cm−3, respectively. These values, used in
conjunction with the equations of freezing equilibrium (Cox and Weeks, 1983),
gave a brine volume (Vbrine) of 1.9% and a gas volume (Vg) of 0.95% at −15◦C.

The AOP observations were used in conjunction with a radiative transfer model
specifically designed to solve transport on a cylindrical domain with refractive
top, bottom, and side boundaries. Use of this model was necessary to account for
the finite horizontal extent of the laboratory ice samples. In this way, losses out
the sidewalls could be accounted for when interpreting the optical observations.
The radiative transfer model is briefly described in the following section. A full
description of the model can be found in Light et al. (2003b).

8.6 Radiative transfer in a cylindrical domain with
refractive boundaries

Multidimensional radiative transfer techniques in the geosciences have been de-
veloped to study a variety of problems, including the effects of a spherical shell
atmosphere (Collins et al., 1972; Adams and Kattawar, 1978; Herman et al., 1994;
Rozanov et al., 2000), effects of broken cloud fields on sunlight (Evans, 1993;
Roberti et al., 1994; Gabriel and Evans, 1996; Zuidema and Evans, 1998; Mar-
shak et al., 1998; Roberti and Kummerow, 1999), and specialized problems of light
transport in the ocean (e.g., Gordon, 1985; Mobley and Sundman, 2003). The sim-
plest solutions use Monte Carlo techniques and have been used successfully for
a variety of problems involving non-plane-parallel geometries. While such mod-
els have been built for specialized domains, none have yet been designed to treat
radiative transfer in a cylindrical sample of sea ice.

Although Monte Carlo solutions are generally the simplest, a number of more
sophisticated solutions have been used to examine radiative transfer in axisym-
metric domains. For example, Crosbie and Dougherty (1981) employed an integral
solution method to solve the transfer equation in a two-dimensional, radially infi-
nite, axisymmetric domain. Wu and Wu (1997) also applied the integral method to
study radiative transfer in a cylindrical medium with finite radial extent. Alcouffe et
al. (1997) applied a discrete ordinates method to solve the electrically-neutral par-
ticle transport equation in a cylindrical domain. None of these solutions, however,
take into account either internal or external refractive boundaries, an important
element in the treatment of radiative transfer in sea ice (Grenfell, 1991). Radiative
transfer solutions designed for the ocean, on the other hand, usually do account
for refraction but only at the ocean–air interface. Since none of the existing models
was suitable for our needs, we formulated a new Monte Carlo model that solves the
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radiative transfer equation for a finite cylindrical domain with refractive bound-
aries.

For the task of simulating radiative transfer within the laboratory ice samples,
the transport equation is solved using Monte Carlo techniques. In forward Monte
Carlo models, photons which are emitted from the incident source enter the model
domain and travel along trajectories determined by the probabilities of scattering
and absorption events. If an interaction is determined to be a scattering event,
a scattering angle is calculated by sampling the phase function and the direction
of the emergent photon trajectory is updated. This process is continued until the
photon exits the domain, is absorbed, or reaches a simulated detector, at which
time the next photon is introduced into the domain. Basic radiometric quantities
are computed from the fraction of incident photons that reach the location of a
specified detector.

When few of the incident photons actually reach the detector, forward models
can become very inefficient. Because 2-D problems lack translational invariance,
forward Monte Carlo models can fail when the probability that an incident photon
will strike the detector becomes very small. For this reason, the backward Monte
Carlo method was developed by Collins et al. (1972) and Adams and Kattawar
(1978). The backward method is based on the principle of reciprocity in radiative
transfer theory and requires solution to the adjoint, or time-reversed problem. In the
adjoint problem, photons are generated at the detector and their trajectories traced
back to the original source. Photons are tallied as they leave the domain and every
photon generated contributes to the solution. The backward Monte Carlo method
has been implemented for radiative transfer problems in the ocean (Gordon, 1985;
Mobley and Sundman, 2003), within clouds (Evans, 1993; Roberti et al., 1994), and
for limb viewing radiances in the atmosphere (Oikarinen, 2001). We next discuss
the development of the 2-D radiative transfer model and demonstrate how it can
be used in the analysis of optical data.

8.6.1 Model overview

For this task, we chose to develop a backward, axisymmetric Monte Carlo model
with multiple refractive layers. We closely follow the treatment described by Gordon
(1985) for radiative transfer in the ocean and generalize it to accommodate multiple
refractive boundaries in a cylindrical domain.

We consider a right circular cylinder whose axis is oriented vertically and whose
upper surface is illuminated with either diffuse or normally incident collimated
radiation. Vertical variations in inherent optical properties are simulated using
horizontal layers, each with specified vertical extent (hn) and uniform properties.
Similarly, radial variations are simulated using concentric cylindrical shells with
radii ρm (see Fig. 8.18). IOPs, including the real refractive index (n), absorption
coefficient (κ), scattering coefficient (σ), and scattering phase function (p[ξ′ → ξ]),
must be specified for each layer of each shell.

The equation governing the transfer of radiation can be written:

(ξ ·∇)L(r, ξ)+k(r)L(r, ξ) = σ(r)
∫
4π

p(r, ξ′ → ξ)L(r, ξ′) dΩ(ξ′)+Q(r, ξ), (8.9)
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Fig. 8.18. Schematic of the (a) forward and (b) adjoint problems for diffuse incident
radiation.

where the radiance L(r, ξ) is specified at vector location r in the direction of unit
vector ξ (ξ > 0 in downward direction) and the integral over solid angle Ω is
evaluated over 4π steradians. The beam attenuation coefficient, k(r), is the sum
of κ(r) and σ(r). Q(r, ξ) is the intensity (power per unit solid angle) per unit
volume of all sources at r in direction ξ. The phase function p(r, ξ′ → ξ) describes
how light with direction ξ′ is scattered into direction ξ at location r. The model
can treat any phase function. For the purpose of illustrating this model, we use
a Henyey–Greenstein analytic function (Henyey and Greenstein, 1941) because of
its convenience and efficiency. The phase function is assumed to have azimuthal
symmetry about the direction of the incident photon, an appropriate assumption
for scattering by equivalent spheres.

The forward problem for diffuse illumination is illustrated in Fig. 8.18(a). The
incident radiance is L1(ro, ξ), where ro refers to the top surface of the cylinder and
subscript 1 refers to the forward problem. The vector normal to the top surface
is denoted u. Photons refract, reflect, and scatter as they enter and propagate
through the medium. The figure shows a series of plausible trajectories for a photon
as it transits through the domain to a transmissivity detector. The radiance at the
location of the detector (rd) is denoted L1(rd, ξ). The corresponding downwelling
irradiance at the detector (Ed[rd]), normalized by the incident downwelling diffuse
irradiance (Ed[ro]), is:

Ed(rd)
Ed(ro)

=
− ∫

ξ·u<0 L1(rd, ξ)ξ · u dΩ
− ∫

ξ·u<0 L1(ro, ξ)ξ · u dΩ . (8.10)
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The ξ · u < 0 bound on the solid angle integral indicates that the integration is to
be carried out only for downwelling directions. We will frequently refer to the ratio
Ed(rd)/Ed(ro) in this study.

The adjoint problem is illustrated in Fig. 8.18(b). Case and Zweifel (1967)
demonstrated that Eq. (8.9) possesses unique solutions for a closed convex volume,
V , bounded by surface, S, with single scattering albedo (o ≡ σ(r)/k(r) < 1,
provided the incident radiance, IOPs, and sources within V are known. If the
phase function is time-reversal invariant, i.e. if p(r, ξ′ → ξ) = p(r,−ξ → −ξ′),
the following reciprocity relationship relates the forward (subscript 1) and adjoint
(subscript 2) problems (Case, 1957):∫

ξ·u<0
dΩ
∫
S

dS |ξ · u| [L1(ro, ξ)L2(ro,−ξ)− L2(ro, ξ)L1(ro,−ξ)]

=
∫
4π

dΩ
∫
V

dV [L1(r,−ξ)Q2(r, ξ)− L2(r, ξ)Q1(r,−ξ)], (8.11)

where L1(ro,−ξ) and L2(ro,−ξ) are the radiances leaving the domain at the top
surface in the forward and adjoint problems, respectively. Since there are no internal
sources in the forward problem considered here, Q1(r,−ξ) = 0; and, equivalently,
since there is no incident radiation in the adjoint problem, L2(ro, ξ) = 0, Eq. (8.11)
becomes ∫

ξ·u<0
dΩ
∫
S

dS |ξ · u| L1(ro, ξ)L2(ro,−ξ)

=
∫
4π

dΩ
∫
V

dV [L1(r,−ξ)Q2(r, ξ)]. (8.12)

The normalized, transmitted irradiance in Eq. (8.10) can be computed from Eq.
(8.12) by choosing a suitable value for Q2(r, ξ). Q2(r, ξ) is the function governing
the angular distribution with which photons are released at the detector location
in the adjoint problem. To simulate a transmitted irradiance detector, we choose

Q2(r, ξ) =
[
(ξ · u)δ(r − rd)Jo ξ · u > 0
0 ξ · u < 0 , (8.13)

where Jo is the total number of photons released. For a transmitted irradiance de-
tector, Eq. (8.13) specifies that photons be released only from the upper hemisphere
of the detector with a ξ · u dependence. This is simply a mathematical expression
of how a cosine detector collects photons.

If we assume that the incident radiance is isotropic with value Lo, then the
incident irradiance is Ed(ro) = πLo. Substituting Eq. (8.13) into Eq. (8.12) and
evaluating the RHS of Eq. (8.12) for the upward-looking hemisphere allows us to
rewrite Eq. (8.10) as

Ed(rd)
Ed(ro)

=

∫
S
dS
∫
ξ·u>0 dΩ |ξ · u|L2(ro,−ξ)

πJo
. (8.14)

This equation can now be evaluated using a Monte Carlo simulation. Photons
simulating Q2 are released at rd and are followed through the domain until they
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exit the top surface as L2(ro,−ξ). The numerator is simply the total intensity of
photons that leave the top surface of the domain. All photons that pass through ro
constitute the radiance L2(ro,−ξ) and contribute to the solution integral. These
results allow irradiances and radiances to be computed at the location and direction
of any detector simply by computing the power associated with photons leaving
the top of the cylinder and comparing it with the power associated with photons
leaving the adjoint source.

8.6.2 Implementation

8.6.2.1 Photon release

It is convenient to think of each photon released at the location of the detector
(henceforth called the ‘source’, see Fig. 8.18(b)) as representing a packet of photons.
The number of photons in the packet, or the intensity of the associated beam, is
characterized by a statistical weight W . Initially, W = 1. By appropriately scaling
W , the number of photons in a packet can be modified to reflect the portion of the
packet surviving absorption or interaction with a refractive boundary. The initial
position of each packet is rd, and the direction of the packet trajectory is denoted
by polar (θ) and azimuthal (φ) angles. The source is a hemisphere divided into
a specified number of equal solid-angle bins. Initial values of (θ, φ) are assigned
the central polar and azimuth angles of the bin from which the packet is released.
For an irradiance source, all bins in the hemisphere are active and equal numbers
of photons are released from each. For a radiance source, only bins within the
acceptance angle of the viewing direction are active.

8.6.2.2 Distance between collisions

The distance (d) a packet travels in direction ξ before it undergoes a scatter-
ing or absorption event is determined by k(r). Because the packet trajectory is
determined one scattering event at a time, the intensity is attenuated with dis-
tance exponentially for each segment. A distance to the next interaction is selected
through a process of choosing a random number and using it to sample a cumu-
lative distribution function. This is generally known as the fundamental principle
of Monte Carlo simulation (Cashwell and Everett, 1959) and is used extensively in
the present model. A random number R selected on the interval 0 ≤ R < 1 is used
to sample the cumulative distribution corresponding to an exponential probability
distribution function, and

d = − 1
k(r)

ln[1−R]. (8.15)

Since k represents the total probability of all scattering and absorption processes,
this calculation gives the distance to the next interaction, regardless of whether it
is a scattering or absorption event. The average over many computations of d is
the mean free path and is equal to 1/k(r).
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8.6.2.3 Photon interactions

Each time the distance to a collision is computed, it is compared with the distance
to the nearest boundary along the direction of travel. The packet is advanced to
the location of the nearest interaction, either: (i) an internal horizontal or vertical
boundary, (ii) an external horizontal or vertical boundary, or (iii) a scattering or ab-
sorption event. If the photon interacts with an internal refractive layer boundary, a
random number is drawn and the fundamental principle of Monte Carlo simulation
is invoked to determine whether the packet is reflected or refracted. If the packet
is reflected, it remains within the same layer with its direction reflected about the
normal to the interface. The remaining distance to the collision is computed and
compared with distances to boundaries along the new trajectory. If the packet is
refracted, it is transmitted to the neighboring layer, where the remaining distance
to the collision d′ is adjusted to account for differences in the k values between the
previous layer and the new layer:

d′ = d · kprevious/knew. (8.16)

The statistical weights obey the Fresnel equations whenever a photon interacts with
a refractive boundary. As packet weights represent radiances along the direction ξ,
W for photon packets crossing a boundary with relative refractive index (m) must
be modified to conserve energy:

W ′ =W
1
m2

· t(ξ, m) (8.17)

where t(ξ,m) is the Fresnel transmission coefficient at the boundary (Wyatt, 1978;
Mobley, 1994).

If the photon interacts with the top of the cylinder, the transmitted portion of
the packet contributes to the final solution. Interaction with any refractive external
boundary causes the packet weight to be reduced by the reflection coefficient and
its trajectory to be reflected by the surface. In this way, packets are forced to
remain within the domain until exiting the top surface. Packets that experience
total internal reflection continue to trace out trajectories within the medium. To
reflect a packet at the curved side wall, the reflection coefficient is calculated using
Fresnel’s principle relative to the local tangent plane.

If the distance to the collision is less than the distance to any boundary in the
direction of the trajectory, the packet will experience a scattering or absorption
event. Losing packets to absorption events is computationally inefficient, as termi-
nated packets no longer contribute to the solution. To eliminate this inefficiency, all
interactions are forced to be scattering events, and the bias is taken into account by
multiplying W by the probability the interaction is a scattering event ((o[η]) each
time an interaction occurs. By doing this, the packet is weighted by the probability
that it has survived this particular interaction. Once a scattering event occurs, the
direction of the next trajectory is selected by using the fundamental principle of
Monte Carlo simulation to sample the polar and azimuthal angles of the phase
function. The photon position remains unchanged, but θ and φ are reassigned.
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8.6.2.4 Photon counting

When a packet hits the top boundary of a non-refractive medium, it will leave
the domain, contributing its weight, W , to

∫
L2(ro,−ξ) in the numerator of Eq.

(8.14). When a packet hits the top boundary of a refractive medium, a portion of
it will be reflected and a portion will be transmitted, unless it suffers total internal
reflection. In the case of partial transmission, the transmitted portion contributes
to the solution and the reflected portion remains within the medium. It continues
to scatter until its weight drops below a prescribed threshold (typicallyW = 10−6),
potentially interacting with the top surface numerous times, each time contributing
to the solution integral.

Equation (8.14) is straightforward to apply when the incident radiation is
isotropic. When the incident radiation has an angular dependence, C(ξ), exiting
photons must be weighted by C(ξ) as they contribute to L2(ro,−ξ). When the inci-
dent radiation is collimated within some solid angle ΔΩ(ξo), C(ξ) = δ(ΔΩ(ξo)) and
only photons exiting within ΔΩ(ξo) have non-zero weighting. This realization is
necessary to simulate the AOP observations, but leads to very inefficient, high vari-
ance solutions as ΔΩ(ξo) decreases. Gordon (1985) overcame this problem by re-
formulating the solution for collimated incident irradiance by rederiving Eq. (8.14)
and separating the radiance field at the detector into two components to be treated
separately: radiation scattered within the domain and radiation falling on the de-
tector without having been scattered. Fig. 8.19(a) illustrates the forward problem
for the case of collimated incidence. The incident beam is denoted L1(ro, ξo), and
the transmission detector records both scattered and unscattered light. The scat-
tered light results from photons that interact with the medium along trajectories
that eventually intersect the detector. The unscattered portion (L1[rd, ξo]) is given
by the attenuated incident beam persisting at the location of the detector.

Fig. 8.19(b) illustrates the treatment of the scattered component in the adjoint
problem. As in the diffuse case, photons are released at rd using the distribution
function Q2(r, ξ), and their trajectories are traced through the domain. Instead
of waiting for photons to exit the top of the domain at angle ξo, which very few
would do, they contribute to the solution integral at each scattering event. At each
event, the probability that the photon was scattered out of the direct beam into
the current trajectory is recorded.

In the case of a non-refractive domain (e.g., a cloud), or a domain with a
single refractive boundary (e.g., the ocean surface), the only unscattered beam is
downwelling [L(r, ξo)], and is simply the incident collimated beam with intensity
attenuated to the depth of the event and adjusted for transmission at the refractive
boundary. In the case of a domain with multiple refractive boundaries, the direct
beam can have both upwelling and downwelling components at any location above
the bottom boundary, and the probability of scattering this beam into the photon
trajectory must be included for both directions of direct beam propagation. Each
term in the solution sum is the product of the packet weight and the probability that
the photon came into that trajectory either from the downwelling or the upwelling
portion of the as-yet unscattered beam. The sum of these terms is:∑

ij

WiPij , (8.18)
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Fig. 8.19. Same as Fig. 8.18, except for direct incident radiation.

where

Pij = (o(r)ΔΩ(ξo) · {p(r, ξ′ → −ξo)L(r, ξo) + p(r, ξ′ → ξo)L(r,−ξo)} (8.19)

and L(r, ξo) and L(r,−ξo) represent the downwelling and upwelling unscattered
incident beams at the location of the collision, as shown in Fig. 8.19(b). Wi is the
statistical weight of photon i.

Combining the contributions of interacting and non-interacting photons, the
normalized downwelling irradiance Eq. (8.14) becomes

Ed(r
)
d

Ed(r
)
o

=

∑
ij

WiPij

πJo |ξ·ou|ΔΩ(ξ)o
+
L(rd, ξo)
Lo

. (8.20)

As with diffuse incidence, photon packets are released at rd with W = 1 and
allowed to generate trajectories through the medium. The unscattered term is the
fraction of the incident beam that reaches the detector without having undergone
a scattering event. For a transmissivity detector, this is L(rd, ξo); for an albedo
detector, L(rd = ro,−ξo). Since

∑
ijWiPij is directly proportional to ΔΩ(ξo),

Ed(rd)/Ed(ro) is independent of ΔΩ(ξo).
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8.6.3 Similarity

The optical properties of sea ice are largely a result of absorption incurred by the
pure ice matrix plus impurities (Grenfell, 1983; Light et al., 1998) and scattering
due to embedded inclusions of brine, gas, and precipitated salts. The absorption
of pure ice is well known, but scattering due to inclusions has not been well doc-
umented. To specify total scattering, both the scattering coefficient and the phase
function must be quantified. Simultaneous inference of these two unknowns can
be problematic. In radiative transfer theory, similarity relations sometimes permit
reduction in the number of independent IOP variables by one. Here, we will make
use of a similarity parameter, S, defined by van de Hulst (1980) as

S = [1 + (σ/κ)(1− g)]−1/2, (8.21)

or, equivalently, as
S = [(1−(o)/(1− g(o)]1/2,

S varies from 0 to 1, approaching 1 as κ or g become large.
Since κλ of pure ice at visible wavelengths is well established (Grenfell and

Perovich, 1981), and since we understand the total scattering in sea ice to be
approximately independent of wavelength for visible light, we concern ourselves
only with the magnitude of σ, not σ/κλ. If κλ is specified, a more simple form of
the similarity parameter can be expressed as

s = σ(1− g). (8.22)

This statement gives a rule by which smaller σ values may be used to compensate
for smaller g values. As with S, two domains with the same absorption and identical
s values will have nearly identical AOPs [van de Hulst, 1980].

An additional benefit of using a similarity relation is to reduce the computation
time for forward-peaked phase functions (Graaff et al., 1993). Solution time for
the Monte Carlo model is a serious concern and depends strongly on the inherent
optical properties of the medium. While domains with large optical depth take
longer to execute, the computation time for any domain depends strongly on the
asymmetry parameter. The more forward-peaked the phase function, the longer it
takes to obtain a solution. Experiments with the model have demonstrated that
there exists a direct relationship between g and computation time. As g increases
from 0.9 to 0.95, computations take approximately an order of magnitude longer;
an increase from 0.9 to 0.98 takes approximately two orders of magnitude longer.
The similarity parameter can thus aid in the calculation of radiative transfer when
the phase function is extremely forward peaked.

8.6.4 Simulation of laboratory observations

To simulate the observations reported in section 8.5, the ice sample was modeled
as a refractive cylinder with spatially uniform σ, κλ, and g, while the supporting
glass plate was modeled as a non-scattering second layer with a refractive index of
1.50 and a spectral absorption coefficient that was estimated with a simple trans-
mittance measurement in the laboratory. It was initially assumed that scattering in
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the ice could be described by a Henyey–Greenstein phase function with g = 0.95.
The Monte Carlo Model (MCM) was used to calculate Lα30, Lα70, Lt30, Lt67, and
Ls for a wide range of s values. Observed radiances were then compared with the
predicted radiances, and the value of s that best explained all five observed spectra
was selected at each temperature. Derived values for s(T ) are shown in Fig. 8.20.
The cooling sequence is indicated by open symbols and the warming sequence by
solid symbols. Both sequences were initiated at −15◦C. Symbol numbers indicate
the order in which measurements were made. The overall range of s varied from
8.6m−1 at −5◦C to 15.6m−1 at −33◦C. This is almost a twofold change in atten-
uation. Uncertainties are estimated to be approximately the symbol size.

Three distinct temperature regimes can be identified in Fig. 8.20.

(a) T < −23◦C: Values of s increased by nearly 70% as the sample was cooled be-
tween −20 and −33◦C. Such strong increases in attenuation by scattering were
almost certainly the direct result of the precipitation of hydrohalite crystals
which should begin to occur at −23◦C.

(b) −23◦C < T < −8◦C: Attenuation due to scattering at intermediate tempera-
tures appeared to be almost constant. Between −15 (point 5) and −5◦C (point
8), for example, s changed by less than 5%. Two competing factors appear to
contribute to this behavior. As sea ice warms across this temperature regime,
there are moderate increases in scattering due to increased brine and gas vol-
ume. At the same time, there are decreases in scattering due to the decreasing
mass of precipitated mirabilite crystals. To a large extent, these effects appear

Fig. 8.20. Derived values of the similarity parameter s as a function of temperature.
Values were derived from observed radiances by comparison with Monte Carlo model
calculations.
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to counteract one another. Scattering by mirabilite crystals eventually ceases
above −8◦C, where all mirabilite crystals should completely dissolve.

(c) T > −8◦C: At temperatures above the mirabilite precipitation (points 7–12),
attenuation due to scattering decreased slightly as the sample was warmed to
−4◦C (point 9), then increased monotonically as the temperature approached
−1◦C (point 12). The total increase in s was less than 10% between −8◦C
and −1◦C, although the ice experienced an eightfold increase in brine volume
and an almost twofold increase in gas volume. Such large increases in brine
and gas volume were expected to produce correspondingly large increases in
scattering, but the observed optical changes were surprisingly small. The effort
to attribute these changes in scattering quantitatively is now described in the
development of the structural-optical model.

8.7 Structural-optical model

The structural-optical model is based on the theoretical framework of Grenfell
(1983, 1991). The model uses direct observations of inclusion number densities and
size distributions obtained from microstructural imagery to predict κ(T, λ), σ(T ),
and g(T ) for brine inclusions, gas bubbles, and precipitated salt crystals. Funda-
mental physical relationships between the ice structure and its optical properties
are deduced by iteratively comparing values of s derived from AOP data with val-
ues of s predicted with the structural-optical model. These comparisons were used
to refine and improve the model.

8.7.1 Structural-optical relationships

In this section we develop explicit relationships between the microstructure of the
ice and the inherent optical properties of each type of included scatterer. We also
describe how these relationships are used to predict values of κ, σ, and g for the
entire sample. These relationships constitute the structural-optical model.

8.7.1.1 Absorption coefficient, κ

The total spectral absorption coefficient, κtotal(λ), can be written as the volume-
weighted sum of the individual absorption coefficients (κj [λ]) of pure ice, included
brine, precipitated salts, and included particulates (Grenfell, 1991):

κtotal(λ) = κice(λ)Vice + κbrine(λ)Vbrine + κps(λ)Vps + κparticulates(λ)Vparticulates.
(8.23)

where Vj is fractional volume. Because the samples used in this study did not
generally contain significant quantities of absorbing particulates, Vparticulates was
assumed to be zero. Since information on absorption by the precipitated salts was
not available and since Vps is very small relative to Vice and Vbrine, effects of κps
on total absorption were also assumed to be negligible, hence

κtotal(λ) ≈ κice(λ)Vice + κbrine(λ)Vbrine. (8.24)
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Because Vice is usually much larger than Vbrine and because κice(λ) is close to
κbrine(λ), κtotal(λ) is approximately equal to κice(λ). κice(λ) is strongly wavelength-
dependent, with values less than 0.05m−1 at blue wavelengths, increasing to more
than 10m−1 in the near-infrared.

8.7.1.2 Scattering coefficient, σ

The temperature-dependent scattering coefficient for each type of inclusion is given
by:

σ(T ) =
∫ rmax

rmin

Qsca(req)πr2eq(T )N(req, T ) dreq (8.25)

where Qsca(req) is the scattering efficiency. All the inclusions considered here (i.e.,
brine, gas, and salt crystals) have sizes much larger than the wavelength, so that
Qsca is approximately equal to 2, and σ(T ) ≈ 2 · ψ(T ) (See section 8.4.3.2). The
calculation of σ(T) for each type of inclusion is described below.

8.7.1.3 Brine inclusions

The total value of ψbrine for all brine inclusions observed in the thin section imagery
at −15◦C was estimated to be 110m−1, with 30m−1 being contributed by the
pockets (ψbp) and 80m−1 by the tubes (ψbt). However, the brine volume observed
in the microstructure sample (Vbrine = 1.2%) was only 60% of that calculated for
the optical sample at −15◦C. The most likely explanation is that the thin section
did not contain many of the larger and more widely dispersed brine tubes present
in the core. Such features would, of course, lead to greater scattering in the optical
sample. To estimate the effect on ψbt, we assumed that these larger tubes followed
the same size distribution given by Eq. (8.1). We found that extending Nbrine(l)
from l = 8mm to include tubes up to 14.6mm in length produced a brine volume
of 1.9%, in agreement with the optical sample. This increased ψbt(−15◦C) from 80
to 110m−1, and yielded estimates for σbp(−15◦C) of 60m−1 and σbt(−15◦C) of
220m−1.

Temperature-dependent volume changes for each brine inclusion were predicted
from the equations of freezing equilibrium (Cox and Weeks, 1983). Volume increases
were assumed to be proportional to the initial size of the inclusion. Pockets were
assumed to grow and shrink in length and diameter, retaining constant aspect ratio;
tubes were assumed to grow and shrink in diameter and aspect ratio, retaining
constant length. These rules constitute our structural model for brine inclusions.
Application of this model to the scattering coefficients obtained at −15◦C allow
calculation of σbp(T ) and σbt(T ). The results (Fig. 8.21) indicate that scattering
by brine tubes in interior, first-year ice is roughly 4–5 times that of brine pockets
at all temperatures. As temperature increases, so does the contribution of brine
inclusions to the total scattering coefficient.
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Fig. 8.21. Temperature-dependent scattering coefficients for various types of scatterers
in sea ice as predicted by the structural-optical model. [For the color version of this figure,
see the color plate section.]

8.7.1.4 Gas bubbles

We designate two types of gas bubbles in sea ice: (i) active bubbles contained
in brine inclusions whose size varies with changes in the size of the host brine
inclusion, and (ii) inactive bubbles trapped in the ice lattice whose size remains
approximately constant with temperature. As before, scattering by gas bubbles in
brine inclusions was first computed directly from observed size and number distri-
butions at −15◦C. Somewhat unexpectedly, only a fraction of the brine inclusions
were found to contain bubbles at this temperature. Estimates of the total number
density of active bubbles Nbubble were based on the percentage of brine inclusions
containing bubbles and on the gas volume fraction of these inclusions. The frac-
tion of brine pockets (fbp) and tubes (fbt) containing bubbles was observed to be
10% and 40%, respectively. Typical fractional gas volumes for these brine inclu-
sions were estimated to be 10% for pockets (vbub-bp) and 3% for tubes (vbub-bt)
at −15◦C. As the temperature of the sample increases, some of the pure ice (den-
sity ≈0.917 g cm−3) around each brine inclusion melts to become brine with density
greater than 1.0 g cm−3. It was assumed that any existing gas bubble would expand
to fill the difference in volume. Changes in gas bubble size with temperature thus
depend on changes in the volume of the associated brine inclusion, information
which can be obtained from the freezing-equilibrium relations (Cox and Weeks,
1983).

It should be noted, however, that temperature-dependent changes in the size
of active bubbles also depend on the actual volume of the host brine inclusion.
This is simply illustrated by considering two identical gas bubbles, one in a large
brine inclusion and the other in a small brine inclusion. Upon warming, both brine
inclusions increase their volume by the same percentage, meaning that a larger
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volume of ice would melt around the large brine inclusion than the small one.
Hence, the size of the bubble in the larger inclusion would increase more than
the one in the smaller inclusion, tying the temperature-dependent behavior of the
bubble size distribution to the brine inclusion size distribution. This effect is taken
into account in this model. By specifying fbp, fbt, vbub-bp, and vbub-bt at −15◦C, the
active bubble distribution can be manipulated to simulate enlarging and shrinking
as the ice is warmed and cooled. Changes in the volume of an individual active
bubble are

Vbubble-a(T ) = Vbubble-a(−15◦C) +ΔVbrine(ρbrine(T )
ρice

− 1), (8.26)

where Vbubble-a is the volume of the active bubble, ΔVbrine is the fractional change
in volume of the host brine inclusion between −15◦C and T , as specified by freez-
ing equilibrium; ρbrine(T ) varies between 1.03 g cm−3 at −2◦C and 1.23 g cm−3

at −34◦C, as given by Maykut and Light (1995); and the density of pure ice
ρice(g cm−3) = 0.917 − 1.403 × 10−4T (◦C) (Pounder, 1965). In this treatment,
the number density of active bubbles is assumed to remain constant with temper-
ature.

For the purpose of calculating ψ and σ, bubbles are assumed to be spherical at
−15◦C. At higher temperatures, however, bubbles in tubes frequently become large
enough that their spherical dimensions exceed the tube diameter. When the bubble
diameter grows larger than the tube diameter, the diameter of the bubble becomes
fixed at the tube diameter, the shape of the bubble is assumed to be cylindrical, and
the bubble is permitted to grow in length only. For such tubular bubbles, ψbubble-a
and σbubble-a are calculated using the equivalent spheres treatment, in the same
manner as brine inclusions. The predicted σbubble-a(T ) for all active gas bubbles is
shown in Fig. 8.21. Although much smaller in magnitude, it is more sensitive to
temperature than either tubes or pockets, showing large increases in scattering as
the temperature increases above −10◦C.

With fbp = 0.1, fbt = 0.4, vbub-bp = 0.1, and vbub-bt = 0.03, the fractional vol-
ume of active gas in the optical sample is computed to be 2.4×10−4 at−15◦C, about
2% of the total gas volume indicated by the density and salinity measurements.
It appears that there must have been additional gas or void space in the optical
sample that was not recorded in the structural observations. These inclusions are
important because of their large refractive index contrast with the surrounding ice.
Reexamination of the imagery used to characterize the microstructure revealed pre-
viously unidentified features that are probably inactive gas bubbles embedded in
the ice, e.g. see features highlighted in the lower right-hand corner of Fig. 8.5. The
effective diameters of these bubbles range from 0.09 to 0.21mm with a number den-
sity of about 0.24mm−3, indicating that the value of ψ for inactive gas (ψbubble-i)
at −15◦C is 7.6m−1 and σ for inactive gas (σbubble-i) at −15◦C is 15.2m−1 in this
thin section. These values should remain constant with temperature, as assumed
in Fig. 8.21.

The fractional gas volume from the inactive bubbles observed in this image was
estimated to be 0.00215. This, combined with the volume of active gas, still only
accounts for 25% of the total predicted gas volume. We will attempt to quantify the
gas content of the optical sample more precisely when we present the comparison
of optical and structural data in subsection 8.7.3.
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8.7.1.5 Precipitated salt crystals

The structural-optical model considers both mirabilite crystals that form below
−8◦C and hydrohalite crystals that begin to form at −23◦C. Observed crystal
sizes in the larger inclusions ranged from 15μm to 140μm diameter. In subsection
8.4.3.4, we estimated that ψmirabilite(−15◦C) = 48.7m−1 in the 3 thin section
sample. This estimate was based on the simple assumption of an effective crystal
edge length of 10μm since direct measurement of the size distribution was not
attempted.

With a salinity of 4.7 , the optical sample should contain 9 · 10−4 kg of
mirabilite per kg of sea ice at −15◦C (Richardson, 1976). Assuming a crystal edge
length of 10μm, ψmirabilite(−15◦C) = 76.3m−1 and σmirabilite(−15◦C) = 152.6m−1.
The value of σmirabilite(T ) is shown in Fig. 8.21, where the temperature-dependent
total mass was based strictly on freezing equilibrium, and the crystal edge length
was held constant at 10μm. The assumption of constant crystal size was made de-
spite the observation that existing mirabilite crystals grew in size while additional
crystals nucleated. This observation, however, does not preclude the possibility of
a temperature-independent effective crystal size.

Fig. 8.21 suggests that changes in scattering due to mirabilite are roughly bal-
anced by opposite changes related to brine inclusions and active gas bubbles. As
the ice warms, mirabilite crystals dissolve and their scattering diminishes, while
brine inclusions and active gas bubbles enlarge and their scattering is enhanced.
Our experimental results suggest that this balance may be independent of ice type
and details of the microstructure. If ice salinity is increased, for example, σ for
all the inclusions present will increase due to greater brine volume and mass of
precipitates, but relative changes with temperature still act to offset one another.

Although hydrohalite crystals should be present in brine inclusions when
T < −23◦C, they were apparently also too small to be seen in the thin section
imagery. However, the increased scattering below −23◦C (Fig. 8.21) indicates that
significant amounts of hydrohalite did precipitate in the optical sample. To cal-
culate σhydrohalite(T ), we again assumed that temperature dependence was based
strictly on the freezing equilibrium mass fraction and that crystal size remained
constant at 10μm (Fig. 8.21). Because brine and gas volumes are small at the low
temperatures where hydrohalite precipitates, the amount of scattering produced
by brine tubes, pockets, and active gas bubbles is small relative to the scattering
by hydrohalite crystals.

8.7.2 Phase functions

For inclusion sizes relevant to this study, g is approximately independent of inclu-
sion size, but depends strongly on the real refractive index (m) of the inclusion
relative to its environment. Relative refractive indices of brine in ice, gas in brine,
mirabilite in brine, and hydrohalite in brine are shown in Fig. 8.22(a). Because
mbrine depends strongly on temperature (Maykut and Light, 1995), g for an in-
clusion depends on temperature when brine is either the scatterer (e.g., brine in
ice) or the background medium (e.g., gas or salt crystals in brine). For a particu-
lar inclusion size, the value of g is smallest when |m − 1| is largest. In this case,
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backscattering is largest for gas in brine, although gas bubbles in ice scatter almost
as effectively. For hydrohalite and mirabilite crystals in brine pockets, |m − 1| is
largest at their temperatures of initial precipitation sincemmirabilite andmhydrohalite

are assumed to be independent of temperature andmbrine increases with decreasing
temperature. In fact, mirabilite crystals in brine have |m−1| ≈ 0 at −30◦C, so that
they become essentially invisible at this temperature. Conversely, brine inclusions
in ice reach their largest |m − 1| value at low temperature. As sea ice warms and
the brine becomes less concentrated, |mbrine−1| decreases, causing brine inclusions
to have increasing forward scattering.

Mie theory was used to calculate phase functions for brine inclusions in ice,
gas inclusions in ice, gas inclusions in brine, and precipitated salt crystals in brine,
assuming that all could be represented by equivalent spheres. Representation of the
phase function by its asymmetry parameter g (the cosine-weighted angular integral)
permitted qualitative comparison of relative amounts of forward and backward
scattering between different types of scatterers (Fig. 8.22(b)) and was used in the
model to specify the Henyey-Greenstein scattering phase function. Typical inclusion
sizes observed in the thin section were chosen for the calculation, although none of
the predicted values were sensitive to size. Scattering by brine and salt inclusions
is clearly very forward-peaked (larger g), while gas bubbles produce considerably
more backscattering (smaller g). Based on these calculations, desalinated, bubbly
ice would be expected to have a bulk g value in the vicinity of 0.86, whereas the
first-year interior ice used in this study had a representative g value in the 0.98–0.99
range. Fig. 8.22(c) shows (1 − g), which is proportional to s. It can be seen that
brine inclusions in ice contribute more than 5 times as much to s at −33◦C as at
−1◦C, and that (1−g) attributable to brine inclusions decreases by a factor of two
between −8 and −2◦C. Mirabilite in brine shows an order of magnitude decrease
in (1 − g) between −8 and −23◦C, while total changes for hydrohalite and gas in
brine are less than a factor of two.

Fig. 8.22. Temperature-dependence of (a) relative refractive index, (b) asymmetry pa-
rameter, g, and (c) (1−g) for inclusions of brine in ice, gas in ice, gas in brine, mirabilite in
brine, and hydrohalite in brine. Asymmetry parameters were calculated using equivalent
spheres and Mie theory. [For the color version of this figure, see the color plate section.]
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8.7.3 Model development and testing

The relationships between ice physical properties and IOPs presented above form
the basis for the structural-optical model. We will now discuss the formulation of
this model, evaluate it for a preliminary set of conditions, and describe how it was
tested and refined.

8.7.3.1 Preliminary model

The model is based on Eq. (8.23), which describes the spectral absorption within
sea ice, and Eq. (8.25), which describes the contribution to scattering for each type
of inclusion present. The total scattering coefficient is determined by

σtotal =
∑

σi = σbp + σbt + σbubble-a + σbubble-i + σmirabilite + σhydrohalite. (8.27)

Single-term Henyey–Greenstein phase functions were used to represent scattering
phase functions for all scatterers in the ice. Other, possibly more realistic phase
functions exist (e.g., Mobley et al., 2002), but the comparisons in this study have
been restricted to the Henyey-Greenstein function. The temperature-dependent
ensemble asymmetry parameter can be predicted by

gtotal(T ) =
∑
i σi(T )gi(T )∑
i σi(T )

, (8.28)

where gi(T ) are the asymmetry parameters for each type of scatterer as shown
in Fig. 8.22(b). Equations (8.27) and (8.28), along with Eqs (8.23) and (8.25)
constitute the structural-optical model.

8.7.3.2 Initial test

The model was tested by comparing values of s(T ) predicted by the model with
those derived from the optical data (Fig. 8.20). Modeled s(T ) values were calculated
from

s(T ) = σtotal(T ) · (1− gtotal(T )) (8.29)

using Eqs (8.23), (8.25), (8.27), and (8.28).
Fig. 8.23 shows the first attempt to compare predicted values of s(T ) with

those derived from the optical observations. Significant discrepancies between the
two exist in all three temperature regimes. An initial assessment suggests that the
discrepancies occur for different reasons in the three regimes. For T < −23◦C,
this preliminary treatment significantly underestimates scattering, most likely by
hydrohalite crystals. In the intermediate regime where no hydrohalite exists, it
appears that improvements in the treatment of scattering by brine inclusions, gas
bubbles, and mirabilite crystals are needed. This is not surprising, given that the
model accounts for only 25% of the total gas volume in the sample and gas bubbles
are highly effective scatterers. It also appears that some important physics may
have been omitted when T > −8◦C since the model predicts large increases in
scattering due to rapid enlargement of brine and gas inclusions while the optical
observations show surprisingly little change.
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Fig. 8.23. Temperature-dependence of observationally determined similarity parameter
compared with values predicted using the preliminary model.

8.7.3.3 Model refinements

This section seeks to improve the preliminary model by addressing problems related
to uncertainties in gas volume, scattering by hydrohalite, and inclusion merging.

Gas volume

The most immediate problem is the estimate of the gas volume of the optical
sample, as this potentially impacts the prediction of s at all temperatures. Imagery
of the microstructure clearly shows bubbles within brine inclusions and bubbles
embedded directly in the ice (Fig. 8.5). The arrows point out what appear to be
drained brine tubes. At the time of initial analysis, it was assumed that the brine
from these tubes had drained during thin section preparation. It is likely, however,
that some of these tubes drained when horizontal cuts were made to remove both
the thin section and the optical section from the ice core. Drained tubes present in
the optical sample should behave as elongated inactive gas bubbles, with negligible
temperature-dependent changes in size or scattering. Although these drained tubes
might not be normally found in natural ice, they must be taken into account in
predicting the optical properties of this sample.

Scattering by drained tubes was modeled by simply adding gas-filled tubes to
the ice. The equivalent spheres treatment was applied to the drained tubes in
exactly the same way as to the brine-filled tubes. Excellent agreement between
the predicted and observed s was obtained at −15◦C when the number of drained
tubes was set to 3% of the number of brine tubes (Fig. 8.24). This contribution
accounted for additional gas volume, bringing the total estimate of gas volume at
−15◦C to 30% of the volume calculated directly from the density, salinity, and
temperature. If the bulk density of the sample were 0.921 g cm−3, instead of the
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Fig. 8.24. Comparison of observationally determined and predicted values of s(T ). A
revised model (solid line) includes parameterization of drained tubes and a reduction in
the effective size of hydrohalite crystals from 10 to 4.5μm. The dashed line shows the
result of adding the effects of brine inclusion merging to these improvements.

observed 0.915± 0.02 g cm−3, then the gas bubble parameterization would explain
98% of the predicted gas volume. This density is within the limits of measurement
uncertainty.

For comparison, Mobley et al. (1998) estimated the amount of scattering within
first-year ice sampled in situ off Pt. Barrow, Alaska, at the onset of melt. Their
estimates for interior ice between the depths of 0.1 and 1.61m produced an s value
of 4.0m−1. This value is considerably smaller than our observed values, and the
difference may be attributable to the considerable brine drainage that occurred
in our laboratory sample. Their measurements were made where the interior ice
temperature was −5.7◦C, but the ice had salinity of 5.2 and density 0.92 g cm−3.
These physical property measurements are consistent with a general lack of brine
drainage.

Scattering by hydrohalite

Even with increased gas volume, the model still fails to produce enough scattering
when T < −23◦C. To match the observations, it is necessary to have increased
scattering by the hydrohalite crystals. Details of hydrohalite precipitation patterns
within sea ice have not been investigated. So, as temperature decreases, the model
assumes increasing numbers of crystals with a constant effective size of 10μm.
Newly nucleated crystals are presumably very small so it is not unreasonable that
the effective size may be considerably less than assumed. By decreasing effective
size from 10μm to 4.5μm, the associated increase in the surface area of hydrohalite
causes ψ(−33◦C) to increase from 609m−1 to 1354m−1 and provides a reasonable
match to the optical observations (Fig. 8.24). Keeping effective size constant is
only one of several possible ways to treat this problem, but more information from
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higher resolution observations of hydrohalite precipitation in sea ice is needed to
develop better treatments.

Brine inclusion merging

Even with the improvements described above, there remains a significant discrep-
ancy between predictions and observations at temperatures above −5◦C. One likely
reason is changes in the distribution of brine and gas inclusions that occurred in
the samples as they approached the melting point. Imagery made at high temper-
atures showed that brine inclusions often merged with neighboring inclusions as
they became larger. In some cases, large brine tubes merged with small neighbor-
ing inclusions. In other cases, clusters of small pockets merged to form a single
inclusion. The net effect of this merging is a reduction in the total surface area of
brine–ice interfaces and a corresponding reduction in the ψ values for brine pockets
and tubes.

The effects of merging were included in the model by specifying a reduction in
Nbrine(l). This was done by: (i) calculating the normal increase in the size of each
brine inclusion with temperature, (ii) reducing the number density for each size to
simulate merging, and (iii) increasing lmax, the upper limit of the size distribution,
to conserve total brine volume after merging. Specifically, Nbrine(l) at −15◦C was
first converted to a volume (v) distribution Nbrine(v,−15◦C) using the assumptions
about shape and aspect ratio described in subsection 8.4.3.1. The temperature was
then adjusted to T ′ and a new volume distribution Nbrine(v, T ′) calculated using
the freezing equilibrium relations of Cox and Weeks (1983). Merging was simulated
by

Ñbrine(v, T ′) = η(v, T ′)Nbrine(v, T ′), (8.30)

where Ñbrine is the merged distribution and η is a specified function based on
observed merging data. Since merging was never observed below −14◦C or in the
smallest class of pockets, it was assumed that η(v, T ≤ −14◦C) = η(vmin, T ) = 1,
where vmin is the smallest volume in the distribution. The form selected for η(v, T )
was

log[η(v, T )] =
log(η[vmax, T ])
log(vmax/vmin)

log
(

v

vmin

)
, for vmin < v < vmax (8.31)

where vmax is the volume of the largest inclusion at temperature T . η(v, T ) is linear
in log(v) − log(N) space (see Fig. 8.25), and causes most of the merging to occur
in the larger inclusions. η(vmax, T ), itself, decreases linearly with T , going from 1.0
at −14◦C to 0.1 at −1◦C, specifically, η(vmax, T ) = 0.0307 − 0.0693T , where T is
in degree Celsius. While this particular parameterization reproduces the general
merging behavior observed in the thin section, it is likely that better treatments
can be developed as more data become available.

To conserve total brine volume in the sample, Ñbrine(v, T ′) was extrapolated to
larger volumes using the slope of the curve at vmax. An example of the effect of
merging and volume conservation at T = −1◦C is shown in Fig. 8.25. The kink in
the curves between v = 10−3 and 10−2mm3 marks the transition from pockets to
tubes. The predicted effects of merging on s(T ) are shown by the dashed line in
Fig. 8.25. Clearly, the merging model reduced scattering somewhat at the highest
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Fig. 8.25. Brine inclusion number distribution as a function of inclusion volume.
Nbrine(v,−15◦C) was calculated from N(l) (solid line), while Nbrine(v,−1◦C) (dashed
line) was derived from Nbrine(v,−15◦C) using the freezing equilibrium equations. The
merged distribution Ñbrine(v,−1◦C) (dotted line) conserves total brine volume and as-
sumes that η(vmax,−1◦C) = 0.1. The area under the dashed and dotted curves is identical,
as the merging process conserves total brine volume.

temperatures, but some other mechanism is still needed to explain why scattering
does not increase strongly above −5◦C.

Gas bubble merging and escape

The rapid increase in brine volume above −5◦C is also accompanied by propor-
tional increases in the volume of active gas bubbles. Unfortunately, observational
data are not sufficient to accurately characterize temperature-dependent changes in
the distribution of active bubbles. The most probable explanation for the low scat-
tering above −5◦C is the upward escape of bubbles as the brine inclusions became
larger and increasingly interconnected. Bubbles rising in melt ponds and vapor ac-
cumulation beneath the surface of refrozen ponds provide evidence that outgassing
is a normal occurrence in warm sea ice, but the extent to which bubble escape from
in situ ice is analogous to what happened in the laboratory sample is uncertain.
Lacking specific information about the escape process, we simply assumed that all
gas bubbles above a certain critical size (rc) were able to escape from the sample.
A very good fit to the optical data was obtained with rc = 0.16mm. Fig. 8.26
shows a comparison between the observed s(T ) and values predicted by the full
model. Modifications made to the preliminary model produce a full model that
closely matches the observed s(T ). This full model contains the essential elements
of the physical changes observed in the microstructural observations, including
temperature-dependent brine inclusion and gas bubble size, changes in brine con-
centration prescribed by freezing equilibrium, precipitation of solid salt crystals,
brine tube drainage, brine inclusion merging, and escape of active bubbles with
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Fig. 8.26. Comparison of observationally determined s(T ) values (points) with those
predicted by the full model with mbrine a function of temperature (solid line) and mbrine
held fixed at its value at −15◦C (dashed line).

critical radius rc = 0.16mm. The relative roles of σ and (1 − g) will be discussed
in subsection 8.7.4, along with sensitivities that affect the model.

8.7.4 Discussion

Relationships between the structural and optical properties of sea ice vary with
ice temperature and are governed by different constituent scatterers at different
temperatures. Fig. 8.27(a) shows the contributions due to partial s(T ) values for
each type of scatterer based on the refined model. The values of s(T ) in this figure
corroborate the optical observations for each temperature regime. Partial s val-
ues indicate that scattering at T < −23◦C is dominated by hydrohalite crystals
(magenta curve). In contrast, moderate temperatures are characterized by scatter-
ing produced by brine (red and black curves), gas (green curve), and mirabilite
crystals (cyan curve). No one constituent dominates changes in scattering at these
temperatures. Increases in the size of brine inclusions and active gas bubbles cause
scattering coefficients to increase as the ice warms. Dissolution of mirabilite crys-
tals upon warming causes the scattering coefficient for the crystals to decrease.
Scattering in this regime remains nearly independent of temperature, the result of
an approximate balance between enlarging brine and gas inclusions and dissolving
mirabilite crystals. For T > −8◦C, s for active gas bubbles increases rapidly, and
this is manifested in slightly increased scattering in the observed optical properties.

Partial s values for each constituent depend on both the ice microstructure
(σ) and its dielectric properties (1− g). Both the microstructure and the dielectric
properties are inextricably tied to the chemistry of freezing equilibrium in seawater.
Freezing equilibrium dictates the bulk amounts of ice, brine, gas, and precipitated
salt that exist at each temperature in the seawater system, but does not dictate a
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Fig. 8.27. Temperature-dependent partial similarity parameters for each constituent in
the full structural-optical model using (a) mbrine(T ) and (b) mbrine(T = −15◦C). [For
the color version of this figure, see the color plate section.]

specific distribution of inclusions. A model that depends strictly on the chemistry
of freezing equilibrium could be the most widely applicable type of structural-
optical model. If such a model were appropriate, the optical properties of the ice
could be determined without explicit knowledge of ice type, age, condition, or
specific microstructure. To assess the applicability of the structural-optical model
developed in this study, we consider the effect of processes governed strictly by
freezing equilibrium relative to processes influenced by the ice type or its history.
We begin by assessing the impact of mbrine(T ) on the full model. We then consider
effects of variable ice salinity, and finally the role of specific microstructures.

8.7.4.1 Role of mbrine(T )

Changes in s that result from variations ofmbrine with temperature occur regardless
of ice type or the exact distribution of inclusions. To illustrate the impact of the
temperature-dependent dielectric properties of brine on the optical properties of
sea ice, Fig. 8.27b indicates predicted s values where mbrine(T ) was assigned the
constant value mbrine(T = −15◦C).

Comparison of Figs 8.27(a) and 8.27(b) shows that taking into account the
temperature dependence of mbrine significantly enhances s for brine pockets and
tubes at temperatures below −15◦C and significantly decreases their s values at
temperatures higher than −15◦C. Because the refractive index of mirabilite and
hydrohalite is generally larger than mbrine(T ), the effect of scattering by these salts
diminishes as the ice is cooled below −15◦C. Because |m − 1| for gas in brine is
relatively large, temperature-dependent changes in mbrine have negligible impact
on scattering by gas bubbles. The dashed line in Fig. 8.26 indicates that without
the full representation of mbrine(T ), our model would significantly over-predict the
temperature dependence of s(T ) for the laboratory sample. While it is likely that
s for T < −23◦C is more sensitive to the effective size of precipitated crystals
than to the exact representation of mbrine(T ) at the highest temperatures, the
effect of mbrine(T ) is to dramatically reduce the efficacy of scattering by brine
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inclusions. This results in a gradual lessening of importance of the microstructure
and a gradual increasing of importance of mbrine(T ) with increased temperature.

While a model formulated strictly on the temperature-dependent changes in
mbrine(T ) does a reasonable job of predicting the temperature-dependence of
structural-optical properties in sea ice, and would be attractive for its wide appli-
cability to all types of sea ice, it specifically fails to account for the total magnitude
of s. The role of ice salinity in determining the magnitude of s will be addressed
next.

8.7.4.2 Role of ice salinity

Since the bulk ice salinity dictates brine volume and the total mass of precipitated
salt, the overall magnitude of the scattering is expected to depend strongly on
salinity. We first present application of the model to a high-salinity ice sample, and
then discuss the sensitivity of the model to ice salinity.

Independent optical data that can be used for testing the structural-optical
model were also collected in the laboratory. These data were taken from 10 cm thick
samples of high-salinity, laboratory-grown sea ice. The ice was grown at −20◦C
with average salinity 15 and a bulk density of 0.90 g cm−3. Although detailed
structural data were not collected, apparent optical properties were measured and
the Monte Carlo radiative transfer model was used to derive s(T ) in the same
manner as was done for Fig. 8.20. Fig. 8.28(a) shows the observations (points) for
this high-salinity sample. Note that s values for the 15 sample are approximately
3 times larger than s values for the 4.7 sample.

The structural-optical model was run for the high-salinity sample. The brine
inclusion size distribution was extended to include tubes as large as l = 45mm to
account for the additional brine volume. While larger brine tubes were added to the
distribution, the number density of smaller brine inclusions was the same as used
to model the 4.7 ice. Scattering by precipitated salt crystals was adjusted for the

Fig. 8.28. Observations and model predictions for a high salinity sea ice sample, (a)
comparison between s derived from observations and predicted with model, (b) model
predicted similarity parameters for each constituent. [For the color version of this figure,
see the color plate section.]
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increased salinity by increasing the crystal number density. Effective crystal sizes
inferred from the low-salinity case (10μm for mirabilite and 4.5μm for hydrohalite)
were used, assuming that salinity does not affect crystal size, although this has not
been specifically studied. The active gas bubble size and number parameterizations
adopted for the low-salinity case were also used for this ice. As with the lower-
salinity case, this parameterization produced only 30% of the total gas volume
necessary to explain the observed bulk density. Also, as with the lower-salinity
case, the bulk density would have had to been larger (0.923 g cm−3) to be fully
consistent with our bubble parameterization.

To achieve agreement with the optical observations, the percentage of drained
tubes had to be increased from 3% to 14% for the high-salinity case. This is reason-
able given that the brine volume of the high-salinity sample was three times larger
than the lower-salinity case, likely leading to significantly larger brine drainage.

The solid line in Fig. 8.28a shows model predicted s(T ) for the high-salinity
sample. The model explained observed scattering in the mirabilite regime and at
−28◦C in the hydrohalite regime. As in the lower-salinity case, hydrohalite crystals
dominate scattering at low temperatures. Attenuation by scattering in this tem-
perature regime depends on the size, number, and total mass of crystals, rather
than their exact arrangement in the ice or the size and shape of the host brine
inclusions. The optical properties of cold ice are thus controlled primarily by the
precipitation patterns of the hydrohalite crystals, their dielectric properties, and
the bulk ice salinity. However, scattering was under-predicted at −34◦C, suggest-
ing that the assumption of constant crystal size may need to be modified. The
high-salinity ice had greatly increased scattering above −8◦C which the model was
unable to predict, even when gas bubble escape and brine inclusion merging were
disabled. Since brine was observed to leak out of the sample at high temperatures,
it is likely this increased scattering was caused by additional brine tube drainage.

In the mirabilite regime, the results suggest that the balance between increased
scattering by brine and gas inclusions with warming and decreased scattering by
mirabilite crystals still holds, despite the enhanced salinity. Again, it appears this
result is fairly insensitive to the details of the microstructure, so that scattering
in a wide variety of other sea ice types is also likely to exhibit weak temperature
dependence in the mirabilite regime. The bulk salinity appears to affect the mag-
nitude of total scattering, while the temperature-dependence is more dependent on
mbrine(T ) and, possibly, on the microstructure.

8.7.4.3 Role of microstructure

A number of model simulations were carried out to examine how changes in salt
crystal, gas bubble, and brine inclusion distributions affect structural-optical rela-
tionships in sea ice.

Salt crystal size and number

Effective crystal sizes in the full model were assumed to be 10μm for mirabilite, and
4.5μm for hydrohalite, both independent of temperature. The crystal number is
constrained by the total precipitable mass, as determined by freezing-equilibrium.
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Fig. 8.29. Effects of precipitated crystal size on the temperature-dependence of the
similarity parameter.

Fig. 8.29 shows the sensitivity of s(T ) to crystal size. Simulations were run with ef-
fective crystal size increased to 100μm (dotted line) and decreased to 1μm (dashed
line). Increased crystal size had little impact on s(T ) for mirabilite since scattering
by 10μm crystals was already relatively small, whereas increasing the hydrohalite
size from 4.5μm to 10μm dramatically decreased scattering at the lowest temper-
atures. Decreasing effective crystal sizes to 1μm significantly enhanced σ for each
type of crystal. However, despite significant increases in σ, effects of mbrine(T ) still
reduced attenuation by scattering for mirabilite at temperatures below −15◦C and
for hydrohalite below about −29◦C.

There may likely be other factors that affect scattering by precipitated salt
crystals. Perhaps the most outstanding uncertainty is the prediction of single scat-
tering phase functions for individual crystals. The calculations of phase functions
for precipitated salt crystals were done using Mie theory, modeling the crystals as
equivalent spheres, ignoring effects of the faceted crystal geometry. Both crystals
form in the monoclinic system and have planar faces and sharp edges. We would
expect the explicit treatment of single scattering by such crystals to produce con-
siderably smaller values of g, commensurate with smaller inferred values of σ and
larger inferred effective size, but we are not aware of single scattering calculations
specifically for mirabilite and hydrohalite crystals in brine. There is also some ev-
idence that ice crystals may co-crystallize with hydrohalite within the inclusions,
further complicating the characterization of scattering at low temperatures.

Gas bubble size and number
The sensitivity to active gas bubbles was investigated by first doubling their frac-
tional volume in brine inclusions, then by doubling the number of brine inclusions
containing bubbles. Both tests doubled the total active gas volume. Doubling the
volume of individual bubbles (Fig. 8.30, dashed line) produced only slightly en-
hanced s values in the mirabilite regime. There was also little effect in the warm
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Fig. 8.30. Temperature-dependent changes in the similarity parameter as a function of
active gas bubble volume and number density.

regime because bubbles with radius r > 0.16mm were still assumed to escape from
the ice. Doubling the number of active gas bubbles (Fig. 8.30, dotted line), how-
ever, strongly increased scattering. Doubling the number means that 80% of all
brine tubes would contain bubbles at −15◦C, contrary to the microstructural ob-
servations of 40%. The optical properties are more sensitive to the number simply
because σ doubles when N doubles, but when the volume of individual inclusions
is doubled, σ increases by only 1.59. At this point, the behavior and nucleation
patterns of gas bubbles within brine inclusions remain poorly understood but are
clearly important.

Distribution of brine

In this study, scatterers have been treated as being uniformly distributed and ran-
domly oriented, a condition for the application of equivalent spheres. There is,
however, ample evidence that the microstructure of first-year sea ice is generally
oriented, such that brine tubes and strings of brine pockets are generally aligned or
stacked vertically (e.g., Cole and Shapiro, 1998; Light et al., 2003a; Ehn et al., 2008).
Long, straight-walled tubes with perfect vertical alignment should predominantly
scatter light by azimuthal redistribution, which would not modify the irradiance
attenuation. The structural alignment thus potentially impacts treatment of the
IOPs for the microstructure.

Furthermore, it is likely that much of the in situ laboratory brine drainage may
not ordinarily occur within pack ice. Eliminating the scattering contribution from
drained tubes, would reduce s(−15◦C) from 9.2 to 6.6m−1. Drained tubes do not
respond to changes in temperature, and thus do not significantly impact the tem-
perature response of s(T ). Gas bubble escape was also a key parameterization in
developing the full model. Clearly, if gas bubbles fail to escape from the ice, partic-
ularly from the interior, the model shows that s(T ) would increase rapidly at high
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temperatures. This could have important implications for the optical properties of
melting sea ice, but not enough is currently known about gas bubbles in ice to
properly quantify under what conditions they would escape or be retained.

8.8 Conclusions

The structural-optical model developed in this study is a useful tool for predicting
inherent optical properties of first-year sea ice directly from information about ice
temperature, bulk salinity, and the distribution of brine, gas, and salt inclusions.
Three temperature regimes were identified, each exhibiting a distinct relationship
between the ice microstructure and its inherent optical properties. In general, sea
ice exhibits strong forward scattering, with bulk g values ranging between 0.86 for
fresh bubbly ice and 0.98–0.99 for first-year interior ice. Table 8.2 gives a summary
of suggested values of s, σ, and g for each of the three temperature regimes for the
model developed in this work as applied to a sample of 4.7 first-year interior sea
ice as observed under laboratory conditions (see Fig. 8.26).

Table 8.2. Representative range of s, σ, and g values for each of the three temperature
regimes for the structural-optical model. Values are applicable to a sample of 4.7 ppt
first-year, interior sea ice, observed under laboratory conditions.

Temperature regime s (m−1) σ (m−1) g

Low: T < −23◦C 11.6–16.7 1002–3060 0.988–0.995
Medium: −23◦C < T < −8◦C 8.7–9.3 401–474 0.978–0.982
High: T > −8◦C 8.6–9.4 341–448 0.975–0.979

Since the temperature, salinity, and brine and gas distributions ultimately con-
trol the chemical, dielectric, and microstructural properties of sea ice, ties between
the physical and optical properties of the ice are inextricably linked to freezing
equilibrium. Freezing equilibrium impacts the optical properties of sea ice in two
fundamental ways. Scattering coefficients for inclusions of brine, gas, and salt re-
spond to changes in constituent volumes determined by freezing equilibrium. As
brine inclusions and active gas bubbles grow and shrink and salt crystals precipitate
and dissolve, scattering coefficients reflect changes in the total cross-sectional area
of each population. Also, scattering phase functions for brine in ice, gas in brine,
and salt crystals in brine respond to changes in the dielectric properties of brine. In
addition to these important temperature-dependent processes, inactive gas bubbles
contributed significant scattering to the laboratory sample. Little is known about
the distribution of inactive gas in sea ice, but it is clearly an important component
of the total scattering, at least in the ice used in this study.

The AOPs of sea ice are surprisingly independent of the strong temperature-
dependent changes that occur in the microstructure of warm ice. This behavior is
likely due to the strong scattering by inactive gas bubbles, but is also attributable
to a balance between increasing scattering coefficient and increasing g as the brine
becomes more dilute and its refractive index decreases. There is an analgous balance
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between increasing brine inclusion size and decreasing mirabilite crystal number
density which also acts to minimize the temperature-dependence of the AOPs at
moderate temperatures (−23◦C < T < −8◦C). At lower temperatures, poorly
understood details of the hydrohalite precipitation control the AOPs, but these
conditions are of little practical importance. Most cases of geophysical interest
occur at T > −23◦C where, because of the various balances, it should be possible
to develop relatively simple AOP parameterizations suitable for use in large-scale
models.

It should be noted, however, that the results reported here are based on data
collected in the laboratory from interior first-year ice. While the magnitude of
in situ optical properties are likely to be different than the laboratory values,
the temperature-dependence should be similar, except at very high temperatures
where the ice may exhibit significant differences in brine drainage (i.e., in the
volume of inactive gas) and the loss of active bubbles. Likewise, little is known
about the detailed microstructure of multiyear ice and the degree to which the
structural-optical model can predict AOPs in such ice is uncertain. A recent study
(Light et al., 2008) found that s values in multiyear ice typically decrease by a
factor of 50 from the surface layers of the ice to its interior. Interpretation of
IOPs in sea ice, however, is complicated by strong forward scattering and varying
degrees of structural anisotropy inherent to the ice. The extent of our quantitative
understanding of the structural-optical properties and processes that occur in sea
ice is likely to increase with additional field observations and further modeling of
these processes.
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9 Reflectance of various snow types:
measurements, modeling, and potential
for snow melt monitoring

Jouni I. Peltoniemi, Juha Suomalainen, Teemu Hakala, Jyri Näränen,
Eetu Puttonen, Sanna Kaasalainen, Manuela Hirschmugl and Johanna Torppa

9.1 Introduction

Seasonal snow covers large parts of the northern hemisphere annually. It can change
the albedo of the surfaces from dark to bright overnight (and back), causing sig-
nificant climate feedback (Manninnen and Stenberg, 2008; Flanner and Zender,
2006; Pirazzini, 2008; Nolin and Frei, 2001; Roesch et al., 2001). It forms large
energy reservoirs which can be exploited by hydro energy power plants, and is the
source of big floods when melting. It can significantly impact traffic and construc-
tion safety. It changes living and environmental conditions radically, and has major
recreational value.

For all these, and many more purposes left unmentioned here, it is vital to
observe the snow cover regularly (Matikainen et al., 2002; Metsämäki et al., 2002;
Solberg et al., 1997). In crucial snow melt days, even daily estimates would be
very much desired. Remote sensing techniques provide the only alternative for
systematic large-area data collection, satellites can be used for global data and
aeroplanes for regional data, and in the near future strato-balloons can fill the gap
between aeroplanes and satellites, and small unmanned flying observation stations
between aeroplanes and surface measurements.

The extent of snow cover is often estimated from images (Matikainen et al.,
2002; Metsämäki et al., 2002, 2005; Salminen et al., 2009; Painter et al., 2009).
While open areas are straightforward to interpret, the challenge is snow in forests.
The albedo can be measured accurately, if sufficient multi-directional observations
are available, but usually even in the best cases only very few (1–7) directions
are seen, and thus some modeling and interpretation is needed (Nolin and Frei,
2001; Stroeve et al., 2005, 2006; Knap and Oerlemans, 1996; Manninen et al., 2006;
Moody et al., 2007; Painter et al., 2009; Manninnen and Stenberg, 2008).

More details of snow properties can be revealed using multicolor observations or
spectrometry (Green and Dozier, 1995, 1996; Nolin and Dozier, 2000; Painter et al.,
2003a; Eskelinen et al., 2003; Tedesco and Kokhanovsky, 2007; Dozier et al., 2009;
Lyapustin et al., 2009). Grain size, or effective size, or some parameter related to
the scale of the snow layer can be inverted from the spectral shape (band ratios).
The ambiguity lies in the definition of grain in a complicated 3-D structure of air
and ice. Spectrometry can further yield information on impurities, soot content,
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and algae. Of especial interest is the observation of wetness. Liquid water and ice
are optically very similar in the optical regime. In only a few narrow bands do their
absorption properties differ slightly, which has made it possible to try to estimate
the melting.

To analyze all these data, and design optimal instruments, it is important to
understand the reflective properties of the targets – snow and environment – to
a high degree of accuracy. Ideally, one needs a physical reflectance model that
predicts the observed signal for a given sensor in a given position as a function of the
measurable physical and chemical properties of the target, e.g., grain size, wetness,
density, thickness. Similarly, when inverted against reasonable wide observation
data, this model should yield accurate estimates for the parameters.

The most popular way to model reflection of light by snow is to use the Mie
scattering model together with the 1-dimensional radiative transfer theory (Bohren
and Barkstrom, 1974; Wiscombe and Warren, 1980; Warren, 982; Leroux et al.,
1998; Mishchenko et al., 1999; Jin and Simpson, 1999; Perovich, 1990; Green et
al., 2002; Kokhanovsky and Zege, 2004; Kokhanovsky et al., 2005). Although the
Mie/radiative transfer models can predict many spectral and directional features
well, e.g., grain size dependence, it is clear by the empirical and theoretical data
that the shape of the grains plays significant role (e.g., Mishchenko et al. (2000)),
and the spherical Mie approximation cannot handle this. Some extensions for more
general shape have been developed by Grenfell and Warren (1999) and Grenfell
et al. (2005) using multi-sphere representation. Tanikawa et al. (2006) have also
tried cylindrical and ellipsoidal particles. Peltoniemi (2007) has developed a model
based on the stochastic grain shape model and ray-optics, which can already predict
many shape and wetness related effects, but fails in some details. Another ray-trace
model, ignoring polarizational effects but with an interesting 3-D modeling, has
been developed by Kaempfer et al. (2007) as well.

To develop and validate the models further, a large set of reliable empirical
measurements are needed. For as wide-ranging an analysis as possible, the full
bidirectional reflectance factor (BRF) should be measured in the full hemisphere of
incident and refracted radiation, in large spectral regime, including polarization, of
a comprehensive set of targets all of whose relevant physical and chemical properties
are separately measured. In practice, of course, one must be satisfied with a limited
subset of that.

Measuring snow is challenging work, not only because the wet and cold snow
environments require extra protection for instruments and measurement staff, or
because of logistic complications, but also because snow itself is a difficult substance
to deal with. It metamorphoses (changes all its key properties) continuously, some-
times in minutes, between many forms. It can have a complicated vertical structure,
often also horizontal variations, with a random or wavy surface topography.

Middleton and Mungall (1952) pioneered reflectance measurement techniques
in the 1950s with a specially made field goniophotometer. They measured several
snow types under various illumination geometries using white broadband light.
Since then new initiatives have been taken, e.g., by Kuhn (1985); Steffen (1987).
Dozier, Nolin et al. continued measurements soon (Dozier et al., 1989; Nolin et al.,
1990; Nolin and Dozier, 1991; Nolin et al., 1994) with aims for improved satellite
data interpretation. More recent measurements have been made at least by Perovich
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(1994); Leroux et al. (1998); Warren et al. (1998); Kaasalainen (2002); Green et al.
(2002); Painter and Dozier (2002); Bonnefoy (2001); Giardino and Brivio (2003);
Painter and Dozier (2004); Li and Zhou (2004); Hudson et al. (2006); Bourgeois
et al. (2006a) using an improved spectral range and resolution while employing
various techniques. These measurements have already found and confirmed spectral
wetness signals around 1000 nm and 1300 nm, clear grain size dependence, and the
effect of surface roughness. Peltoniemi et al. (2005a) also observed that there is
a potential directional wetness signature near the specular direction, which had
not yet been predicted by any model nor confirmed by other observations, and
Peltoniemi et al. (2009) found a polarization signature in the forward direction.
Since in situ reflectance measurements are now becoming a routine part of many
observation campaigns, there are probably many more unpublished measurements
or measurements briefly mentioned as parts of larger work.

In this chapter we review the reflection properties of snow, based on our large
database of field measurements, presenting many new compositions of results, and
comparing them to a model. Many of the results, conclusions and descriptions have
already been published (Peltoniemi et al., 2005a; Peltoniemi, 2007; Peltoniemi et
al., 2009), but a lot of additional material is also shown.

9.2 Snow

Snow flakes, or more precisely single ice crystals, are born in the atmosphere and
subsequently fall down to earth where they create a cover of snow, a snow layer
that can be semi-permanent or permanent. These single ice crystals, also known as
snow crystals, grow from water vapor at freezing temperatures in the atmosphere
and can reach sizes from hundreds of micrometers to millimeters. The snow crys-
tal formation mechanism, although an extensively studied subject, has left large
unanswered questions, even at a qualitative level (Libbrecht, 2005). The form the
snow crystals take is a function of two parameters: the supersaturation of water
and the temperature. Different forms include, e.g., dendrites, plates, columns, and
prisms. For example, dendrites (classic snowflakes) grow at highly supersaturated
environments in temperature regions of about 0 to −3 and −10 to −22◦C. The
classic text by Nakaya (1954) is a good introduction to the phenomenology of snow
crystals.

A new snow layer has a relatively low density (5–15% of water) due to the
porous nature of single snow crystals and the way they pack to form a snow layer.
Snow layers consisting of highly branched or dendritic snow crystals tend to have a
lower density and are often referred to as dry snow. Columnar or plate-like crystals
will have much less air within the crystal structure and will therefore form denser
snow layers that also feels wetter. Once the snow is on the ground, it will settle by
its own weight until its density is ∼30% of that of water. This initial density can
be changed by melting and freezing processes until it has reached a maximum of
∼50% of that of water for old snow.

When the snow layer starts to melt, part of the water is evaporated, part of
it flows down, but the wet snow layer can hold about 5% of liquid water with
ice. Where the liquid water exactly is stored in the snow layer is not very well
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known yet, although different theories exist, including: as a coating over ice grains,
between grains, in mini-ponds, and hanging under the grains. Some observations
from melting crystals submerged in hexane is presented by Knight (1979).

Snow crystals metamorphose all the time, first growing in size and into compli-
cated shapes and then, when hitting the ground, initially separating into needles
and then sintering together to form larger grains. New ice can be formed by con-
densation of water vapor from air on old snow flakes, and the snow layer can grow
in mass even without any new snow, or lose mass by evaporation. Normally, the
grains grow to larger, irregularly rounded grains, but in certain conditions specific
crystalline forms can form (Dingman, 2002).

The vertical structure in a snow layer can be rich. Especially in spring there
is often a hard top layer some 1 to 10 cm thick that can withstand the weight of
a skier or walker or sometimes even a vehicle. Below that can be several different
layers of loose snow, deep hoar, slush, water, ice, more hard layers, etc., all meta-
morphosed in their own way. Vertical temperature gradients can be significant.
The thickness of all the vertical layers vary horizontally, and actually there is also
a rich 3-dimensional structure, holes, dunes, tracks, signs of underlying topography,
vegetation, and many other objects over and under the snow surface.

A classification of various snow types is given, e.g., by Colbeck et al. (1985);
Gray and Male (1981). Later at least the following snow types are referred: sd =
stellar dendrites (snow flake), nd = needles, dc = partly decomposed, sr = small
rounded, lr = large rounded, mx = mixed forms, cl = clustered rounded wet grains,
mf = rounded melt–freeze polycrystals.

9.3 BRF, definitions

The bidirectional reflectance factor (BRF for short, denoted as R here) is defined
as the ratio of the reflected light intensity of a given target to an ideal Lambertian
reflector with a spherical albedo of 1.0 under the same incident irradiation (Hapke,
1993; Liang, 2004; Nicodemus et al., 1977)

R(μ, μ0, φ, φ0) =
πI(μ, φ)

μ0F0(μ0, φ0)
, (9.1)

where F0 is the incident collimated flux (I0(Ω) = F0δ(Ω−Ω0)) and I the reflected
radiance. The angles are defined in Fig. 9.1: ι and φ0 are the zenith and azimuth
angles of incidence, ε and φ are the zenith and azimuth angles of emergence, α is
the scattering phase angle (cosα = cos ι cos ε+sin ι sin ε cos(φ−φ0)), a complement
of the scattering angle. One can further define the specular direction (= ι,−φ0),
and the angle from that direction γ.

Above it was assumed, that the scattering is polarization neutral, or that the
incident light is unpolarized and the sensor is polarization insensitive. While this
applies satisfactorily for many cases – sunlight is unpolarized, ground surfaces po-
larize usually weakly, and most cameras see no polarization – there are enough
counter cases to warrant more detailed treatment, e.g., blue skylight is strongly
polarized, especially forward scattering can be rather polarizing or polarization
sensitive, and polarimetry itself is an interesting field of research.
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Fig. 9.1. Definition of the angles used in surface reflectance work: ε and ι are the zenith
angles of the emergent (observer) and incident (solar) radiation respectively (shorthands
μ = cos ε and μ0 = cos ι are also used). φ and φ0 are the corresponding azimuths. The
phase or backscattering angle α is the angle between the observer and the sun. The
principal plane is fixed by the solar direction and the surface normal, while the cross
plane is a vertical plane perpendicular to the principal plane.

Polarization of electromagnetic radiation waves, such as light, is defined by
the direction of the electric field. Natural light is a mixture of a very large num-
ber of various wave packets. Sunlight and many other light sources contain equal
amounts of all polarization states, and are thus said to be unpolarized. Scatter-
ing, reflection, or transmission through asymmetric media often polarize light. The
most significant polarization mechanisms are Rayleigh scattering (resulting in up to
90% polarization of blue sky) and Fresnel reflection (explaining the up to 100% po-
larization of water surfaces). However, all scattering mechanisms polarize to some
extent, although the more complicated ones usually less so. One discussed sub-
tlety is the small negative polarization near backward scattering angles caused by
multiple scattering coherence effects (Muinonen, 2004; Mishchenko, 2008). The po-
larization properties depend mostly on the chemical composition (refractive index)
and wavelength and sub-wavelength scale structures of the scatterers, and amount
of multiple scattering.

A convenient way to describe natural light with arbitrary state of polarization is
to use the Stokes parameters [I,Q, U, V ]. hese are related to electromagnetic fields
as

I ∝ |E‖|2 + |E⊥|2, (9.2)

Q ∝ |E‖|2 − |E⊥|2, (9.3)

U ∝ E‖E⊥∗ + E‖
∗E⊥, (9.4)

V ∝ E‖E⊥∗ − E‖
∗E⊥, (9.5)

where E‖ and E⊥ are electromagnetic field amplitudes parallel and perpendicular
to some selected plane. It is important to note that the polarization plane must be
defined in order to uniquely use the Stokes parameters. The definition of BRF is
easily modified for polarization by replacing the scalar intensity by a Stokes vector
I ← I = [I,Q, U, V ], and R← R = 4× 4 Muller matrix.
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One can further define the degrees of linear polarization as

PQ = −Q
I
, (9.6)

PU = −U
I
, (9.7)

PP =

√
Q2 + U2

I
, (9.8)

which have the advantage that they are independent of the calibration of the sensor,
and can thus be measured in conditions where reflectances cannot be normalized.
When extracting degrees of polarization from spectral data for wider band simula-
tion one must integrate nominator and denominator separately, as

P = −
∫
dλf(λ)Q(λ)∫
dλf(λ)I(λ)

, (9.9)

where f is the spectral sensitivity of the simulated channel of the camera or sensor.
In general, BRF is a function of four angles, but if the target is sufficiently

horizontally/azimuthally isotropic, the dependence is reduced to three, i.e., the
only azimuthal variable is the difference (|φ − φ0|). Newly fallen snow is gener-
ally isotropic, but older snow tends to have some anisotropy due to wind, sun,
topography, and melting.

9.4 Instrumentation

The snow BRF measurements have been taken using many different instruments
and setups by various research teams. One of the most advanced field goniome-
ters is the Automated Spectro-Goniometer (ASG) at the University of California,
Santa Barbara (Painter et al., 2003b), that is being used in many campaigns with
impressive results. Of superior engineering is also the famous FIGOS at the Uni-
versity of Zürich (Odermatt et al., 2005; Schopfer, 2008), with possibly hundreds
of measurements from various targets. A promising new setup is also the IAC ETH
Goniospectrometer at ETH Zürich (Bourgeois et al., 2006b). All of these can be
mounted and operated in snow. They use ASD Field Spec PRO FR or DUAL
as a spectroradiometer, and a mechanism to move the optics around the target,
although the principles of their mechanisms differ significantly from each other.

Of other setups we have no information, how operational they still are. Many
measurements have been taken using rather ad hoc instruments or ones adapted
from other purposes and probably cannibalized afterwards.

Two other kinds of instruments measuring the BRF of very large areas are the
mast-based moving spectrometer at Dome C, Antarctica (Hudson et al., 2006), and
the PARABOLA (Bruegge et al., 2000). Instead of rotating over the same spot,
they scan over a large area, and have to assume that the surface is homogeneous
over the full range.

The following subsections describe evolution of the Finnish Geodetic Institute
goniometers in more detail.
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9.4.1 Model 2, 1996: a simple one-angle manual field goniometer

Goniometry started at the Finnish Geodetic Institute using an ad hoc construction
of abandoned metallic bookshelves with a borrowed spectrometer (model 1). It was
never used for snow measurements, but gave many ideas for ensuring designs. A
simple one-axis manual goniometer (model 2) was built by the Proto Centre of
the Helsinki University of Technology for the first snow measurement expedition
in 1996.

The goniometer had one ±80◦ tilting arm and a triangular foldable frame on the
ground. The arm could be tilted in 5◦ steps, manually. The azimuth was adjusted
by moving the whole instrument manually around the target. Mounting of the
system took about 20 minutes, and a measurement of one azimuth angle about
10 minutes, thus a full hemisphere took typically over 1 hour. The detector was
a renovated Photo Research PR 713/PC spectrometer, controlled by an outdated
‘portable’ 286 Toshiba laptop with an ISA slot card. The system was calibrated
using a 5-cm Spectralon white reference panel from Labsphere, which was hinged
on the frame so that it could be turned to the right place and away very quickly.
The reference measurements could thus be done relatively easily for all angles,
although later it was concluded that taking references at every possible moment
not only slowed down the measurement considerably, but did not actually improve
the results, because the continuous up-down movement caused some sloppiness and
delevelling of the standard.

In hard snow the operation was relatively easy. Deep and smooth snow made the
operation complicated, the legs of the goniometer sank deeply into the snow, and
moving the instrument was rather awkward. The frame corrupted the measurement
area sometimes too easily, because the observation point was only 15 cm away
from the frame. There was also some uncertainty about whether the nearby parts
would cause unwanted shadowing, reflection, or heating of the target. Azimuthal
movement always took more time than wanted.

The Photo Research spectrometer was not actually intended for winter use, and
the shutter jammed every now and then, requiring some care. The computer screen
needed a small tent around it to be readable in sunlight. The transportation of the
instrument, using a van or sleigh, was easy.

The instrument gave important results of snow (Peltoniemi et al., 2005a), and
good ideas for ensuring design.

9.4.2 Goniometer model 3, 1999–2005

To overcome the azimuthal movement problem, target disturbance and the small
bending issues, a third goniometer (Peltoniemi et al., 2002; Widen, 2000; Peltoniemi
et al., 2005a) was ordered from the Helsinki University of Technology. Model 3 con-
sisted of two horizontal rings of a diameter of 2m, one rotating above the other to
change the azimuth angle, and a tiltable detector arch with an axle on the upper
ring to change the zenith angle. All the movements were still manual, and the tilt
was controlled using a winch. The system was levelled by 3 or 4 hydraulic legs.
Mounting the system took about 1 hour, but then a full hemisphere was measured
in 20 minutes. For snow measurement, the goniometer had optional skis, allow-
ing fairly easy movement of the system for short distances without dismounting,
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Fig. 9.2. Goniometer 3 being moved in Sodankylä 2001.

although it was a bit too heavy to move the system continuously (Fig. 9.2). For
transport, a light trailer was prepared.

Initially, the goniometer was build for an old PR 713 spectrometer, and it was
massive enough to carry the 5 kg weight without bending or shaking. However, an
ASD Field Spec Pro FR spectrometer (350–2500 nm) was bought soon after the
goniometer was ready. The ASD was equipped with a 4 meter long optical fibre
connecting the fore optics to the main instrument, thus all the heavy parts could
lie on the lower rotating parts of the system, and only the lightweight fore optics
stressed the arch. Optics included 1◦, 3◦,8◦, 18◦ and 27◦ opening angles, of which
1◦ and 3◦ were used mostly, making spot diameters of 3 and 9 cm at a distance
of 2 meters. A laser pointer was installed parallel to the lens to locate the exact
measurement point.

For calibration, a Spectralon white reference standard of 25 × 25 cm2 was ob-
tained. This allowed use of 3◦ optics, but was still too small for 8◦. The Spectralon
was usually levelled over the target using various ad hoc supports (stones, sticks,
etc.) carefully so as not to disturb the target. Several more advanced mounting
systems were designed, but no optimum design was found.

The measurement cycle was changed so that the white reference measurement
was taken only from nadir, and then the target was measured from nadir to the low-
est zenith angle and back as fast as possible. After that the reference was measured
again, and if lightning conditions had remained stable, the result was accepted, oth-
erwise abandoned and repeated. A diffuse light reflection measurement was taken
also with a reference and target from nadir, and only occasionally from other zenith
angles, since it was observed to be rather isotropic.

Goniometer 3 proved to be reliable, fast and easy to operate, once it was fully
set up. Its main shortcoming was manual recording of measurement angles, which
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generated a rather large amount of office work afterwards in typing and checking
the data, and was too prone to writing, reading and typing errors. Other limiting
factors were its heavy weight, requiring two strong men to move and mount it, its
long mounting time and occasional shadows cast over the target by the arm and
rings.

The new ASD Field Spec Pro FR spectrometer was a major improvement over
the old PhotoResearch equipment. An issue to be noted especially with 1◦ optics, is
that the spectrometer actually contains three separate sensors, each connected with
a fiber bundle of its own, and these bundles each have different field of views, i.e.
they see different parts of the target, which causes visible steps on the data when
the target or illumination is heterogeneous (more on this and other difficulties
later).

Goniometer 3 was successfully used for over 100 BRF measurements from snow
(Peltoniemi et al., 2005a), vegetation (Peltoniemi et al., 2005b), aerial photogram-
metry test field (Peltoniemi et al., 2007), and many other targets.

9.4.3 FIGIFIGO, 2005–

The experiences with the earlier goniometers guided in the design of a new very
lightweight manual goniometer model 4, and an automatic motor-driven goniometer
model 5. This evolved quickly into something known now as FIGIFIGO, or the
Finnish Geodetic Institute Field Goniospectrometer, see Fig. 9.3. The FIGIFIGO
system consists of a motor-driven moving arm that tilts up to ±90◦ from the
vertical, variable fore optics in the high end of the arm, and an ASD FieldSpec Pro
FR 350–2500 nm spectroradiometer. For laboratory measurements, the FIGIFIGO
is installed on the rings of model 3, but in the field azimuth is changed again by
manually sliding or carrying. Accurate angles are read with an inclinometer and an
electronic compass, and most recently, an all-sky camera has been used to orient
the system to the sun. The position is determined with GPS. The system can be
mounted on a light sledge for snow measurement.

In addition to spectral BRF measurements, the FIGIFIGO can optionally mea-
sure linear polarization in the full spectral range. FIGIFIGO uses a calcite Glan–
Thomson prism as a polarizer. The polarizer can be rotated 360◦ in 1◦ increments
to observe different polarization directions. The first software version supported
only 0◦ and 90◦ positions, suppressing the similarly interesting 45◦ and 135◦ polar-
izations (to yield Stokes U-parameter), but the newest version supports all states.

Typically, the footprint diameter is about 10 cm, elongating at larger sensor
zenith angles as 1/ cos θ, and wandering around a few centimeters by bending and
with azimuthal movements. A motorized fine-tune mirror has been recently in-
stalled to correct paraxial and bending errors and to keep the measurement point
stable to an accuracy of 2 cm.

The instrument is calibrated as earlier by taking a nadir measurement from a
Labsphere Spectralon white reference plate before and after each sequence. If the
polarizer is used, separately for all polarizer directions. The Spectralon is carefully
levelled at horizontal with a bubble level with an accuracy of about 1◦.

The measurements are always started at 0◦ relative azimuth (principal plane).
In the first measurement mode, the measurement arm is moved to selected mea-
surement angles, and is stopped for the measurement. In the second mode, the arm
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Fig. 9.3. The FIGIFIGO measuring BRF and polarization in Sodankylä in 2009. Optics
is located horizontally in the upper end of the arm, and is looking down to the target
through a mirror. The mirror has two small actuators to fine tune the spot location or
scan over a small range. In front is the Spectralon white reference target, and behind the
researcher’s head is the sun and sky light monitoring pyranometer. [For a color version of
this figure, see the color section.]

moves slowly from a 0◦ zenith angle to a maximum zenith angle (usually 70◦ or
80◦) while the spectrometer is continuously recording data. Then the polarizer is
turned 90◦ or 45◦, and the arm turns back and continues to the maximum zenith
angle in the other end, at which time the polarizer is turned again, and the arm
returns upright or continues for another polarization direction. Then the instru-
ment is turned to the next azimuth angle, and the sequence is repeated. Usually, 4
to 6 azimuth angles are measured, and if the weather allows, the principal plane is
repeated as a final measurement. The spectrometer is calibrated at frequent inter-
vals with the reference panel, depending on assumed and observed stability of the
illumination, after 1–3 azimuth turns.

The diffuse skylight is measured at the beginning of each sequence from nadir
by blocking the direct sunlight with the help of a small screen (diameter of 40–
60 cm) at a distance of 2–4 m. Measurement of one hemisphere at one illumination
angle takes between 15 and 60 minutes, depending on the sky condition, expected
results and accuracy, and various technical aspects.
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FIGIFIGO is still at the time of writing (summer 2009) in full use, with hun-
dreds of measurements (Peltoniemi et al., 2009; Suomalainen et al., 2009b,a; Put-
tonen et al., 20099, and subject to continuous improvements.

9.4.4 Light sources

For many measurements, the sun is the ideal choice of light, but it is not without
problems. The availability of the sunlight is limited and unpredictable. Thus one
often needs to wait days or weeks for adequate weather. Even on clear days, the
atmosphere varies in transmittance and scattering, causing significant variations
for the incident light, in all time scales from seconds to days. The sun is continu-
ously moving in the sky. Thus, one needs to take reference measurements as often
as conveniently possible (1–5 minutes), or monitor the incident light parallel with
reflectance measurements. Most ideal is to use identical second spectrometer mon-
itoring the incident light (Odermatt et al., 2005; Bourgeois et al., 2006b). FGI has
been using a Kipp&Zonen SP lite silicon pyranometer since 2006, and taking white
reference measurements based on the smoothness of the pyranometer curve. Before
2006 sky clearness was observed only visually and reference cycle was kept as short
as possible.

A further problem is that the Sun cannot be set to a selected angle, but the
only way to change illumination direction is to wait until the sun moves to the
desired angle. Unfortunately the conditions rarely allow multiple measurements of
the same unchanged target several times of the day. Sunlight is also rather hot,
and accelerates the melting and metamorphosis of the snow. Thus, use of artificial
light sources that can be set to selectable positions and angles will extend the
measurement possibilities significantly.

In making a good artificial light source for spectral BRF measurements, there
are 5 major challenges to be met:

(1) Spectral sensors need enough light power for a good signal to noise ratio.
(2) The light source must be stable over the short internal scanning cycle and the

whole measurement period.
(3) The light source must have reasonably smooth and flat spectrum, extending

over the observation range without spikes or dark bands.
(4) For a consistent BRF measurement, the light pattern must be homogeneous

and collimated throughout the measurement area (for internally transmitting
targets, such as snow, even larger).

(5) The light must not polarize unwantedly.

Most laboratory light sources were found to be far too underpowered, and in-
dustrial and entertainment lights too unstable. A 300-W halogen was tried in the
measurements 1997 and a 500-W theatre light in the 2000–2004 measurements with
of partial success. A rather long integration time (�1 s) was needed to improve the
signal and smooth the 50-Hz AC pattern.

A much better solution was found with the Oriel 1000 W Quartz Tungsten Halo-
gen (QTH) light source, providing very stable and strong light over the important
spectral range.

The challenge of homogeneous light pattern appeared most tricky. Available
light bulbs are not ideal small point sources nor even flat surface sources, but have
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a filament pattern. With enough energy to waste, one can of course create very
homogeneous illumination by positioning a single light bulb far enough away to
overcome the 1/r2 effect between the front and the back side of the spot, but in
practice this solution gives far too little light. A better solution is a small-sized
light bulb and a large collimating lens, about the same size as the desired spot.
Such lenses of a diameter of 50 cm or more are hard to find, and plastic Fresnel
lenses do not transmit infrared light well. Thus, an attempt was made to correct
the light pattern using the largest available glass lens of a diameter of 20 cm and
focal length of about 60 cm. The lens was connected to the lamp using tubes and
a 90◦ Oriel mirror, that allowed easy turning of the illumination angle. The lamp
was then mounted on a telescopic 180–400 cm tripod.

Fig. 9.4. Night measurement using Oriel lamp and old Goniometer 3 in Sodankylä.
Sometimes there are spectacular moments in the life of field researchers.

The second invention was to use a polished aluminium off-axis parabolic mirror
with a diameter of 50 cm. The mirror collimates light and turns the beam up.
Another flat mirror in an adjustable mount turns the beam down to the sample,
in selectable angles. This setup yields a rather clean spot of 60–100 cm. Even with
this, the inhomogeneity of the light beam was 10% to 20% within the measurement
area, due to imperfections in the mirrors and lamp filament pattern.

9.4.5 Data processing

Data processing procedures evolved over the years, the automation of measurements
contributing to the development. In the manual goniometer era, the first step was
to type the angles into a computer-readable file, laboriously checking writing, read-
ing, and typing errors, and other problems in the data. In more modern times, this
step was simplified to visual and semi-automatic checks for the consistency of data,
locating outliers, discontinuities, and other evident errors. Data that was clearly
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wrong was abandoned and data that was questionable or imcomprehensible was
marked so that it was not automatically read in any further processing, but nev-
ertheless remained available, in case a physical reason for some strange behaviours
is later found.

The measured unnormalized radiance spectra S was normaliszed by measured
nadir spectra from a reference target (SSTD)

R(μ, μ0, φ, φ0) =
S

SSTD
RSTD, (9.10)

where RSTD is the reflectance of the reference target. Ideally RSTD = 1, but all real
materials differ somewhat. Here, a form RSTD = R0(λ, 0◦, 60◦)r(μ, μ0)/r(0◦, 60◦)
is assumed, where R0(λ, 0◦, 60◦) is the spectral reflectance given by the Spectralon
manufacturer, in one geometry, and r is wavelength independent angular part,
approximated using various published (Courréges-Lacoste et al., 2003) and unpub-
lished data. When possible, the reference spectrum was measured twice, before
and after each sequence, and if slightly different, e.g., due to rising sun or changing
atmosphere, a linear interpolation was used. When diffuse light was present, the
diffuse background (SDIFF) was subtracted from the measured spectra as

R(μ, μ0, φ, φ0) =
S − SDIFF

SSTD − SDIFF
STD

RSTD, (9.11)

where SDIFF
STD is the reference standard measured in the diffuse light only. For po-

larized light, the measured unnormalized radiance spectra Si for each polarization
state i = [h, v, \, /], horizontal, vertical, 45◦, and 135◦, was normalized

Ri(μ, μ0, φ, φ0) =
Si

SSTDh + SSTDv
RSTD, (9.12)

or with diffuse light correction

Ri(μ, μ0, φ, φ0) =
Si − SDIFF

i

SSTDh + SSTDv − SDIFF
STDh − SDIFF

STDv

RSTD. (9.13)

Note that because Spectralon is polarizing (Suomalainen et al., 2009a; Haner et
al., 1999; Georgiev and Butler, 2004), SSTDh �= SSTDv.

The analysis was simplified above by the observation that in all measurements
the reflected diffuse light was found isotropic within 20%, typically below 10%.
Since the diffuse contribution is in all acceptable conditions below 20% (mostly
below 10%), the errors from anisotropy remains minimal for end results, and it
was assumed in further data processing that the diffuse component is perfectly
isotropic.

In later measurements, where the incident light was monitored using a pyra-
nometer, its readings were further used to fine-tune the calibration. If the incident
light variations were within the range 1–5%, the measured spectra were normalized
using the incident irradiance value from the pyranometer E as S′ = SE0/E, where
E0 is the value taken at the start. If the variation were even larger, the measure-
ment was aborted and the data abandoned, because one could no longer rely on
the variation being consistent throughout the spectrum.
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The Stokes I, Q and U parameters (in effect the Muller matrix elements R11,
R21, and R31) were computed for each measurement point as R11 = Rh + Rv,
R21 = Rh − Rv, R31 = R\ − R/. Because the different polarizations were mea-
sured in their own sweeps, the zenith angles did not match, and linear nearest-
neighbour interpolations was used. During the 2007 measurements, only two polar-
ization states were supported (h and v, or I and Q), but the current configuration
allows now measurements of 45◦ and 135◦ polarization states, too, providing data
for the Stokes U parameter.

The measurements and subsequent analysis and plots are mostly made under
the assumption of left–right symmetry, which halved the needed measurement time
in the field. The justification for this assumption was checked every now and then,
and found to apply in the range of 5% to 20%, i.e., not automatically adequate.

The accuracy of the spectral BRF measurements using FIGIFIGO is estimated
to be 2–3% in the visible band and a good conditions, with a polarization accuracy
of 2–5%. Suboptimal weather, which begins with hardly visible clouds, can decrease
accuracy quickly by more than 10%. Angle registration accuracy is 2◦.

9.5 Main research efforts

A number of measurement efforts have been run between 1997 and 2009, as shown
in Table 9.1 and in Fig. 9.5. In practice, all of them have been a side product of
some other campaign, project or purpose, but they gave a good opportunities to
study snow reflectances on their own.

Snow measurements started 1998 with a particular research effort in Vuotso,
north Finland, using the second field goniometer of FGI (Peltoniemi et al., 2005a).
In the beginning weather was clear and cold. The snow was days or weeks old
powder snow, forming a loose layer with a thickness of about 1 m, requiring skis
or snow shoes to be used for human transport. This snow was measured in several
locations around the area in sunlight. Then the weather to changed cloudy and
warm, and the wet snow was measured over two nights, using a 300-W halogen
lamp. Many interesting observations were made, but the diversity of the data was
so puzzling, that no strong conclusions could be drawn.

Measurements continued using the third goniometer between 2001 and 2004,
mostly in Sodankylä, yielding large amounts of useful data from several dry and
wet snow types (Peltoniemi et al., 2005a). Various artificial snow processing tech-
niques, collecting to piles, compressing, flattening, roughening, digging from differ-
ent levels, etc. were tried. The results gave an excellent overview of snow reflectance
properties, and plenty of ideas for further research. Nevertheless, the sampling re-
mained still too sparse and unsystematic for many reproducible conclusions with
which to answer many interesting questions. It became clear that a faster and more
automatic system was needed to get more systematic and coherent data.

A significant improvement to measurement techniques came in 2005 with the
new FIGIFIGO. Its faster setup and increased measurement rate more than tripled
the amount of daily data, and automatic recording and an auxiliary pyranometer
improved quality. A more advanced light source setup made artificial light mea-
surement feasible and more reliable.
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Fig. 9.5. Locations of the measurement efforts, Vuotso (triangle), Hyytiälä (diamond),
Kilpisjärvi (square), Rovaniemi (circle), Pyhätunturi (star), Masala (hexagon), and
Tähtelä, Sodankylä (inverted triangle).

A quick set of laboratory measurements was made during the winter of 2005 in
Masala. The sample was prepared outside and taken inside the goniometer at room
temperature. The sample was continuously measured during the melting process,
and allowed to freeze again outside (1 hour to overnight). This yielded controlled
and semi-reproducible results, but the melting process appeared to be too radical to
simulate natural melting, with evident condensation of air humidity on snow. The
small sample size (30 cm × 50 cm × 10 cm) also caused clear effects, for example
the red colour of the container was clearly visible through the 10 cm snow layer.

A new expedition was run in Sodankylä in April 2005, using both sunlight and
the Oriel QTH source. The snow was mostly days or weeks old, varying between
dry and moist. Surface micro-topographies were rather flat. Samples were selected
in various open or semi-open locations near the research station, and once near
Pyhätunturi fell. Wetness was measured using the Toikka snow fork, but its reso-
lution of about 5 cm in depth was found to be too coarse for detailed snow surface
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Table 9.1. Snow measurements expeditions using goniometers 2 and 3 with a short
summary of the target. The columns indicate: measurement date, location, setup (G2 =
goniometer model 2, G3 = goniometer model 3, H = 300-W outdoors halogen lamp, L
= Oriel 1000-W lamp), angles of incidence in the measurement order (↑ = only principal
plane, † = partial BRF, ∗ = full quasisphere (assumes left–right symmetry), ∗full = true
hemisphere), wetness of the sample (D = dry, W = wet, number = measured wetness [%],
f = freezing, m = melting), grain shape classification according to Colbeck et al. (1985),
and some other relevant note.

Date Location Setup Angles Wetness Snow- Note
of inc. type

16.4.1998 Vuotso 1 G2 58◦† D sr
17.4.1998 Vuotso 1 G2 60◦∗ D sr
18.4.1998 Vuotso 2 G2 60◦∗ D sr surface 15◦ tilted
20.4.1998 Vuotso 3 G2H 60◦ Wf mf
21.4.1998 Vuotso 3 G2H W mf
23.4.1998 Vuotso 1 G2 W mf

7.3.2001 Hyytiälä G3 67† D nd,dc
29.3.2001 Sjökulla G3 55◦† M sr 10 cm
3.5.2001 Sodankylä 1 G3 60◦† W mf
4.5.2001 Sodankylä 1 G3 65◦∗ –51◦∗ M–W mf,sl
5.5.2001 Sodankylä 1 G3 61◦∗–53◦∗ W mf dirty
8.5.2001 Sodankylä 1 G3 50◦∗ W mf dirty, mani-

pulated, 8 cm

7.3.2002 Rovaniemi G3 72◦↑ D sd
8.3.2002 Rovaniemi G3 72◦↑ D sd,dc

10.3.2004 Sodankylä 3 G3L 55◦∗,52◦∗ W dc
11.3.2004 Sodankylä 3 G3 71◦–72◦∗ M lr
11.3.2004 Sodankylä 3 G3L 49◦∗,44◦∗,62◦∗ Mf lr
13.3.2004 Sodankylä 3 G3L 62◦∗,52◦∗,45◦∗ D dc
13.3.2004 Sodankylä 3 G3L 45◦∗,68◦∗ D mx surface broken
14.3.2004 Sodankylä 3 G3L 6◦5,6◦1,48◦,43◦ D dc
14.3.2004 Sodankylä 3 G3L 45◦,60◦ D compressed
16.3.2004 Sodankylä 3 G3L 57◦∗,50◦∗,65◦∗ D lr

10.2. 2005 Masala, lab G3L 39◦↑,60◦↑↑ M lr,cf,mf

measurements, as in places the wetness profile was found to vary in the scale of
1 cm by visual and manual inspection. The grain size and shape were measured
both visually and photographically.

The next research effort was again run in Tähtelä Research station, Sodankylä,
in April 2007. The targets were selected in a semi-open area near a newly mounted
Norsen mast. All measurements were made in sunlight, with relatively clear
weather. The snow was melting several centimeters a day, but freezing again dur-
ing the night. The snow was still relatively pure, with some debris from trees and
the environment here and there. Its structure was rather rough, with about 4 cm
height variations in the scale of 20 cm. Many repetitions were made, to study the
reproducibility of results and local heterogeneity. As a novel aspect, during the
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Table 9.2. Snow measurements expeditions using FIGIFIGO, as in Table 9.1. The lo-
cations are Sodankylä 2 = front yard of the guest house at Tähtelä Research Centre in
Sodankylä, Sodankylä 3 = small opening behind the guest house at Tähtelä Research
Centre in Sodankylä, Sodankylä S = a small open swamp in a forest near Tähtelä Re-
search Centre in Sodankylä, Sodankylä J = Jänkävuopajanaapa, big open swamp 1 km
from Tähtelä, Sodankylä N = near the Norsen mast at Tähtelä, Sodankylä), setup (FU
= FIGIFIGO unpolarized, FP = FIGIFIGO with a polarizer, L = Oriel 1000-W lamp).

Date Location Setup Angles Wetness Snow- Note
of inc. type

17.4. 2005 Sodankylä 2 G5 54.0◦–52.4◦ D sr rough
17.4. 2005 Sodankylä 3 G5 72.0◦–75.6◦ D lr rough
18.4. 2005 Sodankylä 3 G5L 61.9◦, 55.0◦ D sr
19.4. 2005 Sodankylä 3 G5 62.0◦–58.8◦∗ D sr
19.4. 2005 Sodankylä 3 G5L 55◦∗, 64◦∗, 45◦∗ Mf sr
20.4. 2005 Sodankylä S G5 61.9◦–58.8◦↑∗∗ Dm lr
21.4. 2005 Sodankylä J G5 75.8◦–72.2◦† D lr
22.4. 2005 Sodankylä J G5 55◦↑ D lr
22.4. 2005 Sodankylä J G5L 45◦∗, 62◦∗ W cl
23.4. 2005 Pyhätunturi G5 62.7◦–56.3◦∗full∗full Dm cl

17. 4. 2007 Sodankylä N FU 61.1◦–59.6◦∗∗ D lr
17. 4. 2007 Sodankylä N FU 57.4◦–58.5◦∗∗ W lr
18. 4. 2007 Sodankylä N FU 70.7◦–59.0◦↑∗↑↑ Dm lr
18. 4. 2007 Sodankylä N FU 57.4◦–62.0◦ Wm lr
20. 4. 2007 Sodankylä N FP 70.8◦–55.9↑↑↑∗↑↑ ↑◦ W lr

1. 4. 2008 Sodankylä N FUL 43◦∗,62◦∗,55◦∗,71◦∗ D 9lr,1mx
2. 4. 2008 Sodankylä N FPL 66◦∗,37◦∗,45◦∗ D 9lr,1sf
3. 4. 2008 Sodankylä N FP 70◦∗∗–62◦∗∗ D 9lr,1sf
4. 4. 2008 Sodankylä N FPL 35◦∗,55◦∗ D 9sd,1dc
5. 4. 2008 Sodankylä N FPL 42◦∗,55◦∗,65◦∗ D 9nd,1dc

19.3.2009 Masala FP 66–63◦∗∗ D sr
20.3.2009 laboratory FPL 60◦∗∗∗, 45◦∗, 72◦∗ DW lr 20 cm

20.4. 2009 Kommattivaara FP 57◦↑↑↑ W lr M
21.4. 2009 Sodankylä N FPL
22.4. 2009 Mantovaara- FP 65◦∗ M sr,cl smooth

naapa S
22.4. 2009 Mantovaara- FP 60–55◦↑∗∗↑↑↑ M mf rough

naapa R
23.4. 2009 Korppiaapa R FP 65◦∗ W mf rough
23.4. 2009 Korppiaapa I FP 60◦∗ D bi rough ice

last day the reflectance was measured using a calcite broadband polarizer both in
horizontal and vertical polarization states.

The measurements continued again in the spring of 2008 at the same place,
as part of a larger Snortex campaign. The weather was cloudy or semi-cloudy for
most of the days, so that only one daylight measurement was possible; otherwise
measurements were taken during nights with the Oriel lamp at 2–4 illumination
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angles. The first of the measurements was taken unpolarized, the next four with
polarization. The snow was relatively dry all the time.

In the winter of 2009 one set of measurements was taken in a field near Masala
under perfect sunshine. The snow was dry and relatively smooth, clean and homo-
geneous. Air temperature was about −5◦C.

Next day the melting measurement in the laboratory was repeated. Now the
lab was allowed to cool for two hours by keeping doors open and ventilation at
full speed. Outside temperature was around −5◦C, inside +5◦. Initially, the snow
was rather similar to previous field samples. A snow sample of 20 cm thickness was
taken from outside, and the measurement was started immediately, measuring con-
tinuously at 60◦ illumination zenith angle until the snow was considered very wet.
Then lamp was moved to 45◦ and 72◦ angles and the BRF of wet snow measured
in wider illumination range.

The Snortex campaign continued in Sodankylä March to May 2009, and further
snow reflectance measurements were taken during the campaign in April around
the area. Extensive snow measurements using various other instruments were taken
at the same locations. The first point was in a sparse forest of short trees behind
the hill of Kommattivaara. Snow was starting to melt in sunlight. Next night,
freezing snow was measured near the Norsen mast using a lamp at two angles of
incidence in four polarizer directions. An extensive set of measurements was taken
in Mantovaaranaapa swamp, supporting several airborne cameras. The snow had
been melting about two weeks, and in the morning the snow surface was very hard.
Small amounts of fresh snow had fallen in previous days, and wind had collected
this to random spots of a width of about 20 to 50 cm, and depth of 1–2 cm. This
snow had transformed to rounded mid-size grains, and was still soft and smooth
on the surface. The underlying hard snow was very rough. First, the smooth snow
was measured, then the rough snow in three locations, to get a better sampling. In
the beginning, the snow was relatively dry after a cold night, but started rapidly
melting. In the afternoons it could not carry even a light sledge, although in the
mornings easily carrying a man. During the last day, another rough melting snow
sample as well as a patch of bare, rough ice was measured in Korppiaapa swamp.
All the snow samples in the swamps were rather shallow, with a depth from 10
to 20 cm. A deeper analysis of the snow properties and the results of the research
effort will be published in some designated campaign publications

9.6 Modeling

The snow layer is modeled as a random packing of randomly deformed and ori-
ented ellipsoidal or rectangular ice grains (Peltoniemi et al., 1989; Peltoniemi and
Lumme, 1992; Muinonen et al., 1996), with an optional liquid water coating, and a
spectrally dependent complex refractive index (Warren et al., 1995). The scattering
is solved using the Jray Monte Carlo ray–tracing program by Peltoniemi (2007).
The program solves for the 4× 4 BRF Muller matrix in the spectral range of 350
to 2500 nm.
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In short, the algorithm is

(1) shoot a ray with a spectrum of unit Muller matrices from an initial position
to an initial direction (optionally random)

(2) trace the ray until it hits the border of the scattering medium, and then see
how it intersects various subvolumes inside

(3) inside a scattering subvolume, trace whether the ray hits the surrounding of
a stochastic particle

(4) locate the random scattering point inside the stochastically scattering volume
(5) register the travelled path length
(6) compute the scattering to each preselected detector

(a) angles of incidence and emergence, required surface normal, probability
density function for this normal orientation

(b) Fresnel coefficients, rotations
(c) propagation probability to the sensor
(d) record observation

(7) generate random normal
(8) compute Fresnel matrices and rotations
(9) select between a reflected or refracted ray
(10) continue tracing from point 2 until the ray escapes the medium
(11) record the ray
(12) compute absorbed energy spectrally using a wavelength-dependent absorption

coefficient and recorded path length in each submedia

The subtleties include spectral weighting of the ray components during wavelength-
dependent scattering, thin layered surfaces, free positioning of the sensors in the
most interesting directions, e.g., backward, forward, specular, Brewster angles.
Combining ray-tracing with adding/doubling and other accelerating techniques is
under continuous construction.

Diffraction is totally ignored. Not only is it rather immaterial whether some
parts of rays are slightly bent when passing a grain or considered to be unscattered,
but in a densely packed medium the assumptions of the simple diffraction model
fail: diffraction by what? – a grain, a hole between grain, semi-infinite surface,
near or far field? Actually, diffraction models fail because of forward interference
which happens in many other radiative transfer cases too and which it is better
to ignore than to use an inappropriate model. Note also, that ray optics belongs
completely to classical physics; thus, in the theoretical sense, a single ray contains
infinite number of photons, and the common trend to talk about tracing individual
photons is completely wrong and misleading.

Three different sample cases have been computed:

(1) Fine-grained new snow
– 90% rectangulars of semi-axes 0.1mm, 0.1mm, 0.5mm
– grain surface roughness parameters σ = 0.02 and ρ = 0.5
– 10% rounded grains, semi-axes 0.3, 0.4, 0.5mm
– packing density 10% (occupied volume/total volume), overlap allowed
– flat snow layer
– thickness 45 cm

(2) Old dry snow
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– 90% rounded grains, grain semi-axes 0.5mm, 0.75mm 1.0mm
– 10% rectangulars of semi-axes 0.3mm, 0.4mm, 0.5mm
– grain surface roughness parameters σ = 0.02 and ρ = 0.5
– packing density 40% (occupied volume/total volume), overlap allowed
– optional water coating thickness 0.02mm
– snow surface auto-correlation length 1 cm and height standard deviation

0.25 cm
– thickness 45 cm

(3) Wet snow
– grain semi-axes 0.5mm, 0.75mm 1.0mm
– grain surface roughness parameters σ = 0.02 and ρ = 0.5
– packing density 50% (occupied volume/total volume), overlap allowed
– 5% of grains liquid water droplets
– snow surface auto-correlation length 1 cm and height standard deviation

0.25 cm
– thickness 45 cm

9.7 Results

Before going to real measurement results, the predictions by simulations are pre-
sented in Figs 9.6 to 9.9. All cases show a clear forward scattering spike, being
darkest around nadir or a little forward, and with a very weak enhancement back-
wards. The spectrum is very sensitive to grain size. Grain shape affects forward and
backward scattering somewhat. Regular crystals make the forward spike narrower,
and increasing irregularity increases backward scattering. Polarization is strongest
near the Brewster angle when the absorption is strong enough that single surface
reflection dominates. The 45/135◦ polarization (Stokes U parameter) and circular
polarization (V parameter) are low and almost insignificant compared to Q polar-
ization. Polarization seems to depend on grain size via absorption: small grains,
small absorption, more multiple scattering, less polarization. The differences be-
tween wet and dry snow seems minimal: only a small spectral effect (more about
that later) but there are no directional or polarizational signals at all.

Next, the measurement results are shown and discussed (Figs 9.10 to 9.28). The
general observation is that each sample is individual. Because of the metamorphosis,
the sample often changes, even during the measurement, so that one cannot always
be sure what was measured. Also, no parameter varies alone, but the whole snow
in all of its properties, in all depth scales. Thus, drawing firm conclusions from the
data is difficult.

From published results it is already known that different snow types differ by
anisotropic, spectral and polarization properties (Painter and Dozier, 2004; Hudson
et al., 2006; Nolin et al., 1994; Peltoniemi et al., 2005a, 2009; and many others). Here
much more data is shown. First, an overview of snow BRF, and snow’s spectral and
polarized properties are shown. Then the clearest differences between snow types
are pointed out, and more details specifically related to melting and wetness follow.

Snow BRF and spectral curves averaged over all measured samples are shown in
Figs 9.10 and 9.11. Snow is a strong forward scatterer, but not a specular scatterer;
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Fig. 9.6. Simulated BRFs of new snow, from top left: BRF cake in 650 and 1550 nm,
the reflection spectra in four directions on the principal plane (colour indicates difference
between two sampling), the BRF on the principal plane in four channels, the polarization
spectra in four directions on the principal plane, and the polarization curve on the prin-
cipal plane in four channels. The angle of incidence is 60◦. Minor oscillations in the data
are Monte Carlo noise. [For a color version of this figure, see the color section.]
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Fig. 9.7. Simulated BRFs of dry snow, as in Fig. 9.6. Note that the old snow spectrum is
darker in infrared than in new snow, and polarization gets stronger. BRF shape changes
are small. [For a color version of this figure, see the color section.]
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Fig. 9.8. Simulated BRFs of wet snow, as in Fig. 9.6. The only significant difference from
dry snow is the very small spectral changes in some wavelengths, to be discussed in the
next subsections. [For a color version of this figure, see the color section.]
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Fig. 9.9. Flat polarization plots of simulated dry snow, on the left 550 nm, on the right
1550 nm. From top to bottom −Q/I, −U/I, and −V/I. Polarisation is here defined in the
scattering plane. [For a color version of this figure, see the color section.]
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◦

◦

◦

Fig. 9.10. The general 3-D shape of the snow BRF in varying angles of incidence, from
top to bottom: 40◦, 55◦, 70◦) and two wavelengths left 670 nm, right 1555 nm. The results
are averaged over all measured samples, and show a typical strong forward scattering
pattern, stronger in infrared than in visual, and stronger in larger zenith angles than
smaller ones. Minor oscillations in the data are mostly caused by the small footprint size
vs. surface roughness, and to some extent an averaging artifact. [For a color version of
this figure, see the color section.]
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◦

◦

◦

Fig. 9.11. Continuation of Fig. 9.10 with more details. On the left is the reflectivity
spectra at four zenith angles on the principal plane (60◦ forward, 30◦ forward, nadir,
and 30◦ backward. On the right is the BRF curve on the principal plane as a function
of the zenith angle in four channels (violet 445 nm, red 670 nm, SWIR 1225 nm, SWIR
1555 nm). Green colour gives the standard deviation of all measured values at nadir and
orange min/max values. The strong peaks and oscillations in some parts of the spectra
are sensor noise, because the atmospheric water vapor absorbs all the incident signal in
those wavelengths. [For a color version of this figure, see the color section.]
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Fig. 9.12. BRF in the perpendicular (cross) plane of two samples, on the left from
Pyhätunturi 2005, on the left from Mantovaaranaapa 2009, rough snow sample.

the brightness increases to the furthest forward angle. There is usually no significant
backscattering effect except a potential narrow spike less than 1◦ wide (Kaasalainen
et al., 2005). The BRF clearly depends on the angle of incidence. The forward spike
increases when the solar zenith angle increases. Azimuthally snow BRF behaves
smoothly. All features are best seen in the principal plane. Snow is very white
in visual wavelengths, turning very dark in infrared. The spectrum follows the
absorption pattern of ice.

Typical polarization is depicted in Figs 9.13 and 9.14. In general, polarization
is weak in visual bands, and gets stronger in infrared, where absorption is stronger
and single reflection dominates. Polarization is always strongest at forward. In dark
wavelengths there appears to be a maximum between 95◦ to 110◦ phase angles,
but it is not so easy to locate it accurately. The Brewster angle for ice is around
106◦. In brighter bands, polarization increases forward to maximum observed phase
angles. There is a weak region of negative polarization on the backward side. All
representations of polarization – horizontal and vertical separately, their difference
(Stokes Q parameter), linear polarization (−Q/I), or total polarization (

√
Q2 + U2)

– reveal similar information showing clear spectral and directional dependence,
although for various purposes of course one can be more useful than the other. In
this measurement setup, also the U-polarization gets significant values, in the first
sight contradicting the predictions of the simulations, but the explanation is that
the simulations use the scattering plane as a reference, whereas the measurements
use the horizontal–vertical plane. The polarization direction appears to be clearly
closer to the scattering plane than the horizontal–vertical plane. Some interesting
differences between snow types are explained later.

From the samples three basic snow types have been identified: new freshly fallen
snow, old dry snow and melting snow. Comparable results are depicted in Figs 9.15
and 9.16. Following these, dry and wet snow are shown in more detail in Figs 9.17
and 9.18 and then as side by side zooms to emphasize the clearest differences in
Fig. 9.21.
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Fig. 9.13. Polarization properties of smooth snow from Mantovaaranaapa 2009. At the
top the degree of linear horizontal–vertical polarization (Stokes −Q/I), in the middle
U/I, and, at the bottom, total linear polarization

p
Q2 + U2/I, taken at wavelengths of

670 nm (left) and 1555 nm (right), with an angle of incidence of 60◦. The short lines in the
bottom diagrams indicate the direction of polarization. [For a color version of this figure,
see the color section.]
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Fig. 9.14. The polarization spectrum shown in different ways. At the top left the degree
of linear polarization (−Q/I), at right the polarized reflectance (−Q), and at the bottom
horizontally and vertically polarized reflectances separately. All of these show interesting
spectral features. [For a color version of this figure, see the color section.]

Below, some features are discussed in more detail, paying attention to how these
could reveal some snow properties or identify some snow types (new–old–melting).

9.7.1 Forward scattering signatures

As a forward scattering effect we consider the overall brightening towards larger
phase angles/larger zenith angles/smaller scattering angles, not to be confused with
the specular effects around the specular angle. All snow types brighten to forward.
The forward spike gets stronger when the sun is low, and almost disappears when
the sun is high, i.e., it is clearly a phase angle effect. Especially in infrared, snow
is a very strong forward scatterer, and in the darkest wavelengths the backward
scattering is near the observation threshold.

The most dominant factor for the strength of the forward signature appears
to be the roughness of the snow layer: the rougher the surface the smaller the
forward scattering. The forward differences in Fig. 9.18 are at least partially due to
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Fig. 9.15. The differences over the main snow types, new snow, old dry snow, and melting
snow (from top to bottom), averaged over all samples in the class, otherwise as in Fig. 9.10,
with an angle of incidence 60◦. [For a color version of this figure, see the color section.]
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Fig. 9.16. Continuation of Fig. 9.15, analogous to Fig. 9.11. Here one can see more clearly
differences in forward scattering and size effect in spectrum. [For a color version of this
figure, see the color section.]
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Fig. 9.17. Various dry old snow types, from top to bottom, 2005, 2007, 2008, as in
Fig. 9.11, and with an angle of incidence 60◦. From this figure one can already see, that
samples differ, and single dry snow class is a clear oversimplification, but to keep this
review in schedule, further dry snow analysis is dropped. [For a color version of this
figure, see the color section.]
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Fig. 9.18. Various wet and melting snow types, from top to bottom 2005, 2007 and 2009
snows, as in Fig. 9.11, and with an angle of incidence 60◦. Note especially the small bump
and drop at 60◦ to 70◦ forward. [For a color version of this figure, see the color section.]



9 Reflectance of various snow types 427

Fig. 9.19. More detailed view of the reflection spectra in the most wetness sensitive
region, on the left wet snow, on the right dry old snow. The most indicative feature is the
relative difference between 1250 and 1350 nm. [For a color version of this figure, see the
color section.]
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Fig. 9.20. Fig. 9.19 continues at spectral range 900 to 1100 nm. The most indicative
feature here should be the difference between 960 nm and 1000 nm or the location of the
minimum, although it is very difficult to see even from a zoomed curve, and numerical
comparison is needed. Warning that the sensor border is here at 981 nm, which typically
causes an erratic step of 1% to 5%, confusing analysis. [For a color version of this figure,
see the color section.]
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Fig. 9.21. Monitoring the melting process in laboratory. The same snow when dry (left)
and after about 1 hour melting inside (right). At the top there is the BRF on the principal
plane, in the middle the spectral plot from four directions in the principal plane, and at
the bottom a zoom into the more wetness-sensitive spectral band. The light zenith angle
was 60◦. [For a color version of this figure, see the color section.]
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Fig. 9.22. Monitoring the melting process continues. Top: degree of linear polarization on
the principal plane (the 1555 nm curve is already very inaccurate outside forward direc-
tion); middle: polarization spectrum in four directions (again, from 1400 nm to 2400 nm
mostly noise outside forward direction); bottom: zoom to the most wetness sensitive band.
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roughness: the 2005 snow was rather flat, whereas the 2007 and 2009 snows were
very rough. Warren et al. (1998) also noted a clear roughness dependence.

Wetness also appears to decrease the forward scattering in varying amounts,
e.g., Figs. 9.15 and 9.21, but the effect of wetness seems smaller than the effect
of roughness, and thus forward scattering alone does not create a unique melting
signature. The reduced forward scattering appears to be connected to reduced
albedo, i.e., the light that disappears from forward direction is not distributed to
other directions, but is absorbed or transmitted to ground. Decrease of snow albedo
during warming has been observed in several independent albedo measurements
(Pirazzini, 2008, and references therein).

Other factors, e.g., grain shape or packing density, are more difficult to see
from the measurements, although simulations suggest a small dependence, 2–10%
(Peltoniemi, 2007). Artificial compressing, flattening, or roughening did change
BRF observably (Figs 9.23 and 9.24).

Fig. 9.23. Difference between natural (left) and compressed (right) snow. [For a color
version of this figure, see the color section.]
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Fig. 9.24. Difference between natural (left) and broken (right) snow. [For a color version
of this figure, see the color section.]

Fig. 9.25. Some measurements of a rough ice layer. Because of sensor saturation in
specular and forward direction and very low reflection to other directions, especially in
infrared, the results are only partially acceptable.
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9.7.2 Specular scattering effects

In some discussions the forward effect is erroneously referred as a specular effect,
but pure snow has no specular spike at all. Only when there are liquid or frozen
water ponds is a specular spike seen, as shown in Fig. 9.25.

However, in some wet snow data there appears to be some anti-effect, a clear
drop a few degrees forward from the specular direction, leaving something that
looks like a small bump, or specular spike, but actually the ‘bump’ just follows
the normal forward brightening curve until the drop. The effect is seen well in
1997 (Peltoniemi et al., 2005a), 2005, and 2007 measurements. However, 2009 wet
snow samples have only reduced forward scattering without any feature around
specular direction. Measuring the same snow frozen in the morning and melting
in the afternoon revealed that this directional wetness signal disappears when the
snow refreezes again, but cannot be yet confirmed whether the timescale for this is
minutes or hours.

The mechanism claiming to explain how the wetness changes the BRF is not
proven yet. Simulations cannot yet reproduce this kind of specular feature. There
were no macroscopic liquid water ponds in the snow, but there may be some micro-
ponds or bridges between snow grains, or there may be some hanging drops under
the grains, or there may be a smooth liquid water coating over the grains. Significant
metamorphosis during melting is quite to be expected, but reverse metamorphosis
during freezing needs more imagination. Visual observation or photography does
not give good details, because separating the liquid and frozen phases is too difficult.

9.7.3 Spectral effects

The spectrum is well known to depend on the grain size and all measurements and
modeling confirm this. Actually, from the spectral shape one could easily detect
even very small, say 1%, differences in a characteristic size, although grain shape
effects, sintering and clustering complicate the picture somewhat (what is a grain
and its size?). For example, the large spectral difference between new and old snow
is mostly a grain-size effect (Fig. 9.16). Further, one can reveal information from the
size distributions, e.g., typically one needs some larger grains to increase absorption
in 800–1100 nm, and smaller grains to brighten the 1400–2500 nm band.

Another interesting spectral effect is the liquid water signature. Ice and water
have refractive indices very close to each other throughout the optical band. The
two most indicative bands where the refractive indices of water and ice differ are
between 940 and 1030 nm, and between 1250 and 1400 nm. Models can predict the
spectral effects easily, and also the field and airborne experiments by Green et al.
(2006) have observed it. A zoomed view to the region is shown in Fig. 9.19, but
the differences are difficult to see from figures. To quantify the differences, three
wetness indices were invented,

index1 = 1− S(1090 nm)/S(990 nm), (9.14)
index2 = 1− S(1340 nm)/S(1255 nm), (9.15)
index3 = 1− S(1375 nm)/S(1255 nm). (9.16)
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These are selected from the sides of a minimum in such a way that the intensities are
approximately at the same level, to minimize the effects of grain size. Also, because
of the sensor border of the ASD spectrometer at 989 nm, the first index is taken
a little bit narrower than optimal. The third index is strongest, but overlaps with
water vapor absorption, thus it is useful only for lamp measurements. All of them
should be small or negative for dry snow, and positive for wet snow. The indices,
averaged over a zenith angle cone of 33◦ over nadir to reduce noise, are shown in
Table 9.4. One can see that indeed, most wet and dry snows can be distinguished
spectrally, from all these three indices. However, there are some contrary cases too.
Dry old snow 040316 and Dry old snow 080401 look wetter than estimated. It is
possible that the lamp heated the snow enough to initiate melting in these cases.
Wet snow 050210 shows mixed effect, which could also easily be explained by the
red container. Wet snow 050419 was initially wet, but was freezing during the night
measurement, which might already have influenced the result. Wet snow 050423
was measured on a warm and sunny day when snow started feeling wet on the
surface, but it could be that internals were still dry. The successive measurements
at Mantovaaranaapa and SnowFGILab 090320 starting from dry conditions and
ending with very wet samples then nicely confirm the power of these indices.

The zenith angle dependence is plotted in Fig. 9.26. There is some dependence,
the backward angles being the most sensitive. There is rather a lot of noise in the
data, requiring sufficient integration for target and reference measurements. Some
discrepancies above could even come from white reference measurement.

It is unfortunate that the ASD sensor border is located exactly in the first wet-
ness sensing band. There is often a 1–10% randomly systematic step in this border,
preventing quantitative analysis over this border effectively. Also, the remaining
parts of this region are in the less sensitive part of the SWIR 1 detector (Suoma-
lainen et al., 2009a). The second region is in the best parts of the SWIR1 sensor,
but here the atmospheric vapor limits the best wavelength range (index 3). For in
situ measurements, index 3 is no doubt the most sensitive.

9.7.4 Polarization signals

The most distinguishing signal in polarization is that old dry snow polarizes sur-
prisingly strongly in the forward direction, even in visual wavelengths 5% to 35%.
New snow or melting snow polarize much more weakly in visual bands, about 0–5%.

The simulation results support very well the observational conclusions, suggest-
ing further that the maximum value of the polarization depends on the grain size,
and its location depends very much on the real part of the refractive index, i.e., it
could be used to invert for the composition of the scatterer (but in practice this is
very demanding). From the simulations one can predict that the 45◦/135◦ linear
polarization (in the scattering plane) and the circular polarization (Stokes U and
V parameters) are close to zero, and brings no significant extra information.

9.7.5 Albedos

Albedos have been been observed to decrease during melting and in diurnal cycles,
see, e.g., Pirazzini (2008) and references therein. In the here reported measure-
ments, the average broadband albedo at solar zenith angle of 60◦ was 0.87 for new
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Table 9.4. Some indicators for wetness. First the sample name, sun zenith angle, esti-
mated or measured wetness [%], and the three invented wetness indices. The larger the
index, the wetter the snow should be. The last column gives the maximum polarization
in visual wavelengths, when measured. The results are in estimated dryness order, except
that the ice and laboratory cases are last.

Sample name Angle of inc. Wetness Index 1 Index 2 Index 3 MaxVisPol

New Snow 020307 72.0 0 −0.005 −0.020 0.096
New Snow 020308 72.0 0 −0.004 −0.027 −0.120
New Snow 010307 67.0 0–1 0.005 −0.005 0.073
New Snow 080404 55.0 0–2 0.001 −0.013 0.020 0.08
New Snow 080404 35.0 0–2 0.001 −0.015 0.022 0.04
New Snow 080405 42.0 0–2 −0.004 −0.011 0.027 0.02
New Snow 080405 55.0 0–2 −0.005 −0.016 0.027 0.03
New Snow 080405 65.0 0–2 −0.020 −0.013 0.023 0.02

Dry old snow040313a 62.0 0–1 −0.011 −0.033 0.020
Dry old snow040313a 45.0 0–1 −0.013 −0.034 0.022
Dry broken snow040313b 45.0 0–1 −0.020 −0.042 0.021
Dry broken snow040313b 68.0 0–1 −0.007 −0.036 0.026
Dry old snow040314a 65.0 0–1 0.003 −0.030 0.025
Dry old snow040314a 43.0 0–1 0.003 −0.033 0.025
Dry compressed snow040314b 45.0 0–1 −0.003 −0.030 0.017
Dry compressed snow040314b 60.0 0–1 0.006 −0.032 0.022
Dry old snow040316 50.0 0–1 0.075 0.057 0.223
Dry old snow040316 65.0 0–1 0.062 0.027 0.171
Dry old snow050421 73.0 0–1 −0.015 −0.036
Dry old snow050419 60.0 0–2 −0.006 −0.022 −0.000
Dry old snow07 60.0 1–2 0.018 −0.036 0.113
Dry old snow 080401 63.0 0–2 0.075 0.048 0.203
Dry old snow 080401 43.0 0–2 0.046 0.025 0.175
Dry old snow 080402 66.0 0–2 0.022 −0.030 0.056 0.35
Dry old snow 080402 45.0 0–2 0.021 −0.049 0.044 0.12
Dry old snow 080402 37.0 0–2 0.021 −0.049 0.044 0.05
SnowMasalaField 090319a 66.0 1–2 0.018 −0.015 0.073 0.02
SnowMasalaField 090319b 63.0 1–2 0.014 −0.025 −0.115 0.02
Dry old snow050420 60.0 1–3 −0.000 −0.035 −0.006

Wet snow050423 60 58.0 1–2 0.002 −0.025 −0.032
Kommattivaara 58.0 1–3 0.004 −0.019 0.022 0.05
Wet snow040310 54.0 1–3 0.010 −0.032 0.034
Wet snow040311a 72.0 1–3 0.018 0.000
Wet snow040311b 62.0 1–3 −0.008 −0.053 0.026
Wet snow040311b 44.0 1–3 −0.004 −0.055 0.027
Mantovaaranaapa smooth 65.0 1–3 0.007 −0.024 −1.468 0.03
Wet snow050419 64.0 3–1 0.005 −0.055 0.057
Wet snow050419 45.0 3–1 0.004 −0.055 0.059
Mantovaaranaapa rough1 60.0 2–4 0.049 0.036 −0.177 0.04
Wet snow070417 58 58.0 2–5 0.082 0.091 0.434
Wet snow070420 60 60.0 2–5 0.035 −0.019 0.04
Korppiaapa rough 65.0 3–5 0.047 0.016 −0.026 0.03
Mantovaaranaapa rough2 56.0 3–5 0.068 0.070 0.032 0.03
Wet snow010504 60.0 2–6 0.074 0.079 0.698
Wet snow050210 60.0 3–6 0.022 0.041 0.205
Wet snow070418 60 60.0 3–6 0.042 −0.015 0.104
Mantovaaranaapa rough3 55.0 4–6 0.080 0.085 0.141 0.02
Wet snow010505 60.0 4–6 0.078 0.068 0.434
Wet snow010508 60.0 4–6 0.079 0.064

Korppiaapa Ice 60.0 0 0.175 0.005 −0.644 0.55

SnowFGILab 090320a 60.0 0–2 0.033 0.021 0.169 0.09
SnowFGILab 090320b 60.0 2–4 0.062 0.074 0.263 0.05
SnowFGILab 090320c 60.0 4–6 0.057 0.060 0.233 0.02
SnowFGILab 090320c 72 72.0 4–6 0.069 0.062 0.219 0.05
SnowFGILab 090320c 45 45.0 4–6 0.074 0.044 0.214 0.02
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Fig. 9.26. The three wetness indices [1:green, 2:red, 3:black] as a function of the zenith
angle when observing four snow samples. Dryer snows are on the left, wetter ones on
the right. There is some directional dependence, and most optimum observation direction
is from nadir to backwards. In sunlight measurements (Mantovaaranaapa) the index 3
contains mostly only noise, because it overlaps with atmospheric vapor absorption. [For
a color version of this figure, see the color section.]

snow, 0.70 for dry old snow, and 0.63 for wet snow. The new and old snow difference
is mostly a grain-size effect. Also, the wet snow samples here have probably larger
grains than dry snow, so part of the difference could be explained by grain size, and
part by the fact that melting snow samples were generally dirtier than dry snows.
However, a specific wetness effect was observed even in samples measured wet and
dry. Further analysis of albedos, and their dependence on snow properties, angle
of incidence, and measurement artifacts is left for forthcoming publications.
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Fig. 9.27. The polarization of three snow types (from top to bottom) new snow, old
snow and melting snow. On the left, a contour diagram of the linear polarization (−Q/I
only), in 670 nm, on the right in 1555 nm. The angle of incidence was about 65◦. [For a
color version of this figure, see the color section.]
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Fig. 9.28. Continuation of Fig. 9.27. On the left the polarization spectra in four zenith
angles on the principal plane, and on the right the polarization curves on the principal
plane in four wavelengths as a function of the zenith angle.
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9.8 Discussion

9.8.1 Melting signatures – a summary

Since monitoring snow melt is one of the most important tasks, the melting signa-
tures are reviewed here. First, measuring the wetness and quantifying the melting
of snow is difficult even in situ while using the best available techniques. Remote
sensing can give a very good idea of the melt line, snow or no snow, but often it is
more important to know, when snow starts melting than when it has melted.

The two most promising signals are spectral effects around 1000 and 1300 nm
and forward polarization. Both of these can distinguish between completely dry
and completely wet snows easily. A more quantitative melting analysis requires
still further testing, but there is some promise to get it to an accuracy of 0.01–0.02.
The 1000 nm signal has already been validated in real use by Green et al. (2006)
and Dozier et al. (2009). Full exploitation of this signal may suffer from the fact
that for most typical spectral sensors this range is usually in either end of the
sensor wavelength band and thus less sensitive than better bands, or exactly in the
border of two sensors, e.g., with ASD FieldSpec at 981 nm. Most optimal sensing
thus requires careful selection and tuning of the sensor.

The polarization signal is very promising, but still weakly validated. In the for-
ward direction, melting snow polarizes very little in the visual bands, but old frozen
snow polarizes surprisingly strongly, up to 30%. New snow also polarizes weakly, but
it can be identified by grain size. How the polarization effect is physically related to
melting is unclear. Quantitative use certainly requires better understanding, both
theoretically and experimentally.

The directional signal itself is clear and easily measurable. The wetness reduces
the strongest forward peak 10–50%, and sometimes causes a specific feature for-
ward from the specular direction. But reduced forward scattering is also caused by
increased surface roughness, and thus forward scattering brightness alone cannot
reveal wetness.

Albedo decreases during melting. Albedo depends also on grain size, layer struc-
ture, thickness, topography, impurities and many other factors. Thus from a single
albedo figure alone very little about melting can be said, but if one can monitor
daily variations and exclude zenith angle and surface tilt effects, more possibilities
for that should exist.

All optical observations see mainly the topmost layer. Polarization is probably
caused by the first surface or grain that the sun shines into and the observer sees,
and likewise the exploitable directional signals must come from first- or second-
order scattering. The 1300 nm spectral signal also cannot see very many scatterings.
The 1000 nm signal might be the only one to see a little bit deeper. Since the inner
layers can differ significantly from the top layer, even the best observations tell
only so much.

Outside the present review, active radar, laser scanning or photogrammetry can
be further used to observe snow layer thickness, and radars and radiometry can
detect liquid water in snow.
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9.8.2 Development of BRF measurement techniques

Goniometer techniques to measure the bidirectional reflectance factor and polar-
ization have been improved during the process. The most important considerations
in snow measurements are that the measurements are fast, that the instrument is
lightweight and portable enough that it can be transported and setup in various
snow types, and that the footprint is large enough. Large spectral range and high
resolution have been found very desirable as features, and polarization yields sig-
nificantly new information. Also fully (or even semi-) automatic measurement of
as many parameters as possible helps making results more consistent, comparable
and error-free (manual inspection is still needed, but usually human errors corrupt
data more than machine errors).

The two most significant limitations of the current measurement setup are still
the measurement speed and footprint size. Although, with a good plan and an
established routine, a BRF cake can be measured as quickly as in 10 minutes, in-
creasing accuracy, polarization directions, angles of incidence, azimuthal anisotropy,
and sampling size can extend the measurements by hours. Often even 10 minutes
is too long of time to get the measurements, e.g., if the atmosphere is varying too
much, if snow is melting rapidly, or if there are many targets to measure for a
campaign reference. Some ways to increase the speed are

– complete two-axis automatisation (10–30%)
– more optimized plan of what angles and polarizations to measure (10–200%)
– dual spectral sensor for simultaneous incident light monitoring (10–30%)
– faster spectrometer (50–500%)
– more advanced lamp setup (50–100%)
– transport, mounting and setup procedures (a few minutes)

A footprint size of about 10 cm is sufficient for new snow, but older snow of-
ten has topography and other structures and contaminants in the scale of 10 cm,
requiring typically some 50 cm or occasionally an even larger measurement area.
Increasing the footprint more necessarily requires some compromises in some other
properties. The possibilities for this include

– wider optics: reduces angular resolution (more conical view) or increases backscat-
tering shadow,

– longer arm: increases weight and complexity,
– scanning over larger areas either turning the sensor or moving the whole instru-

ment: often increases measurement time,
– rotating sample trays: ideal and proven for laboratory work, not possible for

undisturbed natural targets.

Many of these also solve simultaneously the disturbances of footprint elongations at
higher zenith angles and the heterogeneous field of view problems. As is apparent,
increasing measurement speed can also be used to improve sampling.

Using an array of sensors, or imaging techniques with light fibers or other optical
tricks, could yield snapshot measurements. Alternatively, some optimised combina-
tion of a high-resolution spectrometer, a mid-resolution polarimeter, and medium
to low spectral resolution cameras might yield almost the same results more af-
fordably and flexibly. For even larger area measurements, a promising approach is
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Fig. 9.29. Experimenting with BRF measurements simultaneously using FIGIFIGO (on
the right of the background) and Microdrone md4-200 UAV with Ricoh GR II digital
camera. The pilot stands on the left of the foreground, and in the middle of the background
is another spectral measurement going on. [For a color version of this figure, see the color
section.]

small unmanned aerial vehicle systems (UAV) carrying a camera or spectrometer,
capable of measuring reflectances of areas of about 1 m2 to 1 km2 and many other
things.

Also, developing more ideal laboratory and field light source needs effort.

9.8.3 Supporting snow measurements

In order to calibrate remote sensing techniques and systematise BRF measure-
ments, one needs accurate measurement and documentation of all relevant snow
properties. Unfortunately, this is much more complicated than appears at the first
sight. The complicating factors include rapid metamorphosis of snow, corruption
of the sample during measurements, lack of portable precision instruments, rich
3-D variations etc. Even trivial-sounding measurements can be complicated. For
example, snow thickness can be easily measured using a simple rod, but if the un-
derlying topography or vegetation varies, snow thickness may also vary, without
visible signs. Grain size can be measured using sieves, or photographing an ensem-
ble of loose grains. But if the snow is wet, grains stick to each other, and will not go
through a sieve and cannot be separated for individual photography. Photographic
plate also immediately melts wet grains. And when the wet snow is frozen to a hard
layer, there may not even be separate grains any more but a complicated 3-D struc-
ture. Snow wetness can be measured at some accuracy using the electronic snow
fork (e.g., by Toikka engineering). The system is, however, not accurate enough
for the most important surface layer, where the density and wetness profile may
change in cm scale or even smaller.

Thus, for the validation of remote sensing techniques, and to support modeling,
new independent real time field measurement techniques are needed at least for
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– wetness and density profiles in a resolution of 1 cm or better,
– grain shapes and size distributions, or 3-D structures of complex snow layers,

also for wet snow or hard snow layers,
– wavelength-scale surface and internal structures of snow grains, e.g., an eco-

nomic portable winter-proof electron microscope,
– detailed locations of melt water in snow layers (inside, outside, under or between

grains?),
– snow and ground surface topography inmm to hm scales,
– snow contaminants and impurities.

Also, setups where one can, in some controlled and reproducible way, change snow
properties and systematically measure the effects of various parameters would be
extremely useful.

9.8.4 Modeling

The ray optics model can predict well the spectral effects of grain size, and to some
extent the wetness effect, but here reality is more complicated. The model also
predicts well the general shape of the BRF, but some details need more polishing,
e.g., the wetness features in forward. Modeling the topographic effects needs more
work.

But the biggest surprise is polarization. Although the general spectral and
forward-biased polarization shapes are predicted, the model does not give any ex-
planation for the difference between wet and dry snow. It is certainly more com-
plicated than a small refractive index difference. A natural point of speculation
is wavelength-scale structures in the interiors and surfaces of snow grains, assum-
ing that melting smooth the surface, and freezing roughens it. Also, the negative
polarization in backward is not reproduced by model.

The challenges for modeling include

– realistic grain shapes, new flakes, rounded grains, cups, needles, hoar,
– realistic size distribution,
– realistic 3-D structure,
– representation of liquid water, over, under or between grains? Evenly dis-

tributed, or located on certain local hot spots of focused sunlight?
– including both radiative transfer and electromagnetic effects, large-scale struc-

tures and wavelength-scale ripple,
– combining snow metamorphosis models to reflection models.

9.9 Conclusions

The reflectance of snow has been the subject of our review here. Despite its ap-
parent simplicity, snow as a subject of study is extremely rich and challenging. It
shows large variation of physical, chemical, and optical properties, in all spatial
and temporal scales. Interpreting data is very demanding, especially, when snow is
mixed with sticking out ground objects, in partially bare areas, among vegetation,
or when covered by forest.
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From the reflection spectrum of snow it is possible to extract rather accurate
measures of grain size and indications of wetness. The wetness signal is rather
faint, but with good instrumentation and calibration is exploitable. Most indica-
tive bands are near 1000 nm and 1300 nm, and observations should be taken from
nadir or backwards. The directional signal, BRF, carries information about grain
shape. More regular crystals yield stronger forward peak. Rougher grains give more
backscattering. Topographic roughness reduces forward scattering and enhances
backward scattering. Wetness reduces forward scattering, until melt ponds and flat
frozen ice start producing specular reflections. Unfortunately these all mix together
and are not separable without further information. Another clear wetness signal
seems to be forward polarization. Dry old snow polarizes up to 10–30% even in
visual, whereas wet snow polarizes <5%. New also snow polarizes little, but it can
be easily identified by small grain size.

Validating and calibrating measurements, models and inversion procedures re-
quires improved tools to accurately and independently measure in the field the key
snow parameters: wetness, grain size, and grain shape. New reflectance measure-
ments are still needed from more natural snow, with complex surface topography,
internal 3-D structure, contaminants and impurities. Modeling must try to bet-
ter explain polarization, take into account macroscopic and microscopic structures,
and understand the forms of liquid water in snow.

We conclude that, based on these reflectance measurements, improved tools and
techniques for snow monitoring can be developed, with the help of spectrometry,
polarimetry, and directional observations.
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Salminen, M., Pulliainen, J., Metsämäki, S., Kontu, A., and Suokanerva, H. (2009). The
behaviour of snow and snow-free surface reflectance in boreal forests: Implications to
the performance of snow covered area monitoring. Remote Sensing of Environment,
113:907–918.

Schopfer, J. T. (2008). Spectrodirectional ground–based remote sensing using dual–view
goniometry. PhD thesis, University of Zurich.

Solberg, R., Hiltbrunner, D., Koskinen, J., Guneriussen, T., Rautiainen, K., and Hal-
likainen, M. (1997). Snow algorithms and products, review and recommendations for
research and development. Report from SNOWTOOLS WP 410 924, Norwegian Com-
puting Center, Oslo.

Steffen, K. (1987). Bidirectional reflectance of snow at 500–600 nm. In Large Scale Effects
of Seasonal Snow Cover (Proceedings of the Vancouver Symposium), number 166 in
IAHS Publ.

Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf, C. (2005). Accuracy as-
sessment of the MODIS 16-day albedo product for snow: comparisons with Greenland
in situ measurements. Remote Sensing of Environment, 94:46–60.

Stroeve, J. C., Box, J. E., and Haran, T. (2006). Evaluation of the MODIS (MOD10A1)
daily snow albedo product over the Greenland ice sheet. Remote Sensing of Environ-
ment, 105:155–171.

Suomalainen, J., Hakala, T., Peltoniemi, J., and Puttonen, E. (2009a). Polarised multian-
gular reflectance measurements using Finnish Geodetic Institute field goniospectrom-
eter. Sensors, 9(5):3891–3907.

Suomalainen, J., Hakala, T., Puttonen, E., and Peltoniemi, J. (2009b). Polarised bidi-
rectional reflectance factor measurements from vegetated land surfaces. J. Quant.
Spectrosc. Radiat. Transfer, 110:1044–1056.

Tanikawa, T., Aoki, T., Hori, M., Hachikubo, A., and Aniya, M. (2006). Snow bidirec-
tional reflectance model using non-spherical snow particles and its validation with
field measurements. In EARSeL eProceedings, volume 5, pages 137–145.

Tedesco, M. and Kokhanovsky, A. (2007). The semi-analytic snow retrieval algorithm and
its application to MODIS data. Remote Sensing of Environment, 111:228–241.



9 Reflectance of various snow types 449

Warren, S. G. (1982). Optical properties of snow. Reviews of Geophysics and Space
Physics, 20(1):67–89.

Warren, S., B.-C.Gao, and Wiscombe, W. (1995).
ftp//climate.gsfc.nasa.gov/pub/wiscombe/Refrac Index.

Warren, S., Brandt, R., and Hinton, P. O. (1998). Effect of surface roughness on bidi-
rectional reflectance of Antarctic snow. J. Geophys. Res. (Planets), 103(E11):25789–
25807.

Widen, N. (2000). A description of the new FGI goniometer and quality analysis of ex-
perimental data. Photogrammetric Journal of Finland, 17(1):28.

Wiscombe, W. and Warren, S. (1980). A model for spectral albedo of snow I: pure snow.
J. Atmos. Sci., 37(12):2712–2733.



10 Simulation and modeling of light scattering in
paper and print applications

Per Edström

10.1 Introduction

When developing and applying models to light scattering problems, things usually
turn very mathematical. This is all in good order, but it may also be a hindrance for
a broader audience to gain insight into the overall issues. This chapter aims at dis-
cussing a range of light scattering simulation and modeling issues with a minimum
of mathematics involved, and with the specific perspective of paper and printing in-
dustry applications. Shorter sections of mathematical content are included, but the
mathematically interested reader is here pointed to selected references and other
chapters in this volume.

Section 10.2 gives an overview of the standardized use of models and measure-
ments in these industries, and includes some drawbacks and needs for newer models
in these applications. Section 10.3 discusses the benefits of radiative transfer and
Monte Carlo models in paper and printing industry applications, and covers the
impact on measurement systems and industry standards. Finally, section 10.4 sums
up current challenges and future work in this application area of light scattering.

10.2 Current industrial use of light scattering models

The paper and print industries have been using two-flux light scattering models
since the 1930s. The main purpose has been to describe and predict quantities
like reflectance, transmittance, opacity and brightness, but also derived subjective
quantities like whiteness and various aspects of color. This is done for papers con-
taining different pulps and fillers, or papers with multilayer structures, e.g. coated
papers. Simulation and modeling is important for prediction in the development
of new products, and it is used for quality control in production (mainly printing
industry), and for data exchange in trading situations (mainly paper industry).

10.2.1 Standardized use of Kubelka–Munk

As is well known, the Kubelka–Munk light scattering and light absorption coeffi-
cients (s and k) are widely used in the pulp and paper industry in applications
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ranging from research projects to practical problems in paper mills. When assess-
ing optical properties of pulp and paper, it is primarily the diffuse reflection that
is used. A series of ISO standards [1–4] state how measurements should be made,
and how the Kubelka–Munk [5–7] theory should be used for interpretation of mea-
surement data. Regarding reflectance measurements, what is usually meant is the
diffuse reflectance factor, which is defined as the ratio of the radiation reflected by
a body to that reflected by the perfect reflecting diffusor under the same conditions
of illumination and detection. The perfect reflecting diffusor is not a real medium,
but a basic concept in paper optics.

10.2.1.1 Short formulation of the Kubelka–Munk theory

There are other theories that in greater detail describe the interaction of light with
matter, but the Kubelka–Munk theory is simple enough for widespread use, yet
accurate enough for many industrial applications. The Kubelka–Munk equations
are approximately valid when illumination and measurement take place in diffuse
conditions, and when gloss effects (i.e. directed reflectance from a surface) are
eliminated.

Kubelka–Munk is a two-flux model, and diffuse light is considered to be trav-
elling in the lower or upper hemisphere with the respective intensities i and j. A
plane-parallel medium of thickness w is considered, and x is the distance from the
background (or the bottom of the medium). Thus, a thin layer dx is illuminated
with intensity i(x) from above and j(x) from below. The model uses the two phe-
nomenological parameters s and k for scattering and absorption, and when light
passes through the layer dx, i and j are reduced by (s + k)i dx and (s + k)j dx
respectively, due to scattering and absorption. There is also the addition of sj dx
and si dx respectively, due to scattering from the other direction. The fundamental
equations of Kubelka–Munk are thus{

−di = −(s+ k)i dx+ sj dx
dj = −(s+ k)j dx+ si dx. (10.1)

The different sign in the left-hand side of these equations is due to the opposite
directions of propagation of the respective light fluxes.

It is customary in the paper industry to let x have the unit kg/m2, and thereby
s and k have the unit m2/kg. In line with this, w is then called grammage. This
was suggested by van den Akker [8], who showed that the original Kubelka–Munk
differential equations remain unchanged under this transformation. He proposed
this based on the fact that in practical application of the Kubelka–Munk model,
the thickness of a paper may change significantly without affecting the reflectance,
suggesting that the light scattering remains unchanged, which naturally is also true
for the grammage. The use of grammage is now common practice in paper-related
applications.

The Kubelka–Munk equations (10.1) are simple enough to have a solution that
can be analytically expressed in both a forward and an inverse direction, which
of course is part of the explanation of its widespread industrial use. If a paper
sample is illuminated with light of intensity I and reflected light is measured to
have intensity J , the reflectance is given by



10 Simulation and modeling of light scattering: paper and print applications 453

R = J/I. (10.2)

The reflectance of the background of the sample, denoted by Rg, of course has an
influence on the result, and it is customary to make measurements for R0, when
Rg = 0, and for R∞, for an opaque pad of samples so that Rg has no influence.
Some useful relations can then be stated as
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1

w
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1
R∞

−R∞
) ln( (1−R0R∞)R∞
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, (10.3)
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Opacity is then defined as

Op = 100
R0

R∞
. (10.7)

10.2.1.2 Optical geometry of measurement devices

The pulp and paper industry primarily uses an instrument with d/0 geometry,
which means diffuse illumination and detection perpendicular to the sample. Diffuse
illumination is usually accomplished with an integrating sphere, coated on the
inside with white barium sulphate. The sample and detector are screened from
direct illumination from the light source, and directed reflection is eliminated with
a gloss trap consisting of a black screen around the detector.

For color measurements in the printing industry, 45/0 instruments are widely
used. There, the sample is illuminated at an angle of 45 degrees, and detection is
perpendicular to the sample. In this way, gloss is automatically eliminated, except
for rough surfaces.

Optical measurement devices differ in more ways that just optical geometry.
Paper industry devices have a traceable calibration procedure and measure on a
relatively large area, while printing industry devices just use a relative calibration
and measures a smaller area. There are also differences in the size of the measured
area in relation to the illuminated one, and in the spectral content of the illumina-
tion. Differences in UV content of the illumination has a large impact for samples
that fluoresce. Instruments can also be equipped with various filters. There are
thus several reasons that identical samples get different results when measured in
different instruments, and these differences can well be large enough to cause waste
in production.
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10.2.2 Deficiencies of Kubelka–Munk

Several limitations for the Kubelka–Munk model have been reported, e.g. con-
cerning dependencies between the scattering and absorption parameters s and k
for translucent or strongly absorbing media [8–13], and attempts have been made
to attribute some of this behavior to intrinsic errors of the Kubelka–Munk model
[14–18], or to phenomena not included in it. Despite these limitations, the Kubelka–
Munk model is in widespread use for light scattering calculations in the pulp, paper
and printing industries, probably due to its explicit form and ease of use. These are
also sufficient reasons for continued industrial usage where the accuracy is suffi-
cient, and where there are no reported limitations. However, new solution methods
with better accuracy and a larger range of applicability should be considered in
many cases.

The interpretation of Kubelka–Munk coefficients in terms of structural features
is not always obvious. One example is their behavior for highly absorbing samples,
e.g. heavily dyed papers. It is observed that the apparent scattering coefficient is
reduced after dyeing at wavelengths corresponding to the absorption of the dyeing
colorant [12]. Since scattering is a feature of the structure of the sample, and dyeing
is not supposed to change the structure, this decrease is regarded as physically
incorrect. It has been shown [13, 17] that this decrease in part can be explained by
the inability of the Kubelka–Munk model to account for the anisotropy of scattered
light that is introduced by the higher absorption.

The anisotropy of the scattered light in real situations can often be large, and
can significantly influence the measurements. This holds even for situations with
isotropic single-scattering process or diffuse illumination, which might be non-
intuitive. The standardized use of the Kubelka–Munk model for interpretation of
measurement data implies a far too idealized view of the measurement situation.
This is especially noticeable for optically thin and highly absorbing samples [13].
Since the Kubelka–Munk model cannot accommodate for anisotropy, an angle-
resolved model is needed for measurement data interpretation in such cases, which
are not infrequent in practice.

Although numerical values of the asymmetry factor for paper samples are not
frequent in the literature, the few notes that are made suggest that the single-
scattering process in paper media is not at all isotropic [19]. This means that
no matter how one tries to create diffuse illumination, the Kubelka–Munk model
will not handle the basic scattering process correctly. This also calls for an angle-
resolved model, which would accommodate for any single-scattering process as well
as for the following anisotropy of light intensities.

There are also a few areas where it has always been clear that Kubelka–Munk
does not suffice, and where new and higher demands now drive the need for new
models. This is briefly covered and exemplified in subsection 10.2.4.

10.2.2.1 Some illustrated examples

The Dort2002 model [20] can be used to study how the d/0 instrument reflectance
factor, Rd/0, corresponds to the total reflectance for a chosen parameter space. The
comparison between Rd/0 and the total reflectance has been done for a parameter
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space 0 < τ < 20 and 0 < ω0 < 1, τ being the optical thickness and ω0 the single
scattering albedo, and the result is shown in Fig. 10.1. The simulation shows that
Rd/0 and the total reflectance as calculated withDort2002, RDORT2002, diverge for
optically thin and strongly absorbing media, with the dependence on optical thick-
ness being very significant. If the reflected light were isotropic, the d/0 reflectance
factor and the total reflectance would coincide, but they are seen to differ and the
difference depends strongly on medium parameters. This is a direct consequence of
the anisotropic nature of the intensity of the reflected light. This effect can also be
illustrated by results of asymptotic radiative transfer. Kokhanovsky [21–23] gives
some approximations for very thick and highly scattering media. With

y = 4

√
1− ω0

3(1− gω0) , (10.8)

the spherical albedo is given as

rs∞(μ) = exp(−y), (10.9)

and the plane albedo as

rp∞(μ) = exp(−3y(1 + 2μ)/7). (10.10)

The spherical albedo is the hemispherical reflectance for diffuse illumination, and
corresponds to total reflectance above. The plane albedo is the hemispherical re-
flectance for collimated illumination, but due to the reciprocity principle it also
holds for diffuse illumination and directed observation (μ is cosine of this direc-
tion). This means that Rd/0 above can be approximated by exp(−9y/7). It is also
explicitly clear from Eq. (10.10) that the reflected light shows directional depen-
dence, with less light reflected in normal directions.

This explains the shape of Fig. 10.1. The deviation of Rd/0 from the total re-
flectance is, as can be seen from Eq. (10.10), due to a higher reflectance in larger
polar angles. The size of the deviation also depends on medium thickness and ab-
sorption. The higher the absorption and the thinner the medium, the more light
will be scattered into larger polar angles, and the d/0 instrument cannot detect
this light. For a non-absorbing medium with g = 0, the reflectance approaches the
perfectly diffuse when the medium gets infinitely thick.

Simulations also show that the reflectance from a medium changes in a charac-
teristic way when the illumination is altered. For example, the BRDF is changed
when a sample is illuminated diffusely and with normally incident light respectively.
When the medium parameters are put to those intuitively believed to correspond to
the perfect diffusor, i.e. ω0 = 1, g = 0 and τ →∞, the supposed perfect diffusor re-
flects diffusely only if the illumination is diffuse but the reflectance is anisotropic for
normally incident light. In practice this will be the case for every supposed perfect
diffusor involving bulk scattering, since it is adequately described by the radiative
transfer equation. But, if the diffusor were to be constructed from some material
only involving surface scattering, i.e. with no light penetrating the medium, the
phenomenon could be avoided. It is thus a fundamental feature of every material
adequately described by radiative transfer theory that it can never reflect light as
a Lambertian surface independently of the illumination conditions.
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Fig. 10.1. The relative difference between the d/0 reflectance factor and the total re-
flectance as simulated with Dort2002. It can be seen that, if Rd/0 is interpreted as total
reflectance, the true total reflectance, here denoted RDORT2002, is underestimated and
that the difference depends strongly on medium parameters. The difference increases with
absorption and increases very rapidly when the optical thickness decreases. For intensely
scattering and optically thick media it approaches zero. The asymmetry factor g has been
put to zero to generate this plot. The coordinates for three Kubelka–Munk parameter
setups have been included for reference.

Figs 10.2 and 10.3 show how the intensity of the reflected light is actually dis-
tributed in an ideal measurement device of 45/0 and d/0 type, respectively. Both
instrument types measure in the normal direction only, and the following Kubelka–
Munk calculations therefore assume a perfectly diffuse distribution (inner gray
half sphere). It is obvious that this differs greatly from the actual distribution
(outer white shape), and this yields errors even for the situation with perfectly
isotropic single scattering that the system is designed for (topmost panes). For
a more anisotropic single scattering process the error increases, and in all cases
the total amount of reflected light is underestimated. In the 45/0 case, the highly
asymmetric distribution should be noted, which obviously differs greatly from where
Kubelka–Munk should be used. Although numerical values of asymmetry factor for
paper are scarcely reported, it should be noted that values in the range 0.3–0.8 are
common, which corresponds to the lower panes of Figs 10.2 and 10.3.
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Fig. 10.2. Anisotropic BRDF from sample (ω0 = 0.9, τ = 5.5) measured in 45/0 instru-
ment geometry for different asymmetry factors (g = 0 at top and g = 0.65 at bottom),
as simulated with Dort2002 and presented in a relative scale. Note that the instrument
measures in the normal direction, and therefore incorrectly must assume the reflectance
to be the same in all other directions (the gray half sphere). The instrument clearly
underestimates the reflectance. Incident beam indicated as solid line.

Fig. 10.3. Anisotropic BRDF from sample (ω0 = 0.9, τ = 5.5) measured in d/0 instru-
ment geometry for different asymmetry factors (g = 0 at top and g = 0.65 at bottom),
as simulated with Dort2002 and presented in a relative scale. Note that the instrument
measures in the normal direction, and therefore incorrectly must assume the reflectance
to be the same in all other directions (the gray half sphere). The instrument clearly
underestimates the reflectance.
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Fig. 10.4. Opacity of sample (ω0 = 0.99, τ = 6) as calculated with Dort2002 in 45/0 and
d/0 instrument geometries for different asymmetry factors. Note the decrease in opacity
for large asymmetry factors.

The opacity (defined in Eq. (10.7)) and the reflectance factor over black back-
ground were calculated with Dort2002 for identical samples of finite thickness,
but with varying asymmetry factor. The simulations mimic the standardized d/0
and 45/0 measurement situations, and are illustrated in Figs 10.4 and 10.5. It is
clear how these quantities are markedly affected by the asymmetry factor, and the
behavior approximately follows the exp(−A(1 − g)−1/2) law, thus decreasing for
larger asymmetry factor.

It has, as mentioned above, been reported on apparent dependencies between
the Kubelka–Munk scattering and absorption coefficients for dyed paper samples.
Light scattering is largely due to the structure of the sample, which is not affected
by the addition of dye. Therefore, identical paper samples with increasing amount
of dye should have nearly similar scattering coefficients. However, it is reported how
the scattering coefficient decreases in the region of absorption, and this has been
interpreted as an intrinsic error of the Kubelka–Munk model. Fig. 10.6 illustrates
measurements of this for dyed paper samples with fillers.
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Fig. 10.5. Reflectance factor over black background of sample (ω0 = 0.99, τ = 6) as
calculated with Dort2002 in 45/0 and d/0 instrument geometries for different asymmetry
factors. The anisotropy approximately follows the exp(−A(1− g)−1/2) law, although the
sample thickness is finite. Note the decrease in reflectance factor for large asymmetry
factors.

10.2.3 Suggested extensions to Kubelka–Munk

The Kubelka–Munk model has been modified and extended for different purposes in
a variety of ways [24]. Most suggestions are, however, of limited generality, although
they yield somewhat improved results for certain specific purposes. This is fine, as
long as the new models are used only for that given purpose. One example is given
by Murphy [25], where one finds an interesting method for estimating optical prop-
erties of coatings, based on an extended Kubelka–Munk approach. Kokhanovsky
[26] introduces a modified Kubelka–Munk approximation for optically thick me-
dia and deduces analytical relations to asymptotic radiative transfer theory for
this case. Yet another alternative is to suggest analytical approximations to ra-
diative transfer theory for specific cases, without even relating to Kubelka–Munk.
An example of this is given by Kokhanovsky and Hopkinson [27], who deduce an
analytical approximation to radiative transfer theory for optically thick and weakly
absorbing media, and thereby relate material parameters to diffuse reflectance mea-
surements for this case.
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Fig. 10.6. Anomalous parameter dependencies for dyed paper samples with fillers, when
measured according to paper industry standards and calculated using Kubelka–Munk.
Upper curves are KM scattering coefficient s, and lower curves are KM absorption coeffi-
cient k. The decrease in s in the region of absorption has been interpreted as an intrinsic
error of KM theory. Experimental details can be found in [38].

The Kubelka–Munk coefficients s and k have no direct physical meaning on
their own, and should only be interpreted within the Kubelka–Munk model; they
do not represent anything physically objective outside the Kubelka–Munk model.
This is contrary to the usual formulation of the radiative transfer problem, where
the scattering and absorption parameters are related to the mean free path of the
medium, and are thus model- and geometry-independent. They can therefore be
given a physically objective interpretation, which is a desirable feature for modeling.
There are approximate relations between the Kubelka–Munk coefficients and the
physically objective absorption and scattering coefficients (σa and σs), like

s =
3
4
σs(1− g), (10.11)

k = 2σa, (10.12)

suggested by Mudgett and Richards [28, 29] and complemented by van de Hulst
[30]. No exact translation can exist, however, since Kubelka–Munk is incommen-
surable with higher-order models; Kubelka–Munk is fundamentally simpler and a
translation to higher-order models could never be complete. Indeed, the existence
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of a complete translation would actually imply that the higher-order model was
equivalent to the simpler Kubelka–Munk, which would be a contradiction in terms.
Instead, relations like these should be regarded as the first term of some series ex-
pansion. There is, however, a reduced equivalence for infinitely thick non-absorbing
samples, and for that case it is possible to deduce a complete translation.

Some authors have tried to improve the Kubelka–Munk model as such, not for
a specific purpose only, but more as an attempt to actually do a better job than
Kubelka and Munk in that same setting. Yang and co-workers recently proposed
a revised Kubelka–Munk theory [31–34], arguing that there was an oversight in
the derivation of the original Kubelka–Munk theory. This was debated, however,
by Edström [35], who also discussed different modeling strategies and their feasi-
bility. Edström argues that Kubelka–Munk is as ‘exact’ as it can be within the
two-flux approximation. There is therefore no such general two-flux improvement
to be made, and those kinds of extensions of Kubelka–Munk are of little value.
Modifications for specific purposes are still relevant, however, as mentioned above.

Some authors use random walk discussions and various reasoning from statisti-
cal mechanics (e.g. [36]), which is fine, but others are dangerously close to mixing
finite and infinitesimal properties in an unsatisfactory way.

10.2.4 New and higher demands drive the need for new models

Measurement methods have been developed independently in the paper and print-
ing industries, and are today incompatible. To face market challenges, better models
are required for specifying and communicating optical properties, or inefficiencies
will hinder competitiveness. Accurate color reproduction is difficult since papers,
inks, and printing methods usually differ between the proof and the actual produc-
tion. The proof is usually printed on another paper and with a different printing
process. Different illumination conditions between proof and print may give a very
different perception of the colors. This proof-to-production problem causes waste,
and this step is made even harder if fluorescing agents are used in the paper.

Apart from the obvious need for harmonization of standards and calibration
routines, better models are called for to accommodate accurate treatment of fluo-
rescence and a transfer to physically objective material parameters. The latter is
needed for accurate data exchange between different measurement situations, and
requires better models for interpretation of measurement data.

There has for a long time been a broad understanding that gloss is not handled
by Kubelka–Munk, and this has led to various attempts to eliminate gloss in mea-
surement situations. This is not always possible, however, and gloss is still present
in real situations. There is therefore a need for models that can handle gloss ef-
fects, and thereby, for example, distinguish between surface and bulk contributions
to reflectance measurements.

It is well known that the Kubelka–Munk model has limitations, but it is still
also used outside its range of applicability, probably because of its ease of use and
the lack of accessible alternatives. For very thin samples and for highly absorbing
samples more accurate models are needed. Apart from solving the full radiative
transfer equation, there are different approximations. Kokhanovsky [23] states an
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expression for the reflection function for high absorption as

R∞(ξ, η, ϕ) =
ω0p(cosΘ)

4(ξ + η)(1− ω0F ) , (10.13)

where ξ and η are cosine of polar angle for incident and observation directions, and
F ≈ 1.

Within the paper and printing industries, there is but an emerging understand-
ing that anisotropy in the light distribution affects measurements, and this far
more than the common idealized view of the measurement situation. The need for
angle-resolved models will grow together with this understanding.

There is an increasing desire for deeper knowledge of the effects of gloss, fluo-
rescence, anisotropy and more, not just to be able to measure and interpret data,
but also to make accurate predictions and thereby include such phenomena in the
optical design of new products. This ability will give a competitive advantage.

10.3 Benefits of newer models

There are numerous models in the light scattering community that could solve
selections of paper and printing industry problems, but most are not sufficiently
accessible or specific for industrial use. There are, however, both radiative transfer
and Monte Carlo models that are adapted to this area of application, and different
benefits can be identified.

10.3.1 Radiative transfer modeling

The Kubelka–Munk model is actually itself a radiative transfer model, although
the simplest form – a two-flux model. The natural next step is of course to use a
many-flux model or, which might be a better term, an angle-resolved model. One
such adapted model in recent use is Dort2002 [20], which is a discrete ordinate
method. Dort2002 has also been extensively studied regarding numerical perfor-
mance in both a forward [37] and an inverse problem setting [38, 39], and it has
been successfully applied to real paper industry problems [13, 17, 40].

One obvious advantage in model development of going from a two-flux to a
many-flux is that this is a true generalization. Therefore, existing measurement
devices and results can still be used, and nothing needs to be discarded. Since the
same setting can be handled, it simply serves the possibility of more accurate in-
terpretation of measurement data. There are, however, a number of more profound
advantages.

Instead of using the phenomenological parameters s and k, it is possible to use
the physically objective parameters σs and σa, and the phase function p (see next
section for definition). Since s and k get their meaning through the Kubelka–Munk
model, they have no objective meaning outside, and they are both model- and
geometry-dependent. Physically objective material parameters are independent of
model and measurement geometry, and are thus better suited for data exchange.

An angle-resolved model also accounts for anisotropy through the phase function
p, which is often characterized through the asymmetry factor g. This makes it
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possible to account for differences in measurement geometry, which is ignored in
the over-idealized view of the measurement situation that is necessary when using
Kubelka–Munk. Since anisotropy is ever-present, the ability to include it in a model
also makes it possible to understand the phenomenon, but more importantly to use
it as a design parameter in new products. To be able to take full advantage of this,
however, angle-resolved measurements need to be used.

10.3.1.1 Radiative transfer forward problem formulation

For an ideally reflecting medium, all incoming light is specularly reflected at the
surface. For a turbid medium, transmission as well as absorption and multiple
scattering inside the medium have to be taken into consideration. In paper appli-
cations, the problem is studied in a plane-parallel geometry, where the horizontal
extension of the medium is assumed to be large enough to give no boundary effects
at the sides. The boundary conditions at the top and bottom, including illumina-
tion, are assumed to be time- and space-independent. The radiation is assumed to
be monochromatic, or confined to a narrow wavelength range. The scattering is
assumed to be without change in frequency between incoming and outgoing radi-
ation. The medium is treated as a continuum of scattering and absorption sites.
Polarization effects are often ignored, hence using only the first component of the
Stokes 4-vector. What is left is then a scalar intensity, which is the variable to solve
for.

The energy flow is considered as non-interacting beams of radiation in all di-
rections. This makes it possible to treat the beams separately. The intensity, I, of
the radiation is always considered to be positive. When radiation traverses a finite
thickness ds of the medium in its direction of propagation, a fraction is extinct due
to absorption and scattering. The intensity then becomes I+dI, and the extinction
coefficient is defined as

σe = − dI

I ds
. (10.14)

The extinction coefficient can be separated into two parts, the absorption and scat-
tering coefficients σa and σs, corresponding to the different origins of the extinction.
The coefficients are related through σe = σa+σs, and the single scattering albedo,
which is the probability for scattering given an extinction event, and is then defined
as

ω0 =
σs
σe
=

σs
σa + σs

. (10.15)

The phase function, p, specifies the angular distribution of the scattering pro-
cess. If the phase function is normalized by∫ 2π

0

∫ π
0

sin θ
p(θ′, ϕ′; θ, ϕ)

4π
dθ dϕ = 1, (10.16)

where θ and ϕ are the polar and azimuthal angle coordinates of spherical geom-
etry for the direction of the radiation (primed arguments correspond to incident
radiation), this can be given a probabilistic interpretation. When radiation in the
direction (θ′, ϕ′) is scattered, the probability that it is scattered into the cone of
solid angle dθdϕ centered on the direction (θ, ϕ) is
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p(θ′, ϕ′; θ, ϕ) dθ dϕ
4π

. (10.17)

Different phase functions have been proposed to physically describe various
types of scattering. Among the best known are the phase functions given by
Rayleigh [41] and Mie [42]. A very commonly used one-parameter analytical ap-
proximation of a real phase function is the Henyey–Greenstein [43] phase function.
It is given by

p(cosΘ) =
1− g2

(1 + g2 − 2g cosΘ)3/2
, (10.18)

where Θ is the total scattering angle. It is related to the angular coordinates of
propagation through the cosine law of spherical geometry as

cosΘ = cos θ′ cos θ + sin θ′ sin θ cos(ϕ′ − ϕ). (10.19)

The coefficients for Legendre polynomial expansion (also referred to as moments)
of the Henyey–Greenstein phase function are simply χl = gl. The parameter g
is called the asymmetry factor and controls the scattering pattern, ranging from
complete forward scattering (g = 1) over isotropic scattering (g = 0) to complete
backward scattering (g = −1). An illustration of this is shown in Fig. 10.7.

g=0 g=0.8

Fig. 10.7. The probability for scattering directions using the Henyey–Greenstein phase
function and different values for the asymmetry factor g. Light is incident from the left
and the scattering event occurs at the point marked with an asterisk.

In the plane-parallel geometry, distances are measured normal to the surface of
the medium. This coincides with the z-axis in a Cartesian coordinate system if the
surface is placed in the x-y-plane, and therefore dz = ds cos θ. The optical depth is
measured from the top surface and down, and is thus defined as

τ(z) =
∫ ∞

z

σe dz
′. (10.20)

Introducing u = cos θ, gives dτ = −σeu ds, and Chandrasekhar [44, eq. I.71] states
the equation of radiative transfer for a scattering plane-parallel medium as

u
dI(τ, u, ϕ)

dτ
= I(τ, u, ϕ)− ω0

4π

∫ 2π

0

∫ 1

−1

p(u′, ϕ′;u, ϕ)I(τ, u′, ϕ′) du′ dϕ′. (10.21)

The integral term is a source function, which gives the intensity scattered from
all incoming directions at a point to a specified direction, and it is evident how
the phase function acts as a kernel in this integral. It is possible to add a term
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for emission, like fluorescence or thermal emission, to the source function if the
emission is inside the wavelength range of interest. To perform the coupling of the
intensities of the different wavelengths associated with fluorescence, an outer loop
over wavelengths will be needed in a solution procedure.

The integro-differential equation of radiative transfer (10.21), can be treated
in various ways, but solution methods will not be given here. Suffice it to say
that discrete ordinate methods are common (see other chapters in this book), and
they generally work as follows. Fourier analysis gives a system of equations, which
are discretized using numerical quadrature. The problem can then be transferred
to a problem on eigenvalues of matrices. Boundary and continuity conditions are
imposed, and the computed intensity is extended from the quadrature points to
the entire interval through interpolation formulas.

10.3.1.2 Radiative transfer inverse problem formulation

Using reflectance measurements to solve for only scattering and absorption pa-
rameters is rather straightforward, and many methods do this in an optimization
procedure with an approximate forward problem like the diffusion approximation,
the Eddington approximation or the Kubelka–Munk model. Methods for also esti-
mating the asymmetry factor g are scarce, and even fewer are efficient and accurate.
Most efforts come from medical applications, while the industrial side has shown
less interest so far. Van Gemert and Star [45] presented an attempt, but it included
approximations and boundary conditions that give it limited practical use. Prahl
et al. [46] introduced the inverse adding-doubling method, but reported problems
in finding suitable initial guess values. One recent interesting approach of high
accuracy was presented by Joshi et al. [47], but it suffers from long computation
times. Edström [38] recently presented a two-phase method that uses only simple
implementations of standard optimization methods for this parameter estimation
problem, and still achieved good efficiency. The successful recovery of σs, σa and g
by this two-phase method was illustrated by application to relevant paper industry
problems. Of course, for thick samples, only σa and (1− g)σs can be found.

Estimating optical parameters with a radiative transfer model would be valuable
for the paper industry since it could increase the accuracy compared to using
Kubelka–Munk. It could also resolve problems regarding ink characterization due
to deficiencies of the Kubelka–Munk model for highly absorbing and optically thin
samples [13]. Another important benefit would be the possibility of more accurate
data exchange between the paper and printing industries. This is currently not
possible, partly due to different instrument geometries, while the Kubelka–Munk
parameters are geometry-dependent.

The parameter estimation problem consists in determining σs, σa and g (using
the Henyey–Greenstein phase function (10.18)) from angle-resolved intensity mea-
surements in chosen directions, I(ui, ϕi). Such measurements are available from
special goniophotometers. The parameter estimation problem can thus be defined
as

find σs, σa and g given the measurements I(ui, ϕi). (10.22)

The parameter estimation problem is to find parameter values that minimize
some distance measure between real measurements and model predictions. The
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problem is usually over-determined with noisy measurements. The noise can be
controlled by averaging over several measurements, but the parameter estimation
is nevertheless a nonzero-residual problem.

One way to introduce the distance measure to minimize is through an objective
function that sums squared errors [38], such as

F (x) =
1
2
||f(x)||2 = 1

2

∑
i

fi(x)2 =
1
2

∑
i

{Mi(x)− bi}2, (10.23)

where i denotes the respective quantity (e.g. intensity in a given direction),
and x is the vector of parameters to be determined. Each element of the vec-
tor function f(x) is the difference between model calculation Mi(x) and mea-
surement bi. This formulation is statistically optimal if the measurement errors
are normally distributed, which may reasonably be considered to be the case
in a well-tuned industrial application. An obvious formulation of the parameter
estimation problem is then minx F (x), or the explicit least-squares formulation
minx 1

2 ||f(x)||22 = minx 1
2

∑
i fi(x)

2. If one defines the set of permissible parameter
combinations as

S = {(σs, σa, g) : σs > 0, σa > 0,−1 < g < 1}, (10.24)

one can state the parameter estimation problem in various ways, which makes it
possible to use different optimization methods to find a solution.

It should be pointed out that it is therefore often assumed that model output or
sample measurements are given uniquely from medium parameters. This is often a
reasonable assumption, for applied problems, and proof has been given for several
reasonable cases [48], although not generally for the entire problem class. A quite
general proof for the uniqueness of the solution to the inverse problem – given the
existence of a solution to the forward problem – has been given by Choulli and
Stefanov [49]. The uniqueness will also depend on the type of measurements done.
The choice of experiment is of great importance, and the setup must be sensitive to
the parameters to be estimated. There is still more work to be done to achieve full
and general knowledge regarding existence and uniqueness for the general radiative
transfer problem and its inverse.

Edström [38] performed a sensitivity analysis of the inverse problem with the
objective function given by Eq. (10.23), and found expressions for the relative sen-
sitivity of parameter xi for change (perturbation) in measurement bj . These show
that even small perturbations in measurement j may result in large changes in pa-
rameter i. This may be the case for nonzero-residual problems with large curvature
and for problems with a large residual, but it may also happen for zero-residual
problems with ill-conditioned Jacobian or Hessian in the solution. Calculating ma-
terial parameters from reflectance measurements is an outstanding issue in general
radiative transfer problems. Finding a feasible starting point can in itself be a great
problem in many applications.

Other types of sensitivity analysis – e.g. objective function surface plots, phase
space plots and sensitivity matrices – give good insight into the character of the
parameter estimation problem. Such studies will be valuable in the design of in-
struments for angle-resolved measurements and in analysis of the corresponding
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measurement data. This is particularly important for the paper industry, where
anisotropy is gradually becoming an issue. The sensitivity analysis points out which
parameters are sensitive to what measurements. This shows the kind of accuracy
that can be expected from the estimations, but it also helps to design new mea-
surements with minimal impact of measurement noise. Numerical experiments can
thus suggest better locations of measurement points to improve the final results of
the parameter estimation. Feasibility and demands for industrial implementation
of angle-resolved measurements are in initial discussions between European paper
industries and institutes, and while online industrial implementation may lie a few
years in the future, the use in research labs is already there and will necessarily
increase to attack anisotropy issues.

The use of objective function surface plots is easily illustrated. The first pane
of Fig. 10.8 indicates how cases with low opacity (defined as Op = 100 · R0/R∞)
give well-conditioned problems with non-sensitive solutions for the d/0 problem
(estimating only σs and σa from measurements of R0 and R∞). This is seen since
the objective function surface is smooth and locally convex, and there is one dis-
tinct global minimum. Cases with high opacity (second pane of Fig. 10.8), on the
other hand, seem to have an objective function surface that is flat in one or more
directions, which shows that those cases give ill-conditioned problems with poor
convergence (hard to find iteration steps in the optimization that give sufficient
descent in the flat areas) or sensitive solutions (a small change in target value can
give a large change in the parameter solution). Fig. 10.9 shows that the problem
when estimating also the asymmetry factor g (now using angle-resolved inten-
sity measurements) is not convex, and indicates that problems with higher g are
more ill-conditioned. Although the objective function surface is smooth, the non-
quadratic curvature and the local flatness along lines or curves indicate that the
problem is ill-conditioned, possibly with poor convergence or sensitive solutions.
It is also evident that there are ridges that will keep the optimization algorithm
away from the area with the optimum, unless a sufficiently good starting point is
provided. Numerical investigations show that the ill-conditioning is an even larger
problem than indicated by Fig. 10.9, especially when noise is included.

10.3.2 Monte Carlo modeling

Monte Carlo (MC) models are becoming more frequently used in the same areas
as radiative transfer models. They are inherently much slower and usually have
a large number of parameters that are hard to determine (the parameter set also
varies with the choice of physics to model), but faster computers make them more
interesting. Although such models might not get fast enough for online use in a
production environment, there are other advantages. Since it is possible to include
any desired phenomena, one can avoid undesired approximations, and one can
use physical rather than phenomenological parameters. This gives MC models a
potentially great explanatory power.

In paper and printing applications, there are a number of important issues that
cannot be easily handled with ordinary radiative transfer models, but that can be
accommodated in an MC model. The obvious one is the possibility of modeling real
structures, including the cellulose fiber network, filler particles, coating layers, col-
orants in inks etc., treating them as geometrical objects, and handling interactions
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Fig. 10.8. Two test cases for the d/0 problem. Upper (σs = 14.7, σa = 0.03, g = 0,
w = 0.1, opacity = 50.1%): The objective function surface is smooth and locally convex
with one distinct local minimum. The problem should be well conditioned with a non-
sensitive solution. The solution is, however, close to a boundary, which may give rise to
problems. Lower (σs = 14.0, σa = 5.6, g = 0, w = 0.1, opacity = 95.5%): The objective
function surface is smooth, but is locally flat along a line, possibly giving poor convergence
or a sensitive solution. The diamonds indicate the points of convergence.
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Fig. 10.9. Two test cases for the full problem using angle-resolved intensity measure-
ments. Objective function surfaces as a function of σs and g with σa fixed. Upper:
(σs = 100, σa = 20, g = 0.05, w = 0.03). Lower: (σs = 100, σa = 20, g = 0.75, w = 0.03).
The objective function surface is smooth but non-convex, and is locally flat along a curve
(especially for g = 0.75), possibly giving poor convergence or a sensitive solution. A poor
starting point may lead to divergence because of the curvature. The diamonds indicate
the points of convergence.
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with fundamental physical laws. In MC models, a large number of light packages is
sent to the sample according to a specified illumination, the light packages interact
with the structure, and are finally collected in a specified detector. All kinds of
statistics is then available for post-processing, and in principle there is no limit on
what phenomena can be included in the simulation. One drawback of MC models
are the long computation times, especially for highly scattering and optically thick
media, but this may be acceptable for phenomena that are not possible to simulate
in other ways. Another drawback is the use of many parameters, which need a large
amount of measurement to determine. Yet some are not easily measured and need
to be fitted, which does not always give unique or accurate results.

Among the most important issues that are almost exclusively simulated with
MC models in the paper industry today are surface roughness and gloss, lateral
scattering and optical dot gain, spatial variations and mottling, and fluorescence.

Most radiative transfer models do not consider surfaces explicitly, but handle
only the bulk. When surfaces are included, it is most often a flat boundary. Rough
surfaces are hard to model with differential models, which leaves only MC models.
Gloss is an important feature of paper that comes from the roughness of every paper
surface. The influence of gloss on visual appearance is large, so accurate modeling
is important. Although several attempts have been made, there is still a lot to be
done to fully understand and describe surface scattering and to distinguish it from
bulk scattering in measurements.

Most radiative transfer models are not spatially resolved, or are not adapted to
paper applications. Most printing is half-toned, meaning that images are achieved
by printing a raster of small dots. Due to lateral scattering, the dots appear to
grow, which is called optical dot gain, and this affects the perceived color. MC
models are the only practical choice for accurate modeling of optical dot gain in
the paper industry today.

A typical paper contains a lot of spatial variations due to agglomeration of
paper constituents and uneven application of coatings and inks. This gives rise to
optical mottling, gloss variations and other defects, which are directly coupled to
the real physical structure of the paper. MC models are obviously the only tool for
studies of such phenomena.

Fluorescence could in principle be handled also in a radiative transfer model.
However, there is no suitable such model available for paper industry applications
today. Therefore, MC models dominate here. However, radiative transfer models
could well take over this niche.

An Open Source platform for Monte Carlo simulations of light scattering in
paper is about to be launched in a joint Swedish project, where it will be free to
contribute and share computer code and structure data. A web site will be released
during 2009. Hopefully, the scientific community will find it valuable to use the
tools for free, and will also hopefully contribute with further code development,
addition of new components etc.
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10.3.3 Impact on measurement systems and industry standards

Methods and standards for measuring and handling optical properties differ be-
tween the paper and graphic arts industries. This is due to the fact that devel-
opment over the years has been in relative isolation between the industries, with
different issues and goals in mind.

There is room for a lot of improvement and development in industrial appli-
cation regarding measurement systems and standardization. If one wants to take
advantage of new possibilities to model anisotropy and fluorescence, it is going
to be necessary to agree upon and standardize goniophotometric and bispectral
measurement devices. But already for existing devices, calibration routines, UV
content of illumination, area of measurement contra illumination and so on need
to be better specified in order to facilitate accurate data exchange. There is a need
for overall harmonization of standards since there are so many that most applied
users do not even know which standards do apply in a given setting, and there are
also gaps, overlaps and inconsistencies.

The wish to model the real structure of paper and printed paper products in-
stead of homogenized approximations will drive the development of MC models
with real explanative power, which in turn will give an increased need for charac-
terization methods.

10.4 Discussion

On the more theoretical side, it can be noted that not much is known about the
uniqueness of solutions to the inverse radiative transfer problem (practically, the
uniqueness clearly depends on the chosen measurement setup, and the experiment
must be optimized with respect to the parameters to be retrieved from indirect
measurements). A functional analytic approach would find a rich research area
here. Since the use of models of this type is growing rapidly in various applied
sciences, studies of this kind are called for.

On the more applied side is the investigation and utilization of nanomaterials.
This follows the general trend in other sciences. Since nanomaterials can have ex-
treme properties, they can probably find use in both surface treatment and in inks.
One recent example is the discovery that ordinary candle soot contains multicolor
fluorescent carbon nanoparticles [50], and it would be interesting to see what use
this could have for paper whiteness or special inks. Since the size of nanoparticles
is of the same order as the wavelength of visible light, the interaction of light with
these particles may need different modeling strategies than the ones used in the area
today. With the extreme properties of new nanomaterials follows the challenge to
characterize them. Characterization will be needed both optically (scattering and
absorption parameters, asymmetry factor, fluorescence properties) and otherwise
(position in paper structure, effect on other properties such as chemistry, etc.).

Spatially resolved radiative transfer models and corresponding forward and in-
verse solution algorithms are interesting within both mathematics and applied sci-
ences. Theoretically, even less is known here, and applications need more powerful
tools than the rather crude finite element methods in use today. Various imaging,
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localizing, characterizing and optimizing problems in most areas where radiative
transfer is used today would greatly benefit from a breakthrough here. In printing
applications, the possibility of correctly modeling optical dot gain has long been
waited for.

Monte Carlo models are becoming more frequently used in the same areas as
radiative transfer models. Although they are much slower and often have a large
number of parameters that are not easily determined, the development of faster
computers will make them increasingly interesting. Furthermore, the possibility
of including any desired phenomena, to avoid undesired approximations and to
use physical rather than phenomenological parameters, gives Monte Carlo models
potentially great explanatory power. There are ongoing activities in this area. An
outstanding problem then is parameter estimation in Monte Carlo models. Their
genuinely discrete nature and their long computation times are an obstacle to their
full use in applied sciences.

Looking more specifically at the paper optics area, it can be noted that there
are at least two key areas that need more modeling development. One is fluo-
rescence phenomena, which have a large impact on visual appearance and color
reproduction. Yet, the treatment of fluorescence in standards, practice and models
is varying, poor or non-existent. The UV spectrum of incident light in measurement
devices needs to be standardized, and bispectral measurement devices need to be
standardized and widely used for fluorescence characterization. The other area is
surface roughness and gloss, which also have a large impact on visual appearance.
Although several attempts have been made to model this, a lot remains to be done
to fully understand and describe surface scattering and to distinguish it from bulk
scattering in measurements.

Very little is written and known about numerical values of phase function mo-
ments χl or the asymmetry factor g (or the reduced scattering coefficient (1−g)σs)
for materials like paper, and the question of anisotropy and the utilization of the
asymmetry factor is new to the paper industry. Unlike several radiative transfer ap-
plications, NIR/IR is not relevant, only the visible range (and UV via fluorescence)
is of importance. Spectral goniophotometer measurements of various paper samples
are needed for a broad evaluation of the new parameter estimation methods for the
asymmetry factor, but also of the spectral dependence and the numerical values of
the asymmetry factor. The inverse problem should be studied for examining the
influence of measurement errors or noise on the retrieved parameters; this would
make it possible to design experiments and measurement setups with minimal in-
fluence from measurement errors. The possibility of using the asymmetry factor as
a design variable opens for new opportunities in the design of new paper products.

Most industrial models of today use phenomenological and model dependent pa-
rameters, and this has some disadvantages. Since the parameters are not physically
objective, they are not necessarily exchangeable between situations. Measuring the
same samples with different instruments may give not only different values but
also different ranking, which is not satisfactory. One example of this is estima-
tion of optical properties from measurements using d/0 and 45/0 geometry. Also,
phenomena that might be considered physically linear do not necessarily appear
so since the phenomenological parameters are not the actual physical quantities.
This also diminishes the explanatory power of the models, since the parameters
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are actually defined by the models and therefore often have no absolute and objec-
tive meaning outside. It is therefore desirable to use physically objective material
parameters, real paper properties and real process parameters. This makes data
more exchangeable since they are independent of model and measurement geom-
etry. This also gives the models more explanatory power, as they convey more of
the physical reality. It is a clear trend that any new optical models introduced will
need to use physically objective material parameters instead of phenomenological
model parameters.

10.5 Conclusions

How the paper and printing industries successfully use the Kubelka–Munk model
for interpretation of reflectance measurements has been discussed. Simulation and
modeling is used for prediction in the development of new products, for quality
control in production, and for data exchange in trading situations.

It has been noted that there is room for improvement regarding accuracy and
efficiency in today’s use, and that new and higher demands on knowledge, accu-
racy and range of applicability drive the need for new simulation models. Suitable
models and measurements are in principle available, but relatively little work of
the scientific community is directly adapted to the specific industrial needs and
demands.

Examples of current challenges and future work have been outlined, and it is
evident that much progress can be made to advance the understanding of sev-
eral industrially relevant phenomena through proper application of modeling and
measurements.
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11 Coherent backscattering in planetary regoliths

Karri Muinonen, Jani Tyynelä, Evgenij Zubko, and Gorden Videen

11.1 Introduction

Atmosphereless solar-system objects exhibit two ubiquitous light-scattering phe-
nomena at small solar phase angles (sun–object–observer angle α): first, the op-
position effect in the intensity of scattered sunlight (e.g., [1]); and, second, the
negative degree of linear polarization (I⊥ − I‖)/(I⊥ + I‖). Here I‖ denotes the in-
tensity component parallel to the scattering plane defined by the Sun, the object,
and the observer and I⊥ denotes the component perpendicular to that plane [2].

Narrow opposition effects for the bright E-class asteroids (44) Nysa and (64) An-
gelina have been discovered by Harris et al. [3]; whereas, sharp polarimetric phase
effects have been discovered for the same objects by Rosenbush et al. [4, 5]. Observa-
tions of transneptunian objects made at the Very Large Telescope of the European
Southern Observatory have yielded both sharp and shallow polarimetric phase ef-
fects at phase angles within 1.5 degrees of exact opposition (e.g., [6–8]). A peculiar
asymmetric polarization curve with a large phase angle of polarization minimum
was discovered for asteroid (234) Barbara by Cellino et al. [9]. For reviews on phase
effects observed for solar-system objects, see [10–12]. Observations on the photo-
metric and polarimetric phase effects constitute often the only observational data
available on a given solar-system object, so it is important to interpret these data
correctly.

The physical interpretation of these observations requires an understanding of
the intricate interplay of single scattering and multiple scattering in planetary re-
goliths. The single scatterers can sometimes be identified to be the small particles
in the objects; whereas, sometimes, the scatterers are the inhomogeneities within
otherwise homogeneous particles that are themselves substantially larger than the
wavelength. Multiple scattering among the single scatterers can result in smoothing
of the scattering characteristics for some objects but sharpening of the character-
istics for others.

There are no exact electromagnetic solutions for light scattering by what the
surfaces of atmosphereless solar-system objects are presumably composed of, i.e.,
close-packed random media of inhomogeneous particles large compared to the wave-
length. The direct problem of computing scattering characteristics for media with
well specified physical properties poses a major challenge. In the inverse problem
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of deriving information about the physical properties of planetary regoliths based
on the observational data available, it has been mandatory to make use of simpli-
fied scattering models. For example, the popular photometric models (e.g., [13–15])
for the inverse problem account for the single-particle albedo and phase function,
the volume density (or fraction) of particles, and the roughness of the interface
between the scattering medium and the free space. It is widely accepted that, ana-
lyzed separately, disk-integrated photometric or polarimetric phase effects provide
two ill-posed inverse problems. Analyzing the two data sets simultaneously and/or
moving to disk-resolved analyses can at least partially remove the ambiguities.

Particle morphology is one primary factor in determining how incident light
is scattered and absorbed by particles. Conversely, knowledge of the differences
and similarities of particle extinction, scattering, and absorption cross-sections,
asymmetry parameters, and scattering phase matrices may provide clues to the
morphology and is of key importance in remote-sensing studies of small solar-
system objects such as asteroids and comets.

As a summary for physical modeling, multiple scattering in planetary regoliths
depends on five groups of physical parameters: first, surface roughness in length
scales of several wavelengths and large numbers of particles cause shadowing effects;
second, the porosity of the particulate medium causes shadowing effects; third, par-
ticle size introduces its signature into the scattering characteristics; fourth, particle
shape plays an important role in determining the detailed structure of the parti-
cle scattering matrix; and, fifth, the optical properties of the material of which
the particles are composed (including inhomogeneous media) dictate the material
response to incident light, thereby also influencing the scattering matrix.

Substantial advances in theories for the physical causes of opposition phenom-
ena have been made in the past 25 years: the coherent-backscattering mechanism
(CBM) has been established to contribute to the photometry and polarimetry at
small phase angles [16–20], challenging the traditional shadowing-mechanism (SM)
interpretations. Whereas CBM is a multiple-scattering mechanism for scattering
orders higher than the first, SM is a first-order multiple-scattering mechanism.
Both CBM and SM contribute to the opposition effects observed for atmosphere-
less objects. Whereas CBM can contribute to the negative polarization branch, it
continues to be a matter of some controversy whether SM, as presented in [21],
can affect the polarization branch. There are several reviews of the mechanisms for
backscattering phenomena of atmosphereless solar system bodies (e.g., [22–24]),
and we refer the reader to these reviews for a more detailed history of, e.g., CBM
and SM.

Coherent backscattering by plane-parallel media of spherical scatterers has been
treated in [25] using numerical Monte Carlo methods, accounting for polarization.
Based on that treatment, methods have been developed for spherical media of
Rayleigh scatterers to interpret the polarimetric and photometric observations ob-
tained for transneptunian objects (e.g., [6, 10]). These methods are described in
detail in the present chapter.

In planetary regoliths, SM for opposition brightening is relevant for essentially
all length scales much larger than the wavelength of incident light. We can distin-
guish between two main geometric factors affecting SM: first, the rough interface
between the regolith and the free space; and, second, the internal porous structure of
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the regolith. In both cases, the opposition brightening is due to the fact that a ray of
light penetrating into the scattering medium and incident on a certain particle can
always emerge back along the path of incidence; whereas, in other directions, the
emerging ray can be blocked by other particles. Porous-volume shadowing depends
mainly on the volume density of the scattering medium; whereas, rough-surface
shadowing depends mainly on surface roughness parameters. For recent work on
rough-surface shadowing for fractional-Brownian-motion surfaces and on combined
rough-surface and porous-volume shadowing for closely packed random media of
spheres with varying sizes, see, e.g., [26] and [27], respectively. For media involving
Gaussian random surfaces with Gaussian correlation functions, see, e.g., [28] and
[29].

Wide backscattering peaks and negative polarization branches have been de-
tected consistently in numerical simulations of light scattering by irregular wave-
length-scale particles (e.g., [30–32]). The phenomena are present for compact ir-
regular particles as well as for irregular aggregates of constituent spherical or non-
spherical particles. Recently, we have succeeded in uncovering internal-field char-
acteristics that give rise to such polarization and intensity signatures [32–36] and
thus have introduced what we call a single-scattering polarization and intensity
mechanism [37]. Note that with the single-scattering mechanism, it has not been
our central goal to explain the detailed characteristics of the internal fields them-
selves but rather concentrate on how the internal fields map to the scattered fields.
As to the light-scattering experiments, by measuring the single-particle scattering
characteristics and those of a close-packed particulate medium of similar single
particles, it has been established that the particulate media continue to exhibit
single-particle polarization characteristics but that these characteristics are neu-
tralized (e.g., [38]).

In section 11.2, we describe the relevant scattering theory, discuss example scat-
tering phase matrices for Gaussian-random-sphere particles (G-sphere particles)
and agglomerated debris particles, analyze internal-field characteristics for spheri-
cal and G-sphere particles, and outline interference processes capable of explaining
the intensity and polarization characteristics at intermediate scattering angles as
well as close to backward scattering. We close section 11.2 by parameterizing the
amplitude scattering and scattering phase matrices so as to reproduce rapidly real-
istic matrices for further use in multiple-scattering computations. In section 11.3,
we review the coherent-backscattering mechanism for enhanced backscattering and
for negative polarization near backscattering. For applications not concerning po-
larization, we present a scalar approximation in coherent backscattering by spher-
ical random media of diametrical optical thickness approaching infinity, analyzing
in detail various implications of varying single-scattering albedo and phase func-
tion on the characteristics of enhanced backscattering. We continue by utilizing
the numerical methods for coherent backscattering, including polarization, for a
study of backscattering characteristics of spherical random media composed of
Rayleigh scatterers. In section 11.4, we describe a physical model for the polari-
metric observations of solar-system objects. We construct the model on the basis
of the single-scattering parameterization to be given in section 11.2, including av-
eraging over scatterer size via numerical integration. In order to substantiate the
applicability of the physical model, we provide an example least-squares fit to the
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polarimetric observations of asteroid (1) Ceres. We show computations of coherent
backscattering by spherical random media of scatterers utilizing the parameterized
amplitude scattering and scattering phase matrices, thus paving the way for simul-
taneous physical modeling of photometric and polarimetric observations. We close
the chapter with conclusions in section 11.5.

11.2 Single-particle light scattering

11.2.1 Scattering matrix, cross-section, and asymmetry parameters

Consider scattering of light by a single particle in free space. The scattering char-
acteristics depend on the particle size, shape, complex refractive index, and orien-
tation. In what follows, we study the average scattering characteristics resulting
from a large number of single-particle scattering problems and, in the limit of an
infinite number of problems, there are equal numbers of particles and their mirror
particles involved in ensemble averaging, both in random orientation.

The scattering phase matrix P = P (θ) (θ = π−α is the scattering angle) relates
the Stokes vectors of the incident and scattered light (I inc and Isca, respectively),

Isca =
σsca
4πR2

P · I inc,

N11 =
∫
4π

dΩ

4π
P11(θ) =

1
2

∫ π
0

dθ sin θP11(θ) = 1, (11.1)

where σsca and P11 are the ensemble-averaged scattering cross-section and phase
function, N11 = 1 is the norm of P11, and R is the distance between the
scatterer and the observer. The scattering phase matrix is block-diagonal with
P11, P12 = P21, P22, P33, P34 = −P43, and P44 as its non-vanishing elements.
Ensemble-averaging is carried out for cross-section-weighted elements, e.g., P11 =
〈σ(1)scaP

(1)
11 〉/σsca, where the superscript ‘(1)’ refers to an individual sample particle.

In principle, ensemble averaging entails an infinite number of sample particles but,
in practice, a large but finite number of particles suffices.

The degree of linear polarization P for unpolarized incident light and the de-
polarization ratio D are defined as

P (θ) = −P12(θ)
P11(θ)

, D(θ) = 1− P22(θ)
P11(θ)

. (11.2)

The polarization norm is [25]

N12 = −
∫
4π

dΩ

4π
P12(θ) = −12

∫ π
0

dθ sin θP12(θ), (11.3)

which indicates, first, whether the scatterers are net positively or negatively po-
larizing and, second, how efficiently they polarize incident unpolarized light. For
Rayleigh scatterers, N12 = 1

2 (cf. the phase function norm N11 = 1).
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The phase-function and polarization asymmetry parameters are defined as [25]

g11 =
1
2

∫ π
0

dθ sin θ cos θP11(θ),

g12 = −1
2

∫ π
0

dθ sin θ cos θP12(θ). (11.4)

For Rayleigh scatterers, g11 = g12 = 0. Together, N12 and g12 indicate the net posi-
tive or negative polarization characteristics in the forward and backward scattering
regimes.

11.2.2 Scattering by Gaussian-random-sphere and
agglomerated-debris particles

The discrete-dipole approximation (DDA) is a flexible tool that can be used to
find the numerical solution of scattering by irregularly shaped particles (e.g., [39–
43]). We show results calculated using the DDA code written by Zubko et al. [43].
Among the strengths of DDA is its conceptual clarity that allows in-depth studies
of the underlying physical mechanisms (cf. ray-optics approximation for particles
large compared to the wavelength).

Regularly shaped particles are exceptional in nature. The G-sphere particle al-
lows the modeling of compact irregular particle shapes with a small number of
statistical parameters [44–46]. In the present context, there are two such parame-
ters: the relative standard deviation of the radial distance (σ) and the power-law
index of the covariance function (ν) for logarithmic radial distances. The stochas-
tic geometry of the agglomerated debris particle [43] allows for the modeling of
the structures for porous particles. For sample G-sphere and agglomerated-debris
particles, see Fig. 11.1.

Light scattering by G-sphere particles has been studied using various approxi-
mations, that is, the ray-optics [45–51], Rayleigh-volume and Rayleigh–Gans [52],
Rayleigh-ellipsoid [53], and second-order perturbation-series approximations [44,

Fig. 11.1. Samples of Gaussian-random-sphere (G-sphere, left), roughened G-sphere
(middle), and agglomerated-debris particles (right) all discretized for numerical compu-
tation using the discrete-dipole approximation.
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54]. As to treatments that are close to being exact, scattering by G-sphere parti-
cles has been studied using the volume-integral-equation and DDA methods [30,
32, 35, 55, 56], and using the finite-difference time-domain method [57].

Muinonen et al. [32] and Zubko et al. [35] studied light scattering from G-
sphere particles having circumscribing-sphere size parameters xcs = 2, 4, 6, 8, 10,
12, and 14, refractive indices m = 1.6+ i0.0005, and 1.313 using the DDA. The size
parameters xcs correspond to more commonly used size parameter x = ka ∈ [1, 7],
where the size of the G-sphere particle is defined by the mean radial distance a. It is
important to notice that the sample particles drawn from the ensemble with given
a typically vary by their volume, yielding a distribution of equal-volume-sphere size
parameters. Two complex refractive indices (m) are treated in the simulations, that
of pure water ice m = 1.313 and that of silicates m = 1.6 + i0.0005. The relative
standard deviations are σ = 0.05, 0.1, 0.15, 0.2, and 0.245. The power-law index of
the covariance function is ν = 4.

These recent studies of light scattering by G-sphere particles have been accom-
panied by a closely related study: light scattering by harmonic G-sphere parti-
cles has been examined in [56] in order to map the surface-roughness effects for
wavelength-scale particles. In [35], the surface-roughness effects have been studied
for G-sphere particles with their surface layers additionally roughened in varying
angular and radial scales. The two studies complement one another. Harmonic
G-sphere particles have allowed a systematic study of the intrinsic roughness of
the particles in precisely defined scales; whereas, introducing additional roughness
on the irregular particles has removed the limitation of sphericity of the original
particle.

In Fig. 11.2, we show the minimum polarization Pmin and maximum polariza-
tion Pmax for ensemble-averaged G-sphere, roughened G-sphere, and agglomerated-
debris particles as a function of xcs. Pmin and Pmax for the agglomerated-debris
particles lie in between the two G-sphere-particle values. In Fig. 11.3, we show the
scattering phase functions and degrees of linear polarization for a subset of the
aforedescribed particles. There are striking similarities in all of the angular depen-
dences shown: all of the scattering phase functions show increased backscattering,
the roughened G-sphere particle showing the smoothest dependence. The G-sphere
cases show more pronounced negative polarization at intermediate scattering angles
for both refractive indices.

11.2.3 Internal vs. scattered fields

In order to explain the intensity and polarization characteristics seen for G-sphere
and agglomerated-debris particles shown, for example, in Fig. 11.3, we have carried
out studies of the interrelations between internal and scattered fields for miscella-
neous scatterers. Along the way, we have found that the internal fields of scatterers
exhibit both intriguingly regular and irregular structures. Whereas the mapping
of the internal field to the scattered field is well known from DDA simulations,
the interference phenomena involved turn out to vary in complexity and character.
Among the most common characteristics resulting from internal-field structure is
the well known dependence of extinction cross-section of small particles on the cen-
tral phase difference ρ = |m− 1|kD (e.g., [58]), where m is the complex refractive
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Fig. 11.2. The minimum polarization Pmin and maximum polarization Pmax for ensemble-
averaged G-sphere, roughened G-sphere, and agglomerated-debris particles as a function
of the circumscribing-sphere size parameter.

Fig. 11.3. The scattering phase functions I and degrees of linear polarization P for
ensemble-averaged G-sphere, roughened G-sphere, and agglomerated-debris particles as a
function of the circumscribing-sphere size parameter and refractive index.
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index of the scattering particle, k is the wave number in free space, and D is the
distance measured through the center of the particle.

The internal fields are readily available from DDA computations for the dis-
crete dipoles involved, allowing for detailed studies of their contributions to the
scattered fields. We point out that the following studies for spherical, G-sphere,
and agglomerated-debris particles have been motivated by the phase-randomization
study carried out by Zubko et al. [59] (see subsection 11.2.4).

Tyynelä et al. [33, 34] have studied the internal-field characteristics and in-
terference effects of spherical and G-sphere particles. Each individual particle has
been approximated with a cubic array of electric dipoles for which the electric field
values have been adopted either from the exact Mie solution for spherical particles
or the DDA solution for G-sphere particles. The scattering plane has been taken to
be the xz-plane. In order to obtain the full scattering characteristics, the internal
fields have been resolved for two perpendicular linear polarization states of the
incoming wave; that is, the incident wave has been polarized linearly either along
the x-axis or the y-axis, either parallel or perpendicular to the scattering plane.

The internal fields of spherical particles exhibit a lateral structure in agree-
ment with the central phase difference ρ described above. Towards the perimeter
of the projection of the sphere into the plane perpendicular to the direction of
the incoming wave, the lateral structure gradually becomes curved so that, on the
boundary, it approximately matches the wavelength of the incident plane wave in
free space. The mapping of these internal fields to the scattered fields is carried
out with a regular grating with the wavelength being that in free space. The dif-
fering wave structures of the internal fields and the mapping to the scattered field
is the source of the challenges in constraining the causes for the intensity and po-
larization phenomena observed. Note, first, that the analysis has not been so much
concerned with the question of why the internal fields are what they are; instead,
the focus has been on understanding the main relevant interference effects involved.
Note, second, that the internal fields exhibit structures mimicking those from re-
fraction in geometric optics, even though geometric optics is strictly not valid for
wavelength-scale particles.

For spherical particles, Tyynelä et al. [33] have continued by dividing the particle
interior into quadrants along planes that are parallel to the propagation direction
of the incident wave. They have further divided each quadrant into four slices de-
fined by taking a regular square lattice through the quadrant again in the direction
of propagation of the incident wave. They have then gradually neglected the inter-
ference effects between the different parts. They have considered size parameters
x = 2, 4, 6, and 8, and refractive indices m = 1.55, 1.55 + i0.01, 1.33, 1.33 + i0.01,
1/1.55, 1/1.33, and 2.0 + i2.0.

For m = 1.55, the longitudinal component of the internal fields has two pre-
dominating maxima in the forward part of the particle that are separated by a
distance nearly half the free-space wavelength, and also smaller localized maxima,
which become more numerous as size increases. For a y-polarized incident wave,
the two maxima produce a null effect in the scattering plane due to destructive
interference. For an x-polarized incident wave, the two maxima interfere construc-
tively for θ = 90◦, providing a contribution to both intensity and polarization at
intermediate scattering angles. For m = 1/1.55, the internal field is concentrated



11 Coherent backscattering in planetary regoliths 485

on the backward part of the particle, and is weaker than for m = 1.55 both in
strength and structure.

When the longitudinal internal-field component is omitted, the degree of linear
polarization becomes positive for all scattering angles except for the angles near
the backscattering direction. This can be seen in Fig. 11.4 (right panel) for x = 4
and m = 1.55. When the interior is further divided into incoherently radiating
quadrants, polarization becomes positive for all scattering angles except for large
size parameters (x > 4). When the interior is divided into sixteen parts, the po-

Fig. 11.4. Intensity I‖+I⊥ (left) and degree of linear polarization P = (I⊥−I‖)/(I⊥+I‖)
(right) in the case of the unmodified internal field (thin solid line) and when omitting
the longitudinal field component (thick solid line) for the spherical particle x = 4 and
m = 1.55.

Fig. 11.5. Intensity I‖+I⊥ (left) and degree of linear polarization P = (I⊥−I‖)/(I⊥+I‖)
(right) in the case of the unmodified internal field (thin solid line), and when omitting
the longitudinal field component and dividing the particle interior into either quadrants
(thick dashed line) or sixteen cells (thick solid line) for the spherical particle with x = 8
and m = 1.55.
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larization is positive for all the cases studied. This can be seen in Fig. 11.5 (right
panel) for x = 8, and m = 1.55. The conclusion is that for spherical particles the
longitudinal component seems to have a more pronounced influence on the general
polarization, especially for the intermediate scattering angles, and that interfer-
ence in the transverse component is responsible for both enhanced intensity and
negative polarization near backscattering.

For G-sphere particles, Tyynelä et al. [34] have made use of a single sample
G-sphere shape, ensemble-averaged size parameters equal to those of the previous
study [33], and refractive indices m = 1.55 and m = 1.33. The relative standard
deviation of radius has been σ = 0.15 and 0.245, and the power-law index of the
covariance function has been ν = 4. For x = 2, there are two large longitudinal-
component maxima at the opposing sides of the particle. For the large (x = 8)
G-sphere particle, there are two pairs of maxima for the longitudinal component.
This is mostly due to the elongated shape of the particle, because the longitudi-
nal component is focused on the forward part of the particle, which is similar to
the internal-field structure for spherical particles. As size increases, this focusing
concentrates more on the forward part. We estimate that, for very large particles,
the effect of the longitudinal component on the linear polarization becomes less
significant. Also, the irregular shape of the particle will further decrease the ef-
fect, because the longitudinal component will be weaker. When the longitudinal
component is omitted, the degree of linear polarization changes to positive for all
scattering angles except for x > 6. Negative polarization is still present for large
G-sphere particles (Fig. 11.6 (right panel)). When the interior is divided into inco-
herently radiating quadrants, polarization becomes positive for all the cases studied
(Fig. 11.7 (right panel)). Dividing the interior further into sixteen parts has little
additional effect on the polarization. Only dividing the interior into incoherently
radiating quadrants has a neutralizing effect for all scattering angles, especially

Fig. 11.6. Total intensity I‖ + I⊥ (left) and degree of linear polarization P = (I⊥ − I‖)/
(I⊥ + I‖) (right) in the case of the unmodified internal field (thin solid line) and when
the longitudinal component of the internal field is set to zero (thick solid line) for the
G-sphere particle with x = 8, m = 1.55, and σ = 0.15.
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Fig. 11.7. Total intensity I‖ + I⊥ (left) and degree of linear polarization P = (I⊥ − I‖)/
(I⊥ + I‖) (right) when the particle interior is divided into quadrants (thick dotted line),
when the longitudinal component is omitted and the particle interior is divided into
quadrants (thick solid line) or sixteen cells (thick dashed line), and when the internal
field is unmodified (thin solid line). The parameters are the same as in Fig. 11.6.

near the backscattering direction, where the longitudinal component has little ef-
fect on polarization. Intensity enhancement seems to disappear when omitting only
the transverse component. The conclusion is that for non-spherical particles, the
interference effects appear to be weaker than for spherical particles due to their
irregular shape.

11.2.4 Interference in single scattering

Zubko et al. [59] have carried out phase randomization in DDA calculations of light
scattering from single dipoles to investigate interference effects inside irregularly
shaped debris particles. They considered particles whose circumscribing-sphere size
parameters xcs = 6 and xcs = 10 and refractive index m = 1.5. They have stud-
ied the interference effects of dipoles in five different cases: (1) the DDA solu-
tion (unmodified); (2) phase randomization between dipoles; (3) removal of the
cross-interference between singly and multiply scattered waves; (4) removal of the
interference of singly scattered waves; and, (5) the selection of mutually recipro-
cal waves. They have found that removing only the singly scattered waves (case
4) preserves negative polarization, but using phase randomization (case 2) or se-
lecting only the reciprocal waves (case 5) makes negative polarization disappear.
For x = 6, the influence of cross-interference (case 3) also makes negative po-
larization disappear. They conclude, first, that, in the case of single dipoles, the
constructive interference between mutual reciprocal waves, the key constituent of
the coherent-backscattering mechanism, cannot be responsible for negative polar-
ization and intensity enhancement in the case studied. It is an open question at the
moment whether or not groups of dipoles can be identified to give rise to coherent
backscattering in the case of single particles.



488 Karri Muinonen, Jani Tyynelä, Evgenij Zubko, and Gorden Videen

Muinonen et al. [32] studied light scattering characteristics of G-sphere parti-
cles and suggested a single-scattering interference mechanism that can result in en-
hancement of intensity and negative polarization. The mechanism has two compo-
nents, the longitudinal and transverse components that are responsible for the non-
Rayleigh-like polarization features observed in single wavelength-scale particles.

In order to illustrate single-scattering interference of relevance to the present
study [32, 33], we consider an electromagnetic plane wave (vector amplitude E0,
wavelength λ, wave number k = 2π/λ, and wave vector k0) propagating along the
z-axis and incident on a spherical scatterer located at the origin (Figs 11.8 and
11.9). Consider an observer in the xz-plane (scattering plane) with the scattering
angle θ describing the angular deviation from the forward-scattering direction; thus,
the phase angle is α = A = π − θ. In order to obtain the scattering characteristics
for incident unpolarized light, the scattering problem needs to be solved for two
perpendicular linear polarization states of the incident field, that is, for the y-
polarized incident polarization vector perpendicular to the scattering plane and for
the x-polarized incident polarization vector parallel to the scattering plane. The
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Fig. 11.8. Illustration of the induced internal-field components and their relation to the
scattered field near the backward direction in the xz-plane for perpendicular incident
polarization. See text for more details.
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Fig. 11.9. As in Fig. 11.8 for parallel incident polarization.
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final scattering characteristics follow as the average of the characteristics for the
two polarization states of the incident wave. To further simplify the illustration,
consider the internal fields induced in the spherical particle on the x and y-axes
only. In reality, interference can take place at differing depths in the direction of
the z-axis and the depths do not need to be equal among the pairs of locations
shown in Figs 11.8 and 11.9. Assume for the time being that the six contributions
depicted in Figs 11.8 and 11.9 do not interfere with each other.

First, consider an incident electric field polarized parallel to the y-axis corre-
sponding to the perpendicular polarization state. On the x-axis (Fig. 11.8(a)), due
to the symmetry of the particle, the incident wave gives rise only to internal-field
components (E1 and E2 with subscripts referring to the two dipoles) perpendic-
ular to the scattering plane, that is, a y-polarized internal field. Such an internal
field gives rise only to a y-polarized or positively polarized scattered field in the
xz-plane. Contributions to the scattered field from two mirror locations a distance
d apart on the x-axis (x > 0 and x < 0) interfere constructively in the exact back-
ward direction; whereas, the interference varies from constructive to destructive
in other directions in the xz-plane. On the y-axis, due to the spherical symmetry,
the incident y-polarized wave gives rise to both y-polarized (Fig. 11.8(b)) and z-
polarized internal-field components (Fig. 11.8(c)). The z-components at the mirror
locations of the y-axis (y > 0 and y < 0) have opposite signs but are otherwise
equal. Because the phase difference equals π, the scattered field components arising
from the z-components cancel each other. Note that, in the backward and forward
directions, no contribution results from the z-polarized internal fields because there
is no radiation along the line defined by the electric field vector of an electric dipole
scatterer. The y-components on the two sides are equal and result in scattered wave
components that interfere constructively for all scattering angles in the xz-plane.

Second, consider an incident electric field polarized parallel to the x-axis cor-
responding to the parallel polarization state. On the x-axis, due to the spherical
symmetry, the incident x-polarized wave gives rise to both x-polarized (Fig. 11.9(a))
and z-polarized (Fig. 11.9(b)) internal-field components. The z-components at the
two mirror locations of the x-axis (x > 0 and x < 0) have opposite signs but
are otherwise equal, thus having a phase difference of π. The scattered-field com-
ponents arising from the z-components typically interfere non-destructively with
one another, giving rise to negative polarization across the entire scattering-angle
regime except the exact backward and forward scattering directions where, again,
no contribution follows from the z-components of the internal fields. On the y-axis
(Fig. 11.9(c)), due to the spherical symmetry, the incident wave gives rise only
to an x-polarized internal-field component. The x-components at the two mirror
locations (y > 0 and y < 0) are equal and result in scattered wave components
that interfere constructively for all scattering angles with zero contribution for the
scattering angle of 90◦.

The single-scattering mechanism is based on the hypothesis that, typically, for
the incident y-polarized field, the y-polarized internal-field components on the x-
axis are stronger than those on the y-axis and, similarly for the incident x-polarized
field, the x-polarized internal-field components on the y-axis are stronger than
those on the x-axis. As a net result close to backscattering, with the x-polarized
internal-field components on the y-axis predominating over other contributions via
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constructive interference, the degree of linear polarization for incident unpolarized
light assumes negative values. This is enhanced by the first destructive interference
geometry close to backscattering for the y-polarized scattered field arising from the
x-axis. For both incident polarizations, the transverse internal-field components
give rise to constructively interfering scattered-field components in the backward-
scattering direction, resulting in a backscattering peak in the scattered intensity.

The single-scattering mechanism differs from the coherent-backscattering mech-
anism to be described in detail in section 11.3. In coherent backscattering, recip-
rocal waves travel through the same scatterers in a random medium, interfering
constructively in the exact backscattering direction but not necessarily in other
directions. In the single-scattering mechanism, the electric fields on the mirror lo-
cations describe the net result of all possible interactions among the electric dipoles
constituting the scatterer. Last but not least, coherent backscattering is typically
seen to occur in supermicron length scales; whereas, the single-scattering mecha-
nism is relevant in submicrometer-to-micrometer length scales for visible light.

As stated above, the single-scattering mechanism has been verified for homo-
geneous spheres and G-sphere particles by Tyynelä et al. [33, 34]. Lumme et al.
[76] and Mishchenko et al. [77] have reported increased backscattering and nega-
tive polarization near the backscattering direction for clusters of spherical particles.
The angular widths of the features correlate with the size parameter of the clus-
ters rather than with the extinction mean-free-path length of the media within the
clusters. This dependence is qualitatively similar to the particle-size dependence of
increased backscattering and negative polarization reported by Lumme and Rahola
[37] and Muinonen et al. [42] for single-constituent Gaussian random particles. The
latter features have been explained using the single-scattering interference mecha-
nism (see sections 11.2.2, 11.2.3, and 11.2.4, as well as references therein). It remains
as an open question which mechanism, CBM or the single-scattering mechanism,
is responsible for the features reported for clusters of spherical particles.

11.2.5 Parameterizing single scattering

In what follows, we develop an analytical scattering parameterization based on
pairs of electric dipoles [60]. We make use of Figs 11.8 and 11.9 in developing the
amplitude scattering matrix elements and, in particular, fix the scattering plane to
be the xz-plane. We follow the geometries in Figs 11.8 and 11.9 and assume that
the dipoles are located either on the y-axis (scatterer 1) or on the x-axis (scatterer
2). Treated separately, these scatterers produce pure scattering matrices and well
defined complex-valued amplitude-scattering matrices. We assess two perpendicular
polarization states of the incident wave propagating in the positive direction of the
z-axis. Our present modeling relies on the differing interference characteristics along
the x-axis for the perpendicular and parallel polarizations.

Let us start by studying scatterer 1 constituting a system in the direction of the
y-axis (Figs 11.8(b), 11.8(c), and 11.9(c)). Due to destructive interference, there
is no contribution from the configuration in Fig. 11.8(c) in the scattering plane.
Thus, the configuration in Fig. 11.8(b) is solely responsible for the contribution
from the incident field perpendicular to the scattering plane. The configuration in
Fig. 11.9(c) is solely responsible for the contribution from the incident field parallel
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to the scattering plane. The amplitude scattering matrix is of a form identical to
that of a Rayleigh particle:

S1 = 2at exp(iφt), S2 = 2at exp(iφt) cos θ, S3 = S4 = 0, (11.5)

where at and φt are the amplitude and phase, respectively. Note, in particular,
that there is no dependence on the distances between the dipoles. The Mueller
scattering matrix coincides with that of the Rayleigh case and is independent of
the absolute phase φt:

S11 = 2a2t (1 + cos
2 θ), S12 = 2a2t (−1 + cos2 θ), S21 = S12,

S22 = S11, S33 = 4a2t cos θ, S44 = S33, (11.6)

and the other elements being equal to zero.
Let us continue by studying scatterer 2, constituting a system in the direction

of the x-axis (Figs 11.8(a), 11.9(a), and 11.9(b)). The configuration in Fig. 11.8(a)
is responsible solely for the contribution from the incident field perpendicular to
the scattering plane. However, the contributions from configurations in Figs 11.9(a)
and 11.9(b) interfere with each other. For scatterer 2, we introduce the interdipole
distances d1, d2, and d3 corresponding to the configurations in Figs 11.8(a), 11.9(a),
and 11.9b. Also, we assign different amplitudes and phase factors at, φt and al, φl
for the transverse (Figs 11.8(a) and 11.9(a)) and longitudinal (Fig. 11.9(b)) electric
dipoles, respectively. The amplitude scattering matrix takes the following form for
scatterer 2:

S1 = 2at exp(iφt) cos
(
1
2
kd1 sin θ

)
,

S2 = 2at exp(iφt) cos θ cos
(
1
2
kd2 sin θ

)
+ i2al exp(iφl) sin θ sin

(
1
2
kd3 sin θ

)
,

S3 = S4 = 0. (11.7)

The Mueller scattering matrix follows from the amplitude matrix and is more
complicated than that for scatterer 1:

S11 = 2a2t cos
2

(
1
2
kd1 sin θ

)
+

2a2t cos
2 θ cos2

(
1
2
kd2 sin θ

)
+ 2a2l sin

2 θ sin2
(
1
2
kd3 sin θ

)
+

4atal cos θ sin θ cos
(
1
2
kd2 sin θ

)
sin
(
1
2
kd3 sin θ

)
sin(φt − φl),

S12 = −2a2t cos2
(
1
2
kd1 sin θ

)
+

2a2t cos
2 θ cos2

(
1
2
kd2 sin θ

)
+ 2a2l sin

2 θ sin2
(
1
2
kd3 sin θ

)
+

4atal cos θ sin θ cos
(
1
2
kd2 sin θ

)
sin
(
1
2
kd3 sin θ

)
sin(φt − φl),
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S21 = S12, S22 = S11,

S33 = 4a2t cos θ cos
(
1
2
kd1 sin θ

)
cos
(
1
2
kd2 sin θ

)
+

4atal sin θ cos
(
1
2
kd1 sin θ

)
sin
(
1
2
kd3 sin θ

)
sin(φt − φl),

S34 = 4atal sin θ cos
(
1
2
kd1 sin θ

)
sin
(
1
2
kd3 sin θ

)
cos(φt − φl),

S43 = −S34, S44 = S33, (11.8)

and the other elements being equal to zero. Scatterer 2 introduces the possibility
for a nonzero S34-element, a clear deviation from the pure Rayleigh behavior of
scatterer 1. Note that we have deliberately decided not to introduce different z-
coordinates for the configurations in Figs 11.9(a) and 11.9(b). Such a difference
would introduce additional phase differences that are left for a future study.

The amplitude scattering matrices for scatterers 1 and 2 can be developed fur-
ther by assuming continuous lines of electric dipoles instead of two discrete dipoles.
The amplitude scattering matrix for scatterer 1 remains unchanged; whereas, that
for scatterer 2 is modified as follows where d1 and d2 now describe the half-lengths
of the lines:

S1 = 2at exp(iφt)
sin(12kd1 sin θ)

1
2kd1 sin θ

,

S2 = 2at exp(iφt) cos θ
sin(12kd2 sin θ)

1
2kd2 sin θ

+ i2al exp(iφl) sin θ sin
(
1
2
kd3 sin θ

)
,

S3 = S4 = 0. (11.9)

Note that the longitudinal component remains discrete with inter-dipole distance
d3. The Mueller scattering matrix resembles that for scatterer 2 with discrete
dipoles:

S11 = 2a2t

[
sin(12kd1 sin θ)

1
2kd1 sin θ

]2
+

2a2t cos
2 θ

[
sin(12kd2 sin θ)

1
2kd2 sin θ

]2
+ 2a2l sin

2 θ sin2
(
1
2
kd3 sin θ

)
+

4atal cos θ sin θ
[
sin(12kd2 sin θ)

1
2kd2 sin θ

]
sin
(
1
2
kd3 sin θ

)
sin(φt − φl),

S12 = −2a2t
[
sin(12kd1 sin θ)

1
2kd1 sin θ

]2
+

2a2t cos
2 θ

[
sin(12kd2 sin θ)

1
2kd2 sin θ

]2
+ 2a2l sin

2 θ sin2
(
1
2
kd3 sin θ

)
+

4atal cos θ sin θ
[
sin(12kd2 sin θ)

1
2kd2 sin θ

]
sin
(
1
2
kd3 sin θ

)
sin(φt − φl),
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S21 = S12, S22 = S11,

S33 = 4a2t cos θ
[
sin(12kd1 sin θ)

1
2kd1 sin θ

] [
sin( 12kd2 sin θ)

1
2kd2 sin θ

]
+

4atal sin θ
[
sin(12kd1 sin θ)

1
2kd1 sin θ

]
sin
(
1
2
kd3 sin θ

)
sin(φt − φl),

S34 = 4atal sin θ
[
sin(12kd1 sin θ)

1
2kd1 sin θ

]
sin
(
1
2
kd3 sin θ

)
cos(φt − φl),

S43 = −S34, S44 = S33, (11.10)

and the other elements being equal to zero. As compared to the scattering matrix of
scatterer 2 with two discrete electric dipoles, the one with the lines of dipoles pro-
duces smoother dependences, more closely mimicking the scattering characteristics
of real particles.

We define the average single-scattering matrix as a weighted sum of those for
the scatterers 1 and 2, multiplied by a function that allows us to obtain reasonable
single-scattering phase functions:

S ∝ f(θ) [w1S1 + (1− w1)S2] , (11.11)

where w1 is the normalized weight of scatterer 1, 1− w1 is the normalized weight
of scatterer 2, and S1 and S2 are the scattering matrices of scatterers 1 and 2,
respectively. We require w1 ≥ 1

2 in agreement with the natural assumption that
there are equal numbers of scatterers 1 and 2 and that there are, in addition,
pure Rayleigh-scatterers with scattering matrices equaling that of scatterer 1. Note
that we do not provide any parameterization for the scattering cross section so
Eq. (11.11) describes the shapes of the scattering matrix elements only.

For the function f(θ), we incorporate the double Henyey–Greenstein (2HG)
phase function

f(θ) = w
1− g21

(1 + g21 − 2g1 cos θ)
3
2
+ (1− w) 1− g22

(1 + g22 − 2g2 cos θ)
3
2
,

g = wg1 + (1− w)g2, (11.12)

where g1 and g2 describe the forward and backward asymmetries, w is the nor-
malized weight of the first Henyey–Greenstein function, and g is the asymmetry
parameter of the full 2HG phase function (see Fig. 11.13 for example 2HG phase
functions). Note that, with the present multiplicative procedure, g is no longer the
asymmetry parameter of the total scattering phase function. An alternative way to
introduce the 2HG dependence is to make f(θ) contain in its denominator the S11
element of the combined scattering matrix of scatterers 1 and 2. The multiplication
would then leave the pure 2HG function as the total scattering phase function. By
choosing not to introduce the denominator, we are here conserving interference
structures in the 11-element, too. For example scattering matrices, see Fig. 11.10.
We show example coherent-backscattering computations using the parameterized
scattering matrices in section 11.4.
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Fig. 11.10. Example analytical scattering-matrix elements (Eq. (11.11)) using the pa-
rameterization based on lines of dipoles (Eqs. (11.10) and (11.6)): w = 0.8, g1 = 0.8,
g2 = −0.2, w1 = 0.5, at = 1, al = 0.0, 0.2, . . . , 1.4, kd1 = 4π, kd2 = 3π, kd3 = π, and
φt − φl =

7
4
π.

11.3 Coherent backscattering

Coherent backscattering by plane-parallel media of spherical scatterers has been
treated earlier in [25] using numerical Monte Carlo methods, in which the coherent-
backscattering contribution is computed alongside the radiative-transfer computa-
tion with the use of the reciprocity relation of electromagnetic scattering in the
exact backscattering geometry. Typical for Monte Carlo methods, the modification
of the original method for a spherical medium of scatterers is straightforward and
established in the present chapter. The spherical media have, presently, infinite
diametrical optical thicknesses, mimicking macroscopic objects.
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11.3.1 Coherent-backscattering mechanism

CBM for the opposition effect is outlined in Fig. 11.11 for second-order scattering.
An incident electromagnetic plane wave (solid and dashed lines; wavelength λ and
wavenumber k = 2π/λ) interacts with two scatterers A and B before propagating
to the observer on the left. We consider two components of the scattered wave,
one which interacts with A first and then B and the reciprocal component that
interacts with B first and then A. These two scattered wave components interfere
constructively in directions defined by a cone constructed by rotating the light
source direction vector S about the axis L joining the two scatterers. We illustrate
a scattering direction on the cone precisely opposite to the light source direction;
thus, the exact backward direction (phase angle α = 0◦) is on the constructive-
interference cone for arbitrary locations of the two scatterers; whereas, in other
directions, interference varies from constructive to destructive. Three-dimensional
averaging over scatterer locations results in a net backscattering enhancement with
decreasing angular width for increasing order of interactions, because the average
distance between the end scatterers, like a random walk, tends to be larger for
higher orders of interaction. The scattering processes can be caused by any disorder
or irregularity in the medium.

CBM for the negative degree of linear polarization is explained for second-order
scattering in Fig. 11.12. The incident radiation is unpolarized by definition, which
requires the derivation and proper averaging of the Stokes vectors corresponding

Fig. 11.11. Coherent backscattering mechanism (CBM) for the opposition effect. The
multiply scattered electromagnetic wave components propagating in opposite directions
between the scatterers (solid and dashed lines) interfere constructively in conical directions
about the axis L, always including the exact backscattering direction (phase angle α = 0◦).
In other directions, the interference is arbitrary depending on the wavelength, and the
distance and orientation of the first and last scattering elements. See text.
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Fig. 11.12. Illustration of CBM for the negative linear polarization for unpolarized in-
cident light. In the yz-plane in the scattering geometry leading to positive polarization,
the interference depends on the phase difference kd sinα (upper right panel); whereas,
the interference is always constructive in the geometry causing negative polarization (up-
per left panel). Interaction with the polarization vector parallel to the line connecting
the elements is typically suppressed (two lower panels) as compared to interaction with
the perpendicular polarization vector. Averaging over scatterer locations results in an
opposition effect and net negative polarization. See text.

to the scattered electromagnetic fields (Es) for two linear polarization states of an
incident plane wave (Ei). In Fig. 11.12, incident polarizations parallel and perpen-
dicular to the scattering plane (here yz-plane) are treated in the two leftmost and
two rightmost panels, respectively.

Consequently, in Fig. 11.12, an incident electromagnetic plane wave interacts
with two scatterers A and B at a distance d from one another aligned either on
the x-axis or the y-axis, while the observer is in the yz-plane. For the present
geometries, the constructive interference cones of Fig. 11.11 reduce to the yz and
xz-planes, depending on the alignment of the scatterers. Since first-order scattering
is typically positively polarized (e.g., Rayleigh scattering and Fresnel reflection),
the scatterers sufficiently far away from each other (kd = 2πd/λ � 1) interact
predominantly with the electric field vector perpendicular to the plane defined
by the source and the scatterers (two upper panels), while interaction with the
electric field vector parallel to that plane is suppressed (two lower panels). The
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observer in the yz-plane will detect negative polarization from the geometry in
the upper left panel of Fig. 11.12, and positive polarization from the geometry in
the upper right panel. However, the positive polarization suffers from the phase
difference kd sinα; whereas the phase difference for the negative polarization is
zero for all phase angles. Averaging over scatterer locations results in negative
polarization near the backward direction. Scattering orders higher than the second
experience similar preferential interaction geometries, and contribute to negative
polarization. As above for the opposition effect, the contributions from increasing
orders of scattering manifest themselves at decreasing phase angles.

Let us compare the interference in coherent backscattering with the interfer-
ences in single scattering in subsection 11.2.4. In coherent backscattering, reciprocal
waves propagate in between discrete scatterers that are interacting with each other
in a specific way. In single-scattering interference studies, we are dealing with in-
ternal fields of particles that are the result of all interactions within the particle.
Whereas CBM is a unique mechanism for interference, a single universal mechanism
in single-particle scattering may not necessarily exist.

The single-scattering studies so far have concentrated on identifying interfer-
ence phenomena for single particles responsible for the single-particle intensity and
polarization characteristics. On the other hand, if certain interference phenomena
consistently repeat themselves for single particles, one may well consider incor-
porating the wording interference mechanism. Among the interference phenomena
studied above, the longitudinal internal-field components have been seen to or-
chestrate the degree of linear polarization at intermediate scattering angles for all
particles so far studied. We may thus claim the existence of a single-scattering
interference mechanism for negative polarization at intermediate scattering angles.

Interference phenomena deriving from the transverse internal-field components
arise from the superposition of contributions from varying locations inside the par-
ticles. It is too early to conclude if there is a leading contribution that manifests
itself for all particles. At the moment, it is clear that interference phenomena in
spherical particles differ from those in non-spherical particles. Moreover, it is im-
possible to pinpoint a single interference phenomenon responsible for the intensity
and polarization patterns for all spherical particles near backscattering. In fact, for
spherical particles, no independent transverse-field mechanism can exist [32, 33]: it
has been obligatory to set the longitudinal component to zero before searching for
transverse-field mechanisms.

For irregular single particles, there may well be a leading interference mechanism
concerning transverse internal fields and resulting in enhanced backscattering and
negative polarization near backscattering. There are studies under way to find
such a mechanism. The ultimate mechanism, one may say, consists of Maxwell’s
equations of electromagnetism that dictate the scattering of light by small particles.

11.3.2 Theoretical framework for multiple scattering

For the physical quantities in multiple scattering, definitions in [61] are followed.
The specific intensity of the incident radiation (in units of Jm−2 s−1 sr−1) is

I0(μ, φ) = πF 0δ(μ− μ0)δ(φ− φ0), (11.13)
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where πF 0 is the incident flux density (in units of Jm−2 s−1) and μ0 = cos ι. ι
and φ0 are the angle of incidence measured from the outward normal of the plane-
parallel medium and the azimuthal angle of incidence, respectively.

The 4 × 4 reflection coefficient matrix R relates the incident flux density and
the specific intensity of reflected radiation as

Ir(μ, φ) = μ0R(μ, μ0, φ− φ0)F 0,

R(μ, μ0, φ− φ0) = RRT(μ, μ0, φ− φ0) +RC(μ, μ0, φ− φ0), (11.14)

where μ = cos ε. ε and φ are the angle of emergence measured from the outward
normal of the plane-parallel medium and the azimuthal angle of emergence, respec-
tively. The superscripts ‘RT’ and ‘C’ refer to the radiative-transfer and coherent-
backscattering parts, respectively. The matrix element R11 corresponds to the so-
called reflection coefficient in scalar radiative transfer. The enhancement factor is

ζ(μ, μ0, φ− φ0) = R11(μ, μ0, φ− φ0)
RRT
11 (μ0, μ0, 0)

. (11.15)

The degree of linear polarization is P = −R̃21/R̃11, where R̃ is the reflection matrix
expressed in the scattering plane defined by the source, object, and the observer.

The plane albedo Ap(μ0) is the fraction of the incident flux that is reflected by
the plane-parallel medium in the case of incident unpolarized radiation,

Ap(μ0) =
1
π

∫ 1

0

∫ 2π

0

dμ dφ μRRT
11 (μ, μ0, φ− φ0). (11.16)

Note that the plane albedo here refers to the radiative transfer part only. The cur-
rent treatment of energy conservation is sufficient for narrow coherent backscatter-
ing peaks.

Extinction is assumed to be exponential within the random medium. The optical
depth τs between two locations a distance s apart is computed using the scalar
extinction coefficient ke,

τs =
∫ s
0

ds ke = kes =
s

*
, * =

1
ke
, (11.17)

where * is the extinction mean free path. If n and v are the number and volume
densities of spherical scatterers with radii a in a discrete random medium, we obtain

ke = nqeπa
2 =

3vqe
4a

, n =
3v
4πa3

. (11.18)

In what follows, we assess coherent backscattering solely for spherical random
media of scatterers. This is convenient, since we can characterize the resulting
multiple scattering using the framework described in subsection 11.2.1 for single-
particle scattering. The enhancement factor in Eq. (11.15) is readily generalized to
the case of the spherical random medium. The so-called Bond albedo or spherical
albedo As coincides with the single-particle albedo ω̃. However, below, we do not
incorporate coherent backscattering in the computation of As but give instead
the value resulting from pure radiative transfer, As = ART

s . The considerations of
energy conservation are beyond the scope of the present work.
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The disk-integrated brightness L (in units of J s−1 sr−1) equals the surface in-
tegral

L(α) =
∫
μ,μ0>0

dA μI(μ, μ0, α)

=
∫
μ,μ0>0

dA μμ0R11(μ, μ0, α)F0. (11.19)

For a spherical medium with diameter D and diametrical optical thickness ap-
proaching infinity so that the medium is locally plane parallel,

L(α) =
1
4
D2

∫
μ,μ0>0

dΩ μμ0R11(μ, μ0, α)F0. (11.20)

The geometric albedo for the spherical random medium p is the ratio of the disk-
integrated brightness of the medium (with diameter D) and the disk-integrated
brightness of a normally illuminated Lambertian disk (D2πF0/4 with diameter D)
at the exact backscattering direction α = 0◦:

pMS =
L(0)
LLD(0)

= 4
L(0)
D2πF0

. (11.21)

Note that 0 < p < ∞. For an irregularly shaped object (like an asteroid), the
geometric albedo can depend on the orientation of the object. We distinguish be-
tween the geometric albedos including and excluding the coherent-backscattering
contribution by denoting the geometric albedo from pure radiative transfer by pRT.
Thus, the enhancement factor gives the reflection coefficient divided by the pure
radiative-transfer reflection coefficient at backscattering

ζ(α = 0) =
pMS

pRT
. (11.22)

11.3.3 Scalar approximation

We present numerical computations for coherent backscattering of scalar waves
by discrete scatterers with double Henyey–Greenstein single-scattering phase func-
tions. The scatterers constitute spherical random media with radial optical thick-
nesses approaching infinity. We claim that the scalar approximation allows for an
efficient initial assessment of multiple scattering. We recall that the physical ex-
planations of the coherent-backscattering phenomenon in the intensity were based
on the scalar approximation (e.g., [62–65]). Furthermore, Monte Carlo methods
for scalar coherent backscattering were offered in [66] and subsequently applied
to interpret the opposition effects of icy solar-system objects [67]. Recently, these
methods have been utilized in the interpretation of the lunar imagery by AMIE
(Advanced micro-Imager Experiment) onboard the SMART-1 mission to the Moon
[68].

In the present Monte Carlo methods, coherent backscattering is computed
alongside radiative transfer by incorporating the reciprocity relation of electro-
magnetic scattering in the backscattering geometry (e.g., [25]). The reciprocity
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relation for scalar waves is more straightforward than that for vector waves. The
numerical methods are optimized by the simultaneous computation of coherent
backscattering for a large number of extinction mean free paths, resulting in an
efficiency increased by a factor approaching the number of different mean free
paths.

The present scalar studies rely on the double Henyey–Greenstein single-scat-
tering phase function (2HG; see Eq. (11.12) and Fig. 11.13 for examples), allow-
ing for a realistic modeling of the single-scattering phase functions. The multiple-
scattering problem is thus formulated in terms of altogether five parameters: the
single-scattering albedo ω̃, the three 2HG parameters w, g1, and g2, as well as the
extinction mean free path of the medium k*.

Fig. 11.13. Double Henyey–Greenstein phase functions for g = 0.4 (left) and g = 0.6
(right) with g1 = 0.8 and g2 = −0.4, −0.2, and 0.0.

We have carried out computations with 10 000 incident rays for a total of 20 832
spherical media of 2HG scatterers. The 16 single-scattering albedos are ω̃ = 0.1,
0.2, . . . , 0.90, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, and 0.9999. The 62 dimensionless
mean free paths are k* = 2π*/λ = 30, 40, 50, . . . , 300, 400, 500, . . . , 3000, 4000,
5000, . . . , 10 000. The 21 2HG phase functions are g = 0.1, 0.2, . . . , 0.7 when
g1 = 0.8 and g2 = −0.4, −0.2, 0.0.

The enhancement factors ζ are shown in Fig. 11.14 in the case of g = 0.6,
g1 = 0.8, and g2 = −0.2 for varying ω̃ and k*. As is often observed for coherent
backscattering, increasing ω̃ and/or increasing k* result in increasing ζ(0) and
decreasing αHWHM.

Fig. 11.15 shows the ζ(0) and αHWHM values against the geometric albedo
of the spherical medium pMS. In Fig. 11.15(a), increasing ω̃ is seen to result in
increasing ζ(0) for three different 2HG phase functions with coinciding asymmetry
parameter g = 0.6. In Fig. 11.15(b), decreasing αHWHM is seen to follow an increase
in ω̃.
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Fig. 11.14. Enhancement factors (ζ) for spherical media of scatterers (radial optical
thickness τr →∞) with double Henyey–Greenstein phase functions specified by g = 0.6,
g1 = 0.8, and g2 = −0.2 for varying single-scattering albedos ω̃ and extinction mean free
paths k�: (a) ω̃ = 0.1, 0.2,. . . , 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 0.9999, k� = 300
(from left to right, shifted for better illustration); (b) ω̃ = 0.9, k� = 100, 300, 1000, 3000
(from left to right, shifted).
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Fig. 11.15. Coherent backscattering by spherical media (τr → ∞) with k� = 300: (a)
ζ(0) and (b) αHWHM vs. geometric albedo (pMS) for g1 = 0.8, g2 = −0.4, -0.2, 0.0, and
g = 0.6, and varying ω̃ = 0.1, 0.2, . . . , 0.7, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 0.9999
(from left to right).
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Fig. 11.16. Coherent backscattering by spherical media (τr → ∞) with k� = 300: (a)
backscattering enhancement factors (ζ(0)) and (b) angular widths (αHWHM) vs. geometric
albedo (pMS) for varying ω̃, g1 = 0.8, g2 = −0.2, and g = 0.1, 0.2,. . . ,0.7 (ζ(0) increases
for increasing g).
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The dependence of ζ(0) and αHWHM on g is illustrated in Fig. 11.16 for varying
ω̃. Based on Fig. 11.16(a), an increase in g results in a decrease in pMS and an in-
crease in ζ(0). This illustrates that small geometric albedos can result from random
media with considerable contributions from multiple scattering. Figure 11.16(b)
shows that increasing g decreases αHWHM (at least for higher ω̃, cf. the accuracy
of the present numerical computation). It is notable that ζ(0) and αHWHM depend
on ω̃ and the scattering phase function not only through the product ω̃g: this can
be ascertained by comparing ζ(0) and αHWHM for the cases (ω̃, g) = (0.6, 0.7) and
(ω̃, g) = (0.7, 0.6) in Fig. 11.16.

We have compared the scalar and vector treatments for coherent backscattering
by spherical media of infinite radial optical thickness in the case of Rayleigh scat-
tering. For ω̃ = 0.9 and k* = 300, the enhancement factors over the pure radiative-
transfer contribution at the phase angle α = 0◦ are ζ(0) = 1.57 and ζ(0) = 1.54
for the vector and scalar cases, respectively. This difference is acceptable in many
applications, warranting further studies of scalar coherent backscattering. We note
that the deviation grows for increasing g as noticed in [20]. For a more extensive
assessment of the scalar approximation, we refer the reader to the recent study by
Mishchenko and Dlugach [69].

We have assessed the scalar approximation to coherent backscattering by opti-
cally thick spherical media of scatterers with the double Henyey–Greenstein phase
functions. With the present multiple-scattering problem, we have mapped basic
trends of coherent backscattering depending on the single-scattering albedo and
phase function. The numerical results are available for further analyses and appli-
cations.

11.3.4 Vector approach

We present extensive numerical computations of coherent backscattering by spher-
ical random media of Rayleigh scatterers. The radial optical thickness approaches
infinity so that there are two parameters to be varied: the single-scattering albedo
and the extinction mean free path. For each diffuse scattering process, the full scat-
tering phase matrix is accounted for, as well as the full state of polarization of the
incident Stokes vector. The scattering phase matrix can be specified using cubic
splines for a user-defined matrix (cf., [25]).

Of interest in Monte Carlo multiple-scattering computations is the generation
of scattering angles in each diffuse scattering process [25]. We denote the Stokes
parameters of the incoming and outgoing rays by I1 = (I1, Q1, U1, V1)T and I2 =
(I2, Q2, U2, V2)T, respectively, and assume that the reference system of the incoming
ray is arbitrary. The outgoing ray in the reference system of the local scattering
plane is given by

I2 ∝ P (θ, φ) ·K(φ) · I1, (11.23)

whereK is a 4×4 Mueller matrix for the rotation to the scattering plane, P is the
4×4 Mueller scattering matrix, and θ and φ are the temporary angles of scattering
in the reference system of I1.
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The Monte Carlo generation of the angles of scattering is based on the angular
intensity distribution I2(θ, φ); i.e.,

I2(θ, φ) ∝ I1P11(θ, φ) +Q1[P12(θ, φ) cos 2φ+ P13(θ, φ) sin 2φ] +
U1[−P12(θ, φ) sin 2φ+ P13(θ, φ) cos 2φ] +
V1P14(θ, φ). (11.24)

For scattering by spherical particles or ensemble-averaged Gaussian particles, the
scattering matrix is independent of the azimuthal scattering angle φ and P13 =
P14 = 0, so we obtain

I2(θ, φ) ∝ I1P11(θ) +Q1P12(θ) cos 2φ− U1P12(θ) sin 2φ. (11.25)

The azimuthal angle φ shows up only in the rotation, and I2(θ, φ) is independent
of the Stokes parameter V1.

In order to obtain the probability density function p(θ, φ), we normalize I2(θ, φ)
and obtain

p(θ, φ) =
1
4π
P11(θ) +

1
4π
P12(θ)

(
Q1

I1
cos 2φ− U1

I1
sin 2φ

)
. (11.26)

The marginal probability density for θ is

p(θ) =
1
2
P11(θ) (11.27)

and thus independent of I1.
The practical generation of θ and φ can be carried out using, first, p(θ) to obtain

the sample polar scattering angle θ̃ and, second, the conditional probability

p(φ | θ̃) = p(θ̃, φ)
p(θ̃)

=
1
2π

[
1 +

P12(θ̃)
P11(θ̃)

(
Q1

I1
cos 2φ− U1

I1
sin 2φ

)]
(11.28)

to obtain the sample azimuthal scattering angle φ̃.
For the Rayleigh scattering matrix in Eq. (11.6), we obtain θ̃-values analytically

from

cos θ̃ = 3
√√

1 + y2 + y − 3
√√

1 + y2 − y, (11.29)

where y is a uniform random deviate y ∈ ]−2,2[. For spherical scatterers beyond
the Rayleigh regime, the generation of θ̃ can best be carried out via interpolation
in a precomputed table of cos θ̃-values as a function of y ∈ ]0,1[.

For the subsequent generation of φ̃, denote

e cos γ = −P12(θ̃)
P11(θ̃)

Q1

I1
,

e sin γ = −P12(θ̃)
P11(θ̃)

U1

I1
, (11.30)



506 Karri Muinonen, Jani Tyynelä, Evgenij Zubko, and Gorden Videen

where

e =

√
P 2
12(θ̃)
P 2
11(θ̃)

Q2
1 + U

2
1

I21
(11.31)

and the angle γ is unambiguously determined by Eq. (11.30). Then, the probability
density function is

p(φ | θ̃) = 1
2π
[1− e cos(2φ+ γ)] , (11.32)

and the cumulative distribution function is

P (φ | θ̃) = 1
2π

[
φ− 1

2
e sin(2φ+ γ) +

1
2
e sin γ

]
. (11.33)

For generating φ̃, we thus obtain (with y ∈]0, 1[ a uniform random deviate)

(2φ̃+ γ)− e sin(2φ̃+ γ) = 4πy + γ − e sin γ, (11.34)

that is, Kepler’s equation E − e sinE = M with ‘eccentric anomaly’ E = 2φ̃ + γ,
‘eccentricity’ e, and ‘mean anomaly’ M = 4πy + γ − e sin γ. Kepler’s equation
can be solved for φ̃ efficiently using Newton’s technique [71]: typically, only a few
iterations are necessary to obtain φ̃ with sufficient accuracy and the generation is
nearly analytical.

The numerical methods have been optimized by introducing a simultaneous
computation of coherent backscattering for a notable number of extinction mean
free paths. This results again (cf. the scalar case) in an increased efficiency by a
factor approaching that of the number of different mean free paths. There is only
a small penalty in increasing the number of mean free paths in the computation.

We have coherent-backscattering computations carried out with 10 000 rays for
a total of 630 spherical random media: the data base entails 21 single-scattering
albedos ω̃ = 0.05, 0.10, . . . , 0.90, 0.95, 0.97, 0.99, and 30 dimensionless mean free
paths k* = 2π*/λ = 10, 20, 30, . . . , 100, 120, 140, . . . , 200, 250, 300, 350, 400, 500,
600, . . . , 1000, 2000, 3000, 4000, 5000, 10 000. The numerical database is available
from the authors. Figs 11.17 and 11.18 show the main results from the numerical
computations, and Table 11.1 gives the numerical values of the key parameters.

There remain several ways to optimize the coherent-backscattering computa-
tions for Rayleigh scatterers. First, coherent-backscattering contributions could be
separately derived for each scattering order higher than the second (inclusive; up to
the order of 10,000), allowing a rapid application for user-specified single-scattering
albedos. Second, in principle, the extinction mean free paths could all be treated
simultaneously by separating the mean free paths k* and angular factors in the
relevant electromagnetic phases during the computation. This would require the
development of sinusoidal functions with product-type arguments into presenta-
tions where the mean-free-path parts were separated from the geometrical parts.
Third, symmetries could be utilized in the Monte Carlo computation allowing for
improved convergence characteristics for polarization, in particular.
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Fig. 11.17. Enhancement factors in the backscattering direction (ζ(0)) and minimum
polarizations (Pmin) for spherical random media of infinite diametrical optical thickness
with k� = 300 consisting of Rayleigh scatterers with varying single-scattering albedos
ω̃. Note the differing turning points for ζ(0) and Pmin and the literature values [70]
for a conservative plane-parallel medium at normal incidence (ω̃ = 1.0: ζ(0) = 1.5368,
Pmin = −2.765%): (a) 10[ζ(0)− 1] vs. As, (b) Pmin vs. As, and (c) Pmin vs. 10[ζ(0)− 1].
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Fig. 11.18. Enhancement factors and polarization surges for spherical random media
of Rayleigh scatterers with varying single-scattering albedos ω̃ and extinction mean free
paths k� (normal incidence): (a) ω̃ = 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and k� = 300; (b)
ω̃ = 0.9 and k� = 100, 300, 900. Angular scales shifted for better illustration.



11 Coherent backscattering in planetary regoliths 509

Table 11.1. Spherical albedos As (%), geometrical albedos with and without the coherent-
backscattering peak pMS and pRT, respectively, enhancement factors ζ(0), and minimum
polarizations Pmin (%) and phase angles of minimum polarization αmin (

◦) for spherical
media of infinite diametrical optical thickness consisting of Rayleigh scatterers with single-
scattering albedo ω̃. For the minimum polarization, the extinction mean free path is
k� = 300.

ω̃ As pMS pRT ζ(0) Pmin αmin

0.05 1.05 0.00681 0.00654 1.042 -0.534 0.7
0.10 2.18 0.0148 0.0137 1.083 -1.04 0.8
0.15 3.35 0.0240 0.0214 1.123 -1.58 0.9
0.20 4.60 0.0345 0.0297 1.161 -1.87 0.5
0.25 6.02 0.0467 0.0391 1.196 -2.34 0.8
0.30 7.49 0.0607 0.0492 1.233 -2.90 0.7
0.35 9.10 0.0769 0.0607 1.268 -2.76 0.9
0.40 10.7 0.0946 0.0726 1.303 -3.51 0.8
0.45 12.7 0.115 0.0861 1.336 -3.55 0.5
0.50 14.7 0.139 0.101 1.368 -3.87 0.7
0.55 16.9 0.164 0.118 1.397 -4.18 0.7
0.60 19.6 0.196 0.137 1.426 -4.34 0.7
0.65 22.3 0.230 0.158 1.456 -4.60 0.6
0.70 26.0 0.274 0.185 1.482 -4.41 0.7
0.75 29.7 0.321 0.213 1.505 -4.68 0.5
0.80 34.1 0.379 0.247 1.531 -5.04 0.5
0.85 40.2 0.451 0.291 1.547 -4.74 0.5
0.90 48.1 0.551 0.352 1.567 -4.39 0.45
0.95 59.6 0.692 0.438 1.580 -4.33 0.5
0.97 67.3 0.780 0.495 1.576 -4.48 0.45
0.99 79.4 0.916 0.585 1.567 -3.83 0.5

11.4 Physical modeling

11.4.1 Polarization fits

The scattering parameterization for single scattering described above in subsec-
tion 11.2.5 allows for the development of a polarization model that can be directly
utilized in the classification of the polarimetric observations of atmosphereless solar-
system objects. Consider the amplitude scattering matrices for scatterers 1 and 2
presented in subsection 11.2.5. We divide the matrix elements S1 and S2 for scat-
terers 1 and 2 with the amplitude term 2at exp(iφt). For scatterer 1, we obtain

S1 = 1, S2 = cos θ, S3 = S4 = 0; (11.35)

whereas, for scatterer 2, we have

S1 =
sin( 12kd1 sin θ)

1
2kd1 sin θ

, S2 = cos θ
sin(12kd2 sin θ)

1
2kd2 sin θ

+ Z sin θ sin
(
1
2
kd3 sin θ

)
,

S3 = S4 = 0, (11.36)
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where the complex-valued parameter

Z = i
al
at
exp [i(φl − φt)] . (11.37)

We introduce averaging over the lengths of the lines of electric dipoles, mimick-
ing integration over a size distribution of scatterers in the regolith. For scatterer
1, the length-averaged scattering matrix equals the Rayleigh scattering matrix, as
there is no dependence on line length in S1:

F 1 =
∫ ∞

0

∫ ∞

0

du1 du2 p(u1, u2)S1 = S1, (11.38)

where u1 and u2 stand for the integration variables corresponding to kd1 and kd2,
respectively, and p(u1, u2) is the joint probability density function (p.d.f.) for u1
and u2. For scatterer 2, size-averaging starts from

F 2 =
∫ ∞

0

∫ ∞

0

du1 du2 p(u1, u2)S2. (11.39)

In what follows, we consider lines of dipoles; whereas, it would be completely fea-
sible to consider discrete dipoles in an analogous manner. Assuming that u1 and
u2 are independent, p(u1, u2) = p(u1)p(u2) and the integrals reduce to the compu-
tation of integrals of the type

In =
∫ ∞

0

du p(u)
[
sin(12u sin θ

1
2u sin θ

]n
(11.40)

that, in general, require numerical integration that can be carried out using, e.g.,
the Gauss–Legendre integration scheme [72].

The inverse-gamma distribution is an attractive choice for averaging, due to its
power-law asymptotics for large arguments:

p(u) =
ys

Γ (s)
1

us+1
exp

(
−y
u

)
, (11.41)

where Γ is the gamma function. Here y is called the scale parameter and s the shape
parameter of the distribution. Asymptotically, s+ 1 corresponds to the power law
index of the size distribution. For a given wavelength of incident light, the scale
parameter y provides a length measure in the regolith in the size-parameter domain;
that is, if k is the wave number and kd = y, d is the length corresponding to y.
There is no a priori reason why the length distributions would be the same for kd1
and kd2, resulting in altogether four parameters (y1, s1) and (y2, s2) describing the
characteristics of the line sources.

For scatterer 2 in Eq. (11.36), we have still the parameters Z and kd3 to assess.
In introducing the length averaging above for kd1 and kd2, we have assumed dis-
tributions independent from one another. Due to the more complicated nature of
Z, rather than introducing averaging, we treat its real and imaginary parts ReZ
and ImZ as free parameters of the physical model. For kd3, we make use of the
value kd3 = π, guided by our studies on the internal fields of spherical particles in
subsection 11.2.3.
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The physical model for the degree of linear polarization yields

P (θ) =
−w1F

(1)
21 − (1− w1)F

(2)
21

w1F
(1)
11 + (1− w1)F

(2)
11

, (11.42)

where w1 and 1− w1 are the normalized weights of scatterers 1 and 2. As earlier,
we require w1 ≥ 1

2 . The physical model depends on seven free parameters (fixing
kd3 = π): w1, (y1, s1), (y2, s2), Re Z, and Im Z.

In Fig. 11.19, we show the polarimetric observations of asteroid (1) Ceres [73, 74]
explained in terms of the physical model using Markov-Chain Monte Carlo sampling
for the model parameters. Assuming s1 = s2, the best-fit model parameters with
3-σ (or 99.7%) errors are as follows: w1 = 0.808 (+0.007, −0.009), s1 = s2 =
0.73 (+0.05, −0.02), y1 = 3.3 (+0.2, −0.2), y2 = 0.205 (+0.002, −0.016), ReZ =
0.0037 (+0.0383, −0.9993), ImZ = 2.06 (+0.10, −0.01). The rms-value of the fit is
0.068%. The 3-σ error envelope has been computed using 10 000 sample solutions
for the parameters and finding a maximum and minimum among different model
predictions at each phase angle. The physical model provides an acceptable fit
to the polarimetric observations. The model parameters are all concentrated in
the proximity of their best-fit values. Furthermore, successful fitting with s1 = s2
indicates consistency of the distributions for kd1 and kd2. The shape of the negative
polarization branch results from the considerably deviating scale parameters y1 and
y2. The shape differs from that in the single-scattering modeling, where realistic
scattering matrices for wavelength-scale scatterers follow from kd1 and kd2 only
slightly differing from one another.

Fig. 11.19. Physical model for the polarimetry of asteroid (1) Ceres.
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11.4.2 Coherent-backscattering simulations

We carry out example coherent-backscattering simulations for infinitely thick spher-
ical random media of scatterers composed of lines of dipoles. These simulations are
required for the simultaneous interpretation of photometric and polarimetric obser-
vations for atmosphereless solar-system objects. The vector treatment removes the
shortcomings of the scalar approximation discussed in subsection 11.3.3. Before en-
tering the simulations in detail, we refer the reader to the coherent-backscattering
calculations by Videen et al. [75] for comparison.

In the simulations, we utilize parameters indicated in Fig. 11.10, choosing al =
0.6, for three single-scattering albedos ω̃ = 0.3, 0.6, and 0.9 and three extinction
mean free paths k* = 100, 300, and 1000. For the cases ω̃ = 0.3, 0.6, and 0.9, we
sample 200 000, 200 000, and 100 000 incident rays.

Figure 11.20 shows the photometric and polarimetric phase functions for the
spherical media for a number of mean free paths (k* = 100, 300, and 1000). Here
ζ is the enhancement factor compared to the pure radiative-transfer contribution
at the exact backscattering direction (e.g., [25]), and P = (I⊥ − I‖)/(I⊥ + I‖)
is the degree of linear polarization for unpolarized incident light (the subscripts
referring to the intensity components perpendicular and parallel to the scattering
plane). The single-scattering characteristics are seen to be neutralized and coherent
backscattering gives rise to sharp photometric and polarimetric surges close to
the backscattering direction. A double-minimum feature appears for ω̃ = 0.6 in
Fig. 11.20: it is straightforward to identify the negative coherent-backscattering
and single-scattering lobes in the polarization curve. Note that, for ω̃ = 0.9, the
single-scattering lobe neutralizes due to the dominating role of multiple scattering.

With the help of parameterized single scattering in coherent-backscattering
modeling, it is possible to qualitatively explain the narrow opposition effects and
negative polarization branches for E-class asteroids by Rosenbush et al. [4, 5]. Fur-
thermore, the peculiar polarization curve observed for asteroid (234) Barbara by
Cellino et al. [9] resembles, to some extent, the result in Fig. 11.20. Note that it is
straightforward to incorporate distributions of empirical scatterers in the coherent-
backscattering computation, allowing for a realistic coherent-backscattering mod-
eling of photometric and polarimetric phase effects.

11.5 Conclusion

We have assessed light-scattering problems relevant for the interpretation of the
photometric and polarimetric observations of atmosphereless solar-system objects.
In single scattering of light by small particles, we have studied intensity and polar-
ization phenomena at both intermediate scattering angles and close to backscat-
tering. We have described interference mechanisms at least partly responsible for
the phenomena, focusing on the interrelation of the internal and scattered fields of
the particles. We have developed an analytical scattering-matrix parameterization
for single scattering meant to be utilized in solving inverse scattering problems.
In multiple scattering of light by complex random media of scatterers, we have
studied coherent backscattering using the scalar approximation omitting polariza-
tion as well as following the rigorous vector approach accounting for polarization.
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Fig. 11.20. Example coherent-backscattering results for spherical random media of in-
finite optical thickness with mean free paths k� = 100, 300, and 1000: (a) ω̃ = 0.3;
(b) ω̃ = 0.6; (c) ω̃ = 0.9.

We have concentrated on spherical media of scatterers, allowed by the flexible
Monte Carlo algorithm for numerical computations of coherent backscattering. In
the coherent-backscattering studies, we have utilized the scattering-matrix parame-
terization earlier described for single scattering. Finally, we have described practical
physical modeling that can be applied in analyses of the polarimetric and photo-
metric observations of solar-system objects.
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60. K. Muinonen, J. Tyynelä, E. Zubko, G. Videen. Scattering parameterization for in-
terpreting asteroid polarimetric and photometric phase effects: Earth, Planets, and
Space, in press, 2009.

61. J. E. Hansen, L. D. Travis. Light scattering in planetary atmospheres: Space Sci. Rev.
16, 527–610, 1974.

62. Y. Kuga, A. Ishimaru. Retroreflectance from a dense distribution of spherical parti-
cles: J. Opt. Soc. Am. A 1, 831–835, 1984.

63. L. Tsang, A. Ishimaru. Backscattering enhancement of random discrete scatterers: J.
Opt. Soc. Am. A 1, 836–839 1984.

64. L. Tsang, A. Ishimaru. Theory of backscattering enhancement of random discrete
isotropic scatterers based on the summation of all ladder and cyclical terms: J. Opt.
Soc. Am. A 2, 1331–1338, 1985.

65. P.-E. Wolf, G. Maret. Weak localization and coherent backscattering of photons in
disordered media: Phys. Rev. Letters 55, 2696–2699, 1985.

66. K. Muinonen. Coherent backscattering of light by solar system bodies: Efficient scalar
computation: Bull. Am. Astron. Soc. 31, 1076, 1999 (abstract).

67. S. Kaasalainen, K. Muinonen, J. Piironen. Comparative study on opposition ef-
fect of icy solar system objects. J. Quantit. Spectrosc. Radiat. Transf. 70, 529–543,
2001.

68. K. Muinonen, H. Parviainen, J. Näränen, J.-L. Josset, S. Beauvivre, P. Pinet, S.
Chevrel, D. Koschny, B. Grieger, B. Foing. Lunar single-scattering, porosity, and
surface roughness properties with SMART-1/AMIE. Astronomy & Astrophysics, sub-
mitted, 2009.

69. M. I. Mishchenko, J. M. Dlugach. Accuracy of the scalar approximation in computa-
tions of diffuse and coherent backscattering by discrete random media. Phys. Rev. A
78, 063822, 2008.

70. M. I. Mishchenko J.-M. Luck, T. M. Nieuwenhuizen. Full angular profile of the coher-
ent polarization opposition effect: J. Opt. Soc. Am. A 17, 888–891, 2000.

71. J. M. A. Danby: Fundamentals of Celestial Mechanics, Willmann-Bell, Inc., Rich-
mond, VA, 1992.
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Chapter 3

Fig. 3.8. Synthetic clouds used for the radiative transfer. (a) and (b) cirrus cloud with a
mean optical thickness of 2. (c) and (d) stratocumulus cloud with a mean optical thickness
of 10. Optical thickness integrated along the z-axis (a) and (c), and along the y-axis (b)
and (d). (a) and (b) are from Cornet et al. (2009).
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Fig. 3.9. Total (a) and polarized (b) reflectances at 78m resolution for θs = 60◦;
θv = 30 and ϕv = 180◦ (forward direction) for the cirrus cloud presented in Fig. (3.8).
The wavelength is 865 nm. The mean values are indicated above the figures for the 3-D
cirrus cloud (hete) and for the homogeneous cloud (homo). (c) and (d) comparisons with
SHDOM for the total reflectance value: (c) horizontal cut along the line 75 corresponding
to about 6 km and (d) scatterplot between SHDOM and 3DMCPOL reflectances for the
entire field presented in (a). Error bars correspond to the statistical errors of Monte–Carlo
simulations. (a) and (b) are from Cornet et al. (2009).
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Fig. 3.10. Total (a) and polarized (b) reflectances for θs = 60◦ as a function of the
scattering angles (Θ = 180◦ corresponding to backward scattering). Solid lines are for
a homogeneous cirrus cloud of optical thickness 2 and dashed lines for the spatial mean
reflectance values for the cirrus cloud presented in Fig. 3.8. Error bars corresponds to the
statistical error of Monte–Carlo computations. Modified from Cornet et al. (2009).

Chapter 6

Fig. 6.4. Comparison of code SHARM-3D with SHDOM and independent pixel approxi-
mation (IPA) (from Lyapustin, 2002). The left image shows SHARM-3D simulated TOA
radiance. The 64×64 pixels surface area at 30-m resolution was modeled using Landsat-7
reflectance in band 4 over the Oklahoma site on April 4, 2000. The middle and right
images show the relative difference of SHARM-3D and IPA solutions with SHDOM.
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Chapter 8

Fig. 8.17. Temperature-dependent changes in spectral radiance transmitted at 30◦ from
nadir. Radiances were measured through the glass plate used to support the sample, then
normalized by the incident irradiance.

Fig. 8.21. Temperature-dependent scattering coefficients for various types of scatterers
in sea ice as predicted by the structural-optical model.
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Fig. 8.22. Temperature-dependence of (a) relative refractive index, (b) asymmetry pa-
rameter, g, and (c) (1−g) for inclusions of brine in ice, gas in ice, gas in brine, mirabilite in
brine, and hydrohalite in brine. Asymmetry parameters were calculated using equivalent
spheres and Mie theory.

Fig. 8.27. Temperature-dependent partial similarity parameters for each constituent in
the full structural-optical model using (a) mbrine(T ) and (b) mbrine(T = −15◦C).
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Fig. 8.28. Observations and model predictions for a high salinity sea ice sample, (a)
comparison between s derived from observations and predicted with model, (b) model
predicted similarity parameters for each constituent.

Chapter 9

Fig. 9.3. The FIGIFIGO measuring BRF and polarization in Sodankylä in 2009. Optics
is located horizontally in the upper end of the arm, and is looking down to the target
through a mirror. The mirror has two small actuators to fine tune the spot location or
scan over a small range. In front is the Spectralon white reference target, and behind the
researcher’s head is the sun and sky light monitoring pyranometer.



Fig. 9.6. Simulated BRFs of new snow, from top left: BRF cake in 650 and 1550 nm,
the reflection spectra in four directions on the principal plane (colour indicates difference
between two sampling), the BRF on the principal plane in four channels, the polarization
spectra in four directions on the principal plane, and the polarization curve on the prin-
cipal plane in four channels. The angle of incidence is 60◦. Minor oscillations in the data
are Monte Carlo noise.
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Fig. 9.7. Simulated BRFs of dry snow, as in Fig. 9.6. Note that the old snow spectrum is
darker in infrared than in new snow, and polarization gets stronger. BRF shape changes
are small.
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Fig. 9.8. Simulated BRFs of wet snow, as in Fig. 9.6. The only significant difference from
dry snow is the very small spectral changes in some wavelengths, to be discussed in the
next subsections.
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−Q/I

−U/I

−V/I

Fig. 9.9. Flat polarization plots of simulated dry snow, on the left 550 nm, on the right
1550 nm. From top to bottom −Q/I, −U/I, and −V/I. Polarisation is here defined in the
scattering plane.



Color Section 529

◦

◦

◦

Fig. 9.10. The general 3-D shape of the snow BRF in varying angles of incidence, from
top to bottom: 40◦, 55◦, 70◦) and two wavelengths left 670 nm, right 1555 nm. The results
are averaged over all measured samples, and show a typical strong forward scattering
pattern, stronger in infrared than in visual, and stronger in larger zenith angles than
smaller ones. Minor oscillations in the data are mostly caused by the small footprint size
vs. surface roughness, and to some extent an averaging artifact.
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Fig. 9.11. Continuation of Fig. 9.10 with more details. On the left is the reflectivity
spectra at four zenith angles on the principal plane (60◦ forward, 30◦ forward, nadir,
and 30◦ backward. On the right is the BRF curve on the principal plane as a function
of the zenith angle in four channels (violet 445 nm, red 670 nm, SWIR 1225 nm, SWIR
1555 nm). Green colour gives the standard deviation of all measured values at nadir and
orange min/max values. The strong peaks and oscillations in some parts of the spectra
are sensor noise, because the atmospheric water vapor absorbs all the incident signal in
those wavelengths.
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−Q/I

Fig. 9.13. Polarization properties of smooth snow from Mantovaaranaapa 2009. At the
top the degree of linear horizontal–vertical polarization (Stokes −Q/I), in the middle
U/I, and, at the bottom, total linear polarization

p
Q2 + U2/I, taken at wavelengths of

670 nm (left) and 1555 nm (right), with an angle of incidence of 60◦. The short lines in
the bottom diagrams indicate the direction of polarization.
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Fig. 9.14. The polarization spectrum shown in different ways. At the top left the degree
of linear polarization (−Q/I), at right the polarized reflectance (−Q), and at the bottom
horizontally and vertically polarized reflectances separately. All of these show interesting
spectral features.
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Fig. 9.15. The differences over the main snow types, new snow, old dry snow, and melting
snow (from top to bottom), averaged over all samples in the class, otherwise as in Fig. 9.10,
with an angle of incidence 60◦.
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Fig. 9.16. Continuation of Fig. 9.15, analogous to Fig. 9.11. Here one can see more clearly
differences in forward scattering and size effect in spectrum.



Fig. 9.17. Various dry old snow types, from top to bottom, 2005, 2007, 2008, as in
Fig. 9.11, and with an angle of incidence 60◦. From this figure one can already see, that
samples differ, and single dry snow class is a clear oversimplification, but to keep this
review in schedule, further dry snow analysis is dropped.



Fig. 9.18. Various wet and melting snow types, from top to bottom 2005, 2007 and 2009
snows, as in Fig. 9.11, and with an angle of incidence 60◦. Note especially the small bump
and drop at 60◦ to 70◦ forward.
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Fig. 9.19. More detailed view of the reflection spectra in the most wetness sensitive
region, on the left wet snow, on the right dry old snow. The most indicative feature is the
relative difference between 1250 and 1350 nm.



Fig. 9.20. Fig. 9.19 continues at spectral range 900 to 1100 nm. The most indicative
feature here should be the difference between 960 nm and 1000 nm or the location of the
minimum, although it is very difficult to see even from a zoomed curve, and numerical
comparison is needed. Warning that the sensor border is here at 981 nm, which typically
causes an erratic step of 1% to 5%, confusing analysis.



Fig. 9.21. Monitoring the melting process in laboratory. The same snow when dry (left)
and after about 1 hour melting inside (right). At the top there is the BRF on the principal
plane, in the middle the spectral plot from four directions in the principal plane, and at
the bottom a zoom into the more wetness-sensitive spectral band. The light zenith angle
was 60◦.
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Fig. 9.23. Difference between natural (left) and compressed (right) snow.
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Fig. 9.24. Difference between natural (left) and broken (right) snow.
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Fig. 9.26. The three wetness indices [1:green, 2:red, 3:black] as a function of the zenith
angle when observing four snow samples. Dryer snows are on the left, wetter ones on
the right. There is some directional dependence, and most optimum observation direction
is from nadir to backwards. In sunlight measurements (Mantovaaranaapa) the index 3
contains mostly only noise, because it overlaps with atmospheric vapor absorption.



Color Section 543

Fig. 9.27. The polarization of three snow types (from top to bottom) new snow, old snow
and melting snow. On the left, a contour diagram of the linear polarization (−Q/I only),
in 670 nm, on the right in 1555 nm. The angle of incidence was about 65◦.
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Fig. 9.29. Experimenting with BRF measurements simultaneously using FIGIFIGO (on
the right of the background) and Microdrone md4-200 UAV with Ricoh GR II digital
camera. The pilot stands on the left of the foreground, and in the middle of the background
is another spectral measurement going on.
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