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Part I
Bioinformatics for Complex Diseases:

The Basics



Chapter 1
Molecular Diagnostic Techniques

Feng Guo

Abstract Prior to the rapid development of molecular techniques for clinical
diagnostics, cancer was evaluated mainly according to the traditional morphology
under a microscope. The mapping of the human genome refreshes the way disease
is diagnosed and treated, which is indeed a huge accomplishment in the field of
medicine. With the emergence of novel molecular diagnosis technologies, it helps
physicians to answer multiple clinical questions that are inadequately answered
now. Understanding the behaviors of specific genes will not only facilitate us
detect cancer earlier, but it will provide important clues as to how to manage the
disease more efficiently. A selection of techniques that are currently available to
describe a detailed molecular characterization of various cancers is summarized in
this volume.

Keywords Molecular diagnostic � Targeted therapy � PCR � FISH � Mutation
analysis

1.1 Introduction

Analysis of nucleic acid (DNA and RNA) in samples forms the foundation of
molecular diagnostics or nucleic acid-based diagnostics, which is the most rapidly
growing area of laboratory medicine. These methods are extensively used in the
diagnosis and monitoring of diverse inherited genetic, infectious, and neoplastic
diseases.

Understanding the behaviors of specific genes not only helps us detect cancer
earlier, but also provides important clues to better manage certain disease.
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Molecular diagnosis facilitates choose appropriate therapies (molecularly targeted
therapy) that target specific gene products, which are characteristic of a given
tumor have been developed. Therapeutic agents, which are currently used in
clinical practice and can be dramatically effective in cancer patients, are Gefitinib
(IRESSA; AstraZeneca) and Erlotinib (Tarceva; Roche), inhibitors of receptor
tyrosine kinase (TKIs) that are specifically effective in advanced non-small cell
lung cancer (NSCLC) patients harboring epidermal growth factor receptor genes
(EGFR) mutations (Lynch et al. 2004; Paez et al. 2004); Trastuzumab (Herceptin;
Roche/Genentech), a monoclonal antibody that targets the HER-2/neu antigen
overexpressed in about 18–20 % of breast cancers (Piccart-Gebhart et al. 2005);
and STI571 (Gleevec; Novartis), a TKI that targets the fusion gene product BCR-
ABL common to chronic myelogenous leukemia (CML) (Druker et al. 2001;
Kelloff and Sigman 2012). In August 2011, Crizotinib (Xalkori; Pfizer) was
approved for the treatment of patients with late stage NSCLC patients whose
tumors have an ALK gene rearrangement (Kwak et al. 2010).

Here, we aim to review of some principles and applications of molecular
diagnostic techniques, for instance polymerase chain reaction (PCR), real-time
PCR, fluorescent in situ hybridization (FISH), and DNA sequencing.

1.2 Polymerase Chain Reaction and Real-Time PCR

1.2.1 PCR

PCR was initially developed by Dr. Kary Mullis in 1983 (Saiki et al. 1985). As the
most frequently used technique in the field of molecular diagnostics, PCR permits
specific and exponential synthesis and analysis of targeting DNA regions in samples.

A typical PCR reaction mix includes targeting DNA, forward and reverse
primers (short DNA fragments) flanking a location of interest, deoxyribonucleo-
tide triphosphates (dNTPs)/magnesium ions/buffer component, and heat-stable
DNA polymerase. In general, PCR is carried out in a volume of 10–200 ll in small
reaction tubes (0.2–0.5 ml vol.), in a thermal cycler. Each PCR cycle contains
three basic steps including denaturing, annealing, and polymerization. During
denaturing, DNA is melted by incubating at 95–98 �C. Primers are bind to the
complementary sequences on the single-stranded DNA by decreasing the tem-
perature to the calculated annealing temperature of the primer pair used (usually
between 45 and 65 �C) in the reaction (annealing or hybridization). Subsequently,
PCR extension occurs by increasing the temperature to the optimal temperature of
the DNA polymerase (usually around 70 �C) (extension or polymerization).
Incubation times for each step vary between 30 s and 2 min. Consequently, two
new helixes consist of one original strand and the newly synthesized comple-
mentary strand. The whole process is usually repeated 30–40 times and the amount
of the targeted genetic material is doubled after each PCR cycle.
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PCR can also be used to amplify an RNA target. RNA is not an appropriate
target for the heat-stable DNA polymerases used in PCR assays; therefore, the
RNA must first be reverse transcribed (RT) to a double-stranded nucleic acid
sequence (cDNA) prior to PCR reaction using special reverse transcriptase
enzymes. The cDNA sequence can then be amplified using the same PCR cycles
described before. The whole procedure is termed as RT-PCR.

Detection of the BCR-ABL fusion transcript by RT-PCR is used clinically to
confirm CML or to detect and monitor the presence of minimal residual disease
(MRD) in leukemic patients following treatment (Campana and Pui 1995). The
sensitivity of a RT-PCR assay enables the detection of one positive cell within a
background of 105–107 normal cells. The detection of the echinoderm microtu-
bule-associated protein-like 4 (EML4)-ALK fusion transcript by RT-PCR helps
select appropriate NSCLC patients for Crizotinib treatment (Kwak et al. 2010).

The visualization of PCR amplification products is facilitated by agarose gel
electrophoresis. The agarose gel is stained with ethidium bromide (EB) or other
DNA intercalating dyes, which can be detected by fluorescence during exposure to
ultraviolet (UV) light. The size of PCR products is determined by comparison with
a molecular weight marker, which contains DNA fragments of known size. If
primers are labeled with a fluorescent dye, the PCR product can be detected by a
capillary electrophoresis system, which tracks the fluorescence of the identical
PCR sequences as they migrate (Netto et al. 2003). This detection system results in
unsurpassed sensitivity, single base resolution, and differential product detection.

The detection of clonality in a suspected lymphoproliferation using frozen and
paraffin-embedded tissues is valuable in the diagnosis of malignant lymphoma.
The stepwise rearrangement processes during early lymphocytes maturation in the
immunoglobulin heavy chain gene (IGH) or the T cell receptor (TCR) gene join
V-, D-, and J-gene segments. In the procession of gene rearrangement, nucleotides
are deleted and randomly inserted at the joining sites, resulting in an enormous
diversity of antigen receptors. PCR-based assays amplify the DNA between
primers that that target the conserved framework (FR) and the J gene regions.
Reactive lymphoproliferations therefore, have polyclonally rearranged IGH
or TCR genes, whereas malignant lymphomas have clonal rearrangements
(van Krieken et al. 2007).

1.2.2 Real-Time PCR

Real-time PCR, also called quantitative real-time PCR (qPCR), refers to PCR
amplification that is detected and measured continuously during each cycle of PCR
process. The basic goal of this technique is to precisely distinguish and simulta-
neously quantify nucleic acid sequences in a sample even in a very small quantity.
This is a new approach compared to the conventional PCR, where the products are
detected at the end (plateau). qPCR results can either be qualitative (the presence
or absence of a sequence) or quantitative (copy number). The main advantage of
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qPCR is to determine the amount of starting DNA in the sample before the PCR
amplification with accuracy and high sensitivity over a wide dynamic range.

In the case of qRT-PCR, RNA is reverse transcribed into cDNA, which is
followed by a subsequent qPCR amplification using cDNA as template. To fulfill
monitoring the progress of DNA amplification in real time, specific chemistries
and instrumentation are required.

All available qPCR instruments measure the progress of amplification by mon-
itoring fluorescence changes within the PCR tube. A threshold for detection fluo-
rescence is set slightly above background. A signal that is detected above the
threshold is considered as a real signal, which can be used to define the threshold
cycle (Ct) or quantification cycle (Cq). The Ct is a basic principle of qPCR and is an
essential component in producing accurate and reproducible data. The amplicon
doubles every cycle and the amount of fluorescence increases exponentially beyond
the threshold. Therefore, the amount of fluorescence is directly proportional to the
number of amplicons produced in the samples. A universal method of DNA quan-
tification by qPCR is to plot fluorescence against the number of cycles on a loga-
rithmic scale (Fig. 1.1). During amplification, how quickly the fluorescent signal
reaches a threshold level correlates with the amount of original target sequence,
thereby enabling quantification (Valasek and Repa 2005). If a large amount of target
DNA template is present at the start of the reaction, few cycles (low Ct) are required
to accumulate enough products to give a fluorescence signal above background. In
contrast, if a small amount of template is present more amplification cycles (high Ct)
are needed for the fluorescence signal to rise above background.

In general, two approaches are used to obtain a fluorescent signal from the
synthesis of product in qPCR. One depends on the property of non-specific fluo-
rescent dyes such as SYBR green I, which intercalates with any double-stranded
DNA and undergoes a conformational change resulting in an increase in their

Fig. 1.1 Amplication curve. The number of PCR cycles is shown on the x-axis, and the
fluorescence from the amplification reaction is shown on the y-axis
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fluorescence (Wittwer et al. 1997). SYBR Green I has an excitation and emission
maxima of 494 and 521 nm, respectively. During the extension phase, more and
more SYBR Green I can bind to the PCR product, resulting in an increased
fluorescence. Consequently, during each subsequent PCR cycle more fluorescence
signal will be detected (van der Velden et al. 2003).

Another approach is to use fluorescent resonance energy transfer (FRET),
which was first described over 50 years ago and is being used more and more in
biomedical research and drug discovery today. FRET is a quantum phenomenon
occurring between two dye molecules. FRET relies on the distance-dependent
transfer of energy from a donor molecule to an acceptor molecule. Excitation is
transferred from a donor molecule to an acceptor fluorophore through dipole–
dipole interaction without the emission of a photon (Didenko 2001). As a result,
the donor molecule fluorescence is quenched, and the acceptor molecule is excited.
Therefore, the intensity of the donor fluorescence decreases while the fluorescence
intensity of the acceptor increases. The sequence-specific DNA probes are labeled
with a fluorescent reporter which permits detection only after hybridization of the
probe with its complementary sequences. DNA-based FRET probes are applied in
monitoring various types of DNA or RNA reactions including PCR, hybridization,
ligation, recombination, and synthesis. The FRET probes used for PCR amplifi-
cation are either cleaved in the reaction (as TaqMan� probes), incorporated into
amplified DNA (as Scorpion primers), or undergo a conformation change in the
presence of a complementary DNA target (as molecular beacons).

The qPCR method has been used to monitor MRD using leukemia-specific
marker such as the BCR-ABL fusion gene and the WT1 gene (Dolken 2001; Inoue
et al. 1996). The mRNA expression of the excision cross complementation group 1
(ERCC1), ribonucleotide reductase subunit M1 (RRM1), thymidylate synthetase
(TYMS), and class III b-tubulin (TUBB3) genes in tumor tissue, detected by qRT-
PCR, has been linked to the chemo-sensitivity in multiple cancers. Median survival
time in NSCLC patients with low ERCC1 expression is significantly longer as well
as in patients with low RRM1 expression. Among cisplatin-treated patients, low
ERCC1 levels are highly predictive of a longer survival (Ceppi et al. 2006; Simon
et al. 2007). High ERCC1 mRNA levels are predictive of poor response to plati-
num-based chemotherapy in ovarian cancer, lung cancer, and chronic lymphocytic
leukemia (Rosell et al. 2003). Low TYMS mRNA levels are significantly associated
with a longer survival and/or a strong response to 5-fluorouracil (5-FU)-based
chemotherapy in different cancers (Park and Lenz 2006). The TUBB3 overex-
pression confers resistance to paclitaxel and vinorelbine, whereas downregulation
of TUBB3 renders cells more sensitive to the two drugs (Stengel et al. 2010).

1.2.3 FISH

In situ hybridization (ISH) is a powerful technique for detecting specific targets on
the genome in tissues and cells, and gaining temporal and spatial information
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about genetic loci and gene expression. Two basic ways to visualize the RNA or
DNA targets are fluorescence (FISH) and chromogenic (CISH) detection, which
both use a labeled, target-specific oligonucleotide probes that are hybridized with
the complementary DNA target in the sample.

The main advantage of FISH is that it permits the use of both dividing and non-
dividing cells as targets, and enables a large number of cells to be evaluated. The
high sensitivity and specificity, and the speed with which FISH can be performed
make it a useful cytogenetic technique in the diagnosis of blood disorders and
cancers.

FISH involves the specific hybridization of a fluorescence-labeled (e.g., Texas
red, FITC spectra, Rhodamine) nucleic acid probe to complementary gene
sequences, and subsequent visualization the colored signals at the hybridization
site in bone marrow or peripheral blood smears, or fixed and sectioned tissue by
fluorescence microscopy. Both the labeled nucleic acid probe and the DNA target
are denatured to a single-stranded state and permitted to hybridize to each other.

Three types of probes are widely used, such as painting, centromeric, and allele-
specific probes. Painting probes are many separate region-specific probes that bind
along a single chromosome. Chromosome painting allows the highly sensitive and
specific visualization of individual chromosomes in metaphase or interphase cells,
and the identification of both numerical and structural chromosomal aberrations.
Centromeric probes identify the centromeric region of a specific chromosome,
which are generally used as control for chromosome enumeration. Allele-specific
oligonucleotides (ASO) are synthetic DNA oligonucleotides complementary to the
targeting sequence.

FISH plays an important role in the molecular analysis of many hematopoietic
disorders and cancer, and detects numerical and structural chromosomal abnor-
malities. Currently, the evaluation of the HER2/neu gene amplification by FISH in
breast and gastric cancer is widely used in clinical practice. Breast cancer can be
classified as being HER2 positive or HER2 negative. In normal cells, there are two
copies of the HER2 gene, one on each of two copies of chromosome 17. About
18–20 % breast cancer have HER2 gene amplification, which are considered more
aggressive (Slamon et al. 1987). Trastuzumab (Herceptin) is effective in the
treatment of HER2-positive early stage and metastatic breast cancer (Piccart-
Gebhart et al. 2005).

HER2/neu FISH testing measures the number of copies of the HER2 gene present
in each tumor cells and is reported as either positive or negative (Fig. 1.2). In a
typical HER2/neu FISH testing, a centromeric chromosome 17 probe (green signal)
and an allele-specific probe for the HER2/neu oncogene (red signal) are
included. The ratio of the HER2/neu gene to chromosomes 17 in 60 tumor cells is
determined. The HER2 gene/chromosome 17 ratio in a normal, non-dividing cell
should be 1. The HER2 gene/chromosome 17 ratio can increase up to 2 in cells
during certain stages of normal cell division. A FISH ratio (HER2 gene signals to
chromosome 17 signals) more than 2.2 is reported as HER2 positive (Wolff et al.
2007). Concordance between immunohistochemistry (IHC) and FISH results has
been extensively studied. In one study conducted in 2,963 samples using FISH as the
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standard method, the positive predictive value of an IHC 3+ result was 91.6 %, and
the negative predictive value of an IHC 0 or 1+ result was 97.2 % (Yaziji et al.
2004). About 25 % breast cancer patients with an IHC 2+ result have a positive
FISH result.

1.3 Mutation Analysis

Molecular markers of cancer can be products of altered genes. DNA mutations
include gene rearrangements such as translocations, inversions, point mutations,
and insertions/deletions. Detection of mutations in cancer is important for
understanding the disease process. Mutation analysis is also a precursor to targeted
therapy, which is the standard of care for certain tumor types. For example,
Gefitinib and Erlotinib for advanced NSCLC patients with EGFR mutation, and
Cetuximab and Panitumumab for metastatic colon cancer patients with the wild-
type KRAS gene.

Mutations in exons 18–21 of the EGFR gene, which encode tyrosine kinase
domain, enhance the activity of the intracellular signaling pathway and confer the
oncogenic properties of EGFR (Sharma et al. 2007). In-frame deletions in exon 19
and a specific point mutation in exon 21 (p.L858R) are the most prevalent EGFR
mutations. Mutations associated with TKI-resistance include a point mutation
(p.T790 M) and insertions (e.g. p.D770_N771insNPG) in exon 20, and a point
mutation (p.D761Y) in exon 19.

A variety of techniques are existing for mutation analysis of the EGFR gene and
classified into screening methods that indentify all mutations, and targeted
methods that distinctively detect known and pre-determined mutations (Ellison
et al. 2013). Among diverse screening methods, direct DNA sequencing using
Sanger method has been successfully used to detect mutations for many years and
considered as the ‘gold standard’. With direct sequencing, there is no requirement
for batching of samples and it provides better contamination control since the
exact, specific mutation will be presented. Direct sequencing, detects all existing

Fig. 1.2 Fluorescent in situ hybridization analysis for the HER2/neu gene in breast cancer.
a High HER2 amplification (large clusters). b HER2 negative. c Polysomy
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mutations, but it is time-consuming and successful when viable tumor cells con-
stitute at least 25 % of the tissues (Fig. 1.3).

Capillary electrophoresis-based Sanger sequencing (the chain-termination
method) was developed by Dr. Sanger and colleagues in 1975 (Sanger and
Coulson 1975; Sanger et al. 1977). Sanger sequencing, which is also referred to as
dideoxy sequencing or chain termination, is based on the use of dideoxynucleo-
tides (ddNTP) in addition to the normal nucleotides (NTP). ddNTP are essentially
the same as nucleotides except they contain a hydrogen group on the 30 carbon
instead of a hydroxyl group (OH), which prevent the addition of further nucleo-
tides when integrated into a sequence. This occurs because a phosphodiester bond
cannot form between the dideoxynucleotide and the next incoming nucleotide, and
thus the DNA chain is terminated.

Alternative screening methods to direct sequencing include high resolution
melting (HRM), pyrosequencing, and denaturing high pressure liquid chroma-
tography (dHPLC) analysis. As an alternative to direct sequencing, HRM is an
in-tube, fast, and sensitive screening method that detects sequence variation by
monitoring the melting curve of PCR amplicons. HRM is able to detect mutant
genes at levels of 1–10 % (Wittwer 2009). Nevertheless, any DNA alteration due
to single nucleotide polymorphism (SNP) interference or formalin fixation may
produce an abnormal melting point curve, which must be confirmed by sequenc-
ing. In addition, the amplification product is usually designed to be short in length
and does not cover the whole exon. The requirement for sequencing validation
increases turn-around-time (TAT) and reduces the value of high sensitivity, sug-
gesting HRM assay as a screening method prior to DNA sequencing.

Scorpion amplification refractory mutation system (ARMS) falls into targeting
method category and has been used successfully to analyze EGFR mutation status in
the phase III Iressa Pan-Asia Study (IPASS) clinical trial (Newton et al. 1989).

gold standard

no need to batch samples

ARMS

detecting known mutations only (29 kinds)

expensive

need to batch samples

1% 100 1.5+0.5

HRM

detecting both known and unknown mutation

expensive

requiring sequencing validation

1% 150 1.5+3

Methods Facts Sensitivity
DNA 

required 
(ng)

TAT
(d)

Direct 

Sequencing

detecting every nucleotide change

cheap
20~30% 200 1.5+3

Fig. 1.3 Comparison among direct sequencing, ARMS, and HRM assay
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ARMS is more sensitive than direct sequencing, however, detects known mutations
only. Additionally, ARMS requires to batch samples and the reagents are expensive.
ARMS, discriminating between mutant and wild-type DNA by selectively
amplifying mutation-specific target sequences, detects mutations in samples with
mutation frequency as low as 0.1–1 % (Zhuang et al. 2013). Other targeted method,
such as peptide nucleic acid (PNA)-locked PCR clamping, mutant-enriched PCR,
and SNAPshot PCR, are also used in clinical practice (Ikeda et al. 2012). Using cell
lines heterozygous for EGFR mutations, we found that the sensitivities of direct
sequencing, ARMS, and HRM in our experiment setting were 10, 1, and 1 %
(Fig. 1.4, unpublished data).

In fact, none of the available methods can provide the entire information of
EGFR mutation with the best sensitivity and specificity. The concordance rate was
73.68 % between direct sequencing and ARMS assay. The concordance rate
between HRM and sequencing was 78.67 % (unpublished data). To decrease the
frequency of false negatives and not to lose any opportunity for a potential EGFR-
TKIs treatment, a workflow for the EGFR mutation examination according to the
specimen quality and quantity (tumor load and DNA yield) is now be proposed. If
specimens containing tumor tissue are sufficient (e.g. surgical biopsy), direct DNA
sequencing is ready to perform at first. Macro-dissection to enrich DNA from
tumor tissue is suggested when tumor load is lower than 10 %. The hematoxylin
and eosin staining for FF-PETs slide is performed to guide tissue macro-dissection.
The subsequent ARMS assay is necessary to perform in order to rule out false
negatives due to limited sensitivity of sequencing. In fact, several reports showed
that around 20–30 % samples that were negative for sequencing were detected
somatic EGFR mutations by ARMS assay (Ellison et al. 2010; Liu et al. 2011). If
specimens are insufficient, such as biopsy of transbronchial needle aspiration
(TBNA) or surrogate tissue including bronchial alveolar lavage, plasma or pleural
fluid, ARMS assay is recommended to be the first and the best choice. Sequencing
is suggested to further exclude any possibilities for an uncommon mutation, if
EGFR mutation is negative from ARMS assay and if there are enough DNA left
(Fig. 1.5). In the future, we might be benefit from the incorporation of next-
generation sequencing into daily practice.

The Sanger sequencing method is considered as a first-generation technology,
and newer methods are referred to as next-generation sequencing (NGS). NGS, or
second-generation sequencing, is an innovative and extremely sensitive platform,
which performs massively parallel sequencing and offers new diagnostic oppor-
tunities. In the past decade, several NGS platforms have been developed and
provided low-cost, high-throughput sequencing. The major NGS platforms that
enter the market include Ion Torrent Personal Genome Machine (PGM) and
SOLiD from Life Technologies, HiSeq sequencing system from Illumina/Solexa,
and 454 GS Junior System from Roche Applied Sciences.

NGS encompasses several different methodologies that allow the investigation
of genomics, transcriptomics, and epigenomics (Braggio et al. 2013). Although
each NGS platform is different in how sequencing is accomplished, the whole
procedure of NGS is generally includes template preparation, sequencing and
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imaging, genome alignment and assembly methods, and data analysis (Grada and
Weinbrecht 2013; Metzker 2010). The template (DNA or cDNA) is first frag-
mented into a library of small segments that can be uniformly and accurately
sequenced in millions of parallel reactions. The newly identified strings of bases,
called reads, are then reassembled by aligning to a reference genome. The full set
of aligned reads reveals the entire sequence of each chromosome in the sample.

Currently, NGS is widely used in many fields related to biological sciences and
is particularly successful in the application of whole-exome sequencing and tar-
geted sequencing. The whole-exome sequencing, sequencing of the protein-
encoding parts of all the genes, is proposed as a method for detecting disease-
causing sequence variations in complex human disease. High-throughput
sequencing of the human genome facilitates the discovery of genes and regulatory
elements associated with disease. Several successful cases have been reported
recently. Homozygosity mapping, followed by the whole exome sequencing, has

b

Fig. 1.5 Proposed algorithm of a sequential method for EGFR mutation detection (Zhuang et al.
2013)

Fig. 1.4 The sensitivity testing for EGFR mutations using serial dilutions of PC-9/A549 DNA.
PC-9 cells harbor in-frame deletions in exon 19 of the EGFR gene (heterozygous for
c.2235_2249del15). A549 cells are wild-type for the EGFR gene. The gDNA of PC-9 cells are
serially diluted into A549 gDNA at ratios of 100, 40, 20, 10, and 2 % to give mutant allele
frequencies of 50, 20, 10, 5, and 1 %. a Direct sequencing. At least 10 % mutant DNA is
necessary to detect EGFR mutations. b ARMS. 1 % mutant DNA is ready to be indentified from
wild-type DNA. c HRM. 1 % mutant DNA is ready to be plotted differently from wild-type DNA
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identified that the SLC45A2 and G6PC3 genes are associated with neutropenia
(Cullinane et al. 2011). Other genes such as FLNA, RPL21, STAT1, WDR35, and
c16orf57, detected by NGS, have been linked to diverse inherited skin disorders
(Lai-Cheong and McGrath 2011). NGS also improves our knowledge of the
genetic basis of multiple hematological malignancies and solid tumors (Braggio
et al. 2013). As matter of fact, with NGS, clinicians are provided a fast, affordable,
a thorough way to determine the genetic cause of a disease.

Targeted sequencing allows the identification of disease-causing mutations for
diagnosis of pathological evaluations. With targeted sequencing, only a subset of
genes or defined regions in a genome is sequenced, allowing researchers to focus time,
expenses, and data storage on the genomic regions of interest. The ability to batch
samples and obtain high sequence coverage during a single reaction allows NGS to
identify rare, novel mutations that are missed, or too expensive to identify, using first-
generation sequencing methods (Grada and Weinbrecht 2013; Metzker 2010).

More and more innovative technologies in molecular biology are gradually
applied into the clinical laboratory as validated diagnostic tests. Molecular diag-
nostics eventually helps establish a definitive diagnosis and classification of can-
cers based on the recognition of unique molecular alterations that occur in specific
cancer types.
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Chapter 2
Identifying Biomarkers with Differential
Analysis

Xing-Ming Zhao and Guimin Qin

Abstract The initiation and development of diseases is a complex process,
involving genetic mutations and environmental influences. Disease biomarkers
(biological markers) are biological characteristics of pathogenic processes, which
can help make diagnostic or prognostic decisions so that necessary interventions
can be adopted to prevent the development of diseases. In the post-genomic era,
with the accumulation of various kinds of omics data, it is possible to identify
molecular biomarkers that can help diagnosis and develop efficient therapies. In
this chapter, we summarize the recent progress on identifying biomarkers with
differential analysis based on different types of omics data. Differential analysis is
a very powerful and widely used approach in biology, which identifies biomarkers
by comparing molecular datasets generated under different conditions. In partic-
ular, we focus on the approaches that identify biomarkers based on molecular
networks that take into account the differences between different physiological
conditions together with the network topology structure.
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2.1 Introduction

Diseases are generally caused by genetic mutations or/and environmental influ-
ences, involving various biological processes. Early diagnosis of disease risks can
help prevent the development of diseases, and precise prognosis of disease states
can avoid unnecessary treatments for good outcomes while adopt timely inter-
vention for poor outcomes. Disease biomarkers (biological markers) are biological
characteristics of pathogenic processes, which can help make diagnostic or
prognostic decisions. Biomarkers are useful for predicting disease risks of certain
populations so that timely intervention can be adopted to prevent the disease.
Furthermore, biomarkers can help identify subtypes of heterogeneous diseases, e.g.
breast cancer, so that appropriate therapeutic strategies can be adopted. In the past
decades, with the development of molecular biology and biotechnology, a huge
amount of molecular data are publically available, which enables the identification
of specific molecules that can serve as biomarkers. For example, the hormone
receptors ER and PR can be used as the biomarkers to predict the response of
patients to endocrine therapy, while the HER2 oncogene can serve as a biomarker
of invasive breast cancer and predicts survival of patients (Ross 2009).

Despite the success of molecular biomarkers, it is not an easy task to identify
reliable and useful biomarkers considering more than 20,000 genes encoding about
30,000 proteins within the human genome, where complex interactions can be
found among proteins. Recently, with the rapid progress in biotechnologies,
especially in high-throughput techniques, genome-wide screening is making it
possible to identify molecular biomarkers in an efficient way. In particular, the
accumulation of various kinds of ‘-omics’ (e.g. genomics, transcriptomics and
proteomics) data enables one to identify potential gene biomarkers that can predict
disease risks (Joyce and Palsson 2006). For example, the genome-wide association
study (GWAS) is able to provide genetic variants associated with diseases based
on the comparison of disease population against normal/control population. In the
landmark Wellcome Trust Case Control Consortium (WTCCC) (2007) study,
many DNA variants and genes were identified to be associated with seven com-
mon diseases. The transcriptome profiles enable the monitoring of expression of
tens of thousands of genes, where those genes that are differentially expressed
between different physiological conditions are generally regarded as potential
biomarkers for diagnosis and prognosis. In their pivotal work, Golub et al. (1999)
identified gene biomarkers that can successfully discriminate acute myeloid leu-
kemia (AML) from acute lymphoblastic leukemia (ALL) based on gene expression
profiles.

Although the gene biomarkers identified based on the omics data achieve some
success, most of the gene biomarkers are not reliable and have low reproducibility,
where the biomarkers identified from one dataset sometimes fail to work in another
dataset for the same disease. This phenomenon arises since many diseases,
especially complex diseases, are well recognized as the results of dysregulation of
biological systems instead of the mutations of individual genes, whereas the gene
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biomarkers are generally assumed to be functionally independent of each other.
Therefore, it is necessary to identify biomarkers from a systematic perspective.
The molecular networks, including protein–protein interaction network, gene
regulation network and metabolic network, can describe the biological systems in
an accurate way (Barabasi and Oltvai 2004), thereby providing an alternative way
to predict biomarkers at systematic levels. Biomarkers identified from the
molecular networks can provide insights into the molecular underpinnings of
diseases, and help develop efficient therapeutic strategies (Barabasi et al. 2011).
For example, with the network biomarkers identified for cancer, Chen et al. (2011)
successfully predicted the breast cancer metastasis.

In this chapter, we survey the recent progress on biomarker identification with
differential analysis based on different types of omics data, where biomarkers are
identified by comparing molecular datasets generated under different conditions.
Here, biomarkers range from genes to gene sets, pathways, and networks. In
particular, we focus on the approaches that identify biomarkers from molecular
networks that take into account the differences between different physiological
conditions together with the network topology structure.

2.2 Differential Analysis in Biology

Differential analysis is a widely used approach to identify biomarkers in biology,
where the differences of biological characteristics, e.g. genes or blood pressure,
across different species or conditions are generally investigated and those signif-
icantly changed biological markers will be treated as biomarkers. In this chapter,
the biomarkers are referred to as molecular biomarkers, ranging from genes to
gene sets/pathways and networks.

As shown in Fig. 2.1, molecular biomarkers can be identified based on different
kinds of data, where the resultant biomarkers range from individual genes to gene
sets and networks. Right now, a huge amount of omics data on distinct major
diseases are publically available. For example, the gene expression data for
patients can be retrieved from Gene Expression Omnibus (Barrett et al. 2009) and
ArrayExpress (Parkinson et al. 2009), protein–protein interaction data can be
freely available at BioGrid (Stark et al. 2006) and STRING (von Mering et al.
2005) databases, and pathway knowledge can be found at KEGG (Kanehisa and
Goto 2000) and Gene Ontology (Ashburner et al. 2000). Inspired by the wealth of
the publically available data, a lot of computational approaches have been pro-
posed to identify biomarkers by conducting differential analysis. In this chapter,
we focus on the differential analysis of transcriptome data and protein–protein
interactions. Those readers that are interested in identifying biomarkers from
genomic and metabolic data are referred to the review papers on identifying
biomarkers based on GWAS (Manolio 2013) and metabolic profiling (Spratlin
et al. 2009). For different types of data, the biomarkers identified are different. For
example, gene biomarkers can be obtained with differential expression analysis,
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gene set biomarkers are identified by considering a set of genes as an entity, while
pathway and network biomarkers are generally detected by taking into account the
functional interactions among genes.

In the following sections, different computational approaches for differential
analysis on distinct types of data will be introduced. Especially, these computa-
tional approaches are introduced based on the type of biomarkers they identify.

2.3 Gene Biomarkers

With the accumulation of huge amount of gene expression data deposited in public
databases, e.g. GEO, it is becoming easy to identify genome-wide genes that are
significantly differentially expressed between case and control samples (de la
Fuente 2010) or between different disease stages (Weigelt et al. 2005). These
differentially expressed genes are generally regarded as potential biomarkers. On
the other hand, those genes that are able to discriminate samples of different
conditions are also regarded as important genes and used as biomarkers.

Early approaches for identifying gene biomarkers generally detect differentially
expressed genes by setting a threshold, where those genes whose expression
changes above the threshold are used as gene biomarkers. For example, DeRisi

Fig. 2.1 Biomarkers identified based on different data
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et al. (1997) detected differentially expressed genes by setting a two-fold change
threshold. Unfortunately, the noise inherited in the gene expression data makes it a
challenging task to detect reliable differentially expressed genes with such an
arbitrarily set threshold. Therefore, a lot of statistical approaches have been pro-
posed to detect more reliable differential genes, e.g. the nonparametric approach
(Pan 2003) and the empirical Bayesian method (Efron et al. 2004), where most of
the approaches are based on statistical tests. The Significance Analysis of
Microarrays (SAM) statistical approach proposed by Tusher et al. (2001) is one
of the most widely used tools for determining the significance of the changes in
expression and has shown good performance. SAM assigns a score to each gene
based on its expression change relative to the standard deviation of repeated
measurements for that gene, where genes with scores above a threshold are
regarded as statistical significant. Later, an improved SAM statistics was proposed
by Wu (2005), which utilizes the penalized linear regression model to prevent
overfitting considering the large number of genes and relatively small number of
samples. Both SAM and its improved version can be seen as a shrinkage of
ordinary t-statistics, which are generally used for comparing two conditions with
replication of samples. With more than two conditions, the analysis of variance
(ANOVA) will be more appropriate and powerful by taking into account multiple
factors and/or several sources of variation (Pavlidis 2003). More details about
statistical tests for detection of differentially expressed genes are referred to a
review paper by Cui and Churchill (2003).

Beyond statistical tests, the identification of gene biomarkers can be regarded as
a feature/variable selection problem that is well studied in machine learning field,
which is also known as gene selection in bioinformatics. In gene selection, the aim
is to select a small set of genes that lead to good discrimination between diseases
and normal or between different conditions. For example, Golub et al. (1999)
identified a set of genes that are most correlated with the class distinctness between
acute myeloid leukemia and acute lymphoblastic leukemia, and obtained a high
accuracy when used together with self-organizing maps (SOMs). Guyon et al.
(2002) proposed a new method for gene selection by utilizing Support Vector
Machine (SVM) based on Recursive Feature Elimination (RFE), which is able to
eliminate gene redundancy while get a more compact and reasonable gene set.
When applied to real cancer data sets, SVM-RFE yields better classification per-
formance and the genes identified are found to be more biologically relevant to
cancer. Later, Zhang et al. (2006) developed a recursive support vector machine
(R-SVM) algorithm for gene selection, which shows better performance compared
with SVM-RFE. Li et al. (2001) presented a hybrid intelligent approach that
combines Genetic Algorithm (GA) and k-Nearest Neighbor (KNN) method to
identify genes capable of discriminating different classes of samples. Random
forest is a recently developed algorithm for classification that utilizes an ensemble
of classification trees with each tree built with a bootstrap sample of the data
(Breiman 2001). Random forest has shown excellent performance even with noisy
variables and is able to return measures of variable importance. When applied to
gene selection, random forest shows comparable performance to other popular
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classification methods while identifying a small set of genes (Diaz-Uriarte and
Alvarez de Andres 2006). More details about gene selection techniques are
referred to the recent review papers (Duval and Hao 2010; Saeys et al. 2007).

Recently, with the descending cost of next-generation sequencing, more and
more RNA-Seq data are being available. RNA-Seq is able to discover unanticipated
transcripts, and detect fewer false positive transcripts compared with microarrays
(McIntyre et al. 2011). Unfortunately, the well-established methods for detecting
differentially expressed genes in microarray are not immediately transferable to the
analysis of RNA-Seq data due to the difference between the microarray data and the
RNA-Seq data. Encouragingly, a lot of tools are being introduced for this purpose,
e.g. DESeq (Anders and Huber 2010), Cuffdiff 2 (Trapnell et al. 2013) and edgeR
(Robinson et al. 2010). Interested readers are referred to a recent comprehensive
comparison of different tools (Soneson and Delorenzi 2013).

2.4 Gene Set Biomarkers

The gene biomarkers identified above generally correlate very well with the phe-
notype of interest and are easy to interpret. However, the noise inherited in the data
and the parameters involved in the model for identifying differential genes may lead
to false positives and false negatives. For example, there is no standard criterion to set
a threshold when detecting the differentially expressed genes. Pan et al. (2005)
showed that different choices of the threshold values may lead to completely different
biological conclusions. Although those genes with significant expression change are
more likely to be related to the phenotype of interest, there are also many important
genes without large enough expression changes are discarded but these genes are
indeed related to the phenotype (Ben-Shaul et al. 2005; Breslin et al. 2004).

Under the circumstances, gene set analysis that investigates groups of genes
instead of individual genes is becoming a trend in interpreting gene expression
data, where the genes in the same group are more likely to be associated with the
same biological processes. The pioneering knowledge-based approach Gene Set
Enrichment Analysis (GSEA) is among such gene set analysis approaches, which
scores the enrichment of predefined gene sets that share common biological
functions based on the Kolmogorov–Smirnov statistic (Subramanian et al. 2005).
The significance of the score is evaluated with an empirical permutation test that
corrects for multiple hypothesis testing. Compared with single gene biomarkers,
the gene sets identified by GSEA are pathways or processes that are more rea-
sonable for the interpretation of the data. Furthermore, instead of focusing on
significant differential genes, GSEA can detect those important genes with modest
expression changes. Thereinafter, a lot of variants of GSEA have been proposed,
including non-parametric enrichment statistics (Barry et al. 2005; Hänzelmann
et al. 2013; Tian et al. 2005), battery testing (Dorum et al. 2009; Efron and
Tibshirani 2007; Irizarry et al. 2009), and focused gene set testing (Jiang and
Gentleman 2007; Wu et al. 2010a). Among these variant versions of GSEA, the
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Simpler Enrichment Analysis (SEA) approach proposed by Irizarry et al. (2009)
estimates enrichment based on a one-sample t test by assuming gene indepen-
dence, which has shown better performance than GSEA. However, the gene
independency assumption has its limitations as shown in (Kim and Volsky 2005;
Nam et al. 2006; Tamayo et al. 2012; Wang et al. 2008). More statistical methods
for the analysis of gene set enrichment can be found in the recent review papers
(Chen et al. 2007; Dopazo 2009; Goeman and Buhlmann 2007; Liu et al. 2007;
Nam and Kim 2008; Song and Black 2008).

Recently, it is noticed that the inter-gene correlation affects the tests and leads
to Type I error. To overcome this problem, two new approaches, namely Corre-
lation Adjusted MEan RAnk gene set test (CAMERA) (Wu and Smyth 2012) and
Quantitative Set Analysis of Gene Expression (QuSAGE) (Yaari et al. 2013), have
been proposed to account for inter-gene correlations and shown better perfor-
mance. In the future, more reliable methodologies are believed to appear.

2.5 Pathway Biomarkers

Although the gene set biomarkers consider groups of genes that are related to the
same functions or processes and are able to detect important genes with modest
changes, they generally treat a gene set as a union of individual genes and assume
they are functionally independent. A molecular pathway represents the interactions
among a set of functionally related genes, and are most interested to biologists
rather than the gene sets. It is well recognized that, instead of the mutations of
individual genes, the dysfunction of molecular pathways leads to the initiation and
development of diseases, especially complex diseases. Therefore, it is more rea-
sonable to identify those dysfunctional pathways underlying diseases, i.e. pathway
biomarkers, which can improve the robustness and accuracy of diagnosis com-
pared with gene biomarkers and gene set biomarkers. Furthermore, the pathway
biomarkers are more easier to interpret for the development of diseases. With more
pathway knowledge being comprehensive in public databases, such as Reactome
(Joshi-Tope et al. 2005) and KEGG (Kanehisa and Goto 2000), and Pathway
Interaction Database (PID) (Schaefer et al. 2009), as well as the wealth of the
transcriptome data that describes the activities of genes, it is possible to detect
those aberrantly functioned pathways in patients.

Inspired by this, some computational approaches have been developed to
identify dysfunctional pathways associated with diseases. For example, Tarca et al.
(2009) proposed a signaling pathway impact analysis (SPIA) approach to measure
the impact of perturbations on a given pathway under a given condition. When
applied to cancer datasets, SPIA outperforms GSEA and successfully identifies
pathways known to be involved in cancers. Later, Vaske et al. (2010) developed a
probabilistic graphical-based model known as PARADIGM to identify patient-
specific pathway activities in glioblastoma multiforme (GBM). PARADIGM is
able to integrate different types of omics data and identify those pathways whose
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activities change significantly in patients, and detects fewer false-positives
compared with SPIA. Most recently, Haynes et al. (2013) proposed a new
approach entitled as Differential Expression Analysis for Pathways (DEAP) to
identify disease associated pathways. Compared with other existing approaches,
DEAP is able to detect the most differentially expressed portion of the pathway.
DEAP successfully identified pathways related to chronic obstructive pulmonary
disease and interferon treatment, some of which are generally ignored by existing
approaches.

In biology, it has been observed that tumor associated alterations recurrently
occur in patients but are mutually exclusive within the same molecular pathways
(Ciriello et al. 2012). Based on this phenomenon, Vandin et al. (2012) proposed
two novel algorithms, entitled as De novo Driver Exclusivity (Dendrix), to identify
driver pathways underlying cancer from somatic mutation data. When applied to
different cancer datasets, they successfully identified known tumor related path-
ways. Formulating the identification of driver pathways as a maximum weight
submatrix problem, Zhao et al. (2012) developed two approaches for this purpose.
The results on several cancer datasets demonstrate the efficiency of their
approaches. Later, Leiserson et al. (2013) introduced the Multi-Dendrix algorithm
for the simultaneous identification of multiple driver pathways de novo from the
somatic mutation data. Benchmarking on cancer datasets, Multi-Dendrix is much
faster than the iterative version of Dendrix, and gives more flexible optimal
solutions for candidate pathways.

Generally, the above mentioned approaches treat pathways as independent
functional units, whereas there are extensive cross-talks between distinct path-
ways. Similarly, the initiation and development of many diseases involve the
cross-talks between pathways. Therefore, it is expected that more robust and
reliable pathway biomarkers will be obtained if the cross-talks between pathways
could be taken into account. Inspired by this, we proposed a novel approach to
identify dysregulated pathways in cancer based on a pathway interaction network
(Liu et al. 2012). Unlike traditional molecular networks, the pathway interaction
network consists of pathways and their cross-talks, where each node represents a
pathway and each edge represents the cross-talk between a pair of pathways.
Based on the pathway interaction network, the dysregulated pathways in cancer
are identified with feature selection techniques. Benchmarking on several distinct
cancer datasets, the pathway biomarkers identified by our method are more reliable
and accurate compared with other state of the art methods.

2.6 Network Biomarkers

Despite pathway biomarkers take into account the functional dependency among
genes and are therefore more reliable, the scarceness of pathway knowledge limits
the identification of pathway biomarkers. Furthermore, our current knowledge
about pathways is only about their static topological structures defined based on
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different experiments, whereas the pathway activity is a dynamic process with
different components involved under distinct conditions. On the other hand, the
molecular networks can give a more global view about the biological systems
while preserve the pathway structures within the network, thereby removing the
limitations of prior pathway knowledge. Moreover, along with the high-throughput
data, e.g. time-course gene expression, that can describe the activities of individual
molecules, the molecular networks are able to characterize the dynamics of the
biological systems. In addition, many diseases, especially complex diseases, are
caused due to the dysfunction of multiple genes, where these genes have been
found to tend to interact with each other compared with non-disease genes (Chen
et al. 2013b; Goh et al. 2007). Therefore, a lot of computation approaches have
been developed to identify subnetworks or modules from the molecular networks,
and these subnetworks or modules have discriminative ability of separating dif-
ferent conditions and can therefore serve as biomarkers. Hereinafter, such pre-
dictive subnetworks or modules are called network biomarkers. Most approaches
identify network biomarkers based on the analysis of differential networks that
integrate the differences of single genes between distinct conditions with network
topology. Based on the networks they used, these approaches can be categorized
into gene association network based methods and protein–protein interaction
network based approaches.

In the gene association networks, the nodes are genes and an edge is laid
between a pair of genes if their coexpression correlation, typically Pearson cor-
relation coefficient, is above a threshold. By constructing different association
networks for distinct conditions based on gene expression data, the co-expression
patterns associated with diseases can be extracted which are otherwise ignored by
the detection of differentially expressed genes. For example, Chu et al. (2011)
described an association network with Graphical Gaussian Models, and detected
those edges that may rewire across two disease states by comparing the posterior
probabilities of the connections in two disease conditions. Applied to breast cancer
datasets, they successfully identified biomarkers consist of gene sets or pathways,
which are able to separate different histological grades of breast cancer. Zhang
et al. (2009) proposed a differential dependency network (DDN) analysis approach
to detect statistically significant topological changes in the association networks
corresponding to different conditions, and successfully detected those gene regu-
lations that are inhibited by drug ICI. Gambardella et al. (2013) developed a new
Differential Network Analysis (DINA) approach to identify condition-specific
active pathways with the assumption that genes belonging to the same pathways
tend to be co-regulated. DINA has been successfully utilized to detect tissue-
specific pathways and identify dysregulated hepatocarcinoma-specific metabolic
and transcriptional pathway. Skinner et al. (2011) developed a tool DAP finder to
identify Differentially Associated Pairs (DAPs), and identified a network bio-
marker that is able to discriminate between oligodendroglioma (ODG) and glio-
blastoma multiforme (GBM) tumors.

Despite of the advantage of association networks over individual genes, it is not
easy to select an appropriate threshold when constructing an association network.
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Therefore, the experimentally determined protein–protein interactions (interactome)
provide an alternative way to investigate the network biomarkers. Taylor et al. (2009)
proposed a novel framework to detect network modules that rewire in different
conditions by examining the dynamic structure of the human interactome based on
gene expression data. Applied to a cohort of breast cancer patients, they found some
genes that do not have significant changes in their expression but these genes have
different interaction partners in surviving patients and those with poor outcomes.
Furthermore, these genes can serve as a prognostic signature to predict outcomes and
survival. Wu and Stein (2012) proposed a semi-supervised algorithm to discover
network modules consist of interacting genes involved in the disease process. They
identified novel network module signatures of 31 and 75 genes respectively for breast
cancer and ovarian cancer, where the gene signatures are significantly related to
cancer survival and outperform other well-known prognostic signatures. Recently,
West et al. (2012) proposed to explore cancer with network entropy, and found
cancer cells are characterised by the increase in network entropy. Through differ-
ential network analysis, the interaction patterns that are associated with certain
diseases can be extracted from the networks. Recently, we developed a novel
approach for identifying differential interactions for gastric cancer, where these
interactions consist of potential disease genes were found to form network modules
(Liu et al. 2012). By combining gene expression data generated under different stages
of gastric cancer with human interactome, we successfully identified cancer asso-
ciated network modules that serve as predictive biomarkers capable of discrimi-
nating tumors from normal samples. Benchmarking on real gastric cancer datasets,
our identified module biomarkers have better performance in discriminating the
tumors from normal samples compared with known biomarkers detected for gastric
cancer. Investigating the dynamic structures of the module biomarkers, we noticed
that the network modules have different topological structures in different gastric
cancer stages as well as normal states, which provide insights into the molecular
underpinnings of gastric cancer.

The above mentioned approaches generally explore the differential networks
with some statistics, and the identified network modules have limited discrimi-
native power. Therefore, some computational approaches have been proposed to
identify network biomarkers by transforming the problem into a feature selection
problem explicitly. For example, in their pivotal work, Chuang et al. (2007)
proposed a novel approach to extract subnetworks from interactome, and the
subnetworks are more reproducible biomarkers that achieve higher accuracy than
individual gene biomarkers in the classification of metastatic versus non-metastatic
tumors. Lee et al. (2008) proposed a novel Pathway Activity inference using
Condition-responsive genes (PAC) approach to identify diagnostic biomarkers
based on gene expression data, where the biomarkers are subsets of condition-
responsive co-functional genes instead of individual genes or static literature-
curated pathways. With defined pathway activity, their identified biomarkers
outperform other pathway based approaches. Chen et al. (2013a) developed a new
method based on bagging Markov random field (BMRF) to identify network
biomarkers for breast cancers from human interactome. When applied to breast
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cancer progression and/or tamoxifen resistance, their identified biomarkers can
lead to higher accuracy and are more biologically meaningful.

There are also some optimal approaches that have been proposed to identify the
subnetworks that are especially active under certain conditions. For example,
Kim et al. (2011) developed a novel computational method to simultaneously
identify causal genes and their downstream dysregulated pathways based on a
circuit flow algorithm that mimics the current flow in an electric circuit. Results on
glioblastoma multiforme (GBM) demonstrate that this approach is able to identify
both causal genes and causal pathways that underlie complex diseases. Lan et al.
(2011) presented a tool ResponseNet to identify possible pathways that response to
stimuli from molecular interaction networks based on a flow algorithm. We have
developed an integer linear programming model to identify the subnetworks linking
between membrane proteins and transcriptional factors based on interactome and
gene expression data, which has been successfully applied to identify the yeast
MAPK signaling pathways (Zhao et al. 2008). We also proposed an improved
network flow model to detect the active pathways that response to stimuli (Zhao et
al. 2009), and a variant of the model has been successfully used to detect network
modules that response to drugs (Wu et al. 2010b).

2.7 Conclusions and Perspective

In this chapter, we introduced recent progress on computational approaches,
especially differential analysis, that have been developed to detect biomarkers,
ranging from gene biomarkers to gene set biomarkers, pathway biomarkers and
network biomarkers. With the accumulation of various types of omics data, the
intuitive differential analysis is becoming a powerful approach for detecting bio-
markers, and is widely used in the community. The differential analysis based
computational approaches developed for the identification of molecular bio-
markers can help narrow down the search space of possible biomarkers and pro-
vide guidelines for future biological and medical experiments. Among different
biomarkers, the gene biomarkers are easy to interpret and can help design targeted
therapy, while the gene set/pathway/network biomarkers are more biological
reasonable and have better performance since diseases are rarely caused due to the
aberrant variation of single genes. Although gene set/pathway/network biomarkers
generally perform better than gene biomarkers, it depends on the problem of
interest to choose which type of biomarkers one should identify since pathway/
network biomarkers may not perform better than gene biomarkers in some cases
(Staiger et al. 2012). Considering more and more different types of omics data are
being available, computational approaches that are able to integrate these multi-
dimensional data in an efficient way are highly demanded. It is expected that more
efficient computational approaches will arise to identify biomarkers that are more
robust and accurate.
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Chapter 3
Identifying Driver Mutations in Cancer

Jack P. Hou and Jian Ma

Abstract A key question in cancer genomics is how to distinguish ‘‘driver’’
mutations, which contribute to tumorigenesis, from functionally neutral ‘‘passen-
ger’’ mutations. Driver mutation is critically important for understanding the
molecular mechanisms of cancer development and progression, which will ulti-
mately help tailor more targeted and effective treatments for patients. In this
chapter, we introduce recent developments in computational methods for identi-
fying driver mutations. We summarize existing methods into several major cate-
gories and discuss challenges in discovering the whole spectrum of driver
mutations in cancer for future computational and systems biology studies.

Keywords Cancer � Genomics � Driver mutation � Systems biology

3.1 Introduction

3.1.1 What is Driver Mutation?

Rapid advances in next-generation sequencing technologies have paved the way
for comprehensive analysis for large numbers of cancer genomes (Stratton 2013).
Through these advances, scientists have uncovered a large number of genetic
mutations and other alterations (e.g., copy number changes, epigenetic changes,
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and structural variations) pertaining to cancer (Green et al. 2011). To understand
the significant alterations that cause cancer is to discover the source of carcino-
genesis—information that we can utilize to improve treatments for patients.
However, the complexity of cancer and the tremendous amount of genomic data
remain a daunting obstacle for us to fully understand cancer mutations. Cancer
cells may often exhibit hundreds upon thousands of different mutations and other
alterations in its genome that affect a wide array of genes representing many
diverse functions. However, the vast majority of these genes do not have a sig-
nificant impact on tumorigenesis (Hanahan and Weinberg 2011). A key question in
cancer genomics is how to distinguish ‘‘driver’’ mutations, which contribute to
tumorigenesis (Greenman et al. 2007), from functionally neutral ‘‘passenger’’
mutations. Such driver mutations (e.g., point mutations or copy number changes)
are critically important to elucidate key biological pathways that are perturbed in
cells and eventually lead to proliferation, angiogenesis, or metastasis (Hanahan
and Weinberg 2011).

Detecting driver mutations is necessary for understanding the molecular
mechanisms of carcinogenesis. Determining the driver will also aid in verifying
and discovering new prognostic and diagnostic markers in cancer as well as
therapeutic targets for potential cancer drugs. Therefore, recently in the field of
computational cancer genomics, many researchers have developed computational
methods to identify driver mutations (Zhang et al. 2013). Overall, these methods
have different underlying principles to achieve similar goals. We can group these
different methods that identify driver mutations in cancer into four broad
categories:

• Sequence-Based Approaches: methods that assess the functional impact a
mutation has on the candidate driver gene and its protein product (Kumar et al.
2009; Adzhubei et al. 2010; Yue et al. 2006; Reva et al. 2011; Gonzalez-Perez
et al. 2012; Gonzalez-Perez and Lopez-Bigas 2012) (i.e. MutationAssessor,
SIFT, Polyphen2, TransFic, SNPs3D, Oncodrive-FM).

• Machine Learning-Based Approaches: methods that use machine-learning
algorithms to model existing knowledge of drivers and passengers to classify
driver mutations (Hanahan and Weinberg 2011; Adzhubei et al. 2010; Carter
et al. 2009; Bromberg and Rost 2007; Douville et al. 2013) (i.e. CHASM,
Polyphen2, SNAP, CRAVAT).

• Frequency-Based Approaches: methods that differentiate drivers and passengers
by the number of mutations seen in the candidate driver gene in contrast to the
expected number of mutations from functionally neutral passengers (Boca et al.
2010; Dees et al. 2012; Reimand and Bader 2013; Lawrence et al. 2013) (i.e.
MutSig, ActiveDriver, MuSiC).

• Pathway-Based Approaches: methods that identify drivers based on the impact a
mutated gene would have on gene interactions and biological pathways (Wendl
et al. 2011; Ciriello et al. 2012; Vandin et al. 2012; Ng et al. 2012; Bashashati
et al. 2012) (i.e. MEMo, Dendrix, DriverNet, PARADIGM-Shift).
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The methods described above all excel in explaining some of the biological
properties associated with driver mutations (Zhang et al. 2013). Unfortunately, no
model exists that can identify all the driver mutations in any given cancer with
great accuracy and precision, and many existing models tend to disagree with each
other (Zhang et al. 2013). Because of this, there is no computational gold standard
for driver mutations in cancer (Tran et al. 2012). In this chapter, we will discuss in
detail the methods associated with each of the four broad categories. We will also
introduce the strengths and potential limitations of each method.

3.1.2 Properties of Driver Mutations

As stated earlier, driver mutations differ from passenger mutations in that drivers
will actively alter a cell’s function to display tumorigenic properties, hence
‘‘driving’’ the cancer, whereas passenger mutations simply occur by happenstance.
Not providing functions that ‘‘drive’’ the cancer, passenger mutations are simply
along for the ride. Drivers can have a wide variety of functions and operate on a
variety of mechanisms; however, all drivers provide selective advantage to a mutant
cell, allowing it to thrive, grow, and most importantly, divide rapidly to out-compete
the non-mutant cells (Bunz 2008). The selective advantage, illustrated in review by
Hanahan and Weinberg fall under one of six functions, called ‘‘hallmarks’’ of cancer
cells: (1) Sustaining Proliferative Signaling, (2) Evading Growth Suppressors,
(3) Resisting Cell Death, (4) Enabling Replicative Immortality, (5) Inducing
Angiogenesis, and (6) Invasion and Metastasis (Hanahan and Weinberg 2011).

3.1.3 Evolutionary Model of Cancer

The concept of driver mutations can be best explained by the clonal evolution model
of cancer. The clonal evolution model of cancer, as first presented by Peter Nowell in
1976, states that cancer neoplasms originate from a single cell, or clone (Nowell
1976). Over time, the original clone accumulates somatic mutations (Nowell 1976).
Although the vast majority of somatic mutations induced this way are functionally
neutral or damaging to the clone, in rare instances, a mutation in a hallmark gene will
be advantageous to a clone. For this reason, mutated genes with hallmark properties
are considered cancer genes (Nowell 1976). The cancer gene, with a hallmark
property, will provide the clone with a unique advantage and higher overall fitness
that allow it to survive, prosper, and out-compete other cells. This results in an
outgrowth of the clone with the new mutation called a neoplasia (Bunz 2010).

A single mutation in a cancer gene is often not enough to trigger cancer
(Knudson 1971). The vast majority of neoplasia are not equipped to sustain its
expansion and will fail to progress and eventually die, marking the end of the
particular clone (Nowell 1976; Bunz 2010). This is due to selective pressures such
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as the body’s immune system response, changes in the cellular microenvironment,
or even self-induced pressures such as a shortage of oxygen as a result from its
proliferative success (Kim et al. 2009). Just as most somatic mutations will not
lead to cancer genes, most neoplasia will not lead to cancer. However, in rare
cases, the clone will accumulate new mutations over time, some of which will lead
to the formation of new cancer genes that will provide additional growth and
fitness advantages for the clone, allowing for the clone to adapt and thrive in the
microenvironment and even spread to others (Nowell 1976; Bunz 2010).

The clonal evolution model illustrates many concepts that are required to better
understand cancer driver mutations. First, for a mutation to be considered a driver, it
must have a significant functional impact on a hallmark gene and/or biological
pathway (Hanahan and Weinberg 2011). Second, since a single cancer gene gone awry
is not enough to trigger cancer, cancers generally have multiple drivers (Torkamani
and Schork 2008). Third, although cancer is driven by multiple drivers with hallmark
properties, there are many combinations of different drivers that may lead to the
same end result of cancer (Leiserson et al. 2013). Therefore, the drivers within each
individual tumor may vary, highlighting the concept of tumor heterogeneity.

3.1.4 Types of Cancer Genes

There are two main types of cancer genes: oncogenes and tumor suppressors.
Oncogenes are genes in which a gain of function alteration contributes to the
development of cancer (Bunz 2010; Croce 2008). Genes that can become onco-
genes are considered proto-oncogenes. Mutations in oncogenes are considered
activating mutations as the oncogenic version of these genes present increased
activity, thereby being classified as Gain-of-Function mutations. Oncogenes are
generally dominant and only one mutated allele of a proto-oncogene is required for
the gene to show cancer-like properties. Examples of oncogene functions are
involved in functions such as Growth Factors, Receptor and Cytoplasmic Tyrosine
Kinases, Serine and Threonine kinases, Regulatory GTPases, and transcription
factors. Examples of oncogenes include EGFR, RAS, WNT, MYC, ERK, and
TRK (Bunz 2010; Croce 2008).

In contrast, a tumor suppressor is a gene that protects a cell from becoming
cancerous. A loss of function of a tumor suppressor through genetic alteration
contributes to the development of cancer (Bunz 2010; Sherr 2004). Mutations in
tumor suppressors are considered inactivating mutations, resulting in Loss-of-
Function mutations. Unlike oncogenes, tumor suppressors are generally recessive,
and for that reason, both alleles of a tumor suppressor are required to be inactivated
for a functional effect, i.e. the so called ‘‘two-hit’’ model (Knudson 1971). Exam-
ples of tumor-suppressor gene functions include repression of genes responsible to
continue the cell cycle, triggering apoptosis, blocking contact-inhibition, and
repairing DNA. Examples of tumor suppressors include TP53, RB1, PTEN,
BRCA1, BRCA2, PIK3CA, AKT, and APC (Bunz 2010; Sherr 2004).
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3.1.5 Types of Genetic Alterations in Cancer

There are many different ways a gene can be altered. The question of where and how
a gene is altered is very crucial to assessing the impact of a particular mutation. Not
all mutations and genetic alterations will have the same impact on the gene (Bunz
2010; Yokota 2000). For example, a mutation in a coding region is more likely to
have an impact on a gene’s activity than one in a non-coding region (Kryukov et al.
2005). Even though recent studies have shown that alterations in non-coding
sequences can be impactful to cancer progression (Vinagre et al. 2013; Landa et al.
2013), most current methods in detecting drivers tend to narrow the scope in coding
regions only (Bunz 2010). Nevertheless, even in exonic regions, some types of
mutations tend to have more impact on the overall well-being of the cell than others.

The simplest and most intuitive type of genetic mutation is the point mutation.
Single base-pair substitutions refer to the replacement of a single nucleotide with
another and they can be divided into three groups: silent, missense, and nonsense
mutations. Silent mutations occur in the third ‘‘wobble’’ position of a codon (Crick
1966). Due to the redundancy of amino acid codes, silent mutations are substi-
tutions that do not occur in a change in a protein. Silent mutations generally have
the least impact, as they do not alter the primary structure of the resulting protein,
although they have been shown to have minor effects on the secondary and tertiary
structure of the resulting protein. A missense mutation occurs when the single
base-pair change results in a single amino acid change. A missense mutation can
affect all structures of the resulting protein: primary, secondary, tertiary, and
quaternary. The effects of a missense mutation depend both on the similarity of the
replacement protein to the original and the position of the mutation. A nonsense
mutation is a mutation in which the single base pair substitution transforms an
amino acid codon to a stop codon. Nonsense mutations lead to premature trun-
cation of the protein, rendering it non-functional.

In addition to point mutations, small insertions and deletions (indels) can cause
frame-shift mutations, resulting in a completely new set of codons as an indel will
shift the reading frame. Like nonsense mutations, these proteins are nonfunctional.
These faulty proteins are usually degraded and are responsible for the formation of
null alleles (Bunz 2010).

Point mutations and indels are not the only form of genetic alterations that can
lead to cancer genes. An example of large-scale mutations is copy number vari-
ation (CNV). CNVs cause changes of the number of copies of a chromosomal
region. CNVs may be either amplifications, presentation of multiple copies of a
gene, or deletions, the loss of gene copies. Other examples of large-scale mutations
include chromosomal translocations, the interchange of genetic parts from
non-homologous chromosomes; chromosomal inversions, reversing sections of a
chromosome; and loss of heterozygosity, the deletion of an allele (Bunz 2008).
There are other forms of genetic alterations that are epigenetic in nature. Even
though these alterations have no effect on the genomic sequence itself (mainly
through DNA methylation and histone modification), they can sometimes have
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profound effects in tumor progression. For example, DNA methyltransferases
target CpG islands in the promoter region leading to spontaneous deamination and
lowering of gene expression by restricting transcription, effectively silencing the
gene. Promoters often are unmethylated in normal cells but hypermethylated in
cancer cells.

3.2 Overview of Computational Methods to Identify Driver
Mutations

The initial type of methods that identified driver mutations in cancer relied on
simple recurrence as a measurement. In simple recurrence, drivers and passengers
were classified by the number of times they were observed in patient populations
(Jones et al. 2008). Although this method was crucial in identifying some common
drivers such as TP53 and EGFR (Jones et al. 2008), it soon became clear that based
on the biological properties of driver mutations, several difficult challenges need to
be overcome in order to determine all of the driver mutations in cancer.

3.2.1 Challenges for Driver Mutation Identification

Many difficulties in identifying driver mutations arise from the concept of tumor
heterogeneity, the concept that no two cancer genomes will exhibit the same
mutation profiles (Stratton 2013; Pe’er and Hacohen 2011). Therefore, two
patients with the same cancer may have vastly different drivers. Additionally,
drivers and passengers may switch roles such that a driver in one patient may be a
passenger in another patient (Cooke et al. 2010). The advent of cancer subtypes
has explained some of the heterogeneity; however, it is at best a compromise.
Tumor heterogeneity contributes to the long-tail distribution of the frequency
cancer mutations. The long-tail hypothesis states that cancer is driven not only by a
few common genes that are mutated in many patients, but also many genes that are
not mutated in many patients (i.e. less frequently mutated genes) (Ding et al.
2010). This implies that there will be many rare, yet undiscovered driver mutations
that are obscured by tumor heterogeneity.

Another challenge in driver mutation identification is determining what con-
stitutes a mutation. Not all mutations are created equal, some mutations display
greater functional impact on a gene in terms of its protein structure and will be
more damaging (Kumar et al. 2009). Even genes that have functionally damaging
mutations across many patients are not necessarily drivers. Some genes have little
functionality in cancer development and progression but are mutated frequently by
chance. The most famous example of a highly recurrent passenger gene is the TTN
gene. TTN is the largest gene in the human genome, and it functions as a
molecular spring for the passive elasticity in muscle cells (Nair and Banerji 2013).
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TTN does not have a large impact in many of the flagship cancer pathways
(Lawrence et al. 2013). However, due to its large size, it is often mutated in cancer
cells due to random chance alone, confounding the results of many methods.

A third challenge is to map the biological function of potential driver mutations.
As demonstrated in the TTN example, some genes may present damaging muta-
tions but due to the gene’s function being unrelated to cancer pathways, they are
most likely to be passengers. Individual driver genes do not operate by themselves;
rather they interact with many other genes in complex biological networks
(Bashashati et al. 2012). Therefore, driver mutations must be verified by their
biological functions. A driver mutation is expected to interact with other genes in
various cancer pathways to further promote different hallmarks of cancer
(Hanahan and Weinberg 2011; Schwartzentruber et al. 2012).

3.2.2 Resources Available for Driver Mutation Identification

For researchers interested in identifying driver mutations, there exists a wealth of
publicly-available data regarding molecular signature data, compendiums on dri-
ver mutations, pathway databases, and comparison tools that all can be utilized to
achieve a greater understanding of driver mutations in cancer. Perhaps the most
comprehensive of these resources is The Cancer Genome Atlas (TCGA), a
resource of molecular alterations over large cohorts of patients representing a wide
array of cancers (Cancer Genome Atlas Research Network 2008). With regards to
curated catalogs of known somatic mutations in cancer, the Sanger Institute’s
COSMIC and the Cancer Gene Census, maintain a well-defined comprehensive list
of common mutations already identified as drivers (Bamford et al. 2004; Futreal
et al. 2004). Other tools such as Biocarta (Kim et al. 2012), NCI Pathway inter-
action Database (PID) (Schaefer et al. 2009), Reactome (Croft et al. 2011), or the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000)
all provide valuable information on curated cancer pathways for evaluating
potential driver genes.

3.2.3 Summary of Different Algorithms for Driver Mutation
Identification

Name Type Website

SIFT Sequence-based http://sift.jcvi.org/
PolyPhen2 Sequence-based http://genetics.bwh.harvard.edu/pph2/

Machine learning-based;

(continued)
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(continued)

Name Type Website

MutationAssessor Sequence-based http://www.bitnos.com/info/mutation-
assessor

TransFic Sequence-based; aggregate
method

http://bg.upf.edu/transfic/help

Oncodrive-FM Sequence-based; aggregate
method

http://bg.upf.edu/group/projects/
oncodrive-fm.php

SNPs3D Sequence-based; aggregate
method

http://www.snps3d.org/

CHASM Machine learning-based http://wiki.chasmsoftware.org/
index.php/Main_Page

CRAVAT Machine learning-based;
aggregate method

http://www.cravat.us/

SNAP Machine learning-based https://rostlab.org/services/snap/
MutSig Frequency-based http://www.broadinstitute.org/cancer/

cga/mutsig
MutSigCV Frequency-based http://www.broadinstitute.org/cancer/

cga/mutsig
ActiveDriver Frequency-based http://www.baderlab.org/Software/

ActiveDriver
MuSiC Frequency-based; http://gmt.genome.wustl.edu/genome-

music/0.2/doc/Pathway-based
MEMo Pathway-based http://cbio.mskcc.org/tools/memo/
HotNet Pathway-based http://compbio.cs.brown.edu/projects/

hotnet/
Dendrix Pathway-based http://compbio.cs.brown.edu/projects/

dendrix/
DriverNet Pathway-based http://www.bioconductor.org/packages/

2.12/bioc/html/DriverNet.html
Paradigm-Shift Pathway-based http://sysbio.soe.ucsc.edu/paradigm/

tutorial/

3.3 Sequence-Based Approaches

The underlying belief in these approaches is that mutations that have functional
impact on a gene are more likely to be driver mutations in cancer. These methods
assess the functional impact of mutations by predicting the consequences, either
through evolutionary impact on conserved regions or changes in the resulting
amino acid and potential effects on the protein’s secondary and tertiary structure.
Examples of these approaches include Separating Tolerant from Intolerant (SIFT)
which performs multiple sequence alignments (MSA) to determine the evolu-
tionary impact of altered amino acids in protein homologs to predict functional
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impacts (Kumar et al. 2009); Polyphen2 combines a multiple sequence alignment
to detect mutations with a Naïve Bayes Classifier (NBC) to train the potential
functional impact (Adzhubei et al. 2010).

Results from many sequence-based approaches applied to cancer studies have
shown that mutations in driver genes tend to have a much higher functional impact
to the sequence and resulting protein structure than those of non-driver genes
(Reva et al. 2007, 2011; Gonzalez-Perez et al. 2012; Gonzalez-Perez and Lopez-
Bigas 2012). These methods also have the advantage of being able to evaluate
individual patients’ mutations to identify the drivers (Reva et al. 2007, 2011;
Bashashati et al. 2012). However, these approaches also present several drawbacks
as well. These methods are unable to separate mutations that provide a selective
advantage to the overall cell fitness (Zhang et al. 2013). By definition, only
mutations that provide a selective advantage to the tumor’s growth and survival
can be considered driver mutations (Hanahan and Weinberg 2000). Therefore,
sequence-based approaches often struggle in separating driver mutations from
passenger mutations. This drawback has prompted many groups to look into other
methods to detect driver mutations, and for this reason, sequence-based approa-
ches are not commonly used as the sole determinant of novel driver mutations
(Zhang et al. 2013; Adzhubei et al. 2010; Yue et al. 2006). Nevertheless, these
tools are widely applied as filters, comparison tools, and confirmation for more
cancer-specific driver mutation methods.

3.3.1 MutationAssessor

The aforementioned sequence-based methods are generic methods to identify
functionally relevant mutations and are not specific to cancer driver mutations.
However, some methods have shown to perform well in detecting impactful
mutations. One method is MutationAssessor, which predicts the consequence of a
mutation using a Functional Impact Score (FIS). The FIS is a metric used to
quantify a mutation’s impact on a gene by observing the evolutionary conserved
patterns from a MSA using combinatorial entropy formalism (Reva et al. 2011).

The FIS of any non-synonymous mutation can be calculated as the average of
two conservation scores: the general conservation score SC

i and the subtype con-
servation score SS

i . A mutation in a conserved region is more likely to have a
functional impact than a mutation in a non-conserved region (Henikoff and
Henikoff 1992). MutationAssessor measures the impact of a mutation from the
wild-type amino acid residue a to the mutant b using an entropy score. The general
conservation score at position i with respect to the MSA to go from SC

i a! bð Þ
therefore is:

SC
i a! bð Þ ¼ �ln

ni bð Þ þ 1
ni að Þ

� �
ð3:1Þ
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where ni að Þ is the number of sequences which display the residual a (the wild
type) at position i and ni bð Þ is the number of sequences which display the residual
b (the mutant) at position i. This change predicts the functional impact of a protein
by determining if a change in the amino acid sequence is highly conserved or not.
MutationAssessor takes one step further by assessing the entropy difference of the
particular subfamily of the observed difference SS

i a! bð Þ. The rationale of
determining subfamily impact is to model different interaction partners or sub-
strates on the background of similar, conserved biochemical or cellular function
(Sarid et al. 1987). To determine subfamilies, a clustering algorithm is used to
divide the MSA into subfamilies and the subfamily conservation score SS

i a! bð Þ
is a measure of the entropy difference between the a! b change with regards to
the subfamily that the b residual belongs.

SS
i a! bð Þ ¼ �ln

np
i bð Þ þ 1
np

i að Þ

� �
ð3:2Þ

where np
i bð Þ and np

i að Þ in equation are the residual counts of a and b with respect
to a particular subfamily p. The FIS score for MutationAssessor is simply the
average of the two aforementioned conservation scores.

MutationAssessor applied the FIS score for 10,000 mutations cataloged in
COSMIC and it was shown that genes with a high FIS score were much more
likely to become drivers (Reva et al. 2007).

3.3.2 TransFic

There have been methods that combine the predictive value of several methods to
determine the impact of genes in cancer. One example is TransFic, a method that
combines the scores from MutationAssessor, SIFT, and Polyphen2, and compares
their scores to the distribution of scores of alterations observed in genes with
similar functional annotations to select for drivers (Gonzalez-Perez et al. 2012).
The use of functional annotations in TransFic was applied to obtain a better grasp
on the function of a particular driver in question.

The process of selection is illustrated below:

1. Obtain the Functional Annotations of the gene of interest using four sources:
Gene Ontology Biological Process (GOBP) and Molecular Function (GOMF)
categories, canonical pathways (CP), and Pfam domain (Dom) (Henikoff and
Henikoff 1992; Dejongh et al. 2004; Chagoyen and Pazos 2010; Yu et al. 2012;
Punta et al. 2012).

2. Determine the alterations associated with all genes related to the most specific
functional term of the original gene of interest. This allows TransFic to not only
calculate the impact of an altered gene, but also predict its biological function.
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3. If less than 20 alterations are found, the user may choose to add other altera-
tions in genes that have similar functions as the original gene of interest. This
allows for an accurate reading of the functional impact score even with less
available input.

4. Calculate and normalize the SIFT, Polyphen2 and MutationAssessor scores.
The SIFT and Polyphen2 scores first undergo a logit transformation.

5. Calculate the mean, standard deviation and other summary statistics to deter-
mine the aggregate FIS score of both the gene and the potential function.

The authors compared their method to each of the individual methods that they
aggregated and found that the aggregated results that were more concordant with
COSMIC’s category of driver mutations. They tested their score with the breast
cancer driver PIKC3A and found that the impact of the mutation was more mild
than previously thought. Another software developed by the same lab was
Oncodrive-FM (Gonzalez-Perez and Lopez-Bigas 2012). Oncodrive-FM uses
SIFT and Polyphen2, along with other driver mutation software such as MutSig in
order to determine to select driver genes that present accumulated functional
impact mutations across a gene (Gonzalez-Perez and Lopez-Bigas 2012).

3.3.3 SNPs3D

SNPs3D is another sequence-based approach that attempts to combine information
from many different sources to draw conclusions (Yue et al. 2006). SNPs3D is
made up of three gene modules: one concerning the impact a non-synonymous
SNP (in our case, a point mutation in a tumor) has on the network, one that
connects genes to other related genes based on a PubMed literature search, and a
third which provides users with a literature score to measure how likely a gene is
related to certain diseases. SNPs3D is unique in that it associates literature scores
as a direct measurement to disease association (Yue et al. 2006).

SNPs3D covers the sequence-based data of a driver mutation using two
methods: the first determining the amino acid substitution’s stability on a proteins
folded state (Yue et al. 2005) and the second being a conservation score similar to
the one presented in MutationAssessor (Yue and Moult 2006). SNPs3D also links
genes together to form gene to gene interactions based on the number of PubMed
search results returning the pair of genes. It also counts abstracts from PubMed to
link a mutated gene with a disease (Stapley and Benoit 2000). Using this integrated
approach, SNPs 3D discovered candidate genes for a long list of diseases,
including around 200 potential candidates for Lung Cancer (Yue et al. 2006).
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3.4 Machine Learning-Based Methods

Machine-learning approaches operate by training a classifier on a gold standard of
driver and passenger mutations to develop a model, which is utilized to determine
the drivers and passengers of a new dataset. Generally, these methods train their
data from a catalog of missense mutations, and the classifiers themselves range
from Naïve Bayes Classifiers to Random Forests to Neural Networks. Machine-
learning based approaches have better ability to distinguish drivers from passen-
gers than methods that only consider mutation’s functional impact. Once a model
is classified, the model can be fitted to any number of patients or groups. However,
the machine-learning approaches heavily rely on a gold standard of driver and
passenger mutations as a training set, which could be problematic as there
currently is no established computational gold standard. Even though COSMIC
and the CGC have good compendium for common drivers, they do not take into
account rare drivers (Futreal et al. 2004).

3.4.1 CHASM

One example of a machine learning-based method is the Cancer-specific High-
throughput Annotation of Somatic Mutations (CHASM). CHASM seeks to iden-
tify and rank missense mutations most likely to augment tumor cell proliferation
(Carter et al. 2010). CHASM applies a Random Forest Classifier on 49 predictive
features including amino acid substitution properties, alignment-based estimates of
evolutionary conservation at the mutated position, predicted structural changes at
the mutated position and annotations from the UniProtKB feature table. The
Random Forest Algorithm is a decision tree classifier that uses a set of random
classification trees to vote on a classification of a particular mutation as ‘‘driver’’
and ‘‘passenger’’. Each tree then ‘‘votes’’ for the eventual classification of the
alteration (Carter et al. 2009, 2010; Gnad et al. 2013).

The authors selected 2,488 missense mutations breast, colorectal, and pancreatic
cancers. The driver mutations selected were from COSMIC and various biological
studies in which specific genes were demonstrated to have proliferative roles, and the
passenger mutations were computer generated via simulation with an algorithm that
recapitulates base substitutions found in brain tumors (Carter et al. 2010). The
authors reported higher sensitivities and specificities than traditional sequence-based
methods such as SIFT and Polyphen2. Additionally, when training the classifier, the
authors reported that many of the variables by themselves only explained a small
percentage of the model, which the authors used to justify their rationale behind
Random Forests. Random Forests work with each variable jointly rather than as
individuals. When applied to a GBM dataset, the authors predicted that 49 of the 607
missense mutations in the GBM dataset, or 8 %, were drivers (Carter et al. 2009).
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3.4.2 CRAVAT

A recent machine learning-based method, Cancer-Related Analysis of Variants
Toolkit (CRAVAT), seeks to provide predictive scores on the importance of somatic
alterations of in cancer genes using a variety of classifier tools (Douville et al. 2013).
CRAVAT is unique because it (1) combines the results of multiple classifiers to
hone in on both the impact of the driver and the biological function of a somatic
alteration; (2) provides a user-friendly workflow where users can submit their jobs to
the server and receive both the gene’s importance rating and a variety of PubMed
literature sources that relate to the important drivers that CRAVAT predicted; and
(3) is not limited by the size of the dataset (Douville et al. 2013).

CRAVAT uses three machine learning tools for its workflow: SnvGet,
CHASM, and VEST (Carter et al. 2009, 2013; Wong et al. 2011). CRAVAT uses
SnvGet to get classifier information for the subsequent CHASM and VEST runs.
SnvGet returns 86 pre-computed features for each alteration such as physio-
chemical properties of amino acid residues; scores derived from multiple sequence
alignments of protein or DNA; region-based amino acid sequence composition;
predicted properties of local protein structure; and annotations from the Uni-
ProtKB feature tables (Wong et al. 2011). The features are then used by CHASM
to predict whether or not the alteration in question is a driver, and then VEST
(designed by the same authors as CHASM), which also utilizes a Random Forest
classifier to determine the function impact of the predicted protein. The p-values
from both tests are aggregated to return a list of functional driver genes for the user
(Douville et al. 2013).

3.4.3 Polyphen2 and SNAP

In addition to CHASM, several other machine-learning approaches have been used
to identify driver mutations. Polyphen2, as mentioned earlier as a sequence based
method, uses the Naïve Bayes Classifier (NBC) to predict functional impact,
improving on the traditional multiple sequence-based approach with knowledge
from machine learning (Adzhubei et al. 2010). The alignment output from Poly-
phen2 is used to select the features for the Naïve Bayes Classifier, which is then
used to classify them on function. The NBC works by solving the probability of a
sampling belonging to a group c from all groups C using Baye’s rule with respect
to features F1;F2 . . . Fn. The group with the highest probability that a sample could
belong is the predicted classifier.

Another method, SNAP, utilizes a neural network to predict the functional
effects of non-synonymous SNP, which can be applied to missense mutations to
predict drivers (Bromberg and Rost 2007). Both Polyphen2 and SNAP are general
functional impact algorithms that can be applied to cancer but are not necessarily
created to specifically model cancer mutations.
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3.5 Frequency-Based Methods

The third class of driver mutation identification software is methods based on
mutation frequency. In the early days of driver mutation identification, simple
recurrence was the first method to determine driver mutations. Drivers were
defined by the number of times a gene was mutated (Schwartzentruber et al. 2012).
Although many common driver mutations were detected using this method, simple
recurrence has since fallen out of favor as it does not account for (1) rare mutations
in the long tail of driver gene distribution and (2) propensity to select genes that
have a high probability due to chance to be mutated by being large or having a
high background mutation rate.

Frequency-based methods are among the most powerful methods in classifying
common driver genes and passenger genes, and these methods have been some of
the most widely-adopted and widely-utilized methods in driver mutation detection
(D’Antonio and Ciccarelli 2013). However, one drawback of frequency-based
methods is that these methods, like machine-learning based methods, require a
large amount of input data from many patients to operate.

3.5.1 MutSig

One of the most-utilized frequency-based methods is MutSig (Banerji et al. 2012).
The original MutSig assumes a single average background mutation rate, l, which
can be tailored to be category-specific: lc.

Examples of category specific criteria taken from a Lung Carcinoma study were
(1) transitions in C’s or G’s in CpG dinucleotides; (2) transversions in C’s or G’s
in CpG dinucleotides; (3) transitions in other C’s or G’s; (4) transversions in other
C’s or G’s; (5) transitions at A’s or T’s; (6) transversions in A’s or T’s; and
(7) small insertions/deletions, nonsense and splice site mutations (Lawrence et al.
2013). Then to calculate a p-value for each gene based on category-specific
background rates, a score s is calculated for each gene. The score of each gene’s
mutation significance sg is based on the binomial probability distribution given the
parameters of the number of mutations in the category nc, the number of bases
covered by those mutations Nc, and that category’s background mutation rate: lc.

sg ¼
X

c

�10� binomialðnc;Nc; lcÞ ð3:3Þ

After calculating the score, the background distributions of all the mutation rates
are convoluted and a p-value is calculated by calculating the probability that the
convoluted mutation rates can exceed the score sg. A Benjamin-Hochberg cor-
rection is used to correct for multiple testing (Lawrence et al. 2013). The authors of
the original MutSig applied the data to a Lung cancer dataset and found 450
candidate drivers that were mutated at a frequency much higher than the expected
frequency as assumed from the background mutation rate (Greulich et al. 2012).
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3.5.2 MutSigCV

Recently, a newly-published version of MutSig, MutSigCV (Lawrence et al.
2013), has been released. MutSigCV offers additional features to the original
MutSig. MutSig corrects for the extensive false positive findings of previous driver
mutation identification software by correcting for the heterogeneity of the mutation
rates among genes, the mutations rates among patients, and among the mutation
types themselves by allowing separate models for multiple types of heterogeneity.
MutSigCV also incorporates molecular properties of the gene that may co-vary
with the mutation rate of the gene into their model. Examples include gene
expression, DNA replication time, open versus closed chromatin status, local GC
content, and local gene density (Lawrence et al. 2013).

In MutSigCV, each gene is placed in a high-dimensional covariate space and the
gene’s nearest neighbors are identified to supplement information to the background
mutation rate of the gene in question. The information from the nearest neighbors of
the gene, dubbed ‘‘Bagel’’, is combined with the gene’s own mutation rates to
estimate the background mutation rate. This process, combined with category and
patient-specific background mutation rates (calculated via the original MutSig
model) provide the mutation rates used to calculate the significance of each gene.

The authors of MutSigCV analyzed 3,083 tumor normal pairs to both look for
sources of heterogeneity and for novel driver mutations. The authors found that
tissue type mutation rate are highly variable and that lung and skin cancers tend to
have high mutation rates although much of the variation can also be attributed to
the patients themselves (Lawrence et al. 2013). The authors also studied the type
of mutation present for tissue types, and found that lung cancer tended to have
more C?T mutations while melanoma patients tended to have more C?A
mutations. The regional heterogeneity was one of the most variable, meaning that
certain genes are much more likely to mutate by chance than others, and that that
mutation rates tended to coincide with gene expression and the time of DNA
replication. Taking into account this heterogeneity, the method assigned each gene
and tumor type a score, which was used to correct the background rate of muta-
tions in specific genes for specific tumors, and patients. This approach was used to
confirm common drivers, eliminate false positive drivers, and suggest possible
new drivers (Lawrence et al. 2013).

3.5.3 ActiveDriver and MuSiC

Other recent methods include ActiveDriver and MuSiC (Dees et al. 2012;
Reimand and Bader 2013). ActiveDriver is a method developed to discover driver
genes in among genes with phosphorylation single nucleotide variants (pSNV).
ActiveDriver performs a hypothesis test to determine whether or not the phos-
phosite-specific mutation rate is the same as the gene-wide mutation rate for
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particular genes using generalized linear regression tests. The authors of Active-
Driver found that their approach identified many common phospho-specific drivers
such as TP53 and EGFR as well as new candidate genes in FLNB, GRM1,
POU2F1 (Reimand and Bader 2013).

MuSiC also employs the concept of selecting for genes that tend to be mutated
more than a background mutation rate in their novel test, Significantly Mutated
Gene (SMG) test. The background rate was a combination of mutated genes in the
entire sample set of all patients, mutated genes in the patient, and mutated genes
within the subgroup of the gene in question (Dees et al. 2012). MuSiC also
supplement their results using pathway analysis through the PathScan algorithm
(Wendl et al. 2011), which combines individual selection of driver genes to a
multiple-sample value using the Fisher-Lancaster approach (Wendl et al. 2011) to
determine the mutated pathway of the driver genes in their analysis.

3.6 Pathway-Based Methods

The most recent type of model to determine driver mutation relies on biological
pathways. Pathway-based models have been shown to be effective not only in
reliably determining common driver mutations, but also have been able to pinpoint
the biological pathways that could be the source of the cancer (Ciriello et al. 2013).
As a result, pathway-based methods have a unique advantage over other types of
methods in that they take into account gene interactions and potential biological
effects rather than simply viewing driver genes individually (Wu et al. 2010). For
example, a particular candidate driver gene that shows significantly more muta-
tions in cancer than in normal cells may still not be a true driver gene (Michor and
Polyak 2010). If the candidate gene does not affect a cancer pathway or does not
interact with many genes that are crucial in cancer-pathways, the candidate gene
may have no true biological connection to cancer. Pathway-based approaches
allow us to verify functional impactful candidate drivers. These methods are
sometimes used to supplement other methods as was demonstrated in the case of
ActiveDriver and MuSiC, as measure of the biological significance of their
methods (Dees et al. 2012; Reimand and Bader 2013; Wendl et al. 2011).

3.6.1 MEMo

Some pathway-based approaches are not built with specific cancer genes in mind,
but rather, these approaches are aimed at discovering driver pathways, groups of
genes that may interact together to promote tumorigenesis. Mutual Exclusivity
Modules in cancer (MEMo) serves to determine groups of genes that contribute to
tumorigenesis (Ciriello et al. 2012). These gene groups, or modules, together are
highly recurrent, have similar pathway impact in terms of biological processes, and
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also are mutually exclusive meaning that only one gene in each gene group is
mutated at a time in any given patient. This idea follows the mutual exclusivity
rule in cancer pathways, i.e., generally one mutated gene in a pathway is enough to
alter the pathway’s function. The algorithm for MEMo is described below:

1. Build binary event matrix of significantly altered genes. The binary event
matrix (B) is an n 9 m matrix where n is the number of genes in the dataset and
m is the number of samples (patients) being observed. As a binary event matrix,
a cell in the matrix Bi;j will be 0 if a gene i is altered in the sample j.

2. Build a gene network to identify gene pair interactions. This step involves the
building of a gene network that will gauge the interactions and pathways
present in cancer genes. The authors at MEMo built two gene networks: the first
being a combination Human Interaction Network based on both curated and
non-curated networks, and the second one simply based on manual curation.

3. Extract Cliques: MEMo then finds all cliques in the network. A clique is a fully
connected subgraphs such that each subgraph cannot be contained by another
fully connected subgraph.

4. Assess each clique for mutual exclusivity. The idea of this step is to determine
whether or not the clique has both highly recurrent gene alterations, and also
whether or not only one gene in the subgraph is mutated at once. MEMo tests
on whether the set of genetic alterations occurs by chance. MEMo builds a null
model by randomly permuting the event matrix, and then applies a Markov
Chain Monte Carlo method called ‘‘permutation switching’’ to randomly gen-
erate networks to find simulated cliques. The cliques are tested for mutual
exclusivity under the null model, thus allowing MEMo to determine an
empirically derived p-value to gauge the mutual exclusivity of the cliques.

The authors of MEMo discovered several mutually-exclusive modules in GBM
such as EGFR, PDGFRA, and NF1 and TP53, CDKN2A, and GLI1. One of the
genes in these modules is likely to be altered in any given patient. MEMo is a
unique approach at observing cancer as it acknowledges that although patients may
have different mutations to drive the cancer, many of those mutations have similar
biological effects eventually (Ciriello et al. 2012).

3.6.2 HotNet and Dendrix

In the spirit of finding subnetworks in cancer, Vandin et al. developed two algo-
rithms to determine the impact of mutated genes have on biological pathways:
HotNet and Dendrix (Vandin et al. 2011, 2012). HotNet algorithm combines
mutation data and protein–protein interaction network information to find sub-
networks of genes that are mutated in a significant number of cancer patient
(Vandin et al. 2011). Using mutation and gene interaction data on an undirected
graph, HotNet uses a heat diffusion algorithm where a mutated sends a ‘‘heat’’
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signature based on the number of mutations present in that gene evenly to its
neighbors such that genes with lower degrees of connectivity receive a larger
proportion of ‘‘heat’’ than those with high connectivity. The idea behind HotNet is
that genes with lower connectivity will define the boundaries of the neighborhood
(the subnetwork) as they will retain heat better, allowing HotNet to pinpoint
subnetworks.

Dendrix, on the other hand, determines driver pathways using two concepts:
Mutually Exclusivity (as demonstrated in MEMo) and coverage (recurrence).
Modeling a gene interaction network as an adjacency matrix, Dendrix finds the
submatrix within the matrix that will maximum coverage, that is, cover the most
patients while being mutually exclusive, that is not having any two genes in the
submatrix mutated simultaneously within a patient (Vandin et al. 2012). Dendrix
uses a greedy MCMC method to do so. After selecting a starter gene, Dendrix
selects the neighbor that has the most mutations without any of those mutations
being in a patient that already had a mutation in a previously selected gene. One
frequently sampled gene set from Dendrix’s application to GBM was CDKN2B,
RB1, CYP27B1 (Vandin et al. 2012).

3.6.3 DriverNet

One of the most recent pathway-based methods is DriverNet (Bashashati et al.
2012). DriverNet models both gene mutation events and differential expression
events of a group of patients into a bipartite graph. The algorithm then applies
pathway information to select for mutated genes that are the most well-connected
to genes that are differentially expressed. The DriverNet algorithm is a greedy
optimization algorithm aimed at determining driver genes as genes with the most
pathway impact, which they measure as genes that create the most outlying dif-
ferentially expressed genes. The greedy optimization algorithm is described below:

1. Create a bipartite graph BðVm;V0;EÞ, a graph whose vertices can be divided
into two disjoint sets Vm and V0 such that every edge connects a vertex in Vm to
one in V0. In DriverNet’s case, Vm is a mutation matrix built in a similar
fashion as MEMo’s binary event matrix. V0 is a binary n 9 m matrix where n is
the number of genes in the dataset and m is the number of samples (patients)
being observed. V0 is equal to 1 for gene i with respect to patient j if the
normalized difference between the tumor and normal expression exceeds a
certain threshold. E is an adjacency matrix representing the gene network that
connects Vm and V0 in the bipartite graph. E can be built by similar procedures
as MEMo’s adjacency matrix.

2. Let Z be the set of all connected outlying events, and z be the set of covered
outlying events (initially a null set).
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3. Choose the mutated gene that contains the largest number of uncovered out-
lying expression events. Add that to the driver mutation list. Add the outlying
events to z.

4. Remove the mutated gene and its connecting edges from the bipartite graph B.
5. Stop when all connected outlying events all covered (when Z = z).

DriverNet combines gene expression, mutation information among groups of
patients, and biological pathways (Bashashati et al. 2012). The authors of Driv-
erNet tested their results in Breast Cancer and Glioblastoma datasets and found an
abundance of infrequently mutated genes: 22 in the Breast Cancer dataset and 13
in Glioblastoma. The advantage of DriverNet is that it is less dependent on
recurrence and therefore can detect rare mutation.

3.6.4 PARADIGM-Shift

PARADIGM-Shift predicts functions of driver genes as gain-of-function or loss-
of-function genes in specific cancer pathways (Ng et al. 2012). PARADIGM-Shift
has the ability to determine not only if a candidate driver is functionally impactful,
but also the type of impact that the driver gene may show. The authors utilized
PAthway Recognition Algorithm using Data Integration on Genomic Models
(PARADIGM) (Vaske et al. 2010), using gene expression and cy number change
signals as inputs to determine the impact of upstream and downstream genes of a
candidate driver. The difference activity in upstream and downstream genes of the
driver determines a gain-of-function (high downstream, low upstream activity) or
loss-of-function (high upstream, low downstream activity).

The activity score was determined by PARADIGM, which uses belief-propa-
gation on a factor graph to compute the log-posterior odds score called inferred
pathway levels (IPLs) for each gene, complex, protein family and cellular process
using gene expression, copy number and/or genetic interaction. Genes that are
more active in a tumor with more activity have positive IPL scores while genes
with less activity in the tumor than normal cells have negative IPL scores (Vaske
et al. 2009). PARADIGM-Shift runs two iterations of PARADIGM, one with the
gene of interest and its upstream genes in the pathways to measure the loss of
function score, and one with only the gene of interest and its downstream genes to
measure the gain of function score. The PARADIGM-Shift score is the difference
of the two paradigm runs. The authors of PARADIGM-Shift applied their
approach to both common, TP53, and uncommon, NFE2L2, genes to analyze the
impact (Ng et al. 2012).
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3.7 Discussion

Each of the four approaches, and the various methodologies associated with each
of the approaches, has different advantages and addresses many of the challenges
associated with driver mutations. Unfortunately, no method can solve all the
challenges, and no perfect model exists that can fully reverse engineer the clonal
evolution model of cancer and select only drivers that serve a function relating to
the hallmarks of cancer. The task of accounting for tumor heterogeneity, genetic
function, and mutation severity is indeed daunting. Many researchers, therefore,
have applied multiple methods to determine driver mutations (Adzhubei et al.
2010; Bashashati et al. 2012). The multi-step approach allows for researchers to
address multiple challenges in driver mutation identification at the same time.

In addition to the current challenges involved in driver mutation identification,
there are also many future avenues of studying driver mutations that have yet to be
identified and modeled. Some examples include analyzing the cumulative effects
of passenger mutations, accounting for intra-tumor heterogeneity, and predicting
the effects of mutations in non-coding regions.

A study from McFarland et al. found that even though a single passenger
mutation has a negligible impact on tumorigenesis, the cumulative effect of all
passengers may affect a cell’s tumor progression model in ways not explainable by
widely accepted driver mutation models (McFarland et al. 2013). Much intra-
tumor heterogeneity is also ignored by driver mutation methods as most cancer
genome sequencing project sequences a bulk tumor tissue from a population of
cancer cells. In other words, the sequencing is a simple average of the cells, and no
model exists to explain intra-tumor heterogeneity (Michor and Polyak 2010).

The methods described in this chapter are mostly only applicable to point
mutations in coding regions of the genome. As described earlier, only a small
subset of cancer mutations are point mutations. Detailed impacts of larger scale
mutations and structural rearrangements have yet to be described. Additionally,
only 2 % of the genome codes for proteins, leaving 98 % of the genome in non-
coding regions unexplained. Mutations in non-coding regions can have profound
impact on gene regulation related to cancer development and progression. Cur-
rently, no driver mutation software can systematically predict the effects of
alterations in non-coding sequences. All these challenges need to be addressed by
future computational methods.
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Chapter 4
Biomarker Discovery with Text Mining
and Literature Based Discovery

Fei Zhu and Bairong Shen

Abstract The huge numbers of biomedical publications provide us valuable data
for research. However, how to get usable information from these integrated but
unstructured biomedical is a difficult problem in front of us, which calls for bio-
medical text mining techniques aiming at extracting novel knowledge from sci-
entific texts. In this chapter, we will introduce basis of text mining and examine
some frequently used algorithms, tools, and data sets. With the development of
systems biology, researchers tend to understand complex biomedical systems from
a systems biology viewpoint. Thus, the full utilization of text mining to facilitate
systems biology research is fast becoming a major concern. To address this issue,
we describe the general workflow of text mining in systems biology and each
phase of the workflow. Finally, we will discuss the text mining technology for
research on biomarkers.

Keywords Text mining � Literature mining � Biomarker � Systems biology �
Knowledge discovery

4.1 Introduction to Biomedical Text Mining

Biomedical texts provide abundant knowledge for biomedical research. Text
mining can help us from a mountain of text mining the useful information and
knowledge, and now is widely used in biomedical research. Since 2000, the
number of publications using PubMed ‘‘text mining’’ as key words has a sub-
stantial increase. Many researchers have make full use of the advantage of text
mining technology to discover novel knowledge to improve the development of
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biomedical research, especially those of social category malignant diseases, such
as cancer.

Text mining involves multiple several computing domains, such as machine
learning, natural language processing, biostatistics, information technology, and
pattern recognition. There are also a lot of related applications on biomedical text
mining, such as identification malignant tumor related genes, protein (genes,
proteins, etc.) in biological medicine, the relationship between the biomedical
entities (protein–protein and gene–disease, etc.), and extracting knowledge from
text generate hypotheses. In the past few years, many review articles for bio-
medical text mining have been published. From this aspect, we believe text mining
applications in biomedical areas.

4.2 Tasks and Phases of Biomedical Text Mining

The goal of text mining is to achieve the recessive knowledge, which is hidden in
the unstructured text and render it in an explicit form. It usually has four steps:
information retrieval, information extraction, knowledge discovery, hypothesis
generation. Information retrieval system designed to achieve required information
for a particular theme; information extraction system is used to extract the
scheduled types of information, such as the relationship between extraction;
knowledge discovery system help us extracted from the text of novel knowledge;
biomedical facts infer unknown hypothesis generation system based on text, as we
can see in Fig. 4.1 (Zhu et al. 2013). Therefore, general biomedical text mining
tasks including information retrieval, named entity recognition and relationship
extraction, knowledge discovery and hypothesis generation.

4.2.1 Information Retrieval

In addition to the traditional information retrieval system, as well as advanced
intellectual information retrieval system, different data resources will be integrated
into a single system to improve our understanding of complex biological systems.
For example, Saliva Ontology from Salivaomics Knowledge Base (Ai et al. 2010)
as a term and the vocabulary of relations in facilitate data retrieval and the inte-
gration of research together with data analysis and data mining; QuExT (Matos
et al. 2010), which can be used to find documents containing concepts related to
query words followed a concept-oriented query expansion methodology to find
documents containing concepts related to query words. In the genome era, in the
progress of biotechnology and high-throughput genetic analysis methods, there
will be a text mining, information retrieval tools needs to help researchers to find
related articles to help them study work.

58 F. Zhu and B. Shen



4.2.2 Named Entity Recognition

One of the most important step in the extraction of knowledge is named entity
recognition, and its aim is identifying specific terms, for example, biomarker,
gene, protein, disease, and drug (Leser and Hakenberg 2005). Biomedical term
identification involves several computing technologies. Yet, in fact, there are still
factors, such as several different written forms in a biomedical term, which will
cause mistakes in automatic identification (Dagar et al. 2011). In addition, as a
term can be expressed in different ways, for example, it can be said as a disease,
cancer, or astronomy sign, it makes the task ever harder to be solved well. What’s
more, ambiguity problems can be caused from abbreviations of terms.

Now there are three kinds of techniques in entity recognition: dictionary-based
approaches, rule-based approaches and machine learning approaches (Cohen and
Hersh 2005; Li et al. 2009). Because there is no complete reference dictionary,
dictionary-based approaches is easy to miss unregistered terms (Rebholz-Schuhmann
et al. 2011). The rule-bases approaches uses rules to identify terms from texts.
However there is no rules that is always effective for call cases (Rebholz-Schuhmann
et al. 2011). Most conventional machine learning approaches generally require
dataset, which in fact takes tremendous human efforts to build, to learn and construct a
model for identifying terms, thereby machine learning approaches are often tend to be
data-driven and application domain-oriented. As a result, it is difficult to apply
machine learning approaches to broad areas.

Machine learning approaches such as Hidden Markov Models (HMM) (Ephraim
and Merhav 2002), Support Vector Machines (SVMs) (Habib and Kalita 2010),

Fig. 4.1 Conventional tasks and phases involved in biomedical text mining, generally including
information retrieval, named entity recognition and relationship extraction, knowledge discovery
and hypothesis generation
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Conditional Random Fields (CRFs) (He and Kayaalp 2008), and Maximum
Entropy (ME), have been used for named entity recognition. For examples, Zhou
and Su (2004) used a system based on HMM with biomedical information as
domain knowledge to recognize protein, DNA, RNA, cell-type, and cell-line.
Kazama et al. used SVMs to identify protein, DNA, cell-type, cell-line, and lipid,
with a 73.6 % F1 rate (Kazama et al. 2002). Tsai et al. (2006) developed a CRFs
system to extract protein mentions, achieving a 78.4 % F1 rate. Lin et al. used ME
to recognize 23 categories of biological terms with a 72 % F1 rate (Lin 2004).
Presently, the best F1 rates for biomedical named entity recognition systems are
not as good as the results from general purpose ones (Chang et al. 2010).
Researchers have tried their best to improve the performance, by combining dif-
ferent ways and proposing hybrid approaches (Zhu and Shen 2012), conducting
post-processing after machine learning conducting post-processing, and take
biomedical domain knowledge (Sasaki et al. 2008). In addition, one of the tasks in
BioCreative III is focused on gene normalization, which identifies gene mentions
and links these genes to standard identifiers (e.g., database identifiers).

4.2.3 Relation Extraction

Relationship extraction in biomedical area is focused on investigating biomedical
relation extraction from biomedical terms (Arighi et al. 2011). There is much
related work. The system developed by Abacha and Zweigenbaum (2011) could
identify the correct semantic relationship between each pair of entities using
MetaMap (Aronson and Lang 2010) to identify medical substances. A linguistic
patterns approach is used in their system to determine the semantic relationship
between each pair. The system developed by Chun et al. (2006) is able to find out
gene–disease relations from Medline. Presently, in the current genomic era, many
researchers are interested in mining gene–gene interactions, protein–protein
interactions, and other interactions in genome-wide associations that provide
useful scaffolds for further integrative analysis of gene expression and database
annotation (Cohen and Hersh 2005; Wren and Garner 2004; Raychaudhuri et al.
2002; Raychaudhuri and Altman 2003), as well as other extensive relationships
(Krallinger et al. 2011). Eskin and Agichtein (2004) applied text mining tech-
nology and combined it with sequence analysis to discover protein subcellular
localizations, and the results seemed to be highly accurate. Li et al. (2010) took the
method based on text mining to determine interaction from the biomedical liter-
ature. They used the Bayes method from genome and proteomics data set to
validate the results of interaction by integrating heterogeneous types of evidence.
The systems developed by Agarwal et al. (2011) can be used to determine an
associated with the interaction of protein–protein, as well as the map interaction
related articles. Tsai (2011) build a text mining and visualization framework,
which was proposed to find the details of the interactions between proteins and
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identifying the sequence of amino acids to deeply understand the function of the
protein in the protein interaction interface.

In addition, researchers are focusing on the more extensive biomedical rela-
tionship between genes and other biomedical entities, as well as the relationship
between proteins and other biomedical entities, such as gene–disease relationships
and protein sub-cellular relationships. For example, the system developed by
Garten et al. (2010) can systematically access information to analyze genetic,
cellular, and molecular aspects of the plant Arabidopsis thaliana. Trugenberger
et al. (2013) studied the relationship between diseases and disease areas. Turenne
et al. (2012) constructed a statistical document classifier that was based on
MEDLINE citations to determine whether a drug had caused adverse effects. Their
systems contributed to current drug safety procedure. Pena-Hernandez et al.
implemented an extraction tool to find gene relationship and up-to-date pathways
from literature Epstein (2009).

4.2.4 Knowledge Discovery

Facts, information, and description of knowledge, no matter implicit or explicit,
refer to theory or practical understanding of a topic or field (Frawley et al. 1992).
Knowledge discovery is creation of knowledge from huge amounts of structured or
unstructured data. Knowledge discovery is a very important part of text mining.
Extracting the knowledge from the biomedical text is a process, the purpose of
which is to find out the answer to biomedical problems, such as new drug targets
detection and biomarkers identification. The Crab, developed by Korhonen et al.
(2012) fully integrated text mining technologies to extract relevant information for
cancer risk assessment. Their work indicates that text mining pipeline can con-
tribute to the research of the biomedical and complex task. In addition, Nam and
Park (2012) integrated text mining with previous work, finding that there are two
pathways involved in predictor gene set indicative of susceptibility to early-onset
colorectal cancer overcoming the shortages of genome-wide expression research
work of colorectal cancer. Knowledge discovery has the ability to integrate with
other sources of data to generate a new explanation context (Mack and
Hehenberger 2012). Urzua et al. (2010), for example, through the text mining
technology research with microarray data, found that post-transcription control of
ovarian process could be responsible for observed tumor and reproductive phe-
notypes. They also speculated that it is repetitive cycling that represented the
actual link between ovarian tumorigenesis and reproductive records.

4.2.5 Hypothesis Generation

Some facts or information could be unexplained well by present knowledge. By
scientific hypothesis which is a test to solve the problem rather than a theory, it is
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possible to put forward some suggestions to further study. Experiments can be
used to evaluate the proposed hypothesis before solve this problem. Scientific
hypothesis is like a scientific imagination, which is based on the existing evidence
and knowledge.

Hypothesis generation from biomedical texts is a method to find new knowl-
edge through the clues hidden in texts. Biomedical literature is used to create
potential information to make inferences or biomedical hypothesis as a treasure
trove. Hypothesis generation is very important in text mining, for the biomedical
researchers to infer unknown biomedical facts, and it can be used to guide
experimental design or explain the existing experimental results. It gradually gets
more and more attentions. Swanson (1986) used pattern rules to determine a
hidden link between of fish oil and Raynaud’s syndrome in published literature. Li
et al. (2009) constructed Alzheimer’s disease-specific drug-protein network from
protein interaction networks by using text mining approach. They put forward a
new hypothesis that diltiazem and quinidine could be candidate drugs for
Alzheimer treatment. Hanisch et al. (2005); Hettne et al. (2007) used an associ-
ation-based technique and natural language processing tools to generate a sorted
list related to disease genes, and extract the relationship between the gene and
lipopolysaccharide. Topinka and Shyu (2006) also used text mining-based as well
as structure-based protein–protein interaction to predict cancer interaction
networks.

4.3 Workflow of Text Mining Based Systems
Biology Research

Complex biological systems tend to be understood nowadays from a viewpoint of
systems biology (Macilwain 2011), a network based on systems biology can be
constructed by aggregating previously reported associations from the literature or
various databases. For instance, based on associations reported in the literature,
Hayasaka et al. (2011) constructed a network of genes, genetic diseases, and brain
areas. Sharma et al. (2006) gathered a serial of genes that known disease-related
and used text mining to build an interaction network, confirming that 19 genes
were related to prostate cancer after analysis. Therefore, it’s no doubt a new hot
topic to take full advantage of text mining to facilitate systems biology research.
Texts acquisition, bio-entity terms recognition, complex relation extraction, new
knowledge discovery, and hypothesis generation in turn gradually become the
conventional flow of text mining that based on systems biology research.

From many available sources, firstly we get related biomedical texts in the
general phase of text mining of systems biology, such as PubMed. Whereas
although it is convenient to obtain packed data download service from plenty of
literature bases, there exist several problems, such as timely updating and literature
quantity control. We can use some scripts or write programs to automatically
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download the texts by application programming interface provided by many lit-
erature base systems. As an instance, users can obtain up-to-date texts facilely
through E-utility of PubMed (McEntyre and Lipman 2001).1

Afterwards using named entity recognition tools to extract biomedical men-
tions, and the most frequently used ones are gene names, protein names, mRNA
(message RNA) names, miRNA (micro RNA) names, metabolism related terms,
and cell terms. Correcting and normalizing terms are the most prior because the
results of NER are the fundamental of the successive steps. Since the terms prove
to be correct and normalized, dictionary-based approaches become the usual
preference in order to achieve the aim. Besides, we can also use automatized
identify approaches and post manual curation which guarantees a pretty high
precision, along with many other resources, such as Gene Ontology to get a
normalized bio-term.

Then a bio-entity interaction network with the bio-terms can be constructed,
such as gene–gene interaction network, metabolism pathways and so on. A number
of interaction extraction tools can be utilized to obtain interactions automatically
from inputted texts. We can investigate some other recognized biomedical entities,
biological entities and bio-factors considered to be related with cancer, and then
find out how they work in the network and in what way they affect the network.
We pay attention to build certain networks and their variations, such as protein–
protein interaction networks (Papp et al. 2011) and variations in metabolism
network from texts after focusing on how components and structures change in
dynamic contexts in the next stage. Some validation and inference algorithms can
be used to correct and optimize the network owing to the high false negative rate in
text mining-based networks, along with many resources, such as homology, co-
expression data, rich domain data, and co-biological process data, through which
to strength some nodes and interactions with strong evidence, then to update or
remove a false one. As a result a bio-entity interactome which based on multiple
sources of interaction evidence can be developed, such as protein–protein inter-
actome (Li et al. 2010). Ultimately, all the networks and components can be
utilized for further studies.

It plays an important part of signaling pathway reconstruction to understand the
molecular mechanisms in cancer. Functionality of construct signaling pathway
maps offered by some advanced text mining tools are obtained from manual
literature search, and evaluated by canonical pathway databases (Alexopoulos
et al. 2010). We believe that hypothesis for future work can be proposed through
the networks and pathways gained.

An illustration of a text mining-assisted biomedical study workflow from a
systems biology viewpoint is showed as Fig. 4.2.

1 Pubmed. http://www.ncbi.nlm.nih.gov/pubmed/.
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4.4 MicroRNAs Discovery with Biomedical Text Mining

MicroRNAs (miRNAs), which play a key role in diverse biological processes, are
small RNA molecules that regulate genes. They are now perceived as a key layer
of post-transcriptional control within the networks of gene regulation. In several
diseases, such as cancer, miRNAs expression is altered; therefore it is very likely
that altering miRNA expression could lead to human diseases. Several evidences
suggest that there is functional association between miRNAs and cancer. It is
worthy to understand this functional association: firstly, miRNAs can control cell
proliferation and apoptosis; secondly, most human miRNAs are located at fragile

Fig. 4.2 An illustration of a text mining-assisted cancer study workflow from a systems biology
viewpoint (adopted from Zhu et al. 2013)
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sites in the genome that are commonly altered in human cancer; thirdly, comparing
to normal tissues, miRNAs are widely deregulated. Nowadays, many studies have
produced large number of miRNA-disease associations which are more than 70
cases and showed that the mechanisms of miRNAs involved in diseases are very
complex. The quantity of microarray data analyzing the gene expression in dis-
eases is exponentially increasing, which leads to disease gene signatures delivered
on a regular basis, and it is better to define gene signatures which bear a signature
of regulatory activity of miRNAs for diseases than explore the dysregulated bio-
logical pathways and cellular processes in diseases.

Lasso regression model was used to predict functional associations between
miRNAs and diseases based on gene signatures of each by Qabaja et al. (2013).
They evaluated the performance of it as a miRNA enrichment analysis method as a
proof of concept, and then evaluated the performance of Lasso regression model
on the disease-miRNA interaction networks. They found that gold standard data
was biased toward certain diseases that had around hundred associated miRNAs,
and there also existed other diseases associated with very few miRNAs. They
focused on prostate cancer as a case study to further validate the novel miRNA-
disease associations predicted by the model. The results showed a promise of
finding underlying functional associations between miRNAs and diseases using
regression models for integrating disease and miRNA signatures.

Their work is a key step to understand disease development to decipher miR-
NA-disease functional association. Integrating disease signature with miRNA
target interactions to build miRNA-disease functional association shows promise
to decipher significant associations between diseases and miRNAs. It is important
for the uncovered interactions to understand diseases and patterns underlying
miRNA-disease associations despite the limitations in the current work.

4.5 Biomarker Identification Using Text Mining
from PubMed

Identifying molecular biomarkers is an essential task now to assess the different
phenotypic states of cells or organisms. The PubMed database offers an enriched
source to explore the biomarkers across human disease and to mine the biomarkers
related to diseases, meanwhile, text mining has become a critical technique for
designing future predictive and personalized medicine. Hereby, integrating text
mining has become a fast emerging research area in many specifically biomarker
discovery studies. Therefore, efficient text mining tools and developed algorithm
are exceedingly needed.

The method proposed by Li and Liu (2012) is based on text mining technique
and the PubMed database, accompanied with the full text search-engine technol-
ogy (Lucence) and a complex network of biological and signaling pathways,
which provides a clear text mining to discover biomarkers. First they created a
DBXML database from the PubMed database, then constructed a DBXML
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database, and finally use the finite state machine to conform the disease-related
biomarkers. The workflow is shown as Fig. 4.3. They used a finite state machine
(FSM) to identify biomarkers which are mined from the PubMed database,
pathways, and associated diseases. The association between the biomarkers and
the diseases can be output to refine the biomarkers which are accepted by FSM.

Pharmaceutical research is undergoing a great change. Recent trends in the
pharmaceutical industry are changing the way of drug discovery, which utilizes
computational methods. What’s more, drugs are designed to be targeted to dif-
ferent populations and individuals with common biological characteristics, called
personalized medicine (Garten et al. 2010). The characteristics are called bio-
markers and/or phenotypes. Due to its importance to targeted drug design and
personalized medicine, Trugenberger et al. (2013) conducted a pilot experiment to
discover potential novel biomarkers and phenotypes for diabetes and obesity by
self-organized text mining of about 120,000 PubMed abstracts, public clinical trial
summaries, and internal Merck research documents, with appropriate manual
curation. Their approach showed benefit to discover biomarker, as well as the
future impact on pharmaceutical research, such as shortening time-to-market of
novel drugs, and speeding up early recognition of dead ends and adverse reactions.

Turenne et al. (2012) also utilized text mining approaches to extract tran-
scription factors involved in bovine embryo development. They developed a
model for the work which integrated information on different mammalian species
from different literature and biology databases. They proposed 489 TF as potential
participants of embryo proliferation and differentiation, with a recall of 95 % with
regard to a biological gold standard defined in 2011 and an extension of more than
3 times the gold standard of TF detected so far in elongating tissues. Their work
showed potential in applying to a wide range of biological processes.

The research work of target-specific drugs is less cost-efficient; on the other
hand, high-throughput genomic technologies are incapable of deliver novel first-
in-class drugs as expected. Some researchers tried to solve the crisis of blockbuster
drug development by innovative bioinformatics approaches, such as text mining.
The work by Epstein (2009) took advantage of text mining to get an optimal

Fig. 4.3 The workflow of
biomarker identification
using text mining from
PubMed (adopted from Li
and Liu 2012)
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clinical trial for new anticancer drugs. It is shown that text mining can refine
therapeutic hypotheses and thus reduce empirical reliance on preclinical model
development and early-phase clinical trials. Moreover, as personalised medicine
evolves, this approach may inform biomarker-guided phase III trial strategies for
noncytotoxic (antimetastatic) drugs that prolong patient survival without neces-
sarily inducing tumor shrinkage.

Target discovery is a most crucial step in the biomarker and drug discovery
pipeline to diagnose and fight human diseases, which can be grouped into two
categories: a system approach and a molecular approach (Yang et al. 2012). Now
that data mining of available biomedical data and information has greatly boosted
target discovery in the omics era, it is time to develop efficient data mining
methods to fuel target discovery in the post-genomics era. Text mining has been
broadly applied to identify disease-associated entities and to understand their roles
in diseases in identifying of disease-associated entities. Recently experts are
dedicated to develop mining tools for extracting interaction networks related to
human diseases from the literature in identifying disease-associated networks.

4.6 Data Sets and Tools for Biomedical Text Mining

4.6.1 Named Entity Recognition

There are many systems or tools for some biomedical named entity recognition, as
listed in Table 4.1.

4.6.2 Synonym and Abbreviation Recognition

There are several synonym and abbreviation dictionaries and tools for biomedical
entity, synonym and abbreviation recognition, as listed in Table 4.2. Biomedical
scientists are able to use them for free.

4.6.3 Relation Extraction

There are many available tools collected from published literatures for biomedical
scientists to use, as listed in Table 4.3.

Tables 4.4 and 4.5 list the standard datasets that have been manual/semi-
automate annotate and curate. These datasets could be used to either evaluate the
performance of named entity recognition system or to develop machine-learning
based approach for entity recognition system.
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Table 4.1 Some frequently used biomedical named entity recognition systems

System Brief introduction

ABNERa (Settles 2005) ABNER is a software tool for molecular biology text analysis. It
uses linear-chain conditional random fields approach with
orthographic and contextual features

GENIATaggerb (Tsuruoka
and Tsujii 2005)

The GENIA tagger is specifically tuned for biomedical text such
as MEDLINE abstracts. It is a useful preprocessing tool for
information extraction from biomedical documents

LingPipec (Carpenter 2007,
2006)

LingPipe provides three generic, trainable chunkers to carry on
named entity recognition. LingPipe can be used to identify
biomedical entities such as genes, organisms, malignancies,
and chemicals

Yapexd (Franzen et al. 2002) Yapex is a rule-based system named entity recognition system
that utilizes lexical and syntactic analysis to identify protein
names

a ABNER. http://pages.cs.wisc.edu/*bsettles/abner/
b GENIATagger. http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi?page=GENIA+Tagger
c LingPipe. http://www.alias-i.com/lingpipe/
d Yapex. http://www.sics.se/humle/projects/prothalt/

Table 4.2 Standard annotated data sets for biomedical named entity recognition

Corpus name Brief introduction

Acrominea (Okazaki and
Ananiadou 2006)

The abbreviation dictionary of Acromine is automatically
constructed from the whole MEDLINE. Acromine
showed it was quite good then it was applied to the
whole MEDLINE

BioLexicon (Thompson et al. 2011) The BioLexicon brings together terminologies from
several large public bioinformatics data resources such
as UniProtKb, ChEBI and NCBI. The BioLexicon
represents terms in conjunction with lexical and
statistical information so as to improve performance of
text mining

GENETAGb (Tanabe et al. 2005) GENETAG is one of the most important standardized
standard data sets for biomedical named entity
recognition testing. It has 20,000 MEDLINE sentences
for gene/protein term identification. 15,000 GENETAG
sentences were used for the BioCreAtIvE Task 1A
Competition

GOc The Gene Ontology (GO) project is a major bioinformatics
initiative aiming at standardizing the representation of
gene and gene product. GO provides a controlled
vocabulary of terms for describing gene product
characteristics and gene product annotation data

a Acromine. http://www.nactem.ac.uk/software/acromine/
b GENETAG. //ftp.ncbi.nlm.nih.gov/pub/tanabe/
c GO. http://www.geneontology.org/
Reprinted with permission from Zhu et al. 2013
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Table 4.3 Some useful tools for relationship extraction

System Brief introduction

BCMSa (Leitner et al. 2008) BioCreative MetaServer (BCMS) is a meta-service for
information extraction which can generate annotations for
PubMed/Medline abstracts, covering gene names, gene IDs,
species, and protein–protein interactions

Chilibotb (Chen and
Sharp 2004)

Chilibot searches PubMed abstracts about specific relationships
between proteins, genes, or keywords. The results are
returned as a graph

HPIDc (Han et al. 2004) The human protein interaction database (HPID) provides human
protein interaction information from existing structural and
experimental data, and integrated human protein interactions
derived from BIND, DIP and HPRD. Users can find potential
interaction between with input protein and proteins of the
databases. The protein IDs in EMBL, Ensembl, MIM, RefSeq,
HPRD and NCBI can be used during interaction search

HPRDd (Peri et al. 2003;
Prasad 2009)

The Human Protein Reference Database (HPRD) is a platform
for human protein interaction networks and disease
association. All the information in HPRD has been manually
extracted from the literature by experts for each in the
proteome. HPRD can visually deploy the results

iHOPe (Hoffmann and
Valencia 2004, 2005)

Information Hyperlinked over Proteins (iHOP) can generate a
network of concurring genes and proteins from millions of
PubMed abstracts. iHOP utilizes genes and proteins as
hyperlinks between sentences and abstracts; hence the
information can be converted into an integrated
navigable resource

IntActf (Kerrien et al. 2007) IntAct provides analysis tools for molecular interaction as well as
interaction database of which data were derived from
literature curation or user submissions

MedScang (Novichkova et al.
2003)

MedScan collected information and data retrieval from multiple
sources of public information, text, journals, and various
datasets, and then transformed into biological relationships
which could be used for hypothesis generating and
verification, disease understanding, drug and patient
management

PubGeneh (Jenssen et al.
2001)

The retrieve names of gene and protein by PubGene are cross-
referenced to each other and to relevant terms with goal of
understanding biological function, importance in disease and
their relationship

Reactomei (Vastrik et al.
2007, 2009)

Reactome is an open-source data analysis tools, as well as a
manually curated and peer-reviewed database including
interaction, reaction and pathway data. Reactome can be used
for interaction, reaction and pathway-based analysis

a BCMS. http://bcms.bioinfo.cnio.es/
b Chilibot. http://www.chilibot.net/
c HPID. http://wilab.inha.ac.kr/hpid/
d HPRD. http://www.hprd.org/
e iHOP. http://www.ihop-net.org/UniPub/iHOP/
f IntAct. http://www.ebi.ac.uk/intact/main.xhtml
g MedScan. http://www.ariadnegenomics.com/technology-research/medscan/
h PubGene. http://www.pubgene.org/
i Reactome. http://www.reactome.org/
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4.7 Challenges and Future Work

Nowadays, the life sciences are rapidly revolutionized by highly developed
throughput experimental methods, meanwhile the application of text mining
technology in the frontier research in life science are accelerated with the wide-
spread of the cloud computing application, therefore it is worth discussing topic

Table 4.4 Some standard annotated data sets for relation extraction

Data set name Brief introduction

BioInfera (Pyysalo et al. 2007;
Ginter et al. 2007)

BioInfer is a XML-based format corpus protein–
protein interaction. The data of BioInfer were
from five well-known protein–protein interaction
corpora: AIMed, BioInfer, LLL, IEPA, and
HPRD50

HIV-1, human PIb (Fu et al. 2009;
Ptak et al. 2008; Pinney et al. 2009)

HIV-1 corpus contains summary of all known
interactions of HIV-1 proteins with host cell
proteins, other HIV-1 proteins, or proteins from
disease organisms associated with HIV/AIDS

LLL 05c The LLL05 is composed by annotation indicating
agent and target of a gene interaction, a dictionary
of named entities as well as variants and
synonyms, and linguistic information. The LLL05
can be used to evaluate the ability of systems to
identify gene/proteins interactions

PICorpusd (Johnson et al. 2007) PICorpus is a protein–protein interaction corpus
which was originally created at the PDG.
PICorpus can be used for a variety of biomedical
text mining tasks, such as named entity
extraction, relation identification and relation
extraction systems

PDZBasee (Beuming et al. 2005) PDZBase contains 339 PDZ-domain mediated
protein–protein interactions, which have been
manually extracted. All the interactions are
mediated directly by the PDZ-domain, and
identified in vivo or in vitro experiments. The
information of the binding-sites of interacting
proteins are known

STRINGf (Jensen et al. 2009) STRING provides known and predicted protein
interactions, including physical and functional
associations derived from Genomic context, high-
throughput experiments, coexpression and
previous knowledge

a BioInfer. http://mars.cs.utu.fi/BioInfer/
b HIV-1ProteinInteraction. http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/index.html
c LLL05. http://genome.jouy.inra.fr/texte/LLLchallenge/
d PICorpus. http://bionlp-corpora.sourceforge.net/picorpus/index.shtml
e PDZBase. http://icb.med.cornell.edu/services/pdz/start
f STRING. http://string.embl.de/
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Table 4.5 Some commonly used standard annotated data sets for text mining

Data set name Brief introduction

BioCreative IIIa BioCreative III works for evaluating text mining and
information extraction systems applied to the
biomedical domain. BioCreative III has several
data set for three tasks: cross-species gene
identification and normalization, protein–protein
interactions extraction, and interactive
demonstration task for gene indexing and retrieval
task

BioInferb (Pyysalo et al. 2007; Ginter
et al. 2007)

BioInfer is a XML-based format corpus protein–
protein interaction. The data of BioInfer were
from five well-known protein–protein interaction
corpora: AIMed, BioInfer, LLL, IEPA, and
HPRD50

BioTextc (Rosario and Hearst 2004a,b,
2005a, b; Hearst and Rosario 2001;
Schwartz and Hearst 2003)

BioText was initially constructed by 1,000 randomly
selected MEDLINE abstracts from the results of a
query on the term yeast. The dataset was then
manually annotated and further verified. BioText
has 954 correct pairs, including abbreviation
definitions, protein–protein interaction data, and
relations between disease treatment entities

GENIAd (Kim et al. 2003) The GENIA data set is one of the most frequently
used dataset for evaluation of biomedical and
biological information extraction and text mining
systems. The data set contains 1,999 Medline
abstracts, selected using a PubMed query for
terms human, blood cells, and transcription
factors. The GENIA data set has many sub data
set, aiming for part-of-Speech annotation,
constituency (phrase structure) syntactic
annotation, term annotation, event annotation,
relation annotation, and coreference annotation

PICorpuse (Johnson et al. 2007) PICorpus is a protein–protein interaction corpus
which was originally created at the PDG.
PICorpus can be used for a variety of biomedical
text mining tasks, such as named entity
extraction, relation identification and relation
extraction systems

a BioCreAtIvE. http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/results/
b BioInfer. http://mars.cs.utu.fi/BioInfer/
c BioText. http://biotext.berkeley.edu/data.html
d GENIA. http://www-tsujii.is.s.u-tokyo.ac.jp/*genia/geniaform.cgi
e PICorpus. http://bionlp-corpora.sourceforge.net/picorpus/index.shtml
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for the work and challenges in the future application of text mining in cancer
researches.

The first is the challenge of using biomedical text mining technologies in the
personalized medicine development. We know that a complex disease such as
cancer has many factors including race, gender, age and environment
(Kountourakis et al. 2012; Chandolu and Dass 2012; Chlebowski et al. 2012;
Foroughi et al. 2012; Wei and Giovannucci 2012; Hassanein et al. 2012; Hoffe and
Balducci 2012). So it has become a trend that with patients’ biomedical infor-
mation collected and analyzed the medicine and the therapies are tailored to
individual patients. By text mining technique, Ando et al. (2007) have identified
qualitatively the differences in the focus of life review interviews by patients’ age,
gender, disease age and stage, and Jemal et al. (2011) integrated compound-target
relationships which are related with cancer and presented the spectrum of research
on personalized medicine and compound-target interactions. During text mining,
all these important aspects will be taken into consideration by the personalized
medicine (Mattila et al. 2012). One solution of it is before text mining categorizing
data first rather than treat them together without any pre-processing, but it is a
difficult work to do it. What’s more, it’s harder for text mining to find a good
biomarker for all cases.

The second is that molecular mechanism of complex disease is very sophisti-
cated since different genes or gene sets from the same pathway or network can
cause the same phenotype. Hence mining texts from a hierarchical network instead
of a single level is needed in order to study the complex mechanisms of cancer.
Different levels which contain motif (Wang 2012; Chatterjee and Kumar 2011),
pathway (Staiger et al. 2012; Giordano and Sinha 2012; Liu et al. 2012), module
(Hjermstad et al. 2012; Chaudhry and Siddiqui 2012; Khoshnevisan et al. 2012)
and network (Ramasubbu et al. 2012; Logue and Morrison 2012) are analyzed and
studied in systems biomedicine. The resulting hierarchical data offer us valuable
materials to conduct text mining. Nevertheless, it’s really difficult to categorize
texts to hierarchical network correctly, to integrate text mining results from dif-
ferent levels and discover new knowledge with a systems biomedicine view.

The third is to use the text mining techniques in translational medicine research
which is an emerging field of biomedicine to involve the transformation of lab-
oratory findings into novel diagnosis and treatment of patients (Azuaje et al. 2012).
In order to improve treatment, we can apply the knowledge of pre-clinical in
clinic. Translational medicine are used to facilitate the course of diseases pre-
dicting, preventing, diagnosing, and treating, in the research of which the calling
for bioinformatics to act as a driver rather than a passenger requires text mining to
do much more. Nevertheless, due to various stages of information and various
sources of evidence taken into consideration and the integration of Omics and
clinical data set to find out novel knowledge for both biology and medicine
domains, biomedical text mining will face much difficulty. Recently discovered
disease genes are confirmed and potential susceptibility genes are identified by
numerous this sort of applications, such as the data integration and data mining
platform presented by Liekens et al. (2011).
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The forth is to understand more about complex disease by integrating at mol-
ecule, cell, tissue, organ, individual and even population levels. However, high
levels which actually has a close relationship with cancer phenotypes are seldom
focused on with most of the current text mining studies reporting at molecular
level. Opportunities for successful disease diagnosis and treatments are really
provided despite that it’s a great challenge for cancer today to mine text at high
levels and then integrate the text information of all these levels.

The last is that due to natural language text which contains ambiguities caused
by semantics, slang and syntax and also suffered from noisy in texts often
inconsistent, text mining can be a big challenge. Consequently, it’s not suitable to
be used blindly owing to too many errors contained in the mined information.
Fortunately there is some solutions. The first is actually pre-processing turns the
unstructured texts to structured texts with semantic tags by manually reading and
understanding texts, analyzing them, and then adding semantic tags, so it can
easily realize the aim with high precision rate. Nevertheless, it’s a truly restricted
solution for requiring vast human efforts and time-consuming, which only limits
mining ability. The second is to provide vast biomedical texts on which carrying
on text mining, after that analyzing the candidate results and screening out the final
results. In order to enhance mining efficiency and the quality of the mined
knowledge, we usually employ domain knowledge during the mining process.
Compared with the first solution, this is more powerful on knowledge discovering
despite that the mined results may still contain more errors. These two solutions
are different on dealing with the correctness of the texts to be mined, for the formal
is by carefully manual pre-processing while the latter is by post-processing by
experts. And the third is to use some advanced statistical analysis to clean data
roughly and after that to conduct mining on them. It is a compromising solution of
the advanced two approaches.

4.8 Conclusions

Currently, the existing huge body of biomedical texts and their rapid growth makes
it impossible for researchers to process the information manually. Researchers can
use biomedical text mining to facilitate their work. We have reviewed the
important research issues related to text mining in the biomedical fields. We have
also provided a review of the state-of-the-art applications and datasets used for text
mining in biomarker discovery, thereby providing researchers with the necessary
resources to apply or develop text mining tools in their research. We introduced
the general workflow of text mining to support systems biology and we illustrated
each phase in detail. We can see that text mining has been used widely. However,
to fully utilize text mining, it is still necessary to develop new methods for full text
mining and for highly complex texts, as well as platforms for integrating other
biomedical knowledge bases.
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Chapter 5
Protein Binding Interfaces and Their
Binding Hot Spot Prediction: A Survey

Qian Liu and Jinyan Li

Abstract In living organisms, genes are the blueprints or library, specifying
instructions for building proteins. Proteins constitute the bulk of cells. Proteins
mutual binding and interactions play a vital role in numerous functions and activities,
such as signal transduction, enzymatic reactions, immunoreactions and inter-cellular
communications. This survey provides basic knowledge of proteins and protein
binding. First, we describe proteins’ fundamental elements, structures and functions.
In Sect. 5.2, we present concepts related to protein binding and interactions. In Sect.
5.3, we explain why protein binding interfaces have a uneven distribution of binding
free energy. In the Sects. 5.4 and 5.5, we explain why protein interfaces are com-
plicated and how the current studies deal with this difficult problem. In Sect. 5.6, we
present an overview on methods to model and predict binding free energy of protein
interactions. Section 5.7 concludes this survey with a summary.

Keywords Protein structures � Protein–protein binding � Binding interface �
Binding hot spots

5.1 Proteins: An Elementary Introduction

The basic building blocks of every protein are named amino acids. There are 20
types of amino acids. Each amino acid consists of two parts: a backbone and a side
chain. The backbone consists of three groups: the amino group (NH2), a central
carbon (the alpha carbon or CA) and a carboxyl group (COOH). The backbone is
the same for all of the 20 types of amino acids. Side chains have different com-
binations of heavy atoms, each corresponding to one of the 20 types of amino
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acids. Heavy atoms are those atoms such as Carbon (C), Nitrogen (N), Oxygen (O)
and Sulfur (S).

The twenty amino acids are shown in Fig. 5.1. Their 3-letter (1-letter) codes
are: Ile(I), Val(V), Leu(L), Phe(F), Cys(C), Met(M), Ala(A), Gly(G), Thr(T),
Ser(S), Trp(W), Tyr(Y), Pro(P), His(H), Glu(E), Gln(Q), Asp(D), Asn(N), Lys(K),
and Arg(R) in the order with I as the most hydrophobic and R as the least
hydrophobic with respect to their hydrophobicity (Kyte and Doolittle 1982).

Gly is the smallest amino acid without a side chain of any heavy atom. Ala is
the second smallest amino acid and has only one heavy carbon atom CB (or the
beta carbon) in its side chain; CB is the first heavy atom of side chains which has a
covalent bond with CA. The side chains of the other amino acids have more
number of heavy atoms. Please refer to Fig. 5.1 for more details.

Because of different side chains, the twenty amino acids possess various
physicochemical properties. For example, the side chains from Arg, His and Lys
are positively charged, while the side chains in Asp and Glu are negatively
charged; Ser, Thr, Asn and Gln have polar side chains, but Ala, Ile, Leu, Met, Phe,
Trp, Tyr and Val have hydrophobic side chains and especially the side chains in
Phe, Trp and Tyr contain aromatic rings. Hydrophobic amino acids generally tend
not to contact with water molecules, while hydrophilic (polar and charged) amino
acids prefer a high affinity for water.

5.1.1 A Definition for Proteins

In a real-cell environment, the amino NH2 group of an amino acid can react with
the carboxyl COOH group of another amino acid, forming an amino covalent bond
and resulting in the release of a water molecule; this covalent bond is also called
peptide bond in biology. After this condensation reaction, the involving amino
acids are also referred to as (amino acid) residues. A set of residues create a linear-
sequence polymer, called a peptide for a shorter or a protein for a longer polymer
(the left-side of Fig. 5.2).

In vivo with a three-dimensional (3D) space, a residue of a protein can interact
with some other residues under physical, chemical and biological rules, producing
a 3D structure. One example of protein 3D structures is shown in the right-side
sub-figure in Fig. 5.2, whose protein sequences are in the left-side sub-figure.
Generally, a protein sequence determines a unique, stable, intended and correct 3D
structure (also called native conformation). It is also widely accepted that similar
sequences have similar 3D structures, but similar 3D structures may have different
protein sequences.

Proteins, structures can be characterized from the following four aspects: protein
primary structures, secondary structures, tertiary structures and quaternary struc-
tures. Primary structures are protein sequences themselves, while the others repre-
sent different levels of protein 3D structures. In protein 3D structures, some segments
have such favored regular shapes as alpha helix or beta sheet stabilized by hydrogen
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Fig. 5.1 Twenty standard amino acids, and their structures and hydrophobicity. Here, the
structures are from http://share.chuagh.net/science/Share_AminoAcids.php?structure=1 and the
hydrophobicity values are from http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/
hydrophob.html

5 Protein Binding Interfaces and Their Binding Hot Spot Prediction 81

http://share.chuagh.net/science/Share_AminoAcids.php?structure=1
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/hydrophob.html
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/hydrophob.html


bonds, while others shapes are irregular, specially termed as loop/turn/random coil.
These local shapes are known as secondary structures of proteins. Further, a protein
3D conformation is defined as a tertiary structure if a single protein is involved, and
as a quaternary structure when the conformation is about a protein complex. A
protein complex is the binding or contact of two or more proteins by non-covalent
bonds. Each protein in its quaternary structures is also referred to as a protein chain or
a proteomer. Please refer to the right-side sub-figure in Fig. 5.2 for an example of
protein secondary structures, tertiary structures or quaternary structures.

The native 3D conformations of proteins determine their functions. Failure to fold
into intended shapes usually produces inactive proteins with different properties,
such as toxic prions (please refer to http://en.wikipedia.org/wiki/Protein_folding).
This failure may result in many diseases, including Creutzfeldt-Jakob disease,
bovine spongiform encephalopathy (mad cow disease), amyloid-related illnesses
such as Alzheimer’s Disease and familial amyloid cardiomyopathy or polyneurop-
athy, as well as intracytoplasmic aggregation diseases such as Huntington’s and
Parkinson’s disease (please refer to http://en.wikipedia.org/wiki/Protein_folding).
Therefore, it is vital to determine and understand protein 3D structures.

5.1.2 Database of Protein 3D Structural Data

Many experimental methods have been developed to determine protein 3D con-
formations, including X-ray crystallography, electron microscopy and Nuclear
magnetic resonance (NMR) spectroscopy. Among these techniques, X-ray crys-
tallography is the most popular and prolific technique. X-ray crystallography

Fig. 5.2 An example of protein sequences and their 3D structures. The middle sub-figure
represents 3D coordinates of each atom in proteins. In the right-side sub-figure, one protein is in
magenta while the other is in green; the binding interface is in a sphere view for the green protein
and in a stick view for the magenta
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(please refer to http://en.wikipedia.org/wiki/X-ray_crystallography) uses the fol-
lowing way to determine the atomic arrangement of proteins within a crystal.
Firstly, according to elastic scattering, X-ray crystallography employs X-ray to
produce a diffraction pattern of regularly spaced spots called a reflection. Then,
several reflections are obtained through rotating the crystal. Finally, the mathe-
matical method of Fourier transforms is used to convert the two-dimensional
reflection images taken at different rotations into a three-dimensional model of the
density of electrons within the crystal. According to electron density, atomic mean
positions in a crystal can be determined. X-ray crystallography is relatively
affordable, and can obtain high-resolution information of atoms in proteins. So far,
it has resolved 66,989 crystal structures of biological molecules according to the
statistics of Protein Data Bank (PDB).

PDB is a key resource to store 3D structural data of those biological molecules,
such as proteins and nucleic acids. PDB can be accessed by URL http://
www.rcsb.org/. In each PDB entry of proteins, heavy atoms of each residue are
stored with their own 3D coordinates as shown in Fig. 5.3. Based on these atomic
coordinates, protein 3D conformations can be visualized. For example, the right-
side sub-figure in Fig. 5.2 is produced according to the coordinates in the middle
sub-figure of Fig. 5.2. Therefore, PDB structures are primary information to
investigate proteins and their structures; several important databases already derive
and store the classification of PDB structural data, such as SCOP (Murzin et al.
1995) and CATH (Orengo et al.1997).

5.2 Protein Binding Interfaces

A living organism is a dynamic integral world. Its components contact each other
for performing biological functions. As a fundamental component of living
organisms, proteins rarely function alone; most proteins must work in
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collaboration with other macromolecules, such as other proteins or DNA. Without
doubt, close interactions of proteins are indispensable to fulfill molecular functions
and biological processes. A good example of this is antigen–antibody interactions.
When foreign objects antigens intrude, antibodies can specially identify and
neutralize antigens so that immune systems can well defend the body against the
attack from antigens. In this process, the antigen–antibody close interactions are
essential to immune systems.

Meanwhile, protein interactions are very specific: on one hand, not all segments
of proteins are able to bind to other molecules, although a protein can have more
than one binding segment; on the other hand, a binding segment of a protein
should only contact with specific binding segments in some other proteins instead
of with all binding segments or all other proteins—these specific binding segments
should have a certain corresponding characteristic.

Close and specific protein interactions play a vital and fundamental role in
molecular functions and biological processes, but why binding happens like this
and what are binding segments are unknown yet. Thus, discovering the principle of
protein interactions and the specificity of protein binding is a fundamental and
challenging problem in proteomics, resulting in a lot of useful applications, such as
drug design and protein engineering.

5.2.1 Diversity of Protein Interactions

Protein interactions are diverse according to various criteria. For example, some
interactions are permanent and usually very stable. Thus once forming protein
complexes, they only exist in their complex form in all of the lifetime of the
complexes (Nooren and Thornton 2003). In contrast, others associate to accom-
plish a particular function upon a molecular stimulus and dissociate after that
(Nooren and Thornton 2003). This kind of interactions are termed as transient
interactions in comparison to permanent interactions.

Biological interactions can also be grouped depending on whether their pro-
tomers of interactions can be found or not as stable tertiary structures on their own
in vivo (Irene 2003). On certain physiological conditions and environments, if
protomers of interactions cannot be found as stable tertiary structures on their own
in vivo (Irene 2003), this kind of interactions are referred to as obligate interac-
tions; otherwise, those interactions are non-obligate interactions. Similarly, two-
state folding complexes and three-state complexes were also used to describe
obligate and non-obligate interactions; this criterion depends on the different
transition processes in protein folding and binding (Tsai and Nussinov 1998):
(1) in non-obligate interactions, two protomers of interactions fold separately, and
then recognize each other to form the complexes. Thus, this process is three-state;
(2) in contrast, two protomers fold and bind together without the intermediate
states in obligate interactions, and these interactions are two-state complexes (Tsai
and Nussinov 1998) or obligomers (Ofran and Rost 2003).
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The criterion for obligate/two-state and non-obligate/three-state complexes is
similar to and confused with, but really different from, the criterion for permanent
and transient interactions: (1) obligate interactions or two-state complexes are
stable, and their protein chains function only in the complex form (Irene 2003). So,
this kind of interactions are permanent interactions. (2) Correspondingly, pro-
tomers in transient interactions fold separately, and they have stable tertiary
structures; thus, transient interactions are non-obligate. (3) Clearly, there exist
non-obligate permanent complexes, such as antigen–antibody interactions, and the
complexes of thrombin and rodniin inhibitor (Irene 2003). In these complexes,
each protomer fold into a stable tertiary structure, and then the protomers come
together to form protein complexes which do not dissociate again. However, the
stability of complexes much depends on physiological conditions or environments:
a continuum exists between obligate and non-obligate interactions, while an
interaction may be mainly transient in vivo but become permanent under certain
cellular conditions (Irene 2003). Thus, these two criteria are mostly combined in
literature works, although they focus on different aspects of protein complexes.

Meanwhile, protein interactions can happen between two identical protein
chains and called homodimers (Irene 2003); otherwise, the interactions are called
heterodimers (Irene 2003). Homodimers are generally obligate or permanent
interactions, while most of heterodimers are non-obligate or transient interactions.
Furthermore in a more complicated way, protein interactions can be categorized
into six subtypes (Ofran and Rost 2003): intra-domain, domain–domain, homo-
complexes (interfaces of transient interactions between identical protein chains),
homo-obligomers (interfaces of permanent interactions between identical protein
chains), hetero-obligomers (interfaces of permanent interactions between different
protein chains) and hetero-complexes (interfaces of transient interactions between
different protein chains). Here, a domain is a consecutive segment of protein
sequences with a particular and repeatable three-dimensional structure; it may
evolve, function, and exist independently of the rest of protein chains.

It is clear that these different types of biological interactions possess their
unique binding behaviors. This diversity of protein interactions necessitates indi-
vidual investigation for each different type of protein interactions based on their
quaternary structures.

5.2.2 Binding Interfaces in Protein Interactions

In quaternary structures of protein interactions, physicochemical properties are not
uniform everywhere, such as evolutionary conservation, and solvent accessible
surface area (ASA). According to the difference of solvent accessible surface area,
protein quaternary structures can be divided into several segments, such as
interfaces, surfaces, and intraproteins/interior. Intraproteins can further be subdi-
vided into domain interfaces and intradomains according to evolutionary/structural
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conservation or functional properties. Among these segments of protein quaternary
structures, interfaces are significantly important.

In a protein complex, the region where protein chains come into contact is a
binding site; or for both sides, an interface (Tuncbag et al. 2009). Protein binding
interfaces specify how proteins involve in various activities in living cells. Thus,
interface analysis becomes a key point to reveal the rules governing protein
interactions and their cellular processes involved.

A protein binding interface is generally considered to be composed of two
relatively large, spatially close protein surfaces of atoms/residues with good
geometric shape and chemical complementarity. It is also believed that the for-
mation of protein chain interfaces is driven by various natural weak forces such as
hydrogen bonds, electrostatic interactions, van der Waals forces, salt bridges and
hydrophobic attractions. Thus, protein interfaces have complicated physico-
chemical properties.

In folding and binding process of proteins, a certain solvent environment is a
crucial factor. Thus, it is helpful to measure how much molecules (e.g., residues
and atoms) may be exposed to water/solvent environments in their protein 3D
structures. To do that, solvent accessible surface area was first described by Lee
and Richards in 1971. In a protein 3D structure, each heavy atom is represented by
a sphere defined by its van der Waals radius; then, ASA is calculated by rolling a
ball of a particular radius to probe the surface of atoms (Hubbard and Thornton
1993). The typical radius of the rolling ball is 1.4 Å. An example of ASA for
several atoms is shown in Fig. 5.4. After that, the ASA sum of the certain group of
atoms in a specific residue is ASA of the residue; the aggregate ASA of residues is
protein ASA. Several softwares are developed to calculate ASA, and NACCESS is
the well-known one (Hubbard and Thornton 1993).

It is clear that ASA is not even everywhere in protein quaternary structures:
some residues/atoms are completely buried with zero ASA, while the other may be
greatly exposed to the solvent; protein surfaces are heavily exposed to the solvent
with larger ASA, while intraproteins/interior is little exposed to the solvent with
smaller ASA; protein interfaces should be exposed to the solvent in unbound states,
and little exposed in bound states. It seems that ASA is one of physical features of
protein binding interfaces. It can be used to measure interface size and contact area.
This measure is about the change of ASA (DASA) upon the formation of protein
complexes, which is considered to provide a measure of binding strength (Jones and

Fig. 5.4 An example of
ASA for atoms. This example
is from http://
www.ccp4.ac.uk/dist/html/
areaimol.html
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Thornton 1996). Computationally for two protein chains in a protein complex, there
is a difference between the sum of their ASAs each in their own tertiary structures
(i.e., ASA1, and ASA2) and ASA of their quaternary structures (ASAc) upon the
formation of the complex. The difference, DASA = (ASA1 ? ASA2 - ASAc)/2, is
generally referred to as interface size or contact area for the interactions. In detail,
some atoms/residues may also undergo a similar change of their ASAs upon the
formation of protein complexes; these atoms/residues are considered to be more
likely involved in protein interfaces.

Besides ASA, other outstanding chemical, physical and geometric properties
(Neuvirth et al. 2004; William et al. 2001) as follows can also be used to char-
acterize protein 3D structures especially protein binding interfaces.

• Compositional features consisting of residue composition (Zhu et al. 2006; De
et al. 2005; Rudra et al. 2005; Lukman et al. 2008) and propensity (Bahadur
et al. 2004), residue pairs (Glaser et al. 2001; Miyazawa and Jernigan 1996;
Moont et al. 1999) and atomic pairs (Mintseris and Weng 2003; Ponstingl et al.
2000, 2003; Zhang et al.1997). These compositional features are good
descriptors for different segments of proteins (e.g., interfaces, surfaces and in-
traproteins/interior) in protein 3D structures. Protein binding interfaces tend to
have a core with hydrophobic residues.

• Geometric features including planarity, shape complementarity, circularity
(Jones and Thornton 1996, 1997) and secondary structures (Neuvirth et al.
2004). In a protein quaternary structure, there exists a gap between the tertiary
structures of its protein chains. This kind of gaps can be measured by gap index,
planarity and shape complementarity.

• Chemical features that contain hydrophobicity and polarity (Jones and Thornton
1996; Bahadur et al. 2003, 2004; Young et al. 1994).

• There are also other features, such as evolutionary residue conservation
(William et al. 2001; Zhu et al. 2006). A new protein sequence usually is not
created from scratch; it is generated from existing sequences by deletion, insert
and mutations of residues, and shifting of parts of old sequences. Thus, some
sequences can have similar or same residues in specific corresponding positions;
these residues are more evolutionarily conserved. Interfacial residues are con-
sidered to be more conserved than surface residues.

Many of these features have been involved in important findings. For example,
interface area of biological interactions is found to be much larger than that in non-
biological interactions (William et al. 2001; Zhu et al. 2006; De et al. 2005;
Bahadur et al. 2003, 2004; Janin and Rodier 1995; Janin 1997; Carugo and Argos
1997). These above features also suggest that protein interfaces are very compli-
cated. Here, biological interactions are those molecular binding which form in
solution or in their physiological states to perform biological processes and
molecular functions, while non-biological interactions are produced manually or
their monomers are randomly in close vicinity without biological significance.
Good examples of non-biological binding are decoys in protein docking or crystal
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packing in PDB—the former are artificial binding produced by computational
docking algorithms, while the latter are enforced by the crystallographic packing
environment and formed during the crystallization process (Tuncbag et al. 2009),
but both of them do not occur in solution or in their physiological states.

5.3 Uneven Distribution of Binding Free Energy
and Binding Hot Spots in Protein Interfaces

Assume that there is free energy G with proteins in an unbound state; when
proteins contact each other upon the formation of protein complexes, the free
energy is G0 � DG = G - G0 is the change of the free energy of protein binding, or
DG is the required energy to disassemble proteins in the bound state into the
unbound state. For protein interfaces, DG is binding free energy.

Binding free energy is not evenly distributed in protein interfaces (Bogan and
Thorn 1998). As shown in Fig. 5.5, the red part is considered to contribute most to
the binding free energy, and the green part least. This uneven energetic distribution
can be probed by experimental approaches. A widely-used experimental approach
is alanine scanning mutagenesis (Wells 1991; Clackson and Wells 1995). This
approach selectively mutates an individual side chain of a residue from interfaces

Fig. 5.5 An example of the uneven distribution of the binding free energy in the antibody
protein interface in the PDB entry 1VFB. In this figure, the parts in black, red, skyblue and
limegreen are from Chain B, and the parts in gray, blue and green are from Chain A. Those
interfacial residues in yellow are not probed by the experimental alanine mutation method.
DDG of the red part is C2 kcal/mol; DDG of the blue and skyblue part is \2 kcal/mol and
C1 kcal/mol; DDG of the green and limegreen part is \1 kcal/mol. The letter strings represent
the specific residues in the interface: the first letter is the chain name; the letters following ‘-’ are
one-letter residue types and their positions in protein sequences
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to Ala mostly by eliminating the side chain beyond CB. Why Ala is the substi-
tution residue of choice is that it yet does not alter backbone conformations (as Gly
or Pro can) nor does it impose extreme electrostatic or steric effects (Cunningham
and Wells 1989; Lefevre et al. 1997). Then, kinetic and thermodynamic mea-
surements are employed to determine DGmut of binding after mutations. Finally,
the energetic contribution of individual side chains to protein binding (Bogan and
Thorn 1998) is calculated by using DDG = D G - D Gmut � DDG is the change of
binding free energy after alanine mutations. Through this way, it has been proved
that there exist a small fraction of residues in protein interfaces, contributing most
to binding stability and binding free energy. These residues are called ‘binding hot
spots’ (Clackson and Wells 1995). In literature works, residues are considered as
hot spot residues if their DDGs are not less than a threshold, such as C1.0 kcal/mol
(Grosdidier and Recio 2008), or C2.0 kcal/mol (Bogan and Thorn 1998).

Binding hot spots are considered to be very important to binding affinity and
strength of protein interactions. For instance, in the complex of bovine pancreatic
trypsin inhibitor (BPTI) and b-Trypsin, the mutation of Lys-15 in BPTI caused a
pronounced drop in the binding energy, a 230-fold decrease in the association rate
constant for the trypsin/K15A complex (Maria Jose et al. 1996).

Binding hot spots defined by DDG does not take the contribution from backbone
atoms into account, but they provide a new opportunity to understand complicated
protein binding and to pinpoint the governing principles under specific protein
binding. Thus, identification of binding hot spots is particularly advantageous for
many predictions in structural analysis of proteins, such as docking algorithms to
construct protein quaternary structures (Moont et al. 1999), identification of protein
binding sites (Neuvirth et al. 2004; Bradford and Westhead 2005) and reliable pre-
dictions on interaction types for new protein complexes (Zhu et al. 2006; Mintseris
and Weng 2003; Bernauer et al. 2005). In practical applications, binding hot spots
imply target candidates of drug design. For example, compared to 2007 H1N1, the
mutations of 2009 H1N1 result in several new binding hot spots which increase the
fatal property of 2009 H1N1; the interfacial mutation E104D causes human triose-
phosphate isomerase deficiency (Daar et al. 1986). Hence, mutations are pathogenic
if they remove hot spots in expected sites or add hot spots in unexpected sites, and
detecting hot spots can help design drugs against diseases.

5.4 Definition of Protein Interfaces: An Intractable
but Fundamental Research Problem

In protein complexes, protein binding interfaces are an essential segment. Protein
binding interfaces under a perfect definition should only contain those residues
which have large positive contribution to binding free energy from both backbone
atoms and atoms of side chains. However, DDG is only the contribution from
atoms of side chains, while the contribution from backbone atoms is hard, if not
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impossible, to experimentally measure. Also, it is expensive and time-consuming
to biologically identify binding free energy of interfacial residues. So to compu-
tationally analyze protein quaternary structures, definitions of protein binding
interfaces and their atomic contacts should be first given based on atomic 3D
coordinates of proteins.

Generally, a protein interface is defined as two parts: contact residues and
neighbor residues of the contact residues as contact scaffold (Tsai et al. 1996,
1997; Halperin et al. 2004; Li et al. 2004; Keskin et al. 2004, 2005; Mintz et al.
2005). Neighbor residues are those residues which are from the same chain as
contact residues and also near contact residues. The ‘near’ is mostly measured
based on the spatial distance between CA atoms of contact residues and of
neighbor residues (Tsai et al. 1996). Contact residues are widely defined by the
following several criteria.

One definition of contact residues/atoms uses atomic distance (Ofran and Rost
2003; Tsai et al. 1996; Gong et al. 2005; Lawrence and Colman 1993; Larsen et al.
1998; Preissner et al. 1998; Korkin et al. 2005; Davis and Sali 2005). The measure
under this definition evaluates how two residues/atoms are spatially close from
interacting proteins. However, there is no gold standard to define ‘close’ contacts
between two residues/atoms. Some works consider two residues close enough to
contact if the spatial distance of their CA, or CB atoms, or the residue’s center of
mass is less than a threshold (Glaser et al. 2001; Fischer et al. 2006), e.g., 9 Å
(Tsai et al. 1996), while others take all heavy atoms of residues into account
(Mintseris and Weng 2003; Halperin et al. 2004; Li et al. 2004). To define contacts
between heavy atoms, two ways are commonly used in the literature (Glaser et al.
2001; Tsai et al. 1996): one is to take an absolute value, e.g., 6 Å (Mintseris and
Weng 2003), as a threshold for atomic spatial distance; and the other is to take into
account the van der Waals radii of atoms and use the sum of the corresponding
atomic radii plus a value as a threshold—this value can be 0.5 Å (Halperin et al.
2004; Li et al. 2004; Keskin et al. 2004; Guney et al. 2008), 1.5 Å (Liu and Li
2009), 2.75 Å (Li and Liu 2009; Liu and Li 2010; Li and Li 2010) or 3.0 Å
(Larsen et al. 1998).

Another definition considers the change of solvent accessible surface area
(DASA) upon the formation of protein complexes (Zhu et al. 2006; Bahadur et al.
2003, 2004; Glaser et al. 2001; Jones and Thornton 1997; Gong et al. 2005;
Chakrabarti and Janin 2002). Under this definition, contact residues/atoms are
those residues/atoms whose DASA is [ 0.1 Å2 (Bahadur et al. 2003, 2004)
or [ 1.0 Å2 (Zhu et al. 2006; Jones and Thornton 1997; Cho et al. 2009) upon the
formation of complexes.

A more complicated definition of contacts is based on Voronoi diagrams of
protein complexes (Li and Li 2010; Headd et al. 2007; Cazals et al. 2006; Bouvier
et al. 2009; Bernauer et al. 2008; Poupon 2004). Given a set of points p, its general
Voronoi diagram, VD(p), is defined by Voronoi cells of s [ p; a Voronoi cell of an
s is the region comprising all points closer to s than to any other points in p. The
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Delaunay triangulation of p is a graph where each node is an s and two nodes si

and sj, i = j, have an edge if they share a Voronoi facet. So, a Delaunay trian-
gulation is the dual graph of a Voronoi diagram (please refer to http://
en.wikipedia.org/wiki/Delaunay_triangulation). Figure 5.6 shows an example of
a Voronoi diagram and its dual graph Delaunay triangulation. In 3D structures of
protein complexes, each atom/residue can be considered as an s. Two atoms are
considered to contact with each other if they share a facet in their Voronoi diagram
or an edge in their Delaunay triangulation.

Meanwhile from an energetic perspective, van der Waals energy can also be
used to define contact residues (Tsai et al. 1996).

These various definitions above suggest that it is very complicated to accurately
provide a computational definition for protein binding interfaces based on essential
known quaternary structures of proteins. Also, the above definitions cannot capture
the specific property of protein binding, because they will define large interfaces of
non-biological interactions for any monomers which are in close vicinity; instead
in living organisms, protein binding only happen when certain chemical, physical
and biological rules are satisfied. These rules are so intractable that they are
beyond the simple measures, distance and ASA in the above definitions. Hence,
the above definitions are almost impossible to identify computational interfaces of
protein binding which are quite similar to, if not exactly same as, what interfaces
should be under the perfect definition (a definition according to the contribution of
binding free energy to complex formation). This results in that the principles
governing protein binding are elusive (Janin 1995), although they are necessary to
understand molecular functions and biological processes in living organisms.

Fig. 5.6 Voronoi diagram
(red) and Delaunay tri-
angulation (black). This
figure is from http://
en.wikipedia.org/wiki/
Delaunay_triangulation
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5.5 Current Research on Binding Interfaces

One ultimate goal in bioinformatics is to unveil the governing principles behind
protein interfaces; these principles can considerably benefit structural analysis of
proteins and drug design. Biological experiments are the best way of the principle
discovery, since wet-lab experiments can exactly tell where binding sites and
interfaces are and which residues are binding hot spots. However, protein inter-
faces, especially binding hot spots, intricately imply the governing principles but
don’t directly pinpoint.

In other words, after determining binding interfaces and their binding hot spots,
discovery of the governing principles is still a challenging problem. What is worse
is that, due to the structural and functional diversity of protein interactions and the
large dataset of protein structures, it is an arduous and exhausting task, if not
impossible, for biologists to extract the rules governing protein interactions
without computational aid. Therefore, many endeavors have been tried to under-
stand specific characteristics of protein interfaces through computational methods,
since the pioneer works on protein recognition in 1975 (Chothia and Janin 1975).

5.5.1 Computational Structural Analysis of Protein
Interfaces

In the light of the structural and functional diversity of protein interfaces, com-
putational interfacial investigation can fall into several typical problems as follows
but not limited to:

1. Modeling and prediction of binding hot spots is a key problem of analyzing
binding interfaces and even of structural analysis in computational biology. As
discussed before, protein binding interfaces are too complicated like fog cov-
ering the governing principles. Binding hot spots occur like several lights
interspersed in the fog to help us uncover what is behind the fog.

2. Statistical analysis of physicochemical properties for interfaces or for
binding hot spots aims at using statistical methods to find out what are specific
properties of binding interfaces and binding hot spots, and why and how they
can be interfaces and binding hot spots.

3. Prediction of protein interaction types wants to know which binding is
permanent or obligate, which is transient or non-obligate, and which is non-
biological. Different types of protein interactions generally possess various
binding behaviors. This classification can make interfacial analysis more
effective.

4. Identification of binding sites tries to pinpoint those atomic/residue clusters on
protein surfaces which can bind to specific surfaces on other proteins for
forming binding interfaces and fulfilling biological functions. The knowledge
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from binding hot spots and true binding interfaces can provide some hints for
this identification.

5. Protein docking is a process of predicting quaternary structures based on given
protein tertiary structures. Protein docking first searches potential binding
interfaces based on shape complementarity with the rigid docking assumption,
and then scores each potential interfaces to identify interfaces which are like-
liest to be true interfaces. In this process, accurate binding site prediction and
precise hot spot identification will reduce the huge search space in the first step,
while both binding hot spots and the knowledge from true binding interfaces,
such as interfacial pairwise potentials, can help to produce functional scores in
the second step. Furthermore, the task in the second step is exactly the problem
of binding type prediction: distinguishing true binding interfaces from false
decoys.

6. Other analyses include predictions of protein secondary and of tertiary struc-
tures, and investigation of protein–RNA/DNA binding and of protein-small
molecule binding. These problems are not closely related to this survey.

These problems are closely related to each other. For example, identification of
binding hot spots can specialize physicochemical analysis of protein interfaces,
much improve predictions of protein interaction types and of binding sites, and
also benefit docking algorithms. Correspondingly, interfacial physicochemical
analysis can help to understand other problems; and types of protein interactions
can specialize and simplify analysis of binding hot spots and interfacial physi-
cochemical properties.

5.5.2 Limitations in the Current Approaches to Protein
Interfaces Analysis

In computational structural biology, there are a lot of interesting problems as
discussed above. In this survey, we mainly focus on problems (1), (2) and (3). We
found that there are many limitations in these three directions.

(a) The organizational topology inside O-ring: Many works endeavored to
dissect hot spots in protein interfaces. Binding hot spots were first character-
ized by the profound and influential O-ring theory based on the topological
shape of their surrounding residues (Bogan and Thorn 1998). The O-ring
theory confirms that the residues of the O-ring likely function as a role to
occlude bulk water molecules from the hot spots inside the O-ring. However,
the organizational topology of the ring-inside, energetically more important
hot spot residues is not specified by the O-ring theory.

(b) Prediction of binding hot spots: Considerable computational methods have
been designed to predict DDG and binding hot spots including FoldX (Guerois
et al. 2002; Schymkowitz et al. 2005), Robetta (Kortemme and Baker 2002;
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Kortemme et al. 2004), PP_SITE (Gao et al. 2004), KFC (Steven et al. 2008),
MINERVA (Cho et al. 2009), APIS (Xia et al. 2010), ISIS (Ofran and Rost
2007) and a web server HOTPOINT (Tuncbag et al. 2009). However, none of
these approaches can characterize and identify binding hot spots with high
prediction performance. A clear picture of binding hot spots still remains
uncovered. Without doubt, binding hot spots are proving their own com-
plexity. They cannot be accurately characterized by sole physicochemical
property or even by most of existing physicochemical properties (Cho et al.
2009). For example, although conservation is considered to be closely related
to binding hot spots (Keskin et al. 2005), some works observed that conser-
vation less help the prediction of binding hot spots (Cho et al. 2009). Mean-
while, on the one hand, Keskin’s study (Tuncbag et al. 2009) suggested that
statistical pairwise potentials of interface residues can improve classification
performance of binding hot spots; on the other hand, Huang’s study (Xia et al.
2010) reported that residue pairwise potentials do not perform well in their hot
spot prediction.

(c) Contradictory conclusions in structural analysis of binding interfaces: In
computational structural analysis of protein interactions, accurate knowledge
from binding interfaces is a starting point. Although binding interfaces are
intensively investigated in the literature, some conclusions about interfaces are
contradictory. For example, some works reported that there was no significant
change in going from interfaces to other segments of proteins, such as intra-
proteins (Glaser et al. 2001), while another works found protein interfaces
were unique and different from other segments (Ofran and Rost 2003; Jones
and Thornton 1997; Lo Conte et al. 1999). Furthermore, some works found
that hydrophobic clusters play a determining role in protein–protein interac-
tions (Young et al. 1994; Yan et al. 2008); in contrast, another works argued
that it is the hydrophilic rather than the hydrophobic effect that is dominant in
biochemical processes including protein–protein association (Ben-Naim
2006).

(d) Prediction of binding types: Different types of protein interactions, for
example permanent versus transient complexes, have various binding behav-
iors. When different types of protein interactions are considered on a large
dataset, specific analysis of interfaces can facilitate understanding of the
principles of protein binding. So, several good classification methods have
been proposed for predicting different types of protein interactions, such as
ACV (Mintseris and Weng 2003), NOXclass (Zhu et al. 2006) and DiMoVo
(Bernauer et al. 2008). But they mostly employ physicochemical properties of
interface residues/atoms, e.g., residues with ASA change [0.1 Å2 (Bahadur
et al. 2003, 2004) or[1.0 Å2 (Zhu et al. 2006; Jones and Thornton 1997) upon
the formation of complexes. It is well-known that binding hot spots are sig-
nificantly important in the stability of proteins and hot spot residues can
capture more specificity of various binding behaviors of proteins. But it is not
clear how this knowledge can help the prediction of binding types.

94 Q. Liu and J. Li



(e) Computational definition of binding interfaces and their contacts is a
fundamental but intractable problem in previous works and in computational
structural biology. In the literature, although several computational definitions
for binding interfaces were proposed as discussed in Sect. 5.4, none of them
exactly follows the biological meaning of protein interfaces. An evidence is
crystal packing in PDB or decoys in protein docking. These computational
definitions will detect a larger ‘artifact interfaces’ in crystal packing, no matter
the definition is based on the change of atom/residue ASA, or on atomic
distance, or on Voronoi diagrams of protein complexes. What is even worse is
that it is very hard to distinguish these crystal-packing ‘binding interfaces’
from true ones. Under these computational definitions, crystal packing con-
tacts may also make interfacial analysis full of noises. Anyway, crystal-
packing interfaces clearly and intuitively expose the disadvantages of these
computational definitions for protein interfaces.

5.6 Modeling and Prediction of Binding Hot Spots

Protein interfaces are very complicated to analyze; they can be dissected from
several perspectives, as shown in Sect. 5.1. In this section, we present a survey on
the models and prediction methods for binding hot spots.

Literature works dissecting binding hot spots can fall into three groups:
(1) some studies tried to characterize topological properties of binding hot spots,
e.g., the O-ring theory; (2) many other works endeavored to estimate binding free
energies or to predict binding hot spots qualitatively, for example, Robetta
(Kortemme and Baker 2002), FoldX (Schymkowitz et al. 2005) and KFC (Steven
et al. 2008); and (3) several other authors built databases/servers based on wet-lab
methods or computational methods to assist the analysis of binding hot spots, such
as ASEdb and Hotsprint. Since 2000, several surveys (Tuncbag et al. 2009; Irina
2007; Fernandez-Recio et al. 2011) summarized computational analysis of binding
hot spots, aiming at facilitating development of more effective prediction methods
for binding free energy and binding hot spots.

5.6.1 Modeling Binding Hot Spots

Hot spots of binding free energy were initially conceptualized by Clackson and
Wells (1995), supported by an outstanding finding that a ‘‘functional epitope’’ (hot
spot) between human growth hormone and its receptor accounts for more than
three-quarters of the binding free energy (Clackson and Wells 1995). This hot spot
was found to be a central hydrophobic region dominated by two Trps and also
geometrically surrounded by energetically less important contact residues that are
generally hydrophilic and partially hydrated (Clackson and Wells 1995).
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On the basis of the pioneering observations and studies of Clackson and Wells
(1995), Bogan and Thorn (1998) investigated 402 alanine mutations and was the
first to formalize a hypothesis named the O-ring theory to more intuitively char-
acterize the topological shape of the surrounding residues of binding hot spots
(Bogan and Thorn 1998). The O-ring theory confirmed that occlusion of solvent is
a necessary condition for highly energetic interactions (hot spots) and the residues
on O-ring likely function to occlude bulk water molecules from binding hot spots.

Following this step, after observing high correlation between structurally
conserved interface residues and the experimental enrichment energies (Zengjian
et al. 2000; Ma et al. 2003), Nussinov and her colleges suggested two specific
organizations of hot spots in binding interfaces (Halperin et al. 2004; Keskin et al.
2005): on one hand, both experimental hot spots and conserved residues tend to
couple a two-chain interface with higher local packing density (Halperin et al.
2004); on the other hand, binding sites (one side of the interfaces) might have
several ‘hot regions’, which are locally tightly packed regions containing the
clustered, networked, structurally conserved residues (Keskin et al. 2005).

Although the above works provided some nice topology organizations of
binding hot spots, none of them demonstrate what is the topology between hot spot
residues and how two hot spots ‘couple’ across binding interfaces. This problem
was discussed in (a) of Sect. 5.2.

5.6.2 Estimating DDG of Binding Hot Spots

With the above topological organization and understanding of binding hot spots,
prediction methods were designed to calculate DDG of residue mutations or
qualitatively identify binding hot spots. The knowledge used in these prediction
methods can be categorized into three kinds (Guerois et al. 2002): (1) one is from
physical effective energy functions; (2) another is statistical potentials of residue or
atom contacts based on protein databases; and (3) the other is empirical information
obtained from protein engineering experiments. Based on these kinds of knowl-
edge, atomistic simulations were used to calculate DDG of residue mutations.
Atomistic simulations apply such strategies as the rigorous free energy perturbation
(Kollman 1993), thermodynamic integration (Gouda et al. 2003), and the
approximate approaches (e.g., MM-PBSA) (Gouda et al. 2003; Huo et al. 2001).

However, atomistic simulations are time-consuming. The most rapid approa-
ches to the estimation of DDG of residue mutations are the empirical or knowl-
edge-based (statistical) approaches in conjunction with simple physical models
(Kortemme and Baker 2002). The well-known examples include FoldX and
Robetta. Robetta is a simple physical model for estimating binding energy of hot
spots (Kortemme and Baker 2002; Kortemme et al. 2004). This method uses all
heavy atoms and polar hydrogens to represent proteins. Then, it computationally
mutated a residue into alanine (a residue type Ala), and then repacked a local
sphere of 5 Å radius of the site of the mutation. Binding free energy changes upon
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mutations were calculated by an energy function which linearly combines such
terms as Lennard-Jones potentials, an orientation-dependent hydrogen bond
potential, Coulomb electrostatics, and an implicit solvation model.

Similarly, FoldX (Guerois et al. 2002; Schymkowitz et al. 2005) uses a linear
combination of empirical terms to calculate binding free energy. It uses several
empirical terms similar to Ro-betta, such as hydrogen bonds (water-intermediate
hydrogen bonds included) and Coulomb electrostatics; other empirical terms used
by FoldX are hydrophobic and polar solvation, the Van der Waals terms and so on.
The weights of these empirical terms were optimized by empirical mutant data of
protein experiments.

Recently, Benedix et al. proposed a structure-based method, CC/PBSA for fast
estimation of the effect of mutations for protein folding and binding (Benedix et al.
2009). Given a protein structure, no matter it has a wild type or a mutant, CC/PBSA
uses the program Concoord to generate alternative protein conformations. Concoord
(de Groot et al. 1997) first finds pairwise interatomic distance bounds, and then starts
from random coordinates and iteratively corrects the coordinates until satisfying all
distance constraints. After that, CC/PBSA considers the following terms to design its
energy function: Coulomb electrostatics, polar solvation free energy, a Lennard-
Jones potential for solute–solute interactions and protein–protein interaction sur-
face. Several of these terms are similar to those used in Robetta and FoldX.

All of these computational methods achieved good prediction performance
based on experimental mutations. For example, the overall correlation between the
observed and Robetta-calculated changes in binding free energy had an average
unsigned error of 1.06 kcal/mol for interface mutations (Kortemme and Baker
2002); and on 367 mutant of 9 protein complexes, CC/PBSA obtained the cor-
relation with R = 0.79 and d = 1.19 kcal/mol.

5.6.3 Identifying Binding Hot Spots Qualitatively

However, predicted energies by the above methods still have a large discrepancy
from experimentally measured energy changes (Cho et al. 2009). Thus, compu-
tational methods were designed to qualitatively identify binding hot spots using
those generated knowledge from protein structures, such as atomic contacts or
evolutionary/structural conservation; the used protein structures can be quaternary
structures, tertiary structures, or even primary structures with orderly increasing
difficulty to accurately predict binding hot spots.

5.6.3.1 Hot Spot Identification Based on Quaternary Structures

Most of previous prediction methods of binding hot spots were designed based on
known protein quaternary structures. Gao et al. (2004) developed PP_SITE using
hydrogen bonds, hydrophobic and van der Waals interactions to qualitatively
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estimate individual contribution of each interfacial residue to protein binding. This
method correctly predicted 75 hot spot residues with 88 % success rate (recall).
Cho et al. (2009) combined 54 multifaceted features to develop their predictive
model, MINERVA, for interaction hot spots; these features are composed of dif-
ferent levels of protein information, including structure, sequence and molecular
interactions. They then used a decision tree to select the best subset of features, and
treated them as input of SVM to build their classifier MINERVA. They claimed
that MINERVA is better than Robetta, FoldEF and KFC. In their analysis, they
found that weighted atomic packing density, relative surface area burial and
weighted hydrophobicity are the top 3 features for identifying hot spots; p-related
interactions, hydrogen bonds, and salt bridges are observed to be closely related to
binding hot spots as expected.

Hot Spot Identification based on Simple rules KFC (Steven et al. 2008;
Steven 2007) uses a decision-tree model to produce some rules for classifying
binding hot spots. KFC comprises K-FADE (based on shape specificity features
calculated by the Fast Atomic Density Evaluator) and K-CON (based on bio-
chemical contact features). K-FADE and K-CON are two decision tree classifiers
to improve the ability of hot spot prediction. These two decision trees employ the
following features to represent a residue: physical and chemical features, shape
specificity, and biochemical contacts such as atomic contacts, hydrogen bonds and
salt bridges. Similarly based on simple rules, Hotsprint (Guney et al. 2008) detects
hot spots using some thresholds of conservation, ASA, and residue propensity,
while HotPoint (Tuncbag et al. 2009) combines conservation, ASA and residue
pairwise potentials to produce hot spot rules.

Machine-learning Algorithms to Identify Hot Spots Since 2009, machine-
learning algorithms, such as SVM and Bayesian networks, have been actively
applied to improve prediction performance of binding hot spots. Lise et al. (2009)
considered energetic terms such as van der Waals potentials, solvation energy,
hydrogen bonds and Coulomb electrostatics, and took them as input features of
SVM to classify binding hot spots. They found that transductive SVM can achieve
the best performance with precision 56 % and recall 65 % for binding hot spots
with DDG C 2 kcal/mol. Further, they treated predictions involving either an
arginine or a glutamic residue separately, and improved the classification perfor-
mance with precision 61 % and recall 69 % (Stefano Lise et al. 2011). It seems
that different types of residues may have their unique way of contributing to
protein binding. It should be better to construct individual hot spot classifiers for
each type of residues when enough mutations are available.

Xia et al. (2010) introduced an ensemble classifier of nine SVM classifiers to
predict binding hot spots. This method investigated a wide variety of 62 features
from a combination of protein sequences and structure information, and used
F-score to select non-redundant and relevant features for SVM classifiers. In
particular, this method combined a new feature, protrusion index with solvent
accessibility, to significantly improve the prediction performance.

Assi et al. used Bayesian Networks to design a novel probabilistic method
(Salam et al. 2010) for binding hot spots. This method combines three main
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sources of information. One source is energetic term of computational alanine
scanning by FoldX, another source is evolutionary determinants of mutated resi-
dues and of their contact residues, while the other source is structural environment
such as proportion of side chain atoms involving contacts and the ratio of the
number of structurally neighbor residues over the average number of neighbor
residues of the type of mutated residues. This method achieved 0.71 F1 score on a
BID dataset.

Network-based Approaches Different from these feature-based methods
above, graphs and networks of residues are also used to investigate the topological
organization of binding hot spots. Similar to O-ring, Li and Li proposed a novel
descriptor of atoms and residues, called burial level, to enhance hot spot prediction
performance (Li and Li 2010). By this method, they built an atomic contact graph
for a protein complex, where vertices are atoms and edges are atom contacts. They
defined the burial level of an atom in this graph as the length of the shortest path
from this atom to its nearest exposed atom to the bulk solvent. The burial level of
an atom or a residue indicates the extent it is buried inside the complex. As hot
spot residues are protected by O-rings (Bogan and Thorn 1998; Li and Liu 2009),
hot spot residues always have low ASA and high burial levels. But Li and Li
claimed that a high burial level seems to be more sufficient than ASA: there are
very few highly buried interfacial residues that are not hot spot residues. Based on
this concept, a GCR model is built for binding hot spot prediction (Li and Li 2010)
and has achieved good performance.

Similarly, network-based approach (Del 2005) is also used to identify the
properties of key interfacial residues. In this approach, protein complexes are
represented by graphs with residues as vertexes and residue contacts as edges. On a
dataset with 48 dimer complexes, these protein complex graphs were proved to
exhibit characteristics that resemble a small-world network; in these networks,
83 % of predicted highly central residues were found to correspond to or directly
contact an experimentally determined hot spot. Also, Tuncbag et al. used graphs to
visualize residue contact networks of protein interfaces. Edges in this graph are
weighted according to an energy function derived from knowledge-based poten-
tials. Then, they constructed min-cut tree to simplify and summarize contact
graphs (Tuncbag 2010). They observed that binding hot spots are the highest
degree node and also in a few paths in the min-cut tree.

5.6.3.2 Hot Spot Identification Based on Tertiary or Primary
Structures

All of the above analyses require protein quaternary structures. Grosdidier and
Recio (2008) tried to identify binding hot spots from protein tertiary structures.
They used computational docking to produce docking solutions for protein tertiary
structures; then they estimated normalized interfacial propensity (NIP) for each
residue according to averaged ASA of 100 lowest-energy docking structures.
Those residues with higher NIP were considered to be predicted hot spots. This
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method was reported to have comparative prediction performance to those
methods based on protein quaternary structures.

Further, another work ISIS (Ofran and Rost 2007) endeavored to predict
binding hot spots from amino acid sequences, without determined 3D structures of
proteins. ISIS employed features are those kinds of information generated from
amino acid sequences, such as sequence environment of residues, evolutionary
profile, predicted secondary structures and solvent accessibility, and conservation.
In this method, almost all binding residues predicted by ISIS were found to
experimentally have significant effect on protein binding, while more than 90 % of
the negative predictions contribute little to protein binding.

5.6.4 Databases for Binding Hot Spots

To facilitate the analysis of binding hot spots, several databases of binding hot
spots were built. Alanine Scanning Energetics Database (ASEdb) (Thorn and
Bogan 2001) and Binding Interface Database (BID) (Fischer et al. 2003) store
binding hot spots determined by wet-lab experiments. These two databases were
widely used to verify the effectiveness of hot spot prediction and estimation. The
difference of these two databases is that hot spot residues in ASEdb have quan-
titative DDG, while binding strength in BID is qualitative measures such as
‘‘Strong’’, ‘Intermediate’, ‘Weak’ or ‘Insignificant’.

However, the size of binding hot spots in these two databases is very limited,
since wet-lab experiments are expensive and time-consuming. Thus, several
servers or databases of computational hot spots were also constructed, for exam-
ple, KFC server (Steven et al. 2008) and Hotsprint database (Guney et al. 2008).
HotSprint (Guney et al. 2008) stores those computational hot spots for 35,776
protein interfaces among 49,512 protein interfaces extracted from the multi-chain
structures in PDB (as of February 2006); those computational hot spots were
derived based on residues conservation score, propensity, and ASA, and they are
highly correlated with the experimental hot spots with a sensitivity of 76 %.

As a summary, these literature works are grouped as Table 5.1 for a quick
review. Table 5.1 also suggests that although there have been a lot of works on the
analysis of binding hot spots, the principles underlying binding hot spots are not
yet clearly elaborated. In particular, the prediction performance is still low, even
when almost of all available sequence, structural and molecular-contact infor-
mation and features are used, as reviewed in Sects. 6.2 and 6.3. Meanwhile, there
are conflicting observations for some features in terms of whether a feature can
help uncover the puzzles behind binding hot spots. These problems were also
discussed in (b) of Sect. 5.2.
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5.7 Conclusion

Specific protein–protein interactions play a vital and fundamental role in molec-
ular functions and biological processes. It has been attracting intensive investi-
gations. However, protein interactions have high structural and functional
diversity, and the existing investigations are still far away from the discovery of
the principles governing protein–protein binding. In protein complexes, binding
hot spots contribute to the binding free energy remarkably. This survey provides a
comprehensive overview of protein binding interfaces and especially binding hot

Table 5.1 Summary of main previous works in dissection of binding hot spots

Objective Previous works Findings and properties

(Clackson and Wells 1995) The pioneering works of binding hot
spots

Characteristic of
hot spots

(Bogan and Thorn 1998) The O-ring theory
(Zengjian et al. 2000; Ma et al.

2003)
High correlation of structurally

conserved residues and the
experimental enrichment

(Halperin et al. 2004) Hot spots tend to couple binding
interfaces

(Keskin et al. 2005) Hot regions of binding hot spots
Estimating DDG Robetta (Kortemme and Baker

2002)
Decomposing DDG into several terms

such as hydrogen bonds, Coulomb
electrostatics, Lennard-Jones
potential

FoldX (Guerois et al. 2002;
Schymkowitz et al. 2005)

CC/PBSA (Benedix et al. 2009)
Identify hot spots PP_SITE (Gao et al. 2004)

MINERVA (Cho et al. 2009) Quantifying different levels of protein,
information, including structure,
sequence and molecular
interactions

KFC (Steven et al. 2008; Steven
2007)

Using simple rules

Hotsprint (Guney et al. 2008)
HotPoint (Tuncbag et al. 2009)
HSPred (Lise et al. 2009, 2011) Machine-learning approaches
APIS (Xia et al. 2010)
PCRPi (Salam et al. 2010)
GCR (Li and Li 2010) Graph-based approaches
(Del 2005)
(Tuncbag 2010)
(Grosdidier and Recio 2008) Based on tertiary structures
ISIS (Ofran and Rost 2007) Based on primary structures

Database of hot
spots

ASEdb (Thorn and Bogan 2001) Each mutation has a quantitative DDG
BID (Fischer et al. 2003) Each mutation has a qualitative

measure: ‘Strong’, ‘Intermediate’,
‘Weak’ or ‘Insignificant’
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spots besides an elementary description of proteins and protein interactions’
fundamentals. The survey lists the advancement areas for the dissection studies on
protein binding, and also particularly demonstrates the difficulties in the research
problems of computational modeling of protein binding interfaces and in the
prediction of binding hot spots. These problems can be future directions to
uncovering the mystery of protein–protein interactions.
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Chapter 6
Systems Biology Studies of Gene Network
and Cell Signaling Pathway in Cancer
Research

Junbai Wang, Ben Davidson and Tianhai Tian

Abstract This chapter intends to review the most recent development in com-
putational investigation of regulatory networks. It covers both top-down systems
biology approaches (i.e. data mining methods for analyzing large amount of omics
datasets) and bottom-up systems biology methods (i.e. mathematical modeling
using differential equations or chemical reaction systems) for reconstructing
cancer-related biological networks in general. Particularly, two case studies are
provided to illustrate the usage of these approaches for developing genetic regu-
latory networks and cell signaling pathways using microarray and proteomics
datasets, respectively. A future outlook of this research field is also discussed.

Keywords Cancer �Microarray � Proteomics �Genetic regulatory networks � Cell
signalling pathways

6.1 Introduction

Microarray technology revolutionized many biomedical research fields.
In particular, the advancement of DNA microarray technologies has enabled
researchers to measure a large number of gene expression activities simultaneously.
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The genome-wide expression measurements provide opportunities to investigate
global gene regulations under various external conditions. Thus, many researchers
are attracted by a problem of reverse engineering of gene regulatory networks from
microarray expression data. It has inspired development of many computational
algorithms to address the network issue (Wang 2008; de Jong 2002). However,
there are limitations in reconstructing gene regulatory networks by using micro-
array gene expression data only. For real biological networks, it needs to consider
diverse information (i.e. gene expression at the mRNA level, the protein level, and
the metabolite level) to accurately describe the gene regulatory system. For this
reason, many computational approaches have been designed to incorporate multiple
molecular biology information into a uniform framework for inferring gene regu-
latory networks (Wang 2007; Bar-Joseph et al. 2003).

In the post-genomic era, proteomics is considered as the next crucial step to
study biological systems because it allows large-scale determination of genetic and
cellular functions at the protein level (Aebersold and Mann 2003; Hummon et al.
2006). The proteome is the entire complement of proteins, including the post-
translational modifications (PTMs) that are made to a particular set of proteins.
The purpose of proteomics research is to determine the relative or absolute amount
of a biological sample. In recent years, the advanced proteomic technologies have
provided powerful methods for analyzing protein samples, emerging as a potent
tool for rapidly identifying proteins from complex biological samples, and for
characterizing protein post-translational modifications and protein–protein inter-
actions (Cox and Mann 2011; Cravatt et al. 2007). An important application of
MS-based proteomics is to study cell signaling cascades that involve the binding of
extracellular signaling molecules to cell-surface receptors triggering events inside
the cell (Choudhary and Mann 2010). In this process, phosphorylation, a key
reversible PTM, plays a key role in regulating protein function and localization in
cell signaling networks. Phosphoproteomics is a branch of proteomics that iden-
tifies and characterizes proteins containing a phosphate group as a PTM
(Choudhary and Mann 2010). In recent years phosphoproteome studies have
provided a global and integrative description of cellular signaling networks
(Gilchrist et al. 2006; Olsen et al. 2006). However, the complex nature of the cell
signaling pathways remains to be completely understood as to how they are
exactly regulated in vivo and what are the important parameters that determine
their dynamics (Heinrich et al. 2002). To improve our understanding of signaling
pathways, mathematical modeling allows us to make testable predictions and
validate biological hypotheses regarding the signal transduction mechanisms
regulating various cellular functions (Bourret 2008). The advances in proteomics
technologies offer an unprecedented opportunity to understand how living
organisms execute necessary functions at systems levels. From a systems biology
perspective, the highly accurate temporal dynamic data generated by phospho-
protemics are valuable resources to infer unknown model parameters and to
accurately model complex cell signaling networks.

Both gene network and signaling pathways have been investigated many years
by various methods. The present work aims to divide the methods into two big
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categories, ‘‘top-down approach’’ and ‘‘bottom-up method’’. Then the evolution of
each category will be described carefully and case studies of typical methods will
be provided. Top-down approach is defined as methods that apply advanced
mathematical models to mine or explore massive experimental datasets, in order to
acquire meaningful biological networks (i.e. gene–gene or protein-gene interac-
tions) from measured evidence. It often obtains a large network. Bottom-up
method usually tries to describe a small-scale gene or signaling network by
detailed mathematical modeling, which may reproduce or predict known or
unknown biological interaction (i.e. gene–gene association) based on experimental
evidence. Both approaches are important in the bioinformatics research, especially
in human cancer research which needs constant development in order to meet the
challenge of diagnosis or prognosis. This chapter first gives a brief review on
various types of methods in systems biology, and then uses two case studies to
demonstrate the application of these methods in developing genetic regulatory
networks and cell signaling pathways.

6.2 Top–Down Approaches

For biological network studies, Boolean network (Liang et al. 1998) was very
popular at the initial stage of the field because of its simplicity. Then a pioneer
paper published in 2000 set up a long-standing method—Bayesian Networks—for
gene regulatory network studies (Friedman et al. 2000). In addition, at microarray
related fields, Bayesian Networks is frequently used to infer gene–gene interac-
tions or to predict signaling pathways based on gene expression profiles (Wang
2008; Pe’er 2005). Nevertheless, in the category of top-down approach, there are
mainly four types of methods (i.e. probabilistic graphical models, regression
methods, information theory, and network topology) that are often used or refined
by researchers to explore the biological networks. Due to the limit of space, other
methods that are not included in the above-mentioned four categories will only be
briefly mentioned in this work.

6.2.1 Probabilistic Graphical Models

Probabilistic graphical models are widely used in bioinformatics field, though there
are many variations: for example, Bayesian networks (BN), Gaussian Graphical
models (GGM), Hidden Markov model (HMM), and Factor Graph (FG). Among
them, GGM may be the simplest method that can be used to infer gene networks by
gene expression profiles. It is suited for analyzing continuous data that summarize
pair-wise interactions in a correlation matrix, which is also known as covariance
selection model. For analyzing discrete data such as classified binary gene expres-
sion profiles (i.e. low or high), Graphical Log-linear models (GLM) is an option.
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If the measurements contain both continuous and discrete data then Mixed Graphical
models (MGM) is a good choice to explore the interactions. More detailed
description of GGM, GLM and MGM algorithms, as well as their real applications
in biological networks are available in papers (Wang 2007, 2011; Wang et al. 2003a,
2005).

However, there are several limitations in GGM types of probabilistic graphical
models. For example, GGM is not able to identify non-linear interactions, not able
to infer dynamical gene regulations and cannot integrate multiple data sources to
predict gene–gene interaction. Especially, the model requires that the number of
conditions should be far greater than the number of genes if researchers want to
obtain an accurate biological network. For that reason, Bayesian Networks is the
first choice for many researchers to infer gene–gene interactions because of the
flexibility of the algorithm that can be modified to fit different demanding (Penfold
and Wild 2011). Additionally, recent publications had shown good results in
inferring gene–gene interaction by Bayesian network integration of multiple
sources (Yu et al. 2008). Many variations of Bayesian networks are also widely
used in gene regulation: for example, Factor graph was applied on cancer genomic
data (Vaske et al. 2010) to infer patient-specific pathway activities, HMM was
used to identify human epigenetic regulation patterns in breast cancer (Bonneville
and Jin 2013), and Dynamic Bayesian networks were used to model peptide
fragmentation from tandem mass spectrometry (Klammer et al. 2008). All in all,
probabilistic graphical models are an active research field that not only keeps
developing new algorithms, but also extends its application to a wide area.

6.2.2 Regression Method

Application of regression methods in gene network studies has not been noticed
before a publication (Rogers and Girolami 2005) of using Bayesian regression
method to predict gene regulatory networks from microarray gene expression
profiles. The method does not need a threshold value to select possible interactions
as required by many probabilistic graphical models including Bayesian networks.
In addition, it is suited to study large gene–gene interactions when compared to
massive computational resources that are needed for Bayesian networks. Inter-
estingly, one published high-profile paper (Pujana et al. 2007) had applied the
regression type of methods to omic data (i.e. combined gene expression profiling
with functional genomic and proteomic data from various species) to infer large
gene networks in human breast cancer. Since then, further studies have been
carried out to develop new regression type of methods and apply them to various
biological networks: for example, regression with mixed effects for identifying
anti-HIV therapies according to genomic and clinical factors (Rosen-Zvi et al.
2008), and several novel regression algorithms designed to estimate time-varying
interactions between genes (Song et al. 2009; Ahmed and Xing 2009) or associ-
ation analysis of quantitative trait network (Kim et al. 2009). More recently, new
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regression methods for interaction studies have been developed: for instance, spare
multitask regression for detecting common mechanism of response to therapeutic
targets (Zhang and Gray 2010), identifying gene regulatory networks by incor-
porating diverse information in cancer (Li et al. 2012), estimating gene–gene
interactions from biological lineages in an application to breast cancer data (Parikh
et al. 2011). The regression type of methods for biological network study is an
attractive research topic, which motivates the development of novel algorithms to
tackle various problems related to inference of associations. Gene network study
may be benefited from the computational efficiency of regression methods in data
mining or exploring large biological datasets.

6.2.3 Information Theory

Information theory is another widely used method for inferring gene–gene inter-
action. It is able to predict both linear and non-linear associations. One of the well-
known algorithms that based on information theory is ARACNE (Margolin et al.
2006), which identifies gene–gene interaction by estimating pair-wise gene
expression profile mutual information. This method was successfully applied to a
number of lymphoma-related cancer studies such as reverse engineering of gene
networks in human B cells (Basso et al. 2005) and identifying BCL6 target genes
that control multiple pathways in normal germinal center B cells (Basso et al.
2010). Recently, several new algorithms based on mutual information were
developed to reconstructing dynamic gene regulatory networks (Wang et al.
2013a). This suggests that the prediction of gene–gene interactions based on
information theory is worthy for further development.

6.2.4 Network Topology

Network topology study includes network structure, network robustness and network
motifs etc. It is an important way to interpret biological networks, especially for large
gene–gene interaction networks. For example, after applying a top-town approach to
a set of biological data such as microarray gene expression profiles, gene–gene
interaction networks can be reconstructed from either time-series measurements or
condition-specific experiments. Usually, the predicted networks are large and may
contain hundred or even several thousands of genes. Thus, how to interpret such
massive networks becomes a challenging task. Many interesting network structure
studies have been published by Barabasi AA, one of the essential ones is human
disease network, where bipartite network was constructed to identify disease-asso-
ciated genes (Goh et al. 2007). Other works that use network topology to investigate
biological networks include protein interaction networks (Evlampiev and Isambert
2008), network robustness in gene regulatory networks (Ciliberti et al. 2007),
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and dynamical structure of the human protein interaction networks that predicts
breast cancer outcome (Taylor et al. 2009). Network topology was also used to
correlate molecular signaling pathway with cancer patient survivability (Breitkreutz
et al. 2012), and new network topology algorithm was developed to distinguish direct
target in gene expression regulatory networks (Feizi et al. 2013). More detailed
description of application of network motifs in gene interaction studies, and how to
interpret biological networks with the help of visualization and analysis patterns can
be found in Merico et al. (2009). In summary, network topology is a very useful tool
to interpret and visualize the biological networks.

6.2.5 Other Methods

Other computational approaches that can be used to study biological networks
include linear programming (Wang et al. 2007), combinatorial association logic
networks (de Ridder et al. 2010), dependence Trees (Costa et al. 2008), structural
equation models (Cai et al. 2013), the ReliefF algorithm (Wu et al. 2013), and
Tensor computation (Li et al. 2011). However, the significance of those new
methods in gene network studies remains unclear, and more time and further
research is needed to verify them (Rockman 2008).

6.3 Bottom–Up Approaches

The bottom-up systems biology is aimed at investigating the functional property of
small subsystems of biological networks based on the high level of mechanistic
details in the molecular levels. It starts from the bottom of biological systems, namely
molecular molecules, by formulating the interactive behavior of each component of a
manageable part of the system. Simulations of the model make testable predictions of
the system dynamics that will be validated by further experimental studies. As
research and understanding progresses, the developed models will typically be
enlarged by the inclusion of more molecular components and/or processes at a higher
level of mechanistic details. Based on the experimental studies that determine the
biological properties of components and regulations between these components, the
bottom-up approaches will select an appropriate mathematical model, infer unknown
parameters of the model based on experimental data and simulate the dynamics of
each component under various experimental conditions and perturbations (Schlitt
and Brazma 2007; Bruggeman and Westerhoff 2007).

6.3.1 Boolean Network Model

Boolean networks are based on the assumption that the state of a component at any
particular time point is binary (0/1), and thus the state of the network with
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N components is defined as a vector of N-elements of 0s and 1s. A Boolean
network model provides the rules of the on/off switches functioning of all com-
ponents simultaneously in a series of discrete time steps. Due to its simplicity, the
Boolean network has the capacity to deal with large network with a large number
of molecular components (Paul et al. 2006). To realize the potential difference
between the states in different cells, randomly generated networks are used to
study the dynamics of complex systems (Paul et al. 2006). Stochastic extensions to
the deterministic Boolean networks were proposed: they are the so-called noisy
networks or Probabilistic Boolean Networks (Shmulevich et al. 2002). Further-
more, a generalized model was proposed by the introduction of the notion of gene
state and image, the latter representing the substance produced by the respective
gene (Thomas et al. 1995). A time delay was included in the simulation between
the change of the state of the gene and that of the image. Another major extension
of the Boolean network is the finite state model, in which the state of a component
is more than two (Mao and Resat 2004). This approach locates somewhere
between the Boolean network and continuous dynamic model, depending on the
number of potential states of a component. It combines the advantages of Boolean
networks such as simplicity and low computational cost, and the advantages of
continuous models, such as more presentations of concentrations and time.

6.3.2 Deterministic Differential Equations

Although the Boolean networks can be used to study large-scale regulatory net-
works, the assumption of binary states is too simple to study network with complex
dynamics. To describe biological systems in detail, differential equations models
are widely used to study genetic regulatory networks, cell signaling pathways and
metabolic networks. In the differential equations, each item represents the syn-
thesis, degradation, trans-location or form trans-formation (binding, activation) of
a molecular species. When the differential equations reach a steady state, namely
the differentiation of each equation is zero, the system will be reduced substan-
tially, which has been used to study the metabolic networks. The differential
equation model can be developed by detailed chemical reactions directly, or by
using more sophisticated functions such as the Michaelis-Menten or Hill function
to design reduced models (Endy and Brent 2001). In addition, other modeling
techniques, such as time delay and memory, have been used to reduce the com-
plexity of models (Monk 2003).

For genetic regulatory networks, it is widely accepted that the stochastic models
should be used because certain species (such as DNA and mRNA) may have small
copy numbers (it will be discussed in the next subsection). However, the ODE
systems have been widely used to model cell signaling pathways and metabolic
systems because of the large number of protein kinases (Janes and Lauffenburger
2013). In addition, multi-scale models have been developed for systems that have
species of both small molecular copy number and very large copy number as well
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(Tian et al. 2007). Although it has been recognized that the spatial effects inside the
cell are important for cellular processes (Kholodenko et al. 2010), it is difficult to
use partial differential equations (PDE) to study cellular processes at the current
stage because of the huge computing time and lack of information for protein
spatial distribution. So far only a limited research work used PDE to model cell
signaling pathway (Kholodenko 2003), or alternatively the component model has
been proposed to model the spatial effects in a practical way (Schoeberl et al. 2002).

The cost of the detailed dynamic modeling is the requirement of rate constants
and initial molecular concentrations. Due to the sparse of experimental data, the
inference of unknown model parameters is still a challenging issue in systems
biology. A common approach is to collect quantitative information from literature
that may be obtained from different cell types and based on different experimental
conditions. The advances in high-throughout technologies have generated huge
amount of data that may make it possible to infer parameters based on datasets
obtained in a single experimental condition, though the analysis of the omics
datasets is still a challenge in bioinformatics.

6.3.3 Discrete Stochastic Models

Since the pioneered research work on stochastic modeling of the regulatory net-
work of k-phage (Arkin et al. 1998), there have been an increasing number of
studies in the last decade investigating the origins of noise in biological networks
and its crucial role in determining the key properties of biological networks (Kaern
et al. 2005). It has been proposed that noise in the form of random fluctuations
arises in biological networks in one of two ways: internal (intrinsic) noise or
external (extrinsic) noise (Elowitz et al. 2002; Ozbudak et al. 2004). Empirical
discoveries have stimulated explosive research interests in developing stochastic
models for a wide range of biological systems, including gene regulatory net-
works, cell signaling pathways, and metabolic pathways (Raj and van Oudena-
arden 2008; Wilkinson 2009; Tian et al. 2007; Kar et al. 2009).

For cellular processes associated with small numbers of certain key molecules,
the standard chemical framework described by systems of ODEs breaks down. The
stochastic simulation algorithm (SSA) represents a discrete modeling approach
and an essentially exact procedure for numerically simulating the time evolution of
a well-stirred reaction system (Gillespie 1977). Since the SSA can be very com-
putationally inefficient, Gillespie (2001) proposed the t-leap methods in order to
improve the efficiency of the SSA while maintaining acceptable losses in accuracy.
We have proposed the binomial tau-leap method to avoid the possible negative
numbers generated in the Poisson tau-leap method (Tian and Burrage 2004). These
effective simulation methods in return provided innovative methodologies for
designing stochastic models of biological systems (Tian and Burrage 2006).

To deal with the intrinsic noise in reactions with time delay, the delay stochastic
simulation algorithm (DSSA) was designed by introducing time delay into the
SSA (Barrio et al. 2006). Unlike the SSA, the DSSA characterizes chemical
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systems that contain both fast and slow reactions. The DSSA was also extended to
describe chemical events that have multiple delays or stochastic delay that follows
a given probabilistic distribution. In recent years, the DSSA has been widely used
to model and simulate the dynamics of genetic regulatory networks and cell sig-
nalling pathways (Marquez-Lago et al. 2010). In addition, a number of effective
simulation methods have been proposed to reduce the huge computing load of the
DSSA (Leier et al. 2008). Other modelling techniques proposed recently include
the slow-scale linear noise approximation and stochastic quasi-steady-state
assumption. Most recently a new modelling approach has been proposed to sim-
ulate chemical reaction systems with memory reactions (Tian 2013).

6.3.4 Continuous Stochastic Models

The widely used continuous stochastic models are stochastic differential equations
(SDE). There are two major approaches to introduce noise into deterministic
models. The first one is the Langevin approach that studies the intrinsic noise of
the system due to species of small copy numbers (Gillespie 2000). This method
can be regarded as using a Gaussian random variable to approximate the Poisson
random variable in the Poisson tau-leap method. Another approach is to use the
Wiener process to represent external noise representing environmental fluctuations
(Hasty et al. 2000). Both the additive noise and multiplicative noise have been
used to describe the effect if random perturbations to the basal production rate and
noise source that alters the transcription rate, respectively. An interesting approach
is to use the multiplicative noise to represent intrinsic noise by using a threshold
value in the rate constant (Tian and Burrage 2004). In this way the effect of
intrinsic noise is significant when the copy number of a species is low. In addition,
stochastic models can be developed based on the information regarding the noise
in experimental data. When the noise in microarray gen e expression data is
represented by the Poisson noise and multiplicative noise, the SDE model also
includes both Poisson and Gaussian random variables as well (Tian 2010).

An important question in stochastic modeling is the development of a frame-
work that includes both intrinsic and external noise simultaneously. Lei used the
transcriptional system of a single gene to derive the analytic expression about the
interacting effects of external and internal noise (Lei 2009). A similar question is
how to distinguish effects of intrinsic noise and extrinsic noise in experimental
observations. To tackle the challenge, a number of theoretical studies have been
carried out to derive the analytical expressions of the mean and variance of system
dynamics via a simple mathematical model (Pedraza and Paulsson 2008).

6.3.5 Reverse-Engineering of Dynamic Models

Two major inference methods, namely the optimization methods and Bayesian
inference methods, are commonly used for estimating unknown models.
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Optimization methods start with an initial guess, and then search exhaustively
within the parameter space, aiming at minimizing an objective function (Chou
et al. 2006; Gonzalez et al. 2007). The objective function represents the fitness of
the model, and is usually defined as the error between the output of the model and
a set of experimental data (Lillacci and Khammash 2010). With these two basic
approaches of the gradient-based nonlinear optimization method and evolutionary
based method, many researches attempted to build various techniques such as
linear and nonlinear least-squares fitting, simulated annealing, genetic algorithms,
and evolutionary computation (Mendes and Kell 1998; Kirkpatrick et al. 1983;
Ashyraliyev et al. 2008). Although optimization methods have been successfully
applied for biological systems, there are still some limitations using these methods,
especially using the local optimization methods. To address these issues, the use of
several state-of-the-art deterministic and stochastic global optimization methods
has been explored (Moles et al. 2003).

The Bayesian inference methods is able to extract useful information from
noisy or uncertain data (Wilkinson 2007). Different from the optimization meth-
ods, the main advantage of these methods is their ability to infer the whole
probability distributions of the parameters, rather than just a point estimate. Also,
handling estimations for stochastic systems using these methods is more robust as
for deterministic systems (Toni et al. 2009). Meanwhile, computational time is the
main obstacle for this approach as analytical approaches are not feasible for non-
trivial problems and mostly numerical solutions are hard to achieve, as we need to
solve for high-dimensional integration problems. Nonetheless, some developments
have taken place during the last 20 years and the most recent advancements in
Bayesian computation include the Markov chain Monte Carlo (MCMC) tech-
niques, ensemble methods, and sequential Monte Carlo (SMC) methods that do not
require likelihoods (Wang 2011; Penfold and Wild 2011; Sisson et al. 2007;
Battogtokh et al. 2002). All these techniques have been successfully applied to
biological systems.

6.4 Case Study of Top–Down Approaches

To illustrate the application of top-town approaches in investigating gene regu-
latory networks in cancer research, a case study by microarray gene expression
profiles in ovarian cancer is provided. The aim of this study is to identify genes
that are strongly associated with patient overall survival time. Here a total of 60
microarray experiments (60 ovarian cancer patients) were performed under
Affymetrix chip (HG-U133_plus_2, *54,675 probes per array) at Pathology of
Department, Oslo University Hospital. Preprocessing and normalization of raw
Affymetrix measurements were carried out by R package (Bioconductor). Probes
with weak quality (e.g. probes have more than 80 % absent calls), and low vari-
ations across the experiments (e.g. ratios of probe maximum intensity to the probe
minimum intensity is lesser than 2) were removed. After the pre-processing of
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microarray data, 28,091 probes were obtained for further data analysis where the
probe intensity values were log2 transformed and converted to Z-scores.

First, differentially expressed genes within a predefined clinical group (e.g.
good overall survival C36 months vs. poor overall survival \36 months) were
identified by using pair-wise Fisher’s linear discriminant (Wang et al. 2003b). The
top 1 % (*280 genes) of the most differentially expressed genes was selected for
further study. These putative differential expressed genes were clustered in ten
groups since similar gene expression pattern may represent similar gene function
in a regulatory network (Wang 2007; Wang et al. 2002). Clustering results are
available at (http://folk.uio.no/junbaiw/ben/top1_overall_clusters/overall.html).

Then, the centers of ten gene expression clusters and the corresponding two
categories of overall survival for 60 samples (i.e. good vs. poor survival) were
combined together. The data matrix contains both continues and discrete data,
which is suited for mixed graphical model (Wang 2007) to infer associations
between gene expression clusters and the overall survival. The predicted gene-
survival network (P value \ 0.01) is displayed by Cytoscape in Fig. 6.1, where
only gene clusters 3 and 4 are directly correlated to patient overall survival. In
addition, both clusters 3 and 4 are interacting with cluster 5. Subsequently, a
detailed gene functional study of clusters 3, 4 and 5 were carried out by DAVID
tool. The results please refer to Table 6.1, in which tissue expression enrichment
test indicates that genes of cluster 3 are associated with normal breast tissue from a
breast cancer patient, vascular hemangioma and invasive ductal carcinoma; cluster
4 only linked to normal tissues such as brain and white blood cells; but cluster 5 is
correlated with several cancers (i.e. breast cancer, vascular high grade comedo
DCIS endothelium, and ovary serous adenocarcinoma). In KEGG pathway anal-
ysis, only cluster 5 is associated with some disease-related pathways such as
autoimmune thyroid disease. A GO study of the clusters reveals that genes of
cluster 5 are strongly linked to immune response and positive regulation of
response to stimulus. Thus, cluster 5 may be the most important gene group that
affects the overall survival rate of ovarian cancer patients according to the network
study of integrated gene expression profiles and patient overall survival.

From the above case study, it shows that gene–gene interaction networks can be
correlated to diverse information such as patient overall survival or even protein
binding motifs and 3-D chromosomal structures (Wang 2007; Morigen 2009;
Wang et al. 2013b) if a proper top-down network inference approach is used. Such
integrated analysis of gene regulatory networks will help researchers tremendously
to understand and to explore the complex human genome regulation.

6.5 Case Study of Bottom–Up Methods

The mitogen-activated protein (MAP) kinase cascade communicates signal from
the growth factor receptors on the cell surface to effector molecules located in the
cytoplasm and nucleus. This pathway comprises a set of three protein kinases,
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namely Raf, MEK and ERK, with a highly conserved molecular architecture that
acts sequentially (Thomas and Huganir 2004). Activated MAP kinase phosphor-
ylates multiple substrates, including transcription factors, protein kinases, phos-
pholipases and cytoskeletal proteins, as well as regulates a wide range of
physiological responses, such as cell proliferation, differentiation, apoptosis, and
tissue development. Over the last decade, the MAP kinase pathway has been used
repeatedly as a testable paradigm for pioneering computational systems biology.
By focusing on Ras-dependent activation of the MAP kinase module, Huang and
Ferrell developed the first mathematical model that predicted highly ultra-sensitive
responses of the MAP kinase cascade, which were then confirmed by experi-
mentation (Huang and Ferrell 1996). The success of this work stimulated a great
deal of interest in designing kinetic models that provided testable predictions
and novel insights into signaling events (Tian et al. 2007; Schoeberl et al. 2002;
Bhalla et al. 2002; Chen et al. 2009).

Using the MAP kinase pathway as the test system, we designed a novel com-
putational framework for developing mathematical models of cell signaling
pathway based on the available proteomic data (Tian and Song 2012). The pro-
posed mathematical model for the system in Fig. 6.2 includes 33 differential

Fig. 6.1 Predicted gene-patient survival network by applying mixed graphical models on
integrated gene expression clusters and patient overall survival
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equations representing the dynamics of 33 variables in the system. The number of
the unknown rate constants in the proposed model is 57. We first used the genetic
algorithm to infer the model kinetic rates based on the proteomic dataset (Olsen
et al. 2006). Since Ras activity was not available in this dataset, we used the Ras
activity monitored in vivo by FRET imaging as the signal input of the MAP kinase
module (Fujioka et al. 2006). Since the kinase activities in the proteomic dataset
were available at most five time points, we used the linear interpolation to generate
kinase activities at other 16 time points during the time interval [0, 20] (min). To
be consistent with the normalized kinase activities in the proteomic dataset (Olsen
et al. 2006), the simulated activity of each kinase was also normalized by its
activity at 5 min. The parameter set that produced smaller simulation error with

Fig. 6.2 Schematic representation of the MAK kinase pathway (Tian and Song 2012). This
pathway comprises a cytosolic subsystem and a nuclear subsystem. In cytosolic Ras-GTP, the
signal input activates Raf molecules in a single step. This activation is followed by activation of
MEK kinase by activated Raf* in a single-step processive module. The activated MEKpp in turn
activates ERK in a two-step distributive module. Both the activated and un-activated MEK and
ERK kinases diffuse between the cytosol and nucleus freely. In the nucleus, the activated MEKpp
further activates ERK kinase via the distributive module. In addition, phosphatases, termed as
Raf-P’ase, MEK-P’ase and ERK-P’ase, deactivate the activated Raf*, MEKpp and ERKpp
kinases, respectively, at different subcellular locations
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respect to the proteomics data was selected as the estimated model rate constants.
Because of the local maximal issue of the genetic algorithm, we implemented the
genetic algorithm with different random seeds that led to different estimates of the
model kinetic rates. We obtained 20 sets of estimated rate constants and selected
the top 10 estimates with smaller simulation errors to the proteomic data for
further analysis.

We then used the robustness property of the model as an additional criterion to
select the optimal rate constants. We first used the estimated kinetic rates without
any perturbation to produce a simulation that was used as the standard kinase
activity. Then for each set of model rate constants, we perturbed the value of each
parameter by using the generated random numbers. New simulations were
obtained by using the perturbed rate constants, and we compared the new simu-
lations with the standard simulation. The system with a particular set of rate
constants is more stable if the difference between the new simulations and standard
simulation is smaller. For each set of estimated rate constants, we generated
10,000 sets of perturbed rate constants by using the uniformly distributed random
variable. The kinase activities at different subcellular locations together with the
total activities of each kinase were collected at 20 min and we calculated the mean
and variance of each kinase activity. Based on Kitano’s definition of robustness
(Kitano 2007), we proposed to use the average behavior, which is the sum of all
the means of each kinase activity, and the nominal behavior, which is the sum of
all the variances of each kinase activity, as the measure of the robustness property
(Tian and Song 2012).

Figure 6.3 shows simulation results of the MAP kinase pathway using the
model that has both small estimation error and good robustness property. To
compare with the proteomic data, simulations were also normalized by the sim-
ulated kinase activity at 5 min. Simulations showed that the simulated kinase
activities matched the Raf* activities in the cytosol (Fig. 6.3b) and ERKpp
activities in both the cytosol and nucleus (Fig. 6.3f) quite well. In fact, the pro-
teomic data of the normalized ERK activity in the cytosol are very close to those in
the nucleus (Fig. 6.3f). However, there is a large difference between the simulated
MEK activities and proteomic data in Fig. 6.3c. Note that there is a significant
difference between the MEK kinase proteomic data in the cytosol and nucleus. The
simulated MEK activities in the nucleus match the proteomic data very well.

To demonstrate the feasibility of our modeling approach, we compared our
simulated kinase activities in Fig. 6.3 with the kinase activities measured in vivo by
Western blotting that were taken from Fig. 7 in Fujioka et al. (2006). It shows that
our computer simulation matched the Raf activity (Fig. 6.3b) and ERK activity
(Fig. 6.3d) very well. However, the measured MEK activity in Fig. 6.3c is different
from the proteomic data, and interestingly, the simulated MEK activity locates in the
middle of the proteomic data and Western blotting data. Note that the simulated
MEK activity is smaller, rather than being larger than the proteomic data, when time
increases. The reason may be that, in order to match the ERK kinase activity that
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decreases significantly from 10 to 20 min, MEK kinase activity should be smaller
and smaller in this time period. This observation suggests that in the cell signaling
cascade, the downstream signal activity may be used to calibrate the measurement
errors of the upstream signals that are present in the proteomic datasets.

6.6 Conclusion

Top-down and bottom-up methods for reverse engineering biological networks are
complementary to each other. The former one allows researcher to explore or
mining massive genomic high-throughput experiment datasets, to recover very
large network or interaction then to discover hypothesis for further more detailed
research investigation. However, the recovered networks may not reflect the
dynamical activity of realistic biological systems. This weakness may be tackled

Fig. 6.3 Simulations of the normalized kinase activities (Tian and Song 2012). a Normalized
Ras activity as the signal input from Fujioka et al. (2006). b Raf activity. c Total MEK activity.
d Total ERK activity [blue-line simulation, green-line normalized Western blotting data (Fujioka
et al. 2006), red-line proteomic data (Olsen et al. 2006)]. e MEK activity. f ERK activity at
different locations (blue-line simulation in the cytosol, red-line proteomic data in the cytosol,
green-line simulation in the nucleus, black-line proteomic data in the nucleus)
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by a bottom-up approach that is able to design a detailed mathematical model to
describe dynamical activity of a realistic biological system, though the method
only suits for a small scaled network. In the future, the connection between the two
types of approaches needs to be strengthened. Novel algorithms that combine both
approaches are needed in order to understand large-scale gene regulatory network
and cell signaling pathway in human cancer research.
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Chapter 7
A Network Systems Approach to Identify
Functional Epigenetic Drivers in Cancer

Andrew E. Teschendorff and Martin Widschwendter

Abstract Aberrant epigenetic regulation is a key cancer hallmark. Epigenetic
changes observed in pre-neoplastic lesions and cancer also provides a promising
avenue for the discovery of novel biomarkers for early detection, diagnosis and
prognosis, as well as offering novel therapeutic opportunities. However, the bio-
logical interpretation and functional significance of the epigenetic changes in
cancer is still unclear. This chapter describes an emerging computational systems
framework for elucidating the observed epigenetic deregulation in cancer and
other complex diseases. As we shall see, the novel graph-theoretical approach
presented here provides a powerful framework for the identification of epigenetic
biomarkers associated with common phenotypes. Moreover, it provides a conve-
nient platform in which to perform integrative multi-dimensional analysis,
allowing functional epigenetic modules driving disease to be identified. We
illustrate the computational method with applications to ageing and the early
detection of endometrial cancer. The methods and data presented here provide a
concrete example of systems-medicine: the application of a systems-approach to
identify a biomarker with great potential for clinical application.
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7.1 Introduction

7.1.1 General Background, Aims and Chapter Organisation

Complex genetic diseases like cancer represent an enormous economic and social
cost to modern society (Brawley 2011). This burden is set to double by 2030 in
response to a rapidly ageing population and emerging epidemics such as those
associated with obesity or alcohol intake (Brawley 2011). Thus, there is an urgent
need to identify novel biomarkers across every stage of disease progression, from
risk prediction and early detection, to diagnosis and prognosis, and finally to drug
response (Sawyers 2008). However, identifying such biomarkers is itself costly
and subject to numerous challenges (Sawyers 2008). One key challenge is of a
statistical and computational nature: identifying robust biomarkers from very large
and complex data sets is notoriously hard, because data is often noisy, incomplete
and the number of biological samples is low relative to the number of molecular
features being measured. Furthermore, the functional and biological significance
of the candidate biomarkers in the context of the given disease is often unclear.
Thus, there is an urgent to develop novel statistical and computational methods
that can tame the underlying complexity of cancer genomic data, allowing more
robust and biologically significant biomarkers to be identified. To achieve this, we
advocate a systems-level approach that can identify more robust and biologically
meaningful biomarkers.

In this chapter we present a relatively novel systems approach for identifying
epigenetic biomarkers associated with a phenotype of interest. We show how this
systems approach can be naturally extended to integrate multi-dimensional
genomic data (e.g. gene expression, copy number and DNA methylation),
allowing, for instance, functional epigenetic driver modules to be identified. We
illustrate the method by identifying robust network biomarkers associated with
ageing and endometrial cancer. Our main aim with this chapter is to demonstrate
how a systems approach can identify a robust biomarker with potential clinical
application, as we do in the context of early detection of endometrial cancer.

Briefly, we have organized this chapter as follows. In Sect. 7.1.2 we provide a
brief overview of epigenomics in ageing and cancer, justifying why we focus on
the epigenome in our search for cancer biomarkers. We follow this with a brief
description and justification for adopting a systems-network perspective for the
identification of biomarkers. In Sect. 7.2 we provide the rationale for using a
systems-network approach to analyze epigenomic, and in particular, DNA meth-
ylation data. In Sect. 7.3 we describe the systems method in detail and illustrate, as
proof of principle, its application to identify differential methylation interactome
hotspots associated with ageing. In Sect. 7.4 we describe the extension of the
algorithm to include gene expression data, and apply it to endometrial cancer to
identify a functional epigenetic driver of this cancer. We discuss the biological and
clinical significance of this finding. The final section Sect. 7.5 presents our
conclusions.
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7.1.2 Epigenomics Links Ageing, Stem Cell Biology
and Cancer

Although epigenetic changes have traditionally not featured as a cancer hallmark
(Hanahan and Weinberg 2011), its importance in cancer has risen prominently
over the last few years (Baylin and Ohm 2006; Feinberg et al. 2006; Feinberg and
Vogelstein 1983; Irizarry et al. 2009; Jones and Baylin 2007), emerging as one of
the novel key cancer hallmarks (Hanahan 2012). Indeed, not only can epigenetic
aberrations, such as epigenetic silencing of tumour suppressor genes, represent
driver events (Vogelstein et al. 2013), but many of the recently discovered cancer
driver mutations affect genes encoding epigenetic enzymes (Shen and Laird 2013).
Thus, modulation of the epigenome may play an important mediating, if not
causal, role in carcinogenesis (Shen and Laird 2013).

One of the most important epigenetic aberrations seen in cancer involves
changes in DNA methylation (DNAm). DNAm is a covalent modification of DNA,
of regulatory potential, targeting cytosines in a CpG context (Deaton and Bird
2011), although cytosine methylation in a non-CpG context has also been observed
(Lister et al. 2009). By comparing the DNA methylomes of cancer and normal
cells, two key features of the cancer methylome landscape have emerged: (1) high-
CpG dense promoters are often hypermethylated in cancer, and (2) these meth-
ylated islands are often immersed in relatively large blocks (*1–3 Mb) charac-
terised by a global hypomethylation (Berman et al. 2011; Hansen et al. 2011; Wen
et al. 2012). Thus, while promoters located within CpG islands are normally
unmethylated, they often become methylated in cancer, a mark which is generally
associated with gene silencing (Deaton and Bird 2011; Feinberg et al. 2006). On
the other hand, most of the genome, which is depleted of CpGs and is normally
methylated, incurs widespread methylation loss in cancer, potentially resulting in
overexpression of oncogenes and genomic instability (Berman et al. 2011; Hansen
et al. 2011; Wen et al. 2012). A number of further observations have been made
which support the view that DNA methylation changes may play a key role in
carcinogenesis. First, is the observation that cancer differentially methylated
regions (cDMRs) overlap significantly with tissue-specific DMRs (Irizarry et al.
2009). This is an important observation since it is consistent with the fact that
cancer cells represent a highly undifferentiated state. Second, a number of studies
have shown that promoter hypermethylation in cancer preferentially targets genes
with key roles in stem cell biology (Ohm et al. 2007; Schlesinger et al. 2007;
Widschwendter et al. 2007), notably genes carrying the bivalent activation
(H3K4me3) and repression (H3K27me3) marks in human embryonic stem cells
(hESCs) (Bernstein et al. 2006). These genes overlap strongly with those marked
by the PolyComb Repressive Complex (PRC2) (PolyComb Group Targets—
PCGTs) in hESCs (Lee et al. 2006), many of which encode transcription factors
which are necessary for the differentiation of stem cells. Thus, in hESCs these
genes are kept at a low, basal level of expression, poised for immediate activation
if the cell receives a cue to differentiate. The finding that these genes may become
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irreversibly silenced in cancer through promoter DNA methylation has been
invoked as a possible mechanism supporting an epigenetic progenitor origin of
cancer, since silencing of key differentiation genes could ‘‘lock’’ stem or pro-
genitor cells in a state of permanent self-renewal, thus suppressing differentiation
and promoting a state where further mutations (genetic or epigenetic) can accu-
mulate (Baylin and Ohm 2006; Feinberg et al. 2006; Widschwendter et al. 2007).

Further support for an epigenetic progenitor origin of cancer has come from
studies that have analysed DNA methylation changes in pre-neoplastic cells
(Teschendorff et al. 2010, 2012), normal cells exposed to risk factors (Issa 2011;
Teschendorff et al. 2012), as well as in relation to ageing (Maegawa et al. 2010;
Rakyan et al. 2010; Teschendorff et al. 2010), the major risk factor for most cancers
(Fraga et al. 2007; Fraga and Esteller 2007). What these studies have demonstrated is
that the epigenetic changes one often observes in cancer, are already seen to accu-
mulate with age in normal tissue (Issa 2011; Teschendorff et al. 2010), and that they
are also present in cytologically normal cells predisposed to future morphological
transformation (Teschendorff et al. 2012). Moreover, age-associated changes in
DNAm also overlap significantly with those DNAm changes associated with cancer
risk factors, independently of age. For instance, this is the case for smoking (Selamat
et al. 2012), inflammation (Issa et al. 2001, 2011; Suzuki et al. 2009), obesity (Xu
et al. 2013) and viral infections (Lechner et al. 2013; Teschendorff et al. 2012). Thus,
the epigenome, and the DNA methylome in particular, is a plastic entity, capable of
recording the exposure of cells to environmental risk factors. It follows that epi-
genetic marks offer the potential to provide biomarkers for early detection or risk
prediction, and indeed, a number of studies have provided preliminary evidence that
this may be possible in epithelial (Teschendorff et al. 2012) as well as non-epithelial
tissue (Brennan et al. 2012; Xu et al. 2013).

In addition to early detection and risk prediction, epigenetic biomarkers also offer
great promise in diagnosis (deVos et al. 2009; Gruetzmann et al. 2008; Lofton-Day
et al. 2008), prognosis (Heyn and Esteller 2012; Zhuang et al. 2012) and prediction
(Amatu et al. 2013; Cancer Genome Atlas Research Network 2008; Heyn and
Esteller 2012). For instance, DNAm of SEPT9 measured from serum DNA has been
proposed as a diagnostic marker for colorectal cancer (Gruetzmann et al. 2008). The
prognostic potential of DNA methylation changes was demonstrated in Zhuang et al.
(2012). Specifically, there it was shown that whereas hypermethylation of PCGTs
was an early event in carcinogenesis, that hypomethylation of specific CpG sites that
are normally found methylated in hESCs (termed ‘‘MESCs’’-Methylated in hESCs)
carried prognostic significance. Indeed, Zhuang et al. (2012) derived a hypome-
thylation signature which was prognostic across four different gynaecological
cancers and which was further aggravated in metastatic lesions.

7.1.3 Network Biomarkers

Identification of epigenetic biomarkers from large-scale omic studies is subject to
the same difficulties one is faced with in the gene expression context, including the
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presence of numerous false positives, potentially small effect sizes and signal-
to-noise ratios, unwanted variation caused by known or unknown confounding
factors, and ultimately, also the interpretation of the selected biomarkers.

To address these difficulties, Chuang et al. (2007) proposed integrating gene
expression data with a protein–protein interaction (PPI) network and to perform
statistical inferences on the integrated network. See Chen et al. (2013) for a recent
review of methods integrating gene expression with PPI networks. In Chuang et al.
(2007), the authors assigned statistics of differential expression to connected
subnetworks, and devised a greedy search algorithm to identify interactome hot-
spots of differential expression. Similar algorithms were also developed by other
authors [see e.g. (Beisser et al. 2010; Dittrich et al. 2008; Ulitsky et al. 2010;
Ulitsky and Shamir 2007)]. In principle, the integration of gene expression data
with a PPI network offers significant advantages over methods that don’t use a PPI.
First, since the PPI links genes at a functional level, identifying PPI hotspots of
differential expression offers an improved framework for biological interpretation.
Thus, specific deregulated mechanisms or pathways can be readily identified.
Second, while individual differential gene expression changes may be small, their
coordinated changes within a closely connected PPI module or pathway may be
highly significant when considered at the level of the whole module or pathway.
Consequently, differential expression hotspots are less likely to be false positives.
Third, since there is no reason to expect that confounding factors (e.g. chip/batch
effects) would target specific PPI modules or pathways, performing the inference
at the systems-level should therefore be more robust to such confounders. Indeed,
the PPI can be viewed as providing a scaffold on which it is then possible to filter
out or deconvolve the effects of technical artefacts and noise.

Although it could be argued that the integration of gene expression data with a
PPI network is based on the premise that genes whose coding proteins interact, are
more likely to be correlated at the level of gene expression, this assumption is not
really needed. It is certainly the case, as demonstrated by many studies that
neighbors in the PPI do indeed show, on average, much stronger gene expression
correlations across samples than non-neighbors (Bhardwaj and Lu 2005, 2009;
Taylor et al. 2009; West et al. 2012). Thus, gene expression changes related to a
phenotype of interest will also likely be more correlated locally between neighbors
in the PPI than for non-neighbors. However, it could also be the case that two
neighboring genes in the PPI, which are both overexpressed in a given phenotype,
may be overexpressed due to a different subset of samples, hence their correlation
could be weak. Indeed, this is what happens in the case of genomic aberrations,
which have been shown to target the same pathways in all individuals, but where
the specific aberrations within the pathway often differ between individuals. Thus,
there is a key distinction to be made between integrating molecular profiles with
the PPI compared to integrating the statistics of differential change with the same
PPI. The latter approach does not in principle require molecular profiles to be
correlated, and can also lead to the identification of differential expression hot-
spots. In fact, this latter approach can be seen as a form of Functional Supervised
Analysis (FSA), in which univariate statistics of differential expression are used in
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the context of the PPI, to identify connected subnetworks where an overall statistic
is maximised. While many of the interactions in the PPI may bear no relevance to
the biological context of the study, it can still provide a powerful means of
identifying functional modules. In this regard, we should recall that a popular non-
network based alternative, Gene Set Enrichment Analysis (GSEA) (Subramanian
et al. 2005), is based on assessing the enrichment of a univariately ranked list of
differentially expressed genes (DEGs) against an independent database of bio-
logical terms and pathways [e.g. the Molecular Signatures Database (Subramanian
et al. 2005)], most of which may also be completely unrelated to the biological
context of the study.

The considerations above lead to two distinct notions of interactome ‘‘modu-
larity’’: one type of modularity is at the level of correlations of the molecular
profiles and would correspond to an interactome (i.e. a PPI) where the correlations
of neighbors is significantly larger than for non-neighbors. This type of modu-
larity, refered to as ‘‘correlation modularity’’, may be unrelated to changes asso-
ciated with a phenotype, since correlations would reflect common variations across
samples within the same phenotype. The second type of interactome modularity is
associated with a phenotype of interest, and describes an interactome that contains
hotspots of association, i.e. connected subnetworks where a significant number of
members have profiles that are significantly associated with the phenotype of
interest. We now turn to investigate these different notions of modularity in the
context of epigenomic data, specifically DNA methylation.

7.2 A Systems Approach to Epigenomics

7.2.1 The Human Interactome Exhibits DNA Methylation
Correlation Modularity

That the human interactome exhibits correlation modularity at the level of gene
expression has been observed in many studies (Bhardwaj and Lu 2005, 2009;
Taylor et al. 2009; West et al. 2012), and is a reflection of the fact that neighboring
genes in the PPI are often part of the same physical complex or molecular path-
way, thus requiring that they be co-expressed under the same conditions. It is
therefore natural to ask if such correlation modularity is also present at the level of
DNA methylation. Intuitively, since DNAm is one of the marks influencing gene
expression levels, one would expect that DNAm levels would also exhibit some
level of correlation modularity. As demonstrated by West et al. (2013), using
Illumina Infinium 27 k data (Bibikova and Fan 2010; Bibikova et al. 2009) and
using as representative CpG the one closest to the transcription start site of genes,
DNAm exhibits a relatively strong level of correlation modularity, of a magnitude
similar to that seen in gene expression. In Fig. 7.1a, we reproduce this result for an
Illumina 27 k data set consisting of 24 liquid based cytology normal cervical
smear samples (Teschendorff and Widschwendter 2012).
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It is well known that in the normal physiological state, CpG methylation levels
are largely determined by the surrounding CpG density (Deaton and Bird 2011).
Thus, it is of interest to consider if the correlation distributions are dependent on
CpG density. Remarkably, for the same data set, we observe that correlations in
DNAm are generally positive for CpGs located within CpG islands (CGI), whilst
the correlations are symmetricly distributed around 0 for CpGs in non CpG dense
regions (Fig. 7.1b). Moreover, when adjusted for CpG density, the marked dif-
ference between local and non-local correlations disappears (Fig. 7.1b). Thus, the
stronger local correlations observed in Fig. 7.1a are driven by underlying differ-
ences in CpG density patterns. Indeed, Fig. 7.1c demonstrates that gene promoters

Fig. 7.1 a Density distribution of Pearson correlation coefficients (PCC) for DNA methylation
profiles of genes that interact in the human interactome (Local) versus genes that have not been
reported to interact (Non-local). PCCs were estimated by taking the CpG closest to the
transcription start site (from Illumina 27 k data) and computed across 24 cytologically normal
liquid-based cytology samples. b As (a), but now restricting independently to edges where both
gene promoters are of high CpG density (blue and skyblue curves), or where both gene promoters
are of low CpG density (magenta and orange curves). c Density distributions of the absolute
differences in fractional GC content (fGC, upper panel) and observed to expected CpG density
ratio O/E(CpG) for local and non-local edges in the PPI
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of interacting proteins are more likely to share a similar CpG density than gene
promoters of non-neighbors. This is particularly true for the ratio of observed to
expected CpG density (Fig. 7.1c). We can conclude therefore that the DNA
methylation correlation modularity exhibited by the human interactome can be
attributed mostly to sequence specific features of the gene promoters of interacting
proteins, and is thus a property that is hardwired in the structure of the interactome.

7.3 Differential Methylation Interactome Hotspots

7.3.1 General Considerations

Next, we turn to the question of whether DNA methylation exhibits interactome
modularity in relation to a specific phenotype of interest. In other words, do
differential methylation changes associated with a phenotype occur randomly in
the context of the human interactome, or do they target specific gene modules or
pathways?

As before, we first need to assign a DNA methylation profile to every gene in
the interactome. In the case of Illumina Infinium 27 k data, where on average there
are 2 CpGs per gene (located within the gene promoters), we pick the CpG closest
to the transcription start site (TSS), since this one is more likely to be of functional
significance. In the case of Illumina 450 k data, one may consider taking an
average over probes within 200 bp of the TSS. In this way, every gene in the
human interactome and represented in the DNAm assay can be assigned a statistic
of differential methylation assessing its strength of association with a phenotype of
interest. Which statistical test is used depends on the nature of the phenotype
considered, but crucially, every gene must be subjected to the same statistical test.

Next, we describe how to infer modules, defined as connected subnetworks for
which an abnormally high proportion of their constituent members are signifi-
cantly associated with the phenotype of interest. In doing so, it is key to compare
to an appropriate null distribution. As we shall see, our strategy will be to use two
different null distributions, one to assess the statistical significance of the modu-
larity score relative to the network as a whole. This test thus takes the topology of
the network into account and is part of the inference algorithm itself. The second
hypothesis test evaluates the significance of the modularity scores for the same
network but with the DNA methylation profiles randomly reassigned in the in-
teractome, thus allowing the significance of the inferred modules to be assessed
solely in relation to the DNA methylation profiles. This second test thus ensures
that the inferred modules are not biased by the underlying network topology.
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7.3.2 Module Detection Using a Spin-Glass Algorithm

To detect the modules, we phrase the problem as that of identifying subnetworks
of high edge weight density, where the weights are a direct function of the sta-
tistics of differential methylation (West et al. 2013). To clarify this, let ti denote the
statistic of differential methylation of gene i and suppose genes i and j are
neighbors. We then define the weight wij between them as

wij ¼
tij j þ tj

�� ��
2 tj jmax

ð7:1Þ

where |.| denotes the absolute value and |t|max denotes the maximum value over all
genes (nodes) in the network. This normalisation ensures that the weights are
positive and bounded between 0 and 1. Other possible definitions of the weights
are possible, for instance, taking the absolute value of the average of the two
statistics, which would then favour modules where neighbors show the same
directional changes in DNAm. We also note that wij = 0 if genes i and j do not
interact at the protein level.

The purpose of encoding the differential methylation statistics into the edge
weights (and not as node attributes) is done mainly out of mathematical conve-
nience, since a number of module detection algorithms are best formulated in
terms of edge densities. One such algorithm is a spin-glass (SPG) module detection
method presented in (Reichardt and Bornholdt 2006), and which was extensively
applied and validated in (West et al. 2013). Briefly, the spin-glass algorithm for-
mulates the problem of community/module detection as that of finding the ground
state of an infinite ranged spin glass Potts model (Reichardt and Bornholdt 2006).
Specifically, modules are found via a Hamiltonian

HðfrgÞ ¼ �
X
i6¼j

ðwij � pijÞðri; rjÞ ð7:2Þ

where ri denotes the module that node i belongs to, wij is the weighted adjacency
matrix of the network, and where pij describes the probability of an edge between
nodes i and j according to some appropriate null model. In the above expression,
d (ri, rj) is the Kronecker delta and c[ 0 is a tunable parameter of the algorithm.
It can be shown that this Hamiltonian rewards internal edges (i.e. those within an
inferred subnetwork, or equivalently within the same spin state) as well as non-
edges between inferred subnetworks, while also penalizing internal non-edges, and
edges between different subnetworks (Reichardt and Bornholdt 2006). The choice
of parameter c controls the relative energy contributions of edges and non-edges
occuring both internally and externally of the inferred subnetworks (Reichardt and
Bornholdt 2006).

The spin-glass algorithm has a number of key attractive features. First, there is
only one main tunable parameter c (0 \ c\ 1), and crucially, this parameter
controls the size of the inferred modules. As we shall see later, module size is of
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key importance since very large modules will exhibit large overlaps and thus
exhibit redundancy, while very small modules will be harder to interpret biolog-
ically and are more likely to represent false positives. Thus, there is an optimal
module size range, which from independent biological considerations is on the
order of 10–200 genes (West et al. 2013). The tuning of the parameter c is
described in detail in West et al. (2013). Importantly, the optimal values of this
parameter (normally in the range c * 0.5–0.6) are fairly insensitive to the data
and phenotypes considered (West et al. 2013). A second nice feature of the spin-
glass algorithm is that it admits a greedy search implementation (Reichardt and
Bornholdt 2006), allowing modules to be identified which are proximal to certain
genes of interest (which we shall term ‘‘seeds’’). A greedy approach is specially
attractive because it offers the needed scalability and computational efficiency
(Newman 2006). Although inferred modules may not be stable, this can always be
tested a posteriori using validation/test data sets. The seeds themselves are typi-
cally chosen from a top ranked list of features associated with the phenotype of
interest (West et al. 2013). For each seed we thus obtain a module minimising the
Hamiltonian using a simulated annealing procedure as implemented in the spin-
glass.community function of the igraph R package. We note however that the
existence of a module associated with a given seed is not automatic since growing
a module from a given seed may not result in reductions of the Hamiltonian, as for
instance in the case of genes that represent isolated nodes of association. In typical
applications one finds that approximately 50 % of seeds are not associated with
any module (West et al. 2013). This is an important point, because, as shown in
West et al. (2013), seeds that do not generate modules are less likely to validate in
independent data sets and are thus more likely to represent false positives.

It is important to note that the modules inferred using the SPG algorithm
describe interactome hotspots of differential methylation, where the hotspot nature
is assessed relative to the network as a whole. Hence, this takes the topological
edge density of the network into account and the inference of modules could be
overly biased to the more highly connected and clustered subnetworks. Thus, the
significance of the inferred modularities must also be assessed in a manner which
does not depend on the topology of the inferred modules. This assessment is
achieved using a Monte-Carlo randomisation approach in which the inferred
modules are kept fixed, but where the DNAm profiles are randomised across the
network. Performing a large number of Monte-Carlo runs ([1000) thus allows a
null distribution of modularity values to be derived for each module independently.
Thus, a significance P value can be assigned to each module (West et al. 2013).

7.3.3 The Importance of Module Size

The importance of module size for the detection of significant differential meth-
ylation hotspots is illustrated in Table 7.1. This table shows, for four different
Illumina 27 k DNA methylation data sets, how the average module size affects its
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significance P-value, as assessed using Monte-Carlo randomisations of the DNAm
profiles over the network (see Sect. 7.3.2). To provide the spin-glass (SPG)
algorithm with a benchmark, we compare its performance to that of two other
module detection algorithms: an agglomerative fast greedy (FG) non-local algo-
rithm (Clauset et al. 2004) and a non-greedy non-local spectral decomposition
(SD) algorithm (Newman 2006). These other algorithms attempt to maximise a
modularity score similar to that of the spin-glass algorithm (Reichardt and
Bornholdt 2006), but differ substantially in the inference procedure, allowing us to
assess both the impact of ‘‘greediness’’ and locality.

We can see, across all four data sets, that the SPG algorithm identifies a sub-
stantially higher fraction of modules which are statistically significant under the
Monte-Carlo randomisation scheme (Table 7.1). This is also reflected by a higher
average modularity of the inferred modules (Table 7.1). Moreover, we can see
how the improved statistical significance can be attributed to the SPG algorithm
inferring on average smaller sized modules. As explained further in West et al., the
optimal size of biological modules should be on the order of 50–200 genes, and the
SPG algorithm tuned with a c * 0.5–0.6 generally infers modules in this desired
size range.

Table 7.1 For four different data sets (LBC1, LBC2, CVX and EC), we show the number of
inferred modules (nMod) among the top 100 seeds, their average size (AvSize), the fraction of
these that are significant under the Monte-Carlo randomisation scheme (f(P \ 0.05)) and the
average modularity (AvMod) of these significant modules

nMod AvSize f(P \ 0.05) AvMod

LBC1
SPG 21 208 0.52 1.58
SD 32 211 0.25 1.27
FG 14 502 0.36 1.18
LBC2
SPG 23 108 0.22 1.57
SD 29 262 0.1 1.43
FG 13 593 0.08 1.44
CVX
SPG 24 44 0.5 3.51
SD 56 129 0.09 2.2
FG 17 434 0.29 2.6
EC
SPG 30 99 0.63 3.06
SD 24 301 0.33 1.81
FG 9 809 0.11 1.57

Table is reproduced from West et al. (2013). Data sets are described in detail in West et al.
(2013). Briefly, LBC1 and LBC2 are two DNAm data sets of liquid based cytology cervical
smear samples containing both normal and neoplasia specimens. CVX is a cervical normal/cancer
data set. EC is an endometrial normal/cancer data set. In all cases, the modules represent hotspots
of differential methylation between normal and cancer phenotypes
Bold values indicates the maximum value attained by any of the three methods
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7.3.4 Differential Methylation Hotspots Associated
with Ageing

To illustrate and validate the algorithm we consider the case of ageing. Although
widespread DNAm changes associated with ageing have been reported [see e.g.
(Maegawa et al. 2010; Rakyan et al. 2010; Teschendorff et al. 2010)], it is
unknown whether specific molecular pathways are targeted. To address this
question, West et al. used the spin-glass module detection algorithm described in
Sect. 7.3.3 and applied it to a large Illumina 27 k dataset [abbreviated UKOPS,
(Teschendorff et al. 2009)] of whole blood samples from 261 postmenopausal
women (age range 50–80 years) to identify age-associated differential methylation
hotspots (West et al. 2013). As shown in West et al., a number of hotspots were
identified which validated across multiple data sets including different normal
tissue types. Three of the most consistent hotspots are illustrated in Fig. 7.2a, two
of which (the SOX8 and FZD2/WNT hotspots) were found to target stem-cell
differentiation pathways. Importantly, the relevance of the WNT signalling path-
way in ageing has been documented before (Brack et al. 2007; Brack and Rando
2007; Maiese et al. 2008). Thus, the observation that many members of this
pathway are epigenetically deregulated could underpin its increased functional
activity with age, suppressing differentiation and promoting self-renewal (Brack
et al. 2007; Brack and Rando 2007; Maiese et al. 2008), which in turn could lead to
cancer predisposition (Baylin and Ohm 2006).

To further demonstrate the robustness of these hotspots, we considered an
additional whole blood data set (Hannum et al. 2013) where the samples were
profiled using the more comprehensive Illumina 450 k arrays (Sandoval et al.
2011). We used the same CpGs as those in the original UKOPS 27 k set, except for
those not represented on the 450 k array, in which case we picked the 450 k probe
closest to the TSS. The modularity of the three hotspots was calculated and com-
pared to that expected under random permutation of the statistics over the network.
Remarkably, for all three modules, the observed modularities were significantly
higher than those expected by random chance, thus validating their hotspot nature
(Fig. 7.2b). Moreover, the consistency of the directional changes in DNAm across
the two cohorts was good (Fig. 7.2c). Thus, these data demonstrate that the algo-
rithm provides a powerful means of performing a functional supervised analysis,
and that differential methylation hotspots associated with ageing exist.

7.4 Functional Epigenetic Driver Modules

The statistical framework presented to identify interactome hotspots associated
with a phenotype of interest can be extended to include multi-dimensional data. In
the context of cancer genomics, such multi-dimensional data are being routinely
generated as part of international consortia [e.g. The Cancer Genome Atlas-TCGA
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(Cancer Genome Atlas Research Network 2008)]. In the cancer epigenomics
context it may thus be of interest to identify hotspots of differential methylation,
but where simultaneously there are also coordinated changes in gene expression.
Such hotspots may therefore represent candidate functional epigenetic driver
modules. In extending the algorithm to include gene expression data, a number of
possibilities exist, depending on whether the expression data is from the same
tumour samples (i.e. a matched setting as is the case for many TCGA samples) or
from an independent but otherwise equivalent cohort of samples (i.e. unmatched
setting). Since most data in the public domain is for the unmatched setting, we
henceforth consider the more general scenario where the gene expression data is
from an independent set of samples, although importantly, we assume that the
independent cohort consists of cancer samples that are comparable in terms of
histology and type.

Fig. 7.2 a Three hotspots of age-associated differential methylation with seed genes SOX8,
GRIA2 and FZD2 as inferred from the UKOPS whole blood data set (Teschendorff et al. 2009)
and which were shown to be tissue independent (West et al. 2013). b Validation of their hotspot
nature in an independent whole blood data set (Hannum et al. 2013) generated with Illumina
450 k arrays. c Consistency of the directional changes in DNAm with age between the two
cohorts
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7.4.1 The Functional Epigenetic Module Algorithm

The basic concept of the Functional Epigenetic Module (FEM) algorithm is
illustrated in Fig. 7.3. In the case where DNAm and mRNA expression data are
available, we can attribute two statistics to each node (gene) i in the network. One

of these statistics, t Dð Þ
i , describes the association of the gene’s DNAm profile with

the phenotype of interest, while the other, t Rð Þ
i , describes the corresponding asso-

ciation at the gene expression level. Since the DNAm profile is that of the CpG
closest to the TSS, it is sensible to assume that hypermethylation at this site is
associated with gene suppression. Although the expected anti-correlation between
DNAm at the TSS and downstream gene expression is generally not strong, it
remains of high statistical significance [see e.g. (Lechner et al. 2013)], and hence
this constitutes a sensible way forward. We should point out however, that the
algorithm can be easily generalised so as to avoid making this assumption. Thus,
focusing on genes where there is the expected anticorrelation between DNAm and
mRNA expression, an overall statistic of association can be built by taking the

absolute difference of the two statistics, i.e. t Dð Þ
i � t Rð Þ

i

��� ���. If one desires to find

modules where hypermethylation leads to gene silencing, one can construct the
edge weights in the network as follows (see Fig. 7.3):

wij ¼
1
2

H tðDÞi

� �
H �tðRÞi

� �
tðDÞi � tðRÞi

��� ���þ H tðDÞj

� �
H �tðRÞj

� �
tðDÞj � tðRÞj

��� ���� �
ð7:3Þ

where H(x) is the Heaviside function defined by H(x) = 1 if x [ 0 and H(x) = 0 if
x \ 0. Thus, in the above equation, edge weights would be zero if both genes show
overexpression and/or hypomethylation. Alternatively, if one desires to find
modules of hypomethylation with concomitant overexpression, then the weight
definition above would need to be modified by switching the signs within the
Heaviside functions.

With the weights defined as above, modules of significant hypermethylation
and concomitant underexpression are then identified using the same spin-glass
algorithm as described in the previous sections.

7.4.2 Application to Endometrial Cancer: The HAND2
Module

To illustrate the power of the FEM algorithm, we consider the application to
identify epigenetic driver modules in endometrial cancer.

Given that endometrial carcinoma risk is largely determined by non-hereditary
factors (Lichtenstein et al. 2000; Schouten et al. 2004), including age, obesity and
reproductive factors, it constitutes an ideal system in which to search for epige-
netic mechanisms underlying cancer initiation and progression. While estrogen
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drives cell proliferation, progesterone inhibits proliferation of the endometrium
and causes cell differentiation. Thus, conditions which are associated with a
functional dominance of estrogen over progesterone (obesity, polycystic ovary
syndrome, nulliparity, long-term exposure to unopposed estrogens) are associated
with an increased risk for endometrial cancer (Amant et al. 2005). Although it is
well established that the tumor-protective and anti-proliferative effect of proges-
terone on the endometrial epithelium (Yang et al. 2011) is mediated via proges-
terone receptor (PR) activity in the endometrial stroma and not directly via the
epithelial PR (Kurita et al. 1998), very little is known about early molecular
changes which contribute to the development of this disease. Thus, we applied the
FEM algorithm to an Illumina 27 k DNAm data set consisting of 64 endometroid
endometrial cancers and 23 normal endometrial samples from cancer-free women
(Jones et al. 2013), and an unmatched Affymetrix (Human Genome 133 Plus 2.0)
gene expression data set consisting of 79 endometrioid endometrial cancers and 12

Fig. 7.3 Illustration of the FEM algorithm: nodes of the same PPI network are assigned two
different statistics according to their association of DNAm (D) and mRNA expression (R) with a
phenotype of interest (e.g. cancer). Blue denotes hypermethylated genes, yellow hypomethylated.
Red denotes overexpression, green underexpression. Since the DNAm profiles are for CpGs
closest to the TSS, one seeks modules where there is significant hypermethylation and
corresponding underexpression or vice versa, modules of significant hypomethylation and
corresponding overexpression. To find these modules, an integrated weighted network can be
constructed with the weights constructed using the formula as shown, where H denotes the
Heaviside function. The formula shows the case where one seeks modules of hypermethylation
and concomitant underexpression. Modules are inferred using the same spin-glass algoritm used
earlier
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normal samples from the atrophic endometrium [GSE17025, (Day et al. 2011)].
Statistics of differential methylation and differential expression were derived using
a common moderated t-statistic framework (Smyth 2004). The distribution of
differential expression t-statistics was then scaled to ensure that the statistics of
differential methylation and differential expression had similar variance. This was
done to ensure that one data type would not overly bias the inference of modules.
One hundred seeds were then selected as those with the highest ranked combined
t-statistic

ti ¼ H tðDÞi

� �
H �tðRÞi

� �
tðDÞi � tðRÞi

��� ��� ð7:4Þ

where due to the design of the Illumina 27 k array (overrepresented for promoter
CpGs), we focused solely on seeds which were significantly hypermethylated and
underexpressed in endometrial cancer. Application of FEMto the integrated data
set led to the identification of a small number of FEMs, the most significant of
which are shown in Table 7.2.

Of the 3 significant FEMs, the HAND2 module is of special interest. First,
HAND2 itself emerges as a top ranked gene, significantly hypermethylated and
underexpressed in endometrial cancer (Fig. 7.4a, b), a result which has been
further validated in independent samples [see (Jones et al. 2013)]. Moreover, as
shown in Jones et al. (2013), hypermethylation of HAND2’s promoter is observed
already in atypical hyper-plasias, a pre-cancerous lesion. Thus, HAND2 methyl-
ation is an early event. Hence this epigenetic mark offers the potential to provide a
non-invasive test for the early detection of endometrial cancer. This was assessed
in (Jones et al. 2013) by means of DNA collected from vaginal swabs from women
with endometrial cancer, resulting in an AUC of over 0.9, thus providing a test of
high sensitivity and specificity (Jones et al. 2013).

Besides the clinical significance of HAND2, there is also mounting evidence for
its biological significance in endometrial carcinogenesis. First, HAND2 is a basic
helix-loop-helix transcription factor and developmental regulator, as well as a stem
cell PCGT (Lee et al. 2006; Srivastava et al. 1997). Thus, the observed hyper-
methylation in pre-cancerous lesions fits in with the hypotheses formulated earlier
that epigenetic aberrations of PCGTs represent early oncogenic events. Second,
HAND2 is expressed in the normal endometrial stroma, with its key physiological
function to suppress the production of fibroblast growth factors (FGF) that mediate

Table 7.2 The top three functional epigenetic modules identified in endometrial cancer

CpG(Seed) EntrezID Symbol Size Mod P Members

cg02622316 9753 ZNF96 20 1.42 0.01 ZNF96 OGT RBAK RREB1 PARP12
cg01580681 9464 HAND2 30 1.69 0.003 HAND2 HEY2 PHOX2A GATA4
cg05902852 9863 MAGI2 16 2.65 0.002 MAGI2 PTEN DLL1 CTNND2 TGFA

We list the CpG ID of the seed gene used, the corresponding Entrez gene ID and gene symbol,
the size of resulting FEMmodule, its overall modularity (average weight density), its significance
P-value (as estimated from 1000 Monte-Carlo runs), and some of the genes in the FEM
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the paracrine mitogenic effects of estrogen on the endometrial epithelium
(Fig. 7.4c) (Li et al. 2011). Finally, HAND2 is regulated by progesterone and is
integral for the progesterone-mediated suppression of estrogen-induced pathways
(Fig. 7.4c) (Bagchi et al. 2005; Dassen et al. 2007). Thus, it is plausible that
hypermethylation induced silencing of HAND2 prevents the suppression of FGFs
by PR, thus resulting in increased FGF mediated paracrine signaling between the
endometrial stromal and epithelial cells. This, in turn, could render the epithelial
cells hypersensitive to estrogen exposure through overexpression of the estrogen
receptor (Fig. 7.4c). In other words, HAND2 methylation could shut down the
tumour suppressive effect of PR, thus allowing overactivation of the oncogenic
estrogen pathway. Since HAND2 methylation is an early event in endometrial
carcinogenesis, the associated silencing could thus underpin an increased sus-
ceptibility and risk to endometrial cancer.

Fig. 7.4 a Heatmap of DNAm levels of the significantly associated members of the HAND2
functional epigenetic module. b The concomitant underexpression observed for HAND2
identifying it as the key driver gene. c Hypothesized role of HAND2 in mediating the tumour
suppressive effect of stromal progesterone receptor (PR) on the endometrial epithelial cells,
which, in atypical hyperplasias/endometrial cancer, becomes disrupted through DNA hyperme-
thylation of HAND2’s promoter leading to HAND2 silencing
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7.5 Conclusions

In this chapter we have advocated a systems-epigenomic approach for identifying
biomarkers associated with common phenotypes. We have provided a rationale for
integrating DNA methylation data with a human interactome network, and pre-
sented substantial evidence that such a systems approach can provide novel insights
in the epigenomic context. Indeed, using ageing as a proof of principle, we have
demonstrated the existence of differential methylation hotspots associated with age,
and which target key stem cell differentiation pathways (West et al. 2013). Thus, the
epigenetic deregulation of differentiation pathways could result in impaired dif-
ferentiation of stem and progenitor cells, in line with recent observations (Beerman
et al. 2010, 2013; Brack and Rando 2007).

Importantly, we also applied our systems-epigenomic approach to endometrial
cancer, a cancer strongly associated with environmental (non-genetic) risk factors,
in order to identify functional epigenetic drivers. Remarkably, our approach
revealed the existence of epigenetically deregulated functional hotspots, impli-
cating HAND2 as a key tumour suppressor in endometrial carcinogenesis. As we
have seen, its putative tumour-suppressive role in endometrial cancer is entirely
consistent with its role of mediating the tumour suppressive effects of PR on the
oncogenic estrogen receptor pathways. HAND2 methylation was shown to be an
early event and provided a test of high sensitivity and specificity for the detection
of early stage endometrial cancer (Jones et al. 2013). Thus, this chapter provides
an example of ‘‘systems-medicine’’, whereby application of a computational
systems method has enabled the identification and development of an early
detection tool for endometrial cancer. We envisage that the specific FEM algo-
rithmic framework presented here will be of interest to the disease epigenomics
community at large. The statistical framework used is flexible, and will allow
further and more complex integrative analysis of multi-dimensional cancer
genomic data.
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Chapter 8
Identification of Cancer MicroRNA
Biomarkers Based on miRNA–mRNA
Network

Wenyu Zhang and Bairong Shen

Abstract It has been previously reported that miRNA regulations were involved
in various biological processes. The deregulation activities of microRNA regula-
tors potentially contribute to the pathopoiesis of various kinds of human cancers,
and are candidate biomarkers for cancer diagnosis and prognosis. Until now,
enormous studies have been conducted to explore potential miRNA biomarkers for
different types of cancers. In this chapter, we will first provide a brief introduction
about miRNAs biogenesis and their involvement in cancer pathopoiesis, and then
reviewed the advances on current available miRNA profiling technologies. Then
concise text will be exploited to describe the traditional experiment-dominate
approaches for miRNA biomarker discovery. In the next part, intensive efforts are
made on the review and summarization of miRNA–mRNA network based com-
putational methods for the discovery of potential miRNA biomarkers. Afterwards,
collect and list exsiting online databases relating to cancer miRNA biomarker
discovery. Finally, we propose the perspective directions on this research area, and
conclude the main context in this chapter.
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8.1 Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs, approximately 22
nucleotides in length, which regulate gene expression at the post-transcriptional
level through translation inhibition or mRNA cleavage (Bartel 2004). Since the
discovery of the first miRNA (i.e., lin-4) in C.elegans (Lee et al. 1993; Wightman
et al. 1993), enormous studies have been conducted to explore latent miRNA
structures in a series of organisms, from viruses to advanced mammalians. Cur-
rently, within the most popular miRNA repository—miRBase (Release 20, June
2013) (Griffiths-Jones 2004), there have been 24,521 entries representing hairpin
precursor miRNAs, expressing 30,424 mature miRNA products, among 206 dis-
tinct species. It is reported that most miRNAs are independently encoded in
intergenic regions (Lee et al. 2004) or co-encoded within intron regions of other
‘‘host’’ protein-coding genes (Lin et al. 2008). Also, recent studies implicated the
transfer RNAs (tRNAs) might be another origin for miRNA biogenesis (Schopman
et al. 2010; Maute et al. 2013). The cardinal mechanism for the biological func-
tions of miRNAs is to bind the 3’UTR (un-translated region) of their target genes
through imperfect base pairing in animals (Reinhart et al. 2000), or perfect base
pairing in plants (Dugas and Bartel 2004). Generally, the miRNA binding to its
target genes will induce the mRNA degradation or protein translation inhibition,
albeit several studies have shown its effect on the stabilization of target transcripts
(Place et al. 2008).

Until now, there are more than 2,500 mature miRNAs identified in humans,
which have potential to approximately regulate 33 % of human protein-coding
genes (Lewis et al. 2005). It has been recently shown that miRNA regulations are
involved in a wide variety of cellular processes, from cell proliferation, differen-
tiation, development, to apoptosis (Ambros 2004; Bartel 2004). The alterations in
miRNA expression have been associated with the pathogenesis and procession of
various kinds of diseases, especially cancers (Jay et al. 2007). The abnormal
miRNAs are reported to be capable as classifiers to distinguish tumour samples
from Normal tissues (Raponi et al. 2009).

As implicated in the previous study (Bielekova and Martin 2004), some features
were required to be as a disease biomarker: biological rational, clinical relevance,
practicality and correlation with disease activity, etc. For miRNAs, they are
involved in various biological processes and clinical related to the disease path-
ogenesis, as discussed in the above context. Besides, other advantageous features
of miRNAs, such as manageable, durability and easily detected, make them more
potential to be cancer biomarkers (Guerau-de-Arellano et al. 2012). In fact,
enormous attempts have been made to explore candidate miRNA biomarkers in a
series of cancers, such as breast cancer (Heneghan et al. 2010; Ramshankar and
Krishnamurthy 2013), lung cancer (Gao et al. 2012), and gastric cancer (Li et al.
2012, 2013).
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8.2 Advances of miRNA Expression Profiling Methods

The most straightforward approach to explore candidate cancer miRNA bio-
markers should be the screening of abnormally expressed miRNAs between cancer
tissues and normal tissues, via contemporary miRNA expression profiling detec-
tion platforms. Generally, there are two main experimental categories for these
miRNA expression profiling techniques: high-throughput screening approaches
and low-throughput detection methods. The first category consists of nucleic acid
hybridization-based array technologies and cloning-sequencing based approaches,
which can be used for simultaneous detection of many miRNAs in an individual
experiment. The latter one includes small-scale detection methods, such as
Northern Blot, Real time quantitative PCR (RT-qPCR), and in situ hybridization
(ISH). The comparison information about these technologies is presented in
Table 8.1.

8.2.1 High-Throughput Screening Approaches

Currently, microarray (also called Gene chip) technology may be the most widely
used in the filed of transcript expression profiling detection. The implementation of
this method is based on the hybridization of slide-localized miRNA-specific

Table 8.1 Current available miRNA expression profiling approaches

Technical description Throughput Identification
of novel
miRNAs

Cost
(per
miRNA)

Microarray Hybridization of fluorescent dye-labeled
miRNAs on slide array with localized
probes

High No Low

Beadarray Flow cytometry detection of color beads
coated with probes that bound to
biotynilated miRNA sample

High No Low

Deep
sequencing

Sequencing and quantification of all the
miRNAs after the reverse
transcription and PCR amplification

High Yes Low

Northern blot Hybridization of labeled miRNAs on
slide with localized probes

Low No High

Taqman-based
assays

MicroRNAs are first reverse transcribed
to cDNA, and then amplified and
quantified

Low No High

ISH Localization and quantification of a
specific miRNA with a labeled probe
in a portion of tissue

Low No High

Note This table was collected and modified from Guerau-de-Arellano et al. (2012)
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probes (Babak et al. 2004). MiRNAs in the sample are first fluorescent dye-
labeled, and then hybridized on slide array with glass-printed probes. After eluting
unstable connections, the miRNA abundance is measured according its fluorescent
luminance. The main advantage of this approach is parallelized detection of
hundreds of miRNAs in an individual experiment.

Another large-scale miRNA expression profiling method is Beadarray tech-
nology. Unlike the classical microarray approach, it uses magnetic microspheres
tagged with unique DNA sequence to identify the bead. This bead can specifically
bind to a chimeric probe, which is utilized to recruit a specific miRNA into a
complex. The fluorescent labeling of the complex is implemented with the biotin
on the probe. Therefore, the abundance of miRNA expression can be quantified
according to the amount of fluorescence on the microspheres through flow
instruments.

The aforementioned array-based technologies can merely exploited for the
expression profiling of known miRNAs. Deep sequencing techniques are novel
miRNA profiling approaches that could detect the expression of all the miRNAs
expressed in the target sample, even for miRNAs that are never previously
reported. The detailed sequencing procedures may be diverse for different plat-
forms. Generally, the first step for all these techniques is the generation of a
miRNA library. During this process, miRNAs are ligated to 50 and 30 adaptors for
reverse transcription and PCR amplification to generate this library. After that, the
miRNAs in the library are further simultaneously sequenced and eventually
abundance quantified. Due to their higher specificity and accuracy, the deep
sequencing technologies are very promising to take over the dominating position
of microarray technique in the area of transcript expression profiling.

8.2.2 Low-Throughput Detection Methods

Even with low flux, low-throughput miRNA expression profiling methods are
considered to be more reliable than high-throughput techniques. This is a trade-off
problem. More specifically, northern blot method is declaimed as the ‘‘gold stan-
dard’’ for characterizing miRNA expression (Ahmed 2007), due to its high speci-
ficity. The method is more like a mini-version of microarray. The miRNA
abundance in the sample is determined by the hybridization signal from the binding
complex of query miRNA and pre-set probes. Except for its low throughput,
another defect of this method is low sensitivity for low-abundance samples.

Different from northern blot technique, RT-qPCR is a relative high sensitive
approach for miRNA expression characterization. The basic idea is to make
miRNA molecules amplifiable, through adding adapters to their fragment ends.
After that, the amount of miRNA in the sample is relatively quantified. The PCR
amplification process makes it accessible for low-abundance specimen measure-
ment. This technology can be used for quantification of both miRNA precursors
and mature miRNAs.
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Another small-scale miRNA profiling method is in situ hybridization, which
was invented by American cell biologist Joseph Grafton Gall in 1969 (Gall and
Pardue 1969). This technology can be used to measure and localize miRNAs
within tissue sections and cells.

With the recent progress in miRNA expression profiling detection technologies,
there have been growing intense interests in cancer miRNA biomarker discovery
studies, as documented by the numbers of related published literatures from NCBI
pubmed searching engine in the last 10 years (Fig. 8.1). In the following parts,
much more context will be spent on the descriptive review on these cancer miRNA
biomarker discovery studies.

Fig. 8.1 Number of publications related to cancer miRNA biomarker discovery studies during
the past decade. Bars represent the number of NCBI pubmed hits for query ‘‘(cancer[ti] OR
carcinoma[ti] OR tumor[ti]) AND (miRNA*[ti] OR microRNA*[ti])’’ (Pane a) and ‘‘(cancer[ti]
OR carcinoma[ti] OR tumor[ti]) AND (miRNA*[ti] OR microRNA*[ti]) AND (biomarker*[tiab]
OR marker*[tiab])’’ (Pane b). The numbers for year 2013 are enumerated until 18th July
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8.3 Traditional Approaches for Cancer miRNA
Biomarker Discovery

The general procedures of traditional approaches for novel cancer miRNA bio-
marker discovery can be divided into three steps: (a) detection of differentially
expressed miRNAs with high-throughput method (e.g., microarray) between cancer
samples and control groups; (b) low-throughput technology (e.g., RT-qPCR) val-
idation of outlier miRNAs detected above; (c) further confirmation of potential
miRNA biomarkers on large-scale of case and control specimen via low-throughput
experiments. The simplest bioinformatics tool for outlier miRNA identification in
the first step is fold-change filtering (usually 2-fold). Following, many well-
established statistical tools are employed for this issue, such as z-score, t-test, and
Mann–Whitney test. Nevertheless, all these approaches do not take the heteroge-
neity of cancer samples into account. MacDonald et al. proposed a novel bioin-
formatics tool to infer chromosomal translocations only existing in the subset of
disease samples (MacDonald and Ghosh 2006). Afterwards, this concept was
implemented to generate several other outlier gene detection algorithms (Tibshirani
and Hastie 2007; Wu 2007; Lian 2008). These available methods could be applied
for outlier miRNA screening from high-throughput experiments.

Now, let us exemplify the general routine of traditional approaches for cancer
miRNA biomarker discovery. Through the aforementioned procedures, the study
of (Li et al. 2012) revealed that miR-199a-3p in plasma as a potential diagnostic
biomarker for gastric cancer. Another research group conducted genome-wide
miRNA expression profiles detection followed with Real-Time quantitative RT-
PCR (qRT-PCR) assays on gastric cancer samples and normal samples, and dis-
covered three elevated expressed miRNA (miR-187(*), miR-371-5p and miR-378)
in gastric cancer. Further validation study showed that miR-378 alone could
produce 87.5 % sensitivity and 70.73 % specificity in discriminating gastric
cancer patients from healthy controls, thus this miRNA was a potential diagnosis
biomarker for gastric cancer.

8.4 The Reconstruction of miRNA-mRNA Network

As the expression profiling data from high-throughput technologies (e.g., micro-
array) is always of high false positive rate, integrative analysis on high-throughput
expression profiling data and miRNA-mRNA target network information may be a
plausible approach for novel cancer miRNA biomarker discovery (Xu et al. 2011).
The miRNA–mRNA network is more exactly a unidirectional graph, reflecting the
regulation relationships from miRNAs to their target genes, as presented in
Fig. 8.2. Due to the limit of current experimentally validated miRNA–mRNA
target pairs (Sethupathy et al. 2006; Xiao et al. 2009; Hsu et al. 2011), the main
resources for miRNA–mRNA network reconstruction are from computational
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prediction. Even with potential false positive or negative cases, many of the
predicted miRNA–mRNA interactions are confirmed to be credible (Arora and
Simpson 2008). Usually, the main resources for miRNA–mRNA network recon-
struction are the common miRNA–mRNA target pairs shared by the prediction
results from multiple computational approaches, such as PicTar (Krek et al. 2005),
miRanda (Enright et al. 2003), and TargetScan (Lewis et al. 2003, 2005). Besides,
the negative expression correlations between miRNAs and their putative targets,
computed from matched miRNA and mRNA expression profiles can also be
applied for the refinement of miRNA–mRNA network reconstruction (Tran et al.
2008; Zhang et al. 2013).

8.5 Computational Based Approaches for Individual
miRNA Biomarker Discovery

8.5.1 Based on Gene Expression Data and miRNA–mRNA
Network Information

As the general miRNA functions are to regulate the gene expression at mRNA
level, it is rational to infer miRNA deregulation from its target genes’ expression
level changes. Indeed, a number of studies have reported the reverse correlations
between expressions of miRNAs and their target genes (Krutzfeldt et al. 2005;
Wang and Wang 2006). Base on this theory, Cheng et al. proposed an algorithm to
infer microRNA activities by combining gene expression data with miRNA–
mRNA network information (Cheng and Li 2008). The basic idea of this algorithm
is to analyze the expression changes of target genes for miRNAs. The activity of a
miRNA will be inferred to elevated, if the expressions of its target genes tend to be
down-regulated, and vice versa. Applying this approach, the cancer miRNA
expression patterns can be deduced according to the gene expression profiles
between cancer and normal samples.

Similarly, another approach referred as Co-inertia analysis (CIA) was proposed
for this issue. CIA is a multivariate coupling approach, which was initially
introduced for ecological research (Doledec and Chessel 1994; Dray et al. 2003). It
was used to explore the correlation of two sets of variables from two linked data
tables. Stephen et al. (Madden et al. 2010) applied this method to detect miRNA

Fig. 8.2 Schematic graph of miRNA–mRNA target network
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activity in different biological conditions. In this case, the two linked tables were
gene microarray expression data, and a miRNA frequency table on the same set of
genes. The two linked tables were performed two simultaneous non-symmetric
correspondence analyses (NSCs), which reduced each data table in a low
dimensional space, by projecting each variable on to axes which best discriminate
the coordinates of the projected points. Then these two reduced tables were linked
to associate the miRNA activity with biological samples. This methodology can be
used to identify miRNA deregulation patterns that distinguish disease and normal
groups.

8.5.2 Based on miRNA and Gene Expression Profiles
and miRNA–mRNA Network Information

As the miRNA–mRNA target relationships are presented a simplified network
style, the topological features of this network may be helpful for the identification
of candidate cancer miRNA biomarkers. (Xu et al. 2011). introduced an approach
based on the miRNA-target dysregulated network (MTDN) to prioritize candidate
disease miRNAs, and applied this method to predict novel miRNA biomarkers in
prostate cancer. In this methodology, miRNA expression and mRNA expression
data, and miRNA–mRNA interaction data were combined to construct MTDN in
tumor and non-tumor conditions. Then a support vector machine (SVM) was
trained with considering the expression fold change and network topological
features of known prostate cancer miRNAs and non-prostate cancer miRNAs in
MTDN. Finally, the novel prostate cancer miRNA biomarkers were prioritized
with this SVM and in vitro experimentally validated in prostate cancer cell lines.
This study also showed the function synergism of miRNAs that were involved in
the specific disease or biological process.

In contrary to the functional cooperation, (Zhang et al. 2013). declaimed
another bizarre characteristic of cancer miRNAs—strong independent regulation
power, which denoted the number of exclusively regulated genes for an individual
miRNA. This research group also proposed a novel pipeline to infer candidate
cancer miRNA biomarkers. The negative correlations from paired miRNA and
mRNA expression profiles, along with computational prediction miRNA-mRNA
target pairs were combined to generate a reliable miRNA–mRNA network. This
network was further reduced to a sub-network, which only consisted of miRNA
nodes exhibiting deregulation patterns from the miRNA expression profiles. In this
sub-network, the independent regulation power was calculated for each miRNA.
Ultimately, miRNAs with significant great independent regulation power were
predicted as potential cancer miRNA biomarkers. The afterwards in vitro exper-
iment validation and systematic analysis confirmed the accuracy of this approach.
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8.6 Computational Based Approaches for miRNA Network
Biomarker Discovery

8.6.1 The Discovery of Cancer-Related miRNA–mRNA
Regulatory Modules

The concept of miRNA regulatory modules (mRMs) was first proposed by Yoon
and De Micheli (2005a, b) to indicate groups of miRNAs and target genes that
were completely connected in the sub-groups and functionally corporate in specific
biological processes. This notion was afterwards applied for cancer studies.

Through integrative analysis on matched miRNA expression and mRNA
expression profiles, two cancer mRMs discovery algorithms were proposed based
on fuzzy decision tree model (Bonnet et al. 2010) and correspondence latent
dirichlet allocation (Liu et al. 2010). Afterwards, (Jayaswal et al. 2011) introduced
a clustering method to infer miRNA regulatory modules involved in cancers,
through deducing miRNA activities from microRNA gene expression data and
computational miRNA–mRNA target information. Considering the miRNA
function patterns, there should be negative expression correlations for an indi-
vidual miRNA and its target genes. Based on this theory, Joung et al. and Tran
et al. raised two approaches to discover functional mRMs by combining paired
miRNA and mRNA expression data and miRNA–mRNA binding information,
through Population-based probabilistic learning method (Joung et al. 2007) and
rule induction method (Tran et al. 2008), respectively. Finally, a computational
framework for the discovery of cancer related miRNA-gene modules was proposed
by simultaneous integration of multiple types of genomic data, including matched
miRNA and mRNA expression profile, computational miRNA–mRNA target
information, and gene–gene interaction network data, which was generated by
integrating protein–protein interaction data with DNA–protein interaction data
(Zhang et al. 2011). The brief summary about the aforementioned approaches
about cancer miRNA–mRNA regulatory modules discovery is presented in
Table 8.2.

8.6.2 The Discovery of Cancer-Related MicroRNA Network
Biomarkers

The regulations of miRNAs on mRNAs are only a miniature for the whole bio-
logical regulatory network. The incorporation of other information, such as tran-
scriptional factor (TF) regulations may be used for better understanding of specific
biological process. Lu et al. designed a computational approach for identification
of potential microRNA network biomarkers for the progression stages of gastric
cancer (Lu et al. 2011). Within this approach, computational miRNA–mRNA
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target information and TF-miRNA regulation data were combined to generate a
novel miRNA network for each individual miRNA. The significance of each
miRNA network was evaluated according to its GSEA score, and miRNA net-
works with higher GSEA scores than pre-set threshold were declaimed as potential
gastric cancer miRNA network biomarkers.

Except for miRNA regulations, the ultimate expression levels of miRNAs are
determined by many factors, e.g., TF regulations. Through integrating analysis on
miRNA-gene binding information and TF-gene binding information, Tran et al.
introduced a novel way to discover miR-TF regulatory modules in human genome.
In this study, many identified modules have been previously reported to be
involved in cancer genesis and development (Tran et al. 2010).

Table 8.2 Computational approaches on cancer mRMs discovery

Author Input data Main algorithm Publication
date

Availability

Yoon and De
Micheli

miRNA–mRNA binding
data

Identification of
miRNA–mRNA
complete sub-graph

2005 No

Bonnet et al. Matched miRNA and
mRNA expression data

Co-expression network
analysis and a fuzzy
decision tree model

2010 Yes

Liu et al. Expression profiles of
miRNAs and mRNAs;
with (without) miRNA–
mRNA target
information

Correspondence latent
dirichlet allocation

2010 No

Jayaswal
et al.

Gene expression profiles;
miRNA–mRNA
binding information

Clustering method 2011 No

Joung et al. miRNA–mRNA binding
information; miRNA
and mRNA expression
profiles

Population-based
probabilistic
learning

2007 No

Tran et al. miRNA and gene
expression data;
miRNA–target binding
information

Rule induction 2008 No

Zhang et al. Matched miRNA and
mRNA expression
profile; miRNA–mRNA
target prediction result;
gene–gene interaction
network (integration of
protein–protein
interaction data and
DNA–protein
interaction data)

SNMNMF algorithm 2011 Yes
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8.7 Databases on Potential Cancer miRNA Biomarkers

With the data accumulation from cancer–miRNA association studies, there have
been a couple of online databases that collected the cancer–miRNA associations
via text-mining approaches on previous publications. The brief summary about
these databases can be referred in Table 8.3.

MiR2Disease is a manually curated database collecting the miRNA deregulation
patterns in various human diseases, including cancers (Jiang et al. 2009). It provides
the detailed information about miRNA–disease relationships, experimentally

Table 8.3 Databases on cancer–miRNA association

Brief description Statistics Access link

miR2Disease A manually curated database
to provide
comprehensive resource
of miRNA deregulation
in various human
diseases, including
cancers

349 miRNAs; 163
diseases

http://www.mir2disease.org/

dbDEMC A publicly available
database to collect
differentially expressed
MiRNAs in various
human cancers from
previous studies

607 miRNAs; 14
cancers

http://159.226.118.44/
dbDEMC/index.html

PhenomiR A manually curated database
to provide differentially
regulated miRNA
expression information in
various human diseases,
including cancers

675 miRNAs; 145
diseases

http://mips.helmholtz-
muenchen.de/phenomir/
index.gsp

miRCancer A comprehensive collection
of miRNA expression
profiles in various human
cancers which are
automatically extracted
from published literatures

1300 miRNA; 151
cancers

http://mircancer.ecu.edu/

S-MED A repository that describes
the patterns of miRNA
expression found in
various human sarcoma
tumor types

[700 miRNAs http://
www.oncomir.umn.edu/
SMED/index.php

CC-MED A repository that describes
the patterns of miRNA
expression found in
human colon cancer

39 miRNAs http://
www.oncomir.umn.edu/
colon/basic_search.php
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validated miRNA targets, and corresponding literature references. Similarly, Phe-
nomiR is another comprehensive repository of deregulation miRNA profiling data
for different human diseases and biological processes (Ruepp et al. 2010, 2012).
Based on self-defined text-mining rules, miRCancer (Xie et al. 2013) and dbDEMC
(Yang et al. 2010) specially focus on the collection of cancer-related differentially
expressed miRNAs information. More specifically, there have been also some
established databases that merely provide miRNA expression profiling data on
certain tumor type, such as S-MED (Sarver et al. 2010), CC-MED (Sarver et al.
2009), and others.

8.8 Future Directions

Although the current cancer miRNA studies have shed some light on our under-
standing of cancer genesis and development mechanisms, there is still a long way
ahead in this new emerging research area. The heterogeneity of cancer is our main
concern. Except the compensation of future more advanced miRNA expression
detection technologies, another two research directions might also be potential
solutions for this issue.

Recently, a new concept referred as personalized medicine (PM) has been
proposed to indicate the customization of healthcare. The importance and urgency
about PM has already been emphasized years ago (Long 2007). Therefore, the
specific information about patients, such as race, genetic makeup, should also be
integrated for the future discovery of cancer miRNA biomarkers.

Currently, network view shows that the disorder conditions (diseases, including
cancers) may attribute to the deregulation of specific biological process, not simply
the alteration of an individual biological molecule. Network biomarkers should be
a better choice for cancer diagnosis. As reviewed above, there have been a couple
of studies conducted for the identification of cancer miRNA network biomarkers.
In the future, the integration of multi-layer information, such as genomic infor-
mation, epigenomic information, and clinical information, is need for the dis-
covery of miRNA network biomarkers.

8.9 Conclusions

This chapter summarizes current advances of miRNA expression detection tech-
nologies, the traditional approaches on cancer miRNA biomarker discovery based
on these techniques. Computational-based methods on the identification of indi-
vidual miRNA biomarker and miRNA network biomarker for cancer diagnosis and
prognosis are also reviewed herein. Although studies of cancer miRNA biomarkers
are still in their infancy, the evolving miRNA profiling measurement technologies,
miRNA network information, and computational algorithms offer new insights on
cancer mechanism investigation. We can expect the clinical application of miRNA
biomarkers for the diagnosis, staging, and prognosis of cancers in the near future.
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Chapter 9
Ubiquitin and Ubiquitin-Like
Conjugations in Complex Diseases:
A Computational Perspective

Tianshun Gao, Zexian Liu, Yongbo Wang and Yu Xue

Abstract As one class of most essential and common post-translational modifications
(PTMs), ubiquitin and ubiquitin-like (Ub/UBL) conjugations play an important role in
almost all aspects of biological processes, and aberrances in the conjugation systems
are highly involved in numerous complex diseases. Identification of the
Ub/UBL-associated enzymes, substrates and sites is fundamental for understanding
the molecular mechanisms of Ub/UBL conjugations, and provides a potential reservoir
for discovering disease biomarkers and drug targets. Besides experimental identifi-
cations, computational analysis of Ub/UBL conjugations has also emerged as an
attractive field. In this chapter, we first summarized the cutting-edge experimental
techniques in the large-scale identification of Ub/UBL conjugation substrates, and
further emphasized the importance of computational efforts by introducing online
databases and predictors for Ub/UBL conjugations. Although computational analysis
of Ub/UBL conjugations is still immature, we believe more and more efforts will be
paid in the near future.
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9.1 Introduction

During the past three decades, the ubiquitin-proteasome system (UPS) has been
demonstrated to be critical for protein degradation in most cellular processes
(Ciechanover 1994; Bedford et al. 2011; Geng et al. 2012). Ubiquitin (Ub) is a
small 76aa protein that binds to target proteins and takes them for destruction
through Ubiquitination (Ciechanover 1994), which labels mono- or poly-ubiquitin
proteins to substrates via an E1 (Ub-activating enzyme)-E2 (Ub-conjugating
enzyme)-E3 (Ub-protein ligase) cascade mechanism (Fig. 9.1a). Recently, more
than ten Ub-like modifiers (UBLs) have also been identified, such as SUMO,
NEDD8, ISG15, Apg8/12, FAT10, Urm1, UFM1 and Hub1 in eukaryotes, pro-
karyotic Ub-like protein (Pup) and archaeal SAMPs (Hochstrasser 2009; van der
Veen and Ploegh 2012). The prokaryotic homologs of Ub, ThiS and MoaD, are
potential antecedents of all Ub/UBL modifiers in eukaryotes (Iyer et al. 2006; van
der Veen and Ploegh 2012). Analogous to Ub, most UBLs share a b-grasp fold and
a C-terminal diglycine motif, and their conjugation processes, such as sumoylation
(Fig. 9.1b) and pupylation (Fig. 9.1c), have a conserved enzyme cascade

Fig. 9.1 The conjugation processes for a ubiquitination, b sumoylation, and c Pupylation. For
ubiquitination, an E1-E2-E3 enzyme cascade mechanism was characterized, and Ub E3 ligases
provide the major specificity for substrate recognition. However, SUMO E3 ligases are only
cofactors that facilitate the sumoylation, while pupylation doesn’t have E3s
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mechanism (van der Veen and Ploegh 2012). Ub E3 ligases confer the major
specificity of ubiquitination for recognizing substrates (Deshaies and Joazeiro
2009). However, SUMO E3 ligases are only cofactors that facilitate the conju-
gation of SUMO (Yunus and Lima 2006), and pupylation has only an E1–E2
cascade without any E3 ligases (Striebel et al. 2009). Substrates in the UPS
pathway are ubiquitinated through three forms, mono-, multi- and poly-ubiquiti-
nation (Sadowski and Sarcevic 2010), while several UBL conjugations, such as
SUMO, NEDD8 and SAMP, can also adopt analogical forms for targeting proteins
(Ulrich 2008; Ohki et al. 2009; Humbard et al. 2010). Different forms can lead to
different fates on substrates (Sadowski and Sarcevic 2010). Mono-ubiquitination
affects the activity and location of substrates to be involved in histone regulation,
endocytosis and membrane transport (Hicke 2001), while multi- and poly-ubiq-
uitination mainly induce protein degradation as well as non-proteolytic functions
(Ciechanover 1994; Rape et al. 2006; Chen and Sun 2009).

Ub and UBL conjugation pathways are implicated in diverse but essential
biological functions. Cells usually use these pathways to select specific proteins
for destruction, activation or other functions and ensure the fidelity of cellular
processes (Ciechanover 1994; Chen and Sun 2009). Thus, aberrances in Ub/UBL
conjugation pathways have been identified to be involved in numerous complex
diseases (Dahlmann 2007; Bedford et al. 2011), including inflammation
(Hochrainer and Lipp 2007; Coornaert et al. 2009), viral infection (Bogunovic
et al. 2013), neurodegenerative disease (Hegde and Upadhya 2007; Lehman 2009;
Mandel et al. 2009; Deng et al. 2013), cardiac disease (Sohns et al. 2010; Wang
2011), von Hippel-Lindau disease (Kaelin 2007) and several types of cancers
(Bonacci et al. 2010; Irminger-Finger 2010; Linehan et al. 2010; Conrad et al.
2011; Escobar et al. 2011; Duncan et al. 2012). However, compared to phos-
phorylation, in which protein kinases occupied *30 % of the drug discovery
programs in pharmaceutical research and development, ubiquitination owned less
than 1 % of drug design (Cohen and Tcherpakov 2010), and only one proteasome
Inhibitor Bortezomib was approved currently (Chen et al. 2011). To target com-
plex diseases, theoretically, any components of the UPS and UBL conjugation
pathways, including E1s, E2s, E3s, DUBs and proteasomes, can be selected for
targeting by small-molecule inhibitors. For example, RING E3s including BARD1
and SIAH (Chasapis and Spyroulias 2009; Irminger-Finger 2010; Wong and
Moller 2013), HECT E3 s such as ITCH and SMURF1 (Scheffner and Staub 2007;
Melino et al. 2008; Lin et al. 2013), DUBs such as A20 and UCHL1 (Singhal et al.
2008; Coornaert et al. 2009; Day and Thompson 2010), and proteasome subunits
such as PSMA7 (Du et al. 2009), had been identified as potential biomarkers of
complex diseases. More, inhibitors of several SCF E3 complexes, such as SCFskp2,
SCFb-TrCP1, SCFCDC4, SCFMet30, have also been identified (Chen et al. 2008;
Nakajima et al. 2008; Aghajan et al. 2010; Orlicky et al. 2010). The rapid pro-
gresses suggested that Ub/UBL conjugation pathways can be a great reservoir for
discovering potential biomarkers and drug targets (Cohen and Tcherpakov 2010).
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9.2 Advances in High-Throughput Proteomic Analysis
of Ub/UBL Conjugations

Because Ub E3 ligases bind substrates at distinct regions and modify specific lysine
residues (Bustos et al. 2012), the Ub-mediated proteasomal substrates can be
detected by mutating lysines for poly-ubiquitin chain (Chau et al. 1989), substituting
E3-substrate binding site (House et al. 2006) or eliminating all lysines of substrate
can disrupt the ubiquitination (Bourgeois-Daigneault and Thibodeau 2012). Since
high-affinity Ub antibody, linkage specific antibodies and Ub epitope-tags were
developed, further studies were focused on the detection of Ub-conjugated sub-
strates (Muller et al. 1988; Newton et al. 2008). For a substrate containing only one
ubiquitinated lysine, a single K to R mutation is enough for identifying the ubiq-
uitination site (Flick et al. 2004). However, for multi-ubiquitinated substrates,
accurate identification of all ubiquitination sites needs both individual and combi-
natorial mutations (Zhong et al. 2005). Reintroducing lysine residues one by one
into the lysineless mutant (K0) is also an alternative method for identifying multiple
ubiquitination sites (Rufini et al. 2011). However, any attempts based on the
mutagenesis can only identify one substrate and several ubiquitination sites at most
in a single study (Flick et al. 2004; Zhong et al. 2005; Rufini et al. 2011).

In contrast with conventional studies, high-throughput characterization of
ubiquitinated substrates provides a more comprehensive understanding of the
ubiquitination dynamics and potential relationships between ubiquitinaton and other
important cellular processes. Recently, the technologies of mass spectrometry-based
proteomics have a significant improvement for the identification of ubiquitination
sites (Jeram et al. 2009; Bustos et al. 2012). In the presence of trypsin, Ub-conju-
gated substrates can be cleaved into K-GG modified peptides (Fig. 9.2a), which can
be regarded as ubiquitination signatures (Denis et al. 2007). Thus, the liquid
chromatography-mass spectrometry (LC/MS) analysis can detect a mass shift of
114.043 Da, which represents the diglycine (GG) remnant of Ub (Shi et al. 2011)
(Fig. 9.2a).

Analogous to Ub, NEDD8, ISG15 and Pup can also produce K-GG remnants
with their C-terminal (K/R) GG sequences by the trypsin cleavage, whereas SUMO
can’t because of the absence of a basic residue adjacent to the C-terminal GG motif
(Kang and Yi 2011; Osula et al. 2012). Since the LC/MS identification can’t
distinguish among K-GGs of Ub, NEDD8 and ISG15, adding MLN4924 but not
interferon can effectively block NEDD8ylation and ISG15ylation for exclusively
identifying ubiquitinated substrates (Kim et al. 2011; Zhao et al. 2013). However, if
Ub was not tagged, only one or several ubiquitination sites of one purified substrate
can be identified in vitro (Wang et al. 2005). Thus, with the improvement of Ub
epitope-tagging strategies, large-scale analysis of K-GG peptides can be available
by the trypsin digestion of hundreds of epitope-tagging Ub-conjugated substrates
after in vivo enrichment and purification of Ub-conjugated substrates (Peng et al.
2003; Maor et al. 2007; Danielsen et al. 2011; Kim et al. 2011; Lee et al. 2011;
Shi et al. 2011; Oshikawa et al. 2012; Osula et al. 2012; Starita et al. 2012).
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For example, Peng et al. (2003) identified 110 ubiquitination sites and 1,075
ubiquitinated substrates from yeast cells by using His6-tagged Ub. Also, Maor et al.
(2007) detected 85 ubiquitination sites and 294 Ub substrates from Arabidopsis
cells with GST-tagged Ub. Furthermore, Meierhofer et al. (2008) characterized 44
ubiquitin acceptor sites and 669 ubiquitinated proteins in HeLa cells, using hexa-
histidine-biotin (HB)-fused Ub. In particular, Oshikawa et al. (2012) identified 1392
ubiquitination sites of 794 proteins in HEK293T cells, with His6-tagged K0-Ub.
Additionally, this strategy was also adopted for analyzing other UBL conjugations,
such as pupylation, which can also generate -GG remnants for the high-throughput
identification (Kang and Yi 2011). In fact, Festa et al. (2010) identified 55 pupy-
lation sites from a single sample in Mycobacterium tuberculosis (Mtb). As the
further improvement of MS techniques, the higher-throughput identification of
K-GG peptides was achieved by the direct enrichment of K-GG Peptides in vivo
from cells or tissues (Wagner et al. 2011, 2012; Udeshi et al. 2012, 2013)
(Fig. 9.2b). For example, Wagner et al. characterized [20,000 ubiquitination sites
of [5,200 proteins in murine tissues. In this regard, direct enrichment of K-GG
peptides has attracted more attention for further large-scale assays.

9.3 Data Resources for Ub/UBL Conjugations

Currently, there are 13 databases available for Ub/UBL conjugations (Table 9.1).
To circumvent competitions, most databases were focused on certain aspects. For
example, Lee et al. (2008) developed a budding yeast-specific database SCUD,
including 1 E1, 11 E2s, 42 E3s, 20 DUBs and 940 ubiquitinated substrates.

Fig. 9.2 Proteomic analysis of Ub/UBL conjugation substrates. a Ub-conjugated substrates can
be cleaved into K-GG modified peptides by trypsin. b The direct enrichment of in vivo K-GG
Peptides from samples has been an efficient approach for the large-scale identification of Ub/UBL
conjugation sites
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Later, Du et al. (2009) constructed a ubiquitination-associated enzyme database
plantsUPS, which contains 24 E1, 417 E2s and 7624 E3s from plants. Also, a
similar database of PlantsUBQ was developed for plant Ub enzymes, with 2 E1s, 37
E2s, 1,326 E3s and 51 DUBs (http://plantsubq.genomics.purdue.edu/). Further-
more, the hUbiquitome was released for human ubiquitination, with 1 E1, 12 E2s,
138 E3s, 17 DUBs, 279 substrates and 36 ubiquitination sites (Du et al. 2011). In
addition, by constructing the E3-mediated regulatory networks, Han et al. (2012)
collected 2,201 E3s and 4,896 substrates. The above databases only contains
enzyme information for Ub, while UBL conjugations were not included. Recently,
we developed a comprehensive database Ubiquitin and Ubiquitin-like Conjugation
Database (UUCD) that contains 738 E1s, 2,937 E2s and 46,631 E3s and 6,647
DUBs in 70 eukaryotic species (Gao et al. 2013). Later, Hutchins et al. (2013) also
released a similar database DUDE-db for Ub/UBL conjugations, but only with 267
E1s, 2,095 E2s, 28,985 E3s and 3881 substrates in 50 eukaryotic species.

Additionally, several databases have developed exclusively for Ub/UBL con-
jugation substrates and sites (Table 9.1). The fist database only containing ubiq-
uitinated substrates and sites was UbiProt, which collected 1,104 substrates and
222 ubiquitination sites (Chernorudskiy et al. 2007). The UniProt also contained
substrates and sites for multiple post-translational modifications (PTMs), such as
ubiquitination and sumoylation (Magrane and Consortium 2011). Since rapid
progresses in MS-based proteomics have generated a large number of Ub/UBL
conjugation substrates and sites, collection and integration these data sets will
provide useful resources for further analysis. For example, Li et al. (2009) created
SysPTM that contained modification information for nearly 50 types of PTMs,
including 1,164 ubiquitination sites in 699 substrates. DbPTM 3.0, another PTM
resource, contains 48,781 ubiquitination and sumoylation sites (Lu et al. 2013).
Recently, Hui et al. provided a comprehensive database, including 79,425 mam-
malian ubiquitination sites of 27,272 proteins (http://222.193.31.35:8000/
mUbiSiDa.php). In particular, a UBL conjugation database of PupDB was
developed with 1,305 substrates and 215 pupylation sites (Tung 2012).

9.4 Prediction of Ub/UBL Conjugation Sites

Although more and more Ub/UBL conjugation substrates have been identified,
accurate prediction of conjugation sites is still a great challenge. To date, although
over 20 approaches have been developed for predicting Ub/UBL conjugation sites,
only 13 applicable tools can be accessed (Table 9.2). In Tung and Ho (2008) used
531 physicochemical features and the support vector machines (SVMs) algorithm
to develop the first predictor of UbiPred, with a training data set of 157 known
ubiquitination sites. Using 442 positive sites, Lee et al. (2011) developed UbSite,
which adopted a number of sequence features and the radial basis function net-
works (RBFNs) algorithm for training. Since different organisms may have dif-
ferent features in proteins selected for ubiquitination, the prediction accuracy might
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be improved in organism-specific manner. For example, Radivojac et al. (2010)
collected 265 yeast ubiquitination sites and developed the first organism-specific
predictor of UbPred, with the random forest (RF) algorithm. Also, Chen et al.
(2011) adopted the composition of k-spaced amino acid pairs (CKSAAPs) of
lysine-centered peptides and SVMs algorithm to designed a yeast-specific predictor
of CKSAAP_UbSite, with a training data set of 263 known ubiquitination sites.
Later, they further constructed a human-specific predictor of hCKSAAP_UbSite
with the same approaches (Chen et al. 2013). Recently, Chen et al. (2013) adopted a
number of sequence features and used the SVMs algorithm to develop UbiProber,
which can predict general or organism-specific ubiquitination sites. With the group-
based prediction system (GPS) algorithm, we also developed GPS-ARM for the
prediction of anaphase-promoting complex/cyclosome (APC/C) recognition motifs
including D-box and KEN-box, which can be recognized by Cdh1 or Cdc20 for the
protein degradation (Liu et al. 2012). Thus, the GPS-ARM predicts ubiquitinated
substrates but not exact sites (Liu et al. 2012).

Beyond ubiquitination, there have been a considerable number of efforts taken
for other UBL conjugations, such as sumoylation and pupylation. Because *77 %
of total sumoylation sites follow a canonical motif of W-K-X-D/E (W is a

Table 9.2 Predictors for non- or organism-specific Ub/UBL conjugation substrates and sites

Predictors Training data seta Specificityb Methodc

Ubiquitination
UbiPred 157 ubiquitination sites General SVMs
UbSite 442 ubiquitination sites General RBFNs
UbPred 265 ubiquitination sites in S. cerevisiae S. cerevisiae RF
CKSAAP_UbSite 263 ubiquitination sites in S. cerevisiae S. cerevisiae SVMs
hCKSAAP_UbSite 6118 K sites in human H. sapiens SVMs
UbiProber 25,194 ubiquitination sites in H. sapiens, 5348

in M. musculus and 175 in S. cerevisiae
General and

organism-
specific

SVMs

GPS-ARM 74 D-box and 42 KEN-box motifs General GPS
Sumoylation
SUMOplot N/A General HS
SUMOsp1.0 239 sumoylation sites General GPS
SUMOpre 268 sumoylation sites General SM
SUMOsp2.0 279 sumoylation sites General GPS
seeSUMO 425 sumoylation sites General RF, SVMs
Pupylation
GPS-PUP 127 pupylation sites Prokaryotes GPS

SVMs support vector machines, RBFNs radial basis function networks, RF random forest, GPS
group-based prediction system, HS hydrophobic similarity; SM statistical method
a Training Data Set, the experimentally verified Ub/UBL sites were taken as the positive training
data set
b Specificity, for general propose or organism-specific prediction
c Method, the computational methods used for training
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hydrophobic residue, X is any amino acid) (Xue et al. 2006), the first predictor
SUMOplot was developed by evaluating the hydrophobic similarity between given
proteins and known sumoylation sites (http://www.abgent.com/sumoplot). Later,
using 239 known sumoylation sites as positive samples, we developed SUMOsp1.0
with the GPS algorithm (Xue et al. 2006). With a statistical method, Xu et al. (2008)
developed the SUMOpre, which was trained with 268 known sumoylation sites. In
2009, we greatly improved the GPS algorithm and released the SUMOsp 2.0
software package, with a superior performance than other existing tools (Ren et al.
2009). Recently, Teng et al. (2012) used RF and SVMs algorithms to develop the
seeSUMO for predicting sumoylation sites. In addition, we also developed an
accurate tool of GPS-PUP for the prediction of pupylation sites in prokaryotes (Liu
et al. 2011). Due to the page limitation, the computational predictions of Ub/UBL
conjugation sites without available programs were not summarized.

9.5 Computational Analysis of Disease-Associated Ub/UBL
Conjugations Provides Potential Biomarkers
and Drug Targets

To evaluate the importance of Ub/UBL conjugations in diseases and drug targets,
we mapped Ub/UBL conjugation enzymes to other databases. First, we obtained
874 human Ub/UBL conjugation enzymes from the UUCD database (Gao et al.
2013), 474 known cancer genes from Cancer Gene Census (Forbes et al. 2011) and
4,096 well-characterized drug targets from Drugbank database (Knox et al. 2011).
We mapped cancer genes and drug targets to the human proteomes and got 464
and 2,071 unique sequences, respectively. Also, we mapped all human Ub/UBL
conjugation enzymes to the two data sets, and only identified 27 cancer genes and
16 drug targets. The statistical analyses with a hypergeometric distribution dem-
onstrated that both known cancer genes and drug targets were not significantly
enriched in Ub/UBL conjugation enzymes (p-value [ 0.05). However, we further
mapped all enzymes to the KEGG pathways (Kanehisa et al. 2012), and observed
that Ub/UBL conjugations are significantly involved in a number of essential
pathways (p-value \ 10-4), such as ubiquitin mediated proteolysis (hsa04120),
protein processing in endoplasmic reticulum (hsa04141) and cell cycle (hsa04110)
(Table 9.3). In particular, we revealed that Ub/UBL conjugation enzymes are
over-represented in the pathway of small cell lung cancer (SCLC, hsa05222)
(Table 9.3). Based on the results and KEGG annotations, we illustrated the
pathway, and totally detected 12 E3s, 2 E3 complexes and 4 ubiquitinated sub-
strates (Fig. 9.3). The results also demonstrated that ubiquitination plays an
important role in SCLC-related PI3 K-Akt signaling, cell cycle, apoptosis and p53
signaling pathways (Fig. 9.3). In this regard, Ub/UBL conjugation enzymes and
substrates can be a useful reservoir for further identifying potential biomarkers and
drug targets.

9 Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases 179

http://www.abgent.com/sumoplot


T
ab

le
9.

3
T

he
en

ri
ch

m
en

t
an

al
ys

is
of

K
E

G
G

pa
th

w
ay

s
fo

r
87

4
hu

m
an

U
b/

U
B

L
co

nj
ug

at
io

n
en

zy
m

es
fr

om
th

e
U

U
C

D
da

ta
ba

se
(G

ao
et

al
.

20
13

)
(t

he
hy

pe
rg

eo
m

et
ri

c
di

st
ri

bu
ti

on
,

p-
va

lu
e
\

10
-

4
)

K
E

G
G

ID
D

es
cr

ip
ti

on
U

U
C

D
a

P
ro

te
om

e
E

-r
at

io
d

p-
va

lu
e

N
um

be
rb

P
er

ce
nt

ag
ec

N
um

be
r

P
er

ce
nt

ag
e

T
he

m
os

t
ov

er
-r

ep
re

se
nt

K
E

G
G

P
at

hw
ay

hs
a0

41
20

U
bi

qu
it

in
m

ed
ia

te
d

pr
ot

eo
ly

si
s

13
5

55
.1

0
13

7
2.

21
24

.9
4

8.
63

E
-

20
6

hs
a0

41
41

P
ro

te
in

pr
oc

es
si

ng
in

en
do

pl
as

m
ic

re
ti

cu
lu

m
32

13
.0

6
16

5
2.

66
4.

91
2.

32
E

-
14

hs
a0

41
10

C
el

l
cy

cl
e

22
8.

98
12

5
2.

02
4.

46
2.

35
E

-
09

hs
a0

41
14

O
oc

yt
e

m
ei

os
is

20
8.

16
11

0
1.

77
4.

60
7.

24
E

-
09

hs
a0

52
22

S
m

al
l

ce
ll

lu
ng

ca
nc

er
13

5.
31

84
1.

35
3.

92
2.

12
E

-
05

hs
a0

49
14

P
ro

ge
st

er
on

e-
m

ed
ia

te
d

oo
cy

te
m

at
ur

at
io

n
13

5.
31

86
1.

39
3.

83
2.

75
E

-
05

hs
a0

43
30

N
ot

ch
si

gn
al

in
g

pa
th

w
ay

9
3.

67
47

0.
76

4.
85

7.
39

E
-

05
T

he
m

os
t

un
de

r-
re

pr
es

en
t

K
E

G
G

P
at

hw
ay

hs
a0

11
00

M
et

ab
ol

ic
pa

th
w

ay
s

2
0.

82
11

56
18

.6
4

0.
04

6.
47

E
-

20

a
U

U
C

D
,

pr
ot

ei
ns

in
th

e
U

U
C

D
da

ta
ba

se
b

N
um

be
r,

th
e

nu
m

be
r

of
pr

ot
ei

ns
an

no
ta

te
d

w
it

h
th

e
K

E
G

G
ID

c
P

er
ce

nt
ag

e
th

e
pr

op
or

ti
on

of
pr

ot
ei

ns
an

no
ta

te
d

w
it

h
th

e
K

E
G

G
ID

d
E

-r
at

io
,

th
e

en
ri

ch
m

en
t

ra
ti

o
as

th
e

pr
op

or
ti

on
of

en
zy

m
es

in
U

U
C

D
di

vi
de

d
by

th
at

in
th

e
pr

ot
eo

m
e

180 T. Gao et al.



9.6 Personal Perspectives on Further Computational
Analysis of Ub/UBL Conjugations

In this chapter, we presented a brief summarization of current progresses especially
computational efforts in Ub/UBL conjugations. Totally, there have been 13 online
databases and 13 applicable predictors released for Ub/UBL conjugations. As more
and more conjugation substrates and sites have been identified, we believed that
more and more databases and tools will be developed in the near future. For further
computational studies, we provided several personal perspectives as below:

1. Prediction of conjugation sites for more UBLs. Currently, most computational
predictions were focused on ubiquitination and sumoylation, or in a less extent,
pupylation. However, over ten UBLs have been characterized, while a number of
proteomic analyses of substrates for these UBLs, such as Nedd8-mediated ned-
dylation (Jones et al. 2008) and ISG15-mediated ISGylation (Giannakopoulos
et al. 2005). The development of efficient algorithms and predictors can generate
useful information for further experimental considerations.

2. Prediction of ubiquitinated substrates and sites in an E3-specific mode. For
ubiquitination, the E3 ligases determined the specificity for substrate

Fig. 9.3 The small cell lung cancer pathway (SCLC, hsa05222) adapted from the KEGG
database. The known E3s were shown in red, whereas experimentally identified ubiquitinated
substrates were shown in blue
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recognition. Analogous to phosphorylation which can be catalyzed by *520
kinases, there were 874 human Ub/UBL conjugation enzymes collected in the
UUCD database (Gao et al. 2013). Because different kinases recognize different
motifs for modification, we developed a kinase-specific predictor of GPS for
the phosphorylation (Xue et al. 2005, 2008). Again, because different E3 ligases
exhibited dramatically different sequence or structure profiles, it can be
expected that different E3s can recognize distinct motifs for conjugations. In
this regard, prediction of E3-specific ubiquitinated substrates and sites will
achieve much better performance.

3. Re-construction of Ub/UBL-associated networks. Protein substrates can be
modified by E1s, E2s, and E3s and de-modified by DUBs. Thus, the complex
relations among Ub/UBL conjugation enzymes and substrates constitute the
Ub/UBL-associated networks, which are fundamental for systematically
understanding the molecular mechanisms and regulatory roles of Ub/UBL
conjugations. Also, how to retrieve useful information from the networks will
be a great challenge.

9.7 Conclusion

As a class of important and ubiquitous PTMs, Ub/UBL conjugations has attracted
more and more attention to be potential biomarkers or drug targets. Besides both
small- or large-scale experimental identifications, computational analysis of Ub/
UBL conjugations has also emerged to a promising topic. However, the number of
either databases or predictors for Ub/UBL conjugations is still limited, and more
efforts should be paid in this field. We believed a better study will generate a
deeper understanding on Ub/UBL conjugations and provide useful information for
biomedical design.

Acknowledgments This work was supported by grants from the National Basic Research
Program (973 project) (2012CB910101, and 2013CB933903), Natural Science Foundation of
China (31171263 and 81272578), and International Science and Technology Cooperation Pro-
gram of China (0S2013ZR0003).

References

Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, et al.
Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF
family E3 ubiquitin ligase. Nat Biotechnol. 2010;28:738–42.

Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the
ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10:29–46.

Bogunovic D, Boisson-Dupuis S, Casanova JL. ISG15: leading a double life as a secreted
molecule. Exp Mol Med. 2013;45:e18.

182 T. Gao et al.



Bonacci T, Roignot J, Soubeyran P. Protein ubiquitylation in pancreatic cancer. Scientific-
WorldJournal. 2010;10:1462–72.

Bourgeois-Daigneault MC, Thibodeau J. Autoregulation of MARCH1 expression by dimerization
and autoubiquitination. J Immunol. 2012;188:4959–70.

Bustos D, Bakalarski CE, Yang Y, Peng J, Kirkpatrick DS. Characterizing ubiquitination sites by
peptide based immunoaffinity enrichment. Mol Cell Proteomics. 2012.

Chasapis CT, Spyroulias GA. RING finger E(3) ubiquitin ligases: structure and drug discovery.
Curr Pharm Des. 2009;15:3716–31.

Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A. A
multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science.
1989;243:1576–83.

Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor
anticancer drug: current status and future perspectives. Curr Cancer Drug Targets.
2011a;11:239–53.

Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP,
Xu W. Moutouh-de Parseval L et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27-
and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111:4690–9.

Chen X, Qiu JD, Shi SP, Suo SB, Huang SY, Liang RP. Incorporating key position and amino
acid residue features to identify general and species-specific ubiquitin conjugation sites.
Bioinformatics. 2013.

Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang Z. Prediction of ubiquitination sites by
using the composition of k-spaced amino acid pairs. PLoS ONE. 2011b;6:e22930.

Chen Z, Zhou Y, Song J, Zhang Z. hCKSAAP_UbSite: Improved prediction of human
ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta.
2013.

Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell.
2009;33:275–86.

Chernorudskiy AL, Garcia A, Eremin EV, Shorina AS, Kondratieva EV, Gainullin MR. UbiProt:
a database of ubiquitylated proteins. BMC Bioinformatics. 2007;8:126.

Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79:13–21.
Cohen P, Tcherpakov M. Will the ubiquitin system furnish as many drug targets as protein

kinases? Cell. 2010;143:686–93.
Conrad C, Podolsky MJ, Cusack JC. Antiproteasomal agents in rectal cancer. Anticancer Drugs.

2011;22:341–50.
Coornaert B, Carpentier I, Beyaert R. A20: central gatekeeper in inflammation and immunity.

J Biol Chem. 2009;284:8217–21.
Dahlmann B. Role of proteasomes in disease. BMC Biochem. 2007;8 Suppl 1:S3.
Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ,

Mailand N, Nielsen ML. Mass spectrometric analysis of lysine ubiquitylation reveals
promiscuity at site level. Mol Cell Proteomics. 2011;10:M110 003590.

Day IN, Thompson RJ. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein.
Prog Neurobiol. 2010;90:327–62.

Deng H, Liang H, Jankovic J. F-box only protein 7 gene in parkinsonian-pyramidal disease.
JAMA Neurol. 2013;70:20–4.

Denis NJ, Vasilescu J, Lambert JP, Smith JC, Figeys D. Tryptic digestion of ubiquitin standards
reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry.
Proteomics. 2007;7:868–74.

Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem.
2009;78:399–434.

Du H, Huang X, Wang S, Wu Y, Xu W, Li M. PSMA7, a potential biomarker of diseases. Protein
Pept Lett. 2009a;16:486–9.

Du Y, Xu N, Lu M, Li T. hUbiquitome: a database of experimentally verified ubiquitination
cascades in humans. Database (Oxford). 2011;2011:bar055.

9 Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases 183



Du Z, Zhou X, Li L, Su Z. plantsUPS: a database of plants’ ubiquitin proteasome system. BMC
Genomics. 2009b;10:227.

Duncan K, Schafer G, Vava A, Parker MI, Zerbini LF. Targeting neddylation in cancer therapy.
Future Oncol. 2012;8:1461–70.

Escobar M, Velez M, Belalcazar A, Santos ES, Raez LE. The role of proteasome inhibition in
nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:806506.

Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE, Gygi SP, Darwin KH. Prokaryotic
ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS ONE.
2010;5:e8589.

Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, Yates JR, Kaiser P. Proteolysis-
independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin
chain. Nat Cell Biol. 2004;6:634–41.

Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K,
Menzies A, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic
mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.

Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A, Ren J, Xue Y. UUCD: a family-based database
of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res. 2013;41:D445–51.

Geng F, Wenzel S, Tansey WP. Ubiquitin and proteasomes in transcription. Annu Rev Biochem.
2012;81:177–201.

Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J,
Virgin HW, Zhang DE. Proteomic identification of proteins conjugated to ISG15 in mouse
and human cells. Biochem Biophys Res Commun. 2005;336:496–506.

Han Y, Lee H, Park JC, Yi GS. E3Net: a system for exploring E3-mediated regulatory networks
of cellular functions. Mol Cell Proteomics. 2012;11:O111 014076.

Hegde AN, Upadhya SC. The ubiquitin-proteasome pathway in health and disease of the nervous
system. Trends Neurosci. 2007;30:587–95.

Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol. 2001;2:195–201.
Hochrainer K, Lipp J. Ubiquitylation within signaling pathways in- and outside of inflammation.

Thromb Haemost. 2007;97:370–7.
Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458:422–9.
House CM, Hancock NC, Moller A, Cromer BA, Fedorov V, Bowtell DD, Parker MW,

Polekhina G. Elucidation of the substrate binding site of Siah ubiquitin ligase.
Structure. 2006;14:695–701.

Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, Zhou G, Chen S, Wells L, Maupin-
Furlow JA. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii.
Nature. 2010;463:54–60.

Hutchins AP, Liu S, Diez D, Miranda-Saavedra D. The repertoires of ubiquitinating and
deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol. 2013;30:1172–87.

Irminger-Finger I. BARD1, a possible biomarker for breast and ovarian cancer. Gynecol Oncol.
2010;117:211–5.

Iyer LM, Burroughs AM, Aravind L. The prokaryotic antecedents of the ubiquitin-signaling
system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol.
2006;7:R60.

Jeram SM, Srikumar T, Pedrioli PG, Raught B. Using mass spectrometry to identify ubiquitin and
ubiquitin-like protein conjugation sites. Proteomics. 2009;9:922–34.

Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L. A targeted proteomic
analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res.
2008;7:1274–87.

Kaelin WG. Von Hippel-Lindau disease. Annu Rev Pathol. 2007;2:145–73.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation

of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.

184 T. Gao et al.



Kang C, Yi GS. Identification of ubiquitin/ubiquitin-like protein modification from tandem mass
spectra with various PTMs. BMC Bioinform. 2011;12 Suppl 14:S8.

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ,
et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell.
2011;44:325–40.

Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al.
DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res.
2011;39:D1035–41.

Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.
Ubiquitin ligase substrate identification through quantitative proteomics at both the protein
and peptide levels. J Biol Chem. 2011a;286:41530–8.

Lee TY, Chen SA, Hung HY, Ou YY. Incorporating distant sequence features and radial basis
function networks to identify ubiquitin conjugation sites. PLoS ONE. 2011b;6:e17331.

Lee WC, Lee M, Jung JW, Kim KP, Kim D. SCUD: Saccharomyces cerevisiae ubiquitination
database. BMC Genomics. 2008;9:440.

Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol.
2009;118:329–47.

Li H, Xing X, Ding G, Li Q, Wang C, Xie L, Zeng R, Li Y. SysPTM: a systematic resource for
proteomic research on post-translational modifications. Mol Cell Proteomics.
2009;8:1839–49.

Lin H, Lin Q, Liu M, Lin Y, Wang X, Chen H, Xia Z, Lu B, Ding F, Wu Q et al. PKA/Smurf1
signaling-mediated stabilization of Nur77 is required for anticancer drug cisplatin-induced
apoptosis. Oncogene. 2013.

Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro DP, Srinivasan R.
Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329–43.

Liu Z, Ma Q, Cao J, Gao X, Ren J, Xue Y. GPS-PUP: computational prediction of pupylation
sites in prokaryotic proteins. Mol BioSyst. 2011;7:2737–40.

Liu Z, Yuan F, Ren J, Cao J, Zhou Y, Yang Q, Xue Y. GPS-ARM: computational analysis of the
APC/C recognition motif by predicting D-boxes and KEN-boxes. PLoS ONE. 2012;7:e34370.

Lu CT, Huang KY, Su MG, Lee TY, Bretana NA, Chang WC, Chen YJ, Huang HD. DbPTM 3.0:
an informative resource for investigating substrate site specificity and functional association
of protein post-translational modifications. Nucleic Acids Res. 2013;41:D295–305.

Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database
(Oxford). 2011;2011:bar009.

Mandel SA, Fishman-Jacob T, Youdim MB. Modeling sporadic Parkinson’s disease by silencing
the ubiquitin E3 ligase component, SKP1A. Parkinsonism Relat Disord. 2009;15(Suppl
3):S148–51.

Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K. Multidimensional protein
identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell
Proteomics. 2007;6:601–10.

Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in
HeLa cells by mass spectrometry. J Proteome Res. 2008;7:4566–76.

Melino G, Gallagher E, Aqeilan RI, Knight R, Peschiaroli A, Rossi M, Scialpi F, Malatesta M,
Zocchi L, Browne G, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer.
Cell Death Differ. 2008;15:1103–12.

Muller S, Briand JP, Van Regenmortel MH. Presence of antibodies to ubiquitin during the
autoimmune response associated with systemic lupus erythematosus. Proc Natl Acad Sci U S
A. 1988;85:8176–80.

Nakajima H, Fujiwara H, Furuichi Y, Tanaka K, Shimbara N. A novel small-molecule inhibitor
of NF-kappaB signaling. Biochem Biophys Res Commun. 2008;368:1007–13.

Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N,
Sidhu SS, Fellouse FA, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-
specific antibodies. Cell. 2008;134:668–78.

9 Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases 185



Ohki Y, Funatsu N, Konishi N, Chiba T. The mechanism of poly-NEDD8 chain formation
in vitro. Biochem Biophys Res Commun. 2009;381:443–7.

Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, Sicheri F, Tyers M. An allosteric inhibitor of
substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol. 2010;28:733–7.

Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI. Proteome-wide identification of
ubiquitylation sites by conjugation of engineered lysine-less ubiquitin. J Proteome Res.
2012;11:796–807.

Osula O, Swatkoski S, Cotter RJ. Identification of protein SUMOylation sites by mass
spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion.
J Mass Spectrom. 2012;47:644–54.

Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D,
Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol.
2003;21:921–6.

Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM.
Identification, analysis, and prediction of protein ubiquitination sites. Proteins.
2010;78:365–80.

Rape M, Reddy SK, Kirschner MW. The processivity of multiubiquitination by the APC
determines the order of substrate degradation. Cell. 2006;124:89–103.

Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y. Systematic study of
protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics.
2009;9:3409–12.

Rufini A, Fortuni S, Arcuri G, Condo I, Serio D, Incani O, Malisan F, Ventura N, Testi R.
Preventing the ubiquitin-proteasome-dependent degradation of frataxin, the protein defective
in Friedreich’s ataxia. Hum Mol Genet. 2011;20:1253–61.

Sadowski M, Sarcevic B. Mechanisms of mono- and poly-ubiquitination: Ubiquitination
specificity depends on compatibility between the E2 catalytic core and amino acid residues
proximal to the lysine. Cell Div. 2010;5:19.

Scheffner M, Staub O. HECT E3 s and human disease. BMC Biochem. 2007;8(Suppl 1):S6.
Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J. A data set of human endogenous

protein ubiquitination sites. Mol Cell Proteomics. 2011;10:M110 002089.
Shi Y, Xu P, Qin J. Ubiquitinated proteome: ready for global? Mol Cell Proteomics.

2011;10:R110 006882.
Singhal S, Taylor MC, Baker RT. Deubiquitylating enzymes and disease. BMC Biochem.

2008;9(Suppl 1):S3.
Sohns W, van Veen TA, van der Heyden MA. Regulatory roles of the ubiquitin-proteasome

system in cardiomyocyte apoptosis. Curr Mol Med. 2010;10:1–13.
Starita LM, Lo RS, Eng JK, von Haller PD, Fields S. Sites of ubiquitin attachment in

Saccharomyces cerevisiae. Proteomics. 2012;12:236–40.
Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E. Bacterial ubiquitin-like

modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes.
Nat Struct Mol Biol. 2009;16:647–51.

Teng S, Luo H, Wang L. Predicting protein sumoylation sites from sequence features. Amino
Acids. 2012;43:447–55.

Tung CW. PupDB: a database of pupylated proteins. BMC Bioinformatics. 2012;13:40.
Tung CW, Ho SY. Computational identification of ubiquitylation sites from protein sequences.

BMC Bioinform. 2008;9:310.
Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA.

Methods for quantification of in vivo changes in protein ubiquitination following proteasome
and deubiquitinase inhibition. Mol Cell Proteomics. 2012;11:148–59.

Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA. Refined preparation
and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of
10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics.
2013;12:825–31.

186 T. Gao et al.



Ulrich HD. The fast-growing business of SUMO chains. Mol Cell. 2008;32:301–5.
van der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annu Rev Biochem. 2012;81:323–57.
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C. A proteome-wide,

quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol
Cell Proteomics. 2011;10:M111 013284.

Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV,
Brakebusch C, Choudhary C. Proteomic analyses reveal divergent ubiquitylation site patterns
in murine tissues. Mol Cell Proteomics. 2012;11:1578–85.

Wang D, Xu W, McGrath SC, Patterson C, Neckers L, Cotter RJ. Direct identification of
ubiquitination sites on ubiquitin-conjugated CHIP using MALDI mass spectrometry.
J Proteome Res. 2005;4:1554–60.

Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. Wiley
Interdiscip Rev Syst Biol Med. 2011;3:446–57.

Wong CS, Moller A. Siah: a promising anticancer target. Cancer Res. 2013;73:2400–6.
Xu J, He Y, Qiang B, Yuan J, Peng X, Pan XM. A novel method for high accuracy sumoylation

site prediction from protein sequences. BMC Bioinform. 2008;9:8.
Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific

phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008;7:1598–608.
Xue Y, Zhou F, Fu C, Xu Y, Yao X. SUMOsp: a web server for sumoylation site prediction.

Nucleic Acids Res. 2006;34:W254–7.
Xue Y, Zhou F, Zhu M, Ahmed K, Chen G, Yao X. GPS: a comprehensive www server for

phosphorylation sites prediction. Nucleic Acids Res. 2005;33:W184–7.
Yunus AA, Lima CD. Lysine activation and functional analysis of E2-mediated conjugation in

the SUMO pathway. Nat Struct Mol Biol. 2006;13:491–9.
Zhao C, Collins MN, Hsiang TY, Krug RM. Interferon-induced ISG15 pathway: an ongoing

virus-host battle. Trends Microbiol. 2013;21:181–6.
Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the

polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005;121:1085–95.

9 Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases 187



Chapter 10
Identification of Biomarkers
for Pharmacological Activity

Guang Hu, Yuqian Li and Bairong Shen

Abstract Biomarkers are kinds of biological signatures of particular physiological
state, which also can be validated and qualified as indicators of clinical endpoints,
surrogate endpoints, and particular indicator that respond to drug therapy. The rapid
development of high-throughput technologies has facilitated the identification of
new biomarkers at different systems levels. In this chapter, we will focus on the
recent advance in identifying biomarkers based on technologies of genomics,
proteomics, and metabolomics, as well as their applications in drug response, and
thus achieving personalized medicine. In addition, some well-known examples of
pharmacological biomarkers especially for cancers are collected and provided. The
last part of this chapter will discuss the key biomarkers-related resources, including
web-based databases and bioinformatics tools.

Keywords Biomarkers � Pharmacogenomics � Drug response

10.1 Introduction

Biomarkers are kinds of biological signatures of particular physiological state,
which also can be validated and qualified as indicators of clinical endpoints, sur-
rogate endpoints, and particular indicator that respond to pharmacological activity
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(Frank and Hargreaves 2003). In particular, the application of biomarkers in drug
response is currently occurring at an increasing rate (Matsui 2013). Drug response
biomarkers have been used for outcome prediction and assessment in a variety of
diseases, especially for cancers (Ludwig and Weinstein 2005). The discovery of
novel biomarkers in drug response holds great promise for the future of person-
alized medicine (De Koning and Keirn 2009; Kelloff and Sigman 2012; Jain 2004),
which is a requirement to achieve ‘‘the right drug into the right patient’’.

To facilitate the biomarker discovery, recent biotechnologies such as genomics,
proteomics, and metabolomics have grown up (Jain 2010). The fields of using these
technologies in biomarker discovery and drug development are termed pharmac-
ogenomics (Mendrick 2008), pharmacoproteomics (Sinha et al. 2007), and phar-
macometabolomics (Stewart and Bolt 2011), respectively. With the development of
these ‘‘omic’’ technologies, they provide predictive tools to identify biomarkers for
pharmacological activity. Thus, the discussion of recent developments for phar-
macological biomarkers and their applications in drug development and medical
practice in this chapter is particular compelling (Ong et al. 2012). Figure 10.1
shows that how to apply different ‘‘omic’’ technologies to identify pharmacological
biomarkers, and then reach the goal of personalized medicine.

The genomic technologies including genome-wide association studies, gene
expression analysis, and RNA expression analysis, as well as their applications in
indentify biomarkers are introduced in Sect. 10.2. Meanwhile, other two ‘‘omic’’
technologies and their applications including proteomics and metabolomics are
discussed in Sect. 10.3 and Sect. 10.4. In Sect. 10.5, we list some examples of
pharmacological biomarkers and their value in drug response. Finally in Sect. 10.6
some bioinformatics resources for biomarkers are provided.

10.2 Pharmacogenomic Biomarkers

Pharmacogenetics (Klotz 2007) is the study of how human genetic variation (DNA
and RNA) associated with drug response. Pharmacogenetics studies include
pharmacokinetics (PK) and pharmacodynamics (PD), which describes drug

Fig. 10.1 The scheme for applying different ‘‘omic’’ technologies to identify pharmacological
biomarkers, achieving the goal of personalized medicine
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absorption, distribution, metabolism, and elimination at metabolite levels and the
pharmacological effects of a drug on the target biologic pathway, respectively.
Pharmacogenomics (Karczewski et al. 2012), a portmanteau of pharmacology and
genomics, is the more recent field of applying genome-wide technologies to
analysis the makeup affects of genetic to individual’s response to drugs. Both
pharmacogenetics and pharmacogenomics have the potential for identifying bio-
markers in drug response, thus promising personalized medicine (Brandi et al.
2012; De Koning and Keirns 2009; Roses 2000; Ross et al. 2005; Sim and
Ingelman-Sundberg 2011). It should be noted that the concept of pharmacoge-
netics has been included in pharmacogenomics, with a shift from the focus on
individual candidate genes to genome-wide association studies. Nowadays, the
terms of pharmacogenomics and pharmacogenetics are tending to be used inter-
changeably. In the following, we will discuss technological advances and appli-
cations of these two fields in indentifying biomarkers together.

On the other hand, the fields of next-generation sequencing are in an era of
rapid development, reflecting continuous technological advancements in the dis-
covery of novel biomarkers for drug response. The rapid development of genomic
techniques brings an unprecedented impact on the pharmaceutical industry, pro-
viding powerful tools for mining pharmacogenomic and pharmacogenetics bio-
markers. This section will focus on the discovery and developments of genomic
methods used in indentify biomarkers in drug response, including genome-wide
association studies (GWAS), expression analysis, and next-generation sequencing
(NGS). The scheme of using methods into biomarker discovery is shown in
Fig. 10.2.

Fig. 10.2 The three pharmacogenomic methods of a GWAS, b gene expression analysis, and
c RANi screen for the identification of biomarkers
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10.2.1 Genome-Wide Association Study

Genome-wide association study (GWAS) is a family of standard whole genome
studies, providing correlations between a continuous trait and genetic information
of control sets. GWAS was first introduced in 2005 to investigate patients’ age-
related macular degeneration. So far, it has been increasingly applied to phar-
macogenomics, according to its statistical power and lack of presumptions. In
pharmacogenomics research, GWAS aims to search for significant associations
between single-nucleotide polymorphisms (SNPs) as biomarkers and traits as drug
response. In addition, combined with high-throughput expression analysis and
bioinformatics, GWAS offers a more powerful tool in this area.

In a GWAS, hundreds of thousands or millions of genetic variants are probed
on a SNP array. The technology of SNP microarray marks each region of the
human genome to determine the genotype at each locus, and thus a particular SNP
associated with different drug response due to the hidden interaction with an
alternate variant of another gene. As contrast, DNA and oligonucleotide arrays are
two other methods used in gene expression analysis, which regard for their
automated, genome-wide, high-throughput, analysis of a large number of genes,
and short oligonucleotide sequence. For the further data analysis, hierarchical
clustering, self-organizing maps, multidimensional scaling, and pathway associa-
tions are four types of predominant methods.

Li et al. (2009) performed a GWAS in cell-based model system to test a large
number of biomarkers that might response to two drugs, i.e. Gemcitabine (dFdC)
and AraC. GWAS were also performed on human lymphoblastoid cell lines
(LCLs) by Niu et al. (2010). Five biomarkers, C13orf34, MAD2L1, PLK4, TPD52,
and DEPDC1B were identified response to radiation therapy in LCLs. Aslibekyan
et al. (2012) first applied the GWAS to investigate fenofibrate effects on systemic
inflammation. In this work, they have identified several plausible biomarkers for
systemic inflammation both before and after fenofibrate treatment. For instance,
the rs6517147 locus near the immunologically relevant IFNAR2 gene is associated
with IL6 pattern. More recently, Cui et al. (2013) performed a GWAS to Rheu-
matoid Arthritis (RA) and indentified that CD84 as a biomarker for response to
etanercept treatment in RA. In addition, GWAS were also used to indentify bio-
marker for response to chemotherapeutic agents and radiation therapy.

10.2.2 Gene Expression Analysis

The identification of pharmacogenetic biomarkers using high-throughput gene
expression analysis is essential in drug responses that offer new therapeutic
approaches of personalized medicine. As mentioned in the above section, DNA
microarray analysis has been used to monitor changes in gene expression in
response to drug treatments. Other methods include large-scale DNA sequence
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analysis (or NGS) and comparative genomic hybridization (CGH) technologies
have also allowed the genome-scale identification of gene copy number (Majewski
and Bernards 2011). DNA sequence analysis provides an alternative method to
quantify gene expression, by using high-sequencing technology, which provides a
more flexible platform than DNA microarray. In addition, these approaches
combined with gene copy number analysis have illuminated core cancer pathways
successfully.

Parissenti et al. (2007) have given a comprehensive review on using gene
expression for the identification of biomarkers with response to chemotherapy
drugs. In this review, a number of anticancer agents have been discussed as genetic
biomarkers, including the anthracyclines, alkylating agents, nucleoside analogs
taxanes, topoisomerase I and II inhibitors, and vinca alkaloids. Mamdani et al.
(2011) have used peripheral gene expression patterns to investigate response to
antidepressant treatment in major depressive disorder (MDD). Interferon regula-
tory factor 7 (IRF7) was found to be an interesting biomarker that associate with
antidepressant response. In particular, DNA sequence analyses provide a lot of
novel insights into the discovery new cancer biomarkers for drug response for
cancers (Jones et al. 2010). Encoding AT-rich interactive domain 1A (ARID1A
gene) has been proved to be a useful biomarker in clear-cell ovarian cancers and
endometrioid carcinomas (Wiegand et al. 2010).

However, most of gene expression methods are just account for single bio-
markers or groups of related biomarkers, but not considerable many-body biologic
interactions. More recently, Masica et al. (2013) proposed a new approach, called
Multivariate Organization of Combinatorial Alterations (MOCA), and tried to
address the shortcoming caused by the response, which is strictly dependent on
many simultaneous genetic alterations. This method use Boolean set operations
coupled with optimization to combine a large number of genomic alterations into
biomarkers of drug response. The test of this algorithm in some pharmacoge-
nomically characterized cancer cell lines is successfully. In particular, it can detect
drug response of multigene features, which show higher correlation than the
response for single-gene features.

10.2.3 Next-Generation Sequencing

Next-generation sequencing technologies have been extended to differential
expression of genes, especially RNA-Seq experiments. RNA expressions provide
more sensitive platforms to detect differences between gene expressions and thus
open new doors into the field of biomarker discovery. Burczynski and Dorner
(2006) have extensively discussed the application of mRNA expression changes in
circulating blood cells. Mendrick (2011) also summarized the recent advances of
blood-borne biomarkers, including mRNA and microRNA (miRNA), relating
disease and drug response. Additionally, some potential mRNA pharmacogenomic
biomarkers are suggested that need further verification.
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On the other hand, miRNAs are a kind of noncoding RNA (ncRNA) molecules
that have emerged as fundamental, post-transcriptional regulators of cognate target
gene expression. Till now, several molecular diagnostic technologies including
polymerase chain reaction (PCR), liquid chromatography separations, and bio-
chips provide useful tools to miRNA expression profiling. Therefore, the gene
expression based on miRNAs can also be used to analyze the correlation with
different expression data, especially protein expression data. miRNAs have been
reported that they may be served as biomarkers both for cancer and other diseases
(Wittmann and Jack 2010). Single-nucleotide polymorphisms based on RNA,
termed structural RNA SNPs (srSNPs), have also been found to have important
roles in drug metabolism, toxicity, and response. Sadee et al. (2011) discussed
some srSNPs relevant to drug response briefly, including CYP3A5, CYP3A4,
TPH2, DRD2, and OPRM1.

RNAi screens (Kuiken and Beijersbergen 2010; Majewski and Bernards 2011),
as a method of performing genome-scale loss-of-function genetic screens, could
help to find causal relationships between genes and phenotypes especially in
mammalian cells. RNAi screens have some potential benefits for biomarker dis-
covery: (1) requires less time and less samples to build genes–phenotypes rela-
tionship, (2) provide mechanistic insights into the drug operates pathways, (3)
combine synthetic lethal RNAi into therapy targets, (4) ensure right translational
strategy. Due to these advantages, RNAi screens have not only been used to
indentify biomarkers of drug responsiveness but also have been used to find which
biomarkers’ ruppression that improve the anticancer ability of the particular drug.

10.3 Pharmacoproteomic Biomarkers

Proteomics is the study of protein complement of the genome of an organism,
including protein–protein and protein–nucleic acid interactions. Proteomics now
have become a key technology to study the effects of drug treatment and metab-
olism. Pharmacoproteomics is just a field that understands the role of proteomics
in drug discovery and development, which is now becoming an increasingly
important area for the discovery of biomarkers on the protein level.

Recent advances in proteomics technologies have been applied to the field of
Pharmacoproteomics. Witzmann and Grant (2003) have concluded the various
proteomics technologies by dividing into two areas. For instances, the combination
of Mass Spectrometry (MS) with Two-Dimensional Gel Electrophoresis (2DE) and
liquid chromatography separations, and protein microarrays for expression pro-
teomics. In functional proteomics, the main tools and applications are investigating
protein–protein interactions (PPIs) for protein complexes and Yeast 2-Hybrid.
Among them, 2DE and protein microarrays are two widely used methods to in-
dentify novel biomarkers. SELDI–ToF–MS, as a novel mass spectrometry
based technologies, is a promising approach for the identification of novel bio-
markers. Seibert et al. (2005) have discussed the usefulness of SELDI-ToF-MS in
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identification of serum markers for ovarian and gastric cancer. In addition,
proteome profiling has been extensively used for identification and monitoring of
specific biomarkers for chemical toxicity (Merrick and Bruno 2004). In combi-
nation with other methods including functional imaging, biosensors and compu-
tational biology, proteomics can predict drug response, resistance and toxicity
much better (Ross et al. 2005).

Human saliva proteomics has proven to be a novel approach for validation and
discovery of target, efficacy and toxicity of candidate drugs assessment, disease
subgroups identification, and response predication of individual patients. Hu et al.
(2007) have given a brief overview of the application of human saliva proteome
analysis in biomarker detection in human cancers. Based on shotgun proteomics
and 2-DE/MS approaches, human epidermal growth factor receptor-2 (her-2) has
been found to be a biomarker that response to trastuzumab for breast cancer.
Serum proteomics have also found several potential protein biomarkers for pre-
diction of response to biologics in rheumatoid arthritis treated with infliximab
(Ortea et al. 2012). Kondo et al. (2013) performed proteomic studies on gastro-
intestinal stromal tumor and identified that potassium channel tetramerization
domain containing 12 (KCTD 12) could be a novel prognostic biomarker. In
addition, the combination of pharmacogenomics and iTRAQ-coupled LC-MS/MS
based pharmacoproteomics has been used to analyze plasma protein profiles of
patients (Saminathan et al. 2010). Research on epoxide reductase complex subunit
1 (VKORC1) gene suggests suggest transthyretin precursor as a potential bio-
marker that response to warfarin anticoagulant therapy.

10.4 Pharmacometabolomic Biomarkers

As a latest technology, metabolomics complements proteomics and transcripto-
mics, providing a comprehensive understanding of cellular functions. Metabolo-
mics usually studies drug metabolism at the global level. The technologies in the
field of metabolomics used include nuclear magnetic resonance (NMR) spec-
troscopy, direct infusion mass spectrometry, and/or infrared spectroscopy, and
other complied tools. Metabolomics technologies have two main advantages. One
is it can analyze bodily fluids, isolated cells, and biopsy material, the other is it can
monitor biological samples, as well as analyses multiple pathways and metabolite
arrays simultaneously.

Metabolomics has important potential implications for pharmacologic science,
which leading to a new area of pharmacometabolomics (Kaddurah-Daouk et al.
2008). The aim of pharmacometabolomics refers to the prediction of the drug
response of a particular individual, and then permit continued treatment with
personalized medicine, which depends on the variations in their drug metabolism
and ability to respond to treatment. Thus, pharmacometabolomics is thought to
provide information in conjunction with pharmacogenomics and pharmacoprote-
omics. In comparison with pharmacogenetic, pharmacometabolomics focuses
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on the identification of metabolic pathways at the genetic level. Particularly,
integrating GWAS data into metabilomic analysis may provide additional infor-
mation for discovering biomarkers (Robinette et al. 2012).

In clinical practice, it is routine to evaluate certain biomarkers, such as bili-
rubin, serum alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) to diagnose liver disease. Mamas et al. (2011) discussed the application of
metabolomics biomarkers in various diseases, including metabolic and cardio-
vascular disease, as well as cancer. Therefore, pharmacometabolomics is a com-
plementary tool for drug target identification and validation. In a serum
metabolomic analysis, Chen et al. (2008) identified stearoyl-CoA desaturase 1
(SCD1) and its related lipid species, which may be served as potential targets for
treatment of inflammatory diseases. Suhre et al. (2011) genetically determined
metabolite traits were reported with strong association for various diseases. The
identification of associated metabolic traits may generate many new hypotheses for
biomedical and pharmaceutical research. Among these genes, SLC16A9 (MCT9)
was demonstrated as a carnitine efflux transporter responsible for carnitine efflux
from absorptive epithelia into the blood. Wei (2011) conducted a target-based
metabolomics study to characterize metabolic response of Huh 7.5 cells to
genomic perturbation of HIF-1. The results identify a new therapeutic target by
confirming HIF-1’s regulatory role in tumor energy metabolism. Saliva meta-
bolomic analysis has proven to be a novel approach in the search for metabolite
biomarkers for noninvasive detection of human diseases (Zhang et al. 2012a).

10.5 Examples of Biomarkers for Pharmacological Activity

10.5.1 Cancer Biomarkers

Many cancers belong to a type of heterogeneous disease. Cancer biomarkers play
an important role in understanding the molecular mechanism of cancer, with the
help of the recent technologies advances in pharmacogenomic, pharmacoproteo-
mics, pharmacometabomics, and the combination of them. A large number of
biomarkers for drug response in cancer have been studied during the past years.
Biomarkers specific for diseases, especially various cancers will be described in
this section, as shown in Table 10.1. It should be noted that we just list some
examples, not an inclusive list.

Colorectal cancer (CRC) Colorectal cancer is a kind of cancer from uncon-
trolled cell growth in the colon, in which most of them caused by underlying
genetic disorders happened with the lifestyle and increasing age. CRC is the third
most common cancer for both gender, following breast, lung, and prostate cancers.
Pullarkat et al. (2001) used RT-PCR to analysis the response of thymidylate
synthase gene polymorphism to 5-Fluorouracil (5-FU) chemotherapy in CRC,
suggesting it could be a potential mRNA biomarker. Cetuximab or panitumumab
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is efficient in anti-EGFR receptor therapy of CRC. Several genomics analyses
based on DNA extraction and RNA expression profiling showed that KRAS
mutation is a candidate marker associated with resistance to cetuximab treatment
in CRC (De Roock et al. 2008; Lièvre et al. 2008; Tabernero et al. 2011). Overall,
the standard agents licensed for use in CRC include conventional cytotoxics, such
as fluoropyrimidines, and targeted agents, such as, cetuximab, panitumumab and
bevacizumab (Strimpagos et al. 2009). Inhibitors against the EGFR and VEGFR
proteins have been demonstrated to be the most common biomarkers for predicting
drug response.

Breast cancer Breast cancer is very common in women, and trastuzumab has
become an efficient therapy treat for breast cancer. Human epidermal growth
factor receptor (HER) 2/neu gene amplification has been proved to be a marker
that responds to both trastuzumab and tamoxifen treatments in breast cancer (Paik
et al. 2004; Vogel et al. 2002). In breast cancer, variants of the encoding cyto-
chrome P450 2D6 (CYP2D6) gene and CYP2C19 polymorphism could also plays

Table 10.1 Cancer biomarkers for drug response

Cancers Drugs Biomarkers References

Colorectal cancer 5-FU Thymidylate synthase Pullarkat et al. (2001)
Colorectal cancer Cetuximab EGFR De Roock et al. (2008),

Lièvre et al. (2008),
Tabernero et al. (2011)

Colorectal cancer Irinotecan UGT1A1*28 l*28 Hoskins et al. (2007)
Colorectal cancer Bevacizumab VEGFR Strimpakos et al. (2009)
Breast cancer Trastuzumab HER-2/neu Vogel et al. (2002)
Breast cancer Tamoxifen HER-2 Paik et al. (2004)
Breast cancer PF-03084014 HEY2, HEY3, HEY4 Zhang et al. (2012b)
Breast cancer Tamoxifen CYP2D6 Punglia et al. (2008)
Breast cancer Tamoxifen CYP2C19 Schroth et al. (2007)
Lung cancer Erlotinib EGFR Shepherd et al. (2005)
Lung cancer Gefitinib EGFR Mok et al. (2009)
Lung cancer Cetuximab EGFR Pirker et al. (2009)
Prostate cancer Tissue-Associated

Antigens
IgG Smith et al. (2011)

Prostate cancer Dasatinib and
Sunitinib

Cav-1 Tahir et al. (2012)

Pancreatic cancer BSI-201 BRCA2 Fogelman et al. (2011)
Bladder cancer Platinum-based

adjuvant
chemotherapy

ERCC1 Bellmunt et al. (2007)

Bladder cancer Adjuvant
chemotherapy

MDR1 Hoffmann et al. (2010)

Thyroid cancer Motesanib PlGF and VEGF Bass et al. (2010)
Renal cell carcinoma Sunitinib VEGF, VEGF-2,

VEGF-3
De Primo et al. (2007)

Melanoma Vemurafenib BRAF V600E Long et al. (2011)
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roles in predicting tamoxifen therapy (Schroth et al. 2007). In particular, Punglia
et al. (2008) created a Markov model to determine the choice of optimal adjuvant
endocrine therapy of CYP2D6 in breast tumor. Despite these achievements, other
cytochrome P450 enzymes may be also related to the clinical outcome of
tamoxifen-treated breast cancer patients, which needs more investigations. More
recently, a small molecule c-secretase inhibitor PF-03084014 has been applied in
breast cancer clinical investigation (Zhang et al. 2012b). Some notch pathway
target genes including HEY2, HES4, and HES3 also response to PF-03084014
treatment of breast cancer.

Lung cancer Lung cancer is the leading cause of cancer death both for men and
women. As monoclonal antibodies targeting EGFR, Erlotinib, gefitinib, and ce-
tuximab have been studied extensively in the treatment of Lung cancer. EGFR
mutation has been proved to be a predicator of the efficacy of erlotinib (Shepherd
et al. 2005), gefitinib (Mok et al. 2009), and cetuximab in lung cancers (Pirker
et al. 2009). For the crizotinib treatment in lung cancer, two genes of echinoderm
microtubule-associated protein-like 4 (EML4) and the anaplastic lymphoma kinase
(ALK) are two promising candidate biomarkers (Soda et al. 2007).

Prostate cancer Prostate cancer is a leading cause of cancer-related death of
men through the whole-world. Prostate-specific antigen is the most useful bio-
marker for detecting prostate cancer. Smith et al. (2011) indentified that IgG
responses to a panel of tissue-associated antigens in prostate cancer. Tahir et al.
(2012) showed that a serum maker Serum caveolin-1 (Cav-1) could be a biomarker
of response to both dasatinib and sunitinib treatment in Prostate cancer.

Pancreatic cancer Fogelman et al. (2011) investigated the drug response of
pancreatic cancer treated with niparib (BSI-201), showing that germline BRCA2
mutation should be a premising biomarker.

Bladder cancer Bellmunt et al. (2007) suggested that excision repair cross-
complementing 1 (ERCC1) is a biomarker for platinum-based adjuvant chemo-
therapy in bladder cancer. This biomarker has been confirmed by Hoffmann et al.
(2010), as well as multidrug resistance gene 1 (MDR1) is also proposed as a
related biomarker.

Thyroid cancer Bass et al. (2010) have shown that serum placental growth
factor (PlGF) and vascular endothelial growth factor (VEGF) are two predicting
biomarkers in thyroid cancer with treatment of motesanib, which is always
accompanied with antiangiogenic therapies.

Renal cell carcinoma (RCC) De Primo et al. (2007) suggested that VEGF,
soluble VEGFR-2, and a novel soluble variant of VEGFR-3 could be potential
biomarkers that response to sunitinib in RCC.

Melanoma The last cancer shown is melanoma, which is the leading cause of
death from skin disease. Long et al. (2011) conducted a survival analysis of how
BRAF mutation status correlated with clinicopathologic features and outcome in
melanoma. BRAF V600E was shown to have response to vemurafenib treatment in
melanoma.
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10.5.2 Biomarkers for Other Diseases

Epilepsy is one of the most prevalent chronic neurologic syndromes, which affects
an estimated 50 million people worldwide. The meta-analysis (Grover and Kukreti
2013) of the published studies of reported genetic variants from ABCC2 showed
that it is a useful biomarker on drug response in patients with epilepsy (PWE).
Other pharmacogenetic biomarkers for PWE include transporters ABCC1, and
ABCC5. In autoimmune diseases, ATR-107 is an antibody that targets the IL-21
receptor. IL-21 induced phosphorylation of STAT3 (pSTAT3) can be used as a
biomarker to evaluate the target engagement of ATR-107 in human whole blood
(Zhu et al. 2013). In chronic lymphocytic leukemia (CLL), Saddler et al. (2007)
found that the gene p53 is the important biomarker of response to murine double
minute 2 inhibitors in CLL. This work analysis genome-wide change of copy
number from single-nucleotide polymorphism (SNP) arrays to identify p53 status.

10.6 Bioinformatics for Biomarkers

The open-source data repositories and powerful bioinformatics tools have been
grown and developed for supporting new biomarkers discovery research. This
section will discuss key information resources: FDA labels and PharmGKB, and a
web-based tool: OmniBiomarker, as well as their application in identifying bio-
markers for pharmacological activity.

10.6.1 FDA Labels

US Food and Drug Administration (FDA), the biggest genomic biomarker treasure
was launched in 2006, which focuses on developing biomarkers for use in regu-
latory decision making, as well as biomarker discovery (Wagner et al. 2007). FDA
classifies current biomarkers involved in drug response into three types: ‘known
valid biomarkers’, ‘probable valid biomarkers’ and ‘exploratory or research bio-
markers’ (Glauser 2011; Goodsaid and Frueh 2006). Therefore, it requires several
prerequisites and evidentiary standards to validate and qualify biomarkers before
practice. FDA provides a tool to evaluate qualification data for biomarkers for
efficient drug development. The qualification pilot process for biomarkers at FDA
was described by Goodsaid and Frueh (2007).

In addition, FDA also identifies drug labels and determines their drug response.
FDA-approved drug labels provide a comprehensive list of these markers and links
to pharmacogenomic data, which still need genetic testing thereby for reaching the
therapeutic decision. In the last decade, there is a significant increase of labels
containing such biomarkers and drug information. A tabulated overview of valid
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genomic biomarkers in the context of approved drug labels are summarized in the
FDA website (http://www.fda.gov/default.htm). Here, we just list some examples
of FDA-approved drugs for EGFR with pharmacogenomic information in their
labels (Table 10.2).

10.6.2 PharmGKB

Pharmacogenomics Knowledge Base (PharmGKB) is a comprehensive database
for pharmacogenomic biomarkers (Klein et al. 2001; Hewett et al. 2002; Thorn
et al. 2010). PharmGKB can collect pharmacogenomic data from a variety of
sources and provides knowledge about the impact of genetic variation on drug
response for researchers. The content of the PharmGKB database have variant
annotations, drug-centered pathway, very important pharmacogene summaries,
clinical annotations, pharmacogenomics-based drug-dosing guidelines, and drug
labels with pharmacogenomic information. PharmGKB currently contains over
25,000 genes under study, over 100 pathways and large ontologyies of pharma-
cogenetics concepts.

PharmGKB allows the application in systematic pharmacogenomic analysis of
biomarkers. The pharmacogenomic biomarkers can be accessed from the Phar-
mGKB website (http://www.pharmgkb.org/). Firstly, the genomic variants and
their automated annotation, aggregation, and integration can help users to find new
drug-gene interactions. Then, very important pharmacogenes provide a concise
summary of which gene is very important in differential drug response. Finally,
bioinformatics tools, such as text mining, will be used to extract PharmGKB data
for the clinical use.

10.6.3 OmniBioMarker

OmniBioMarker (Phan et al. 2009a, b), a knowledge-driven biomarker identifi-
cation and data combination, is a very famous web-based bioinformatics tool for

Table 10.2 List of EGFR in drug labels (adopted form FDA website)

Drug Therapeutic
area

Biomarkers Label sections

Cetuximab (1) Oncology EGFR Indications and usage, warnings and precautions,
description, clinical pharmacology, clinical
studies

Erlotinib Oncology EGFR Clinical pharmacology
Gefitinib Oncology EGFR Clinical pharmacology
Panitumumab (1) Oncology EGFR Indications and usage, warnings and precautions,

clinical pharmacology, clinical studies
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biomarker discovery, optimization and clinical validation, by high-throughput
analyzing various microarray data. Now, omniBioMarker can be accessed via
http://omnibiomarker.bme.gatech.edu/. OmniBioMarker provides both the avail-
able samples and the selection algorithm for the discovery of new biomarkers. For
the application of this software tool in biomarker identification and clinical vali-
dation it includes several steps: (1) collecting high-throughput ‘‘omics’’ datasets
form microarray gene expression, (2) using previous biological knowledge to
guide the feature and algorithm section, and using score that represent maximal
biological relevance to rank previously validated genes, (3) applying biotechnol-
ogy such as real-time polymerase chain reactions (RT-PCR) to validate candidate
biomarkers. In particular, omniBiomarker uses the Cancer Gene Index (CGI) as
the biomarker knowledge base, to select suitable algorithm for cancers. Phan et al.
(2012) have discovered a list of novel biomarkers for renal, prostate, liver, and
pancreatic cancer (see Table 1 in Phan et al. 2012).

10.7 Conclusion

Biomarkers are playing an increasingly important role, not only in marking par-
ticular physiological state, but also in the prediction of drug response. New high-
throughput ‘‘omic’’ technologies including pharmacogenomic, pharmacoproteo-
mic, and pharmacometabolomic are advancing the field of biomarker discovery in
drug response. As such, the flood of pharmacological biomarkers is opening the
new door into personalized medicine. However, there still a lot of open questions
in these new discoveries. Although methods for biomarker discovery are devel-
oping rapidly, the combination of these methods is still needed. Using bioinfor-
matics tools for qualification and valuation of biomarkers sets another important
challenge. To this end, we are currently using the method of meta-analysis to
evaluate the potential function of biomarkers (Yuan et al. 2013). We are looking
forward to an exciting future in this area.
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Chapter 11
Network Biomarkers for Diagnosis
and Prognosis of Human Prostate Cancer

Jiajia Chen and Bairong Shen

Abstract Prostate cancer is one of the most lethal malignancies worldwide, owing
to the lack of precise markers for early diagnosis. Researchers are now routinely
identifying biomarkers for prostate cancer using whole-genome expression pro-
filing along with proteomic technologies. Although there has been some success in
this field, many efforts have been complicated by the fact that individual markers
are highly divergent. Prostate cancer is a systems biology disease that results from
the accumulated mutations acting in concert. Hence the individual markers would
fail to capture the heterogeneity of carcinogenesis. As molecular interaction net-
works become available for human, network-level biomarker evolves as a prom-
ising methodology that can address this challenge. In this chapter we first describe
some foundations of network analysis, and then introduce the recent progress in
network biomarker discovery for diagnosis and prognosis of human prostate
cancer.

Keywords Prostate cancer � Biomarker � Network � Diagnosis � Prognosis

11.1 Introduction

Prostate cancer (PCa) is the most common cancer among males and one of the
leading causes of cancer deaths worldwide (Siegel et al. 2012). It is estimated by
the cancer statistics (Siegel et al. 2013) that there will be 238,590 new cases and
29,720 deaths from PCa in the United States in the year 2013. The mortality and
recurrence rate are projected to continue rising. This has rendered PCa a public
health problem which is in need of sensitive diagnostic and prognostic markers.

J. Chen � B. Shen (&)
Center for Systems Biology, Soochow University, No. 1 Shizi Street, Postbox 206,
215006 Suzhou, Jiangsu, China
e-mail: bairong.shen@suda.edu.cn

B. Shen (ed.), Bioinformatics for Diagnosis, Prognosis and Treatment of Complex
Diseases, Translational Bioinformatics 4, DOI: 10.1007/978-94-007-7975-4_11,
� Springer Science+Business Media Dordrecht 2013

207



Biomarkers are unique molecules which could serve as the indicators of disease
occurrence and progression. Sensitive biomarkers hold great potential for early
diagnosis and in some cases they may represent potential drug targets. Since its
introduction two decades ago, prostate specific antigen (PSA) screening has been
the mainstay for early detection of prostate cancer (Barry 2001). Nonetheless,
screening for PSA remains controversial due to the poor specificity. Elevated
serum PSA level may be observed in both malignant tumor and non-malignant
prostatic disorders. Moreover PSA-based screening has been criticized for over
detection and overtreatment of benign tumors which may otherwise never have
been diagnosed without PSA screening (Venderbos and Roobol 2011). The major
limitation with PSA highlights the need for more reliable and sensitive biomarkers
for diagnosis and staging of PCa.

11.2 Current Prostate Cancer Biomarker Discovered
by Genomics and Proteomics Technologies

During the past two decades, there have been intense interests in identifying
biomarkers for prostate cancer, as represented by the numbers of published papers
found in Pubmed (Fig. 11.1).

Recent progress in high throughput genomic technologies, such as array-based
methods and next generation sequencing (NGS), enable us to interrogate the
prostate cancer genome with higher throughput and improved accuracy. A mature
body of studies has characterized the gene expression profiles in prostate cancer.
Many differentially expressed genes have been identified for use in the diagnosis,
prognosis, subtype classification, as well as the prediction of therapeutic response
of PCa.

0

50

100

150

200

250

300

350

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Year of publication

N
um

be
r 

of
 h

its
 in

 P
ub

m
ed

Fig. 11.1 Number of PubMed hits for the query ‘‘prostate cancer[ti] and *marker*[tiab]’’ in the
past two decades

208 J. Chen and B. Shen



With recent advances in proteomic methods, much effort has gone into proteome-
scale discovery of novel biomarkers. Current proteomic practice relies on either
gel-based [e.g. 2DE, 2D-DIGE (Marouga et al. 2005)] or gel-free separation tech-
niques [e.g. liquid chromatography, cICAT (Hassan et al. 2011), iTRAQ (DeSouza
et al. 2005), SILAC (Ong et al. 2002)], followed by mass spectrometry [e.g. MALDI
(Kang et al. 2005); SELDI (Merchant and Weinberger 2000) or tandem mass spec-
trometry] to identify protein biomarkers. These various approaches have been
reviewed elsewhere (Domon and Aebersold 2006). Most applications in biomarker
discovery aim to determine differential protein expression profiles between malignant
and benign samples. Through proteome-wide screening in cancer patients, a list of
candidate PCa markers has been identified. These studies used various statistics to
quantify the level of differential expression for individual proteins, which are then
scored for their discriminative ability between different disease status (e.g. tumors vs.
controls, primary vs. metastasis, good vs. poor prognosis, subtype 1 vs. subtype 2).
The top-scoring proteins were normally selected as markers.

Some of most prominent diagnostic marker identified to date include alpha-
methylacyl-CoA racemase (AMACR) (Luo et al. 2002), prostate cancer gene 3
(PCA3) (Tinzl et al. 2004), early prostate cancer antigen (EPCA)-2 (Leman et al.
2007), hepsin (Luo et al. 2001), kallikrein-related peptidase 2 (KLK2) (Darson
et al. 1997) and polycomb group protein enhancer of zeste homolog 2 (EZH2)
(Varambally et al. 2002). These molecules were claimed to be more sensitive and
specific for PCa detection than PSA, and thus provide a potential complement to
PSA for the early diagnosis of PCa.

11.3 Pathway-Level Analysis of Prostate Cancer

While the number of genome-based biomarker analysis is growing exponentially,
single gene-based differential expression analysis faces serious challenges owing
to limited prediction accuracy, poor reproducibility, and unclear biological rele-
vance. Many of the single gene markers fail to achieve similar performance in
validation studies and few molecules will make it to the routine clinical practice.
In addition, the marker lists obtained by different research groups do not coincide
with each other and share few common candidates (Ein-Dor et al. 2006). A further
limitation of these signatures is that they provide poor insight into the molecular
mechanisms underlying the carcinogenesis.

These problems are thought to arise as the result of intra-tumor and inter-tumor
heterogeneity. In solid tumor diseases such as prostate cancer, it is difficult to
separate tumor from normal cells. Therefore, a pure tumor cell population is not
easily available. The mixed cell population may dilute the expression profile and
make it difficult to get a distinct expression signature. Moreover, the inter-tumor
heterogeneity across patients complicates this problem. Inter-tumor heterogeneity
refers to the disparity across patients. It’s observed that no single marker is pre-
dictive of the phenotype of all patients.
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In addition, single gene based approach is thought to be simple and intuitive.
These approaches ignore the dependency between genes. It is possible that some of
the selected gene markers may be functionally related hence contain redundant
information that could reduce the overall prediction power.

There is growing appreciation that cancer is a complex disease. A cancer
phenotype is rarely caused by an abnormality in individual genes or proteins, but
reflected by functionally related groups of genes or proteins that act in a concerted
manner (Chen et al. 2012).

To address the aforementioned limitations, a more effective means of marker
identification is needed. Extensive work has been done that extends the level of
analysis from an individual gene to groups of functionally related genes, such as
pathways. Pathways can be viewed as an ensemble of successive events among a
set of genes towards a defined functional outcome. Depending on the scenario,
such pathway maps can involve signaling cascades, transcriptional regulation, or
metabolic reactions.

Pathway analysis typically correlates seemingly disparate molecular changes
together into a common pattern. This is achieved by projecting them onto well-
defined biological processes. Known pathways can be readily drawn from pathway
databases (listed in Table 11.1).

Predefined biological processes or pathways are then checked for enrichment of
differentially expressed genes (DEGs). Statistic approaches using a hypergeo-
metric distribution could be used for enrichment analysis. Enriched pathways
including more DEGs than expected by chance are more likely to be the potential
candidate markers. Figure 11.2 provides the flowchart of the pathway-based bio-
marker discovery.

Table 11.1 Prominent pathway databases

Database Website Description

Biocarta http://www.biocarta.com/ The pathway section present gene interactions as
dynamic graphical models

DAVID http://david.abcc.ncifcrf.gov/ Integrates and optimize pathway annotations from
BioCarta & KEGG

GO http://www.geneontology.org/ Provides gene product annotation data and data
processing tools

Ingenuity http://www.ingenuity.com/ High-quality pathway analysis of complex omics
data

KEGG http://www.genome.jp/kegg/ A collection of manually drawn pathway maps
representing knowledge on the molecular
interaction and reaction networks

MetaCore http://www.genego.com/ Manually curated databases for pathway analysis and
data mining

MetaCyc http://metacyc.org/ A database of nonredundant, experimentally
elucidated metabolic pathways

MSigDB http://www.broadinstitute.org/
gsea/msigdb/index.jsp

A collection of annotated gene sets or pathways from
other databases for use with GSEA software
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Some studies have provided insight into pathways with relevance to the path-
ophysiology of prostate cancer. In the seminal work by Rhodes et al. (2002), a
statistical model was proposed to meta-analyze independent gene expression
datasets. The model was then applied to 4 microarray datasets for prostate cancer
and yielded a consistent list of DEGs. Dysregulated genes were subsequently
projected to functional annotations and highlighted polyamine and purine bio-
synthesis as key regulatory pathways with alteration in PCa development. Glinsky
et al. (2004) reported that activation of the Wnt signaling pathway along with up-
regulation of Wnt5A and down-regulation of KFL6 (COPEB) suggest poor clinical
outcome in prostate cancer. Our colleagues, Wang et al. (2011) also sought to
identify pathway-level biomarkers by meta-analyzing 10 public prostate cancer
microarray expression profiles. Pathways from KEGG and MetaCore were eval-
uated for enrichment of dysregulated genes. As a result, endothelin-1/EDNRA
transactivation of the EGFR pathway was found to be associated with prostate
cancer. In a conceptually similar study, Kumar et al. (2011) compared the mutation
spectrum of castration-sensitive and castration-resistant PCa cell lines, revealing
the role of the Wnt pathway in castration resistance. In a more recent study, Taylor
et al. (2010) conducted an integrative genomic profiling of human prostate cancer.

Fig. 11.2 The research pipeline for pathway-based and network-based biomarker discovery
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The authors pinpointed the PI3K, RAS/RAF, and AR pathways as potentially
contributing to metastasis of PCa.

Unlike single-gene level markers, pathway level markers are more reproducible
and tend to have higher discriminative power. In addition, pathways incorporate
biological knowledge and thus provide a strong functional interpretation of the
genomics data. Although pathway-based approach holds great promise for bio-
marker discovery, a remaining hurdle is that currently known pathways only cover
a small fraction of human genes. As a result, the important genes that have not yet
been assigned to a definitive pathway may be excluded from further analysis.
Besides, this approach fails to account the extensive correlation between different
pathways. Thus, there is a growing trend to shift from a strictly pathway-centric
marker discovery toward an integrative network-based approach.

11.4 Network-Based Biomarker Discovery

Network-based analyses assume that gene products associated with cancer often
appear as hot spots in PPI networks. This concept is exploited to investigate the
overall behavior of genes connected in a larger human protein–protein interaction
(PPI) network. There is growing interest in identifying differentially expressed
subnetwork, that is, functionally associated genes with coordinate expression
changes as novel markers.

The recent availability of systematic yeast two-hybrid and transcriptional
interaction screens (Kim et al. 2005) have increased the coverage and quality of
human protein interaction database. This improvement in turn, enables further
opportunities for molecular characterization of cancer. Network-based approaches
have found application in multiple cancer types, including the breast cancer
(Chuang et al. 2007; Taylor et al. 2009; Su et al. 2010), colorectal cancer (Nibbe
et al. 2010; Chowdhury and Koyuturk 2009), hepatocellular carcinoma (Zhang
et al. 2011) and gastric cancer (Liu et al. 2011).

The network-based method has several major advantages over traditional
approaches that study individual genes or loci. First, the networks provide functional
insight into the mechanistic bases of cancers. Once a list of candidate markers is
inferred, a primary task is to interpret them in the biological context. Network data
provide abundant information that could be employed for this purpose. Second,
network-based method may lead to the identification of non-discriminative cancer
genes. Many disease-causing genes are not differentially expressed per se, and are
often regarded as non-discriminative or low scoring by conventional analysis.
However, they are essential for interconnecting many hot spot proteins, forming an
integral network whose overall activity is discriminative. Network analysis is able to
uncover these non-discriminative genes which, in turn, offer novel targets for drug
development. Third, network markers are reported to be more reproducible across
different cancer datasets and can improve the prediction accuracy. In a meta-analysis
of breast cancer datasets, Chuang et al. (2007) showed that subnetwork markers
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were significantly more reproducible between patient cohorts than individual marker
genes (12.7 vs. 1.3 %). They also ascertained that subnetwork markers are more
accurate in the prediction of metastasis in breast cancer.

In the remainder of this chapter, we will describe some foundations of network
analysis, and then address recent developments in the identification of network
biomarkers that are discriminative of cancer phenotypes. Finally we highlight 4
case studies on prostate cancer and explain how the emerging network-based
approaches can discover robust, specific biomarkers of prostate cancer.

11.5 Research Pipelines for Network Biomarker
Identification

A network-based approach aims to find significant subnetworks whose members
are coordinately dysregulated in cancer samples. The common tasks could be
summarized as follows:

1. Discovery and scoring of protein interaction subnetworks which is discrimi-
native of cancer;

2. Subnetworks are used as features to train a classifier;
3. Cross validation experiments are performed to test the effectiveness of network

markers.

The general scheme for the network-based biomarker analysis is also outlined
in Fig. 11.2.

11.5.1 Searching for PPI Subnetwork with Discriminate
Potential

Network construction is fundamental to network-based marker identification. The
generation of PPI networks requires a pooled dataset comprising interactions
among proteins. The interaction data could be derived from high-throughput
experiments, inferred via homology and co-citation, or culled from prior litera-
tures. In these protein interaction networks, nodes are proteins whereas edges are
functional correlations that link the proteins.

Recent years have witnessed an exceptional growth in human-specific protein
networks. High-throughput experiments, such as affinity purification mass spec-
trometry, yeast two-hybrid and protein microarrays, have accelerated the deter-
mination of protein–protein interaction data. Most of the PPI data are documented
in scientific literatures. To make this information more readily available, some
initiations have set out to mine PPI information from literatures and to store the
curated interactions in various protein interaction databases. Some prominent
protein interaction databases are listed in Table 11.2.
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Network-based discovery process begins by obtaining differentially expressed
proteins possibly involved in the phenotype. The resultant proteins are then used as
seeds to greedily grow subnetworks from them. The seed proteins could be
imported into bioinformatics tools that mine the curated protein–protein interac-
tions database or literatures. In this way, the proteins that are closely connected to
the seed proteins are extracted. This provided us with a rough protein interaction
network that includes both cancer-responsive proteins and their interactive
partners.

11.5.2 Scoring Subnetworks

The next step is to search for subnetworks whose activities were highly discrim-
inative of cancer condition. This requires a proper scoring method to quantify the
activity of a candidate subnetwork. Several scoring methods have previously been
proposed that rank the activity of a subnetwork in response to given condition. The
existing methods define activity from different aspects: expression level, coex-
pression pattern, or the topological features of the subnetwork.

It is a most popular way to use the gene expression data to infer the subnetwork
activity. Several works have superimposed gene expression data onto corre-
sponding proteins in the network. Then the aggregate expression levels of member
genes in each network are summarized into activity score. Top-scoring subnetwork
regions that show significant changes in expression are viewed as potential active
subnetworks.

Other groups try to measure the activity using coherent expression patterns
between the network members. These scoring methods are based on the hypothesis
that expression correlation implies interaction coherence of the protein. For
instance, Ideker et al. (2002) proposed an statistical measure for distinguishing
condition-relevant modules by the co-expression of the genes members encoding
the network. They sums up the standard normal inverse of a single gene’s P-value
(z-score) adjusted for the size of the subnetwork. Chen and Yuan (2006) developed
an network-partitioning algorithm that takes into account functional relationship
between the proteins. More recently, Taylor et al. (2009) calculated the variations
in interaction coherence between members in a subnetwork under investigated
condition.

Recently, a novel scoring scheme, edge-based scoring function, has been pro-
posed (Nibbe et al. 2009). The edge-based scoring function utilizes protein
structure information (e.g. proximity and connectivity) of the interactome to search
for significant subnetworks implicated in cancer. This approach makes an
improvement over the previous methods in that it captures both gene expression
data and post-transcriptional activity.
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11.5.3 Training Classifiers

Once the activity scores are obtained, they are used as feature values to train a
classifier that distinguishes the phenotypes with high accuracy. A variety of sta-
tistical tools have been established for pattern recognition and classification. Such as
logistic regression, support vector machines (SVM), Bayesian networks, k-nearest
neighborhood, decision tree, artificial neural networks (ANN) and clustering.

11.5.4 Performance Evaluation

Finally, resultant classifiers should be evaluated for their discriminative power. To
assess the classification performance, classifiers are subjected to cross-validation. In
cross-validation, the available patient data are divided into 3 subsets: training sets,
test sets and validation sets. Training sets are used to build the classifier whereas the
test sets are used to evaluate the predictive accuracy of the classification model. For
the validation set, an Area under ROC curve (AUC) is reported to optimize the
number of markers used in the classifier. Finally, AUC on the test set is calculated
as the final classification performance against a random prediction.

11.6 Network-Based Biomarkers in Cancers

Network-based biomarker discovery is emerging rapidly. We have seen a growing
number studies on the exploration of cancer related networks. For example,
Chuang et al. (2007) conducted a pioneering study to identify subnetwork bio-
markers for metastatic breast cancer. Using proteins with high discriminative
power as seeds, they searched for interaction networks from protein interaction
databases. According to the authors, subnetwork activity is a function of expres-
sion of genes in a given subnetwork. The discriminative power of a subnetwork
was quantified in terms of mutual information between the phenotype and sub-
network activity. Subnetworks were used as features to train a classifier based on
logistic regression. The author demonstrated that subnetwork markers are more
accurate than single gene markers and more reproducible between datasets. Taylor
et al. (2009) integrated multiple microarray datasets to identify networks
responsible for breast cancer prognosis. The authors proposed to search for
coordinate dysregulation between genes in the human interactome. They found
that the subnetwork markers displayed favorable performance than previous pre-
dictors and suggested altered interaction coherence to be potential indicator of
breast cancer outcome. Su et al. (2010) proposed a method to identify discrimi-
native paths containing coexpressed differential genes from PPI networks. The
linear paths were then greedily combined to obtain reliable subnetworks that can
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predict breast cancer metastasis. The concept of coordinate dysregulation is also
adopted by Nibbe et al. (2010), who integrated protein and mRNA expression data
to identify subnetworks for late stage colorectal cancer. Zhang et al. (2011) applied
a network-based approach to the diagnosis of. The authors combined expression
profiles with topological features to assess the network activities. The resultant
network was reported to enhance the diagnostic ability in hepatocellular carci-
noma. Chowdhury and Koyuturk (2009) introduced another network approach.
They used binarized gene expression profiles to retrieve confident subnetworks for
predicting colorectal cancer metastasis. In a recently published paper, Liu et al.
(2011) proposed a novel approach to score dysregulated networks as biomarkers.
The method was proved to be useful for the prediction of network activities in
gastric cancer.

11.7 Network-Based Biomarkers for Prostate Cancer

Recent studies have also demonstrated the utility of network biomarkers in the
molecular diagnosis or prognosis of human prostate cancer. For example, Jin et al.
(2009) proposed a biomarker discovery pipeline that integrates expression profiles
in both genomic and proteomic levels. Using eight microarray expression datasets
and one proteomics dataset, they identified 474 genes and proteins associated with
prostate cancer. Then they searched for interactions among these molecules to
build a prostate-cancer-related network (PCRN). Based on PCRN, a set of can-
didate network biomarkers were identified that can reliably distinguish the prostate
cancer from the normal conditions.

Guo et al. (2007) suggested an edge-based scoring method for identifying
condition-responsive PPI subnetworks. In this work, the authors used interactions
(edges) instead of proteins (nodes) to capture relevant protein interaction behav-
iors. An active score was first computed for each edge based on the gene
expression profiles. Then, an overall subnetwork score was obtained by all the
edges in the subnetwork. Simulated annealing was employed as the search algo-
rithm. This approach, in contrast to node-based methods, constructed a genuine
subnetwork with specific active interactions. In addition, this method evaluated the
functional importance of the candidate subnetwork in a systematic manner. The
authors then applied this edge-based method to gene expression datasets of
prostate cancer and identified potential diagnostic markers from the human PPI
network.

Ergun et al. (2007) applied the network biology approach to find mediators in
prostate cancer metastasis. This work combined expression data with reverse-
engineered gene networks to find associated pathways and networks. The authors
proposed an algorithm called mode-of-action by network identification (MNI). The
MNI algorithm first used microarray data obtained from multiple samples to train a
network model of regulatory interactions between genes. Subsequently, the
reverse-engineered network was used to filter the condition-related genes from the
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differentially expressed genes. The algorithm was applied to both non-recurrent
primary prostate cancer and metastatic prostate cancer datasets, and identified AR
pathway as a significant mediator in metastatic prostate cancer.

In a more recent study, Ummanni et al. (2011) coupled highly sensitive two-
dimensional differential gel electrophoresis (2D-DIGE) and MALDI-TOF–MS/MS
to investigate the protein expression patterns in prostate cancer. The differentially
expressed proteins were mapped into major pathways involved in PCa using
MetaCoreTM (GeneGO) and ingenuity pathway analysis (IPA) program. A protein
network was built for analyzing highly interconnected shortest pathways. A master
global network was created according to published annotations on all differentially
expressed proteins. Using expression levels as inputs, functional subnetworks were
revealed with altered expression in PCa. The major hubs of the significant sub-
networks were further validated by real-time PCR analysis.

11.8 Conclusions

The evolving field of network-based biomarkers is destined to revolutionize the
clinical practice of prostate cancer. On the other hand, the studies to date are still
preliminary. Advanced computational frameworks are required to handle with the
ever-growing network-level information. Finally, the network biomarkers need to
be rigorous validated before they are translated into clinical application.
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