


Foreword

At the beginning of the 1970s, at the height of the Cold War, it was believed that the
scientific community could be an important element of future détente between the
main political superpowers, the Soviet Union and the United States, and their allies
in the Eastern and Western political blocs. It was therefore decided to establish a
scientific institution whose main aim would be to build bridges between these two
competing political and economic systems. The International Institute for Applied
Systems Analysis (IIASA) was founded in 1972 by 12 countries. Poland, represented
by the Polish Academy of Sciences (SRI PAS), was one of the founding countries of
IIASA and has continuously collaborated with the Institute ever since.

Polish scientists joined the international scientific community of IIASA with
great enthusiasm. Working with leading scientists from different countries helped
Poland to establish new areas of scientific activity focused on interdisciplinary
research. As a result of cooperation with IIASA, Poland has initiated large research
programs to address problems such as the development of rural areas and the
establishment of rational water policies. The important Polish contribution to the
work of IIASA has also been noteworthy, especially in the application of optimi-
zation methods for solving complex decision problems.

After the breakdown of the Communist system the role of IIASA changed.
IIASA now applies its main asset—expertise in solving complex problems using
rigorous scientific methodology—to tackling problems of regional and global
dimensions. Polish scientists working in IIASA’s multinational teams have been
involved in many important research activities such as efforts against transboundary air
pollution. Polish scientific expertise, especially in the area of buildingmathematical and
computer models of complex phenomena, has contributed to important research
programs at IIASA addressing problems related to climatic change. As the impact of
human activities on climate, especially those related to energy generation and
consumption, is of great importance to Poland, the Polish scientific community is
determined to continue their research engagement in this important field.

The present book is an example of the cooperative activities of IIASA and Polish
researchers. It is an outcome of the 2nd Workshop on Uncertainties of Greenhouse
Gas Inventories, the second of the three triennial Workshops organized by IIASA
and the Systems Research Institute, Polish Academy of Sciences. The first Workshop
took place in Warsaw, Poland, in 2004, the second in Laxenburg, Austria, in 2007, and
the third in Lviv, Ukraine, in 2010 with the support of the Lviv Polytechnic National
University. This series of Workshops, devoted to topical investigations on the impacts
of human activities on climatic changes represents an important contribution of
IIASA and Polish researchers cooperation to the world community.

May I wish the IIASA and the worldwide scientific community every success in
their future cooperative endeavors.

Professor Michał Kleiber Warszawa
President of the Polish Academy of Sciences January 25, 2011
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Abstract The assessment of greenhouse gases emitted to and removed from the
atmosphere is high on the international political and scientific agendas. Growing
international concern and cooperation regarding the climate change problem have
increased the need for policy-oriented solutions to the issue of uncertainty in, and
related to, inventories of greenhouse gas (GHG) emissions. The approaches to
addressing uncertainty discussed in this Special Issue reflect attempts to improve
national inventories, not only for their own sake but also from a wider, systems
analytical perspective—a perspective that seeks to strengthen the usefulness of
national inventories under a compliance and/or global monitoring and reporting
framework. These approaches demonstrate the benefits of including inventory
uncertainty in policy analyses. The authors of the contributed papers show that
considering uncertainty helps avoid situations that can, for example, create a false
sense of certainty or lead to invalid views of subsystems. This may eventually prevent
related errors from showing up in analyses. However, considering uncertainty does
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not come for free. Proper treatment of uncertainty is costly and demanding because
it forces us to make the step from “simple to complex” and only then to discuss
potential simplifications. Finally, comprehensive treatment of uncertainty does not
offer policymakers quick and easy solutions. The authors of the papers in this Special
Issue do, however, agree that uncertainty analysis must be a key component of
national GHG inventory analysis. Uncertainty analysis helps to provide a greater
understanding and better science helps us to reduce and deal with uncertainty. By
recognizing the importance of identifying and quantifying uncertainties, great strides
can be made in ongoing discussions regarding GHG inventories and accounting
for climate change. The 17 papers in this Special Issue deal with many aspects of
analyzing and dealing with uncertainty in emissions estimates.

1 Introduction

Accounting for greenhouse gas (GHG) emissions has emerged as an issue of
considerable interest. While the scientific community is working for understanding
of geochemical cycles, public policy is aiming to limit and decrease emissions and
thereby to mitigate global climate change. The issues of monitoring and verification
of international or subnational commitments to reducing emissions are receiving
increasing attention (e.g., NRC 2010).

Markets for trading emission permits are emerging. Decision makers are very
interested in understanding the risks of increasing emissions and the opportunities
for mitigation. An earlier collection of papers (Lieberman et al. 2007) raised many
of the issues associated with uncertainty in emissions accounting and this is the
continuing concern of this special volume of research papers.

The current task under the United Nations Framework Convention on Climate
Change (UNFCCC) is to agree on a climate treaty that comes into force in 2012, the
year in which commitments under the Kyoto Protocol will cease (FCCC 2009a, b).
Leaders of the world’s major industrialized countries have formally agreed, in the
wake of the 2009 UN climate change conference in Copenhagen, that the average
global temperature should not increase by more than 2◦C from its preindustrial
level (FCCC 2009c; Schiermeier 2009; WBGU 2009a, b). Compliance with this
temperature target can be expressed equivalently in terms of limiting cumulative
GHG emissions, for example, up to 2050, while considering the risk of exceeding this
target (Meinshausen et al. 2009). The emission reductions required are substantial:
50–80% below the 1990 level at the global scale, with even greater reductions for
industrialized countries (EU 2009; Schiermeier 2009; WBGU 2009b).1

Given the formidable task ahead, we are confronted with the uncertainty inherent
in estimating emissions and the challenges involved in monitoring commitments and
supporting markets for emissions trading. What are the benefits of dealing directly
with uncertainty?

1Emission reductions for industrialized countries until 2050 typically range in the order of 70–
90% below their 1990 levels if the cumulative GHG emissions constraint of Meinshausen et al.
(2009) for a 2◦C temperature increase (with a risk of 10–43% of exceeding it) is expressed on
a per-capita basis, with global population projected for 2050 taken from http://www.iiasa..ac.at/
Research/POP/proj07/index.html.
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The answer to this question, given by the participants of the 2nd International
Workshop on Uncertainty in Greenhouse Gas Inventories, held 27–28 September
2007, in Laxenburg, Austria, was unanimous: we need to make use of uncertainty
analysis in developing clear understanding and informed policy. Uncertainty matters,
and is key to many issues upstream and downstream of emission inventories. Dealing
proactively with uncertainty allows useful knowledge to be generated that the
international community of countries would wish to have at hand before negotiating
international environmental agreements such as the Kyoto Protocol or its successor.
Generating this knowledge and understanding should not wait until countries agree
on a formula that will translate an approved global emissions constraint to the sub-
global level and allocate global emission shares to countries.

This Special Issue of Climatic Change brings together 17 key papers pre-
sented at the 2nd Uncertainty Workshop, which was jointly organized by the
Austrian-based International Institute for Applied Systems Analysis (http://www.
iiasa.ac.at/) and the Systems Research Institute of the Polish Academy of Sciences
(http://www.ibspan.waw.pl/). This collection of insights and techniques captures
recent thinking on why and how dealing properly with uncertainty is important as
we confront the legal and technical issues of trying to mitigate global climate change.
In this introduction we describe the overall setting of the Workshop and provide
an introduction to the individual contributions and to the group consensus. The latter
grew from the various scientific discussions and retreats during the Workshop. The
participants at the 2nd Uncertainty Workshop sensed the increasing awareness of
the importance of dealing with uncertainty. Moreover, methods for dealing with
uncertainty are improving through research efforts such as those summarized in this
volume.

2 The challenges of dealing with uncertainty are still with us

Under the UNFCCC, developed-country parties to the Convention (so-called An-
nex I countries) have, since the mid-1990s, published annual or periodic national
inventories of GHG emissions and removals. Policymakers use these inventories to
develop strategies and policies for emission reductions and to track the progress
of those strategies and policies. Where formal commitments to limit emissions
exist, regulatory agencies and corporations rely on emission inventories to establish
compliance records. Scientists, businesses, other interest groups, and the public
use inventories to better understand the sources and trends in emissions (see also,
Lieberman et al. 2007: 1–4).

However, GHG inventories (whether at the global, national, corporate, or other
level) contain uncertainties for a variety of reasons, and these uncertainties have
important scientific, economic, and policy implications. The uncertainty of emissions
estimates can be dealt with proactively. Proper treatment of uncertainty affects
everything from our understanding of the physical system to the politics of mitiga-
tion agreements and the economics of mitigation strategies. A comprehensive and
consistent understanding of, and a framework for dealing with, the uncertainty of
emissions estimates has a large impact on the functioning and effectiveness of the
Kyoto Protocol and its awaited successor.

Central to policy concerns and the present discussion alike is the need for a better
definition of the role of uncertainty analyses in national GHG inventories, as well as
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in other inventories (e.g., for mitigation projects) falling under the purview of inter-
national or national regulatory schemes. At present, parties to the UNFCCC listed in
Annex I (industrialized countries and countries undergoing economic transition) are
obliged to include in the reporting of their annual inventories direct or alternative
estimates of the uncertainty associated with these emissions and removals, consistent
with the good practice guidance reports of the Intergovernmental Panel on Climate
Change (IPCC) (FCCC 2006a; Penman et al. 2000, 2003). Inventory uncertainty
is monitored, but not regulated, under the Kyoto Protocol. International schemes
such as European Union (EU) emissions trading or that established by the Kyoto
Protocol, if they are to function as binding agreements, must be able to demonstrate
that estimates regarding emission changes are not only measurable but also that they
outstrip the uncertainty metric with which they are associated.

3 The key arguments for dealing proactively with uncertainty are becoming
increasingly relevant

It makes a big difference to the framing of policies whether or not uncertainty is
considered either reactively, because there is a need to do so, or proactively, because
impediments are anticipated. Uncertainty estimates are not intended to dispute the
validity of national GHG inventories; however, grasping the uncertainty of emission
estimates serves to underscore the lack of accuracy that characterizes many source
and sink categories. There is wide agreement that the consideration of uncertainty
can help to identify opportunities for improvements in data measurement, data
collection, and calculation methodology. But it is only by identifying elements of high
uncertainty that actual methodological changes can be introduced to address them.
Currently, most countries that perform uncertainty analyses do so for the express
purpose of improving their future estimates; and the rationale is generally the same
at the corporate and other levels. Estimating uncertainty helps to prioritize resources
and to take precautions against undesirable consequences, thus establishing a more
robust foundation on which to base policy.

The issues of concern at the 2nd Uncertainty Workshop continued to be rooted in
the level of confidence with which national emission inventories can be performed.
The research papers presented at the Workshop demonstrate that these concerns
go beyond verification, compliance, and trading of GHG emissions, which were the
issues of concern covered by Lieberman et al. (2007). The topics addressed at the 2nd

Uncertainty Workshop covered:

1. Achieving reliable GHG inventories at national and sector scales and reporting
uncertainties reliably at, and across, these scales (see especially the papers by
Winiwarter and Muik 2010; Szemesová and Gera 2010; and van Oijen and
Thomson 2010)

2. Bottom-up versus top-down GHG emission analyses (see especially the papers
by Ciais et al. 2010; Rivier et al. 2010; Verstraeten et al. 2010; Shvidenko et al.
2010; and Gusti and Jonas 2010)

3. Reconciling short-term emission commitments and long-term concentration tar-
gets; and detecting and analyzing GHG emission changes vis-à-vis uncertainty,
and addressing compliance (see especially the papers by Jonas et al. 2010; and
Bun et al. 2010a)
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4. Issues of scales of GHG inventories (see especially the papers by Bun et al.
2010b; Leip 2010; and Horabik and Nahorski 2010); and

5. Trading emissions (see especially the papers by Ermolieva et al. 2010; Stańczak
and Bartoszczuk 2010; Nahorski and Horabik 2010; and Pickl et al. 2010)

All five topics were discussed individually and in depth at the Workshop. However,
the interlinked and interdisciplinary setting of the Workshop allowed for scientific
retreats during which all topics could be reviewed in context and from a holistic
perspective, which allowed insights to emerge that could be fully scrutinized. This
made it possible to strike a balance in dealing with topics that were seen as
controversial.

4 The topics addressed

4.1 Achieving reliable GHG inventories

The comparison of inventories across countries or regions within countries, and
across sectors received wide attention. There are a number of approaches to testing
the quality of our uncertainty knowledge, to putting the uncertainty estimates of
countries into context, and to helping us to understand the differences in esti-
mates. Typically, only a few emission sources dominate the overall uncertainty of
national emissions inventories. While, in general, the economic structure of a country
influences the emission sources that contribute to uncertainty, there is currently only
one major source that is uniquely uncertain for all countries: the nitrous oxide (N2O)
emissions from soils. The dominance of one source has consequences for calculating
uncertainty, especially with regard to splitting the source into direct and indirect
emissions following the IPCC GHG inventory guidelines (Eggleston et al. 2006, vol.
4). Winiwarter and Muik (2010) argue, based on their in-depth study on Austria,
that the split sources need to be considered as being statistically interdependent,
a fact that cannot be considered by the simpler methodology recommended by
IPCC for uncertainty assessment, namely, the error propagation approach. When this
interdependency is covered in a more elaborate Monte Carlo algorithm, the overall
national GHG inventory uncertainty increases. Results thus need to be understood
in a methodology-dependent context, making it even more difficult to provide
meaningful comparisons between countries unless methodologies are laid open in
detail. In general, correlating uncertainty properly appears to be more important
than switching from less- to more-sophisticated tiers in analyzing uncertainty.

Uncertainty is inherently higher for some GHGs and sectors of an inventory
than for others. Estimates of N2O emissions tend to be more uncertain than those
of methane (CH4) and CO2. As another example, the landfill (see Szemesová and
Gera 2010) and the land use, land use change, and forestry (LULUCF) sectors2 have
higher uncertainties than other sectors. Wetlands are a typical example of a sector
with high uncertainty. The emissions from wetlands can be sizable and are highly
uncertain; not least because transient environmental conditions, anthropogenic or
natural, can turn wetlands from a GHG source into a GHG sink, and vice versa

2Another and alternative acronym introduced by the 2006 IPCC Guidelines for National Green-
house Gas Inventories (IPCC 2006: vol. 4) is AFOLU (agriculture, forestry and other land use).
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(Eggleston et al. 2006: vols. 4, 5; Pandey et al. 2007). It is important to recognize
the existence of these higher relative uncertainties. They raise the possibility that
some components of a GHG inventory could be treated differently from others in
the design of future policy agreements. Furthermore, limiting the reporting of GHG
emissions and removals under the current inventory framework to anthropogenic
sources and sinks creates additional difficulties, including uncertainty regarding the
proper designation of which particular activities are anthropogenic and which are
natural (see also full GHG accounting below). Alternative modi operandi, could
include, for example, (1) the option of not pooling subsystems, including sources
and sinks, with different relative uncertainties, but treating them individually and
differently; and (2) the option of not splitting the terrestrial biosphere into directly
human-impacted (managed) and not-directly human-impacted (natural) parts to
avoid, among other things, sacrificing bottom-up/top-down verification, as there is no
atmospheric measurement that can discriminate between the two (Jonas et al. 2009).

How to approach GHGs and sectors individually and differently was certainly not
explored in the framing of the Kyoto Protocol. It is essential to bear in mind that
inventorying the more certain GHG emissions from a specific sector on a corporate
level can be a huge challenge. Accurately inventorying the upstream and downstream
emissions of globally operating oil and gas companies serves as a good example of the
inventory challenges involved. During recent years, these companies have become
quite aware of their need for high quality data and harmonized measurements,
monitoring, and uncertainty assessment methods; they have also realized the need
to develop their own, tailored guidelines that will facilitate compliance with diverse
GHG regimes (API 2004; IPIECA 2003, 2009).

The LULUCF sector with its spatially distributed emissions provides by far the
largest challenges for emissions accounting (e.g., N2O from soils or from wetlands,
together with CO2 and CH4). The LULUCF sector’s list of crucial issues is unusually
long—it is difficult to squeeze them into the inventory framework considered under
the Kyoto Protocol. A major reason is that the mechanisms driving changes in
carbon inventories reflect both natural ecosystem processes and the direct and
indirect effects of human actions. The tools for quantifying impacts of the direct
effects of humans and of certain ecosystem processes are quite mature. Bayesian
approaches, for example, are powerful but under-utilized tools, not only for reducing
parameter errors but for combining different kinds of information and integrating
across different approaches to provide a single answer. Van Oijen and Thomson
(2010) make use of a Bayesian approach to account for the spatial heterogeneity
in soils and weather to calculate conifer forest productivity and carbon sequestration
for the whole of the United Kingdom.

Except from these specific processes, however, a wide range of indirect ecosystem
responses still require significantly improved characterization in order to be ade-
quately quantified and attributed (Field 2007). Progress in attributing and projecting
changes in large-scale carbon balances—their dynamics cover a wide range of time
scales—will require fundamental advances in understanding and modeling the inter-
actions between human and ecosystem processes. Inventory techniques for quantify-
ing ecosystem carbon stocks and stock changes are improving, as they develop from
being a foundation for assessing harvestable forest resources toward being a set of
general tools for supporting carbon accounting. The challenges, however, in moving
from timber industry statistics to general carbon accounting are daunting and far
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from being completely resolved. The advances required include not only the ability
to quantify the carbon in soils and non-marketable components of the vegetation but
also the ability to extend the analysis to ecosystem types not covered in traditional
forest inventories. Remote sensing with LIDAR and RADAR are among the most
promising techniques for efficiently extending inventories to poorly characterized
ecosystems, including tropical forests, savannas, shrublands, and tundra (see, e.g.,
Stanford University’s Carnegie Airborne Observatory: http://cao.stanford.edu).

Attributing changes in ecosystem carbon stocks to particular mechanisms is
complicated. However, neither inventory techniques nor simulation models are well
positioned to unravel the diversity of complex mechanisms and the range of possible
interactions among these mechanisms.

4.2 Bottom-up versus top-down GHG emission analyses

Top-down accounting takes the atmosphere perspective. The atmosphere mixes and
integrates surface fluxes that vary spatially and temporally. Top-down accounting
relies on observations of atmospheric CO2 concentrations (and those of other
GHGs), changes in concentrations, atmospheric circulation, and atmospheric model-
ing to infer net fluxes from land and ocean sources, and their regional distributions.
Bottom-up accounting takes the opposite perspective. It relies on observations of
stock changes or net fluxes at the Earth’s surface and infers the changes in the
atmosphere. Full carbon (and GHG) accounting—estimating all land-based fluxes,
whether human-induced or not—is necessary to reconcile the top-down and bottom-
up approaches. However, this comparison is not straightforward and must be done
with caution (see also Denman et al. 2007: Section 7.3.2.3).

Atmospheric inversions have proven to be a useful top-down approach for
quantifying carbon fluxes at large scales. Inversions allow the mismatch between
modeled and observed concentrations to be minimized, and thus measurement and
model errors to be accounted for. In inversions, fossil fuel emissions are typically
believed to be perfectly known so that their contribution to the CO2 concentration in
the atmosphere can be easily modeled and subtracted to solve for the remainder, the
regional distribution of land and ocean fluxes. However, for the majority of countries
the foundations of this assumption are weak (Marland 2008). The uncertainty num-
ber (6–10% for the global total of emissions, based on a 90% confidence interval)
that Marland and Rotty (1984) published for global fossil-fuel CO2 emissions in 1982
is not often considered and has never been formally reworked.

Ciais et al. (2010) review the potentials and perspectives of atmospheric inversion
to anticipate its emerging limitations in terms of extending atmospheric inversion
to smaller scales, for example, inadequate as well as insufficient data and resolving
atmospheric transport in global models, Atmospheric inversion is seen as playing
a role as one of several observing strategies for the global carbon cycle, especially
in detecting carbon cycle feedbacks resulting from climate change and other large-
scale signals. Atmospheric inversions are envisioned as a continuing complement to
surface flux models or surface observations and inventories.

Rivier et al. (2010) demonstrate the usefulness of the atmospheric inversion
approach, if used at large scales, to advance our understanding of the carbon
cycle regionally and its relevance to mitigation policies at these scales. The authors
perform a CO2 monthly inversion for the years 1988–2001 to estimate the net
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ecosystem exchange (NEE) for the whole of Europe, revealing a small sink of −0.1
± 0.4 Gt C/y (based on a 68% confidence interval). Their regional analysis shows a
“flux dipole” with a strong annual carbon sink in the southwest and a small annual
source in the northeast of Europe, while their seasonal analysis shows a shift over
time in the period of maximum carbon uptake from June to July.

While remote sensing is being used more often to assess ecosystem carbon fluxes,
its use is still infrequent. In their study, Verstraeten et al. (2010) illustrate how
remotely sensed soil moisture data (soil water index) can be integrated into an
already existing carbon balance model. Their integration exercise underlines the
important impact that soil moisture has on the magnitude as well as on the spatial
pattern of carbon exchange. Estimated net ecosystem production (NEP) decreases
in many areas when soil moisture is fully taken into account, shifting some European
countries from being an apparent sink to being an apparent source of carbon.

Full GHG accounting, meaning the full accounting of all emissions and removals,
including all greenhouse gases, is a prerequisite for reducing uncertainties in our
understanding of the global climate system. A verified full carbon accounting, in-
cluding all sources and sinks of both the technosphere and the biosphere, considered
continuously over time, would allow the research and inventory communities to:

– Present a real picture of emissions and removals at national to continental scales;
– Avoid ambiguities generated by such terms as “managed biosphere,” “base-line

activities,” “additionality,” etc.; and,
– Perhaps most importantly, provide reliable and comprehensive estimates of

uncertainties that cannot necessarily be achieved using the current approach
under the UNFCCC and the Kyoto Protocol, which provide for only partial
accounting of GHG sources and sinks. It is virtually impossible to estimate the
reliability of any system output if only part of the system is considered.

Shvidenko et al. (2010) explore the limits of employing a full carbon accounting
(FCA) approach in support of the Kyoto Protocol. By integrating all available infor-
mation sources, including empirical landscape-ecosystem approaches and process-
based vegetation models, the authors show that the net biome production of their
study region, a large boreal forest ecosystem region in Siberia, can be constrained
and estimated with relative uncertainty of as little as ∼60–80% and, by way of
comparison, its net ecosystem production with uncertainty of ∼35–40% (based on
a 90% confidence interval). Although the authors emphasize the substantial effort
needed in applying such a multiply constrained systems approach, this must be
considered as a very useful way of cross checking partial carbon accounts that are
reported under the UNFCCC and that follow incomplete system views. It would thus
be up to policymakers to decide how the FCA is used; that is, to decide whether the
results of FCA should be used for “crediting” in the sense of the Kyoto Protocol (i.e.,
for compliance) or only for “accounting,” as under the UNFCCC currently.

This perception is strengthened by Gusti and Jonas (2010) who address the gap
that still exists between bottom-up and top-down in accounting for net carbon diox-
ide emissions. Their study focus is on the terrestrial biosphere of Russia, a signatory
state to the Kyoto Protocol, and large enough to be resolved in a bottom-up/top-
down exercise. For the whole of Russia during 1988–1992, the authors estimate
an atmospheric loss, or net flux to Russia’s terrestrial biosphere (uptake) with
uncertainty of the order of 100% (based on a 90% confidence interval).
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4.3 Reconciling short-term emission commitments and long-term concentrations
targets; and detecting and analyzing GHG emission changes vis-à-vis
uncertainty, and addressing compliance

The consideration of uncertainty can help to identify opportunities for improvement
in data measurement, data collection, and calculation methodology, for resources to
be prioritized and precautions to be taken against undesirable consequences, and
thus for a more robust foundation for policy to be laid.

However, this may not be the full extent of the utility of uncertainty analysis.
Another still widely debated rationale for performing uncertainty analysis is to
provide a policy tool, a means to adjust inventories or analyze and compare emission
changes so as to be able to determine compliance or the value of a transaction. While
some experts find the quality of uncertainty data associated with national inventories
insufficient for these purposes, others offer justification for conducting uncertainty
analyses to inform and enforce policy decisions. Some experts suggest revising the
system of accounting on which current reduction schemes are based, while others
seek to incorporate uncertainty measurements into emission and emission change
analysis procedures. The latter could offer policymakers enhanced knowledge and
additional insights on which to base GHG emission reduction measures.

In the literature on climate change policy modeling at the national and interna-
tional scale, there has been virtually no treatment of uncertainty in GHG inventories
(inventory uncertainty is monitored, but not regulated, under the Kyoto Protocol).
The only provision under the UNFCCC is for adjustments in emissions to be made
for missing or misreported data (FCCC 2006b: Decision 20/CMP.1). This raises
questions as to what the benefits are of including inventory uncertainty in policy
analysis, and also of accounting for it in the implementation of policy, as opposed to
just controlling those emissions that can be definitely reported.

The consequence of including inventory uncertainty in policy analysis has not
been quantified to date. The benefit would be both short-term and long-term, for
example, an improved understanding of compliance (already a research focus) or
of the sensitivity of climate stabilization goals to the range of possible emissions,
given a single reported emissions inventory. That is, given that emissions paths are
sensitive to starting conditions and uncertain relative to what is being mandated,
what is the probability that long-term targets might be missed? Further efforts in the
latter direction are critical for addressing the practical concerns of policymakers.

The current policy approach of ignoring inventory uncertainty altogether, whether
at the country, sector, corporate, or other level, is problematical. Emission reductions
are activity- and gas-dependent and can range widely. Biases (discrepancies between
true and reported emissions) are not uniform across space and time and can discredit
flux-difference schemes which tacitly assume that biases cancel out. Human impact
on nature is not necessarily constant and/or negligible and can jeopardize a partial
GHG accounting approach that is not a logical subset of, and safeguarded by, a full
GHG accounting approach. Thus, the legitimate concern is that a policy agreement is
trying to tie down a system that is considered certain but is not truly controlled. Being
aware, and knowing, of the uncertainties involved will help to strengthen political
decision making. Of course, uncertainties are frequently reported, even by experts,
with a false sense of uncertainty. But practice will allow the expert community
involved to deal with uncertainty increasingly more accurately. The logical step for
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policymakers would be to decide whether the post-Kyoto agreement will have good
and clear rules to incorporate uncertainty and which parts of an emissions inventory
will undergo stringent compliance while accounting for uncertainty, as opposed to
consistent reporting under a global monitoring framework.

Such a step is overdue, as underlined by ongoing research that aims to improve
our understanding of compliance under uncertainty and to make use of uncertainty
at the scale of and across countries. Jonas et al. (2010) apply and compare six
techniques to analyze the uncertainty in the emissions changes that countries agreed
to realize by the end of the Kyoto Protocol’s first commitment period, 2008–2012.
The techniques all perform differently and can thus have a different impact on the
design and execution of emission control policies. However, any of the techniques, if
implemented, could “make or break” claims of compliance, especially in cases where
countries claim fulfillment of their commitments to reduce or limit emissions. Jonas
and collaborators argue that a single best technique cannot yet be identified, the main
reason for this being that the techniques suffer from shortfalls that are not scientific
but are related to the way the Protocol has been framed and implemented politically:
(1) the overall neglect of uncertainty confronting experts with the situation that for
most countries the agreed emission changes are of the same order of magnitude as
the uncertainty that underlies their combined CO2 equivalent emissions; and (2)
the introduction of nonuniform emission reduction commitments from country to
country. However, the two shortfalls could be easily overcome under a political
regime that plans with foresight and prudence.

Bun et al. (2010a) apply one of the aforementioned techniques in an educational
exercise, which allows the GHG inventories of countries under the Kyoto Protocol
to be examined from the perspective of supply and demand of emission credits
(allowances) in an emissions change-uncertainty context rather than in an emissions-
only context. The applied boundary condition—countries balance their supply and
demand among each other—facilitates the focus but does not limit the authors’
conclusions. They show that, when taking uncertainty into account, not all of the
countries are credible emission sellers, as the risk remains that these countries’
true (but unknown) emissions exceed allowed levels. Limiting this risk considerably
influences the countries’ supply–demand balance. Countries can sell less, and must
buy more, emission allowances if the risk is decreased that the countries’ emissions
exceed allowed levels. Considering uncertainty can also be seen as bringing the future
closer to the present. Some countries—notably, Russia and Ukraine—can sell much
of their emissions allowances, as GHG emissions in these countries are far below
their agreed Kyoto targets. However, their collective GHG emissions have increased
since around 2000, and appear likely to increase unabated and to exceed their Kyoto
targets in the near future, which is when the supply of allowances is exhausted. This
situation, the break-down of the supply side, will arise much sooner if uncertainty is
considered.

4.4 Issues of scales of GHG inventories

Studying GHG inventories across spatial and temporal scales, including upscaling
and downscaling, is not only carried out to achieve better insight into emissions
but can also help in identifying errors in regional inventories (e.g., with regard
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to LULUCF) and validating inventory procedures from a consistency point of
view. Operating with data across scales of heterogeneous quality, including in-
ventory data, is becoming commonplace. Research needs seem to be understood,
such as the development of spatio-temporally resolved emission factors and their
dependencies. However, although it is recognized that working across scales also
requires knowledge of uncertainty, the benefits of actually including uncertainty are
less explored and understood, particularly the newly involved boundary conditions
and forthcoming research needs. The following papers serve as examples of the
benefits that can be gained from explicitly including uncertainty in spatio-temporal
analyses.

To provide a basis for regionally targeted mitigation measures, Bun et al. (2010b)
spatially reference GHG emissions and removals, including their uncertainties,
across the territory of the Ukraine. This allows GHGs and their uncertainties to
be analyzed individually by region, gas, sector, etc. and tested against approaches—
including Monte Carlo analyses—that capture emission factors, activity data, etc.,
and uncertainties nationally in the form of single numbers or distributions. The
difference in relative uncertainty (∼2%, based on a 95% confidence interval) found
for the energy sector of the Lviv region is noteworthy.

Leip (2010) presents a new methodology to estimate the uncertainties for the
categories subsumed under the agriculture sector in the GHG inventory of the Euro-
pean Community (EU15). This methodology allows a more transparent comparison
of the uncertainty of GHG inventories across countries and could thus be used
to focus on efforts to improve GHG emission estimates at a supra-national level.
Not surprisingly, N2O emissions from agricultural soils are found to dominate the
uncertainty not only of the agricultural sector, but also of the overall GHG inventory
for many countries. The author’s analysis also shows that differences in the countries’
uncertainty data are mainly based on different input data for the calculations. Thus,
the challenge is to put uncertainty estimates for activity data and emission factors on
a solid and common basis, and to harmonize the concepts underlying the uncertainty
assessment.

Horabik and Nahorski (2010) study spatially distributed inventory data for N2O
emissions from municipalities in southern Norway, tackling situations where in-
ventory extensions beyond their present coverage have to be developed using, as
proxy data, emission activities which are more frequently available than activity
data themselves. Examining the spatial covariance in the data—the authors use
a conditional autoregressive model—it is possible to compensate for the weaker
explanatory power of proxy information and thus to improve inventory accuracy.
Formally, the spatial extension of inventories is treated as a prediction task within a
statistical framework. Compared to a non-spatial approach, a 15% reduction in the
mean square prediction error was obtained.

4.5 Trading emissions

With uncertainty in GHG emissions inventories that can be quite large and can vary
significantly by country, gas, sector, source and/or sink, the focus of international
agreements and mitigation activities is still on achieving maximum benefit with
minimum economic cost. Thus international and national programs provide for the

Reprinted from the journal 13



Climatic Change (2010) 103:3–18

trading of emissions “permits.” Inventory uncertainty is not considered to have
a bearing on emissions trading. However, if reliably and quantitatively assessed
uncertainty were to be incorporated, a host of questions would arise: How can trading
systems account for uncertainty and yet ensure that trading really does provide both
environmental and economic benefits? Can methods for incorporating uncertainty
be easily standardized? Is a price mechanism better able to deal with uncertainty
than a cap and trade system? Can uncertain CO2 emissions from fossil-fuel use in
one country be credibly and economically offset with uncertain reductions in CH4

emissions from agriculture in another country? Can trading or offset systems, or
emission taxes, be designed to recognize or deal with the issues of uncertainty? The
papers in this series focus largely on issues of trading emissions permits and the role
of uncertainty.

Ermolieva et al. (2010) make use of a basic multi-agent, stochastic model of
emissions trading to analyze the stability and robustness of carbon markets, while
taking into account the uncertainty in estimates of natural and human-related
emissions. The authors’ concern is that trading markets do not necessarily minimize
abatement costs or comply with environmental targets because the markets respond
to stochastic “disequilibrium” price signals that are often driven by market specula-
tions and bubbles. The authors’ computer-based model allows emission trading to be
studied from a decentralized equilibrium perspective, that is, when trading partners
themselves choose, without revealing their knowledge on costs and uncertainties, the
optimal level of technological abatement and the traded amount under the condition
of minimized costs and compliance with long-term environmental constraints.

It is generally perceived that implementing a system of tradable emission permits
will allow a seller with low abatement costs to sell permits to a buyer with high abate-
ment costs, thus equalizing marginal abatement costs. Stańczak and Bartoszczuk
(2010) simulate the trading process while accounting for the transaction prices
of emission permits. With the goal of minimizing the cost of meeting emissions
commitments or trading agreements, negotiated permit prices will result in trades
when the cost of permits is lower than the cost of reductions for the buyer and vice
versa for the seller. The aim of the paper is to simulate by taking uncertainty into
account the evolution of prices on the basis of an iterative trading procedure, for
which the authors make use of an evolutionary (multi-heuristic) algorithm.

The issue of compliance with emission restrictions or trading agreements is accen-
tuated when there is high uncertainty in emission inventories. High uncertainty can
lead to undershooting (i.e., keeping emissions well below the agreed target) in order
to decrease the risk of non-compliance; hence, improved precision may not only
mean more reliable inventories but also lower costs for compliance. In deriving new
rules for checking compliance or for emissions trading, Nahorski and Horabik (2010)
are particularly concerned about instances where the uncertainty is asymmetric.
Right-skewed asymmetry is typically observed in uncertainty distributions that are
obtained from Monte Carlo simulations when reported emission values are used.
This leads to biased compliance; it is more likely that true emissions are higher
than reported emissions and less likely that they are lower. The authors consider
asymmetric distributions and apply fuzzy numbers to more precisely determine the
required level of emission reductions necessary to yield a high likelihood of meeting
reduction or trading commitments.

Reprinted from the journal14



Climatic Change (2010) 103:3–18

Trading of emission permits requires there to be some sort of cooperative
behavior and trading markets. Pickl et al. (2010) discuss the problem of uncer-
tainty in transaction relationships and note that the mere existence of formal
markets reduces uncertainty by providing for a more structured relationship among
economic agents. Markets permit stable expectations about the economic out-
come of transactions. The authors describe a macro-economic game model for
exploring interactive, cooperative resource planning, including uncertain emissions
trading.

Box 1 Rationale for improving and conducting uncertainty analyses (revised)

Calculations of greenhouse gas (GHG) emissions contain uncertainty for a 
variety of reasons such as the lack of availability of sufficient and 
appropriate data and the techniques for processing them. 

Understanding the basic science of GHG gas sources and sinks requires an 
understanding of the uncertainty in their estimates. 

Schemes to reduce human-induced global climate impact rely on 
confidence that inventories of GHG emissions allow the accurate 
assessment of emissions and emission changes. To ensure such confidence, 
it is vital that the uncertainty present in emissions estimates is transparent. 
Clearer communication of the forces underlying inventory uncertainty may 
be needed so that the implications are better understood. 

Uncertainty estimates are not necessarily intended to dispute the validity of 
national GHG inventories, but they can help improve them. 

Uncertainty is higher for some aspects of a GHG inventory than for others. 
For example, past experience shows that, in general, methods used to 
estimate nitrous oxide (N2O)  emissions are more uncertain than methane 
(CH4) and much more uncertain than carbon dioxide (CO2). If uncertainty 
analysis is to play a role in cross-sectoral or international comparison or in 
trading systems or compliance mechanisms, then approaches to uncertainty 
analysis need to be robust and standardized across sectors and gases, as well 
as among countries. 

Uncertainty analysis helps to understand uncertainties: better science helps 
to reduce them. Better science needs support, encouragement, and greater 
investment. Full carbon accounting (FCA), or full accounting of emissions 
and removals, including all GHGs, in national GHG inventories is 
important for advancing the science. 

FCA is a prerequisite for reducing uncertainties in our understanding of the 
global climate system. From a policy viewpoint, FCA could be encouraged 
by including it in reporting commitments, but it might be separated from 
negotiation of reduction targets. Future climate agreements will be made 
more robust, explicitly accounting for the uncertainties associated with 
emission estimates. 

Source: IIASA (2007)
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5 Conclusions

The approaches to addressing uncertainty discussed in this Special Issue attempt to
improve national inventories, not only for their own sake but also from a wider,
systems analytical perspective that seeks to strengthen their usefulness under a
compliance and/or global monitoring and reporting framework. They thus show
what the challenges and benefits are of including inventory uncertainty in policy
analysis. The issues that are raised by the authors featured in this Special Issue,
and the role that uncertainty analysis plays in many of their arguments and/or
proposals, highlight the importance of such efforts. While the IPCC clearly stresses
the value of conducting uncertainty analyses and offers guidance on executing them,
the arguments made here in favor of performing these studies go well beyond any
suggestions made by the IPCC to date. Several reasons for continuing to improve
and standardize the research and estimation methodologies that lead to quantifiable
estimates of uncertainty associated with GHG inventories are noted in the text box
above (Box 1). These were identified during Workshop discussions and retreats,
and are covered in detail by the expanded papers that appear in this Special Issue.
The most important of the reasons compiled in Box 1 have been taken from a
policy brief prepared as an immediate output of the 2nd Uncertainty Workshop
(http://www.iiasa.ac.at/Admin/PUB/policy-briefs/pb01-web.pdf).
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Abstract An uncertainty assessment of the Austrian greenhouse gas inventory
provided the basis for this analysis. We isolated the factors that were responsible
for the uncertainty observed, and compared our results with those of other countries.
Uncertainties of input parameters were used to derive the uncertainty of the emission
estimate. Resulting uncertainty using a Monte Carlo approach was 5.2% for the
emission levels of 2005 and 2.4 percentage points for the 1990–2005 emission trend.
Systematic uncertainty was not assessed. This result is in the range expected from
previous experience in Austria and other countries. The determining factor for the
emission level uncertainty (not the trend uncertainty) is the uncertainty associated
with soil nitrous oxide N2O emissions. Uncertainty of the soil N2O release rate is
huge, and there is no agreement even on the magnitude of the uncertainty when
country comparisons are made. In other words, reporting and use of N2O release
uncertainty are also different between countries; this is important, as this single
factor fully determines a country’s national greenhouse gas inventory uncertainty.
Inter-country comparisons of emission uncertainty are thus unable to reveal much
about a country’s inventory quality. For Austria, we also compared the results of the
Monte Carlo approach to those obtained from a simpler error propagation approach,
and find the latter to systematically provide lower uncertainty. The difference can
be explained by the ability of the Monte Carlo approach to account for statistical
dependency of input parameters, again regarding soil N2O emissions. This is in
contrast to the results of other countries, which focus less on statistical dependency

W. Winiwarter (B)
AIT Austrian Institute of Technology, 1220 Vienna, Austria
e-mail: wilfried.winiwarter@ait.ac.at

W. Winiwarter
IIASA, 2361 Laxenburg, Austria

B. Muik
Umweltbundesamt, 1090 Vienna, Austria

Reprinted from the journal 19



Climatic Change (2010) 103:19–36

when performing Monte Carlo analysis. In addition, the error propagation results
depend on treatment of skewed probability distributions, which need to be translated
into normal distributions. The result indicates that more attention needs to be given
to identifying statistically dependent input data in uncertainty assessment.

1 Introduction

Maintaining greenhouse gas (GHG) inventories is a key requirement of international
efforts to combat global climate change. We need to understand the quantities and
the sources of GHG fluxes to the atmosphere to be able to devise measures to reduce
them. Information about data reliability is also required; thus uncertainty estimates
are an essential element of a complete emission inventory.

Uncertainty analysis is useful in many respects (Lieberman et al. 2007). It helps
with analyzing and revising an inventory, provides information about the most
important factors contributing to uncertainty, and thus assesses which parts of the
inventory require the most urgent improvements. It is not able or intended to
dispute the validity of the inventory estimates. However, comparing uncertainty
across countries helps the comparability of the inventories as such to be judged, as
well as the “tradability” of the respective emissions.

Ideally, emission estimates and uncertainty ranges would both be derived from
source-specific measured data. In practice, estimates are often based on the known
characteristics of sources taken to be representative of the data population. Some-
times, uncertainty and statistical distributions can be determined empirically, based
on a large number of specific measurements. Often, however, expert judgement will
be necessary to define the uncertainty ranges.

The assessment and propagation of uncertainties in emission inventories have
been described in detail in IPCC (2000, 2006). The mathematical algorithms used
allow information to be added up in such a way that the relative uncertainty of the
parameter combination (as a percentage of the mean value) becomes lower than the
relative uncertainty of any of the input parameters. A precondition for applying such
algorithms is that statistically independent data should be used, that is, data whose
random variation does not simultaneously affect another input parameter. One can
say that such parameters need to provide additional information, or, in mathematical
terms, that parameters must not be correlated.

The advantage of going into statistically independent detail is often implicitly
taken advantage of when a problem is disassembled into sub-problems and the sub-
results are being recombined. Such a procedure will allow the overall uncertainty
to be reduced (on a relative basis). Nevertheless, it is not always the most detailed
level that yields the results of lowest uncertainty. If measurements or assessments at
the most detailed level are difficult, a more comprehensive level of information may
provide the lower overall uncertainty.

Thus, optimizing the approach requires input information to be collected at the
most detailed level at which an inventory can be prepared. Attaching uncertainty
data should then be done at a level where greatest confidence can be expected
regarding the data. This may be at the most detailed level; but uncertainty data will
more often not be available, or an approach using balances at a more aggregate level
(energy balance, solvent balance) will provide lower uncertainty. To obtain adequate
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results, error propagation may be performed at the most reliable level of information
available.

For this paper, we use the results of a recent study on the uncertainties in the
Austrian GHG inventory (Winiwarter 2008). The work is based on a previous as-
sessment for Austria (Winiwarter and Rypdal 2001; Winiwarter and Orthofer 2000).
Similar assessments, which are a reporting requirement under the United Nations
Framework Convention on Climate Change (UNFCCC), have been published for
a variety of countries, for example, the United Kingdom (Baggott et al. 2005),
Finland (Monni et al. 2004), the Netherlands (Ramirez et al. 2008), and Luxembourg
(Winiwarter and Köther 2008).

To understand how the methods chosen influence the results, and which para-
meters are in general (not nationally) most important for describing the overall
uncertainty, we draw on the similarities and differences between the respective
exercises and the numerical values that are available in detail for Austria.

2 Methodology: how to assess the uncertainty of national emission inventories

2.1 Selection of input data

We demonstrate the general principles according to a description of the system in
Austria. The Austrian national inventory system (“OLI”) contains a compilation
of emissions of air pollutants and greenhouse gases. Results from OLI feed into
national reports on air pollution emissions (required under the framework of United
Nations Economic Commission for Europe [UNECE] protocols) and greenhouse
gas reporting to the UNFCCC and the European Commission. To allow these quite
different tasks, OLI provides emission factors and activity data for a large number of
sectors and sector/fuel combinations. In this study we use OLI data for 559 individual
sectors or sector/fuel combinations (activity data, emission factors for CO2, CH4, and
N2O). Additionally, 24 sector/gas combinations for fluorinated gases (F-gases) are
evaluated. Not all, but many, of these detailed input data are relevant for the GHG
inventory. We will refer to this information as the “base level” of OLI, even if some
of the emission factors or activity numbers presented may derive from more detailed
emission models. Starting from the “base level” enables us to perform a consistent
uncertainty analysis.

Within the framework of this project we had to attribute quantitative information
on uncertainty to this input data. All the details of this task have been laid out
in the background report (Winiwarter 2008). Linking was performed on the OLI
base level, but most uncertainty information was available at a more aggregate
level. For aggregate information the same uncertainty was attributed to all input
entries concerned, with this input being considered a statistically dependent entity.
Uncertainty information was collected both for emission factors and for activities
associated with the respective emission source. Uncertainty of total emissions was
used only when this more detailed information was not available.

Uncertainty information was taken from national studies, from international
information (like, for example, the reports of the Intergovernmental Panel on
Climate Change [IPCC]), from data variations in the literature, and from national
experts. Structured interviews were not held, but information collected previously
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in structured interviews (Winiwarter and Orthofer 2000) could still be made use of.
As will be explained in Section 2.3, special attention was given to covering statistical
dependence (correlation) of source categories.

In all input and output parameters, uncertainty has been expressed as a normal
or lognormal probability density function. In line with IPCC requirements, the
uncertainty range is presented as the range with 95% probability of a given value
being within its boundaries. Thus the boundaries were given as the 2.5 and 97.5
percentiles of the respective distribution. For a normal distribution, this is ±2
standard deviations (SD) from the mean.

As information on uncertainty is often very sparse, we had already considered
information on reasonable upper and lower limits of a value as being sufficient to
describe a full distribution. Consistent with the procedure above we understand a
reasonable range (lower limit to upper limit) to contain 95% of all possible values;
thus the total difference is interpreted as 4 SD. As Winiwarter and Rypdal (2001)
have shown that the type of distribution used does not strongly influence the results
in a wide range of cases, we chose to transform distributions into normal or lognormal
distributions rather than using other distribution types. Lognormal distributions were
required to cover realistic cases of very large uncertainties (i.e., uncertainties higher
than 100%, which were physically limited by zero as the lower end of range [strongly
skewed distributions]).

2.2 Error propagation vs. Monte Carlo simulation

Error propagation is a technique that allows the uncertainty associated with the
result of a mathematical function to be estimated, based on the function’s input
uncertainties. Explicit equations for error propagation can be set under a number
of preconditions only (IPCC 2000):

• The function consists of additive and multiplicative terms only;
• Uncertainty for each input parameter is normally distributed (i.e., lognormal or

other distributions are not modeled);
• Input data are not correlated; and
• Standard deviation does not exceed 30% of the mean.

IPCC (2000) provides a standard template to perform error propagation. This
template has been utilized by a number of countries under their obligation to submit
national greenhouse gas inventories. This approach is, in accordance with these
guidelines, often also referred to as the “Tier 1” uncertainty calculation. Using
the template requires assumptions to be applied on a conversion of lognormally
distributed parameters to a normal distribution.

A Monte Carlo simulation is based on repeating the actual inventory calculation a
number of times. For each replicate, input parameters are varied and (multiple) out-
put is recorded. Variation of input is performed randomly, according to predefined
boundary values and probability density functions. The set of individual output
data will again follow its own probability density and thus provide the resulting
uncertainty, strictly based on the input uncertainty.

Moreover, as correlating inputs and outputs are stored, it is possible to calculate
regressions. The regression allows the sensitivity of the result toward an input
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parameter to be obtained, thus indicating which input is responsible for the result
and to what extent.

Emission inventories are fairly easy to calculate and require only little compu-
tation time, such that even a few thousand replicates will not require more than a
few minutes. Commercial software packages are available that couple with standard
spreadsheet programs. This facilitates application on a standard PC. Within this
project, we use the software “@RISK” from Palisade Co. (www.palisade.com). The
standard tools of these software packages allow many different kinds of probability
density functions to be defined and used, as well as the specification of full and even
partial correlation between parameters. This also allows for coupling of inputs to
a level of detail where uncertainty is assumed to be the smallest. Because of the
simplicity of use, many countries have also successfully implemented the Monte
Carlo approach (termed: “Tier 2” uncertainty calculation). Respective reports have
been published, among others, by Charles et al. (1998), Winiwarter and Rypdal
(2001), Monni et al. (2004), and Ramirez et al. (2008). In this paper we provide
some specific comparisons between the results of Tier 1 vs. Tier 2 approaches. The
methodologies as such are well established and do not require further specification.

2.3 Considering correlated uncertainties

In the standard methodology to estimate uncertainties of an emission inventory,
uncertainties are derived for an emission factor or activity number of a specific
source category, and as they are assessed independently they are treated as being
statistically independent. This procedure is implemented in the IPCC template of
“Tier 1” uncertainty calculation, which by its nature would not allow treatment
of correlated variables to estimate the uncertainty of emission levels. We do not
deem this approach to be the most appropriate representation of the situation
Instead, in this study we attempt to identify indications that hint at correlation within
parameters. These indications could then be used only in the “Tier 2” approach.

In the case of activities, we regard input information as correlated if derived from
data originally collected at a lower level of detail. This is the case for energy balances.
All energy activities related to solid fuels, whether in the industry sector or used for
domestic heating, are thus considered correlated with respect to their uncertainty.
Likewise, we consider liquid fuels used in transport or power plants to be statistically
dependent—the same goes for gaseous fuels or biofuels. We treat solvent balances
in the same way as fuel balances.

For emission factors, one indication to be used is the value of the emission
factor. If two emission factors used in different areas have the same value (e.g., in
combustion for different source categories but using the same fuel), there should
be a suspicion that these emission factors have been derived from the same set
of measurements, and thus uncertainties should be seen as correlated. This has
happened in the case of Austria, as shown by an inspection of the original source
of emission factors, but it need not be the case generally. Two emission factors could
have been assessed fully independently, and still have arrived at the identical value.

Moreover, two emission factors could have different values, but with the uncer-
tainty being most strongly affected by just one parameter. Such a case is visible when
national Austrian emission factors for CH4 from combustion processes are inspected.
Measured quantities are emissions of total hydrocarbons and assumptions on the
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fraction of CH4 in total hydrocarbons (Orthofer 1991) drive the overall uncertainty.
Thus it is also clear in this case that emission factors are correlated. We also assumed
this to be the case for N2O from soil nitrogen (direct and indirect emissions), as
the underlying processes are the same. When specifically considering the indirect
emissions that occur because of volatilization loss of nitrogen, assumptions on
subsequent N2O formation are based on exactly the same assumptions as those used
for direct nitrogen application (IPCC 2000). However, in order to account for the
unknown pathways of nitrogen, which also include leaching to groundwater or runoff
in surface water, uncertainty for indirect emissions was considered higher, as it also
contained other components contributing to uncertainty. Thus one could also argue
that those other components are independent and that only partial correlation should
be considered—an argument that we do not apply here, as it seems impossible to
assess the degree of such a partial correlation.

3 Results

3.1 Tasks

Estimating uncertainty does not yield just one result. Following the guidance of
IPCC (2000), uncertainties have been derived for the total GHG inventory (as CO2

equivalents) as level uncertainty for 2005 and for the base year 1990, and for the
trend uncertainty between those years. Moreover, the same results are available
specifically for each of the six gases in the “Kyoto basket.” Individual uncertainty
estimates have been provided for the 40 key sources of the Austrian inventory (it
is only for the respective gas(es) that this source category is “key”) and for the
combined non-key sources (aggregated for all non-key source emissions of each gas).
Key sources have been identified according to the procedures developed by IPCC
(2000), which also guides which source categories should be used. A key source
category is thus one that is prioritized within the national inventory system because
its estimate has a significant influence on the total GHG inventory in terms of the
absolute level of emissions, the trend in emissions, or both.

Separate uncertainty calculations were performed using a spreadsheet prepared
specifically according to the “Tier 1” approach (IPCC 2000) and with a Monte Carlo
approach fully considering statistical dependence of detailed input data as described
above (“Tier 2” approach). The same input uncertainty information was used as
much as possible. It should be noted that the “Monte Carlo” approach, averaging
a large number of randomly varied input data, may exhibit slightly different results
in total emissions as well as source category emissions in comparison with a direct
calculation. The physical meaning of this difference is similar to a rounding error and
may be ignored. For the present evaluation we used 10,000 iterations and standard
Monte Carlo (random) sampling.

3.2 Results using the Tier 1 (error propagation) approach

The results of the error propagation approach are strictly limited to the key sources
and the potential of the IPCC spreadsheet used. Table 1 presents the resulting
spreadsheet. An extension to other sources than the 40 key sources is in theory
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possible, but in the Austrian inventory, as sources can only be dealt with individually,
this would mean adding more than 100 sources.

As error propagation requires the use of normal distributions, the proper imple-
mentation of variables characterized by a skewed distribution necessarily requires
an arbitrary choice. Especially regarding sources that will eventually contribute
significantly to overall uncertainty, this choice can be quite important. Using the
range of 0.3 to 3 times the emission factor for N2O from soils, we chose to apply
an uncertainty of 150%.

This appears to be in contrast to guidance provided by IPCC (2000): “If uncer-
tainty is known to be highly asymmetrical, enter the larger percentage difference
between the mean and the confidence limit.” However, that statement clearly refers
to distributions where standard deviations do not exceed 30% of the mean. Although
it does not seem useful to represent a given distribution by a normal distribution
which, though it follows the guidance, does not represent the occurrence of events of
the original distribution (e.g., negative emissions), we also tested the results for an
uncertainty of 200% (consistent with the factor 3 increase). In that case, the overall
uncertainties would have been 4.51% (level) and 2.85 percentage points (trend)
instead of 3.59% and 2.55 percentage points as identified in Table 1.

3.3 Results using the Tier 2 (Monte Carlo) approach

While the iterations representing the Monte Carlo approach are being performed,
all randomly selected input data are recorded, as are all the respective results
of calculations for a predefined set of output parameters. Here we selected the
following outputs (for all three cases: base year 1990, target year 2005, and the
difference between them), listed in detail in the background report (Winiwarter
2008):

• Emissions of each of 40 key sources (key gas only);
• Totals of all non-key source emissions (for each of six gases);
• Emission totals (for each of six gases);
• GHG totals as reported to the UNFCCC (different gases added according to

their greenhouse warming potential, in CO2 eq.); and
• National GHG totals, including land use, land use change, and forestry (LU-

LUCF), and international bunker fuels.

As the whole set of data (10,000 individual results) is available for both outputs
and inputs, the respective probability distributions can also be derived. Standard
deviation, and thus uncertainty (here defined as 2 SD), is just one result of such a
probability distribution, and is available for each of the outputs.

We merely display the main results of the Monte Carlo analysis of the Austrian
GHG inventory (Table 2). Uncertainty is presented for each gas and for the level
of target year 2005 (as a percentage) as well as for the trend (in percentage points
relative to the total base year emissions). Detailed results by source category, using
the original IPCC version of the table, are available from the background report
(Winiwarter 2008).

In addition to overall uncertainties, the Monte Carlo approach also allows contri-
butions to the overall variance of the results to be differentiated, using the correlation
of input to output parameters. This result (Fig. 1) denotes the emission factor of soil
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Table 2 Key results of the Austrian GHG inventory uncertainty 2005—Monte Carlo approach

Random uncertainty CO2 CH4 N2O PFC HFC SF6 Total GHG
emissions

1990 Mean value 61.94 9.18 6.26 1.08 0.02 0.50 78.98
Standard deviation 0.41 0.72 2.64 0.27 0.01 0.04 2.78
Uncertainty (2 SD) (%) 1.3 15.6 84.3 49.1 49.9 16.6 7.0

2005 Mean value 79.65 7.06 5.24 0.12 0.91 0.29 93.26
Standard deviation 0.65 0.53 2.26 0.01 0.24 0.03 2.41
Uncertainty (2 SD) (%) 1.6 14.9 86.4 11.3 53.5 23.9 5.2

Trend Difference 17.72 −2.12 −1.02 −0.97 0.89 −0.22 14.28
Uncertainty of trend 2.10 8.00 13.05 49.12 21.20 21.40 2.37
(percentage points)

N2O emissions as clearly the most important factor influencing results, followed by
transport activities, and the emission factor for N2O related to manure handling.

3.3.1 Overall results comparing the two approaches

It is obvious that the level of uncertainty presented for a specific source category
would not differ strongly between the error propagation and the Monte Carlo
approach, which have basically the same set of assumptions. Moreover, the sectoral
combined uncertainties of the underlying template-derived tables (see Winiwarter
2008) agree. The highest contributions to overall uncertainty, both according to the
Monte Carlo analysis (Fig. 1) and to the error propagation template (column H in
Table 1), are in the agricultural sector (nitrous oxide from soils, direct as well as
indirect emissions, covered as one item in the Monte Carlo approach; somewhat
smaller are the contributions from cattle emissions). Other sectors that are exposed
to high uncertainties with respect to total emissions are transport (specifically trans-
port using diesel fuels) and the waste sector. Other sectors of energy consumption

 

 

 

 

Fig. 1 Contribution of input parameters to the uncertainty of the Austrian 2005 emission levels
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or industry exhibit smaller uncertainty with respect to the total, with the exception
of substitutes for ozone-depleting substances (ODS). A slight deviation becomes
evident between the approaches (e.g., in the agricultural sector, where N2O emissions
from manure rank higher in the error propagation approach because of inadequate
treatment of skewed distributions).

Distinct discrepancies appear when the national totals are compared. At 5.17%,
total uncertainty of the Monte Carlo approach is about 1.5 times that of the simpler
error propagation approach (3.59%). As already indicated above, this difference is
in part due to decisions affecting treatment of skewed distributions. The inability of
the Tier 1 approach to deal with skewed distributions has already been identified by
IPCC (2000) as a major reason for differences.

However, data shown here imply a more essential reason for discrepancy. The
IPCC Tier 1 equations implicitly assume that all source categories referred to in the
table are fully independent. When these equations are applied, error propagation
takes advantage of this seemingly independent information, such that overall error
decreases. This is different from data treatment according to the Monte Carlo
approach. Overall relative error decreases in a much less pronounced way, which
reflects the statistical dependence of data more adequately. Overall uncertainty in
error propagation is thus lower.

Statistical dependence has been assumed in the Monte Carlo approach, in the en-
ergy sector, and for N2O emissions from soil (direct emissions vs. indirect emissions).
It is also possible to mimic statistical dependence for soil N2O emissions in the error
propagation approach, simply by adding direct and indirect emissions into one single
source category. Doing this will increase level uncertainty to 4.69%. This is close to
the 5.15% of the Monte Carlo approach and higher than the 4.51% obtained with a
formally justified but unrealistic conversion of a skewed distribution into a normal
distribution (see Section 3.2).

A very similar general situation can be seen for trends (Table 1 and Fig. 2,
respectively). Source categories that display large level uncertainties are also often

Fig. 2 Contribution of input parameters to the uncertainty of the Austrian emission trends for the
1990–2005 period
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important for trend uncertainty, and results are comparable between the two ap-
proaches. In the case of trend uncertainty, however, transport and agriculture (soils)
play an equally important role. The activity change in gaseous fuels between 1990 and
2005 is sufficiently large to put this element, even at quite small relative uncertainty,
among the source categories that contribute most strongly to overall uncertainty.
To a lesser extent, this is also the case for ODS substitutes. It is interesting to note
that among industrial emissions, perfluorocarbon (PFC) emissions from aluminium
production can be identified as a major contributor to trend uncertainty: Austrian
aluminium production, in 1990 an important source, had been completely phased
out by the reference year 2005. Non-key sources do not seem to contribute to
overall trend uncertainty, not even when aggregated. Using the error propagation
approach, sectoral trend uncertainties tend to be higher with respect to emissions,
as less advantage is taken of error reduction due to exclusion of correlated emission
factors. This effect does not remain very visible for total trend uncertainty, which is
2.55 percentage points—very similar to the 2.37 percentage points from the Monte
Carlo approach.

4 Austrian results in comparison to other published uncertainty estimates of
national GHG inventories

Results from a number of recent uncertainty estimates of national GHG inventories
have been compiled in Tables 3 and 4. All these countries have high quality
statistical information. One would thus not expect differences in the uncertainty
level of a specific input parameter. Instead, differences should be expected mainly
when situations differ. This is, for example, the case for Finland, where uncertainty
regarding CO2 emissions from peatland contributes to the enhanced uncertainty
in CO2 emissions (Monni et al. 2004). The latest estimations by Statistics Finland
(2007), excluding CO2 emissions from peatland, show an uncertainty for CO2 that
agrees quite well with that of other countries. Uncertainty associated with CH4 also
seems to be well adjusted between countries. Some differences appear because of
the use of default vs. country-specific model parameters in the calculation of CH4

emissions from solid waste disposal sites.

Table 3 Results of recent national GHG inventory uncertainty assessment (tier 2)

Random uncertainty for Country CO2 CH4 N2O PFC HFC SF6 Total GHG
reference (most recent) (%) (%) (%) (%) (%) (%) emissions (%)
year (all given as 2 SD)

This study AT 1.6 15 86 11 54 24 5.2
Ramirez et al. (2008) NL 1.5 15 42 28a 3.9
USEPA (2007)b US 3.5 13 20 11a 3
Baggott et al. (2005) UK 2.4 13 226 13 21 16 14
Monni et al. (2004)b FI 5.0 19.5 36.5 42.5a 5.5
Statistics Finland (2007)b FI 3 21 50 16a 5.5
aCombined for all F-gases
bAll data originally presented with upper and lower limit estimates—here averaged
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Table 4 Results of recent national GHG inventory uncertainty assessment using error propagation
(tier 1) as submitted to UNFCCC (all submissions are available at unfccc.int)

Country Source CO2 (%) CH4 (%) N2O (%) F-gas (%) Total (%)

AT Umweltbundesamt (2007) 1.4 14.9 76.4 38.6 3.7
NLa MNP (2006) 1.9 18 45 27 4.3
UKb Baggott et al. (2007) 2.0 20.3 270.9 16.5 16.4
FI Statistics Finland (2007) 2.6 22.0 70.2 23.1 7.1
aSame inventory as Ramirez et al. (2008)
bPercentages are calculated by authors on basis of the NIR

Even for F-gases, the level of agreement is remarkable: differences depend
mainly on the contribution of emissions from production processes that are usually
associated with lower uncertainties than on emissions from the consumption of F-
gases as ODS substitutes.

Again, as already described by Rypdal and Winiwarter (2001), the uncertainty in
N2O emissions deriving from soil emissions clearly exhibits the largest variability. As
the actual processes that cause formation of N2O in soil are still far from being fully
understood, differences definitely do not result from different situations in different
countries, but reflect the priorities of the experts assessing the uncertainty. Further
work, for example, through the application of detailed biophysical soil modeling, will
be required to resolve this issue.

Differences in uncertainty are also seen in total GHG emissions. In almost all
cases, these differences are associated with soil N2O (except for Finland, where
the contribution of CO2 from peatland is also significant, as mentioned above).
Irrespective of all other figures, high N2O uncertainty is associated with high overall
uncertainty and vice versa. This result proves that the magnitude of uncertainty asso-
ciated with a national greenhouse gas inventory mainly depends on the uncertainty
of soil N2O which, because of a lack of measured data, depends very much on the
judgment of the experts assessing the uncertainty.

Only a few countries provide results from both error propagation and Monte
Carlo uncertainty analysis. Here we compare the Austrian results with those of
Finland, the Netherlands, and the United Kingdom (UK). In all countries except
Austria, the Monte Carlo approach yields lower uncertainties for total national
emissions than the error propagation approach (see Table 4). One explanation for
this, at least in Finland (Statistics Finland 2007), is the use of skewed distributions in
the Monte Carlo analysis, where for error propagation the larger difference between
the mean and the confidence limit was systematically applied. This transformation
from a skewed distribution is in line with guidance provided by IPCC (2000), except
that this guidance is strictly limited to distributions that have standard deviations
of 30% or less of the mean value. As discussed in Section 3.2, however, the actual
distribution and the normal distribution chosen this way will have little in common
for skewed distributions with standard deviations much larger than 30%. The method
of choosing a representation of this skewed distribution will thus have an influence
on the outcome.

Furthermore, the Monte Carlo analyses presented in general do not focus on
recognizing correlated inputs. This methodical advantage of a Monte Carlo analysis
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is thus not fully taken advantage of and results have the same shortcomings, leading
to a systematic underestimation of the overall error.

5 Discussion: how statistical dependence affects uncertainty estimates

According to IPCC (2000), inventory agencies are encouraged to identify key sources
using the results of the uncertainty analysis (Tier 2 key category analysis). The
basic idea behind identifying key sources is to focus resources during inventory
compilation. Thus, an uncertainty evaluation that requires additional resources will
be focused on sources of major importance, and non-key sources will be investigated
in less detail. In the Austrian inventory 151 sources are identified for analysis, of
which 40 are identified as key. A detailed investigation of more than 100 sources that
account for less than 5% of total national GHG emissions would thus contradict the
concept described by IPCC (2006), namely, to focus limited resources on where they
can be applied most usefully.

Moreover, following the arguments presented above, separate consideration of
each emission source may not be advisable, at least as long as data are statistically
dependent and derive from the same or a similar set of input information. We have
shown that, in the calculation algorithms, treating dependent data as independent
leads to a decrease of the overall uncertainty, which does not reflect the real
situation. While in the case of Austria (and probably in many GHG inventories)
the conclusions in terms of priority setting are not affected, the numerical values
as such are affected and make it difficult to compare the results between two
different countries or between two different studies within a country. An appropriate
consideration of statistical dependencies is thus important.

We regard this mathematical artifact as more significant than that created by
artificial choices during the translation of skewed distributions into error propagation
analysis (lower, higher, mean value). This is because, in those cases, the reasons for
a discrepancy are more obvious. In the case of statistical dependency, the problem
remains, not only when comparing inventories and assessing overall uncertainties
for a larger set of countries (Leip 2010) but also when inventory uncertainty is to be
combined with uncertainty from, for example, economic parameters (Nahorski and
Horabik 2010). While in the latter case the chances are higher that no dependence
will be observed, it will still be worthwhile accounting for common underlying factors
that may be found in very generic parameters, such as ambient temperature, which
can affect very different areas. This underlines the importance of truly independent
data, for example, in the form of measurements, as a method of further reducing
uncertainties associated with reported inventory data on greenhouse gases (see
Theloke et al. 2007, for such a validation approach).

6 Conclusion

Uncertainty analysis is important for national inventory compilers to understand the
complexity connected with data quality. One should not expect, however, that the
results in terms of overall uncertainty allow conclusions to be drawn on the inventory
quality.
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We attribute the differences between the datasets of one country (Austria),
as compared with those of several other countries for which Monte Carlo type
uncertainty assessments are available, to:

• Differences in economic structure: countries in which highly uncertain sources
(specifically, emissions of N2O from soils as a consequence of agricultural
nitrogen application) are prevalent will exhibit higher uncertainties than those
with a very high share of energy-related emissions.

• Methodological differences: the importance of correlation in assessing overall
uncertainties needs to be recognized, especially regarding the most important
contributors to overall uncertainty (N2O from soils).

• Choice of parameters describing uncertainty: especially for uncertain sources
(N2O from soils) little firm evidence is available on the uncertainty distribution,
too. The choice of parameters may also reflect the transformation of a highly
skewed distribution into a normal distribution which is needed to perform error
propagation calculations.

Obviously, input assumptions of uncertainty assessment will strongly drive the result
in terms of overall uncertainty. To cover such artifacts, we have previously recom-
mended (Winiwarter 2007) the application of harmonized approaches in emission
assessment and uncertainty evaluation instead of using country-specific approaches.
Harmonization will allow country results to be made comparable.

Nevertheless, it is interesting to see that the overall order of source contributions is
not very different, despite the large differences in the approaches between countries.
Thus, qualitatively, agreement between the different approaches remains, and the
order of sources in terms of their contribution to overall uncertainty is also similar.
The largest of these contributors, in all cases, remains N2O from soils.

We may conclude that the differences between source categories are so large
that they are qualitatively identified independently of the methodology chosen. The
quantitative result in terms of overall uncertainty, however, is driven to such a large
extent by the approach taken that its numerical value should not be used for direct
comparison. The extent of statistical dependence of input parameters needs to be
better described and elucidated, before the full benefit of an uncertainty analysis can
be obtained.
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Abstract Results of research and practical experience confirm that stabilization of
GHG concentrations will require a tremendous effort. One of the sectors identified
as a significant source of methane (CH4) emissions are solid waste disposal sites
(SWDS). Landfills are the key source of CH4 emissions in the emissions inventory of
Slovakia, and the actual emission factors are estimated with a high uncertainty level.
The calculation of emission uncertainty of the landfills using the more sophisticated
Tier 2 Monte Carlo method is evaluated in this article. The software package that
works with the probabilistic distributions and their combination was developed with
this purpose in mind. The results, sensitivity analysis, and computational methodo-
logy of the CH4 emissions from SWDS are presented in this paper.

1 Introduction

The results of both research and practical experience confirm that stabilization of
greenhouse gas (GHG) concentrations will require a tremendous effort. Without
a limitation of emissions, atmospheric concentrations of CO2 will grow from an
expected 385 ppm in 2008 to 490–1,260 ppm in 2100, representing a 75–350% increase
over 1750 (IPCC 2007). To stabilize concentrations at the 450 ppm level, GHG
emissions need to fall to below the level of the reference year 1990 in the next decade.

The concentration of methane (CH4) in the atmosphere has increased 250% in
the industrial era. CH4 contributes up to 20% of anthropogenic GHG emissions. The
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rapid growth in CH4 concentration has been caused by intensive farming, livestock
production, coal mining, transport, utilization of natural gas, and solid waste disposal
sites. The life span of CH4 in the atmosphere is 10–12 years. Total annual emissions
are about 0.4 billion tonnes of CH4 and represent a stable annual increment (IPCC
2007).

CH4 is one of the most important greenhouse gases, with around 20 times higher
global warming potential (GWP) per 100 years than CO2. The main sources of
CH4 emissions with a high level of uncertainty are solid waste landfills. There are
several methods available for estimating CH4 emissions from solid waste disposal
sites (SWDS). The most sophisticated method with a higher tier of accuracy is the
kinetic approach, which takes into account that CH4 is emitted over a long period
of time rather than all at once. The kinetic approach thus needs to consider various
factors influencing the rate and extent of CH4 generation and release from SWDS.
The equations presented in IPCC manuals form the basis for first order decay (FOD)
method kinetics and come from the Revised 1996 IPCC Guidelines for National
Inventories: Reference Manual (IPCC 1996). The IPCC Good Practice Guidance
and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2000)
provides further details on the FOD method, mainly through defining FOD model
parameters in terms that are familiar to users of the default method Tier 1.

The waste sector is the source of greenhouse gas emissions from three main
categories as follows:

• Solid waste disposal (CH4);
• Waste water treatment (CH4, N2O);
• Waste incineration in combustion plants and non-controlled waste incineration

(CO2).

Solid waste disposal is a significant source of CH4 emissions in Slovakia; these are
generated during the decomposition of organic materials present in the waste under
anaerobic conditions. Methane emissions from the landfills are the key source in the
emission inventory of Slovakia and with regard to the actual emission factors, these
are estimated with a high degree of uncertainty. Total emissions of CH4 from SWDS
have been increasing since the 1990 base year and represent at present about 45 Gg
CH4 per year NIR 2007 with default set at Tier 1 with a 50% degree of uncertainty
(IPCC 2000). Waste disposal is the main method of waste treatment in Slovakia,
with more than 80% of municipal waste being placed in landfills. For the purposes of
individual greenhouse gases inventories, waste disposal represents a single category.
However, for calculation purposes, there is a need to differentiate, if the waste is
characterized as:

• Mixed municipal waste (methodology Tier 2, first order decomposition formula);
• Industrial waste and other waste flows (methodology Tier 1, default balance);
• Municipal wastewater and sludge treatment and release;
• Industrial wastewater and sludge treatment and release.

Mixed municipal solid waste disposals represent the vast majority of emissions,
making up more than 80% of waste. For this reason this study has focused on
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municipal waste disposal. Waste streams can be used as an approach to model landfill
gas generation rate curves for an individual landfill. They can also be used to model
the gas generation for a set of SWDS to develop the country emissions estimates; or
it can be applied in a more general way to entire regions.

CH4 emissions from landfills in Slovakia were estimated with first order decay
(FOD) method Tier 2 methodology in line with the advice of the expert review team
of the UNFCCC Secretariat and the European Commission. All time series were
recalculated to 1960, and the entire methodological approach was changed.

Three versions of the FOD method presented (Farkas 2006), were considered
for the Tier 2 method for estimation of CH4 emissions from SWDS in Slovakia. A
comparison between the situation in Slovakia and other countries applied the Tier 2
approach (Finland, Austria) identifies several differences:

• Most countries use site-specific data. CH4 emissions are calculated for each
SWDS (or group of SWDS) separately and the results are then summed to obtain
the national CH4 emission estimation. This approach cannot yet be applied in
Slovakia, as the data collected on municipal solid waste (MSW) do not include
the necessary SWDS characterization, as outlined above;

• Historical data on MSW management and disposal are more detailed than the
data available in Slovakia;

• Data on MSW fractions are collected in a more systematic and regular way than
in Slovakia.

The second version of the FOD method was selected as the most appropriate
approach, as it is defined (IPCC 2000). This decision was based on recommendations
from a previous review of Slovakia under the UNFCCC and is also supported for the
following reasons:

• The parameters used are better defined and allow direct comparison with the
Tier 1 method;

• Some of the parameters used are defined as time variables. This allows the waste
sector transformation in Slovakia in the 1992–2000 period to be modeled.

The uncertainty of the CH4 emission estimation is due mainly to the uncertainty
regarding the input of statistical data. Another source of uncertainty is the applied
default emission factors (EF). An additional error in calculations may occur as a
result of the less exact methods used. The calculation of landfill emission uncertainty
by the more sophisticated Tier 2 Monte Carlo method is evaluated in this paper.

2 The Monte Carlo method

In some cases it is difficult to find a purely analytical solution to problems being
investigated. Where data are significantly inaccurate, the statistical approach is
used, which helps us include uncertainty in the final assumption. To know the final
margin of uncertainty of the processes observed, the fluctuation of the analyzed
variables that entered the examined interdependent processes ultimately needs to
be estimated. Using a classical statistical approach, it can be difficult in some cases
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to obtain reasonable final information about the consequential uncertainty of the
processes investigated. One method that allows us to implement all the uncertainty
in the final analyses is the Monte Carlo method. Many examples of the application
of this method can be found in the literature of different areas of study. In many
cases where the Monte Carlo method is applied, the process investigated is simulated
directly. The Monte Carlo theory is applied here in a general, well known format.
There is no need to describe the behavior of the system investigated, which can
be advantageous in some complicated systems. The only important requirement is
for the system to be able to be described by probability density functions (PDFs).
We will assume that the properties of a system can be described by PDFs. Once
these are known, the Monte Carlo simulation can proceed by random sampling
technique from the PDFs. This approach works using a generator of random
numbers with the properties of the PDF. Many trials are then performed, and the
expected result is obtained as an average of the number of values. In this case the
statistical structure, variance, kurtosis, and other higher statistical moments of the
simulated result can be predicted. An estimation of the number of Monte Carlo
trials needed to obtain a result with an expected error can be achieved from these
characteristics.

The Monte Carlo method is based on the generation of multiple trials to determine
the expected value of a random value. It can be said in our case that this method
is the combination of the uncertainties of the probability distribution functions for
the activity data (AD) and for the emission factors (EFs). The total emissions are
then computed as a combination of random numbers for the appropriate distribution
function for the assigned greenhouse gases. The advantage of this method is the
allowance for asymmetry in the statistical distribution (the default Tier 1 method
does not allow asymmetry). This advanced method is useful for data manipulation,
as long as proper input data quality is provided. It can usually be assumed that
higher tier methods are associated with lower input data uncertainties (Rypdal and
Winiwarter 2001).

In practice, process uncertainties vary from a few percent to orders of magnitude,
and they may be correlated. This is not consistent with the simplified assumptions
applied in the Tier 1 method (the variables are uncorrelated with the standard
deviation of less than about 30% of the mean). The Tier 1 method assumes that:
the number of emission and uptake terms is large; no single term dominates the
sum; and the emissions and uptakes are independent. If this is so, the sum of
the variances of all the terms equals the variance of the total inventory, and the
distribution of total emissions is normal. Thus, the interval defined by approximately
two standard deviations from either side of the mean is the 95% confidence interval
of the inventory.

In Tier 1, the uncertain quantities are usually added together. In this case, with
respect to the limitation, it can be assumed that the standard deviation of the sum is
the square root of the sum of the squares of the standard deviations of the quantities
that are added, with the standard deviations all expressed in absolute terms (this rule
is exact for uncorrelated variables).

Next, in Tier 1, the uncertain quantities are multiplied together, and the same
rule applies as in the previous case, except that the standard deviations must all be
expressed as fractions of the appropriate mean values (this rule is approximate for
all random variables) (IPCC 2000).
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In spite of the simplified limitations to approximate results with Tier 1, the method
also obtains in cases that go beyond the circumstances mentioned.

In contrast to the previous difficulties, the Monte Carlo method can com-
bine uncertainties with any probability distribution (non-Gaussian), range (large
variances), and correlation structure (IPCC 2000). The Monte Carlo method could
be the method of choice in these cases.

The practice shows that, in some cases, the Tier 1 method could yield results with
a lower uncertainty than the higher-tier methods. In this situation, the limitation
and statistical simplification of the Tier 1 method should be known. It is important
to understand that the Tier 1 method offers only rough and approximate results.
It gives informative data, which serve as the background for more sophisticated
analyses. On the other side, the Tier 1 method could be a unique starting point for
obtaining solid results in the absence of quality input data (high variance of examined
processes, etc.).

3 Landfill CH4 emissions

Ideal information for estimating uncertainties includes (IPCC 2000):

• The arithmetic mean (the mean) of the data set;
• The standard deviation of the data set (the square root of the variance);
• The standard deviation of the mean (the standard error of the mean);
• The probability distribution of the data;
• Covariance of the input quantity with other input quantities used in the inventory

calculations.

This information, which is based on measurement, on an empirical data source,
or on expert-assessed data is sufficient to define the probability distribution for
statistical analysis and for specification of a 95% confidence interval.

During the inventory the uncertainty source can be identified from different
processes (IPCC 2000), as follows:

• Uncertainties from definitions (e.g., incomplete/unclear meaning or faulty
definition of an emission or uptake);

• Uncertainties from natural variability of the process that produces an emission
or uptake;

• Uncertainties resulting from assessment of the process or quantity, including the
method and depending on it.

In Slovakia, the second variant of the FOD method was chosen (IPCC 2000)
and the Tier 2 approach was also used (Tier 1 approach was also calculated) for
the inventory to simulate CH4 emissions from landfill. More details can be seen in
publication (Farkas 2006). Emissions of CH4 from waste disposal sites depend mainly
on the factors, as well as other parameters from the emission inventory, that change
from year to year (amount of waste landfill, meteorological conditions, population
growth, composition of waste, etc.) and from previous years (management style of
sites, etc.), which contribute CH4 from deeper layers to the emissions in the inventory
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year. It is obvious that total emissions are dependent on many factors, which vary
from year to year. The formulas, which describe these emissions, have the form:

L0(x) = 16
12

MCF(x)DOC(x)DOCF(x)F (x)

Fk(x, t) = (1 − e−k)e−k(t−x)

MSWL(x) = MSWT(x)MSW F(x)

Qt(x, t) = Fk(x, t)MSWL(x)L0(x) (1)

QT(t) =
∑

x

(Qt(x, t) − R(x))(1 − OX(x)) (2)

where variable t identifies the year of emission inventory, variable x identifies the
year of waste added to the dump, L0(x) represents the CH4 generation potential
(Gg CH4/Gg waste), MCF(x) is related to the CH4 correction factor in the year
x (fraction), DOC(x) is related to the degradable organic carbon in the year x
(Gg C/Gg waste), DOCF(x) represents the dissimilated fraction of DOC(x), F(x)

represents the fraction by volume of the CH4 in the landfill gas, Fk(x) represents the
gas leakage from the deeper dump layers (the normalization factor which corrects
the summation), k is related to the CH4 generation rate constant (1/year), MSWT(x)

is the total municipal solid waste, MSWF(x) is the fraction of MSWT disposed of in
the year x, R(x) is related to the recovered CH4 in the inventory year t (Gg/year),
OX(x) is the oxidation factor (fraction) and Qt, QT represent the CH4 generated in
the year t (Gg/year) from the waste layer storage in the year x and the CH4 generated
in the year t (Gg/year) from all layers, respectively.

Using formulas 1 and 2, one can interpret that formula 1 and term Qt represent
the contribution of emissions from the waste layer added in the year x to the year of
inventory t. It means that the result for the inventory year t is computed by formula 2,
which performs the summation of the CH4 submission from different layers stored
in different years.

The model presented computes cumulative uncertainties of emissions from layers
of landfills deposited from 1960. The function Fk represents the contribution to
emissions of deposited layers during the years observed. The exponential character
of function Fk ensures appropriate estimation of annual emissions.

Every parameter entered into the presented formulas has its own uncertainty.
To know the resulting uncertainty for CH4 generation from waste disposal sites,
a complex method must be used, which appropriates and combines all the uncer-
tainties. The Monte Carlo method is convenient for uncertainty problem solving.
One requirement is to know the distribution function of uncertainties. This approach
allows us, using computing power, to simulate the complete properties of the final
probability distribution function and to obtain the required statistical characteristics.
In this point, one should pay attention to the way in which the uncertainties are
specified. If measurement data are available, the situation is solvable. If these data
are absent, there is a special estimation by the waste expert. There are special
recommendations in the literature (IPCC 2000) regarding how to make this esti-
mation. Reasoning and detailed explanations of expert estimation can be found
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(Farkas 2006; NIR 2008). The parameter settings for the terms used can be seen
in Table 1.

It is clear from Eqs. 1, 2 and Table 1 that the Tier 1 approach is below the method
limits and that its result should be interpreted carefully. The formulas are not simple;
the time dependence and the nonlinear features they contain are important, and the
standard deviations of some input parameters are >30% of the mean value. In this
case the computation uncertainty with Tier 1 could provide only informative results.

A variety of inputs, two parametric distributions, three parametric distribution
functions, and empirical probability profiles are utilized (Monni 2004; Monni et al.
2004) for specification of the probability distribution of AD and EF).

To solve Eqs. 1 and 2 with the Monte Carlo method, specified uncertainty
parameters were used. The profiles of the PDF functions are obtained after an
expert consultation and in line with the recommendations of the IPCC Guidelines.
The result of the efforts entailed in setting the PDFs is summarized in Table 1.
The country-specific value for the mean values and confidence interval in Table 1
were estimated by a waste sector expert in UNFCCC Decision 20/CP.7 (2001). More
details can be seen in literature (Farkas 2006). If measured data are absent, PDF
shapes are chosen in the simplest possible form. In a situation where the expert
estimation is too great to fit the possibilities, the empirical PDF can be used. This
approach is preferable if the main properties of the parameters examined are to
be retained, instead of the data being adapted to satisfy the PDF properties. This
problem is discussed later.

The value of some parameters in Table 1 should be explained. Parameter F, which
can be seen in Eqs. 1 and 2, is split into variables with different confidence intervals
in pre-1994 and post-1994 years. The MCF parameters are defined analogically.
The difference in comparison with the previous case is that the mean value is also
changed. For this reason, the data to 1993 and in 1994–2001 should be resolved. In
1994–2001, the mean value is linearly interpolated between pre-1994 and post-2001
data values. The variability is correspondingly modified. After 2001 the table values
are valid. The MSWL parameter which is a product of the multiplication of MSWT
and MSWF requires a special explanation. In this case we exploit the possibility of
easily transforming the standard normal distribution into the normal distribution.

Table 1 Probability distribution functions and their basic characteristics, the mean value, and 95%
confidence interval expressed with two percentage values relative to the mean value

Category Mean value Confidence interval Distribution function

k 0.065 −45% : 230% Empirical
F(x) (until 1994) 0.500 −20% : 20% Normal
F(x) (after 1994) 0.500 −2.0% : 20% Empirical
MSWL Stand. normal
DOCF 0.600 −30% : 28% Triangular
DOCX 0.120 −50% : 20% Empirical
MCF (until 1994) 1.000 −30% : 4% Empirical
MCF (after 2001) 0.600 −50% : 60% Triangular
OX 0.050 −95% : 100% Triangular

The units of the parameters are defined in the text (σ = 1 for standard normal distribution). Source:
The confidence interval in values and PDFs were taken from Farkas (2006). Parameters estimation
considered IPCC default recommended values and country specific circumstances. Presented para-
meters were reviewed during in-country reviews of Slovakia in 2007 and 2009
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The MSWL parameter is varied significantly during the 1960–2005 period we analyze
(Fig. 1b). The uncertainty of MSWL data has the standard normal distribution. These
properties of PDF and MSWL annual values are applied to construct the final form
of PDF. The MSWL uncertainty to 1995 was taken to be 50% of the mean value.
After 1995 the uncertainty of MSWL was taken to be 10% of the mean value. The
variation of the mean value of MSWL can be seen in Fig. 1b. The annual DOCX
value is linearly changed from value 0.06 in 1960 to value 0.12 in 1990. After 1990 this
parameter has a constant value. The DOCX value in a given year is calculated as an
average of DOC values for different housing quality based on statistical information
about the type of household heating (Farkas 2006). The values from the table are
valid for the OX parameter only in the period 1994–2005. Beyond this time the zero
value is assumed.

To estimate the total emissions for a chosen year, the formulas presented here
can be used. The situation starts to become complicated when the assumption
of the input data uncertainty takes place. Formulas 1 and 2 show the relatively
complicated relation between the terms in these functions. There starts to be hardly
any computation of the interaction of uncertainties. For that reason the simplified
linear analysis is performed in advance.

Fig. 1 a The DOCF
parameter sensitivity to the
normal PDF uncertainty
variation; b the municipal solid
waste landfill (MSWL) mean
value variation during the
1960–2005 period

E
m

is
si

on

125

100

75

25

50

150

0

MSWL

DOCF

200

600

800

400

1600

1400

1200

1000

0

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
78

19
81

19
84

19
87

19
90

19
93

19
96

20
05

20
02

19
99

Year

Uncertainty

The municipal solid waste landfill 

(a)

(b)

5 10 20 30 40 50 60 70 80

2.5
Average
97.5%

Reprinted from the journal44



Climatic Change (2010) 103:37–54

It can be assumed that our emission production is expressed by function F(Xi),
where Xi are the factors affecting the sequential result of emissions (i = 1. . . N, N
represents the number of factors). Every factor has its own uncertainty δ(Xi), which
depends on several sources. In some situations it is impossible to express the variation
of these sources in a function value. It is possible only to express the interval of
the eventual values and their statistical behavior. In this case the values Xi can be
interpreted as per the data set. For example, factor X1 will be represented by random
values from the expected range of values. The function value and their uncertainties
can be expressed as:

F(Xi) = F(+δ(Xi)), (3)

where �Xi represents the mean (expected value) or the special chosen value from
the possible range of Xi values. It depends on algorithm solution. The question is
how the uncertainties of Xi values will affect the function value F(Xi). The interest
is focused on finding the expression for δ (F(Xi)). Assume that Xi are random
variables. For example, let X1 have normal distribution X1 ∼ N(μ1, σ1) and X2 ∼
N(μ2, σ2). There are independent random variables. For addition, F(X1 + X2) ∼
N(μ1 + μ2, σ

2
1 + σ 2

2 ) can be expected. For multiplication, the situation is complicated;
assume that μ1 = μ2 = 0. For this situation the result can be written in the form:

F(X1 X2) ∼ 1
σ1σ2

J0

(
|X1 X2|
σ1σ2

)
, where J0 is the modified Bessel function of the second

kind. For exponential distribution, which is a special case of gamma distribution,
one can obtain, after multiplication of the exponential distribution, the Weibull
distribution: X1 ∼ Exponential(λ−γ ) and than F(X1/γ

1 )∼ Weibull (γ, λ), (γ, λ are the
parameters affecting the shape of PDF). It can be seen from these examples that the
direct computation of δ (F(Xi)) is possible only in special cases.

To estimate the properties of δ (F(Xi)), the error propagation can be analyzed
by linearized theory. Consider the term grouped with the first derivative of Taylor’s
series for F(Xi). It can be written as:

∣∣F(Xi) − F
(�Xi

)∣∣ ≤
∑

i

∣∣Xi − �Xi
∣∣
∣∣∣∣∣
∂ F

(�Xi
)

∂ Xi

∣∣∣∣∣,

or it can be expressed in an equivalent form, where the prime marks derivative:

|δ F (Xi)| ∼=
∑

i

|δ (Xi)|
∣∣F ′ (�Xi

)∣∣. (4)

Using the same approach, it is possible to take the formula for the variance:

Var [δ F (Xi)] ∼=
∑

j

∑

i

Cov
[
δ (Xi) , δ

(
X j

)]
∣∣∣∣∣
∂ F

(�Xi
)

∂ Xi

∣∣∣∣∣

∣∣∣∣∣
∂ F

(�X j
)

∂ X j

∣∣∣∣∣. (5)

This simplified approach allows us to refuse the complicated behavior of function
F(Xi) and compute its uncertainty as a linear combination of the uncertainty of
its variables, see formula 4. For variance, there is no linear relation, but when
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correlations between factors Xi are suppressed and Xi ∼ N(μi,σi), then a non-
central chi-square distribution can be assumed for δ (F(Xi)).

This simple approach has limited applicability. It shows the error spreading and
forms a scheme of uncertainty interactions. Without the generality lost, formula 4
can be prescribed into the applicable form:

|δ F (Xi)| ∼=
∑

i

∣∣∣∣
δ (Xi)

�Xi

∣∣∣∣
∣∣�Xi F ′ (�Xi

)∣∣,

or with introduction of new functions:

|δ F (Xi)| ∼=
∑

i

∣∣∣∣
δ (Xi)

�Xi

∣∣∣∣
∣∣G

(�Xi
)∣∣, (6)

where G(�Xi) = �Xi F ′(�Xi). This expression shows the linearized form of the uncer-
tainty combination. When a value that represents the 95% confidence interval is
substituted for δ(Xi), the ratio (Xi)/�Xi it represent the percentage contribution to the
total uncertainty. The result is a linear combination of these percentage submissions.
In the linear dependence of F(�Xi) the solution is modified to the form:

|δ F (Xi)| ∼=
∑

i

∣∣∣∣
δ (Xi)

�Xi

∣∣∣∣
∣∣F

(�Xi
)∣∣. (7)

In this case the total error of the above formula is an addition of particular terms,
which occur in the function defined by expression 1 or 2. From this it can be seen
that the linearized approach is effective for use only in the case when |G(�Xi)| << 1.
On the other hand, it shows us that PDFs of δ(Xi) can play an important role
within the process of uncertainty combination. It is clear from this knowledge that
one cannot simply sum together the errors from δ(Xi) without investigation of the
probability distribution function of δ(Xi). The application of initialization records
from the applied values to the FOD model confirms the concerns from the linear
theory limitations (Szemesová and Gera 2007b). These results, formulas 5, 6, or 7
are close to the Tier 1 uncertainty computation. The knowledge obtained by the
linear approach requires the use of a sophisticated model for improved description
of uncertainty.

The software package, which works with the probabilistic distributions and their
combination, was developed for the resulting uncertainty computation. Together
with the AuvTool software, they create useful tools for uncertainty estimation.
The following statistical distributions are supported in the developed packages:
Gumbel, Exponential, Weibull, Lognormal, Uniform, Triangular, Beta, Binomial,
Negative binomial, Chi-square, Noncentral chi-square, F, Noncentral F, Gamma, T,
Noncentral T, Normal, Poisson, and empirical.

The above-mentioned PDFs and their statistical properties are well known, apart
from the empirical distribution. The probability function for the model parameters
was presented in the above text. When the data obtained are used for development
of distributions, it is important to determine if the data are a random, representative
sample, for instance, a sample from a population. To obtain the 95% confidence
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limit, some additional information about the data set is needed. Use of the PDF
properties or the cumulative distribution function (CDF) allows us to obtain addi-
tional information about the percentiles and data properties. With this knowledge
the propagation of uncertainties can be analyzed and the values for the confidence
interval determined.

In some cases it is necessary to construct the empirical distributions that supply
the analytical properties of PDF or CDF. There are many instances in the litera-
ture where the use of analytical distribution is preferred to empirical distribution.
According to these, the empirical probability distributions are unwieldy, and there
are proposals to replace them with an analytical function, either with CDF or
with PDF. It can be seen in the text below that, in some cases, adherence to the
empirical distribution is more advantageous than being forced to find the analytical
function. For example, in many cases, several functions can fit the empirical data
satisfactorily within given probability criteria. These different functions can have
different distributions at the extremes where there are few or no data to constrain
them, and the choice of one function over another can systematically change the
outcome of an uncertainty analysis (IPCC 2000).

For these reasons, there are some recommendations in the literature regarding
how to construct a PDF or a CDF. These recommendations become important
especially when there are some degrees of freedom for PDF construction: usually this
happens when expert recommendations are important and an insufficient amount of
data is available.

When empirical data are available, the first choice should be to assume the
normal distribution of the data (either in a complete or truncated form to avoid
negative values, if these would be unrealistic), unless the scatter plotting of the data
suggests a better fit to another distribution. When an expert judgment is used, the
distribution function adopted should be normal or lognormal or as in the previous
case, supplemented by uniform or triangular distributions. Other distributions are
used only where there are compelling reasons to do so, either through empirical
observations or resulting from an expert judgment backed up by a theoretical
argument (IPCC 2000).

In some special cases, for example, when a strong skew in the PDF is desired
by the expert assessment, empirical distribution has to be constructed. It is for this
reason that we have developed the methodology. In order to know all the above-
mentioned recommendations regarding how to construct the PDF, the empirical
distribution is constructed as required and these are requirements that should be
observed strictly. First, monotonous properties before and after one global maximum
on the examined interval are demanded. Probability decomposition is assigned by
the confidence interval values (in our case 95%), known from the expert entry. The
mean value for the data set is also assigned. These requirements create relations
that allow us to construct a system of equations that describes these objectives. In
the system there can be a few free parameters that allow us to modify the shape
of the probability function. The number of tuned parameters is dependent on the
number of subintervals (related to the density of points at which the function values
are computed). For a better illustration of the empirical behavior, the DOC(x)

parameter is presented in Fig. 2a, b.
In this case, it should be effective, with respect to the previous recommendations

regarding PDF construction, to take this data sample and construct the desired

Reprinted from the journal 47



Climatic Change (2010) 103:37–54

Fig. 2 a The probability
density function is generated
by the empirical function;
b the cumulative probability
function for the DOCX
parameter is presented. The
mean value is 0.120, the
confidence interval
−50%:20% relative to the
mean value (0.060:0.144) F
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analytical distributions using a method such as the statistical parameter estimation
method, Method of Matching Moment (MoMM), and Maximum Likelihood Estima-
tion (MLE). In special cases, our suggestion, based on experience, is to adhere to the
empirical form of data (high skew) because the continuous analytical form, which
approximates our empirical distribution, can change the desired statistical criteria
significantly (the confidence interval or average differ from the initial conditions).

Where an expert determines the confidence interval, the creation of the PDF
procedure could force us to modify these input parameters. It can be deduced from
Fig. 1a that the uncertainty changes are not linear and that the influence on total
uncertainty of value changes to the PDF function should be investigated in advance.
To prevent manipulation of input values, which represent the confidence interval or
the mean value, it is preferable, as explained above, to use the empirical PDF. This
approach will satisfy the expert requirements absolutely.

With this knowledge, the PDFs from the parameters entered (Table 1) are
constructed (the result can be seen in Table 2) and they are applied consecutively
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Table 2 Statistical characteristics for the last seven computed inventory years, mean value of
emissions (Gg/year), average emission (Gg/year), standard deviation (Gg/year), and 95% confidence
interval are expressed with two values 2.50% and 97.50%

CH4/year 1999 2000 2001 2002 2003 2004 2005

Median 42.6329 43.7533 43.7509 50.0221 53.0137 50.7267 48.7324
Average 42.2509 43.1205 43.0749 49.2063 52.1081 49.8123 47.8165
SD 15.9239 16.2150 16.1070 18.3016 19.2825 18.3440 17.5280
2.50% 11.2803 11.0346 11.0738 12.7138 13.5350 13.0018 12.5398
Percent −73.3016 −74.4099 −74.2918 −74.1623 −74.0251 −73.8985 −73.7751
97.50% 74.4430 75.5031 75.0564 85.3523 90.0037 85.6646 81.8976
Percent 76.1927 75.0979 74.2461 73.4580 72.7251 71.9748 71.2749
Abs. min 1.0869 1.0628 1.0799 1.2545 1.3506 1.3122 1.2800
Abs. max 114.3017 111.8264 111.0865 126.2310 133.0095 126.5504 120.9383

The relative percentage values related to the mean value are also presented. The following absolute
minimum and absolute maximum are shown

to the FOD. After application of the Monte Carlo method in the FOD model, the
final probability distributions are obtained for each inventory year. This approach
allows us to see the detailed variation and combination of the input parameters and
their distribution functions. As shown, the interactions of the PDFs are not simple.

With respect to the knowledge obtained, using Eqs. 1 and 2, together with the
probability parameters settings in Table 1, the final statistics for total CH4 emissions
for the chosen period (1960–2005) can be seen in Fig. 3. The result shown is for 60,000
trials. The number of trials has an influence on the precision of the result. Table 2 is
added for more specific results for the last 7 years.

Where measured data are absent, it can be useful to know which parameter
entered into Eqs. 1 and 2 is more sensitive to the assigned values and their accuracy,
which is determined by an expert. Likewise, the PDF type influence for the para-
meters could be investigated in a similar manner. These facts allow us to focus our
interest on the sensitivity of the parameters and to analyze their dependence more
carefully. The applied uncertainty values for the sensitivity testing of parameters
in Table 1 are chosen from 10% to 50%, for selected parameter DOCF 10% to
80% in Fig. 1a. These intervals are selected to demonstrate the total uncertainty
dependences of the model and do not directly correspond to the values in Table 1.

To see the influence of the PDFs changes on the total emissions, we try to
modify the PDF profiles for every input parameter, as defined in Table 1 (source:
IPCC default values and expert estimation). At the beginning of our analysis, each
profile was changed into the normal or uniform distribution. The mean values were
retained, but the uncertainties were changed. The symmetrical uncertainties were
used in the first step of the analysis for input parameters. The first four rows
in Table 3 represent this assumption. Abbreviation “Nor.” expresses the normal
distribution and “Uni.” the uniform distribution. The number following expresses
the symmetrical uncertainty specification for all the parameters contributing to total
CH4 emissions (for example, number 10 means that the parameter K and other
parameters are varied by ±10% about the mean value). The last row was introduced
for comparison. It represents the original setting from Table 1.
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Fig. 3 a The variation of the
median, average, standard
deviation, and 95% confidence
interval are expressed by the
values during the period
1960–2005; b the frequency
distribution function for waste
for the year 2005 is shown
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A different approach should be used to analyze the influence of the parameter on
the degree of uncertainty on the aggregate emissions, which is, in our case, offered
by formula 7. The uncertainty magnitude for some parameters (Table 1) is several
times higher than the mean value. This property does not allow the results from
the linearized theory to be used directly. The results for the sensitivity of input
parameters are simply validated with the method, which examines the uncertainty

Table 3 Statistical characteristics for different PDF settings for the year 2005, the mean value of
emissions (Gg/year), the average emissions (Gg/year), the standard deviation (Gg/year), and the
95% confidence interval are expressed using two relative percentage values 2.50% and 97.50% (the
following absolute minimum and absolute maximum are shown)

CH4/Par. Median Average SD 2.50% Percent 97.50% Percent Abs. min Abs. max

Nor.10 49.1889 49.4552 5.6646 39.1089 −20.9206 61.2238 23.7964 28.1715 77.1365
Nor.50 42.4680 48.7127 29.8443 10.1810 −79.1000 123.8633 154.2732 0.0000 291.8520
Uni.10 49.0160 49.4153 6.7636 37.3642 −24.3875 63.6923 28.8917 30.2680 76.5576
Uni.50 38.3450 48.2823 36.2270 8.3265 −82.7546 145.1353 200.5973 2.1156 318.7652
Tabular 48.7324 47.8165 17.5280 12.5398 −73.7751 81.8976 71.2749 1.2800 120.9383
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fluctuation of the chosen parameter and the total uncertainty. The results of choosing
this example of sensitivity can be seen in Table 4 and in Fig. 4.

Tables 3 and 4 are compared for the sensitivity analysis. It is convenient to
compare the row “Nor.50” with the chosen statistics from Table 3 and statistics
in Table 4. Each row in Table 4 shows the influence of the relevant parameter
on the total emission computation. It can be seen that the variation of parameter
K has a less significant influence on the total level of emissions. This result was
obtained with the normal PDF setting for all parameters and with the change of
uncertainty level from ±50% to ±10% for the given parameter. Other parameters
show a similar dependence on the uncertainty of total emissions; more details can be
seen in publication (Szemesová and Gera 2007a).

We can assume that other parameters, except K parameters concerning the
equation structure 1 and 2, will have some variation and influence on the aggregate
uncertainty. Examination of the normal PDF was chosen so as to be closer to the Tier
1 approach as though distribution were normal (example in Table 4, other obtained
results are not presented here).

This analysis shows that the asymmetry allowance in (Szemesová and Gera 2007c)
could be an important feature in our formula and have the strongest influence on
the total uncertainty. The asymmetrical PDF could better represent the uncertainty.
The normal distribution does not allow asymmetry. For this reason, one can see the
disadvantage of the Tier 1 method, which works with symmetric uncertainty. The
better choice for the uncertainty specification would thus seem to be the use of a
simple PDF in the absence of measured data. For example, a triangular PDF, which
allows asymmetry, has features that help us better compute total uncertainty. Use of
the symmetric PDF could artificially overestimate the total uncertainty. On the other
hand, introduction of a detailed structure to better describe real processes, instead
of using simplified models, can introduce greater uncertainties (IPCC 2000). This
approach, at first glance, could initiate some reflection regarding the need to develop
these sophisticated methods. But we should bear in mind that accurate observation
of the problem helps us eliminate further uncertainties.

It should be noted, when interpreting the results obtained, that the parameter
uncertainty changes over the years in the FOD model. Similarly, the mean value of
some parameters changes during the inventory period analyzed. These features do

Table 4 Statistical characteristics for normal PDF setting for different parameters settings; the
parameter sensitivity is analyzed for the year 2005, the mean value (Gg/year), the average (Gg/year),
the standard deviation (Gg/year), and the 95% confidence interval are expressed using two relative
percentage values 2.50% and 97.50%

CH4/Par. Median Average SD 2.50% Percent 97.50% Percent Abs. min Abs. max

DOCX 43.8849 48.7868 26.6149 11.8784 −75.6525 113.7061 133.0671 0.0000 337.3469
MCF 43.7599 48.7756 26.4652 11.9973 −75.4031 113.5155 132.7302 0.0000 244.4157
K 43.3046 49.6141 30.2694 10.5004 −78.8359 126.0141 153.9885 0.0000 308.2557
F 43.7599 48.7756 26.4652 11.9973 −75.4031 113.5155 132.7302 0.0000 244.4157
DOCF 43.8373 48.7171 26.4684 12.0842 −75.1951 113.4445 132.8639 0.0000 288.6757
MSWL 43.8908 48.7435 26.5507 11.9458 −75.4926 112.7903 131.3958 0.0852 248.8542

The following absolute minimum and absolute maximum are shown. For the total uncertainty with
normal PDF, there are the input parameters with ±50% uncertainty, apart from the parameter in the
first row of the table. The uncertainty of this parameter is only ±10% above the mean value
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Fig. 4 a Are the total
emissions of CH4 for the year
2005 for the normal parameter
distribution with a 50% degree
of uncertainty for all
parameters; b the same is
shown for the uniform
parameter distribution with
50% of uncertainties for all
parameters F
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not allow simple result analyses. Our results show that application of the linearized
approach is not useful in our case. The Monte Carlo method provides an effective
method for obtaining the statistical structure of the CH4 emissions from waste dis-
posal sites. It should be noted that the FOD model works with many parameters. The
parameter interaction can be seen in formulas 1 and 2. Each uncertainty parameter
has a different sensitivity to the computation of total uncertainty. In addition to
other dependences, parameter K depends on the amount of precipitation. Because of
climate changes, the precipitation allocation (temporal distribution during the year
and spatial distribution) will be changed. In the future a different climatic scenario
will be assumed, with a more than a 30% variation when compared with the current
state of precipitation. The duration of arid and wet seasons will also change. It can be
assumed that these conditions will have an influence on disposal site processes. This
can influence the mean value of the parameters, or it can change the uncertainty
of this parameter and, consecutively, influence the total CH4 emission estimation
in the future. The expected improvements in the future in landfill management can
minimize the level of uncertainty of the parameters entered in our study.
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4 Conclusion

The main topic of this paper was description of the uncertainty of the CH4

emissions produced by solid waste disposal sites in Slovakia. Based on our analyses,
the emissions uncertainty would appear to be strongly dependent on the PDF setting.
These features were identified by the FOD model investigation by simple linear
analyses of the uncertainty of total emissions and, in the second case, by changing
the PDF setting. Data accuracy plays an important role in the computation of total
uncertainty Increase in partial uncertainties for the input factors increases total
uncertainties nonlinearly. Where asymmetry is allowed, total uncertainty could be
smaller than the uncertainties of single input parameters. Variation in parameter
K is seen to have a less significant influence on total emissions than in other
parameters. This result was obtained with normal PDF setting for all the parameters
and with a change of uncertainty level from ±50% to ±10% for a given parameter.
Other parameters except K parameter show a similar dependence on total emission
uncertainty. This approach shows that the more important feature, which has the
stronger influence on the total uncertainty, is the asymmetry allowance. The result
from our study is that total uncertainty was increased comparably to the IPCC
default recommended value to the value about ±70% (year 2005). The default value
is 50% for the total CH4 emissions from SWDS. This uncertainty growth is not a
failure of Tier 2 against Tier 1, the applicability of which was discussed in the text
above. On the contrary, Tier 2 provides the deeper analysis and describes the reality
more accurately. It means that actual uncertainty is close to the Tier 2 result and
improvement could be achieved by a decrease in input uncertainty parameters. In
spite of the high levels of inaccuracy of the input data in the beginning of the period
examined (this uncertainty has an influence on the current uncertainty) a relatively
useful result based on sophisticated method is obtained. Another result from our
analysis is that the CH4 emissions from the MSWDs are the important key category.
Specification and identification of the key categories are important for the economy
and for government institutions to obtain an overview of the important emission
categories, the emission of CH4 from the underlayer, and many other factors like
meteorological conditions, management of the waste sites, and policies and measures
that were included in the uncertainty computation. These dependences are expressed
in the FOD model, which was solved by Monte Carlo simulation. A propagation of
emission computation uncertainty during the analyzed period was obtained.
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Abstract The Greenhouse Gas Inventory for the United Kingdom currently uses
a simple carbon-flow model, CFLOW, to calculate the emissions and removals
associated with forest planting since 1920. Here, we aim to determine whether a
more complex process-based model, the BASic FORest (BASFOR) simulator, could
be used instead of CFLOW. The use of a more complex approach allows spatial
heterogeneity in soils and weather to be accounted for, but places extra demands on
uncertainty quantification. We show how Bayesian methods can be used to address
this problem.

1 Introduction

Quantifying a greenhouse gas (GHG) inventory is a problem of incomplete infor-
mation. As no amount of data collection will provide us with a full inventory of
all fluxes in a region, additional calculations and assumptions are required. In the
case of land use, land use change, and forestry (LULUCF) in the United Kingdom
(UK), process-based models are used to quantify net carbon dioxide (CO2) emissions
associated with afforestation, reforestation, and deforestation, based on forestry data
and soil type information (Thomson and van Oijen 2007). The model currently
used for forests planted after 1920 is CFLOW (Dewar and Cannell 1992; Thomson
and van Oijen 2007). CFLOW is a simple compartmental model for the carbon
cycle which uses measured wood productivity as input and calculates the flows of
carbon to tree parts and soil, with different turnover rates being used for the various
compartments. A similar approach, with a similar model (CARBWARE), is used
in the GHG Inventory for Ireland (Black, pers. comm. 2007). Here, we investigate
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the scope for partly or completely replacing CFLOW with a more complex process-
based model, the BASic FORest (BASFOR) simulator, that can better take into
account the spatial distribution of climate and soil properties across the UK—and
how this replacement would affect the process of quantifying uncertainties in the UK
Inventory. Besides spatial variation in environmental drivers, process-based models
can also calculate the effects of inter-annual variation in weather conditions, such
as the irregular occurrence of drought years. However, we shall focus on the spatial
variation in this contribution.

A major problem with the use of complex models is incomplete knowledge of
input variables as well as model parameters. This causes uncertainty in the model
outputs which needs to be quantified and reported in an inventory. The basis of the
method for uncertainty quantification used in this work is the Good Practice Guid-
ance, Methodological Tier 2, of the Intergovernmental Panel on Climate Change
(IPCC) (Penman et al. 2003). We first quantify the uncertainties associated with
model parameters used in the inventory calculation by expressing them as probability
distribution functions (PDFs). Then, representative samples are taken from the
PDFs to propagate parameter uncertainty forward through the calculations. This
results in representative samples of the desired output variables. There are excellent
examples of the use of this method for uncertainty quantification (Monni et al. 2007;
Peltoniemi et al. 2006). Although the method is relatively straightforward, it needs
to be applied with caution. Knowledge about parameters is generally incomplete;
they interact, and uncertainty may propagate nonlinearly in the calculations. If the
only source of information utilized for the PDFs is direct measurement or expert
opinion, the resulting output uncertainty may be overly high (van Oijen et al. 2005).
To prevent the generation of inventory uncertainty estimates that are unrealistically
high, or even unusable in practice, we need to reduce uncertainties where possible,
but we also need to combine direct and indirect information when estimating
uncertainties. Here, we use Bayesian calibration to incorporate as much information
into our PDFs as possible (Patenaude et al. 2008; van Oijen et al. 2005). Bayesian
calibration is the application to parameter pdf estimation of Bayes’ Theorem:

p(θ |D) = c p(D|θ)p(θ), (1)

where p(θ|D) is the so-called posterior pdf for our parameters θ after incorporating
new direct or indirect information D, p(θ) is the prior pdf for θ that we had
before arrival of the new information D, p(D|θ) is the likelihood of D for given
values of θ, and c is proportionality constant. Bayes’ Theorem is valuable for the
inventory because it is often relatively easy to quantify the likelihood p(D|θ) of new
information, in which case the Theorem tells us immediately how our uncertainty
about the parameters θ decreases because of that information. Useful information
D could be measurements of carbon stock changes or emissions (i.e., the key output
variables of interest in the inventory), but also equally well measurements of any
other variables that play a role in the inventory calculation such as litter fall rates
or soil organic matter (SOM) decomposition rates that are intermediate variables in
the calculations of the carbon pools and fluxes. The method thus not only propagates
uncertainty in inputs and parameters to model outputs, but also uses data on output
variables to reduce the uncertainty in inputs and parameters. Finally, an additional
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benefit of the method is that the posterior distribution generated by the Bayesian
calibration includes appropriate correlations between all parameters—which would
be hard to establish otherwise (Winiwarter and Muik 2010).

Here we will demonstrate the application of Bayesian calibration to BASFOR and
show predictions of carbon sequestration, including their uncertainty for the time
periods 1920–2000 and 2000–2080. From the model results, we calculate coefficients
of sensitivity to environmental change. We discuss how the coefficients could be
added to the model currently used in the UK Inventory (i.e., CFLOW), as a
possibly simple way of sensitizing that model—and thereby the Inventory—to spatio-
temporal patterns of atmospheric CO2, nitrogen (N) deposition, and climate.

2 Methods

In this study, the parameters of the BASFOR model were calibrated using data for
two Sitka spruce plantations in the UK. After calibration, the model was run for the
whole of the UK at 20 × 20 km resolution for both current and future environmental
conditions. For each of the 655 grid cells, flux rates per unit of forested area were
calculated. The study did not quantify total fluxes per grid cell, which would have
required information about planting areas, as the primary objective was to quantify
uncertainties at the level of the forest stand. This section describes the different
elements in the approach: the model (Section 2.1), the data (Section 2.2), and the
method of Bayesian calibration (Section 2.3).

2.1 BASFOR model

The BASic FORest simulator, BASFOR, is a process-based forest model that
simulates carbon and nitrogen cycling in trees, soil organic matter, and litter (van
Oijen et al. 2005, 2010). It simulates the response of trees and soil to radiation,
temperature, precipitation, humidity, wind speed, atmospheric CO2 and N deposi-
tion, and thinning regime. The model has 11 state variables, representing carbon
and nitrogen pools in trees and soil, and 32 parameters controlling the rate of
physiological processes and morphological characteristics. Net carbon uptake by the
trees is simulated by multiplying light absorption, calculated using Beer’s Law, with
a light-use efficiency that depends on temperature and the water and nitrogen status
of the trees. Uptake of water and nitrogen depends on the balance between tree
demand and soil supply. The model is deterministic and is solved by Euler integration
with a time step of 1 day.

BASFOR is more complex than CFLOW, the model currently being used in
the UK GHG Inventory. CFLOW simulates the pools and fluxes of carbon in the
tree–soil system, whereas BASFOR also simulates pools and fluxes of nitrogen and
water. The input requirements of the two models also differ. Forest volumetric
yield class is input to the CFLOW model, and information on wood density and
biomass expansion factors is needed to convert yield class into carbon uptake rates.
BASFOR does not require tree productivity as input, but calculates net primary
productivity (NPP) dynamically as a function of the current state of the trees and
the environmental conditions, including the thinning regime of the stands.
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2.2 Data

2.2.1 Weather data

Weather data for the periods 1920–2000 and 2000–2080 were taken from the UK
Climate Impacts Programme (UKCIP) climate scenarios (Hulme and Jenkins 1998).
For future weather, only the “medium–high” scenario was used. The data are given
for a regular spatial grid of 655 cells of 20 × 20 km each. The scenarios show that
current spatial gradients in the UK for temperature and precipitation are dominated
by latitudinal and longitudinal effects, respectively. Future warming is expected to
show a decreasing pattern from the southeast to the northwest.

2.2.2 Atmospheric CO2

Atmospheric CO2 concentration has increased from around 300 ppm in 1920 to
current levels of close to 380 ppm, with an average for the period 1920–2000 of
325 ppm. For the average CO2 level in the period 2000–2080 under the Special
Report on Emissions Scenarios (SRES) IS92a, the Bern model (Joos et al. 1996)
predicts a value of 480 ppm.

2.2.3 N deposition

Early twentieth century levels of N deposition were low across Europe (<3 kg N ha−1

year−1) (Galloway 1985). Data and calculations by the Co-operative Programme for
Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in
Europe (EMEP) show increasing N deposition values during most of the twentieth cen-
tury, with maxima reached around 1990 (van Oijen et al. 2008). The 1999 Gothenburg
Protocol to Abate Acidification, Eutrophication and Ground-level Ozone sets emis-
sion ceilings for 2010 for NOx, ammonia, and other pollutants. Hence, we assumed
continued reductions of N deposition until the year 2010, with deposition remaining
constant thereafter. These temporal patterns were spatially disaggregated using the
2004 UK deposition map (R.I. Smith, personal communication).

2.2.4 Soils

Data on soil nitrogen, carbon, and plant-available water content were taken from
the global soils database produced by the Data and Information Services of the
International Geosphere–Biosphere Programme (Global Soil Data Task 2000). The
data are at a resolution of 5 × 5 arc minutes.

2.2.5 Tree data from Dodd Wood and Rheola sites

Forest Research UK provided data on soil characteristics and destructive measure-
ments of tree growth from two Sitka spruce stands for use in model calibration
(Fig. 1) (R. Matthews and P. Taylor, personal communication). The sites were Dodd
Wood (54.64◦ N, 3.17◦ W, alt. 381 m, indurated brown earth sandy soil) and Rheola
(51.74◦ N, 3.68◦ W, alt. 220 m, brown earth soil). Trees were planted in 1927 and
1935, respectively, and management followed a 5-year thinning cycle on both sites,
starting 24 and 28 years, respectively, after planting. In each thinning year, data were
gathered on standing and removed stem volume and on standing and removed whole
tree biomass. At the last thinning, biomass fractions in leaves, branches, stems, and
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Fig. 1 Simulated average
annual C-sequestration (in
soil, living trees and wood
products) for 1920–2000.
Results from model BASFOR
following Bayesian calibration
on data from Sitka spruce
plantations at Dodd Wood and
Rheola

→

→

roots were estimated using site-specific biomass expansion factors. In total there were
52 data points for Dodd Wood and 44 for Rheola, for each of which a measurement
uncertainty of 20% was estimated.

2.3 Bayesian calibration and uncertainty quantification

The parameters of the BASFOR model were quantified by means of Bayesian
calibration (van Oijen et al. 2005), using the Forest Research UK data for Dodd
Wood and Rheola. The procedure began with quantification of the uncertainty
about the parameter values in the form of a prior probability distribution. In
the absence of detailed data on Sitka spruce, the prior distribution was based on
literature data on conifer growth (Table 1) (Levy et al. 2004; van Oijen et al.
2005). The Forest Research data on model output variables were used to update
the parameter distribution by application of Bayes’ Theorem (Eq. 1). This yielded
a posterior, calibrated probability distribution for the parameters. As BASFOR is a
nonlinear model, the posterior distribution could not be determined analytically. We
therefore used a Markov Chain Monte Carlo (MCMC) approach, the Metropolis
algorithm (Robert and Casella 1999), to generate a representative sample from
the posterior distribution (for computer code, see http://nora.nerc.ac.uk/6087/). The
calibration was carried out in two steps. In the first MCMC, the prior distribution was
updated using the Dodd Wood data. The parameter sample generated by this step
was approximated by a truncated normal distribution which was further modified
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in the second MCMC using the Rheola data. Note that, in Bayesian calibration,
the order in which two or more data sets are processed does not affect the final
posterior distribution. After calibration, the predictive uncertainty of the model was
quantified by running the model with different parameter settings sampled from the
posterior distribution (n = 5). The sample size was kept small to allow uncertainty
quantification for each of the 655 grid cells covering the UK. It was verified that
deleting any of the five parameter vectors from the sample changed the average value
of sequestration by <2%.

The calibration was applied only to model parameters. Uncertainty associated
with model drivers (CO2, temperature, N deposition) was assessed in only a pre-
liminary way by varying their values for the Dodd Wood site and quantifying
forward propagation of the variation to model output. Model drivers consist of long
time series, and formally including them in the Bayesian calibration would have
required determination of a joint prior distribution encompassing daily values of each
variable, which was beyond the scope of this study. Moreover, no attempt was made
to quantify uncertainty relating to the structure of the model itself.

3 Results

3.1 Bayesian calibration and uncertainty quantification

Table 1 lists the major parameters of BASFOR, with their prior uncertainty before
application of data from UK forests, and their posterior uncertainty after Bayesian
calibration. For most parameters, prior uncertainty was large (i.e., lower and upper
limits were far apart). Figure 2 (black dotted lines) shows for four model output
variables (tree and soil carbon, tree height, and total produced wood volume) how
the prior parameter uncertainty caused uncertainty in model outputs at the Dodd
Wood site. For example, the uncertainty interval (two standard deviations wide)
for tree carbon at the end of the 80-year rotation ranged from below 40 to above
80 tonnes carbon ha−1. Table 1 and Fig. 2 also show to what extent uncertainties
were reduced by the Bayesian calibration using the data from the Dodd Wood and
Rheola sites, described above. The marginal posterior probability distributions for
the parameters were much narrower than the prior distributions, as can be seen
from the small coefficients of variation. The data from the two forest sites were
not equally informative for all parameters, with coefficients of variation (CV) for
three parameters—initial leaf and stem carbon content and the nitrogen to carbon
(N/C) ratio of wood—exceeding 20%. However, the red unbroken lines in Fig. 2
show that overall parameter uncertainty had been reduced enough to significantly
reduce output uncertainty for the four selected variables.

3.2 C sequestration 1920–2000

The calibrated model was applied to calculate UK-wide C sequestration between
1920 and 2000 for a standardized Sitka spruce rotation with a five-yearly thin-
ning interval (Fig. 1). C sequestration was defined as the average annual total
accumulation of carbon in soil, standing biomass, and wood removed at thinnings.
Product decay was not accounted for. Calculated sequestration rates were highest
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(a) (b)

(c) (d)

Fig. 2 Prior (black, dotted lines) and posterior (red, unbroken lines) model output uncertainty
for conifer forests planted in 1920 under Dodd Wood environmental conditions. Pairs of lines
are separated by two standard deviations. Output variables are tree and soil carbon content, tree
height and cumulative wood volume production. Blue circles and vertical lines data with estimated
measurement error

in the southwest of the country, which combines moderately high temperature and
precipitation. The far north is identified by the model as an area of net C source
rather than a sink (Fig. 1). The spatial pattern of C sequestration was not closely
related to the spatial distribution of atmospheric N deposition and soil nitrogen.
The propagation of parameter uncertainty to uncertainty about C sequestration
rates was calculated by randomly taking five parameter vectors from the posterior
parameter probability distribution (Table 1) and calculating the standard deviation
for the five resulting output sets. Figure 3 shows the resulting map of sequestration
uncertainty. The spatial pattern of sequestration uncertainty differed strongly from
that of sequestration itself, with Figs. 1 and 3 showing only a weak correlation
(r = −0.25). This means that the coefficient of variation for carbon sequestration,
induced by parameter uncertainty alone, varies among different growing conditions.

3.3 C sequestration, 2000–2080

The same calculations of C sequestration were repeated for the environmental
conditions expected for the period 2000–2080. Figure 4 shows the spatial distribution
of expected changes in sequestration relative to 1920–2000. The changes are not
closely related to the magnitude of expected changes in temperature, as their spatial
patterns differ. However, some degree of warming is expected across the whole
country, causing C sequestration to increase mainly in the higher, colder regions of
Wales, northern England, and Scotland, and to decrease in southern England.
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Fig. 3 Uncertainty (standard
deviation) in simulated
average annual
C-sequestration (in soil, living
trees and wood products) for
1920–2000. Results from
model BASFOR

3.4 Analysis in terms of environmental change factors: climate, CO2, N deposition

The above-mentioned UK-wide assessments of the effects of environmental change
on expected C sequestration rates in conifer forests did not separate out the effects
of the different environmental factors that are subject to change. For the purpose
of such analysis, we ran additional simulations for the Dodd Wood site with a
range of temperatures, atmospheric CO2 concentrations, and N deposition rates in
a full-factorial setup. The ranges of these factors were not intended to represent
uncertainty; they served only as input to a sensitivity analysis encompassing the full
range of conditions from 1920 to 2080. Average temperature was varied from 6.8◦C
to 9.9◦C (which amounts to expanding the UKCIP estimates for the site for 1920–
2000 and 2000–2080 by one degree on either side of the range); atmospheric CO2 was
varied from 320 to 480 ppm (corresponding to changes estimated by the Bern model
using the IS92a emission scenarios for 1920–2000 and 2000–2080); and N deposition
was varied from 0 to double the 1920–2000 average value of 8.0 kg N ha−1 year−1.
Table 2 summarizes the results of application of the model for these environmental
conditions. The first data column of the table lists the average values of yield class and
annual C sequestration rate across the set of environmental conditions considered,
with standard deviations indicating the uncertainty arising from both the variation
in environmental conditions and the parametric uncertainty determined previously.
The final three data columns of Table 2 give the average effect on yield class and
sequestration of changes in temperature, CO2, and N deposition, with uncertainties.
At the site examined, Dodd Wood, changes in each of the three environmental
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Fig. 4 Simulated change in
average annual
C-sequestration (in soil, living
trees, and wood products)
from 1920–2000 to 2000–2080.
Results from model BASFOR

factors have an effect on the output variables, but with the strongest effect (relative
to its expected degree of change) being for CO2. The analysis further suggests that
C sequestration rates are likely to increase to a similar extent in soils and in tree
biomass.

Table 2 Simulated change in average yield class and annual C sequestration at the Dodd Wood site
due to changes in temperature and CO2 and N deposition

Ecosystem variable Dodd Wood Impact of environmental change
value Effect of Effect of Effect of

temperature [CO2] N deposition
(per ◦C) (per 100 ppm) (per 10 kg N

ha−1 year−1)

Yield class 7.91 ± 1.11 0.18 ± 0.05 1.32 ± 0.38 0.74 ± 0.26
(m3 ha−1 year−1)

C sequestration 3.99 ± 0.64 0.10 ± 0.03 0.76 ± 0.21 0.41 ± 0.14
(t C ha−1 year−1)

C sequestration, soil 1.58 ± 0.31 0.05 ± 0.01 0.36 ± 0.10 0.18 ± 0.07
(t C ha−1 year−1)

C sequestration, trees 2.41 ± 0.34 0.05 ± 0.02 0.40 ± 0.12 0.23 ± 0.07
and products
(t C ha−1 year−1)

The standard deviations are due to uncertainty in parameterization and to variation in interacting
environmental factors, but not including soil characteristics
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4 Discussion and conclusions

4.1 Bayesian calibration and data quality

This study has investigated methods that may be used to improve the construction of
the UK GHG Inventory. The process-based forest model BASFOR was parameter-
ized efficiently using Bayesian calibration. The method is probabilistic in that it uses
information from data to update the probability distribution for parameters. The
calibration thus allowed subsequent uncertainty to be quantified when the model
was used to calculate UK-wide conifer forest productivity and C sequestration.

The Bayesian procedure depends on the availability of good data. Data for which
measurement uncertainty is considered to be high are not very informative, for
example, the likelihood p(D|θ) is a relatively flat function of the parameters θ. In the
calibration, such data will not strongly modify the parameter distribution. As there
was considerable uncertainty in the forest data used here, posterior model outputs
tended to be intermediate between the prior outputs and the data (Fig. 2). The prior
information helps prevent overfitting of the data.

Data that are biased will lead to bias in parameterization. Our soil nitrogen data
in particular were taken from a global database of low resolution (Global Soil Data
Task 2000) and they showed surprisingly high values for the UK, suggesting that
forests tend to be nitrogen-saturated and therefore unresponsive to N deposition. As
these data were the only source of information on soil nitrogen content available
to us, we were unable to decide if they represented overestimates. Using these
data, we found relatively low sensitivity on the part of UK forest productivity and
C sequestration rates to soil nitrogen content and atmospheric N deposition, as
opposed to the high values calculated for sensitivity to changes in temperature and
atmospheric CO2 concentration. As explained, this finding may be an artifact from
the use of the IGBP-DIS dataset with its possibly overestimated values of nitrogen
contents of UK soils, leading to apparent nitrogen saturation (van Oijen and Jandl
2004).

Although our joint prior pdf reflected uncertainty about conifer forests in general,
the posterior pdf—as well as the sequestration values shown in Figs. 1, 3 and 4—are
specific to Sitka spruce, as only data from this species were used in the Bayesian
calibration.

4.2 Spatial distribution of uncertainties

Uncertainties, expressed both in absolute terms (Fig. 3) and as coefficients of
variation (compare Figs. 1 and 3) showed distinct spatial trends across the country.
Uncertainty with regard to carbon sequestration was highest in northern and western
parts of the country. Spatial variation in inventory uncertainty is a well known
phenomenon, typically associated with spatial variation in economic activity (Bun
et al. 2010). However, our study is restricted to a single activity, forestry, and
the spatial distribution is exclusively the result of heterogeneity in environmental
conditions. This is a finding of significance for the UK GHG Inventory, as it suggests
that a simple approach to forestry-related uncertainty (e.g., assuming uncertainty to
be a fixed percentage of the absolute flux rate) is unfeasible across regions of this
magnitude. Thus, when a GHG Inventory is being determined for forestry GHG
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fluxes, not only the calculation of main effects, but also uncertainty quantification
needs to be carried out in a spatially disaggregated manner.

4.3 The impacts of changes in environmental factors

The use of a process-based model for calculating C sequestration, rather than the
semi-empirical model CFLOW currently used in the UK GHG Inventory, allowed us
to analyze the contribution of changes in temperature and CO2 and N deposition to
changes in sequestration. Elevated CO2 was found to have a particularly strong effect
on sequestration. In the future, C sequestration is expected to decrease in southern
England and increase in the currently coldest parts of the country, which is consistent
with studies by Broadmeadow et al. (2005) using a different model. However, given
the likely poor quality of the soils data our analysis should be seen as a proof of
concept for the methodology rather than as a high-probability identification of a key
environmental variable. Furthermore, the factor analysis was applied only to a single
site and should be repeated for the whole of the UK.

4.4 The use of process-based models in GHG inventories

Relatively complex models like BASFOR provide more detailed outputs than simple
compartmental carbon models can provide. These outputs include fluxes of carbon
within trees and how they respond over time to the changes in the environment
at different locations. Furthermore, this study has shown that Bayesian calibration
may be an efficient method of calibrating such parameter-rich models, while simul-
taneously quantifying uncertainties in parameters and outputs. In our test of the
approach, we used the model BASFOR, but many process-based forest models exist
that simulate the carbon cycle (for one comparison of such models see van Oijen
et al. 2008), and could be selected for this purpose. Using process-based models in a
GHG inventory may therefore be an attractive proposition. However, this study has
also shown how the extra demand that complex models place on input information
may lead to biased outputs if no good-quality data are available—with soil fertility
being a prime example.

Instead of using the complex models directly in the UK Inventory, we were
able to restrict ourselves to using their output. From the output of BASFOR, we
calculated response factors that quantify the impact of environmental change on
flux rates (Table 2). Black (pers. comm. 2007) found that uncertainties in the Irish
Inventory—whose calculation scheme is similar to that of the UK Inventory—were
mainly associated with incomplete information about annual biomass increments as
derived from yield tables. The yield class response factors we calculated (Table 2)
could conceivably be added to the currently used CFLOW model to provide a more
realistic spatial distribution and inter-annual variability of the annual increments.
However, the presence of nonlinear individual and interactive effects limits the
scope for using the response factors. For example, because of nonlinearity, the yield
class temperature response factor of 0.18 ± 0.05 (m3 ha−1 year−1) (◦C)−1 does not
necessarily apply outside the Dodd Wood area. This has implications for the way in
which we can use results from the process-based modeling to derive modifiers for the
yield class values that are used as input for the carbon inventory calculations using
CFLOW. The yield class modifiers likely need to be complex multivariate functions
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of the set of different environmental factors. However, we may calculate such
functions if we redo the current factor analysis at a UK-wide scale and with improved
input information. We aim to do this alongside quantification of the uncertainties
from incomplete knowledge of parameters, environmental drivers, and model structure.
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Abstract We provide a review description of atmospheric inversion methods for
the determination of fluxes of long-lived trace gases based on measurements of
atmospheric concentration. Emphasis is given to technical aspects of inversion
settings, which are crucial to inter-compare and understand inversion results. We
briefly sketch the formalism used in such methods, then provide a summary of
major currents in research and contemporary problems. Most attention is given to
carbon dioxide (CO2) which poses the threat of future climate change. Therefore,
there is keen interest in better understanding where and when CO2 emitted by the
combustion of fossil fuels is reabsorbed by land ecosystems and oceans. Using the
information contained in concentration fields observed from ground-based networks
and from upcoming satellite observations in order to constrain the geographic
distribution of surface fluxes is an inverse problem; it consists of finding a set of
fluxes that optimally matches the observations available. We review the application
of inverse methods to quantify the distribution of the sources and sinks of CO2 at the
surface of the Earth based on global measurements of atmospheric concentration
and three-dimensional models of atmospheric transport. We describe the use of top–
down atmospheric inversion methods in terms of numerical transport modeling and
atmospheric observation networks, and detail some of the currently important issues
in assigning uncertainties.
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1 Introduction

Quantitative understanding of the sources and sinks of chemically and radiatively
important trace gases and aerosols is essential to assess human impact on the
environment. Observations of atmospheric concentrations provide the basic data
for inferring sources and sinks at the Earth’s surface, or in the atmosphere. For
conservative tracers, which stay inert once emitted, the influence of surface fluxes
is modified only by atmospheric transport, which tends to integrate over regional
and continental scales. The concentrations of reactive species such as aerosols or
chemicals are also influenced by being produced or destroyed via chemical reactions
or physical processes in the atmosphere.

Starting from a set of atmospheric concentration observations, and using a model
of atmospheric transport and chemistry, it is possible to infer information on the
distribution of sources and sinks at the surface. This process is known as inverse
modeling of atmospheric transport. Inverse modeling consists of finding a set of
statistically optimal fluxes, which satisfies all available pieces of information (mea-
surements and prior inventories) within their respective uncertainties. This approach
has been applied to various problems, ranging from the relatively small scale when
determining pollution emissions from a factory or a city (e.g., Vautard et al. 1998) to
inferring the emissions of industrialized regions within a continent (e.g., Manning et
al. 2003), and the global distribution of sources and sinks of long-lived species such
as CO2 (e.g., Enting et al 1995; Bousquet et al. 2000; Rödenbeck et al. 2003a, b),
methane (Hein et al. 1997; Houweling et al. 1999; Bousquet et al. 2006), or carbon
monoxide (Petron et al. 2002; Arellano et al. 2006).

The focus of this review is on technical aspects of inversion settings, which are
crucial to intercomparison and comprehension of inversion results. In the following,
we describe the principles of inverse modeling of atmospheric transport applied to
quantification of the sources and sinks of carbon dioxide (CO2). The formalism is
only slightly complicated by reactive trace gases of moderately long lifetimes like
methane (CH4; 8 years). The rising concentration of CO2 is the main factor increasing
the Earth’s greenhouse effect. Atmospheric CO2 concentrations have risen by 38%
since pre-industrial times and are now at their highest for the past 25 million years.
The increase in CO2 is driven by the combustion of fossil carbon in gas, oil, and coal
deposits to produce energy, as well as by the clearing of forests to establish arable
or pasture lands (deforestation). Levels of CO2 are, however, tempered by uptake
by land ecosystems and by the oceans. Although a detailed description of the carbon
cycle is not within the scope of this paper, we recall that roughly half of the yearly
anthropogenic emissions accumulate on average in the atmosphere, while the other
half ends up being sequestered by land and oceans. Where and when the uptake
of anthropogenic CO2 takes place is a high research priority for understanding the
global carbon cycle, as well as for designing verification systems to monitor the
effectiveness of emission controls or emission reduction policies aiming to curb the
atmospheric increase of CO2 (e.g., Kyoto Protocol).

Land ecosystems and oceans are active carbon reservoirs, which exchange large
fluxes of CO2 with the atmosphere in both directions, the fluxes being driven by a
myriad of bio-geochemical processes. The probability of having a source or a sink of
CO2 at the surface of the globe is non-zero everywhere, except over ice and deserts.
Further, the CO2 surface sources can vary in time (1) diurnally, such as during uptake
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and release of CO2 over vegetation canopies, (2) seasonally, from one year to the
next, and (3) also evolve on a longer-term basis in response to changing CO2, climate,
and other factors.

The paper is divided into three main sections. First, we recall inverse modeling
principles and general issues relative to the problem of inverting CO2 fluxes over
the globe. Then we review the key technical settings of atmospheric inversions:
the a priori flux information, the atmospheric measurements, and the model of
atmospheric tracer transport. In the third part, the Bayesian synthesis inversion
technique, most currently applied for inferring CO2 sources and sinks, is discussed
in more detail, together with issues related to atmospheric transport uncertainties,
observational errors, settings of the inverse problem in terms of spatial and temporal
resolution, and how those propagate into the solution of Bayesian inversions.

2 Inverse modeling principles

In this section, we provide a general background on inversion modeling principles
relevant for inversion of CO2 fluxes using CO2 concentration data. Figure 1a illus-
trates a dynamical system, corresponding to a model with errors. In the case of CO2,
this would be a perfect atmospheric tracer transport model, able to reproduce the
CO2 concentration of any point of the atmosphere t any time. The model allows us to
simulate the state of the system Y, according to some initial conditions Yi and input
parameters x. In the case of CO2 inversions, Y is a time-varying field of atmospheric
CO2 concentration and x is a time-varying field of surface CO2 fluxes. The model is
deterministic, so that at each time step t, Y takes a unique value according to x and
Yi. The output Y of the model is a vector characterizing the dynamic state of the
system at each time step (i.e., the atmospheric CO2 concentration distribution). If we
define Ht+1 the explicit function that describes the dynamic evolution of the system
between t and t + 1, and Ot, the function describing the relationship between the
state of the system Y and the output data y at time t, one can write:

Y (ti) = Yi (1)

Yt+1 = Ht+1 (Yt, xt+1) (2)

yt = Ot (Yt) (3)

Practically, Ht+1 is a numerical transport model, and Ot is an “observation oper-
ator” sampling the distribution of CO2 where and when observations are collected.
Usually in physical problems there are uncertainties regarding the initial conditions
called �i, on input parameters called ξ, and on the dynamical model H. Then at
each time t, the state of the system becomes associated with an uncertainty �t that
propagates into an uncertainty in its output �t. Therefore the set of equations above
become:

Yi = Y (ti) + �i (4)

x = xb + ξ (5)
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Fig. 1 a Information flow in a forward atmospheric transport model with errors compared with the
available CO2 concentration observations, b Same for an atmospheric inversion model where an
optimal set of parameters (surface CO2 fluxes, x) is determined from the available concentration
observations within their errors. H represents the transport model used to simulate concentrations
everywhere in the atmosphere. O is observation operator in which the modeled CO2 distribution is
sampled at the time and location of the actual observations

Y = Ht+1 (Yt, xt+1) + �t+1 (6)

yt = Ot (Yt) + �t (7)

The diagram in Fig. 1a includes an uncertainty ξ regarding the unknown CO2 flux
parameters xb and the modelled CO2 concentration output y. The “+” signs in Fig. 1
describe the simulated values, and the ellipses describe the associated errors. The
yellow circles show the true values of the variables, assuming that these are known.
In the example of Fig. 1, the model H and the setting of x to an a priori value xb

with an uncertainty ξ is not unrealistic, as xb + ξ encompasses the true value. If we
now suppose that the system is a representation of a real world phenomenon and that
some of its characteristics can be measured, the set of observations (e.g., at observing
stations), is called yobs. Depending upon the measurement accuracy and other factors,
a data error pertains to yobs if we assume that the observations at time t relate to the
characteristics described in the vector Y. The ellipse in green around yobs represents
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the data error. As neither the measurements nor the model simulations are perfect,
we expect y and yobs to differ. In the example of Fig. 1, varying the input parameters
x through the model structure allows y to better match the observations within their
errors.

Inverse modeling consists of adjusting the input CO2 fluxes parameters x from
their a priori settings xb so as to minimize the distance between the optimized CO2

concentrations called ya and the observed concentrations yobs within their errors.
This is illustrated in Fig. 1b. The optimized value of x, called xa, is referred to as
the a posteriori, or analyzed, set of CO2 flux parameters. The distance between y
and yobs is called the innovation. One can also see in Fig. 1b that, resulting from
the inversion, uncertainties on both the optimized state of the system ya and the
optimized parameters xa are reduced (ellipses in yellow), as compared to their a
priori values, thanks to the information content carried by the observations.

Note that in the forward problem of Fig. 1a, several input parameters x may exist
that would match the observation within their errors. All those solutions form the
“null space” of the parameters, which contains the truth as well as the analyzed
parameters xa. The null space is shown as a thin ellipse in Fig. 1. When the inverse
problem is ill-constrained, for instance, because of scarce or inadequate observations
compared to the CO2 fluxes to be solved for, then the null space becomes very large.
Given an a priori value xb of the CO2 fluxes to be optimized x, optimizing the value
of x against observations results in determining the portion of the null space that is
compatible with the a priori value of xb, taking into account its uncertainties.

3 The inverse problem of CO2 sources and sinks and its components

We briefly describe in this section the components of the geophysical problem
involved in finding an optimal value for CO2 sources and sinks at the surface of
the Earth that best matches a set of atmospheric concentration observations (given
an a priori distribution of the fluxes and of observational errors) using a numerical
model of atmospheric transport. We review briefly in the following the nature of the
different components of the inverse problem: a priori fluxes and errors, observations,
and transport model. In this problem, input parameters are the fluxes we wish to
determine and the output of the model is a set of simulated concentrations, which we
will compare to observations.

3.1 A priori flux information

Having said in the introduction that both oceans and land surface exchange CO2

in both directions (uptake and release), we will search for the space and time
distribution of the net CO2 fluxes, components of the vector x, expressed in molC per
unit area per unit time. The net flux results from the superposition of all directional
fluxes corresponding to different processes.

The anthropogenic CO2 source to the atmosphere due to the combustion of
fossil fuel carbon stores (coal, gas, oil) is accurately known globally within 5%
from energy statistics (Andres et al. 1996; Brenkert 1998; Marland et al. 2001).
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Anthropogenic emissions are the main perturbation of the carbon cycle that causes
CO2 to increase. Although the total fossil CO2 source of developed countries is
accurately determined (±2%), there are large uncertainties regarding how those
emissions are distributed in space and time over industrial regions depending on
car traffic, electricity, heating, and other residential use. One example of the fossil
fuel emissions distribution is given in Fig. 2a (data available from http://www.rivm.nl/
edgar/model/v32ft2000edgar/edgv32ft-ghg/edgv32ft-co2.jsp). Such geographic pat-
terns of fossil fuel CO2 sources, including their temporal variability, are needed as
an a priori component of the inverse problem, on a grid that should match the spatial
and temporal resolution of the atmospheric transport model.

The net CO2 flux at the air–sea interface is driven by the partial pressure
difference between CO2 dissolved in surface waters and CO2 in the overlying
atmosphere, multiplied by an exchange coefficient describing the kinetics of the
mass transfer across the interface. Although at thermodynamic equilibrium, after
infinite time, the air–sea flux would be zero, in the real world there are always
processes preventing this equilibrium from actually being reached. An a priori map
of the global CO2 air–sea flux patterns based on ocean surveys (e.g., Takahashi
et al. 1997—related data available at http://cdiac.esd.ornl.gov/oceans/datmet.html)
is given in Fig. 2b. We can see that the oceans around the equator release CO2 to the

–180˚ 90˚–90˚ 0̊ 180˚
–1.00 –0.50 0.500 1.00 –0.20 –0.10 0.100 0.20

gC/m2/day

gC/m2/day

90˚N

60̊ N

30̊ N

0̊ N

–30̊ N

–90̊ N

–60̊ N

90˚N

60

–60

˚N

30̊ N

0̊ N

–30̊ N

–90̊ N

˚N

(a)

La
tit

ud
e

(b)Fossil fuel emissions Ocean fluxes

–2.40 1.20–1.20 0 2.40 –2.40 1.20–1.20 0 2.40

(c)

La
tit

ud
e

(d)Land fluxes: December-February Land fluxes: June-August

–180˚ 90˚–90˚ 0˚ 180˚

–180˚ 90˚–90˚ 0˚ 180˚–180˚ 90˚–90˚ 0˚ 180˚

Fig. 2 a Distribution of mean annual fossil fuel CO2 emissions obtained from statistics on energy
consumption and spatial information on population density and anthropogenic activities (after
EDGAR FT2000 database). b Air–sea flux (after Takahashi et al. 1997). c Land–atmosphere flux
of CO2 in the peak of the northern hemisphere growing season during June–August (after Krinner
et al. 2005). d Same during the non-vegetative season in January–March
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atmosphere when CO2-enriched bottom waters outcrop to the surface in so-called
upwelling regions. In contrast, cold waters in northern and southern extra-tropical
gyres are net sinks of CO2. Seasonally speaking, the air–sea flux varies according to
changing biological activity and sea surface conditions (temperature, wind speed),
but the seasonality of the air–sea fluxes is lower than that of vegetation-atmosphere
exchange. Currently, the degree of confidence on the global ocean uptake is of the
order of 30%. We have reasonable confidence in the broad structures reflected in
Fig. 2b, but the air–sea CO2 flux at the scale of ocean gyres is subject to larger a
priori uncertainties, especially over the southern oceans where little oceanographic
information constrains the patterns shown in Fig. 2b.

The net CO2 flux at the top of vegetation canopies results from the superposition
of CO2 uptake by photosynthesis, when growing conditions for plants are met, and
co-located release by respiration of plants and soils, including the decomposition of
soil organic matter by microbes and soil fauna. In addition, when large spatial scales
are being dealt with, disturbances occur which sporadically devastate ecosystems and
subsequently release CO2 to the atmosphere. Disturbance processes include combus-
tion by fires, pest outbreaks, forest windfall, and land use changes such as the clearing
of forests for agriculture occurring at large scales in the tropics (not shown in Fig. 2).
Increasing attention has been paid to the importance of disturbances in addition to
photosynthesis and respiration in driving the net carbon flux of ecosystems. An a
priori map of the net terrestrial exchange of CO2 is given in Fig. 2c, d, based on
calculations of a global model of terrestrial ecosystems (Krinner et al. 2005—data
available at http://www-lsceorchidee.cea.fr/). One can observe in Fig. 2c, d that the
northern hemisphere ecosystems emit CO2 from late fall to early spring, and absorb
CO2 from the atmosphere during the rest of the year. Large uncertainties pertain to
such a priori knowledge of the terrestrial CO2 fluxes, of the order of 100% of the
mean fluxes, partly reflecting the spatially heterogeneous nature of ecosystems and
the difficulties in extrapolating ground-based flux measurements up to large regions
or in using global remote sensing information on vegetation condition to map the
a priori fluxes. Further, the net terrestrial CO2 flux that is sought results from a
difference between gross fluxes that are at least one order of magnitude bigger,
and driven by independent factors. We also note that the temporal variability of the
terrestrial CO2 fluxes is high, with a marked diurnal cycle (uptake during daytime;
release at night over active vegetation), and a pronounced seasonal cycle outside the
tropics, which parallels the climate conditions driving plant growth. In particular, we
can also see in Fig. 2c, d that the northern hemisphere land masses consistently take
up CO2 in spring and summer, but release CO2 in fall and winter, yielding a strong
seasonal cycle of the net flux, which imprints atmospheric CO2 distribution.

3.2 Atmospheric observations

Atmospheric surface observations consist of a global network of about 100 stations
where CO2 is measured either continuously in situ or via discrete air sampling in
flask air samples (weekly snapshot measurements) that are analyzed at a central
laboratory (various data and data products available from http://www.esrl.noaa.gov/
gmd/ccgg/ and http://gaw.kishou.go.jp/wdcgg/products/publication.html). The obser-
vatories where CO2 is measured continuously with good accuracy are fewer (about 30
stations) than the sites where air is sampled in flasks (100 sites). There are additional
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continuous sites, but these are urban sites or their records are not calibrated to
international scales. Obviously, the continuous records of CO2 concentration contain
more information than the flask data collected weekly (Carouge et al. 2010). The
current network is part of an international effort that started 50 years ago with the
establishment of the first two stations at the South Pole and Mauna Loa in Hawaii
(Bolin and Keeling 1963). Many of the sites from the global network shown in Fig. 3
are from the United States National Oceanic and Atmospheric Administration–
Earth System Research Laboratory (NOAA–ESRL) network (Conway et al. 1994).
When overlaying the network geometry on top of the a priori flux patterns (Fig. 2),
it is striking that the interior of the continents remains undersampled, as do key
areas of the ocean such as the southern oceans. Regionally, in Western Europe
and North America, the North American Carbon Program (http://www.nacarbon.
org/cgi-nacp/web/investigations/inv_profiles.pl) and the CARBOEUROPE project
(http://ce-atmosphere.lsce.ipsl.fr/database/index_database.html) programs have in-
creased the network density over the past few years with eight new continuous
surface stations in North America and seven new stations in Western Europe, mainly
tall towers.

The reason for most stations being located over the ocean is that the fluxes
and transport patterns are less variable than in the continental boundary layer, so
that atmospheric sampling can best capture the air masses representative of large-
scale sources and sinks at oceanic sites, minimizing local “noise”. In order to take
representative atmospheric measurements over land, one must at least be outside
the surface layer and far from immediate source regions. Thus, historically, mountain
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Fig. 3 Map of atmospheric stations where CO2 observations are made routinely by means of
flask sampling and continuous measurements. Each color corresponds to a different laboratory
contributing measurements (courtesy of K. Masarie at NOAA-ESRL)
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stations, aircraft vertical profiles (Tans et al. 1996) and tall towers (Bakwin et al.
1995; Gloor et al. 2001) probing up to more than 100 m into the atmosphere have
been progressively added to the network. Vertical profiles are particularly useful to
independently check on vertical mixing in models (Ramonet et al. 2002; Stephens
et al. 2007). It is also apparent, given the large number of different unknown fluxes
acting over nearly all the globe (Fig. 2) and the small number of observations (Fig. 3)
that the inverse problem is severely under-determined when based upon in situ
measurements.

Figure 4 illustrates the variability of the atmospheric CO2 concentration recorded
on a continuous basis for 2 years at the station of Mace Head, Ireland (Biraud et al.
2002). A long-term increase, an asymmetric seasonal cycle with a short summer
time minimum and a broad maximum lasting from October to May, can be seen,
which is characteristic of nearly all northern extra-tropical stations. In addition, there
is synoptic variability associated with different air masses (meteorology) carrying
various CO2 concentrations when they reach the station. In the first generation of
inversions (e.g., Enting 2002), only the annual or smoothed monthly mean CO2

concentration in the network was used, but not the synoptic variability. Rödenbeck
et al. (2003a, b) assimilated for the first time monthly flask data, without smoothing.
The limited ability of global transport models to capture the synoptic CO2 variability
requires the use of an accurate meteorology and of high spatial resolution (e.g.,
Gerbig et al 2003). At most other stations where only flask sampling is available
(Fig. 3), the synoptic information contained in the atmospheric signal is sparse and
not obviously related to regional sources and sinks.

Important information contained in the network of stations can be visualized when
plotting all concentrations as differences with the South Pole taken as a reference
(Fig. 5). A positive mean annual CO2 difference between the northern hemisphere
and the southern hemisphere is noticeable. This difference reflects as zero order
the release of fossil CO2 in northern hemispheric industrial areas, but it is further
reduced by land and ocean sinks north of the equator. Moreover, we observe from
the data shown in Fig. 5 that the amplitude of the seasonal cycle of atmospheric CO2

increases with northern latitude, reflecting the growing season duration and intensity
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Fig. 4 Daily CO2 mixing ratios recorded at the station of Mace Head, Ireland, for three consecutive
years. Black dots and the gray line are daily means of hourly measurements. The black curve is
the monthly smoothed concentration (from baseline values selected for marine sector winds). The
dashed curve is a long-term deseasonalized curve showing the annual increase of CO2 and its inter-
annual variability
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Fig. 5 Important information contained in the network of stations can be visualized when plotting
all concentrations as differences with the South Pole taken as a reference. A positive mean annual
CO2 difference between the northern hemisphere and the southern hemisphere is noticeable. This
difference reflects as zero order the release of fossil CO2 in northern hemispheric industrial areas,
but it is further reduced by land and ocean sinks north of the equator. Data sources are smoothed
CO2 concentration measurements from the GLOBAL VIEW-CO2 global data product

over North American and Eurasian ecosystems (see Fig. 2c). Tropical ecosystems
actively exchange CO2 with the atmosphere, but climate conditions in the tropics are
equally favorable for photosynthesis and respiration nearly all year round, so that
there is little seasonality of atmospheric CO2 in the tropical atmosphere (Fig. 5).

3.3 Atmospheric transport modeling

The function H, which projects the sources into the observation space, is linear in
the case of the transport of a passive constituent. It is represented by a numerical
model that solves the conservation equations of geophysical fluid mechanics (mass,
momentum, energy) on a 3D grid covering the atmosphere from the surface up to
typically the mid-stratosphere (∼20–30 km). Note that the space–time discretization
of the transport equation introduces some limited non-linearities in the function H.
The transport computation is part of elaborate Atmospheric General Circulation
Models (AGCM) that calculate the physical and dynamical state of the atmosphere.
Large-scale advection and large-scale horizontal diffusion are transport processes
that are explicitly solved in those models. Sub-grid transport processes, such as
moist convection, vertical diffusion, or boundary layer mixing by turbulence are
parameterized, as the resolution of AGCMs is still larger than turbulence scales.
Usually, AGCM models are forced to reproduce the actual meteorology by a nudging
scheme that keeps their winds in the vicinity of numerical weather prediction (NWP)
analyses. Only recently have some NWP models introduced tracer transport into
their systems, so that the simulated transport is directly constrained by all available
observations (e.g., Engelen et al. 2009).

CO2 is a long-lived species, and the transport model has to cover a long period of
time to relate fluxes and concentrations, typically weeks, months, or even years (e.g.,
Bruhwiler et al. 2005). Computing time is therefore a critical issue, and methods have
been developed to optimize it. First, it is noteworthy that most of the computations
in AGCMs are related to processes other than the transport of passive tracers.
Radiation processes are a typical example (e.g., Chevallier et al. 2000). Therefore,
a significant amount of computation can be saved for the H function by isolating
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the transport equations. In this approach, the AGCM is used “online” to produce a
frozen archive of atmospheric mass fluxes, which is then used by an “offline” model
dedicated to passive transport (e.g., Krol et al. 2005; Hourdin et al. 2006). The time
step of the mass flux archive is usually about a few hours (typically 3 or 6) and
intermediate fluxes are kept constant or deduced by interpolation. Another way of
reducing the amount of computation consists of linearizing H. In this case, the offline
or online model serves as a means to calculate the elements of the Jacobian matrix H.
The derivatives can be approximated by finite differences or backward computations
(e.g., Hourdin et al. 2006) or computed exactly using a tangent-linear model or its
adjoint (Kaminski et al. 1999).

The difficulty of modeling the atmospheric transport and the diversity of the
approaches introduces a significant spread of the concentrations simulated by the
models at all time scales (e.g., Law et al. 1996; Geels et al. 2007; Law et al. 2008).
Typical resolution of global transport models has evolved together with computer
power. From coarse models in the 1980s (typically, 10◦ × 10◦ × 19 vertical layers),
they now have a typical resolution of 1–2◦ on the horizontal and 20 to 50 layers in
the vertical. Some models have zooming or nesting ability that allow resolution to be
downscaled by a factor of at least 2 to 4 for specific regions of interest (Frohn et al.
2002; Chevillard et al. 2002; Krol et al. 2005). Nesting consists of coupling a global
model to a domain-limited model. The main advantage of nesting is the ability to
use a more refined model on a specific zone, from regional to continental scales (e.g.,
Nicholls et al. 2004). Note that both model resolution and physical parameterizations
can be refined. The main advantage of zooming is to refine model resolution in
only one consistent, mass-conservative model. In any case, model resolution is a
crucial point to calculate atmospheric concentrations, especially over land where
horizontal resolution determines topography smoothing (compared to reality) and
vertical resolution plays a major role in representing vertical mixing within and
outside the planet boundary layer. Some inversions focus on specific regions with the
rest of the world treated as a boundary condition adjustable by the inversion (e.g.,
Peylin et al. 2005; Lauvaux et al. 2008a). They can use Eulerian meso-scale models
or Lagrangian models (Uliasz 1994), with resolutions down to a few kilometers.

4 Bayesian synthesis inversions

The statistical method generally adopted in atmospheric inverse modeling of CO2

sources and sinks is based on the Bayes theorem (Tarantola 2005). In this formalism,
all the information used to constrain a set of parameters, here unknown sources x,
that is solved for is represented by probability density functions (PDF). The combina-
tion of those PDFs yields the PDF of vector x, from which typical characteristics such
as its optimum and width can be derived. If in addition, Gaussian PDFs are assumed,
as in most studies, the optimum corresponds to the minimum of a cost function J(x)
in least square sense, defined as

J (x) = < H x − yo, C−1
y

(
H x − yo

)
> + < x − xb, C−1

x (x − xb) > (8)

The yo and Hx vectors contain respectively observed atmospheric CO2 mixing ratios
at several geographic locations of the network and times, and the corresponding
model simulations. Cy and Cxb are the covariance matrices of the vectors yo and
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xb which describe the error terms � and ξ in Eqs. 4 and 5. What remains is then a
quadratic function of x that has a well-defined minimum.

xa = xb +
(

HT C−1
y H + C−1

xb

)−1
HT C−1

y

(
yo − H xb

)
(9)

The obtained xa can be interpreted as the most likely flux estimates. The dimension
of x is a function of the number of fluxes (regions) that are solved in space and
time, plus initial condition information. Regions denote fluxes that emit or absorb
tracer during a certain period of time. The maximum number of regions is the
number of model grid cells, multiplied by the number of time steps for which it
is relevant to solve for sources. The vector xb describes the prior estimate of the
sources, which comes from land ecosystem or ocean bio-geochemistry information,
such as the flux maps in Fig. 2. Note that, despite some uncertainties regarding its
space–time distribution, the fossil fuel source parameter is often not estimated per
grid but, for example, scaled by a single parameter for simplicity. The dimension of
yo is the number of observations. Typically CO2 is observed monthly at 80% of the
flask stations forming the global network (Fig. 3), and continuously at the remaining
20% of stations, such as the station of Mace Head in Fig. 4.

The elements of matrix H are computed using a transport model. In forward
mode, a transport model calculates the influence of one region on all the detectors. In
practice, the transport model output is sampled at the locations, or in such a way that
best represents the actual data. This might imply some averaging of the model output
and the observations to provide a more robust comparison between model and data.
For instance, in the daytime well-mixed boundary layer, when tracer transport takes
place by turbulence, it might be preferable to average the model output on the entire
well-mixed boundary layer thickness and to obtain data as representative as possible
of that quantity (e.g., in situ aircraft profiles, or measurements from very tall towers).

The matrix Cy describes both the observational error on its diagonal terms, and the
correlation among observational errors. There are several reasons for observational
errors to be correlated; for instance, the observed time series are serially correlated
in time by the integrative properties of the atmospheric transport, with a typical
correlation time of 2–3 days at northern mid-latitudes, and so also might be their
errors. For instance, there are conditions when the observations might be more
contaminated by local sources unresolved by the model, and thus have correlated
errors (see Lauvaux et al. 2008b).

The matrix Cxb describes the (Gaussian) uncertainties of the components of
the prior source vector xb for its diagonal elements. The non-diagonal terms of
Cxb describe the correlations between prior source errors, as provided by some
knowledge of carbon cycle processes. For instance, some error in understanding of
the behavior of a particular ecosystem is likely to impact our prior estimates in the
same way at many points. Importantly, the uncertainty in the analyzed flux estimates
xa is contained in the a posteriori covariance matrix Cx. This matrix is quantified by
the curvature or second derivative of the cost function J, as given by:

Cx =
(

HTC−1
y H + C−1

xb

)−1
(10)

We discuss below the uncertainties in each component: transport, observation
error, dimension of the source vector, and how they affect the results of Bayesian
inversions.
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4.1 Atmospheric transport large-scale errors

Each transport model will give rise to a different version of the matrix H. There
is no simple theory for relating variations in this matrix to variations in sources
calculated in an inversion (as the inversion uses the pseudo-inverse of the matrix).
However, we can use a sample of sources estimated from different transport models
to illustrate how different transport parameterizations impact the inferred fluxes.
Such an approach was taken in the TRANSCOM-3 study based upon 16 transport
models with all other elements in the inversion fixed (Gurney et al. 2003). Figure 6
shows a comparison of different inversion results. We see from the errors reported
in the Gurney et al. (2003) inversions (marked as (b) in Fig. 6) using different
transport models of the TRANSCOM group, that the uncertainty of transport (gray
bar in Fig. 6) is larger or equal than the posterior uncertainty (color bar in Fig. 6).
The main problem is the lack of data rather than its quality, with many important
regions being badly undersampled. The TRANSCOM study also sought to identify
those features of model transport that contributed most to the spread among results.
They discovered significant differences between models over northern-hemisphere
continents (Law 1996). These differences were found to reflect differences in the
covariance between the seasonality of transport and fluxes from the terrestrial
biosphere. This covariance, commonly termed the rectif ier ef fect (Denning et al.
1995) varies widely among atmospheric transport models and is not compensated
for by other features of transport. The recent study of Stephens et al. (2007) where
vertical profiles of CO2 were used to cross validate the TRANSCOM-3 models,
found that most of the current transport models have biases in transport. These biases
are related to a too-weak vertical mixing in winter in the northern hemisphere, and
possibly to a too-strong vertical mixing in summer. Therefore, even a sample of 16
different models can have a common bias in their simulated transport. The size of
this rectif ier ef fect bias is large enough to imply a reconsideration of the balance of
land carbon uptake between the northern hemisphere and the tropics.

4.2 Observation errors and transport small-scale errors

Ideally, inverse modelers should assign observational errors in such a manner as
to account for (1) random measurement errors, (2) systematic measurement errors
such as calibration drifts, and (3) representation errors arising from the fact that
at a single location, a measurement is not necessarily representative of larger grid
cells that are effectively modeled. In addition, transport errors should be included
in the observational error budget. These are errors in the function O and model
H shown in Fig. 1, including limitations in the structure of model H itself. Indeed,
both measurement and model errors represent all possible mismatches between
model output and actual observations. In particular, there should be a consistency
between the measurements, the assigned observation error budget, and the a priori
distribution and errors of the flux in the cost function J. A necessary condition to
meet this consistency is that twice the value of J at the minimum follows an χ2

probability density with the number of observations as the number N of degree of
freedom. The value of χ2 = J(xa)/N should be close to one. Failure to meet such
criteria suggests a violation of the statistical assumptions underlying the Bayesian
approach, in particular that the error budget setup is inconsistent with the quality of
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Fig. 6 Regional ocean-atmosphere and land-atmosphere CO2 fluxes from global inversions and
selected bottom–up studies. The inversion results all correspond to the period 1992–1996. a Regional
fluxes in the northern hemisphere. b Regional fluxes over the globe, regrouped into three large
latitude bands. Orange bottom–up continental-level land-atmosphere flux estimates. Cyan bottom–
up ocean basin level flux estimates; Blue ocean–atmosphere fluxes from inversion models; Green
land–atmosphere fluxes from inversion models; Magenta land + ocean inversion fluxes; Red fossil
fuel emissions as being pre-substracted in the inversions. The mean flux of different inversion
ensemble is reported with the random errors and the bias (range) due to different inversion settings
within each ensemble. Error boxes show the random and systematic uncertainties of the inversions.
Colored error boxes average of 1-sigma Gaussian random errors returned by each member of the
ensemble. Gray error boxes spread of mean fluxes from inversions of the ensemble, with different
settings. TAR = range of mean fluxes from the IPCC Third Assessment Report; Chapter 3, Figure
3.5; a–d = (Gurney et al. 2002) inversions using annual mean CO2 observations with grey error from
16 transport models of the TRANSCOM group; b = 2003 inversions using monthly CO2 observations
with grey error from 13 transport models of TRANSCOM; c = (Peylin et al. 2005) inversions with
grey error obtained from 3 transport models × 3 discretizations in large regions × 3 inversion settings;
d = (Rödenbeck et al. 2003b) inversions where fluxes are solved on the model grid, using monthly
flask data, with the gray error from their different sensitivity inversions
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the fit. Values of χ2 less than 1 are less problematic, as they suggest that the assigned
error budget is too conservative, which is always preferable.

In the northern hemisphere, random measurement errors of the in situ CO2

measurements are generally small (<0.1 ppm) compared to the variability which is
typically greater than 10 ppm (Fig. 4). In the southern hemisphere, measurement
errors can be of similar magnitude compared to the variability (≈1 ppm). If the
sampling frequency is high enough to allow the CO2 observations to be averaged
before they are matched them with the model output and the high frequency
observations to be independent, then the measurement error can be decreased very
significantly. In the case of continuous CO2 observations, the instrumental errors
σinst contribute negligibly to the monthly means if all N data are assumed to be
independent with σmean = σinst/sqrt(N), although there are several hints that this is
not the case (Gerbig et al. 2003; Bakwin et al. 1998).

Another concern is the existence of calibration offsets that add differences among
different sites operated by different laboratories that are systematic and variable
in time. Those offsets, as measured sporadically in inter-comparison programs, can
be of the order of the gradients induced by sources. The problem is compounded
by the existence of distinct regional networks (colors in Fig. 3). For example,
while the largest global network, operated by NOAA is predominantly based in
the northern hemisphere, the second largest network, at least historically, operated
by the Commonwealth Scientific and Industrial Research Organization (CSIRO),
is predominantly based in the southern hemisphere. A systematic offset between
these two networks would appear as an anomalous inter-hemispheric gradient in
concentration, impacting the distribution of fluxes between the hemispheres, a key
target quantity for inversion studies. Strenuous efforts are under way to improve
comparability among networks to limit this problem (Levin et al. 2003; Zhao and
Tans 2006). The possibilities for systematic calibration offsets between stations can
be explicitly accounted for in inversions and propagated to the inferred fluxes
(Rödenbeck et al. 2006). Doing so does not solve the problem, but it helps quantify
its negative regional impact on the fluxes.

Representation errors encompass the limitations of a model to reproduce actual
measurements. These errors include the subgrid scale patterns of sources and sinks
influencing a point-wise detector, and the subgrid transport. For stations located in
the interior of continents near active vegetation, the heterogeneity of the nearby
biospheric sources and the variability of transport imply that the representation
error should be much larger than their counterparts at oceanic baseline stations.
We show one example of this in Fig. 7 with vertical profiles of CO2 in the well-
mixed daytime boundary layer over a rural area in Germany. The profile indicates
that there are several layers of CO2 near the top of the well-mixed layer where
entrainment mixes the air with the free atmosphere aloft and creates a discontinuity
in the CO2 concentration. Such layers and sharp discontinuities cannot be captured in
models with relatively coarse vertical resolution. Therefore, either experimentalists
should target measurements of the boundary layer integral of CO2 concentration, or
modelers should enlarge the observation error when only a few data points in the
boundary layer are available.

The representation error is relatively hard to quantify. One could use different
estimations of the surface fluxes coupled to different transport models (such as
in the TRANSCOM-3 experiment) to assess the degree of uncertainty related to
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Fig. 7 Example of small-scale
variability of CO2 being
sub-grid in a transport models,
induced by biospheric sources
and turbulent transport in the
daytime convective boundary
layer over Thuringen,
Germany. Data are from the
CAATER-1 campaign (D.
Filippi, personal
communication)
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the transfer function between flux and concentration spaces. On the other hand,
the ability of a given model to simulate the variance at each location could also
be used as a proxy to derive model error. This would imply that the variance of
atmospheric CO2 within, say, a model grid box can be characterized, for instance
by an intensive sampling campaign (Schmitgen et al. 2004; Gerbig et al. 2003). The
results of Gerbig et al. (their figure 5) based upon an intensive campaign with over
100 vertical profiles in the eastern USA show how this representation error increases
with model horizontal resolution, suggesting a minimum resolution of 20–30 km for
their campaign.

To minimize the effect of representation errors, one can filter out from the data
the information believed to be not representable by a model (e.g., intervals of high
variability, contamination by local pollution sources). One can also sample both the
model and the data toward some “baseline” conditions under which both model
and observations can be more robustly compared (Ramonet and Monfray 1996;
Law 1996). To do this in the best way possible, it is preferable to have continuous
measurements in place so that a significant number of representative data can be
retained and placed in the observation vector. For discrete measurements (flasks),
a data selection procedure to screen out “local” data is often applied based on sta-
tistical criteria, flagging, for instance, as “non-background” flask measurements data
that deviate by more than 3–σ from the smoothed seasonal cycle. Representation
errors assigned to discrete data time series are a function of the modelers’ choice for
time discretization of the observation vector yo (see next section). In some global
inversions, monthly means of CO2 concentration, as derived from discrete flask
data, define the components of yo with sub-monthly variability in flasks defining the
data errors, thus encompassing the representation error linked to a model’s inability
to simulate synoptic and diurnal variability. In general, regional models with finer
resolution show better performance than coarse-scale global models (Geels et al.
2007) provided that they are prescribed with land-atmosphere fluxes of realistic
variability (Matross et al. 2006). Fine resolution models can also, to some extent,
capture local mesoscale circulations, which can be driven for instance by sea breeze
or by local orography over complex terrain (Sarrat et al. 2007; Pérez-Landa et al.
2007a, b).
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4.3 Dimension of the source vector

The degree of temporal and spatial discretization of the source vector x is at the
discretion of the modeler. In principle, it is recommended that the highest possible
spatial and temporal resolutions be used to solve the inversion problem, the limit
being the resolution of the transport model (with typically time steps of minutes
and spatial scales of tens or hundreds of kilometers). This general statement refers
to the inversion theory. It is separated from the main policy demand on inversions
that usually focus on fluxes aggregated on yearly timescales and over countries or
large regions. In practice, the memory storage induced by a large state vector and its
associated error covariance matrix makes lower resolutions in space and/or in time
attractive. Further, the correlations of the prior error fluxes limit the resolution of the
flux increments generated by the inverse system anyway. Historically, both time and
space dimensions have been dramatically reduced, with only monthly fluxes of a few
large regions explicitly solved for. By doing this, the variations on smaller scales are
assumed to be perfectly known. This hard constraint in the inversion degrades the ob-
servation error budget, but this has actually never been taken into account. Kaminski
et al. (2001) brought the expression “aggregation error” to the attention of the com-
munity to designate the effect of this inconsistency. The recent introduction of vari-
ational methods (Chevallier et al. 2005b; Rödenbeck 2005) and ensemble methods
(e.g., the CarbonTracker system http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/,
Peters et al. 2005) has significantly reduced the importance of this issue. These meth-
ods have also revealed the importance of the assignment of prior error correlations
for the state vector, in order to avoid the unrealistic restriction of the inversion flux
increments to the vicinity of the measurement location (Bocquet 2005). Prior error
correlations implicitly reduce the dimension of the state vector but in a rigorous way.
Eddy-covariance observations provide direct knowledge of ecosystem CO2, water
vapor, and heat fluxes on a continuous basis. These point-scale measurements can
be used to estimate prior error and their correlations, the error being defined by
the difference between the observed CO2 flux and the modeled flux at the same site
(more details in Chevallier et al. 2006). Although there is a network of about 300
eddy covariance ecosystem observation sites (Baldocchi et al. 2001) the sparseness
of this network makes it difficult to evaluate the full space–time structure of prior
flux errors in inversions. Like any other statement about prior errors, evaluation of
the error correlation is dependent on the quality of a particular prior estimate. There
is evidence that, with the current state of the art in terrestrial biosphere modeling,
spatial error correlation lengths over land are short (not longer than a few hundred
kilometers), and that temporal error correlations span weeks or even months (see
Chevallier et al. 2006).

4.4 Alternative methods

The Bayesian method described above is the dominant methodology for the com-
bination of top-down and bottom-up information, but it is not the only one. The
geostatistical approach, introduced to the field by Michalak et al. (2005) and recently
advanced by Gourdji et al. (2008) formulates the inversion problem differently.
Flux fields are expressed as a combination of large-scale patterns and small-scale
deviations. Multipliers are solved for the patterns and for the deviations. Critically,
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the multipliers for the large-scale patterns are not given prior estimates, but the
choice of adjustable parameters is an implicit prior setting as well. At the other
extreme is the data assimilation methodology introduced by Kaminski et al. (2002)
and extended by Rayner et al. (2005). Here, the bottom–up information is encap-
sulated in the dynamics of a process model and the state variables are a series of
unknown parameters in this model. The method is radical, as it greatly reduces the
dimensionality of the solution space, which is at tremendous risk of aggregation error.
On the other hand the results can be used in a predictive manner and the structure
of the prior error is necessary, consistent with physical understanding.

5 Future directions and carbon cycle data assimilation

Beyond the inversion surface CO2 fluxes from concentration observations, a growing
challenge is to integrate distinct streams of carbon cycle observations.

The CO2 concentrations measured at the surface of the Earth bring limited knowl-
edge about the surface fluxes and different ways are explored to bring additional
information to the inverse systems.

Global remote-sensing of CO2 from space is an attractive solution, which has been
explored for about a decade. Existing instruments, that are sensitive to variations
of CO2 concentrations not designed to measure them, have been studied to yield
CO2 concentrations (Chédin et al. 2003; Engelen et al. 2004; Buchwitz et al. 2005).
The quality of the surface fluxes inverted from them has been disappointing so far
(Chevallier et al. 2005b, 2009a). Indeed, the long life time of CO2 makes its relative
variations much smaller than for shorter-lived species. Such a small variability im-
poses a stringent constraint on the retrieval uncertainties (random errors and biases)
for the estimation of CO2 surface fluxes (Chevallier et al. 2005a), which, to date, have
not been achieved with multipurpose sounding instruments. CO2-dedicated satellite
instruments have also been designed and the first one was launched in January
2009: the Japanese Greenhouse Gases Observing Satellite (GOSAT, Yokota et al.
2004), shortly after the loss of the US Orbiting Carbon Observatory (OCO, Crisp
et al. 2004) that did not reach orbit. It is too early to assess the real contribution of
GOSAT to the estimation of CO2 surface fluxes, even though theoretical simulations
are promising (Chevallier et al. 2009b). Given the importance of the topic, new
instruments are being prepared in the USA, in Europe, and in Japan. The dataflow
that they will generate forces the inverse systems to evolve towards more industrial
systems. It also poses the problem of an adequate treatment of likely correlated
errors between different soundings (Chevallier 2007).

Another way to constrain the inversion of CO2 surface fluxes consists of exploiting
other types of observations in addition to atmospheric concentrations. Meeting
this challenge requires both carbon cycle models with parameterizations that can
capture the observations, and assimilation techniques that modify model behavior
to match observations within their errors. Such techniques were initially applied
long ago to the tuning of the seasonal cycle of atmospheric CO2 concentration
(e.g., Randerson et al. 1997) but the use of formal data assimilation methods
allowed rapid development in the field. Examples of such applications are the
estimation of phenology parameters from satellite observations (Stöckli et al. 2008),
estimates of photosynthetic parameters using CO2 and heat fluxes observed locally at
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eddy-covariance sites (e.g., Santaren et al. 2007), or of a larger suite of parameters
in a terrestrial model (e.g., Rayner et al. 2005). Oceanic applications are rarer, but
several notable applications exist. In the wake of the 4D-VAR systems of the Nu-
merical Weather Prediction centers described by Courtier et al. (1994), atmospheric
data assimilation techniques were used in the atmospheric inverse models to analyze
the concentrations and surface fluxes of CO2 (Chevallier et al. 2005b; Baker et al.
2006; Engelen et al. 2009) and of CH4 (Meirink et al. 2008; Pison et al. 2010). In
the context of a carbon cycle data assimilation system combining models of different
carbon reservoirs in a Bayesian synthesis inversion, such as the Rayner et al. (2005)
study using a combined terrestrial-atmosphere model, the inversion of atmospheric
CO2 measurements is only one part of the cost function (Eq. 8) to be minimized.

Carbon cycle data assimilation applications belong to two broad categories: those
that constrain the structure of the underlying model by assimilating state variables
and those that estimate parameters of the model. As state variable assimilation
will produce a closer fit to observations it is preferred where the best possible
performance within the observing period is required (i.e., diagnostic applications to
assess fluxes). Optimal estimation of parameters obviously relies on model structural
qualities, but is very useful to improve the underlying behavior of the model for
prognostic applications, for instance, when the goal is to project the future evolution
of the system.

Most importantly, every observation such as atmospheric CO2 concentrations,
or local flux measurements, must be associated with an uncertainty, as this is
necessary to weight the observation’s influence on the model. Beyond this, use of
any observation in a data assimilation system requires an operator that can map
the internal state of the model on to the observed variable (e.g. the operator O
in Section 2). Here there are practical choices to be made if the target data are
themselves the result of a complex model such as a radiative transfer model retrieval
in the case of remotely sensed observation.

In general it is best to bring these observation operators into the data assimilation
process itself to ensure the consistency of the inverse systems. This can be difficult
to represent. As an example, uncertainties in calibration can generate coherent
errors that will not be captured by point-wise descriptions of errors. Experience with
numerical weather prediction suggests that the generation of observational operators
requires close collaboration between modelers and experts in the production of the
observed variables. As a scientific task, the generation of these observation operators
is equally as important as the generation of data sets of observations that use them.

6 Concluding remarks

Atmospheric inversions have proven to be a useful tool for quantifying carbon fluxes
at large scales. As the research community attempts to extend this success to smaller
scales it is clear that several limitations will emerge. The main limitation is the
sheer lack of data. Advances in obtaining continuous, remote data at the surface
(Law et al. 2002; Geels et al. 2007) or spatially dense but less precise measurements
of vertically integrated concentration from satellites (e.g., Houweling et al. 2004)
hold considerable promise for addressing the large data gaps. Each dataset will
come with its own pitfalls. It will be hard, for example, to tie potential satellite
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measurements to the global standards for long-term concentration accuracy used in
the surface observations. This could lead to strong examples of the bias problems due
to calibration discussed earlier. The use of continuous data, however it is obtained,
will stretch our capability in transport modeling as, although synoptic concentration
information contains strong signals, many of these occur at spatial and temporal
resolution near the limits of current global models (Patra et al. 2008). Finally, the
integration of atmospheric inversion with other forms of bio-geochemical informa-
tion (e.g., Kaminski et al. 2002; Rayner et al. 2005) poses a range of methodological
problems beyond those discussed here. It seems quite possible that atmospheric
inversion may finally play a role as just one of several observing strategies for the
underlying carbon cycle (Ciais et al. 2006) However, the integrating power of the
atmosphere will, probably for a long time to come, allow it a specific role in detection
of subtle but large-scale signals, such as potential feedbacks between climate change
and the carbon cycle. The method will remain complementary to methods based on
surface flux models or local observations.
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Abstract Approximately half of human-induced carbon dioxide (CO2) emissions are
taken up by the land and ocean, and the rest stays in the atmosphere, increasing the
global concentration and acting as a major greenhouse-gas (GHG) climate-forcing
element. Although GHG mitigation is now in the political arena, the exact spatial
distribution of the land sink is not well known. In this paper, an estimation of mean
European net ecosystem exchange (NEE) carbon fluxes for the period 1998–2001
is performed with three mesoscale and two global transport models, based on the
integration of atmospheric CO2 measurements into the same Bayesian synthesis
inverse approach. A special focus is given to sub-continental regions of Europe
making use of newly available CO2 concentration measurements in this region.
Inverse flux estimates from the five transport models are compared with independent
flux estimates from four ecosystem models. All inversions detect a strong annual
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carbon sink in the southwestern part of Europe and a source in the northeastern
part. Such a dipole, although robust with respect to the network of stations used,
remains uncertain and still to be confirmed with independent estimates. Comparison
of the seasonal variations of the inversion-based net land biosphere fluxes (NEP)
with the NEP predicted by the ecosystem models indicates a shift of the maximum
uptake period, from June in the ecosystem models to July in the inversions. This
study thus improves on the understanding of the carbon cycle at sub-continental
scales over Europe, demonstrating that the methodology for understanding regional
carbon cycle is advancing, which increases its relevance in terms of issues related to
regional mitigation policies.

1 Introduction

A precise quantification of the CO2 fluxes exchanged between the atmosphere and
surface reservoirs and of their variability is crucial for making better projections of
the future evolution of the coupled land surface–climate system. Detailed and accu-
rate knowledge of sources and sinks for atmospheric CO2 down to continental and
regional scales is also required for monitoring and assessment of the effectiveness of
carbon sequestration and/or emission reduction policies, such as the Kyoto Protocol.
Two complementary approaches are typically used to estimate CO2 fluxes at regional
to global scales. The bottom-up approach is based upon bio-geochemical oceanic and
terrestrial carbon cycle modeling, with models being forced by input climate fields,
and combined with local measurements of fluxes and/or remote sensing information
of surface properties and state. The top-down approach is based on gradients
in atmospheric CO2 concentration across different measuring stations, which are
combined with an atmospheric transport model, to optimize a priori distribution of
fluxes in order to best fit the concentration data within their errors.

Inversion methods have been developed and applied at the global scale, making
use of CO2 flask data from a global network of predominantly oceanic stations. Using
such data, it might be possible to constrain the budget of the northern hemisphere at
the scale of ocean basins and large continental regions (Gurney et al. 2005), as well
as the interannual variability of these fluxes (Bousquet et al. 2000; Baker et al. 2001).

Only recently, inversions have been set up to calculate CO2 flux estimates
with more details at the sub-continental scale, based upon surface CO2 data of
higher, sub-monthly, temporal frequency (Rodenbeck et al. 2003; Peters et al.
2007; Carouge et al. 2008 submitted), or based upon higher spatial density data
collected during campaigns (Gerbig et al. 2003; Lauvaux et al. 2007). Yet, the
scarcity of the atmospheric network over land and the large uncertainties of transport
models (Geels et al. 2007) still hamper inversions from increasing the resolution
and accuracy of the retrieved fluxes. Recent improvements of these two critical
components might pave the way for new reliable regional estimates. Efforts are made
on the experimental side to increase the density of networks, both in time and in
space, over regions like western Europe (Carboeurope,1 ICOS2) and North America

1http://wwwcarboeurope.org/
2http://www.icos-infrastructure.eu/
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(NACP3). On the modeling side, several integrative efforts have been taking place to
improve our understanding of the carbon cycle at all scales, including improvement
of the underlying bio-geochemical flux models as well as of atmospheric transport
models (CarboEurope1 and NACP3 projects for instance). In this context, the study
follows two main objectives. The first is to provide an inversion-based assessment
of the carbon budget of western Europe, where the continent is subdivided into few
smaller regions, and for the period 1998–2001. The second is to compare inverse
estimates from conventional global models to those using mesoscale models. To meet
these goals, we make use of a larger number of stations over Europe than in global
inversions, of an ensemble of both mesoscale models with a high spatial resolution,
and of global atmospheric transport models. The inversion-based fluxes, within their
errors, are compared with the independently obtained results of bottom-up studies
based upon a suite of bio-geochemical models.

Increasing the spatial resolution of atmospheric inversions faces some scientific
and technical difficulties (Kaminski et al. 2001), with the need to properly account for
the complex spatial patterns of the fluxes and of their temporal variability (especially
over Europe) and with the numerical size of the inverse problem. Correctly capturing
the flux variability, especially over land, represents a great challenge for global and
regional models. Furthermore, biases in transport models constitute a large source
of error in the inversion of the surface CO2 fluxes, of up to 50% in a given setup
(e.g., Gloor et al. 1999). Recent testing and intercomparison experiments of transport
models, like Chevillard et al. (2002), Geels et al. (2007), Law et al. (2008) suggest
that mesoscale models, with their higher spatial and vertical resolution, may be able
to better capture the observed CO2 concentration high-frequency variability. Geels
et al. (2007) showed for instance that mesoscale models like REMO and DEHM
(see description below) with a resolution of ≈50 km tend to better capture the
synoptic/diurnal variability and the vertical gradients of CO2 in western Europe than
global models with a resolution of hundreds of kilometers. Moreover, Law et al.
(2008) state that. “The models giving diurnal amplitudes closer to the observed are
those with higher horizontal resolution.” Note also that the fact that the models
are either driven or nudge to the meteorological analysis of the European Centre
for Medium-Range Weather Forecasts (ECMWF) explains some of the improved
representation of synoptic scale variability.

In this paper, we perform a series of Bayesian synthesis inversions with the five
transport models tested by Geels et al. (2007), comprising three regional mesoscale
models and two global models. The potential of the mesoscale models has been
evaluated in Geels et al. (2007) with a comparison of simulated concentrations at
European stations and it is now tested within an inverse approach. The same inverse
procedure is applied to the different transport models, allowing us to assess the
between-model differences in the retrieved fluxes, which should form part of the
inversion uncertainty calculation. Mesoscale models have a limited domain, which
implies a specific treatment of their boundary conditions. So far, very little use of
regional models has been made in inversions, apart from short-term episode studies
with fixed boundary conditions (Lauvaux et al. 2007; Zupanski et al. 2007; Gerbig
et al. 2003). One originality of this study is to combine mesoscale models centered

3http://www.nacarbon.org/nacp/
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over Europe with global models elsewhere to produce a consistent global inversion
with a special focus on a few European regions. A major interest is to compare the
results of the inversion with mesoscale models with those of global models.

In the following, we first describe the inversion method, focusing on the use
of mesoscale models and on the assimilation of data from continental stations
(Section 2). We then analyze the annual flux estimates and their seasonal varia-
tion and compare them with independent estimates from ecosystem model results
(Sections 3 and 4). We discuss the sensitivity of the inversion-based European carbon
budget to some critical components of the inversion, and some technical challenges
linked to the use of regional models (Sections 5 and 6).

2 Atmospheric inversion setup

We performed a series of inversions for 1 year using one fixed inverse set-up but
five different transport models (two global and three regional models). Below,
we describe successively the overall inverse approach, the atmospheric data, the
transport models, the prior fluxes and their errors, and the different sensitivity tests
that were conducted.

2.1 Global inversion with increased resolution over Europe

2.1.1 Principle

We used the Bayesian synthesis inverse method (Enting 2002; Tarantola 1987). The
method jointly minimizes the Euclidean distance between simulated and observed
concentrations along with prior and posterior fluxes. In all cases distances are ex-
pressed as multiples of the relevant uncertainty. The method calculates the maximum
likelihood estimate and uncertainty of posterior fluxes. Prior uncertainties on fluxes
and data are inputs to the problem and those for the data contain the contribution
from model error (Tarantola 1987, Eq. 1.43). The solution requires the sensitivity of
each observation to each flux (i.e., influence functions) parameter to be optimized.
The CO2 flux distribution over the globe is arbitrarily discretized in space into source
regions, and in time into a number of emitting periods fully covering the entire year.
In our set up, the source regions are ten small provinces over Europe (Fig. 1) and
continents/ocean gyres elsewhere. For these source regions, influence functions are
simulated with the five; see regional map of different transport models for a network
of 76 monitoring stations (see details, Section 2.4).

2.1.2 Spatial discretization of f luxes

The degree of spatial discretization of the CO2 sources can vary from few large
regions over the globe (Fan et al. 1998) to all the grid cells of a transport model
for the most recent studies (Rodenbeck et al. 2003; Peylin et al. 2005). There is still
a debate in the community on the best degree of spatial resolution to use in these
calculations (Peylin et al. 2001; Bocquet 2005). Significant biases of the inversion
may occur when solving for few large regions, implicitly assuming a perfectly known
spatial pattern of fluxes within each region. The impacts of this aggregation error
have been analyzed by Kaminski et al. (2001). On the other hand, solving for a large
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Fig. 1 Maps of regions used over Europe in this study. a Displays the regions used for the control
inversion. b Displays the regions on which the results are further aggregated and discussed. Black
triangles show the stations used in the inversions. See text for name and coordinates of the stations
(Section 2.2)

number of regions, and assuming them to be independent of each other, leads to
undetermined sources, given the sparseness of the atmospheric network. The use of
distance-based error correlations (Carouge et al. 2008), when solving the fluxes at the
resolution of the transport model, has been tested but is still being debated. In this
study, we adopt a compromise, and solve for large regions over most of the world
(ten land and ten ocean regions as in the Transcom-3 experiment,4 with no error
correlation) and for smaller regions over Europe and the Northeast Atlantic Ocean
(ten land and five ocean regions, see Fig. 1) in order to exploit the regionally higher
density of the European network.

2.1.3 Temporal discretization of f luxes

For the temporal discretization of fluxes we chose a monthly time step. Accordingly,
the atmospheric data used are monthly mean CO2 values, as in most global inversions
studies, avoiding complications linked to the assimilation of high-frequency measure-
ments. We built a monthly CO2 climatology (mean seasonal cycle) over the period
1998–2001 forming a quasi-stationary seasonal cycle superimposed on the observed
global trend for that period (see Kaminski et al. 1999 for technical details). We
ignore inter-annual variations of atmospheric transport and source strengths, and
solve for 12 monthly “climatological” sources over each region for the 1998–2001
period. The same “influence functions” are “recycled” in the inversion periodically
over the 4 years by shifting each monthly pulse influence function 1 year forward in
time and adding its results back on to the tail of the previous year influence function
in order to define the “quasi-stationary influence functions” (Enting 2002; Kaminski
et al. 1999). The atmospheric transport is calculated for all models by recycling the
meteorological fields of 1998 and using a priori fluxes for 1998.

4http://www.purdue.edu/transcom/transcom.php; see regional map
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2.2 Global atmospheric CO2 measurements with new sites over Europe

Outside Europe we used a global network of 76 stations with smoothed monthly
CO2 concentrations (GLOBALVIEW-CO2 2005), identical to the TRANSCOM
network of Gurney et al. (2003), but over a different period (1998–2001 instead of
1992–1996 in Gurney et al.). Data from nine European stations operated as part of
the AEROCARB EU-funded project (see location in Fig. 1) were added to this
initial network. These nine stations are: Cabauw-CBW (4.92◦E; 51.97◦N), Monte
Cimone-CMN (10.7◦E; 44.18◦N), H Hegyhátsál-HUN (16.65◦E; 46.95◦N), Mace
Head-MHD (9.88◦W; 53.32◦N), Pallas-PAL (24.12◦E; 67.97◦N), Plateau Rosa-PRS
(7.7◦E; 45.93◦N), Schauinsland-SCH (7.92◦E; 47.92◦N), Westerland-WES (8.32◦E;
54.93◦N), and Zeppelin-ZEP (11.88◦E; 78.9◦N). For each of these sites the raw
data are processed as follows. Hourly CO2 concentrations have been selected for
daytime periods (11:00 to 16:00 LT), and combined into monthly means and errors
(see below). The daytime selection reflects the fact that the transport models are
not able to properly capture the nocturnal accumulation of respired CO2 (and fossil
emissions) near the ground during the growing season (Geels et al. 2007). The choice
of the 1998–2001 period corresponded to the maximum availability of data.

The observation error should include not only measurement errors but also
model errors and in particular those associated with the scale mismatch between
the measured CO2 concentration at one point and the simulated concentration in a
large grid-box (so-called representation error, see Gerbig et al. 2003). The monthly
errors were computed as the standard deviation of the CO2 raw data over the entire
year, following the assumption that transport models tend to be less reliable for sites
with large concentration variability. The resulting errors vary between 0.3 ppm for a
remote site (Amsterdam Island, southern ocean) and 2.47 ppm for KSN in Korea.

2.3 Global transport models and finer-scale regional transport models over Europe

We used two global models (TM3 and LMDz) and three regional models with a
limited domain (REMO, DEHM, and HANK). The ensemble of models covers a
representative sample of transport models used previously in various atmospheric
trace gases studies, including CO2 and air pollution transport. Their characteristics
are summarized below and in Table 1 (see Geels et al. 2007, for more details).

• TM3 is a global off-line atmospheric tracer transport model (i.e., using a precom-
puted meteorological field) (Heimann 1996). It was run at the resolution of 5◦ ×
3.75◦ using 6-hourly reanalyzed meteorological fields from the European Center
for Medium Range Weather Forecasting (ECMWF).

• LMDz is a Global Circulation Model (GCM), developed by the Laboratory of
Dynamic Meteorology (LMD) in France (Sadourny and Laval 1984), with the
possibility of a stretched horizontal grid. In this paper, we used a grid with a
zoom centered over Europe, leading to a maximum resolution of 1.2◦ × 0.8◦, and
19 sigma-pressure vertical layers up to 3 hPa. Model horizontal winds are relaxed
toward analyzed ECMWF fields (with a time constant of 2.5 h) for the year
1998. When compared with the models used in the Transcom-1 intercomparison
experiment (Law et al. 1996), LMDz tends to have a fast large-scale horizontal
and vertical mixing.
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Table 1 Transport model description

Model TM3 LMDZ REMO DEHM HANK

Domain Global Global, Europe Northern Northern
zoomed hemisphere hemisphere/
over Europe
Europe

Resolution 4 × 5 3.75 × 2.5 0.5 × 0.5 150 km × 270 km × 270 km /
1.25 × 1 in 150 km 90 km × 90 km

zoomed
region

Response functions 2 years 2 years 3 months 4 months 3 months
durations

Vertical levels 19 19 20 20 23
Lowest level 82 m 150 m 60 m 80 m 100 m
Boundary None: None: Uses Zero BC Zero BC

conditions global global TM3 at the at the
model model equator equator

• The REgional MOdel (REMO) is based on the EuropaModell (EM) of the
German Weather Service (DWD) (Majewski 1991). The current version of
REMO (version 4.3) is operated in a diagnostic mode where the model is started
for each day at 00 UTC from the ECMWF ERA40 reanalyzes and a 30- h forecast
is computed. To account for a spin-up time the first 6 h of the forecast are
neglected. By restarting the model every day from analyses, the model state is
forced to stay close to the ECMWF weather situation.

• The regional Danish Eulerian Hemispheric Model (DEHM) was initially de-
veloped to study long range transport of sulfur into the Arctic (Christensen
1997). The model has since then been further developed to include nesting
capabilities (Frohn et al. 2002) and it has been coupled to the Fifth-Generation
NCAR/Penn State Mesoscale Model (MM5) (Grell et al. 1995), which is used as
a meteorological driver for the model system.

• The regional chemistry transport model HANK has been developed by Hess
et al. (2000). In a modeling system with the MM5 model (Grell et al. 1995) the
HANK model can be used to model the concentration fields of non-reactive
and reactive constituents in the atmosphere. For this paper a polar stereographic
coordinate system with coarse grid mesh centered at the North Pole that covers
approximately two-thirds of the northern hemisphere is used. Within this larger
domain a domain with three times finer resolution that is centered over Europe
is embedded.

2.4 Calculation of the influence function of each region

Monthly influence functions of each source region are computed with a unit carbon
source (1 GtC) emitted over this region during 1 month and further dispersed
globally by the transport models. For the two global models, TM3 and LMDz, the
influence of each source at all the stations is computed for 24 months, recycling the
meteorology of 1998. Ideally, with the limited domain regional models, one would
nest them in both directions into a “mother” global model for accounting in their
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influence functions of the mass of CO2 exiting at one boundary but re-entering later
at another boundary, especially during fast zonal winter transport (Holton 1992).

For the stations outside the domain of each regional model, we used the influence
functions calculated by TM3. For the stations inside the domain, we chose a sim-
plified one-way nesting for computing the REMO influence functions, where REMO
is prescribed with the interpolated CO2 concentration from TM3 at the boundary
of its domain. By doing this, only the influx of CO2 from TM3 into REMO for
each regional source is accounted for, but not the feedback of REMO on TM3.
For computing the influence functions of DEHM and HANK, which have a larger
hemispheric domain, the CO2 boundary conditions should be less important than
with REMO. Therefore, a uniform zero CO2 concentration was initially prescribed
around the equator. However, this simplification means that inverse models based
on this approximation tend to underestimate CO2 sinks/sources with progressing
time with compensating sources/sinks in the southern hemisphere. We hoped that,
given the fast zonal advection (Holton 1987) compared to the slow cross-equatorial
transport, the influence functions from HANK and DEHM at the western European
stations would be primarily determined by recent regional sources, and not by the
inflow of CO2 at the equator, so that ignoring boundary conditions would cause
only a small error. We will see below (Section 6.1) that the resulting error is in fact
more severe than expected in terms of inverted fluxes. With a unit source of 1 GtC
emitted during 1 month, the influence functions should converge to the asymptotic
value of ∼0.47 ppm (1 GtC spread evenly into the whole atmosphere). In practice,
the two global models were run for 24 months, but the mesoscale models were run
for only 3 months for REMO and HANK, and for 4 months for DEHM because of
the computing cost. The tail of each influence function from the mesoscale models
was therefore extrapolated over 4 years (period chosen for the “quasi-stationary
influence functions,” see above) using an exponentially decreasing function of time.
We discuss below (Section 6.2) the impact of this simplification on the inverted
fluxes.

2.5 Prior fluxes and errors

2.5.1 Fossil fuel CO2 emissions

The fossil fuel CO2 emissions are assumed to be perfectly known (the associated
uncertainty is considered negligible compared to that of the natural fluxes), their
influence function being pre-subtracted from the CO2 concentration data to invert
the land and oceanic fluxes as residuals. The same fossil fuel CO2 emission map
of EDGARv3.2 established at 1◦ × 1◦ resolution is prescribed to the five models
(Olivier and Berdowski 2001), with no temporal variability. The annual fossil fuel
CO2 emissions are rescaled in each country to correspond to the year 1998, using
the CDIAC country statistics. This produces a global fossil fuel CO2 flux to the
atmosphere of 6.6 GtC/year and a western Europe flux of 1.2 GtC/year (EU12
countries).

2.5.2 Air–sea exchange

The impact of a global climatological air–sea flux distribution (Takahashi et al.
1997) was pre-subtracted in each model, before inverting for monthly residual fluxes
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over each ocean region (see also Gurney et al. 2005). The optimized residual ocean
fluxes are given a flat spatial distribution and a zero prior value over each region
(accounting for sea–ice coverage). We assigned an uncertainty of 1/12 GtC/month to
each ocean flux and use no error correlation which gives 1 GtC/year uncertainty on
the annual fluxes (a diagonal variance–covariance matrix is assumed).

2.5.3 Net ecosystem productivity

We used as a prior the global distribution of Net Ecosystem Production (NEP) pre-
dicted by the TURC model (Lafont et al. 2002). TURC is a diagnostic model driven
by daily climate fields and 10-day mean satellite observations of the Normalized
Difference Vegetation Index (NDVI) from the SPOT4 space-borne instrument. NEP
is calculated globally at a resolution of 1◦ × 1◦ as the difference between photosyn-
thesis (GPP) and ecosystem respiration (TER) using climate input data for year 1998,
and NDVI data over the period April 1998–April 1999. The TURC daily results
were corrected (1) by subtracting the monthly smoothed TURC seasonal cycle of
NEP at each grid point and replacing it by the smoothed seasonal cycle from the
SDBM Model (Knorr and Heimann 1995) which is more realistic compared to CO2

observations, and (2) by adding a diurnal variation of GPP based on solar radiation
variations (see Geels et al. 2007 for details). The a priori error on monthly NEP
in each land region is assumed to be proportional to the monthly GPP calculated by
TURC. A global scaling of NEP error is applied so that the most productive region of
the globe has a maximum error of ±1 GtC/year and the least productive region has a
minimum error of 0.3 GtC/year. Monthly NEP errors are derived from annual values,
assuming random and independent errors (monthly error = annual error/12). As an
example, the prior error for the boreal Eurasia region, is of ±0.56 GtC/year (one
sigma error). As a matter of comparison, Gusti and Jonas in this issue give the value
of 0.956 GtC/year for the 90% confidence interval NBP (Net Biome Productivity)
uncertainty over Russia.

2.6 Sensitivity tests

In addition to the control inversion described above (referred as CNT), we designed
and applied several sensitivity tests to assess how the inversion results for European
regional fluxes depend upon various inversion parameters. These sensitivity tests are
summarized in Table 2 and discussed in Section 5.

3 Results: annual mean fluxes

We first discuss the differences in regional flux estimates between the five different
transport models in the control (CNT) inversion described in Section 2. Although
the fluxes are inverted for ten small regions in Europe, we grouped them into a
smaller number of regions to discuss the estimated fluxes (see Fig. 1). Following
the TRANSCOM3 analysis (Gurney et al. 2005) we define the “within model
uncertainty” as the average of the estimated errors from the five inversions, and the
“between-model uncertainty” as the standard deviation of the mean flux returned by
each inversion. The fit to the data (not shown) was optimal and the posterior normal
global normalized χ2 (twice the cost function at its minimum divided by the number
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Table 2 Description of the sensitivity tests (CNT stands for control run)

Test Spatial Atmospheric CO2 A priori flux Number
discretization uncertainty at error on each of site

European stationsa European region in Europe

Inversion Number of Multiplier of Distribution of the Exclude 5
parameter regions solved monthly 1-sigma errors between European
varied for in Europe errors (σ ) regions stationsb

CNT 11 σ = 1 Based on GPP 76
SR-HI 20 CNT CNT CNT
SR-LO 6 CNT CNT CNT
SD-HI CNT σ = 2 CNT CNT
SD-LO CNT σ = 0.5 CNT CNT
SP-EQ CNT CNT 0.5 GtC/year for CNT

each region
SN-LO CNT CNT CNT 71
aWe test how model-data mismatch at stations HUN, MHD, CMN, PRS, SCH, and WES might
impact the spatial distribution of the estimated fluxes
bStations HUN, CBW, CMN, PAL, WES have been removed so as to have a similar network to that
in the Transcom inversion experiment

of observations) was around one for all models showing that the Gaussian hypothesis
was coherent. After a brief analysis of large-scale continental fluxes to check the
inverse results, we investigate the European fluxes where the regional models show
differences (mean annual value, and the seasonal cycle of NEP).

3.1 Large-scale mean annual fluxes

3.1.1 Fluxes in broad latitude bands

First, we discuss the fluxes of the Northern Hemisphere (NH > 20◦), Tropical (TROP
20◦S–20◦N) and Southern Hemisphere (SH < 20◦) regions and compare them with
previous inversion results (graph not shown). On average for the five inversions, the
total CO2 sink is partitioned about equally between land and ocean (respectively, 1.2
and 1.3 GtC/year). The latitudinal distribution of the fluxes shows (1) a large tropical
source (1.0 and 1.2 GtC/year over land and ocean, respectively), and (2) a large
northern hemisphere sink (1.9 and 0.9 GtC over land and ocean, respectively). This
distribution is in good agreement with the results of other inversions (Gurney et al.
2003, with 13 transport models over 1992–1996; Fan et al. 1998). In Patra et al. (2006)
for the period 1999–2001, the tropical sources are, respectively, 0.85 and 0.6 GtC/year
for the land and the ocean and the northern hemisphere sinks are, respectively,
1.41 and 1.84 GtC/year for the land and the ocean. Rodenbeck et al. (2003) for the
period 1996–1999, solving for fluxes at the TM3 model resolution, obtained a smaller
tropical source of 0.3 GtC/year (−0.8 GtC/year on land and 1.1 GtC/year on the
ocean) and a northern hemisphere sink of 2.1 GtC/year (0.4 and 1.7 GtC/year for land
and ocean, respectively). Note that the tropical land fluxes are poorly constrained
in the inversions (very few atmospheric data). In this study the large tropical land
source is consistent with the use of atmospheric data during 1998–2001, with the
strong 1997/1998 El Nino climate anomaly causing high fire emissions in Southeast
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Asia (Page et al. 2002; Van Der Werf et al. 2004) and drought stress over tropical
forests.

3.1.2 Northern hemisphere f luxes

Figure 2 compares annual NH fluxes from our five inversions to the estimates of
Gurney et al. (2005) (1992–1996, “Transcom”) and to the bottom-up C balance
synthesis of Janssens et al. (2003) and Pacala et al. (2001) for geographic Europe
and North America, respectively. Although the different estimates correspond to
different time periods (see legend, Fig. 2), this comparison indicates the major
discrepancies of regional carbon balances between the different approaches. Mean
fluxes (cross), between-model (1-σ ) error (vertical bar) and within model error (1-σ )
(diamonds) are shown. Except for boreal North America, all regions are significant
carbon sinks, with the highest uptake over temperate Eurasia (0.9 GtC/year) and
Temperate North America (0.8 GtC/year). These values are comparable to Gurney
et al. (2003) (G letter in Fig. 2), except for the partition of the Eurasian sink between
boreal and temperate regions. The use of additional sites in Europe (compared to
that study) tends to shift part of the boreal Eurasian carbon uptake to the temperate
ecosystems, the total remaining similar to the “Transcom” study. The region boreal
Eurasia shows a sink of 0.2 GtC/year. As a matter of comparison, Gusti and Jonas
(this issue) find a sink of 0.95 GtC/year (Table 2) for whole of Russia (1988–1992
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Fig. 2 Mean annual sources and uncertainties for a Northern Hemisphere breakdown. Mean
estimated fluxes across models are shown by crosses (fossil fuel not included). Positive values indicate
a source to the atmosphere. The prior flux estimates and their uncertainties are indicated by the
boxes; the central horizontal bar indicates the prior flux estimates, and the top and bottom of the box
give the prior flux uncertainty range. The mean estimated uncertainty across all models (the “within
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into account only the three models TM3, LMDZ, and REMO; on the right are results considering all
five models
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period) For the North Pacific and North Atlantic oceans, the mean flux estimate
remains close to the prior value from Takahashi et al. (1997).

3.2 European continental carbon balance

The carbon balance of the European continent equals −0.1 ± 0.4 GtC/year, with
Europe being the sum of a group of regions (South, West, North and Cent in Fig. 1b;
15 million square kilometers) close to geographic Europe. With a denser network
of 12 stations over Europe compared to seven stations in Gurney et al. (2003),
our continental-scale C balance is closer to the Janssens et al. (2003) bottom-up
and top-down estimate (JBU and JTD in Fig. 2) with a small carbon sink. Two
European mean inversion flux estimates are shown in Fig. 2, one obtained with the
five transport models (mean sink of −0.1 ± 0.4 GtC/year) and the other one with
only TM3, LMDZ and REMO models (mean sink of −0.35 ± 0.25 GtC/year). This
distinction allows isolation of DEHM and HANK, which were run without any CO2

incoming flux at their equatorial boundary, a potential source of bias in the estimated
European carbon balance (Section 6.1 for further discussion).

The largest between-model error is found over Europe (Fig. 2), as expected, given
the distinct regional models influence functions over that region. For all the NH
regions, the between-models error is smaller than the within-model error returned
by the inverse procedure, as found by Gurney et al. (2005). This result indicates
that uncertainties arising from modeled transport differences are smaller than the
other sources of inverted flux uncertainty (sparse atmospheric network, observation
errors).

3.3 European regional fluxes

Having at hand atmospheric CO2 data from 12 stations across Europe, we can
reanalyze the regional budgets to gain details on the carbon cycle. One must keep
in mind that with ten optimized European regions each month, and data from 12
unevenly distributed stations, the inversion problem still remains poorly constrained.
Figure 3 shows for each model/region (five regions of Fig. 1b) the estimated flux
and its 1-σ error (within model). The continental carbon sink is located mostly in
the southern and western regions, each absorbing ∼0.5 ± 0.1 GtC/year. In contrast,
the northern and eastern regions are small sources and the central region is a large
source of ∼0.68 ± 0.23 GtC/year. This regional flux dipole (south-west/north-east) is
found through all the transport models (but less pronounced in HANK). The error
reduction on the regional fluxes is larger for western and southern Europe (24%
of the prior error) than for central and eastern Europe (44% of the prior error).
This reflects the lower density of the observing network in the eastern half of the
continent. To test whether this flux dipole (south-west versus north-east) is sensitive
to the assimilation of CO2 data from particular stations, we performed a bootstrap
analysis where each of the 12 European stations is taken one by one out of the
inversion. None of the 12 stations was solely responsible for the inverted flux dipole,
suggesting that this regional pattern is not directly controlled by the geometry of the
network. This flux dipole may reflect a difference in NEP between southwest and
northeast Europe or alternatively be caused by a common bias to all the inversions,
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Fig. 3 Net carbon flux and 1σ error (vertical bar) estimates for five sub-continental European
regions from the five different transport models. See regional map in Fig. 1

linked for instance to the representation of mountain stations, or to a bias in the
pre-subtracted fossil fuel emission field (Gurney et al. 2005).

4 Results: seasonal fluxes

4.1 Seasonal cycle of NEP compared to ecosystem models

We now analyze the seasonal cycle of the estimated NEP for the European domain,
sum of the regions WEST, SOUTH, NORTH, and CENT in Fig. 1b. Figure 4
compares the monthly seasonal cycle of NEP of the five inversions (five transport
models) with independent estimates from four process-based ecosystem models
recently compared in the CARBOEUROPE-IP project (Vetter et al. 2007). The
four ecosystem models were integrated over the continent using the same simulation
protocol, forced by meteorological data from the REMO regional climate model at
25 km spatial resolution and with rising CO2, over the period 1948–2005. We kept
the four models that cover the 1998–2001 period (ORCHIDEE, LPJ, JULES, and
BIOME-BGC) out of the even analyzed in Vetter et al. (2007). None of the models
include land use change or ecosystem management effects, and only BIOME-BGC
has a nitrogen cycle, so that their annual carbon sink cannot be directly compared
to the inversion results. These models capture only the land carbon sink because of
changing climate and increasing atmospheric CO2 concentration over time. The NEP
range from the four ecosystem models is shown in Fig. 4 as a gray area.

First, we see that the prior NEP from the TURC model (the prior for the
inversions) is comparable in amplitude and phase with the results of the four process-
based models. In the inversion, the monthly NEP gets corrected toward a larger
peak-to-peak amplitude (1.25 times the prior on average), in all transport model
cases. The timing of the maximum seasonal uptake is shifted over the continent by
1 month, from June in the prior flux (TURC) toward July in the estimated fluxes.
This correction is independent of the transport model and appears to be driven
by the phase of the atmospheric CO2 concentration signal. Comparison with the
ecosystem models show that three out of four models present a maximum uptake
in May (two months earlier than the inversion NEP). Only the BIOME-BGC model
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is in agreement with the inversions, showing a broad maximum of uptake between
June and July.

The same comparison for the sub-European regions (graphs not shown), reveals
similar patterns but with more spread between the inversions and between the
ecosystem models. The shift of the maximum uptake in the inverse estimates is
observed for all regions.

Further investigations are needed to definitely conclude that the seasonal cycle of
NEP is more realistic in the inversions than in the ecosystem models. A possible bias
of the inversion derived NEP is the use of a non-seasonal fossil fuel emission flux
field (Section 2.1), whereas emissions are in reality higher in winter than in summer
in Europe (Vestreng et al. 2005).

This bias would translate into a too-high amplitude of NEP, which may explain, at
least partly, why the inversion NEP has a 25% larger amplitude than the ecosystem
model NEP in Fig. 4. Other sources of bias for the inversion NEP are linked to error
in the transport model and the sparse and uneven network of stations (Fig. 1), which
does not allow separation between land and ocean and between land regions.

However, it is unlikely that all the five transport models would bias in the same
direction the estimated NEP seasonality by 2 months. Thus, inversions can be seen as
a useful verification of ecosystem models. One should note that if the timing of GPP
(i.e., the growing season) can be well characterized using global satellite vegetation
index data (Turner et al. 2005; Zhou et al. 2001) and used to tune the models, the
timing of seasonal respiration is much more loosely constrained (Piao et al. 2007) in
ecosystem models, thus adding uncertainty in the phasing of NEP.

4.2 Spatial distribution of summer NEP compared to ecosystem models

We now compare the spatial distribution of the inversion fluxes to that of the
ecosystem models, during the peak of the growing season (July). Figure 5 shows, for
July, the mean fluxes and standard deviations for the five inverse results and the four
ecosystem models. In temperate and northern Europe (above 40◦ N), the inversions
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Fig. 5 Spatial distribution for July of the mean fluxes (a, c) and of the standard deviation (b, d)
across the four ecosystems models results (a, b) and the five inversions (c, d)

and ecosystem models estimate a strong carbon uptake, close to 1 kgC/m2 per year.
In the southern part of Europe, around the Mediterranean Basin, the ecosystem
models simulate a large carbon release in July (of the order of 0.7 kgC/m2 per year)
while the inversions have a neutral flux or even a small carbon sink. Note that these
results are not contradictory to the annual NEE carbon fluxes discussed above, as
they only concern the peak of the growing season. If we now consider the standard
deviations (SDs), we clearly see that the spread of the four ecosystem models is quite
large, especially in the temperate zone where SDs are close to 700 gC/m2 per year,
a value only slightly smaller than the mean uptake over the same region in July.
These large SDs indicate that current ecosystem models (including process-based
and more diagnostic approaches) still significantly differ in their estimation of NEP
from a given climate forcing. The SDs across the five inversions shows on average
a smaller spread of the inverse flux estimates except for few locations in western
Europe (i.e., north of Spain). However, the fine structures of the inversion SDs
(Fig. 5, bottom right plot) are tightly linked to the a priori flux spatial distribution
(TURC model in this case, see Section 2.5, Net Ecosystem Productivity). Thus, they
cannot be interpreted as a spread induced solely by different atmospheric transport
models.

Overall, the inversions tend to estimate a lower carbon loss in southern Europe
in July compared to the ecosystem models which explain part of the shift of the
maximum uptake period from June to July discuss previously.
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5 Sensitivity of European fluxes to inverse setup

We investigate the robustness of the estimated fluxes through the results of the
different sensitivity tests described in Section 2.6 (Table 2). Table 3 synthesizes these
results with the variations of the annual total European flux (in GtC) between each
test and the control case (CNT). The tests have been ranked according to their impact
on the inverse solution, from the largest to the smallest (left to right in Table 3) and
are discussed in that order below.

Spatial discretization, number of regions The optimal level of spatial discretization
for the fluxes is still rather uncertain and tightly linked to the accuracy of prior fluxes
and to the number of observations (see Section 2.1). To assess the sensitivity of the
results to the number of regions, we performed some inversions with only six regions
(SR-LO) and with 20 regions (SR-HI) for Europe compared to 11 in the control
case (CNT) (see contours Fig. 1). Changes of the total European sink are small with
the ungrouped SR-HI case (∼0.13 GtC/year) but much larger for the SR-LO case
(∼0.33 GtC/year) where all models tend to strongly reduce the sink with the LMDz
model, even producing a source. This test highlights the importance of prior spatial
discretization and the risk of systematic biases with large regions like those involved
in the Transcom experiment.

Station network (number of sites) The use of additional European stations from
the AEROCARB project is believed to be critical to improving the regional flux
estimates. We performed a test without the five European stations (SN-LO, Table 2),
keeping only the 71 sites used in the TRANSCOM experiment. As a direct conse-
quence, the errors estimated on the European fluxes are much larger than in the CNT
case (+36% on average). The total annual European flux varies by 0.25 GtC/year
on average (mean absolute deviation) but with opposing effects between models:
a decreased sink for the two global models (0.10 and 0.24 GtC/year for TM3 and
LMDZ) and an increased one for the mesoscale models, up to 0.38 GtC/year for
REMO. Sub-European flux variations are even more sensitive to the observing
network but with no systematic effect between the five models. Increasing the
number of station appears to be critical to investigating regional carbon balances.

Observation uncertainty The relative weight of each station in the inversion is
critical to partitioning the sources and sinks regionally. Scaling the observation
errors for a set of European stations (‘HUN’, ‘MHD’, ‘CMN’, ‘PRS’, ‘SCH’, ‘WES’)

Table 3 Synthesis of sensitivity tests: induced variations on the geographical European flux com-
pared to the control case (absolute difference averaged over the models TM3, LMDZ, REMO, in
GtC)

Sensitivity to Spatial discretization Number Uncertainties Prior flux

SR-LO SR-HI of sites at stations errors

Variation on 0.33 (0.40 0.13 (0.13 0.25 (0.1 0.11 (0.13 0.06 (0.06
European 0.48 0.10) 0.22 0.04) 0.26 0.38) 0.08 0.13) 0.09 0.03)
flux compared
to control case

In parenthesis are the absolute differences for the three individual models TM3, LMDZ, REMO
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with a factor of 0.5 (SD-LO test) or 2 (SD-HI test) induce similar flux changes
for the different transport models. Total European biospheric sink increases by
∼0.1 GtC/year when the errors on the European stations decrease in SD-LO (i.e., a
better fit is required at these sites compared to the other northern hemisphere sites)
and vice versa in SD-HI.

Prior f lux errors We tested a case with the same error for each sub-European
region, 0.5 GtC per year evenly spread between months (SP-EQ case) compared to
GPP-based error distribution in the CNT inversion (With a minimum of 0.3 GtC/year
per region and a maximum of 1 GtC/year per region). Changes in the flux estimates
for each model in SP-EQ appear to be smaller on average than the flux differences
between models and the total annual European flux variations is only around
0.06 GtC/year (see Table 3).

Overall, the most critical component of the inverse setup that has been tested
is the number of independent regions to be resolved. Among the different tests,
some choices also tend to have a different impact on the different transport models
(like the atmospheric network). Major features like the phase/amplitude of the
mean seasonal cycle of the estimated NEP and the mean NEE carbon flux dipole
(southwest sink versus northeast source) remain stable across the different tests.

6 Closing remarks

6.1 The use of regional models in an inversion

To use the regional domain models to optimize CO2 fluxes, one ideally needs to nest
them into a “mother” global model, as explained in Section 2.4. For DEHM and
HANK hemispheric domain models, we did not implement such a nesting, hoping
that neglecting the inflow of CO2 at the equator would only cause a small error. To
check this assumption, we compare the five model concentration time series resulting
from the pre-subtracted fossil fuel source at two stations: Mace Head a surface site
in Ireland (MHD) and Plateau Rosa a mountain site in Italy (PRS) (Fig. 6). The runs
were performed for 3 years with fossil emissions during the first year (6.6 GtC/year)
and zero flux the following years. For computational reasons, the DEHM and HANK
models were only run for 1 year and the simulated concentrations were further
extrapolated over time at each station to the asymptotic value (3.1 ppm equivalent
to 6.6 GtC evenly spread in the atmosphere).

Significant concentration differences between DEHM or HANK and the other
models appear after around 10 and 6 months of simulations at MHD and PRS,
respectively. The differences are larger for the mountain site (PRS) and reach nearly
50% after 1 year. They clearly indicate that the loss of mass at the equatorial
boundary has a non-negligible impact after only several months of simulation even
at the European stations far from the boundary of the domain. This issue explains
a large part of the differences obtained between DEHM or HANK and the other
models. The pre-subtracted fossil fuel contribution at the Northern Hemisphere
stations was significantly smaller for these two models. The impact is probably
smaller for the land and ocean influence functions given that they were extrapolated
to the exact asymptotic value after only 3–4 months of simulations. Note that as
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Fig. 6 Values in parts per million of the fossil fuel CO2 signal at the coastal station MHD (Mace
Head in Ireland) on the left and the mountain station PRS (Plateau Rosa in Italian Alps) as a function
of time shown in years. For computational reason, the mesoscale models DEHM and HANK were
only run for 1 year (and extrapolated after that time)

a result, the estimated total northern hemisphere land and ocean carbon uptake
is decreased in DEHM and HANK by 0.22 and 0.41 GtC/year, respectively, as
compared to the other models.

Note finally that using either TM3 or LMDZ as a global model to complete
the influence functions for the mesoscale models (i.e., for stations outside their
domain, as explained in Section 2.4), only significantly impact the estimated fluxes
outside the mesoscale model domain that is mostly outside of Europe (as all the
mesoscale models cover at least whole of Europe). Over Europe, the results are well
constrained by the influence functions of the mesoscale models themselves.

6.2 Time-length computation for the “influence function”

The “matrix” formulation used to solve the inverse problem requires to the influence
of each source to be computed (i.e., a given region and time step) to the concentration
at each station for the whole time period covered by the inversion. In practice, the
transport models are usually run for a shorter period so that we need to extrapolate
forward in time the model concentrations to the asymptotic value (0.47 ppm for a
source of 1 GtC). In this study, we invert for a quasi-stationary state of the NEE
carbon fluxes over a 4-year period, while the mesoscale and global models were
run only for 3 and 4 months, and 2 years, respectively (see Section 2.4). Different
extrapolation procedures have been used:

• A linear extrapolation between the last model concentration and the asymptotic
value that is supposed to be reached after a given time step (4 years in our case)

• An exponential fit using the last two model concentrations to estimate the
curvature of the exponential function

We tested the impact of these technical choices on the inverse results with the
TM3 model. Figure 7 shows, for different sub-European regions, the flux differences
between the control case where TM3 is run for 2 years and cases where it is
run only 12, 6, or 3 months and then linearly or exponentially extrapolated. On
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average, significant biases affect the regional fluxes when the computation length
of the influence function is limited to few months only (3 or even 6). For the
exponential case, a large bias occurs when the length of the model simulations
is restricted to 3 months (compared to the reference), while the results are less
affected with the linear extrapolation. The difference between the two approaches
probably only reflects the difficulty in defining an exponential curve using two points
(the least) far from the asymptotic value. Overall, a 6-month period seems to be
a minimum to avoid potential biases in the flux estimates, with 12 months being
a preferred value. In this study, the impact of using only 3 and 4 months for the
REMO/DEHM and HANK, is probably limited, given of our choice of a linear
extrapolation scheme. This result is in line with Bruhwiler et al. (2005) where using
a very different inversion technique (“improved Kalman Smoother”) it is concluded
that this technique shows “excellent agreement with the standard Bayesian synthesis
batch technique by retaining transport information in the basic functions for as little
as 6 months.”

7 Conclusions

In this study, we use both global (LMDZ, TM3) and mesoscale models (REMO,
HANK, DEHM) to perform a CO2 monthly inversion for the years 1998–2001. A
special focus is given to sub-continental regions of Europe as a first attempt given
the high density of CO2 concentration measurements in this region (nine sites, part
of the AEROCARB and CARBOEUROPE network). The carbon balance of the
European continent equals −0.1 ± 0.4 GtC/year, with Europe being the sum of a
group of regions (South, West, North and Cent in Fig. 1b; 15 M km2). With a denser
network of 12 stations over Europe compared to seven stations in Gurney et al.
(2003), our continental-scale C balance is closer to the Janssens et al. (2003) bottom-
up and top-down estimate (JBU and JTD in Fig. 2) with a small carbon sink. Two
European mean inversion flux estimates are shown in Fig. 2, one obtained with the
five transport models (mean sink of −0.1 GtC/year) and the other one with only TM3,
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LMDZ and REMO models (mean sink of −0.35 GtC/year). This distinction allows
isolation of DEHM and HANK, which were run without any CO2 incoming flux
at their equatorial boundary, a potential source of bias in the estimated European
carbon balance (Section 6.1 for further discussion). With only three models, the
European carbon sink increases from 0.1 to 0.35 GtC/year.

The continental carbon sink is located mostly in the southern and western regions,
each absorbing ∼0.5 ± 0.1 GtC/year. In contrast, the northern and eastern regions
are small sources and the central region is a large source of ∼0.68 ± 0.23 GtC/year.
This regional flux dipole (South-West/North-East) is found through all the transport
models (but less pronounced in HANK). The error reduction on the regional fluxes
is larger for western and southern Europe (24% of the prior error) than for central
and eastern Europe (44% of the prior error). This reflects the lower density of
the observing network in the eastern half of the continent. To test whether this
flux dipole (south-west versus north-east) is sensitive to the assimilation of CO2

data from particular stations, we performed a bootstrap analysis where each of
the 12 European stations is taken one by one out of the inversion. None of the
12 stations was solely responsible for the inverted flux dipole suggesting that this
regional pattern is not directly controlled by the geometry of the network. This flux
dipole may reflect a difference in NEP between south-west and north-east Europe or
alternatively be caused by a common bias to all the inversions, linked for instance to
the representation of mountain stations or to a bias in the pre-subtracted fossil fuel
emission field (Gurney et al. 2005).

Over Europe the spread of results between the different models is rather large
(i.e., around 65% of the mean posterior error for yearly totals). Optimized monthly
fluxes show a maximum uptake over Europe that is shifted by 1 month compared
to the prior TURC model (from June to July). This correction is robust across all
transport models and seems to be driven by the atmospheric data. It could be viewed
as a crucial new independent source of information to validate or falsify ecosystem
model results.

In this paper we also attempt to compare our regional European flux estimates to
other “independent” approaches, such as bottom-up results. A major source of error
in the inversion process arises from systematic biases in the atmospheric transport.
However, when considering intra-annual flux variations, theses biases might cancel
out, leading to more accurate flux variation estimates (see timing of the maximum
biosphere uptake in Section 4.1). Improving model transport and increasing the
network density should help to overcome the current inversion limitations.

Important methodological results have also been derived from this study. To
perform the inversion with the limited domain models, we used a global model (1) to
account for the lateral mass fluxes at the limit of their domain (done for REMO) and
(2) to complete the set influence functions at all stations. Correctly addressing the
boundary conditions of mesoscale models, even if these are hemispherical, appeared
to be important to properly simulate CO2 concentration variations at European
stations (especially high-altitude stations). We also showed that a minimum period
of 6 months is required for the computation of the influence functions, before any
interpolation, in order to obtain robust results. However a period of 12 months is
preferred.

Finally, for the first time, mesoscale models with limited domains have been used
to estimate monthly mean surface CO2 fluxes (mean over 1998–2001) and compared
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with estimates using conventional global models. Geels et al. (2007) have shown
the potential of mesoscale models to better represent concentrations at European
continental sites. In this study, we do not obtain systematic differences between the
mesoscale and global models flux estimates for Europe. However, the simplification
of the boundary condition treatment for the two mesoscale models (DEHM and
HANK) raises some caution about any quantitative interpretation of the benefit
of mesoscale model in an inverse mode. Further investigations in that direction are
required.
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Abstract While remote sensing is able to provide spatially explicit datasets at
regional to global scales, extensive application to date has been found only in the
reporting and verification of ecosystem carbon fluxes under the Kyoto Protocol. One
of the problems is that new remote sensing datasets can be used only with models
or data assimilation schemes adapted to include a data input interface dedicated
to the type and format of these remote sensing datasets. In this study, soil water
index data (SWI), derived from the ERS scatterometer (10-daily time period with
a spatial resolution of 50 km), are integrated into the ecosystem carbon balance
model C-Fix to assess 10-daily Net Ecosystem Productivity (NEP) patterns of Europe
from the remote sensing perspective on an approximate 1-by-1 km2 pixel scale using
NDVI-AVHRR data. The modeling performance of NEP obtained with and without
the assimilation of remotely sensed soil moisture data in the carbon flux model

W. W. Verstraeten (B)
Geomatics Engineering, Katholieke Universiteit Leuven (K.U. Leuven),
W. de Croylaan 34, 3001 Heverlee, Flanders
e-mail: willem.verstraeten@biw.kuleuven.be

F. Veroustraete · T. Van Roey · W. Heyns · S. Verbeiren
Flemish Institute for Technological Research (VITO),
Boeretang 200, 2400 Mol, Flanders

W. Wagner
Institute of Photogrammetry and Remote Sensing,
Vienna University of Technology (T.U. Wien),
Gusshausstrasse 27–29, 1040 Vienna, Austria

J. Feyen
Laboratory for Soil and Water Management,
Katholieke Universiteit Leuven (K.U. Leuven),
Celestijnenlaan 200E, 3001 Heverlee, Flanders

Reprinted from the journal 117



Climatic Change (2010) 103:117–136

C-Fix is evaluated with EUROFLUX data. Results show a general decrease of the
RRMSE of up to 11 with an average of 3.46. C-Fix is applied at the European
scale to demonstrate the potential of this ecosystem carbon flux model, based on
remote sensing inputs. More specifically, the strong impact of soil moisture on the
European carbon balance in the context of the Kyoto Protocol (anthropogenic
carbon emissions) is indicated at the country level. Results suggest that several
European countries shift from being a carbon sink (i.e., NEP > 1) to being a
carbon source (i.e., NEP < 0) whether or not short-term water availability (i.e., soil
moisture) is considered in C-Fix NEP estimations.

1 Introduction

The measurement of carbon stocks in soils and vegetation as a method of reporting
and verifying greenhouse gas emissions and carbon removals is a challenging task,
and moreover is subject to high uncertainties. Nilsson et al. (2001) expressed their
concern that the high uncertainties in the estimation of greenhouse gas removals in
the forestry and agricultural sectors veil the emission reduction efforts to which the
signatory countries of the Kyoto Protocol have committed themselves.

Since the early stages of Kyoto Protocol implementation, remote sensing has
been considered as an important method of providing basic input data to establish
inventories and to quantify ecosystem carbon fluxes. However, though remote
sensing enables the provision of regional to global scale datasets, it cannot yet be
considered operational in more than a handful of applications related to the Kyoto
Protocol (Rosenqvist et al. 2003). This is expressed in the Good Practice Guidance for
Land Use, Land Use Change and Forestry report, adopted by the Intergovernmental
Panel on Climate Change (IPCC) (Penman et al. 2003). This report repeatedly points
out the potential of remote sensing to help the signatory parties fulfil their inventory
requirements. However, it provides neither concrete advice on how to use remote
sensing nor incentives for doing so (Wagner et al. 2005).

There are many reasons, including technological and economic ones, for the
slow implementation of remote sensing methodology for inventory and verification
objectives of greenhouse gas emissions and removals by the forestry and agricultural
sectors. From the methodological point of view, a major problem area is the fact that
assimilation of remotely sensed geophysical products (land cover, forest biomass, soil
moisture, etc.) into carbon models, is a complex process. Typically, it is not sufficient
to simply exchange conventional input data for their remotely sensed counterparts.
Rather, it is necessary to develop new models and data assimilation systems.

Spaceborne soil moisture data became available only quite recently (Wagner et al.
2007). They are expected to shed light on the coupling between carbon assimilation
and water availability. In this paper, an integrated approach to estimating ecosystem
carbon fluxes based on remotely sensed soil moisture data assimilation across Europe
is presented. The impact of 10-daily soil moisture data assimilation derived from
the ERS scatterometer with a spatial resolution of 50 km in the ecosystem carbon
balance model C-Fix (Veroustraete et al. 2002; Verstraeten et al. 2006b) is evaluated
based on EUROFLUX data (Valentini et al. 2000) sampled at the local spatial
scale. The potential of soil moisture data provision and integration in remote sensing
ecosystem carbon models at the European scale is demonstrated with a resolution of
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1.1 km2, as NOAA-AVHRR data were used. The demonstration was performed by
running C-Fix with and without soil moisture data input and by an assessment of the
carbon exchange output data of the model. The two moisture input scenarios were
compared with anthropogenic carbon emissions at national levels, thereby assessing
the impact of soil moisture in the context of the Kyoto Protocol implementation
procedure. Finally, our results are discussed within the framework of the workshop
on Uncertainty in Greenhouse Gas Inventories (IIASS 2007).

2 Assessing ecosystem carbon fluxes using satellite data

The carbon balance of a terrestrial ecosystem is determined by the difference in
carbon uptake and release or the ecosystem carbon fluxes—Gross Primary Produc-
tivity (GPP), Net Primary Productivity (NPP) considering autotrophic respiration
(Ad), both above and below the surface, heterotrophic respiration (Rh), and Net
Ecosystem Productivity (NEP). Total ecosystem carbon release is denominated as
ecosystem respiration (ER). According to Valentini et al. (2000), ecosystem respira-
tion varies with latitude and is the strongest component of the European net carbon
balance. Grace and Rayment (2000) suggest that in moist soils, microbial flora adapts
to low temperature regimes and therefore remains active over long periods during
the growing season as long as soil moisture content does not constrain soil organic
matter decomposition. Ciais et al. (2005) show that pronounced soil moisture deficits
counteract the effect of high temperatures by a reduction of soil respiration (SR).
Clearly, carbon uptake is significantly driven not only by plant water availability, but
also by drivers like solar radiation, ambient temperature, and nutrients. To put it
another way, it is the (differential) sensitivity of ecosystem processes to temperature
and moisture that makes certain components of the carbon balance more or less
important. Despite this, global carbon budget, analysis is often limited to studies of
temperature effects only (Nemani et al. 2002).

The spatial dimension of soil moisture impacts on carbon uptake and release can
be assessed, for instance, by the application of the production efficiency model C-Fix.
This model has been applied earlier to simulate carbon mass fluxes on a daily basis
from local (Veroustraete et al. 2004; Verstraeten et al. 2006b), through regional
(Veroustraete et al. 2002; Chhabra and Dhadwall 2004; Lu et al. 2005) to global
scales. The temporal evolution of the absorption efficiency of photosynthetically
active radiation is directly inferred from spaceborne observations of the Normalized
Difference Vegetation Index (NDVI), which allows the fraction of Absorbed Pho-
tosynthetically Active Radiation ( f APAR) data and radiation use efficiency (RUE)
to be estimated. RUE is the integrated efficiency of the photosynthetic metabolism
which converts radiation into assimilated carbon (or dry matter). Using the CLC2000
land cover map of Bartholomé and Belward (2005), RUE is stratified, that is, it
produces a spatially explicit RUE database by assigning RUE values to different
vegetation type classes. If NDVI data is used only to estimate f APAR without soil
moisture data, long-term water limitation is taken into account when ecosystem car-
bon fluxes are estimated. As the NDVI refers to vegetation greenness and indirectly
to leaf chlorophyll content, and as chlorophyll metabolism depends on long-term
plant water availability, only pronounced drought periods will affect chlorophyll
metabolism. Pronounced droughts may cause the degradation of chlorophyll and
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hence there is a decrease in the greenness (and hence the NDVI and f APAR) of
a vegetation cover.

We define this scenario as the partially water limited (PWL) scenario applied to
C-Fix in contrast to the fully water limited (FWL) scenario where short-term water
limitations are considered directly. Short-term water limitation cannot be observed
from vegetation greenness. Thus, other ecosystems attributes have to be determined
to meet the requirements for the estimation of short-term water limitation.

Daily net ecosystem productivity (NEP) is estimated based on estimates of daily
gross primary productivity (GPP). This is formalized by subtracting autotrophic
respiration as well as soil respiration from photosynthesis (Maisongrande et al. 1995).
Quite importantly, short-term soil moisture limitation of carbon uptake and release
by ecosystems in the C-Fix approach is accounted for at the levels of photosynthesis
(evapotranspiration) and soil respiration (Verstraeten et al. 2006b):

1. Here RUE depends on water limitation. At the GPP level, water limitation of
photosynthesis by evapotranspiration is a prime determinant.

2. Moreover, soil moisture content affects the growth of soil micro-fauna and flora
and thus the magnitude of soil respiration.

Changes in water availability for plant transpiration and hence photosynthesis:

1. Are due to water and CO2 fluxes controlling stomatal closure. Increasing soil
moisture deficits cause stomata to close, thereby inducing a reduction in the rate
of photosynthesis. In C-Fix soil moisture deficit is formalized with a stomatal
regulating factor Fs (Eq. 4) which is controlled by soil moisture availability.

2. Are influenced by soil aeration, an important limiting factor for the oxidative
processes of soil respiration. Soil aeration is in turn also related to soil water
content. In C-Fix this is formalized with a soil aeration stress factor (SAS)
(Eq. 5).

Finally, daily net ecosystem productivity (NEP) (gC m−2 day−1) is estimated as:

NEPd = (
1 − ξ · Ad(Tc)

) · GPPd − Š
[
SRF.Rh(Ts) + ((1 − ξ) · Ad(Tc)) · GPPd

]

(1)

GPPd = p(Tc) · CO2, f ert · RUEwl · f APAR · c · Sg,d (2)

f APAR = a · NDVItoc + b (3)

RUEwl = [
RUEmin + (Fs) · (RUEmax − RUEmin)

]
(4)

SAS = 1 − (θsat − θ).(θsat − θcrit)
−1, θ > θcrit

SAS = 0, θ ≤ θcrit

(5)

SSS = BDF · sin
[
(θ − θwp) · (

θ f c − θwp
)−1] (6)

SRF = [
SRmin + (1 − SAS) · (SSS) · (

SRmax − SRmin
)]

(7)
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In Eqs. 1–7:

NEPd is daily net ecosystem productivity [g C m−2 day−1];
GPPd is daily gross primary productivity [g C m−2 day−1];
ξ is an allometric factor dividing autotrophic carbon release

in above-ground (leaves) and below-ground (roots) compo-
nents [−];

Ad is the autotrophic respiratory fraction (Goward and Dye
1987) [−];

Tc and Ts are canopy and soil temperature respectively [◦C];
p(Tc) is a normalized temperature dependency factor {0:1} [−]

(Veroustraete et al. 1994);
CO2fert is a normalized CO2 fertilization factor (Veroustraete et al.

1994);
RUEWL is RUE with water limitation taken into account

(Verstraeten et al. 2006b) [gC MJ(APAR)−1];
RUEmin and RUEmax are minimum and maximum RUE [gC.MJ(APAR)−1];
f APAR is the fraction of absorbed PAR {0:1} [−], a and b are

regression coefficients;
NDVItoc is the NDVI at the top of canopy {−1:1} [−];
Sg,d is daily incoming global solar radiation [MJ m−2 day−1];
c is climatic efficiency equaling 0.48 (McCree 1972) [−];
Rh is heterotrophic respiration (Veroustraete et al. 2004)

[gC m−2 day−1];
Fs is a stomatal regulating factor controlled by soil moisture

availability [−];
SAS is soil aeration stress depending on soil moisture content [−];
θsat is the volumetric moisture content at saturation point

[m3 m−3];
θcrit is the volumetric moisture content at a critical point

[m3 m−3];
SSS is a soil strength stress depending on soil moisture content

[−];
BDF is a bulk density factor [−];
θwp is the volumetric moisture content at wilting point [m3 m−3];
θfc is the volumetric moisture content at field capacity[m3 m−3];
SRF is a soil stress respiration factor [−]; SRmax and SRmin are

minimum and maximum soil respiration factors (between
0 and 1) [−];

Figure 1 schematically illustrates the involved inputs, the remote sensing con-
tribution, and where soil moisture is assimilated into the C-Fix model. A detailed
description of the C-Fix model can be found in Verstraeten et al. (2006b).

The C-Fix model was actually developed to accommodate the spatial hetero-
geneity of fully water limited (FWL scenario) ecosystem-related carbon fluxes from
regional to continental scales (Verstraeten et al. 2006b). However, C-Fix is not a
SVAT model and is developed neither to accommodate the multi-temporal detail
offered by deterministic stand scale carbon models, nor to offer prognostic capability.
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Fig. 1 Meteorological and climatic, vegetation-related and hydrological inputs and process se-
quences to assess net ecosystem productivity (NEP) from gross primary productivity (GPP), net
primary productivity (NPP), and soil respiration (SR). Distinction is made between Partially Water
Limited (PWL) and Full Water Limited (FWL) model modes and how soil moisture is involved in the
different carbon fluxes, as indicated by the blue lines. The equations involved are Eqs. 1–7. Remote
sensing-based data are marked. fAPAR: fraction of absorbed photosynthetic active radiation; p(T):
normalized temperature dependency factor; RUE: radiation use efficiency; c: climatic efficiency;
[CO2]: normalized CO2 fertilization factor; Sg,d: daily incoming Global Solar Radiation; Ad:
autotrophic respiratory fraction (Au,d: underground; Aa,d: above); Rh: heterotrophic respiration;
SWI: soil water index; GPP: gross primary productivity; SR: soil respiration; NEP: net ecosystem
productivity

Nor does it contain a formalization of the decomposition mechanisms of soil organic
matter.

3 Datasets: soil water index, f APAR, meteorology,
anthropogenic carbon emissions, and EUROFLUX

To analyze the effect of partial and full water limitation on spatially explicit NEP
for Europe, C-Fix was used to calculate NEP for the year 1997 with and without
the assimilation of ERS scatterometer-derived soil moisture profile data (10-daily
Soil Water Index, SWI) in C-Fix. SWI data for Europe were retrieved from ERS
scatterometer observations based on the work of Wagner et al. (1999). The ERS
scatterometer is an active microwave sensor operating at a frequency of 5.3 GHz
(C-band) with a spatial resolution of 50 km. Radar waves penetrate only a few
centimeters into the soil, which means that only information about soil moisture
in the soil surface layer (2–5 cm) is collected. However, because of the frequent
temporal coverage of the ERS scatterometer, the temporal evolution of the surface
wetness conditions is known, which allows for soil moisture content estimation
(Ceballos et al. 2005). Validation studies over different climatic regions have shown
that soil moisture retrieval errors range from 0.03 to 0.06 m3 m−3 (Ceballos et al.
2005; Pellarin et al. 2006; Verstraeten et al. 2006a; Wagner et al. 1999, 2003)
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indicating a 15–20% relative error depending on the average SMC in time. Other
data sets on water availability can also be used (Verstraeten et al. 2008a).

In addition to spaceborne retrieved soil water content, NOAA-AVHRR Nor-
malized Difference Vegetation Index (NDVI) observations were used to estimate
f APAR according to the NDVI- f APAR relationship established by Myneni and
Williams (1994).

Meteorological data originate from the World Meteorological Organization
(Veroustraete et al. 2002), and anthropogenic carbon emission data from the
UNFCC (2005) report.

EUROFLUX datasets (Valentini et al. 2000; Wilson et al. 2002a, b; Dolman et al.
1998, 2003) acquired in 1998 at nine network sites (see also Table 1) were used
as an independent validation dataset of the C-Fix model. Fortunately, in situ soil
moisture data for 1998 were made available by the University of Tuscia (except for
the NL1 site made available by Wageningen University and the BE2 site obtained
from Verstraeten et al. 2005).

4 Improvement of NEP estimation based on the integration of SWI data in C-Fix.
Evaluation at the EUROFLUX sites

To evaluate the improvement in NEP assessment when SWI time series are as-
similated in C-Fix, NEP estimates based on the two water limitation scenarios
are compared with EUROFLUX measurements. The first scenario is the partially
water limited (PWL) case, where only long-term water limitations are taken into
consideration by using f APAR only. The second model scenario is the fully water
limited (FWL) case where short-term water limitation is accounted for by integration
of remotely sensed SWI data into C-Fix.

A multi-statistic performance test was applied for this purpose (Table 1). Hence,
different statistics were used, eliciting different characteristics of modeled and
measured datasets (Chow et al. 1993). Apart from the linear correlation coefficient
(R2), the slope (ideally equal to one) and intercept (ideally equal to zero) of modeled
versus observed values are compared in a scatter graph; the relative root mean square
error (RRMSE), model efficiency (ME), and the coefficient of determination (CD)
were used for performance evaluation of both PWL as FWL C-Fix scenario runs.
The RRMSE is of random error and should be as low as possible (ideally zero). R2

(ideally one), and ME (should be positive and ideally take a value between zero and
one). ME is a measure for both random and systematic errors in the predictions.
CD is a measure related to the simulation of peak values and is optimally one. The
formulas are given below:

RRMSE =

√√√√√
n∑

i=1
(Oi − Pi)2

n
· 1

O
2 (8)

ME = 1 −

n∑
i=1

(Oi − Pi)
2

n∑
i=1

(Oi − O)2
(9)
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CD =

n∑
i=1

(Oi − O)2

n∑
i=1

(Pi − O)2
(10)

In Eqs. 8–10:

Oi is the ith measured or observed value;
Pi is the ith simulated or predicted value;
n is the number of measurements in the time interval considered;
O is the average value of the observations.

Table 1 illustrates that the FWL scenario run of C-Fix to estimate NEPFWL sig-
nificantly improves the quantitative accuracy of the model estimates when NEPFWL

is compared with EUROFLUX tower NEP measurements. Correlation coefficients
do not differ much between the two NEP series. In contrast to R2, ME increases
significantly and becomes positive for all sites considered in the analysis. This sug-
gests that the bias between NEPFWL and measured EUROFLUX NEP is quite low.
We can observe that peaks in NEP measurements are reproduced more realistically
when running C-Fix with the FWL scenario (CD closer to one). An exception
is the SW2 site, where an underestimation of EUROFLUX NEP peaks can be
observed. Additionally, RRMSE values for the NEPFWL estimates are consistently

a b

c d

Fig. 2 Time series and scattergrams of measured NEP, modelled Partially Water Limited (PWL),
and Fully Water Limited (FWL) NEP using C-Fix for 1997 at the EUROFLUX site of Hyytiala
(Finland) and Loobos (Netherlands)
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lower than for NEPPWL. Although the intercepts and slopes of the linear equation
between measured NEP and modeled NEPFWL are less consistently close to zero
and one respectively, the results for the slopes and intercepts in Table 1 indicate
that the FWL scenario C-Fix estimates clearly improved compared with the PWL
scenario estimates. From Verstraeten et al. (2006b), it can be observed that in
the FWL scenario as opposed to the PWL one, NEP estimates fit EUROFLUX
NEP observations more optimally. The FWL mode has a RRMSE (R2) of 3.00
(0.52) for NEP estimated during 1997. The PWL mode has a RRMSE (R2) value
of 6.46 (0.49).

Figure 2 illustrates time series and scattergrams of measured and modeled NEP
in the PWL and FWL scenario C-Fix runs for 1997 for the EUROFLUX sites of
Hyytiala (Finland) and Loobos (the Netherlands). This figure clearly suggests that
the FWL scenario at both sites produces better results compared to the PWL
scenario, considering the better match of the FWL time series with the NEP
measurements of the EUROFLUX sites and the closer position of the values toward
the one-to-one line of the scattergrams. It can be observed in Fig. 2 that the NEP
model simulation fits the site measurements better at Hyytiala than at Loobos. The
site land use homogeneity or heterogeneity definitely affects the satellite data used
in C-Fix. This can be one reason (of many) why C-Fix performance is better in the
homogenous site of Hyytiala and less optimal in the much more heterogeneous site
of Loobos. The different behavior of the NEP time series might be due to different
climates and tree species, as indicated in Table 1. With the FWL scenario, NEP
is reduced with the pooled dataset, with more than 20% compared to the PWL
scenario. This suggests that the impact of water limitation leads to a decreased
(or increased) NEP, depending on whether soil respiration increases (or decreases)
or whether GPP decreases, or both.

5 The accuracy of C-Fix estimates of carbon uptake and respiration fluxes
considering local soil moisture data

EUROFLUX datasets (Valentini et al. 2000; Wilson et al. 2002a, b; Dolman et al.
1998, 2003) acquired in 1998 at nine network sites (Table 1) were used as an
independent validation dataset to evaluate the impact of soil moisture, and hence
the short-term water availability on the C-Fix estimated ecosystem carbon flux.
In Table 2 the differences between NEPPWL and NEPFWL, between SRPWL and
SRFWL, and between ERPWL and ERFWL are illustrated for the year 1998 for the
EUROFLUX sites.

• At the FR1 site, the difference between NEPPWL and NEPFWL is positive due to
a significant decrease in SR.

• For the FR2 and GE2 sites, the difference between NEPPWL and NEPFWL is
positive due to a larger increase in GPP than in ER and SR.

• For the FI1 and NL1 sites, despite a strong decrease of GPP in the FWL scenario,
the difference between NEPPWL and NEPFWL remains positive due to a strong
drop in heterotrophic and autotrophic respiration.

• At the SW1 site, a positive difference is due to a strong decrease in SR.
• For the BE1 site, the NEPPWL and NEPFWL difference is negative due to higher

SR and AR values.
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• When all sites are pooled, the difference between NEPPWL and NEPFWL is
negative despite a decrease in AR and SR. This is due to lower GPP values in
the FWL scenario.

These observations suggest that soil moisture limitation decreases soil respiration
more explicitly than photosynthesis. This is particularly true for mineral soils, as in
organic soils respiration will increase under water-limiting conditions (Schils et al.
2008).

6 Soil water integration into a remote sensing-based ecosystem carbon assimilation
model: possible implications for the carbon balance at a European scale

6.1 Water limited carbon uptake for Europe

When C-Fix runs are performed by assimilating only remotely sensed f APAR
(PWL scenario), the effects of long-term water relations (stress) in vegetation are
only indirectly accounted for. However, when f APAR as well as soil moisture are
assimilated in C-Fix, both short- and long-term impacts of water limitation on carbon
fluxes are accounted for (the PWL versus the FWL scenario). SWI is an input in the
C-Fix model, as expressed in Eqs. 4 and 5. Spatially explicit NEP estimates at the
European scale are shown in Fig. 3. Figure 3a, b illustrate the NEP estimates with
the partially water limited scenario (NEPPWL) and the fully water limited scenario
(NEPFWL), respectively. Figure 3c illustrates the difference between the NEP’s from
the two scenarios (NEPPWL − NEPFWL). It can be observed that the effect of soil
moisture on NEP estimates is spatially very variable. However, some conspicuous
patterns can be observed. In most parts of Europe, the results of the FWL scenario
elicit a reduced NEP, although positive values are still retained. In other areas,
soil moisture increases NEP. The spatial patterns of Fig. 3b are related to high or
low soil moisture relative to soil texture properties. Very low soil moisture values
reduce and ultimately completely inhibit soil micro-organism activity so that SR is
either decreased or brought to a standstill. This is a condition where NEP evidently
increases strongly. On the other hand, in water depleted soils, GPP decrease can be
sharper than that of SR. In that case, the result is an NEP decrease. Unlike very dry
soils, water saturated soils indicated by very high soil moisture values, are affected
by soil anaerobiosis and a significant inhibition of soil micro-organism respiratory
activity due to anaerobiosis. Photosynthesis is also inhibited, as water and mineral
uptake by roots requires oxygen to supply the active water and mineral uptake
process with the required biochemical energy.

6.2 Balancing NEP and anthropogenic carbon fluxes for several
European countries

To put the magnitude of soil moisture impact on NEP into a Kyoto Protocol
implementation context, an analysis of the difference between estimated NEP and
anthropogenic carbon emissions (ACE) was made. The result of this exercise is
shown in Table 3 for 26 European countries. As inventories of ACE values are
available only at European national levels, the analysis of the balance of NEP
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Fig. 3 Estimated average daily
net ecosystem productivity (in
101 g C m−2 d−1; thus divide
by 10 to get the real value) for
1997 for Europe using the
production efficiency model
C-Fix. a Partially water limited
model run (NEPPWL) and b
fully water limited model run
(NEPFWL). Negative NEP
values indicate carbon sources;
positive values indicate carbon
sinks. Panel c illustrates the
difference between the NEP of
a and b (NEPPWL − NEPFWL)

a

b

c

and ACE also had to be limited to the different European national levels and
unfortunately could not be scaled down to higher spatial resolutions.

When the PWL scenario is selected, 14 of the 26 European countries, representing
47.5% of the European continental surface area (±4,300,000 km2), elicit a negative
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Table 3 The difference between Net Ecosystem Productivity (NEP) and anthropogenic carbon
emissions (ACE) at European country national level for 1997 (in Tg C a−1)

Country ACE NEPPWL−ACE NEPFWL−ACE
(Tg C a−1) (Tg C a−1) (Tg C a−1)

Austria 66.5 61.7 90.4 −15.4 51.8
Belgium 122.2 −105.0 15.9 −118.3 7.6
Bulgaria 61.6 10.2 100.9 −23.7 52.9
Czech/Slovakia 137.4 −77.7 60.9 −114.9 33.0
Denmark 65.7 −49.3 16.4 −43.6 10.1
Estonia 20.2 11.6 24.7 −14.7 23.1
Finland 62.3 125.7 149.0 56.7 145.5
France 403.1 206.5 590.4 −161.9 293.5
Germany 893.5 −548.0 279.5 −813.4 139.0
Greece 94.3 −18.2 131.9 2.2 90.1
Hungary 60.5 −12.2 75.5 −37.0 34.1
Ireland 38.3 −42.6 16.7 −37.6 10.1
Italy/San Marino 443.1 −103.3 424.7 −283.7 195.7
Latvia 8.7 30.5 36.6 1.4 35.8
Lithuania 16.2 1.1 29.0 −6.9 21.8
Luxembourg 9.5 −9.1 0.8 −9.5 0.3
Monaco 44.7 −44.7 0.0 −44.7 0.0
Netherlands 170.2 −149.7 19.1 −167.1 10.0
Norway 40.6 219.5 257.4 199.7 220.4
Poland 361.6 −222.0 180.2 −300.2 120.1
Romania 123.8 76.4 278.2 −63.5 137.4
Slovenia 16.1 32.6 21.9 1.7 9.9
Spain/Andorraa 262.6 −198.4 583.2 −217.4 286.3
Sweden 56.8 390.1 251.5 152.0 178.7
Switzerland 43.2 13.9 42.7 −26.0 20.6
United Kingdom 548.4 −511.7 77.7 −533.2 41.5
Sum 4,176.8 −912.1 −2,619.0

Standard deviations are listed in italics. Zero or positive difference (NEP−ACE): The countries’
ecosystems can recapture anthropogenic carbon emissions. Negative difference: Anthropogenic
carbon emissions are higher than terrestrial ecosystems can recapture
aFor Spain NEP estimates are representative only for northeastern Spain (28.6% of the total country
area); standard deviations are based on ecosystem carbon fluxes, not on errors for anthropogenic
emission estimates

carbon flux budget. When the FWL scenario is selected, the number of countries with
a negative carbon budget increases to 20 and the area with a negative carbon budget
to 73.2%. Based on NEPFWL data, we estimate that European countries recapture
roughly one-third (37.2%) of ACE.

When comparing NEPPWL and NEPFWL respectively with ACE:

• The CO2 recapturing capacity of Denmark, Ireland (negative NEPPWL in
Table 3) and northeastern Spain increases. The carbon flux balance, however,
remains negative.

• For Greece, the difference between NEPPWL and ACE is negative but shifts to a
positive value when NEPFWL and ACE are compared. Hence, Greece shifts from
a CO2 flux source to a sink.
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• Austria, Bulgaria, Estonia, France, Lithuania, Romania and Switzerland—
eliciting positive differences between NEPPWL and ACE—shift to negative
differences under the FWL scenario, namely, from CO2 flux sinks to sources.

• Though the difference between NEPFWL and ACE for Finland, Latvia, Norway,
Slovenia, and Sweden is positive, the CO2 uptake magnitude decreases, as shown
in Fig. 3.

• When including soil moisture effects, for example, running the FWL scenario,
the decrease in NEP is marginal for the Benelux countries, Spain/Andorra, and
the UK.

NEP, as estimated with remote sensing measurements, can be converted into Net
Biome Productivity (NBP) using a simple a NBP/NEP conversion factor. Through
this, a rough assessment of the terrestrial carbon balance at the level of European
countries can be made. Though strongly under debate at the IPCC, NBP is the
most representative indicator for emitted carbon recapturing capacity for a terrestrial
ecosystem as additional processes like forest clearing, logging, forest fires, crop
harvesting or, in general, land use/land cover changes, are accounted for. This is of
course in contrast to the NEP level. The NBP/NEP factor is estimated to be 0.10 to
0.20 at the level of the global terrestrial carbon cycle (Steffen et al. 1998). It amounts
to 0.47 for European forest ecosystems (Janssens et al. 2003) and 0.23 for European
grasslands (Soussana et al. 2004). For all European ecosystems (considering their
land cover fractions) a NBP/NEP factor of 0.15 is an acceptable conversion factor
value. When this factor is applied, it results in an annual European NBP using the
FWL scenario of 229 ± 109 Tg C. This represents 5% of the European ACE, taking
account of an error of 38% in the NBP/NEP factor applied. This estimate is quite
similar to that of Janssens et al. (2003). Our estimate for 1997 for the NBP of forest
ecosystems is 227 ± 101 Tg C a−1. This is lower than the terrestrial NBP estimate of
363 ± 159 Tg C a−1 of Janssens et al. (2003) who considered the total area of Europe
and not the limited area used in this study (±4,300,000 km2), as indicated on the map
shown in Fig. 3.

7 Referencing C-Fix in a GHG inventory framework: including its limits
and potential improvements

The major strength of the remote sensing-based model C-Fix is its explicit spatiotem-
poral scale of operation in assessing GHG related data such as GPP, NEP, and
ER. As a simple Production Efficiency Model (PEM), however, C-Fix is lacking
the incorporation of detailed physiological processes. C-Fix is also not a SVAT-
like model; hence, quantifying latent, sensible, and kinetic energy exchanges at the
surface of soils and plants is out of the scope of this model. Nor is C-Fix a dynamic
global vegetation model such as, for instance, DGVM (e.g., Cramer et al. 2001) and
thus it is not capable of simulating vegetation dynamics. C-Fix does not accommodate
the multi-temporal detail offered by deterministic stand-scale carbon models either,
nor does it offer prognostic capability. Finally, it does not provide for the unravelled
decomposition mechanisms of soil organic matter (Davidson and Janssens 2006).

On the other hand, the added value of remote sensing-based raster point models
such as C-Fix, is situated in the capacity to describe the spatiotemporal heterogeneity
of water limited ecosystem carbon fluxes in an operational way. This is due to the
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semi-empirical modelling simplicity and therefore computational efficiency of such
remote sensing-based raster point models. By assimilating high temporal resolution
imagery, C-Fix can enable the analysis of spatially explicit seasonal and inter-
annual effects of water availability and temperature on ecosystem carbon uptake and
release. This spatialization of carbon fluxes can be performed from the regional to the
continental scales (Verstraeten et al. 2006b). C-Fix therefore provides a significant
added value by offering the possibility of scaling up from stand to regional and
continental scales (see Black 2007), or of acting as a driver to calibrate out-of-
phase phenological cycles in a DGVM or stand-scale model. Moreover, NEP spatial
patterns, for example, often serve as validation fields for physically fully explicit
models. Finally, remote sensing-based approaches benefit from local carbon sink
and carbon mass accumulation studies and inventories (see Hawkins et al., 2007)
as well as the reverse. Most inventories focus on well characterized ecosystems; they
overlook the more fuzzy ecosystems such as tropical forests, savannas, shrublands,
and tundra and evidently the large quantities of mixed land cover pixels in strongly
fragmented landscapes. The application of remote sensing therefore provides a
solution for many of the shortcomings of physically explicit approaches (see Field
2007).

The current C-Fix model is still amenable to many improvements, additional
parameterizations, validations, and comparisons with other vegetation types (more
broad-leaved forest species, agricultural crops, more Mediterranean and continental
flux sites, sites on organic soils, etc.), data and approaches (for instance, as indicated
in ClimSoil by Schils et al. 2008). More analysis over longer inter-annual time scales
is also recommended. If available, remotely sensed SMC at finer spatial as well as
temporal resolutions may also contribute to a better estimation of the carbon fluxes
by C-Fix (Veroustraete et al. 2009). Integrating fAPAR data from other sources and
methods is without doubt useful. For instance, fAPAR derived from MERIS or Sea-
WiFS imagery (Gobron et al. 2006) which offers a higher accuracy and more detailed
values, thus reflecting the heterogenic character of terrestrial vegetation. Another
nominee for further improvements is the RUE parameter. A finer stratification
of this parameter according to vegetation type can be recommended; and also a
closer and more direct link of RUE with the phenological stage of the vegetation
is advisable. Other physiologically related parameters, suitable for improvement, are
the normalized temperature dependency factor and the carbon dioxide fertilization
factor (Eq. 2). They might also benefit from differentiation accordingly to vegetation
type. Last, but not least, the heterotrophic respiration module in C-Fix can be
replaced by more detailed sub-models, especially because (as expected, Verstraeten
et al. 2008b) the largest variance in NEP estimates originates from soil processes
(Black 2007). From GPP, to NPP, SR, and finally NEP, the model errors evolve
from small fractions toward significant chunks of average daily NEP values. As
soil moisture has a strong impact on the uncertainty of SR estimates (Verstraeten
et al. 2008b), accurate SMC values are a must. RMSE values of ERS scatterometer-
derived soil moisture vary between 0.022 and 0.158 m3 m−3 for a wide range of soil
types and climatic regions with a R2 up to 0.75 (Wagner et al. 1999, 2003; Ceballos
et al. 2005; Scipal et al. 2005). Illustratively, a quantitative example of the effect of
error in SMC on carbon fluxes is given for the Brasschaat pixel (BE2). Assuming
an absolute average error of SMC of 0.024 m3 m−3 on daily averages of GPP, NPP,
SR, and NEP with values of 3.10, 1.83, 1.80, and −0.18 gC m−2 d−1, respectively

Reprinted from the journal132



Climatic Change (2010) 103:117–136

(a model simulation for 1997), the corresponding errors are 1.73, 0.88, 0.85 and
1.85 gC m−2 d−1, respectively (Verstraeten et al. 2008b).

Moreover, a recent uncertainty revision of carbon fluxes for Russia indicates
higher uncertainties for NPP and heterotrophic respiration than earlier estimates
(Gusti and Jonas 2010) with lower absolute values. At the NBP level, Ciais (2010)
reports values with an uncertainty of (181 ± 129 Tg a−1) for the EU which shows
similarity to the assessment presented in this paper, based on an assumption with
respect to the conversion factor to estimate NBP from NEP for a slightly different
area (229 ± 109 Tg a−1). This conversion factor is both critical toward assessing
the total carbon cycle and difficult to establish. Hence, wood harvesting studies and
the associated uncertainty, as given by Dias et al. (2007), can be used to derive this
conversion factor.

To obtain a balance between vegetation and anthropogenic carbon fluxes, it is
necessary to have on hand reliable and complete emission data in terms of the
uncertainty estimates involved. Wetlands and water bodies emit carbon (methane)
and must also be considered in the carbon balance (Pandey et al., 2007), as must
land cover and land cover changes (Schils et al. 2008). This also includes the
methane emissions of solid waste disposal sites (Szemesová and Gera 2010). Leip
(2010) estimates the uncertainty of agricultural emissions (including, for instance,
fermentation, manure management, etc.) in the EU15. Another important issue is the
requirement for methodology that converts annual country-based data (like PM10,
SO2, NOx, NH3) into data with a high temporal (e.g., hourly) and spatial resolution
(van Oijen and Thomson 2010; Theloke et al., 2007). Not only the inventories itself,
but also the uncertainties involved in them are estimated with a relatively low
accuracy (Nahorski and Horabik 2010). This impacts policy (Winiwarter and Muik
2010). Nevertheless, system integration of available information sources and models
of different types may decrease the uncertainties regarding, for instance, NEP and
NBP estimates (Shvidenko and Nilsson 2010).

8 Conclusions

Even though in recent years the use of remote sensing to assess and verify ecosystem
carbon fluxes has grown, the technique is still not being implemented to its full extent
within the context of Kyoto Protocol implementation. One of the reasons is that,
typically, new models and data assimilation schemes have to be developed that allow
the incorporation of recently acquired or processed remotely sensed datasets. This
paper gives an account of a primary study based on the integration of remotely
sensed soil moisture data derived from ERS scatterometer data in an ecosystem
carbon balance model, C-Fix. This model was applied to assess the impact of water
limitation on the carbon balance between Net Ecosystem Productivity (NEP) and
Anthropogenic Carbon Emission (ACE) for Europe. Regarding integrating soil
moisture data, it was demonstrated that soil moisture has quite an important impact
on the magnitude as well as on the spatial patterns of carbon exchange fluxes.
Implementation of C-Fix suggests that NEP decreases in many areas when soil
moisture is fully taken into account in the long and short term. Moreover, some
European countries shift from being a sink to becoming a source, according to the
findings obtained with the C-Fix model scenario runs.
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Abstract In accordance with the concept that only full accounting of major green-
house gases corresponds to the goals of the United Nations Framework Convention
on Climate Change and its Kyoto Protocol, this paper considers uncertainties of
regional (national) terrestrial biota Full Carbon Accounting (FCA), both those
already achieved and those expected. We analyze uncertainties of major components
of the FCA of forest ecosystems of a large boreal region in Siberia (∼300 ×
106 ha). Some estimates for forests of other regions and Russia as a whole are
used for comparison. The systems integration of available information sources and
different types of models within the landscape-ecosystem approach are shown to
have enabled an estimation of the major carbon fluxes (Net Primary Production,
NPP, and heterotrophic respiration, HR) for the region for a single year at the level
of 7–12% (confidential interval, CI, 0.9), Net Ecosystem Production (NEP) of 35–
40%, and Net Biome Production (NBP) of 60–80%. The most uncertain aspect is the
assessment of change in the soil carbon pool, which limits practical application of a
pool-based approach. Regionalization of global process-based models, introduction
of climatic data in empirical models, use of an appropriate time period for accounting
and reporting, harmonization and multiple constraints of estimates obtained by
different independent methods decrease the above uncertainties of NEP and NBP by
about half. The results of this study support the idea that FCA of forest ecosystems
is relevant in the post-Kyoto international negotiation process.

1 Introduction

Carbon accounting for terrestrial ecosystems that is “partial,” that is, limited to
direct human activities, was introduced into international practice by the Kyoto
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Protocol and the subsequent decisions of the Conferences of Parties to the United
Nations Framework Convention on Climate Change (UNFCCC). The 10-year period
following the signing of the Protocol clearly demonstrated that the partial carbon
accounting approach has a number of major shortcomings and that these are an
impediment to achieving the UNFCCC goals. The shortcomings of partial carbon
accounting are:

1. It distorts the real picture of the role of individual countries in climate change
mitigation efforts in the sense that many emissions and greenhouse gas removals
are not included in the accounting regime.

2. It excludes “climate-friendly” investment in fields of the biosphere where there
is great potential: that is, in the language of the Kyoto Protocol, the Land Use,
Land Use Change, and Forestry (LULUCF) sector;

3. It poses a threat to the protection of some categories of “unmanaged” ecosystems
(e.g., old growth forests);

4. It gives insufficient consideration to large sources of emissions (e.g., wild fires);
and

5. It restricts opportunities for developing countries to participate in the interna-
tional processes of climate change mitigation.

Moreover, partial accounting does not allow for a comprehensive analysis of
uncertainties, as considering the impacts on only a part of a system is not sufficient
for assessing the responses and feedbacks of the entire system in any complete
form. Substantial problems also arise from the large difficulties (and often, the
impossibility) of strict definitions and unambiguous implementation of some of the
key terms of the post-Kyoto language (e.g., managed land, anthropogenic impacts,
base-lines and additionality, etc.), which raises doubt concerning some incentives and
results.

Such a situation leads to the relevance of transition to a terrestrial ecosystems
full carbon account (FCA), as a principal part of a full greenhouse gas account,
(independently of future political decisions after the first commitment period), in
terms of how these estimates should be used, either for “accounting” in the Kyoto
Protocol sense or only for an “estimation” as auxiliary information for policymakers.

However, a number of studies illustrate a high level of uncertainty of biosphere
carbon accounting from the regional to the global scale (Chen et al. 2000; Houghton
2003; Nilsson et al. 2007). Furthermore, two interconnected questions become
crucially important: (1) what is the acceptable level of uncertainty at which the
introduction of FCA results into the international accounting regime would be
allowed? and (2) is there a scientifically solid, practically applicable methodology
that would deliver a reasonable assessment of uncertainties at that level?

Finding the correct answer to the first question is not simple. The potential
cost-effectiveness of carbon sequestration seems to be a major criterion here.
However, as aiming for high accuracy significantly increases the cost of accounting,
the elaboration and maximization of functions describing the difference between
the benefit of carbon sequestration and the cost of the accounting is theoretically
the soundest approach. In reality, however, this does not work because of: (1) the
overwhelming difficulty and practical inexpediency of separating carbon issues from
other ecosystem services; (2) the many unresolved economic problems involved in
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carbon crediting and offsetting; and (3) the existence of substantial but difficult-
to-quantify political components. This leads to the conclusion that any formally
defined “perfect accuracy” does not actually exist, but should be rather “acceptable”
for scientific considerations, evaluation of “global utility” of ecosystems services,
including carbon credits, and that it ultimately crucially depends upon the require-
ments and preferences of stakeholders (cf. Waggoner 2009). Through analysis of
limited studies on the topic (GCP 2003; Newell and Stavins 2000), supported by
simplified calculations for pared-down, averaged conditions of northern Eurasia,
we may conclude that the relative uncertainty of Net Biome Production (NBP)
at 20–30%, with confidence interval (CI) = 0.9, assuming that mean NBP differs
substantially from 0, could be satisfactory in terms of average carbon prices and the
main tendencies of the post-Kyoto market.

With respect to the second question, appropriate methodologies should consider
the possibility of changing to verif ied FCA (i.e., the accounting should provide
a comprehensive and reliable assessment of uncertainties at all stages and for all
modules of the account). General features of such an approach have been published
(Nilsson et al. 2007). As a further step, an analysis of uncertainties recognized for
major components of FCA for forests of a large boreal region in Central Siberia was
undertaken. For comparison, we also discuss results obtained for forests of other
boreal regions of Russia and of the country as a whole. Results obtained within
a landscape-ecosystem approach were further compared with available estimates
obtained using other methods. Forests as an informative case study were selected
because: (1) forest is the largest land class within the boreal zone and a major player
in ecosystems carbon cycling; and (2) the complex structure of forest ecosystems
allows us to assume that uncertainty levels achieved for forests could be achieved
for other vegetation land classes.

All definitions of forest land cover classes and biometric characteristics used in
this study correspond to Russian forest inventory and forest management manuals
(FFS’RF 1995; Shvidenko et al. 2008b). In particular, forest (forested area) is
represented by stands with relative stocking >0.35 for young and >0.25 for other
age groups, and growing stock is the sum of volumes of the stems of all living trees
that constitute a stand.

2 Methods and material

2.1 Major features of FCA

Four major approaches are currently used for terrestrial carbon accounting: (1)
inventory-based (landscape-ecosystem) approaches; (2) measurements of net ecosys-
tem exchange (eddy covariance method); (3) process-based terrestrial biosphere
models; and (4) inverse modeling. All these methods have inherent strengths and
weaknesses. However, none—if individually applied—is able to provide compre-
hensive and reliable assessment of uncertainties because estimation of structural
uncertainties cannot be based only on the consideration of an “individual” case.
This leads to the conclusion that only an integration of different methodologies is
capable of generating a promising solution (e.g., Nilsson et al. 2007). To provide
integration of different FCA methods, one of them should be selected as the basis
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of the accounting system. We assume that a landscape-ecosystem approach (LEA)
is most appropriate for this goal for the following important reasons: (1) LEA
presents a comprehensive geo-referenced description of ecosystems and landscapes
(i.e., the information necessary for intelligent applications of any other methods of
carbon accounting); (2) the information background of the LEA—an Integrated
Land Information System (ILIS)—is an appropriate tool for monitoring temporal
changes of land use–land cover (Nilsson et al. 2007).

Within the LEA, the accounting schemes for carbon budget are a combination
of flux-based and pool-based approaches. The flux-based method is applied as a
recurrent chain:

NEP = NPP − HSR − DEC − FLIT − FHYD, NBP = NEP − DC, (1)

where NBP, NEP, NPP, are, respectively, Net Biome Production, Net Ecosystem
Production, and Net Primary Production, HSR is heterotrophic soil respiration, DEC
is flux due to the decomposition of dead wood, FLIT is flux to the lithosphere,
FHYD is flux to the hydrosphere, and DC is fluxes caused by natural and human-
induced disturbances, including consumption of forest products. For the pool-based
approach:

�(C) = Csyst,t+�t − Csyst,t, (2)

where Δ(C) is the change of carbon pools and Csyst,t+�t and Csyst,t are carbon pools
considered in the accounting system at the end and at the beginning of the period Δt,
respectively.

In this study, carbon pools were classified as carbon of live biomass, dead wood,
and soils. In turn, live biomass of forest ecosystems was estimated by seven fractions
(stem wood over bark, bark, wood of branches, foliage, roots, understory, and green
forest floor) using a set of multidimensional models developed according to tree
species and including age, site index, and relative stocking of stands (Shvidenko et
al. 2007). The stock of above-ground dead wood (snags, logs, and dead branches of
live trees) was estimated based on sets of available measurements on sample plots
in taiga regions of Northern Eurasia, estimates of forest inventory aggregated by
forest enterprises, and data on mortality derived from empirically based models of
growth of modal stands (Shvidenko et al. 2005). A special method was developed
for assessing NPP of forest ecosystems (Shvidenko et al. 2007). The remaining major
fluxes (HSR, DEC, DC, FLIT, FHYD) were estimated using state statistical data,
various inventories, surveys, and empirical models. A detailed description of the
methodology can be found in (Shvidenko et al. 2005).

2.2 Study region

FCA was provided for a region totaling 313 million hectares in Central Siberia
(including 299.8 × 106 ha vegetated land, of which 177.6 × 106 ha are represented
by closed forests), divided in 25 ecological regions (Schmullius and Santoro 2005)
and about 31,000 polygons (Fig. 1). The region includes almost all the bioclimatic
zones of Northern Eurasia, diverse land forms, land classes, and ecosystems. The
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Fig. 1 Study region. Land
cover of Central Siberia

Legend

�� Ecoregions

� Forest

� Bogs

� Grassland/tundra

� Meadows/agr. land

� Rocks

� Water

integrated land information system (ILIS) for the region is represented by a compre-
hensive geographic information system (GIS) description of climate, landscape, soil,
vegetation, disturbances, etc. (Shvidenko et al. 2005). All components of the FCA
were estimated by polygons. The polygons were developed based on a combination
of multi-sensor remote sensing (using 12 instruments from eight satellites) and all
available ground information (State Land Account data, forest inventory, monitoring
of disturbances, etc.). Major classes of land cover at the first (upper) level of the
classification included unproductive areas, agricultural land, forest land, natural
grassland, shrubs, and wetlands. At the second level, forest land was divided into
closed forests, burn areas, dead stands, and (unregenerated) harvested areas. A more
detailed classification of forests was carried out based on all available information,
mainly using updated forest inventory data. Finally, the comprehensive parame-
terization of forest polygons included species composition, age, average height,
and diameter by species, site index, relative stocking, and growing stock volume.
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Characteristics of soil were extracted from a soil map at a 1:1 million scale, which
was produced for the region and overlapped with the polygon map.

2.3 Assessment of uncertainties

Assessment of uncertainties is based on the understanding that FCA is a large dy-
namic fuzzy system that comprises a sophisticated interplay between many stochastic
elements and processes (Nilsson et al. 2007). In a practical implementation, such
systems cannot be directly validated or verified in any strict or formal way. This
means that, before the uncertainties are assessed, there are a number of prerequisites
and requirements to be observed.

1. A strict system design for the FCA is a mandatory prerequisite. Explicit
structuring of the accounting schemes is needed, as well as delineation both
of the intrasystem and the outer boundaries that have different dimensions
(spatial, temporal, processes that should be considered, etc.). This will allow strict
algorithms to be developed, permit potential application of error propagation
theory, and provide the basis for consideration of the structural uncertainty of
the models or accounting systems used.

2. A comprehensive analysis is needed of how “full” the carbon accounting is.
There are two interconnected aspects to this problem, both of which impact
the estimation of results and uncertainties. The first deals with the selection of
processes and modules to be included in the accounting. This is closely tied to
recognizing the structural uncertainties of the FCA and, in essence, is limited
by heuristic approaches and expert estimates. The second defines the “working
area” of the FCA, for example, whether or not consumption of plant products or
the carbon budget of inland bodies of water should be considered as part of the
accounting scheme.

3. All input information should be presented in a quantitative way; this require-
ment also assumes the formal use of personal probabilities and corresponding
confidence intervals for different assumptions and expert estimates.

4. A preliminary harmonization of major terms and definitions is needed, particu-
larly taking into account the multidisciplinary character of the FCA.

5. Uncertainties of the initial data need to be assessed based on an analysis of
the entire chain of measurement, collection, and upscaling of data. This is a
very time-consuming stage, as it is very difficult to get reliable quantitative
conclusions on the topic.

6. Analysis and quantification of temporal and spatial trends of data sets and
empirical models used in the accounting are needed. Avoiding this step could
substantially change the results (Lapenis et al. 2005).

7. A methodology should be used to assess uncertainty that takes into account the
fuzzy character of FCA (Nilsson et al. 2007).

Note that the above requirements have the same goal as that declared in IPCC
“Good Practice Guideline, 2006” on GHG inventories: such inventories “are those
which contain neither over- nor underestimates so far as can be judged, and in which
uncertainties are reduced as far as practical” (IPCC 2006, p. 1.6).
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Within the landscape-ecosystem approach, the following method of uncertainty
estimation was used:

1. Assessment of precision within the landscape-ecosystem approach using the
error propagation theory according to the algorithms developed;

2. Provision of a standard sensitivity analysis by applying either the Monte Carlo
method or systems of numerical differentiation;

3. Transition from precision to uncertainties by expert modification of formal
results; and

4. Comparative analysis, harmonization, and multiple constraints of results
achieved by independent methods. In this study, this step was limited by expert
estimates and professional judgments.

Overall, this approach can be applied to all methods and all stages of FCA, partic-
ularly where strict formalization of uncertainty assessment is difficult or impossible.
All estimations below have been made under the assumption that the models and
methods used have no unrecognized biases. Obviously, such an assumption should
be used with caution: much of the input data has uncertainties in terms of unknown
combinations of random and systematic errors.

As all calculations are based on a strict algorithm, standard errors of a function
Y = f (Xi), where Xi is a random quantity with standard error mi, i = 1, 2, . . . , k,
could be calculated approximately at each hierarchical stage of the FCA by using
functional:

m2
y =

k∑

i=1

(
dY
dXi

mi

)2

+ 2
∑

i> j

(
dY
dXi

) (
dY
dX j

)
rijmXi mX j, (3)

where dY/dXi—partial derivatives of Y by Xi, and rij—is the correlation coefficient
between Xi and X j. Usually, inclusion of the second item of Eq. 3 is important
because many Xi in Eq. 3 are statistically interdependent.

3 Results and discussion

3.1 Uncertainties of carbon pools

The average live biomass (LB) of forested areas is estimated for the region at 56.5 ±
2.2 Mg C ha−1, that is, with a relative precision of 3.9% (here and below, CI = 0.9).
Uncertainty of biomass of stems is ∼4.5%, and below-ground LB is ∼8%. Note that
this result was obtained because of the availability of:

1. Long-term spatially distributed forest inventory data at the level of individual
forest stands—primary units of forest inventory;

2. Remote sensing information to allow updating of obsolete forest inventory data;
3. Information on the actual species composition by polygon;
4. More precise estimation of growing stock in comparison with routine forest

inventory data;
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5. Statistically valid and regionally distributed multidimensional nonlinear regres-
sion equations for transition from indicators measured by forest inventory to live
biomass estimates by components; and

6. Accounting methodology used for recognition of temporal trends in allometric
interdependences in forest ecosystems (Lapenis et al. 2005).

Uncertainties of inventory-based estimates of LB depend upon:

1. Reliability of delineation of polygon boundaries;
2. Uncertainty of biometric indicators of forest ecosystems within polygons;
3. Accuracy and adequacy of models used for assessing LB;
4. Variability of model parameters such as amount of carbon in plant tissues

(Mitrofanov 1977); and
5. Assumptions and simplifications in the accounting systems.

In this study, the major simplification included an aggregation of primary units
of forest inventory in more heterogeneous polygons at scale 1:1 million. For this
reason, compared with the requirements of the forest inventory manual (FFS’RF
1995), a twofold increase in random errors of biometric characteristics of polygons
for individual stands (inventory primary units) was provided. Based on detailed
analysis of uncertainties of biometric indicators by polygon (Shvidenko et al. 2005),
a prerequisite about absence of statistically significant bias of growing stock volume
was used.

An attempt to harmonize the uncertainties of forest LB assessed for Central
Siberia led to the following conclusions:

1. Assuming that growing stock volume on polygons does not have systematic
errors and taking into account that the number of forest polygons exceeds 10,000,
the summarized error of the total average is negligible.

2. It was shown that there were temporal trends in partition of live biomass
fractions (Lapenis et al. 2005) during the 1960s–2000s, and that these trends do
not coincide for different live biomass components. If this trend is disregarded,
the live forest biomass of Russia for the early 2000s will be overestimated by
between 7% and 10% (Shvidenko et al. 2008a).

3. The non-random character of experimental data used for development of the
LB models does not allow the impacts of stem and root decay to be estimated.
The latter comprise on average 5–7% of the growing stock in mature and
overmature stands of European Russia and 12–15% (sometimes more) in the
mostly unmanaged taiga forests of Asian Russia.

4. As discussed above, precision of the total live biomass was estimated at about
±4%. The present analysis leads to a final uncertainty estimate of live biomass
at the ±5–7% limit. We must stress that here (and throughout the paper) we
operate with “summarized” errors (i.e., errors that have some combination of
random and systematic errors, assuming that the bias is relatively small).

An independent assessment of LB for the region’s forests was based on data from
the State Forest Accounting (SFA) of 2003 carried out by forest enterprises. This
comparison is of interest because traditional forest inventory data remain a basic
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information source for live biomass inventories at different scales. Uncertainties of
forest inventory data in the region are basically defined by:

1. Accuracy of methods of forest inventory and reference information (models and
tables) used;

2. Existence of extensive areas with obsolete inventories;
3. Simplified structure of information presented in aggregated data of SFA by

forest enterprises (e.g., use of dominant species instead of actual species com-
position).

Forest inventory data for the region (and the entire country) use a combination of
three major methods of forest inventory:

1. Ground forest inventory and planning;
2. Remote sensing technologies of different types; and
3. Aerial survey, or aerotaxation.

A detailed consideration of the problem is given in Shvidenko and Nilsson (2002).
Here we enumerate its main conclusions.

1. Ground forest inventory and planning has underestimated the growing stock of
immature, mature, and overmature forests from by about 8% to 15%;

2. Technologies based on remote sensing applications do not have statistically
significant systematic errors;

3. Aerotaxation was used several decades ago, with the result that growing stock
was overestimated by 20–25% depending on the date and geographical location
of the survey. However, the area where this method was initially applied (and
where new inventories were not subsequently done) currently comprises about
60 million hectares of remote land in the northern region. By 2003, 40% of the
region had been inventoried by ground forest inventory and planning, 55% by
different types of remote sensing technology, and 5% by aerotaxation. Overall,
the FSA slightly underestimated the area of forests of the study region (172.1
versus 176.6 × 106 ha, or 2.5%, mostly at the expense of land reserve areas
where SFA is not provided), and also underestimated average growing stock
(and, correspondingly, forest live biomass) by −10 to −13%.

Another source of possible uncertainties follows from the methodologies of live
biomass modeling and the structure of models used. From among several methods of
live biomass assessment that were suggested in Russia in recent decades, we consider
an approach developed by Usoltsev (1998, 2007). Usoltev developed a set of models
of biomass expansion factor BEFs,h,i by tree species s, geographical region h, and
live biomass fraction i as a function:

BEFs,h,i = f (A, H100, N, D) , (4)

where A, D, N, and H100 are age, average diameter, number of trees, and average
height of a stand at age of 100 years (i.e., the latter can be scaled as a site index
class). In our opinion, this method, from a scientific and information point of view,
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is more appropriate than others (e.g., Zamolodchikov and Utkin 2000). However,
some specific features of the method impact its reliability.

1. Allometry is used as the analytical form of the equations (i.e., the components
of the models are presented by a combination of logarithms of variables of
Eq. 4). Allometric forms for assessing live biomass of individual stands and
their combinations (as opposed to individual trees) have no solid theoretical
background;

2. Allometric equations are monotonous by all variables; this is not the case for
some species and live biomass components (Shvidenko et al. 2007).

3. Usoltsev (1998, 2007) used a method of a “recursive analysis” where the final
results follow from a step-by-step estimation of intermediate results using a
limited number of variables, and these intermediate results serve as input to the
subsequent equations of the recursive chain. Clearly, such an approach does not
allow uncertainties to be defined by formal statistical methods and substantially
increases an expert component of modeling (i.e., the reliability of results is
strongly dependent upon the qualification of the modeler). We compared the
results of live biomass assessment by Usoltsev’s (2007) method and by the
approach examined in our study for Central Siberia using forest inventory data
for 150 forest enterprises of the Urals region covering a total forested area of 68
million hectares (Fig. 2). The results are close; the total live biomass estimated
by Usoltsev’s method was 3% less than ours and had 5% less above-ground LB.

Several conclusions follow from this analysis:

1. Biomass expansion factors depend upon region, tree species, age, and other
biometric characteristics of stands; simplified representation of BEF (e.g., as
an average for forests of large regions) generates substantial uncertainties and
uncontrolled biases.

2. LB of the lower layers of forest ecosystems (green forest floor, understory)
could comprise up to 15–20% of the total, particularly for forests that have low
productivity in high latitudes. Thus, models and approaches that account for only
tree LB underestimate the results.
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Fig. 2 Comparisons of total live biomass for forests of the Urals region (average densities by
forest enterprises, expressed in tons per hectare of dry matter) obtained by different methods: x-
axis indicates estimate received by Shvidenko et al. (2007) and line 2 (solid) corresponds to these
estimates; pink circles, data received by Usoltsev’s method (1998, 2007); and line 1 (dashed) indicates
mean of these data
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An assessment of two pools of dead biomass (coarse woody debris [CWD] and
dead roots [DR]) is less certain: average estimates of uncertainty provided by two
independent methods amounted to ±16 and 24%, respectively. Thus, taking into
account that the LB, CWD, and DR in forests of the study region comprise 81%,
8%, and 11% of the total forest biomass, the uncertainty of the total biomass stock
(for a single year of the account) is estimated at ∼±4–5%. From this, the change in
biomass stock between two inventories is estimated with an average uncertainty of
∼±6 to 7%. Results delivered by other methods, such as radar and optical satellite
instruments and dynamic global vegetation models (DGVMs), are more uncertain.
In addition, these methods face large methodological problems regarding a formal
definition of uncertainties.

Formal assessment of the uncertainty of the soil carbon pool for the region is
difficult because of lack of data, which ideally would be temporally and spatially
distributed, particularly over the vast remote territories. A soil map of Russia
(Fridland 1989) at 1:2.5 million scale with a dataset of average characteristics by soil
types still remains a major source of soil information for the country. For the study
region, the soil map was subsequently modified to 1:1 million scale using additional
information from different sources. However, drawing up the original sheets of the
1:1 million scale soil map took a long time up to half a century ago. This makes use of
expert assumptions for assessing the uncertainties inevitable, and those assumptions
might substantially affect the conclusions. Our calculations show that uncertainties
of assessment of the soil carbon pool are at the level of 15–20%. The estimation of
the soil carbon pool for the region is about 31 Pg C. This gives uncertainties of about
±5 Pg C, with unknown systematic errors; moreover, the signal of change between
two consequent estimates can be detected if this exceeds ∼7 Pg C. Clearly, this makes
such results impractical for verified FCA. Another way of detecting change in the soil
carbon stock is by using appropriate process-based models. However, the uncertainty
of the latter cannot be properly quantified. Assumption of an equilibrium state of
soil organic carbon generates a substantial bias of an unknown value. Attempts to
quantify such a bias using aggregated indicators of transformation of forest land and
disturbance regimes lead to significant but very approximate values (Shvidenko and
Nilsson 2003). Thus, although currently available information allows useful results
to be obtained from the pool-based method, it cannot satisfy the main requirements
for verified FCA. Note that the above considerations put in doubt any application
in the post-Kyoto world of the “Average Carbon Stock” method recommended
by some publications (e.g., Kirschbaum and Cowie 2004), at least for vast boreal
regions.

3.2 Uncertainties of major fluxes

In theory, Net Primary Production (NPP) is defined as the difference between gross
photosynthesis and autotrophic respiration of ecosystems. However, the numerous
methods of field measurement of NPP in Northern Eurasian forests not only were
almost all based on consecutive destructive measurements with a time interval of
weeks and months but also measured only part of NPP in the plant tissues allocated.
Much NPP (root exudates, volatile organic compounds, others), comprising up to
20–25% of the total NPP (Isidorov and Povarov 2001; Vogt et al. 1986), was not
measured. Other barely quantified uncertainties are also inherent in these data
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(Usoltsev 2007). Thus, the available datasets of NPP field measurements in Russian
forests, which include more than 1,000 sample plots, contain a bias of unknown value.
The above information problems and the use of different methods led to threefold
differences in the reported estimates of the average NPP of Russian forests: from 204
to 614 g C m−2 year−1 (Shvidenko et al. 2008b).

Attempting to gain unbiased estimates, we developed a new semi-empirical
method for assessing forest NPP. This method is based on a spatially distributed sys-
tem of models of biological productivity of forest ecosystems by major forest-forming
species (Shvidenko et al. 2007). We assume that this method has no recognized bias.
Uncertainty of the method is defined by: (1) spatial and parametric incompleteness
of the modeling system used for NPP simulation (regional representation of models
by regions, tree species, and forest types; reliability of forest inventory data, etc.); (2)
accuracy of ecological indicators used in the model (e.g., life span of fine roots and
needles; share of disturbed part of NPP; etc.); and (3) difference in seasonal weather
of an individual year from the many-year average climatic indicators.

The method is sufficiently resilient to varied input information; the most sensitive
parameters are the life span of fine roots and needles. The application of the system
above to the land cover of 2003 at the polygon level and aggregation of the results
by ecoregion and the region as a whole gave the following results: total forest NPP
3.06 ± 0.15 (here and below, in Mg C ha−1 year−1), that is, the relative uncertainty
is ∼±5%. Of this total, above-ground wood, green parts, and below-ground live
biomass are assessed at 0.550 ± 0.032; 1.293 ± 0.106; and 1.222 ± 0.130, respectively.
This means that annual forest NPP is defined, quite reliably, at the level of ±6%
for the part allocated in above-ground live biomass and ±11% for below-ground.
However, it should be pointed out that all models used were parametrized based
on many-year average data of measurements. Thus, these results do not include the
impacts of seasonal climate specifics on forest NPP.

A comparison of the results mentioned above with recent NPP estimates by
different modeling approaches for 150 forest enterprises in the Urals region (the
same area used above for live biomass assessments) reveals interesting results
(Fig. 3). Application of multi-dimensional equations developed by Usoltsev (2007)
gave a result very close to that obtained by the method applied in this study—only
8% lower (line 2 in Fig. 2). For this area, Usoltsev (2007) examined a simplified
method developed in Russia (Utkin et al. 2003; Zamolodchikov and Utkin 2000)

Fig. 3 Estimates of forest NPP
obtained by different methods
(average densities for 150
forest enterprises, tons per
hectare per year of dry
matter). 1 Triangle markers
method of Zamolodchikov and
Utkin (2000) calculated by
Usoltsev (2007); 2 circle
markers method of Usoltsev
(2007); 3 solid line method of
Shvidenko et al. (2004) 0 2 4 6 8 10 12 14
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and obtained the results averaged by line 1. This latter estimate produced a roughly
twofold overestimation (+118%) for the result of this study.

Heterotrophic respiration of forest ecosystems includes two components: het-
erotrophic soil respiration (HSR) and the flux caused by decomposition of coarse
woody debris (DEC). Average values of HSR were calculated by soil type, dominant
species, and ecoregion based on the IIASA database which contains ∼650 sets of
field measurements in Northern Eurasia. A substantial part of the study region has
not been subject to measurement, and we used all available measurements from
similar soil and forest classes of other regions of the country (for example, Kurganova
2002; Mukhortova 2008 etc.). We made the assumption that the variation in the HSR
fluxes measured outside the region is 30% higher than the variability of the fluxes
measured within the region. For corrections of HSR for each forest polygon, the
regression between NPP and HSR by dominant species within each ecoregion was
used. Uncertainty of estimation of HSR depends on:

1. Amount, seasonal and parametric completeness, and spatial distribution of in
situ measurements;

2. Understanding of the processes that control total soil respiration and its sepa-
ration into autotrophic and heterotrophic parts (where substantial uncertainties
exist. See, for example, Bond-Lamberty et al. (2004); and

3. Reliability of spatial delineation of basic units of calculation (soil polygons) and
their compatibility with vegetation polygons. The overall average forest HSR
for the region was estimated to be 2.16 ± 0.19 Mg C ha−1 year−1 (i.e., relative
uncertainty is ∼±9%) Uncertainty of HSR in this study was substantially lower
than in studies for the whole of Russia defined by Gusti and Jonas (this volume)
which can be explained by the availability of more detailed information and
different methods of uncertainty estimation.

Uncertainty of the decomposition f lux was estimated based on a simple model,
DEC = MCW D • δ ji, where MCW D is storage of coarse woody debris (CWD) in a
polygon and δij (i = 1, . . . , 9; j = 1, 2) is a coefficient of decomposition by nine
bioclimatic zones and two classes of CWD. Uncertainties of these two components
were estimated at ±16% and 14% based on results of measurements and different
auxiliary sources, that gave the estimate of DEC at 0.219 ± 0.047 Mg C ha−1 year−1

(i.e. the relative uncertainty is ∼±22%).
The assessment of the f luxes to the hydrosphere (FHYD) was made by combining

two methods: (1) based on measurements of the amount of dissolved and particulate
organic carbon in rivers and other water reservoirs; and (2) by using measurements
of carbon concentration in the soil solution. The average estimate was 0.049 ±
0.011 Mg C ha−1 year−1 (23%). Direct empirical data for assessing the f luxes to the
lithosphere (FLIT) were scarce, and the assessment of this indicator was mostly made
in a heuristic way based on all available data from the boreal biome. The estimated
uncertainty of FLIT (0.017 ± 0.005 Mg C ha−1 year−1 or ∼30%) contains substantial
assumptions and expert components.

Major types of disturbances (DC) included in the analysis were fire, insect and
disease outbreaks, and harvest and consumption of wood products. Carbon emissions
due to natural and human-induced disturbance (D) and corresponding uncertainties
were estimated by the method described in Shvidenko and Nilsson (2000), Kajii
et al. (2002), Soja et al. (2004), French et al. (2004) and McRae et al. (2006).
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The main factors affecting uncertainties of the emissions caused by disturbances,
include area by type of D; severity of D and its impact on the amount of consumed
organic matter; reliability of estimation of gas composition, particularly, after fire;
and way of estimating post-disturbance fluxes (most publications on the topic do
not consider this flux). The impacts of these factors vary for different types of D.
Estimated uncertainties were: direct emissions due to fire 37.3 ± 8.6 Tg C year−1

(or 23%); harvest (including impacts of logging, wood removal, and decomposition
of previously produced wood products) 20.6 ± 5.0 Tg C year−1 (24%); and direct
emissions due to insect and disease outbreaks 2.2 ± 0.8 Tg C year−1 (36%). This
means that uncertainty of the total flux due to all accounted-for D is estimated to be
60.1 ± 10.1 Tg C year−1 (17%). The average value of the flux DC for all forest area
in 2003 is estimated to be 0.337 ± 0.057 Mg C year−1 ha−1, or 17%. Note that the
extent of wild fire for the year considered (2003) was about three times higher than
the many-year average for the region.

3.3 Uncertainty of aggregated fluxes

As follows from the results above, Net Ecosystem Production (NEP) of the region’s
forest ecosystems is estimated to be 0.62 ± 0.23 Mg C ha−1 year−1 (the relative
uncertainty ∼37%) and Net Biome Production (NBP) 0.28 ± 0.25 Mg C ha−1

year−1 (89%) or ∼49 Tg C year−1 for the region The total NBP for all vegetation
of the region comprises 75 Tg C year−1, if the complete technological lifecycle
of plant products is considered, and 110 Tg C year−1 if the consumption of plant
products (that is common in ecological estimations) is not included in the accounting
(Shvidenko et al. 2005). Thus, forest NBP comprises two-thirds of the total. All
these estimates are calculated for an individual year, while the parametrization
of the models used was provided based on measurements over a long period of
time (sometimes several decades). This eliminates an unaccounted-for part of the
variability of NEP and NBP that depends on differences in weather conditions
during the year of the accounting and average long-period indicators. Responses
of plant and ecosystem physiology to weather conditions are indicated in many
studies and used in numerous models of various types (Dunn et al. 2007). Most
interactive vegetation-climate models usually represent respiration as a strongly
increasing function of temperature, with photosynthesis assumed to be a function of
light, subject to limitation by temperature, length of growing season, and availability
of water and nutrients. Some studies indicate the crucial impact of temperature in
cold regions, for example, Liski et al. (2003); Lucht et al. (2002). This encourages
the use of seasonal climatic indicators to correct major components of the FCA,
primarily NPP and HR.

We provided statistical analysis of dependencies of NPP and HSR of both the
Siberian and entire Russian forests on different climatic indicators. About 20 indica-
tors, such as average annual temperature and precipitation; length of growth season
with daily temperature >0◦C, >5◦C and >10◦C; sum of temperature, precipitation
and hydro-thermal coefficient by Seljaninov for the above three periods; temperature
of the warmest month, etc., were examined. As a general conclusion, corresponding
regressions are statistically significant, but the correlations are low. For example, the
multiple correlation coefficients for total soil respiration were within the limits of
0.5–0.7 (Mukhortova 2008). One of the probable explanations for this result may
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stem from the incompleteness of simplified functional representations or the need to
use more frequent (e.g., daily) climatic indicators.

Climatic variation is directly responsible for short- but not long-term variation
in forest-atmosphere carbon exchange (Richardson et al. 2007). Factors acting over
long time scales, for example, soil moisture regime and water table depth, substan-
tially control the carbon budget on annual time scales in boreal forests and peatlands.
In particular, elevated soil moisture causes a decrease in overall respiration, which
leads to decreased NEE; the long-term ecosystem water balance, and particularly,
the water table depth may explain much of the interannual variability and trends
observed (Dunn et al. 2007). Nevertheless, our analysis shows that the introduction
of seasonal weather corrections decreases the uncertainty of major carbon fluxes by
about one-third.

Selection of a reasonable length of period for reporting results of the FCA is also
important. Gathering information for large regions on an annual basis is expensive
and resource-consuming. The operational supply of some data (e.g., changes in land
use–land cover) is difficult and requires the development and implementation of inte-
grated observing systems, which still do not exist in Northern Eurasia. Conversely, in
order to be used in different climate change negotiations and decisions, FCA results
are required for given periods (e.g., 5 years) rather than annually, as the latter contain
additional noise and seasonal variation caused by weather and other specific features
of individual years. To conclude, the improved estimates for a 5-year period have
uncertainties at the level of 15% for NEP and 30% for NBP of forest ecosystems of
the region studied.

We would like to point out that all relative uncertainties above (expressed as
percentages of estimated means) are reasonable for illustrative purposes. Overall,
they could have a limited meaning in measuring the reliability of the account, as they
properly characterize variability of fluxes that differ substantially from 0.

3.4 Comparative analysis with other approaches

The results of carbon accounting obtained by the landscape-ecosystem approach
are impacted by a number of assumptions and expert estimates that hinder a strict
statistical validation of uncertainties. Thus, independent control of the intermediate
and final results is an important procedure for assessing the uncertainty. One way to
do this is a non-contradictory closing of the balance of the carbon budget. The second
way is to build independent estimates into the comparative analysis. Unfortunately,
there are very few independent results for the study region. To illustrate the variation
among the results, we use some comparisons (below) for the entire Russian forests.

Dynamic Global Vegetation Models (DGVMs) explicitly describe major physi-
ological processes in ecosystems. Basically, only DGVMs or other process-based
models can serve as a tool to predict the interaction between vegetation and the
environment. However, there are a number of reasons why it is not feasible to use
DGVMs for formal assessment of the uncertainties, for instance:

1. They provide an over-simplified description of the land cover (as most models
have a very limited number of plant functional types, they cannot give a proper
description of ecosystem diversity at a regional level);

2. Most of the models are oriented toward potential rather than actual vegetation
cover;
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3. They lack or have an incomplete description of disturbances and “artificial”
(e.g., agricultural) systems. Nevertheless, recent developments show substantial
progress and promising prospects for the future (Grace et al. 2007).

The application of 17 DGVMs previously analyzed by Cramer et al. (1999), to all
Russian forests gave the average NPP at 338 g C ha−1 year−1 (M. Gusti, personal
communication), while a landscape-ecosystem estimate is 297 g C ha−1 year−1

(Shvidenko et al. 2008a), that is, about 14% higher. However, the variability of esti-
mates given by the individual models was very high—from 20% to 70% depending
on the climatic zone. Based on a “regionalized” version of the Lund–Potsdam–Jena
model (including actual land cover, impact of fire, and a new permafrost-hydrological
module), Beer et al. (2006) produced estimates of important components of the
carbon budget that were very close to the results based on forest inventory data
(Shvidenko and Nilsson 2003).

The eddy covariance method presents a unique possibility to directly measure
Net Ecosystem Productivity (in the form of accumulated Net Ecosystem Exchange),
as well as fluxes of water and energy in response to variability in environmental
conditions. Although the method has a clear strength in terms of uncertainty
estimation (the net flux is the sum of individual half-hourly or hourly flux measure-
ments rather than a small difference between several large fluxes), the results are
impacted by a sophisticated interconnection of random and systematic errors (Falge
et al. 2001; Goulden et al. 1996; Moncrieff et al. 1996; Papale et al. 2006; Papale
and Valentini 2003). The eddy covariance method is accurate when atmospheric
conditions are steady, the underlying vegetation is homogeneous, and towers are
situated on flat terrain for an extended distance upwind. Under such ideal conditions
the error of annual NEE of CO2 was reported to be less than ± 50 g C m−2 year−1

(Baldocchi 2003). Some elements of field measurement techniques (e.g., night-
time fluxes in dense canopies, flow distortion over heterogeneous terrain, filling in
measurement gaps) need to be developed in the future to achieve a more reliable
estimation of uncertainties. Complete model validation, particularly over the full
annual cycle, requires additional information on the balance between assimilation
and decomposition processes (Friend et al. 2007). The method does not measure
NPP directly, and rather complicated calculation schemes that exploit unjustified
assumptions are used (e.g., Schwalm et al. 2007). One of the biggest methodological
problems of eddy covariance measurements is upscaling the results to large areas.
The footprint of an individual tower is typically 1 km × 1 km, and within Russia
there were only 17 measuring points for all vegetation types in 2007. A number
of advanced methods for upscaling results of measurements have been suggested
(e.g., Papale and Valentini 2003). However, they cannot compensate for the lack of
spatially distributed information. That is why the major value of eddy covariance
methodology is considered to be the supply of data for global cycle modeling and
evaluation process representation, rather than in providing unbiased estimates of
NEP for large territories (Friend et al. 2007).

Inverse modeling of atmospheric concentration is the sole approach that presents
the possibility of a top-down assessment of exchange between land and the at-
mosphere. The estimates of CO2 fluxes include mainly the land use change and
net ecosystem uptake for land regions. Uncertainties of the approach are basically
defined by the amount and distribution of measurement stations and by the im-
perfection of the transport models used. The errors for observation over the land
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Table 1 Assessment of fluxes for boreal Asia by inverse modeling

Source Flux (Pg C year−1) Period Comments

Maksyutov et al. (2003) −0.63 ± 0.36a 1992–1996 Includes observations in Siberia
Gurney et al. (2003) −0.58 ± 0.53 1992–1996 Average flux from 17 transport

models
Baker et al. (2006) −0.37 ± 0.24 1988–2003
Patra et al. (2006) −0.33 ± 0.45 1999–2001 All sites; 16 transport models were

used; uncertainties “within”
models were ±0.78

Average flux −0.48 ± 0.41 Upscaling the result of this study
for all boreal Asia gives
∼0.40 Pg C year−1)

aThe reported uncertainties are “between” models

are generally larger than those for observation over the ocean (Patra et al. 2006).
The amount of measurements in boreal Asia is very small, which substantially
impacts assessed uncertainties at the regional level. Recently, a number of results
from inverse modeling have been reported for terrestrial ecosystems of boreal Asia,
namely, the area of the continent north of latitude 50 (Table 1). The results are
rather consistent, ranging from −0.33 to −0.63 Pg C year−1, with the overall average
being about −0.48 Pg C year−1, while the uncertainties, both “within-model” (the
multi-model root mean square of the flux uncertainties) and “between-model” (1
standard deviation of the estimated fluxes by different transport models) remain
high. Assuming the approximate area of boreal Asia of 1.1 × 109 ha and taking into
account the area of the study region, we gain results that are very close to the average
obtained by inverse modeling (Table 1).

Overall, it can be concluded that comparison of the results obtained by the
LEA with published data derived from flux measurements, some global vegetation
models, and by inverse modeling showed a general consistency in terms of the sign
and magnitude of NBP. This is in line with papers published on the consistency
of results derived from process-based models, remote-sensing-based observations,
and inversion of atmospheric data (Friend et al. 2007). For a number of reasons,
our comparison is approximate; for example, the regions and time periods of the
assessments did not coincide exactly; there was a lack of explicit gradients for
upscaling of flux measurements in situ; and there were differences in some of the
main definitions used.

4 Conclusion

Overall, this study concludes that verified FCA for forests of large boreal regions,
while possible, requires a systems approach and a substantial effort to carry through.
However, some precautions should be taken and a number of questions need to
be resolved. The information for large regions already in existence tends to be
unsatisfactory for an accurate assessment of the final results (i.e., for NBP and,
to some extent, NEP) for individual years; moreover, the reported period should
be compatible with the practical possibilities of detecting changes in land use and
the distribution of natural and human-induced disturbances. Empirical and semi-
empirical models are based on multi-year sets of measurements and require envi-
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ronmental and climatic indicators of individual seasons and temporal trends to be
introduced.

The process of multiple constraints requires a “convergence” of different method-
ologies, for example: proper regionalization of dynamic process-based vegetation
models; search for common gradients to upscale flux measurements; advances in field
measurement techniques. The results of the study, together with recent methodolog-
ical developments in carbon accounting of terrestrial ecosystems reveal substantial
potential for future improvements. There is an evident convergence of empirical
(e.g., landscape-ecosystem) approaches and process-based models. However, the
major approaches to carbon accounting have different strengths and weaknesses.
Although the landscape-ecosystem approach, may have been suitable as a past and
present background for accounting, only process-based models are able to provide
satisfactory predictions in today’s changing world. Geo-referenced and quantita-
tive descriptions of land cover classes, an obligatory component of the landscape-
ecosystem approach, could serve as a spatial gradient for upscaling the “point” flux
measurements.

The idea of verified FCA and understanding of the fuzzy essence of FCA for
large territories has substantial implications for the overall philosophy and major
methodological decisions behind carbon accounting as a whole. It is vital to under-
stand that heuristic methods and expert estimates cannot be avoided within FCA,
which demonstrates the need for further developments in assessing uncertainties.
Indeed, analysis of the “uncertainties of uncertainties” becomes no less important
than assessing uncertainties of the major components of FCA exercises themselves.
The estimation of uncertainties by “conventional” methods of mathematical statistics
(e.g., by those recommended by IPCC in Best Practice Guidelines 2006) could
provide conclusions that are quite far from reality.

Some theoretical improvements and developments are needed. Harmonizing and
the mutual constraints of individual results delivered by different methods should be
provided by strict mathematical methods. This is an important task for the future.

Relevant economic problems (“cost-effectiveness of uncertainties”) are extremely
important in terms of understanding the required FCA certainty levels. Limits of
relevant use of standard normal theory for assessing heterogeneous and “contam-
inated” data sets should be clearly defined and appropriate statistical approaches
introduced. Some “conventional” statistical agreements should be reconsidered.
For instance, the typically used high confidential intervals (0.9 or even 0.95) seem
excessive for carbon accounting, because this could generate the impression of an
unsatisfactory accounting level in the wider public, specifically policymakers.

This paper considered uncertainties of a forest carbon budget. The inclusion of
other greenhouse gases and other land classes in the accounting leads to particular
problems (especially for land classes for which there are no long-term series of
biometric inventories). A way of transitioning to verified accounting of terrestrial
carbon budgets and other major greenhouse gases would be to develop integrated
observing systems combined with existing national systems for the accounting of
natural resources, such as land, forest, and wetlands.
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Abstract Our research addresses the need to close the gap between bottom-up and
top-down accounting of net atmospheric carbon dioxide (CO2) emissions. Russia is
sufficiently large to be resolved in a bottom-up/top-down accounting exercise, as well
as being a signatory state of the Kyoto Protocol. We resolve Russia’s atmospheric
CO2 balance (1988–1992) in terms of four major land-use/cover units and eight
bioclimatic zones. On the basis of our results we conclude that the Intergovernmental
Panel on Climate Change (IPCC) must revise its carbon balance for northern
Asia. We find a less optimistic, although more realistic, bottom-up versus top-down
match for northern Asia than the IPCC authors. Nonetheless, in spite of the larger
uncertainties involved, our research shows that (1) there is indeed an added value
in linking bottom-up and top-down carbon accounting because our dual-constrained
regional carbon balance is incomparably more rigorous; and that (2) the need persists
for more atmospheric measurements, including atmospheric inversion experiments,
over Russia.
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1 Introduction

The terrestrial biosphere is strongly bound up with climate via biophysical
and biochemical processes. In particular, the terrestrial biosphere absorbs about
25% of the anthropogenic carbon dioxide (CO2) emissions into the atmosphere, thus
mitigating human-induced climate change. Currently the net land uptake, especially
its distribution within the northern hemisphere, is the most uncertain component in
the global carbon budget (Denman et al. 2007).

CO2 fluxes into the atmosphere can be estimated by using either ground-based
measurements and accounting (bottom-up) or by measuring concentrations of at-
mospheric CO2 and inferring the fluxes causing the concentration field (top-down).1

There is a mismatch between the two kinds of estimates, caused by incomplete
accounting and uncertainties peculiar to the methods used. The two methods are
independent to a certain degree and can thus be used for verification purposes if
the gap between the estimates is reduced and better understood. If the top-down
method is advanced to yield reliable estimates at a country scale, it can be used for
verification of countries’ reports of GHG emissions under current and future climate
agreements like the United Nations Framework Convention on Climate Change and
the Kyoto Protocol.

Our research addresses the need to close the gap between bottom-up and
top-down accounting of net atmospheric CO2 emissions to support the (dual-
constrained) verification of CO2 emissions. House et al. (2003), Nilsson et al. (2003a,
b) and Rödenbeck et al. (2003a, b) pinpointed a “CO2 accounting gap” across
subglobal (continental and smaller) scales in 2003. The geographical focus of our
study is on Russia, a signatory state of the Kyoto Protocol, which is large enough to
be resolved in a bottom-up/top-down accounting exercise. An initial, uncertainty-
focused cyclo-stationary atmospheric inversion experiment carried out at Le
Laboratoire des Sciences du Climat et l’Environnement (LSCE), France, indicated
that the potential exists to improve atmospheric top-down estimates if bottom-
up accounting is complete (full) and uncertainties are reliable and better known.
Moreover, full carbon accounting is important for implementation of policies to
mitigate climate change (like the Kyoto Protocol) that can be inferred from a number
of studies, particularly, by Steffen et al. (1998), Shvidenko et al. (2010), and Ciais
et al. (2010).

As a basis for bottom-up estimation of the atmospheric CO2 budget (only CO2

fluxes of the terrestrial biosphere) we use the Full Carbon Account for Russia
(Nilsson et al. 2000), hereafter FCA 2000. In new studies (since publication of FCA
2000), it has been found that some processes were not known and thus not taken
into account when net primary production (NPP)2 and heterotrophic soil respiration
(HR) were being estimated. However, we expect that the process of improving
estimation of these two big fluxes will, and will have to, continue, as they and their
uncertainties govern the uncertainty of Russia’s atmospheric CO2 balance.

1For details on bottom-up versus top-down estimates of CO2 budget see (Lemke et al. 2007, p 521).
2For forest and arable land.
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The objective of this study was to revise uncertainties3 of the FCA 2000, taking
into account recent studies,4 compose a revised bottom-up atmospheric CO2 budget
for bioclimatic zones in Russia (Polar Desert, Tundra, Pre-Tundra and Northern
Taiga, Middle Taiga, Southern Taiga, Temperate, Forest, Steppe, Semi-Desert and
Desert) for use as prior information in the atmospheric inversion experiments,
upscale it to Eurasia and the extratropical northern hemisphere for comparison with
top-down estimates, and thereby advance the IPCC’s understanding of the land–
atmosphere CO2 fluxes over northern Asia (Denman et al. 2007: Figure 7.7). This
study incorporates some of the findings of a thorough study of a region in Central
Siberia, which is discussed by Shvidenko et al. (2010), and is complementary to the
European carbon budget assessment, presented by Ciais et al. (2010), and the North
American Carbon Program.

We start the Methodology (Section 2 with subsections) by modifying the bottom-
up estimate of the CO2 fluxes over northern Asia from (Denman et al. (2007): Figure
7.7) and uncertainty estimate of the net land–atmosphere CO2 fluxes for Russia,
then consider the CO2 balance fluxes in more detail. In the Results and Discussion
section (Section 3) we present results and short discussions for each flux followed by
general discussion on the uncertainty estimates; we then present modified bottom-up
estimate of the CO2 fluxes over northern Asia followed by discussion. In the fourth
section we summarize our findings and make conclusions.

2 Methodology

2.1 General methodology overview

We modified the North Asia section in Figure 7.7 of the IPCC Fourth Assessment
Report (FAR) (Denman et al. 2007: Figure 7.7). We substituted our current estimate
for land-use/cover (Jonas and Gusti 2010) for the bottom-up CO2 flux estimate by
Shvidenko and Nilsson (2003: Table 6). We added together the national total net
CO2 flux for Russia and an estimate by Fang et al. (2001: Table 2) for China taking
into account uncertainties. We compared the bottom-up estimate with top-down
estimates by Gurney et al. (2002, 2003); Peylin et al. (2005) and Rödenbeck et al.
(2003a, b), which correspond to the post-Pinatubo period, 1992–1996, shown in the
figure as green symbols.

We estimated total bottom-up fluxes of CO2 by bioclimatic zone as an arithmetic
sum of the following fluxes: NPP, HR, disturbance, and consumption. To estimate the
uncertainties we assumed that correlation between the disturbance and consumption
fluxes equals one within each bioclimatic zone and that the correlation between other

3Under uncertainty we consider combination of random errors (inaccuracy), systematic errors
(biases or imprecision), and lack of knowledge. For details on the uncertainty concept see for
example (Jonas and Nilsson 2007).
4For example, comparative studies of soil respiration measurement methods; new methods for NPP
estimation; new estimates of Russian carbon budget; new studies of soil autotrophic respiration;
results of numeric simulation experiments; new studies on uncertainties of forest fire emission
estimates, etc.
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fluxes is negligible. The methodology of the uncertainty estimation of the fluxes is
considered in Subsections 2.2 to 2.5.

We assume that the uncertainties of the parameters studied follow Gaussian dis-
tribution. All systematic errors found were corrected, while remaining uncertainties
were estimated from a conservative point of view (i.e., we tried to reveal all major
sources of uncertainties and estimate their influence on the result; we also adhered
to the principle that lack of knowledge or information assimilates to an increase in
uncertainty). The uncertainties are estimated for a 90% confidence interval (C.I.).

2.2 NPP

2.2.1 Forest

It was found that the FCA 2000 estimate of forest NPP is biased because a few
processes of organic matter production (fine root life span and root exudates) were
not grasped by the methods for NPP estimation on the plot level (Shvidenko et al.
2008). Thus, for further analysis we use the new estimate of forest NPP by Shvidenko
et al. (2006, 2008) and Shvidenko (2007, personal communication), which is based on
a new modeling approach described in Shvidenko et al. (2007). The new estimate
is on average 36% higher than the FCA 2000 estimate. Shvidenko et al. (2006,
2008) and Shvidenko (2007, personal communication) do not provide forest NPP
for bioclimatic zones. We distribute the national total by the bioclimatic zones using
additional information, namely, the forest NPP estimates by bioclimatic zones for
the Siberia-II region (Schmullius et al. 2005; Nilsson et al. 2000) and a composition
of model estimates (Cramer et al. 1999). To assess the uncertainty of the distributed
NPP we found the relative distance of the new NPP to the respective NPP from the
Siberia-II region, NPP from the FCA 2000, and average NPP from the models for
each bioclimatic zone and chose the largest of them. We assumed that the probability
that the uncertainty intervals contain true NPP is 90%. For details of the NPP
distribution, see Supplementary Material.

2.2.2 Agriculture

Russia’s arable land (one of the land-cover classes [LC] considered) is resolved at the
national level in terms of (1) cropland comprising grain crops and crops other than
grains (for which annual and perennial grass is used as a surrogate) and (2) pastures.
The overall basic assumption underlying all NPP calculations is that the agricultural
life cycle is 1 year (i.e., production equals phytomass).

NPP at the national scale The sources listing the statistical data (areas, yield, dry
matter-to-carbon conversion factors, etc.) that were employed by Nilsson et al. (2000,
p 38) for their FCA 2000 study were found appropriate. Additional knowledge with
respect to relative uncertainties and their ranges could be derived from the Austrian
Carbon Database, made available by Jonas and Nilsson (2002) after completion of
the FCA 2000 study. The regression equations suggested by Rodin and Krylatov
(1998: Table 7) using yield as input, allow the remaining parts of the plants (i.e.,
their above and below-ground contributions) to be estimated.

Our recalculations based on the original data and a revision of Russian harvest
conditions around 1990 featured three things: (1) dry matter of annual grass had, by
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mistake, been overestimated by a factor of 10; (2) spring wheat indeed serves as a
good surrogate for grains and a combination of “60% perennial plus 40% annual
grass” is a very good surrogate for crops other than grains; and (3) harvest losses that
were considerable at that time (grains, 10–50%; crops other than grains, 15–45%;
pastures, 0%) were not taken into account.

NPP at the scale of bioclimatic zones Disaggregating the recalculated, national-
scale NPP value, and its uncertainty across bioclimatic zones involved three main
steps: (1) an “oblast–land cover–bioclimatic zones” map overlay (“oblast” is the
administrative unit to which harvest statistics refer) to determine NPP for individual
bioclimatic zones; (2) deriving the linear regression NPP = f(yield) on the basis of
all oblasts and assuming that it also holds for bioclimatic zones, which allows estab-
lishment of the mathematical framework to calculate consistent NPP uncertainties
at that scale; and (3) applying the assumption that yield uncertainties are equal
across bioclimatic zones in relative terms, an important but still missing input for
this mathematical framework.

2.2.3 Wetlands, grasslands, and shrubs

Russia’s wetlands comprise swamps and bogs, while grasslands and shrubs are not
further disaggregated. For reasons of insufficient data, our NPP calculations followed
the same simplified structure that had already been applied by Nilsson et al. (2000):
NPP density X area X carbon conversion factor. However, we considered additional
results that had become available concomitant with and after the FCA 2000 study,
notably those from a 17-model global intercomparison experiment with the focus on
NPP and its uncertainty (Cramer et al. 1999). The NPP that was modeled and the
uncertainty data were assessed using a “model grid–bioclimatic zone–land cover”
map overlay to derive the corresponding values for Russia and its eight bioclimatic
zones (Table 1). The comparison with the FCA 2000 NPP values on the national scale
shows that the model-derived NPP value is as great for swamps, greater for bogs, and
smaller for grasslands and shrubs. The spread of NPP values (and uncertainties) for
both Russia and its bioclimatic zones allowed us to derive uncertainties at these scales
and to achieve consistency.

2.3 Soil heterotrophic respiration

Heterotrophic soil respiration (HR) is one of the fluxes that are difficult to estimate
over large unpopulated areas. HR is not measured directly in field campaigns but is
estimated as a difference between total soil respiration and autotrophic respiration

Table 1 Comparison of NPP and its uncertainty estimated in FCA 2000 (FCA 2000, Tables 31 and
68) and NPP and intermodel variability derived from the model intercomparison data (Cramer et al.
1999) on the national scale

Data source/ Cropland Pastures Forest Bogs Swamps Grasslands Total
vegetation cover and shrubs

FCA 2000 NPP, gC/m2 year 498 379 224 226 213 278 267
FCA 2000 uncertainty, % 18 18 18 27 27 18 10
Models’ NPP, gC/m2 year 448 389 348 346 248 227 322
Intermodel variability, % 17 19 21 21 24 25 21
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(or root contribution, RC). We identified and quantified the following uncertainty
components in the estimation of the heterotrophic soil respiration for Russia:

• Measurement uncertainty;
• Uncertainties resulted from weak spatial representation of the Russian territory

by the measurements;
• Uncertainties caused by time of the measurements;
• Uncertainties of the autotrophic soil respiration;
• Uncertainties of productive areas;
• Uncertainties due to correlations;
• Uncertainties resulting from different estimation and aggregation methods.

For the study we used a database of total soil respiration (SR) measurements
compiled by Kurganova (2002) from published data. We distributed the data in a bio-
climatic zone–soil–vegetation matrix to take into account major factors controlling
HR (climate, soil type, and vegetation type). In each matrix element the uncertainty
components were estimated.

Random errors of measurements are not included in the analysis because in the
database there are only average values extracted from publications. Usually the
uncertainties are low because a series of measurements is taken and the average
is estimated to minimize random errors. Systematic errors (biases) depend on the
measurement method. Biases have substantial influence on the result if they are not
eliminated. We estimated the biases by summing up the systematic errors peculiar
to the measurement methods (Hutchinson and Rochette 2003; Jensen et al. 1996;
Pumpanen et al. 2004; Yim et al. 2000) used in each matrix cell.

SR measurement plots
Polar desert
Tundra
Pre-tundra and northern taiga
Middle taiga

Southern taiga
Temperate
Steppe
Semi-deserts and deserts

Fig. 1 Soil respiration measurement plots over bioclimatic zones
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The amount of SR measurements (350 measurements are considered) is very
little for the Russian territory. The measurements are distributed non-uniformly
(see Fig. 1). Most of the measurements are located in the European part of Russia
while, at the same time, there are no measurements in vast territory of Siberia. Some
measurements are used from outside Russian territory (Byelorussia, Ukraine, and
Kazakhstan). In many bioclimatic zone–soil–vegetation classes, one measurement
or no measurements were taken. For such classes occupying more than 1% of
country productive area, we used measurements from a similar soil–vegetation class
in a neighboring bioclimatic zone or the same bioclimatic zone and vegetation type
but close soil type, thereby increasing estimated uncertainty by 20%. Thus, the
uncertainty is partially taken into account.

Most of the measurements were taken in 1955–1975. Use of the measurements for
estimation of heterotrophic soil respiration in 1990 causes some uncertainty because
of different climatic conditions. The uncertainty of a measurement presented in the
database is assumed to be similar to interannual and spatial variabilities of SR that is
more than 20% (Kurganova et al. 2003; Lopes de Gerenyu et al. 2005). When a few
measurements are being averaged, the uncertainty decreases and has little influence
on the total uncertainty. Only when a single measurement for the matrix element
(bioclimatic zone–soil–vegetation) exists or all the measurements are published in
1 year an expert decision made to account for the uncertainty.

We estimated precision of the autotrophic soil respiration for different vegetation
types from published measurements of the autotrophic respiration (Hanson et al.
2000; Kurganova 2002; Bond-Lamberty et al. 2004; and others; for details see Jonas
and Gusti 2010). In general we selected 150 RC estimates representing different veg-
etation types and climate conditions. We also compared autotrophic soil respiration
values using estimates of other authors on different levels of aggregation (Raich and
Tufekcioglu 2000; Kurganova 2002).

Productive areas within the bioclimatic zones are uncertain, which is shown as
inconsistencies when overlapping maps of bioclimatic zones, land use, and soil
types or when comparing with areas used in earlier estimates of the heterotrophic
soil respiration (Nilsson et al. 2000; Kurganova 2002; Stolbovoi 2003). When we
estimate area-weighted averages, the area uncertainties (we consider only internal
inconsistencies) contribute very little to the resulting uncertainty and are not taken
into account. When estimating total fluxes of heterotrophic soil respiration from
territories of bioclimatic zones in Russia, the area uncertainties are of greater
importance and are taken into account. However, the area uncertainties do not
influence total uncertainty substantially, as in general they are much smaller than
the heterotrophic soil respiration uncertainties.

We estimated uncertainty due to application of common autotrophic respiration
attributed to similar vegetation types within the bioclimatic zones and in many cases
across the bioclimatic zones. This has the effect of correlating for the uncertainty
estimates and is accounted for by taking a common parameter out of the parentheses
when estimating the uncertainty.

Aggregated heterotrophic soil respiration (for bioclimatic zones or the entire
territory) depends on the way the aggregated fluxes are calculated because of the
incomplete spatial coverage of the measurements. Nilsson et al. (2000), Kurganova
(2002), and Jonas and Gusti (2010) used similar SR measurement data but applied
different approaches that led to different results. We combine all the estimates
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on the level of the bioclimatic zones (because such values are reported by all the
authors), including different aggregation techniques. We determined the accuracy
(the uncertainty caused by the use of different estimation methods) and combined it
with the internal uncertainty of the HR for the bioclimatic zones as two independent
components. For details see Supplementary Material.

2.4 Consumption

The estimation of agricultural consumption and its uncertainty was part of our NPP
calculations at the national scale. We distributed CO2 fluxes from consumption of
agricultural products, forest products, peat, and grasslands, and shrubs by domestic
animals, national totals, and uncertainties given in Nilsson et al. (2000), proportion-
ally to population in respective bioclimatic zones. CO2 fluxes from consumption
of grassland and shrubs by wild animals are distributed proportionally to areas of
grassland and shrubs in respective bioclimatic zones. Uncertainty of the flux caused
by consumption of grassland and shrubs by wild animals is assumed to be 50% in
each bioclimatic zone. Uncertainty of the flux caused by consumption of grasslands
and shrubs by domestic animals and usage of peat is assumed to be 50% for national
totals. The squared uncertainty of distribution of the fluxes by bioclimatic zone is
estimated as the sum of squares of the national total uncertainty and uncertainty
of the population in respective bioclimatic zones. The uncertainty of population in
bioclimatic zones is estimated as the difference between the population estimated by
two methods—overlaying of bioclimatic zone and population grids or overlaying of
polygons (all maps are from the Russian CD-ROM, Stolbovoi and McCallum 2002),
multiplied by 1.65 (for details see Jonas and Gusti 2010).

2.5 Disturbances

Nilsson et al. (2000) estimated C-CO2 fluxes and their uncertainties at national
scale for the following disturbances: direct fire carbon emissions (DFCE) and post-
fire carbon emissions (PFCE), industrial transformation of grasslands and shrubs,
insect invasion, forest abiotic disturbances, disturbances of forests by harvesting. We
distributed the national totals by bioclimatic zone and estimated the uncertainties of
the distributions.

We estimated fire emissions by bioclimatic zone using data on fire types and areas
of different fire types in bioclimatic zones by Shvidenko and Nilsson (2000a, b). To
estimate the uncertainty of the DFCE we used the result of the uncertainty study
by French et al. (2004) carried out for boreal forests (Alaska) using a similar fire
emission model. For the 4-year average carbon flux, French et al. (2004) finds 24%
CV which corresponds to 40% for 90% confidence interval uncertainty.

To estimate the uncertainty of the PFCE we used a simplified PFCE model
by Shvidenko and Nilsson (2000b) and applied a Monte Carlo technique (10,000
solutions) to propagate the parameter uncertainties (for details, see Jonas and Gusti
2010).

The resulting uncertainty of the PFCE for 1990 is 40% (90% C.I.). We do not
differentiate between 1990 uncertainty and 5-year average uncertainty because the
same model (and most of the parameters) is used for each year; thus the estimates
are not independent.
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Uncertainty of the total carbon flux (FCE = DFCE + PFCE) is estimated to be
40% (90% C.I.), taking into account that both DFCE and PFCE depend on the same
area burned. Emissions resulting from burning of organic matter mainly consist of a
few gases containing carbon (CO2, CO, and CH4). Using estimations by French et al.
(2004) we found that the CO2 emissions make up about 85% of direct fire carbon
emissions.

We distributed emissions caused by “industrial transformation of grasslands and
shrubs” and “forest abiotic disturbances” proportionally to the population of the
bioclimatic zones. The uncertainty of the distributed flux is estimated in a similar
way to consumption flux.

Flux from disturbances of forests by harvesting is distributed proportionally to
actual harvest by forest enterprises (we overlaid the bioclimatic zone map and
Forestry Database from the Russia CD-ROM, Stolbovoi and McCallum 2002). The
square uncertainty of the distribution is estimated by summing the squares of total
national uncertainty reported by Nilsson et al. (2000) and the uncertainty of the
harvest distribution by bioclimatic zone, which is estimated as misclassified harvest
divided by harvest in each bioclimatic zone and multiplied by 1.65. We distributed
flux caused by forest insect invasion proportionally to “Insect index”: an index
incorporating total forest area in a bioclimatic zone and severity of insect damage
(compiled from the “insect map” from the Russia CD-ROM). For details, see Jonas
and Gusti (2010).

3 Results and discussion

The 1988–1992 NPP estimate for Russia’s arable land as specified by Nilsson et al.
(2000: Tables 30 and 68) and Nilsson et al. (2003a, c: background data to Fig. 1) was
about 957 TgC/year with an uncertainty ranging from ∼5% to 18%. The new NPP
estimate is smaller by 23% but exhibits a greater uncertainty, 739 TgC/year ±25%.
In the bioclimatic zones the changes are different—from a 14% increase in Semi-
Desert and Desert to a 50% decrease in Tundra. The main reasons for the bias and
increased uncertainty are uncertain yield (at oblast level) and yield losses (see Table 2).

Table 2 NPP and uncertainties for bioclimatic zone and LC, TgC/year

BCZ Arable land Forest Wetlands + grasslands
and shrubsa

NPP U90 R_U90 NPP U90 R_U90 NPP U90 R_U90

Polar desert 0 0 0 0 0 0 0 0–0.1 −100−
+112

Tundra 2 2 80 8 2 17 341 143 42
Pre-Tundra and 3 2 69 334 102 31 196 62 31

Northern Taiga
Middle Taiga 35 18 52 1,440 436 30 626 243 39
Southern Taiga 119 54 45 411 156 38 206 96 47
Temperate forest 108 44 41 98 40 41 28 14 50
Steppe 393 157 40 35 10 26 165 116 70
Semi-desert and 80 51 64 3 2 58 33 13 38

desert
Total 739 187 25 2,329 350 15 1,594 513 32
aIn the case of Polar Desert we provide 90% confidence intervals to avoid negative NPP and HR
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The new estimate of forest NPP is greater than the previous one by 36%. The
main reason is as follows. The FCA 2000 forest NPP estimate was based on the use of
field measurements of tree NPP, which did not consider fine roots and root exudates
properly (state of the art at the time of measurements). The difference between
the NPP estimates for the bioclimatic zones varies from −21% in Steppe to more
than 40% in Middle Taiga and Pre-Tundra and Northern Taiga. The uncertainty of
the national total is approximately on the same level. The uncertainties of the NPP
for bioclimatic zones represent our knowledge about distribution of the total NPP
between the bioclimatic zones and are of a different nature than the uncertainty of
the national NPP estimate.

The 1988–1992 NPP estimates for Russia’s wetlands as specified by Nilsson et al.
(2000: Tables 30 and 68) and Nilsson et al. (2003a, c: background data to Fig. 1)
were about 487 TgC/year, with an uncertainty ranging from <5% to 27%. The cor-
responding values for grasslands and shrubs are 1,202 TgC/year, with an uncertainty
range from <5% to 18%. The re-derived NPP estimates are 539 TgC/year ±53% for
wetlands and 1,055 TgC/year ±40% for grasslands and shrubs.

The results of estimations of other terrestrial ecosystem CO2 fluxes into and out of
the atmosphere, the net atmospheric CO2 flux, and their uncertainties are presented
in Table 3.

The new estimate of the soil heterotrophic respiration is 9% smaller than the FCA
2000 estimate, and the uncertainty has increased from 16% to 24% in total. Decrease
of the HR in bioclimatic zones ranges from 7% in the Steppe to 50% in Polar Desert.
The main reason for the high uncertainty is the lack of spatial and temporal coverage
of SR and RC measurements.

The estimated uncertainty of the HR is considerably greater than the uncertainty
estimates published by other researchers, for example, Stolbovoi (2003) −6–7% (for
SR); Kurganova (2002) and Zavarzin (2007) −10–12% (for HR and 6–8% for SR).
Unfortunately, the authors do not present their uncertainty analyses, but only the
final numbers. Taking into account the small amount and irregular distribution of

Table 3 Major CO2 fluxes from and to the atmosphere and atmospheric CO2 budget, including their
uncertainties (U90; (assuming correlation between disturbance and consumption = 1), TgC/year
(minus = net out of the atmosphere)

BCZ NPPa HRa Disturbances Consumption Total

NPP U90 HR U90 D U90 Con U90 Total U90

Polar desert 0.05 0–0.1 0.10 0–0.25 0.00 0.00 0.00 0.00 0.05 0.16
Tundra 351 143 236 140 10 4 10 4 −96 200
Pre-Tundra and 533 119 253 150 49 18 16 8 −215 193

Northern Taiga
Middle Taiga 2,101 499 1,063 578 75 16 70 21 −893 764
Southern Taiga 737 191 611 136 62 10 191 39 127 240
Temperate forest 233 61 188 38 23 5 90 44 68 86
Steppe 593 195 523 114 19 3 157 31 106 228
Semi-desert and 116 53 48 29 2 1 12 4 −55 60

desert
Total 4,662 648 2,920 687 240 50 545 101 −957 957
aIn the case of Polar Desert we provide 90% confidence intervals to avoid negative NPP and HR

Reprinted from the journal168



Climatic Change (2010) 103:159–174

the SR measurements, which are sporadic rather than statistically planned, the lack
of RC studies, the difference between the estimates of HR, etc., we can conclude that
most probably, the researchers underestimated the uncertainties.

Use of imperfect techniques for measurement of soil respiration leads (most
probably) to substantial biases in measurements up to 30% in some bioclimatic zone–
soil classes. Aggregation of the classes by soil types or bioclimatic zones decreases
the biases to a maximum of 22% for soil types and only 9% for bioclimatic zones
because the biases are of different signs. Country aggregation almost eliminates the
bias, bringing it down to 3%. Estimation and elimination of the biases improves our
knowledge about soil respiration, especially on sub-country scales.

Accounting for inside-bioclimatic zone and inter-bioclimatic zone correlation
of HR (as common RC is used in a few bioclimatic zones) is important when
studying flux uncertainties. The correlation reaches 32% in case of Middle Taiga
and Forest Tundra and Northern Taiga. By not accounting for the correlations,
one underestimates the uncertainties (in our case the correlation increases the HR
uncertainty by 4% in total, but for some bioclimatic zone–soil classes the increase is
much greater).

Uncertainty of the national total of disturbance fluxes increased slightly because
of the re-estimated uncertainty of fire emissions (fire emission uncertainty increased
from 23% to 40%). Uncertainty of the national total of consumption fluxes increased
mainly because of a re-estimated consumption of agriculture products. Uncertainties
of the flux estimates for the bioclimatic zones rise because of imperfect spatial
data on population in the bioclimatic zones, insect invasion, and forest harvest
(uncertainty of the assumptions on the flux distributions by bioclimatic zones are
not taken into account). However, as the disturbance and consumption fluxes in
general are much smaller than the HR and NPP fluxes (except for the Temperate
Forest where consumption is two times greater than the HR) their uncertainties do
not influence the uncertainties of the net atmospheric fluxes of the bioclimatic zones
to a great extent. Our uncertainty estimate of the CO2 balance fluxes is higher than
the estimate by Shvidenko et al. (2010) for Central Siberia (estimate around 2003).
This can mainly be explained by the much more detailed information used in their
study.

The assumption that uncertainties of the parameters studied follow Gaussian
distribution leads to approximate results for positively defined parameters in the
case of uncertainties >33% because there is a (low) probability that some population
values are negative. In reality, this does not occur, so a part of the probability “leaks”
through the unrealistically long tail of the theoretical distribution with negative
values. This could lead to a slight overestimation of the uncertainties. Where there
was lack of information for checking an estimate and assessing its uncertainty, we
assumed high uncertainty to reflect the shortage of knowledge.

It must be noted that we follow only a bottom-up approach, which is not (yet)
constrained top-down. The uncertainty of our uncertainty estimate is considerable,
and includes many assumptions and expert estimates. Our uncertainty estimates
show the upper order of the uncertainties.

We applied our estimate of the atmospheric CO2 budget to reconstruct a section
for northern Asia in Figure 7.7 of Denman et al. (2007). The bottom-up value
becomes −850 TgC/year against −360 TgC/year in the original figure and corre-
sponding uncertainty interval [−1,700–0] against [−730–0] TgC/year. In general,
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Fig. 2 Regional ocean–atmosphere and land–atmosphere CO2 fluxes for the northern hemisphere
from inversion ensembles and bottom-up studies. Fluxes to the atmosphere: positive; uptake:
negative. Inversion results correspond to the post-Pinatubo period, 1992–1996. In the focus here:
Northern Asia. Orange line bottom-up terrestrial fluxes from Shvidenko and Nilsson (2003) for Asian
Russia, and Fang et al. (2001) for China. Green symbols: terrestrial fluxes from inversion (Gurney
et al. 2002, 2003; Peylin et al. 2005; Rödenbeck et al. 2003a, b); their errors range between 500 and
1,000 TgC/year. Red square fossil fuel emissions. Source: IPCC FAR (Denman et al. 2007: Figure
7.7), modified. Additionally entered: red line our revised bottom-up estimate for the whole of Russia
(68% C.I.) expanded by the flux estimate of Fang et al. (2001) for China; gray-shaded triangles to
facilitate better comparison of this expanded bottom-up net flux estimate with the aforementioned
inversion estimates, with and without considering their errors

uncertainty of the bottom-up estimate for Asia is smaller than the range of estimates
given by top-down methods.

We find a less optimistic, although more realistic, bottom-up versus top-down
match for northern Asia than the IPCC authors (see Fig. 2), confronting us with
the crucial question of what the added value is of combining full carbon accounts
bottom-up and top-down? It is correct to say that this question remained and remains
subject to thorough research, as each approach carries considerable uncertainties.
Nonetheless, a first bottom-up/top-down linking exercise with LSCE in 2007 based
on our less optimistic, though more realistic, bottom-up uncertainty for Russia
showed that an added value still seems to exist. Using a 12− and 77-station network
as representative for ∼1988 and ∼2000, Rayner et al. (1999, 2007) demonstrate
that our bottom-up uncertainty remains the main control for the a posteriori error
reduction over Russia. That is, an increased need for atmospheric measurements
over Russia continues to exist.

4 Conclusions

We revised uncertainties in estimates of CO2 fluxes for 1988–1992 in FCA 2000,
taking into account recent studies. Much attention was paid to NPP and HR as
they are the main determinants of the uncertainty of the atmospheric CO2 budget.
All fluxes were estimated for bioclimatic zones for comparison with the results
of atmospheric inverse modeling and use of the fluxes as prior information for
the inverse modeling. Systematic errors found were corrected, while remaining
uncertainties were estimated from a conservative point of view. Our estimate of
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the uncertainty should be perceived as an upper estimate, which it was possible to
make with the data available. Taking into account the uncertainty of the uncertainty
estimate we are confident in the order of magnitude of the uncertainty but not in
the exact number. The re-estimated Russian carbon budget alters the total Eurasian
carbon budget considerably, and thus substantially changes the numbers presented
in the IPCC FAR.

Our revision of the FCA 2000 leads to HR and NPP uncertainties that are greater
than those derived previously. It was also found that uncertainties determined at the
spatial scale of bioclimatic zones are still robust, while HR and NPP uncertainties
typically exceed 100% (90% C.I.) at finer resolutions.

The new NPP estimate for Russia’s arable land is smaller by 23% (957 versus
739 TgC/year) but exhibits a greater uncertainty—25% versus 18% in the FCA 2000.
The main reasons for the bias and increased uncertainty are uncertain yield (at oblast
level) and yield losses.

The new estimate of forest NPP is greater than the previous one by 36% in total
(2,329 versus 1,707 TgC/year). The main reason for that is lack of knowledge of fine
root NPP (state of the art at the time of measurements). The uncertainty of the
national total (15%) is approximately on the same level.

The 1988–1992 NPP estimates for Russia’s wetlands as specified by Nilsson
et al. (2000) and Nilsson et al. (2003a, c) were about 487, with an uncertainty
ranging from <5% to 27%. The corresponding values for grasslands and shrubs are
1,202 TgC/year with an uncertainty range from <5% to 18%. The re-derived NPP
estimates for Russia’s wetlands, grasslands, and shrubs are 539 TgC/year ±53% and
1,055 TgC/year ±40%, respectively.

The new estimate of the HR is 9% smaller than the FCA 2000 estimate (2,920
versus 3,197 TgC/year) and the uncertainty increased from 16% to 24% in total. The
main reason for high uncertainty is the lack of spatial and temporal coverage of SR
and RC measurements. One can use the developed bioclimatic zone–soil–vegetation
matrix for planning future measurement campaigns to reduce the uncertainty.

The uncertainty of Russia’s net atmospheric balance is approximately 100% (90%
C.I.), as a consequence of the increases in both the uncertainty underlying HR and
the uncertainty underlying NPP.

The results obtained allow a section for northern Asia in Figure 7.7 in the
IPCC FAR (Denman et al. 2007) to be updated. The updated bottom-up value
is −850 TgC/year against −360 TgC/year in the original figure and corresponding
uncertainty interval [−1,700–0] against [−730–0] TgC/year.

The bottom-up/top-down linking exercise with LSCE based on our less optimistic,
though more realistic, bottom-up uncertainty for Russia showed that an added value
still seems to exist. Our bottom-up uncertainty remains the main control for the a
posteriori error reduction over Russia, showing that there is a need for additional
atmospheric CO2 measurements over Russia.

The high uncertainty of the terrestrial carbon budget makes difficult to use it
in policy agreements; at the least, the terrestrial carbon budget should be treated
differently than the less uncertain emissions (IIASA 2007). Reduction of the uncer-
tainties of either bottom-up or top-down estimates to the level that can be acceptable
by policymakers, namely, 35–40% for net ecosystem production and 60–80% for net
biome production, as found by Shvidenko et al. (2010) requires more systematic long-
term observations. Future measurements have only a limited influence on reducing
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uncertainties of the estimates of the carbon budget in the past, and this should be
taken into account when selecting the base year for emission reductions.
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Abstract Our study is a preparatory exercise. We focus on the analysis of uncertainty
in greenhouse gas emission inventories. Inventory uncertainty is monitored, but not
regulated, under the Kyoto Protocol to the United Nations Framework Convention
on Climate Change. Under the Convention, countries publish annual or periodic
national inventories of greenhouse gas emissions and removals. Policymakers use
these inventories to develop strategies and policies for emission reductions and to
track the progress of these policies. However, greenhouse gas inventories contain
uncertainty for a variety of reasons, and these uncertainties have important scientific
and policy implications. For most countries, the emission changes agreed under
the Protocol are of the same order of magnitude as the uncertainty that underlies
their combined (carbon dioxide equivalent) emissions estimates. Here we apply
and compare six available techniques to analyze the uncertainty in the emission
changes that countries agreed to realize by the end of the Protocol’s first commitment
period 2008–2012. Any such technique, if implemented, could “make or break”
claims of compliance, especially in cases where countries claim fulfillment of their
commitments to reduce or limit emissions. The techniques all perform differently
and can thus have a different impact on the design and execution of emission control
policies. A thorough comparison of the techniques has not yet been made but is
needed when expanding the discussion on how to go about dealing with uncertainty
under the Kyoto Protocol and its successor.
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Acronyms and nomenclature

Adj Adjustment
C&C Contraction and convergence
CH4 Methane
crit Critical (index)
CRU Critical relative uncertainty
CI Confidence interval
CO2 Carbon dioxide
FCCC Framework Convention on Climate Change
FN Standardized cumulative normal distribution
Gap Gap (index)
GHG Greenhouse gas
GSC Gillenwater, Sussman, and Cohen
HFC Hydrofluorocarbon
IPCC Intergovernmental Panel on Climate Change
KP Kyoto Protocol
KT Kyoto (emissions) target
LULUCF Land use, land-use change, and forestry
N2O Nitrous oxide
p Fractional amount
P Probability
PFC Perfluorocarbon
RelDiff Relative difference
SA Signal analysis
SD Standard deviation (index)
SF6 Sulfur hexafluoride
t Time (t1 ≤ t ≤ t2)
t True (index)
u Upper (index)
U Undershooting
UGAP Initial obligatory undershooting
UN United Nations
Und Undershooting
VT Verification time
x Emissions
X Random variable
z Standardized emissions
Z Standardized random variable
α Risk (0 ≤ α ≤ 0.5)
δcrit Critical emission limitation or reduction
δKP Committed (normalized) emissions change under the KP
δmod Modified emission limitation or reduction target
δ′

crit Auxiliary variable
�t Verification time
ε Absolute uncertainty
ρ Relative uncertainty
ρcrit Critical relative uncertainty
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υ Uncertainty correlation coefficient
1 Referring to base year (index)
2 Referring to commitment year (index)

1 Introduction

The focus of our study is on the analysis of uncertainty in greenhouse gas (GHG)
emission inventories. Inventory uncertainty is monitored, but not regulated, under
the Kyoto Protocol (KP) to the United Nations Framework Convention on Cli-
mate Change (FCCC 1992). Under the Convention, countries publish annual or
periodic national inventories of GHG emissions and removals, encompassing carbon
dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs),
perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) (FCCC 1998, Annex A).
Policymakers use these inventories to develop strategies and policies for emission
reductions and to track the progress of these policies.

However, GHG inventories (whether at the global, national, corporate, or other
level) contain uncertainty for a variety of reasons, for example, the lack of availability
of sufficient and appropriate data and of the techniques to process them. Uncertainty
has important scientific and policy implications. Until recently, relatively little atten-
tion has been devoted to how uncertainty in emissions estimates is dealt with and
how it might be reduced. Now this situation is changing, with uncertainty analysis
increasingly being recognized as an important tool for improving inventories of GHG
emissions and removals (e.g., IPIECA 2007; Lieberman et al. 2007).

At present, parties to the UNFCCC are obliged, to include in the reporting of
their annual inventories direct or alternative estimates of the uncertainty associated
with these emissions and removals, consistent with the Intergovernmental Panel on
Climate Change’s (IPCC) good practice guidance reports (Penman et al. 2000, 2003).
Yet, it makes a big difference in the framing of policies whether or not uncertainty is
considered—both reactively, because there is a need to do so; or proactively, because
difficulties are anticipated.

Our tenet is that uncertainty estimates are not intended to dispute the validity
of national GHG inventories. Although the uncertainty of emissions estimates
underscores the lack of accuracy that characterizes many source and sink categories,
its consideration can help to establish a more robust foundation on which to base
policy. According to the IPCC good practice guidance reports (notably, Penman
et al. 2000, p. 6.5), uncertainty analysis is intended to help “improve the accuracy of
inventories in the future and guide decisions on methodological choice.” Uncertainty
analyses function as indicators of opportunities for improvement in data measure-
ment, data collection, and calculation methodology. Only by identifying elements
of high uncertainty can methodological changes be introduced to address them.
Currently, most countries that perform uncertainty analyses do so for the express
purpose of improving their future estimates; and the rationale is generally the same
at the corporate and other levels. Estimating uncertainty helps to prioritize resources
and to ensure precautions are taken against undesirable consequences.

Our rationale for performing uncertainty analysis is to provide a policy tool, a
means to adjust inventories or analyze and compare emission changes in order to
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determine compliance or the value of a transaction. The aim of our study is to provide
a preparatory guide for dealing with uncertainty in the (post-)Kyoto policy process.
We apply and compare six available techniques to analyze uncertain emission
changes (also called emission signals) that countries agreed to achieve by the end
of the Protocol’s first commitment period, 2008–2012. A thorough comparison of the
techniques has not yet been made available. Even more problematical is the fact that
techniques to analyze uncertain emission signals from various points of view, ranging
from signal quality (defined adjustments, statistical significance, detectability, etc.)
to the way uncertainty is addressed (trend uncertainty or total uncertainty), although
highly needed, are not in place. For most countries under the Protocol (Annex B
countries) the agreed emission changes are of the same order of magnitude as
the uncertainty that underlies their combined (carbon dioxide equivalent) emission
estimates (Table 1: compare last column on the left with first column on the right).
Any such technique, if implemented, could “make or break” claims of compliance,
especially in cases where countries claim fulfillment of their commitments to reduce
or limit emissions.

Moreover, as demonstrated by Jonas et al. (2004b, c), Bun and Jonas (2006),
Hamal and Jonas (2008a, b) and Bun et al. (this issue), these techniques could
also be used for monitoring purposes. Emission changes since 1990 (the base year
used by most Annex B countries) that are reported annually can be evaluated in an
emissions change-versus-uncertainty context rather than an emissions change-only
context. This advanced monitoring service is also not provided under the Protocol.1

Jonas et al. (2004a) distinguish between preparatory signal analysis, midway
signal analysis, and signal analysis in retrospect (see also http://www.iiasa.ac.at/
Research/FOR/unc_changes.html). Preparatory signal analysis is the most advanced.
It allows useful information to be generated in advance as to how great uncertainties
can be dependent on the level of confidence of the emission signal or the signal one
wishes to detect, and on the risk that one is willing to tolerate in not meeting an
agreed emission limitation or reduction commitment. We are aware of at least six
different preparatory signal analysis techniques, some of which were presented at the
1st International Workshop on Uncertainty in GHG Inventories (Gillenwater et al.
2007; Jonas and Nilsson 2007; Nahorski et al. 2007). These techniques need to be
scrutinized further, now in a comparative mode, before a discussion on which of them
to select can take place. They all agree that uncertainty analysis is a key component
of GHG emission analysis. However, the techniques all perform differently and can
thus have a different impact on the design and execution of emission control policies.
Going through this comparative exercise and making this knowledge available is
a legacy of the 1st International Workshop on Uncertainty in GHG Inventories
held in 2004 in Warsaw, Poland. This exercise is required prior to advancing the
discussion on how to go about dealing with uncertainty under the KP and its
successor.

This comparison is technical in nature, which is why we provide non-technical
introductions and explanations for each section. We provide an overview of the
techniques and their characteristics, and the conditions under which they are ap-
plied and compared in Section 2. In Section 3 we describe each technique in

1For an overview of IIASA’s emissions change-versus-uncertainty monitoring (reports and coun-
tries) see http://www.iiasa.ac.at/Research/FOR/unc_overview.html.
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Table 1 Left: Countries included in Annex B to the Kyoto Protocol (KP) and their emission
limitation and reduction commitments.2 Sources: FCCC (1996: Decision 9/CP.2, 1998: Article 3.8,
Annex B, 1999: Decision 11/CP.4, 2009: National Inventory Submissions 2008); COM (2006: Section
2.b). Right: Emissions and/or removals of greenhouse gases (GHGs), or combinations of GHGs,
classified according to their relative uncertainty ranges. The bars of the arrows indicate the dominant
uncertainty range for these emissions and removals, while the tops of the arrows point at the neigh-
boring uncertainty ranges, which cannot be excluded but appear less frequently. LULUCF stands for
the direct human-induced land use, land-use change, and forestry activities stipulated by Articles 3.3
and 3.4 under the KP (FCCC 1998). The arrows are based on the total uncertainties that are reported
annually by the member states of the EU25 (most recently: EEA 2009) and the expertise available
at IIASA’s Forestry Program (cf. http://www.iiasa.ac.at/Research/FOR/unc_bottomup.html) and
elsewhere (e.g., Watson et al. 2000: Sections 2.3.7, 2.4.1; Penman et al. 2003: Section 5.2). Source:
Jonas and Nilsson (2007: Table 1), modified

aCountry Group 1a: BE, CZ, DE, DK, EC (= EU15; the EU27 does not have a common Kyoto
target), EE, ES, FI, GR, IE, LT, LU, LV, MC, NL, PT, SE, UK. Member States of the EU27 but
without individual Kyoto targets: CY, ML. Listed in the Convention’s Annex I but not included in
the Protocol’s Annex B: BY and TR (BY and TR were not parties to the Convention when the
Protocol was adopted). BY asked to become an Annex B country by amendment to the KP at CMP
2 in 2006. BY’s base years and KP commitment are 1990 (1995) and 92%, respectively
bCountry Group 1a: AT, CH, FR, IT, LI, SK
cCountry Group 2: The US has indicated its intention not to ratify the KP. The US reports all its
emissions with reference to 1990. However, information on 1990 in its national inventory submissions
does not reflect or prejudge any decision that may be taken in relation to the use of 1995 as base
year for hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6) in
accordance with Article 3.8 of the KP

a standardized fashion. We make available mathematical details and numerical
results for all techniques as support for online material (SOM) at http://www.
iiasa.ac.at/Research/FOR/unc_prep.html.3 We summarize our findings in Section 4.

2ISO country code: AT Austria; AU Australia; BE Belgium; BG Bulgaria; BY Belarus; CA Canada;
CH Switzerland; CY Cyprus; CZ Czech Republic; DE Germany; DK Denmark; EC European
Community; EE Estonia; ES Spain; FI Finland; FR France; GR Greece; HR Croatia; HU Hungary;
IE Ireland; IS Iceland; IT Italy; JP Japan; LI Liechtenstein; LT Lithuania; LU Luxembourg; LV
Latvia; MA Malta; MC Monaco; NL Netherlands; NO Norway; NZ New Zealand; PL Poland; PT
Portugal; RO Romania; RU Russian Federation; SE Sweden; SI Slovenia; SK Slovak Republic; TR
Turkey; UA Ukraine; UK United Kingdom; US United States.
3At Web site http://www.iiasa.ac.at/Research/FOR/unc_prep.html click on mathematical background
(referred to in the text as SOM_Math) and numerical results (referred to in the text as SOM_Num) to
Jonas and Nilsson (2007) under Overview over six preparatory emissions change analysis techniques.
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Table 2 The spatiotemporal and thematic conditions under which the six preparatory signal analysis
techniques listed in Table 3 are applied and compared

Dimension Methodological Focus in this study on
restriction

Spatial None National: countries as listed in Annex B to the KP (FCCC 1998)
The country scale is the principal reporting unit requested for

reporting GHG emissions and removals under the KP. For
convenience, we group these countries according to their
(i) emission limitation or reduction commitments; and (ii) the
base years for their emissions of CO2, CH4, and N2O, resulting
in 8 country groups (see left side of Table 1). As the Annex B
countries’ emissions of CO2, CH4, and N2O by far exceed those
of the fluorinated (HCFs, PCFs, SF6) gases, we use the combined
emissions of CO2, CH4, and N2O as reference.

Temporal None Two-points-in-time approach: base year (t1)—commitment
year/period (t2)

We use the year 2010 as commitment year with t2 referring to the
temporal average in net emissions over the commitment period
2008–2012.

Thematic None Annual CO2 or CO2 equivalent emissions: GHG emissions and/or
removals of the six Kyoto GHGs as listed in Annex A to the KP
(FCCC 1998), individually or combined

2 Overview of techniques and their characteristics and conditions of application

In Section 1 we apply and compare six techniques to analyze the uncertainty in
the emission changes that countries agreed to achieve by the end of the Protocol’s
first commitment period, 2008–2012. Table 2 summarizes the spatiotemporal and
thematic conditions under which the application and comparison are carried out. The
conditions are shaped by the KP and imply the country scale and countries’ annual
emissions of the six GHGs listed in Appendices A and B to the Protocol (FCCC
1998). Box 1 recapitulates the relevant uncertainty terms and concepts that we refer
to and make use of in our study.

Box 1 The relevant uncertainty terms and concepts that we refer to and make use of in our study

Uncertainty (inventory def inition): A general and imprecise term which refers to the lack of certainty (in
inventory components) resulting from any causal factor such as unidentified sources and sinks, lack of
transparency, etc. (Penman et al. 2000: A3.19).
Total and trend uncertainty: The total (or level) uncertainty reflects our real diagnostic emissions accounting
capabilities, that is, the uncertainty that underlies our past (base year) as well as our current accounting and
that we will have to cope with in reality at some time in the future (commitment year/period). The trend
uncertainty reflects the uncertainty of the difference in net emissions between two years (base year and/or
commitment year/period) (Jonas and Nilsson 2007: Section 4).
Conf idence interval: The true value of the quantity for which the interval is to be estimated is a fixed but
unknown constant, such as the annual total emissions in a given year for a given country. The confidence
interval (CI) is a range that encapsulates the true value of this unknown fixed quantity with a specified
confidence (probability). Typically, a CI of 95% is used in GHG inventories (IPCC 2006: Section 3.1.3).
Relative uncertainty: To make all preparatory signal analysis techniques easily applicable, we build on relevant
findings of earlier studies which suggest resolving relative uncertainty of inventory sources and sinks only in
terms of intervals or classes and referring to their medians. Our definition of relative uncertainty classes (Class
1: 0–5%; Class 2: 5–10%; Class 3: 10–20%; Class 4: 20–40%; and Class 5: >40%) is arbitrary but appears robust.
For further details we refer the reader to Jonas and Nilsson (2007: Section 2.4) and right side of Table 1.
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Table 3 lists the six signal analysis techniques and summarizes their major
characteristics which are explained in detail in Section 3. These are (1) the critical
relative uncertainty (CRU) concept; (2) the verification time (VT) concept; (3) the
undershooting (Und) concept; (4) the undershooting and VT (Und&VT) concepts
combined; (5) the adjustment of emissions (Gillenwater, Sussman and Cohen—GSC
#1) concept; and (6) the adjustment of emission reductions (Gillenwater, Sussman
and Cohen—GSC #2) concept.

To ensure that all techniques are comparable, they refer to GHG emissions at
two points in time, base year, and commitment year, of each country group (see
Tables 1 and 2), and are operated under relative emission limitation or reduction
(commitment) conditions, with uncertainty expressed in relative terms. Relative
uncertainty can range widely depending on the system of GHGs studied (see Box
1 and right side of Table 1).

The major difference between the techniques is whether they follow the concept
of trend or total uncertainty (see first and second row in Table 3 and Box 1 for
explanations). This determines whether we classify a technique capable of pursuing
an “intra-systems view” or even an “intra-systems view that is suited to support
an inter-systems (top-down) view” (see third and fourth row in Table 3). The
KP can be used as a good example for explaining the difference. The Protocol
splits the terrestrial biosphere into directly human-impacted (managed) and not
directly human-impacted (natural) parts. However, this artificial separation makes
it impossible to estimate the reliability of any system output if only part of the
system is considered. The tacit assumptions underlying this approach are that human
impact on nature, the unaccounted-for remainder under the Protocol, is irrelevant
and inventory uncertainty matters from only a relative point of view over space and
time, not an absolute one. But such an approach is highly problematic because biases

Table 3 Major characteristics of the six preparatory signal analysis (SA) techniques compared in
this study

Taken into account by the technique Preparatory SA Technique

1 2 3 4 5 6

Trend uncertainty � �
Total uncertainty � � � �
Intra-systems view � �
Intra-systems view but suited to support � � � �

inter-systems (top-down) view
Emissions difference (between t1 and t2 or at t2) � � � �
Emissions gradient (between t1 and t2) � �
Detectability of when an emission signal � � �

outstrips total uncertainty
Undershooting � �
Upward adjustment of reported emissions � �
Risk with reference to the concept of significance � � �
Risk with reference to the concept of detectability �
Sources: Jonas et al. (2004a: Table 3), Bun (2008: Table 2); modified
1 critical relative uncertainty concept (Gusti and Jęda 2002); 2 verification time concept (Jonas
et al. 1999); 3 undershooting concept (Nahorski et al. 2003); 4 undershooting and verification time
concepts combined (Jonas et al. 2004a); 5 Gillenwater, Sussman and Cohen #1 concept (Gillenwater
et al. 2007); 6 Gillenwater, Sussman and Cohen #2 concept (Gillenwater et al. 2007)
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(i.e., discrepancies between true and reported emissions), typically resulting from
partial accounting, are not uniform across space and time. In addition, human impact
on nature need not be constant or negligible.4

3 Preparatory signal analysis techniques

This section is technical in nature. It compares the six preparatory signal analysis
techniques listed in Table 3. They allow the emission changes that countries agreed
to achieve by the end of the Protocol’s first commitment period 2008–2012 to be
analyzed in an uncertainty context, with uncertainty expressed in relative terms and
taking on the median values of the intervals specified in Box 1. Each technique
is described using a standard template which addresses: the technique’s starting
point for its application; the assumptions made; the systems view followed; the main
question(s) addressed; the approach taken; the answer expressed in mathematical
terms; and the numerical results; followed by a verbal description of the technique’s
mathematical-numerical behavior. For both the more detailed mathematical back-
ground (SOM_Math) and the more complete set of numerical results (SOM_Num)
the reader is referred to the supporting online material.3

3.1 CRU concept

The CRU concept is the easiest of the techniques and most straightforward. It centers
on the commitment year and asks what the maximal (or critical) relative uncertainty
is that a country can report in order to ensure favorable detection at that point in
time. Here and in the remainder of the study, “detection” means that the absolute
change in net emissions outstrips absolute uncertainty in the commitment year.

Starting Point: Annex B countries comply with their emission limitation or reduc-
tion commitments under the KP.

Assumptions: (1) The relative uncertainty (ρ) of a country’s net emissions (x)
shall be symmetrical and not change over time, that is, ρ1 =
ρ2(:= ρ).5

(2) The absolute change in net emissions shall outstrip absolute
uncertainty (ε) at t2, that is, |x1 − x2| > ε2.

Systems View: Intra-systems view suited to supporting inter-systems (top-down)
view: only our real diagnostic capabilities of grasping emissions at

4In their study Canadell et al. (2007: Table 1), making use of global carbon budget data between 1959
and 2006, show that the efficiency of natural carbon sinks in terms of removing atmospheric CO2 has
declined by about 2.5% per decade. Although this decline may look modest, it represents a mean net
“source” to the atmosphere of 0.13 PgC year−1 during 2000–2006. In comparison, a 5% reduction in
the mean global fossil emissions during the same time period yields a net “sink” of 0.38 PgC year−1.
Thus, deteriorating natural carbon sinks as a result of climate change or direct human impact exhibit
the potential to offset efforts to reduce fossil fuel emissions. This shows that human impact on nature
is indeed not negligible and stresses the need to look at the entire system, that is, to develop a full
carbon systems view in which emissions and removals and their trends are monitored in toto.
5The CRU concept only considers uncertainty in the commitment year/period, not in the base year
(i.e., formally ε1 = 0). However, for reasons of comparability, we continue to abide by the condition
of constant relative uncertainty.
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any point in time individually—by absolute uncertainty ε(t)—are of
interest. Correlation of uncertainty over time does not matter.

Question: What are the critical relative uncertainties (CRUs) that can be
reported by Annex B countries to ensure favorable detection in the
commitment year?

Approach: Deterministic (see Fig. 1).
Answer: The answer is given by Eq. A-6 in SOM_Math: Appendix A

ρcrit := |δKP|
(1 − δKP)

, (A-6)

where ρcrit is the CRU; and δKP the normalized emissions change
committed under the KP between t1 and t2 (δKP > 0: emission
reduction; δKP ≤ 0: emission limitation).

Result: The numerical result is given by Table 4 (see also Table A-1 in
SOM_Math and worksheet Crit Rel Unc 1 in SOM_Num).

Table 4 lists δKP and ρcrit for all Annex B countries under the KP. A country
of group 1, for example, has committed itself to reducing its net emissions by 8%
(second column). In the case of compliance and under the condition of constant
relative uncertainty, the country’s net emissions in the commitment year (t2) only
satisfy this concept if they are estimated with a relative uncertainty smaller than
8.7% (third column). With reference to the total uncertainty estimates that are
reported annually by the European Union (EU) member states for all Kyoto gases
(most recently: EEA 2009), it must be expected that these countries exhibit in the
commitment year relative uncertainties in the range of 5–10% and above, rather
than below (excluding land use, land-use change, and forestry [LULUCF] and Kyoto
mechanisms). Thus, achieving a relative uncertainty smaller than 8.7% appears
difficult for quite a few, especially data-poor, Annex B countries.

The CRU concept exhibits a dissimilarity between emission limitation (δKP < 0)
and reduction (δKP > 0). This can be immediately seen when comparing the CRUs
that belong to δKP values that are equal in absolute terms (see, e.g., country groups 1
and 7: ±8.0%). This has consequences when stricter or more lenient Kyoto emission
targets are being defined. For instance, in the case of increasingly stricter Kyoto
emission targets (let δKP < 0 increase), Annex B countries that are committed to
emission limitation must decrease their uncertainties according to this concept; their

Fig. 1 Illustration of the CRU
concept (ρ1 = ρ2): The
absolute change in emissions
outstrips uncertainty at t2.
(The absolute change in
emissions is given by
|x1 − x2| = |δKP|x1: see
Eq. A-2 in SOM_Math:
Appendix A). Kyoto
(emissions) target (KT).
Source: Jonas et al. (2004a:
Fig. 8)

Timet1 t2

x1

x2=xKTX
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Table 4 The CRU concept (Eq. A-6) applied to Annex B countries

Country group KP commitment CRU If the CRU concept had been applied

δKP
a ρcrit

% %

1a–d 8.0 8.7 (a) Compliance with the Kyoto emission target:
Annex B countries must be expected to exhibit
relative uncertainties in the range of 5–10%
and above rather than below (excluding

2 7.0 7.5 emissions/removals due to LULUCF and
3a–c 6.0 6.4 Kyoto mechanisms). Thus, it is impossible

for a number of countries in groups 1–4 to
meet the condition that their overall relative

4 5.0 5.3 uncertainty is smaller than their CRU (ρ < ρcrit).
– 4.0 4.2 (b) Toward more lenient Kyoto emission targets:
– 3.0 3.1 To unambiguously attest a decrease in emissions,
– 2.0 2.0 Annex B countries have to fulfill increasingly
– 1.0 1.0 smaller CRUs.

(c) Toward stricter Kyoto emission targets:
CRUs increase and can be met more easily.

5 0.0 0.0 (a) Compliance with the Kyoto emission target:
6 −1.0 1.0 Same conclusion for countries in groups 5–8 as
– −2.0 2.0 for countries committed to emission reduction
– −3.0 2.9 (see a) above.
– −4.0 3.8 (b) Toward more lenient Kyoto emission targets:
– −5.0 4.8 CRUs increase and can be met more easily.
– −6.0 5.7 (c) Toward stricter Kyoto emission targets:
– −7.0 6.5 To unambiguously attest a decrease in emissions
7 −8.0 7.4 Annex B countries have to fulfill increasingly
– −9.0 8.3 smaller CRUs.
8 −10.0 9.1

In the last column, we assess the hypothetical situation that the CRU concept had been applied prior
to/during negotiation of the KP. Note the dissimilarity between countries committed to emission
reduction (δKP > 0) and emission limitation (δKP ≤ 0) with the introduction of more lenient or
stricter Kyoto emission targets
aThe countries’ emission limitation and reduction commitments under the KP are expressed with
the help of δKP, the normalized change in emissions between t1 and t2: δKP > 0—emission reduction;
δKP ≤ 0—emission limitation

CRUs decrease. In contrast, countries committed to emission reduction do not need
to do so (let δKP > 0 increase); their uncertainties can even increase because their
CRUs also increase and can be met more easily. The opposite is true in the case of
increasingly more lenient Kyoto emission targets. Annex B countries committed to
emission reduction must decrease their uncertainties in order to satisfy decreasing
CRUs (let δKP > 0 decrease), while countries committed to emission limitation can
even increase their uncertainties because their CRUs also increase and can be met
more easily (let δKP < 0 decrease).

According to this concept the stabilized emissions case (δKP = 0) should not be
allowed—it presupposes zero uncertainty—unless it is ascertained beforehand that
relative uncertainties are, or can be expected to be, at least small.
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3.2 VT concept

The VT concept goes beyond the CRU concept. In its most simplified version (as
employed here) it takes the linear dynamics of the emission signal between base year
and commitment year into account and can thus be used to qualify in relative terms
the degree of detectability achieved in the commitment year.

Starting Point: Annex B countries comply with their emission limitation or reduc-
tion commitments under the KP.

Assumptions: (1) The relative uncertainty (ρ) of a country’s net emissions (x)
shall be symmetrical and not change over time, that is, ρ1 =
ρ2(:= ρ).

(2) The absolute change in net emissions shall outstrip absolute
uncertainty at time t (which can be ≤ or >t2), that is, |�x(t)| >

ε(t).
Systems View: Intra-systems view suited to support inter-systems (top-down) view:

only our real diagnostic capabilities of grasping emissions at any
point in time individually—reflected by absolute uncertainty ε(t)—
are of interest. Correlation of uncertainty over time does not matter.

Question: What are the times (also called verification times or VTs) at which
the countries’ emission signals outstrip uncertainty?6

Approach: Deterministic (see Fig. 2).
Answer: The answer is given by Eq. B-7a in SOM_Math: Appendix B

�t
t2 − t1

>
ρ

|δKP| + δKPρ
, (B-7a)

where �t is the VT; and t2 – t1 the time between base year and
commitment year/period upon which the VT is normalized.

Result: The numerical result is given by Table 5 (see also Table B-1 in
SOM_Math and worksheet Verif ication Time 1 in SOM_Num).

Table 5 lists normalized VTs for all Annex B countries under the KP. The
VT concept provides a more detailed detection perspective for negotiators of the
Protocol than the CRU concept presented in Section 3.1. It quantifies in detail what
the consequences are in the form of normalized VTs if countries report emissions
with relative uncertainties that are ≤ or >ρcrit. Here we explore the range from 2.5%
to 30% relative uncertainty, which is given by the medians of classes 1 and 4 (see
Box 1 and right side of Table 1).

Moreover, the VT concept corroborates the dissimilarity between emission limi-
tation and reduction, which has already been found for the CRU concept and which
is a direct consequence of not demanding a uniform δKP for all countries under the
Protocol. While both the VT concept and the CRU concept favor stricter over more
lenient Kyoto emission targets in the case of emission reduction (δKP > 0), this is not

6The term “verification time” was first used by Jonas et al. (1999) and has been used by other authors
since then. A more correct term is “detection time” as signal detection does not imply verification.
However, we continue to use the original term, as we do not consider it inappropriate given that
signal detection must, in the long-term, go hand in hand with bottom-up/top-down verification of
emissions (see Jonas and Nilsson 2007: Section 4).
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Fig. 2 Illustration of the VT
concept (ρ1 = ρ2): The
absolute change in emissions
outstrips uncertainty at
a VT > t2, b VT = t2 and
c VT < t2. (The absolute
change in emissions is given
by |x1 − x2| = |δKP|x1: see
Eq. A-2 in SOM_Math:
Appendix A). Source: Jonas
and Nilsson (2007: Fig. 7),
modified

x

c)

TimeVTt1 t2

VT < t2ε1

ε2

b)

TimeVTt1

VT = t2ε1

ε2

ε1

TimeVTt1 t2

a)

VT > t2

ε2

so in the case of emission limitation (δKP < 0) where the two concepts favor more
lenient over stricter Kyoto emission targets (because compliance with normalized
VTs ≤ 1 becomes less difficult in either case). This is not in line with the spirit of
the KP.

3.3 Und concept

Inventoried emissions of GHGs are uncertain, and this uncertainty translates into a
risk that true emissions are greater than those estimated and reported. Undershoot-
ing helps to limit, or even reduce, this risk, which is what the Und concept allows.
In contrast to both the CRU concept and the VT concept, the Und concept also
accounts for the uncertainty in the emission estimates in the base year when assessing
compliance with the countries’ commitments in the commitment year.

The Und concept follows the footsteps of statistical significance in quantifying the
aforementioned risk. It correlates uncertainty between base year and commitment
year and also allows change in uncertainty to be factored in that can be due to
learning and/or result from structural changes in the emitters. However, here we
assume that our knowledge of uncertainty stays constant over time in relative terms
(first-order approach). This is because researchers are only beginning to diagnose
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Table 5 The VT concept (Eq. B-7a) applied to Annex B countries

Country Max. allow. KP Normalized VTs if If the VT concept had been applied
group VTa commit. countries report with ρ =

t2 − t1 δKP
b 2.5% 7.5% 15% 30%

yr %

1a 20 8.0 0.3 0.9 1.6 2.9 (a) Compliance with the Kyoto
1b 22 emissions target: Annex B
1c 21 countries must be expected to
1d 24 exhibit relative uncertainties

2 20 7.0 0.3 <1.0 1.9 3.3 in the range of 5–10% and

3a 20 6.0 0.4 1.2 2.2 3.8 above rather than below
3b 24 (excluding emissions/removals
3c 22 due to LULUCF and Kyoto

4 20 5.0 0.5 1.4 2.6 4.6 mechanisms). Thus, it is impossible

– – 4.0 0.6 1.7 3.3 5.8 for a number of countries in

– – 3.0 0.8 2.3 4.3 7.7 groups 1–4 to meet the condition

– – 2.0 1.2 3.5 6.5 11.5 ρ < ρcrit or, equivalently, achieve

– – 1.0 2.4 7.0 13.0 23.1 normalized VTs≤1.
(b) Toward more lenient Kyoto

emission targets: To unambiguously
attest a decrease in emissions,
Annex B countries have to fulfill
increasingly smaller CRUs or,
equivalently, find it more difficult
to comply with normalized VTs ≤ 1.

(c) Toward stricter Kyoto emission
targets: CRUs increase and can be
met more easily or, equivalently,
compliance with normalized VTs
≤ 1 becomes less difficult.

estimated changes in the uncertainty of GHG emissions (notably, CO2 emissions
from fossil fuel burning; Hamal 2010) and to separate their causes.

Starting Point: Annex B countries comply with their emission limitation or reduc-
tion commitments under the KP.

Assumptions: (1) Uncertainties at t1 and t2 are given in the form of intervals,
which take into account that a difference (ε) might exist
between the true (t) but unknown net emissions (xt) and their
best estimates (x).

(2) The relative uncertainty (ρ) of a country’s net emissions is
symmetrical and does not change over time, that is, ρ1 =
ρ2(:= ρ).

Systems View: Intra-systems view: correlation of uncertainty over time matters.
Question: Taking into account the combined uncertainty at t2 and considering

that the true emissions are not known, how much undershooting
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Table 5 (continued)

Country Max. allow. KP Normalized VTs if If the VT concept had been applied
group VTa commit. countries report with ρ =

t2 − t1 δKP
b 2.5% 7.5% 15% 30%

yr %

5 20 0.0 Infinite (a) Compliance with the Kyoto

6 20 −1.0 2.6 8.1 17.6 42.9 emissions target: Same conclusion

– – −2.0 1.3 4.1 8.8 21.4 for countries in groups 5–8 as for

– – −3.0 0.9 2.7 5.9 14.3 countries committed to emission

– – −4.0 0.6 2.0 4.4 10.7 reduction (see (a) above).

– – −5.0 0.5 1.6 3.5 8.6 (b) Toward more lenient Kyoto

– – −6.0 0.4 1.4 2.9 7.1 emission targets: CRUs increase

– – −7.0 0.4 1.2 2.5 6.1 and can be met more easily or,

7 20 −8.0 0.3 >1.0 2.2 5.4 equivalently, compliance with

– – −9.0 0.3 0.9 2.0 4.8 normalized VTs≤ 1 becomes

8 20 −10.0 0.3 0.8 1.8 4.3 less difficult.
(c) Toward stricter Kyoto emission

targets: To unambiguously attest a
decrease in emissions, Annex B
countries have to fulfill increasingly
smaller CRUs or, equivalently,
find it more difficult to comply with
normalized VTs≤ 1.

The table has to be read as follows: The maximal allowable VT (t2 − t1) for an Annex B country is
given for ρ = ρcrit (see second column). For a country of group 1a the maximal allowable VT is 20
years or 1, if normalized. Normalized VTs equal to or smaller than 1 (see green fields for emission
reduction and orange fields for emission limitation) are compatible with the KP, that is, countries
report with ρ ≤ ρcrit; normalized VTs greater than 1 (see red fields) are not, that is, countries report
with ρ > ρcrit. In the last column, we assess the hypothetical situation that the VT concept was
applied prior to/during negotiation of the KP. Note the dissimilarity between countries committed to
emission reduction (δKP > 0) and emission limitation (δKP ≤ 0) with the introduction of more lenient
or stricter Kyoto emission targets
aThe maximal allowable VT is calculated for each country group as the difference between 2010 (as
the temporal mean over the commitment period 2008–2012) and its base year, or mean base year, for
its emissions of CO2, CH4, and N2O (cf. also Table 2)
bThe countries’ emission limitation and reduction commitments under the KP are expressed with
the help of δKP, the normalized change in emissions between t1 and t2: δKP > 0—emission reduction;
δKP ≤ 0—emission limitation

(Und) is required to limit the risk α that countries overshoot their
true emission limitation or reduction commitments?

Approach: Quasi-statistical, based on interval calculus (see Fig. 3).
Answer: The answer is given by Ineq. C-13 in combination with Eqs. C-15

and C-18 in SOM_Math: Appendix C

xt,2 ≥ (1 − δKP)xt,1 with risk α ⇔
x2

x1
≤ (1 − δKP)

1 − (1 − 2α)(1 − ν)ρ

1 + (1 − 2α)(1 − ν)ρ
= 1 − δmod, (C-13a,c)

where ν approximates (first-order approach) the net (effective)
correlation between ε1 and ε2; and δmod is the countries’ modified
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Fig. 3 Illustration of the Und
concept (ρ1 = ρ2) with the
help of normal probability
density functions:
undershooting helps to limit
the risk α that countries
overshoot their true emission
limitation or reduction
commitments. Source: Jonas
and Nilsson (2007: Fig. 11);
modified

tt1 t2

x1

x2

X

Base-year 
level Risk α

Undershooting U

Committed 
level

(mod) emission limitation or reduction targets defined by

δmod = δKP + U (C-15)

and U the undershooting given by

U = 2(1 − δKP)
(1 − 2α)(1 − ν)ρ

1 + (1 − 2α)(1 − ν)ρ
. (C-18)

Result: The numerical result is given by Table 6 (see also Table C-1 in
SOM_Math and worksheet Undershooting 4a in SOM_Num).

Table 6 lists δmod values as a result of applying Eq. C-15 in combination with
Eq. C-18. δKP, ρ and α are treated as parameters, while the correlation ν is 0.75
(typical for currently reported uncertainties; most recently: EEA 2009: Table 1.20).7

Table 6 shows that the Und concept is difficult to justify politically in the context
of the KP. Under the Protocol, non-uniform emission limitation or reduction com-
mitments (see δKP values in the second column) were determined “off the cuff,”
meaning that they were derived via horse trading and that they did not result from
rigorous scientific considerations. The outcome is discouraging. Varying δKP while
keeping the relative uncertainty ρ and the risk α constant exhibits that Annex B
countries that must comply with a smaller δKP (they exhibit a small δmod) are better
off than countries that must comply with a larger δKP (they exhibit a large δmod).
(See, e.g., δmod values in red for ρ = 7.5% and α = 0.3.) The choice of δKP dominates
Eq. C-15, while the influence of δKP on U (see Eq. C-18: U↑ for δKP ↓ and vice versa)
is negligible and does not compensate for agreed deviations in the δKP values. Such a
situation is not in line with the spirit of the KP.

This situation would be different if the non-uniformity of the emission limitation
or reduction commitments were the outcome of a rigorously based process resulting
in a straightforward rule that applies equally to all countries, as would be the case, for
instance, under the widely discussed contraction and convergence (C&C) approach

7Applying Eq. C-7b in SOM_Math: Appendix C with ε12 ≈ 0.03 (typically reported), δKP = 0.08
(valid for many Annex B countries) and ε1 = ε2 ≈ 0.075 (see right side of Table 1) results in ν ≈ 0.79.
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Table 6 The Und concept (Eq. C-15 in combination with Eq. C-18 and a correlation of ν = 0.75
typical for currently reported uncertainties) applied to Annex B countries

Country KP Modified emission or reduction target If the Und concept had been applied
group commit. δmod in % for limitation

δKP
a α = ρ =

% 1 2.5% 7.5% 15% 30%

1a–d 8.0 0.0 9.1 11.4 14.7 20.8 (a) For given δKP and α:
0.1 8.9 10.7 13.4 18.4 The greater the ρ, the greater
0.3 8.5 9.4 10.7 13.4 the modified emission reduction
0.5 8.0 8.0 8.0 8.0 target δmod must be to keep the

2 7.0 0.0 8.2 10.4 13.7 20.0 “xt,2-greater-than-(1 − δKP)xt,1”
0.1 7.9 9.7 12.4 17.5 risk α at a constant level (see, e.g.,
0.3 7.5 8.4 9.7 12.4 country group 1: third line:
0.5 7.0 7.0 7.0 7.0 δmod values for α = 0.3).

3a–c 6.0 0.0 7.2 9.5 12.8 19.1 (b) For given ρ and α:
0.1 6.9 8.8 11.5 16.6 The smaller the δKP, the smaller
0.3 6.5 7.4 8.8 11.5 the modified emission reduction
0.5 6.0 6.0 6.0 6.0 target δmod can be to keep the

4 5.0 0.0 6.2 8.5 11.9 18.3 “xt,2-greater-than-(1 − δKP)xt,1”
0.1 5.9 7.8 10.5 15.8 risk α at a constant level (see, e.g.,
0.3 5.5 6.4 7.8 10.5 δmod values for ρ = 7.5% and
0.5 5.0 5.0 5.0 5.0 α = 0.3). As a consequence,

– 4.0 0.0 5.2 7.5 10.9 17.4 countries that must comply with
0.1 5.0 6.8 9.6 14.9 a small δKP (they exhibit a
0.3 4.5 5.4 6.8 9.6 small δmod) are better off than
0.5 4.0 4.0 4.0 4.0 countries that must comply with

– 3.0 0.0 4.2 6.6 10.0 16.5 a large δKP (they exhibit a
0.1 4.0 5.9 8.7 14.0 large δmod).
0.3 3.5 4.4 5.9 8.7
0.5 3.0 3.0 3.0 3.0

– 2.0 0.0 3.2 5.6 9.1 15.7
0.1 3.0 4.9 7.7 13.1
0.3 2.5 3.5 4.9 7.7
0.5 2.0 2.0 2.0 2.0

– 1.0 0.0 2.2 4.6 8.2 14.8
0.1 2.0 3.9 6.8 12.2
0.3 1.5 2.5 3.9 6.8
0.5 1.0 1.0 1.0 1.0

5 0.0 0.0 1.2 3.7 7.2 14.0 (a) For given δKP and α: Same
0.1 1.0 3.0 5.8 11.3 conclusion for country groups 5–8
0.3 0.5 1.5 3.0 5.8 as for countries committed to
0.5 0.0 0.0 0.0 0.0 emission reduction (see (a) above).

6 −1.0 0.0 0.3 2.7 6.3 13.1 (b) For given ρ and α: Same
0.1 0.0 2.0 4.9 10.4 conclusion for country groups 5–8
0.3 −0.5 0.5 2.0 4.9 as for countries committed to
0.5 −1.0 −1.0 −1.0 −1.0 emission reduction (see (b) above).

– −2.0 0.0 −0.7 1.8 5.4 12.2
0.1 −1.0 1.0 3.9 9.5
0.3 −1.5 −0.5 1.0 3.9
0.5 −2.0 −2.0 −2.0 −2.0
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Table 6 (continued)

Country KP Modified emission or reduction target If the Und concept had been applied
group commit. δmod in % for limitation

δKP
a α = ρ =

% 1 2.5% 7.5% 15% 30%

– −3.0 0.0 −1.7 0.8 4.4 11.4
0.1 −2.0 0.0 3.0 8.7
0.3 −2.5 −1.5 0.0 3.0
0.5 −3.0 −3.0 −3.0 −3.0

– −4.0 0.0 −2.7 −0.2 3.5 10.5
0.1 −3.0 −0.9 2.1 7.8
0.3 −3.5 −2.5 −0.9 2.1
0.5 −4.0 −4.0 −4.0 −4.0

– −5.0 0.0 −3.7 −1.1 2.6 9.7
0.1 −4.0 −1.9 1.1 6.9
0.3 −4.5 −3.4 −1.9 1.1
0.5 −5.0 −5.0 −5.0 −5.0

– −6.0 0.0 −4.7 −2.1 1.7 8.8
0.1 −4.9 −2.9 0.2 6.0
0.3 −5.5 −4.4 −2.9 0.2
0.5 −6.0 −6.0 −6.0 −6.0

– −7.0 0.0 −5.7 −3.1 0.7 7.9
0.1 −5.9 −3.8 −0.8 5.1
0.3 −6.5 −5.4 −3.8 −0.8
0.5 −7.0 −7.0 −7.0 −7.0

7 −8.0 0.0 −6.7 −4.0 −0.2 7.1
0.1 −6.9 −4.8 −1.7 4.2
0.3 −7.5 −6.4 −4.8 −1.7
0.5 −8.0 −8.0 −8.0 −8.0

– −9.0 0.0 −7.6 −5.0 −1.1 6.2
0.1 −7.9 −5.8 −2.7 3.3
0.3 −8.5 −7.4 −5.8 −2.7
0.5 −9.0 −9.0 −9.0 −9.0

8 −10.0 0.0 −8.6 −6.0 −2.0 5.3
0.1 −8.9 −6.7 −3.6 2.5
0.3 −9.5 −8.4 −6.7 −3.6
0.5 −10.0 −10.0 −10.0 −10.0

The table lists modified emission limitation or reduction targets δmod for all Annex B countries,
where the “xt,2-greater-than-(1 − δKP) xt,1” risk α is specified to be 0, 0.1, 0.3, and 0.5. If an Annex
B country complies with its emission limitation or reduction commitment (x2 = (1 − δKP) x1), the
risk that its true, but unknown, emissions xt,2 are equal to or greater than its true, but unknown,
target (1 − δKP) xt,1 is 50%. Undershooting decreases this risk. For instance, a country of group 1 has
committed itself to reduce its net emissions by 8%. If it reports with a 7.5% relative uncertainty, it
needs to reduce emissions by 11.4% to decrease the risk from 50% to 0%. In the last column, we
assess the hypothetical situation that the Und concept was applied prior to/during negotiation of the
KP. Note the unfavorable situation, which arises when δKP varies while ρ and α are kept constant
aThe countries’ emission limitation and reduction commitments under the KP are expressed with
the help of δKP, the normalized change in emissions between t1 and t2: δKP > 0—emission reduction;
δKP ≤ 0—emission limitation
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(e.g., WBGU 2003: Section 2.3; Pearce 2003). Under such conditions, it would be
the undershooting U that matters, not the modified emission limitation or reduction
target δmod.

3.4 Und&VT concepts combined

The Und&VT concept seeks to combine the strengths of both the introduction of
risk by the Und concept and the explicit consideration of time by the VT concept in
detecting an emission signal. That is, the Und&VT concept also allows undershooting
to limit, or even reduce, the risk that the true emissions are greater than those
estimated and reported; and it addresses the degree of detectability achieved in the
commitment year. The Und&VT concept, like the VT concept, accounts for the
linear dynamics of the emission signal between base year and commitment year,
and uncertainty at the latter. In contrast to the Und concept, it thus follows the
footsteps of signal detection in quantifying the aforementioned risk. Concomitantly,
the Und&VT seeks to overcome some of the undesirable properties of both the VT
concept (countries committed to equal emission limitation and reduction targets in
absolute terms are treated dissimilarly) and the Und concept (countries committed
to different emission changes under the KP are assigned different modified emission
limitation or reduction targets)

Starting Point: Annex B countries comply with their emission limitation or reduc-
tion commitments under the KP.

Assumptions: (1) Uncertainties at t1 and t2 are given in the form of intervals,
which take into account that a difference (ε) might exist
between the true (t) but unknown net emissions (xt) and their
best estimates (x).

(2) The relative uncertainty (ρ) of a country’s net emissions is
symmetrical and does not change over time, that is, ρ1 =
ρ2(:= ρ).8

(3) The absolute change in net emissions shall outstrip uncertainty
at time t ≤ t2, that is, the VT shall be equal to, or smaller than,
the maximal allowable VT (�t ≤ t2 − t1).

Systems View: Intra-systems view suited to support inter-systems (top-down) view:
only our real diagnostic capabilities of grasping emissions at any
point in time individually—reflected by absolute uncertainty ε(t)—
are of interest. Correlation of uncertainty over time does not matter.

Question: If risk is the strength of the Und concept and time in detecting an
emission signal is the strength of the VT concept, can these concepts
be combined (Und&VT) to take advantage of the two?

Approach: Quasi-statistical, based on interval calculus (see Fig. 4).
Answer: The answer comprises four cases depending on how δcrit, the critical

emission limitation or reduction, and δKP relate to each other (see
Fig. 4). δcrit allows a distinction to be made between detectable and

8The Und&VT concept only considers uncertainty in the commitment year/period, not in the base
year (i.e., formally xt,1 = x1 and ν = 0). However, for reasons of comparability, we continue to abide
by the condition of constant relative uncertainty.
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Case 1: crit ≤ KP

1

Case 2: crit > KP

1

-

-

Case 3: crit < KP
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Case 4: crit ≥ KP

-2

1

δ δ δ δ

δcrit 

δKP

δ δ

δcrit

δKP

δKP

δcrit
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δcrit

δKP

δcrit

δKP δcrit

δcrit

δKP

δKP> 0

δKP≤0

Fig. 4 Illustration of the Und&VT concept (ρ1 = ρ2). This preserves risk as the strength of the Und
concept and detectability as the strength of the VT concept. Depending on how δcrit and δKP relate
to each other, four cases can be distinguished (see text). These differ in terms of detectability (Cases
1 and 4) versus non-detectability (Cases 2 and 3) and an initial obligatory undershooting UGap
that is introduced (Cases 2–4) to ensure that detectability of emission reductions, not increases, is
given before Annex B countries are permitted to make economic use of potential excess emission
reductions. Emission reduction: δKP > 0; emission limitation: δKP ≤ 0. Source: Hamal and Jonas
(2008b: Fig. 4)

non-detectable emission changes.9 The complete answer is given by
(see SOM_Math: Appendix D for the inequalities and equations
mentioned below)

Case 1: δKP > 0: δcrit ≤ δKP:

xt,2 ≥ (1 − δKP)xt,1 with risk α ⇔
x2

x1
≤ (1 − δKP)

1
1 + (1 − 2α)ρ

= 1 − δmod, (D-3), (C-13c)

where δmod is defined as above (see Eq. C-15) and U is
given by

U = (1 − δKP)
(1 − 2α)ρ

1 + (1 − 2α)ρ
. (D-5)

9Compliance with δcrit ensures detectability in the commitment year. δcrit is given by Eq. D-1 in
SOM_Math: Appendix D; it is ρ/(1 + ρ) in the case δKP > 0 (emission reduction) and −ρ/(1 − ρ) in
the case δKP = 0 (emission limitation). To overcome the dissimilarity between these two cases—δcrit
is smaller in absolute terms for emission reduction than for emission limitation—it is adjusted by
Eq. D-2 in SOM_Math: Appendix D to ρ/(1 + ρ) in the case δKP > 0 (emission reduction) and
−ρ/(1 + ρ) in the case δKP = 0 (emission limitation); that is, detectability as under emission reduc-
tion is declared as standard (in absolute terms).
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Case 2: δKP > 0: δcrit > δKP:

xt,2 ≥ (1 − δcrit)xt,1 with risk α ⇔
x2

x1
≤ (1 − δcrit)

1
1 + (1 − 2α)ρ

= 1 − δmod, (D-6), (C-13c)

where δmod is defined as before (see Eq. C-15) and U is
given by

U = UGap + (1 − δcrit)
(1 − 2α)ρ

1 + (1 − 2α)ρ
(D-8)

with

UGap = δcrit − δKP. (D-9)

Case 3: δKP ≤ 0: δcrit < δKP:

xt,2 ≥ (1 + δcrit)xt,1 with risk α ⇔
x2

x1
≤ (1 + δcrit)

1
1 + (1 − 2α)ρ

= 1 − δmod, (D-10), (C-13c)

where δmod is defined as above (see Eq. C-15) and U is
given by

U = UGap + (1 + δcrit)
(1 − 2α)ρ

1 + (1 − 2α)ρ
(D-12)

with

UGap = −(δKP + δcrit). (D-13)

Case 4: δKP ≤ 0: δcrit ≥ δKP:

xt,2 ≥ (
1 + δ′

crit

)
xt,1 with risk α ⇔

x2

x1
≤ (

1 + δ′
crit

) 1
1 + (1 − 2α)ρ

= 1 − δmod, (D-14), (C-13c)

where δmod is defined as before (see Eq. C-15) and U is
given by

U = UGap + (
1 + δ′

crit

) (1 − 2α)ρ

1 + (1 − 2α)ρ
(D-16)

with

UGap = −2δcrit (D-17)

−δ′
crit = δKP − 2δcrit. (D-18)

UGap in Cases 2–4 is an initial obligatory undershooting, which is
introduced to ensure that detectability is achieved before Annex B
countries are permitted to make economic use of potential excess
emission reductions.
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Result: The numerical is given by Table 7 (see also Table D-3 in SOM_Math
and worksheet Und&VT 2a in SOM_Num).

Table 7 lists δmod values as a result of applying Eq. C-15 in combination with:
Eq. D-5 (Case 1), Eq. D-8 to D-9 (Case 2), Eq. D-12 to D-13 (Case 3), and Eqs. D-16
to D-18 (Case 4). δKP, ρ and α are treated as parameters. By employing δcrit as a

Table 7 The Und&VT concept (Eq. C-15 in combination with: Eq. D-5 [Case 1: green fields],
Eqs. D-8 to D-9 [Case 2: red fields], Eqs. D-12 to D-13 [Case 3: red fields], and Eqs. D-16 to D-18
[Case 4: orange fields]) applied to Annex B countries

Country KP Modified emission limitation of If the Und&VT concept had been applied
group commit. reduction target δmod in % for

δKP
a α = ρ =

% 1 2.5% 7.5% 15% 30%

1a–d 8.0 0.0 10.2 14.4 24.4 40.8 Case 1 (green-colored area): δcrit ≤ δKP:

0.1 9.8 13.2 22.4 38.0 No necessity to introduce UGap; the δmod

0.3 8.9 10.7 18.0 31.3 values from Table 6 are still valid.

0.5 8.0 8.0 13.0 23.1 Case 2 (red-colored area): δcrit > δKP:

2 7.0 0.0 9.3 13.5 24.4 40.8 Increase of δKP by UGap to reach δcrit,

0.1 8.8 12.3 22.4 38.0 the relevant reference for undershooting.

0.3 7.9 9.7 18.0 31.3 Undershooting depends only on ρ and α

0.5 7.0 7.0 13.0 23.1 and no longer on δKP (see Eqs. D-8 to

3a–c 6.0 0.0 8.3 13.5 24.4 40.8 D-9 in combination with Eq. C-15). This

0.1 7.8 12.2 22.4 38.0 explains why δmod appears uniform for

0.3 6.9 9.7 18.0 31.3 given ρ and α. Thus, the Und&VT

0.5 6.0 7.0 13.0 23.1 concept rectifies the Und concept under

4 5.0 0.0 7.3 13.5 24.4 40.8 which countries complying with a small

0.1 6.9 12.2 22.4 38.0 δKP exhibit a small δmod, while countries

0.3 5.9 9.7 18.0 31.3 complying with a large δKP exhibit a large

0.5 5.0 7.0 13.0 23.1 δmod (cf. Table 6).

– 4.0 0.0 6.3 13.5 24.4 40.8

0.1 5.9 12.2 22.4 38.0

0.3 5.0 9.7 18.0 31.3

0.5 4.0 7.0 13.0 23.1

– 3.0 0.0 5.4 13.5 24.4 40.8

0.1 4.9 12.2 22.4 38.0

0.3 4.0 9.7 18.0 31.3

0.5 3.0 7.0 13.0 23.1

– 2.0 0.0 4.8 13.5 24.4 40.8

0.1 4.4 12.2 22.4 38.0

0.3 3.4 9.7 18.0 31.3

0.5 2.4 7.0 13.0 23.1

– 1.0 0.0 4.8 13.5 24.4 40.8

0.1 4.4 12.2 22.4 38.0

0.3 3.4 9.7 18.0 31.3

0.5 2.4 7.0 13.0 23.1
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Table 7 (continued)

Country KP Modified emission limitation of If the Und&VT concept had been applied
group commit. reduction target δmod in % for

δKP
a α = ρ =

% 1 2.5% 7.5% 15% 30%

5 0.0 0.0 4.8 13.5 24.4 40.8 Case 3 (red-colored area): δcrit < δKP:

0.1 4.4 12.2 22.4 38.0 Increase of δKP by UGap to reach −δcrit,

0.3 3.4 9.7 18.0 31.3 the relevant reference for undershooting.

0.5 2.4 7.0 13.0 23.1 Undershooting depends only on ρ and α

6 −1.0 0.0 4.8 13.5 24.4 40.8 and no longer on δKP (see Eqs. D-12 to

0.1 4.4 12.2 22.4 38.0 D-13 in combination with Eq. C-15). This

0.3 3.4 9.7 18.0 31.3 explains why δmod appears uniform for a

0.5 2.4 7.0 13.0 23.1 given ρ and α. Thus, the Und&VT concept

– −2.0 0.0 4.8 13.5 24.4 40.8 rectifies the Und concept under which

0.1 4.4 12.2 22.4 38.0 countries complying with a small δKP

0.3 3.4 9.7 18.0 31.3 exhibit a small δmod, while countries

0.5 2.4 7.0 13.0 23.1 complying with a large δKP exhibit

– −3.0 0.0 4.3 13.5 24.4 40.8 a large δmod (cf. Table 6).

0.1 3.8 12.2 22.4 38.0 Case 4 (orange-colored area): δcrit ≥ δKP:

0.3 2.8 9.7 18.0 31.3 Increase of δKP by UGap to reach

0.5 1.9 7.0 13.0 23.1 δKP − 2δcrit, the relevant reference for

– −4.0 0.0 3.3 13.5 24.4 40.8 undershooting. In contrast to Case 3

0.1 2.8 12.2 22.4 38.0 (δcrit < δKP) above, undershooting still

0.3 1.9 9.7 18.0 31.3 depends on δKP (see Eqs. D-16 to D-18 in

0.5 0.9 7.0 13.0 23.1 combination with Eq. C-15). This is a

– −5.0 0.0 2.3 13.5 24.4 40.8 consequence of how the undershooting is

0.1 1.8 12.2 22.4 38.0 achieved: detectability on the emissions

0.3 0.9 9.7 18.0 31.3 limitation side is used to decrease the

0.5 −0.1 7.0 13.0 23.1 reference for undershooting (δKP − 2δcrit)

– −6.0 0.0 1.3 13.5 24.4 40.8 on the emission reduction side.

0.1 0.9 12.2 22.4 38.0

0.3 −0.1 9.7 18.0 31.3

0.5 −1.1 7.0 13.0 23.1

– −7.0 0.0 0.4 13.4 24.4 40.8

0.1 −0.1 12.2 22.4 38.0

0.3 −1.1 9.7 18.0 31.3

0.5 −2.1 7.0 13.0 23.1

uniform detectability criterion, the Und&VT concept overcomes the dissimilarity
of both the VT concept and the CRU concept between countries committed to
emission reduction (δKP > 0) and emission limitation (δKP ≤ 0), which arises if more
lenient or stricter Kyoto emission targets are introduced (cf. with Tables 4 and 5).
Moreover, the Und&VT concept also rectifies Cases 2 and 3, the cases of non-
detectability (before correction), that is, the politically unfavorable situation under
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Table 7 (continued)

Country KP Modified emission limitation of If the Und&VT concept had been applied
group commit. reduction target δmod in % for

δKP
a α = ρ =

% 1 2.5% 7.5% 15% 30%

7 −8.0 0.0 −0.6 12.5 24.4 40.8

0.1 −1.1 11.3 22.4 38.0

0.3 −2.1 8.7 18.0 31.3

0.5 −3.1 6.0 13.0 23.1

– −9.0 0.0 −1.6 11.6 24.4 40.8

0.1 −2.1 10.3 22.4 38.0

0.3 −3.1 7.7 18.0 31.3

0.5 −4.1 5.0 13.0 23.1

8 −10.0 0.0 −2.6 10.7 24.4 40.8

0.1 −3.1 9.4 22.4 38.0

0.3 −4.1 6.8 18.0 31.3

0.5 −5.1 4.0 13.0 23.1

The table lists modified emission limitation or reduction targets δmod for all Annex B countries,
where the “xt,2-greater-than-(1 − δKP) xt,1” risk α (Case 1), the “xt,2-greater-than-(1 − δcrit) xt,1”
risk α (Case 2), the “xt,2-greater-than-(1 + δcrit) xt,1” risk α (Case 3), and the “xt,2-greater-than-
(1 − (δKP − 2δcrit)) xt,1” risk α (Case 4), respectively, are specified to be 0, 0.1, 0.3, and 0.5. In the last
column, we assess the hypothetical situation that the Und&VT concept was applied prior to/during
negotiation of the KP. The Und&VT concept rectifies Cases 2 and 3, the cases of non-detectability
(before correction), that is, the unfavorable situation under the Und concept under which countries
complying with a small δKP exhibit a small δmod, while countries complying with a large δKP exhibit a
large δmod (cf. Table 6)
aThe countries’ emission limitation and reduction commitments under the KP are expressed with
the help of δKP, the normalized change in emissions between t1 and t2: δKP > 0—emission reduction;
δKP ≤ 0—emission limitation

the Und concept whereby countries complying with a small δKP exhibit a small δmod,
while countries complying with a large δKP exhibit a large δmod (cf. Table 6).

However, this concept reveals a crucial difficulty from a political perspective.
The Und&VT concept requires the KP’s emission targets to be corrected through
the introduction of an initial obligatory undershooting (UGap) so that the countries’
emission reductions, not limitations, become detectable (i.e., meet the maximal
allowable VT) before the countries are permitted to make economic use of their
excess emission reductions. (See, e.g., group 1 countries in Table 7 (δKP = 8%) under
Case 2 conditions: the δmod value for ρ = 15% and α = 0.5 is δmod = δKP + UGap =
13% (U = UGap); that is, the initial obligatory undershooting is UGap = 13% − 8% =
5%.) It remains to be seen whether this strict interpretation of signal detection will
be accepted by Annex B countries, as it forces them to strive for detectability, that is,
to first invest before they can profit from their economic actions. Notwithstanding,
opponents of this concept must realize that the countries’ detectability, that the
“xt,2-greater-than-(1 − δKP)xt,1” risk (Case 1), the “xt,2-greater-than-(1 − δcrit)xt,1”
risk (Case 2), the “xt,2-greater-than-(1 + δcrit)xt,1” risk (Case 3), and the “xt,2-greater-
than-(1 − (δKP − 2δcrit))xt,1” risk (Case 4) of their emission signals can be grasped and
thus priced—although the countries’ true net emissions at t1 and t2 are unknown!
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3.5 GSC #1 concept

GSC #1 refers to the first of the two concepts that Gillenwater et al. presented in
2007, following the notion of adjusting countries’ national emissions in response to,
and in accordance with, the estimated uncertainties and a statistically valid method.
The GSC #1 concept centers on the commitment year and requires confidence that
when countries report emissions inventories that nominally are in agreement with
their commitments under the Protocol, the countries truly are, if not in compliance,
then at least within a given tolerance of compliance with their commitments. That
is, the GSC #1 concept considers a relative upward adjustment that seeks to attain a
reasonable level of confidence that countries have actually achieved the target emis-
sions stated in their commitments under the KP and are in compliance. Ultimately,
countries must reduce their emissions in the commitment year by the amount of their
upward adjustment to remain in compliance.

Starting Point: Annex B countries comply with their emission limitation or reduc-
tion commitments under the KP.10

Assumptions: (1) It is accepted a priori that the true, but unknown, net emis-
sions at t2 (xt,2) can exceed (overshoot) the target emissions
commitment (x2) by some fractional or percentage amount (p
or p%, respectively).

(2) The relative uncertainty (ρ) of a country’s net emissions is
symmetrical and does not change over time, that is, ρ1 =
ρ2 (:= ρ).11

(3) The probability distributions for estimated emissions are nor-
mal and the shape of the emissions probability distribution
for each country does not change significantly as emissions
change.

Systems View: Intra-systems view suited to support inter-systems (top-down) view:
only our real diagnostic capabilities of grasping emissions at any
point in time individually—reflected by absolute uncertainty ε(t)—
are of interest. Correlation of uncertainty over time does not matter.

Question: Can we attain a reasonable level of confidence that countries
will have actually achieved the target emissions levels stated in
their commitments under the KP and are in compliance? That
is: (1) Would we consider it acceptable if true emissions exceed
(overshoot) the target emissions commitment by some fractional
or percentage amount? (2) How much is that amount? (3) How
confident do we want to be in our result?

10The two emission adjustment methods presented by Gillenwater, Sussman and Cohen (GSC #1 and
GSC #2) were meant to be applied in retrospect (Gillenwater et al. 2007). However, their methods
can also be used to generate information that one would like to discuss in advance; that is, they can
also be perceived as preparatory signal analysis techniques and thus be compared with the other four
techniques discussed so far.
11The GSC #1 concept considers uncertainty only in the commitment year/period, not in the base
year. However, for reasons of comparability, we continue to abide by the condition of constant
relative uncertainty.
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Approach: Statistical (see Fig. 5).
Answer: Depending on whether or not excess emissions are accepted and

favorable compliance conditions exist a priori, the modified GSC
#1 concept of Gillenwater et al. (2007) comprises three cases (see
Fig. 5). The complete answer is given by (see SOM_Math: Appendix
E for the equations mentioned below)

Cases 1 and 2: δKP > 0: p = δcrit:

Adj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 + zu,2(FN)

ρ

1.96
≤ 1 + ρcrit

(excess emissions accepted)
for

1 + zu,2(FN)
ρ

1.96

1 + ρcrit

1 + zu,2(FN)
ρ

1.96
> 1 + ρcrit

(excess emissions accepted)

(E-7,8)

Case 3: δKP ≤ 0: p = 0:

Adj = 1 + zu,2(FN)
ρ

1.96
(excess emissions not accepted),

(E-9)

Base Year Level

Committed Level = 1

Confidence 
1 - α

1+ ρcrit

Adjustment Adj
(Case 2)

( )1 zu,2 FN 1.96

ρ+

x1

tt1

X

t2

x2

Fig. 5 Illustration of the GSC #1 concept (ρ1 = ρ2) with the help of the standard normal probability
density function. This allows the confidence (1 − α) to be specified via FN that a country’s true,
but unknown, emissions comply with its Kyoto emissions target. Depending on whether or not
excess emissions are accepted and favorable compliance conditions exist a priori, three cases are
distinguished. Here, Case 2 is shown. Given an uncertainty of ρ%, this case requires a country’s
emissions estimate to be adjusted at t2 upward if we want to be (1 − α)% confident that its true
emissions do not exceed its KT (here referred to as 1) by more than ρcrit%. Emission reduction:
δKP > 0; emission limitation: δKP ≤ 0
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where p specifies the accepted (fractional) amount by which
true emissions can exceed target emissions commitments;
ρ/1.96 is the standard deviation; FN the standardized cumu-
lative normal distribution; zu,2 the standardized accepted up-
per (u) emissions limit at t2; ρcrit the CRU introduced in
Section 3.1; and Adj the resulting upward adjustment of the
country’s emissions estimate relative to its KT (i.e., de facto
an emission reduction by this amount more than the country’s
commitment in order to remain in compliance with that com-
mitment).

Result: The numerical result is given by Table 8 (see also Table E-1 in
SOM_Math and worksheet GSC_I 1a in SOM_Num).

Table 8 lists adjustment (Adj) values as a result of applying Eq. E-7 (Case 1),
Eq. E-8 (Case 2) and Eq. E-9 (Case 3). They specify the required upward adjustment
of the country’s emissions estimate or, equivalently, the de facto emission reduc-
tion by this amount more than the country’s commitment, in order to remain in
compliance with that commitment. For any given δKP value (thus, ρcrit value; see
Eq. A-6 in Section 3.1), inventory uncertainty (ρ) is treated as parameter as well
as the confidence (1 − α) that true emissions do not exceed (overshoot) target
emissions by more than p = δcrit (Cases 1 and 2: this value for p ensures that, relative
to committed target emissions, base year emissions are not exceeded) and p = 0
(Case 3: excess emissions are not accepted in the case of emission limitation). The
confidence (1 − α) is specified to be 0.9, 0.7, and 0.5. The table shows that the GSC
#1 concept is not easy to handle because it requires strict enforcement under the KP.
Emission reduction (δKP > 0) under the GSC #1 concept behaves mirror-inverted to
the Und concept as a consequence of non-uniform emission reduction commitments:
varying δKP while keeping the relative uncertainty ρ and the confidence (1 − α)
constant exhibits that Annex B countries that must comply with a large δKP (they
exhibit a small Adj) are better off than countries that must comply with a small δKP

(they exhibit a large Adj). (See, e.g., Adj values in red for ρ = 15% and 1 − α = 0.9.)
However, this is only true if adjustments must be compensated for by additional
emission reductions (undershooting mode) and if they are not misused by policy and
decision makers just for establishing a country comparison in terms of confidence
(confidence mode) that does not result in a compulsory undershooting. In the latter
case, countries that must comply with a small δKP (they exhibit a large Adj) are better
off than countries that must comply with a large δKP (they exhibit a small Adj). This
situation would not be in line with the spirit of the KP.

3.6 GSC #2 concept

GSC #2 refers to the second of the two concepts that Gillenwater et al. presented in
2007. In contrast to GSC #1, their second concept also accounts for the uncertainty
in the emission estimates in the base year when assessing compliance with countries’
commitments in the commitment year. The GSC #2 concept requires confidence that,
when countries report emissions inventories that are nominally in agreement with
their commitments under the Protocol, emissions have actually been reduced by an
amount equal to the difference in emissions between base year and commitment
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Table 8 The GSC #1 concept (Eq. E-7 [Case 1: green fields; here, the Adj<1 values have not been set
to 1], Eq. E-8 [Case 2: orange fields], and Eq. E-9 [Case 3: red fields]) applied to Annex B countries

Country KP CRU Adjustment factor Adj If the GSC #1 concept had
group commit. (absolute) for been applied

δKP
a ρcrit 1 − α = ρ =

% % 1 2.5% 7.5% 15% 30%

1a–d 8.0 8.7 1.0 Case 1 (green-colored area):

0.9 0.935 0.965 1.010 1.100 p = δcrit Adj ≤ 1: Favorable

0.7 0.926 0.938 0.957 0.994 compliance conditions; no need

0.5 0.920 0.920 0.920 0.920 for an adjustment (Adj can be
2 7.0 7.5 1.0 set to 1).

0.9 0.945 0.976 1.021 1.112 Case 2 (orange-colored area):

0.7 0.936 0.949 0.967 1.005 p = δcrit, Adj > 1:

0.5 0.930 0.930 0.930 0.930 The greater the ρ, the
3a–c 6.0 6.4 1.0 uncertainty surrounding the

0.9 0.955 0.986 1.032 1.124 emissions inventory estimate,

0.7 0.946 0.959 0.978 1.015 or the greater (1 − α), the

0.5 0.940 0.940 0.940 0.940 degree of confidence that is
4 5.0 5.3 1.0 required, the greater the

0.9 0.966 0.997 1.043 1.136 adjustment Adj. However,

0.7 0.956 0.969 0.988 1.026 the smaller δKP the greater

0.5 0.950 0.950 0.950 0.950 the adjustment Adj to keep
– 4.0 4.2 1.0 the confidence(1 − α) at a

0.9 0.976 1.007 1.054 1.148 constant level (see, e.g., Adj

0.7 0.966 0.979 0.999 1.037 values for ρ = 15% and

0.5 0.960 0.960 0.960 0.960 1 − α = 0.9). As a
– 3.0 3.1 1.0 consequence, countries that

0.9 0.986 1.018 1.065 1.160 must comply with a large δKP

0.7 0.976 0.989 1.009 1.048 (they exhibit a small Adj) are

0.5 0.970 0.970 0.970 0.970 better off than countries
– 2.0 2.0 1.0 that must comply with a small

0.9 0.996 1.028 1.076 1.172 δKP (they exhibit a large Adj).

0.7 0.987 1.000 1.019 1.059 This is only true if adjustments

0.5 0.980 0.980 0.980 0.980 must be compensated for by
– 1.0 1.0 1.0 additional emission reductions

0.9 1.006 1.039 1.087 1.184 (undershooting mode).

0.7 0.997 1.010 1.030 1.069 However, the opposite is true

0.5 0.990 0.990 0.990 0.990 if this compensation is not
compulsory and adjustments
are only used to establish a
country comparison
in terms of confidence
(confidence mode) without
compulsory undershooting. In
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Table 8 (continued)

Country KP CRU Adjustment factor Adj If the GSC #1 concept had
group commit. (absolute) for been applied

δKP
a ρcrit 1 − α = ρ =

% % 1 2.5% 7.5% 15% 30%

the latter case countries that
must comply with a small δKP

(they exhibit a large Adj) are
better off than countries that
must comply with a large δKP

(they exhibit a small Adj).

5 0.0 0.0 1.0 Case 3 (red-colored area): p = 0,

0.9 1.016 1.049 1.098 1.196 Adj ≥ 1:

0.7 1.007 1.020 1.040 1.080 The fractional factor p which

0.5 1.000 1.000 1.000 1.000 allows true emissions to exceed
6 −1.0 1.0 1.0 target emissions commitments

0.9 1.016 1.049 1.098 1.196 is unconditionally set to 0.

0.7 1.007 1.020 1.040 1.080 No excess emissions, that is,

0.5 1.000 1.000 1.000 1.000 additional emission increases are
– −2.0 2.0 1.0 accepted. As a consequence, all

0.9 1.016 1.049 1.098 1.196 countries exhibit identical

0.7 1.007 1.020 1.040 1.080 adjustments Adj.

0.5 1.000 1.000 1.000 1.000
– −3.0 2.9 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
– −4.0 3.8 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
– −5.0 4.8 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
– −6.0 5.7 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
– −7.0 6.5 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
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Table 8 (continued)

Country KP CRU Adjustment factor Adj If the GSC #1 concept had
group commit. (absolute) for been applied

δKP
a ρcrit 1 − α = ρ =

% % 1 2.5% 7.5% 15% 30%

7 −8.0 7.4 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
– −9.0 8.3 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000
8 −10.0 9.1 1.0

0.9 1.016 1.049 1.098 1.196

0.7 1.007 1.020 1.040 1.080

0.5 1.000 1.000 1.000 1.000

The table lists the required adjustments Adj for all Annex B countries, where the confidence (1 −
α) that true emissions do not exceed (overshoot) target emissions by more than p = δcrit (Cases
1 and 2) and p = 0 (Case 3) is specified to be 0.9, 0.7, and 0.5. In the last column, we assess the
hypothetical situation that the GSC #1 concept was applied prior to/during negotiation of the KP.
Note the potentially unfavorable situation in Case 2, which arises when δKP varies while ρ and (1 − α)
are kept constant
aThe countries’ emission limitation and reduction commitments under the KP are expressed with
the help of δKP, the normalized change in emissions between t1 and t2: δKP > 0—emission reduction;
δKP ≤ 0—emission limitation

year (i.e., estimated emission reductions should not be “off” by more than a certain
amount). That is, GSC #2 concept considers a relative upward adjustment that seeks
to attain a reasonable level of confidence that countries have actually achieved the
emission reductions, measured relative to the base-year emissions stated in their
commitments under the KP, and that they are in compliance. Ultimately, countries
must reduce their emissions in the commitment year by the amount of their upward
adjustment to remain in compliance.

Starting Point: Annex B countries comply with their emission limitation or reduc-
tion commitments under the KP.10

Assumptions: (1) It is accepted a priori that true emission reductions (increases)
fall below (above) the committed level of reductions (in-
creases) by some fractional or percentage amount (p or p%,
respectively).

(2) The relative uncertainty (ρ) of a country’s net emissions is
symmetrical and does not change over time, that is, ρ1 =
ρ2(:= ρ).

(3) The probability distributions for estimated emissions and
emission changes are normal, and the shape of the emissions
and emission change probability distributions for each country
do not change significantly, as emissions change.
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Systems View: Intra-systems view: correlation of uncertainty over time matters.
Question: Can we attain a reasonable level of confidence that countries will

have actually achieved the emission changes, measured relative to
base year emissions, stated in their commitments under the KP
and that they are in compliance? That is: (1) Would we consider it
acceptable if true emission reductions (increases) fall below (above)
the committed level of reductions (increases) by some fractional
or percentage amount? (2) How much is that amount? (3) How
confident do we want to be in our result?

Approach: Statistical (see Fig. 6).
Answer: Depending on whether or not diminished reductions (additional

increases) are accepted and favorable compliance conditions exist a
priori, the modified GSC #2 concept of Gillenwater et al. comprises
four cases (see Fig. 6). The complete answer is given by (see
SOM_Math: Appendix F for the equations mentioned below)

Cases 1 and 2: δKP > 0: p = 0.1:

Adj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2(1 − ν)

zu,2(FN)ρ

1.96 ρcrit
≤ 0.1

diminished reduction
accepted

for

1−
(

1−2(1−ν)
zu,2(FN)ρ

1.96 ρcrit

)
δKP

1 − 0.9δKP

2(1−ν)
zu,2(FN)ρ

1.96 ρcrit
>0.1

diminished reduction
accepted

(F-7,8)

Case 3: δKP = 0: p = 0:

Adj = 1
(

additional increase
not accepted

)
(F-9)

Case 4: δKP < 0: p = 0:

Adj =
1 −

(
1 + 2(1 − ν)

zu,2(FN)ρ

1.96 ρcrit

)
δKP

1 − δKP

(
additional increase

not accepted

)
,

(F-10)

where p specifies the accepted (fractional) amount by which true
emission reductions (increases) can fall below (above) the com-
mitted level of reductions (increases); ν approximates the net
(effective) correlation between the absolute uncertainties ε1 and ε2

(cf. Section 3.3); and the other quantities are as explained above for
the GSC #1 concept.

Result: The numerical result is given by Table 9 (see also Table F-1 in
SOM_Math and worksheet GSC_II 2a in SOM_Num).
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Base Year Level

Committed Level

Confidence 
1 - α

Adjustment Adj
(Case 2)

Committed Reduction = 1 

( )1 zu,2 FN 1.96

ρ12−

1 p−

Accepted Diminishment

x1

tt1

X

t2

x2

Fig. 6 Illustration of the GSC #2 concept (ρ1 = ρ2 and ρ12 = 2(1 − ν)ρ/ρcrit with ρcrit 	= 0) with the
help of the standard normal probability density function. This allows the confidence (1 − α) to be
specified via FN that a country’s true, but unknown, emissions change complies with its committed
change. Depending on whether or not diminished reductions (additional increases) are accepted and
favorable compliance conditions exist a priori, four cases are distinguished. Here, Case 2 is shown:
Given an uncertainty of ρ%, this case requires a country’s emissions estimate to be adjusted at t2
upward if we want to be (1 − α)% confident its true emission reduction equals at least (100 − p)%
of the committed reduction (here referred to as 1). Emission reduction: δKP > 0; emission limitation:
δKP ≤ 0

Table 9 lists adjustment (Adj) values as a result of applying Eq. F-7 (Case 1),
Eq. F-8 (Case 2), and Eqs. F-9 and F-10 (Cases 3 and 4). They specify—based on
the country’s reported emissions change between base year and commitment year—
the required adjustment of the country’s emissions estimate in the commitment year
or, equivalently, the de facto emission reduction by this amount over and above the
country’s commitment to remain in compliance with commitments. For any given
δKP value (thus, ρcrit value; see Eq. A-6 in Section 3.1), inventory uncertainty (ρ) is
treated as parameter as well as the confidence (1 − α) that true emission reductions
(increases) will not fall below (above) the committed level of reductions (increases)
by more than p = 0.1 (Cases 1 and 2: arbitrary choice of p) and p = 0 (Cases 3 and 4:
additional emission increases are not accepted in the case of emission limitation).
The confidence (1 − α) is specified to be 0.9, 0.7, and 0.5. The correlation (ν) is
0.75 (as in Section 3.3). The table shows that the GSC #2 concept is not easy to
handle because it also requires strict enforcement under the KP. Emission reduction
(δKP > 0) under the GSC #2 concept behaves, as under the GSC #1 concept, mirror-
inverted to the Und concept as a consequence of non-uniform emission reduction
commitments. That is, the GSC #2 concept would not run counter to the spirit of the
KP if it were applied in the undershooting mode (adjustments must be compensated
for by additional emission reductions). But it must be mentioned that, for the given
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Table 9 The GSC #2 concept (Eq. F-7 [Case 1: green fields; here, the Adj < 1 values have not been
set to 1], Eq. F-8 [Case 2: orange fields], and Eqs. F-9 and F-10 [Cases 3 and 4: red fields]) applied to
Annex B countries

Country KP CRU Adjustment factor Adj If the GSC #2 concept had
group commit. (absolute) for been applied

δKP
a δcrit 1 − α = ρ =

% % 1 2.5% 7.5% 15% 30%

1a–d 8.0 8.7 1.0 Case 1 (green-colored area):

0.9 0.999 1.016 1.040 1.089 p = 0.1, Adj ≤ 1: Favorable

0.7 0.995 1.001 1.011 1.031 compliance conditions;

0.5 0.991 0.991 0.991 0.991 no need for an adjustment
2 7.0 7.5 1.0 (Adj can be set to 1).

0.9 1.001 1.017 1.041 1.090 Case 2 (orange-colored area):

0.7 0.996 1.002 1.012 1.032 p=0.1, Adj>1: The greater

0.5 0.993 0.993 0.993 0.993 the ρ, the uncertainty
3a–c 6.0 6.4 1.0 surrounding the emissions

0.9 1.002 1.018 1.042 1.091 inventory estimate, or the

0.7 0.997 1.004 1.014 1.034 greater (1−α) the degree of

0.5 0.994 0.994 0.994 0.994 confidence that is required,
4 5.0 5.3 1.0 the greater the adjustment

0.9 1.003 1.019 1.044 1.092 Adj. However, the smaller

0.7 0.998 1.005 1.015 1.035 the δKP, the greater the

0.5 0.995 0.995 0.995 0.995 adjustment Adj to keep
– 4.0 4.2 1.0 the confidence (1−α) at a

0.9 1.004 1.020 1.045 1.094 constant level (see, e.g.,

0.7 0.999 1.006 1.016 1.036 Adj values for ρ=15%

0.5 0.996 0.996 0.996 0.996 and 1−α=0.9). As a
– 3.0 3.1 1.0 consequence, countries that

0.9 1.005 1.021 1.046 1.095 must comply with a large

0.7 1.000 1.007 1.017 1.037 δKP (they exhibit a small

0.5 0.997 0.997 0.997 0.997 Adj) are better off than
– 2.0 2.0 1.0 countries that must comply

0.9 1.006 1.022 1.047 1.096 with a small δKP (they

0.7 1.001 1.008 1.018 1.038 exhibit a large Adj). This

0.5 0.998 0.998 0.998 0.998 is only true if adjustments
– 1.0 1.0 1.0 must be compensated

0.9 1.007 1.023 1.048 1.097 for by additional emission

0.7 1.002 1.009 1.019 1.039 reductions (undershooting

0.5 0.999 0.999 0.999 0.999 mode). But it must be
mentioned that, for the
given set of parameters
(notably, p = 0.1 and ν =
0.75), the span between
smallest and largest Adj
values is negligible.
However, the opposite is
true if this compensation is
not compulsory and adjustments
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Table 9 (continued)

Country KP CRU Adjustment factor Adj If the GSC #2 concept had
group commit. (absolute) for been applied

δKP
a δcrit 1 − α = ρ =

% % 1 2.5% 7.5% 15% 30%

are only used to establish
a country comparison
in terms of confidence (confi-
dence mode) without compul-
sory undershooting. In the latter
case countries that must comply
with a small δKP (they exhibit
a large Adj) are better off than
countries that must comply with a
large δKP (they exhibit a small Adj).

5 0.0 0.0 1.0 Cases 3 and 4 (red-colored area):

0.9 1.000 1.000 1.000 1.000 p = 0, Adj ≥ 1:

0.7 1.000 1.000 1.000 1.000 The fractional factor p which

0.5 1.000 1.000 1.000 1.000 allows true emission increases to
6 −1.0 1.0 1.0 fall above the committed level

0.9 1.008 1.025 1.049 1.098 of increases is unconditionally

0.7 1.003 1.010 1.020 1.040 set to 0. No excess emissions,

0.5 1.000 1.000 1.000 1.000 that is, additional emission
– −2.0 2.0 1.0 increases, are accepted. As a

0.9 1.008 1.025 1.049 1.098 consequence, all countries exhibit

0.7 1.003 1.010 1.020 1.040 identical adjustments Adj.

0.5 1.000 1.000 1.000 1.000
– −3.0 2.9 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
– −4.0 3.8 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
– −5.0 4.8 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
– −6.0 5.7 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
– −7.0 6.5 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
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Table 9 (continued)

Country KP CRU Adjustment factor Adj If the GSC #2 concept had
group commit. (absolute) for been applied

δKP
a δcrit 1 − α = ρ =

% % 1 2.5% 7.5% 15% 30%

7 −8.0 7.4 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
– −9.0 8.3 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000
8 −10.0 9.1 1.0

0.9 1.008 1.025 1.049 1.098

0.7 1.003 1.010 1.020 1.040

0.5 1.000 1.000 1.000 1.000

The table lists the required adjustments Adj for all Annex B countries, where the confidence (1 − α)
that true emission reductions (increases) will not fall below (above) the committed level of reductions
(increases) by more than p = 0.1 (Cases 1 and 2) and p = 0 (Cases 3 and 4) is specified to be 0.9, 0.7,
and 0.5. The correlation ν is 0.75 (as in Section 3.3). In the last column, we assess the hypothetical
situation that the GSC #2 concept was applied prior to/during negotiation of the KP. Note the
potentially unfavorable situation in Case 2, which arises when δKP varies while ρ and (1 − α) are
kept constant. However, for the given set of parameters (notably, p = 0.1 and ν = 0.75) the span
between the smallest and largest Adj values is negligible
aThe countries’ emission limitation and reduction commitments under the KP are expressed with
the help of δKP, the normalized change in emissions between t1 and t2: δKP > 0—emission reduction;
δKP ≤ 0—emission limitation

set of parameters (notably, p = 0.1 and ν = 0.75), the span between smallest and
largest Adj values is negligible.

4 Conclusions

We scrutinized six preparatory signal analysis techniques in a comparative mode. The
purpose of this exercise was to provide a basis for discussing how to go about dealing
with uncertainty under the KP and its successor, and which of the technique(s)
to eventually select. It was well known that all the techniques presented prior to
and at the 1st International Workshop on Uncertainty in GHG Inventories perform
differently (see below and Table 10 for a summary), but a rigorous quantitative
and qualitative comparison was still outstanding. In carrying out this comparative
exercise, the aim was to understand the techniques holistically in the context of the
KP (i.e., beyond their technical performance against mere disciplinary criteria). To
this end we specified, for example, the systems view adopted by a technique, the
important assumptions that underlie a technique (and typically go unmentioned),
and whether or not a technique contributes to the ultimate objective of the KP
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Table 10 Summary overview: the six signal analysis techniques and the characteristics of their
numerical responses

Technique Given Numerical response In the spirit
of the KP?a

CRU, VT δKP Dissimilarity between countries committed to No
emission reduction (δKP > 0) and limitation
(δKP ≤ 0) depending on whether more
lenient or stricter KTs are introduced:
δKP > 0: Stricter over more lenient KTs
are favored
δKP ≤ 0: More lenient over stricter KTs
are favored

Und, GSC #2 δKP Risk α ↓⇒ undershooting Und ↑ Yes
Confidence (1-α) ↑⇒ adjustment Adj ↑
For any uncertainty ρ

δKP Uncertainty ρ ↑⇒ undershooting Und ↑ Yes
Uncertainty ρ ↑⇒ adjustment Adj ↑
For any risk α or confidence (1 − α)

ρ and α δKP ↓⇒ undershooting Und ↑ Und: No
(or 1 − α) but modified KT δmod ↓ GSC #2: Yesb

δKP ↓⇒ adjustment Adj ↑ or Adj = const
(but relative to KT)

Und&VT, GSC #1 δKP As under Und and GSC #2 Yes
δKP As under Und and GSC #2 Yes
ρ and α δKP ↓⇒ modified KT δmod Und&VT: Yesc

(or 1 − α) is made ‘detectable’ (according to Cases GSC #1: Yesb

2–4 in Fig. 4)c

δKP ↓⇒ adjustment Adj ↑ or Adj = const
(but relative to KT)

To facilitate comparison, the techniques are grouped into pairs of two. In the last column, we judge
whether or not a technique is in line with the spirit of the KP, mainly determined by the shortfalls
with which the techniques have to cope and which are related to the way the KP has been framed
and implemented politically (see text). Kyoto (emissions) target (KT)
aOn the assumption that accounting GHG emissions bottom-up and top-down do not exhibit biases
bIf applied in the undershooting mode
cStatement does not refer to the case of detectability under emission reduction (δKP ≥ δcrit > 0:
Case 1) which has been left unaltered; it behaves like the Und concept from a numerical point of
view

of reducing anthropogenic GHG emissions to the atmosphere measurably, that is,
above and beyond uncertainty.

The authors of these techniques all agree that uncertainty analysis is a key compo-
nent of GHG emissions analysis even though their perceptions range from (1) using
an investigation-focused approach to uncertainty analysis to improve only inventory
quality to (2) actually applying a technique, or a combination of techniques, to check
compliance. All authors also agree that it makes a big difference to the framing of
emission control policies as to whether or not uncertainty is considered. Of course,
as a consequence of the techniques’ different performance, they can have a different
impact on the design and execution of such policies.

However, as it stands, a single best technique cannot yet be identified (and
most likely, does not exist); the main reason for this is that the techniques suffer
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from shortfalls that are not scientific but are related to the way the KP has been
framed and implemented politically. The two most important shortfalls on the side of
policymaking can be identified as: (1) the overall neglect of uncertainty confronting
experts resulting in agreed emission changes for most Annex B countries being of
the same order of magnitude as the uncertainty that underlies their combined CO2

equivalent emissions; and (2) the introduction of non-uniform emission reduction
commitments from country to country. The techniques manifest these shortfalls
differently.

CRU and VT These two concepts exhibit a dissimilarity between countries com-
mitted to emission reduction (stricter Kyoto emission targets are preferred to the
more lenient ones) and emission limitation (more lenient Kyoto emission targets are
preferred to the stricter ones).

Und and GSC #2 Varying δKP, the normalized emissions change committed to
under the KP, while keeping the relative uncertainty ρ and the risk α constant,
exhibits that under the Und concept countries that must comply with a small δKP

(they exhibit a small modified emission limitation or reduction target δmod) are better
off than countries that must comply with a large δKP (they exhibit a large modified
emission limitation or reduction target δmod). This situation is not in line with the
spirit of the KP. Emission reduction under the GSC #2 concept attempts to avoid
this situation if applied in the undershooting mode. Countries that must comply with
a large δKP (they exhibit a small Adj) are better off than countries that must comply
with a small δKP (they exhibit a large Adj). However, it must be mentioned that,
for the given set of parameters (notably, p = 0.1 and ν = 0.75), the span between
the smallest and largest Adj values is negligible. So far, emission reduction and
emission limitation under the GSC #2 concept have not been treated uniformly. The
GSC #2 concept still lacks clear guidelines as to whether or not, and to what extent,
diminished (enhanced) emission reductions (increases) will be accepted under these
two regimes.

Und&VT and GSC #1 The Und&VT overcomes situations that run (Und concept),
or can run, counter to the spirit of the KP (GSC #1 and GSC #2 concepts if applied
in the confidence mode). By requiring a priori detectable emission reductions, not
limitations (see Cases 2–4 in Fig. 4), the Und&VT concept corrects the Protocol’s
emission limitation or reduction targets through the introduction of an initial or
obligatory undershooting so that a country’s emission signal becomes detectable
before it is permitted to make economic use of its excess emission reductions. This,
de facto, nullifies the politically agreed targets under the KP! However, we do not
consider this a realistic scenario. By way of contrast, the GSC #1 concept builds on
the notion of confidence, not detectability. If applied in the undershooting mode
it would not run counter to the spirit of the KP. Nonetheless, it would enforce
additional emission reductions, which though smaller than those under the Und&VT
concept, would still be considerable and thus also difficult to sell politically. To
date, emission reduction and emission limitation under the GSC #1 are not treated
uniformly. The GSC #1 concept still lacks clear guidelines as to whether or not, and
to what extent, excess emissions will be accepted under these two regimes.

It appears very probable that the first shortfall (emission changes and uncertainty
are of the same order of magnitude) will vanish soon with increasing political
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pressure to adopt a longer-lasting perspective and to achieve greater emission
reductions in the mid to long term. However, we suggest that policymakers revisit the
second shortfall. If non-uniform, country-specific emission reduction commitments
are favored, then these must be decided on the basis of a straightforward rule that
applies equally and rigorously to all countries and should not be determined “off
the cuff.” Only then can scientists finalize their discussion and give meaningful
feedback on which technique(s) to select for the preparatory analysis of uncertainty
in the countries’ emission changes—not least, which numerical advantages and
disadvantages between countries we then have to accept and tolerate. Such an
unsatisfying situation should be overcome in the next round of political “post-Kyoto’
negotiations.” The knowledge to accomplish this is available.
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Abstract The focus of this study is on the preparatory detection of uncertain
greenhouse gas (GHG) emission changes (also termed emission signals) under the
Kyoto Protocol. Preparatory signal detection is a measure that should be taken prior
to/during negotiation of the Protocol. It allows the ranking of countries under the
Protocol according to their realized versus their agreed emission changes and in
terms of both certainty and credibility. Controlling GHGs is affected by uncertainty
and may be costly. Thus, knowing whether each nation is doing its part is in the
public interest. At present, however, countries to the United Nations Framework
Convention on Climate Change (UNFCCC) are obliged to include in the reporting
of their annual inventories direct or alternative estimates of the uncertainty associ-
ated with these, consistent with the Intergovernmental Panel on Climate Change’s
(IPCC) good practice guidance reports. As a consequence, inventory uncertainty is
monitored, but not regulated, under the Kyoto Protocol. Although uncertainties are
becoming increasingly available, monitored emissions and uncertainties are still dealt
with separately. In our study we analyze estimates of both emission changes and
uncertainties to advance the evaluation of countries and their performance under
the Protocol. Our analysis allows supply and demand of emissions credits to be
examined in consideration of uncertainty. For the purpose of our exercise, we make
use of the Undershooting and Verification Time concept described by Jonas et al.
(Clim Change doi:10.1007/s10584-010-9914-6, 2010).
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1 Introduction

Past industrial development has resulted in an increase in concentrations of green-
house gases (GHG) in the atmosphere (Canadell et al. 2007), and this is believed to
be the major reason for the climate change observed today. The Kyoto Protocol to
the United Nations Framework Convention on Climate Change (UNFCCC) aims to
reduce the magnitude of the impacts resulting from climate change, and the impacts
themselves. The Protocol stipulates accounting for and reporting of GHG emissions
at the scale of countries in order to track progress and keep emissions below agreed
limits.

To inventory GHG emissions, the Intergovernmental Panel on Climate Change
(IPCC) developed standardized guidelines for national agencies to follow (IPCC
1997); they are supported by a software program (IPCC 1998). It is recommended
that these tools are used when national GHG inventories are being conducted.
However, as shown by Bun et al. (2010), these are too general and in many cases too
simplified to reflect reality, resulting in a GHG inventory that is perceptibly different
from “the truth.” This inaccuracy adds to the inventory’s inherent uncertainty,
which results from imprecision. The greater the uncertainty, however, the lower the
credibility of the inventory results is, thus lowering the credibility needed to use
inventory results as a basis for emission allocations that can be traded.

Different concepts exist to assess GHG emission changes in terms of uncertainty
(Gillenwater 2004; Jonas et al. 2004; Nahorski et al. 2007; Jonas et al. 2010). In
our study we make use of the Undershooting and Verification Time (Und&VT)
concept of Jonas et al. (2010) to investigate the potential supply of and demand for
emission allocations, and we assume an emissions market that considers uncertainty.
The Und&VT concept has been developed to rank countries under the Protocol
according to their realized versus agreed emission changes and in terms of both
certainty and credibility. Under commitment conditions, this concept requires that
a country undershoot its true emission limitation or reduction commitment by a
certain amount so that the risk of overshooting it is limited. Although true emissions
are unknown—thus, also the targets derived from them—the concept allows the
aforementioned risk to be grasped (Jonas et al. 2010).

We advance the monitoring of GHG emissions and uncertainties that are reported
annually by signatory countries to the Kyoto Protocol (so-called Annex B countries)
by jointly evaluating their emission changes and uncertainties. This combined evalua-
tion allows countries’ credibility as emission sellers to be assessed. Trading emission
credits is believed to control GHG emissions, a costly exercise that is affected by
uncertainty. Thus, knowing whether each nation is doing its part is in the public
interest.

Here, we apply the Und&VT concept in a monitoring mode, that is, with reference
to linear path emission targets between base year and commitment year (see Hamal
and Jonas 2008). In our study we examine emissions for the period 1990–2004
(i.e., the emission reduction efforts of Annex B countries with reference to their
linear emission targets as of 2004). As a result of applying the Und&VT concept,
GHG emissions that are required for meeting and undershooting these targets
can be derived. Undershooting reduces the risk that the countries’ true emissions
exceed their linear path emission targets (true emission targets) in 2004. Analysis of
time series for the period (1990–2004) allows trends to be detected and short-term
projections into the future to be made.
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Section 2 of our study briefly recalls the mathematical background of the
Und&VT concept and how it is applied. Section 3 analyzes and compares the
countries’ emissions estimates with and without uncertainty. The analysis of time
series of GHG emissions and projected trends for the near future are presented in
Section 4.

2 Methodology

The idea of the Und&VT concept is to apply undershooting which helps to reduce
the risk that countries’ true (but unknown) emissions in the commitment year/period
exceed their (true) Kyoto target. This requires undershooting of the latter. In
this way a new, modified target is calculated which falls below the official Kyoto
target. By meeting the modified target, the country reduces the aforementioned
risk of unintended overshooting (see Fig. 3 in Jonas et al. 2010). The introduced
undershooting encompasses an initial or obligatory undershooting, where necessary,
to make sure that the countries’ emission signals become detectable (i.e., that they
exceed the emissions’ total uncertainty at a given point in time: here, at the time
of commitment) before the countries are permitted to make economic use of their
excess emission reductions.

Assumptions made in this method are:

• Uncertainties at base year (BY) and commitment year (CY) are given in the
form of intervals, which take into account that a difference might exist between
the true but unknown net emissions and their best estimates;

• Only the relative uncertainty ρ of a country’s net emissions in the commitment
year is used.

We make use of the critical emission reduction/limitation target δcrit, which
depends on relative uncertainty:

δcrit =

⎧
⎪⎪⎨

⎪⎪⎩

ρ

1 + ρ
, for ECY < EBY (δKP > 0) ;

− ρ

1 − ρ
, for ECY ≥ EBY (δKP ≤ 0) ,

(1)

where δKP is the fractional emission reduction/limitation agreed under the Kyoto
Protocol (reduction: δKP > 0; limitation: δKP ≤ 0); and EBY and ECY are the emis-
sions and agreed emission levels, respectively, referring to base year and commitment
year. δcrit indicates the smallest change in emissions that can be detected instead of
uncertainty. Emission uncertainty in the base year is not considered here (see Fig. 1,
Jonas et al. 2010).

With the help of δKP and δcrit, four cases are distinguished depending on the sign
of δKP and how δcrit and δKP relate to each other (see Fig. 4, Jonas et al. 2010):

• Case 1—δKP > 0, δKP ≥ δcrit;
• Case 2—δKP > 0, δKP < δcrit;
• Case 3—δKP ≤ 0, δKP > δcrit;
• Case 4—δKP ≤ 0, δKP ≤ δcrit.
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All these cases differ as to how the modified target is derived, which depends on
the Kyoto target, the uncertainty involved, and the agreed level of risk countries are
willing to accept. The latter is counterbalanced by ways of undershooting (U). Thus,
the modified emissions limitation/reduction target (δmod) is calculated as follows, if
the initial or obligatory undershooting (Ũ) is addressed separately:

δ mod = δKP + U + Ũ . (2)

Equation 2 is general and can be applied in all four cases. These differ, however,
as to how the undershooting U and the initial or obligatory undershooting Ũ are
calculated. U and Ũ depend on the Kyoto target δKP, relative uncertainty ρ, the
critical emissions target δcrit, and the aforementioned risk which is denoted by α. For
example, in Case 1, the modified target is given by:

δ mod = δKP + U = δKP + (1 − δKP) · (1 − 2α) ρ

1 + (1 − 2α) ρ
, (3)

Where Ũ is zero, and α is the risk that a country’s (true) emissions in the commitment
year/period exceed its (true) target emissions (0 < α ≤ 0, 5). The undershooting U
increases if the risk α is to decrease. Hence, if a country’s reported emissions meet
δmod rather than δKP, the risk is α that the country’s true (but unknown) emissions
exceed its true (but unknown) Kyoto target. Nahorski et al. (2010) suggest using
a risk of greater than 0.3, perhaps even as great as 0.4. Nevertheless, in our study
we use 0.1 as a standard (if not otherwise stated) so as to analyze a greater range
of possible values. Current compliance rules do not consider uncertainty, let alone
risk. However, this situation might change, with uncertainty being considered im-
portant. Then, any risk 0, 1 ≤ α ≤ 0, 5 falls in between the upper case of “no under-
shooting” (α = 0.5) and our lower case of an undershooting that satisfies α = 0, 1.

In a next step, required and actual emissions are compared. The maximum
emissions level that exempts a country from buying emissions credits from another
country is calculated as:

Er,y = EBY ·
(

1 − δ mod
y − BY

CY − BY

)
, (4)

where EBY are the country’s base-year emissions; Er,y are its emissions required
to satisfy a certain risk 0, 1 ≤ α ≤ 0, 5 at a given year y between base year and
commitment year (i.e., Er,y fall below the linear emissions path); and the factor
(y − BY)/(CY − BY) is used to scale the emissions’ path between base year and
commitment year linearly. That is, here, the (standard) assumption made is that
countries approach their Kyoto targets on a linear path.

A distance-to-target indicator (DTI) is introduced to measure the (normalized)
difference between actual emissions E and required emissions Er,y:

DT I =
(

E − EBY ·
(

1 − δKP
y − BY

CY − BY

))/
EBY (5)

while reference emissions follow a linear path between base year (EBY) and commit-
ment year (EBY · (1 − δKP)). That is, the DTI can be used to analyze a country’s
position relative to its linear reference path toward its target under the Kyoto
Protocol. If the DTI is positive, the country’s actual emissions exceed allowed levels,
and vice versa.
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A DTI that considers uncertainty is given by:

DT Ir =
(

Er,y − EBY ·
(

1 − δKP
y − BY

CY − BY

))/
EBY . (6)

This indicates the undershooting that a country must fulfill in order to comply with its
intermediate commitment under the condition that uncertainty is taken into account.
Analyzing the DT Ir for all Annex B countries and their changes over time allows
all-embracing conclusions to be drawn and even 1st-order projections about the
emission trading situation in the future to be made.

Figure 1 shows the dependence of the modified target δmod on risk α for a country
with a limitation target of 0% (e.g., New Zealand, Russia, and Ukraine) for four
different levels of relative uncertainty. Here, Case 3 applies for all uncertainty levels,
as δcrit is always below 0. The modified target δmod, which expresses the magnitude of
undershooting to satisfy risk α, decreases monotonously until α reaches its accepted
maximum of 0.5. At this point the modified target δmod equals the country’s official
(here) limitation target δKP. Such graphs are useful when choosing and agreeing on
accepted levels of risk. For a given relative uncertainty ρ in the reporting they display
the relative change in the modified target that corresponds to a reduction in risk while
the official target δKP is given (here: δKP = 0).

Figures 2 and 3 display example plots of undershooting for countries that have
agreed to emission reduction and limitation. The United Kingdom (UK) agreed to
a reduction of 12.5% under the burden sharing of the European Union (EU) and
reported, according to the EEA (2006), a (total) uncertainty of 14% (Tier 1) for the
combined emissions of their Kyoto GHGs. Sweden agreed to a limitation target of
4% under the burden sharing of the EU and reported a (total) uncertainty of 5.8%
(Tier 1) for all Kyoto GHGs according to EEA 2006), respectively. Figures 2 and 3
display these countries in the context of required undershooting or the DT Ir for
different levels of uncertainty and risk α. Critical relative uncertainty (CRU) (here,
the dashed line) is introduced to identify the uncertainty at which cases switch; hence
another case applies and another formula is used for deriving the required under-
shooting and the DT Ir becomes more, or less, sensitive to a change in uncertainty.
Each point on the plot represents a combination of relative uncertainty (x-axis)

Fig. 1 Dependence of the
modified target δmod on risk α
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Fig. 2 Dependence of
required DT Ir on relative
uncertainty for the example
of the UK (rcrit = 14,3% for
Kyoto target δKP = 12,5%)
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and required undershooting (y-axis). Points falling between any two lines shown
in the figure refer to a situation when emission reduction is sufficient for current
levels of relative uncertainty and risk as represented by the upper line; however, the
emission reduction is not sufficient for current levels of relative uncertainty and risk
as represented by the lower line. For instance, according to Fig. 2, UK emissions do
not meet the required reductions to become detectable at a risk level well below 0.3
(i.e., total relative uncertainty is still greater than the reported emissions change in
absolute terms). That is, although the country’s DTI is negative (represented by black
point), the UK can only sell its excess emission reductions as allowances with a risk of
α ≈ 0.3 and greater, and not under a risk of α = 0.2 and smaller. In this example, the
UK needs to either reduce its emissions further (the black point moves downward) or
decrease its total uncertainty (the black point moves to the left). Figures 2 and 3 show
that neither of the countries that reported a negative DTI in 2004 can be considered
as a highly credible emission sellers with α in the order of 0.1 and smaller), as their
uncertainties were too large for the reported emissions.

Fig. 3 Dependence of
required DT Ir on the reported
uncertainty for Sweden (rcrit =
3.85% for Kyoto target δKP =
4%)
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3 National inventory results in consideration of uncertainty

The methodology described is applied for the emission change-uncertainty analysis
of national GHG inventories reported by Annex B countries to the Kyoto Protocol.
Calculations were carried out for the period 2002–2004. Emissions (total CO2 equiv-
alent excluding LULUCF) and uncertainty estimates were extracted from GHG
inventory reports for all the countries investigated, in particular the EU (EEA
2006), the USA (USEPA 2006), Russia (Roshydromet 2006) and Ukraine (Arena-
Eco 2006) and others. However, some countries (Estonia, Lithuania, Luxembourg,
Portugal, and Romania) did not report uncertainties. Therefore, we assumed a
relative uncertainty of 10% for the total GHG emissions of these countries.

Figure 4 displays both the DTI and the required DT Ir for some representative
Annex B countries. These are calculated in accordance with the Und&VT concept
(with risk α = 10%) for the year 2004. If a country’s DTI is less than its DT Ir, its
emissions fall below the required level and, even taking into account uncertainty,
it can be a good emissions seller. Otherwise, the situation is as described above: the
country must decrease its GHG emissions or the uncertainty underlying its emissions
inventory or buy allowances from another country.

As can be seen from Fig. 4 some of the countries exhibit a positive DTI (i.e., their
emissions exceed the levels agreed under the Protocol). Considering uncertainty in
addition makes the situation even worse for these countries because the DT Ir is, by
definition, negative. (See, e.g., Spain which reports a large uncertainty.) Neverthe-
less, for countries with a small uncertainty (e.g., Japan) the required undershooting
is small.

Most of the New Independent States in Europe, new EU member states, and other
countries exhibit some/considerable undershooting (DT I ≤ DT Ir ≤ 0), meaning
that they are highly credible emission sellers. However, in some cases the situation
is opposite (DT Ir < DT I ≤ 0) (see Fig. 4, France and Sweden) meaning that the
undershooting realized by a country meets its official commitment under the Kyoto
Protocol but not with a risk of 0.1 (and smaller). Assuming that uncertainties are
considered under an emission trading scheme and that all countries participate in
it, such countries would be rated as less credible emission sellers because of the
greater risk that true emissions exceed allowed (here: linear path) targets. That is,
the consideration of uncertainty turns them into potential emission buyers (here,

Fig. 4 Required DT Ir for
current levels of uncertainty
(for risk α = 10%) in
comparison with the actual
DTI (for 2004, in percent,
relative to base year
emissions)

Spain
Canada

USA
Australia

Japan
France

Germany
Sweden
Poland
Russia

Ukraine

–60 –50 –40 –30 –20 –10 0 10 20 30 40

Year 

Required DTI
DTI

Reprinted from the journal 221



Climatic Change (2010) 103:215–225

for α = 0.1) while they would appear as potential emission sellers if uncertainty is
neglected all together.

Countries with DT I ≤ DT Ir ≤ 0 are/continue to stay excellent potential sellers
as, in contrast to countries like France and Sweden, these countries’ emissions are
much lower than their targets.

4 Emission trends analysis

In the previous sections we described the DTI concept and introduced the required
DT Ir. The present section deals with the outlook analysis of emission trading based
on DTI data. We assume that inventory uncertainty, and its associated risk α, are
explicitly accounted for in meeting compliance (see, e.g., Nahorski et al. 2007, 2010),
and that these qualifiers are considered under an emission trading scheme. Here, we
investigate the influence of uncertainty on the trading of emissions for a given risk α

(e.g., 0.1). If a country’s DTI is smaller than the requisite DTI (i.e., its emissions fall
below the agreed level when uncertainty is considered), a country can potentially sell
the amount of emissions:

ECS = EBY · (DT Ir − DT I) , (7)

where ECS—emissions that a country can sell, CO2 equivalent. If a country’s DTI is
greater than the required DT Ir, the country’s emissions exceed the agreed level and
it must buy emission allowances equal to:

EMB = EBY · (DT I − DT Ir) , (8)

where EMB—emissions that country must buy from another country, CO2

equivalents.
As can be seen from Figs. 5 and 6, overall GHG emissions in the Annex B

countries showed a clear tendency to increase. Nevertheless, total GHG emissions
in these countries were still below the Kyoto target in 2004 (see Fig. 5). However,
taking into account the uncertainty of GHG inventories can change the situation
to the opposite: the remaining undershooting of all countries after satisfying the
risk of (here) 0.1 is not big enough to compensate for the emission allocations

Fig. 5 Must-buy (positive)
versus can-sell (negative)
emissions of all Annex B
countries to the Kyoto
Protocol (in Tg CO2-eq; some
countries are resolved
individually and are not
included elsewhere)
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Fig. 6 Must-buy versus
can-sell situation in
consideration of uncertainty,
in Tg CO2 equiv (for risk
α = 10%; some countries are
resolved individually and are
not included elsewhere)
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that countries must buy in order to comply with the required undershooting (which
satisfies α = 0.1). Figure 6 shows that the amounts the Annex B parties need to buy
are more than twice the amounts they can sell in 2004. At the same time Russia
and Ukraine exhibited a significant undershooting so that even after the Und&VT
concept is applied they still can sell much of their emission allowances, but the
amounts of these two countries decrease from year to year.

Figure 5 indicates that the Russia, Ukraine, and the USA are the biggest partic-
ipants in a potential GHG emissions market in which all Annex B countries would
participate. Russia and Ukraine can sell more GHG emissions than the rest of Annex
B countries together. However, this amount has been constantly decreasing since the
late 1990s, while the remaining Annex B countries with DTI < 0 stay at about the
same level. At the same time, countries with a positive DTI, hence those that must
buy emission allowances, in general move away from their targets. Furthermore, the
USA must buy more emissions than the rest of Annex B countries.

The total “can-sell” and “must-buy” values of Fig. 6 are presented in Fig. 7 as
circles and squares, respectively. It can be observed from the figure that “must-buy”
values increased almost linearly since 1990, while the “can-sell” values increased for

Fig. 7 Can-sell versus
must-buy trends and
projections
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a time and then have been increasing since the late 1990s. The reason for this is the
increase in GHG emissions in Russia as the biggest emitter among countries with a
negative DTI, hence the increase in its DTI. The figure also displays trend lines for
these indicators and projections until 2012.

It can be seen that if current trends prevail, the “can-sell” values will decrease
until about 2008 when Russia will switch to being a country with a positive DTI.
At this point the decrease in “can-sell” values will slow down while the increase in
“must-buy” values will speed up.

5 Conclusions

The methodology presented in this paper allows national GHG inventories in an to
be analyzed in an emissions change-uncertainty context rather than in an emissions-
only context. There is a problem of design and implementation of the methodology
for dealing with uncertainty of GHG emissions’ inventory, as considering uncertainty
is provided under the Kyoto Protocol, but the corresponding approach has not been
implemented to date. We analyze emissions in the Annex B countries and their time
series in consideration of uncertainty. Our analysis is based on the Undershooting
and Verification Time concept described by Jonas et al. (2010). Emission inventory
reports of the Annex B parties were used for this analysis. We show that not all of
the countries with negative DTIs are credible emission sellers, as the risk remains
that their emissions exceed allowed levels. Some countries (in particular Russia and
Ukraine) can sell much of their emissions allowances, as GHG emissions in these
countries are far below their Kyoto targets. However, analysis of time series of
GHG emissions shows that overall emissions will continue to increase and exceed
the Kyoto target by far. If the situation does not change, there will be no country
with a negative DTI in the next decade. Hence, emissions in all countries will be
above their Kyoto targets.
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Abstract Methodology and geo-information technology for spatial analysis of
processes of greenhouse gas (GHG) emissions from mobile and stationary sources of
the energy sector at the level of elementary plots are developed. The methodology,
which takes into account the territorial specificity of point, line, and area sources
of emissions, is based on official statistical data surveys. The spatial distribution of
emissions and their structure for the main sectors of the energy sector in the territory
of the Lviv region of Ukraine are analyzed. The relative uncertainties of emission
estimates obtained are calculated using knowledge of the spatial location of emission
sources and following the Tier 1 and Tier 2 approaches of IPCC methodologies.
The sensitivity of total relative uncertainty to change of uncertainties in input data
uncertainties is studied for the biggest emission point sources. A few scenarios of
passing to the alternative energy generation are considered and respective structural
changes in the structure of greenhouse gas emissions are analyzed. An influence of
these structural changes on the total uncertainty of greenhouse gas inventory results
is studied.

1 Introduction

Emission inventories are the main parameters of various climate change models,
atmospheric pollution investigations, and implementation of policy response options
(Pacyna and Graedel 1995). The problems of greenhouse gases inventories and the
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quality of inventory results are especially relevant o the implementation mechanisms
of the Kyoto Protocol. At present, parties to the United Nations Framework on
Climate Change submit annual national inventories for six main greenhouse gases
and are also encouraged to advise on the corresponding uncertainty levels.

For proper implementation of the Kyoto Protocol, greenhouse gas emission values
at the commitment period alone are not sufficient. The quality of these emission
data is also important in terms of verifying whether a country has really coped
with its commitments in carbon trading processes, etc. The first and most important
characteristic of data quality is their uncertainty, which ideally should take into
account all possible errors and knowledge gaps. However, there is relatively little
experience in the assessment and reporting of inventory uncertainties. Countries’
compliance with emission targets cannot be scientifically proved when the emission
reduction achieved is of the same order as, if not greater than, the emission reduction
to which the country has committed. Analysis of compliance and emission trading
rules under the Kyoto Protocol based on uncertainty of emission estimates has been
performed in some recent studies, see Bun et al. (2010), Jonas et al. (2004), Jonas
et al. (2010), Nahorski and Horabik (2010). Indeed, the uncertainties of inventory
data and the problem of reduction of uncertainties are now of great interest in the
scientific community.

Traditional methods of greenhouse gas inventory (used in countries’ National
Inventory Reports) are mainly focused on estimating GHG emissions and absorp-
tions on a country scale. Country-scale inventory results are useful for tracing coun-
tries’ adherence to international agreements, analyzing historical emission change
trends, and grading countries according to their emission levels, etc. On the other
hand it is an advantage for government bodies in all countries to have a tool that
enables them to analyze the separate constituents of the many-sided processes
of greenhouse gas emissions and absorptions and thereby find optimum ways of
solving a number of economic or environment protection problems (Bun et al.
2006). Therefore, when we talk about emissions from the point of view of a single
country, it is important to have knowledge about the spatial distribution of inventory
data and their structure. Analysis of spatial distribution of atmospheric emissions
has been performed in several studies using different approaches (for example, see
Wang et al. 2005; Lindley et al. 1996). Spatial emission data can be useful for:
(1) identifying appropriate land use planning strategies; (2) assessing sources that
are likely to pose the greatest air quality problems and identifying suitable emis-
sion control targets; (3) providing a useful guide to the potential locations of
further air quality monitoring sites (Lindley et al. 1996); (4) in various climate
change models where spatially distributed (gridded) emission data can be com-
pared with top-down inventories of atmospheric emissions, to determine the rel-
evance of activity data used (for more information see Winiwarter et al. 2003;
Horabik and Nahorski 2010). Spatial disaggregation of inventory data can also
be treated as a way of improving data quality, and can thus be used in uncer-
tainty analysis to provide guidelines for the most cost-effective ways of reducing
uncertainty.

In this study, methods to estimate spatially resolved emissions (geo-referenced
cadastres) of the main greenhouse gases using the spatially resolved “bottom-
up” approach are developed. Uncertainty analysis based on knowledge of the
spatial location of emission sources and following the IPCC Tier I and Tier II
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approaches is carried out. Numerical results are obtained for the Lviv region of
Ukraine. The study focuses on the spatial inventory in the energy sector in Ukraine,
which is responsible for more than 80% of the country’s total GHG emissions.
Approaches to identifying the largest sources of greenhouse gas emissions at the
regional level are shown and their contribution to the total uncertainty of inventory
results is analyzed in two ways: by local transition to alternative sources and by
reduction of the uncertainty of emission factors or activity data in given point
sources.

2 Spatial inventory model for energy sector

For climatic models and for analysis of the territorial distribution of total GHG
emissions, it is important to obtain emission values at the level of elementary plots
of the same fairly small area. The spatial inventory approach we introduce has three
main steps:

1. The territory under investigation is split into cells;
2. Statistical activity data are disaggregated between the corresponding grid cells

using information on the geographical location of emission sources (big point
sources can be pinpointed directly, while for area and line sources certain other
assumptions need to be made and parameters with geographic information to be
added); emission factors and other parameters used in the inventory process are
established for each cell (preferable because certain areas or point sources have
their own individual approach to fuel treatment);

3. The emission inventory is carried out for individual grid cells using the
“bottom-up” approach (a “bottom-up” inventory provides emission estimates
for a particular area by multiplying the activity data by appropriate emission
factors).

The main point of the spatial inventory model is that the greenhouse gas inventory
is carried out in turn for each plot following the traditional IPCC methodologies
(IPCC 2006). The formal inventory model in the energy sector is presented in the
following form:

Y =
N∑

n=1

�Yn =
N∑

n=1

M∑

m=1

anm�xnm, (1)

where anm is the emission factor for the m-th activity of the energy sector in the n-th
elementary plot, N is the total number of elementary plots, �xnm is the data for the
m-th anthropogenic activity in the energy sector in the n-th elementary plot, �Yn

is the total inventory results for the n-th elementary plot, Y is the total emission
estimate for the area under investigation. In such a model the input and output data
relate to individual elementary plots and are presented in the form of a distributed
(geo-referenced) database.

According to the traditional IPCC inventory methodology (IPCC 2006) and
taking the specificity of Ukrainian statistics into account (Power 2002; Fuel 2005;
Industry 2005; Statistical 2005) the energy sector is divided into five categories
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of greenhouse gas sources (subsectors) (M = 5 in Eq. 1: (1) fuel treatment and
electricity production (energy industries); (2) residential sector; (3) manufacturing
industries and construction; (4) transport; (5) fuel treatment at other sectors. These
are further divided into subcategories and individual emission sources (for example,
the transport sector consists of road, railway, and off-road transport categories,
and each of them may be expanded to individual emission source groups—buses,
passenger cars, agricultural combines, locomotives, etc.). Subdivision into source
categories is important, as it enables the distinctive features of fossil fuel treatment
to be taken into account within the separate sectors when emission factors are
being established. Moreover, the territorial distribution of emissions from different
anthropogenic activities will differ. For example, in the transport sector emissions
are concentrated in densely populated areas and main roadways, while methane
emissions in agriculture are significant in rural and insignificant in urban areas;
emissions from oil refining are concentrated mainly at refinery sites, etc.

Different emission sources are fully or partially located within the territory of each
individual cell: large and small; mobile and stationary, etc. For the purposes of the
spatial inventory, emission sources are grouped into three main types: line, area, and
large point sources.

To the large point sources belong the large enterprises with significant annual
emissions and occupying a fairly small area, for example, power stations, large indus-
trial objects, refineries, etc. These sites are treated individually and corresponding
activity data and emission factors are clearly defined by the geographical coordinates
of the object. In this case it is important to obtain the activity data information
at the level of each large point source (amount of fossil fuel used, amount of
products manufactured etc.) as well as additional parameters that influence emission
factors, such as the age and efficiency of plant equipment, chemical characteristics
of fuel used, efficiency of pollution control systems, etc. Experience has shown that
appropriate distribution of activity data on fossil fuel consumption in the energy
sector (with the exception of the transport subsector) largely depends on the correct
determination and location of sources on a point-source basis.

To the line emission sources belong sources that spatially have a line shape,
for example, roadways, railroads, pipelines, etc. The spatial modeling of annual
emissions for these is carried out by dividing each line source into segments with
the help of l km × l km grid cells; further, for each segment the activity data and
appropriate emission factors are established and the GHG emissions are calculated.
The algorithms of distribution of general activity data on fossil fuel consumption to
individual road segments differ depending on the subsector type.

Agricultural fields, forests, and oceans belong to area sources of GHG emis-
sions/absorption. The territories in which many small point sources of emissions are
concentrated, for example, urban road networks, households, small boiler plants,
etc., are also included in the area sources. The methods of disaggregating activity
data (which are available at the regional level) to the level of individual area sources
are developed. The common feature of the disaggregation procedures for every type
of area source is that the data are disaggregated using some territorially distributed
surrogate parameters that characterize the intensiveness of a certain activity; for
example, for the agricultural sector these parameters are: rural population distrib-
ution, amount of harvested production, amount of agricultural machinery, area of
land under crop, etc. The ratio F K

A of fuel F R
A used solely in administrative region R
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for a certain activity subsector A in the individual area source K (which is located
within region R) is estimated as follows:

F K
A =

(
F R

A · PK
A

)

PR
A

, (2)

where PK
A, PR

A are values of the surrogate parameter (used to distribute activity data
in subsector A) in area source K, and in region R, respectively. At the level of the
elementary plot, emissions are calculated as a sum of emissions from sources that
are fully or partially located within a certain grid cell. If an area source is located in
more than one cell, then its emissions are disaggregated proportionally to the area
ratio.

For example, in the road transport subsector of the energy sector, the routes
of passenger and cargo transportation (railroads, automobile roads, pipelines, etc.)
are treated as line emission sources. Urban road networks are treated as area
emission sources because of their high density (in cases where the selected grid cell
size does not allow it to be allocated on a line basis). National statistical surveys
contain information on fossil fuels used in road transport by fuel type, as well as
information on vehicle miles traveled by car type and fuel type at the level of
separate administrative regions and cities. These input data are disaggregated to
individual road segments and parts of urban territories, which are formed using
the l km × l km grid. The general approach to distributing the activity data is
to disaggregate them proportionally to the length of road segment (also taking
into account such parameters as road type and average capacity) for line sources
and proportionally to the population in a certain grid cell for area sources. These
parameters are available from digital maps of road networks and digital maps of
settlements (which also contain information on their type and population). To take
full consideration of very intensive traffic in suburban areas of big cities, three-
level buffer zones were introduced around their administrative borders, the width of
which depends on the area of the city. After this, the activity data disaggregating the
emissions were calculated following “top-down” methodology. The total emissions
in the road transport sector were calculated as the sum of cold start emissions and
emissions that occurred when vehicles were operating with hot engines. Addition-
ally the following parameters were considered in emission calculations for each
road segment: ratio of car types, control technology distribution, average speed
depending on road type, amount of cars in different age groups by regions and
cities, etc.

It is desirable that, in inventories, “national” emission factors should be used that
take into account the national peculiarities of fossil fuel in terms of its chemical
characteristics and processing. Also important is the sectoral and spatial disaggre-
gation of emission factors for other greenhouse gases besides carbon dioxide, as
these may differ significantly among subcategories (because of their high dependence
on fuel characteristics, combustion technology, operating and maintenance regimes,
size of equipment, vintage of equipment, emission controls etc. See IPCC 2006). In
this paper IPCC default emission factors were used in the main, with the exception
of several point sources for which “national” emission factors were available. An
uncertainty level for “national” coefficients is, of course, much lower than for the
default values.
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Spatial inventory technology allows all available information on emission factors
at the level of individual emission sources to be used. Experiments regarding total
inventory results and the change in their uncertainty caused by introducing emission
control technologies in a given plant can also be easily carried out. In other words,
spatially resolved inventory is very important when effective measures to emission
mitigation and uncertainty reduction are being planned.

An important feature of such an inventory is that input and output data relate to
elementary plots (i.e., they are not lumped). Presenting results in such a form accom-
modates various regional peculiarities and therefore provides government bodies
with integrated information on the actual territorial distribution of greenhouse gas
sources and absorbers (Bun et al. 2004). Moreover, summing the inventory results
for all elementary plots within the boundaries of a given region will lead to general
inventory results for the region.

3 Forming elementary plots

Before establishing the level of spatial resolution, the level for which the activity
data and emission factors are available should be considered. In Ukraine statistical
activity data relate to administrative regions. For better implementation of high-
resolution inventory it is therefore better to divide each administrative region
(rather than the entire territory under investigation) into elementary plots because:
(1) statistical input data are available for separate regions; (2) further results
could be aggregated for separate administrative units; (3) some specific features
of administrative regions can be accounted for in input data and their uncertainty
levels.

The territory investigated was divided into elementary plots (l × l km grid cells),
which were also limited by the borders of administrative units. Separate objects,
which refer to administrative cities, were formed. The total number of elementary
plots in the region is N = ∑R

r=1 Nr + NM, where N is the total amount of objects; r
is the ordinal number of administrative unit, r = 1, .., R; R is the amount of units;
Nr is the amount of elementary plots in the r-th unit; NM is the number of objects
that refer to administrative cities. A set of all elementary plots in the region V is
a combination of sets of elementary plots at the regional level and objects Vm for

administrative cities V =
[

R⋃
r=1

{vri, i = 1, Nr}
]⋃ {vm, m = 1, NM}.

For example, it is proposed that the territory of the Lviv region of Ukraine
be “cut” into elementary plots of 10 × 10 km. As a result, a set of elementary
plots is formed on the map of Lviv region. The total amount of objects N = 420.
This includes objects of R = 20 administrative districts and NM = 9 objects for
cities.

4 Geo-information technology

The geo-information technology, GeoInventory, has been developed to realize the
algorithms of a spatially referenced greenhouse gas inventory, automate the process
of forming corresponding digital maps, and enable visual analysis of results obtained.
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The technology is based on step-by-step inventory for all elementary plots which
make up the territory under investigation.

For each subsector of the energy sector the programming modules are created
in MapBasic language for GIS MapInfo which realize the models and algorithms of
spatial GHG inventory for the specified by user inventory parameters, such as, the
geographical territory, size of elementary plots, subcategory of economic activity,
level of inventory and other parameters, specific to the given subsector. These
modules use the following input information.

1. Excel tables, unified for each administrative unit, with statistical information
on fuel extraction, treatment, and combustion in individual administrative units
(regions or individual cities). This information is available from official statistical
year-books and national statistical surveys (see, e.g., Power 2002; Fuel 2005;
Industry 2005; Statistical 2005).

2. Statistical reference information, for example, on the current state of gasification
of separate residential areas, population distribution, vehicle miles traveled on
gasoline by individual administrative unit and by car type, etc. Depending on the
kind of information it is, it can be presented as Excel tables or digital maps.

3. Territorially distributed data on net calorific values by fuel type and emission
coefficient for separate activity sectors with reference to the geographical loca-
tion of emission sources.

According to the activity sector selected, MapBasic modules also use a number of
digital maps, which help to geographically allocate the amount of fuel used in individ-
ual grid cells. For example, digital maps of settlement locations with information on
their type and population; road and railway digital maps; land use maps; maps with
the information about gas, oil and coal extraction locations, including information on
the amount of fuel extracted per year, etc.

The implementation of MapBasic modules allows the corresponding resulting
digital map layers to be created. These maps are geographically divided into cells,
each of which contains information about the object’s geographical location, the
sources of emissions fully or partially located within this cell, emission estimates and
structure of emissions by GHG, fuel type, and emission source.

The technology developed also foresees analysis and visualization of the results
obtained from the spatially referenced inventory using thematic maps, 3-D maps,
graphics, and queries.

5 Spatial inventory results

Using the geo-information technology developed on the basis of the spatial GHG
inventory, geo-distributed emission cadastres on the level of elementary plots are
built for the territory of the Lviv region. The total emissions of direct acting
greenhouse gases (CH4, N2 O, CO2) in the energy sector are calculated using the
global warming coefficient. As an example, Fig. 1 presents the thematic map of the
spatial distribution of total emissions in CO2 equivalents in the energy sector of
the Lviv region.

For a better visualization of the spatially referenced emission data, inverse dis-
tance weighted (IDW) interpolation is used. This interpolation takes into account the
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Fig. 1 Thematic map of specific GHG emissions in the energy sector (Lviv region, 2004; tCO2-
eqvivalent/km2)

influence of neighboring grid cells. It gives—especially in the form of 3-D maps—an
immediate indication of the leading emitters. Figure 2 depicts the interpolated GHG
emission estimates for the Lviv region. However, this kind of map may be used only
to derive the general situation regarding the spatial distribution of emission sources.
That is, Fig. 2 shows that the location of emission sources is highly non-uniform in the
Lviv region. More precisely, only one city (Lviv) is responsible almost for one-third
of all emissions in the region (the territory of the Lviv city occupies only 7% of the
territory of the whole region).

The geo-information technology of spatial inventory allows a investigation of the
structure of greenhouse gas emissions by economic activity, by gas, or by fuel type
at the level of elementary plots, administrative units, or the region as a whole. As
an example, Fig. 3 shows the structure of emissions by sector for separate admin-
istrative regions and administrative cities. The main carbon dioxide and methane
emissions occur in the energy industries. The leading greenhouse gas emitters are:
Lviv agglomeration (31.7% of all emissions), Kamjanka-Bus’kiy district (16.5%),
and Boryslav-Drogobych agglomeration (12%). Investments in the energy sector of
these administrative units are needed to mitigate emissions. Emissions in the other
administrative units do not exceed 500 Gg of CO2 equivalent per year.
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Fig. 2 Thematic map with IDW interpolation of CH4, CO2, and N2O emissions in the energy sector
(Lviv region 2004; Mg CO2-eqv./km2)

The consistency of two alternative spatially resolved emission estimates could be
checked with the help of difference maps. Thematic maps can be compiled using
color gradation to pinpoint places where the alternative emission estimates are very
inconsistent.

For example, emissions in the transport sector can be estimated based on fuel
consumption statistics or using the data on vehicle miles traveled. The total GHG
emissions estimates (in CO2 eqv.) based on these alternative input data differ
significantly: for gasoline cars the difference is 6%, for diesel cars 3%, for natural gas
cars, 23%. Comparison of emissions at the level of separate grid cells allows detection
of the territory where the assessments obtained by different methods coincide and
the territory where the assessments are significantly different. Using GIS technology
in each grid cell, the difference in estimates is calculated as follows:

Ui =
∣∣ETier1

G,i − ETier2
G,i

∣∣

ETier1
G,i

· 100% (3)

where Ui is the relative difference between emission estimates based on alternative
data in a grid cell i; ETier1

G,i , ETier2
G,i represent emissions of gas G in cell i, calculated

using the fuel use and mileage statistics, respectively.
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Fig. 3 The structure of GHG emissions by subcategory at the level of administrative regions and
administrative cities (Lviv region 2004; Mg CO2-eqv.) As emission distribution is very uneven, the
circle sizes are scaled in logarithmic form

Fig. 4 Relative difference between GHG emission estimates in CO2 eqv. in the road transport
sector, obtained using two alternative statistical datasets (Lviv region; %)
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As an example, the difference map of CO2, CH4, and N2O emissions in CO2

equivalents from the transport sector of Lviv region is built (see Fig. 4). The map
shows a relatively good consistency of emission estimates based on fuel consump-
tion and statistics on vehicle miles traveled for almost all cells (the difference
does not exceed 24%) except for the cells located in the Starosambirskyj region.
The estimates for this region do not coincide, mainly because of inconsistencies
in the statistics on fuel consumption and vehicle mileage for this administrative
district.

6 Uncertainty evaluation

As the input parameters in the emission inventorying process are not known exactly,
best estimates are used. For an uncertainty analysis the probability density functions
of parameters should be defined and then the error propagation law applied to
combine the individual error estimates to provide uncertainty estimates for the entire
inventory. The IPCC Guidelines (IPCC 2006) introduce two approaches (Tier 1
and Tier 2) for estimation of combined uncertainties. Tier 1 uses the simple error
propagation Eqs. 4 and 5, and the main assumption is that the standard deviation
divided by the mean is less than 0.3 and statistically independent (uncorrelated)
inputs are used. To calculate the uncertainty of the product, expressed in percentage
terms, the following formula is used:

Utotal =
√

(U1)2 + (U2)2 + . . . + (Un)2, (4)

and for uncertainty of the sum:

Utotal =
√

(U1 · x1)2 + (U2 · x2)2 + . . . + (Uk · xk)2

x1 + x2 + . . . + xk
, (5)

where xi is the mean value of unknown parameter Xi, Ui is the relative uncertainty
of parameter Xi, Utotal is the resulting relative uncertainty.

All assumptions used in Tier 1 can be avoided in Tier 2, which is based on Monte
Carlo simulation. The principle of Monte Carlo analysis is to select random values of
emission factor, activity data, and other estimation parameters within their individual
probability density functions (PDFs), and to calculate the corresponding emission
values. This procedure is repeated many times and the results of each calculation
run build up the overall emission probability density function. The Monte Carlo
analysis can be performed at the category level for aggregations of categories or for
the inventory as a whole (IPCC 2006).

Mean values and probability density functions were established for spatially
distributed activity data and emission factors for grid cells covering the Lviv region
of Ukraine. The methodology described allows different uncertainty levels to be
used for separate emission source activity data and emission factors involved in
inventory. It is important to use country-specific uncertainty data as the default and
to use specific data referring to large point sources (these are available from specified
technical editions, expert judgments, etc.).
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The total uncertainty calculation of inventory results for the Lviv region is
provided in two ways.

1. “Traditional” method of uncertainty calculation, using aggregated uncertainties
of activity data and default emission factors within separate subcategories of the
energy sector by gas type. Calculations were performed using IPCC Tier 1 and
Tier 2 approaches.

2. Uncertainty calculation using knowledge of spatial distribution of activity data
and emission factors. Monte Carlo simulations were provided for each grid
cell using the geo-referenced databases with activity data and emission factors
information.

The simulation in the second case has the following steps:

1. For each grid cell the means and PDFs referring to corresponding activity data
and emission factors are set. For successful implementation of Monte Carlo
uncertainty calculation, additional research should be provided to assess the
mean values and PDFs of input data, which refer to large point emission sources.
If the specific value of uncertainty is not available for the input data of certain
grid cells the specific national (or regional) default values should be taken.

2. For each elementary plot the emission factors and activity data are selected
randomly within their PDFs. After multiplying these generated values, one
possible emission value for each grid cell is obtained. Summing of these emission
values for all elementary plots results in an emission estimate for a region as a
whole.

3. Step 2 is repeated many times. As a result, a set of emission estimates is obtained
for the region, which is used to calculate the mean and the PDF of the total
inventory result. Dependencies and correlations among different input data
should be identified and taken into account (Rypdal and Winiwarter 2001).

7 Results of uncertainty assessments

Although we can highly specify the uncertainty values of activity data and emission
factors for the calculations, we mainly used national default emission factors and
uncertainty estimates, as the assessments of uncertainty values and emission factors
for separate plants and other individual emission sources in Ukraine were poor. The
focus is on emissions from the energy sector.

7.1 Uncertainty assessment using aggregated data within the Lviv region

Uncertainty of activity data on fuel consumption collected and published by the
National Statistical Office of Ukraine is reported to be ±10% (Statistical 2005). This
level of uncertainty corresponds to the activity data at the level of administrative
region, but after spatial disaggregation, the uncertainty of the activity data used in
each grid cell would differ depending on disaggregating methodology and source type
(in general the uncertainty level of activity data is much lower for large point sources
than for area or line sources).

Using the Monte Carlo approach the uncertainty estimates for total emissions in
the Lviv region were simulated (Table 1: case 1). The calculations were based on
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Table 1 Uncertainty assessments

Greenhouse gas Total

CO2 CH4 N2O (Lviv region)

Emissions (Gg, CO2-eqv.) 9,278.9 779.5 86.8 10,145.0
Case 1: “Traditional” approach

Uncertainty, % Tier 1 ±9.0 ±31.9 ±42.2 ±9.0
Tier 2 −8.9..+9.4 −52.4..56.5 −48.5..93.1 −9.2..+9.7

Case 2: Separate grid cells’ simulation approach
Uncertainty, % Tier 2 −7.4..+7.5 −49.6..+54.4 −33.5..+64.3 −7.3..+7.8

uncertainties of aggregated activity data and default emission factors. The lower and
upper bound of relative uncertainty were calculated as 2.5% and 97.5% percentiles,
respectively, of the obtained emissions distribution divided by the mean value.

7.2 Uncertainty assessment using spatially distributed data

Possible emission values are simulated using the Monte Carlo approach for each
grid cell and summed for the whole territory under investigation. In calculations the
correlation between grid cells caused by the use of common emission factors and
activity data was not taken into account. After repeating the simulation many times
the overall probability density function was built, and uncertainties are calculated as
2.5% and 97.5% percentiles divided by the mean value (Table 1: case 2).

Relative uncertainties, which refer to CH4 and N2O emissions, are relatively high
(approximately 52% and 71%, respectively). The small share of CH4 and N2O in
overall emissions explains the small difference between the uncertainty estimates
when following the IPCC Tier 1 and Tier 2 approaches. This is because most of the
total emissions consist of carbon dioxide emissions, which are believed to be best
known, that is, the uncertainty of CO2 emissions is small and the emission estimates
follow a Gaussian distribution.

The uncertainties calculated using the approach where the uncertainties of ag-
gregated activity data and default emission factors were used differ from those
calculated using knowledge of the spatial allocation of activity data. Uncertainties
of total emissions are ±9.4% using “traditional” methodology and approximately
±7.5% using developed geo-information technology. This is explained by the fact
that in the geo-referenced approach, detailed data for large emission point sources
were used. The ratio of emissions from large point sources is considerable in overall
emissions and uncertainty of the activity data and emission factors is lower.

8 Uncertainty sensitivity analysis

The geo-information technology of spatial inventory and analysis of greenhouse
gases is very useful for policymakers, as it gives additional information on the spatial
distribution of emission sources. The technology makes it possible to identify (and
localize) the greatest sources of emissions and then to investigate their influence on
total regional emissions. This knowledge can be used in uncertainty analysis, asa very
large part of inventory uncertainty can be attributed to a few sources (Winiwarter
and Rypdal 2001).
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8.1 Transition to alternative energy sources

As, in Ukraine, the biggest emissions occur from the processes of fuel burning for
energy production, policymakers aspire to decrease emissions in this subsector (for
example, by transition to alternative energy sources). This leads to considerable
overall emission reduction, but in terms of change in their relative uncertainty, the
effect of transition is not evident.

GHG inventory results from fossil fuel burning for energy production are char-
acterized by comparatively small relative uncertainty. The transition to the other
energy sources thus leads to structural changes in emissions and an increase in the
relative uncertainty of total inventory results for the whole administrative region.
In the Lviv region of Ukraine three major emission sources of greenhouse gases
were identified; then, using the Monte-Carlo method, the simulation experiments
were carried out to investigate the influence of these sources on total inventory
results.

Figure 5 presents the change in relative uncertainty of total emissions due to
the gradual transition to alternative energy sources for the Lviv region. The ab-
scissa defines the grade of transition of the three emission leaders indicated (Lviv
agglomeration, Kamjanka-Bus’kiy district, and Boryslav-Drogobych agglomeration)
to alternative energy sources (k = 0 is traditional energy generation; k = 100% is
full transition to alternative sources). For numerical experiments it was assumed that
relative uncertainty of greenhouse gas emissions from fossil fuel burning is equal
to 7%, 5%, and 3%, and the relative uncertainty of emission estimates in other
subsectors is equal to 10%.

An interesting question arises as to the combined influence of the two effects:
from one side, decrease in total emissions, and from the other side, increase in the
relative uncertainty of emissions. Figure 6 demonstrates a decreasing of emissions
caused by transition to alternative ways of energy generation for the three emission
leaders) and a corresponding absolute uncertainty range around the emission line.
The absolute uncertainties are mainly the same for all coefficients “k” in spite of
relative uncertainty increasing.

Decreasing of uncertainty of inventory results for the biggest sources also leads
to reduction in relative uncertainty of the total inventory results for administrative
region as a whole. The relative uncertainty of the total inventory as a function of

Fig. 5 Change in total relative
uncertainty due to structural
changes in emissions during
transition to alternative energy
sources
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Fig. 6 Decreasing of
emissions due to transition to
alternative energy sources; and
absolute uncertainty range

relative uncertainty of the three leaders for the Lviv region (for three values of
transition coefficient) is presented in Fig. 7.

8.2 Input data uncertainty change

Another type of uncertainty analysis using the knowledge of spatial distribution
of emission sources includes investigation of the impact of a change in uncertainty
in the input data of point sources on the uncertainty of total inventory results. In
practice this can reflect a situation where some investments are made to improve
knowledge regarding fuel characteristics used at a certain plant or to improve the
statistics on fuels used, etc. These actions will lead to reduced uncertainty in input
data (for a certain emission source) used in inventory and thus to overall uncertainty
reduction.

The Dobrotvir heat power plant was selected for the experiments. Some 85% of
all coal used in the energy sector of the Lviv region is burned in the Dobrotvir heat
power plant. Figure 8 shows the sensitivity of the overall uncertainty of emission
estimates to knowledge improvements in separate input data on P percent. The
calculations were performed using IPCC Tier 2 approach (based on Monte Carlo
simulations).

Fig. 7 The relative
uncertainty of the total
inventory results for region as
a function of the relative
uncertainty of emission leaders
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Fig. 8 Dependence of uncertainty of total inventory in the energy sector of the Lviv region from
decreasing uncertainty of input data into P percent (Monte Carlo simulations)

The uncertainty of total emissions stays almost constant with the change in
N2O and CH4 emission factors. For example, if, to reduce the uncertainty of
CH4 emission factors, the uncertainty of overall emissions did not change but the
uncertainty of methane emissions decreased from 56% to 29%, the same would
occur for N2O: reduction of the uncertainty of this GHG emission factor leads
to N2O emission uncertainty reduction from 93% to 54% without affecting the
uncertainty of overall emissions in CO2 equivalents. This means that although the
N2O and CH4 emissions are highly uncertain, reducing their uncertainty does not
affect the uncertainty of overall emissions in the Lviv region. The most effective way
of reducing the uncertainty of total emissions is to decrease knowledge improvement
on fuel treatment statistical data and net calorific values for fuels used in different
sectors.

The reduction of uncertainty of statistical data by half leads to a decrease in
uncertainty of total emissions from 9.2% to 7.5%; and to 7.3% in the case of the same
uncertainty reduction for net calorific values. What is more, knowledge improvement
only about the chemical characteristics of coal (or its calorific values) used at one
plant (Dobrotvir power plant) helped to significantly change the uncertainty of
overall results (see Fig. 8: bold line). Such information is of great importance for
the governmental bodies responsible for defining national or regional strategies for
emission reduction and inventory quality improvements. It can significantly help
to select the most cost-effective way of reducing the uncertainty in total inventory
results.
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9 Conclusions

The results of the spatial greenhouse gas inventory for the energy sector of the Lviv
region of Ukraine confirm the assumption about the very uneven distribution of
emissions in different administrative units and different economic subsectors. The
results proved the importance of spatial inventory at the regional level. The spatial
approach to greenhouse gas emission calculations is better at taking into account the
differences in economic activities and specific features of fuel treatment at the level
of separate administrative units and even for separate grid cells.

The spatial inventory methodology allows different uncertainties to be used for
activity data and emission factors for the separate emission sources involved. Specific
data referring to large point sources or economic areas can be used in the inventory
process as well as in the uncertainty calculation. Uncertainties of emissions in
the energy sector of the Lviv region are ±7.3% (in the case of a high-resolution
inventory) and ±9.2% (in the case of a “traditional” inventory) using the Monte
Carlo simulation approach. The difference is expected to be bigger if more specific
uncertainty assessments of inputs become available.

The results of spatial inventory allow identification of the biggest sources of
emissions and investigation of the influence of their uncertainties on the uncertainty
of inventory results for the region as a whole. It enables better analysis and selection
of the most cost-effective ways of reducing overall inventory uncertainty either by
transition to alternative energy sources or by improving statistics or knowledge about
the chemical characteristics of fuel used at a given plant. This gives policymakers an
effective tool for supporting decisions on strategic baselines of economic develop-
ment and environmental policy.
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Abstract The greenhouse gas inventory of the European Communities and its
estimation of the uncertainty is built from 15 individual and independent greenhouse
gas inventories. This presents a particular challenge and is possible only if homo-
geneous information is available for all member states and if a proper evaluation
of correlation between member states is performed. To this end, we present a
methodology that estimates a quantitative measure for the aggregated Tier-level
as well as the uncertainty for the main categories in the agriculture sector. In
contrast to the approach suggested in the IPCC guidelines, which uses uncertainty
estimates for activity data and emissions factors for each source category, the method
presented uses quantitative information from individual parameters used in the
inventory calculations, in combination with a well defined procedure to aggregate
the information. Not surprisingly, N2O emissions from agricultural soils are found to
dominate the uncertainty. The results demonstrate the importance of correlation,
if uncertainties are combined for the whole of Europe. The biggest challenge
seems to be to conceptually harmonize the uncertainty estimates for the activity
data (which tend to be underestimated) and emission factors (which tend to be
overestimated).

1 Introduction

The use of a robust methodology to estimate the uncertainty in national green-
house gas (GHG) inventories is becoming increasingly important as the role of the
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uncertainty estimates increases. In the past, the main purpose of uncertainty assess-
ment (UA) was to prioritize future investments for the improvement of the national
GHG inventory. Thus it was used to rank the source categories accordingly to obtain
better data. Furthermore there is particular academic interest in comparing GHG
inventory uncertainties across countries (e.g., Keizer et al. 2007; Monni et al. 2004;
Rypdal and Winiwarter 2001), or the results of different methodologies used in
the UA (e.g., Olsthoorn and Pielaat 2003; Ramiréz et al. 2006; Winiwarter 2007).
It is now recognized that uncertainty estimates will be used to prove the achieve-
ment of GHG reduction commitments (Jonas et al. 2007; Monni et al. 2007; Nahorski
et al. 2007) or to play a critical role in deciding on reduction projects (e.g., Grassi
et al. 2008). Yet, while the quality of the GHG inventories has significantly improved
in the last few years and is now generally accepted to be of comparable standard
and quality (Leip et al. 2005), the estimates of the uncertainty are far from being
comparable and are spread over a large quality range.

While there are several comparative studies on UA in GHG inventories, they are
mainly in the framework of an improvement of national approach for UA (see, e.g.,
Winiwarter (2007) for Austria, Monni et al. (2007) for Finland, Ramiréz et al. (2006)
for the Netherlands; Rypdal and Flugsrud (2001) for Norway, Passant (2003) for the
United Kingdom). In this paper we present a compilation of uncertainty estimates of
member states of the European Union (EU) for the agriculture sector. The European
Commission (EC) is the only regional economically integrated organization that has
joined the United Nations Framework Convention on Climate Change (UNFCCC)
as a party and has thus the same reporting obligations. However, while data for GHG
emissions and estimates for the relative uncertainty of activity data and emission fac-
tors were taken from the national GHG inventories of the respective member states,
a common approach was applied to calculate sectoral and sub-sectoral uncertainty
of the emissions. Additionally, we calculated the aggregated uncertainty for the 15
member states of the EU (EU15) which are part of the ‘European bubble’ (see EEA
2008, 2009). For the EC inventory, uncorrelated emission estimates of the individual
countries reduce the level of uncertainty. It is thus important to make assumptions on
the level of correlation between member states’ emission estimates. We developed
an approach that bases the degree of correlation between member states on the
Tier level of the national emission inventories, being a further development of
the approach already used in earlier EC GHG inventories (see EEA 2007). The
term “Tier level” is used in analogy to the IPCC (2000) definition to describe the
methodology used. The idea is that the higher the Tier level of the emission estimates,
the higher the influence of national information on the emission calculations, and
the smaller the degree of correlation among member states. Thus a correlation-
matrix is obtained which is used for both an extended Tier 1 for uncertainty
(simple error propagation with consideration of correlations) and a Tier 2 (Monte
Carlo).

In the following I develop the methodology and show the results for the most
recent EC inventory of the year 2008. I then identify necessary improvements to the
UA and discuss some critical aspects such as likely over- or underestimation of un-
certainties in inventory-input data and possible ways to achieve UAs of comparable
content and quality for EU member states.
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2 Method

The uncertainty estimates of member states are carried out by Tier 1 or Tier 2
methods following the IPCC guidance (IPCC 2000). As a further development of
the approach used in the EC greenhouse gas inventory (EEA 2007), the method
used for the UA of the agriculture sector of the combined EC inventory presented
here involves several additions to the approaches described in the IPCC guidelines
(IPCC 2000, 2006). This includes (1) a quantitative assessment of the Tier level of
the emission estimate based on the individual factors and parameters used for all
members states and the EC; (2) consistent aggregation of the available uncertainty
information to the level of the categories including gap filling where necessary.
This is done using both Tier 1 and Tier 2 methodology for both level and trend
uncertainty; (3) aggregation of categorical uncertainty estimates to the EU level
using quantitative information on the level of independence. As a proxy for the
level of independence, the Tier level is used and is defined as follows: Tier 1 if only
default IPCC data are used in the estimation equation and Tier 2 if the emissions
estimate is based on country-specific data. Through the aggregation of emission data
by categories and countries, intermediate values between Tier 1 and Tier 2 become
possible.

2.1 Assessing the Tier level

The IPCC methodology estimates emissions Es from a certain source category s as:

Es = IEFs · ADs (1)

where ADs is the activity data for the source category s and IEFs is the implied
emission factor for this category. There are three levels for estimating the emissions,
called Tier 1, Tier 2, and Tier 3, moving from the use of default values through the
inclusion of national information to the application of modeling tools. In order to
define an EU-wide Tier level per source category and sector, two criteria must be
met:

1. For each source category and member state a Tier level must be assigned.
2. To assess the quality of aggregated emissions derived at different Tier level, the

Tier levels must be measured on an interval scale, allowing ‘intermediate’ Tier
levels.

To do this, I developed standard procedures for each source category, based on the
following principles:

1. The flow of nutrients in agriculture implies that the emission in one category can
serve as an activity level in another. Therefore, the Tier level, for example, of the
estimate for nitrogen excretion influences the Tier level for nitrous oxide (N2O)
emissions from manure management, and also N2O emissions from manure
application to soils, indirect N2O emissions from volatilization of NH3+NOx,
and N2O emissions from nitrogen deposited by grazing animals.
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2. A Tier level is assessed for each parameter by comparing the IPCC default value
with the value used by the countries. If the default IPCC value is used, the
Tier level is set to 1 and otherwise the Tier level is set to 2. Caution is taken
for country-specific data that are identical to the default values. This has been
checked “manually.”

3. With a few exceptions, a country-specific estimation of the activity data is
considered as “standard” for countries in Europe. Only for source categories
where particular efforts are needed for a good estimate of the activity is the Tier
level of the activity data considered, such as the area of cultivated histosols or
the fraction of manure deposited by grazing animals.

For the sake of consistency with the IPCC usage, we evaluate Tier levels in the range
[1,2], not considering emission estimates of higher Tier as Tier 2, which, however,
have, to date, been very rare in the GHG inventories of European countries.

Tier levels are aggregated applying different aggregation rules:

a. The MEDIAN-rule is applied if the Tier level T of a product of different
parameters Pi is to be evaluated (T∏

i Pi). The aggregation of the Tier level
of these parameters to estimate the Tier level of the emission factor should
follow the following principles. (1) If parameters at very different Tier levels
are multiplied, the higher level should get more weight; (2) if parameters with
different uncertainty are multiplied, it should be good practice to estimate the
parameter which is associated with the higher uncertainty at a higher Tier
level. Thus, the aggregation rule should reward the fact that efforts have been
made to improve uncertain parameters. Where a comprehensive set of relative
uncertainty estimates for the individual parameters is lacking, the following
equation with an arbitrary weighting factors wp,j has been introduced, based on
expert judgment:

T∏
i Pi = 3 −

∏
i

⎡

⎣(3 − TPi)

wp,i
∑

j {wp, j}
⎤

⎦ (2)

with i and j indicating the individual parameters to be multiplied. The term
(3 − TPi) assures that a higher weight is given to the parameter estimated with
the higher Tier. For example, this formula is used to estimate the uncertainty
of the emission factor for CH4 emissions from manure management, which
is calculated as the product of volatile solid excretion (VS), maximum CH4

producing capacity (B0), and CH4 conversion factor (MCF). The following
weights were used: VS: 0.75, B0: 0.125, MCF: 0.125. The higher weight for VS
is based on the observation that variations of B0 and MCF are usually small
and thus do not greatly contribute to uncertainty of the emission factor. A
simplified rule has been applied to estimate the Tier level of CH4 emissions from
enteric fermentation, which in many cases is based on, or validated with, direct
measurements.

b. The MEAN-rule if an emission estimate is calculated as the sum of two or
more sub-categories. In this case, the Tier levels of the individual estimates are
aggregated using an emission-weighted average. For example, the Tier level of
indirect N2O emissions from agriculture T4D3 is calculated from the Tier levels
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determined for indirect emissions through volatilization of reactive nitrogen
gases T4D3a and leaching/run-off of nitrate T4Db according to:

T∑
i

Ei =
∑

i
Ti · Ei

∑
i

Ei
(3)

2.2 Assessing the uncertainty at member state level

The IPCC guidelines (IPCC 2000, 2006) describe two approaches for combining
uncertainty in the GHG inventory models. The first approach uses the error prop-
agation method. This method works fine as long as the probability density function
(PDF) of the mean is normal and the relative standard deviation σr is not larger than
0.3. For larger relative standard deviations or skewed distributions IPCC (2006) also
gives guidance on how a good estimate for combined uncertainty can nevertheless
be achieved. I applied a Tier 1 (uncertainty propagation) and a Tier 2 (Monte Carlo)
model to estimate combined uncertainty at member state and EC levels, where this
was not yet reported at the required level of aggregation by the member state. For
both approaches I considered potential dependencies, expanding the Tier 1 method
for additive terms with the following equation:

σ 2
X±Y = σ 2

X + σ 2
Y ± 2 · COVX,Y (4)

COVX,Y = ρX,Y · σX · σY (5)

if σ 2x is the variance of the parameter X, COVX,Y is the covariance between the para-
meters X and Y, ρX,Y is the coefficient of correlation. Both approaches were realized
in Spreadsheet models using Visual Basic for Excel® functions. The information on
the uncertainty estimates for agricultural sources differs significantly across the 15
member states for which the EC inventory has to be compiled. Some countries report
uncertainties at the level of categories; other give detailed information, for example
by main animal types or for the different types of nitrogen input contributing to direct
N2O emissions. For a meaningful comparison and further processing at the EU level,
the numbers must be aggregated or gap-filled. As a rule, uncertainties below the sub-
category are assumed to be correlated (e.g., when combining dairy and non-dairy
cattle or different direct N2O sources from agricultural soils), while for the combina-
tion of sub-categories (different animal types, direct and indirect N2O emissions), the
uncertainties were considered to be uncorrelated. The uncertainties of the categories
within agriculture are considered to be uncorrelated as well. This is mainly due to
the fact that the largest contribution of the uncertainties stems from the emission
factors (Leip et al. 2005) so that the uncertainty of the activity data, which might be
partly identical across categories, becomes less important. “Gap filling” is done for
the combined uncertainty (AD*EF). For the analysis of the trend uncertainty, gap
filling for ADs and EFs is also required. Here, AD uncertainties are gap-filled first on
the basis of the model

∑
i {EFi · ADi} = IEF · ∑

i {ADi} = IEF · AD, and missing
EF uncertainties are then calculated on the basis of the formula IEF = E/AD for
both Tier 1 (with (σr,IEF · IEF)2 = (σr,E · E)2 − (σr,AD · AD)2) and Tier 2. Tables 1
and 2 show that there is large variability in uncertainty estimates for both activity
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Table 1 Summary table for the relative uncertainty in percentage terms for activity data (source:
national GHG inventories of EU member states for the year 2007, submitted in 2009, and own
calculations)

Total 4A 4B 4B 4C 4D 4D
CH4+N2O CH4 CH4 N2O CH4 CH4 N2O

Austria 4 10 7 10 4
Belgium 12 5 10 10 30
Denmark 5 10 10 10 7
Finlanda 12
France 5 5 5 5 10
Germanya

Greece 15 5 5 50 2 22
Ireland 1 1 1 11
Italy 9 20 20 20 3 14
Luxembourg 4 2 2 9
Netherlands 8 4 9 10 17
Portugal 12 9 34 39 37 30
Spain 44 3 3 16 102
Sweden 9 5 20 20 16
United Kingdom 1 0 0 1 1

4A enteric fermentation, 4B manure management, 4C rice cultivation, 4D agricultural soils
aSome countries do not report uncertainty estimates for AD, as the uncertainty assessment is done
with a dedicated model and the combined uncertainty estimate is reported as EF-uncertainty

data (Table 1) and emission factors as they are reported in the national inventory
reports of the member states of the European Union. The variability will be further
discussed below.

Table 2 Summary table for the relative uncertainty in percentage terms for the implied emission
factors (source: national GHG inventories of EU member states for the year 2007, submitted in
2009, and own calculations)

Total 4A 4B 4B 4C 4D 4D
CH4+N2O CH4 CH4 N2O CH4 CH4 N2O

Austria 41 22 50 100 101
Belgium 98 40 41 91 252
Denmark 18 13 100 100 24
Finland 45 32 16 82 75
France 100 40 50 50 200
Germany 158 6 12 21 50 307
Greece 63 30 50 112 40 95
Ireland 22 11 11 101 58
Italy 36 28 102 102 20 67
Luxembourg 82 30 145 159
Netherlands 41 15 70 100 83
Portugal 76 14 82 107 55 227
Spain 104 11 11 101 239
Sweden 41 25 54 54 71
United Kingdom 229 20 30 414 424

4A enteric fermentation, 4B manure management, 4C rice cultivation, 4D agricultural soils
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The Monte Carlo calculation includes a control on the likely PDF of the mean.
If the relative uncertainty exceeds 0.4 then it is assumed that the mean is log-
normally distributed and the distribution is transformed with μl = log10 {μn} and
σl = log10 (1 + σn/100).

The trend uncertainty is calculated with both standard Tier 1 (IPCC 2006) and
Monte Carlo calculation.

2.3 Assessing the uncertainty at the EU level

Uncertainties for source categories in the agriculture sector and for the sector
as a whole are combined considering an assumed degree of dependence between
each pair of countries. The quantitative assessment of the Tier levels outlined in
Section 2.1 helps to derive a reasonable estimate for the correlation coefficient ρXY

between two countries X and Y. To this end, the Tier levels TX and TY are used in
the following equation:

ρX,Y = √
(2 − TX) · (2 − TY) (6)

Equation 6 leads to the situation of no correlation (ρX,Y = 0) for two countries with
a Tier 2 and full correlation (ρX,Y = 1) if both countries used a Tier 1. A correlation
coefficient can be calculated for any intermediate situation. This information is
further processed within the standard IPCC Tier 1 and Monte Carlo methods for
both level and trend uncertainty.

3 Results

Table 3 summarizes the Tier levels calculated for EU15 countries for the main source
categories in agriculture. Enteric fermentation and manure management emissions
are largely based on a characterization of the animal performance. This is conducted
for animal types relevant for CH4 emissions from enteric fermentation. For CH4

emissions from manure management other animals are relevant (swine, poultry)
with the consequence that the Tier level for CH4 emission estimates from manure
management is, with Tier 1.6, somewhat lower than for CH4 emissions estimates for
enteric fermentation. Nitrogen excretion data are in many cases based on national
studies, which makes the estimate for N2O emissions from manure management
of a higher Tier (Tier 1.7 for EU15). For N2O emissions from agricultural soils,
only few countries have developed national emission factors, even though national
information for other parameters, particularly volatilization and leaching fractions,
make the Tier level higher than 1. Very different approaches are used to estimate
CH4 emissions from agricultural soils; most countries do not report this source
category. While two countries estimate CH4 emissions from sewage sludge applied
to soils, one country estimates this source category as uptake of CH4 in aerobic
soils.

The result of the uncertainty assessment (Tier 1) is shown in Table 4. For the
EC uncertainty, five scenarios are calculated to give an idea for the range of
possible uncertainty values. The first scenario calculates the uncertainty using the
“most probable” correlation level as defined above. However, particularly for N2O

Reprinted from the journal 251



Climatic Change (2010) 103:245–261

Table 3 Summary table for the tier level assessment for EU15 countries, based on information for
national GHG inventories for the year 2007, submitted in 2009

Total 4A 4B 4B 4C 4D 4D
CH4+N2O CH4 CH4 N2O CH4 CH4 N2O

Austria Tier 1.6 Tier 1.9 Tier 1.8 Tier 1.7 Tier 2.0 Tier 1.3
Belgium Tier 1.7 Tier 1.9 Tier 1.9 Tier 2.0 Tier 2.0 Tier 1.5
Denmark Tier 1.7 Tier 2.0 Tier 1.9 Tier 1.9 Tier 1.5
Finland Tier 1.6 Tier 1.9 Tier 1.6 Tier 1.4 Tier 1.5
France Tier 1.4 Tier 2.0 Tier 1.2 Tier 1.5 Tier 1.0 Tier 1.1
Germany Tier 2.0 Tier 2.0 Tier 1.9 Tier 2.0 Tier 2.0 Tier 2.0
Greece Tier 1.2 Tier 1.6 Tier 1.1 Tier 1.7 Tier 1.0 Tier 1.1
Ireland Tier 1.7 Tier 2.0 Tier 1.6 Tier 1.7 Tier 1.3
Italy Tier 1.5 Tier 1.8 Tier 1.8 Tier 1.7 Tier 2.0 Tier 1.3
Luxembourg Tier 1.5 Tier 2.0 Tier 1.8 Tier 1.2
Netherlands Tier 1.9 Tier 1.9 Tier 2.0 Tier 1.7 Tier 1.9
Portugal Tier 1.7 Tier 2.0 Tier 1.9 Tier 1.7 Tier 1.0 Tier 1.4
Spain Tier 1.8 Tier 1.9 Tier 1.8 Tier 1.7 Tier 1.7
Sweden Tier 1.8 Tier 1.9 Tier 1.9 Tier 1.7 Tier 1.8
United Kingdom Tier 1.5 Tier 1.9 Tier 1.6 Tier 1.8 Tier 1.2
EU-15 Tier 1.6 Tier 1.9 Tier 1.6 Tier 1.7 Tier 1.6 Tier 2.0 Tier 1.4

4A enteric fermentation, 4B manure management, 4C rice cultivation, 4D agricultural soils

Table 4 Summary table for the uncertainty assessment (relative uncertainties (Tier 1) in percentage
of mean emission estimate, based on information for national GHG inventories for the year 2007,
submitted in 2009)

Total 4A 4B 4B 4C 4D 4D
CH4+ N2O CH4 CH4 N2O CH4 CH4 N2O

Austria 40.5 22.4 50.1 100.5 100.6
Belgium 98.3 40.3 41.2 90.6 251.8
Denmark 18.4 12.8 100.5 100.5 24.1
Finland 44.8 32.1 15.9 82.0 74.9
France 100.2 40.3 50.2 50.2 200.2
Germany 158.4 5.9 11.6 20.9 50.0 306.6
Greece 63.2 30.4 50.2 111.8 40.0 95.0
Ireland 21.7 11.4 11.2 100.6 57.9
Italy 35.5 28.3 102.0 102.0 20.2 66.5
Luxembourg 82.1 30.1 144.6 158.7
Netherlands 40.5 15.2 69.7 100.5 82.8
Portugal 76.2 14.4 82.2 107.3 54.7 227.3
Spain 103.6 11.4 11.4 101.3 239.3
Sweden 40.8 25.5 53.9 53.9 70.5
United Kingdom 229.1 20.0 30.0 414.0 424.0
EU-15* 67.5 11.5 25.7 61.4 19.8 50.0 156.6
No correlation 45.4 10.5 18.0 41.6 18.7 50.0 93.1
Full correlation 102.4 22.6 40.7 101.0 27.9 50.0 209.9
Only 4D uncorr 46.4 22.6 40.7 101.0 27.9 50.0 93.1
Only 4D corr. 102.0 10.5 18.0 41.6 18.7 50.0 209.9

4A enteric fermentation, 4B manure management, 4C rice cultivation, 4D agricultural soils
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emissions from agricultural soils, the dependence on other exogenous factors that
are not part of the inventory system might influence the uncertainty distribution,
so that the “most probable” level of correlation does not necessarily reflect the
reality. Therefore, a second scenario assumes no correlation between the uncertainty
estimates of the individual countries, while the third scenario assumes full corre-
lation. Obviously, this scenario leads to the highest overall uncertainty estimates
of 102% for agriculture. Two additional scenarios calculate the bounds for the
uncertainty estimate assuming that the member states’ estimate for agricultural soils
is uncorrelated, but the estimates of all other sub-categories is correlated (lower
bound) and finally that only agricultural soil estimates are correlated (upper bound).
The table shows that both bounds are shifted only slightly, the lower from 45.4% to
46.4% and the upper from 102.4% to 102.0%. This highlights again the importance
of N2O emissions from agricultural soils, which is further translated into the overall
GHG inventory, as shown in Table 5, giving the uncertainty values as a percentage of
the total GHG emissions, where it induces a range of the total uncertainty from 4%
to 9%. If agriculture were not part of the GHG inventory, the uncertainty would
be at a level of 1.4%! The analysis of the trend analysis yields similar results as
calculated in EEA (2009), and shown in Table 6. The trend uncertainty is calculated
following the methodology proposed in the IPCC (2000) guidelines. The table shows
that agriculture contributes 1.2% to the total trend uncertainty of the EC GHG
inventory of 8.4% (EEA 2009) and that, again, N2O emissions from agricultural soils
dominate.

Table 5 Member states’ contribution of uncertainty in agriculture to the overall uncertainty esti-
mate emission data from EEA (2009). Relative uncertainty in percentage of total emissions from
agriculture, based on information for national GHG inventories for the year 2007, submitted in 2009

Total 4A 4B 4B 4C 4D 4D
CH4+ N2O CH4 CH4 N2O CH4 CH4 N2O

Austria 3.7 0.8 0.5 1.0 3.4
Belgium 7.2 1.1 0.5 0.5 7.1
Denmark 2.8 0.5 1.6 0.9 2.0
Finland 3.2 0.6 0.1 0.5 3.0
France 18.1 2.2 1.3 0.6 17.9
Germany 8.5 0.1 0.1 0.1 0.0 8.7
Greece 5.4 0.7 0.2 0.2 0.0 5.4
Ireland 5.6 1.5 0.3 0.6 5.3
Italy 2.4 0.6 0.6 0.7 0.1 2.1
Luxembourg 4.5 0.6 1.1 4.2
Netherlands 3.6 0.5 0.9 0.4 3.4
Portugal 7.1 0.5 1.2 0.8 0.3 6.9
Spain 10.8 0.3 0.2 0.7 10.7
Sweden 5.3 1.1 0.4 0.4 5.1
United Kingdom 15.6 0.5 0.1 1.1 15.5
EU-15 6.2 0.3 0.3 0.3 0.0 0.0 7.0
EU-15 no corr 4.2 0.3 0.2 0.2 0.0 0.0 4.2
EU-15 full corr 9.4 0.7 0.5 0.6 0.0 0.0 9.4

4A enteric fermentation, 4B manure management, 4C rice cultivation, 4D agricultural soils, 4D1
direct N2O emissions, 4D2 N2O emissions from grazing animals, 4D3 indirect N2O emissions
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Table 6 Trend uncertainty in percent-points of the overall EC GHG inventory, based on informa-
tion for national GHG inventories for the year 2007, submitted in 2009

Total 4A 4B 4B 4C 4D 4D
CH4+N2O CH4 CH4 N2O CH4 CH4 N2O

Austria 0.02 0.01 0.00 0.00 0.01
Belgium 0.07 0.01 0.01 0.00 0.07
Denmark 0.03 0.01 0.01 0.00 0.02
Finland 0.02 0.00 0.00 0.00 0.02
France 0.49 0.06 0.02 0.02 0.48
Germany 0.34 0.01 0.00 0.00 0.34
Greece 0.08 0.01 0.00 0.01 0.00 0.08
Ireland 0.01 0.00 0.00 0.00 0.00 0.01
Italy 0.13 0.08 0.02 0.03 0.00 0.09
Luxembourg 0.00 0.00 0.00 0.00
Netherlands 0.08 0.01 0.01 0.00 0.08
Portugal 0.06 0.01 0.01 0.01 0.01 0.06
Spain 0.71 0.02 0.01 0.02 0.71
Sweden 0.03 0.01 0.00 0.00 0.03
United Kingdom 0.78 0.01 0.01 0.05 0.78
EU-15 1.2 0.1 0.0 0.1 0.0 0.0 1.2

4A enteric fermentation, 4B manure management, 4C rice cultivation, 4D agricultural soils

4 Discussion

Generally, uncertainties in input data need to be derived from indirect sources or
from expert judgments. A comparison of the uncertainty estimates of five inventories
in the late 1990s (Rypdal and Winiwarter 2001), showed that the main reason for the
difference in estimated uncertainty is the differences in the assessment of N2O emis-
sions from agricultural soils. We find striking differences in the uncertainty estimates
from different countries, in that in many cases higher uncertainties are reported
in countries where large efforts were put into the agricultural GHG inventory. Monni
et al. (2004) also stress that differences in reported uncertainties are in large part due
to different ways of assessing the uncertainty. Rypdal and Flugsrud (2001) describe
two ways to handle correlations. One way is to aggregate the input data set in such a
way that the dependencies are eliminated and the other solution is to explicitly model
the dependencies in the analysis, if this is allowed by the method used. The IPCC
Good Practice Guidance (IPCC 2000) notes that correlations, even if they exist, may
not be important for the uncertainty assessment of a GHG inventory if the depen-
dency is not sufficiently strong or the inventory is not sensitive to the dependent
inputs. Nevertheless, consideration of correlation between countries is important as
this lead to a significant reduction of the uncertainty of emission estimates when
combined to the EC level. If countries are relying on default EFs, the distribution
of the true mean value is likely to be the same, unless national circumstances differ
in important driving factors for that source category in which case the true mean
would have to be sampled from a different probability distribution. New scientific
evidence would lead to an upward or downward correction of the emission strength
for all countries using this default emission factor. Therefore, the EC-IR (EEA 2009)
assumed that the uncertainty of those countries are correlated which are using a Tier
1 methodology, while the countries using Tier 2 methodology were assumed to be
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uncorrelated. This approach is not satisfactory, as it neglects that most calculations
are conducted with several parameters so that the degree of “independence” varies
with the amount of effort that has been put into the development of country-specific
parameters. Hence, the analysis presented in this paper extends the approach of the
EC-IR by quantifying a degree of independence between categories and countries
on the basis of the Tier level as defined in the IPCC guidelines, but applying this
definition not only to activity data or emission factors, but to each individual datum
used in the calculation of the emissions.

The quantification of the degree of independence and its use for the combination
of uncertainties was the main aim in developing the approach for aggregating the
Tier levels; it has therefore been tailored to be an indicator of the influence of
country-specific information on the emission estimates. It is thus a measure for
the methodology used and does not automatically imply that a high “degree of
independence” goes hand in hand with a high “quality level,” as no evaluation
of the data or the approach used has been performed. Nevertheless, an emission
estimate that was derived with a higher Tier level should also be more accurate
and less uncertain, and thus of a better quality, given the fact that all national
GHG inventories considered here were subject to strict review by the UNFCCC
Secretariat.

However, not all correlations between source categories could yet be considered.
Important dependencies between the estimated amount of manure produced in a
country and emissions of N2O from various source categories “down the pipe” such
as N2O emissions from manure management, and direct and indirect N2O following
application of manure to soils, could not be quantified, as uncertainty values of N-
excretion data are not reported by the countries. The large range of uncertainties
reported for the N-input to agricultural soils (between 1% and 75%) suggests that
these dependencies are inherently considered by some countries, but neglected by
others. A common approach to handling these dependencies is important to increase
the comparability of the uncertainty estimates across countries.

The comparison between the two approaches—error propagation with considera-
tion of correlation versus the Monte Carlo analysis—confirms that both approaches
yield very similar results (e.g., Monni et al. 2004; Ramiréz et al. 2006; Winiwarter
2007). Monte Carlo results are in most cases within 10% of the estimates obtained
with the Tier 1 approach. Moreover, the aggregation of uncertainty estimates from
country- to Europe-level yields only slight differences between the approaches, of
a few percentage points. Differences, however, appear for emission estimates with
high uncertainties such as N2O emissions from agricultural soils (data now shown).

4.1 Activity data uncertainty is likely to be under-estimated

The final goal of the assessment was to obtain a realistic uncertainty estimate for
the area covered by all 15 countries considered. However, this not only depends on
an appropriate approach to combining the uncertainty estimates from the individual
countries; it should also be checked whether these estimates themselves are com-
parable and/or realistic. For example, several countries use the same uncertainty
value for the AD of CH4 emissions from enteric fermentation and CH4 and/or
N2O emissions from manure management (see Table 1). Taking the AD uncertainty
in category 4A for describing the accuracy of the livestock population, the AD
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uncertainty for category 4B(a) should, strictly speaking, include the uncertainties
for the allocation of manure to climate regions and manure management systems.
The AD uncertainty for N2O emissions should include both the uncertainty for the
allocation of manure to the manure management systems and the nitrogen excretion
factors. For the latter, IPCC (2000) recommends an uncertainty range of ±50% if
using default values, down to ±25% if country-specific information is used. In view
of this recommendation, most countries appear to underestimate the uncertainty
surrounding their estimate for the AD in category 4B(b).

The allocation of manure to the different manure management systems is a
parameter which is highly controlled by the structure of the agricultural sector in
a country (for example, increasing the average size and specialization of agricultural
holdings in a country generally also implies that a higher percentage of the manure is
managed in liquid systems) but also by environmental (e. g., NH3 ceilings) and animal
welfare policies (Leip 2005a; Petersen et al. 2007). This also makes this parameter
highly dynamic for the time period since 1990, which can be observed for those
countries that have estimated an increase/decrease in the importance of manure
management systems by up to a factor of more than two (EEA 2009). However, even
in these countries, statistics on the management systems for manure rarely exist and,
having not usually been surveyed for the whole time period since 1990, are to a large
degree based on expert judgment. Hence, in many cases the error made will vary
significantly with time and it is unlikely that the distribution of manure management
systems in a country is known with a higher accuracy than 20%. In Sweden, statistics
on animal waste management systems have been available every 2 years since 1997,
yet this country is among those with the highest estimate for the uncertainty for the
AD in category 4B(a). We therefore consider it very likely that most countries are
underestimating this uncertainty.

4.2 Correct allocation of sources of error to activity data and emission factors
is important for estimating trend uncertainty

One explanation could be that these uncertainties are calculated into the estimate for
the EF uncertainty (see Table 2). For category 4B(a), we find values ranging from
11% to over 100%. This should cover the uncertainties associated with the estimates
of the content of volatile solid excretion, the maximum CH4 producing capacity, and
the methane conversion factor. The allocation of an uncertainty estimate to AD or
EF remains important as long as standard rules are applied to evaluate correlation in
time and therefore the trend uncertainty.

As a default, IPCC considers ADs as uncorrelated in time and EFs as correlated.
The idea is straightforward: activity data are usually based on statistical surveys, and
the error made in 1 year is independent of the error made in another year; thus no
correlation in time is assumed. The uncertainty around emission factors is in most
cases determined by scientific knowledge gaps (i.e., leading to a bias in unknown
direction and quantity) or by high variability encountered in field measurements, as is
the case, for example, for the N2O emission factor for agricultural soils. However, the
shift of the uncertainty surrounding, for example, the manure management system
allocation (when this is not correlated in time) into the EF uncertainty estimates
would lead to a significant underestimation of the trend uncertainty. A similar
discussion also applies to the AD uncertainty estimates for N2O emissions from
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agricultural soils, where very large differences are observed (ranging from 1% to
102%, see Table 1).

4.3 Uncertainty of the emission factor for N2O emissions from agricultural soils
could be overestimated

One of the most important elements in today’s uncertainty assessment of GHG
inventories is the uncertainty of the emission factors used to estimate N2O emissions
from agricultural soils. The uncertainty range for direct N2O emissions proposed
in the IPCC (2000) is based on an assessment of Bouwman (1994) who analyzed a
compilation of flux measurements and concluded that the best estimate ranges from
0.25% to 2.25% covering more than 90% of the published emission values (IPCC
1997). Even though the central value of the emission factor remained unchanged in
the Good Practice Guidance, the uncertainty range was updated, accounting for the
fact that measured N2O emission factors have a skewed distribution and that the best
estimate for the confidence limit ranges is set to one-fifth to five times the default
emission factor of 1.25% (IPCC 2000). In the revised IPCC guidelines (2006), the
N2O emission factor for direct emissions was changed from 1.25% to 1% as a result
of an analysis of the same, but updated, data by Bouwman et al. (2002) and Stehfest
and Bouwman (2006). The confidence interval now ranges from one-third to three
times the default emission factor. The reason for this high uncertainty for this source
category is “natural variability, partitioning fractions, activity data, lack of coverage
of measurements, spatial aggregation, and lack of information on specific on-farm
practices. Additional uncertainty will be introduced in an inventory when emission
measurements that are not representative of all conditions in a country are used”
(IPCC 2006).

Natural variability of N2O emissions is huge, both in time and space, and across
scales from the micro-scale to the plot and regional scale. This means that good
predictions of N2O emissions are impossible unless the major factors influencing the
fraction of the N-input which is transformed and emitted as N2O are known and an
appropriate model is available. For national GHG inventories, this natural variability
is important only as far as the assembly of conditions encountered in the country does
not compensate for it.

Several studies have shown that the IPCC emission factor seems to be fairly
accurate if larger regions (countries or group of countries) are looked at. See, for
example, Li et al. (2001), Leip et al. (2008), Del Grosso et al. (2005) and Butterbach-
Bahl and Werner (2005) for model simulations in China, Europe, the United States,
and Germany, respectively. This was also confirmed by the detailed analysis in
Finland by Monni et al. (2007) who found that the yearly variation of N2O emissions
in Finland was relatively small (−104 to +171%) and suggested that climate-specific
models should be developed that take soil properties into account (Freibauer 2003;
Leip 2005b).

The analysis shows that N2O emissions from agricultural soils are not only
dominating the overall uncertainty of GHG emissions from agriculture, and in many
cases also the overall uncertainty of GHG inventories, but they are also dominating
the importance of correlation. This implies that particular attention has to be given
to the construction of the GHG inventory for this source category with respect to
correlations.
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4.4 Improving methods to estimate emission to higher tiers could result in higher
trend uncertainty

As discussed above, the concept of activity data and emissions factors as used
in the IPCC guidelines gives room for interpretations, with consequences for the
uncertainty assessment, particularly the trend assessment. This leads to a conceptual
question/methodological problem: if a country goes from Tier 1-based approaches
for quantifying emission factors to Tier 2 or even Tier 3-based approaches (i.e.,
calculated with process-based models); the assumption that these estimates are
correlated in time will no longer hold. Thus, if the uncertainty of the emission
factor (in one individual year) cannot be reduced under a certain threshold, the
improvement of the methodology can lead to an increase in the trend uncertainty.
This fact can have two consequences: (1) the country refrains from using higher Tier
approaches until the models become sufficiently robust and are thoroughly validated
so that the uncertainty of the emission factor falls below the threshold; (2) the models
are used to improve the emission factor, but are not part of the inventory system. This
could mean that the models run with a sufficiently large sample of weather conditions
in order to derive one or more (regional) emission factors that are assumed to be
valid for the whole time period (base year until end of commitment period). Both
solutions have advantages. The first solution forces countries to check the models
through a strict peer review for their own interest. The second solution would assure
that emission trends remain controlled by anthropogenic drivers over a commitment
period, thus giving a good ratio of benefit (in terms of incentives to implement
mitigation measures) versus quality of the emission estimates.

4.5 Trend uncertainty is very important

The most important piece of information for the UA is the trend uncertainty.
Therefore, the models should be tailored to suit that purpose (see also Monni et al.
2008). In practice, this means that a separation between AD and EF in the meth-
odology proposed by IPCC (2000, 2006) should be replaced by a distinction of
parameters which are correlated in time (the error thus being dominated by bias
rather than by random error or inter-annual variability, as is the case for most
default EFs) and parameters which are not correlated in time (where random error
or inter-annual variability dominate the uncertainty such as for most AD and other
parameters derived with an accurate model).

5 Conclusion

We present a new methodology that estimates the uncertainty for the categories
in the agriculture sector using information on the Tier level. In contrast to the
approach suggested in the IPCC guidelines, that uses uncertainty estimates for
activity data and emission factors for each source category, the method presented
uses quantitative information from individual parameters used in the inventory
calculations, in combination with a well defined procedure to aggregate, and comes
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up with an—also quantitative—estimate for the Tier and finally the uncertainty. The
methodology proposed is based on standard error propagation rules and additional
rules for “Tier-level propagation.” It considers possible correlation between source
categories without the need for Monte Carlo calculations. The method allows a
more transparent comparison of the uncertainty of GHG inventories across a group
of countries and could thus be used to focus efforts to improve GHG emission
estimates at a supra-national level. Not surprisingly, N2O emissions from agricultural
soils are found to be dominating the uncertainty of not only the agricultural sector,
but also the overall GHG inventory for many countries. This suggests that further
improvements should focus on programs to reduce the uncertainty of this source
category. The analysis shows that differences in the uncertainty data are mainly
based on different input data for the calculations, with a likely underestimation of
the activity-data uncertainty and an overestimation of the uncertainty of the emission
factors. Thus, the biggest challenge seems to be to put uncertainty estimates for AD
and EF on a solid and common basis. Efforts should be invested in a harmonization
of the concepts underlying the uncertainty assessment. At present, the combination
of uncertainties is done with an improved Tier 1 that considers dependencies. The
construction of a Monte Carlo model generally adds little accuracy to the uncertainty
estimate. The method presented has been applied to the 15 member states that
are part of the “European bubble.” It could seamlessly be applied to estimate the
uncertainty of the anthropogenic emissions at a larger scale, for example Annex I
countries or all parties to the UNFCCC.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract In this paper we apply a linear regression with spatial random effect to
model geographically distributed emission inventory data. The study presented is on
N2O emission assessments for municipalities of southern Norway and on activities
related to emissions (proxy data). Taking advantage of the spatial dimension of the
emission process, the method proposed is intended to improve inventory extension
beyond its earlier coverage. For this, the proxy data are used. The conditional au-
toregressive model is used to account for spatial correlation between municipalities.
Parameter estimation is based on the maximum likelihood method and the optimal
predictor is developed. The results indicate that inclusion of a spatial dependence
component lead to improvement in both representation of the observed data set and
prediction.

1 Introduction

This study focuses on a spatial aspect of inventories for atmospheric pollutants.
The study tackles situations where emission inventory is to be expanded beyond
its present coverage, where relevant activity data are missing. In the absence of
measured data (activities) contributing to emissions, proxy data about activities can
be used. The aim is to provide a tool to improve inventory developed with proxy
data, by taking advantage of the spatial correlation of an emission process.

In the case of greenhouse gases, spatial resolution is usually not crucial for the
emission effect as such. However, there are several situations where the spatial
dimension is needed. In elaborated models of climate change, for instance, model
HadAM3 of the British Meteorological Office (Pope et al. 2000), transport of
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greenhouse gases is modeled in a similar way to other pollutants, e.g. (sulfur oxides)
SOx and NOx. With growing resolution, for instance, in national models of this
kind, the need for a finer inventory data mesh becomes important. The proposed
method can be used for this purpose. Other examples include validations of regional
inventories by field measurements or by inverse modeling in top-down approaches
(Ciais et al. 2010; Rivier et al. 2010).

The topic of spatial heterogeneity of greenhouse gas (GHG) emissions and
sequestration can be addressed in various ways. For instance, the spatial distribution
of greenhouse gas emissions for Ukraine has been presented in Bun et al. (2010).
Theloke et al. (2007) develop a methodology for spatial (and temporal) disaggrega-
tion of GHG annual country totals. Van Oijen and Thomson (2010) used a process-
based forest model which accounts for spatial distribution of climate and soil; a
Bayesian calibration was employed to quantify uncertainties.

When performing a statistical inference of spatial inventory data, we account for
the fact that values at proximate locations tend to be more alike. This can be modeled
by using spatial statistics. Moreover, as for each grid cell we have information on
aggregated emission values, these are called areal data (also known as lattice data).
A popular tool for incorporating this kind of spatial information is the conditional
autoregressive (CAR) model proposed by Besag (1974). Unlike the geostatistical
models with spatially continuous data, the CAR models have been developed to
account for a situation where the set of all possible spatial locations is countable. The
idea is to define a model in terms of the conditional distribution of the observation
at one location given its values at other neighboring locations. Applications of the
CAR model include, among others, mapping diseases in counties as well as modeling
particulate matter air pollution in space and time (Kaiser et al. 2002).

The aim of the present paper is to demonstrate the usefulness of the CAR
model to analyze data from spatially distributed emission inventories. With available
proxy data related to emissions and an independent set of (modeled or measured)
emission assessments, one can build a suitable regression model. Inclusion of a
spatial component is intended to improve estimation results, compensating for the
weaker explanatory power of proxy information. Based on the model, we develop
the optimal predictor to extend the inventory.

The outline of the study is as follows. Section 2 presents an illustrative data set,
including an initial non-spatial model. As a next step, the model is enriched with
a spatial random effect. We use the conditional autoregressive structure to account
for spatial correlation between neighboring areas (municipalities, in this case). The
model is characterized in Section 3. It comprises model formulation, estimation and
prediction. Results are presented in Section 4; we fit the spatial model and assess its
predictive performance by means of a cross-validation procedure. Section 5 contains
final remarks.

2 Preliminary explorations

Our illustration is provided with the data set on N2O (nitrous oxide) emissions re-
ported in 2006 for municipalities of southern Norway. In 2006 the main contributors
to the country total N2O emissions were as follows (National Inventory Report 2008).
Forty-seven percent of emissions were attributed to agriculture, with agricultural soil
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as the most important source. The second most important source was production
of nitric acid in two plants, which accounted for 37%. Nitric acid is used in the
production of fertilizer. Emissions from road traffic amounted to 4%. The remaining
12% included emissions from, for instance, manure management and waste-water
handling.

The considered map of southern Norway covers 259 municipalities out of
431 in the whole of Norway. The data come from the StatBank (available at
http://www.ssb.no) in Statistics Norway. According to the StatBank identification
system, the area of our interest covers the municipalities numbered 0101 to 1449.
One of the aforementioned nitric acid plants is operating in Porsgrunn municipality,
which is a relatively small municipality located near the southern coast of the area
considered, see also Perez-Ramirez (2007). Emissions from this kind of point source
are usually reported and there is no need to model them. In our analysis we do not
consider emissions from this source.

The municipalities have been chosen by StatBank as the smallest unit for geo-
graphical distribution of emissions. Details on the Norwegian emission model can be
found in Sandmo (2009).

Of the statistics available in StatBank at the municipal level, we consider the
following variables that might explain spatial distribution of N2O emissions. Figures
on livestock and detailed statistics on agricultural usage are the ones that are the most
relevant to the N2O emissions. However, these data sets contained a large number
of missing values, and as such were of poor quality. Emissions from agriculture can
generally be characterized with data on agricultural area in use as well as with data
on persons employed in agriculture. Regarding emissions from stationary and mobile
sources, data on population can be of use. Besides the Porsgrunn plant, emissions
from fertilizer production occurs in a small number of municipalities. There is a lack
of statistics on relevant production, financial data or employment at the municipal
level (Statistics Norway personal communication).

To determine the independence of the above-mentioned variables from the emis-
sion data the inventory preparers from Statistics Norway were consulted (personal
communication). We found out that for the municipal emission assessments they
used figures from the agricultural statistics that are both more detailed and more
comprehensive than those described above. In addition, a model that estimates
emissions of ammonia from agriculture were used, as were figures on energy use.

Let us denote1

yi N2O emissions (tonnes) (Table 03535), y = (y1, . . . , yn)
T

xi,1 agricultural area in use (decare) (Table 06462), x1 = (x1,1, . . . , xn,1)
T

xi,2 persons employed in agriculture (Table 03324), x2 = (x1,2, . . . , xn,2)
T

xi,3 population (Table 05231), x3 = (x1,3, . . . , xn,3)
T .

Figure 1 presents a scatterplot matrix for these data. We note that the relationship
between y and x1 is more pronounced than between y and x2, and there is a weaker
relation between y and x3. Our aim is to explore opportunities for improvements of

1In brackets we report a number of the table containing the data set available from the StatBank
Web site as of October 2009.
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Fig. 1 Scatterplot matrix showing plausible relations between data on: N2O emissions (y), agricul-
tural area (x1), persons employed in agriculture (x2) and population (x3) in municipalities

inventory prepared in the absence of information on agricultural area (x1) activity,
but using data on persons employed in agriculture (x2) as its proxy. Therefore we
define a multiple regression model

Yi = β0 + β2xi,2 + β3xi,3 + εi, (1)

where εi are independent random variables following normal distribution with mean
equal 0 and variance σ 2 and i = 1, . . . , 259 indexes municipalities. In the sequel we
compare results of the above model to the one with variable x1 instead of x2. We
distinguish between an observation (yi) and a random variable (Yi) generating this
observation. In the model (1) regression coefficients of the covariates x2 and x3

have p-values equal 2e–16 and 2.07e–09, respectively. The model explains 79% of
variability in N2O emissions—coefficient of determination is R2 = 0.79.
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Residuals of the model, that is, observations minus fitted values, are presented in
Fig. 2: a residual plot (a) and a map (b). From a residual map we can identify the
cluster of municipalities with underestimated emissions (yielding positive residuals)
in the eastern part; moreover municipalities with highly overestimated emissions
(yielding negative residuals) are located in the western region. In Fig. 2(a) residuals
are plotted against municipality numbers. As municipalities are not randomly num-
bered and neighboring areas usually have close identification numbers, we again note
that there are regions with underestimated and overestimated emissions.

We check spatial correlation in the residuals using the Moran’s I statistic

I = n∑
i

∑
j wij

∑
i

∑
j wij(εi − ε̄)(ε j − ε̄)
∑

i(εi − ε̄)2 ,

where εi—a residual of linear regression in the area i, ε̄—the mean of residuals, wij—
the adjacency weights (wij = 1 if j is a neighbor of i and 0 otherwise, also wii = 0).
We consider two municipalities as neighbors if they share common border. Moran’s
I can be recognized as a modification of the correlation coefficient. It accounts
for correlation between residuals in area i and nearby locations and takes values
approximately on the interval [−1, 1]. Higher (positive) values of I suggest stronger
positive spatial association. Under the null hypothesis, where εi are independent and
identically distributed, I is asymptotically normally distributed, with the mean and
variance known (see e.g., Banerjee et al. 2004).

In the case of the residuals from model (1) with covariates on x2 and x3 Moran’s
I is equal to 0.2466. The corresponding test statistic z (Moran’s I standardized with
the asymptotic mean and variance) is equal to z = 6.6953 while zcr = 2.33 at the sig-
nificance level α = 0.01. Thus we reject the null hypothesis of no spatial correlation of
errors. Moran’s I is, however, recommended as an exploratory information on spatial
association, rather than a measure of spatial significance (Banerjee et al. 2004).
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Fig. 2 Residuals from the linear model with covariates on persons employed in agriculture (x2) and
population (x3)
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3 Modeling spatial correlation

In this section we develop a model to characterize the spatial distribution of N2O
emissions in municipalities. Further, we provide details on the model estimation,
prediction, and an applied cross-validation procedure. The calculations were accom-
plished using the statistical software R (R Development Core Team 2008).

3.1 The model

Following the notation already introduced, let Yi denote a stochastic variable associ-
ated with the observed emission (yi) defined at each spatial location i for i = 1, . . . , n.
It is assumed that the random variables Yi for i = 1, . . . , n follow normal distribution
with the mean μi and common variance σ 2

Yi|μi, σ
2 ∼ N

(
μi, σ

2) . (2)

The collection of all Yi is denoted as Y = (Y1, . . . , Yn)
T . Given the values of μi and

σ 2, the stochastic variables Yi are assumed independent, thus the joint distribution
of the process Y conditional on the mean process μ = (μ1, . . . , μn)

T is

Y |μ ∼ N
(
μ, σ 2 In

)
, (3)

where In is an identity n × n matrix.
Our approach to modeling the mean μi expresses the observation that available

covariates explain part of the spatial pattern in observations, and the remaining
part is captured through a regional clustering. To this extent we make use of the
conditional autoregressive model. The CAR structure is given through specification
of the full conditional distribution functions for i = 1, . . . , n

μi|μ j, j�=i ∼ N

⎛

⎝xT
i β + ρ

∑

j�=i

wij

wi+

(
μ j − xT

j β
)
,

τ 2

wi+

⎞

⎠ (4)

with wi+ = ∑
j wij being the number of neighbors of area i; xi is a vector containing

1 for the intercept β0 and k explanatory covariates of area i, for example population;
β = (β0, β1, . . . , βk)

T is a vector of regression coefficients and τ 2 is a variance
parameter. The variance is inversely proportional to the number of neighbors wi+.
The second summand of the conditional expected value of μi (a remainder) is
proportional to the average value of remainders μ j − xT

j β for those areas j which
are the neighbors of the site i (that is wij = 1). The proportion is calibrated with
parameter ρ. The parameter ρ is introduced into (4) in order to remedy singularity
of the covariance function in the joint distribution of μ; for more details see for
example Banerjee et al. (2004).

Given (4), the joint probability distribution of the process μ is the following
(Banerjee et al. 2004; Cressie 1993)

μ ∼ N
(
Xβ, τ 2 (D − ρW )−1) , (5)
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where X is the (design) matrix containing transposed vectors xi, i = 1, . . . , n

X =

⎡

⎢⎢⎢⎣

1 x11 . . . x1k

1 x21 . . . x2k
...

...
...

1 xn1 . . . xnk

⎤

⎥⎥⎥⎦ ;

D is an n × n diagonal matrix with wi+ on the diagonal; and W is an n × n matrix
with adjacency weights wij.

3.2 Estimation

Estimation of unknown parameters β, ρ, σ 2 and τ 2 is based on the maximum
likelihood approach. From (3) and (5) we obtain the joint unconditional distribution
of Y

Y ∼ N (Xβ, M + N) , (6)

where for notational simplicity M = σ 2 In and N = τ 2 (D − ρW )−1 were introduced.
To see this let us write (3) as Y = μ + υ, where υ ∼ N (0, M) and (5) in the form
of μ = Xβ + ν, where ν ∼ N (0, N). Together we obtain Y = Xβ + ν + υ, which
is a sum of a constant and two independent normal random variables with the
distribution ν + υ ∼ N (0, M + N). Compare also the lemma of Lindley and Smith
(1972).

The log likelihood associated with (6) is, see, for example, Papoulis and Pillai
(2002)

L
(
β, ρ, σ 2, τ 2) = − 1

2
log (|M + N|) − n

2
log (2π)

− 1
2

(y − Xβ)T (M + N)−1 (y − Xβ) , (7)

where |·| denotes the determinant and y is a vector containing the observations yi,
i = 1, . . . , n. With fixed ρ, σ 2 and τ 2, the log likelihood (7) is maximized for

β̂
(
ρ, σ 2, τ 2) = (

XT (M + N) X
)−1

XT (M + N) y, (8)

which substituted back into (7) provides the profile log likelihood

L
(
ρ, σ 2, τ 2) = − 1

2
log (|M + N|) − n

2
log (2π)

− 1
2

(
y − X

(
XT (M + N) X

)−1
XT (M + N) y

)T

× (M + N)−1

×
(

y − X
(
XT (M + N) X

)−1
XT (M + N) y

)
. (9)

Further maximization of L
(
ρ, σ 2, τ 2

)
is performed numerically. One also needs to

ensure that the matrix D − ρW is non-singular. This is guaranteed if λ−1
1 < ρ < λ−1

n ,
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where λ1 < . . . < λn, λi �= 0, i = 1, . . . , n are the eigenvalues of D−1/2W D−1/2, see
Banerjee et al. (2004) and Cressie (1993). Our optimization procedure takes this
constraint into account.

3.3 Prediction

Consider a random variable Y0 associated with emissions at an unobserved location
and let μ0 denote its mean value. We assume that the distribution of Y0|μ0 is of
the form (2) and the distribution of μ0|μ is of the form (4). The predictor of the
observation Y0, that is optimal in terms of minimum mean squared error, is given
by E(Y0|y). It should be stressed that knowledge on covariates x0 is required to
calculate the predictor in the location considered.

To begin with, we derive the conditional distribution of μ|y based on (3), (5) and
(6) using the Bayes rules

μ|y ∼ N (BC, B) (10)

with B = (
M−1 + N−1)−1

and C = M−1 y + N−1 Xβ.
Next we develop the predictor E(Y0|y), see also Kaiser et al. (2002). In deriving

the formula we will make use of the following property of the conditional expected
value: Y0 = E(Y0|μ0) and analogously μ0 = E(μ0|μ). We have

E(Y0|y) = E
[
E (Y0|μ0) |y] = E

[
μ0|y

] = E
[
E (μ0|μ) |y]

= E

⎡

⎣xT
0 β + ρ

∑

j

w0 j

w0+

(
μ j − xT

j β
)

|y
⎤

⎦

= xT
0 β − ρ

∑

j

w0 j

w0+
xT

j β + E

⎡

⎣ρ
∑

j

w0 j

w0+
μ j|y

⎤

⎦ . (11)

We use the expression (10) to calculate the rightmost expectation in the last equality
of (11) and denoting the jth element of the vector BC with l j, we get the predictor

E(Y0|y) = xT
0 β + ρ

∑

j

w0 j

w0+

(
l j − xT

j β
)

. (12)

In order to assess the quality of the prediction we perform a leave-one-out cross-
validation procedure. The idea is to fit a model to a data set from which a single
observation was dropped. This observation is considered as unobserved and its value
is calculated using the predictor (12). The operation is repeated for each observation
(n times). The difference between the observation yi and the prediction y∗

i , di = yi −
y∗

i , constitutes a base to quantify prediction error. We summarize it forming the mean
squared error

mse = 1
n

∑

i

(
yi − y∗

i

)2
, (13)
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Table 1 Model comparison
for the linear regressions (LM)
and the spatial model (CAR)

Model −L AIC

LM(x2, x3) 1,622.27 3,252.55
CAR(x2, x3) 1,552.32 3,116.65
LM(x1, x3) 1,281.98 2,573.97

which should be as low as possible, indicating how well a model predicts data. We
report also the minimum and maximum value of di, average values of the absolute
differences |di|, and the sample correlation coefficient r between the predicted and
observed values.

4 Results

The spatial CAR model has been applied to the emission data. In addition, we esti-
mate the linear regression (1) denoted LM(x2, x3), as well as the model LM(x1, x3)
with the variable on agricultural area (x1) instead of the number of people employed
in agriculture (x2).

The results are compared using the Akaike Information Criterion (AIC), which
is a suitable tool for comparison of models estimated with the maximum likelihood
method. The AIC is calculated as a sum of twice the negative log likelihood L (θ)

and twice the number of parameters p:

AIC = −2L (θ) + 2p.

The term −2L (θ) measures how well the model fits the data; the larger this value, the
worse the fit. Model complexity is summarized by the number of parameters p. The
idea of the AIC is to favor a model with a good fit and to penalize for the number of
parameters. Thus models with smaller AIC are preferred to models with larger AIC.

For the estimated models both the negative log likelihood and AIC are displayed
in Table 1. The applied spatial structure improved the results considerably. The
negative log likelihood −L decreased from 1,622 for the linear regression LM(x2, x3)
to 1,552 for the spatial model with the same set of covariates CAR(x2, x3). The
spatial model includes only two parameters (ρ and τ 2) more than its linear regression
counterpart. In terms of the AIC criterion the spatially enriched model is preferred
(has a lower AIC), since the decrease in the negative log likelihood overwhelms
increased model complexity.

To put this improvement into a perspective, we present results for the non-spatial
model LM(x1, x3) with the variable on agricultural area. Spatially explicit model
CAR(x2, x3) with the proxy is still much worse than the model LM(x1, x3). The latter
has −L = 1,282 and AIC = 2,574. In terms of the negative log likelihood −L, the
gain achieved by taking into account a spatial correlation can be summarized as a

Table 2 Estimated parameter values

Model β0 β1 β2 β3 σ 2 ρ τ 2

LM(x2, x3) −1.882 − 0.129 0.00012 15.494 – –
CAR(x2, x3) −1.965 – 0.128 0.00013 15.127 0.9984 0.6186
LM(x1, x3) 0.177 0.0007 – 0.00031 15.494 – –
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Table 3 Cross-validation
results

Model mse avg(|d|) min(d) max(d) r

LM(x2, x3) 134.67 7.06 −44.63 58.03 0.877
CAR(x2, x3) 115.38 6.87 −41.57 46.60 0.896

20.5% improvement over the initial model. Parameter estimates for the models are
reported in Table 2.

We regard the method as a tool that can help to extend spatial coverage of
inventories in a situation where the inventories are based on proxy data. The
motivation behind it is that proxy data are more frequently available than measured
data. This task calls for prediction. To evaluate the predictive performance of the
method, we use a cross-validation technique. The procedure was applied to the
spatial model and its non-spatial counterpart with the same set of proxy variables, see
Table 3. We note again that observation yi is not accounted for in the construction
of the predictor y∗

i , thus a model is re-estimated for each observation separately. In
the case of the spatial model, it is a time-consuming procedure.
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Fig. 3 Predicted values in the model CAR(x2, x3) (a); predicted values in the linear regression
LM(x2, x3) (b); observed emission (c)
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Fig. 4 Residuals from cross-validated values for the model CAR(x2, x3) (a); and for the model
LM(x2, x3) (b)

Cross-validation results are also displayed in Fig. 3 as predicted values for the
respective models, along with the observations. It can be noted that the spatial
model predicts the original data slightly better. However, we suspect that some of
the differences might have been masked because the mapped values are binned
into nine classes. Therefore, in Fig. 4 we present the model residuals di. Here we
can clearly see that for the linear regression in the eastern part there is a cluster of
municipalities with highly underestimated values (positive residuals). Application of
the spatial random effect to some extent remedied this deficiency.
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Fig. 5 Predicted values vs. observed values for the model CAR(x2, x3) (a); and for the model
LM(x2, x3) (b)
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Values for analysis of prediction error for the two models are given in Table 3.
The spatial model showed noticeable improvement over the linear regression. In
particular, the mean squared error was reduced by about 15% from 135 to 115. A
smaller reduction is noted for the average in absolute residuals. With inclusion of
spatial dependence we obtain higher minimum and lower maximum residuals, which
yields a reduction of over 14% in a spread of differences di.

In Fig. 5 predicted values y∗
i are plotted against the observations yi for the two

models. An overall impression is that the spatial model provides better predictions.
This is confirmed by a higher value of sample correlation coefficient r, see Table 3.
It should be noted, however, that small value observations (i.e., below ca 10 tonnes)
are predicted more accurately with a linear regression approach. This observation is
related to a general feature of the conditional autoregressive models, which tend to
over-smooth data.

5 Concluding remarks

The goal of this study was to demonstrate that emission inventories may be improved
by making efficient use of spatial information. We consider a case study with a
geographically distributed inventory for N2O. Let us suppose that we wish to spatially
expand the inventory beyond the present coverage. We have some proxy data
available both for the present inventory area and in a predictive capacity. The proxy
data is, however, of limited adequacy.

The idea is to take advantage of potentially existing spatial correlation to im-
prove the outcome. First, the task includes model estimation based on available
measured/modeled inventory. Second, an appropriately constructed predictor is used
to produce an emission assessment from the proxy information. To model spatial
dependencies we make use of the conditional autoregressive structure, which was
introduced into a linear regression as a random effect.

The results indicate that inclusion of a spatial dependence component lead to
improvement in both the representation of the observed data set and the prediction.
Specifically, the introduction of spatial random effect into a model with less adequate
covariate (on number of people employed in agriculture) improved estimation
results by over 20% of what would have been obtained using more relevant activity
data (on agricultural area). In terms of prediction, a 15% reduction in the mean
squared error was achieved.

The presented application of the method seems to be particularly suitable to N2O
emissions, as N2O emission pathways include, among other things, agriculture and
soil emissions. These factors tend to be spatially correlated and have quite often been
modeled with spatial tools, for example Sigua and Hudnall (2008). Based on a study
of 15 national greenhouse gas inventories, Leip (2010) note that N2O emissions from
agricultural soils dominate the uncertainty of not only the agricultural sector, but also
the overall greenhouse gas inventory for many countries.

Accounting for spatial scale of inventories may have one more aspect. One may
compare estimation results for alternative proxy data used and try to conclude on
their relevance. This kind of analysis has been already performed in some studies,
see Winiwarter et al. (2003). In that study two sets of data on NOx (nitrogen oxides)
emissions over the same spatial grid for the Greater Athens, Greece, were compared.
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The authors examine significance of area, line, and point emission sources on the
basis of statistical exploratory tools and a visual comparison of maps. In the case
study presented here, we believe the problem is more of data availability than lack of
knowledge on the relevant covariates. Therefore, our focus remains on prediction.

The applied spatial model proved to be especially successful when dealing with
underestimated emission assessments. Further developments of the method would
be required to deal with the problem of over-smoothed values for low emission
observations.
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Abstract The idea of market-based carbon emission trading and carbon taxes is
gaining in popularity as a global climate change policy instrument. However, these
mechanisms might not necessarily have a positive outcome unless their value reflects
socioeconomic and environmental impacts and regulations. Moreover, the fact that
they have various inherent exogenous and endogenous uncertainties raises serious
concerns about their ability to reduce emissions in a cost-effective way. This paper
aims to introduce a simple stochastic model that allows the robustness of economic
mechanisms for emission reduction under multiple natural and human-related uncer-
tainties to be analyzed. Unlike standard equilibrium state analysis, the model shows
that the explicit introduction of uncertainties regarding emissions, abatement costs,
and equilibrium states makes it almost impossible for existing market-based trading
and carbon taxes to be environmentally safe and cost-effective. Here we propose
a computerized multi-agent trading model. This can be viewed as a prototype to
simulate an emission trading market that is regulated in a decentralized way. We
argue that a market of this type is better equipped to deal with long-term emission
reductions, their direct regulation, irreversibility, and “lock-in” equilibria.

1 Introduction

The idea of carbon trading and taxation as a way of combating global climate change
is gaining in popularity. At the same time, the uncertainties, both exogenous and
endogenous (Rypdal and Winiwarter 2000; Winiwarter 2007; Lieberman et al. 2007;
Marland 2008), inherent in carbon trading markets and taxes, raise serious concerns
about their ability to contribute to controlling climate change in a cost-effective way.
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The international emission trading scheme under the Kyoto Protocol was devised
to lower the cost of achieving greenhouse gas emission reductions for different
countries: emissions are reduced where it is cheapest, and emission certificates are
then traded to meet the nominal targets in each country (EEA 2006). Thus, in order
to minimize costs and make environmentally safe decisions, parties can engage in a
bilateral emission exchange process that is independent of market structures.

In contrast, carbon trading markets, which have become popular, resemble stock
markets. Carbon markets, like other commodity markets, are volatile and are the
result of and react to stochastic “disequilibrium” spot prices, which may be affected
by speculations and bubbles (Energy Business Review 2006). The existing emission
trading, therefore, might not necessarily minimize abatement costs and achieve
emission reduction goals promoting environmental safety.

There are two main approaches to cost-effective pollution control: centralized
“command-and-control” methods and decentralized market simulation schemes.
If the centralized agency is fully informed about the emissions and abatement
cost functions of all parties, finding emission levels that meet given environmental
standards in a cost-effective way is a straightforward task. Unfortunately, parties
prefer to keep the information private and the costs of emission reductions remain
unknown. In the absence of information, a decentralized approach to cost-effective
emission reduction is required, as in the bilateral emission trading scheme outlined
in Section 2. An alternative to this scheme may be a tax scheme (Section 3) or a
price-based scheme (Section 5) simulating a decentralized market solution.

The aim of this paper is to discuss a basic model for analyzing robust decentralized
emission control schemes, which treats various uncertainties and detectability (Jonas
and Nilsson 2007) of emissions explicitly. The model describes a trading system that
enables parties to achieve solutions that are cost-effective and environmentally safe.
Section 2 introduces the emission trading schemes and argues that the uncertainties
and the way they are represented in emission trading significantly influence equi-
librium prices. For example, the standard deterministic representation of emission
uncertainties by equal-sided intervals might overlook their essential characteristics.
These can, in turn, affect the timing when emission changes become detectable (i.e.,
when they outstrip the uncertainty associated with them) and whether or not emis-
sion reduction targets satisfy agreed safety controls, as illustrated in Appendix 1 and
2. In the sequential bilateral trading scheme of Section 3, the trade at each step takes
place toward the cost-effective and environmentally safe equilibrium price. Section 3
also discusses the disadvantages of taxation. Section 4 outlines a computerized, multi-
agent and decentralized trading system that allows irreversibility of emission trading
to be coped with. Section 5 analyses path-dependencies of myopic trading schemes
relying on instantaneous market prices. Section 6 concludes.

2 Trade equilibrium under uncertainty

Carbon control policies, like other environmental policies, should ideally be intro-
duced so as to be environmentally safe and cost-effective. The following model (1)–
(4) provides a basis for designing rather different decentralized emission trading
schemes. Let us consider in detail an exchange scheme which does not require the
existence of a market.
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Our model reflects the following key features. The participants (countries, compa-
nies, or other emitting entities) are given a right to emit a specific amount for which
they must hold an equivalent number of allowances or emission permits. The amount
of emissions allowed is limited to the “cap” (Kyoto or other targets). If participants
emit more than the cap, they are required to buy additional credits from the parties
who pollute less. The transfer of permits is called “trading.” Let us briefly discuss
the deterministic model proposed in Godal et al. (2003) that will be further extended
to include a stochastic model with probabilistic safety constraints. Uncertainties in
emission trading have also been addressed in Nahorski et al. (2003) and Nahorski
et al. (2007) where, similar to Godal et al. (2003), the uncertainty is added to the
emissions reported in the compliance year before the target compliance is checked.

The decision problem of each party can be separated into two interdependent
sub-problems. First, for a fixed amount of permits, each party solves its individual
problem by deciding whether to spend resources on abating emissions or on investing
in uncertainty reduction to satisfy emission targets. This problem does not require
information from any other party. Second, each party needs to decide whether or
not to exchange permits with other parties. This decision problem involves the cost
functions of other parties. In the model this information is private and therefore the
methodology of decentralized optimization (Ermoliev et al. 2000) is required.

2.1 Model with interval uncertainty

Let us consider first a model with interval uncertainties. For the individual optimiza-
tion problem, we define the least costs fi(yi) for party i (to comply with imposed
targets with fixed permits yi and the target Ki) as the minimum of emission reduction
costs ci(xi) and uncertainty reduction costs di(ui):

fi (yi) = min
ui,xi

[
ci (xi) + di (ui)

]
, (1)

xi + ui ≤ Ki + yi, xi ≥ 0, ui ≥ 0, (2)

for all i, where xi is the estimate of the reported emissions at source i, ui is its
uncertainty, and yi is the amount of emission permits acquired by source i (yi is
negative if i is a net supplier of permits).

Remark 1 (Long-term perspective) In the model, we introduce a long-term perspec-
tive by explicit treatment of future uncertainties and a dynamic trading process. The
environmental constraint (2) requires that estimated emissions plus their uncertainty
undershoot the agreed emission target. This corresponds exactly to the detectability
concept in Fig. 4.

The second optimization problem involves finding the permit vector y =
(y1, ..., yn) or distribution of permits minimizing the total or social costs

F (y) =
∑n

i=1
fi (yi) (3)

subject to

∑n

i=1
yi = 0. (4)
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For illustration, let us assume that the cost functions ci(xi) and di(ui) are positive,
decreasing, convex in xi and ui, respectively, and continuously differentiable. Fur-
thermore, if fi(yi) is the minimum of two convex positive functions subject to a linear
constraint, the function fi(yi) is convex, positive, and decreasing. Then, from the
Lagrangian minimization

∑n
i=1 fi (yi) − λ

∑n
i=1 yi, a trade equilibrium can be defined

as the vector y = (y1, ..., yn) satisfying the following equations:

f ′
i (yi) = λ, i = 1 : n. (5)

The condition 5 states that, in equilibrium, the marginal value of a permit shall be
equal to a specific unknown level (price) λ = λ* that is the same for all parties. At
the equilibrium vector y* the following condition holds true:

fi (y) = max
xi

[
ci (xi) + di (Ki + yi − xi)

] = max
ui

[
ci (Ki + yi − ui) + di (ui)

]
.

Therefore from Eqs. 1, 2, it follows that at the equilibrium yi = y∗
i , λ = λ*, xi = x∗

i ,
ui = u∗

i :

c′
i (xi) = d′

i (ui) = λ, (6)

where
(
x∗

i , u∗
i

)
is the solution of the sub-problem (1), (2) for (y*, λ*), and y∗ =(

y∗
1, ..., y∗

n

)
satisfying Eq. 5. This equation states that in the cost-effective and

environmentally safe equilibrium, the marginal cost of holding emissions down to x∗
i

will be equal to the marginal cost of holding uncertainty down to u∗
i . It is important

to note that the explicit introduction of uncertainty ui, the detectability of emissions,
and safety constraints (2) into emission trading schemes may significantly affect the
equilibrium and hence the design of emission trading schemes. In particular, it means
that market prices must reflect Eqs. 5 and 6.

The price λ* can also be viewed as a cost-effective and environmentally safe
carbon tax. However, it is difficult for an agency acting as a central planer to
know the cost functions of all parties and thus find equilibrium λ*. In particular,
if adopted by the agency, there is no guarantee that any fixed (regulated) price (tax)
λ satisfies Eqs. 5 and 6. In contrast, the scheme of sequential bilateral trade (see
Section 3) allows the equilibrium x∗

i , u∗
i , λ

∗ to be recovered without information on
cost functions of all parties being known.

2.2 Probabilistic safety constraints

In the simplified case, constraints (2) assume that the uncertainty of emissions
is characterized by equal-sided intervals. These constraints discount the level of
reported emissions xi by their uncertainty ui (see Fig. 1). As the reduction of
uncertainty (6) involves costs, the interval representation may incur costlier or even
worst-case solutions, because it may not capture the likelihoods and the preference
structure of individual emissions values within the given interval ranges.

In fact, Figs. 2 and 3 illustrate rather complex asymmetric variabilities of emissions
and cases in which the interval representation of uncertainty might be inadequate.
The following stochastic model introduces probabilistic safety constraints with risk-
based discounting of reported emissions, which is less conservative than interval-
based discounting.
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Fig. 1 Which party is more
credible for emission trading?
Party II reveals a smaller
uncertainty interval, the mean
of which, however, does not
comply with the Kyoto target

Let us define the variability (uncertainty) of reported emission xi as random
variable ξ i(xi, ωi). Then, the safety constraint can be written as a probabilistic version
of the deterministic constraint (2):

P
[
xi + ξi (xi, ωi) ≤ Ki + yi

] ≥ Qi (7)

for all parties i, where Qi is a safety level that ensures the probability of all potential
emission paths to xi, satisfying the emission target Ki exceeds Qi.

A random variable ξ i(xi, ωi) depends, in general, on xi. In reality, the uncertainty
ξ i can be reduced by improvements to monitoring systems. Let us introduce for
this purpose the variable ui that may control the variability of emissions within the
desirable safety level Qi. If zi(xi) is the minimal z such that

P [ξi (xi, ωi) ≤ z] ≥ Qi,

then the following equivalent constraints can be substituted for the safety con-
straint (7):

xi + ui ≤ Ki + yi, ui ≤ zi (xi) . (8)

Fig. 2 Global CO2 net
terrestrial uptake, 1960–1970
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Fig. 3 Global CO2 net
terrestrial uptake, 1985–1995
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For notational simplicity, the vector of all uncertainties affecting cost functions and
emissions will be denoted by ω. We can redefine function fi(yi) in Eq. 1 as

fi (yi) = min
xiui

E
[
ci (xi, ω) + di (ui, ω)

]
, (9)

where the minimization in Eq. 9 is subject to constraint (8).

Example 1 (Deterministic safety constraints) Assume that ξ i does not depend on xi.
Then, the constraint (8) reduces to the constraint (2) of the original deterministic
model which controls the safety of targets Ki only within a given safety level Qi.

Example 2 (Linear equivalent) Often, ξ i(xi, ωi) is represented as ξi (xi, ωi) = γixi +
εi, where 0 < γi < 1, and εi is a random variable. The reduction of uncertainty is
controlled by γi in the following manner. Let εi(Q) be the minimal z such that
P [εi ≤ z] ≥ Qi. Then the safety constraint (8) is reduced to linear constraints

xi + ui ≤ Ki − εi (Qi) + yi, ui ≤ xi.

After the individual sub-problems are solved, the optimal γ i can be found as γi =
ui/xi.

Remark 2 (Risk indicator) Safety constraints (7) are well known in financial ap-
plications as a Value-at-Risk indicator (Rockafellar and Uryasev 2000). Similar
constraints are typically used in safety regulation by insurance companies, power
plants, and in catastrophic risk management (Ermolieva and Ermoliev 2005).

The proposed models allow the comparative advantages of different emission
control economic mechanisms to be analyzed.

3 Dynamic bilateral trading process and taxes

The overall goal of the parties participating in emission trading is to jointly achieve
emission targets by redistributing the emission permits yi, that is, to find a robust
vector y that would minimize the risk-adjusted social costs of all parties (3) under
safety constraints (8), where cost functions fi(yi) are defined according to Eq. 9.
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It is assumed that a party i knows its expected cost function fi(yi), but that the
expected social cost function F(y) is unknown. As well as the uncertainty of the social
cost function F(y), this scheme takes into account uncertainties of cost functions
ci(xi), di(ui), which may be affected by market performance, production shocks, and
technological uncertainties related to new technologies that cannot be known in
advance.

The basic feature of the scheme (Ermoliev et al. 2000) is that two randomly
selected parties exchange emission permits in a mutually beneficial way. A new pair is
chosen and the procedure is repeated. The following simple equations illustrate that
the bilateral exchange of emissions is beneficial for both parties. Let yk = (

yk
1, ..., yk

n

)

be the vector of emission permits after k trades. Consider two parties i and j at step
k with permits yk

i and yk
j .

According to Eq. 5, if any two parties i and j have different marginal costs

on emission reduction f ′
i

(
yk

i

) �= f ′
j

(
yk

j

)
, then the permit vector yk = (

yk
1, ..., yk

n

)

is not cost-efficient. Without loss of generality, assume that f ′
i

(
yk

i

) − f ′
j

(
yk

j

)
< 0.

Constraint (4) requires that the feasible exchange in permits has to be such that
yk+1

i + yk+1
j = yk

i + yk
j . If we take yk+1

i = yk
i + �k and yk+1

j = yk
j − �k, �k > 0, then

the new feasible vector of permits yk+1 reduces the total costs of parties fi
(
yk

i

) +
f j

(
yk

j

)
and hence the total cost F(yk):

F
(
yk+1) − F

(
yk) = fi

(
yk+1

i

)
+ f j

(
yk+1

j

)
− fi

(
yk

i

) − f j

(
yk

j

)

= �k

(
f ′
i

(
yk

i

) − f ′
j

(
yk

j

))
+ o (�k) < 0, (10)

for small �k. This equation demonstrates that bilateral trade reduces the aggregate
costs for sources i and j. We also have

fi

(
yk+1

i

)
− fi

(
yk

i

)
< f j

(
yk

j

)
− f j

(
yk+1

j

)
. (11)

That is, the new distribution of permits reduces costs of j more than increasing
the cost of i. Hence j is able to compensate i for the increased costs in a mutually
beneficial way.

A party j that decreases emission permit by �k > 0 may negotiate with party i such
a level �k that equalizes marginal costs, that is, f ′

i

(
yk

i − �k
) = f ′

j

(
yk

i + �k
) = λk,

where λk is an equilibrium price (usually stochastic) at step k. Similar to Ermoliev
et al. (2000) it can be proven that for convex functions fi(yi), f j(y j) the sequence
of permits yk = (

yk
1, ..., yk

n

)
and λk converges to an equilibrium satisfying Eq. 5. The

computerized market system, described in the next section, allows more sophisti-
cated global solutions for non-convex functions to be achieved.

It is important to compare the bilateral trading scheme outlined with price-based
schemes and carbon taxes. A price or tax signal λ decentralizes the solution of overall
minimization problem into individual sub-problems: find solutions yi(λ) minimizing
functions fi (yi) + λyi. In general, solutions yi(λ) do not satisfy the balance Eq. 4,
that is, as

∑n
i=1 yi (λ) �= 0, the price (tax) λ has to be adjusted toward the desirable

balance. The common idea is to change current λk at time k = 0,1,... proportionally
to the imbalance, that is, λk+1 = λk + ρk

∑n
i=1 yi (λk), with a proper step size ρk.

It is unrealistic to assume that imbalances
∑n

i=1 yi (λk) can be evaluated exactly.
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The inherent uncertainty of values
∑n

i=1 yi (λk) results in irregular adjustments of
λk. It would thus be very difficult to establish an agency that is able to calculate
imbalances and regularly update taxes to achieve harmonization across countries,
thereby satisfying Eqs. 4–6. This would also include harmonization of taxes among
all countries producing a similar product, which would be extremely difficult. Funda-
mental additional difficulties arise in the case of the market uncertainties analyzed in
Section 5.

4 Computerized multi-agent decentralized trading system

Although during sequential bilateral trades, marginal costs and prices will differ for
each sequential trade, the trading system will finally converge to an equilibrium
where the marginal costs of all parties is equal to equilibrium price as in Eq. 5. This
perfect trading system implies that trades being bilateral, sequential (dynamic), and
random does not reduce the cost savings, even if sources only have information on
their own abatement costs. However, there are major obstacles that can inhibit real
markets from perfect functioning according to the proposed procedure. In a perfect
market, a party that has sold permits at an early stage of the trading process would
be able to renegotiate its earlier transaction. In the real emission trading market,
this type of counteraction may be impossible because decisions are irreversible:
investments may already have been made, and these investment costs are largely
sunk costs. This is the fundamental obstacle involved in the design of cost-minimizing
and environmentally safe emission trading markets. Available computer technology
and numerically stable optimization procedures allow a computerized (say, Web-
based) Multi-Agent Decentralized Trading System to be organized to resolve these
issues.

One can imagine a distributed computer network that connects computers of par-
ties with the computer of a central agency. The party anonymously stores information
on its specific cost functions and other characteristics of the underlying optimization
model 8, 9, including specific probability distributions. The central agency stores
information on the emission detection model. The computer of the central agency
generates a pair of parties i, j and anonymously “negotiates” with the computers
of these partners a proper �k that solves the sub-problem (12). This can easily be
done without revealing parties’ private information, and the process is repeated until
equilibrium levels have been reached. This procedure allows an equilibrium solution
to be found that can then be implemented in reality. It is important to stress that a
network of interconnected computers is essential for the rapid, smooth, and robust
functioning of the emission trading market. There would also be a clear separation
between a first stage, in which provisional bids are made between the computers of
the parties and a reconstruction of the decisions is still allowed, and a second stage,
when contracts have been concluded and investments in emission control have been
implemented.

It is well known (Baumol and Oates 1971) that the market will not usually
generate desirable outcomes if market prices fail to reflect socioeconomic and
environmental impacts. In such a case, it is typically necessary to establish negotiation
processes between parties involved to determine desirable collective solutions. From
this perspective, the computerized Multi-Agent Decentralized Trading system can
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be viewed as a device for collective negotiations and decision making in the presence
of inherent uncertainties and irreversibilities.

5 Myopic market processes

The basic model 3, 4, 8, 9 takes a long-term perspective on emission permit trading.
Parties use rational expectations and safety constraints to achieve cost-effective
and environmentally efficient outcomes that are robust against potential future
eventualities. The resulting trading scheme is similar to a pure exchange economy.
There are no demand and supply functions. Instead, the safety constraints oblige
parties to invest in emission and uncertainty reductions and consequently act as
suppliers of emission permits until a rational expectations equilibrium emerges, that
is, sequential decisions on the part of parties generate a path of emission permit
prices λk that converge to the equilibrium price.

The proposed model exists in a prototype “world” where in a perfect market the
parties would be able to trade at equilibrium price. In the actual emission trading
market, the emissions trades are accomplished at spot disequilibrium prices, and once
done, cannot be redressed, which may involve potential lock-in irreversibility not
only of trades but also of technological investments. The short- term price-driven
market perspective orient parties to instantaneous information ω on prices and cost
functions. At time interval k, parties observe uncertainty ωk and thus know their own
cost functions ci(xi, ωk), di(xi, ωk). Based on this information, they trade permits until
the next time interval k + 1 when new information comes on stream. In other words,
parties calculate cost functions

fi (yi, ωk) = min
ui,xi

[
ci (xi, ωk) + di (ui, ωk)

]

subject to the safety constraints 8, and they minimize
∑n

i=1 fi (yi, ωk) subject to∑n
i=1 yi = 0.
This yields ωk-dependent decisions xi(k, ωk), ui(k, ωk), yi(k, ωk). At time interval

k + 1, a new observation ωk + 1 may contradict ωk, requiring significant revisions
to be made to these decisions, which may then be impossible because of their irre-
versibility. The sequence of myopic short-term decisions xi(k, ωk), ui(k, ωk), yi(k, ωk)

would exhibit path-dependent random behavior without providing an equilibrium.

6 Concluding remarks

The feasibility of carbon emission trading and carbon taxes is usually discussed
under strong assumptions that all actions are made simultaneously at known equi-
librium prices, which implies the existence of a perfectly informed central agency.
The proposed sequential bilateral trading scheme under uncertainties avoids this
assumption. Sequential trades and resulting emission prices implicitly depend on
cost functions and safety constraints for environmental targets. With probabilistic
safety constraints, the parties set the level of their exposure to uncertainties and
risks. The safety constraints discount the reported emissions to verifiable levels. Yet
there is a serious concern that the irreversibility of trades prevents these schemes
from achieving cost-effective and environmentally safe solutions. This calls for the
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use of a computerized multi-agent emission trading system that provides a collective
decentralized regulation of trades.

The computational effectiveness and counterintuitive effects of deterministic in-
terval uncertainties on emission trading are analyzed in Godal et al. (2003) using data
on the European Union countries, Russia, Ukraine, and the USA. The modification
of these large-scale calculations for stochastic models is a straightforward but tedious
task that is beyond the scope of this paper. In general, the stochastic model allows
less conservative confidence intervals to be substituted for deterministic uncertainty
intervals, leading to less conservative risk-adjusted conclusions.

Acknowledgements Authors are thankful to anonymous referees and the chief editor for numerous
important comments and suggestions which led us to make considerable improvements of the paper.

Appendix 1: Uncertainties and trends of carbon fluxes

Here, we illustrate the role of emissions uncertainties and the need for their proper
representation in the context of the Kyoto Protocol. The main question that Kyoto
parties will face at the end of the commitment period is whether they have fulfilled
their obligations. As can be seen from Fig. 1 (see also Jonas and Nilsson 2007),
situations might arise when it is difficult to determine which Kyoto parties have
genuinely met their Kyoto targets and which Kyoto parties are more “credible,”
especially when it comes to emission trading.

Uncertainties in Fig. 1 are represented by means of symmetrical intervals. In
reality, however, emissions might have different likelihoods within these intervals
(i.e., rather general skewed probability distributions). In this case, the use of equal-
sided uncertainty representation means that essential patterns of emission changes
might not be considered, as illustrated in Figs. 2 and 3. These figures show the vari-
ability in emissions of the global CO2 net terrestrial uptake (see also Ermolieva et al.
2007, data source: http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon_budget.htm).
The histogram in Fig. 2 is skewed to the left (more frequent values are on the left-
hand side). In the next study period, Fig. 3, the situation changes: more values are
concentrated on the right-hand side. Between the two periods, the system changed
from being a source to being a sink of CO2. Moreover, while in Fig. 2, the rare values
on the right-hand of the mean have probability only in the order of 15–20%, in Fig. 3,
the values and their likelihoods on the right-hand of the mean have much heavier
probability mass and, therefore, would be essentially more important for deciding
about the level of emission permits to trade. It is clearly impossible to represent the
uncertainty characteristics of the variable in Figs. 2 and 3 through intervals.

Appendix 2: Detectability of emissions

Apart from detecting natural variability and changes of emissions as illustrated in
Figs. 2 and 3, the detectability of emission changes may also be applied to the analysis
of human-related uncertainties, e.g., associated with underreported emissions. The
simplest way to introduce the detectability concept into the emission trading schemes
(models) is to make a straightforward representation of uncertainties by equal-sided
intervals setting ranges of potential emissions as in Section 2.1 (for overview, see
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Jonas et al. 1999). Such a representation allows only a conservative or, in a sense,
“worst-case” conclusions to be derived, as it does not really give a clue as to the
different likelihoods of emissions within the interval (i.e., rather different left- or
right-skewed probability distributions; for example, as in Figs. 2 and 3, may be
“covered” by the same interval). Let us illustrate the main idea of the interval-based
detection techniques with a simple example in Fig. 4. Assume that uncertainty of
emission e1 in the base year t1 is characterized by equal-sided interval [e1 − ε, e1 + ε].
The uncertainty of reported emission e2 in the commitment year t2 (t1 < t2) is
characterized by the same type of interval [e2 − ε, e2 + ε]. We assume that e1 > e2,
although the case e1 < e2 is also possible (e.g., as a result of emission trading). The
emission changes are said to be detectable at time t2, if the change in carbon emissions
�e = e1 − e2 at time t2, with reference to time t1, is greater than the uncertainty (e.g.,
emax

2 − e2, of the reported net carbon emissions at time t2). Section 2.2 deals with this
case within a stochastic emission trading model, where e1 ≤ Ki + yi, e2 ≤ xi, ε = ui in
Eqs. 1 and 2.

Under the non-restrictive assumption that first-order linear approximations for
emission e(t) and uncertainty ε(t) trends are applicable for t1 ≤ t ≤ t2, the detection
time t* is then defined as the first time moment at which net emission change �e
outstrips the uncertainty interval ε.

The deterministic detection concept allows describing the dynamics of emissions
and their uncertainties, depending on data, up to any order. In Fig. 4 emissions are
described up to the first order and uncertainties by a constant in absolute (or relative)
terms. That is, the figure’s focus is on two points in time, the base year and the
commitment year. However, this concept always assumes a single scenario (here a
straight line (e1, e2)) of how emissions and their uncertainties evolve from a value
within an uncertainty interval at t1 to a value within an uncertainty interval at t2. As
Figs. 2 and 3 show, emissions within uncertainty intervals may have rather different
skewed probability distributions.

Remark 3 (Stochastic detection models) The detection of emission changes account-
ing for non-symmetrically distributed emissions is addressed by the stochastic detec-
tion technique (DT) proposed in Hudz (2002) and Hudz et al. (2003), and Ermolieva
et al. (2007). Emission uncertainties and stochastic detection techniques are also dis-
cussed in Nahorski et al. (2003). The goal of the stochastic DT is to rank the trading
parties by a safety indicator, which represents the percentile (probability) of emission

Fig. 4 Simplified illustration
of detection time t*

Reprinted from the journal 287



Climatic Change (2010) 103:277–289

changes detectable in a given time period. Stochastic emission trading model in
Section 2.2 allows the deterministic uncertainty intervals to be replaced by possibly
much smaller, confidence (safety) intervals. Comparative analysis of deterministic
and stochastic detection techniques using simplified version of the detection model
can be found at http://www.iiasa.ac.at/Research/FOR/unc_prep.html and educational
software at http://www.iiasa.ac.at/Research/FOR/vt_concept.html).

References

Baumol W, Oates W (1971) The use of standards and prices for protection of the environment. Swed
J Econ 73:42–54

EEA (2006) Application of the emission trading directive by EU Member States. Technical
Report No. 2/2006, European Environment Agency (EEA), Denmark, p 54. http://reports.
eea.europa.eu/technical_report_2006_2/en/technicalreport_2_2006.pdf

Energy Business Review (2006) Volatility the only certainty in EU carbon market. http://
www.energy-business-review.com/article_feature.asp?guid=FD09D7CA-3EFC-4229-BA86-
1D968025DF5B

Ermoliev Y, Michalevich M, Nentjes A (2000) Markets for tradable emission and ambient permits:
a dynamic approach. Environ Res Econ 15:39–56

Ermolieva T, Ermoliev Y (2005) Catastrophic risk management: flood and seismic risks case studies.
In: Wallace SW, Ziemba WT (eds) Applications of stochastic programming. MPS-SIAM Series
on Optimization, Philadelphia

Ermolieva T, Jonas M, Ermoliev Y, Makowski M (2007) The difference between determin-
istic and probabilistic detection of emission changes: toward the use of the probabilistic
verification time concept. In: Proc. of the 2nd international workshop on uncertainty in green-
house gas inventories, IIASA-Systems Research Institute of the Polish academy of Sciences.
http://www.iiasa.ac.at/Research/FOR/unc_prep.html

Godal O, Ermoliev Y, Klassen G, Obersteiner M (2003) Carbon trading with imperfectly observable
emissions. Environ Res Econ 25:151–169

Hudz H (2002) Verification times underlying the Kyoto protocol: consideration of risk. Interim
Report IR-02-066, International Institute for Applied Systems Analysis, Laxenburg, Austria.
http://www.iiasa.ac.at/Publications/Documents/IR-02-066.pdf

Hudz H, Jonas M, Ermolieva T, Bun R, Ermoliev Y, Nilsson S (2003) Verification times un-
derlying the Kyoto protocol: consideration of risk. Background data for IR-02-066, Inter-
national Institute for Applied Systems Analysis, Laxenburg, Austria. http://www.iiasa.ac.at/
Research/FOR/vt_concept.html

Jonas M, Nilsson S (2007) Prior to economic treatment of emissions and their uncertainties under the
Kyoto Protocol: scientific uncertainties that must be kept in mind. Water Air Soil Pollut Focus
7(4–5):495–511. doi:10.1007/s11267-006-9113-7

Jonas M, Nilsson S, Obersteiner M, Gluck M, Ermoliev Y (1999) Verification times underly-
ing the Kyoto protocol: global benchmark calculations. Interim Report IR 99-062, Interna-
tional Institute for Applied Systems Analysis, Laxenburg, Austria, p 43. http://www.iiasa.ac.at/
Publications/Documents/IR-99-062.pdf

Lieberman D, Jonas M, Nahorski Z, Nilsson S (eds) (2007) Accounting for climate change.
Uncertainty in greenhouse gas inventories—verification, compliance, and trading. Springer,
Dordrecht, pp 159, ISBN: 978-1-4020-5929-2 [Reprint: Water Air Soil Pollut.: Focus, 2007,
7(4–5), ISSN: 1567-7230]. http://www.springer.com/environment/global+change+-+climate+
change/book/978-1-4020-5929-2

Marland G (2008) Uncertainties in accounting for CO2 from fossil fuels. J Ind Ecol 12(2):136–139.
doi:10.1111/j.1530-9290.2008.00014.x

Nahorski Z, Jeda W, Jonas M (2003) Coping with uncertainty in verification of the Kyoto obliga-
tions. In: Studzinski J, Drelichowski L, Hryniewicz O (eds) Zastosowania informatyki i analizy
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Jarosław Stańczak · Paweł Bartoszczuk

Received: 5 January 2009 / Accepted: 15 June 2010 / Published online: 14 July 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper we consider the buying/selling prices of carbon dioxide (CO2)

emission permits in trading models with uncertainty. Permission prices, although
usually omitted from standard models, may significantly influence the trading mar-
ket. We thus undertook to construct a more realistic trade model and to compare it
with the standard one. To do this, we introduced several important changes to the
standard model, namely, (1) a new optimized quality function; and (2) transactions
with price negotiations between regions. We also enhanced the model using methods
described in the literature to allow it to deal with reported emissions uncertainty.
Additionally, we used an original method of simulating this kind of market based on
a specialized evolutionary algorithm (EA).

1 Introduction

It is claimed that the implementation of a tradable emission permit system can be an
efficient strategy for achieving environmental goals. In permit systems a regulatory
agency distributes emission permits to polluters in accordance with environmental
goals. The permits are transferable among polluters, resulting in—to use simple,
everyday trade model terminology—an equalization of marginal abatement costs
among pollution sources.
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National researchers build market models that optimize their ability to forecast
the emission allowance process and the cost of emission reduction for different coun-
tries (Ermoliev et al. 2000) to stay fully informed about how obligations regarding
greenhouse gas emissions will influence the world economy and about the rules
governing the market. A major challenge is to build a transaction model and to solve
many other problems associated with the credibility and uncertainty of emission level
reports (Ermoliev et al. 1996; Godal 2000; Klaasen et al. 2001; Nahorski et al. 2007).

Earlier proposed models of emission permit trading for CO2 do not really use
transaction prices. Although the models calculate the equilibrium prices, they are
not applied during the trade. The equilibrium permit price is used to calculate the
emission reduction costs only. No negotiation of prices or any additional transaction
costs are applied.

The problem-solving method proposed in earlier papers was original, but diverged
from the real market situation. A more elaborated market model was thus consid-
ered, in which additional elements were included, such as the possibility of choice of
price during negotiation and the influence of real prices on model solutions.

Application of the evolutionary algorithm (EA) method to simulate economic
models is a very fast developing domain, mainly because it is quite easy to model
economic systems using this tool. The evolutionary and agent-based approach to
dynamic market modeling, which can be found in Bonatti et al. (1998), is used
to simulate the very complicated information industry market. The evolutionary
method is a natural way of performing computer simulations of the new model. This
method is presented below.

2 New and earlier market models

The idea of emission permit trading is based on the assumption that some countries
can save emission permits, which they can sell to countries wishing to emit more than
their Kyoto obligations.

Trading is beneficial only when the price of permits is lower than the cost of
emission reduction. Then, the country can reduce emissions below its obligation and
sell the surplus as permits to another country (see Figs. 1 and 2).

Fig. 1 CO2 emission
reduction cost: without trade
(cKi), and with trade (cik) for
buying country, Ki—Kyoto
limit, xik—emission after
trade, xi0—initial emission
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Fig. 2 Without trade, the
emission reduction costs of
CO2 are zero; with trade for
the selling country (cik),
Ki—Kyoto limit,
xik—emission after trade,
xi0—initial emission

In the base model the total cost of holding emissions in region i down to xi, is
denoted by Ci(xi), which represents the abatement cost function. We assume that
the cost functions Ci(xi) are positive, decreasing, and continuously differentiable for
each region. The Kyoto target for each region i is indicated by Ki. The number of
emission permits acquired, by source, is expressed byyi (yi is negative if region i is a
net supplier of permits),

E = min
xi

n∑

i=1

Ci (xi) (1)

with the constraints:

xi ≤ Ki + yi (2)

n∑

i=1

yi = 0 (3)

where:

E is the minimum cost of decreasing emissions for all countries in the standard
model;

Ci(xi) is the cost of reducing emissions at region i down to xi;
yi is the number of emission permits acquired by region i;
Ki is Kyoto target for region i;
n is the number of regions;
xi is current emissions.

The goal is to minimize the cost of emission reduction in order to cut emissions to
the required level in compliance with the Kyoto target.

This basic model does not deal with the problem of uncertainty in emissions, but
it can be extended to do so, for instance, using ideas described in Nahorski et al.
(2007), Horabik (2005), or Bartoszczuk and Horabik (2007). The only modification
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required to the standard model for considering uncertainty is to replace formula (2)
with formula (4) (Nahorski et al. 2007; Horabik 2005).

xi + (1 − ς) (1 − 2α) dini ≤ Ki + yi (4)

where:

ζ is the parameter that describes the correlation of emissions in the base year
(1990) and the current year, usually ζ ∈ [0.65,0.7];

α is the parameter that describes the risk of noncompliance with the Kyoto target,
α ∈ [0,0.5];

di is the inventory uncertainty for country i;
ni is the base year emission for country i.

The modified model minimizes the sum of total emission reduction costs; however,
the limits imposed are lower than the Kyoto target in order to take into account
possible unreported emissions.

Normally, prices (the shadow price) are defined as the cost derivatives at a given
point. However, in the real world, neither sellers nor buyers are apt to disclose
their emission reduction costs. Moreover, the cost reduction function are usually not
precisely known. Finally, they are not the only component of emission permit prices.
Therefore, in the solution described we assume that a transaction is finalized only
when the permit price that is negotiated is lower than the average cost of emission
reduction for the buyer and higher than the average cost of emission reduction for the
seller. It is obvious that each party wishes to maximize its profit, and this assumption
is the basis for our new quality function.

In the evolutionary approach, which will now be further described, maximization
over y ji and π ji is performed in each transaction by genetic operators (which try
to simulate the price negotiation process to make the transaction more beneficial
and reject any outcomes that are unprofitable), while the total maximization over x ji

is the EA task (selection of better market solutions with lower emission reduction
costs). As mentioned earlier, the model presented contains important changes in
relation to previous models. The most important change is a different goal function
(5) which maximizes the difference between cost with no trade and cost with trade,
where the buying/selling price of the permit is included. It considerably influences
transaction profitability and the decision regarding buying/selling permits, including
the decision, whether it is more advantageous to reduce emissions than to buy
permits. Unfortunately, in a single-criterion version a large part of the information
specific to participating parties is lost after the total sum over i is calculated, but
this information is used by genetic operators and can be stored to research the
market behavior. The goal function (5) is only a single-criterion version of a more
sophisticated model with many criteria: one for each party. A multicriteria model
designed for an agent or multicriteria evolutionary system, has not yet been built;
however, the first steps have been taken toward applying such a system, through
modeling of the Cournot game (Stańczak 2009).

Formulae (6–11) are constraints which assure that the market model created has
realistic properties:

• A party is not allowed to emit more than its Kyoto obligation plus acquired
permits (6);
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• Additional permits can be bought only from parties participating in the market,
and no extra permits are available (8);

• Buying/selling permits changes the level of allowable emissions of a party (7);
• The number of permits traded in one transaction is limited to ymax to avoid major

fluctuations in permit prices (9);
• The price of the permit in a transaction is identical for the selling and buying

party (10);
• The numbers of traded permits are treated as negative values for the selling

parties and positive for the buying ones, and their absolute values are equal (11).

In the new model the goal function is given by the following formula:

G =
T∑

j=1

max
x ji

n∑

i=1

max
y jiπ ji

(
Ci

(
x j−1,i

) − (
Ci

(
x ji

) − y ji · π ji
))

(5)

with the constraints:

xTi ≤ Ki +
T∑

j=1

y ji (6)

x j−1,i + y ji = x ji and x0,i = Ki (7)

n∑

i=1

T∑

j=1

y ji = 0 (8)

0 ≤ y ji ≤ ymax (9)

π ji =
{

0 for parties not trading in the transaction j
π ji for parties trading in the transaction j

(10)

y ji =
⎧
⎨

⎩

0 for parties not trading in the transaction j
−y ji for party selling in the transaction j
y ji for party buying in the transaction j

(11)

where:

G is the minimum cost of decreasing emissions for all parties in the model;
T is number of buying/selling transactions conducted;
Ci(x ji) are the costs of reducing emissions by the party i to x ji after j transactions;
Ki is the Kyoto target for the party i;
n is the number of parties;
x ji is the emissions of the party i after j transactions;
y ji is the number of emission permits acquired by the party i;
π ji is the price of permits bought/sold in transaction j by the party i.

Reprinted from the journal 295



Climatic Change (2010) 103:291–301

Using function (5) we look for a solution to maximize the difference between the cost
when no trading takes place and the cost when permits are exchanged, in other words,
the profit from emission trading. In the previous goal function we minimized the cost
of emission reduction without including buying prices and expenditures for this goal:
note that the cost of buying can be considerably greater than expenditure on CO2

reduction if there is no trade. In the new approach, we also assume slightly different
methods of permit price setting. The authority or market must set a minimum price
below which the permit price cannot go. This is to exclude cases where countries
reporting emissions below the Kyoto level have zero marginal abatement costs
(compare Fig. 2). Therefore, the marginal cost (e.g., shadow price) is no longer a
derivative of the abatement cost, but a derivative with minimal value. In practical
cases the price negotiations prevent a situation arising where the price of a permit
drops to zero. While no country would wish to “sell” permits at no cost, the model
described should have some kind of protection against such cases.

The second important change is the introduction of transactions. Transactions are
conducted iteratively until there is no further benefit for participants and all parties
have dropped out. Prices and amounts of transferred permits are negotiated. Thus,
unlike the static base model, our market model is dynamic.

The real price of permits and the number of permit is not known before computer
simulation of market activity is conducted and the process of price negotiations
among parties is emulated. As an approach to negotiations, in computer simulations
presented in this paper the number of permits sold is randomly chosen from some
interval. In a similar way the permit price is chosen from the interval between the
maximum price (shadow price) of the buyer and minimum price (modified shadow
price) of the seller.

Similar to the base model, the new formulae (5–10) do not deal with the problem
of the uncertainty of reported emissions; however, this can be changed by intro-
ducing a new formula (12) instead of a formula (6) to consider possible unreported
emissions:

xTi + (1 − ς) (1 − 2α) dini ≤ Ki +
T∑

j=1

y ji (12)

where all symbols have the same meaning as in formulae (4–11).

3 Evolutionary algorithm method in computer simulations

Although the standard evolutionary algorithm works as shown in Table 1, many
problem-specific improvements are needed to make this simple scheme work
efficiently. To adjust the genetic algorithm to the solved problem, there must be: (1)
a proper encoding of solutions; (2) creation of specialized genetic operators for that
problem and an accepted data structure; and (3) a fitness function that is optimized
by the algorithm.

We thus use a specialized evolutionary algorithm to solve the problem: one
individual contains information about all the parties participating in the market,
making it a complete solution to our problem. Another method may also be applied
whereby each party is treated as one independent individual (Alkemade et al. 2006;
Clemens and Riechmann 2006). In the latter case we obtain only one solution, as
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Table 1 The evolutionary algorithm

Random initialization of the population of solutions.
Reproduction and modification of solutions using genetic operators.
Valuation of the solutions obtained.
Selection of individuals for the next generation.
If a stop condition is not satisfied, return to step 2.

the population of solutions in evolutionary algorithm is limited to the number of
parties participating in the trade. The case considered (five parties) is too small for
an evolutionary algorithm to work efficiently, and is therefore not used.

We use the former approach. Thus, the whole individuals’ population contains a
number of solutions, as many as the number of individuals. The solutions need not
be different, although they usually are. Thanks to this parallelism of evolutionary
computations, we usually obtain several scenarios of possible market evolution.

The information needed to describe one party is as follows:

• Theoretical price of own permits (shadow price);
• The real price of current permits sold/bought;
• The value of current permits sold/bought;
• Number of permits currently sold/bought;
• The total sum of permits sold/bought;
• Current emissions;
• Previous emissions (before present transaction);
• Value of present and previous goal function.

To modify the solution, the following genetic operators were used:

• Competition: a chosen party offers a number of permits for sale, some other
parties declare a willingness to buy them, next the best option is chosen, and the
solution (the individual) is modified;

• Sale: the chosen parties conduct transactions.

The prices and numbers of permits traded are randomly chosen. The number of
permits traded is chosen from the interval {1,..,5},1 and the permit price is drawn
from a given distribution as a value between the buying and selling offer, with the
expected value of the distribution being the average of these two values.

In EA a goal function is called fitness function because it is often modified (scaled
or moved) due to EA requirements. Thus the fitness function for EA is a direct goal
function of a problem, as described by formula (5).

Population initializing procedures and genetic operators are designed so as to
obey the constraints (6–12), and forbidden solutions cannot appear in the population
of solutions.

As specialized genetic operators are used, some method of sampling them needs
to be applied in all iterations of the algorithm. In the approach used (Mulawka and
Stańczak 1999; Stańczak 2003), it is assumed that an operator that generates good

1The limitation on the maximum amount of permits sold is introduced, as trading too large a number
of permits in one transaction can have a large impact on permit prices and undermine profitability.
One permit is an equivalent of 1MtC.
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Table 2 The data applied for calculations for various regions

Country Initial emission Cost function parameter (a) Limit Kyoto (Ki)
(xi0) MtC/year MUSD/(MtC/year)2 MtC/year

USA 1,820.3 0.2755 1,251
EU 1,038.0 0.9065 860
Japan 350.0 2.4665 258
CANZ 312.7 1.1080 215
FSU 898.6 0.7845 1,314

results should have greater probability and affect the population more frequently.
As every individual may have its own preferences, every individual has a vector
of floating point numbers, beside the encoded solution. Each number corresponds
to one genetic operation. It is a measure of quality of the genetic operator.
The higher the number, the higher the probability of operator execution by the
individual.

This set of probabilities or, in other words, the ranking of qualities is also a basis of
the experience of every individual, and each individual chooses an operator in each
epoch of the algorithm according to it. Through the experience gathered, individuals
can maximize the chances of their offspring surviving.

4 Computer simulation results

Computer simulations were conducted on data set, in line with other authors’ papers,
mainly Bartoszczuk and Horabik (2007), Horabik (2005), and Nahorski et al. (2007).
We consider a group of the following countries: United States (USA); European
Union (EU); Japan; Canada, Australia and New Zealand (CANZ); and former
Soviet Union with Eastern Europe (FSU). We assume that cost depends on emission
reductions in the following way (quadratic cost function) (Horabik 2005; Bartoszczuk
and Horabik 2007).

C (xi) =
{

a ∗ (xi0 − xi)
2 for xi < xi0

0 for xi ≥ xi0
(13)

Table 3 Results in scenario assuming perfect permit market model

Region/ Final Final price Number of Permits Emission
country emission USD/tC imported expenditures reduction cost

MtC/year permits Mt/year MUSD/year MUSD/year

USA 1,561.0 143 310 11,974.3 18,523.7
EU 959.0 143 100 15,790.6 5,515.1
Japan 321.0 143 63 29,987.6 2,074.3
CANZ 248.0 143 33 16,077.6 4,638.2
FSU 808.0 143 −506 −73,830.1 6,439.5
Total – – 0 0 37,190.8
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Table 4 The results of simulation from the new model; uncertainty not considered

Region/ Final Final price Number of Permits Emission
country emission USD/tC imported expenditures reduction cost

MtC/year permits Mt/year MUSD/year MUSD/year

USA 1,562.0 142.3 311 47,486.4 18,381.1
EU 959.0 143.2 99 15,823.3 5,657.5
Japan 321.0 143.1 63 18,521.7 2,074.3
CANZ 248.0 143.4 33 4,010.5 4,638.2
FSU 808.0 142.2 −506 −85,841.9 6,439.5
Total – – 0 0 37,190.6

where:

a cost function parameter;
xi0 initial emission;
xi current emission.

In Table 2 we describe abatement cost function coefficients, which have special
interpretation.

Table 5 Results obtained using the described new model; uncertainty considered with different
values of risk parameter α, see formula (12)

Region Reported Final price Permits Cost of traded Cost of emission
emissions USD/tC traded permits reduction
(MtC/year) (Mt/year) MUSD/year MUSD/year

Risk parameter α = 0.5
USA 1,559.0 144.0 308 44,834.0 18,810.5
EU 970.0 141.4 100 14,393.0 5,515.1
Japan 321.0 143.1 63 17,831.2 2,074.3
CANZ 249.0 141.2 34 4,049.0 4,495.9
FSU 809.0 140.6 −505 −81,107.2 6,298.1

α = 0.3
USA 1,538.0 167.1 287 45,975.4 25,340.5
EU 957.0 167.2 97 17,948.8 7,707.3
Japan 331.0 167.4 63 17,159.6 2,839.9
CANZ 242.0 168.2 27 5,406.2 6,384.3
FSU 840.0 167.5 −474 −86,489.9 8,936.8

α = 0.1
USA 1,514.0 191.9 263 51,350.1 33,414.8
EU 954.0 192.9 94 16,610.9 10,265.5
Japan 321.0 191.7 63 18,810.4 3,725.4
CANZ 237.0 190.8 22 2,737.3 8,216.9
FSU 872.0 192.8 −442 −89,508.7 11,842.5

α = 0.0
USA 1,502.0 204.3 251 51,801.7 37,870.0
EU 954.0 203.1 94 19,372.8 11,375.2
Japan 320.0 208.8 62 16,584.4 4,419.5
CANZ 234.0 203.3 19 1,403.0 9,321.1
FSU 888.0 205.4 −426 −89,161.9 13,448.4
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In a traditional method (perfect market information) we obtain the results pre-
sented in Table 3.

In the case of new model application the results are presented in Table 4.
Application of the EA method to simulate the permits market provides some

additional benefits, as the result is not just a single set of parameters, but a set of
possible scenarios. EA operates on a population of mainly different individuals, and
computations are conducted in a non-deterministic way. In particular, negotiation of
permit prices is modeled as random number generation from a little modified normal
distribution, cut to the desired interval—prices are generated from the interval that is
profitable for both countries, and if there is no such interval, no transaction is made.
Thus, different scenarios depend mainly on negotiated prices (i.e., prices randomly
generated in the simulation).This non-deterministic aspect of EA can be seen if
one compares results presented in Tables 4 and 5 for α = 0.5: this value of risk
parameterα makes the uncertainty component in (12) inactive, but results are not
exactly the same. Thus, two different scenarios of market evolution can be observed.
Such scenarios can be obtained and used as a basis for more sophisticated analyses
of market behavior.

5 Conclusions

In contrast with the previous model (Bartoszczuk and Horabik 2007), our original
permit market model is dynamic. The results show that including perfect permit
prices is more cost-effective than in our dynamic market solution, but this fact
is easy to explain—transactions are conducted at negotiated prices (free market
assumptions), not at optimal prices calculated and imposed by some authority.
The permit distribution is thus slightly different in the second model (column 4 in
Tables 3 and 4), and the structure of buying parties is changed; it is more beneficial
to reduce emissions than to buy permits in the case of the USA (column 6 in
Tables 3 and 4. Obviously, the total cost of emission reduction in the second method
(85,841.9 MUSD/year) is higher than in the first (73,830.1 MUSD/year), which can be
explained by higher expenditure for permits and slightly higher necessary emission
reduction. Results obtained using the new model with different values of risk
parameter α show that in a case with full uncertainty, fewer permits are purchased
and there is a greater reduction of emissions, which is more expensive. Moreover, the
permit prices in the scenario with full uncertainty is 30% higher than in the scenario
with parameter α = 0.5 (no-uncertainty scenario). For all practical purposes we are
able to anticipate that applying the dynamic model requires additional agreements
among parties. While such activities are difficult to implement, our analysis proves
that they are environmentally friendly, as they require emission reductions.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract Greenhouse gases emission inventories are computed with rather low
precision. Moreover, their uncertainty distributions may be asymmetric. This should
be accounted for in the compliance and trading rules. In this paper we model the
uncertainty of inventories as intervals or using fuzzy numbers. The latter allows us
to better shape the uncertainty distributions. The compliance and emission trading
rules obtained generalize the results for the symmetric uncertainty distributions that
were considered in the earlier papers by the present authors (Nahorski et al., Water
Air & Soil Pollution. Focus 7(4–5):539–558, 2007; Nahorski and Horabik, 2007,
J Energy Eng 134(2):47–52, 2008). However, unlike in the symmetric distribution,
in the asymmetric fuzzy case it is necessary to apply approximations because of
nonlinearities in the formulas. The final conclusion is that the interval uncertainty
rules can be applied, but with a much higher substitutional noncompliance risk, which
is a parameter of the rules.

1 Introduction

Emission of greenhouse gases is a basic element of the climate change models.
See, for example, Stern (2007) where results are presented in probabilistic terms.
However, greenhouse gas inventories estimates are not calculated exactly. Possible
error magnitudes depend on the types of gas considered, activities involved, and
countries, ranging from a few to over 100 percent. Moreover, distributions of errors
for different gases as well as for national inventories may be asymmetric (Ramirez
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et al. 2006; Winiwarter and Muik 2007). The methods of checking compliance and,
particularly, establishing rules for emission trading proposed to date for the uncertain
inventories (Jonas et al. 2010; Jonas and Nilsson 2007; Nahorski et al. 2007; Nahorski
and Horabik 2008) concern only the symmetric distributions and mainly the interval
uncertainty models.

In Nahorski et al. (2007) the compliance and trading rules were considered for
the interval uncertainties of emissions. In order to have a high enough likelihood of
fulfilling the compliance, lower limit of reductions were required (undershooting),
and an appropriate recalculation of the traded emissions needed to be performed.
However, the interval uncertainty approach provides too conservative a reduction
of limits and a recalculation of traded emissions. Although the stochastic case may
be useful for the determination of new compliance rule, see also Gillenwater et al.
(2007), only a complicated formula for recalculation of the traded emissions has been
provided (Nahorski et al. 2007), which is practically useless because it is valid only for
uncorrelated inventories. In this paper a fuzzy uncertainty is considered. The fuzzy
set calculus basically inherits the rules from the interval calculus and thereby provides
simpler calculations than that for the stochastic variables. At the same time the fuzzy
variables may be shaped to have distributions that are more concentrated around
observed values than in the interval case, where the information on distribution is
lost. Thus, it can better approximate the real distributions. This paper also deals
with the asymmetric cases, aiming to improve the precision of assessments as to
whether the given emission limits or reductions are satisfied, and being able to
guarantee (with a small prescribed risk) that this limit or reduction has been fulfilled
in emission trading among parties and in other possible flexible mechanisms under
the Kyoto Protocol. Improved precision, as compared with the interval case, means
lower compliance costs and more reliable estimates of inventories for the climate
change models.

We derive in this paper a new formula for recalculation of the trading quantities
for the fuzzy and symmetric distributions, which is a generalization of that used for
the interval approach. To obtain an analogous formula for the asymmetric fuzzy case,
an approximation is required. The one proposed in this paper is a generalization of
those for both the symmetric fuzzy case and the asymmetric interval approach.

Summing up, we derive here new rules for checking compliance and for emission
trading, for asymmetric fuzzy distributions. They are generalizations of the rules
presented in Nahorski et al. (2007) and Nahorski and Horabik (2008) for symmetric
distributions and interval uncertainty and they reduce to them as special instances
provided that appropriate parameters are taken. Comparison of the rules obtained
for the fuzzy approach with those for the interval approach shows that the latter can
be used equivalently, but with a much bigger substitutional parameter than originally
designed for the noncompliance risk.

In Section 2 we formulate the problem and introduce some basic notation.
Then, in Section 3, we deal with the asymmetric interval uncertainty and we derive
conditions for checking compliance and formulas for so-called effective emissions,
which can be directly traded, without taking into account the emission uncertainty.
In Section 4 a family of fuzzy numbers is introduced. These are used to model the full
inventory uncertainty and form the basis for derivations of generalized compliance
and emission trading rules. These rules are compared with the interval approach
rules, and their equivalence in applications considered in the paper, for appropriately
chosen parameters, is shown. Section 6 concludes.
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2 Problem formulation

Two systems for reducing greenhouse gases emissions have been applied. One, called
cap and trade, as, for example, in the European Trade System, where the limits on
emissions from chosen activities are distributed among member countries in the first
stage and then finally between companies within the European Union. The problem
here is to check, if L, the given emission limit for the company, expressed as emission
permit, has not been exceeded, that is, if

x ≤ L (1)

where x is the real, unknown emission of a party in a given year. Unfortunately,
x is not known exactly, as only its available estimate of the emission x̂ can be
calculated. The estimate of the total emissions by a party is calculated from an
inventory of emissions from every contributing activity, including absorption by
sinks. These are, however, highly uncertain, see (Winiwarter 2004; Monni et al.
2007). Moreover, uncertainties of inventories x̂ differ among different activities both
in terms of the range and distributions. Another system used under the Kyoto
Protocol requires each participating country to reduce a pre-specified percentage
of its base year emissions within the given period (from 1990 to 2008–2012 for most
countries), although some countries are granted an opportunity to stabilize emissions
at the base year level or even to increase its emissions in a limited way. Three
so-called flexible mechanisms are connected with the Kyoto Protocol. These are:
Joint Implementation, Clean Development Mechanism, and Permit Trading. All are
related to buying the emissions saved by other parties. In all these cases, the problem
is to check to see if the declared reduction has actually been achieved.

With emission reductions, the compliance checking is slightly more complicated
than in the cap-and-trade system because the limit referred to is also uncertain. This
leads to the problem of comparing two uncertain values. Here, however, this problem
will be transformed to the form similar to (1), that is to the comparison of uncertain
value with the exactly known limit. Let us denote by δ the fraction of the party’s
emissions to be reduced. The value of δ may be negative, for parties required to limit
their emission increase. Denoting by xb the basic emission and by xc the emission to
be checked, the following inequality should be satisfied

xc − (1 − δ)xb ≤ 0 (2)

This inequality has the same form as (1), with the inspected variable xc − (1 − δ)xb

and the limit L = 0. Similarly as earlier, neither xc nor xb are known precisely
enough. Thus, only the difference in estimates can be calculated

x̂c − (1 − δ)x̂b (3)

where both x̂c and x̂b are known inaccurately. In the Kyoto Protocol context, xb is the
emission in the basic year and xc the emission in the compliance period. We are not,
however, interested here in reference and compliance times, but only in the values
to be compared.

Moreover, the emission estimate of a party may be modified by selling or buying
uncertain emissions, which adds to the final uncertainty on the left hand side. These
problems are discussed in the sequel using two models of uncertainty: interval and
fuzzy.
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3 Interval uncertainty

Material in this section is a generalization of the results for the symmetric intervals
given in Nahorski et al. (2007). The methodological concept is the same, but
the results differ because of changed assumptions, although they do reduce to the
previous results, when the symmetric intervals are considered in the equations. The
derivations in this section are fundamental for the rest of the material and are
therefore presented in a fairly complete way, even if they are more or less straight
generalizations of the formulas for the symmetric intervals.

3.1 Compliance

Let us denote the lower spread of the uncertainty interval by dl and the upper spread
by du. Then, the real basic emission xb and the real checked emission xc are situated
in the intervals

xb ∈ [
x̂b − dl

b , x̂b + du
b

]
, xc ∈ [

x̂c − dl
c, x̂c + du

c

]

Known limit We start with the simpler case of the limit L which is known exactly.
To be completely sure that a party (typically a company) fulfills the limit, its emission
inventory should satisfy the following condition, see Fig. 1a.

x̂c + du
c ≤ L (4)

As the bounds can be quite large, a weaker condition will be used, see Nahorski
et al. (2007). A party is compliant with the risk α if its emission inventory satisfies the
condition

x̂c + du
c ≤ L + α

(
dl

c + du
c

)
(5)

The risk is here understood as a likelihood that the party may not fulfill the agreed
obligation regarding the emission limit or reduction because of the uncertainty of the
emission inventory.

Fig. 1 Full compliance (a) and compliance with risk α (b) in the interval uncertainty approach for
the known limit case
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Condition (5) means that the αth part of the party’s emission estimate (inventory)
uncertainty interval is allowed to lie above the limit L, see Fig. 1b. After some
algebraic manipulations the condition (5) can be also written in the following form

x̂c +
[

1 −
(

1 + dl
c

du
c

)
α

]
du

c ≤ L (6)

The above condition shows that a part of the upper spread of the uncertainty interval
is added to the emission estimate before compliance is checked. This can be also
interpreted to mean that an unreported emission, due to uncertainty, is included in
the condition to reduce the risk of non-compliance.

For the symmetric interval dl
c = du

c = dc the condition (6) takes the form

x̂c + (1 − 2α)dc ≤ L

which has been derived in Nahorski and Horabik (2008).

Emission reduction A more difficult case of checking an emission reduction, when
both the checked and the basic emission are uncertain, will be transformed to the
problem of a known limit by considering the difference of the checked and reduced
emissions, as mentioned earlier. Using the interval calculus rules, we get

xc − (1 − δ)xb ∈ [
Dx̂ − dl

bc, Dx̂ + du
bc

]

where
Dx̂ = x̂c − (1 − δ)x̂b (7)

and the lower and upper spreads are

dl
bc = dl

c + (1 − δ)du
b , du

bc = du
c + (1 − δ)dl

b (8)

However, the inventories x̂b and x̂c are dependent and the values of dl
bc and du

bc are
usually much smaller than those resulting from the above expression. Nahorski et al.
(2007) proposed to take this into account by modification of the formulas (8) to

dl
bc = (1 − ζ )

(
dl

c + (1 − δ)du
b

)
(9)

du
bc = (1 − ζ )

(
du

c + (1 − δ)dl
b

)
(10)

where 0 ≤ ζ ≤ 1 is an appropriate chosen dependency coefficient. This will be also
assumed in this paper.1

Now, to be fully credible, that is, to be sure that (2) is satisfied, the party should
prove

Dx̂ + du
bc ≤ 0 (11)

This non-equality condition is analogous to (4), with the upper limit L = 0.

1Modification of the addition operator has a disadvantage. As far as the usual addition is commuta-
tive and associative (i.e. for the intervals A, B and C it holds A + B = B + A and A + B + C = (A +
B) + C = A + (B + C)), then the modified operator with operations (9) and (10), denoted below as
+ζ , is only commutative and not associative, because then (A +ζ B) +ζ C �= A +ζ (B +ζ C). Thus,
practically, the operator +ζ can be used only for pairs of numbers. But this is actually exactly what is
needed in the application considered in this paper.
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When a party is compliant with risk α, then the part of its distribution that lies
above zero is not bigger than α, see Fig. 2 for the geometrical interpretation. That
is, it holds Dx̂ + du

bc ≤ 2αdu
bc. After simple algebraic manipulations this gives the

condition

x̂c +
[

1 −
(

1 + dl
bc

du
bc

)
α

]
du

bc ≤ (1 − δ)x̂b (12)

This condition is analogous to (6). Thus, to prove the compliance with risk α the
party has to fulfill its obligation with the inventory emission estimate increased by

the value
[
1 − (

1 + dl
bc

du
bc

)
α
]
du

bc, dependent on its uncertainty.

3.2 Emission trading

The above compliance-proving policy can be used to modify the rules of emission
trading. The main idea presented in earlier papers (Nahorski et al. 2007; Nahorski
and Horabik 2008) involves transferring the emission seller uncertainty to the
emission buyer together with the quota of emissions traded and then including it
in the buyer’s emission balance. Here it is adapted to the asymmetric distributions.

Let us denote by RuS
c = duS

c /x̂S
c and RlS

c = dlS
c /x̂S

c the respective relative upper and
lower spreads of the uncertainty intervals of the seller and by ÊS the amount of
estimated emission traded. This emission is associated with lower and upper spreads
of the uncertainty intervals ÊS RlS

c or ÊS RuS
c , respectively.

Known limit First, let us consider the simpler case of known limit L. Before the
trade the buyer has to satisfy the condition (6), which is reformulated to

x̂B
c + duB

c − (
dlB

c + duB
c

)
α ≤ LB

After buying ÊS units of emissions from the seller and including the corresponding
uncertainty in the formula, the new condition looks like

x̂B
c − ÊS + duB

c + ÊS RuS
c − (

duB
c + ÊS RuS

c + dlB
c + ÊS RlS

c

)
α ≤ LB

The above conditions differ in the following value, which is called the ef fective
emission (Nahorski et al. 2007)

Eef f = ÊS − ÊS RuS
c + ÊS(RuS

c + RlS
c

)
α

Fig. 2 Full compliance (a) and compliance with risk α (b) in the interval uncertainty approach for
the emission reduction case
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which can be transformed to the form

Eef f = ÊS
{

1 −
[

1 −
(

1 + dlS
c

duS
c

)
α

]
RuS

c

}
(13)

The effective emission is smaller than the estimated emission. The bigger the relative
upper spread of the uncertainty interval of the seller is, the smaller the effective
emission. But it also depends on the ratio duS

c /dlS
c , and obviously on α.

Emission reduction When emission reduction is required, before the trade the
buying party checks the following condition

x̂B
c + duB

bc − (
duB

bc + dlB
bc

)
α ≤ (

1 − δB)
x̂B

b

After the transaction the condition changes into

x̂B
c − ÊS + duB

bc + ÊS RuS
c − (

duB
bc + ÊS RuS

c + dlB
bc + ÊS RlS

c

)
α ≤ (

1 − δB)
x̂B

b

Because of partial cancellation of the subtracted estimated emission and its uncer-
tainty in the buyer’s emission balance, the effective emission is

Eef f = ÊS
{

1 −
[

1 −
(

1 + dlS
c

duS
c

)
α

]
RuS

c

}
(14)

This is exactly the same formula as (13). The bigger the seller’s upper spread of
uncertainty interval is, the fewer the purchased units on the account of the buyer.
Expressions (13) and (14) reduce emissions estimated with an arbitrary precision
to globally comparable values, which can be directly subtracted from a country’s
estimated emission. This way it is possible to construct a market for the effective
emissions, see Nahorski et al. (2007) and Nahorski and Horabik (2007) for details.

4 Fuzzy uncertainty

The interval uncertainty approach does not use any information on the distribution
of inventory errors. Thus, its results are too conservative. Modeling the uncertainty
using the stochastic approach causes problems related to the non-linearities of the
underlying algebra. Instead, we propose to use the fuzzy approach in modeling
uncertainty distribution. It allows for a good approximation of the distribution while
keeping the algebra of the interval calculus simple. A short explanation of fuzzy sets
and some related notions is given in the Appendix.

In this paper the fuzzy numbers (see Appendix for a definition) are used to model
imperfect knowledge of uncertainty. A fuzzy number is a straight generalization of
an ordinary number, whose value is uncertain: the situation that we note pertains to
greenhouse gas inventories.

Usually, the main problem with the fuzzy set approach is to determine the mem-
bership function. Here, we introduce analytical membership functions dependent on
parameters. To estimate the parameters, the function can be fitted to the distribution
obtained from Monte Carlo simulations, as shown in the sequel. If there is a lack
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Fig. 3 Membership functions
for different values of γ

of experimental distributions, the parameter can be fixed to fit the experimenter
expectation.2

The most popular membership functions are the triangular or trapezoidal ones.
These functions are, however, rather inconvenient for our purpose because of
their bad approximations of the distribution tails, which are very important in the
applications described here.

Consider a family of fuzzy numbers Aγ = {(x, μ
γ

A(x))|x ∈ supp Aγ } indexed by
a vector parameter γ = [γ u

1 , γ l
2] ∈ C+ × C+, with the support supp Aγ = [−dl

A, du
A].

The proposed membership function has the form (see Fig. 3)

μ
γ

A(x) =
⎧
⎨

⎩
a
(
1 − x

du
A

)γ u

for 0 ≤ x ≤ du
A

a
(
1 + x

dl
A

)γ l

for dl
A ≤ x < 0

γ l, γ u �= 0 (15)

where a is a normalizing factor used for fitting the membership function to empirical
distributions. In the theoretical considerations it can be assumed that the member-
ship function has been normalized and therefore a = 1 is taken in the sequel. Let us
note that taking γ l = γ u = 0 we get the even distribution (see Fig. 3) and actually
reduce the considerations to the interval case.

Figure 4 presents an estimate of an asymmetric distribution obtained using the
Monte Carlo method and presented in Winiwarter and Muik (2007).

4.1 Compliance

It is assumed that the uncertainty of the estimate x̂b is described by the membership
function

μ
γ

x̂b
(x) =

⎧
⎨

⎩

(
1 − x−x̂b

du
b

)γ u
b for x̂b ≤ x ≤ x̂b + du

b(
1 + x−x̂b

dl
b

)γ l
b for x̂b − dl

b ≤ x < x̂b

2It is perhaps worth mentioning at this point that we treat the fuzzy approach only as an approxima-
tion of distribution and algebraic rules for the variables and not to introduce the possibility function,
see for example Bandemer (2006), which gives another possible approach to the problem.

Reprinted from the journal310



Climatic Change (2010) 103:303–325

Fig. 4 An estimate of a membership function μ
γ

A(x) calculated using the Monte Carlo method

and of the estimate x̂c by

μ
γ

x̂c
(x) =

⎧
⎨

⎩

(
1 − x−x̂c

du
c

)γ u
c for x̂c ≤ x ≤ x̂c + du

c(
1 + x−x̂c

dl
c

)γ l
c for x̂c − dl

c ≤ x < x̂c

(16)

Known limit We start with the exactly known limit case. First, we calculate by
integration the whole area A under the membership function. It is the sum of two
areas, see Fig. 5

A = Al + Au

Al =
∫ x̂c

x̂c−dl
c

(
1 + x − x̂c

dl
c

)γ l
c

dx = dl
c

1 + γ l
c

Au =
∫ x̂c+du

c

x̂c

(
1 − x − x̂c

du
c

)γ u
c

dx = du
c

1 + γ u
c

We now want to find the distance xcα between x̂c and x̂c + xcα , where the latter
is the value cutting off the most right αth part of the area under the membership
function, see Fig. 5. This area, denoted Aα , for 0 ≤ α ≤ Au/(Al + Au), where Al is
the area under the left branch of the membership function and Au under the right
branch is

Aα =
∫ x̂c+du

c

x̂c+xcα

(
1 − x − x̂c

du
c

)γ u
c

dx = du
c

1 + γ u
c

(
1 − xcα

du
c

)1+γ u
c

Now, it must hold

Aα = αA
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Fig. 5 Definition of areas under asymmetric fuzzy number membership function

which after some algebraic manipulations gives

xcα =
⎧
⎨

⎩1 −
[(

1 + dl
c

du
c

1 + γ u
c

1 + γ l
c

)
α

] 1
1+γ u

c

⎫
⎬

⎭ du
c

Finally, the compliance checking condition is

x̂c +
⎧
⎨

⎩1 −
[(

1 + dl
c

du
c

1 + γ u
c

1 + γ l
c

)
α

] 1
1+γ u

c

⎫
⎬

⎭ du
c ≤ L (17)

For the interval uncertainty case γ u
c = γ l

c = 0. Then the above condition is the
same as (6). For the symmetric case dl

c = du
c = dc and γ l

c = γ u
c = γc, and the above

condition takes the form

x̂c +
[
1 − (2α)

1
1+γc

]
dc ≤ L

This formula was derived in Nahorski and Horabik (2008).
For the symmetric case, only the range 0 ≤ α ≤ 0.5 is practically worth being

considered, as for α = 0.5 the above condition takes the form x̂c ≤ L, and for α > 0.5
we would allow for exceeding the limit, that is, for x̂c > L. For the asymmetric case
the range 0 ≤ α ≤ Au/(Al + Au) should be considered. Thus, the limiting α can take
values greater or smaller than 0.5. For the interval uncertainty the range will be
0 ≤ α ≤ du/(dl + du).

In addition, let us note that for the right-skewed distributions, as in Fig. 4, the
probability of non-compliance is greater than 0.5 when x̂c is equal to the limit L. It
is a consequence of the fact that in this case of asymmetry, it is more likely that the
limit L is exceeded than that it is not attained.

Emission reduction For the emission reduction case, to find the membership func-
tion of the fuzzy number Dx̂ = x̂c − (1 − δ)x̂b as a linear combination of the fuzzy
numbers x̂b and x̂c, the η-cuts will be used, see Appendix for an explanation of this
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notion. For the number x̂c the upper x̂ηu
c and the lower x̂ηl

c ends of the η-cut are as
follows, see Fig. 6. For x̂ηu

c we have

(
1 − x̂ηu

c − x̂c

du
c

)γ u
c

= η

Then, assuming γ u
c �= 0,

x̂ηu
c = x̂c + du

c

(
1 − η

1
γ u

c
)

In the same way, for x̂ηl
c , assuming γ l

c �= 0,

(
1 + x̂ηl

c − x̂c

dl
c

)γ l
c

= η

and

x̂ηl
c = x̂c − dl

c

(
1 − η

1

γ l
c

)

For γ u
c = 0 or γ l

c = 0 we have η = 1. For this case the expression like η
1

γ u
c is not

formally defined. Thus, we additionally define

η
1

γ u
c = 0, for γ u

c = 0

η
1

γ l
c = 0 for γ l

c = 0

The fuzzy number x̂b can be treated analogously. But we consider the number
−(1 − δ)x̂b . Taking analogous assumptions and additional definitions as above, we
now look for x̂ηu

b satisfying

(
1 − x̂ηu

b + (1 − δ)x̂b

(1 − δ)du
b

)γ u
b

= η

Fig. 6 Asymmetric fuzzy number and definitions of related parameters
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from where the upper end x̂ηu
b of the η-cut is given by

x̂ηu
b = −(1 − δ)x̂b + du

b (1 − δ)
(

1 − η
1

γ u
b

)

For the lower end x̂ηl
b of the η-cut the equation

(
1 + x̂ηl

b + (1 − δ)x̂b

(1 − δ)dl
b

)γ l
b

= η

provides

x̂ηl
b = −(1 − δ)x̂b − dl

b (1 − δ)
(

1 − η
1

γ l
b

)

Finally, the η-cut of the number Dx̂ is obtained by applying the modified interval
calculus rules (9) and (10) for the sum of the η-cuts of the numbers x̂c and −(1 − δ)x̂b .
Thus

Dx̂ηu = Dx̂ + (1 − ζ )

[
du

c

(
1 − η

1
γ u

c

)
+ dl

b (1 − δ)

(
1 − η

1

γ l
b

)]
(18)

Dx̂ηl = Dx̂ − (1 − ζ )

[
dl

c

(
1 − η

1

γ l
c

)
+ du

b (1 − δ)

(
1 − η

1
γ u

b

)]
(19)

The above equations show dependences of Dx̂ηl and Dx̂ηu on η, that is, they are the
reverse functions of the two branches of the membership function μ

γ

Dx̂(x), see Fig. 6.
Let us now transform (18) to

1 − Dx̂ηu − Dx̂
du

bc

= du
c η

1/γ u
c + dl

b (1 − δ)η1/γ l
b

du
c + dl

b (1 − δ)
(20)

where du
bc is given by (10), and define γ u

bc to satisfy the equation

du
c η

1/γ u
c + dl

b (1 − δ)η1/γ l
b

du
c + dl

b (1 − δ)
= η

1
γ u

bc

From the above

γ u
bc = 1

logη

du
c η1/γ u

c +dl
b (1−δ)η

1/γ l
b

du
c +dl

b (1−δ)

= log η

log du
c η1/γ u

c +dl
b (1−δ)η

1/γ l
b

du
c +dl

b (1−δ)

(21)

In the spirit of earlier additional definitions we also define

γ u
bc = 0 for γ u

c = 0 or γ l
b = 0

Now it is possible to write the right branch of the membership function as

μ
γ u
x̂bc

(x) =
(

1 − x − Dx̂
du

bc

)γ u
bc

Dx̂ ≤ x ≤ Dx̂ + du
bc (22)
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Likewise we get

μ
γ l
x̂bc

(x) =
(

1 + x − Dx̂

dl
bc

)γ l
bc

Dx̂ − dl
bc ≤ x ≤ Dx̂ (23)

where dl
bc is given by (9), and

γ l
bc = 1

logη

dl
cη

1/γ l
c +du

b (1−δ)η
1/γ u

b

dl
c+du

b (1−δ)

= log η

log dl
cη

1/γ l
c +du

b (1−δ)η
1/γ u

b

dl
c+du

b (1−δ)

(24)

with

γ l
bc = 0 for γ l

c = 0 or γ u
b = 0

Now, the most right αth part of the area under the membership function (22) is

Aα =
∫ Dx̂+du

bc

Dx̂+xα

(
1 − x − Dx̂

du
bc

)γ u
bc

dx = du
bc

1 + γ u
bc

(
1 − xα

du
bc

)1+γ u
bc

and the area under the entire membership function (22)–(23) is

A =
∫ Dx̂

Dx̂−dl
bc

(
1 + x − Dx̂

dl
bc

)γ l
bc

dx +
∫ Dx̂+du

bc

Dx̂

(
1 − x − Dx̂

du
bc

)γ u
bc

dx =

= dl
bc

1 + γ l
bc

+ du
bc

1 + γ u
bc

(25)

As Aα = αA, its solution for xα , denoted xbcα , has the form

xbcα =
⎧
⎨

⎩1 −
[(

1 + dl
bc

du
bc

1 + γ u
bc

1 + γ l
bc

)
α

] 1
1+γ u

bc

⎫
⎬

⎭ du
bc (26)

and finally the compliance condition is

x̂c +
⎧
⎨

⎩1 −
[(

1 + dl
bc

du
bc

1 + γ u
bc

1 + γ l
bc

)
α

] 1
1+γ u

bc

⎫
⎬

⎭ du
bc ≤ (1 − δ)x̂b (27)

This condition is analogous to (17). For the interval case γ l
bc = γ u

bc = 0 and (27)
reduces to (12). For the symmetric distribution dl

bc = du
bc = dbc and γ l

bc = γ u
bc = γbc

and it reduces to

x̂c +
[
1 − (2α)

1
1+γbc

]
dbc ≤ (1 − δ)x̂b (28)

The condition (28) has been derived in Nahorski and Horabik (2007).
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4.2 Emission trading

The formula for the effective emission can be quite easily obtained for the symmetric
distribution (28) using derivations similar to the interval case. Before the trade, the
buying party has to satisfy the condition

x̂B
c +

[
1 − (2α)

1
1+γ B

bc

]
dB

bc ≤ (1 − δB)x̂B
b

and after buying ÊS emission units from the seller it becomes

x̂B
c − ÊS +

[
1 − (2α)

1
1+γ B

bc

]
(dB

bc + ÊS RS
c ) ≤ (1 − δB)x̂B

b

Then the effective emission is

Eef f = ÊS
{

1 −
[

1 − (2α)
1

1+γ B
bc

]
RS

c

}
(29)

where RS
c = dS

c /x̂S
c and for the symmetric distributions dS

c = duS
c = dlS

c .
However, the problem becomes more difficult for the asymmetric distributions,

as then the uncertainty distribution bounds dl
bc and du

bc enter non-linearly into the
compliance condition (27). This is why linearization is now used to obtain the result.
The exact derivation is presented in Electronic Supplementary Material. That way
the following expression for the effective emission is obtained

Eef f = ÊS

⎧
⎨

⎩1 −
⎧
⎨

⎩1 −
[(

1 + dlS
c

duS
c

)
α

] 1
1+γ uB

bc

⎫
⎬

⎭ RuS
c

⎫
⎬

⎭ (30)

It generalizes expressions for simpler cases. In particular, for the known limit case the
following substitution should be made: γ uB

bc → γ uB
c . For the symmetric distributions

the substitutions are: dlS
c → dS, duS

c → dS, γ uB
bc → γ B

bc, which provide (29). For the
interval uncertainty: γ uB

bc → 0, which gives (14).
In comparison with the formula (14) for the interval uncertainty, the formulas

(29) and (30) depend on parameters γ B
bc or γ uB

bc of the emission buyer uncertainty
distributions. This would considerably complicate the market, as the traded quota
depends in such a case both on the seller and the buyer uncertainty distributions.
This problem will not be discussed in this paper.

4.3 Equivalence of approaches

We start here with a summary of results. Table 1 provides relevant formulas for
compliance condition and effective emission in the case of known limit for various
types of uncertainty models considered.

Let us note that, for a given case, the same compliance condition or the same
effective emissions can be obtained for the interval model as for the fuzzy model,
choosing an appropriate value of α in the former one. Let us denote by αI the value
for the interval model and by αF for the fuzzy one. It can be noticed that actually it is
enough to consider only the asymmetric cases, as the results for the symmetric cases
are obtained taking specific values od parameters.
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Table 1 Model review

Model Compliance checking Effective emission

Interval x̂c + (1 − 2α)dc ≤ L Eef f = Ês
[
1 − (1 − 2α) RS

c
]

symmetric

Interval x̂c +
[
1 −

(
1 + dl

c
du

c

)
α
]

du
c ≤ L Eef f = Ês

{
1 −

[
1 −

(
1 + dlS

c
duS

c

)
α
]

RuS
c

}

asymmetric

Fuzzy x̂c +
[
1 − (2α)

1
1+γc

]
dc ≤ L Eef f = Ês

{
1 −

[
1 − (2α)

1
1+γ B

c

]
RS

c

}

symmetric

Fuzzy x̂c +
{

1 −
[(

1+ Eef f = Ês×

asymmetric dl
c

du
c

1+γ u
c

1+γ l
c

)
α
] 1

1+γ u
c

}
du

c ≤ L

{
1 −

{
1 −

[(
1 + dlS

c
duS

c

)
α
] 1

1+γ uB
c

}
RuS

c

}

Equaling the effective emissions Eef f,F = Eef f,I , from the second and the fourth
rows in the last column of the Table 1, after simple algebraic manipulations we arrive
at the following condition

[(
1 + dlS

c

duS
c

)
αI

]1+γ uB
bc

=
(

1 + dlS
c

duS
c

)
αF

If the cases αF = 0 (no noncompliance risk) and γ uB
bc = 0 (interval uncertainty) are

excluded, then

αI

αF
=

[(
1 + dlS

c

duS
c

)
αI

]−γ uB
bc

Thus we have

αI > αF for αI ≤ duS
c

duS
c + dlS

c
and γ uB

bc > 0

Both conditions are very mild. The second is obviously satisfied. Taking into account
that in the up to now considered cases duS

c ≥ dlS
c , then in the first condition the upper

limit is not smaller than 0.5, which is true for the symmetric case.
For the compliance checking, comparing formulas from the second and the fourth

rows in the middle column we get

[(
1 + dl

c

du
c

)
αI

]1+γ u
c

=
(

1 + dl
c

du
c

1 + γ u
c

1 + γ l
c

)
αF

from where

αI

αF
=

1 + dl
c

du
c

1+γ u
c

1+γ l
c

1 + dl
c

du
c

[(
1 + dl

c

du
c

)
αI

]−γ u
c

Now, if αI ≤ du
c

du
c +dl

c
and γ u

c ≥ γ l
c > 0 , and at least one of these conditions is strict, then

again

αI > αF
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Table 2 Dependence of αI on
αF and γ uB

bc

αF ↓ γ uB
bc → 0.1 0.5 1 1.5 2 2.5

dl
c/du

c = 0.2
0.05 0.06 0.13 0.20 0.27 0.33 0.37
0.10 0.12 0.20 0.29 0.36 0.41 0.45
0.15 0.18 0.27 0.35 0.42 0.47 0.51
0.20 0.23 0.32 0.41 0.47 0.52 0.55
0.25 0.28 0.37 0.46 0.51 0.56 0.59

dl
c/du

c = 0.5
0.05 0.06 0.12 0.18 0.24 0.28 0.32
0.10 0.12 0.19 0.26 0.31 0.35 0.39
0.15 0.17 0.25 0.32 0.37 0.41 0.44
0.20 0.22 0.30 0.37 0.41 0.45 0.47
0.25 0.27 0.35 0.41 0.45 0.48 0.50

dl
c/du

c = 1 (symmetric case)
0.05 0.06 0.11 0.16 0.20 0.23 0.26
0.10 0.12 0.17 0.22 0.26 0.29 0.32
0.15 0.17 0.22 0.27 0.31 0.33 0.35
0.20 0.22 0.27 0.32 0.35 0.37 0.38
0.25 0.27 0.32 0.35 0.38 0.40 0.41

Thus, the noncompliance risk parameter α in the interval uncertainty model has to
be greater than in the fuzzy model to get the same compliance conditions or effective
emissions.

Dependence of αI on αF and γ uB
bc for effective emissions is shown in Table 2.

The results show that αI rises quickly when γ uB
bc rises. In cases considered in our

calculations, estimates of γ uB
bc close to or much higher than 1.5 were obtained. Then,

practically it seems that αI ≥ 0.3 should be taken even for small values of αF .
An interpretation of these results is quite straightforward. Within the considered

family of distributions, ignorance of the uncertainty distribution in the interval case
requires a greater reduction. To obtain the same effective emissions as for the fuzzy
uncertainties, a bigger substitutional non-compliance risk should be adopted in the
interval approach. Thus, for αI , at least the values 0.3 or higher should be taken

Fig. 7 Fit of a membership
function μ

γ

A(x) to the
histogram for emission of CO2
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Fig. 8 Fit of a membership
function μ

γ

A(x) to the
histogram for emission of CH4

to compensate for ignorance of the exact knowledge of the uncertainty interval
distribution, even if a small non-compliance risk is actually meant.

5 An example

In the example the data from the Monto Carlo simulation presented in Ramirez
et al. (2006) are used. Uncertainty distributions of emissions of three gases, carbon
dioxide (CO2), methane (CH4), and fluorine (F), are considered. The uncertainty
distributions were chosen to illustrate the proposed rules of trade and are depicted in
Figs. 7, 8 and 9 together with fits of the distribution functions (15). It is assumed that
each emission is related to different companies, called CO2, CH4 and F, respectively.
Table 3 contains parameters of the distributions obtained from the fits.

Fig. 9 Fit of a membership
function μ

γ

A(x) to the
histogram for emission of F
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Table 3 Parameters of the
distributions

Distribution dl [Tg] γ l γ u du [Tg]

CO2 4.8 2.6 4.5 6.9
CH4 4.3 2.1 3.9 6.7
F 2.0 1.4 1.4 3.1

We do not consider the compliance, only the trade. Let us then suppose that
the three companies mentioned: CO2, CH4, and F, want to trade with each other.
The uncertainty of emissions in company CO2 is small, less than 4 percent, while
in the rest it is around 38 percent. On the other hand, the shape of the uncertainty
distributions of CO2 and CH4 are similar, with values γ of the order of 2–2.5 for the
lower and 4–4.5 for the upper branch, while the shape of F is close to triangular, with
γ equal to 1.4. In Table 4 the values of Eef f are depicted for three assumed trades,
when each company in turn is the seller while the others are buyers. Two values of the
original non-compliance risk α = 0.05 or 0.1 were assumed and substitutional values
of αI are given in the right-hand side of the table. Most of them are of the order of
0.4. For CO2, with small uncertainty, the values E1

ef f are only slightly smaller than 1.
The values E2

ef f and E3
ef f are much smaller, around 0.8–0.9.

Let us note that for the fuzzy distribution there is no unique substitutional risk
parameter αI related with the seller, because it also depends on who the buyer is.
This is what causes problems in the trade as compared to the interval case. A way
of avoiding this might be that a common value 0.4 or a smaller one, like 0.35, is
taken for αI to organize the market with a substitutional interval uncertainty. This
way the market scheduled in Nahorski et al. (2007) can be applied. A market with
substitutional risk parameters αI dependent on the buyer is, however, an interesting
question. It will be considered elsewhere.

6 Conclusions

The paper deals with the problem of checking compliance of pollutant emissions with
a given limit in the case where the observed emission values are highly uncertain with
asymmetric uncertainty distributions. High uncertainty should be also considered
in trading in emission permits, which is frequently used to minimize the emission
abatement cost, and this is also done in the paper. Asymmetric uncertainty is
evidenced by recent investigations, and particularly by Monte Carlo simulations of
uncertainty distributions.

Table 4 Effective emissions in
the trade and substitutional
values of αI for interval
uncertainty

Emission Ru
c E1

ef f E2
ef f E3

ef f α1
I α2

I α3
I

α = 0.05
CO2 0.043 Seller 0.86 0.86 – 0.21 0.36
CH4 0.385 0.98 Seller 0.85 0.39 – 0.36
F 0.371 0.97 0.75 Seller 0.39 0.37 –

α = 0.1
CO2 0.043 Seller 0.89 0.90 – 0.28 0.41
CH4 0.385 0.99 Seller 0.88 0.44 – 0.42
F 0.371 0.98 0.79 Seller 0.44 0.42 –
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Asymmetry of distributions biases the compliance and trading results, and it
constitutes an additional issue in troubles related to uncertainty of emission inven-
tories. This is due to unequal probabilities of occurrence of the real emission below
and above the nominal inventory value. The Monte Carlo simulations of national
greenhouse gases inventories (Winiwarter and Muik 2007; Ramirez et al. 2006) show
that the distributions are right-skewed, that is, real emissions higher that the nominal
value are more likely than the smaller ones. This means that even if the nominal
inventory value is exactly equal to the given limit and is considered to be compliant
according to the present standard, it is actually more probable that the real emission
is non-compliant than that it is compliant.

An interesting case3 of an asymmetric distribution of uncertainty is connected with
the risk of valuing forest carbon offsets caused by accidental losses, for example,
due to wildfires (Hurteau et al. 2009). The uncertainty there has a specific one-sided
distribution. This case has already entered the implementation stage in the United
States forest carbon storage project (Mignone et al. 2009). However, the solutions
applied there take into account that the related uncertainty is eventually resolved in
the future, as the damages are known after they have happened. This is in contrast
with the case discussed in this paper, where uncertainties are an inherent part of data
considered at all stages of decision making.

The idea proposed in this paper is based on grounding the derivations in the
fuzzy set approach. A family of fuzzy numbers depending on free parameters is
introduced. These parameters can be chosen to appropriately shape the distribution
of uncertainty. The approach provides the closed form formulas, which can be used
for designing a market for effective emission permits. A market with the effective
emission permits has been outlined in earlier papers (Nahorski et al. 2007; Nahorski
and Horabik 2008) for the symmetric case. That construction is also valid in the
asymmetric case discussed in this paper, after appropriate adaptation. However,
for the most general case of asymmetric membership functions, a closed analytical
solution could not be found. An approximate solution was considered for this case,
and a generalized rule for compliance has been derived.

Application of the fuzzy numbers and consideration of asymmetric distributions
enabled us to much more precisely determine the required level of reduced invento-
ries to obtain a high likelihood of fulfilling the given limit or reduction. Moreover,
better accuracy in terms of determining the level give rise to better scaling of the
amounts of emission emitted by parties for use in trading, which has a measurable
financial meaning. Approximating distribution by a function dependent on parame-
ters allowed us to derive the analytical expressions for reduction of emissions and
for scaling the traded emissions. The distribution parameters have been acquired by
fitting the distribution functions to the data from the Monte Carlo simulations.

The results obtained are generalizations of the results derived for the interval and
symmetric uncertainty models. However, it was shown that the rules for the interval
case can be used instead of the generalized ones, provided that the appropriately
higher value of the risk of non-compliance is substituted in the interval case.

Although the fits of the functions presented in this paper to the data are quite
good, except perhaps in the central part of the uncertainty interval, the question of

3This direction of research has been brought to our attention by one of undisclosed reviewers.
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a possibly better fit to the data has been raised by one of the anonymous reviewers.
As this is certainly possible with a more flexible class of functions, the possibility of
obtaining a close analytical solution may be challenging. It will be a subject of further
investigations.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix: Fuzzy sets and fuzzy numbers

To introduce the notion of a fuzzy set, let us first consider a classical set A from
an universe U . This can be conveniently described by the characteristic function χA

defined as

χA(u) =
{

1 if u ∈ A
0 if u /∈ A

which says that a point u ∈ U belongs to the set, if χA(u) = 1, or does not belong, if
χA(u) = 0.

In a fuzzy set the characteristic function χA is generalized to take any value from
the interval [0, 1]. It is then called a membership function and is denoted μA. The
value of a membership function μA(u) reflects the degree of acceptance of the point u
to the set. Thus, a fuzzy set is characterized by the set A and the membership function
μA. A usual set is then a special fuzzy set with the membership function being the
characteristic function. A comparison of a membership function and a characteristic
function of a set is shown in Fig. 10.

A fuzzy set can be also fully characterized by a family of so-called η-cuts4 denoted
by Aη, that is, points of U , for which the value μA(u) assumes at least the value η.
See Fig. 10, where an example of a η-cut for η = 0.5 is depicted.

Two additional notions connected with a fuzzy set are worth mentioning. One is
the support, called supp A, which is the set of points u, for which the membership
function is positive, that is,

supp A = {u ∈ U : μA(u) > 0}
Another definition of the support may be formulated using η-cuts, as

supp A = lim
η→0

Aη

The second notion is the core of the fuzzy set, called core A, which is the set of points,
for which the membership function is equal 1, that is,

core A = {u ∈ U : μA(u) = 1}
Using the notion of the η-cuts we may also write

core A = A1

4Here we name the η-cut of a fuzzy set A the notion usually called the α-cut, i.e. the set Aη = {x ∈
supp A|μA(x) ≥ η}, for η ∈ (0, 1].
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Fig. 10 The characteristic
function and a membership
functions of the set A

A fuzzy set A is called a fuzzy number, if it satisfies three additional conditions:

1. core A consists of only one point.
2. The membership function does not increase starting from the core point toward

both sides.
3. Every η-cut is a (connected) closed interval.

A weaker definition of a fuzzy number is often used, with the first condition replaced
by

1’ There is a point belonging to the core A.

But in this paper we use the former stronger definition.
The η-cuts for a fuzzy number form a family of intervals. Each interval can be

interpreted as our measure of knowledge of the core value. Values of the level η

close to 1 mean that we are highly convinced that the core value is precise. Small
values of η, close to 0, mean that our conviction is low. See also Dubois and Prade
(2005) for more formal discussion of this subject. Calculations performed on fuzzy
numbers allow us to process all of this knowledge together.

Technically, two functions defined for non-negative arguments may be intro-
duced, L and R, (Bandemer 2006), such that they have the unique value 1 at 0,
L(0) = R(0) = 1, equal zero for arguments greater or equal 1, L(u) = R(u) = 0
for u ≥ 1, and are not increasing. Then, given that core A = {m}, the membership
function of a fuzzy number may be constructed using the above functions as its left
and right branches

μl
A(u) = L

(m − u
pl

)
for u ≤ m (31)

μr
A(u) = R

(u − m
pr

)
for u ≥ m (32)

where pl and pr are scale parameters, see Fig. 10. Let us denote the fuzzy number
constructed this way as A = (m, pl, pr)LR.

Although operations on fuzzy sets or fuzzy numbers can be defined in a more
general context, they are first restricted only to fuzzy numbers described in the
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above LR form. For two fuzzy numbers A = (m, pl, pr)LR and B = (n, ql, qr)LR the
following operations are defined, see Dubois and Prade (1978):

1. Addition

A + B = (m + n, pl + ql, pr + qr)LR (33)

2. Multiplication by a positive real number c

cA = (cm, cpl, cpr)LR (34)

3. Multiplication by a negative real number c

cA = (cm, |c|pr, |c|pl)RL (35)

with interchange of the function L and R in (31) and (32)

μl
cA(u) = R

(cm − u
|c|pr

)
for u ≤ cm

μr
cA(u) = L

(u − cm
|c|pl

)
for u ≥ cm

In the general case, the interval calculus for the η-cuts can be used to obtain the
appropriate operation.
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Abstract Interactive resource planning is an increasingly important aspect of emis-
sion trading markets. The conferences of Rio de Janeiro, 1992, and Kyoto, 1997,
originally focusing on environmental protection at both macro- and micro-economic
levels, called for new economic instruments of this kind. An important economic
tool in this area is Joint Implementation (JI), defined in Article 6 of the Kyoto
Protocol. Sustainable development can be guaranteed only if JI is embedded in
optimal energy management. In this contribution we describe and evaluate one
international procedure within uncertain markets which helps to establish optimal
energy management and interactive resource planning processes within uncertain
emission trading markets.

1 Introduction

In Section 2 of this paper we present an overview of the impact of uncertain emis-
sion trading markets on interactive resource planning processes. The debate about
climate change, Kyoto Protocol, other related agreements, and economic issues, as
a basis for further consideration is introduced. Based on these considerations we
describe in Section 3 the macro-economic dynamic game model, TEM, which was
specifically developed to model an interactive resource planning process. As chaotic
behavior may be observed—we describe this phenomenon at the end of Section 3—
the aspect of uncertainty comes into play. In the main part of the paper we analyze
uncertainty issues related to climate change in general and to economic agreements
involving emission trades using the TEM model. We propose the extended interval
valued model as a suitable solution procedure. The approach is demonstrated by
several simulation applications.
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2 Climate change and the Kyoto Protocol

2.1 The Kyoto Protocol

Since the industrial revolution, which began in around 1800, the burning of fossil
fuels has caused a dramatic increase in carbon dioxide (CO2) in the atmosphere,
reaching levels unprecedented since records began. The increase in CO2 and other
greenhouse gas (GHG) emissions has been implicated as a primary cause of global
warming (Kyoto 1997a).

The United Nations Framework Convention on Climate Change (UNFCCC)
recognizes that the climate system is a shared resource and that its stability can be
affected by industrial and other sources of GHG emissions. Its goal is to achieve
“stabilization of greenhouse gas concentrations in the atmosphere at a level that
would prevent dangerous anthropogenic interference with the climate system” (Arti-
cle 2). The Convention enjoys near universal membership, with 194 countries having
ratified, a notable exception being the United States.

Under the Convention, governments (Kyoto 1997b):

• Gather and share information on greenhouse gas emissions, national policies,
and best practices;

• Launch national strategies for addressing greenhouse gas emissions and adapting
to expected impacts, including the provision of financial and technological
support to developing countries;

• Cooperate in preparing for adaptation to the impacts of climate change.

The 1997 Kyoto Protocol to the UNFCCC entered into force on 16 February
2005, following ratification by Russia on 18 November 2004. Countries ratifying
the Protocol commit to reducing their emissions of CO2 and five other GHGs. The
industrialized countries that are signatories to the Kyoto Protocol have agreed to cut
their combined emissions to 5% below 1990 levels by 2008–2012, with each country
having its own target. Japan’s target is to reduce its greenhouse gas emissions by 5%
and EU countries by 8%. Some countries with low initial emissions are permitted
to increase their emissions. Others, like China and India, which have ratified the
Protocol, are not required to reduce carbon emissions under the present agreement.

Under the Convention, the developed country parties in Annex I and developed
country parties in Annex II shall take all practicable steps to promote, facilitate and
finance, as appropriate, the transfer of, or access to, environmentally sound technolo-
gies and know-how to other parties, particularly to developing countries to enable
them to implement the provisions of the Convention (Article 4.5) (http://unfccc.int/
technology/items/2681.php).

Economists have been trying to investigate the overall net benefit of Kyoto
Protocol through a cost–benefit analysis. Just as in the case of climatology, there
is disagreement due to large uncertainties in economic variables. The Copenhagen
Consensus Project established to set priorities among a series of proposals for
confronting ten great global challenges, including climate change, looked at three
projects addressing climate change (optimal carbon tax, the Kyoto Protocol and
value-at-risk carbon tax). The expert panel regarded all three proposals as having
costs that were likely to exceed the benefits (Kyoto 1997a).
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Estimates to date generally indicate either that (1) observing the Kyoto Protocol
is more expensive than not observing the Kyoto Protocol or (2) the Kyoto Protocol
has a marginal net benefit which exceeds the economic cost of adjusting to global
warming.

2.2 Climate change

Climate change refers to changes in the variability or average state of Earth’s
atmosphere and global/regional climate over time scales ranging from decades to
millennia. These changes are driven both by natural processes and human activities
(Kyoto 1997a). In current usage, especially in the context of environmental policy,
the term climate change is used to refer only to the ongoing changes in the climate,
including the average rise in the Earth’s surface temperature known as global
warming. Sometimes, the term is also used with a presumption of human causation,
for example, in the UNFCCC, which uses climate variability when referring to
anthropogenic climate variations (Kyoto 1997a).

3 Simulation and analysis of the Kyoto Protocol and its greenhouse gas
reduction instruments

3.1 Joint implementation programs and the TEM model

At the United Nations Conference on Environment and Development (UNCED)
conference in Rio de Janeiro (1992) and the Climate Change Conference at Kyoto
(1997) there were calls for new and important macro- and micro-economic instru-
ments focusing on environmental protection, including measures to reduce global
warming. An important economic tool under the Kyoto Protocol is the Joint Im-
plementation (JI) mechanism (defined in Article 6 of the Kyoto Protocol) whose
purpose is to strengthen international cooperation among countries or parties to the
Protocol in order to reduce CO2 and other GHG emissions.

The Joint Implementation mechanism allows a country with an emission reduction
or limitation commitment under the Kyoto Protocol (Annex B Party) to earn emis-
sion reduction units (ERUs) from an emission-reduction or emission removal project
in another Annex B Party. Each ERU is equivalent to 1 tonne of CO2, which can
count toward meeting Kyoto targets. Joint implementation offers Parties a flexible
and cost-efficient means of fulfilling a part of their Kyoto commitments, while the
host Party benefits from foreign investment and technology transfer (see http://
unfccc.int/kyoto_protocol/mechanisms/joint_implementation/items/1674.php).

Sustainable development can only be guaranteed if JI is embedded in optimal
energy management. In JI, such a system has to work on the micro level with minimal
costs and should be protected against misuse on the macro level. For that reason,
the Technology–Emissions–Means (TEM model), was developed by the first author
of this paper, to allow simulation of this highly specific economic behavior. TEM
considers the case of cooperative economic behavior, including co-funding in joint
international projects, as well as the mathematical analysis of several trend scenarios.
This leads to new results in the area of cooperative time-discrete dynamic games
using discrete optimization techniques and exploiting the underlying combinatorial
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structure. The successful implementation of the JI mechanism is subject to technical
and financial constraints. Specifically, the concept of JI involves a bilateral or
multilateral deal in which countries/operators can sell their unused emission quotas
as carbon credits, while businesses that wish to exceed their quotas can buy the
extra allowances as credits, privately or on the open market under a cap-and-trade
program. The emission reductions resulting from technical cooperation are recorded
at the Clearing House which was also established under the Kyoto Protocol.

The TEM model was developed to capture these constraints in an empirically
practicable way. The kernel of the TEM model represents an underlying cost
game that can be used to determine feasible economic sets describing a range of
investments. As the TEM model is based only on empirical parameters, the scenarios
can be compared with real data. TEM integrates economic and technical investments
in a coupled time-discrete nonlinear (quadratic) system of equations. For instance,
the question could be posed: how can the associated cost reductions be allocated
in an optimal way? This approach is as well integrated into the TEM model as the
possibility of looking at the influence of several cost allocations on the feasible set of
control parameters. In the cost game played, a special solution called the “τ value”,
which stands for a rational allocation process, is examined (Branzei et al. 2005); it
was introduced into CO2 emission control in (Pickl 1999). The main question is: in
what situations can the τ value be equivalent to the control parameters needed to
reach the regions mentioned in the Kyoto Protocol.

3.2 The formulation of the TEM model

To provide a view of the behavior of the key elements of the Kyoto process, the
TEM model describes economic interaction among several players (“actors”) that
is intended to maximize their reduction of emissions Ei caused by technologies Ti,
by expenditure of money or by other financial means Mi. The index stands for the
i-th player. The players are linked by technical cooperation and by the market. The
effectivity measure parameter emij describes the effect on the emissions of the i-th
player if the j-th actor invests money in the i-th player’s technologies. In other words,
it expresses how effective technology cooperation (like an innovation factor) is when
it is the central element of a JI program (this will be the focus of our uncertainty
approach in Section 4 for example in comparison to Ermolieva et al. 2010).

The variable ϕ can be regarded as a memory parameter of the financial investiga-
tions, whereas the value λ acts as a growth parameter. For a deeper insight see (Pickl
1999). The TEM model is represented by the following two equations:

Ei (t + 1) = Ei (t) +
n∑

j=1

emij (t) Mj (t), (1)

Mi (t + 1) = Mi (t) − λi Mi (t)
[
M∗

i − Mi (t)
] {Ei (t) + ϕi�Ei (t) .} (2)

Furthermore, we force:

0 ≤ Mi (t) ≤ M∗
i , i = 1, . . . , n and t = 0, . . . , N. (3)

Additionally we assume:

−λi Mi (t)
[
M∗

i − Mi (t)
] ≤ 0 for i = 1, . . . , n and t = 0, . . . , N. (4)

Reprinted from the journal330



Climatic Change (2010) 103:327–338

We have then guaranteed that Mi(t + 1) increases if Ei(t) + ϕi�Ei(t) ≤ 0 and de-
creases if the term is positive. In the following, it is explained why this is necessary
from a practical point of view. A detailed description is contained in Pickl (1999).

3.3 Empirical foundation

At the center of the TEM model is the so-called em-matrix. The possibility of being
able to determine the emij-parameters empirically is a great advantage of the TEM
model. The parameters offer a quantitative measure of climate risk under a range of
potential outcomes. We now provide a short summary of the TEM model focusing
on the problem of uncertainty.

In the first equation of the TEM model, the level of reduced emissions at the
t + 1-th time step depends on the previous value plus a market effect. This effect is
represented by the additive terms which might be negative or positive.

In general, Ei > 0 implies that the actors have not yet reached the demanded value
Ei = 0 (normalized Kyoto-level). A value Ei < 0 expresses that the emissions are
less than the emission targets set by the Kyoto Protocol. In the second equation we
see that for such a situation the financial means will increase, whereas Ei > 0 will
lead to a reduction of Mi(t + 1). The second equation contains the logistic functional
dependence and the memory parameter ϕ which describes the effect of the preceding
investment of financial means.

The dynamics does not guarantee that the parameter Mi(t) lies in the interval,
which can be regarded as a budget for the i-th actor. For that reason we have to
impose the following additional restrictions on the dynamical representation:

0 ≤ Mi (t) ≤ M∗
i , i = 1, . . . , n and t = 0, . . . , N. (5)

These restrictions ensure that the financial investigations can neither be negative nor
exceed the budget of each actor. Now, it is easy to show that:

−λi Mi (t)
[
M∗

i − Mi (t)
] ≤ 0 for i = 1, . . . , n and (6)

We have guaranteed that Mi(t + 1) increases if Ei(t) + ϕi�Ei(t) ≤ 0 and it decreases
if the term is positive. Applying the memory parameter ϕ, we have developed
a reasonable model for the money expenditure–emission interaction, where the
influence of the technologies is integrated into the em-matrix of the system.

3.4 The control model: forecasting and scenario development

We can use the TEM model as a time-discrete model in which we start with a special
parameter set and observe the resulting trajectories. Scenarios can be built using such
an approach; several different situations can be compared. Usually, the actors start
with a negative value (i.e., a value that is under the Kyoto Protocol baseline) and
try to reach a positive value of Ei. By adding control parameters, we enforce this
development by an additive financial term. For that reason the control parameters
are added to the second equation of our model:

Mi (t + 1) = Mi (t) − λi Mi (t)
[
M∗

i − Mi (t)
] {Ei (t) + ϕi�Ei (t)} + ui (t) . (7)

The introduction of the control parameter ui(t) implies that each actor makes an
additional investigation at each time step. In terms of environmental protection, the
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aim is to choose the control parameters to reach a state, mentioned in the Kyoto
Protocol, in which the emissions of each player are minimized. For details and the
treatment as an approximation problem see Krabs and Pickl (2003). Approximation
means that the solution will be approximated numerically.

The solution is the realization of the necessary optimal control parameters via
a played cost game, which is determined through actor cooperation. We shall first
discuss where and how this aspect can be integrated into the TEM model. For the
analysis of uncertainty questions it may be necessary to integrate a qualitative mea-
sure under a range of potential outcomes. If the emij-parameters vary, this approach
allows analysts to use this model to simulate potential financial behavior and the
risk of different policies in the electricity sector. First numerical examples are in
Pickl (1999).

3.5 Chaotic behavior

The numerical examinations which show that chaotic behavior can occur, emphasize
the necessity for a control theoretic approach, which is implied by an additional
control term in the second equation of the TEM model. In terms of environmental
protection, the aim is to reach a state mentioned in the Kyoto Protocol by choosing
the control parameters such that the emissions of each player are minimized. The
focal point lies in the realization of the necessary optimal control parameters via a
played cost game, determined through cooperation among the actors (Pickl 2002).
According to the Kyoto Protocol, this approach means that each actor invests
additional financial means. There are now several possible ways of solving the
problem of controllability to increase the effectiveness of the instruments.

4 Measures of effectiveness

The Kyoto Protocol calls for reductions in GHGs by industrialized countries. On the
other hand, the energy consumption of developing countries is increasing, leading to
growing GHG levels. The preparation of an optimal management tool in that field
requires several technological options to be identified, assessed, and compared.

The TEM mathematical model was elaborated to address this challenge. In line
with the Kyoto Protocol, control parameters were incorporated into the model
that have to be determined iteratively, depending on the negotiation process. The
model integrates economic and technical investments within a coupled time-discrete
nonlinear (quadratic) system of equations. The iterative solution of the TEM model,
with implied time-discrete control variables, aims to successfully overcome the oc-
currence of chaotic behavior in the TEM model and, as a result, improve projections
so as to better guide decision makers working toward sustainable development
(Pickl 2002; Nahorski and Horabik 2010).

While environmental problems are among the main challenges of the twenty-first
century, there are few innovative allocation principles for investments. Several ap-
proaches from game theory on this topic may be found. In addition, the improvement
of technical ef fectivity through JI cooperation is attracting great interest. The TEM
model to provide opportunities to combine these two aspects.
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Both problems are concerned with uncertainty issues:

• Uncertainty in the building of Joint Implementation partnerships
• Uncertainty in the technical parameters (measures of effectivity)

We will overcome this uncertainty by characterizing stable/unstable regions.
Stability reflects the fact that uncertainty does not have a major influence/impact.
In the following section, we describe the TEM model and show how it can help us
understand the uncertainty aspect in the Kyoto process.

4.1 The interval valued model

The TEM model presented in Section 3.2 depends on crisp data. To include various
kinds of errors and uncertainty of both states and parameters, an interval-valued
approach has been introduced and analyzed (Weber et al. 2009a, b). Here, uncertain
states and parameters are represented by intervals. Aiming at time-discrete dynam-
ics, the TEM model can firstly be structured in the following way:

(
E
M

)(k+1)

= M(k)

((
E
M

)(k)
)(

E
M

)(k)

. (8)

Having added the control parameter, we obtain the time-discrete dynamics:
(

E
M

)(k+1)

= M(k)

((
E
M

)(k)
)(

E
M

)(k)

+
(

0
uk

)
, (9)

which can be represented by:

(Dε) E(k+1) = M(k)E(k). (10)

Here, the matrices M(k) incorporate the control variables.
In these extended space notations, the variable E and entire dynamics (Dε) could

be enriched by further environmental, technical, and financial items and relations.

The shift vector
(
0T ,

(
u(k

)
)T

)T can be regarded as parametric and as a realization of

V
(

E,
∨ v

E

)
; then regions of stability and instability can be determined (Weber et al.

2009a, b). According to how those matrices (which express the uncertainty behavior)
are adjusted, we arrive at different behaviors of stability or instability of (Dε) in
the sense of dynamical systems or of parameter estimation. As an alternative to the

feedback-like realization by the vector V
(

E,
∨ v

E

)
which becomes incorporated into

the matrix M(k), the control vectors u(k) could also become integrated into E(k). The
time-dependent parameters em(k)

ij can then, like the controls, be treated in similar
ways. Each M(k) is an element of a finite set of interval matrices and the optimized
outcome of a time-discretization. Some of the parameters are estimated by means of
a (generalized) Chebychev approximation and GSIP (Weber et al. 2009a, b). With
the remaining set of parameters, we represent and study different economic and
decision scenarios. For a deeper discussion of regulatory systems under uncertainty
and further details about the related stability analysis we refer to the literature
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(Weber et al. 2009a, b; Kropat et al. 2008). In our future work, we plan to integrate
other representations of errors in terms of stochastic dependencies like Winiwarter
and Muik (2010) and set theoretic aspects.

4.2 Simulation

The aim of the TEM model is to understand emission reduction activities and thereby
to reduce countries’ CO2 emissions in line with the Kyoto Protocol. This refers to
real-world processes with all their uncertainties, but until now research using the
TEM model has been conducted using exact data (see, for example, TEMPI software,
Fig. 1).

The software solution allows the uncertainties to be reconsidered as intervals. This
leads to a very elegant way of modeling and simulating the uncertainty aspects within
the Kyoto Protocol. The operator may vary the different parameter interactively (i.e.,
he can examine certain intervals for different values).

In the following section, uncertainty in general transaction relationships is dis-
cussed. We will conclude by stating that the integration of uncertainty aspects
will become increasingly important for economic theory in the future, and we will
accordingly integrate market characteristics into the TEMPI simulation software. We
thus conclude with an outlook on Uncertainty in general transaction relationships.

4.3 Uncertainty in general transaction relationships

In the following, we focus on the problem of uncertainty which is inherent in many
transaction relationships. Seen from a very general perspective, the problem of
uncertainty arises because of the division of labor. As shown by Adam Smith, we all
gain by specializing in what we can do best. However, we also depend on the outcome
of other peoples’ work (i.e., there needs to be technical and economic coordination

Fig. 1 Interactive software
TEMPI (Technology
Emissions Means Process
Identification)

Reprinted from the journal334



Climatic Change (2010) 103:327–338

for a successful joint outcome). As a transition from one production stage to another
causes friction, the interfaces between the different stages need to be managed.
From the perspective of neoclassical economics, the currently dominant economic
theory, there is no real coordination problem in the first place because there is no
uncertainty, or if there is, it is of a very specific type. Referring to a distinction
elaborated in Knight’s (1921) dissertation, there can be either risk or uncertainty
about the outcome of an event, and this has a (known) influence on the value of
an economic activity like an investment. In the case of risk, we are dealing with the
problem of randomness in the outcome, but we do know the probabilities involved.
In the case of uncertainty, we are faced with the problem that we have no knowledge
about the probabilities of the outcome. For normal neoclassical analysis, we are
dealing either with deterministic outcomes or with risk and not with uncertainty.
Even though the need to make a decision under uncertainty may be a difficult starting
point for neoclassical analysis, it is a long way from being the worst case.

In a general and rather critical discussion of the treatment of uncertainty in
neoclassical economic analysis, Langlois (1984) discusses two distinct kinds of un-
certainty, that is, parametric and structural uncertainty. In the case of parametric
uncertainty, we do know all the parameters of the decision problem, though not
their probabilities. However, in the case of structural uncertainty we are faced with
the more fundamental problem that we do not know the structure of the decision
problem in the first place. Many parameters that could have a decisive influence
on the outcome may only show up in later stages as the future unfolds, but may
be completely unknown and unknowable at the outset. Going back to the problem
of the coordination of different economic agents, economic theory knows several
coordination mechanisms of which markets or hierarchies are the extremes, with
cooperative and network organizations being examples of intermediate forms. Every
form has not only advantages but also preconditions for being appropriate for certain
situations. Derived from the analysis of contract law by MacNeil (1978), which also
influenced Williamson’s version of transaction cost economics, we can apply three
criteria for analyzing the “marketness” of transaction relationships: presentation
(i.e., completeness of ex ante coordination) discreteness of transactions, and (the
possibility of) anonymity of the partners to a transaction.

The first criterion of presentation considers the possibility of comprehensively
specifying the contract so that if it fails to materialize, remedies are easily found and
sanction mechanisms enforced.

The second criterion, discreteness, refers to the interdependence between
different transactions (i.e., if the different transactions are undertaken one by one,
or if the first transaction already determines future transactions). The last criterion,
anonymity, analyzes the relevance of the identity of the partners to a transaction.

For market transactions, the identity is of little importance because the service or
product provider can be replaced to ensure that the criteria for the specification of
the product are fulfilled. Thus, in a sense, only the first criterion is of consequence
(Table 1) and compares the characteristics of market and non-market relationships,
as described by the three criteria. For non-market relationships we face the situation
that the criteria are not met and what is described in the table is either the effect of
or the reaction to the uncertainty that arises or that causes it.

Taking the first criterion as a case in point, a lack of comprehensive specification
tools makes a comprehensive specification impossible to reach. The hypothetical
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Table 1 Characteristics of market and non-market transactions

Criteria Market Non-market

Presentation Comprehensive specification tools Specification after the signing of the
contract

Enforceable sanction mechanism Iterative specification
Discreteness Independent purchases Carry-over effects

No binding effect because of past Lock-in because of past transactions
transactions

“Power asymmetry”
Anonymity Who offers service/products has Product/service provider differ in terms

of market no relevance of competence/quality
participants Trust in the institutional setting Trust in the relationship

of the market place
(e.g., sanction mechanism)

market for a product potentially exchanged in it, in a sense, lacks the necessary
specification infrastructure in terms of a body of shared standards. To be able to
communicate with the seller, the firm that wishes to buy a product needs to know: (1)
what the specification provided with the product offered in a market means, and (2)
what kind of specification requirements the product (e.g., a high value component
for a larger system) has to meet, given the specific demands of the firm. Hence,
the customer needs to translate his or her needs into a specification language and
compare it with the information that is provided along with the components. This
information has to be specified or codified in the same specification language or at
least in one the buyer is able to understand. Furthermore, the specification language
must cover all the information that is important for that customer. Otherwise, an
alternative medium (e.g., intensive business and long-lasting learning relationships
or the use of system integrators) is needed to transmit this information which raises
information and transaction costs for assessing qualities others than those covered
by, for example, a specification standard. The less structured the technological dialog
in a special domain is, the more likely there is to be a “semantic mismatch” and
uncertainty because of possible incompatibilities arising. However, such specification
languages (i.e., comprehensive standardization schemes) can be considered as the
shared contractual infrastructure of the market place and must be provided by the
market place or as a public good by the commercial community using such new
markets. Nevertheless, before firms can agree on shared concepts underlying the
specification language, they must be able to make their knowledge explicit and
translate and codify it into a specification language that allows them and their
business partners to communicate all relevant aspects. This is very important as, for
example, emission trading markets are just at a constitutional phase.

Codification for a structured exchange to reduce the friction between different
vendors, to increase the division of labor is often difficult to achieve, and there
is a lively debate about the drivers and inhibitors of “knowledge codification”
(c.f. and for different views on the codification debate, see Cowan et al. 2000 and
Nightingale 2003). From the perspective of institutional economics, historically,
the main condition for market-like transactions has been to embed transactions in
an institutional framework. Institutions can be defined as “the humanly devised
constraints that structure human interaction. They are made up of formal constraints
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(e.g., rules, laws, standards) and informal constraints (e.g., norms of behavior,
conventions, self-imposed codes of conduct), and their enforcement characteristics.”
The economic raison d’être of institutions is therefore that they reduce uncertainty
by providing a more structured interaction between economic agents so that some
stable expectations about the economic outcome and the behavior of the transaction
partners can be formed. As Coase (1988) points out, coordination situations that
come closest to the ideal of perfect markets (e.g. commodity and stock exchanges)
are, in fact, highly regulated by the underlying institutional framework in which the
transactions are embedded.

5 Conclusions

In this short discussion about the problem of uncertainty in transaction relationships,
we have presented different understandings of uncertainty and related concepts (risk,
parametric, and structural uncertainty) and the relationship with the coordination
problem that arises because of the division of labor. We have then discussed markets
as a coordination mechanism. Markets, however, presuppose a very structured and
well defined exchange process. To reach such a state of maturity (see also Shvidenko
et al. 2010), a body of standards as “contract infrastructure” is necessary.

We briefly discussed the knowledge codification aspect of establishing such an
infrastructure and finished the discussion by presenting a decision process about the
appropriate coordination mechanism to use based on the ability of the institutional
infrastructure to reduce the uncertainty to an acceptable level. The less uncertainty
there is, the more likely a market transaction is. High levels of uncertainty favor
more cooperative transaction relationships. The decision to control the production
process instead might be another option as long as it was justified by the relevance
of the products and the costs involved. The establishment and constitution of
emission trading markets will be influenced by such mechanisms. Together with
the mathematical TEM model and the TEMPI software (which enables interactive
decision support and the design of economic experiments in the context of Kyoto
Protocol, Grabner et al. 2009), the aspect of uncertainty might be better understood;
nevertheless, it is only a first approach toward a comprehensive understanding of
uncertainty and, in a second step, toward successfully dealing with it.
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When assembling the 17 papers for this volume, the editors decided to put together general
concluding thoughts on dealing with uncertainty in emission inventories. There is a wealth
of research in this volume, and this has encouraged us to present both the systematic
classification of contributions that is included in our introductory paper and also—here—a
comprehensive overview of uncertainty treatment that contains broad take-home messages.
It is hoped that this concluding perspective will help readers focus on the benefits, for
science and for policy, of properly covering uncertainty.
In addition to the knowledge assembled in this book, we use several very recent events and
publications to articulate this wider perspective. In particular, we consider:

& The 3rd International Workshop on Uncertainty in Greenhouse Gas Inventories, held
22–24 September 2010, in Lviv, Ukraine (http://ghg.org.ua/);

& The sixteenth Conference of the Parties (COP16) and the sixth Conference of the Parties
serving as the Meeting of the Parties to the Kyoto Protocol (CMP6), held 29 November
to 10 December 2010, in Cancún, Mexico; and

& Key articles published in the recent technical literature.

Our big picture comprises six take-home messages. These are outlined below, along with a
short discussion of the outcomes we expect from each of them.

1. It must be clear beyond controversy that the Earth’s atmosphere will benefit from
actions taken to reduce greenhouse gas (GHG) emissions. When we tackle the problem
of accounting for GHG emissions, we have to take the position of an observer of the
atmosphere. That is, ultimately, the accounting must be top-down and reductions in
emissions must be reflected in reductions in atmospheric GHG concentrations. This is
in line with the more general challenge put forward by Reid et al. (2010) of developing,
enhancing, and integrating appropriate observation systems into efforts to manage
global and regional environmental change (see also Canadell et al. 2010; NRC 2010;
WMO 2010). There are two main comments to make here.

(i) We must accept that bottom-up accounting for GHG emissions, the approach that we
currently use, is incomplete (e.g., Gregg 2010). Our bottom-up accounting for
emissions is important in the sense that it shows which activities and which actors
are responsible for emissions. Moreover, bottom-up accounting will be subject to
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continued revision in the future and must remain flexible. However, this perception of
emissions does run counter to the objectives of the emission trading schemes that have
been put in place to date. To produce the desired results, these emission trading
schemes need to be anchored, not least legally, within a reference system, and this is
not the case with current bottom-up accounting. Emission permits by country, which
the country can sell at a given point in time but whose number changes subject to
continuous revisions in the estimates, fall outside conventional economic thinking. As
traders have insufficient expertise to second-guess how emission markets have been
designed, they must trust that the experts have set up a system that achieves real
emission cuts so that the market can get on and do its job, namely deliver emission
reductions at least cost. Traders have no need to understand the science, or even to
believe in it, in order to trade in the market (Pearson 2010). This shortcoming between
theory and practice has still not been resolved.

(ii) It is anticipated that within a few years scientists will be able to further narrow the
gap that still exists between bottom-up and top-down accounting for Kyoto GHG
emissions at the scale of continents. Scientists may even be able to downscale verified
(dual constrained) emission estimates for countries or groups of countries. In other
words, scientists will be able to detect incomplete or inappropriate accounting data
reports submitted under the Kyoto Protocol or any successor (Jonas et al. 2009) well
beyond current review procedures, which are limited to establishing consistency and
the fulfillment of formal requirements and which, at best, permit bottom-up validation
to be achieved.

2. It must be clearly understood that Earth’s ecology, in contrast with our built
environment (technosphere), acts as a complex and nonlinear system that is full of
surprises and in a constant state of change. This system can be best understood over a
long-term perspective (Seitzinger 2010).
Consequently, we should not expect to be able to utilize nature to reduce GHG
emissions in the same way that we can use technospheric opportunities. To avoid
surprises we need to exercise caution in superposing subsystems with different
emission-dynamic and uncertainty characteristics as, for example, in the energy system
and in the terrestrial biosphere (see, e.g., Jonas and Nilsson 2007).

3. Experience shows that uncertainty analysis should be used to develop clear understand-
ing and informed policy in the framing of international environmental agreements.
To ensure that uncertainty analysis becomes a key component of national GHG
inventory analysis in support of international environmental policy, advanced guidance
is needed so that uncertainty can be dealt with appropriately, that is, in an
internationally standardized way across countries, subsystems, sources and sinks,
GHGs, and sectors. We recognize that the IPCC methodologies clearly stress the value
of conducting uncertainty analyses and offer guidance on executing them, but the sort
of guidance that we refer to must go well beyond current efforts.

4. It must be acknowledged that uncertainty is inherently higher for some GHGs and
some sectors of an inventory than for others. The land use, land-use change, and
forestry (LULUCF) sector and the landfill sector, for example, have higher
uncertainties than the fossil fuel sector; and current estimates of nitrous oxide (N2O)
emissions are more uncertain than those of methane (CH4) and carbon dioxide (CO2).
This raises the option that in designing future policy agreements some components of a
GHG inventory could be treated differently from others.
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The approach of treating subsystems individually and differently would allow
emissions and uncertainty to be looked at simultaneously and would thus allow for
differentiated emission reduction policies. This approach could have an advantage over
treating all GHG emissions and removals collectively (i.e., in terms of CO2-
equivalence), which usually leads to increased uncertainty with potentially important
scientific and policy implications. Under the Kyoto Protocol the agreed emission
changes for most countries are of the same order of magnitude as the uncertainty that
underlies their combined emission estimates. This renders compliance difficult to
establish, especially in cases where countries claim that their commitments to reduce or
limit emissions have been fulfilled.
It must be noted, however, that a differentiated approach would run counter to the
emissions-only approach currently being followed. Under the current emissions-only
approach, subsystems are treated collectively and equally (i.e., without distinction to
their emission-dynamic and uncertainty characteristics), as well as over a wide range of
mitigation options. This is intended to minimize costs or maximize benefits resulting
from the joint reduction of GHG emissions, possibly in combination with air pollutants
(e.g., Amann 2009). Not all emissions of GHGs and/or air pollutants are equally
expensive to reduce. If emissions are restricted in a manner that allows flexibility, the
least costly reductions tend to be undertaken first (e.g., CBO 2009).

5. Any differentiated approach to accounting must form a logical subset of a full GHG
accounting approach. Full accounting is the only way to reach a proper understanding
of the global climate system and is a prerequisite for reducing the uncertainties in that
understanding.
Providing reliable and comprehensive estimates of uncertainty cannot necessarily be
achieved by applying the current approach under the UNFCCC and Kyoto Protocol,
which provide for only partial accounting of GHG fluxes to and from the atmosphere.
It is virtually impossible to estimate the reliability of any system output if only part of
the system is considered.

6. The option of treating subsystems individually and differently, while at the same time
following full GHG accounting, forces us to deal with subsystems more skillfully than
we have in the past. The maxim to follow would be to treat both the technosphere and
the biosphere individually but also holistically.
Dealing with technosphere and biosphere individually and differently, although not
independently, leads to agreement bifurcation but has clear advantages for emission
inventories. First, it does not jeopardize verification—atmospheric measurements can
discriminate between fossil-fuel, terrestrial biosphere, and ocean carbon by means of
their carbon isotope fingerprints in combination with measurement of atmospheric O2;
but they cannot identify individual fluxes within any of these categories (e.g., Battle
et al. 2000). Second, it offers the option of i) placing emissions from the technosphere,
where uncertainty is believed to be smallest, under stringent compliance with clear
rules for dealing with uncertainty, while ii) putting biospheric emissions and removals,
with their greater uncertainties, under consistent reporting by means of a global
monitoring framework.
But the consequences for political action are demanding. Subsystem approaches that are
believed attractive—for example, reducing emissions from deforestation and forest degra-
dation (REDD; see, e.g., http://unfccc.int/methods_science/redd/items/4531.php)—should
best be pursued if there is a master plan in existence for transforming these subsystem
approaches into global full-system approaches. If we fail to meet this condition, it would
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mean giving up (dual-constrained) verification as a scientific—and political—tool for
controlling GHG emissions. In the case of REDD such a master plan, based on sound
science and policy, has never existed and will most likely not exist in the foreseeable future.
REDD will, at best, be controlled top-down with the help of instruments that measure
surface-related (structural) parameters such as area and type of vegetation. However, what
would be needed for dual-constrained verification are top-down observation systems that
directly, not indirectly, measure flux-related (functional) parameters, such as ecosystem
exchange, independently from any surface-related parameters. Even if the two tracks are in
place and are applicable, they would need to be able to be compared one-to-one in terms of
resolution—spatio-temporally and thematically—for the global full-systems picture to be
achieved. The most likely outcome to expect is claims being made that GHG removals
have been realized under REDD, with the global full-systems view at the same time seeing
the overall terrestrial biosphere in toto differently, or even as a source of GHG emissions.
Acceptance of REDD, therefore, is likely to require lower standards for acceptance of
uncertainty in monitoring without any immediate prospect of scientific (top-down)
verification.
By way of contrast, a subsystem approach related to country-specific emissions from
the technosphere appears to be much more promising in terms of transformation into a
global full-systems approach. Technospheric emissions are sky-rocketing; they involve
uncertainties that are smaller and have scientific obstacles that are less fundamental
from the scientific viewpoint; and approximate solutions can be found that, though
insufficient, are not inconsistent and would still guarantee success. Gregg (2010), for
example, suggests such an approximate step as an initial goal: uncertainties of less than
10 percent for the top 20 emitting countries (about three-quarters of global fossil-fuel
CO2 emissions) and less than 50 percent for the rest of the world. This goal could be
achieved if countries had a more systematic, transparent, and standardized method for
reporting energy consumption (and uncertainty, for that matter) and if international
assistance in data collection were to be more readily available. Not least, it would be a
realistic goal, not only scientifically but also politically.
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