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Chapter 1
Threshold Concepts: Implications for
the Management of Natural Resources

Glenn R. Guntenspergen and John Gross

Abstract Threshold concepts can have broad relevance in natural resource man-
agement. However, the concept of ecological thresholds has not been widely
incorporated or adopted in management goals. This largely stems from the uncer-
tainty revolving around threshold levels and the post hoc analyses that have generally
been used to identify them. Natural resource managers have a need for new tools and
approaches that will help them assess the existence and detection of conditions that
demand management actions. Recognition of additional threshold concepts include:
utility thresholds (which are based on human values about ecological systems) and
decision thresholds (which reflect management objectives and values and include
ecological knowledge about a system) as well as ecological thresholds. All of these
concepts provide a framework for considering the use of threshold concepts in natural
resource decision making.

Keywords Natural resource management · Non-linear · Regime shift · Time series

Natural resource managers face a complex decision-making environment that is not
adequately addressed by traditional natural resource planning and decision-making
processes. This situation can be partly attributed to changes in the dominant ecologi-
cal paradigms used in natural resource management. In the past, habitat management
has implicitly assumed that ecologists and managers are able to identify a “desired
state” for ecosystems and that resource managers are then able to implement actions
that can achieve and maintain the desired state. This philosophical strategy, aptly
termed “command and control” (Holling and Meffe 1996), has been only partly suc-
cessful and works best with problems that are relatively simple in terms of cause and
effect (Knight and Meffe 1997). Historically, natural resource managers believed
that the best way to achieve a “natural” state was to leave an area alone, or if it was
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2 G. R. Guntenspergen and J. Gross

disturbed, to simply remove the source of disturbance. In theory, a somewhat linear
sequence of successional changes would eventually result in formation of a stable
climax state (sensu Clements 1936).

With the recent appreciation of the complexity of ecosystem dynamics, the
uncertainty associated with management actions, and the adoption of ecosystem
management concepts (Grumbine 1994; Link et al. 2002; Tallis et al. 2010), ecolo-
gists and managers alike have embraced more quantitative methods and sophisticated
models to guide management actions. These contemporary models accommodate a
broader range of dynamics, and they often discard simple linear trajectories for those
with non-linear behaviors and multiple possible outcomes.

The ideas of non-linear responses, tipping points, and regime shifts are now
recognized as more likely the rule than the exception in ecological systems (Folke
et al. 2004). Indeed there is growing evidence for strong non-linearities in the shaping
of population dynamics (e.g., Stenseth et al. 1999) and the structure of ecosystems
(e.g., Carpenter 2003). As a result, the concept of complex non-linear physical,
chemical, and biological interactions and feedbacks is now generally accepted (Pielke
et al. 2003; Scheffer and Carpenter 2003; Groffman et al. 2006). These ideas are at
the core of the ecological threshold concept. This concept originates with the ideas
of multiple ecological stable states (Holling 1973) and non-equilibrium systems
(DeAngelis and Waterhouse 1987).

Threshold concepts can also have broad relevance to natural resource manage-
ment. In this context, they are often viewed as triggers that prompt the need for
specific actions to maintain a desired condition or keep a specific state variable within
a desired range (Eaton et al., Chap. 5). Operational definitions of thresholds and their
use by ecologists and managers have been an important area of focus (Briske et al.
2006; Bestelmeyer 2006; Groffman et al. 2006). Groffman et al. (2006) described
three non-exclusive definitions of thresholds. The first definition describes abrupt
and dramatic “shifts in ecosystem state.” This is perhaps the most common use in
the ecological community. A second definition describes “critical loads,” which more
specifically applies to levels of pollutant inputs that result in unacceptable ecosystem
responses. The third definition describes “extrinsic factor thresholds” where cross-
scale interactions lead to abrupt changes. This final use falls within the conceptual
framework of hierarchy theory, where broad-scale factors constrain system dynamics
(Allen and Hoekstra 1992).

Bestelmeyer (2006) offers contrasting definitions of thresholds, focusing on use
of threshold concepts in rangelands and identifies ambiguities related to ecolog-
ical scale, pattern, and process. To address the need for a unifying framework,
Bestelmeyer (2006) proposed a classification of thresholds consisting of pattern
thresholds, process thresholds, degradation thresholds, and a more synthetic set
of classification thresholds based on either preventative management or restoration
of rangeland. This framework accommodates many of the requirements for range-
land managers and places an emphasis on broadening the attributes used to define
thresholds.

Others have proposed a more general definition of thresholds that include “a
defined target level or state based on the avoidance of unacceptable outcomes or
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an ecologically defined shift in system status” (Polasky et al. 2011). Martin et al.
(2009) distinguish between three broad threshold concepts that are relevant for nat-
ural resource managers and add the concept of decision and utility thresholds to
that of ecological thresholds. Decision thresholds represent values of a state vari-
able that when exceeded should elicit management action. “Utility thresholds” are
derived from management objectives and indicate where “small changes in environ-
mental conditions produce substantial improvements in management outcomes. . . ”
(Samhouri et al. 2010). These alternative concepts are not easily reconciled with
the identification of ecological thresholds, nor do they provide a general concep-
tual basis that fully integrates our understanding of thresholds into a comprehensive
decision-making process (Martine et al. 2009; Polasky et al. 2011).

Increasingly, the importance of understanding interactions between and among
biotic and abiotic factors in ecosystems and how these interactions lead to complex-
ities are factored into resource management actions (Huggett 2005; Groffman et al.
2006; Bestelmeyer 2006; Andersen et al. 2009; Suding and Hobbs 2009; Hobbs and
Suding 2009). However, the widespread acceptance of threshold concepts in ecolog-
ical models—“ecological thresholds”—has not been followed by their widespread
adoption and incorporation into management goals (Hobbs and Suding 2009). The
ability to move from theory to application and make threshold concepts a problem-
solving tool for natural resource management remains a daunting challenge. One of
these impediments involves confusion over the appropriate use of threshold concepts
in natural resource decision-making processes. Bennetts et al. (2007) described seven
concepts widely used by natural resource management agencies in identifying points
or zones of interest to managers and that could be used to inform the management of
natural resources. In addition to ecological thresholds, these include: critical loads,
regulatory or policy standards, management thresholds, desired condition, range of
natural variation, and thresholds of potential concern. The typical implementation
of these concepts ranges from precisely defined quantities to more qualitative de-
scriptions; and each of these concepts contributes to our broader understanding of
the use of threshold concepts in natural resource management. These seven concepts
encompass the three types of thresholds proposed by Martin et al. (2009) as relevant
for natural resource decisions: ecological thresholds, utility thresholds, and decision
thresholds. Decision thresholds have often been referred to as management thresh-
olds, and utility thresholds can in certain cases coincide with ecological thresholds
(Samhouri et al. 2010). The other concepts identified by Bennetts et al. (2007) can
be used to develop utility and decision thresholds. When regulatory thresholds like
water or air quality standards or critical loads are exceeded, the responses may be
clearly dictated by law, with little latitude for local decision making. However, for
many natural resource management situations, the use of desired condition, range
of natural variation, and thresholds of potential concern may result in a variety of
reasonable responses when attributes approach or exceed a (sometimes arbitrarily
defined) value.

So, beyond agreeing that ecological thresholds may be common and sometimes
important, there is no shared understanding or agreement on the role or appropriate
use of this concept in natural resource management in spite of the fact that there is a
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rich literature that addresses the concept of ecological resilience and alternative stable
states. Likely, this largely stems from the uncertainty revolving around threshold
levels and the post hoc analyses that have generally been used to identify them.
Advances in and new applications of statistical techniques (Andersen et al. 2009;
Ficetola and Denoel 2009) have greatly enhanced our ability to detect the locations
of thresholds once they have been crossed, but most techniques still rely on long-
term temporal series of observations (e.g., Carpenter and Brock 2006, Andersen et al.
2009). Identifying the level at which threshold behavior occurs may be possible if
we can accumulate a large body of empirical observations. Otherwise, new work
in identifying generic early warning metrics may provide our best opportunity for
identifying the probability of such an event occurring (Scheffer et al. 2009; Biggs
et al. 2009; Scheffer et al 2012).

Natural resource managers have a need for new tools and approaches that will
help them assess the existence and detection of conditions that demand management
actions. This book addresses several of the issues that have profoundly affected the
use of thresholds in natural resource management—uncertainty, different types of
thresholds, appropriate use of thresholds in decision making, and the development of
a comprehensive decision framework as a unifying approach for threshold concepts.

The first set of chapters in this book provide a conceptual framework for thresh-
old concepts in natural resource management and conservation based on the theory
of structured decision making. Risk analysis (Suter 2007), decision theory (Mor-
gan et al. 1990), and structured decision making (Martin et al. 2009) have all been
promoted as a means to advance natural resource management decisions. These ap-
proaches provide a structured process that enables natural resource decision makers
to identify interventions that can lead to improvement or to avoid future problems.
Each of these frameworks has three elements—a clear statement of the problem
and objectives, a list of discrete management actions, and quantitative scientific
information in the form of one or more models that can be used to predict the out-
come of different management actions. Nichols et al. (Chap. 2) provide a conceptual
framework (Structured Decision Making) for the use of threshold concepts in natu-
ral resource decision making and discuss the important distinctions between utility,
decision, and ecological thresholds. Runge and Walshe (Chap. 3) provide a more ex-
panded description of identifying objectives and alternative actions needed to frame
a natural resource decision problem. Williams and Nichols (Chap. 4) then describe
the role of optimization in providing an objective approach for deciding which po-
tential action to take. Finally, Eaton et al. (Chap. 5) illustrate an application of the
various classes of thresholds introduced by Nichols et al. (Chap. 2) and their use in
structuring a decision process for the management of human recreational activities
and the impact of nesting Golden Eagles in Alaska’s Denali National Park.

The next four chapters discuss the role of monitoring for threshold-dependent
decisions and the evaluation of bioassessment designs. Smith et al. (Chap. 6) re-
view the literature on monitoring for threshold-dependent management decisions
and compare adaptive management with targeted monitoring with the sequential
evaluation of resource condition with surveillance monitoring. They further build on
the prior section by examining the threshold concepts of ecological change, utility
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value, and decision threshold in resource management and how these concepts are
incorporated into resource management and monitoring. Bowker et al. (Chap. 7) use
case studies from the dryland ecosystems of the Colorado Plateau to illustrate how
state and transition models can be used to identify transition and triggers likely to be
detectable by monitoring programs. Symstad and Jonas (Chap. 8) examine how our
understanding of the natural range of variation for plant communities can be used in
developing decision thresholds when ecological thresholds are unknown or do not
exist. Snyder et al. (Chap. 9) illustrate how simulation techniques may be used to
optimize bioassessment decision thresholds and sampling designs with a case study
of benthic macroinvertebrate communities in a US National Park. Finally, Mitchell
et al. (Chap. 10) use ongoing monitoring data by the US National Park Service Vi-
tal Signs Program to illustrate how threshold detection can be used in establishing
ecological assessment points and how the concept of ecological integrity can be re-
ported to resource managers and decision makers. They describe and illustrate how
concepts of ecological integrity, thresholds, and reference conditions (natural range
of variability) can be integrated into a research and monitoring network.

Field data are being explored with new statistical and graphical techniques, and
more sophisticated models are being used in the monitoring and management of
ecosystems and the detection of response patterns. The final series of chapters in this
book describe different quantitative approaches to estimate ecological thresholds.
King and Baker (Chap. 11) describe how a new method Threshold Indicator Taxa
Analysis (TITAN) uses ecological community data for estimating community thresh-
olds. They use a case study that examines macroinvertebrate community response to
a phosphorus gradient in the Everglades, a large subtropical wetland in the southern
USA. Carstensen (Chap. 12) introduces a statistical inferential approach based on
generalized additive models to examine ecosystem trajectories during degradation
and recovery phases using observations from four monitoring programs of phyto-
plankton communities in northeastern European coastal waters. Washington-Allen
and colleagues (Chap. 13) used biophysical models Normalized Difference Vegeta-
tion Index (NDVI) from a time series of Landstat images of the Mojave Desert of
the western USA to examine the hypothesis that changes in the variance, as a thresh-
old is approached, may provide an early warning signal of change. The concluding
chapter by James Pirri et al. (Chap. 14) illustrates how threshold concepts can be
used by managers to evaluate responses to restoration activities or describe the over-
all condition of salt marsh ecosystems along the northeastern Atlantic coast of the
USA. They use multivariate methods to illustrate how shifts in the characteristics of
vascular plant and nekton communities can be used as ecological thresholds upon
which decision thresholds for natural resource managers can be used.

The threshold concept has become a major theme in ecology, and advocates sug-
gest that it can also play a key role in natural resource management, restoration,
conservation, and land policies. Like many issues and concepts, threshold concepts
can mean different things to different people. The discussion of thresholds in the
literature has largely emphasized the identification of ecological thresholds and their
role as components of ecological models in predicting system responses to manage-
ment actions, but has not always been clear about the distinctions among different
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threshold types. Managers and scientists are not necessarily limited to the ideas
and concepts of ecological thresholds when considering the management of natural
systems. Increasingly, utility thresholds (which are based on human values about eco-
logical systems) and decision thresholds (which reflect management objectives and
values and include ecological knowledge about a system) have also been promoted
(Martin et al. 2009). The chapters and case studies in this book illustrate how these
different threshold concepts can be applied in conservation and land management
decisions.
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Chapter 2
Thresholds for Conservation and Management:
Structured Decision Making as a Conceptual
Framework

James D. Nichols, Mitchell J. Eaton and Julien Martin

Abstract A conceptual framework is provided for considering the threshold concept
in natural resource management and conservation. We define three kinds of thresh-
olds relevant to management and conservation. Ecological thresholds are values of
system state variables at which small changes bring about substantial or specified
changes in system dynamics. They are frequently incorporated into ecological models
used to project system responses to management actions. Utility thresholds are com-
ponents of management objectives and are values of state or performance variables
at which small changes yield substantial changes in the value of the management
outcome. Decision thresholds are values of system state variables at which small
changes prompt changes in management actions in order to reach specified manage-
ment objectives. Decision thresholds are derived from the other components of the
decision process. We advocate a structured decision making (SDM) approach within
which the following components are identified: objectives (possibly including util-
ity thresholds), potential actions, models (possibly including ecological thresholds),
monitoring program, and a solution algorithm (which produces decision thresholds).
Adaptive resource management (ARM) is described as a special case of SDM de-
veloped for recurrent decision problems that are characterized by uncertainty. We
believe that SDM, in general, and ARM, in particular, provide good approaches
to conservation and management. Use of SDM and ARM also clarifies the distinct
roles of ecological thresholds, utility thresholds, and decision thresholds in informed
decision processes.

Keywords Adaptive management · Decision threshold · Ecological threshold ·
Structured decision making · Utility threshold
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Introduction

Thresholds and their relevance to conservation are widely discussed by ecologists,
conservation biologists, managers, and policy makers (Burgman 2005; Bestelmeyer
2006). These discussions are certainly useful in many respects, but they can also lead
to confusion about how thresholds should be used in the conduct of conservation. In
this chapter, we provide a conceptual framework for thresholds that we hope will be
useful to those involved in conservation and management. We define three general
classes of thresholds. Our purpose in doing so is not simply to introduce new vo-
cabulary to a subject area already rich in terminology, but rather to draw distinctions
among thresholds that have specific, yet different, uses in conservation programs.
Our focus on the use of thresholds in decision processes requires a description of
such processes, as they provide the framework required for our discussion.

Structured decision making (SDM; Clemen and Reilly 2001) is a logical and
transparent process that requires breaking a decision into its component parts. This
decomposition insures that discussions among stakeholders with different opinions
are properly focused and helps to clarify points of agreement and disagreement. The
components identified in SDM also serve to clarify roles of different participants in
the decision process. Some components focus on values and require substantive input
from all relevant stakeholders, whereas other components focus on system dynamics
and are addressed primarily by managers and scientists. Most relevant to this chapter,
adoption of SDM leads naturally to consideration of definitions and roles of different
kinds of thresholds in the conservation process.

We will structure this chapter by first defining three types of thresholds relevant
to conservation decisions. We then describe the components of the SDM process,
emphasizing the position and role of each type of threshold with respect to these
components. We next describe adaptive resource management (ARM) as a special
case of SDM developed for recurrent decisions characterized by uncertainty. Finally,
we provide a discussion of this threshold framework and advocate its use with SDM
for conservation decision making.

Thresholds

Ecological Thresholds

Three kinds of thresholds are relevant to making decisions in conservation : ecologi-
cal, utility, and decision thresholds (Martin et al. 2009a). Ecological thresholds have
been defined in many ways, but common to most definitions is a point or zone at
which there is a sudden change in the condition or dynamics of a biological system
(e.g., Fahrig 2001; Huggett 2005; Pascual and Guichard 2005; Groffman et al. 2006;
Bennetts et al. 2007). We operationally define an ecological threshold as a value (or
set of values) of a state variable, environmental variable, or rate parameter of a system
at which small changes either (1) produce changes in system dynamics of specified
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Fig. 2.1 Example of an ecological threshold. In this example a small change in the amount of
precipitation (environmental variable) leads to a substantial change in system state from grassland
(ecological state A) to shrubland (ecological state B). The ball and valleys provide an illustration
of the tendency to remain in the same ecological state, or with the possibility to switch to another
ecological state. (Reproduced from Bennetts et al. 2007)

magnitude (typically large or ecologically substantial changes) or (2) cause system
state variables or rate parameters to attain certain specified values. An example of
the first kind of ecological threshold can be found in vegetation communities of the
Chihuahuan Desert (Fig. 2.1). Precipitation is a key environmental variable of this
system, and an ecological threshold is the level(s) of precipitation at which small
changes induce a shift from grass- to shrub-dominated communities and vice versa
(Brown et al. 1997; Groffman et al. 2006). An example of the second kind of ecolog-
ical threshold is Lande’s (1987) concept of extinction threshold for metapopulation
systems. In this case, the proportion of potentially available habitat that is suitable
for the focal species is an important system state variable. The extinction threshold is
the proportion of suitable habitat at which probability of metapopulation extinction
becomes one (Fig. 2.2; see Lande 1987; Fahrig 2001; Benton 2003).

We have no strict views about the functional forms of ecological thresholds, as
illustrated by two examples of thresholds from Martin et al. (2009a). A step function
corresponds closely to most views of the threshold concept. For example, Fig. 2.3a
depicts an ecological threshold as a value of a state variable (1,500 units of water in
a wetland) at which a vital rate (rate of patch colonization) increases from 0 to 0.1.
The threshold concept can also apply to regions of a functional relationship at which
small changes in one variable produce large changes in another. Figure 2.3b depicts
such a case, where changes in water levels within a particular region (600–1,250
units of water) produce large changes in probability of patch extinction. Some
discussions of ecological thresholds focus on shifts of state variables to an absorb-
ing state (e.g., permanent extinction) from which transition is not possible (Lande
1987). Discussions of ecological thresholds frequently include other terms relevant
to system change and dynamics. The concept of “resilience” (Holling 1973; Gunder-
son 2000) concerns the magnitude of perturbation required to induce a substantive
change in system state. “Elasticity” (Bodin and Wiman 2007) refers to aspects (e.g.,
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Fig. 2.2 Probability of
metapopulation extinction as
a function of the amount of
suitable habitat remaining.
The extinction threshold is
the proportion of suitable
habitat at which probability of
metapopulation extinction
becomes one (or very close to
one). (Based on Lande 1987;
Fahrig 2001)
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time elapsed) of transient dynamics following a perturbation as a system returns to
equilibrium.

Our definition of ecological threshold is thus very general, and we acknowledge
that discussions of related concepts can be very wide-ranging. However, the role
of ecological thresholds in management and conservation is very specific: They are
components of models used to predict system responses to management actions. Eco-
logical models need not include thresholds, as threshold concepts may not be relevant
to the dynamics of all ecological systems. However, when ecological thresholds are
relevant to system dynamics and response to management, they are incorporated
in the functional relationships of ecological models (Martin et al. 2009a; see also
Conroy et al. 2003; Bestelmeyer 2006).

Utility Thresholds

We define utility thresholds as values of state or performance variables at which
small changes yield substantial changes in the value of the management outcome.
For example, we might specify that an objective of management for a particular
species in a national park is that the population size should remain above some level,
say N*. Unlike ecological thresholds, which are part of the pattern and process of
nature, utility thresholds are determined by human values. In many cases, utility
thresholds have some ecological basis; for example, they are frequently based on
historical observations of system state variables (e.g., Runge et al. 2006; Martin
et al. 2011). But there is no necessary link between utility thresholds and ecology;
instead, utility thresholds provide explicit statements of what managers value.

Statements of management objectives need not include utility thresholds. For
example, a management objective might be to minimize the probability that an en-
dangered species becomes extinct over a specified time horizon. Utility thresholds
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Fig. 2.3 Illustration of two
types of ecological threshold
based on the example from
Martin et al. (2009a). a The
diagram depicts an ecological
threshold as a value of a state
variable (1,500 units of water
in a wetland) at which a vital
rate (rate of patch
colonization) increases from
0 to 0.1. b The graph depicts a
threshold zone where changes
in water levels within a
particular region (600–1,250
units of water) produce large
changes in probability of
patch extinction

are frequently used in objective functions that include competing objectives. For
example, in Chap. 5 (Eaton et al.) we describe management of potential disturbance
by hikers and tourists to golden eagles in Denali National Park (see also Martin et al.
2009b; Martin et al. 2011). Park managers seek to provide a rewarding experience
to hikers, but also want to maintain a healthy breeding population of golden eagles.
The objective function for this specific decision problem is to minimize the number
of eagle nesting territories at which hiker access is restricted, while maintaining the
occupancy of potential territories above a specified utility threshold (e.g., 0.8).

Decision Thresholds

We define decision thresholds (sometimes referred to as management thresholds, see
Bennetts et al. 2007) as values of system state variables that should prompt specific
management actions. Decision thresholds are thus conditional on, and derived from,
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Fig. 2.4 Policy matrix showing the optimal number of restricted territories as a function of the
number of eagle territories that are occupied. (From Eaton et al., Chap. 5)

ecological and utility thresholds. In the example of Denali golden eagles and hik-
ers, golden eagle occupancy proportion of potential nest sites is potentially affected
by hiker disturbance. The management decision is whether to close hiker access
to potential territories. Because of the desire to minimize restrictions to hikers, if
projected eagle occupancy is sufficiently high relative to the utility threshold, hikers
will not be restricted. However, as current eagle occupancy reaches levels that are
sufficiently low that projections indicate a good possibility of dropping below the
utility threshold, the optimal action will be to restrict hikers. The value of the state
variable(s) (proportion of potential territories that are occupied) at which the recom-
mended action shifts from no hiking restrictions to restrictions can be viewed as a
decision threshold.

An example policy matrix for the Denali golden eagle example presented in
Chap. 5 (see also Martin et al. 2011) is shown in Fig. 2.4. While the detailed analysis
of Martin et al. (2011) focused on 25 out of 93 territories that were believed to have the
potential to be disturbed by hikers, Eaton et al. (Chap. 5) focused their analysis on a
hypothetical 90 nesting sites, all with the potential for closure. Specifically, the man-
agement decision is, “How many of these sites should be closed to hikers in order to
minimize closures while keeping the projected number of occupied eagle territories
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above a utility threshold based on historic data?” A stochastic dynamic programming
algorithm (Bellman 1957) was originally implemented using the software of Lubow
(1995) to derive the optimal policy (Fig. 2.4). The decision policy is based on the
number of these 90 sites that are occupied. The vertical axis in Fig. 2.4 represents the
management decision at any level of system state, specified as number of territories
restricted. Under any of the four proposed dynamic models, the optimal number of
restrictions is 0 sites if the number of occupied sites is between 80 and 90, so there is
no decision threshold for these values of the state variable. However, if the number
of occupied territories drops to 79, then the optimal number of restricted sites (under
one hypothesis of occupancy dynamics) shifts from 0 to 6. This change in number
of occupied territories from 80 to 79 thus represents a decision threshold, because
different actions are recommended for these two different values of the state variable.

Sources of Confusion

Discussions of thresholds and their role in conservation have not always been clear,
especially with respect to the distinctions among the three types of thresholds that
we have identified. For example, it is common for managers to equate utility and
decision thresholds. One approach to management under the declining population
paradigm (Caughley 1994) is to view a finite rate of population increase (λ) of 1
simultaneously as a utility and a decision threshold. A declining population (λ < 1) is
viewed as undesirable, such that λ = 1 is a utility threshold. The manager periodically
tests for a negative trend in abundance (e.g., using monitoring data and statistical
models and inference procedures). If a “significant” negative trend is detected, then
management actions are taken, so λ = 1 is also viewed as a decision threshold.

Management under the SDM approach that we advocate tends to produce decision
thresholds that are more conservative than this trend-detection approach. If λ = 1
is our utility threshold, then under optimal management, actions typically occur
before the population is actually declining, in an effort to keep λ ≥ 1. Indeed, the
trend-detection approach has been criticized as leading to unnecessary delays in
management actions (Maxwell and Jennings 2005; Nichols and Williams 2006).
In addition, the usual approach of placing trend detection in a hypothesis-testing
framework invites discussion about type I and II error rates (e.g., arbitrary α for
hypothesis testing) and the relative risks associated with these errors (see Field et al.
(2004) for a discussion of this topic). Use of SDM and treatment of decision processes
as optimization problems, rather than as problems of hypothesis testing, produce
decision thresholds that frequently differ from utility thresholds.

Synthesis

Ecological thresholds may characterize the dynamics of managed ecological systems.
When this is true, and when they can be identified (this can be difficult), they should
be incorporated into the models used by managers in the decision process. Utility
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Fig. 2.5 Relationships among
ecological, utility, and
decision thresholds.
(Modified from Martin et al.
2009a)

thresholds reflect human values about ecological systems and may be included in
management objectives. Decision thresholds are derived from the ecological and
utility thresholds or, more generally, from management objectives, available actions,
and models of system dynamics and responses to management. These relationships
among the different types of thresholds are depicted in Fig. 2.5.

Structured Decision Making (SDM)

SDM is a formal decision process employed to identify decisions that are optimal
with respect to specified objectives. SDM is rooted in decision theory, which provides
a useful framework for making decisions about the management of virtually any
kind of system (Bellman 1957; Intriligator 1971; Williams et al. 2002; Burgman
2005; Halpern et al. 2006). SDM has been used in a variety of fields, including
engineering, economics, and natural resource management (e.g., Johnson et al. 1997;
Clemen and Reilly 2001; Miranda and Fackler 2002; Halpern et al. 2006). In the
context of conservation, the elements of the decision-making problems often include
the following components: objectives, potential management actions, model(s) of
system behavior (specifically, models that predict how system state is expected to
change with application of each different management option), a monitoring program
to provide estimates of system state variables, other variables related to management
returns, system vital rates, and finally a method to identify the solution (Williams
et al. 2002; Dorazio and Johnson 2003; McCarthy and Possingham 2007). Two of
these components, model(s) and estimates of system state, are typically characterized
by substantial uncertainties that must be accommodated in the optimization process.

Objectives and Management Actions

The specification of objectives is a critical component of any decision-making pro-
cess. Objectives should reflect the values of relevant stakeholders and constitute
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specific statements of what is to be achieved by implementing management actions.
Objectives provide the currency by which alternative decision options are judged
(Clemen and Reilly 2001; Conroy and Moore 2001). Examples of objectives relevant
to conservation include maximizing species diversity in a natural area or minimiz-
ing the probability of quasi-extinction of a threatened species (Kendall 2001). As
noted above, objectives may be stated as utility thresholds, such as maintaining a
population size at or above some specified value.

In cases involving multiple stakeholders with competing interests, utility thresh-
olds are often used as a means of providing constraints on competing objectives.
In the example of Denali golden eagles (Martin et al. 2011; Eaton et al., Chap. 5),
competing objectives were a desire to permit hikers to fully enjoy Denali National
Park and a desire to maintain a healthy breeding population of golden eagles. The
hypothesis that disturbance by hikers may limit occupancy and/or reproductive suc-
cess of golden eagles at potential nesting sites leads to a consideration of trade-offs
between objectives. In this case, the objective was expressed as minimizing the
number of sites at which hiker access was restricted, subject to the constraint that
predicted golden eagle occupancy or successful reproduction exceeded a specified
utility threshold (Martin et al. 2011; Eaton et al., Chap. 5). Thus, utility thresholds
may be used to specify simple objectives or to serve as constraints for problems with
competing objectives.

Objectives (including associated constraints) should generally be determined
through discussions among stakeholders (Kendall 2001). This determination can
be one of the most difficult steps in a decision process, especially in the common
case where different stakeholder groups have competing values and interests. For-
mal techniques are sometimes used to elicit values and select appropriate objectives
(see Clemen and Reilly 2001; Burgman 2005). Once objectives and constraints have
been selected, they can be formalized mathematically into an objective function. The
objective function quantifies the benefit (or return) obtained by implementing spe-
cific decisions at each time step, accumulated over the time horizon of the decision
problem (Lubow 1995; Williams et al. 2002; Fonnesbeck 2005).

The other component of SDM that is driven primarily by human values is the se-
lection of the set of management actions to be considered. Frequently in conservation
settings, the set of available actions is very small. Actions can include regulations
that restrict harvest or various activities that cause human disturbance to a natural
area (boating, hiking, using snowmobiles). Actions can also include various forms
of habitat management, land acquisition, translocation of animals, etc. Sometimes,
actions (e.g., predator control) that may be potentially useful and cost-effective are
viewed as unacceptable based on human values. In summary, objectives and the
set of potential management actions are not established by managers and scientists
alone, but should be based on the values of all relevant stakeholders. Objectives and
available actions are extremely important in SDM as they effectively drive the entire
decision process.
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Model(s) of System Behavior

Informed decisions require some basis for predicting effects of the different actions
under consideration. Absent the ability to predict consequences of management ac-
tions, such actions might be determined by virtually any random process, but terms
such as “management” and “conservation” do not really apply to such uninformed
manipulation of a system. Models can be viewed as structures that provide predictions
based on hypotheses about how the focal system “works” or, more specifically, how it
responds to management actions. Models may reside in the heads of wise managers,
or they may be mathematical, perhaps incorporated into computer code. Models
that project the consequences of management actions should generally be devel-
oped by scientists and managers familiar with both the managed system and general
principles of system dynamics. Although input from knowledgeable stakeholders is
welcome, stakeholders are generally not as important to model development as they
are to determining the value-driven components of SDM (objectives and actions).

Models used in SDM typically incorporate relationships between management
actions and either (1) the vital rates that determine state variable dynamics (e.g.,
Fig. 2.3) or, less frequently, (2) the state variables themselves. These relationships
may include ecological thresholds (Fig. 2.3). In the case study of Denali golden
eagles (Martin et al. 2011; Eaton et al., Chap. 5), the management action (closure of
a nesting site to hikers) is believed to increase the probability of a site making the
transition from any state to the desired state of “occupied.” However, scientists and
managers are uncertain about the importance of disturbance to occupancy by eagles
at a site. For this reason, several competing models are considered in the decisions
for the Denali golden eagles. The example presented by Eaton et al. (Chap. 5)
posits four hypotheses regarding the impact of disturbance and the availability of
a particular prey species on eagle occupancy dynamics. Competing models differ
in the hypothesized effects of management and prey level on parameters governing
occupancy and include one model that incorporates an ecological threshold for prey
abundance and another that assumes no effect of prey level or disturbance (and
therefore of site closure to hikers) on golden eagle occupancy.

In order to incorporate this uncertainty (four models reflecting very different
hypotheses about the effects of management) into the decision process, we must
specify the relative influence of each model on the decision. Relative influence should
be determined by the relative degree of faith we have in the predictive abilities of
the models. We can specify the influence of each model on the decision using model
“weights” or “credibility measures.” These weights lie in the interval [0, 1] and sum
to one for the members of the model set. In our Denali case with four models, for
example, we might begin by assigning a weight of one fourths to each model (e.g.,
if we had no prior information as to which models were better predictors). These
weights would indicate that we have equal faith (or equal uncertainty) in each model in
the set. There are multiple reasonable ways to determine initial model weights if some
prior information exists, including analysis of historical data and expert opinion. In
recurrent decision problems, the ability to monitor effects of management actions
provides an opportunity to learn. For recurrent decisions, a formal approach can be
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used to update model weights over time based on their relative predictive abilities as
revealed through monitoring (see ARM).

Monitoring Program

Monitoring is important for informed decision making and SDM in providing es-
timates of system state for making state-dependent decisions. Many decisions will
be state dependent as actions are likely to be very different depending on whether
the system is judged as being near objectives (e.g., near a utility threshold) or far
from them. In addition to state dependence of decisions, monitoring data are also
used to assess the success of management. In the case of recurrent decisions, mon-
itoring serves two additional roles: (1) providing the ability to learn by comparing
model-based predictions with estimates of system state and related variables and
(2) providing a means of obtaining updated estimates of key model parameters for
periodic model revisions (Yoccoz et al. 2001; Nichols and Williams 2006; Lyons
et al. 2008).

We note that these explicit roles of monitoring data in SDM suggest develop-
ment of a monitoring program tailored as a specific component of SDM. Omnibus
monitoring programs (developed to be generally useful, but not tailored to a specific
purpose) are frequently claimed to be useful for informing management, but in real-
ity they usually are inadequate or at least suboptimal for use in SDM (Nichols and
Williams 2006). Monitoring is usually based on survey methods that yield some sort
of count (of individual animals, of species, of sites occupied by a species, etc.). Good
monitoring programs deal with two important sources of variation in such counts,
geographic variation and detectability (Yoccoz et al. 2001; Williams et al. 2002).
Geographic variation concerns the spatial variation found in most state variables and
the frequent inability to conduct counts over the entire area of interest. Dealing with
geographic variation requires selection of sites at which counts are conducted, in
such a way as to provide inference about sites not selected (e.g., Thompson 2002).
Detectability refers to the fact that even in sites where we do conduct our counts, we
virtually never detect all individual animals (or species or occupied sites) that are
actually present. This source of variation requires that we estimate the probability of
detection in order to use count data for inference about the actual state variable(s) of
interest, and a variety of methods has been developed for this purpose (Seber 1982;
Williams et al. 2002; Borchers et al. 2003).

Solution Algorithm

The components described above, objectives, potential actions, models, and mon-
itoring, provide the information needed to make an informed decision. However,
taking this information and using it to develop an optimal, or even good, decision is
frequently a nontrivial task. Often in natural resource management, a manager will
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examine available information and use common sense, intuition, or some other kind
of thought process to decide on what action to take. However, a variety of optimiza-
tion methods can be used to determine optimal decisions for well-defined problems
in natural resource management (Walters and Hilborn 1978; Williams 1982, 1989,
1996, 2009; Williams et al. 2002; Williams and Nichols Chap. 4). The advantage of
optimization approaches is that they yield the best possible decision recommenda-
tions with respect to the other SDM components. Optimization approaches result in
policy or decision matrices (Fig. 2.4) that specify the optimal action for each possible
system state (for each combination of system state variables). As noted above, deci-
sion thresholds represent locations in state space at which a change in state leads to
a change in the optimal action. Objective solution algorithms (such as optimization
algorithms) usually produce unambiguous policy matrices, reinforcing a previous
point that decision thresholds are derived from the other components of the SDM
process, including utility thresholds that are incorporated into objectives and any
ecological thresholds that may be found in the system models (Fig. 2.5).

Adaptive Resource Management (ARM)

SDM is a general approach that can be used for virtually any kind of decision prob-
lem. Many problems in natural resource management entail recurrent decisions, in
the sense that management decisions for a system are made at various points over
time, as with annual decisions about harvest regulations or habitat management, for
example. Because of the need to deal adequately with system dynamics, solution
(e.g., optimization) algorithms for recurrent problems can be more difficult than
those developed for a single time step. Specifically, the optimization must account
for the fact that a decision this year influences the state of the system at the time
of next year’s decision. So a decision this year will influence the decisions that are
available (and wise) next year. Thus, optimization based on a single time step can
result in suboptimal decision policies, and the optimization algorithm must deal with
the entire sequence of decisions for the time horizon of the process. Stochastic dy-
namic programming (Bellman 1957; Lubow 1995; Williams et al. 2002) is a powerful
approach to optimization when dealing with recurrent decision problems.

Many (most) decision problems in natural resource management are character-
ized by substantial uncertainty. Environmental variation and resulting variation in
system dynamics are well-known sources of uncertainty to all ecologists and wildlife
managers. Partial observability, the inability, to observe nature directly, is also well
known to those who study natural systems as we must almost always rely on inference
methods that include sampling variation or error of estimation. Partial controllability
refers to the indirect and/or imprecise application of management actions, as when
our actions dictate hunting regulations rather than the precise rate of hunting mor-
tality to be imposed on a managed population. Structural uncertainty refers to our
typically inadequate understanding of managed systems and how they respond to
management (i.e., uncertainty about system dynamics). For example, we may wish
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to incorporate in the decision process multiple hypotheses about system response
to management. These forms of uncertainty constrain most problems in natural re-
source management, limiting the effectiveness of management to varying degrees
(Williams 1997).

ARM (Holling 1978; Walters 1986; Williams et al. 2002; Williams et al. 2007)
was developed for use with recurrent decision problems characterized by uncertainty.
In addition to producing difficult optimization problems, recurrent decisions provide
an opportunity to learn and to reduce structural uncertainty. Specifically, uncertainty
is reduced by comparing predictions (from models) against observations (from moni-
toring) of system response. This reduction in uncertainty and corresponding increase
in understanding are then used in adaptive management to increase the effectiveness
of management over time. To summarize, ARM was developed for recurrent deci-
sion problems characterized by uncertainty. Efforts to simultaneously manage in the
present and reduce uncertainty for better management in the future are definitive of
ARM. The adaptive management process includes two phases, a deliberative phase
and an iterative phase.

Deliberative Phase

The deliberative or “setup” phase of adaptive management (Williams et al. 2007)
entails developing and assembling all of the SDM components. The development of
a clear objective statement and the decision about what management alternatives to
consider require input from all relevant stakeholders. One of the most common factors
underlying failure of decision processes is stakeholder groups that do not believe
they have had adequate input to the process. Even reasonable objectives will be
criticized if stakeholder groups perceive that their input has not been solicited or has
been ignored. Stakeholder involvement will frequently require joint meetings, and
facilitation is sometimes useful. It is very useful to have some meeting participants
who are accustomed to developing precise objective statements from general opinions
and value statements. Regardless of the exact approach used to develop objectives
and select potential management actions, these two SDM components essentially
drive the entire decision process, and their importance should not be underestimated.
Utility thresholds are frequently used in the development of objectives, especially as
constraints in objective functions that include competing objectives.

The deliberative phase also requires development of initial models of system
dynamics and response to management actions. Model development is driven by
the selection of objectives and potential management actions, as model output must
minimally include the response variables that are relevant to objectives (and that are
thus used to value different outcomes) and provide predictions about responses of
key system variables to the different management actions. Uncertainty about system
response can be incorporated using multiple discrete models or by including a very
general model with uncertainty characterizing a key parameter. Ecological thresholds
may be included in system models if they are thought to characterize system dynamics
and responses.
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A monitoring program should also be established during the deliberative phase,
and the characteristics of the program should be driven by the other decision process
components, objectives, available actions, and models. The monitoring must provide
estimates of key variables that reflect system state as such estimates are needed for
state-dependent decisions (i.e., for establishment of decision thresholds). The moni-
toring must provide estimates of variables relevant to objectives, so that management
success can be judged. Because adaptive management involves recurrent decisions,
the monitoring program must provide estimates of variables and rate parameters that
can be used to assess model adequacy and, periodically, to update model parameters.

A solution algorithm or approach should be identified as well. There must be
some method of integrating and using the other SDM components to develop a
management recommendation (select the “best” action). We have emphasized opti-
mization approaches (Williams and Nichols, Chap. 4) as these are readily defended,
but other approaches may be used as well. For example, a common approach involves
simulation-based projections of consequences of different sequences of management
actions, an approach that yields the best set of actions among those considered (e.g.,
McGowan et al. 2011). Sometimes, the decision is simply made by individuals
without the benefit of computations of any sort. Although this latter approach is
sometimes difficult to defend, it is commonly used. The adaptive management pro-
cess requires some means of selecting the appropriate action based on the decision
process components, but that approach does not have to involve optimization.

Iterative Phase

The iterative phase of adaptive management uses the SDM components assembled
during the initial deliberative phase to make management decisions. The decisions
involve selection of a management action from those available, and the period-
icity is dictated by the decision process. Some decisions (e.g., establishment of
waterfowl-hunting regulations) are made annually whereas other decisions may in-
volve longer time periods and/or irregular intervals between decisions. The decision
itself is obtained using the selected solution algorithm in conjunction with the spec-
ified objectives, the available actions, and the current state of knowledge about the
system. That knowledge includes the system models and their associated credibility
measures, as well as the current state of the system as estimated via the monitoring
program.

Once the decision has been made, the selected action is applied to the system.
The decision is based on the predicted system response to the different actions, as
indicated by the different models. The action combines with relevant environmental
variables to drive the system state to a new position, which is then identified by the
monitoring program. Each system model also makes a prediction about system state
following application of the management action. This comparison of predicted and
estimated system state leads naturally to the updating of model weights or credibility



2 Thresholds for Conservation and Management 23

measures, with increased weights for models that predict well and decreased weights
for models that predict poorly.

Specifically, this updating can be accomplished using Bayes’ Theorem (e.g.,
Williams et al. 2002)

pi(t + 1) = pi(t) × Pi(xt+1|xt , dt )
n∑

i=1
pi(t) × Pi(xt+1|xt , dt )

(2.1)

where pi(t) is the credibility measure (weight) for model i at time t, n is the number
of models in the model set, and Pi(xt+1|xt , dt ) is the probability of the observed
system state at t + 1 under model i, given that the system was in state xt at time
t and that decision dt was implemented. Pi(xt+1|xt , dt ) can be computed based on
the monitoring data, for example, using standard likelihood-based models (Nichols
2001; Williams et al. 2002). Updating is thus a function of the model weight or
prior probability at time t, reflecting knowledge accumulated until t, and the new
information about how well the model predicted the most recent state transition
between t and t + 1. These updated probabilities then become the new model weights
(or new priors) for the next decision and set of predictions (Kendall 2001; Nichols
2001; Williams et al. 2002).

At the next decision point, the above process is repeated, with some components
remaining unchanged, specifically the objectives, available actions, models, and so-
lution algorithm. However, knowledge of the system and its dynamics is updated
as the new decision utilizes the current estimate of system state and the updated
model weights, thus emphasizing in the decision process those models that have
performed best over the accumulated history of the decision process. This use of
multiple models with associated weights that evolve through time provides a for-
mal approach to learning and is definitive of adaptive management (Walters 1986;
Williams et al. 2002; Williams et al. 2007). Provided that reasonable models have
been included in the model set, this iterative process should lead to the identification
(high model weights) of models that provide good predictions. Thus, the adaptive
process provides decision thresholds at each decision point that reflect the current
state of knowledge about system response to management actions. The process leads
to improved knowledge of the ecological system and its response to management,
including any ecological thresholds that characterize system behavior.

Integration of Phases and Double-Loop Learning

The usual progression of an adaptive management project is to begin with the oblig-
atory deliberative phase and to then implement the iterative phase. The deliberative
phase produces the needed decision components, and the iterative phase then uses
them to produce informed decisions at each decision point. The term “double-loop
learning” (Lee 1993, p. 148; Williams et al. 2007) has been used to describe the
process of revisiting the components of the initial deliberative (setup) phase, based
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Fig. 2.6 Schematic diagram
of double-loop learning in
adaptive management. Within
the setup phase, utility
thresholds may occur in
objectives, and ecological
thresholds may occur in
models. Within the iterative
phase, decision thresholds
will typically be used in the
decision making step. (From
Williams et al. 2007)

on experience with the process. For example, periodic input from stakeholders may
indicate that objectives themselves should be changed and/or management actions
should be modified or expanded (Runge et al. 2006). If none of the models in the
model set provides consistently good predictions (e.g., as indicated by model weights
that fluctuate, but do not accumulate for one or two models), then the models them-
selves should be revisited. Frequently, examination of the directions of differences
between predictions and estimates of state variables may offer clues to the modifica-
tion of models. When monitoring programs provide imprecise estimates or otherwise
weak inferences about relevant variables or parameters, then these programs should
be revised to correct these deficiencies. Finally, computing research may lead to
improved solution algorithms that merit consideration and possible use.

Any of the above reasons provides a motivation to move out of the iterative
phase and back into the deliberative phase of adaptive management (Fig. 2.6). Such
movement typically occurs at a time scale that is longer than that of the iterative de-
cision process phase. Nevertheless, such double-loop learning provides an important
mechanism for learning and adaptation that extends beyond the evolution of model
weights to every component of the decision process, including stakeholder views
and institutional changes.

Discussion

This chapter has focused on the threshold concept as relevant to management and
conservation. Certainly, much has been written about ecological thresholds, and
we have contributed little to this discussion and literature. Rather we have tried
to draw distinctions among three kinds of thresholds relevant to conservation, to
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clarify their origins (how does each threshold arise), and to describe the specific
role of each in decision processes. The basic distinctions and origins are depicted in
Fig. 2.5. Ecological thresholds, regardless of their detailed definitions, are relevant
to decisions as components of ecological models that are used to predict system
responses to management actions. Ecological thresholds arise from our attempts to
provide simplified descriptions of natural systems and reflect our knowledge of such
systems and their behaviors. Utility thresholds are included in statements of process
objectives and are especially useful when objectives include multiple, competing
objectives (e.g., maximally exploit resource x while maintaining resource y above
some minimum level, the utility threshold). Utility thresholds arise not only from our
understanding of managed systems, but also from our judgments about reasonable
goals of system management. Utility thresholds are thus based on human values, and
their development requires input from all relevant stakeholders. Decision thresholds
are then derived from ecological and utility thresholds, in the sense that they are
determined by management objectives, available actions, system models, and the
decision solution algorithm.

Because these distinctions and definitions are imbedded within a management
context, we described one approach to informed management, structured decision
making (SDM). SDM is perhaps not the only approach to informed management,
but it is logical, conceptually simple, and thus worthy of description and emphasis.
Adaptive resource management (ARM) was then described as a form of SDM ap-
plied to recurrent decisions in the face of uncertainty. In particular, ARM provides
a mechanism for learning and thus reducing uncertainty for the purpose of better
management in the future. Our definitions and distinctions for types of thresholds
are consistent with our descriptions of SDM and ARM decision processes and thus
provide a coherent framework for viewing thresholds in the context of conservation
and management. The management problem described in Eaton et al. (Chap. 5) is
intended to illustrate these concepts of thresholds and informed decision processes.
It is our hope that these chapters will promote use of SDM and ARM processes as
logical ways to approach serious conservation decisions.
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Chapter 3
Identifying Objectives and Alternative Actions
to Frame a Decision Problem

Michael C. Runge and Terry Walshe

Abstract In this chapter, we discuss the role of objectives and alternative actions in
framing a natural resource management decision problem, with particular attention
to thresholds. We outline a number of considerations in developing objectives and
measurable attributes, including when utility thresholds may be needed to express
the decision-makers’ values. We also discuss the development of a set of alternative
actions, and how these might give rise to decision thresholds, particularly when
the predictive models contain ecological thresholds. Framing of a decision problem
plays a central role in decision analysis because it helps determine the needs for a
predictive ecological model, the type of solution method required, and the value and
structure of a monitoring system.

Keywords Utility threshold · Decision threshold · Ecological threshold ·
Decision analysis · Means objectives

Introduction

Collectively, the chapters in this volume discuss the concept of thresholds in the
context of decision-making for natural resources. Nichols et al. (Chap. 2) lay out the
foundations of this approach, defining several types of thresholds, and describing
a structured approach to decision-making. One of the central tenets of structured
decision-making is values-focused thinking (Keeney 1996), the recognition that all
decisions are ultimately expressions of the values of the decision-maker, and thus,
articulation of the objectives should have a primary role in framing a decision. The na-
ture of the decision itself is best captured by consideration of the alternative choices
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the decision-maker faces; thus, development of the alternatives also plays a pri-
mary role in decision analysis. Taken together, these two elements—articulating the
objectives and developing the alternatives—frame a decision problem.

In this chapter, we discuss the roles of objectives and alternative actions in a
decision analysis, with particular attention to thresholds. We outline a number of
considerations in developing objectives and measurable attributes, including when
utility thresholds may be needed to express the decision-makers’ values. We also
discuss the development of a set of alternative actions, and how these might give rise
to decision thresholds, particularly when the predictive models contain ecological
thresholds. We argue that decision framing plays a central role in decision analysis,
leads to specification of the needs for a predictive model, identifies the solution
method, and justifies the structure and value of a monitoring program.

Objectives

Biological interactions are complex and management problems are typically ill-
structured. This complexity may not readily lend itself to formulation under
traditional optimization techniques, or simple intuitive problem solving. Most prob-
lems in natural resource management involve trade-offs among multiple objectives.
For example, the management of fisheries and forests routinely deals with tensions
arising from simultaneous objectives of maximizing yields and maximizing conser-
vation outcomes. Those with a stake in the management of a resource inevitably
advocate a policy position or alternative that implicitly assigns greater (or exclusive)
weight to the objective that aligns with their interests. It is not surprising that stake-
holders (and management agencies) occasionally become entrenched in advocating
a single policy or alternative that is diametrically opposed by other stakeholders
(or agencies). Alternatives-focused thinking is prey to anchoring, myopia, and en-
trenched stakeholder conflict. To insulate against the poor decisions associated with
entrenched conflict, Keeney (1996) emphasizes the identification of objectives as the
basis for value-focused thinking.

Types of Objectives

Keeney (2007) describes four types of objectives:

• Strategic objectives: objectives influenced by all of the decisions made over time
by the organization or individual facing the decision at hand.

• Fundamental objectives: the objectives used to describe the consequences that
essentially define the basic reasons for being interested in the decision.

• Means objectives: objectives that are important only for their influence on
achievement of the fundamental (ends) objectives.

• Process objectives: objectives concerning how the decision is made rather than
what decision is made.



3 Identifying Objectives and Alternative Actions to Frame a Decision Problem 31

Strategic objectives assist in defining the frame or context of a decision, but they
are generally too vague to be used directly. Effective decision support deals with
fundamental objectives. A key step is to disentangle means objectives from fun-
damental objectives. Process objectives govern the methods by which the decision
will be made, who will be included, and how the decision will be documented and
communicated; often the process objectives are influenced by agency or institutional
policy. The achievement of process objectives rests substantially on the analyst’s
capacity to assist decision-makers and stakeholders structure the decision problem
appropriately.

In initial brainstorming discussions with decision-makers, the objectives ar-
ticulated will often comprise a confusing mix of means objectives, fundamental
objectives, strategic and process objectives, together with associated attributes, con-
straints, targets, or alternatives. Organizations with a strong emphasis on science or
evidence-based decision-making are commonly distracted by the drivers of system
dynamics rather than fundamental objectives and key value-based trade-offs. For
example, let us say a government agency is responsible for managing a commercial
fishery and is considering regulating the kind of fishing gear the commercial fleet can
use in its operations. The agency generates the list of objectives below in consultation
with in-house scientists and key stakeholders.

The following list contains substantial redundancy, which if left untreated will
result in double-counting and other errors of aggregation:

• Minimize environmental impact
• Minimize bycatch
• Maximize conservation
• Maintain nutrient dynamics
• Maximize turtle population
• Change fishing gear
• Maximize yield
• Maximize profitability
• Maintain fish stock
• Maximize public acceptability

Minimizing environmental impact is a strategic objective that offers little insight to
the decision at hand. Maximizing conservation might be the fundamental objective
to which the strategic objective alludes, at least in this particular decision context.
Minimizing bycatch is a means of achieving the fundamental end of maximizing con-
servation. The maintenance of nutrient dynamics could have been suggested by the
organization’s scientists. It may be a good indicator of system function and could
usefully be incorporated into predictive models of consequences under various alter-
natives, but it is not a fundamental objective itself. When we ask why is it that nutrient
dynamics are important, the answer may be for conservation values and the main-
tenance of the fishery’s stock levels. So again, nutrient dynamics might be a means
objective that contributes to the fundamental ends of conservation and production.
Maximizing the turtle population may be a socially relevant and measurable attribute
for describing conservation outcomes. Changing fishing gear is an alternative rather
than an objective. Maximizing yield is a means towards the fundamental objective of
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Fig. 3.1 Means-ends diagram for management of a hypothetical commercial fishery. Nodes with
bold outlines indicate fundamental (ends) objectives. Grey nodes are notional attributes that can be
used to describe the performance of one or more alternatives against fundamental objectives. Ends
are influenced by the means objectives of minimizing bycatch and maximizing yield. The type of
fishing gear used by the industry can be seen as an alternative that affects all objectives. The diagram
may be used to stimulate additional creative alternatives

maximizing the fishery’s profitability. Profit will also be influenced by a change in
fishing gear (and probably any other alternatives), depending on who bears the costs
of any changes. The maintenance of fish stock is a constraint which can be included
as an objective and traded off against others, or left as a strict requirement whereby
any alternative that fails to satisfy the constraint is omitted from detailed consid-
eration. Maximizing public acceptability is a process objective. Sound formulation
of the decision problem via the value-focused thinking outlined here will contribute
significantly toward its achievement.

A good set of fundamental objectives will be (Keeney 2007):

• Complete—all of the important consequences of alternatives in a decision context
can be adequately described in terms of the set of fundamental objectives.

• Non-redundant—the fundamental objectives should not include overlapping
concerns.

• Concise—the number of objectives should be minimal.
• Specific—each objective should be specific enough so that consequences of

concern are clear and attributes can readily be selected or defined.
• Understandable—any interested individual knows what is meant by the objectives.

Graphs are an effective way of capturing and organizing the elements of an ill-
structured decision problem (Montibeller et al. 2008). Influence diagrams can be
used to communicate the relationship between means objectives and fundamental
objectives (Keeney 1996, Failing et al. 2007). Figure 3.1 is an illustrative example
using our hypothetical commercial fishery.

Can Learning be a Fundamental Objective?

During the objective-generation phase, learning is often cited as a fundamental ob-
jective, especially in science-based organizations. In our experience, for applied
decision-making settings, learning is best viewed as either a means objective or as
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a strategic objective. When scientists or decision-makers are asked why learning is
an objective, the response is typically, “because it will help us manage better in the
future.” Manage for what? Manage for some other fundamental objective. If that
other fundamental objective is part of the decision at hand, then learning is a means
to it. This distinction is important because it suggests that the decision-maker does
not want to pursue learning for its own sake, but only insofar as it helps achieve the
fundamental objective. Learning can be expensive, both in direct costs and in terms
of lost opportunities. For learning to be warranted, these costs should be outweighed
by improved long-term achievement of the fundamental objectives.

Sometimes, the fundamental objective whose achievement would be improved
through learning is not part of the decision at hand, but part of some other decision.
In this case, the decision-maker is recognizing that learning in one setting may help
decision-making elsewhere. Thus, learning is a strategic objective for the organiza-
tion. In this case, it might be appropriate to treat learning as if it were a fundamental
objective for the decision at hand, but careful consideration of the weight given to
this objective is needed.

Attributes

Attributes are used to judge the performance of alternatives against fundamental
objectives. That is, an attribute is a measurable scale that reflects achievement (or
expected achievement) of an objective. Ideally, attributes are measured on natural
scales—scales that can be measured without subjective judgment and which corre-
spond directly with the intent of the objective they represent. Often, however, other
types of scales, subjective scales or proxy scales, need to be substituted for practical
reasons. Clarity in fundamental objectives and their attributes focuses the elicita-
tion of expert opinion, data capture, and detailed causal modeling used to estimate
consequences under each alternative.

Desirable attributes are (Keeney and Gregory 2005):

• Unambiguous—a clear relationship exists between an objective and description
of consequences under each alternative using the attribute.

• Comprehensive—the attribute levels cover the range of possible consequences for
the corresponding objective under all alternatives, and value judgments implicit
in the attribute are reasonable.

• Direct—the attribute levels directly describe the consequences of interest.
• Operational—in practice, information to describe consequences can be obtained

and value trade-offs can reasonably be made.
• Understandable—consequences and value trade-offs made using the attribute can

readily be understood and clearly communicated.

Using the example of our hypothetical fishery, some measurable attributes on natural
scales for our fundamental objectives include (Fig. 3.1): sea turtle population size as
an attribute for our conservation objective; decline in the fish stock as an attribute for
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Table 3.1 Examples of measurable attributes for some fundamental objectives that might arise in
natural resource management. The third column shows the type of scale the attribute is measured
in

Fundamental objective Measurable attribute Type of scale

Maximize long-term viability
of a population

Probability of extinction Natural

Minimize regulatory burden on
the public

Regulated area-years (product
of the regulated area and the
expect length of time it
would be under regulation)

Natural

Maximize long-term
consumptive harvest

Sustained annual yield Natural

Maximize non-consumptive
viewing opportunities

Bird population size Proxy (population size does
not exactly equate to
viewing opportunities,
but it is likely to be
strongly correlated)

Minimize adverse public health
consequences

Number of individual health
concerns that result in a visit
to a doctor

Proxy (this is not the only
aspect of public health
consequence, and it does
not consider the severity
of the condition, but it is
likely to correlate with
total public health
concern)

Preserve cultural and religious
heritage of a natural resource

Five-point scale, ranging from
(1) complete loss of
culturally important
resources to (5) full
long-term preservation of
culturally important
resources

Subjective (requires
judgment of an expert
panel)

Maximize legal defensibility of
a rule-making

Three-point scale reflecting
probability of rule being
upheld in a legal challenge,
with three categories:
0–25 %, 25–75 %, 75–100 %

Subjective (requires
judgment of an expert
panel of lawyers familiar
with the setting)

the long-term viability of the fish stock; and net present value of long-term harvests
as an attribute for profitability of the fishery. Note that other tempting measurable
attributes, like the magnitude of the bycatch, do not reflect fundamental objectives.
Some other examples of measurable attributes for fundamental objectives that might
arise in natural resource management settings are shown in Table 3.1.

Single-Objective Utility

Attributes provide a scale on which to measure achievement of objectives, but how
the decision-maker cares about the outcome may not be a linear function of the
attribute. Rather, we can speak of the utility of the outcome to the decision-maker,
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Fig. 3.2 Examples of single attribute utility functions: a linear; b logarithmic; c step; and d logistic.
The step and logistic utility functions contain utility thresholds: small ranges on an attribute scale
over which the utility changes abruptly

and this measure reflects the magnitude of well-being associated with an outcome
on a particular attribute scale. (For decision theory purists, note that we are using
the term utility to refer generically to both value and utility, and are not making the
traditional distinction between the two. See von Neumann and Morgenstern 1944.)

A marginal utility function is a utility function for any single attribute in isolation.
Figure 3.2 illustrates four of an infinite number of possible forms. For a linear utility
function (Fig. 3.2a), the attribute scale is a direct expression of the degree to which the
decision-maker cares about the outcome. The linear function may only be appropriate
over limited ranges of a particular attribute. For larger ranges, the rate of utility
increases commonly diminishes with increasing acquisition of the attribute of interest
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(assuming more of the attribute is desired), as in the logarithmic utility function
(Fig. 3.2b). The step function (Fig. 3.2c) indicates maximal utility below a certain
threshold and zero utility beyond that threshold (i.e., less of the attribute is desired).
The dramatic change in utility described is unlikely to be a natural representation
of any decision-maker’s value judgments, but it might be appropriate for objectives
that correspond to constraints (for example, fixed budget constraints or clear legal
requirements). In our fisheries example, such a function might be appropriate where
the management agency can tolerate a defined magnitude of decline in stock, but no
more.

Utility thresholds occur when the utility changes abruptly over a small range in
the measurable attribute. The step function (Fig. 3.2c) is an extreme case—here the
utility changes instantaneously above and below a single threshold value. The logistic
function (Fig. 3.2d) is slightly more tempered—the utility changes abruptly over a
narrow range of values in the measurable attribute. But both of these functions act
in a similar manner; they greatly favor outcomes below the threshold, and strongly
discourage outcomes above the threshold.

Multiple-Objective Utility

As noted earlier, most problems in natural resource management involve multiple
objectives. Even after understanding the marginal utility of each objective separately,
the decision analyst needs to understand how to capture appropriately the values of
a decision-maker (or multiple decision-makers) when combining those objectives.
The field of multi-criteria decision analysis (MCDA) addresses these challenges. If
marginal utilities can be considered preferentially independent (i.e., the utility of one
attribute is unaffected by the amount of another attribute) then compensatory methods
of aggregation (like weighted sums) are appropriate. Otherwise non-compensatory
techniques should be used. Three common approaches are discussed here.

Single objective with multiple constraints. In this first approach, one of the objectives
is primary, while the other objectives are treated as constraints. In essence, all of
the alternatives that do not meet the constraints are eliminated, and the remaining
alternatives are evaluated against the single objective. This implies a deep importance
and non-negotiability to the constraints—the constraints are utility thresholds like
Fig. 3.2c. One analytical method used to solve such problems is linear programming;
this technique has been used extensively, for example, in forestry problems.

As an example, consider a forestry management decision. Suppose the funda-
mental objectives are to maximize stand yield (measured in board-feet), while using
only existing staff and equipment. The latter two objectives serve as constraints:
staff investment needs to remain below, say, 400 person-hours; and there are only six
portable saws and two skidders available. Any alternatives that meet those constraints
are admissible; the preferred alternative is the admissible alternative with the highest
yield.
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Non-compensatory multiple-objectives. In a more complicated scenario, the objec-
tives may be non-compensatory (in that there are threshold utilities or preferential
dependence among objectives), but it may not be as simple as using step functions
to eliminate alternatives. In this case, two approaches are possible: development of
a single composite utility function, or “outranking” MCDA methods. The former is
discussed here; regarding the latter, the interested reader is referred to the MCDA
literature (Vincke 1992, Stewart and Losa 2003).

A composite utility function seeks to combine mathematically the multiple ob-
jectives into a single expression that captures the decision-makers values. As an
example, the utility function currently used to manage mid-continent mallards in
North America is

∞∑

t=0

HtU (Nt+1), where U (Nt+1) =
{

Nt+1 �8.8 if Nt+1 < 8.8 million
1 otherwise

.

This utility function actually combines three fundamental objectives: maximize an-
nual harvest, ensure long-term persistence of the population, and keep the population
size above the North American Waterfowl Management Plan goal of 8.8 million. It
achieves the first objective by maximizing annual harvests (Ht ). It achieves the sec-
ond objective by maximizing the sum of those harvests over an infinite-time horizon;
such a maximum can only occur if the population persists indefinitely. Finally, the
third objective is achieved by devaluing the harvest in any year if the projected pop-
ulation size in the next year is below the goal. Note that the third objective is a
threshold utility, but not a step function.

Compensatory multiple-objectives. If the objectives are all compensatory, that is,
they can be traded off against each other, then a composite utility function can
be readily formed. The most common method is a simple weighted summation of
the marginal utilities. The composite utility function U over two or more relevant
attributes, xi , can be written as

U (x1, x2, ..., xn) =
n∑

i=1

wivi(xi)

where wi are the weights and vi are marginal utility functions (Bedford and
Cooke 2001). Where fundamental objectives satisfy the properties listed in the section
“Types of objectives,” there is a strong case for use of simple weighted summation.

In the simple weighted summation model for a decision-maker’s value function
over multiple objectives, the preference for one objective over another is described
by the weights. Weights can be elicited using a variety of techniques (Hajkowicz
et al. 2000), not all of which are credible. The weight assigned to any single funda-
mental objective needs to consider two elements; (1) the inherent importance of the
objective, and (2) the range of the consequences estimated across all alternatives. A
very common mistake in assigning weights is to ignore the range of consequences
(Keeney 2002, Steele et al. 2009).
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Alternative Actions

The alternatives from which a decision-maker may choose are, of course, central
to any decision. One of the evolved tendencies of human decision-makers is the
inclination to immediately jump to consideration of alternatives (Keeney 1996). But
in a structured, values-focused decision-making process, alternatives are identified
after the objectives have been articulated. There are two primary reasons for this: first,
any decision is an expression of the decision-maker’s values, so those values should
retain primacy and drive the other aspects of the decision analysis; second, when
alternatives are generated absent objectives, they tend to be a narrow set, anchoring
typically on the status quo and perhaps a few other options. When the objectives are
identified first, they can be used to craft a wide range of creative alternatives that
seek to fulfill the objectives.

What is a Decision?

In generating alternative actions, it is important to recognize the nature of the
decision. A decision is an “irrevocable allocation of resources. . . not a mental com-
mitment to follow a course of action but rather the actual pursuit of the course of
action” (Howard 1966). In this spirit, it is helpful to think about what true action
underlies the decision. In natural resource management, actions may have direct or
indirect effects. Direct effects result from many on-the-ground actions, like modifi-
cation of habitat, movement of animals, captive breeding, and immunocontraception,
among many others. But many actions, especially those taken by government agen-
cies, have indirect effects through the responses of others: enactment of regulations,
issuance of permits, and tax incentive schemes all work in this manner. Nevertheless,
in both direct and indirect cases, a committed step is taken.

Natural resource management entities often conduct exercises in prioritization.
For example, they will prioritize species or habitat types for conservation, land
parcels for acquisition, or invasive plants for control. But while a prioritized list may
precede a decision, it is not itself a decision, as it involves no irrevocable allocation of
resources. The decision arises out of how that prioritized list is used. If a prioritized
list of land parcels is used to select a subset of parcels for acquisition, then the
decision concerns the set of land parcels to acquire, and the alternatives are all the
possible sets of land parcels that could be acquired. A focus on what action will
actually be taken helps to appropriately identify the true alternatives.

Is monitoring an action? Decision-makers will often identify learning or monitor-
ing as an option, but it is important to understand what lies behind this suggestion.
If monitoring is suggested as a preferred alternative without consideration of ac-
tions that influence the resource under management, then the decision setting is not
fully framed, and the monitoring is serving as a delay in implementing any action.
A full analysis should consider the option of taking action without learning first.
In this way, the decision-maker can ask whether the costs of delay are offset by
the expected benefits of learning. This question can be viewed as a linked decision
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Fig. 3.3 Decision tree for evaluating the value of information. The outcomes are a function of the
action taken (A or B) and the true state of the world (M1 or M2); in addition, if a study is undertaken,
there are costs of the delay (D), both in terms of direct costs of the study or monitoring, and indirect
costs in lost opportunity. Whether or not to undertake the study or proceed directly to action depends
on whether those costs are offset by the improved management that arises from the information the
study will gather

(Fig. 3.3). If action is delayed so that a study or monitoring can be undertaken, then
information about how the world works is acquired before the management action
has to be chosen. All other things equal, this should improve the expected perfor-
mance of the decision. But the direct costs of the study and the opportunity costs of
delaying the decision may not be offset by the value of the information. The value
of learning arises out of the interaction between the objectives (as measured by the
outcomes, which may include utility thresholds), the ecological models (which may
include ecological thresholds), and uncertainty. The point here is that “learning,” as
an alternative action, requires special treatment.

Types of Actions

Sets of alternative actions can take a number of forms. In the simplest case, the
decision-maker is choosing from a discrete set of alternative actions. The set may
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be small (perhaps as small as two!) or large, but is composed of unique, distinct
alternatives. For example, the manager of a grassland may be considering burning,
mowing, or haying as alternative disturbance regimes to maintain the field in an
early stage of succession; these alternatives are seen as distinct choices, with little
opportunity for intergradations.

A special type of discrete set called portfolios arises when subactions are assem-
bled into collections, and frequently are associated with prioritization problems. For
example, a review panel deciding how to allocate research funding among a number
of proposals is making a decision about which portfolio of proposals to fund. The
alternative portfolios are all the possible combinations of proposals. It is important
to note here that the commitment of resources is to the portfolio that is funded, so
the alternative actions are all the possible portfolios, not the individual proposals
themselves.

In other cases, the decision-maker is choosing from a continuous set of alternative
actions, with a decision variable taking any value within a given range. For example,
the harvest rate for a fishery can take on continuous values between zero and the
intrinsic rate of increase for that population. Other decision variables that might take
on continuous values include: the amount of herbicide to apply to a field, the length
of time to continue a reintroduction program, the volume of water to release from a
dam, the number of hectares of habitat to acquire through easements, and the amount
of effort (person-hours) to expend in an eradication program.

Typically, sets of alternative actions are even more complex. They might be combi-
nation sets that include both discrete and continuous elements. For example, control
of an invasive plant may include the discrete choice among types of herbicide, as well
as the continuous choice among levels of herbicide to apply, perhaps even in com-
bination with a discrete choice involving the season of application. Strategy tables
are a technique for developing these complex alternatives; they involve identifying
all the sub-elements of an alternative, and articulating a large (if not exhaustive) set
of combinations of these sub-elements (Skinner 1999).

Decision Thresholds

Decision thresholds arise when the preferred alternative changes abruptly over a
narrow range in the state variables. Thus, as discussed in Chap. 6 (Williams and
Nichols), decision thresholds are identified at the optimization stage of a decision
analysis. They arise, if at all, out of the interaction between objectives (possibly
with utility thresholds), alternative actions, and models (possibly with ecological
thresholds).

As described in Chap. 1 (Guntenspergen and Gross), ecological thresholds are
situations where the system dynamics change abruptly over a small range of a state
variable. These may or may not give rise to decision thresholds, and when they do,
the ecological and decision thresholds may not correspond. For example, consider
a particular ecological threshold—an Allee effect such that the reproductive rate of
a population falls below replacement level when the population size falls below a
particular value. This is a stark and important threshold because once a population
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Table 3.2 Optimal regulatory strategy for mid-continent mallards for the 2010 hunting season
(USFWS 2010)

Bpop (in
millions)

Ponds (in millions)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

≤ 4.5 C C C C C C C C C C
4.75–5.75 R R R R R R R R R R
6 R R R R R R R R M M
6.25 R R R R R R M M M L
6.5 R R R R M M M L L L
6.75 R R R M L L L L L L
7 R M M M L L L L L L
7.25 M L L L L L L L L L
7.5 L L L L L L L L L L

≥ 7.75 L L L L La L L L L L

The two state variables are the breeding population size (Bpop) and the number of ponds in prairie
Canada (ponds)
Regulatory packages: C closed, R restrictive, M moderate, L liberal
aThe regulatory prescription for 2010

falls below that population size, it cannot naturally recover; over a small range of
population size, the attraction point abruptly switches from the carrying capacity to
zero. Suppose further that this population, which normally is well above the Allee
threshold, is subject to harvesting. In a full optimization analysis, a decision threshold
will arise—to cease hunting when the population size falls below some level. But the
decision threshold will be considerably higher than the ecological threshold, to guard
against the risk of inadvertently pushing the population below the tipping point.

Decision thresholds can arise from both discrete and continuous sets of actions. In
the discrete case, a decision threshold is natural, because if the preferred alternative
changes over some range of the state space, it necessarily must do so abruptly, even if
there is no utility or ecological threshold. In the continuous case, decision thresholds
can arise as a result of utility or ecological thresholds.

In the USA, duck-hunting regulations are set through a decision-analytical pro-
cess, which includes a formal optimization step (Table 3.2). There are numerous
decision thresholds. For example, if there are 3.5 million ponds in prairie Canada,
the optimal regulatory package changes from restrictive to liberal over a very small
range of mallard breeding population size (6.25–6.75 million). The decision thresh-
olds in this strategy arise for a number of reasons. At a population size of 4.5 million
mallards, there is a sharp decision threshold between a closed and restrictive hunting
season; this decision threshold arises because it was imposed directly as a closure
constraint. Thus, it corresponds to a utility threshold. Without this utility thresh-
old, closed seasons would occur more often. There is another utility threshold at
8.8 million mallards (see the section “Multiple-objective utility”), but this does not
have a direct effect in producing a decision threshold. The most prominent decision
threshold—the diagonal “knife-edge” over which regulations change abruptly from
restrictive to liberal—does not arise from either a utility or ecological threshold.
Instead, it is a consequence of the optimization, and would occur even if the decision
variable was continuous (e.g., harvest rate).
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Decision Framing as an Iterative Process

Together, the specification of the objectives and the articulation of the alternatives
frame the decision problem, and lead to the subsequent steps in a structured deci-
sion analysis. The framing helps determine what is needed in a predictive ecological
model by specifying both the inputs (alternatives) and the outputs (measurable at-
tributes for the objectives). It also determines the type of solution method required to
identify the preferred alternative. Finally, because the objectives specify the scales on
which performance is measured, and because the actions (and subsequent decision
thresholds) determine the possible management solution, framing is central in iden-
tifying the value and structure of a monitoring system, both to evaluate achievement
of objectives and to reduce uncertainty. Thus, decision framing plays a central role
in decision analysis.

But framing is challenging. Decision-makers often cannot clearly articulate their
objectives on the first pass, and need time wrestling with the decision problem to
fully construct their objectives (Keeney 1996; Bond et al. 2008). Developing novel
alternatives is often a creative process that requires a fresh perspective. Alternatives
themselves often lead to identification of further objectives as decision-makers iter-
atively work through the problem and identify elements that better distinguish the
overall performance of candidates. For example, management actions that entail
undesirable side-effects can prompt the inclusion of an objective to minimize those
side-effects.

Tremendous insight can arise from a prototype analysis. An initial decision
framing leads to an initial prediction of consequences and analysis of preferred
alternatives. If the prototype analysis is intuitively unappealing, an examination of
the components of the analysis, especially the framing, can suggest improvements.
Are there other objectives that were not captured? Is it possible to construct new
alternatives from the insights gained from the prediction of consequences? Some-
times constraints arise in the analysis—a lack of data for the proposed model, or the
absence of an analytical solution method for the problem as framed; these constraints
can also lead to a reframing of the problem.

An iterated cycle of prototyping, sensitivity analysis, reflection, and revision is a
healthy way to develop a decision analysis. It allows for feedback from the decision-
maker at multiple points, and favors development of decision analyses that are only
as complex as they need to be.
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Chapter 4
Optimization in Natural Resources Conservation

Byron K. Williams and James D. Nichols

Abstract The previous three chapters of this book have been devoted to specific
components of informed decision processes: objectives, potential actions, model(s)
predicting system change and response to potential actions, and monitoring to pro-
vide estimates of system status. The final component of an informed decision process
is a solution algorithm, providing a means for deciding which potential action to take.
Optimization algorithms provide an objective and transparent approach to select the
action that will do the best job of meeting objectives. Static optimization provides
a solution to decision problems that are not iterative, and we provide examples for
one or more decision variables (variables that are components of potential actions).
Many decision problems in natural resource management are best viewed as dy-
namic, in that they are iterative and require decisions that are repeated through time.
In dynamic decision problems, decisions made at one point in time are expected
to influence system state of the next time step, thus influencing the state-dependent
decision at that time. For any specific decision, dynamic optimization algorithms
must thus consider all subsequent time steps for the time horizon of the decision
problem. In addition to being dynamic, most decision problems in natural resource
management are characterized by substantial uncertainty, and dynamic optimization
algorithms have been extended to deal with several sources of uncertainty. An impor-
tant source is uncertainty about how the system responds to management actions, and
we may develop multiple models to characterize this uncertainty. Adaptive dynamic
optimization algorithms provide solutions that deal not only with objectives, but with
the anticipated reduction in uncertainty that will characterize future decisions. The
output of an optimization algorithm is frequently a graph or table of recommended
actions for specific values of system state variables. Decision thresholds are thus
defined by the optimization algorithm and are simply locations in state space where
a small change in the value of a state variable produces a change in the optimal or
recommended management action.
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Introduction

Among other things, natural resources conservation is about informed decision-
making. Conservation builds on our understanding of natural resource systems and
the influence of drivers and stressors on them. In many instances it relies on tracking
and monitoring programs, which provide the information needed to determine re-
source states and conduct investigations about patterns of change. It is (or should be)
responsive to partners and stakeholders, who often have different perspectives and
values about resource conditions and the decisions needed to achieve those condi-
tions. In combination with information management and assessment, these features
play an important role in natural resources conservation. Simply put, conservation
is about making decisions in ways that incorporate understanding and information
to achieve management goals and objectives (Holling 1978; Walters 1986; Williams
et al. 2002, 2007; Allen et al. 2011).

In this chapter, we describe conservation in terms of smart decision-making,
that is, choosing the best decision from a set of alternatives according to some
measurement criterion. The idea is that decision-makers select a particular decision
from a range of possible decisions, with the selection influencing the resources under
consideration. The decision choice is guided by goals and objectives that incorporate
the production of services sought by the decision-maker, and it (often) includes future
resource conditions. The concept of goals and objectives is very general, and may
include minimization of risk to a resource in the face of uncertainty just as readily
as maximization of some ecosystem service. The intent is to make decisions that are
optimal with respect to desired objectives, given the available options.

An important class of resource problems involves decision-making that accounts
for the future consequences of decisions. A focus on the future in turn requires at least
some understanding of the influence that decisions can have on resource dynamics,
which is captured with models that describe that involve resource conditions. This
is a natural framework for resource problems involving iterative decision-making
through time, where decisions made at any given time have the potential to influence
future resource status, and thus, future decision-making (Walters 1986; Williams
et al. 2002, 2007; Nichols and Williams 2012).

Optimization produces the decision thresholds described in Chap. 2 (Nichols et al.,
Chap. 2; also see Martin et al. 2009). Decisions at any point in time are typically
state-specific, that is they depend on the state of the system at the time at which the
decision is made. A decision threshold is simply a value of a state variable where a
small change in that variable leads to a different decision. For example, endangered
species management might focus on animal abundance as the relevant state variable,
with predator control being the optimal decision for a local population with fewer
than 70 individuals and no predator control being optimal for 70 or more animals.
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This location in state space (70 animals) would represent a decision threshold, with
different actions occurring on either side of the threshold. Any utility thresholds
(Nichols et al., Chap. 2; Runge and Walshe, Chap. 3) included in the objective
function and ecological thresholds included in the system models are important
components of input to the optimization algorithm. In summary, optimization uses
most of the other components of the decision process, which may include utility
and ecological thresholds, to develop decision thresholds specifying actions that are
optimal with respect to the decision problem.

Note that the use of optimization methods for making decisions in natural resource
management is not the current norm. Rather, it is typical for managers to make
decisions with no recourse to optimization, but instead to base decisions on the ability
to integrate relevant decision components (objectives, possible actions, model(s) of
system response to actions, current state of system) and to develop the optimal
decision mentally. Even if humans were able to carry out this integration and make
wise decisions without using quantitative or graphical methods, optimization has the
advantage of being transparent and defensible. But of course, humans frequently
make poor decisions, providing an additional, strong argument for the use of formal
optimization methods.

In this chapter, we provide an introduction to optimization methods, emphasizing
their role as one component within a larger decision process. More specifically,
optimization is the solution algorithm that provides the decision thresholds used
in informed decision-making. We begin by establishing the general optimization
problem, emphasizing natural resource management. We then describe static (not
iterative) optimization for one and then two or more decision variables. This is
followed by a discussion of dynamic optimization, a common situation in natural
resource management, in which the action at any time influences future system states,
requiring an accounting of the consequences of any action throughout the time frame
of the management program. Next, we discuss important sources of uncertainty that
characterize most decision problems in natural resource management. Approaches
to optimization that appropriately incorporate these sources of uncertainty are then
described, with emphasis on dynamic decision problems. Extensions to the described
approaches are discussed and include different ways of expressing management
objectives by focusing on extreme (e.g., small population sizes) rather than on average
values. Other extensions are required to deal with nonstationary system dynamics,
as might be expected, for example, in the face of climate change. The final section
of the chapter then returns to linkages between these various optimization topics and
the threshold framework that forms the basis for this book.

The General Optimization Problem

In broadest terms, the generic optimization problem in natural resources is simply to
choose among a set of decision options so as to maximize some resource objective
that is expressed in terms of the decision choices. Four basic elements typically are
required:
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First, a range of decision options is needed, from which an option can be selected.
The options might focus on resource exploitation, as in harvest rates or amounts; or
resource enhancement, as in stocking rates or amounts; or restrictions on certain uses
of a resource for recreation or economic production; or any combination of these
and other actions that could be taken to influence resource outputs and conditions.
In what follows we refer to the options in terms of decision variables, and the range
of alternatives as a feasibility set.

Second, utilities associated with key resource inputs, outputs, and services must
be identified. The utilities may be based on the costs of material and energy inputs,
or the output of waste products, or the economic benefits of valuable outputs, or
ecological features of the system, or aggregates of these and other attributes. In some
cases utilities are tied to resource conditions at the time the decision is made, and they
may be time-specific. Resource-based utilities may include thresholds indicating, for
example, that one component of the objective is to maintain resource state variables
(e.g., population size) above some specified level (the utility threshold).

Third, an objective must be specified that aggregates attribute utilities, possibly in
a time-dependent way. Objectives often are expressed in terms of minimizing costs,
or maximizing benefits, or maximizing benefits net of costs, or other forms that can
be linked to the aggregation of utilities. In what follows, we will refer to an objective
function, to emphasize its relationship to the resource condition and/or the decision
that is selected.

Fourth, decision-making for natural resources, especially renewable natural re-
sources, usually requires some accounting for the effect of decisions on resource
status and condition. The potential consequences of a decision might be immediate,
as in harvest that reduces the size of a population, or longer term, as in the effect
a decision has on moving a population toward some desired population status (e.g.,
decisions aimed at achieving a targeted resource state in minimal time). The pro-
jection of the future consequences of present actions is described with a resource
model. Such models may include ecological thresholds, or locations in state space
where small changes in state variables can lead to large changes in system dynamics
and responses to management.

Examples of optimization with biological systems might include the following
kinds of problems:

• Manage the habitat (and thus the competition coefficients) of three competing
populations, so as to minimize a function of the population equilibrium states.

• Choose a fixed harvest rate that maximizes total harvest of a population over some
discrete time frame.

• Allocate limited resources among recruitment, survivorship, and other man-
agement needs, so as to maximize long-term biological productivity of a
population.

• Manage a population to attain a given stock size (utility threshold) while min-
imizing costs associated with both population size and its rate of change over
time.

• Choose a sequence of harvest rates to maximize accumulated harvests as a function
of population size and harvest rate.
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• Choose a function of stocking rates to attain a given population size (utility thresh-
old), while minimizing expected accumulated costs for a population subject to
stochastic influences over time.

In each of these examples, there is at least an implied statement of the objective
to be pursued through decision-making, a specification of the decision options that
are available to achieve that objective, and an explicit or implied indication of the
resource consequences of decision-making.

In optimization with natural resources, it is especially the case that biological
complexity begets analytic complexity. For example, single-species systems can be
analyzed for optimal patterns much more easily than multi-species assemblages. Pop-
ulations with only a single age or size or geographic cohort are easier to handle than
populations that require an age, size, or spatial structure. An important complicating
factor is decision-making through time, with actions taken at any time influencing
system behavior at subsequent times.

Static Optimization—A Single Decision Variable

A common form of optimization considers non-iterative optimal decision-making.
A statement of the problem is to choose a single decision from a set of decision
alternatives that will optimize an objective function that varies with the decision
choice.

Discrete alternatives. The simplest and most intuitive form of such decision-making
is expressed with a discrete set of decision alternatives. An example might include
light, medium, and heavy grazing, with an objective of maximizing sustainable
biological production. Assuming production is density-dependent and influenced by
grazing pressure, the problem reduces to a simple comparison of sustainable yield
for the three grazing levels, with a selection of the level corresponding to the highest
yield.

This simple example illustrates a generic approach to static optimization when
alternatives range over a discrete set of values. Thus, one essentially enumerates
the alternatives, determines the value of the objective for each, and chooses the
alternative with the highest (for maximization) or lowest (for minimization) value.
This relatively straightforward approach is applicable to a wide range of problems.
Examples might include the selection of a policy from a discrete set of policy options;
or selection of a method of habitat improvement from a set of alternatives such as
seeding, mowing, and fertilization; or the choice of a survey design from a limited
set of alternative designs. The key is to be able to express the value of the objective in
terms of each alternative, so as to facilitate comparison and ranking of the alternatives.
One complicating factor is that if the utilities in the objective function depend on
the condition of the resource, then the optimal decision will also vary with resource
condition, with different decisions recognized as optimal over different ranges of
resource condition.
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Fig. 4.1 Optimization involving a continuous decision variable. a Maximum value is obtained at a
point on the boundary of the decision set. b Maximum value is obtained at an interior point

In what follows, we restrict attention to maximization, recognizing that a mini-
mization problem can be recast in terms of maximization by the simple expedient
of negating the objective function. Then the optimal choice of an option for the
redefined maximization problem coincides with that of the original minimization
problem, and the optimal values of the two objective functions are reciprocals of
each other.

Continuous alternatives. A somewhat more complicated situation is described when
the decision alternatives vary over a continuous range. Examples include exploitation
at rates that range over the interval from 0 to 1, or application of fertilizer in amounts
that can range from 0 to some upper limit, or stocking at levels that can be any value
between 0 and some upper limit. Here, the problem is to select an alternative from a
continuous range of options, so as to maximize (or minimize) an objective that is a
function of the decision option.

For any given problem, there are two possibilities for maximization. One is that
a maximum value for the objective function is found at a boundary of the range
of feasible options (Fig. 4.1a). The other is that a maximum value is found in the
interior of the feasibility set (Fig. 4.1b). Assuming a continuous range of decision
alternatives and an objective function that changes smoothly, an optimal interior
decision corresponds to a point where the marginal change in the objective function
vanishes. Mathematically that means that the derivative of the objective function
with respect to the decision variable is 0.

One often-cited example of this is maximum sustainable harvest for a wildlife
population with population change given by the logistic equation with harvest,

N (t + 1) = N (t) + rN (t)

[

1 − N (t)

K

]

− H (t)
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Fig. 4.2 Harvest level for a
logistic population with
post-recruitment harvest
under equilibrium conditions.
K is the carrying capacity for
the population

where r is the intrinsic population rate of growth, K is the “carrying capacity” or
maximum sustainable population size, and H(t) is the harvest at time t. A simple
re-writing of this equation allows us to express harvest H (Fig. 4.2) for a given
equilibrium population size N as

H = rN

[

1 − N

K

]

.

An objective function of sustainable harvest can be maximized by selecting the
appropriate equilibrium population size, which in turn is given by setting the harvest
derivative to 0:

dH

dN
= r − 2rN/K = 0

or

N∗ = K/2

with a corresponding optimal harvest of

H ∗ = rK/4.

In general, optimization with a continuous decision variable extends the basic idea of
finding the decision alternative in a feasibility set for which an objective function is
maximum. In terms of a continuous decision variable x, this means finding a value x∗
for which f (x∗) ≥ f (x) for every other value x in the feasibility set. A condition that
must be met for an interior optimum at x∗ is that the first derivative of the objective
function vanishes, i.e., df/dx∗ = 0. If the second derivative at x∗ is negative, then
local optimality at x∗ is guaranteed (Miller 2000).
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Fig. 4.3 An objective function for a decision problem with two continuous decision variables. V (x)
is the value of the objective function for x− = (x1, x2)

Static Optimization—Two or More Decision Variables

The complexity of the optimization problem increases if decision-making involves
two or more decision variables. The issue now is to find a combination of values for
multiple variables that maximize the objective function. Assume, for example, that a
problem can be stated in terms of two decision variables in an objective function. In
this situation, three different optimizations are possible. The first two consist of an
optimization of one variable holding the other fixed at a particular value, in the manner
described above. Since there are two decision variables, either can be optimized
conditional on a value assigned to the other. The third optimization concerns the
optimal choice of both decision variables, in which the best combination is sought
to maximize the objective function (Fig. 4.3).

As above, the optimal combination of continuous decision variables can lie in
the interior of the set of feasible values, or at a boundary of that set. For an interior
solution, the partial derivatives of the objective function with respect to each of the
decision variables must be 0. This condition is not required for optimal solutions at
a boundary of the feasibility set.
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A simple example of a problem with multiple decision variables is illustrated in
Williams et al. (2002), in which a population is subject to exponential post-harvest
growth and constant harvest H for a specified amount of time. The equation (Williams
et al. 2002) for population size N after T years is

N = (1 + r)T (N0 − H/r).

The population size N clearly depends on the initial population size N0 and harvest
level H. Assuming an objective of maximizing a quadratic expression in both total
harvest and the cost of stock removal at the end of the time frame,

V (H , N ) = (T H )2 − N2,

the problem is to choose optimal values of the decision variables H and N0. Partial
derivatives of the objective function with respect to the variables yields two equations
in H and N0, and the solution of these equations are the optimal values of these
variables.

Optimization in two or more variables extends the idea of finding the value of a
decision variable in a feasibility set for which an objective function is maximum.
The conditions of a vanishing first derivative and negative second derivative that
guarantee an interior optimum also can be extended, to include the vanishing of
the partial derivatives of the objective function with respect to each of the decision
variables, along with a somewhat complicated negativity condition involving the
second-order partial derivatives (Miller 2000).

Problems involving multiple decision variables can become considerably more
complicated if there are equality or inequality constraints. Then it is necessary to
account for the possibility that a constraint is active, i.e, that an optimal solution is
found at a constraint boundary. In a few instances with simple problems (see Fig. 4.1)
a boundary solution can be recognized by inspection. More generally, it is necessary
to account for constraints in the problem formulation and solution methodology. A
common approach utilizes the so-called Kuhn-Tucker conditions, which essentially
involve the inclusion of additional decision variables in the problem, one for each
constraint. This can complicate the solution approach and analysis of results consid-
erably (see, e.g., Luenberger 1984; Miller 2000; and Hillier and Lieberman 2001 for
a detailed discussion of the Kuhn-Tucker conditions).

Linear programming. The complexity introduced by constraints is greatly reduced
when both the objective function and other constraints are linear. A problem is
amenable to linear programming if its objective function is linear,

V (x−) = c1x1 + c2x2 + ... + cnxn,

constraints on the decision variables are linear, i.e.,

ai1x1 + ai2x2 + ... + aimxm ≤ bi

or

ai1x1 + ai2x2 + ... + aimxm = bi ,
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and non-negativity constraints apply,

xi ≥ 0.

There is a very efficient approach to solving optimization problems of this kind, the
well-known Simplex solution algorithm (Luenberger 1984). The algorithm can be
used to solve problems with a virtually unlimited number of decision variables, as
long as the linearity conditions are met.

Since they are special cases of constrained optimization, linear programming
problems also must satisfy the Kuhn-Tucker conditions. These conditions translate
into a “dual” linear programming problem, the solution of which expresses the sen-
sitivities to marginal changes in the constraint constants bi in the original problem
(Hillier and Lieberman 2001; Williams et al. 2002).

Dynamic Optimization

The level of complexity in optimization increases substantially when decision-
making is iterative and a decision at any given time influences future system
behaviors. In this situation, a decision made at the beginning of the time frame poten-
tially influences future resource conditions (and therefore future decision-making)
over the remainder of the time frame. A second decision made at a later time also
influences future resource conditions and future decision-making. In like manner, the
resource condition (and decision to be made) at any given time will be influenced by
all the decisions made previously, and in turn will influence the resource conditions
and decisions made from that point forward. Obviously, this presents a real challenge
in deciding what combination of actions to take over time.

A large number of problems in ecology and natural resources are fundamentally
dynamic in nature. One traditional approach is to assume fixed decision-making and
equilibrium conditions (i.e., the resource condition is unchanging through time), and
interpret the patterns in the steady-state resource conditions. By imposing an equilib-
rium condition on the system state and seeking optimal decisions under that condition,
the decision-making problem is essentially treated in terms of static optimization (see
the logistic population example above).

When it is not appropriate to assume steady-state conditions, dynamic opti-
mization approaches must be used, with resource conditions as well as decisions
potentially changing through time. To properly describe this dynamic optimization
problem, it is useful to introduce notation that distinguishes resource conditions from
decision variables. Thus, in what follows, state variables representing the resource
condition or state at a given time in the timeframe will be denoted by x(t). Similarly,
decision variables representing the decision to be made at that time will be denoted
by a(t). Resource change then can be expressed with a transition equation

x(t + 1) = x(t) + f (x, a)
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that links state and decision variables together, and expresses change in terms of
single-step transitions from one time to the next. More generally, multidimensional
transitions can be expressed by the transition equation

x−(t + 1) = x−(t) + f− (x−, a−)

where the underlines indicate more than one measure of resource condition is tracked
and/or more than one decision variable is considered at any given time. This formu-
lation of the dynamic decision problem is expressed in discrete time, in which the
time index takes a discrete set of values, usually regularly spaced over a timeframe
from some starting time t0 to an endpoint T. System dynamics can also be expressed
in continuous time, as

dx−/dt = f− (x−, a−)

where dx−/dt represents the instantaneous rate of change of the resource.

The other part of the dynamic resource problem concerns objectives. Assume a
utility function U(x, a) that measures the utility (e.g., benefits net of costs) associated
with action a when the resource is in state x. Then an objective function

∑T

t0
U (a(t), x(t))

can be defined by accumulating utilities as actions are taken and resource conditions
respond over the timeframe.

With this additional notation, we can describe the optimization problem as

maximize
At0

∑T

t0
U (a(t), x(t))

subject to

x(t + 1) = x(t) + f (x, a)

and

x(t0) = x0

where At0 represents a strategy of state-specific and time-specific actions from t0
to T. For problems in continuous time, the summation in the objective function is
replaced with integration, so that the optimization problem is

maximize
At0

∫ T

t0

U (a(t), x(t))dt

subject to

dx/dt = f (x, a)

and

x(t0) = x0.
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Many variants of this problem statement are possible (Bryson and Ho 1975). One
that is especially relevant to natural resources includes in the objective function a
salvage value F1[x(T )] that depends on the state of the resource at the end of the time
frame. For example, a value can be recognized in leaving a cohort of a harvested
population at the end of a timeframe, to sustain the population into the future. Another
variant includes an assumption that the future is less important than the present, so
that utilities are time-discounted in the objective function. Including these elements
gives an objective function of the form

∑T

t0
λtU (a(t), x(t)) + F1[x(T )],

where λtdiscounts the time t utility back to present value.
The mathematics needed to solve such problems are elegant but complicated,

and comprehensive treatments can be found in the corpus of literature on systems
analysis and optimal control. The theory and approaches for optimal control of
dynamic systems, including the calculus of variations, Pontryagin’s Maximum Prin-
ciple, and dynamic programming, constitute one of the great triumphs of modern
applied mathematics (Sage and White 1977; Stengel 1994; Bertsekas 1995).

Uncertainty and Resource Dynamics

Natural resources management almost always involves uncertainties as to the conse-
quences of management actions. We focus here on four uncertainty components that
occur frequently in natural resource decision-making, namely environmental vari-
ation, partial controllability, partial observability, and structural uncertainty. Each
component influences natural resources management in different ways and at dif-
ferent points in a resource system (Fig. 4.4). Taken separately or in combination,
they can limit our ability to identify useful management strategies. We discuss each
of the components below, along with approaches for including them in dynamic
optimization.

Environmental variation. Environmental conditions can be viewed as external fac-
tors that influence, but are not influenced by, resource conditions and dynamics. They
can directly and indirectly influence the ecological and physical processes that de-
termine resource dynamics. They vary randomly over time, so that future conditions
cannot be predicted with certainty. The resultant uncertainty in resource dynamics
complicates decision-making.

In the context of optimal decision-making, environmental variation is often treated
by the artifice of including a random component z(t) in the transition equation
governing system dynamics:

x(t + 1) = x(t) + f (x, a, z).

The net effect of adding a random component is to induce randomness in the tran-
sitions, so that the state at each time is predictable only probabilistically. This
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Fig. 4.4 Change in a resource system as influenced by fluctuating environmental conditions and
management actions. Different uncertainty factors affect resource dynamics and management in
different ways

randomness is often handled by modeling resource transitions as if they consti-
tute a Markovian decision process (Puterman 1994), with transitions between states
described by a decision-specific transition probability structure:

P (x(t + 1)|x(t), a(t)).

In words, this expression specifies a probability that the resource will be in state
x(t + 1) at time t + 1, conditional on resource state being x(t) at time t and assuming
action a(t) is taken.

Randomness in resource transitions through time induces randomness in the
utilities that depend on resource conditions. The objective function inherits this ran-
domness, and is itself random. Under such circumstances an appropriate objective
simply utilizes an average or expected value,

E
{∑T

t0
U (a(t), x(t))

}
,

with the expectation essentially connoting an averaging over the possible resource
trajectories.

The pattern of transition above is sometimes called a first-order Markovian deci-
sion process. Higher-order processes also are possible. For example, a second-order
Markovian process is defined by a probability structure in which the transition to a
new resource state x(t + 1) depends on both x(t) and x(t-1). Although sometimes a
more realistic portrayal of resource dynamics, optimization under these conditions
becomes much more difficult (Williams 2007).
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Partial controllability. Partial controllability refers to an imprecise linkage between
decisions that are made and the actions that are actually implemented. Unintended
outcomes are often a result of management decisions implemented by indirect means.
For example, hunting permits may be used as an indirect means to attain a desired
rate of ungulate harvest, or forestry regulations may be used to limit logging-related
impacts on wildlife. The net effect of partial controllability is that the intended
outcome of a management decision is only partially accomplished by the action that
ultimately is taken.

A natural way to model this uncertainty is to assign a probability distribution to
the decision variable, wherein a particular decision corresponds to any of a range of
possible actions along with a probability structure describing the likelihood that each
action will actually be taken. In this way, partial controllability becomes yet another
random factor like environmental variation. In combination, partial controllability
and environmental variation lead to less-precise predictions of the transitions between
resource states. As a practical matter, they often are expressed as a single random
component that includes both effects.

Partial observability. Partial observability expresses an inability to observe com-
pletely a resource system that is being managed. Natural resources are almost always
partially observed. For example, only a part of the area where a fish population occurs
can be monitored, and a sampling strategy needs to allow inferences over the whole
area on the basis of the observation of only a part of it. Observability is further com-
plicated by the fact that individual organisms often escape detection, even in areas
that are intensively monitored. In combination, incomplete geographic coverage and
incomplete detectability mean that observations collected in the field are associated
with—but not the same as—actual system states. By obscuring the resource status
on which effective management depends, partial observability reduces management
effectiveness, even if environmental variation is minimal and management actions
are precisely controlled.

Partial observability is commonly measured by sampling variation, which occurs
when field data are collected and analyzed. One way to reduce partial observability
is by designing field sampling efforts efficiently, for example with more intensive
sampling, optimal geographic design of the sampling effort, and the use of standard
survey principles such as randomization, replication, and control. However, partial
observability can rarely be eliminated, no matter what the design and sampling
intensity.

There are several ways of dealing with partial observability in decision-making.
One is to estimate resource status with field data, and then treat the estimate as
if it accurately represents resource conditions. Another is to state the uncertainty
about resource status explicitly with probabilities for possible resource states, and
incorporate these probabilities directly into the decision-making process (Williams
2009). The first approach is far more common in natural resource management. Of
course, the most straightforward way to address partial observability is to reduce it
as much as is practicable with well-designed monitoring.

Structural uncertainty. Structural uncertainty is a result of a lack of understanding
(or lack of agreement) about the processes that control resource dynamics. In virtually
all cases there is some degree of uncertainty about the forms and functions—i.e., the
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Fig. 4.5 Conceptual model of
annual cycle of waterfowl
population dynamics. Model
includes survival rates for
spring-summer (Ss) and
fall-winter (Sw), along with
harvest rates for young (hy)
and adults (ha) and age ratio
(A) for
reproduction/recruitment.

structure—of natural processes. Structural uncertainty can limit our ability to manage
resources effectively and efficiently, even if monitoring is exact, management actions
are rigorously controlled, and environmental variation is minimal.

Differing views about how natural processes work and how they respond to
management are examples of structural uncertainty. These views can be framed
as hypotheses about system processes and responses and then embedded in models,
which in turn can be used to make testable predictions. Examples of uncertainty
about resource form and function include hypothesized associations among different
attributes of the resource; or relationships between controls and resource elements;
or connections between environmental conditions and resource states; or parameter-
izations of these relationships. The hypothesized forms and parameterizations can
be incorporated in different models, and structural uncertainty then is expressed in
terms of uncertainty about which model (and its imbedded hypothesis) best represents
resource dynamics.

An example that highlights many of these points is the modeling framework for
adaptive harvest management of waterfowl (Williams and Johnson 1995; Williams
et al. 2002), which uses a simple model to represent associations among fall harvest,
seasonal survivorship, and spring reproduction for waterfowl (Fig. 4.5). Contrasting
hypotheses about the impact of harvest on annual survivorship are easily incorpo-
rated into different versions of the model, by describing different functional relations
between harvest rates and post-harvest survival. In addition, contrasting hypothe-
ses about the importance of density dependence in recruitment are incorporated by
describing recruitment in terms of spring population size. In combination, these
hypotheses define different models, each with its own predictions about harvest
impacts.

Structural uncertainty is often quantified with measures of confidence in the abil-
ity of competing models to predict resource dynamics. A common mathematical
approach to updating these measures is Bayesian updating, which combines confi-
dence values and monitoring data at each point in time to generate new confidence
values for the next point in time (Lee 1989). In this way confidence increases for mod-
els that forecast resource conditions accurately, and confidence declines for models
that do not make accurate forecasts.
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Structural uncertainty, like the other forms of uncertainty, has a tendency to ob-
scure the effects of management and reduce effectiveness. However, it differs from
environmental variation and partial controllability in its point of influence (Fig. 4.4)
and the manner in which it is treated. Structural uncertainty can be reduced by apply-
ing management strategies to affect the measures of model confidence. In contrast,
environmental variation (and in some cases partial controllability) are effectively
uncontrolled.

Optimization in the Face of Uncertainty

Given the prevalence of uncertainty, treating it in a context of optimal decision-
making constitutes an important challenge in natural resource management. The
development of theory and methods to account for uncertainty is a fast growing
area, with decision science being advanced by contributions coming directly from
the natural resources field. In what follows we characterize the problem of optimal
decision-making in the face of uncertainty, and suggest some ways to address each
of the sources of uncertainty mentioned above.

Environmental variation and partial controllability. Both environmental variation
and partial controllability can be incorporated into an optimization problem in fairly
straightforward ways. Environmental variation can be handled by including a random
environmental variable in the transition equation, as discussed above. And partial
controllability can be incorporated by simply allowing the actions implemented for a
given decision to be random. The basic structure of the optimization problem remains
intact with both these adjustments, but the transitions become stochastic. One result
is that the optimization objective must be based on an average of accumulated utilities
over the possible resource trajectories

maximize
At0

E
{∑T

t0
U (a(t), x(t))

}

with the expectation representing an averaging over the trajectories. An economical
expression of the problem describes it as a Markovian decision process, with the
transitions specified in terms of Markovian probabilities P (x(t + 1)|x(t), a(t)).

Partial observability. A well-recognized challenge in natural resources is to find
efficient and effective ways to incorporate partial observability into the decision-
making architecture. Research on partially observable Markov decision processes
has been ongoing for many years in operations research, artificial intelligence, and
other fields, and this work offers a useful way to deal with partial observability
(Kaelbling et al. 1998). Thus, one simply acknowledges that the resource state is not
known with certainty at any given time, and must be characterized with probabilities
assigned to the possible states. Then the state-specific objective function is replaced
by one that is averaged over all possible states, based on a distribution of state
probabilities. Since the averaged objective function depends on these probabilities,
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it is a function of the distribution rather than a single state, as would be the case for
an optimization problem in the absence of partial observability.

A key challenge under partial observability is that the state probability distribution
evolves through time, as the system responds to management and information is col-
lected through monitoring. In this sense the distribution itself is a dynamic attribute,
with changes that must be tracked and incorporated into the objective function to
allow optimization through time. This increases the complexity of the optimization
problem.

Structural uncertainty. Finally, there is structural uncertainty, which presents a dif-
ferent challenge for optimization. Here, different models are required to express
alternative views about how the resource system works and how it responds to
management

x(t + 1) = x(t) + fk(x, a, z)

where the subscript k is used to denote one of several different models. Furthermore,
time-specific measures qk(t)of model confidence are required, one for each model
that expresses the level of confidence in that model in representing resource dynamics.
As the system responds to management through time and resource conditions change,
monitoring information can be used to update the model confidence values.

Since state trajectories over the timeframe depend on which model is used, the
aggregation of utilities will also. To account for variation across models, the objective
for this optimization problem averages the aggregations with the confidence measures

maximize
At0

∑

k
qk(t)E

{∑

t
Uk(a(t), x(t))

}
.

Because the averaged objective function is based on the particular likelihoods qt (k)
at each decision point, it is necessary to account not only for the state of the resource
system, but also the model measures themselves. In this way the optimization prob-
lem becomes larger and more complex, with the objective a function of both the
resource state and the confidence measures.

A key challenge here is that the distribution of model probabilities evolves through
time as the system responds to management. Thus, the objective function effectively
changes through time, and the anticipated change must be included in identifying
optimal decisions. As the most appropriate model to represent resource dynamics
is revealed through time, decision-making becomes more responsive to the system
characterization that best reflects actual system changes. The adjustment of manage-
ment strategy as one learns about resource responses through time is the essence of
adaptive decision-making (Walters 1986; Williams 2011).

Extensions

The framework for optimization can be expanded to include other forms for decision-
making objectives and other types of uncertainty. Here we mention a few examples
that are especially pertinent to natural resources decision-making.
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Minimax and maximin. In the development above, we utilized averaging over a range
of possible responses to management, with objectives that are weighted averages over
distributions of random variables. For example, the objective for a problem with
environmental variation was described in terms of the average or expected value of
aggregated utilities over the range of possible trajectories of system states.

Rather than focusing on average responses, it sometimes is useful to emphasize
the extremes in resource dynamics. As an example, consider a problem involving
environmental variation in which one seeks the smallest value an objective can take
for each decision, with an intent to select the decision with the maximum of those
minima. Such an approach is indifferent to large values of the objective, but very
sensitive to small values. This emphasis is known as “maximin” optimization, and it
is appropriate for problems that are cast in terms of maximizing the minimum gain
among decision alternatives. The idea is to seek decisions that essentially protect
“away from” small values of aggregate utility. An example might be protecting
against species extinction by choosing the conservation option with the maximum
of the smallest population size among the decision alternatives.

On the other hand, one could instead consider the largest value the objective can
take for each decision, and seek the decision that minimizes that maximum. Here
the approach is indifferent to small values of the objective, but is very sensitive to
large values. This emphasis is known as minimax, and it is appropriate for problems
that are cast in terms of minimizing the maximum loss among decision alternatives.
The idea is to seek decisions that protect “away from” large values of aggregate loss.
An example might be ensuring against the invasion of alien species by choosing
the option with the minimum of the largest population size among the decision
alternatives.

A useful approach to finding solutions of minimax and maximin problems involves
computer simulations to explore objective values corresponding to a large number of
potential trajectories for each of the feasible decisions. A sort through the trajectories
for each decision to find upper or lower limits for the objective can identify candidates
to consider for solutions of the problem.

Non-stationary change and deep uncertainties. In most of the above development,
we have assumed that the future, even if not known with certainty, can be anticipated
stochastically. For example, randomness in environmental conditions induces ran-
dom resource changes, but stability in environmental patterns over time preserves a
recognizable probability structure for future resource changes. This stochastic struc-
ture can be used to good effect to compare and contrast decision alternatives in the
process of decision-making. Approaches to system analysis and control have tradi-
tionally rested on the assumption that patterns of fluctuation in system features are
stable over time.

However, it is becoming increasingly clear that for a great many resource systems,
the ecological structures and processes controlling resource dynamics are changing
in new and sometimes unpredictable ways. The scale and scope of these changes are
large, complex and deeply uncertain, in that it is not possible to forecast the resource
changes, even probabilistically.
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Of particular importance is that environmental conditions, and the ecological
processes influenced by them, are exhibiting directional patterns of change. An
obvious example is climate change, in which the environment is seen as evolving
directionally in terms of temperature, precipitation and other variables. Though some
overall trends in some climate metrics are becoming clear, what is not at all clear
is the rapidity and extent of change, or its impacts on natural resources at regional
and local scales. An important challenge for resource management is to include such
non-stationary trends, and the deep uncertainties associated with them, in natural
resource planning and management (Milly et al. 2008; Nichols et al. 2011).

One approach to this problem is to develop environmental scenarios with different
patterns of directional change, and try to design acceptable management strategies
that account for uncertainties among the scenarios. Scenario analysis is gaining
currency in natural resource assessment and management, as we adapt to large-scale
and uncertain climate and land-use changes (Fahey and Randall 1998). Another
approach is to use distribution-free techniques such as info-gap (Ben-Haim 2002)
and robust design methods (Lempert and Collins 2007) to identify strategies that
appear to meet minimal performance requirements across multiple response criteria.

Non-stationarity and the deep uncertainties associated with it present a new and se-
rious challenge to resource decision-making, one for which we need new approaches
that go beyond the standard ways of framing and conducting decision analysis. At a
minimum it is necessary to look for directional trends in environmental conditions
and systematic changes in resource structures and functions, and consider ways to
accommodate them.

Optimization and Thresholds

This chapter began with a description of the generic optimization problem, and
outlined different approaches to problems under different structural assumptions.
The generic problem included specification of objectives, available actions, and
models that make predictions about utilities and changes in system state expected to
result from each possible action. An objective of management may be to maintain
values of key variables above or below certain specified values. We refer to such
values as utility thresholds (Nichols et al., Chap. 2; Runge and Walshe, Chap. 3),
and these are commonly found in objective functions for decision problems with
multiple objectives. Models of managed natural resource systems frequently include
locations in state space within which small changes in environmental drivers or
management actions bring about large changes in state variables. We refer to these
locations as ecological thresholds (Martin et al. 2009). Conditional on objectives
(which may include utility thresholds) and models (which may include ecological
thresholds), optimization produces recommended optimal actions. In many cases,
these recommendations will be state-specific. Decision thresholds (Martin et al.
2009; Nichols et al., Chap. 2) are locations in state space where a small change
in the value of a state variable produces a change in the optimal or recommended
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management action. In summary, a framework of optimal decision-making may well
include ecological, utility, and decision thresholds. The purpose of the optimization
is to produce recommended actions for different locations in state space. These
recommendations then define the decision thresholds to be used by managers.
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Application of Threshold Concepts to Ecological
Management Problems: Occupancy of Golden
Eagles in Denali National Park, Alaska
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Abstract In this chapter, we demonstrate the application of the various classes of
thresholds, detailed in earlier chapters and elsewhere, via an actual but simplified
natural resource management case study. We intend our example to provide the
reader with the ability to recognize and apply the theoretical concepts of utility,
ecological and decision thresholds to management problems through a formalized
decision-analytic process. Our case study concerns the management of human recre-
ational activities at Alaska’s Denali National Park, USA, and the possible impacts
of such activities on nesting Golden Eagles, Aquila chrysaetos. Managers desire
to allow visitors the greatest amount of access to park lands, provided that eagle
nesting-site occupancy is maintained at a level determined to be acceptable by the
managers themselves. As these two management objectives are potentially at odds,
we treat minimum desired occupancy level as a utility threshold which, then, serves
to guide the selection of annual management alternatives in the decision process.
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As human disturbance is not the only factor influencing eagle occupancy, we model
nesting-site dynamics as a function of both disturbance and prey availability. We
incorporate uncertainty in these dynamics by considering several hypotheses, in-
cluding a hypothesis that site occupancy is affected only at a threshold level of prey
abundance (i.e., an ecological threshold effect). By considering competing manage-
ment objectives and accounting for two forms of thresholds in the decision process,
we are able to determine the optimal number of annual nesting-site restrictions that
will produce the greatest long-term benefits for both eagles and humans. Setting a
utility threshold of 75 occupied sites, out of a total of 90 potential nesting sites, the
optimization specified a decision threshold at approximately 80 occupied sites. At
the point that current occupancy falls below 80 sites, the recommended decision is
to begin restricting access to humans; above this level, it is recommended that all
eagle territories be opened to human recreation. We evaluated the sensitivity of the
decision threshold to uncertainty in system dynamics and to management objectives
(i.e., to the utility threshold).

Keywords Golden Eagles · Aquila chrysaetos · Utility threshold · Ecological
threshold · Decision threshold · Occupancy modeling · Structured decision-
making · Adaptive management · Uncertainty · Wildlife disturbance

Introduction

Structured Decision-Making and Thresholds

Thresholds, in the context of management decisions, have recently received attention
in the conservation and ecological literature (Martin et al. 2009c; Samhouri et al.
2010; Andersen et al. 2009). In this volume, Nichols et al. (Chap. 2) have provided
clear guidelines to distinguish among classes of threshold and, at the same time, have
offered a logical conceptual framework for considering the role and appropriate
application of threshold types in structuring a decision process for management
problems. Here, we illustrate this conceptual framework by describing the formal
inclusion of thresholds into a process of structured decision-making (SDM). Our
example focuses on the management of recreational activities near nesting Golden
Eagle (Aquila chrysaetos) territories in Alaska’s Denali National Park (Denali NP).
We used a simplified version of an actual case study (Martin et al. 2011) to illustrate
the relationship among different types of thresholds when applying SDM to natural
resource management. Our objectives for this chapter are to describe the formulation
of the management problem in an SDM framework and explore in detail the process
of testing for and incorporating thresholds in the SDM framework.

SDM is an analytic framework that aids decision-makers in coping with complex-
ity and uncertainty by deconstructing the problem into components, identifying the
sources of uncertainty and impediments to the decision, and then finding the optimal
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solution by integrating the components (Clemen and Reilly 2001). Essential elements
of the SDM process include a clear statement of objectives that are expressed as quan-
titative measures and are used to evaluate the success of management decisions, a
set of discrete actions that form the basis of the decision, one or more models of the
system dynamics that predict the outcome of each potential management action in
terms of the measurable objectives, and an optimization method that identifies the
action that is most likely to achieve the objectives given the expected outcomes and
effects of uncertainty (Clemen 1996). When decisions are made repeatedly over time,
SDM can become an adaptive process if it includes a targeted monitoring program
that is used to reduce uncertainty in system behavior and feed information back to
managers. Monitoring of this form is specifically designed to provide information on
the state of the system to (1) allow state-dependent decisions to be made, (2) evaluate
progress towards objectives following the implementation of a management action,
and (3) improve future management decisions by comparing observations of system
response to predictions generated by competing models, thereby reducing the un-
certainty of future predictions (Lyons et al. 2008; McCarthy and Possingham 2007;
Williams et al. 2002). As natural resource management decisions are often made in
the context of thresholds—in the form of triggers that prompt the need for specific
actions to be taken or a desire to keep a focal state variable above or below a specified
level—clarifying threshold categories and their roles is essential to improving our
decision-making abilities.

Three types of thresholds—ecological, utility, and decision—have been identified
as being relevant to natural resource management (Nichols et al., Chap. 2; Martin
et al. 2009c). Ecological thresholds, arguably the type most commonly encountered
in the literature, are considered as boundaries between alternative ecological regimes
and represent values of system state where substantial changes in the dynamics of
one or more elements of the system are observed (e.g., Fahrig 2001), or where
system state variables or rate parameters reach certain levels (Nichols et al., Chap. 2).
For example, in the context of a predator species, prey abundance level may be
regarded as a relevant state variable, such that attainment of some level (ecological
threshold) brings about dramatic increases or decreases in local rates of colonization
or extinction. Alternatively, ecological thresholds can be viewed as values of state or
other variables at which vital rates attain specified values. For example, the concept
of extinction threshold (Lande 1987) concerns the proportion of suitable habitat
potentially available to a metapopulation. The extinction threshold is that proportion
of patches containing suitable habitat at which the probability of metapopulation
extinction is equal to one.

Utility thresholds, in contrast, are formulated from management objectives and
defined as the point where small changes in system state or performance level result
in significant improvements (or declines) in the return (utility) of decision out-
comes (Martin et al. 2009c). Utility thresholds are derived from value judgments
of stakeholders and most often pertain to desired ecosystem states or functions. Cor-
respondence between ecological and utility thresholds is possible, but establishment
of a utility threshold can be independent of the existence of ecological thresholds.
Samhouri et al. (2010) provide an example of how a utility threshold might coincide
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with an ecological threshold: If the desired system state of a freshwater lake is clear
water, then the utility threshold value may correspond naturally with an ecological
threshold where small changes in nutrient input result in dramatic changes to water
clarity. In the context of Golden Eagles, a utility threshold might be based on the
desire of managers to ensure that some minimum number of eagle territories is occu-
pied each year (Martin et al. 2011). Such an objective could arise from the values of
the protected area manager, from observations on nesting numbers before significant
human disturbance was recorded in the park, or from a population viability analysis
(PVA) suggesting that sustained occupancy above this threshold level will maintain
the risk of local extinction at a desired low level. The latter possibility represents a
utility threshold coinciding with one form of ecological threshold.

Finally, decision thresholds are defined as changes in state variable values that
result in changes in the optimal management action recommended to meet manage-
ment objectives. As such, a decision threshold is the product of the SDM process
itself, conditional on any ecological threshold(s) included in the predictive mod-
els and on the utility threshold(s) included in the objective function. In the case
of managing eagles in Denali NP, a decision threshold would be represented by a
change in management policy (e.g., from few to many restrictions imposed on human
recreational activities) resulting from predicted changes in the number of occupied
nesting territories (a state variable) and the desired occupancy level (utility thresh-
old). Changes in management decisions, therefore, will be a product of the model(s)
of system dynamics and the objective function specified by managers. The model(s)
of eagle occupancy dynamics predicts the impacts of human activities, accounting
for any hypothesized ecological thresholds, while the objective function contains
any specified utility thresholds.

Golden Eagles and the Impacts of Recreational Activities
on Nesting in Denali National Park

Denali NP, Alaska, contains the highest-reported nesting density of Golden Eagles
in North America, with approximately 80 breeding pairs monitored since 1988 (C.
McIntyre, personal communication; Kochert et al. 2002). In a 1,800-km2 study area
within the park, eagles nest exclusively on cliffs and rock outcroppings. Denali
Golden Eagles are migratory, returning to the park each March to lay 1–3 eggs.
Eggs are incubated for approximately 40 days, with hatching occurring in June and
young eaglets fledging by early August. Managers in Denali NP are concerned that
back-country hiking, airplane tours, and other recreational activities may negatively
impact the occupancy of Golden Eagles in potential nesting sites and, therefore,
reduce overall breeding success in the study area. Martin et al. (2009a) suggested
that Golden Eagle occupancy and breeding success may be influenced by human
disturbance and the abundance of snowshoe hares (Lepus americanus), a principal
prey item of nesting eagles. Human recreational activities have been implicated as a
significant factor in wildlife disturbance, including negative effects on raptor nesting
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success and stress or reduced productivity in other nesting species (McGowan and
Simons 2006; Morse et al. 2006; Steidl and Anthony 2000; Swarthout and Steidl
2003). Managers, however, are also mindful of the role of the NP and are man-
dated to provide as many recreational opportunities to human visitors as possible
without threatening or causing undue disturbance to habitat or wildlife. Thus, the
management decision in this problem is to what extent the park should restrict human
recreation activities in eagle nesting territories. The potential for human disturbance
to affect the occupancy of Denali eagles is unknown and represents one source of
uncertainty. In our formulation of the decision structure for this management prob-
lem, we also recognize that the form of the relationship between prey abundance
and eagle occupancy represents additional uncertainty, and therefore consider alter-
native hypotheses to describe and test this relationship. Martin et al. (2009a) used
multistate site occupancy models (unoccupied, occupied, occupied with breeder) to
evaluate the effect of disturbance and hare abundance on parameters that govern the
occupancy and breeding dynamics of eagles. For our current emphasis on the role of
thresholds in decision-making, we simplified the example of Martin et al. (2009a)
by using two-state occupancy models (i.e., unoccupied or occupied) described by
MacKenzie et al. (2006). We extend a similar two-state occupancy analysis devel-
oped by Martin et al. (2009b) to include model covariates of hare abundance and
human disturbance. Finally, we describe a monitoring program that could be imple-
mented to reduce uncertainty in model confidence through an adaptive management
approach (Williams et al. 2002, 2007).

Methods

Defining an Objective Function with Utility Threshold Constraints

Management objectives embody the fundamental desires of the decision-maker and
can, and in most cases should, represent the values of all stakeholders. Objectives,
then, become the basis for assessing the success of alternative management decisions.
The objective function, a mathematical formulation of management objectives and
constraints (Williams et al. 2002), is the formal means to quantify the management
outcome (return) of implementing any particular decision at a given time. If the
decision-maker must consider several objectives simultaneously, it is often useful
to convert one or more objectives into constraints and include them in the objective
function as utility thresholds. Management objectives for Denali NP are to maximize
recreational opportunities for human visitors, while at the same time minimizing the
effects of recreation on site occupancy levels of Golden Eagles in nesting territories.
To reconcile these seemingly competing goals, we convert the second objective to a
constraint and include it as a utility threshold in the objective function. The utility
threshold, like the objective function in general, is a value judgment and is decided
on by the decision-maker. In this case, park personnel provided expert opinion and
concluded that using the average number of occupied nesting territories observed
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over the last 20 years was an appropriate minimum threshold for management objec-
tives. This threshold value is incorporated in decision-making by way of a penalty
parameter that devalues the current return on a particular management action, given
the expected system response (Martin et al. 2011):

α =
{

0, Ei

(
NO

t+1

)
< τ

1, Ei

(
NO

t+1

) ≥ τ
, (5.1)

where α is the penalty factor, Ei(NO
t+1) is the expected number of occupied nesting

sites in year t + 1, following management action i, and τ is the utility threshold
value. As specified by this equation, if occupancy is expected to fall below τ after
the implementation of management action i, the value returned by the objective
function is multiplied by the penalty factor and, thus, reduced to 0, i.e., α = 0. If
expected occupancy is equal to or greater than τ , the return produced by the objective
function retains full value, i.e., α = 1.

The full utility function can then be defined as

Ut

(
NO

t , rt

) = (
N tot − rt

) × α, (5.2)

where the utility value, Ut , is a function of the number of occupied territories (NO)
and the number of territories restricted to human activity (r) at time t. N tot is the total
number of nesting sites available. By minimizing the number of restricted territories,
we maximize the function (N tot

t − rt ), but only so long as expected nesting-site
occupancy remains above τ (i.e., α �= 0).

We then select a sequence of management actions, from the present (t) to some
future time (T ) that maximizes our objective function with respect to expectations
under random environmental variation

max
rt

E

T∑

t

[Ut (N
O
t , rt )]. (5.3)

Specifying Alternative Management Actions

The annual decision for Denali NP managers is how many potential nesting sites to
restrict to park visitors. The nesting area believed to be affected by human recreation
contains 90 potential nesting territories. We have simplified the problem such that the
number of sites restricted in any year (rt ) can take an integer value from 0 to 90. We
do not consider the spatial location or arrangement of territories in determining the
optimal level of restrictions, but recognize that it may not be realistic to restrict access
to one territory independently of adjacent territories (i.e., trails might pass through
multiple territories and, if closed, would naturally affect access to all territories they
cross).
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Developing Dynamic Models of System Behavior

We use a two-state occupancy model, simplified from previous analyses of this
population (Martin et al. 2009a, 2011), to describe eagle dynamics in their nesting
sites. The model links territory transition probabilities (extinction and colonization
rates) with hypotheses about the effects of management actions on these dynamics.
The number of occupied territories in a given year can be modeled as a Markov
process:

NO
t+O = (NU

t × γ ) + [
NO

t × (1 − ε)
]
, (5.4)

where NO is the number of occupied territories, NU is the number of unoccupied
territories, γ is the probability that an unoccupied territory will be occupied the
next year (colonization), and ε is the probability that an occupied territory will be
unoccupied in the next year (local extinction). Simply put, this model states that the
number of occupied sites in time t + 1 depends on the number of unoccupied sites
in year t that are colonized, plus the number of occupied sites that do not go extinct
between year t and t + 1. We modify the basic occupancy model to link the predicted
impacts of our management actions to eagle occupancy dynamics (see Martin et al.
(2011) for the three-state version of this model):

NO
t = NU

t−1

N tot

[
rtγR + (

N tot − rt

)
γNR

]

+ NO
t−1

N tot

[
rt (1 − εR) + (

N tot − rt

)
(1 − εNR)

]
, (5.5)

where N tot is the total number of available territories, rt is the number of territories
which are restricted to recreation, subscripts R and NR correspond to the anticipated
effects of restricting and not restricting territory sites, respectively, on the probabil-
ities of colonization and extinction. As we do not consider the spatial configuration
of territories or location of restrictions, Eq. 5.5 makes the assumption that once the
number of site restrictions is determined, they are applied without regard to the oc-
cupancy status of a territory. This is a simplified but realistic approach because we
assume that decisions on the number of site restrictions will often have to be made
prior to ascertaining the occupancy status of territories in the study area.

Predicting nesting-site occupancy in Eq. 5.5 is contingent on estimating occu-
pancy transition parameters, γ and ε. Martin et al. (2009a) estimated nesting and
reproductive transition probabilities for eagles using 20 years of nest survey data.
They tested for the expected effects on eagle occupancy dynamics of disturbance and
environmental variables such as nesting-site elevation and snowshoe hare (L. amer-
icanus) abundance. Here, we extend this work by considering the possibility that a
specific level of snowshoe hare abundance may constitute an ecological threshold
related to patch extinction or colonization probabilities. As system dynamics are not
known with certainty, we account for this uncertainty by presenting multiple hy-
potheses regarding the functional relationship between hare abundance, disturbance
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to nesting sites, and the parameters that govern eagle occupancy. To simplify the
problem for illustrative purposes, we offer four a priori models to represent possi-
ble relationships between environmental variables (prey abundance), management
alternatives (minimizing disturbance through restricting access), and conservation
objectives (maintain site occupancy and recreational opportunities). In this case, our
initial model (Model 1) hypothesizes a negative relationship between hare abundance
and the probability of local patch extinction and a positive, additive effect of both
hare abundance and reduced disturbance on patch colonization. Model 2 represents
a no-effect model predicting that neither extinction nor colonization probabilities
are influenced by snowshoe hare abundance or restricting access to eagle territories.
Model 3 hypothesizes that hare abundance has no effect on occupancy dynamics,
but human disturbance negatively affects the probability of colonization. Model 4
posits the existence of an ecological threshold, where values of colonization and ex-
tinction are predicted to differ above and below a given hare abundance level. While
the structure of Model 4 could take many forms, we offer one hypothetical example
where transition parameters are as follows:

logit (γ ) = α + β1 × HareTH + β2 × Disturb, and

logit(ε) = α + β1 × HareTH,

where α’s are intercepts and β’s are slope parameters describing the relationship
between covariates and probabilities of colonization (γ ) and extinction (ε). As in
Models 1–3, γ and ε are modeled as linear-logistic functions and converted to linear
functions via the logit link (MacKenzie et al. 2006). In Model 4, the logit of coloniza-
tion is modeled as a linear combination of human disturbance (where Disturb = 0
when access to a site is restricted, and 1 otherwise) and hare abundance relative to
a given threshold, which is modeled as a binomial outcome (HareTH). Extinction
probability is modeled as a function of threshold hare abundance only. HareTH is a
dummy variable that takes the form

HareTH =
{

0, hare index ≤ τh

1, hare index > τh
,

where hare index is a covariate for hare abundance measured annually and relevant
to all sites, and τh is an ecological threshold value for the hare abundance index.
In our example, we arbitrarily set τh = 0.07. We simplify the analysis by modeling
hare index as a random variable following a distribution based on expert opinion
and observed hare fluctuations (mean = 0.12, SD = 0.11), but hare abundance can
be modeled in a more realistic manner (see Martin et al. 2011).

We use the 20-year data set collected on nesting-site occupancy to provide initial
measures of credibility (weights that sum to 1 for all members of the model set) for
the four models. Occupancy modeling is implemented in PRESENCE 2.4 (Hines
2008), and model selection is based on Akaike information criterion (AIC; Burnham
and Anderson 2002). AIC weights are then used as relative measures of confidence
in each candidate model when determining the optimal management decision for
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any level of site occupancy (see next section). A directed monitoring program allows
us to reduce the structural uncertainty represented by competing models and adjust
model weights as empirical evidence supports one or more models over the others
(Williams et al. 2002).

Optimal Decision-Making and Simulations

The aim of this analysis is to select the optimal number of nesting sites to restrict
each year in order to meet management goals defined through our objective func-
tion: maximizing recreational opportunities while achieving a minimum threshold
level of site occupancy. We use the general expression for system dynamics (Eq. 5.5)
to discriminate among all possible management alternatives at each time step and
select the number of nesting sites to restrict each year that is expected to provide
the optimal long-term benefit given the current state of the system. We consider
this a Markov decision process because annual occupancy state is modeled as de-
pendent on the state in the previous year. Uncertainty in system dynamics must be
accounted for in decision-making and is represented here by differences in the pre-
dictions of competing models (Models 1–4). The optimal, state-dependent decision
is then obtained by means of a passive optimization algorithm, which accounts for
the uncertainty (weight associated with each model) via weighted model averaging.
Initial model weights are based on AIC values from the model selection process
and used to average the expected return from each of the four models. In an actual
management situation, monitoring would follow the decision at each time step and
provides the ability to learn about the system by confronting model predictions with
observations. Model weights would then be updated via Bayes’ theorem to reflect the
new confidence in one or more models, resulting in improved predictions and better
management decisions (see Williams et al. 2002). This approach is considered one
of passive adaptive management, as the evolution of model weights is not accounted
for over the time horizon of the optimization (Williams et al. 2002). We calculated
the optimal sequence of state-dependent decisions using stochastic dynamic pro-
gramming, based on the Principle of Optimality (Bellman 1957) and implemented
in ASDP v3.2 (Lubow 2001). Stochastic dynamic programming iterates backwards
from some future time and aggregates long-term benefits to the current return ob-
tained by the decision made in the present time step (Williams et al. 2002). We ran
the dynamic model for a maximum of 350 iterations, until a stable decision policy
was reached and maintained over 15 consecutive iterations.

We simulated annual eagle occupancy levels predicted through implementation of
the optimal decision policies under each of the four models as representing the “true”
behavior of the system. To assess the value of selecting optimal annual restriction
levels, we compared this policy to alternative suboptimal decision scenarios includ-
ing a fixed policy of no management and that of restricting all sites to recreation.
Under the belief that each model, in turn, represents the best hypothesis of system
dynamics, we also simulated the evolution in model weights to explore the reduction
of uncertainty over time.
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Decision Thresholds and Sensitivity

As described earlier, decision thresholds are the products of the SDM process, result-
ing from interactions between the objective function (including utility thresholds),
the predictions of system dynamics models (including identified ecological thresh-
olds), the set of decision alternatives available, and the optimization procedure.
Thus, a decision threshold is a location in state space where the optimal manage-
ment action shifts from one alternative to another. This change occurs as a function
of the predicted effects of management decisions on those state variables and the
desired outcome as expressed through the objective function. Uncertainty in system
dynamics, and therefore, in the response of the system to management, reduces the
returns expected to result from optimal decisions because those decisions are made
with incomplete understanding of the system. In order to assess the importance of
uncertainty to management decisions, we can investigate the sensitivity of the op-
timal decision to the uncertainty inherent in our models. If the competing models
all lead to the same management actions for a point or region of state space, then
the decision is said to be “robust” to uncertainty (Regan et al. ? . In this situation,
there is no advantage to try to reduce structural uncertainty. In addition to struc-
tural uncertainty related to models and to possible ecological thresholds, we also
evaluate the sensitivity of decision thresholds to our selection of utility threshold
values.

Results

Occupancy Dynamics of Golden Eagles in Denali National Park

Using the simplified set of four competing models describing the dynamics of eagle
occupancy, Model 3 (no hare effect; human disturbance influences colonization) best
explained the process underlying 20 years of nesting-site observations in Denali NP
with an AIC weight of 0.74 (Table 5.1). Models 1 and 4, hypothesizing that hare
abundance influences both colonization and extinction probabilities either linearly
or beyond an ecological threshold, both received some support in the model selection
process (w = 0.14 and 0.11, respectively; Table 5.1) and, therefore, should be con-
sidered as plausible models for explaining system dynamics. The no-effect model
(Model 2) received virtually no support. Parameter estimates for model coefficients
were in the expected directions for covariables with disturbed (unmanaged) sites
showing reduced colonization probability and increased hare abundance enhancing
colonization and reducing extinction probabilities (Table 5.2). Using the coefficient
estimates from the best-supported model (Model 3), we slightly modified parameter
values for the remaining models such that equilibrium occupancy (ψ∗ = γ /[γ + ε])
was approximately equal across all models under conditions of an undisturbed site
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Table 5.1 Occupancy model selection for Golden Eagles in Denali National Park, USA, using
Akaike information criterion

Model 	AICc w K

Model 3 ψ(1)ε(.)γ (Disturb)p(t ,.) 0 0.74 13
Model 1 ψ(1)ε(Hare)γ (Disturb + Hare)p(t ,.) 3.32 0.14 15
Model 4 ψ(1)ε(HareTH)γ (HareTH + Disturb)p(t ,.) 3.74 0.11 15
Model 2 ψ(1)ε(.)γ (.)p(t ,.) 15.6 0.01 12

Model parameters included probability that a site was occupied in the first study season [ψ(1)],
the probability of a site becoming unoccupied if occupied in the previous year (extinction, ε), the
probability of an unoccupied site becoming occupied in the following year (colonization, γ ), and
the probability of detecting nesting eagles, conditional on the site being occupied (p). We estimated
initial occupancy as constant; extinction and colonization probabilities were modeled variously
as functions of human recreational activity at the nesting site (Disturb), of prey availability as
related linearly (Hare), of prey availability functioning as an ecological threshold (HareET ), or
as constant (.). Detection probability was modeled as varying among years but constant within a
given year p(t,.). AICc: Akaike’s information criterion corrected for small sample sizes, ΔAICc:
for the ith model is computed as AICci − min (AICc); w: AICc weight; K : number of parameters

Table 5.2 Coefficient estimates for covariate parameters included in occupancy dynamic models

Parameter Coefficient Model 1 Model 2 Model 3 Model 4

γ α0 − 0.880 − 0.85 − 0.740 − 0.770
β1(Hare, HareTH) 1.000 − − 0.150
β2(Disturb) − 1.390 − − 1.380 − 1.378

ε α0 − 2.770 − 2.854 − 2.843 − 2.822
β1(Hare, HareTH) − 1.040 − − − 0.085
β2(Disturb) − − − −

The structure for the four models is provided in Table 5.1. Coefficients for linear predictors of
colonization (γ ) and extinction (ε) probabilities include an intercept (α0), prey abundance (β1), and
human disturbance at a nesting site (β2). Under Model 4 the beta coefficient for HareTH relates to
a dummy variable signaling prey abundance above or below a threshold of 0.07

at average hare abundance. Applying coefficient values from Table 5.2, a graphical
representation of the four competing models is provided in Fig. 5.1.

Optimization

We set the utility threshold to τ = 75 out of 90 potential nesting sites, based on the
objectives (values) of the decision-makers in Denali NP and on historical occupancy
levels. Assuming, sequentially, that each of the four models approximates “truth,” we
determined the optimal decision in a given year for each value of the occupancy state
variable (Fig. 5.2a). Differences in the recommended decision at any point in the
state space, depicted in Fig. 5.2, demonstrates the relevance of structural uncertainty
to the optimal decision. As expected, the optimal decision under the no-effect model
(Model 2) is to restrict none of the sites at any level of occupancy because limiting
human disturbance has no impact on future occupancy. For the remaining models,
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Fig. 5.1 Hypothetical models representing alternative functional relationships between snowshoe
hare abundance, management, and occupancy dynamics for Golden Eagles at potential nesting sites.
Black lines are local colonization probabilities, with dashed lines representing unmanaged sites and
solid lines representing sites at which disturbance is reduced by restricting hiker access to nesting
areas. Red lines are local extinction probabilities. Model 1 is considered the global model, predicting
that both human disturbance and snowshoe hare abundance influence colonization probability and
that hare abundance affects extinction. Model 2 represents a no-effect model in which neither hare
abundance nor disturbance affects site occupancy. Model 3 hypothesizes that disturbance influences
colonization, but that hare abundance has no effect on occupancy dynamics. Model 4 depicts a
hare index value of 0.07 as an ecological threshold, with different colonization and extinction
probabilities above and below this hare index. This model also includes a human disturbance effect

restrictions begin at occupancy levels below 80 territories and quickly increase until
all sites are restricted to human access as soon as site occupancy falls below the
threshold value (Fig. 5.2a). Note that for any level of site occupancy, the optimal
management decision under Model 1 or Model 4 (both of which incorporated hare
abundance as a random variable) is to restrict more sites than under Model 3 (which
included no stochastic component). Management decisions made under models that
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Fig. 5.2 a A decision rule depicting the optimal state-dependent management decision at each
level of the state variable (nesting-site occupancy) for each of the four models under evaluation.
Model 2 predicts no influence of disturbance on occupancy dynamics and, therefore, recommends
no management action taken at any level of occupancy. Decision thresholds are strongly influenced
by the utility threshold in this scenario (τ = 75 occupied sites) and occur over the range of 75–79
occupied territories for Models 1, 3, and 4. b Simulations (average of 10 iterations) under Model 4
of Golden Eagle occupancy levels following optimal (solid line) and suboptimal (dotted and dashed
lines) decisions. Suboptimal decisions included restricting hiking in all 90 eagle territories each
year and, alternatively, opening all nesting territories for human recreation access

incorporate stochastic elements are expected to be more conservative than if based
on deterministic models. The optimization algorithm anticipates the expected loss
in return from periodically falling below the utility threshold and, therefore, recom-
mends greater site restrictions in order to maintain average occupancy levels above
those predicted by a deterministic model.
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Figure 5.2b illustrates simulated levels of occupancy predicted under a single
stochastic model (Model 4) when following the optimal decision policy as compared
to maintaining fixed, suboptimal policies of no management and, alternatively, re-
stricting human access to all eagle nesting territories. Equilibrium occupancy was
approximately 0.66 under a policy of no park management; this is compared to aver-
age occupancy of 0.84 by following the optimal decision policy. The added benefit
to eagles resulting from a policy of restricting all sites to human activities was deter-
mined to be minimal under Model 4, with the probability of occupancy increasing
only 2 %, to 0.86. The costs (i.e., expenditure of resources and denying recreational
benefits to park visitors) of such intensive management obviously outweigh the slight
gains in eagle occupancy. Indeed, using the current objective function (Eq. 5.2) to
quantify the return of implementing each of these management policies, we deter-
mined that both of the suboptimal approaches resulted in significantly lower annual
utility values (Ūt

∼= 0) than the optimal policy under Model 4 (Ūt = 20.7, SD = 8.0).

Model Uncertainty

We evaluated the relevance of structural uncertainty to system dynamics by simulat-
ing the predicted eagle response to optimal decision policies under each of the four
models and comparing the outcomes. Although “truth” was represented by a single
model in each simulation, optimal decisions at each time step were determined by in-
corporating structural uncertainty (represented by the distribution of model weights)
in the optimization. Beginning with an initial occupancy of 75 out of 90 nesting
territories, we simulated the sequence of decisions and predicted consequences over
a 100-year period (Fig. 5.3a, b). The variability observed in both occupancy and
restriction policy predicted by Models 1 and 4 is attributable to fluctuating prey pop-
ulations and illustrates the influence of environmental variation on decision processes
(Fig. 5.3a, b). The uncertainty of environmental variation (random variation in hare
abundance under Models 1 and 4) produces higher average occupancies than deter-
ministic Model 3, which is held at the utility threshold value. Put another way, in order
to maintain eagle occupancy above the utility threshold in the face of environmental
variation, the optimal policy in a stochastic system is to manage for somewhat higher
occupancy levels in order to avoid declines below the utility threshold in years of
low hare abundance. Occupancy under deterministic Model 2 is unaffected by hare
abundance or management actions and remains at an equilibrium of 0.85 (76.1 sites
occupied; Fig. 5.3a).

Management policies (temporal variation in number of sites restricted) were a
function of initial model weights, the time required to “learn” which model was most
appropriate for the system, and the predicted occupancy state. As annual decisions
were a function of predicted occupancy state, the average decision policies under the
two stochastic models were slightly less conservative than Model 3 due to the higher
levels of occupancy maintained under stochastic dynamics (Fig. 5.3b). Occupancy
under Model 1 was more variable and observed to fall below the threshold more
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Fig. 5.3 A 100-year simulation (single realization) of a predicted system response (occupancy)
and b the optimal decision policies under each of four competing models. All simulations were
performed with model weight based on theAIC model selection (Table 5.1), allowing model weights
to evolve over time, but where each model, in turn, represented “truth.” Model 3 is held at the utility
threshold because it predicts occupancy dynamics as deterministic and settles on a stable decision
policy almost immediately. Stochastic Models 1 and 4 must maintain occupancy levels above the
threshold value to reduce the chances that occupancy falls below the desired level

frequently than under Model 4. The decision policy, therefore, under Model 1 showed
greater variability and was more conservative (mean annual restrictions = 68.4 sites)
than under Model 4 (mean annual restrictions = 63.8 sites). The initial weight of
Model 2 was very low (initial w = 0.01), and thus updating of model weights required
several years before the influence of the other models on the annual decision finally
abated and the appropriate action (no restriction) under this model was selected
(Fig. 5.3b). We illustrate the evolution of model weights more directly in Fig. 5.4,
in which system dynamics were simulated under Model 4. We note that the weight
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Fig. 5.4 Simulation (single realization using a passive adaptive optimization) of the change in
model weights over time for the four models included in the model set, under the assumption that
Model 4 (threshold model) represented “truth.”

for the initial highest-ranking model (Model 3) rapidly drops and that weights for
Models 1 and 3 share similar evolutions due to their comparable structure (Table 5.1).

Structural Uncertainty and Sensitivity of Decision Thresholds

While the sensitivity of decision thresholds to structural uncertainty under Models
1, 3, and 4 is relatively low (Fig. 5.2a), the magnitude of differences in decisions
made under each of these models in the simulation was significant, suggesting that
reducing uncertainty in the structural dynamics of eagle occupancy would be valuable
for managing the species (Fig. 5.3b). The impact of uncertainty on decision-making is
most apparent when considering the potential for differences in optimal management
response under the “no-effect” model (i.e., if Model 2 is determined to be closest to
“truth,” no sites are restricted) relative to the level of restriction under the other models
in our model set (Figs. 5.2a and 5.3b).Although managers will account for uncertainty
at any point in time by weighting the consequences predicted under each model by
its relative degree of support and selecting that management action determined to be
optimal (results not shown), the range of possible decision thresholds under the four
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Fig. 5.5 Simulations (single realization) demonstrating the sensitivity of the decision threshold to
utility thresholds (τ = 75 and 73). Simulations included all models (weight distribution based on
AIC model selection and allowed to evolve over time), but data depict the differences in occupancy
and decision policies under Model 4 as representing “truth.” A reduction of the utility threshold from
75 to 73 resulted in a slight decline in average occupancy (dark lines) but a much larger reduction
in average management actions (gray lines)

models in our set demonstrates the degree to which management could be improved
by resolving this uncertainty.

In addition to evaluating the sensitivity of decision thresholds to model uncer-
tainty, we can also examine the impact on decisions resulting in changes to the
utility threshold. Evaluating changes in optimal management decisions when small
changes are made to utility threshold values may be useful if management objectives
are expected to change or evolve over time. For example, by reducing the utility
threshold of desired occupancy level from 75 to 73 territories, we observe only a
slight decline in average occupancy under Model 4, whereas the decision threshold
was highly sensitive to this change. With this small change in utility threshold, we
observed a substantial reduction in the average optimal number of sites to restrict,
dropping from 63.9 (SD = 7.3) to 47.4 (SD = 7.1) territories per year (Fig. 5.5).
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Discussion

The example we presented here originated from an actual case study, but was simpli-
fied to illustrate the three types of thresholds—ecological, utility, and decision—and
to demonstrate how such thresholds might be included under an SDM framework
in the management of natural resources. Following the operational definitions out-
lined by Martin et al. (2009c) and Nichols et al. (Chap. 2), utility thresholds were
derived from the values of managers or stakeholders and can be incorporated ex-
plicitly into the management objectives via an objective function. Utility thresholds
specify which values of state variables are viewed as desirable and undesirable and
can result in changes to management when the system state approaches undesirable
levels. Ecological thresholds, as the name suggests, represent biological phenomena
and are the values of system state variables or environmental drivers where small
changes result in either substantial changes to system dynamics or cause state vari-
ables or other parameters to reach specified levels. As such, ecological thresholds
are important when considering the predictions of system response to management
actions (or other changes in state variables) and should be included in system models.
Decision thresholds are a product of the decision-making process and can formally
be derived from the objective function, which may include utility thresholds, and
from the models of system dynamics, which may include ecological thresholds.

In our example concerning human disturbance and nesting Golden Eagles in
Denali NP, Alaska, we developed an objective function that accommodated two
competing objectives: permitting recreational opportunities for human visitors to the
Park, while concurrently maintaining what is believed to be an appropriate level of
eagle nesting-site occupancy. We treated one objective, eagle occupancy, as a utility
threshold which acted as a constraint on the remaining objective of recreational
opportunities. Specifically, the objective function sought to maximize the number of
potential eagle nesting sites at which hiking was permitted, subject to the constraint
that eagle occupancy was maintained above the level specified by the utility threshold.

The concept of an ecological threshold is illustrated in our example by a single
hypothesis describing the relationship between nesting-site occupancy dynamics and
the abundance of a specific eagle prey item, snowshoe hares. This hypothesis, with
its corresponding threshold, is incorporated into our set of potential models and,
thus, represents uncertainty in system dynamics that can be confronted with data and
reduced over time via an adaptive management strategy (Williams et al. 2002). By in-
corporating ecological threshold hypotheses into competing models that are relevant
to the predicted effects of management actions on system dynamics, we focus our
attention on those biological hypotheses that are most applicable to our stated man-
agement objectives. We used a model selection process to evaluate whether human
disturbance and hare abundance are likely to influence the colonization and extinc-
tion probabilities of nesting-site occupancy. After the no-effect model (Model 2),
which received virtually no support, the threshold model (Model 4) received the
least amount of support (w = 0.11; Table 5.1). In adaptive management, however,
optimal decisions are not based solely on the top-ranking model, but instead consider
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the predictions of all plausible descriptions of system dynamics, weighted by our rel-
ative confidence in each model (i.e., multimodel decision-making). In our example,
weights were derived from a prior analysis, but they can also be based on “expert
opinion,” by consensus of stakeholder groups or other means. We then make the best
decision recognizing that uncertainty exists. As we select management actions and
monitor the response of the system, we learn about system dynamics and update
our relative confidence in each model. Such a process leads to the accumulation of
knowledge based on science and allows us to concurrently improve decision-making.

The decision thresholds in the Golden Eagle example were found to be highly
sensitive to the value of the utility threshold. Lowering the utility threshold by
only two sites resulted in a significant reduction in the average number of manage-
ment restrictions imposed each year. Conducting such a sensitivity analysis provides
decision-makers a tool with which to analyze the consequences of value judgments
and evaluate the costs and benefits of their decision policies. Except in the case of the
no-effect model (Model 2), the decision thresholds were moderately insensitive to
the uncertainty associated with the remaining system dynamics models although the
potential benefit from resolving this uncertainty may be significant. By directing our
attention explicitly to those areas of uncertainty that have the greatest impacts on the
management decision, our analysis allows us to reduce the complexity of the prob-
lem (and unnecessary impediments to decision-making) by choosing to ignore the
many additional uncertainties that have little or no influence on decision thresholds.
Although the decision thresholds were relatively robust to uncertainty in the three
effect-models (Models 1, 3, and 4), the simulated optimal decision policies antici-
pated by these models were affected by treating the hare index as a stochastic random
variable. Martin et al. (2011) discuss in greater detail the various approaches to han-
dling environmental covariables, such as prey abundance, and possible consequences
to the decision optimization.

Misconceptions about, or failure to distinguish among, utility, ecological, and
decision thresholds has likely obstructed efforts to understand the roles and impact
of thresholds on decision-making in conservation. The SDM framework, as we have
outlined here, appears to serve as a natural and appropriate mechanism for clarifying
and applying specific threshold concepts in the context of natural resource manage-
ment. We hope that our example encourages managers to think carefully about their
objectives and to be explicit when considering the incorporation of thresholds into
their decision-making process.
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Chapter 6
Monitoring for Threshold-Dependent Decisions

David R. Smith, Craig D. Snyder, Nathaniel P. Hitt and Paul H. Geissler

Abstract Management decisions are threshold-dependent if actions or determina-
tions change when monitoring data indicate that a resource crossed a specified value
(e.g., reference vs impaired conditions). In this chapter, we review the literature
on monitoring for threshold-dependent decisions and illustrate how uncertainty and
prior knowledge about resource condition may affect such decision thresholds. A crit-
ical consideration is whether monitoring is linked to specific management actions
and models are available to predict the consequences of those actions on the resource
condition. This consideration leads to a split between two different management and
monitoring approaches; adaptive management with targeted monitoring or sequen-
tial evaluation of resource condition with surveillance monitoring. We compare and
contrast these two types of monitoring with regard to threshold concepts, objectives,
use of models, and incorporation of uncertainty. Both types of monitoring are being
applied to natural resource management, and we cannot conceive of a time when all
monitoring will be of only one type. The best strategy, in our view, is to be familiar
with when and how to apply both.

Keywords Targeted monitoring · Surveillance monitoring · Ecological change ·
Utility value · Decision threshold

Introduction

As stated simply by Gerber et al. (2005), “monitoring is the systematic acquisi-
tion of information over time,” and the role of monitoring is to “gain information
needed for management decisions.” It is common that management decisions depend
on thresholds when actions or determinations change if the measurement of the re-
source crosses a specified value. Such decision thresholds define boundaries between
states of resource condition, e.g., reference and impaired. So, we view threshold-
dependent decisions to be synonymous with state-dependent decisions (Lyons et al.
2008; Martin et al. 2009).
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Several recent papers have presented important overviews of monitoring in natural
resource management, which are particularly relevant to monitoring for threshold-
dependent decisions within natural areas (Nichols and Williams 2006; Bennetts et al.
2007; Lyons et al. 2008; Fancy et al. 2009; Lindenmayer and Likens 2009). Many of
the concepts and terminology are held in common by these presentations, but there
are differences. Commonalities include the importance of clear objectives and the
use of conceptual models to guide monitoring program design. However, important
differences involve whether and how information gained from monitoring links to
specific a priori management actions.

The critical difference is whether there are specific management actions coupled
with models to predict the consequences of the actions on the resource condition. This
difference defines two management/monitoring approaches; either adaptive manage-
ment with targeted monitoring or sequential evaluation of resource condition with
surveillance monitoring (Fig. 6.1). In adaptive management, specific management
actions have been identified, models have been developed to predict the consequences
of those actions, and monitoring is targeted to acquire information necessary to make
and test those predictions (Nichols and Williams 2006; Lyons et al. 2008). In sequen-
tial evaluation of resource condition, management actions are unspecified or listed
as potential (Bennetts et al. 2007), and surveillance monitoring periodically assesses
metrics that are indicative of the desired resource condition (Fancy et al. 2009).

Both types of management and monitoring are being applied to natural resource
management (Fancy et al. 2009; Lyons et al. 2008), and we cannot conceive of a
time when all monitoring will be of only one type. Targeted monitoring is tied to
adaptive management and the frequency of its application is increasing (Williams
et al. 2007; Lyons et al. 2008; Martin et al. 2009). However, surveillance monitoring
is quite common (Lindenmayer and Likens 2009), and a majority of applications
within National Parks including the national I&M networks employ surveillance
monitoring (Fancy et al. 2009). The best strategy, in our view, is to be familiar with
both types of monitoring and to understand when and how to apply both. Towards
that end, we review the recent papers to cross reference terminology and identify
distinct requirements of both monitoring types.

Comparing and Contrasting Monitoring Types

Both targeted and surveillance monitoring begins with clearly stated objectives and
conceptual models to describe the resources to be conserved and the important factors
affecting those resources, such as environmental stressors. In addition, adaptive
management requires an a priori list of management actions that can directly affect
resource condition and analyses (models) to predict those effects (Martin et al. 2009).
For example, regulating creel limits in a trout fishery may directly affect population
abundance, and adaptive regulations can be based on optimizing sustainable harvest
(Bain 1987; Bytnerowicz et al. 2002). In this example, monitoring would be targeted
at the state variable, which is population abundance. Surveillance monitoring does not
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require a priori management actions and predictive models. For example, detection
of air quality changes is not linked directly to management actions (Bytnerowicz
et al. 2002).

A basic timeline for monitoring calls for periodic evaluation of the resource (e.g.,
estimate abundance) and comparison to decision thresholds (Fig. 6.1). If the re-
source condition has crossed a decision threshold, then management actions are
implemented depending on management and monitoring type. Targeted monitoring
is integrated into an adaptive management framework, so that the action that is pre-
dicted to be best at meeting the management objectives is implemented and that
action is expected to be optimal for maintaining desired future resource condition
(Fig. 6.1a). In contrast, when conducting surveillance monitoring, periodic evalu-
ation does not necessarily lead to implementation of any specific actions. Rather
crossing statistical decision thresholds in surveillance monitoring could trigger a
process to determine the best action, but is not linked to particular management
actions. Bennetts et al. (2007) refer to these events (i.e., monitoring observation
crossing a statistical threshold) as assessment points and argues for flexibility in im-
plementation of management actions. In surveillance monitoring, there might be a
list of potential actions, but there is not an a priori analysis to determine what the
best action is to be taken given the circumstances. Early warning is emphasized in
surveillance monitoring because managers need time to figure out what to do, which
provides the motivation for multiple assessment points, as recommended by Bennetts
et al. (2007). In contrast, adaptive management automatically incorporates an “early
warning” feature by setting the decision threshold based on system response to man-
agement actions, which tends to increase the likelihood that the resource remains in
the desired condition (Martin et al. 2009).

Unifying Threshold Concepts

Martin et al. (2009) identified three threshold concepts in resource management: eco-
logical change, utility value, and decision threshold. These concepts are shared by the
two management and monitoring types, but are incorporated into management differ-
ently (Table 6.1). Ecological change could include an ecological threshold, which is
an abrupt change in resource over a relatively small change in stress load (Andersen
et al. 2009; Swift and Hannon 2010). It is not required by either management type
that an ecological threshold exists; however, ecological change in stressors is often
assumed to underlie change in resource condition. In surveillance monitoring, eco-
logical change is modeled conceptually. In targeted monitoring, ecological change is
modeled quantitatively to predict response to specific adaptive management actions.

Utility values arise by quantifying management objectives (Keeney 1992). High
utility value is placed on the desired resource condition, and utility value decreases
when the resource condition is altered from the desired state. If resource condition is
categorical (i.e., reference vs impaired), then utility value will change abruptly as the
condition changes resulting in a utility threshold (cf. Martin et al. 2009). However,
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Table 6.1 Unifying threshold concepts shared by approaches to manage and monitor natural
resources

Threshold
concept

Surveillance monitoring for sequen-
tial evaluation of resource condition

Targeted monitoring for adaptive resource
management

Ecological
change

Ecological change modeled
conceptually to identify vital signs
(Bennetts et al. 2007; Fancy et al.
2009)

Ecological change modeled quantitatively
to predict consequence of management
action (Martin et al. 2009)

Utility value Value derived by quantifying the
objectives, which depend on the
risk of errors in classifying
resource condition (Field et al.
2004)

Value derived by quantifying the
objectives, which are linked to
management action through predictive
model(s) (Nichols and Williams 2006;
Martin et al. 2009)

Decision or
management
threshold

Boundary used to classify resource
condition: analogous to
assessment points (Bennetts et al.
2007) or statistical thresholds
(Field et al. 2004)

Boundary defining threshold-dependent
management action. Determined by
predicting consequences of
management action and optimizing the
expected utility value (Nichols and
Williams 2006; Martin et al. 2009)

a utility threshold is not required. Utility value can change linearly or nonlinearly
with measurable attributes depending on risk attitude (Keeney 1992). In sequential
evaluation with surveillance monitoring, utility value can be based on the risk of
errors in classifying resource condition (Field et al. 2004). In practice, utility value
should be elicited from decision makers so as to accurately reflect their values and
risk attitudes.

A decision or management threshold is common to both management and mon-
itoring types, but is derived using different techniques (Table 6.1). In sequential
evaluation with surveillance monitoring, the decision threshold is derived from
Type I and II error rates for classifying resource condition (Field et al. 2004). This
is consistent with our interpretation of the assessment point concept as outlined
by Bennetts et al. (2007). In their discussion of how assessment points are deter-
mined, they consider “the level of uncertainty regarding the resource condition, and
how conservative . . . to be in detecting a point of concern” (Bennetts et al. 2007).
Decision thresholds or assessment points in sequential evaluation depend on uncer-
tainty in measures of resource condition and the utility that managers put on risk of
committing classification errors. Field et al. (2007) analyzed decision thresholds by
minimizing cost of Type I and II errors. Also, Snyder et al. (Chap. 9) provide an ex-
ample of determining decision thresholds by optimizing expected utility associated
with Type I and II errors.

Compliance monitoring is a special case of surveillance monitoring where the de-
cision threshold is set through regulatory or policy processes. However, these criteria
can be consistent with a statistical threshold approach. For example, the Environmen-
tal Protection Agency (EPA) recommends use of a Data Quality Objectives Process
to determine criteria for decision making that relies on specifying probability limits
for false rejection and false acceptance decision errors, i.e., Type I and II error rates
(EPA 2006).
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In targeted monitoring for adaptive management, determination of decision
thresholds is integrated with other components of a structured decision process
(Lyons et al. 2008; Martin et al. 2009). First, objectives are identified, which re-
flect the value (i.e., utility) that the decision makers place on resource conditions.
Second, management actions that could affect the resource condition are specified.
Third, predictive models are developed from current understanding of ecological
change, and uncertainty is incorporated into the models. Only at this point, with
other components in place, can decision thresholds be determined by finding best
management actions for a given resource condition. “Best” is often defined by maxi-
mizing the utility value, so that a management action that is predicted to result in the
highest utility value compared to all other actions would be in that sense, the best.
The role of monitoring is to provide information to evaluate the resource condition
for comparison to the decision threshold and to the model predictions to learn about
causes of ecological change (Fig. 6.1). Adaptive management incorporates all of
the threshold concepts (Table 6.1), which was the main point made by Martin et al.
(2009).

Objectives

Both management and monitoring types can share common objectives. Proponents
of both targeted monitoring (Nichols and Williams 2006) and surveillance moni-
toring (Fancy et al. 2009) state that supporting and improving decision making is
a primary objective. Nichols and Williams (2006) state that targeted monitoring is
“integrated into conservation practice with design and implementation based on a
priori hypotheses and associated models of system responses to management.” How-
ever, a direct linkage to management actions is missing in surveillance monitoring,
and possible management responses are described in general terms (Bennetts et al.
2007; Fancy et al. 2009). Although learning to improve management effectiveness
is a commonly stated objective, the absence of a direct link to management actions
causes surveillance monitoring to be inefficient at learning compared to targeted
monitoring (Nichols and Williams 2006).

Use of Models

If improving decision making is of primary importance, then models must be integral
to the decision process (Starfield 1997; Nichols and Williams 2006; Fancy et al.
2009). Models identify what needs to be monitored, and data gathered through
monitoring can be compared to model predictions to improve decision making and
facilitate learning. Model development provides an opportunity for collaboration
between managers and researchers (Lindenmayer and Likens 2009).
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In the development of a surveillance monitoring program, Fancy et al. (2009)
described how conceptual models were used to identify the candidate vital signs for
monitoring. In that application, conceptual models were designed to summarize the
ecosystem function and structure with emphasis on the effects of stressors on resource
condition. Bennetts et al. (2007) illustrate how the frequency of assessment points
can depend on a model of ecological change through time. In that illustration, the
frequency of assessment points would increase as the measure of resource condition
approached the predicted ecological threshold. The framework presented by Bennetts
et al. (2007) implicitly requires a model to predict the probability of the ecological
threshold, so that as the predicted probability increases, so does the frequency of
assessment points.

In the development of a targeted monitoring program, modeling and monitoring
interact as components of a structured decision process (Lyons et al. 2008). The
objectives of the decision problem determine both what is predicted by the model
and what is monitored. For example, Lyons et al. (2008) present an example of wet-
land management. The objectives included maximizing waterbirds; thus, waterbird
abundance was both predicted and monitored. The decision structure used in adap-
tive management sets up an efficient process for learning. Uncertainty in the form of
multiple hypotheses regarding ecological change can be represented by multiple pre-
dictive models (Nichols and Williams 2006). Observations from monitoring can be
compared to predictions from multiple models. The relative closeness or likelihood
of model-based predictions to the observations from targeted monitoring provides
evidence to differentiate between the underlying hypotheses. Although proponents of
both surveillance and targeted monitoring discuss the role of models and monitoring
in learning about the dynamics of ecological systems, it is only adaptive management
with targeted monitoring that offers a specific process for learning.

Incorporating Uncertainty

Information from monitoring is subject to uncertainty from sampling errors resulting
from the sampling process, model uncertainty resulting from competing hypotheses
describing the response to ecological change, and natural variation resulting from
environmental and demographic stochasticity (Regan et al. 2002). These sources
of uncertainty influence both monitoring types. However, the manner and degree
to which uncertainty is incorporated into the decision process varies between the
monitoring types.

Much has been written about statistical sampling designs to reduce sampling error
in monitoring programs (Jackson and Resh 1988; Overton and Stehman 1996; Vos
et al. 2000; Yoccoz et al. 2001; Pollock et al. 2002; Stevens Jr. and Olsen 2004). The
importance of probabilistic sampling to account for spatial and temporal variation,
methods to estimate detectability, and hierarchical structure (cluster sampling, lon-
gitudinal sampling, and multiple stage sampling) in logistically feasible sampling
designs have all been emphasized. Incorporating panel structures of sampling units
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to reduce spatial variation when estimating temporal trends have been recommended
(Stevens Jr. and Olsen 1999). Spatial balance has recently emerged as a critical fea-
ture of effective sampling designs (Stevens Jr. and Olsen 2004). These issues apply
regardless of monitoring type.

Sampling error and natural variation are variance components of the distribution of
resource condition (Gould and Nichols 1998). Precision along with magnitude of eco-
logical change determines sensitivity of surveillance monitoring to detect ecological
change given a specific decision threshold. The traditional approach to optimizing
design for surveillance monitoring has focused on sensitivity or statistical power
(Jackson and Resh 1988; Taylor and Gerrodette 1993). In that approach, the decision
threshold is derived from the reference distribution after first specifying a type I error
rate (α). Then, the effect on sensitivity of other design aspects, such as sample size,
is examined over an ecological change model. The design that maximizes sensitivity
within allowable costs is found through statistical power analysis and then imple-
mented. Statistical power analysis is a special case of maximizing utility value when
all value is placed on correct classification of the impaired resource conditions and
utility associated with the reference condition is given no value. In a power analysis,
the utility associated with correct or incorrect classification of reference condition
is implicit to the specification of type I error rate and thus the decision threshold
is wholly a function of type I error rate. An alternative approach is to include the
decision threshold as a design factor and optimize utility (or minimize loss) over the
full range of resource conditions (Field et al. 2004).

In surveillance monitoring, a decision threshold (Tα) is the critical value for a
resource measure (e.g., abundance, diversity) under the reference condition. In other
words, the probability isα that a resource measure from the reference condition would
fall below the decision threshold (Tα) in a sample of size n, i.e., α = F (Tα |�0, n ),
where �0 denotes the parameters for the distribution of the resource measure under
reference condition. In general, the probability that a resource measure falls below
the decision threshold (Tα) depends on the resource condition and sample size, i.e.,
Pr (y = 1) = F (Tα

∣
∣�ij , n ), where the variable y takes values of 0 or 1 to indicate the

resource measure is above or below the threshold, �ij denotes distribution parameters
for the ith resource condition at time j and F( · ) is the cumulative distribution function.
The distribution parameters, �ij, are a function of ecological change. The utility
value, U (y, �ij ), depends on the observation (y) and on the resource condition (�ij).
An optimal design would be determined by the type I error rate and sampling design
that maximizes the expected utility,

E[U ] =
∑

i

∑

j

[U (y = 0, �ij) Pr (y = 0) + U (y = 1, �ij) Pr (y = 1)]. (6.1)

We present an example of optimizing utility value in a surveillance monitoring design
based on freshwater bioassessment (Snyder et al. this volume). We used simulation to
predict the probability that a metric of macroinvertebrate diversity would fall above
or below a decision threshold over a 20-year period under three models of ecological
change. Sample sizes included 100, 300, and 1,500 taxa identified per year. The
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Table 6.2 Scenarios of future change to compute expected utility. Scenarios represent probabilities
distributed among three change models: no change, gradual change, and threshold change

Scenario No change Gradual change Threshold change

1: Likely to remain in reference 0.70 0.20 0.10
2: 1-to-1 odds of impairment 0.50 0.25 0.25
3: 2-to-1 odds of impairment 0.33 0.33 0.33
4: 3-to-1 odds of impairment 0.25 0.50 0.25

models of ecological change included (1) a no change model that remained in refer-
ence condition, (2) a gradual change model (linear), and (3) an abrupt change model
(nonlinear). We analyzed two cases for assigning utility to resource classification.
The first case assigned equal utility for classifying reference and impaired conditions;
maximum value (1) was assigned to correct classification, and minimum value (0)
was assigned to incorrect classification. The second case assigned a reduced value
to correctly classifying reference condition relative to impaired condition; utility
for correctly classifying reference was half (0.5) the utility for correctly classifying
impaired condition. Otherwise, utilities for the other outcomes were the same for
the first and second cases. We averaged expected utility (Eq. 6.1) across time and
change models to calculate expected utility for a range of sample sizes and type I er-
ror rates. The average across change models was weighted to incorporate uncertainty
among future change models (Table 6.2). The scenarios were selected to illustrate
the concept of incorporating uncertainty in expected utility and do not represent any
empirically based expected future change.

In this example, type I error rate ≤ 0.10 was only justified when the probability
remaining in reference was high (Fig. 6.2a, e). Otherwise expected utility was max-
imized at type I error rates in excess of 0.10 and often ≥ 0.20. The type I error rate
where expected utility was maximized increased as the probability of impairment
increased among the scenarios of future change (cf. top to bottom panels in Fig. 6.2).
The effect of sample size also increased as the probability of impairment increased.
Expected utility increased with sample size (number of taxa identified per year), and
expected utility was maximized at a higher type I error rate for lower sample sizes
(Fig. 6.2). In general, low sample size should be compensated for by a high type I
error rate.

In adaptive management with targeted monitoring, natural variation can be in-
corporated into the models used to predict consequences of management actions.
Decision thresholds are based on these predictive models. Martin et al. (2009) show
a case where inclusion of natural variation in predictive models results in more con-
servative thresholds than would be the case if uncertainty was ignored. Uncertainty
in ecological change is incorporated as competing models for predicting response to
management actions. These competing models are analogous to multiple hypotheses
and provide for efficient learning about management effectiveness and underlying
ecological relationships (Nichols and Williams 2006). Learning about which model
or hypothesis is better at prediction and therefore deserving greater support or belief
is accomplished by applying Bayes’ theorem to update model weights (Dorazio and
Johnson 2003; Martin et al. 2009).
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Fig. 6.2 Example of expected utility for two factors in the design of a surveillance monitoring
program. The statistical decision threshold to classify the resource as reference or impaired was
determined by type I error rate. Probabilities of falling above or below the decision threshold were
based on freshwater bioassessment (Snyder et al. this volume). Two cases of utility are shown:
(a–d) maximum utility (1) for correct classification as reference or impaired and (e–h) utility for
correct classification of reference was half (0.5) the utility for correct classification of impaired
condition. In both cases, utility was minimized (0) for incorrect classification of either reference
or impairment. Expected utilities were averaged across time and scenarios of future change, which
distributed probability across three possible change models (cf. Table 6.2). Plots a and e correspond
to scenario 1, b and f to scenario 2, c and g to scenario 3, and d and h to scenario 4. Lines within
plots are by sample size (taxa identified); bottom line is n = 100, middle line is n = 300, and top
line is n = 1,500
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Because surveillance monitoring lacks a direct connection to management ac-
tions (Fig. 6.1), a typical sequential evaluation of resource condition will result in a
hypothesis test to determine if the resource measure is above or below a threshold
(Jackson and Resh 1988). From one year to the next, in a hypothesis-testing ap-
proach, the resource measure could switch from above to below the threshold and
back again even when the resource condition is degrading. An alternative approach
applies Bayes’ theorem to update prior probabilities of resource condition, which are
specified at the beginning of the surveillance monitoring. This updating approach
would accumulate evidence for or against change.

Let yt denote the evaluation of resource condition in time t, such that yt = 1
when the resource measure falls below the decision threshold, which occurs with
probability Pr (yt = 1) = F (Tα |�t , n ) and depends on type I error rate α and sample
size n. The likelihood of observing yt must be assumed or estimated, Pr (yt |�t , α, n ).
Then the updated probability of resource condition is

Pr (�t+1 |yt , α, n ) = Pr (yt |�t , α, n ) Pr (�t )
∑

i

Pr (yt |�i , α, n ) Pr (�i)
. (6.2)

An example of updating probabilities based on the freshwater bioassessment (Snyder
et al. this volume) is presented in Fig. 6.3. There were three resource conditions: ref-
erence, early warning, and impaired. The decision threshold was based on the type I
error rate of 0.2. The top panel shows evaluations of resource condition over 20 years
resulting from a comparison of an index of macroinvertebrate diversity to the statis-
tical decision threshold. At each year, the evaluation results in a binomial random
variable indicating reference or nonreference condition. The middle panel shows up-
dated probabilities for the three resource conditions (reference, early warning, and
impaired). The initial prior probabilities were 0.9, 0.07, and 0.03, respectively. Even
though year-specific evaluations in years 11, 13, and 14 indicated reference condition
(i.e., the measure was above the threshold in each year), the updated probability of
reference condition remained low because previous observations had indicated non-
reference conditions. Thus, in the updating approach, the past observations inform
the current evaluation. The bottom panel shows the expected probabilities over 1,000
replications of a simulated ecological change. The ecological change, which was a
function of increasing landscape alterations, is also shown in the bottom panel.

Summary and Conclusions

Threshold-dependent decisions are common in natural resource management and
may be significantly influenced by monitoring design considerations. In this chapter,
we reviewed two fundamental approaches to monitoring, targeted and surveillance
monitoring, and evaluated their conceptual and statistical distinctions. We do not
intend to be neutral regarding the relative value of these two management and mon-
itoring types. Adaptive management with targeted monitoring has greater potential
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Fig. 6.3 Example of updating probabilities of resource condition. Resource conditions are based
on level of stressor, in this case a Landscape Development Index (LDI). Conditions are reference
(LDI < 50), early warning (50 ≤ LDI < 400), or impaired (LDI ≥ 400). Top panel shows sequential
evaluation of resource condition over 20 years. Each year a bioassessment metric is compared to a
decision threshold; above the threshold indicates reference and below indicates impaired. Middle
panel shows sequential updated probability of resource condition based on observations from the
top panel. The initial probabilities were reference (0.90), early warning (0.07), and impaired (0.03).
Bottom panel shows expected probability of resource condition if observations were repeated a large
number of times each year. The underlying ecological change model is also shown in the bottom
panel

value to natural resource management than sequential evaluation with surveillance
monitoring because management actions are linked directly to resource condition
and to information from monitoring. As a result, adaptive management is better
at informing management than the alternative. However, surveillance monitoring
is commonly applied and there are instances when management actions cannot be
specified. Moreover, surveillance monitoring may be appropriate when management
actions are unlikely to affect the resource state under investigation without a substan-
tial time lag (e.g., climate change). Thus, it is our contention that the best strategy is
to understand when and how to monitor to support the different management types.

Our review leads to the following conclusions:

• The unifying concepts of ecological change, utility value, and decision thresh-
old are common to the different monitoring types. Ecological change should
be monitoring at least conceptually if improving decision making is of pri-
mary importance. Ecological thresholds, abrupt change across small changes in
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resource condition, are a special case of ecological change, although change
could be found empirically to be gradual or linear. Utility value is associated
with resource condition to reflect value of desired condition and relative costs of
management. Decision thresholds are present in both management types, but are
derived differently.

• The critical difference between the two monitoring types is whether management
actions have been specified a priori and models are available to predict the con-
sequences of those actions on resource condition. Specific management actions
and predictive models are integrated into adaptive management but are not for
surveillance monitoring.

• The objectives of supporting and improving management decisions are held in
common. However, adaptive management is integrated into a structured deci-
sion process, and thus is well positioned to meet those objectives. Although
surveillance monitoring can be designed to provide information for management
decisions, there is no a priori mechanism to translate that information into better
decision because the future consequences of those decisions are not predicted or
compared.

• Both types of management and monitoring are confronted with the same sources of
uncertainty. Adaptive management incorporates uncertainty into all components
of a structured decision process, especially in the predictive step. Surveillance
monitoring incorporates uncertainty mainly through setting the decision thresh-
old based on the type I error rate. Using power analysis to design aspects of
surveillance monitoring is a special case of maximizing utility value.
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Chapter 7
Applying Threshold Concepts to Conservation
Management of Dryland Ecosystems: Case
Studies on the Colorado Plateau

Matthew A. Bowker, Mark E. Miller, Steven L. Garman and Travis Belote

Abstract Ecosystems may occupy functionally distinct alternative states, some of
which are more or less desirable from a management standpoint. Transitions from
state to state are usually associated with a particular trigger or sequence of triggers,
such as the addition or subtraction of a disturbance. Transitions are often not linear,
rather it is common to see an abrupt transition come about even though the trigger
increases only incrementally; these are examples of threshold behaviors. An ideal
monitoring program, such as the National Park Service’s Inventory and Monitoring
Program, would quantify triggers, and be able to inform managers when measure-
ments of a trigger are approaching a threshold so that management action can avoid
an unwanted state transition. Unfortunately, both triggers and the threshold points at
which state transitions occur are generally only partially known. Using case studies,
we advance a general procedure to help identify triggers and estimate where thresh-
old dynamics may occur. Our procedure is as follows: (1) Operationally define the
ecosystem type being considered; we suggest that the ecological site concept of the
Natural Resource Conservation Service is a useful system, (2) Using all available
a priori knowledge to develop a state-and-transition model (STM), which defines
possible ecosystem states, plausible transitions among them and likely triggers, (3)
Validate the STM by verifying the existence of its states to the greatest degree possi-
ble, (4) Use the STM model to identify transitions and triggers likely to be detectable
by a monitoring program, and estimate to the greatest degree possible the value of
a measurable indicator of a trigger at the point that a state transition is imminent
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(tipping point), and values that may indicate when management intervention should
be considered (assessment points). We illustrate two different methods for attaining
these goals using a data-rich case study in Canyonlands National Park, and a data-
poor case study in Wupatki National Monument. In the data-rich case, STMs are
validated and revised, and tipping and assessment points are estimated using statis-
tical analysis of data. In the data-poor case, we develop an iterative expert opinion
survey approach to validate the degree of confidence in an STM, revise the model,
identify lack of confidence in specific model components, and create reasonable first
approximations of tipping and assessment points, which can later be refined when
more data are available. Our goal should be to develop the best set of models possi-
ble given the level of information available to support decisions, which is often not
much. The approach presented here offers a flexible means of achieving this goal,
and determining specific research areas in need of study.

Keywords Monitoring · State and transition model · Tipping point · Expert opinion ·
Alternative stable state · Dryland · Ecosystems · Assessment points · Delphi method

Introduction

Threshold concepts are used in research and management of ecological systems to
describe and interpret abrupt and persistent reorganization of ecosystem properties
(Walker and Meyers 2004; Groffman et al. 2006). Abrupt change and the progression
of reorganization can be triggered by one or more interactive disturbances such as
land-use activities and climatic events (Paine et al. 1998). Thresholds occur when
feedback mechanisms that typically absorb forces of change are replaced with those
that promote development of alternative equilibria or states (Suding et al. 2004;
Walker and Meyers 2004; Briske et al. 2008). The alternative states that arise have
reduced ecological integrity and value in terms of management goals relative to the
original or reference system. Alternative stable states with some limited residual
properties of the original system may develop along the progression after passing
a threshold; an eventual outcome may be the complete loss of prethreshold prop-
erties of the original ecosystem. Reverting to the more desirable reference system
becomes increasingly difficult and expensive along the progression gradient and may
eventually become impossible. Ecological-threshold concepts have been applied as a
heuristic framework and to aid in the management of rangelands (Bestelmeyer 2006;
Briske et al. 2006, 2008), aquatic (Scheffer et al. 1993; Rapport and Whitford 1999),
riparian (Stringham et al. 2001; Scott et al. 2005), and forested ecosystems (Allen
et al. 2002; Digiovinazzo et al. 2010). They have been applied in contexts varying
from ecological restoration (Hobbs and Norton 1996; Whisenant 1999; Suding et al.
2004; King and Hobbs 2006) to ecosystem sustainability (Herrick 2000; Chapin
et al. 1996; Davenport et al. 1998) to assessment of natural resource impairment
(USDI-NPS 2003).

Achieving conservation management goals requires the protection of resources
within the range of desired conditions (Cook et al. 2010; Symstad and Jonas (Chap. 8).
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The goal of conservation management for natural resources in the US National Park
System is to maintain native species and habitat unimpaired for the enjoyment by
future generations. Achieving this goal requires, in part, early detection of system
change and timely implementation of remediation. The recent National Park Service
Inventory and Monitoring program (NPS I&M) was established to provide early
warning of declining ecosystem conditions relative to a desired native or reference
system (Fancy et al. 2009). To be an effective tool for resource protection, monitor-
ing must be designed to alert managers of impending thresholds so that preventive
actions can be taken. This requires an understanding of the ecosystem attributes
and processes associated with threshold-type behavior, how these attributes and pro-
cesses become degraded, and how risks of degradation vary among ecosystems and
in relation to environmental factors such as soil properties, climatic conditions, and
exposure to stressors. In general, the utility of the threshold concept for long-term
monitoring depends on scientists’and managers’ability to detect, predict, and prevent
the occurrence of threshold crossings associated with persistent, undesirable shifts
among ecosystem states (Briske et al. 2006). Because of the scientific challenges
associated with understanding these factors, the application of threshold concepts
to monitoring designs has been very limited to date (Groffman et al. 2006). As a
case in point, the monitoring efforts across the 32 NPS I&M networks were largely
designed with the knowledge that they would not be utilized to their full potential
until the development of a systematic method for understanding threshold dynamics
and methods for estimating key attributes of state changes.

This chapter describes a generalized approach we implemented to formalize un-
derstanding and estimating of threshold dynamics for terrestrial dryland ecosystems
in National Parks of the Colorado Plateau. We provide a structured approach to iden-
tify and describe degradation processes associated with threshold behavior, and to
estimate indicator levels that characterize the point at which a threshold crossing has
occurred or is imminent (tipping points), and points where investigative or preven-
tive management action should be triggered (assessment points). We illustrate this
method for two case studies in National Parks included in the Northern and Southern
Colorado Plateau I&M Networks, where historic livestock grazing, climatic change,
and invasive species are key agents of change. The approaches developed in these
case studies are intended to enhance the design, effectiveness, and management
relevance of monitoring efforts in support of conservation management in dryland
systems. They specifically enhance NPS capacity for protecting park resources on the
Colorado Plateau, but have applicability to monitoring and conservation management
of dryland ecosystems worldwide.

Background: Threshold and State-and-Transition Concepts

Salient features among frameworks of ecological thresholds include concepts of
reference conditions, feedback dynamics, threshold triggers, properties of the pro-
gression after a threshold crossing, and changes in restoration potential along this
progression. Native or reference conditions, typically, are the desired state for conser-
vation management, and consist of community phases and transitions among phases
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due to natural disturbances and climate variability. Negative feedback of the ref-
erence system confer system resilience and maintain the community phases within
a characteristic range of variability. For instance, a negative feedback that inhibits
shrub dominance in some grasslands is the interaction between amount of grass cover
and fire return interval. Given sufficient grass cover, wildfire events are frequent and
large enough to maintain grassland structure due to the selective elimination of fire-
intolerant woody plants. Phases comprising the natural range of reference conditions
differ in their vulnerability to crossing a threshold. Phases with degraded resilience
are more vulnerable and may be described as “at risk” of a persistent transition to
an alternative state (Briske et al. 2008). Identifying the patterns that increase vulner-
ability to change and reasons for these patterns can define preventive-management
goals (Bestelmeyer 2006).

Both biotic and abiotic mechanisms may trigger state changes (Beisner et al. 2003;
Briske et al. 2006). Biotic mechanisms include altered biotic structure and interac-
tions, such as plant–herbivore interactions. Abiotic mechanisms (e.g., extreme soil
erosion) can result in threshold behavior through the modification of inherent site
characteristics. A single trigger may initiate a state change, or the temporal order
or spatial convergence of multiple triggers may be critical. For example, drought or
intensive livestock grazing alone may not trigger a state change, but the two factors in
combination or in sequence may trigger such a change through adverse effects of one
stressor on ecosystem resilience to the other stressor (Scheffer et al. 2001). Triggers
result in conditions that exceed the resilience of the reference system, and lead to
an increasing dominance of positive, destabilizing feedback. Triggers often initiate
changes in the pattern or spatial structure of an ecosystem (e.g., decreased vegeta-
tion cover or increased patchiness) with subsequent and often nonlinear changes in
processes (e.g., soil erosion, nutrient cycling; Peters et al. 2007).

The progression resulting from a state change is characterized by increasing domi-
nance of positive feedback, and changes in pattern and processes (Briske et al. 2008).
Along this progression is the continual loss of properties of the reference condition.
Multiple alternative states, each with their own set of varying community phases,
can occur along this threshold gradient with some becoming stable as negative feed-
back of the alternative state confers resilience. Progression can lead to a degraded
state where features of the reference condition are effectively no longer present.
Degraded states may no longer afford provision of services such as water, livestock
forage production, or desirable recreational opportunities, and may no longer support
the biodiversity of native systems.

The potential for restoration to prethreshold conditions is determined by the
amount of residual properties of the reference condition and the resilience of the new,
alternative state (Suding and Hobbs 2009). Where extensive site preparation and rein-
troduction of native species are required for conversion to prethreshold conditions,
the costs may effectively prohibit restoration. In some cases, complete restoration
to native conditions may never be possible due to the extinction of native biota (i.e.,
species, genomes), or the loss of inherent properties (e.g., soil fertility) necessary to
support reference conditions.

Focused study and interpretation of threshold processes and consequences benefit
from using conceptual models of ecosystem dynamics. State-and-transition models
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(STMs) are a type of conceptual model that have become prominent in rangeland
management, and are used to illustrate reference conditions of an ecosystem, ecosys-
tem responses to natural and anthropogenic drivers, and the mechanisms of transition
among distinctive assemblages or states of an ecosystem (Bestelmeyer et al. 2003,
2009). These models also provide a basis for discerning levels of system properties
indicative of both the risk and occurrence of transition among states (Briske et al.
2008).

Identifying indicator levels indicative of an impending state change is a critical
component for the design of effective monitoring. Monitoring efforts should result
in alerting land managers of indicator levels in advance of a state change to account
for lag-time in decision making and uncertainty in the effectiveness of remediation
actions. From a statistical perspective, the number and frequency of monitoring ob-
servations to provide an early warning is dependent on the difference between the
current status of the indicator, the early-warning status level, and the inherent spatial
and temporal variability of the indicator. Realistically, given uncertainty in early-
warning levels and inherent variability of indicators, monitoring resources are likely
insufficient to statistically detect a declining trend within a time period sufficient for
decision making (Field et al. 2004). Bennetts et al. (2007) have proposed the use of
management-assessment points along a continuum of indicator values to safeguard
against uncertainties in estimates of thresholds, in indicator variability, and in the ef-
ficacy of a monitoring or sampling design. Ecosystem progression, where monitored
attributes reach an assessment point does not necessarily warrant immediate remedia-
tion action, but instead motivates close scrutiny. Assessment points ideally are based
on management goals and concerns, including understanding risks (Nichols et al.
Chap. 2). However, a fundamental component for establishing assessment points is a
credible estimate of resource and environmental conditions indicative of impending
state changes.

A General Approach to Applying Threshold
Theory to Management

We developed a general approach for identifying properties of thresholds to in-
form estimates of management-assessment points in a long-term monitoring context.
Our approach relies on using conceptual models of threshold dynamics, and vari-
ous sources of information to verify the conceptual model, and to make informed
estimates of state changes and associated indicator values:

1. Identification of target ecosystems: We adopted the US Department of Agri-
culture Natural Resource Conservation Service’s (USDA-NRCS) ecological site
concept as a spatial framework for ecosystem classification and model devel-
opment. Ecological sites are land units differentiated by (a) physical attributes
including inherent soil properties (texture, depth, and horizonation), geomorphic
setting, and climate; (b) the potential (rather than current) vegetation associated
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with these physical attributes within a specific ecoregion, and (c) characteristic
dynamics in response to climate, management, and other driving factors (Herrick
et al. 2005; Bestelmeyer et al. 2009).

2. Conceptual models of system dynamics: We developed STMs to organize cur-
rent knowledge or hypotheses about the dynamics and community phases of
specific ecological sites, the key alternative states representative of degradation
pathways, and the transitions that are possible among these states. Possible trig-
gers of transitions among alternative states, and pattern and process indicators of
specific degradation pathways are identified or hypothesized based on published
literature, unpublished expert knowledge of an ecological site, or general eco-
logical principles. Identifying triggers is most useful since observations of their
occurrence could initiate preventative management actions. This process- and
theory-based focus in the construction of the STM, contrasts with pattern-based
efforts, which seek to define states based upon classification of multivariate com-
munity structure data (e.g., Allen-Diaz and Bartolome 1998). These data-driven
approaches offer the credibility of being based upon real data, but assume that a
dataset is likely to capture all of the important states that are possible within a
given ecological site, and that the identified states are fundamentally and func-
tionally distinct (Bestelmeyer et al. 2003). Rather, we advocate using available
data to test specific elements of process-based conceptual STMs, as a means of
calibrating and validating the model.

3. Model calibration: Model building is an iterative process, and it is important to
include a calibration step. Calibration includes testing the concepts presented in
the model using available datasets, or subjecting them to the scrutiny of an expert
panel. This enables an opportunity to revise the model, identify new transitions
and associated triggers, processes and indicators, and allows an estimation of our
confidence that the revised model is reasonable.

4. Identification of key transitions and estimation of tipping points: The calibrated
model is used to identify the most likely transitions that might be detected by
a monitoring program, emphasizing those known to be of concern to manage-
ment, such as the persistent conversion of perennial grasslands to ecosystems
dominated by invasive annuals or woody plants. The values of key indicators at
the point of a state change—when one state abruptly transitions to another—are
estimated. We refer to these as tipping points; they are roughly equivalent to
restoration thresholds (sensu Bestelmeyer 2006). Because abrupt transitions in
progress are seldom observed, statistical methods are used to model the tipping
points in indicator values using sample representative of discrete states. In data-
sparse situations, these estimates are derived from expert knowledge rather than
statistical modeling. The assessment points are another set of indicator values
which trigger management action prior to observing a tipping point, so that the
undesired transition can be avoided. These values occur chronologically before
tipping points and allow managers sufficient response time. They are based upon
the range of natural variability in the reference or less-degraded state when data
are available, or upon opinions from an expert panel when data are lacking.
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Case Studies

We now present two case studies that illustrate different methods for identifying
assessment points based on contrasting scenarios of data availability. The case studies
specify two ecological sites that occur in NPS units on the Colorado Plateau, where
the general monitoring goal is to provide early warning of system decline in sufficient
time for management actions to avert impending undesirable changes.

A. Data-Rich Case Study: Semidesert Sandy Loam Ecological Site,
Canyonlands National Park

Ecological Site Characteristics The semidesert sandy loam (SDSL) ecological site
is widely distributed throughout the Colorado Plateau region of NorthAmerica and is
significant for its past and current use for livestock grazing (USDA-NRCS major land
resource area 35, ecological site 035XY215UT). This ecological site occurs on flat
to gently sloping landforms at 1,310–2,010 m elevation and receives 20–30 cm mean
annual precipitation. Soils are formed in moderately deep to very deep (from 50 to
greater than 150 cm) aeolian and alluvial deposits from sandstone and are moderately
alkaline with sandy loam or loamy sand texture. In relatively undisturbed settings,
the vascular plant community typically has a grassland aspect and is characterized
by a mixture of perennial C3 (Hesperostipa comata and Achnatherum hymenoides)
and C4 (Sporobolus spp.) bunchgrasses, C4 rhizomatous grasses (Pleuraphis jamesii
and Bouteloua gracilis), shrubs, and annual herbaceous species. In contrast with
many dryland ecosystems, most common shrubs (e.g., Krascheninnikovia lanata
and Atriplex canescens) are palatable to livestock and shrub-dominated communi-
ties can occur with long-term absence of livestock grazing. Plant nomenclature here
and throughout follows USDA-NRCS 2010. Biological soil crust (Belnap 2003) is
another biotic functional type that is a characteristic component of relatively undis-
turbed SDSL sites (Kleiner and Harper 1972; Bowker and Belnap 2008). Biological
soil crusts have yet to be widely incorporated in conceptualizations of dryland ecosys-
tem dynamics despite evidence of their functional significance for soil stabilization
(Belnap 1995; Warren 2003), nutrient cycling (Evans and Lange 2003), hydrologic
processes (Warren 2003), and mediation of plant establishment (Belnap et al. 2003;
Escudero et al. 2007). Biological soil crusts are also notable for their lack of re-
sistance to surface disturbances which can result in long-term reductions in spatial
continuity, biological diversity, physical structure, and functionality (Belnap and
Eldridge 2003; Miller 2008).

Management Goals and Land-Use History General NPS goals for management of
natural resources are (1) to preserve and restore the natural abundance, diversity, and
dynamics of native plant and animal populations and the communities and ecosystems
in which they occur, and (2) to minimize human impacts on native plant and animal
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populations, communities, ecosystems, and the processes that sustain them (USDI-
NPS 2006). Canyonlands National Park preserves regionally significant examples of
SDSL ecosystems that remain relatively undisturbed by human activities exclusive of
anthropogenic atmospheric changes. Within Canyonlands National Park, however,
there also are extensive examples of SDSL ecosystems with persistently degraded
composition, structure, and function attributable to impacts of past livestock grazing
(e.g., Neff et al. 2005; Belnap et al. 2009). Domestic livestock were introduced to
this area in the late 1880s and portions of Canyonlands were grazed by livestock until
1974. Livestock grazing remains an important economic activity on adjacent lands
outside Canyonlands. Unlike many semiarid grasslands, neither fire nor frequent
grazing by herds of large mammals are characteristic natural disturbances associated
with the SDSL site. Thus, grazing and associated surface disturbances by livestock
represent novel disturbances in this system.

Data Availability Three general types of data characterize structural and functional
attributes of the SDSL ecological site for Canyonlands National Park and surrounding
areas: (1) poorly replicated in space and time (Kleiner and Harper 1972; Neff et al.
2005), (2) well replicated in time, poorly replicated in space (Belnap et al. 2009;
S.M. Munson unpublished data), and (3) well replicated in space, poorly replicated
in time (Miller et al. 2011). Of these options, the first two provide many insights
into ecosystem dynamics but only the third type provides the necessary replication
for the statistical estimation of tipping or assessment points, or are broad enough
to characterize the variability within states. The third type of data is derived from a
broad-scale ecosystem inventory project purposefully designed to characterize ranges
of variability in key compositional and structural attributes of dryland ecosystems in
Canyonlands National Park and on adjacent lands currently used for livestock grazing
(Miller et al. 2011). These inventory data were collected over a 3-year time period
and thus do not quantify temporal transitions among states. However, through a
combination of targeted sampling and extensive spatial replication (substituting space
for time) with random sampling, this data set documents current ranges of variability
for the SDSL and provides a relatively rich basis for estimating tipping points and
associated assessment points. The data set quantified variability among 72 SDSL
plots on a single soil type (Begay series) on the basis of live cover of biological crusts
and vascular plants, ground cover, and indicators of erosion resistance including soil
aggregate stability, spacing between perennial plant canopies, and spacing between
perennial-plant bases (Miller et al. 2011; sampling methods followed Herrick et al.
2005). Sampling was conducted both within and outside Canyonlands National Park
to ensure that the data set spanned a wide range of ecosystem conditions.

Methods: Building a State-and-Transition Model and Estimating Tipping Points with
Rich Inventory Data Field observations, published literature (Kleiner and Harper
1972; Neff et al. 2005; and Belnap et al. 2009) and an existing USDA-NRCS ecolog-
ical site description (USDA-NRCS ecological site 035XY215UT) provided the basis
for developing an STM articulating hypotheses about system dynamics, degradation
pathways among alternative states, and associated ecosystem patterns, processes,
and feedback.
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The conceptual model identifies four ecosystem states based on persistent dif-
ferences in the relative abundance of biotic functional types (Fig. 7.1; Tables 7.1
and 7.2). Two states are dominated by biological crusts and are distinguished from
one another by the absence (S1) or presence (S2) of functionally significant inva-
sive exotic annuals (e.g., Bromus tectorum or Salsola sp.). An invaded state (S3) is
characterized by the replacement of biological crust by bare ground and a vascular
plant community dominated by perennial grasses (S3P1) or palatable shrubs (S3P2)
with significant levels of invasive annuals. The fourth state (S4) is characterized by
persistent dominance by invasive annual grasses or forbs. The first state represents
the desired condition relative to NPS management goals, whereas states two through
four represent increasing degrees of degradation to be avoided or mitigated.

We used a logical quantitative process to analyze the inventory data set to examine
evidence for our STM. It consists of construct validation of the STM, and determina-
tion of quantitative classification rules of state membership. To validate the existence
of the states proposed in our a priori STM, fuzzy cluster analysis (Equihua 1990)
was applied to four state properties including biological crust cover, bare ground
cover, combined cover of perennial grasses and palatable shrubs, and relative cover
of invasive exotic annuals based upon a Bray–Curtis distance matrix. Fuzzy cluster-
ing methods offer more flexibility than hierarchical clustering when attempting to
group elements which may overlap or have vague boundaries, such as states. Follow-
ing cluster identification, classification tree modeling (De’ath and Fabricius 2000)
was used to derive quantitative decision rules for differentiating clusters (Fig. 7.3).
While these methods may or may not arrive at the same clustering of data, their
utility is somewhat different. Starting with the root node (composed of the entire
dataset), classification trees iteratively and dichotomously partition the data set into
increasingly homogenous groups, producing a dendritic pattern of terminal nodes.
Each partition is based upon the values of a single predictor variable. This property
of classification trees makes them useful for isolating the single variable(s) most
informative in determining node/cluster membership, and provide a decision rule
based on that predictor (e.g., ≥ 28 % relative exotic cover = State 3). These values
represent classification thresholds (sensu Bestelmeyer 2006) for clusters or nodes
rather than actual functional or degradation thresholds for the SDSL ecological site;
however, they provide a reasonable first approximation of tipping points in empirical
measurements of key functional indicators.

The cluster analysis distinguished three clusters analogous to states S2–S4 in
the conceptual model (Miller et al. 2011), and provided no evidence for states not
included in the model. The classification analysis splits cluster S4 from clusters S2
and S3 at 28.3 % relative cover of invasive exotic annuals (Fig. 7.2a). Clusters S2
and S3 are split from one another at 30.3 % bare ground (Fig. 7.2a).

Implications for Monitoring This case study applies a conceptual model of ecosys-
tem dynamics, a relatively rich set of inventory data, and multivariate data analysis
techniques to derive monitoring-assessment points. Despite the fact that some pris-
tine sites were included in the dataset, examples of S1 (partially defined by a lack of
exotics) were not located. Thus, the management goals ought to detect and avoid the
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Table 7.2 Key to transitions in Fig. 7.1 (semidesert sandy loam)

Transition Trigger(s) Associated process(es) Relevant indicator(s)

T1 Climate variability, perhaps
interacting with
landscape position and
inherent soil properties
(shrubland phase may be
more common on older
geomorphic surfaces
with greater inputs of
late-Pleistocene loess,
greater silt content, and
greater pro- file
development relative to
grassland phase.

Plant population processes
(reproduction,
recruitment, mortality)

Absolute and relative
cover of perennial
grasses and
palatable shrubs (or
shrub:grass ratio)

T2 Similar to T1, but favoring
opposite relative
dominance of plant
functional types

Same as T1 Same as T1

T3 Establishment of invasive
exotic annuals,
facilitated by favorable
climatic conditions

Seed dispersal and plant
population processes

Density, frequency,
and/or cover of
invasive exotic
annuals

T4 Same as T1 Same as T1 Same as T1
T5 Same as T2 Same as T1 Same as T1
T6 Repeated soil disturbance

(trampling), typically
associated with livestock
grazing

Destruction of biological
crusts due to trampling;
increased connectivity of
bare-ground patches;
decreased soil-surface
roughness and capacity for
capturing/retaining litter,
seeds, aeolian dust inputs,
and runoff; accelerated
erosion

Absolute cover of
biological crust;
cover of biological
crust relative to
bare ground and
vascular plants;
soil-surface
roughness; percent
bare ground; size
and connectivity of
bare ground
patches; soil
aggregate stability

T7 Similar to T1, but also may
be facilitated by a
sustained reduction in
grazing pressure on
palatable shrubs where
previous herbivory by
livestock has suppressed
shrubs relative to
perennial grasses.

Plant population processes;
shrub regrowth following
reduction in grazing
pressure

Same as T1

T8 Similar to T2, but
facilitated by heavy
grazing pressure and
selective herbivory on
palatable shrubs

Selective herbivory and
competitive suppression of
palatable shrubs relative to
perennial grasses; plant
population processes

Same as T1
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Table 7.2 (continued)

Transition Trigger(s) Associated process(es) Relevant indicator(s)

T9 Sustained high-intensity
grazing and associated
soil-surface disturbance
(trampling), perhaps in
combination with
drought

Selective herbivory and
reduction of perennial
grasses and palatable
shrubs through effects on
physiological vigor,
resistance/resilience to
drought, competitive
relations, seed production,
and replenishment of the
soil seed bank; facilitation
of invasive exotic plants
through soil-surface
disturbance and reduced
competitive vigor of
grazed perennials

Absolute cover of
perennial grasses
and palatable
shrubs; absolute
cover of invasive
exotic annuals;
relative cover of
perennials and
invasive annuals;
soil aggregate
stability

T10 Climate variability that
favors exotic annual
forbs relative to exotic
annual grasses; relative
dominance of exotic
annual forbs and exotic
annual grasses also may
vary along elevation
and/or topo-edaphic
gradients through effects
on soil moisture

Plant population processes
(reproduction,
recruitment, mortality)

Absolute and relative
cover of exotic
annual grasses and
forbs

T11 Similar to T10, but
favoring opposite
relative dominance of
plant functional types

Same as T10 Same as T10

initiation of transitions from S2 to S3. Likewise, for sites already in S3, management
should strive to detect and prevent transition to S4. Current monitoring conducted by
NPS is well designed to detect changes in key indicators of these transition sequences
for the SDSL ecological site, including the relative cover of invasive exotic plants and
percent bare ground. Because we are able to provide rough estimates of tipping points
based on these data, the necessary prerequisites for establishment of assessment
points are established. We reason that an assessment point for a given transition must
lie between the estimated tipping point and the mean value of the relevant indicator
in the state at risk of transition. Its actual position is determined subjectively based
upon management goals and adaptively refined based upon success as a decision
support tool. Some reasonable management-assessment points, ordered from most
conservative to most liberal, include: the at-risk state node mean ± SE, the upper
or lower bound of 95 % confidence interval of the at-risk node mean, the midpoint
between the at-risk mean and the tipping point, the upper or lower bound of 95 %
confidence interval of the tipping point, and the tipping point ± SE (Fig. 7.2b).
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Fig. 7.2 Tipping and assessment points in the semidesert sandy loam case study: a Classification
tree diagram depicting classification thresholds separating three states of the semidesert sandy loam
ecological sites. The figure, from top to bottom, classifies samples into groups based upon values of
indicators using a sequential dichotomous splitting procedure. The indicator used to make a split is
in bold italics. Its critical values appear below it; these values are initial approximations of tipping
points. End nodes are represented as boxes which correspond well to hypothesized states. Indicator
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Current sampling is not designed to characterize or detect changes in the spatial
configuration or connectivity of invasive exotic plants or bare ground. Spatial con-
nectivity (or the length of connected pathways) in dryland ecosystems is increasingly
recognized as an important structural indicator of processes such as accelerated soil
erosion, overland flow, and wildfire (Okin et al. 2009). Current NPS monitoring of
the SDSL ecological site on the Colorado Plateau includes measurements of gaps
between perennial plant canopies and bases as indicators of resistance to erosion
by wind and water (Herrick et al. 2005; Okin 2008). But no data are collected to
characterize the connectivity of bare ground patches (or biological crust patches,
alternatively) in the spaces between perennial plant canopies or bases. In circum-
stances when an assessment point is prompted by increasing levels of bare ground,
measures of surface patch (intact biological crust and/or bare ground) connectiv-
ity may provide additional insights regarding degradation risks related to erosional
processes.

B. Data-Sparse Case Study: Limy Uplands Ecological Site, Wupatki
National Monument

Ecological Site Background Limy uplands are an ecological site represented in
Wupatki National Monument and surrounding areas, situated atop fairly level basalt
flows, receiving 15.2–25.4 cm of rainfall per year (USDA-SCS 1983). The soil is
weathered from the underlying basalt, and from later cinder deposits due to regional
volcanism. The surface is gravelly due to high-surface cinder coverage. Grassland
vegetation is most common, and is dominated by C4 rhizomatous or stoloniferous
grasses including Pleuraphis jamesii and Bouteloua eriopoda; C3 grasses may have
been somewhat diminished due to past grazing. Savannah vegetation is less common
and is characterized by an overstory of Juniperus monosperma of varying density
and an understory of perennial grasses (Jameson 1962; Ironside 2006; DeCoster and
Swan 2009).

Management Goals The primary management goals of the National Monument are
to protect and preserve over 2,000 catalogued archeological sites, including struc-
tures, and agricultural fields of the ancient ancestral Hopi cultures, and to provide
interpretive and educational experiences for park visitors (USDI-NPS 2002). In ad-
dition to these primary goals, NPS management goals for natural resources are the
same as those summarized earlier for the semidesert sandy loam ecological site. Cat-
tle grazing was permitted in portions of the Monument until 1989 when livestock
were removed and a boundary fence was constructed (USDI-NPS 2002). The

means and standard errors are presented along with each node. a approximate tipping point corre-
sponds to T9 in Table 7.2 and Fig. 7.1. b approximate tipping point corresponds to T6 in Table 7.2
and Fig. 7.1. b Percentage bare ground in rank order as a basis for establishment of assessment
points. Point symbols represent state membership. Five alternative definitions of assessment points
are derived from tipping points and at-risk state means estimated using a classification tree
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Monument highlights the presence of a rare, large, ungrazed grassland as one of its
significant resources, and NPS staff are concerned that increasing tree densities in
Monument grasslands are attributable to a decrease in fire frequency since the late
nineteenth century caused by diminished fine fuels due to grazing (Cinnamon 1988;
USDI-NPS 2002; Ironside 2006). Currently, the wildfire management plan calls for
suppression of fires, but retains the option of prescribed fire (USDI-NPS 2005).

Data Availability Relevant vegetation data for this ecological site either are well
replicated and incomplete, or modestly replicated and reasonably complete. In ag-
gregate, these data may not represent a sufficient range of the possible states, nor
the ideal time series data capturing a transition in action to validate an STM, and
may lack measurements of some potentially useful indicators. There is no single
complete dataset, for validation of an STM or estimation of tipping and assessment
points. Hassler (2006) likely conducted some sampling of Juniperus density, growth
rate, and fire mortality on limy uplands. In a remote sensing-based vegetation map-
ping project, Hansen et al. (2004) sampled numerous accuracy assessment releves
in limy uplands that qualitatively identify community type. Miller et al. (2007) de-
veloped and tested monitoring techniques at seven plots. DeCoster and Swan (2009)
summarize the first years of the I&M program and contains the most purposefully
collected monitoring dataset for limy uplands, but is limited to ten sites. The ran-
domly selected study design may fortuitously capture recovery from fire gradients (1
plot in 1995 “North fire”, 3–4 plots in the 2002 “Antelope fire”; USDI-NPS 2005).
The data include detailed information on vegetation structure and ground cover, in-
cluding some metrics of juniper density, but lacks direct indices of connectivity of
fine fuels.

Methods: Building a State-and-Transition Model and Estimating Assessment Points
with Sparse Data Due to the incomplete nature of the available data, we pursued
an alternative strategy for the validation of the states and dynamics delineated in
STM. Our approach has much in common with the Delphi technique of engaging
expert opinion panels, in that, it is a multiphase, iterative approach, employs a
“straw-document” as a starting point, and engages participants individually so that
outputs are not disproportionately affected by dominant personalities (Linstone and
Turoff 1975; Oliver 2002). This approach has proven to be useful when “the problem
does not lend itself to precise analytical techniques but can benefit from subjective
judgements on a collective basis (Linstone and Turoff 1975).” We constructed email-
based questionnaires in two stages: (1) model calibration, (2) estimation of tipping
and assessment points in indicators which enable detection of proximity to thresh-
old crossings. Based on literature findings and past experience, we drafted an STM
including a catalog of states, phases, and transitions. We identified a list of poten-
tial expert consultants from the authors of relevant literature, and from professional
interactions. We initially contacted selected experts by email to gauge interest. Of
eight people contacted, five were willing to participate. The format of the model
calibration survey included: (1) a paragraph-length overview of STM concepts, (2)
a brief description of the target ecological site, (3) a draft STM including a diagram
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and verbal catalog, and (4) a questionnaire. The questionnaire consisted of four re-
quired questions and six optional ones. The required questions asked respondents to
identify any states, phases, or transitions which should be removed from or added
to the model. For additions, respondents were prompted to identify: structural and
functional properties and stabilizing negative feedback of states and phases, and trig-
gers (including their characteristic scale) and appropriate indicators of transitions.
Our questionnaires specifically employed estimates of confidence in responses, an
important measure of uncertainty. In the Phase 1 questionnaire, respondents were
asked to estimate their confidence in a revised model, which took into account their
proposed changes (a subjective scale taking any value from 0 to 100 %, where 0 % =
“It’s anyone’s guess, this model is no better than any other model,” 50 % = “Because
this model is reasonable, I would tend to believe it until evidence to the contrary is
presented,” 100 % = “The model is so well supported by evidence and accumulated
knowledge, that I am certain it is correct.”). The same information was requested
for each individual model component (states, phases, and transitions). These con-
fidence estimates are hereafter known as “C-own.” As a complementary question,
respondents were also asked to estimate their confidence in the model generated by a
theoretical “best qualified” person, to help gauge their confidence in a survey-based
procedure for developing STM (hereafter known as “C-best”). We received four
surveys with an average response time of 9 days (we had requested return within
a week). We revised the model, according to all respondents’ comments. We also
calculated an aggregate confidence value. First, the C-best values were used to cor-
rect optimistic or pessimistic tendencies in respondents’ estimation of C-own. For
example, if a respondent’s C-best value was 20 % less than the mean C-best value,
their C-own value was adjusted up by 20 % to account for their greater than average
pessimism. The adjusted C-own values were averaged across all respondents, and
calculated for the entire model and for each model component.

The second phase of the survey was more focused on thresholds associated with
a key transition (T6 from reference grasslands to savannized ecosystems, see later).
This survey consisted of the following parts: (1) a revised STM with aggregate con-
fidence values, (2) a background section regarding resiliency concepts, tipping and
assessment points, and (3) a questionnaire. In the questionnaire portion, respondents
were presented with a set of indicators and their characteristic units, and were asked
to estimate tipping and assessment points for each. As in the previous survey, we
required C-own and C-best values for all indicators overall, and respondents were
invited to provide them for each individual indicator. We emailed the Phase 2 surveys
to the four respondents who had previously returned Phase 1, in addition to one new
respondent and several previous candidates who had not been able to respond. We
received six of them back with an average response time of 20 days. To calculate
aggregate estimates of assessment and tipping points, we adjusted each respondent’s
C-own values using their C-best values, using the same procedure described ear-
lier. The adjusted C-own values were then used to compute a weight for a given
estimate of a given respondent by dividing the adjusted C-own of the respondent,
divided by the sum of all respondents’ adjusted C-own values, yielding a proportion.
This proportion was used in a weighted averaging procedure to calculate the group’s
estimates.
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Final Resilience-Based State-and-Transition Model We acknowledge a pre-
history of volcanism and occupation by agricultural societies, and subsequent
depopulation (Sullivan and Downum 1991), but omit detail on these states for brevity.
We emphasize states, phases and transitions within the current management sphere
(Fig. 7.3; Tables 7.3 and 7.4).

The survey-based approach proved to be quite useful, but perhaps not fully satis-
factory. On one hand, they proved to be an excellent tool for calibration of STMs, as
new states, phases, and transitions were identified, and differing levels of confidence
emerged in different portions of the model, identifying the greatest research needs
(e.g., potential for transition to woodland, and recovery of grass dominance after
shrub dominance; Fig. 7.3). The overall aggregate confidence in the model was quite
high on a subjective scale (71 %), indicating that despite the lack of data, survey
respondents tended to believe that this model was the correct model of ecosystem
dynamics. We were able to provide quantitative approximations of tipping and as-
sessment points based upon subjective rather than empirical data for only three of ten
indicators (based on estimates given by a minimum of three respondents; Table 7.5).
This was because respondents were reticent to offer estimates about subjects for
which they did not feel knowledgeable (less than about 20 % confidence), thus for
indicators related to livestock or native grazer activity and connectivity of fuels we
obtained little information. However, each respondent did suggest at least one addi-
tional indicator resulting in a total of seven additional indicators that could be folded
into a monitoring program. Data gaps could probably be ameliorated with a larger
sample size of surveys when possible; however, our approach has the inherent lim-
itation that there are a small pool of respondents with knowledge of the target site,
and even fewer available to respond to surveys.

Implications for Monitoring Expert opinion surveys resulted in a highly useful
model of ecosystem dynamics and seven suggestions of indicators which should
be investigated further for their potential to indicate change, several of which could
be derived from the data currently being collected. Most respondents tended to be-
lieve that the transition to savannahs is fire regulated. As a result, we were able to
establish rough first approximations of tipping points in some related indicators to
aid in the establishment of assessment points (Table 7.5). These estimates should
be confirmed based upon data when possible, but illustrate that even when data are
lacking, an operational tipping point can be established. Compared to the data-rich
case, there is less available information to establish assessment points; for example
we do not know the distributions of indicator values within the at-risk state. However,
the weighted average of survey respondents’assessment points provides a reasonable
starting point.

Survey products suggested several ways to learn about this ecosystem. For ex-
ample, the two leading hypotheses regarding savannization, that the process is
fire-limited, and that the process is favored by wet climate periods, could be tested
using monitoring data. Currently, the NPS I&M sampling strategy within Wupatki’s
limy uplands is well designed for detecting changes in vegetation structure such
as increasing relative abundance of woody plants. However, the design could be
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Table 7.3 Catalog of states and phases in limy uplands

Phase Structural properties Functional properties Feedback

P1. Rested
grassland

Grassland: P. jamesii,
and/or Bouteloua
Bouteloua spp., H.
comata well
representeda,b

Presumed recovered
productivity equal
or greater than
Pre1; possibly
recovered soil
fertility; otherwise
similar tp Pre2

Frequent ground fires
(15–20 year return),a,c

resprout of
rhizomatous grasses,
and browsing by
Antilocapra
americana constrain
woody plant
abundance

P2. Shrubland Relative increase in
unpalatable shrubs
(Ericameria,
Gutierrezia, Artemisia)
or cattle-grazing tolerant
grasses (e.g., Bouteloua
gracilis)d,e

Frequent fire cycle of
SIP1 interrupted
due to loss of
connectivity or
amount of fine
fuelsc,e; at-risk of
state transition;
otherwise similar to
S1P1

Resprout of rhizomatous
grasses, after cattle
grazing confers
resilienceb,f improved
forage for A.
americana promotes
transition back to
grass dominance

P3. Denuded
grassland

Relative increase in
unpalatable shrubs
(Ericameria,
Gutierrezia), or cattle
grazing tolerant grasses
(e.g., Bouteloua
gracilis)d; increased
bare ground (may be
extreme)e Juniperus may
begin colonizinge

Frequent fire cycle of
SIP1 interrupted
due to extreme loss
of connectivity and
amount of fine
fuelsc,e; at-risk of
state transition;
otherwise similar to
S1P1

Resprout of rhizomatous
grasses, rapid
colonization of
shrubs, after cattle
grazing confers
resilienceb,f

P1. Shrubby
understory

Understory similar to
S1P2; Juniperus
established in sitea,b,c

Frequent fire cycle of
SIP1 interrupted
due to loss of
connectivity and
amount of fine
fuelsc,e

Same as S1P2 in
understory

P1. Denuded
understory

Understory similar to
S1P3; Juniperus
established in sitea,c

Frequent fire cycle of
SIP1 interrupted
due to extreme loss
of connectivity and
amount of fine
fuelsc,j

Same as S1P3 in
understory

P2. Grassy
understory

Understory similar to
S1P1, Juniperus
established in sitea,c

Recovered
connectivity and
amount of fine fuel
in understory;
Except for
overstory
functionally similar
to S1P1

Frequent ground fires
(15–20 year return)a,c

and browsing by
Antilocapra
americana prevent
new woody plant
colonization, but does
not cull extant
Juniperusc

P1. Highly
eroded—no
overstory

Low vegetation and high
bare ground cover

Productivity too low
to temper erosivity,
declining soil
fertility, erosional
features apparent

Lack of vegetation
allows erosion,
erosion prevents
recolonization
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Table 7.3 (continued)

Phase Structural properties Functional properties Feedback

P2. Highly
eroded—
Juniper
overstory

Same as S3P2, except
Juniperus established in
site

Same as S3P2 in
understory

Lack of vegetation
allows erosion,
erosion prevents
recolonization

n.a. Increased frequency, cover
of Juniperus,c decreased
understory due to
shading and litter
deposition

May have less
frequent ground
fire, but mature
trees not culled

Juniperus reduces fire
susceptibility, which
favors Juniperus

a Cinnamon 1988, b USDA-SCS 1971, c Hassler 2006, d Jameson 1962, e Sullivan and Downum
1991, f Stone and Downum 1999

improved in terms of its ability to detect changes in fire susceptibility, since fire occur-
rence is a resilience mechanism. We recommend refinement and implementation of
indicators focused directly on fine fuels connectivity (e.g., combustible patch length,
interspace length (devoid of combustible materials)). While the total amount of fuels
is important, fuel arrangement in space may be equally informative. A site-specific
fire susceptibility model, using these same indicators, would be a highly useful tool
to predict the effects of monitorable variables upon site resiliency, which is based
upon the fire return cycle. Fire susceptibility may function as a more anticipatory
indicator than vegetation structure alone. Such a model could provide a simulation-
based confirmation of transition dynamics, and assessment/tipping point estimates,
and some degree of forecasting ability, such as the most probable location of the
next fire. The role of periods of above-average precipitation in the savannization
phenomenon should also be investigated both retrospectively, and using simulation
modeling of future climate.

This case study is an example of a situation where monitoring can be applied for
scientific or learning processes (Nichols and Williams 2006). As understanding of
this ecosystem advances, the monitoring program could move towards a focused tool
for decision making.

Discussion

Our operational approach to evaluating threshold dynamics for upland ecological
sites in dryland systems offers a variety of advantages:

1. State-and-transition models for individual ecological sites specifically articu-
late hypotheses regarding reference conditions and ecosystem dynamics in the context
of goals for management and monitoring. Attributes of alternative states help to iden-
tify biophysical features that may be indicators of an impending transition (threshold
crossing). Listing known or hypothesized mechanisms and processes underlying tran-
sitions among alternative states and phases also aids in identifying indicators to be
monitored. This helps guide quantitative and qualitative estimation of tipping points,
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Table 7.4 Key to transitions in Fig. 7.3

Transition Trigger(s) Associated process(es) Relevant indicator(s)

T1 Introduction of persistent
light to moderate cattle
grazing, associated
reduction of native
browsers; fire
suppression

Reduced
amount/connectivity of
fine fuels (e.g., grass)
leading to interrupted fire
cycle

Stocking rate, cowpie
density, A.
americana pellet
density, total or
basal cover (incl.
litter), shrub: grass
cover, bare and
combustible patch
size, time since fire

T2a Cessation/reduction of
cattle grazing fire—wild
or controlled
Antilocapra americana
browsing

Recovered
amount/connectivity of
fine fuels (grasses) leading
to restored fire cycle

Rest period length,
total or basal cover
(incl. litter), A.
americana pellet
density, shrub:
grass cover, bare
and combustible
patch size, time
since fire

T3a High intensity cattle
grazing with little rest
(similar to pre-Taylor
Grazing Act), associated
reduction of native
browsers

Strong reduction in
amount/connectivity of
fine fuels leading to
interrupted fire cycle

Stocking rate, cowpie
density, A.
americana pellet
density, total or
basal cover (incl.
litter), bare and
combustible patch
size

T4a Same as T3 Same as T3 Same as T3
T5a Cessation of cattle grazing Recolonization of vegetation,

including resprouting
shrubs and grasses or
persistent wet conditions

Rest period length,
pellet density, total
or basal cover (incl.
litter), bare and
combustible patch
size

T6b Tree colonization (linked to
T1, T3, T4)

If seed source exists,
Juniperus may establish
due to lack of fire

Frequency/density of
trees, tree height

T7a Sustained high-intensity
grazing possibly in
concert with drought

Vegetation loss allows
erosion, high erosion rates
prevent recolonization

Rills, gullies,
terracettes total
plant cover

T8 Same as T7 Same as T7 Same as T7
T9c,d Interaction of extreme

drought, high
temperatures,
edaphic/physiographic
stressors

Hydraulic failure of trees,
loss of overstory

Percent of tree
mortality

T10 Same as T9 Same as T9 Same as T9
T11d Climate change-linked

prolonged wet period
Major recruitment and

establishment of Juniperus
Same as T6

a Cinnamon 1988
b USDA-SCS 1971
c Hassler 2006
d Jameson 1962
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and establishment of assessment points for monitoring purposes. In dryland systems,
resource managers use ecological sites to stratify sampling in monitoring programs
due to the likelihood that dynamics will vary among ecological site types (e.g.,
Herrick et al. 2005, 2006; O’Dell et al. 2005; Thomas et al. 2006). Applying STMs
and associated threshold-related assessments to individual ecological sites provides
results specific to individual ecosystems and their unique management challenges.

2. This approach enables monitoring for focused management decision making,
by narrowing the breadth of information to monitor. Theoretically, the number of
possible threshold triggers affecting an ecological site and resulting pathways can be
unlimited. In developing an STM, there is a natural rendering of this unlimited num-
ber to those known to occur from past observation, or perceived to be highly plausible
based on logic and inductive reasoning (i.e., experience with other dryland systems
or ecological site types). This more limited and practical domain is more understand-
able by managers, and preventative and remediation actions can be prescriptive for
specific conditions and alternative states. Furthermore, explicit consideration of key-
change agents and associated management actions in STMs promotes monitoring for
management decision making (qv. Nichols and Williams 2006). A major barrier to
monitoring for active conservation is a lack of explicit representations of hypotheses
about ecosystem responses to management actions, climate, and other drivers of
ecosystem dynamics. Formalizing current system knowledge in STMs is an initial
and critical step for focused discussion and understanding of useful indicators for
monitoring, and for designing responsible and efficient monitoring efforts to inform
management actions.

3. We provide a quantitative approach to estimate tipping and assessment points
using data. An ideal dataset for the estimation of assessment and tipping points
would consist of a well-replicated experimental manipulation of stressors where
quantitative sampling of multiple key indicators in a time series would capture the
progression of a transition. Such data resources are the minority, whereas data em-
ploying space-for-time replacement tend to be much more available. Within one or a
few points in time, samples are obtained that represent spatially discrete examples of
different states and phases. Since the transitions are not actually documented in the
data, it is assumed that the hypothesized states and transitions articulated in the STM
are the correct model of ecosystem dynamics; observed degraded states are assumed
to have transitioned in the past from other states due to the model-specified mech-
anisms. Statistical assessments relying on cluster analysis and the quantification of
differences among clusters defines state membership, and indicator values, most use-
ful for distinguishing among states, represent operational tipping points. Assessment
points for the identified indicators can be specified on the basis of the natural varia-
tion in the less-degraded state. Identifying key indicators and status associated with
vulnerable phases or threshold crossings enables managers and scientists to ascribe
meaningful and useful assessment points to ensure detection of a changing resource,
and to provide sufficient response time to prevent resource degradation or loss. This
approach can be applied to the majority of cases for which there are available data;
the basic requirements are hypothesized ecosystem dynamics and datasets which are
able to capture multiple ecosystem states.
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4. We provide a nonempirical, partially quantitative approach to modeling ecosys-
tem dynamics and estimating tipping and assessment points in the absence of data.
We developed a practical, qualitative approach to developing STMs and describing
system dynamics where empirical data are sparse or lacking. This may be the dom-
inant data-availability scenario in dryland ecological sites of the Colorado Plateau.
To accommodate these situations, we developed a Delphi-like protocol to use expert
opinion and experience of resource managers and scientists to develop an STM, and
to begin to identify system attributes of impending thresholds and of alternative states
after a threshold crossing. The Delphi method is based on the principle that group
judgment is more accurate than individual judgment. Delphi methods attempt to es-
timate an unknown quantity (e.g., probability of an event occurring) by asking an
anonymous expert panel their opinions in isolation (Linstone and Turoff 1975; Oliver
2002). Multiple iterations allow respondents to change their answer, based upon the
anonymous responses of other members, until convergence is achieved on a single
value or a narrower range of values. We used some of the principles of this approach,
but did not seek convergence. We used the respondents’ confidence in their own
responses as weights in a procedure analogous to model averaging. In this way, we
arrived at quantitative estimates of both assessment points and tipping points in a few
indicators along a transition sequence in only one iteration. We found this method
to be reasonably efficient, requiring only 2 months and two surveys; however, it
was difficult to obtain sufficient information on most indicators. Further, rather than
seeking consensus, confidence estimation provides an additional product measuring
respondents’ self-assessed level of uncertainty about an issue and identifies the most
pressing needs for evidence.

Critics of similar expert-opinion methods suggest that such approaches only serve
to boost confidence in respondents’ ignorance. However, the dominant practice in
resource conservation tends to be based on the experiential knowledge of individu-
als, rather than high-quality data or organized group judgment (Cook et al. 2010).
We present our expert-opinion protocol as an improvement over the experiential
knowledge of individuals that can be applied to identify critical indicator levels in
monitoring any ecosystem. This approach can be applied more quickly and cheaply
than a scientific study, giving it much utility when time or funds are limiting. Weighted
averages of group assessment and tipping point estimates provide an intermediate
level of quantitative data quality, higher than individual judgment and lower than
quantitative field and experimental data. We do not consider a model produced using
this procedure to be final, rather it is a first iteration of a useful model which should
be refined as more information becomes available. Estimates of model parameters
can serve to inform prior information in later Bayesian estimation using data.

Concluding Remarks Monitoring efforts by the NPS I&M networks are unlikely to
attain their full potential without a clear understanding of vulnerable conditions and
tipping points associated with ecological thresholds; however, the strength of these
monitoring efforts is that they anticipate the development of this understanding.
Scientific research and synthesis must provide the missing information. The two
approaches we used in this chapter have the potential to provide a credible basis for
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establishing assessment points for these monitoring efforts. Estimates of assessment
point values are surprisingly rare in the literature (but see Digiovinazzo et al. 2010),
yet they seem crucial to the goal of applying threshold concepts to management
problems. This goal is consistent with application of a preventive threshold: Attaining
an assessment point of one or more indicators could trigger regulation of “changes
to patterns that make systems vulnerable to deterministic or event-driven change”
so that the undesired transition never occurs (Bestelmeyer 2006). In conservation
and resource management, decisions must often be made regardless of the level of
confidence in our knowledge of ecosystems (Soulé 1985; Cook et al. 2010). Our goal
should be to develop the best set of models possible given the level of information
available to support decisions. The approach presented here offers a flexible means
of achieving this goal, and determining specific research areas in need of study.
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Chapter 8
Using Natural Range of Variation to Set
Decision Thresholds: A Case Study
for Great Plains Grasslands

Amy J. Symstad and Jayne L. Jonas

Abstract Natural range of variation (NRV) may be used to establish decision thresh-
olds or action assessment points when ecological thresholds are either unknown or
do not exist for attributes of interest in a managed ecosystem. The process for esti-
mating NRV involves identifying spatial and temporal scales that adequately capture
the heterogeneity of the ecosystem; compiling data for the attributes of interest via
study of historic records, analysis and interpretation of proxy records, modeling,
space-for-time substitutions, or analysis of long-term monitoring data; and quanti-
fying the NRV from those data. At least 19 National Park Service (NPS) units in
North America’s Great Plains are monitoring plant species richness and evenness as
indicators of vegetation integrity in native grasslands, but little information on nat-
ural, temporal variability of these indicators is available. In this case study, we use
six long-term vegetation monitoring datasets to quantify the temporal variability of
these attributes in reference conditions for a variety of Great Plains grassland types,
and then illustrate the implications of using different NRVs based on these quan-
tities for setting management decision thresholds. Temporal variability of richness
(as measured by the coefficient of variation, CV) is fairly consistent across the wide
variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass
sand savanna (CV 0.20–0.45) and generally less than that of production at the same
sites. Temporal variability of evenness spans a greater range of CV than richness, and
it is greater than that of production in some sites but less in other sites. This natural
temporal variability may mask undesirable changes in Great Plains grasslands veg-
etation. Consequently, we suggest that managers consider using a relatively narrow
NRV (interquartile range of all richness or evenness values observed in reference
conditions) for designating a surveillance threshold, at which greater attention to the
situation would be paid, and a broader NRV for designating management thresholds,
at which action would be instigated.
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Introduction

Ecological thresholds are an appealing concept for natural resource management
because they provide dramatic, drastic pictures of the consequences of misman-
agement to a broad audience. Unfortunately, predicting the conditions that precede
the crossing of an ecological threshold is notoriously difficult (Scheffer and Car-
penter 2003; Thrush et al. 2009; Hastings and Wysham 2010). Conversely, not all
ecosystems exhibit threshold behavior (Stafford Smith 1996; Bagchai et al. 2012),
or ecological thresholds may occur far outside the range of conditions maintained
by management, as is often the case in protected natural areas like national parks.
These conditions do not preclude the establishment of decision thresholds— values
of ecosystem state variables that prompt changes in management actions. Instead,
managers can establish decision thresholds, also known as action thresholds (Ford
et al. 1999), management thresholds (Bennetts et al. 2007), or action-assessment
points (Mitchell et al., Chap. 10), based on the natural range of variation (NRV) of
the ecosystem attributes they are monitoring.

NRV is a concept with many names, including “range of natural variation,” “his-
torical range of variation,” “natural variability,” and “reference variability,” with
some authors preferring “historic” over “natural” because it implies that the effects
of indigenous people on ecosystems are included, and because it avoids the ambigu-
ity of the term “natural” (Egan and Howell 2001b). A similar concept is “reference
condition,” used frequently in assessing the ecological integrity of streams and wet-
lands, but with less emphasis on range and variation than the other terms (Stoddard
et al. 2006). We use “natural range of variation” to be consistent with Mitchell et al.
(Chap. 10). Regardless of its exact name, the concept was developed to recognize
that ecosystems are dynamic, but that their dynamics operate within bounds that
remain relatively consistent over time (Morgan et al. 1994). To some, it also implies
that the ecosystem is self-sustaining within the range of these bounds, but outside
the range the system becomes unrecognizable (Egan and Howell 2001b) and, pre-
sumably, difficult to return to its original condition. In this context, NRV is related to
ecological thresholds, in that it assumes there is a point beyond which an ecosystem
will shift to a different state (Groffman et al. 2006). The driver behind this shift can
be natural (e.g., a strong hurricane) or anthropogenic (e.g., nutrient enrichment of
water bodies from agricultural runoff). Either way, there is no inherent assumption
in the concept that the small step from inside to outside a system’s NRV will result in
a large, abrupt change in an ecosystem quality, property, or phenomenon (Unnasch
et al. 2009).

On the other hand, NRV can also be a useful concept when an ecosystem property
is of management interest, but the quality may not change substantially even as the
ecosystem as a whole crosses a threshold to a different state. For example, water
yield from a watershed may increase dramatically after a fire kills all of the trees
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in the watershed. Although the forest may have shifted to a long-lived grassland
state as a result of the fire, the dramatic increase in water yield may be short lived,
returning to prefire conditions in just a couple of years when the grasses become
well established. Water managers would be interested in the NRV in this ecosystem
property across the ecological threshold, and the temporary increase would simply
be a part of that variation.

Plant diversity in the grasslands of North America’s Great Plains is an ecosystem
quality important to managers in this region, but its behavior is not well understood
with respect to specific management practices or ecological thresholds. Conse-
quently, NRV is a pragmatic approach for determining decision thresholds in this
situation. In this chapter, we first outline the general process for determining the NRV
of an ecosystem quality, then we use the plant diversity of Great Plains grasslands
(GPG) to illustrate this process and, in so doing, provide specific values of these
qualities and their NRV for GPG managers—information not available elsewhere.
Finally, we discuss potential decision thresholds for specific GPG plant communities
based on these values, and the implications of defining NRV in different ways.

A General Process for Quantifying Natural Range of Variation

Assuming that the community or ecosystem of interest is already well defined, the
first step in describing NRV is to determine which attributes of that ecosystem will be
used to describe that NRV. The attributes can be any of a wide variety of processes and
properties, but they of course must be relevant to the management issue at hand and
sufficient information about them must be available. A large part of the literature on
NRV focuses on fire return intervals in forested systems and the resulting distribution
of forest ages and types across the landscape (Bergeron et al. 2004; Carlson and Kurz
2007; Doyon et al. 2008; Mori and Lertzman 2011), but other attributes for which
NRV has been quantified include spruce beetle irruption frequency and extent in
Alaskan boreal forests (Sherriff et al. 2011), net ecosystem production in tropical
forest (Sierra et al. 2007), and magnitude, frequency, and duration of river flows, as
well as the spatial distribution and diversity of specific geomorphological forms, in
the Colorado Front Range and Florida Everglades (Harwell 1997; Wohl 2011).

Second, appropriate spatial and temporal scales must be identified for the attributes
of interest. Both must be broad enough that they allow for variation or heterogeneity
in the ecosystem qualities of interest, but narrow enough that they encompass an
ecosystem that is relatively consistent in terms of climatic, edaphic, topographic,
and biogeographic conditions that are relevant to the management issue (Morgan
et al. 1994). For example, differences in valley geometry, as well as variations in
vegetation and hydrological flow regimes associated with elevation, translate into
different NRVs among reaches within streams and among streams in mountainous
regions (Wohl 2011). Bergeron et al. (2004) used dendrochronological techniques
to estimate the mean fire intervals for mixed and coniferous boreal forests in eastern
Canada prior to 1850, when European settlers began to impact the fire behavior of
the region. The authors later decided that the length of time covered using these
techniques (300–400 years) was too short to adequately capture the NRV given the
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long life span of the tree species and communities that they were investigating, as well
as the somewhat anomalous climate conditions of the 1770–1850 period (Cyr et al.
2009). Other issues to consider when choosing specific locations from which to gather
NRV information include the location’s history of management and other human
influences, and the presence and abundance of exotic species (Landres et al. 1999).

Next, information must be compiled and translated into actual values of the at-
tributes of interest. Methods used to do this depend on the choices made above and
fall into five basic categories: study of historic records, analysis and interpretation
of proxy records, modeling, space-for-time substitutions, and analysis of long-term
monitoring data (Morgan et al. 1994; Egan and Howell 2001a). The last of these
methods might be considered ideal, but consistently collected data over time periods
long enough to address many NRV questions are rare. This is because the data-
collection period must not only adequately cover the ecosystem of interest spatially,
but also must be long relative to the return interval of external forces driving variabil-
ity (disturbances, climatic fluctuations, etc.) and to the life span of the organisms of
interest. Space-for-time substitutions can be used when a sufficiently large unaltered
area, such as a large wilderness area, contains the range of conditions encompassed
by the target ecosystem (Morgan et al. 1994). For example, current vegetation could
be sampled in areas that have experienced various levels of grazing by native herbi-
vores in order to describe the NRV of composition and productivity in a grassland
ecosystem that evolved with these grazers. Dynamic simulation models that incor-
porate the effects of disturbances and stochastic fluctuations (as in weather) have
been used to estimate the NRV of net ecosystem production, fire, and landscape
dynamics, for example (Baker 1992; Sierra et al. 2007; Doyon et al. 2008). Mod-
els have the advantage of being able to cover a wide range of possible conditions
that other methods may not, but they must be adequately calibrated to the location
of interest to provide reasonable estimates. All three of these methods are subject
to the same primary difficulty of finding an ecosystem minimally impacted by fire
suppression, pollution, predator control, and other ecological disruptions caused by
modern humans, to monitor, measure, or use to calibrate a model. Proxy methods
that construct a chronology of past events based on pollen, microfossils, seeds, tree
rings, fire scars, or lake sediments can avoid this problem, but they may not provide
the temporal, spatial, or biological resolution desired (Swanson et al. 1994). Early
land survey or forest reserve data may provide quantitative historical information
(e.g., Graves 1899), but their use may be limited by lack of or unknown rigor, lack
of detail, and their scarcity through time and space (Morgan et al. 1994). Finally,
historical records such as photographs and explorers’ journals can provide qualita-
tive information where quantitative data cannot be obtained. For example, Higgins
(1986) compiled and interpreted historical fire accounts from early European explor-
ers’ journals of their travels in the northern Great Plains to estimate fire frequency
and seasonal distribution, but he pointed out the many limitations of this approach,
including potential exaggeration by the journalists. Ideally, values of the attributes
of interest will be derived using a combination of approaches so that the weaknesses
of each approach are compensated for by the strengths of the other.

After values for the attributes of interest have been derived, the NRV of those
attributes must be quantified. This can be done with a variety of metrics, the use
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Fig. 8.1 Three potential relationships between natural range of variation (NRV; open circle), desired
conditions (filled circle), and current conditions (hatched circle) and ease of path among them
(line). a Desired conditions are within NRV; moving current conditions to either will require effort.
b Desired conditions differ substantially from NRV, and moving current conditions to desired
conditions will be difficult as the tendency is to move towards NRV. c A substantial ecological
barrier (threshold) makes returning current conditions to within NRV extremely difficult, so desired
conditions are in an alternate state

of which depends on the attributes of interest. Mean, median, standard deviation,
percentiles, skewness, confidence intervals, and range describe an expected value
and the magnitude and shape of the variation around that value. The coefficient of
variation (CV; standard deviation divided by mean) is useful for describing the rela-
tive magnitude of fluctuations in an attribute through time, and frequency quantifies
the rate of recurrence of an event type or ecosystem state. Mean and 95 % confidence
intervals appear to be popular metrics for describing NRV (Bergeron et al. 2004;
Sierra et al. 2007; Doyon et al. 2008; Cyr et al. 2009), but the full range of mea-
sured values is also sometimes used (Carlson and Kurz 2007; Sherriff et al. 2011).
Although the central limit theorem ensures that the distribution of the mean of a
large number of samples from any population will generally approximate a normal
distribution, this does not mean that a given ecological variable will have a normal
distribution. Thus, caution should be exercised when using parameters describing a
normal distribution (mean, standard deviation) to describe the NRV of an ecological
variable. Consequently, as with any quantitative data, it is always wise to perform
a variety of exploratory data analyses to understand the shape of the data’s distribu-
tion (Ellison 2001); this shape may itself be a useful means for describing the NRV
(Landres et al. 1999).

Once the NRV is quantified, it is used for its intended purpose, which is usually
to evaluate current conditions and determine desired conditions (Fig. 8.1). Desired
conditions may be a subset of the NRV if parts of the NRV are not socially accept-
able (e.g., intense, stand-replacing fires near urban areas) or if the full NRV is no
longer possible due to land development, climate change, extinction, etc. (Fig. 8.1a;
Swanson et al. 1994; National Park Service 2009; Thompson et al. 2009; Unnasch
et al. 2009; Duncan et al. 2010). Desired conditions that differ substantially from the
NRV for the former reason but not the latter may be difficult to attain or maintain
without substantial, direct management (Fig. 8.1b). On the other hand, if an ecolog-
ical threshold has been crossed, current conditions may be substantially outside the
system’s NRV. This situation may warrant setting the desired conditions outside the
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NRV because conditions within the NRV are not feasibly attainable (Fig. 8.1c). For
the rest of our discussion, we will focus on the scenario in Fig. 8.1a, where desired
conditions lie wholly within the NRV.

Process for Great Plains Grasslands Plant Diversity Natural
Range of Variation

Focal Ecosystem

GPG cover an area of approximately 2 million km2 in mid-continental NorthAmerica.
Vegetation biomass is dominated by grasses, but forbs generally provide much of
the diversity. Temperature and precipitation gradients across the region result in a
general west-to-east increase in productivity and plant species richness (Teeri and
Stowe 1976; Risser et al. 1981) and a gradient of broad grassland types (Lauenroth
et al. 1999; Fig. 8.2). Local variations in soils and topography yield a variety of plant
assemblages at finer spatial scales. Temporal climate variability is high throughout the
region, more so than in the remainder of North America east of the Rocky Mountains
(Borchert 1950). These climatic forces, as well as periodic fire and herbivory by
large ungulates (bison, elk, and pronghorn), insects, and prairie dogs, shaped the
evolution of GPG (Axelrod 1985; Anderson 2006). Today, major factors affecting this
highly endangered ecosystem include land use patterns, exotic and invasive species,
atmospheric nitrogen deposition, altered fire and grazing regimes, and climate change
(Samson and Knopf 1994), and most of these have been shown to affect plant diversity
in the region (Symstad and Jonas 2011).

The term “Great Plains grasslands” encompasses far too broad an area for mean-
ingful characterization of NRV of any ecosystem characteristic, but this area hosts at
least 19 National Park Service (NPS) units where plant diversity has been identified
as an important measure of ecosystem health (DeBacker et al. 2004; Manier et al.
2011; Symstad et al. 2011), as well as a wide variety of other federal, state, and pri-
vate lands where native grasslands are being managed and restored. In order to serve
this broad audience but also provide meaningful values, we present NRV information
for one or two sites from four of the five major grassland types in the Great Plains
(Fig. 8.2), separated by topoedaphic class within these sites when appropriate.

Attributes of Interest

We focus on plant diversity for three reasons. First, the NPS mission is to preserve
and protect the landscapes and organisms within its holdings for the enjoyment of
future generations. Consequently, maintaining or restoring diversity is increasingly
becoming an explicit management goal of many NPS units. Second, a large body of
research investigating the relationship between biodiversity and ecosystem function-
ing over the past 15 years has shown that greater plant diversity on average results not
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Fig. 8.2 Major grassland
types of North America’s
Great Plains (after Lauenroth
et al. 1999), and locations of
datasets described in Table 8.1

only in higher production, but also in more stable production (Tilman 2001; Hooper
et al. 2005; Balvanera et al. 2006; Cardinale et al. 2006, 2007; Fargione et al. 2007;
Schmid et al. 2009; Isbell and Wilsey 2011), and that maintaining high levels of
multiple ecosystem functions (e.g., nutrient retention and belowground carbon stor-
age in addition to aboveground production) requires more species than maintaining
a high level of just one ecosystem function (Hector and Bagchi 2007; Zavaleta et al.
2010). Consequently, Briske et al. (2006) proposed species loss as one category of
threshold that rangelands cross when progressing from a desirable state to an undesir-
able state. Little information to evaluate this suggestion is available, however. Thus,
our third reason for focusing on plant diversity is to begin filling that information
gap. The Natural Resource Conservation Service’s nationwide effort to describe the
dynamics of rangeland (including GPG) vegetation in response to various manage-
ment practices provides a wealth of information on the variability of dominant plant
species (Bestelmeyer et al. 2003, 2009; see Bowker et al. (Chap. 7) for a thorough
description of this process), but provides no information on plant diversity.

We use two metrics of plant diversity—species richness and species evenness
(hereafter richness and evenness). Richness is the number of species in a given area
(i.e., those counted in a sample of fixed area), whereas evenness is a metric quanti-
fying the relative abundance of species in that area. We use the Shannon evenness
index, calculated as (− ∑

pi ln pi)/ ln S, where pi is the proportional abundance of
species i, and S is the total number of species (i.e., richness; Magurran 1988). Even-
ness ranges from 0 to 1, with values near 0 indicating greater dominance by a single
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species and values near 1 indicating nearly equal abundance of all species present.
We use both of these metrics because they are expected to respond to ecosystem
stressors differently. Richness will be more sensitive to stressors that cause the loss
of only relatively rare species, whereas a stressor that causes significant shifts in the
way resources are partitioned among species could affect evenness without substan-
tially affecting richness. Because of the different information contained in these two
metrics, we do not use any of the indices that combine richness and diversity into
one value and are usually referred to as diversity indices.

Spatial and Temporal Scale

Although plant diversity is an important descriptor of a plant community, any metric
describing it is complicated by its sensitivity to the area over which it is sampled.
Consequently, we focus on richness and evenness at the −quadrat or transect scale
(see Table 8.1 for sizes and explanation of scale chosen for each site) because it is the
scale most comparable among management units and between current and reference
conditions. In addition, because annual fluctuations in climate are significant drivers
in GPG vegetation, we felt it was important to characterize variability with a high
temporal resolution—an annual time step.

Information Sources and Approach

Given these attributes, metrics, and goals, the best method for describing NRV in
GPG vegetation was analysis of long-term monitoring data. We found six datasets that
have sufficient temporal length (> 10 years) and resolution (annual), have enough
detail (abundance of individual species recorded in a fixed location) to calculate
richness and evenness, and are from relatively unimpacted ecosystems (e.g., fire not
excluded, low exotic species abundance). Data come from five sites: the Shortgrass
Steppe (SGS), Konza Prairie (Konza), and Cedar Creek (Cedar Creek) long-term
ecological research stations, Fort Hays State University (Hays), and Fort Keogh
Livestock and Range Research Laboratory (Miles City). Two datasets (Konza FRI
and Konza Grazed), from two separate experiments at Konza, were kept separate in
our analyses. Table 8.1 describes these datasets, two of which are historic and four
of which are modern. We refined the datasets to include only quadrats (transects for
Konza datasets; Table 8.1) for which data were reported for at least 80 % of the time
series. For all datasets except Cedar Creek, exotic species occur in up to 68 % of
sample units, but, averaged over all sample units in each dataset, they comprise < 6 %
of total richness and < 5 % of plant cover/density. Exotics are more abundant in the
Cedar Creek datasets. Consequently, for this dataset, we only included plots that
never had > 25 % exotic species cover. Each dataset was accompanied by weather
data from a nearby (<12 km) meteorological station for the period during which the
vegetation data were collected.
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Quantifying NRV

For each dataset, we calculated richness and evenness for each quadrat (or transect
for Konza datasets) in each year (including all species), then tested for significant
differences in richness and evenness among community types (Hays), treatments
(SGS, Miles City, Cedar Creek), or soil type × treatment combinations (Konza
FRI and Konza Grazed) with repeated measures ANOVAs. These effects or their
interaction with each year were significant (p < 0.05) for all but one dataset (SGS).
Thus, each community type, treatment, or soil type × treatment was treated sepa-
rately for all datasets except SGS, in which all subsequent calculations combined the
two grazing treatments into a single time series. We calculated annual richness and
evenness means and 95 % confidence interval of those means for each community
type/treatment/soil × treatment, as well as the median and 10th, 25th, 75th, and
90th percentiles and full range of each response variable over the entire time series
for a single reference treatment (where applicable; see Table 8.1). As a measure of
temporal variability, we calculated the CV in richness and evenness through time for
each quadrat/transect.

Since species richness or evenness fluctuations may be related to fluctuations in
precipitation via individual species’response to moisture, we also quantified temporal
variability of precipitation as the CV of mean annual precipitation over the period in
which vegetation data were collected. Interannual fluctuations in GPG aboveground
net primary production are also considerable and have been characterized much more
fully than fluctuations in species richness or evenness (Webb et al. 1978, 1983; Sala
et al. 1988; Smart et al. 2007). To put the variability of species richness and evenness
in the context of variability of this other important GPG attribute, we calculated the
CV of total density, cover, or biomass (measure varies among datasets; see Table 8.1)
through time for each quadrat or transect.

Variation of Plant Species Richness and Evenness in Great Plains
Grasslands

Median species richness in 1-m2 quadrats varies from 4 to 12, and evenness varies
from 0.34 to 0.68, in western GPG (SGS, Hays, and Miles City; Figs. 8.3–8.5). In
the more productive and diverse eastern GPG, median species richness is 14 in just
0.3 m2 in the sand savanna (Cedar Creek; Fig. 8.6a), and 37–54 species in five 10-m2

quadrats in the Flint Hills of Kansas (Konza; Fig. 8.7a–c, g–i); median evenness was
similar between the sites, ranging from 0.623 to 0.675 (Figs. 8.6b, 8.7d–f, j–l). The
low evenness values at Hays (Fig. 8.4, right) compared to the other sites may be due
to the way that species abundance was measured (basal cover vs. density or foliar
cover) rather than an inherent difference in structure of the plant community.

Temporal variability of species richness in these datasets is fairly consistent across
the wide variety of conditions occurring in shortgrass prairie in Colorado (SGS)
to tallgrass sand savanna in Minnesota (Cedar Creek), with richness CVs in the
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Fig. 8.3 Mean (± 95 % CI) annual species richness (left) and evenness (right) in 1-m2 quadrats in
northeastern Colorado shortgrass prairie (SGS dataset). Bands indicate 25–75th (darker gray) and
10–90th (lighter gray) percentile range of all values measured in indicated time period, and dotted
lines indicate the full range of these values. The thick horizontal line is the long-term median of
these values

0.20–0.45 range (Table 8.2). Flint Hills tallgrass prairie (Konza) shows much lower
richness CVs (< 0.20), but this is likely due to the much larger area covered by each
sample. The chances of one or a few species winking in or out from one year to the
next are presumably much higher in a small quadrat than in the 50-m2 area sampled
for the Konza datasets. Higher species richness CVs seem to be related more to
whether a time series includes the 1930s Dust Bowl period of extreme drought in
this region rather than to the length of the time series. Comparing richness CVs from
SGS and Cedar Creek (Dust Bowl not included) to those of Hays and Miles City
(Dust Bowl included), versus comparing SGS and Miles City (< 15 years) to Cedar
Creek and Hays (≥ 25 years), illustrates this point (Table 8.2). Temporal variability
of evenness spans a larger range among the time series than does species richness
variability, but evenness CV is not consistently greater than that of richness at a given
site.

Temporal variability of species richness in these datasets is consistently lower
than that of production (Table 8.2) suggesting that this may be true across a wider
range of locations than those investigated here. In contrast, temporal variability of
evenness relative to that of production is inconsistent within and across sites, as is the
variability of richness or evenness relative to precipitation. The latter indicates that,
although GPG production is generally related to temporal variations in precipitation
(Webb et al. 1978, 1983; Sala et al. 1988; Smart et al. 2007), the same is not
true for GPG diversity. Indeed, analyses investigating the relationship between plant
species richness and a variety of weather variables in GPG suggests that there is little
consistency in these relationships across sites or among management treatments
within sites (Jonas et al. in revision). It is important to note, however, that temporal
variability in richness and evenness is frequently of similar magnitude to differences
in the metrics among management treatments (e.g., fire; Fig. 8.7d–f vs. Fig. 8.8b) or
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Fig. 8.4 Mean (± 95 % CI) annual species richness (left) and evenness (right) in 1-m2 quadrats in
five vegetation types in central Kansas mixed-grass prairie (Hays dataset). Shading and lines as in
Fig. 8.3
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Fig. 8.5 (Left) Mean (± 95 % CI) annual species richness in 1-m2 quadrats in moderately grazed
mixed-grass prairie in eastern Montana (Miles City dataset). Shading and lines as in Fig. 8.3. (Right)
Box-whisker diagrams for light, moderate, and heavy grazing treatments at the same location and
over the same time period depicted at left. For each treatment, the median (central line), middle
quartiles (box), 10th and 90th percentiles (whiskers), and outlying values (+ ’s) are shown

experimental treatments simulating anthropogenic stresses (e.g., nitrogen deposition;
Fig. 8.6b vs. Fig. 8.6d). This “noise” that makes detecting effects of these factors on
GPG difficult has been noted previously by other authors (Gibson and Hulbert 1987;
Biondini et al. 1989; Coppedge et al. 1998; Wienk et al. 2009).

Where Should the Decision Threshold Be?

Possible ranges of plant species richness and evenness that might be considered NRVs
for a variety of GPG communities are illustrated in Figs. 8.3–8.7. By definition, the
range spanning the 25–75th percentiles (“interquartile” range; dark gray band in
Figs. 8.3–8.7) includes half of the values measured, whereas the 10–90th percentile
range (light gray band) includes 80 % of them. In most cases, the latter range is
substantially larger than the former, indicating substantially different deviations from
the central tendency that would be needed to spur a change in management activity if
the decision threshold were simply the outside bound of the NRV. For example, the
declining values of species richness in fertilized plots at Cedar Creek (Fig. 8.6a) could
prompt action in 1985 if the decision threshold were determined by the interquartile
range, but they would not garner attention until 1988, or possibly even 1996, if the
decision threshold were based on the wider 10–90th percentile range. And, of course,
there would be no action at all if the decision threshold was based on the full range
of values. Basing NRVs and decision thresholds on this full range is particularly
problematic for Hays, the longest dataset and one that began during the Dust Bowl,
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Fig. 8.6 a, b Mean (± 95 % CI) annual species richness (a) and evenness (b) in 0.3-m2 quadrats
in unfertilized (reference condition; black circles) and fertilized (17.0 g nitrogen/m2, white circles)
sand savanna in east-central Minnesota (Cedar Creek dataset). Fertilized time series are offset
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For each treatment, the median (central line), middle quartiles (box), 10th and 90th percentiles
(whiskers), and outlying values (+ ’s) are shown. Lower-case letters above boxes indicate significant
differences among treatments (p < 0.05)

because the range of evenness values experienced by the system essentially equals
the full range of values mathematically possible for this index.

A single location’s species richness value falling outside of the range chosen as
the NRV under current conditions would generally not warrant the management
action prescribed by the decision threshold. Decisions would be based on the mean
or median of the sample frame and the confidence in that estimate. A single year’s
crossing out of the NRV also might not warrant immediate action. For example, if
we say that the NRVs in Fig. 8.6a are independent of the time series shown therein,
the drop in mean species richness of the unfertilized plant community at Cedar Creek
below the interquartile range in 1988 might not spur action because richness returns to
within this range the next year and stays there for the duration of the monitoring. Thus,
a decision threshold might require that the metric of interest show a consistent trend of
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deviating from the NRV. Taking action also requires understanding the reason for the
departure. In the Cedar Creek example, the precipitous drop in richness was caused
by a severe drought (Tilman and El Haddi 1992), a natural environmental driver
usually requiring no management intervention. On the other hand, if the departure
from NRV were linked to a fertilizer spill, remedial action should be taken.

How long to wait, though, will depend on the relative costs and benefits of acting
when the system can actually recover on its own versus being too slow in taking
action so that the system crosses into an undesirable state from which it cannot
recover. These costs and benefits are formally codified in a utility function (Martin
et al. 2009; Nichols et al. Chap. 2), which also incorporates knowledge about the
ecosystem’s response to specific management actions with respect to management
objectives. Since utility functions are unique to each management situation and are
relatively rare for vegetation management in natural areas, we do not address this
issue. We emphasize, however, that using management thresholds and assessment
points based simply on NRV is a reasonable first step towards constructing more
rigorous decision-making models in GPG.

A judicious approach in this situation would be to designate the interquartile NRV
as the bounds for instigating more attention, such as more detailed analyses of data
(e.g., closer look at species composition, exotic species richness and abundance, or
woody plant cover) or increasing the intensity of sampling (surveillance assessment
points; Mitchell et al., Chap. 10), and to designate the broader 10–90th percentile
NRV as the bounds to instigate a specific-management action (action assessment
point). The rationale for having these two different assessment points is to avoid
the cost (monetary and ecological) of initiating an action when unnecessary, such as
when the system returns to the narrower NRV prior to reaching the action assessment
point.

Some Notes About the Values We Present

Designating what constitutes the “reference” condition is far from straightforward
in an ecosystem that does not lend itself to most historical reconstruction tech-
niques (e.g., dendrochronology). Although there is uncertainty about the intensity,
frequency, and spatial patterning of fire and grazing before European settlement in
all of these systems, we are certain that the conditions maintained at the sites from
which we obtained our data substantially diverged from presettlement conditions. For
example, grazing at these sites, if it occurred at all, was much more regulated (tim-
ing and intensity) than what occurred when large herds of bison, elk, and pronghorn
freely roamed the Great Plains, and there are known differences in behavior and
dietary preferences between these native grazers and domestic cattle (Plumb and
Dodd 1993; Hartnett et al. 1997; Towne et al. 2005). Prescribed fire, if it occurred
at all, was also applied quite regularly and uniformly and during conditions that do
not necessarily mimic those of presettlement times (Higgins 1986). Because it is
impossible to return to presettlement fire and grazing regimes and undo landscape
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fragmentation, atmospheric pollution (including greenhouse gas emissions), etc., the
species richness and evenness values we present are reasonable alternatives.

Although we used only one “reference” condition to illustrate fluctuations in
species richness and evenness through time (Figs. 8.3–8.7), we acknowledge that
others may disagree with those choices by presenting summary information on tem-
poral variability (Table 8.2) and overall variation (Figs. 8.5, 8.8) for conditions that
could also be considered reference. For example, although the assumed fire return
interval in presettlement tallgrass prairie is 3–5 years (Knapp et al. 1998; hence our
using the 4-year fire return interval as the reference condition for Konza datasets),
shrub cover has steadily increased under these conditions at Konza, whether grazed
or not (Heisler et al. 2003; Briggs et al. 2005; Ratajczak et al. 2011), indicating
the vegetation is not in reference condition despite the maintenance of the histori-
cal fire frequency. Indeed, shrub cover at Konza has increased slightly even under
annual burning, indicating that management more aggressive than the historical fire
regime may not be able to attain or maintain vegetation within the NRV in the face
of changing atmospheric and herbivory conditions (Briggs et al. 2005).

We also acknowledge that some datasets probably do not adequately describe NRV
for certain conditions. In particular, species richness has continuously increased since
bison grazing was initiated in 1994 in the Konza datasets (Fig. 8.7g–i), indicating
that the system has not yet reached equilibrium with the new conditions. Similarly,
the Miles City dataset, begun in the Dust Bowl, may not be long enough to capture
the full recovery of the system from this severe drought (Albertson and Weaver 1944;
Adler and Levine 2007; i.e., compare Figs. 8.4 and 8.7).

The datasets we used cover only a small subset of the many grassland-vegetation
assemblages that occur across the Great Plains. However, the values we derived
for NRVs (interquartile and 10–90th percentile ranges) provide a starting point for
managers at other sites. For example, species richness in a native prairie unit at
Fort Union Trading Post National Historical Site in western North Dakota is well
within the center of the interquartile range for Miles City. This position is consistent
with other aspects of the vegetation at Fort Union that suggest that it is in good
condition (Symstad 2011). On the other hand, the mixed-grass prairie at Scotts
Bluff National Monument in western Nebraska has a substantial amount of invasive,
annual brome (Bromus spp.) grasses, suggesting poor condition. Species richness
there is well below the 10th percentile of Miles City mixed-grass prairie and near
the 25th percentile for the mixed-grass communities at Hays (Symstad 2005). When
determining whether the values presented here are relevant for other sites, managers
would benefit from a short term but spatially extensive sampling of one or more
reference sites relevant to their location. Given the paucity of long-term monitoring
in GPG vegetation, however, we believe the temporal variability information we
present (CVs in Table 8.2) is likely to be the best available.

Unfortunately, the natural variability of these metrics through time may make
detecting trends towards undesirable changes in GPG vegetation difficult. For ex-
ample, Collins et al. demonstrated that annual spring burning of tallgrass prairie in
the Flint Hills of Kansas is known to lead to statistically significantly lower species
richness compared to areas burned every 3–4 years (Collins et al. 1995; Collins 2000;
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Fig. 8.8 Box-whisker plots of species richness (a) and evenness (b) values from five 10-m2 quadrats
for three fire return interval treatments in three topographic positions/soil types in ungrazed, eastern
Kansas tallgrass prairie, 1983–2007 (richness) or 1989–2007 (evenness) (Konza FRI dataset). For
each treatment × topographic position combination, the median (central line), middle quartiles
(box), 10th and 90th percentiles (whiskers), and outlying values ( + ’s) are shown. Lower-case
letters below boxes indicate significant differences among treatments within topographic position
(p < 0.05)

Fig. 8.8a). In the Konza FRI dataset, the difference between annual and quadrennial
burning is reflected by the fact that the median richness of annually burned prairie
is below the 25th percentile for the quadrennially burned (reference condition) in
each of the three slope positions prairie (Fig. 8.8a). On the other hand, even fairly
low levels of nitrogen fertilization have been shown to significantly reduce species
richness at Cedar Creek (Tilman 1987; Clark and Tilman 2008; Fig. 8.6c), but the
median value of richness in significantly impacted plots (2.04 and 3.40 g N/m2 added
per year) is well within the interquartile range of richness for the unfertilized plots
(Fig. 8.6c). In this case, the experimental evidence supports setting surveillance-
assessment points within a narrower range than the interquartile based on temporal
variability, but action assessment points/decision thresholds would need to be tem-
pered by the fact that a severe drought (in 1987–1988) drove species richness and
evenness well outside the interquartile range (Fig. 8.6a, b).

Conclusions

In ecosystems exhibiting a wide range of natural variability, identifying ecological
or decision thresholds can be challenging. Employing the NRV concept to describe
attributes of interest based on long-term information for an ecosystem is a promising
avenue for determining surveillance and action-assessment points or decision thresh-
olds. This case study presents actual values of plant species richness and evenness
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and their NRVthat managers of GPG vegetation can use as starting points for estab-
lishing thresholds for heightened attention or taking action in their own locations.
In addition, it illustrates the limitations of using just NRV information to establish
these thresholds. Continued attention to the importance of plant diversity in GPG and
other ecosystems, long-term monitoring of plant diversity metrics being established
by the NPS and other agencies and organizations, research to better understand the
response of these metrics to various stressors and management actions, and concerted
efforts by managers to determine the costs and benefits of acting at various levels
of diversity will help refine decision thresholds for this vast but highly threatened
ecosystem.
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Chapter 9
Evaluating Bioassessment Designs and Decision
Thresholds Using Simulation Techniques

Craig D. Snyder, Nathaniel P. Hitt, David R. Smith and Jonathan P. Daily

Abstract Natural resource managers face numerous choices when developing
bioassessment programs but seldom have the opportunity to compare the perfor-
mance of alternative designs. As a result, managers often lack a basis for establishing
decision thresholds based on their objectives for evaluating resource condition, ac-
counting for uncertainty, and controlling costs. In this chapter, we illustrate how
simulation techniques may be used to optimize bioassessment decision thresholds
and sampling designs with a case study of benthic macroinvertebrate communities
in Shenandoah National Park, USA. We evaluated the effects of sampling effort (6
levels) and taxonomic resolution (family vs. genus) on the sensitivity of a commonly
used index of stream condition (Macroinvertebrate Biotic Integrity Index, MBII) to
classify resource condition as affected by ecological change. We computed expected
utility values to compare decision thresholds, which integrated statistical power and
differential risk tolerance for misclassification (i.e., type I and II error rates). Our anal-
ysis revealed important differences among bioassessment designs. MBII sensitivity
increased with sampling effort, but improvements were modest across the highest
sampling levels. Genus-level assessments were generally most sensitive to ecolog-
ical change, even though precision increased at the family level due to decreased
variation in reference communities. However, the sensitivity-cost relationship re-
vealed no single, optimal combination of taxonomic resolution and sampling effort.
Rather, we found that for a given cost, equivalent sensitivities could be obtained from
larger samples at the family-level or smaller samples at the genus level. An analy-
sis of expected utility demonstrated that the optimal decision threshold depends on
prior probability of resource condition, i.e., reference, early warning, or impaired.
We conclude that simulation methods provide a flexible approach to evaluate and
optimize bioassessment designs and decision thresholds based on objective-specific
utility values.
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Introduction

Over the last 30 years, biological assessments of environmental quality (i.e.,
bioassessments) have been used widely to assess ecological status and trends in fresh-
water ecosystems. Although worldwide adoption of bioassessments indicates their
value for evaluating resource condition, their application varies considerably within
and among regions. Natural resource managers require a means to compare alter-
native bioassessment designs given their objective of evaluating resource condition
while incorporating uncertainty and controlling cost. However, such comparisons
are rare, in part due to available datasets coming from different regions at different
times using different sampling methods. In this chapter, we demonstrate how sim-
ulation methods may solve this problem by enabling quantitative comparisons and
optimization of bioassessment designs.

Typically, bioassessment programs sample organismal diversity and abundance
to calculate indices across a gradient of reference and impaired conditions (Fig. 9.1).
Such dose-response patterns (i.e., change in resource across stress gradient) define the
ecological change that is of primary concern by managers. The ecological change may
exhibit ecological thresholds as zones of abrupt nonlinear change (Andersen et al.
2009) or wedge-shaped patterns due to multiple, unmeasured limiting factors (Cade
and Noon 2003). In either scenario, bioassessment sensitivity will be influenced by
the magnitude of ecological change (i.e., responsiveness) and the variability within
reference conditions (i.e., precision; Fig. 9.1).

When resource condition is discrete, such as for reference versus impaired con-
ditions, then changes in condition can define decision thresholds (Smith et al., this
volume). Decision thresholds provide boundaries for managers to recognize eco-
logical change with well-understood probabilities of falsely detecting change (type
I errors) or failing to detect change (type II errors; Fig. 9.1). Moreover, managers
may have an objective to maintain a certain resource condition (i.e., reference con-
dition) and have different tolerance for misclassifying condition depending on stress
level (Fig. 9.1). Utility values reflect these different objectives and tolerances (Keeney
1992) and provide a common currency to compare alternative bioassessment designs
(i.e., expected utility; Gregory and Keeney 2002).

Bioassessment could be incorporated into adaptive management in cases where
there are specified management actions and models for predicting effects of ac-
tions on resource condition (see Martin et al. 2009). However, most managers use
bioassessment as a form of surveillance monitoring without management actions
specified a priori that could affect resource condition directly (Nichols and Williams
2006; Smith et al., Chap. 6). Decision thresholds, ecological change, and utility
values are the unifying concepts discussed by Martin et al. (2009) and reviewed in
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Fig. 9.1 Conceptual model of decision thresholds and error probabilities in biological monitoring.
Precision indicates the variation within reference conditions and responsiveness indicates the change
in central tendency from reference to impaired states. Numbers correspond to utility value categories
in Fig. 9.7

Smith et al. (this volume). Utility values reflect the management objectives. Models
of ecological change link resource condition to stressors and management actions.
Decision thresholds can be determined by optimizing expected utility value. In
surveillance monitoring, a sensitivity or power analysis is a special case of max-
imizing expected utility value where full value is assigned to detecting a departure
from desired resource condition and no value is assigned to correctly classifying
reference condition or to committing type I or II errors.

Benthic macroinvertebrates, the benthos-dwelling freshwater invertebrates visi-
ble to the naked eye, are commonly used in bioassessment due to their well-known
sensitivities to environmental stressors (Lenat 1993; Klemm et al. 2002; Yuan
2004), established sampling protocols (Hauer and Resh 2006), and ubiquity in lotic
and lentic habitats (Merritt and Cummins 1996). Moreover, benthic macroinverte-
brates have revealed environmental gradients not detected by physiochemical data,
presumably because biota may respond to interactive effects of multiple physical
and chemical stressors simultaneously (Yoder and Rankin 1998). As such, benthic
macroinvertebrates are commonly used to assess environmental quality worldwide
(Capitulo et al. 2001; Hering et al. 2004; Mazor et al. 2006; Ollis et al. 2006; Morse
et al. 2007).

Despite the widespread and growing use of benthic macroinvertebrates in
bioassessment, different methods are often employed without an understanding of
how methodological decisions affect bioassessment performance and utility values.
In this chapter, we focus on two important methodological issues: sampling effort and
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taxonomic resolution. In this context, “sampling effort” refers to the number of indi-
vidual organisms used to characterize a site and “taxonomic resolution” is determined
by laboratory method, usually between classifying individuals at the family or genus
level. Both of these factors may have important consequences for bioassessment
designs, but their interactive effects and trade-offs remain poorly understood.

Considerations of sampling effort often involve decisions about how to subsam-
ple collected organisms from a site. Such methods are referred to as “fixed-count”
approaches because organisms are included in the final sample for a site based on a
target number of individuals, usually between 100 and 300. In contrast, “fixed-area”
approaches do not employ a subsampling protocol, but instead quantify all individ-
uals sampled from a given area of stream substrate. Because fixed-count approaches
will typically require taxonomic identifications for fewer individuals, these methods
have been recommended for rapid assessments of biological condition (Plafkin et al.
1989; Growns et al. 1997; Burton and Gerritsen 2003).

Fixed-count methods have been criticized for their sensitivity to species richness
which may bias bioassessment inferences (Courtemanch 1996; Vinson and Hawkins
1996; Nichols et al. 2006). Some research suggests a fixed-count threshold of 300 in-
dividuals, above which relatively little additional information is gained (Ostermiller
and Hawkins 2004; Cao and Hawkins 2005; Van Sickle et al. 2007). In practice,
stream bioassessment programs employ many different levels of subsampling: 100
individuals (e.g., Burton and Gerritsen 2003), 200 individuals (e.g., Clarke et al.
2002; Mazor et al. 2006), 300 individuals (e.g., Van Sickle et al. 2005), 400 indi-
viduals (e.g., Marshall et al. 2006), and 700 individuals (e.g., Clarke et al. 2006).
Other bioassessment designs use a fixed-area approach to avoid subsampling al-
together (e.g., USGS National Water Quality Assessment Program, Moulton et al.
2002; USEPA Environmental Monitoring and Assessment Program, Lazorchak et al.
1998).

Natural resource managers must also determine the appropriate level of taxonomic
resolution for community samples. This is typically a choice between the “lowest
practical” level of taxonomic resolution (usually genus or species) and the family
level, representing an important trade-off between statistical power and cost (Sovell
and Vondracek 1999). Some genera and species within the same family clearly show
different responses to environmental degradation (Lenat and Resh 2001), and some
bioassessment studies are more sensitive at the genus level than family level (Hawkins
et al. 2000; King and Richardson 2002; Pond et al. 2008).

In contrast, other studies found that relatively little information is lost using
family-level taxonomy (Bailey et al. 2001; Waite et al. 2004; Marshall et al. 2006)
and thus lowest-level taxonomy would probably not be worth the increased analyt-
ical costs. This may be due to an increased misidentification rate for genus- and
species-level taxonomy (New 1996; Marchant 2007) or the reduction of variation in
reference conditions yielding increased precision to detect non-reference sites (see
Hawkins et al. 2000). Nonetheless, the increased costs of lowest-level taxonomy
may be justified if inferences about environmental quality are obscured at the family
level (Lenat and Resh 2001).
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Simple comparisons of bioassessment studies are often confounded by differences
in sampling time or location (e.g., seasons and ecoregions, respectively). Moreover,
in observational field studies, ecological changes across stress levels can be con-
founded by unknown structural variation and sampling error. As a result, few tools
are currently available for managers to evaluate alternative bioassessment design
strategies.

Simulation methods provide a potential solution to this problem. By simulating
community change along a stress gradient, the “true” impairment is known so the
relative performance of alternative bioassessment strategies may be quantified and
separated from effects due to sampling error. Prior studies have demonstrated the
utility of simulations in this regard (Field et al. 2004; Cao and Hawkins 2005), but
did not apply these tools to optimize power-cost relations of alternative monitoring
designs.

In this chapter, we used modeling and simulation techniques to evaluate bioassess-
ment designs based on objectives for statistical power, risk tolerance, and financial
costs. We demonstrated how such utility values affect optimal decision thresholds for
defining “impaired” sites and provided recommendations for maximizing expected
utility. Although our analysis focused on benthic macroinvertebrates in streams, this
approach may be applied to terrestrial or marine ecosystems.

Methods

We simulated ecological change in benthic macroinvertebrate communities using
taxa-specific dose response and capture probability models (Fig. 9.2). First, we sim-
ulated reference communities for two sites within the Shenandoah National Park
(SNP), USA, contrasting high- and low-richness species pools. Second, we modeled
community change from taxa-specific responses to a generalized stressor gradient
in the mid-Atlantic highlands, USA. Third, we sampled the simulated-stressed com-
munities with different combinations of sample effort and taxonomic resolution and
calculated the sensitivity of a commonly used bioassessment index (Macroinver-
tebrate Biotic Integrity Index, MBII; Klemm et al. 2003). Finally, we evaluated
expected utilities for model sensitivity, sensitivity-cost efficiencies, and risk toler-
ance and concluded with a demonstration of how prior knowledge and uncertainty
about site condition (i.e., reference, early warning, or impaired sites) may be used
to optimize decision thresholds.

Simulating Reference Communities

The SNP study area encompasses approximately 800 km2 within the Blue Ridge
ecoregion and consists primarily of deciduous and coniferous forests (Young et al.
2009). This study area was useful for several reasons. First, it supports some of the
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Fig. 9.2 Conceptual model of simulation methods. Three-dimensional boxes indicate taxa-specific
models. Historical data from the Shenandoah National Park (SNP) were used to model the species
pool for each study site. Data from the mid-Atlantic highlands Environmental Monitoring and
Assessment Program (EMAP) were used to develop taxa-specific dose-response models

most high-quality streams in the eastern USA (Lynch 1987; Summers and Tonnessen
1998) and therefore provides meaningful reference communities. Second, several
streams within the Park support long-term benthic macroinvertebrate community
datasets as part of the National Park Service’s Vital Signs Program (Marshall and
Piekielek 2007). Third, the study area enabled the use of empirical data to model
dose-response patterns within the mid-Atlantic highlands, a region encompassing
approximately 200,000 km2 in the Appalachian Mountains of eastern North America
(Fig. 9.3).

We used data from annual benthic macroinvertebrate surveys conducted from
1990 to 2004 at two SNP sites, Hazel River and Paine Run. We selected these
focal streams because they both contained > 10 years of annual sampling data but
supported different species richness and environmental conditions (Table 9.1). At
each sampling site, National Park Service personnel used 0.1 m2 portable invertebrate
box samplers (PIBS) to collect benthic macroinvertebrates from three randomly
selected riffle locations (Moeykens and Voshell 2002). Subsamples were then pooled
into a composite fixed-area sample for each site. We evaluated data from collections
taken during spring months (April–June).
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Fig. 9.3 Study sites within the mid-Atlantic highlands and Shenandoah National Park, USA. Re-
gional inset shows Environmental Monitoring and Assessment Program (EMAP) sites used to
simulate stress responses; and Shenandoah National Park inset shows the location of all Vital Signs
monitoring sites (circles), as well as the Hazel River and Paine Run sites (stars) evaluated in this
study.

Table 9.1 Biological and
physical characteristics of two
Shenandoah National Park
sites evaluated in this study

Variable Hazel River Paine Run

Biological
Genus richness 92 67
Family richness 51 40
Mean generic richness 43 28
Mean probability of capture 0.50 0.36
Physical
Basin area (ha) 1,335 179
Site elevation (m) 323 557

The Hazel River site included records of 21,130 individuals from 51 families
and 92 genera; Paine Run supported 25,746 individuals from 43 families and 77
genera. Cumulatively, 106 unique macroinvertebrate taxa were represented in the
SNP dataset and the focal sites shared 67 genera and 40 families. The Hazel River
site was substantially larger than Paine Run (Table 9.1), which probably explains why
it supported greater taxonomic richness. We compared simulation models for Hazel
River and Paine Run to evaluate how natural variation in community composition
may affect bioassessment performance.
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Simulating Ecological Change

We modeled taxa-specific dose-response patterns using data from the US Environ-
mental Protection Agency’s (USEPA) Environmental Monitoring and Assessment
Program (EMAP) in the mid-Atlantic highlands, USA (n = 439 sites; Fig. 9.3).
EMAP sites were selected using a stratified-random methodology to represent the
availability of stream sizes in the study area (Herlihy et al. 2000). Macroinvertebrate
communities in these sites were sampled using equivalent effort across a stressor
gradient that included reference and impaired sites (Waite et al. 2004).

USEPA personnel sampled sites during baseflow conditions between April and
September from 1993 to 1998. At each site, they sampled macroinvertebrates from
nine transects positioned perpendicularly to the stream channel. Within each transect,
they collected organisms from a 0.5 m2 quadrat by kick-net sampling into a 595-
μm mesh for 20 s (Lazorchak et al. 1998). Quadrat samples were then combined
into “riffle” and “pool” composites based on quadrat locations, constituting fixed-
area samples. In the laboratory, specimens were identified to the lowest taxonomic
resolution practical (usually genus or species) and enumerated (Lazorchak et al.
1998). Raw data are available at http://www.epa.gov/emap.

We limited our analysis of EMAP data using several criteria. First, we used only
riffle data for analysis because pool composites were not collected at all EMAP
sites and because riffle data discriminate between reference and non-reference sites
more powerfully than pool data (Klemm et al. 2003). Moreover, other protocols
for benthic macroinvertebrate sampling focus on riffle habitats (e.g., Moulton et al.
2002). Second, we limited data to sites sampled during the spring (April to June) to
coincide with the sampling periods for the SNP long-term monitoring program. We
also excluded sites with upstream catchment areas > 500 km2 to limit the analysis
to wadeable streams. Where sites were sampled more than once, we used the sample
with the greater species richness, or in the case of ties, the more recent sample.

We used an index of land use intensity to indicate environmental quality at each
site. Catchment land use is strongly correlated to water quality (e.g., nutrient concen-
trations) and physical habitat quality (e.g., substrate size, woody debris abundance)
within the study area (Hitt and Angermeier 2008), and consequently may be used
as a generalized stressor gradient. Specifically, we used the landscape development
intensity index (LDI) (Brown and Vivas 2005) calibrated for streams in Maryland
(D. White, USEPA, unpublished data). The LDI is an index of potential human dis-
turbance that weights individual land uses (e.g., agriculture, urbanization, mining)
based on the amount of anthropogenic energy required to maintain a given land use
type (Brown and Vivas 2005). The index is based on the hypothesis that land uses
which require more energy to maintain are more detrimental to biological integrity
than land uses which require less energy (Odum 1988, 1996). LDI strongly corre-
lates with biotic integrity in a variety of ecosystems (McCarrondand and Frydenburg
2005; Lane and Brown 2006; Mack 2006).

We used LDI coefficients based on 19 National Land Cover Data classifications (6
classes of agriculture, 12 of urban, and 1 of mining). To match EMAP land use data,
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Fig. 9.4 Description of landscape development intensity (LDI) gradient for EMAP sites. a Observed
distribution of LDI among 439 Environmental Monitoring andAssessment Program sites in the mid-
Atlantic highlands, USA. b Relationship between LDI and upstream agriculture and urban/mining
land uses. An example of how three different land use combinations can yield similar LDI values
is highlighted at LDI = 600

we averaged LDI coefficients for agriculture (5.6), urbanization (29.3), and mining
(35.5). Relative differences in these LDI coefficients suggest that urban and mining
land uses are on average about 5.3 and 6.4 times more disruptive to biotic integrity
than agriculture land use. This ratio roughly corresponds to ecological thresholds
based on land use derived from field research. Several studies have reported sig-
nificant declines in fish and benthic macroinvertebrate bioassessment indices when
agricultural development exceeds 30–50 % (Quinn and Hickey 1990; Wang et al.
1997), and urban land exceeds 6–10 % of watershed area (Roy et al. 2003; Snyder
et al. 2003).

LDI scores for the 439 EMAP sites ranged between 0 in completely forested
watersheds to more than 3,000 in a watershed dominated by mining. Nearly 25 %
of the sites (n = 105) were in reference condition (LDI = 0) and all but four sites
had LDI scores less than 800 (Fig. 9.4a). Comparable LDI values can be observed
from different combinations of land uses. For example, LDI values near 600 can
be obtained for watersheds comprised of 100 % agriculture; watersheds with 20 %
urban and 80 % forest; or watersheds with 60 % agriculture, 10 % urban, and 30 %
forest (Fig. 9.4b).

We modeled abundance of SNP taxa (N = 106) as a function of LDI, upstream
basin area, and site elevation. Scatter plots revealed wedge-shaped relations between
macroinvertebrate abundances and anthropogenic stress levels (Fig. 9.5), which sug-
gested that dose-response relationships may be better characterized by changes in
the variance of the response than in central tendency (Scharf et al. 1998). We there-
fore used quantile regression techniques to model this heteroscedastic dose-response
relationship (Koenker and Hallock 2001; Cade and Noon 2003). Other studies have
successfully used quantile regression to model macroinvertebrate responses to land
use-stressor gradients (e.g., Purcell et al. 2009).
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Fig. 9.5 Example of quantile regression for dose-response models. a Abundance of Baetis sp.
(mayfly) along the landscape development intensity index with 95 % quantile regression line shown.
b Analysis of tau level by 0.01 increments to assess nonzero slope for quantile regression. Straight
lines indicate ordinary least-squares regression slopes for comparison. The shaded region shows
range of slopes indicated by permutation procedures

For each taxon, we determined the appropriate quantile level (i.e., tau) for re-
gression analyses by evaluating quantile model slopes across 1-unit tau increments
from the median (50th quantile) to the 99th quantile in each dose-response model.
We determined the significance of these dose-response models as whether the 95 %
confidence intervals departed from least squares regressions. Bootstrapped 95 % con-
fidence intervals for each tau increment were evaluated for their departure from zero to
indicate significant dose-response patterns. Tau levels yielding nonzero slopes were
used for subsequent quantile regressions. If taxa had too few observations to model
tau levels, we combined taxa to evaluate dose-response patterns (see Appendix A).
We included upstream basin area and site elevation as covariates in all quantile models
because macroinvertebrate community structure varies by stream size in the study
area (Waite et al. 2000). We performed quantile analyses in R using the package
“quantreg” version 4.30 (R Development Core Team 2009; Koenker 2010).

Quantile regression results indicated a wide range of responses to stress among the
106 taxa in the species pool. The mean proportional change in abundance between
reference conditions (i.e., LDI = 0) and non-reference conditions (i.e., LDI = 600)
ranged from− 1.0 (i.e., extirpation) to 9.9 (i.e., nearly 10-fold increase in abundance).
However, the majority of taxa in both sites exhibited decreasing abundances with
increasing stress (Fig. 9.6a, b; Appendix A).

Taxa responses to LDI were highly correlated between the two SNP sites (Pear-
son’s r = 0.95) indicating that basin area, elevation, and initial densities had only
minor effects on taxonomic vulnerability to stress. However, the high-richness Hazel
River community was on average more sensitive to stress than the low-richness Paine
Run community (mean change = −0.18 and − 0.08, respectively). Community-level
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Fig. 9.6 Taxa-specific sensitivity values (a and b) and yearly community sensitivity values (c) for
Shenandoah National Park sites. Taxon-specific sensitivity is defined as the average proportional
change in taxon abundance between simulations at reference (LDI = 0) and simulations at the
end of the “early-warning” portion of the stress gradient assessed (LDI = 600). A value of “− 1”
indicates taxon extirpation, and a value of “+ 1” indicates taxon doubled in density. Community
sensitivity is the relative sensitivity of the overall assemblage and is the sum of the products of the
relative sensitivity and corresponding abundance of each taxon divided by the total abundance of
the assemblage

vulnerability to stress was highly variable for both sites across the 15 years of histori-
cal monitoring data (Fig. 9.6c) indicating substantial natural variation in vulnerability
to stress.

We modeled changing benthic macroinvertebrates communities at 7 stress-steps,
corresponding to LDI values of 50, 100, 200, 300, 400, 500, and 600. LDI values are
interpreted as a generalized stress gradient corresponding to land use intensity. At
each stress-step, community composition was represented by a vector of taxa-specific
densities.

Sampling Simulated Communities

Surveillance monitoring often requires estimating the abundance of taxa with im-
perfect capture probabilities. We used annual sampling data to estimate capture
probabilities for taxa included in the SNP species pool (N = 106). We assumed that
taxa observed within the historical records were present during all time periods, but
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subject to imperfect detection (Kery et al. 2009). For example, if a taxon was ob-
served in 2 of 10 years (i.e., occurrence probability = 0.20), we assumed that 80 % of
the observations failed to detect the taxon when it was present. We also assumed that
capture probability would increase with abundance (MacKenzie and Kendall 2002).

We used logistic regression to model the relationship between taxa occurrence
probability and abundance. Taxa-specific model coefficients were used to adjust
community densities to account for imperfect detection across stress levels (Fig. 9.2)
unless the fit was poor (p > 0.10) or an insufficient number of observations were avail-
able for logistic models. In those cases we used observed occurrence probabilities
as an estimate of a constant capture probability which was invariant to abundance.

The average capture probability was less than 0.50 for both sites (Hazel River
= 0.48; Paine Run = 0.36) and ranged between 0.07 (i.e., a taxon was captured 1 out
of 15 years) and 1.0 (i.e., a taxon was captured every year). The average taxonomic
richness was substantially less than the cumulative total number of taxa captured at
both sites (Hazel River = 42.2; Paine Run = 28.1), indicating considerable turnover
for many taxa. Taxa-specific capture probability coefficients are presented in
Appendix A.

We then sampled the simulated communities assuming a negative binomial
distribution for taxa abundances where variance > mean and a Poisson distribu-
tion otherwise. We drew 1,000 bootstrap samples with replacement from capture
probability-adjusted densities under constraints of sample size and taxonomic reso-
lution. Six levels of sampling effort were evaluated: 100, 300, and 600 fixed-count
samples and 3, 6, and 9 fixed-area samples. At each stress-step, we calculated an
index of stream quality, the Macroinvertebrate Index of Biotic Integrity (MBII), to
evaluate bioassessment performance (Fig. 9.2). The MBII was developed to assess
ecological integrity of streams in the mid-Atlantic highlands region, USA (Klemm
et al. 2002, 2003). Seven metrics are included in the calculation for MBII that repre-
sent the taxonomic and functional composition of the macroinvertebrate community
(Table 9.2). Unlike traditional means of computing MBII scores, no adjustments
were required for basin area, and individual metric scores were standardized by the
maximum observed at the site. Increasing MBII scores indicate increasing ecological
quality (Klemm et al. 2002, 2003). In our model, MBII scores were calculated from
each stress-step and bioassessment design scenario applied to our bootstrapped ref-
erence communities. We programmed simulations, sampling, and index calculations
using MATLAB version 7.7.0.

Model Validation

To be useful, simulated communities need to reflect both natural variation in assem-
blage structure and changes in assemblage structure due to stress (Dale and Beyeler
2001). We evaluated these factors using nonmetric multidimensional scaling (NMS)
ordinations. This method is generally considered to be the most effective ordination
method for ecological community data (McCune and Grace 2002) and is widely used
in bioassessment (e.g., Reynoldson et al. 1997; Cao and Hawkins 2005). First, we
evaluated simulated reference communities by comparing historical community data
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Table 9.2 Component
metrics of the
Macroinvertebrate Biotic
Integrity Index (MBII) and
their hypothesized response to
stressors. (Klemm et al. 2002)

Metric Response to
stress

Number of Ephemeroptera (mayfly) taxa Decline
Number of Plecoptera (stonefly) taxa Decline
Number of Trichoptera (caddis fly) taxa Decline
Number of collector-filterer taxa Decline
Percent of noninsect individuals Increase
Mean Tolerance Value Increase
Percent of individuals in 5 dominant taxa Increase

against 15 randomly selected bootstrap samples for the Hazel River and Paine Run
sites. We reasoned that if the ordination revealed similar patterns for simulated and
historical samples then our simulation models could realistically indicate patterns of
natural variation in reference community composition.

Second, we ordinated simulated-stressed communities and EMAP field samples
collected across the LDI stressor gradient to evaluate patterns of simulated ecological
change. For this ordination, we categorized EMAP samples as reference sites (LDI =
0, n = 78) and impaired sites (LDI > 300, n = 79). We used the average densities from
the 1,000 model runs to represent simulated-stressed sites in the ordination and only
included EMAP taxa which were present in the SNP species pool. If our simulation
models were meaningful, changes in NMS site scores among stress steps should
resemble changes between reference and impaired sites from regional field data. For
both ordinations, data were log-transformed taxon-specific abundances. We used
PC-ORD (version 5.32) for NMS ordinations (McCune and Grace 2002).

Evaluating Utility

We evaluated bioassessment performance using three expressions of utility. The first
expression was a standard sensitivity or power analysis. In a sensitivity analysis, all
the utility value is assigned to correctly classify impaired conditions, which occurs
with a frequency of 1—type II error rate. Value for correctly classifying reference
condition is implicit in the a priori setting of the type I error rate, and it is well under-
stood how the type I error rate affects sensitivity or statistical power. In surveillance
monitoring, the type I error rate typically determines the decision threshold. Sensi-
tivity was calculated from the distributions of MBII scores in simulated reference
and simulated impaired communities. Specifically, we expressed sensitivity as the
percent of 1,000 bootstrapped community samples that fell below a decision thresh-
old for MBII corresponding to a type I error rate of 0.10 in reference conditions
(see Fig. 9.1). Using this threshold, we interpolated the minimum detectable change
(MDC) in LDI based on statistical power of 0.80 for each alternative monitoring
design (combination of sample effort and taxonomic resolution).

In our second expression of utility, we explicitly accounted for monitoring costs.
We estimated financial costs for benthic macroinvertebrate analysis (Table 9.3)
and incorporated cost into a sensitivity-cost efficiency model. We then compared
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Table 9.3 Description of cost estimates used in this study for lowest (LOW) and family (FAM)
taxonomic resolution. Costs for alternative sampling designs were based on estimates for processing
time and personnel wages provided by managers from the Mid-Atlantic region, USA (including
Shenandoah National Park) and Eastern Rivers and Mountains Vital Signs networks (US National
Park Service)

Sample Processing time (man-hours) Costs per man-hour ($) Total costs per site ($)
effort

Sorting Identification Sorting Identification

LOW FAM LOW FAM LOW FAM LOW FAM LOW FAM

100 1.0 1.0 0.8 0.5 10.00 10.00 32.00 20.00 42.00 30.00
300 2.0 2.0 1.8 1.0 20.00 20.00 72.00 40.00 92.00 60.00
600 3.0 3.0 3.5 1.6 30.00 30.00 140.00 64.00 170.00 94.00
PIBS-3 7.5 7.5 9.0 4.0 75.00 75.00 360.00 160.00 435.00 235.00
PIBS-6 15.0 15.0 18.0 8.0 150.00 150.00 720.00 320.00 870.00 470.00
PIBS-9 22.5 22.5 27.0 12.0 225.00 225.00 1,080.00 480.00 1,305.00 705.00

bioassessment designs in terms of their sensitivity-cost relationship. Examination of
the sensitivity-cost plots enabled an analysis of possible trade-offs between statis-
tical power and costs which are fundamental to the efforts to optimize monitoring
program designs.

In our third expression of utility, we incorporated value for classification of both
reference and impaired conditions and allowed risk tolerance to vary among resource
conditions (Figs. 9.1 and 9.7). As a heuristic analysis, we evaluated a hypothetical
scenario of risk tolerance by assuming that managers’tolerance for misclassifications
would vary among resource conditions. We specified three states of resource con-
dition (reference, early warning, and impaired communities) and set different risk
tolerance values for classifications in each state (Fig. 9.7). The three resource states
along with correct or incorrect classification resulted in six classification scenarios
determined by observing a site above or below the decision threshold in reference
and impaired communities (see Fig. 9.1). In our heuristic example, tolerance for
misclassification was higher for reference condition (i.e., type I error) than for im-
paired conditions (i.e., type II error). In other words, we assigned some value to
misclassifying reference as impaired knowing that would increase the sensitivity of
the decision threshold to correctly detect impaired condition. We then calculated
expected utility as the product of event probabilities and utility values to compare
decision thresholds based on type I error rates of 0.10, 0.15, 0.20, and 0.30.

Results

Simulation Model Validation

Simulated reference communities were similar to historical samples at both sites
as indicated by their close proximity in two-dimensional NMS ordination space
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Fig. 9.7 Utility values assigned for risk analysis. Numbers for reference, early-warning, and im-
paired sites correspond to regions defined in Fig. 9.1. In this heuristic example, managers express
greater utility for observing change in early-warning and impaired sites than in reference sites

(stress = 0.09; Fig. 9.8a). However, historical samples were more heterogeneous
than modeled reference communities, as indicated by the larger space occupied by
historical samples in the ordination. Post-hoc analysis revealed that the extreme
values for historical samples (i.e., two Hazel River samples with high NMS axis II
scores, and two Paine Run samples with highest NMS axis I scores; Fig. 9.8a) were
from years with very low total macroinvertebrate abundances. This pattern suggests
that our simulation procedures provided a realistic model for reference communities
overall but may have underrepresented low abundance sample years.

Our ecological change model simulated realistic community responses to a
generalized stressor gradient. Reference and impaired EMAP sites were highly
differentiated in a two-dimensional NMS ordination, with site quality primarily as-
sociated with NMS axis I (Fig. 9.8b). Reference sites tended to have lower NMS
axis I scores than impaired sites. Likewise, NMS axis I scores increased with stress
for the artificially impaired assemblages in both SNP sites. NMS axis I scores were
highly correlated with LDI for EMAP sites and simulated-stressed sites (Spearman
r = 0.67 and 0.97, respectively), indicating that empirical and simulated assemblages
responded to the stress gradient in similar ways. However, simulated communities at
the maximum stress-step did not reach the non-reference community zone defined by
EMAP sites (Fig. 9.8b). Our simulation model therefore produced realistic changes
in community composition but did not represent fully impaired sites elsewhere in
the mid-Atlantic highlands region.
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Fig. 9.8 Two-dimensional nonmetric multidimensional scaling ordinations of macroinvertebrate
community structure. a Comparison of reference assemblages between 15 randomly selected sim-
ulated samples and historical samples collected at the two Shenandoah National Park sites over the
15-year monitoring period. b Comparison of assemblages at reference sites (LDI = 0, N = 78) and
stressed sites (LDI > 300, N = 79) observed from EMAP data, and simulated-stressed assemblages
at the two SNP sites. The simulated assemblages are defined by LDI values of 0, 50, 100, 200, 300,
400, 500, and 600 (plotted from left to right)

Sensitivity

Simulation-derived MBII scores ranged from 20.1 to 99.6 (Fig. 9.9). The lowest MBII
values occurred in the low-richness site (Paine Run) at the lowest sample effort (100
fixed count) and highest values occurred at the high-richness site (Hazel River) at the
highest sample effort (9 fixed-area samples; Fig. 9.9). Mean MBII scores increased
with sample effort and were generally greater at the family level than genus level, but
taxonomic resolution had a negligible effect on MBII scores at the highest sampling
efforts in Hazel River (Fig. 9.9).

Sensitivity increased throughout the simulated stress gradient for all combinations
of sample effort and taxonomic resolution (Fig. 9.10). Hazel River MBII scores gen-
erally exhibited greater sensitivity than in Paine Run, and Hazel River exhibited
asymptotic sensitivity at approximately LDI of 400, whereas this pattern was not
evident in Paine Run (Fig. 9.10). Genus-level MBII scores revealed greater sensitiv-
ities than family-level scores for all sampling efforts in both sites, but the effect of
taxonomic resolution increased with sampling effort, especially in the Hazel River
site (Fig. 9.10). All else being equal, sensitivity increased with sample effort and
was higher for the high-diversity site and for the genus level of taxonomic resolution
(Fig. 9.10).

Comparisons of mean detectable change (MDC) at 80 % sensitivity revealed
important distinctions across sites, sampling efforts, and taxonomic resolutions
(Fig. 9.11). Hazel River site showed lower MDC levels than Paine Run (i.e., greater
sensitivity), and genus-level MBII scores improved MDC over family-level scores
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Fig. 9.9 Effects of sample effort and taxonomic resolution on Macroinvertebrate Biotic Integrity
Index (MBII) scores across modeled stress-steps (Landscape Disturbance Index, LDI) in Hazel
River and Paine Run. Boxplots show median scores (center line) and quartile distributions (box
range). Open boxes indicate genus-level taxonomy; closed boxes indicate family-level taxonomy

at both sites. However, the genus-level scores in Paine Run were not as sensitive as
the family-level scores from Hazel River (Fig. 9.11), demonstrating the importance
of site-level conditions in evaluating sensitivity. Both sites exhibited nonlinear rela-
tionships between sample size and MDC : increasing sample effort in fixed-counts
resulted in stronger improvements in MDC than increasing sample effort from fixed-
area samples (i.e., asymptotic MDC for fixed-area samples). Genus-level fixed-area
samples showed more improvement in MDC than family-level fixed-area samples
(Fig. 9.11). However, taxonomic resolution in the low-diversity site (Paine Run) was
relatively unimportant for MDC at the lowest sampling efforts.
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Fig. 9.10 Effects of sample effort and taxonomic resolution on Macroinvertebrate Biotic Integrity
Index (MBII) sensitivity across modeled stress-steps (Landscape Disturbance Index, LDI) in Hazel
River and Paine Run. Sensitivity values are based on type I error rates of 0.20. A dashed horizontal
line at sensitivity of 0.80 (type II error = 0.20) is included to facilitate comparisons. Open circles
indicate genus-level taxonomy; closed circles indicate family-level taxonomy

The increase in sensitivity with increasing sample effort was due to higher preci-
sion (i.e., lower variance) of reference MBII scores and not to greater responsiveness
(i.e., change in mean MBII scores between reference and impaired assemblages). For
example, MBII coefficients of variation (CV) for simulated reference assemblages at
the highest sample effort (9 fixed-area samples) were about half of that observed for
the lowest-sample effort (100 fixed-counts samples), and this was true for both levels
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Fig. 9.11 Minimum detectable change (MDC) for alternative monitoring program designs based
on combinations of sample effort and taxonomic resolution for Hazel River and Paine Run. MDC
values are based on type I and II error rates of 0.20. Numbers in parentheses below fixed area
samples (PIBS-3, PIBS-6, and PIBS-9) represent the mean number of individuals contained within
composite samples.

of taxonomic resolution and for both sites. At the same time, the percent change in
average MBII scores between reference (LDI = 0) and impaired (LDI = 400) assem-
blages (i.e., responsiveness) actually declined slightly with increasing sample effort.

Similarly, differences in sensitivity between sites were also due to precision and
not responsiveness. For example, precision (1/CV) of MBII values at reference was
between 25 and 35 % higher at Hazel River site compared to Paine Run for both
genus and family levels of taxonomic resolution, and patterns were consistent across
sample efforts (Fig. 9.12a). At the same time, responsiveness was actually higher at
the Paine Run site for both genus and family though large differences were mainly
noted for smaller sample efforts (Fig. 9.12a).

In contrast to sample effort and sites, differences in index sensitivity between
levels of taxonomic resolution were due to differences in responsiveness and not to
differences in precision at reference, and this was true for both sites (Fig. 9.12b).
Responsiveness increased with sample effort and was always higher for genus level
resolution though differences were marginal at low sample effort for the Paine Run
site (Fig. 9.12b). At the same time, precision was generally better at the family level
at both sites and across levels of sample effort (Fig. 9.12b).

Sensitivity-Cost Efficiency

Laboratory costs for taxonomic identification were nonlinearly related to sensitivity
or statistical power (i.e., MDC at 0.20 type II error rate), revealing asymptotes for cost
efficiency and trade-offs between sample size and taxonomic resolution (Fig. 9.13).
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Fig. 9.12 Differences in precision and responsiveness (mean change between reference and im-
paired) of Macroinvertebrate Biotic Integrity Index (MBII) scores. a Comparisons between sites
and b comparisons between taxonomic resolutions. Precision is expressed as the inverse of the co-
efficient of variation in MBII scores within reference sites. Responsiveness is expressed as the mean
change in MBII scores between LDI = 0 (reference) and LDI = 400 (see methods). Site differences
are reported relative to the Hazel River so that positive values indicate Hazel River was better (i.e.,
precision or responsiveness higher) and negative values indicate Paine Run was better. Likewise,
differences between genus and family resolutions are reported relative to the genus level so that
positive values indicate genus was better

In both sites, additional fixed-count samples dramatically increased power but had
relatively small cost increases. However, additional fixed-area samples contributed
relatively little power with considerable additional costs (Fig. 9.13). In the Hazel
River site, genus-level taxonomy maximized power (i.e., lowest MDC) but incurred
the greatest costs. In contrast, the Paine Run site revealed that increased sample
size at the family level could achieve the same power as lower sample sizes at the
genus level (Fig. 9.13). Designs involving higher sample efforts yielded only slight
improvements in sensitivity for much greater cost.
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Fig. 9.13 Sensitivity and costs of alternative sampling designs defined by sample effort and taxo-
nomic resolution in Hazel River and Paine Run. Sensitivity was expressed as minimum detectable
change (MDC) at 80 % power. Lower values of MDC indicate greater sensitivity

Risk Tolerance

Decision thresholds associated with maximum expected utility varied with prior be-
lief regarding ecological change (Fig. 9.14). In our heuristic example, we assumed
that managers would be more risk-averse for misclassifications in impaired condi-
tions than in reference conditions (Fig. 9.7). We calculated expected utility for three
models of ecological change: no change from reference, gradual change, and abrupt
change. If a manager believes the no-change model is most likely then a decision
threshold determined by the lowest type I error rate (0.10) would maximize expected
utility. However, in either change model the type I error rate that maximized the
expected utility shifted as resource condition changed from reference through levels
of impairment (Fig. 9.14). At the highest levels of impairment, expected utility was
approximately equal for all type I error rates. If a manager believes change is most
likely then a decision threshold based on high type I error rates would be warranted.

Discussion

Simulation Model Development and Validation

To be useful for bioassessment, stress-simulation models must start from realistic
representations of reference community composition. In our model, we used annual
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Fig. 9.14 Variation in expected utility among type I error rates over a 20-year period for three models
of ecological change. Utility values for six events determined by correct or incorrect classification
of resource condition are presented in Fig. 9.7. The top panel is a no-change model, i.e., the system
remains in reference. The middle panel is a gradual change model, and the bottom panel is an abrupt
change model. The underlying change in stressor is shown as dashed lines. Type I error rates were
0.1, 0.15, 0.2, and 0.3

monitoring data collected over 15 years to characterize natural variation in reference
communities. Previous simulation models have relied on space-for-time substitu-
tions to infer natural variability (Cao and Hawkins 2005; Hawkins et al. 2010), but
spatial data may not fully portray natural variation from temporally structured natural
events (i.e., floods and droughts; McElravy et al. 1989; Wagner et al. 2000; Kennen
et al. 2010). We recognize that long-term datasets are rare, and that it may not be
feasible to use temporal data for simulations in all circumstances. Nonetheless, in
our application, temporal data were useful for quantifying natural variation and for
modeling taxa-specific capture probabilities.

Comparisons of simulated and observed reference communities suggested that our
model provided a reasonable representation of natural variation. However, our model
did not capture years of very low macroinvertebrate densities. Based on historical
data, low-density samples occurred approximately two times in 15 years and were
probably the result of particularly stressful conditions (e.g., years with droughts
or floods in the months preceding sampling). Consequently, our model may have
overestimated precision and sensitivity to some degree because our model assumed
independent taxon-specific densities. However, these effects were stochastic with
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respect to bioassessment design, and therefore should not bias inferences in this
regard. Future research could improve upon our approach by incorporating taxa-
abundance covariance structure into the simulation model.

To simulate stressed communities, we developed taxon-specific dose-response
models from a regional dataset (Klemm et al. 2003). This approach is similar to that
of Cao and Hawkins (2005) except that they modeled occurrence between reference
and impaired sites to infer relative sensitivities of taxa, and then applied a constant to
obtain changes in relative abundance. In contrast, we modeled changes in abundance
directly. However, in both cases, relative sensitivities of taxa were empirically derived
and not assumed, and the effects of site elevation and drainage area were included
as covariates. Our model shared two other important attributes with that of Cao and
Hawkins (2005): both models prohibited colonization of taxa that were not previously
encountered and both assumed linear responses of individual taxa to stress.

Our model simulated realistic community responses to stress, based on the concor-
dance between simulated stressed assemblages within the SNP and observed stressed
assemblages across the mid-Atlantic highlands region. We found that increasing
stress-steps in simulated communities moved community structure consistently to-
wards the composition of known stressed communities. However, changes in actual
abundances of individual taxa, and consequently the magnitude of overall changes in
community composition, were less than expected based on empirical data. For exam-
ple, simulated communities at the greatest stress-step (LDI = 600) did not “reach” the
impaired community zone in a community ordination (Fig. 9.8b). Cao and Hawkins
(2005) observed a similar pattern and attributed this to the inability of their model to
account for colonization of novel species. However, in contrast to Cao and Hawkins
(2005), we only evaluated taxa from the simulated sites (i.e., SNP taxa) in our NMS
ordination and therefore colonization dynamics cannot explain our results. Instead,
we believe that the assumption of linear responses to stress may have underesti-
mated actual community dose-response patterns. Moreover, our model probably
reflected early stages of ecological impairment and therefore may contribute to the
“early-warning” detection objective of the NPS Vital Signs Program.

Sensitivity of Alternative Monitoring Designs

Our analyses revealed important effects of sampling effort and taxonomic resolu-
tion on bioassessment performance. First, we found that MBII sensitivity increased
with sampling effort in both sites and levels of taxonomic resolution. This result is
consistent with the findings of others (e.g., King and Richardson 2002; Ostermiller
and Hawkins 2004; Cao and Hawkins 2005; Pond et al. 2008) and should not be
surprising given the positive relationship typically observed between sample size
and precision (Manly 2008). However, increasing sample effort beyond three fixed-
area samples resulted in only modest improvements in sensitivity. This suggests that
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monitoring programs which rely on small subsamples may not be able to detect
early-warning responses to stressors. Moreover, our cost-benefit analysis revealed
that improvements in sensitivity from 100 to 600 individuals could be achieved at
relatively modest increases in cost. We believe these findings are important in light of
bioassessment programs that commonly rely on small fixed-count subsamples (i.e.,
< 300 individuals; Gerritsen et al. 2000; Burton and Gerritsen 2003).

Second, we found that genus-level assessments were more sensitive to ecological
change than family-level assessments, even though precision increased at the family
level (i.e., decreased variation in reference communities). This pattern was robust
to sample size and environmental differences between sites. This supports the con-
tention that benthic macroinvertebrate monitoring programs should use the lowest
practical levels of taxonomic resolution (i.e., genus or species), especially for early-
warning objectives (Lenat and Resh 2001; Pond et al. 2008). However, although the
genus-level MBII was more sensitive at both sites, the high-diversity Hazel River
site showed greater improvements with genus-level taxonomy than the low-diversity
Paine Run site. Moreover, when we considered costs, trade-offs between taxonomic
resolution and sample size became evident. For instance, we could achieve compa-
rable levels of sensitivity at similar costs from 600 fixed-count subsamples identified
to the genus level, or three fixed-area samples identified to the family level. Signif-
icant improvements in sensitivity are possible beyond these two alternative designs
but only with substantial increases in costs, which, assuming a fixed budget, would
result in the trade-off of fewer sites assessed (not considered in our study).

Other factors may affect how resource managers value bioassessment design
considerations. For example, managers may use a genus-level design to enable
comparisons to regional datasets that use this taxonomic resolution (e.g., Klemm
et al. 2003). Alternatively, quality control and assurance issues (e.g., ambiguous
and misidentified taxa) are a more serious concern for taxonomic identification
at the genus and species level identifications than at the family level (New 1996;
Marchant 2007). This concern may be particularly important for long-term monitor-
ing programs where managers contract the identification of specimens to external
laboratories that may change over time. A third consideration might be to em-
ploy a hybrid design wherein family-level taxonomy is used for annual status and
trends assessments but genus-level taxonomy is used every 3–5 years for additional
resolution.

Our simulations revealed differences in MBII sensitivity between the two SNP
study sites. The MBII was more sensitive at the high-diversity Hazel River site for
all alternative designs evaluated, and the effect of taxonomic resolution was greater
at this site. In contrast, the effect of sample effort was fairly consistent between sites.
Hawkins et al. (2000) also concluded that family-level taxonomy was sufficient to
detect impairment in low-diversity streams but not in high-diversity streams (i.e.,
Great Britain and California, respectively). This is probably because low-diversity
sites tend to support a relatively small number of genera and species per family and
thus community composition patterns across taxonomic resolutions tend to be highly
correlated. In contrast, high-diversity sites may contain many genera and species per
family so within-family variation intolerance would be greater than in low-diversity



9 Evaluating Bioassessment Designs and Decision Thresholds . . . 181

sites. Thus, genus-level taxonomy is expected to be most responsive to ecological
change at species-rich sites.

Although we found that differences in sensitivity between taxonomic resolutions
within a site were due to responsiveness, differences between sites were due to higher
precision at the Hazel River site and not to better responsiveness. This observation
suggests that differences in sensitivity between SNP sites were not due to differences
in diversity per se. Rather, reduced precision at the Paine River site was likely due
to lower individual taxon capture probabilities (mean = 0.48 and 0.36 for Hazel
River and Paine Run, respectively). We hypothesize that because Paine Run is much
smaller than Hazel River it may be more vulnerable to natural disturbances such as
floods and droughts that would likely reduce capture probabilities based on annual
sampling and therefore reduce precision. In any event, these findings demonstrate
the importance of site-level characteristics in evaluating sensitivity and suggest that
optimum monitoring designs may be site- or region-specific.

Incorporating Risk Tolerance to Evaluate Type I Error Rate

In standard sensitivity or power analysis, the decision threshold is not evaluated
because the type I error rate is fixed somewhat arbitrarily and subsequently ignored.
This is an incomplete analysis because resource managers place value on correct
classification of all resource conditions, costs, and risk tolerance associated with
misclassification vary among resource conditions, and setting type I error rate has
become a routine and uncritical process (Field et al. 2004). Utility values can be used
to incorporate risk tolerance associated with classification of all resource conditions.
We provided a heuristic example by assigning utility values. (In practice, these values
should be elicited from the resource managers and decision makers. Thus, we present
this as a heuristic example.) We found that setting of the type I error rate needs to
account for prior belief in future changes to the resource. In general, if no change is
likely, then type I error rate should be set low. However, if change is likely, then type
I error rate should be set high. By integrating over the prior beliefs, bioassessment
performance can be compared including the decision threshold/type I error rate,
sample size, and other factors. Smith et al. (this volume) work through an example
based on the simulation in this case study and found that a type I error rate of 0.20
was optimal for the range of sample sizes presented here using the utility values from
Fig. 9.7 and the change models in Fig. 9.14.

Summary

Natural resource managers face numerous choices when developing bioassessment
programs but seldom have the opportunity to compare the performance of alternative
designs. As a result, managers usually fail to establish bioassessment programs based



182 C. D. Snyder et al.

on their objectives for evaluating resource condition while accounting for uncertainty
and controlling costs. In this chapter, we illustrated how simulation techniques can
be used to evaluate sensitivity (statistical power) of alternative designs, and how the
concept of utility values can be used to link sensitivity assessments with management
values related to risk tolerance of misclassification (i.e., Type I and II error rates) and
financial costs. The scope of our assessment was limited to 12 alternative designs
based on 6 levels of sample effort and 2 levels of taxonomic resolution. However,
simulations could also be used to evaluate the relative performance of bioassessment
indices, the effects of rare taxa (i.e., include or exclude), the effects of seasonality
(i.e., spring or fall), and the interactions among all variables. Our use of utility values
in this chapter was heuristic, but we believe it illustrates the potential for this approach
to provide quantitative links between management values and decision thresholds,
something that has been lacking in bioassessment.

Appendix A

Ecological characteristics of macroinvertebrate taxa collected in Shenandoah Na-
tional Park. We report information required to compute the MBII, results of
taxon-specific dose-response models, and the results of capture probability mod-
els. Filter-feeders (1 if filter-feeder, blank if other) and pollution tolerance values
(PTV) are required to calculate two of the seven MBII metrics. Feeding habitats
were determined from Merritt and Cummins (1996) and PTV values were taken
from Klemm et al. (2002). For the dose-response models, we report the proportional
change in taxon abundance between LDI values of 0 (reference) and 600 (P Change),
a measure of the relative sensitivity of each taxon to the LDI stress gradient simulated.
For example, a proportional change value of “− 1” indicates increasing LDI from 0
to 600 resulted in local extirpation, and a value of “2” indicates a doubling of density.
For capture probability, we report (1) the results of logistic regression models of cap-
ture probability on total community density (“Model”), and (2) the observed capture
probability (“Observed”) determined from 15 years of historical monitoring data.
For taxa whose probability of capture was significantly related to total community
density, we incorporated the logistic model parameters into simulations; otherwise,
we used the observed capture probability. For the “model” capture probability, we
report the log-odds of an increase in density of 500 individuals. For example, log-
odds value of “2” indicates that the probability of capture doubled with an increase
in total density of 500 individuals. For “observed” we simply report the ratio of the
number of historical samples where the taxon was captured by the total number of
samples. Both modeled and observed capture probabilities were site-specific.
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Class Insecta
Order Plecoptera
Family Pteronarcyidae 4
Genus Pteronarcys 4 − 1.00 0.92
Family Peltoperlidae 2
Genus Peltoperla 3 − 0.40 0.13
Genus Tallaperla 1 − 0.73 0.85 3.03 0.93
Family Nemouridae 4
Genus Amphinemura 5 − 0.09 0.23 5.80 0.87
Genus Prostoia 4
Family Perlidae 3
Genus Paragnetina 3 − 0.21 0.38
Genus Agnetina 2 0.09 0.08
Genus Acroneuria 3 − 0.27 1.00 0.73
Genus Eccoptura 3 − 0.18 0.15 0.53
Genus Perlesta 4 − 0.74 0.23 0.47
Genus Hansonoperla 2
Family Perlodidae 2
Genus Yugus 3 − 0.50 1.90 0.13
Genus Remenus 2 − 0.40 0.13
Genus Isoperla 3 − 0.66 0.85 0.07
Genus Malirekus 3
Family Chloroperlidae 1
Genus Alloperla 1 0.07 2.8 0.08
Genus Haploperla 2 − 0.63 0.54 0.07
Genus Sweltsa 2 − 0.96 0.31 3.17 0.40
Genus Suwallia 1 − 1.00 0.15 0.13
Family Taeniopterygidae 3
Genus Oemopteryx 3
Genus Taeniopteryx 3
Family Leuctridae 2
Genus Leuctra 2 − 0.52 1.00 2E+20 1.00
Order Ephemeroptera
Family Ephemeridae 2
Genus Ephemera 2 − 0.56 0.38
Family Ephemerellidae 3
Genus Serratella 3 − 0.69 0.62
Genus Timpanoga 3 − 0.84 2.8 0.08
Genus Drunella 3 − 0.80 1.00 1.24 0.07
Genus Ephemerella 2 − 0.38 1.44 0.92 3.84 0.87
Genus Eurylophella 3 − 0.19 0.15 0.20
Family Ameletidae 4
Genus Ameletus 4 − 0.77 0.38 1.80 0.67
Family Leptophlebiidae 3
Genus Paraleptophlebia 3 − 0.75 0.62 2.79 0.47
Genus Habrophlebia 2 − 0.15 0.08 0.53
Genus Habrophlebiodes 4 − 0.64 0.69 0.33
Genus Leptophlebia 4
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Baetidae
Genus Baetis 3 − 0.55 3E+23 1.00 0.80
Genus Callibaetis 4
Genus Centroptilum 2 − 0.67 0.08
Family Heptageneidae 4
Genus Stenonema 4 − 0.53 0.85 1.26 0.53
Genus Stenacron 4 − 0.40 0.20
Genus Epeorus 4 − 0.84 1.00 9.19 0.93
Genus Cinygmula 2 − 0.58 2.09 0.62 0.13
Genus Leucrocuta 3 − 0.49 0.38 0.40
Genus Heptagena 4 − 0.50 0.15
Genus Rhithrogena 4
Family Isonychiidae 1 2
Genus Isonychia 1 2 0.42 0.08
Order Odonata 5
Family Gomphidae 5
Genus Stylogomphus 3 − 0.67 0.08
Genus Lanthus 4 − 0.87 2.72 0.77 1.69 0.33
Genus Progomphus 4
Genus Gomphus 5
Family Aeshnidae 6
Genus Boyeria 6 − 0.67 0.08
Family Calopterygidae 5
Genus Calopteryx 5
Family Coenagrionidae 5 − 0.16 1.95 0.08
Genus Argia 5
Order Hemiptera
Family Veliidae 7
Genus Microvelia 7 8.67 0.07
Genus Rhagovelia 7
Order Megaloptera
Family Corydalidae 5
Genus Corydalus 6 − 0.07 1E+46 0.08
Genus Nigronia 3 − 0.09 1.00 4.06 0.73
Order Trichoptera
Family Hydroptilidae 4
Genus Hydroptila 5 1.27 2.80 0.38 1.24 0.07
Family Helicopsychidae 3
Genus Helicopsyche 3
Family Hydropsychidae 1 4
Genus Hydropsyche 1 4 − 0.39 1.00 0.13
Genus Cheumatopsyche 1 6 − 0.29 0.46 1.24 0.07
Genus Diplectrona 1 4 − 0.41 2.99 1.00 4.42 0.87
Family Rhyacophilidae 3
Genus Rhyacophila 3 − 0.60 2.99 1.00 2.50 0.67
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Philopotamidae 3
Genus Chimarra 4
Genus Wormaldia 1 − 0.55 69.20 0.08 0.20
Genus Dolophilodes 3 − 0.85 0.92 1.76 0.60
Family Psychomyiidae 2
Genus Lype 3
Genus Psychomyia 2
Family Leptoceridae 4
Genus Triaenodes 4 0.61 1.22 0.07
Family Odontoceridae
Genus Psilotreta 1 1.18 2.13 0.46
Family Brachycentridae 1
Genus Micrasema 1 4 − 0.30 2.73 0.23 1.24 0.07
Genus Brachycentrus 1 4 − 0.67 12.68 0.23
Genus Adicrophleps
Family Lepidostomatidae
Genus Lepidostoma 3 − 0.38 0.54 0.60
Family Glossosomatidae
Genus Glossosoma 3 − 0.97 0.62 0.33
Genus Agapetus 3 1.51 0.69
Family Limnephilidae 3
Genus Pycnopsyche 5 0.67 0.08 38.55 0.07
Family Goeridae
Genus Goera 1 − 1.00 0.08
Family Ueniodae 1
Genus Neophylax 1 3 − 0.31 31.98 1.00 0.40
Family Polycentropodidae 1
Genus Neureclipsis 1 5 − 0.68 2.80 0.08
Genus Nyctiophylax 1 4 − 0.72 0.08 0.07
Genus Polycentropus 1 5 − 0.68 1.68 0.69 2.45 0.87
Family Molannidae
Genus Molanna
Order Coleoptera
Family Psephenidae
Genus Psephenus 5 − 0.26 0.92 0.40
Genus Ectopria 3 − 0.08 0.23 38.55 0.07
Family Dryopidae
Genus Helichus 6 0.50 0.23 1.24 0.07
Family Elmidae
Genus Stenelmis 6 2.56 5.83 0.46 0.13
Genus Optioservus 4 0.72 2.06 0.77 0.20
Genus Promoresia 3 − 0.75 0.62 1.11 0.07
Genus Oulimnius 3 − 0.32 31.98 1.00 2.85 0.87
Genus Gonielmas 4 0.67 1.24 0.07
Family Ptilodactylidae
Genus Anchytarsus 5 0.60 2.80 0.08
Order Diptera
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Blephariceridae
Genus Blepharicera 4 − 0.50 3.36 0.77 0.07
Family Tipulidae
Genus Tipula 6 − 0.50 0.15 0.13
Genus Antocha 4 − 0.81 2.99 1.00 0.04
Genus Dicranota 5 0.92 0.77 0.20
Genus Hexatoma 5 − 0.29 3.03 0.85 10.18 0.87
Genus Pilaria 4 − 0.33 0.07
Genus Ormosia 5 − 0.43 0.08
Genus Erioptera 3 − 0.50 0.08
Family Psychodidae
Family Dixidae
Genus Dixa 6 − 0.51 0.15 0.13
Family Simulidae 1
Genus Prosimulium 1 5 − 0.93 4.76 0.38 13.31 0.40
Genus Simulium 1 5 1.66 68.2 0.92 5.24 0.80
Family Chironomidae 6 0.43 1.00 1.00
Family Ceratopogoniidae 6 1.45 7E+170 0.92 3.85 0.53
Family Tabanidae 6 0.00 0.07
Family Athericidae
Genus Atherix 4 0.28 2.80 0.08
Family Empididae
Genus Hemerodromia 6 0.50 4.07 0.38 0.53
Genus Chelifera 6 2.37 0.54 38.55 0.07
Genus Wiedemannia 6 1.00 0.07
Genus Clinocera 6 − 0.83 3.63 0.23 0.13
Genus Oreogeton 6 0.71 1.24 0.07
Non-Insect Taxa
Class Arachnida
Order Hydracarina
Class Gastropoda
Order Mesogastropoda
Family Pleuroceridae 5 9.88 2.72 0.46
Class Bivalvia 1
Order Veneroida
Famlly Sphaeriidae 1 8 0.00 0.15
Class Turbellaria
Order Tricladida
Family Planariidae 1 0.00 4E+23 0.15 0.20
Class Oligochaeta 8 0.42 6E+6 0.85 1E+33 0.60
Class Crustacea
Order Amphipoda
Family Gammaridae 6 1.50 0.47
Order Decapoda
Family Cambaridae
Genus Cambarus 0.15 0.60
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Aeshnidae 6
Genus Boyeria 6 − 0.67 0.08
Family Calopterygidae 5
Genus Calopteryx 5
Family Coenagrionidae 5 − 0.16 1.95 0.08
Genus Argia 5
Order Hemiptera
Family Veliidae 7
Genus Microvelia 7 8.67 0.07
Genus Rhagovelia 7
Order Megaloptera
Family Corydalidae 5
Genus Corydalus 6 − 0.07 1E+46 0.08
Genus Nigronia 3 − 0.09 1.00 4.06 0.73
Order Trichoptera
Family Hydroptilidae 4
Genus Hydroptila 5 1.27 2.80 0.38 1.24 0.07
Family Helicopsychidae 3
Genus Helicopsyche 3
Family Hydropsychidae 1 4
Genus Hydropsyche 1 4 − 0.39 1.00 0.13
Genus Cheumatopsyche 1 6 − 0.29 0.46 1.24 0.07
Genus Diplectrona 1 4 − 0.41 2.99 1.00 4.42 0.87
Family Rhyacophilidae 3
Genus Rhyacophila 3 − 0.60 2.99 1.00 2.50 0.67
Family Philopotamidae 3
Genus Chimarra 4
Genus Wormaldia 1 − 0.55 69.20 0.08 0.20
Genus Dolophilodes 3 − 0.85 0.92 1.76 0.60
Family Psychomyiidae 2
Genus Lype 3
Genus Psychomyia 2
Family Leptoceridae 4
Genus Triaenodes 4 0.61 1.22 0.07
Family Odontoceridae
Genus Psilotreta 1 1.18 2.13 0.46
Family Brachycentridae 1
Genus Micrasema 1 4 − 0.30 2.73 0.23 1.24 0.07
Genus Brachycentrus 1 4 − 0.67 12.68 0.23
Genus Adicrophleps
Family Lepidostomatidae
Genus Lepidostoma 3 − 0.38 0.54 0.60
Family Glossosomatidae
Genus Glossosoma 3 − 0.97 0.62 0.33
Genus Agapetus 3 1.51 0.69
Family Limnephilidae 3
Genus Pycnopsyche 5 0.67 0.08 38.55 0.07
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Goeridae
Genus Goera 1 − 1.00 0.08
Family Ueniodae 1
Genus Neophylax 1 3 − 0.31 31.98 1.00 0.40
Family Polycentropodidae 1
Genus Neureclipsis 1 5 − 0.68 2.80 0.08
Genus Nyctiophylax 1 4 − 0.72 0.08 0.07
Genus Polycentropus 1 5 − 0.68 1.68 0.69 2.45 0.87
Family Molannidae
Genus Molanna
Order Coleoptera
Family Psephenidae
Genus Psephenus 5 − 0.26 0.92 0.40
Genus Ectopria 3 − 0.08 0.23 38.55 0.07
Family Dryopidae
Genus Helichus 6 0.50 0.23 1.24 0.07
Family Elmidae
Genus Stenelmis 6 2.56 5.83 0.46 0.13
Genus Optioservus 4 0.72 2.06 0.77 0.20
Genus Promoresia 3 − 0.75 0.62 1.11 0.07
Genus Oulimnius 3 − 0.32 31.98 1.00 2.85 0.87
Genus Gonielmas 4 0.67 1.24 0.07
Family Ptilodactylidae
Genus Anchytarsus 5 0.60 2.80 0.08
Order Diptera
Family Blephariceridae
Genus Blepharicera 4 − 0.50 3.36 0.77 0.07
Family Tipulidae
Genus Tipula 6 − 0.50 0.15 0.13
Genus Antocha 4 − 0.81 2.99 1.00 0.04
Genus Dicranota 5 0.92 0.77 0.20
Genus Hexatoma 5 − 0.29 3.03 0.85 10.18 0.87
Genus Pilaria 4 − 0.33 0.07
Genus Ormosia 5 − 0.43 0.08
Genus Erioptera 3 − 0.50 0.08
Family Psychodidae
Family Dixidae
Genus Dixa 6 − 0.51 0.15 0.13
Family Simulidae 1
Genus Prosimulium 1 5 − 0.93 4.76 0.38 13.31 0.40
Genus Simulium 1 5 1.66 68.2 0.92 5.24 0.80
Family Chironomidae 6 0.43 1.00 1.00
Family Ceratopogoniidae 6 1.45 7E+170 0.92 3.85 0.53
Family Tabanidae 6 0.00 0.07
Family Athericidae
Genus Atherix 4 0.28 2.80 0.08
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Empididae
Genus Hemerodromia 6 0.50 4.07 0.38 0.53
Genus Chelifera 6 2.37 0.54 38.55 0.07
Genus Wiedemannia 6 1.00 0.07
Genus Clinocera 6 − 0.83 3.63 0.23 0.13
Genus Oreogeton 6 0.71 1.24 0.07
Non-Insect Taxa
Class Arachnida
Order Hydracarina
Class Gastropoda
Order Mesogastropoda
Family Pleuroceridae 5 9.88 2.72 0.46
Class Bivalvia 1
Order Veneroida
Famlly Sphaeriidae 1 8 0.00 0.15
Class Turbellaria
Order Tricladida
Family Planariidae 1 0.00 4E+23 0.15 0.20
Class Oligochaeta 8 0.42 6E+6 0.85 1E+33 0.60
Class Crustacea
Order Amphipoda
Family Gammaridae 6 1.50 0.47
Order Decapoda
Family Cambaridae
Genus Cambarus 0.15 0.60
Family Limnephilidae 3
Genus Pycnopsyche 5 0.67 0.08 38.55 0.07
Family Goeridae
Genus Goera 1 − 1.00 0.08
Family Ueniodae 1
Genus Neophylax 1 3 − 0.31 31.98 1.00 0.40
Family Polycentropodidae 1
Genus Neureclipsis 1 5 − 0.68 2.80 0.08
Genus Nyctiophylax 1 4 − 0.72 0.08 0.07
Genus Polycentropus 1 5 − 0.68 1.68 0.69 2.45 0.87
Family Molannidae
Genus Molanna
Order Coleoptera
Family Psephenidae
Genus Psephenus 5 − 0.26 0.92 0.40
Genus Ectopria 3 − 0.08 0.23 38.55 0.07
Family Dryopidae
Genus Helichus 6 0.50 0.23 1.24 0.07
Family Elmidae
Genus Stenelmis 6 2.56 5.83 0.46 0.13
Genus Optioservus 4 0.72 2.06 0.77 0.20
Genus Promoresia 3 − 0.75 0.62 1.11 0.07
Genus Oulimnius 3 − 0.32 31.98 1.00 2.85 0.87
Genus Gonielmas 4 0.67 1.24 0.07
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Ptilodactylidae
Genus Anchytarsus 5 0.60 2.80 0.08
Order Diptera
Family Blephariceridae
Genus Blepharicera 4 − 0.50 3.36 0.77 0.07
Family Tipulidae
Genus Tipula 6 − 0.50 0.15 0.13
Genus Antocha 4 − 0.81 2.99 1.00 0.04
Genus Dicranota 5 0.92 0.77 0.20
Genus Hexatoma 5 − 0.29 3.03 0.85 10.18 0.87
Genus Pilaria 4 − 0.33 0.07
Genus Ormosia 5 − 0.43 0.08
Genus Erioptera 3 − 0.50 0.08
Family Psychodidae
Family Dixidae
Genus Dixa 6 − 0.51 0.15 0.13
Family Simulidae 1
Genus Prosimulium 1 5 − 0.93 4.76 0.38 13.31 0.40
Genus Simulium 1 5 1.66 68.2 0.92 5.24 0.80
Family Chironomidae 6 0.43 1.00 1.00
Family Ceratopogoniidae 6 1.45 7E+170 0.92 3.85 0.53
Family Tabanidae 6 0.00 0.07
Family Athericidae
Genus Atherix 4 0.28 2.80 0.08
Family Empididae
Genus Hemerodromia 6 0.50 4.07 0.38 0.53
Genus Chelifera 6 2.37 0.54 38.55 0.07
Genus Wiedemannia 6 1.00 0.07
Genus Clinocera 6 − 0.83 3.63 0.23 0.13
Genus Oreogeton 6 0.71 1.24 0.07
Non-Insect Taxa
Class Arachnida
Order Hydracarina
Class Gastropoda
Order Mesogastropoda
Family Pleuroceridae 5 9.88 2.72 0.46
Class Bivalvia 1
Order Veneroida
Famlly Sphaeriidae 1 8 0.00 0.15
Class Turbellaria
Order Tricladida
Family Planariidae 1 0.00 4E+23 0.15 0.20
Class Oligochaeta 8 0.42 6E+6 0.85 1E+33 0.60
Class Crustacea
Order Amphipoda
Family Gammaridae 6 1.50 0.47
Order Decapoda
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Cambaridae
Genus Cambarus 0.15 0.60
Family Aeshnidae 6
Genus Boyeria 6 − 0.67 0.08
Family Calopterygidae 5
Genus Calopteryx 5
Family Coenagrionidae 5 − 0.16 1.95 0.08
Genus Argia 5
Order Hemiptera
Family Veliidae 7
Genus Microvelia 7 8.67 0.07
Genus Rhagovelia 7
Order Megaloptera
Family Corydalidae 5
Genus Corydalus 6 − 0.07 1E+46 0.08
Genus Nigronia 3 − 0.09 1.00 4.06 0.73
Order Trichoptera
Family Hydroptilidae 4
Genus Hydroptila 5 1.27 2.80 0.38 1.24 0.07
Family Helicopsychidae 3
Genus Helicopsyche 3
Family Hydropsychidae 1 4
Genus Hydropsyche 1 4 − 0.39 1.00 0.13
Genus Cheumatopsyche 1 6 − 0.29 0.46 1.24 0.07
Genus Diplectrona 1 4 − 0.41 2.99 1.00 4.42 0.87
Family Rhyacophilidae 3
Genus Rhyacophila 3 − 0.60 2.99 1.00 2.50 0.67
Family Philopotamidae 3
Genus Chimarra 4
Genus Wormaldia 1 − 0.55 69.20 0.08 0.20
Genus Dolophilodes 3 − 0.85 0.92 1.76 0.60
Family Psychomyiidae 2
Genus Lype 3
Genus Psychomyia 2
Family Leptoceridae 4
Genus Triaenodes 4 0.61 1.22 0.07
Family Odontoceridae
Genus Psilotreta 1 1.18 2.13 0.46
Family Brachycentridae 1
Genus Micrasema 1 4 − 0.30 2.73 0.23 1.24 0.07
Genus Brachycentrus 1 4 − 0.67 12.68 0.23
Genus Adicrophleps
Family Lepidostomatidae
Genus Lepidostoma 3 − 0.38 0.54 0.60
Family Glossosomatidae
Genus Glossosoma 3 − 0.97 0.62 0.33
Genus Agapetus 3 1.51 0.69
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Limnephilidae 3
Genus Pycnopsyche 5 0.67 0.08 38.55 0.07
Family Goeridae
Genus Goera 1 − 1.00 0.08
Family Ueniodae 1
Genus Neophylax 1 3 − 0.31 31.98 1.00 0.40
Family Polycentropodidae 1
Genus Neureclipsis 1 5 − 0.68 2.80 0.08
Genus Nyctiophylax 1 4 − 0.72 0.08 0.07
Genus Polycentropus 1 5 − 0.68 1.68 0.69 2.45 0.87
Family Molannidae
Genus Molanna
Order Coleoptera
Family Psephenidae
Genus Psephenus 5 − 0.26 0.92 0.40
Genus Ectopria 3 − 0.08 0.23 38.55 0.07
Family Dryopidae
Genus Helichus 6 0.50 0.23 1.24 0.07
Family Elmidae
Genus Stenelmis 6 2.56 5.83 0.46 0.13
Genus Optioservus 4 0.72 2.06 0.77 0.20
Genus Promoresia 3 − 0.75 0.62 1.11 0.07
Genus Oulimnius 3 − 0.32 31.98 1.00 2.85 0.87
Genus Gonielmas 4 0.67 1.24 0.07
Family Ptilodactylidae
Genus Anchytarsus 5 0.60 2.80 0.08
Order Diptera
Family Blephariceridae
Genus Blepharicera 4 − 0.50 3.36 0.77 0.07
Family Tipulidae
Genus Tipula 6 − 0.50 0.15 0.13
Genus Antocha 4 − 0.81 2.99 1.00 0.04
Genus Dicranota 5 0.92 0.77 0.20
Genus Hexatoma 5 − 0.29 3.03 0.85 10.18 0.87
Genus Pilaria 4 − 0.33 0.07
Genus Ormosia 5 − 0.43 0.08
Genus Erioptera 3 − 0.50 0.08
Family Psychodidae
Family Dixidae
Genus Dixa 6 − 0.51 0.15 0.13
Family Simulidae 1
Genus Prosimulium 1 5 − 0.93 4.76 0.38 13.31 0.40
Genus Simulium 1 5 1.66 68.2 0.92 5.24 0.80
Family Chironomidae 6 0.43 1.00 1.00
Family Ceratopogoniidae 6 1.45 7E+170 0.92 3.85 0.53
Family Tabanidae 6 0.00 0.07
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Taxon MBII metric Dose-response Capture probabillity
characteristics models models

Hazel River Paine Rub

Filter PTV P change Model Obs. Model Obs.
feeders

Family Athericidae
Genus Atherix 4 0.28 2.80 0.08
Family Empididae
Genus Hemerodromia 6 0.50 4.07 0.38 0.53
Genus Chelifera 6 2.37 0.54 38.55 0.07
Genus Wiedemannia 6 1.00 0.07
Genus Clinocera 6 − 0.83 3.63 0.23 0.13
Genus Oreogeton 6 0.71 1.24 0.07
Non-Insect Taxa
Class Arachnida
Order Hydracarina
Class Gastropoda
Order Mesogastropoda
Family Pleuroceridae 5 9.88 2.72 0.46
Class Bivalvia 1
Order Veneroida
Famlly Sphaeriidae 1 8 0.00 0.15
Class Turbellaria
Order Tricladida
Family Planariidae 1 0.00 4E+23 0.15 0.20
Class Oligochaeta 8 0.42 6E+6 0.85 1E+33 0.60
Class Crustacea
Order Amphipoda
Family Gammaridae 6 1.50 0.47
Order Decapoda
Family Cambaridae
Genus Cambarus 0.15 0.60
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Chapter 10
Getting the Message Across: Using
Ecological Integrity to Communicate
with Resource Managers

Brian R. Mitchell, Geraldine L. Tierney, E. William Schweiger, Kathryn M.
Miller, Don Faber-Langendoen and James B. Grace

Abstract This chapter describes and illustrates how concepts of ecological integrity,
thresholds, and reference conditions can be integrated into a research and monitoring
framework for natural resource management. Ecological integrity has been defined
as a measure of the composition, structure, and function of an ecosystem in rela-
tion to the system’s natural or historical range of variation, as well as perturbations
caused by natural or anthropogenic agents of change. Using ecological integrity
to communicate with managers requires five steps, often implemented iteratively:
(1) document the scale of the project and the current conceptual understanding and
reference conditions of the ecosystem, (2) select appropriate metrics representing
integrity, (3) define externally verified assessment points (metric values that signify
an ecological change or need for management action) for the metrics, (4) collect data
and calculate metric scores, and (5) summarize the status of the ecosystem using a
variety of reporting methods. While we present the steps linearly for conceptual
clarity, actual implementation of this approach may require addressing the steps in a
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different order or revisiting steps (such as metric selection) multiple times as data are
collected. Knowledge of relevant ecological thresholds is important when metrics are
selected, because thresholds identify where small changes in an environmental driver
produce large responses in the ecosystem. Metrics with thresholds at or just beyond
the limits of a system’s range of natural variability can be excellent, since moving
beyond the normal range produces a marked change in their values. Alternatively,
metrics with thresholds within but near the edge of the range of natural variability
can serve as harbingers of potential change. Identifying thresholds also contributes to
decisions about selection of assessment points. In particular, if there is a significant
resistance to perturbation in an ecosystem, with threshold behavior not occurring
until well beyond the historical range of variation, this may provide a scientific basis
for shifting an ecological assessment point beyond the historical range. We present
two case studies using ongoing monitoring by the US National Park Service Vital
Signs program that illustrate the use of an ecological integrity approach to commu-
nicate ecosystem status to resource managers. The Wetland Ecological Integrity in
Rocky Mountain National Park case study uses an analytical approach that specif-
ically incorporates threshold detection into the process of establishing assessment
points. The Forest Ecological Integrity of Northeastern National Parks case study
describes a method for reporting ecological integrity to resource managers and other
decision makers. We believe our approach has the potential for wide applicability
for natural resource management.

Keywords Assessment point · Communication tool · Conceptual diagram · Condi-
tion metric · Ecological integrity · Ecological threshold · Forest · Index of biological
integrity · Natural variability · Wetland

Introduction

Ecological thresholds have been defined in many ways, including the commonly
used definition from Groffman et al. (2006): “an ecosystem quality, property or
phenomenon . . . where small changes in an environmental driver produce large
responses in the ecosystem.” As scientists tasked with monitoring long-term trends
in natural resource conditions, we are keenly interested in using multiple methods
to detect important thresholds, be they strict ecological thresholds as defined by
Groffman et al. (2006), or simply a point along a continuum that reflects a shift to
an undesirable state. As communicators who are required to convey complex results
to decision makers and the public, we need a simple, flexible framework suitable for
reporting data analyses in a way that can be easily understood and applied. The goal
of this chapter is to provide you with an approach, based on the concept of ecological
integrity, that incorporates threshold ideas and reference conditions and is broadly
applicable for presenting research and monitoring results to decision makers. We
present two case studies using ongoing monitoring by the US National Park Service
Vital Signs program (Fancy et al. 2009) that illustrate the use of an ecological integrity
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approach to communicate ecosystem status to resource managers. Each example has
different objectives and a different emphasis in order to demonstrate some of the
range of applications of the general approach.

“Ecological integrity” builds on the related concepts of biological integrity and
ecological health, and is a useful endpoint for ecological assessment and reporting
(Czech 2004). “Integrity” is defined as the quality of being unimpaired, sound, or
complete. To have integrity, an ecosystem should be relatively unimpaired across a
range of characteristics, and across spatial and temporal scales (De Leo and Levin
1997). Ecological integrity has been defined as a measure of the composition, struc-
ture, and function of an ecosystem in relation to the system’s natural or historical
range of variation, as well as perturbations caused by natural or anthropogenic agents
of change (Karr and Dudley 1981). An ecological system has integrity “when its
dominant ecological characteristics (e.g., elements of composition, structure, func-
tion, and ecological processes) occur within their natural ranges of variation and can
withstand and recover from most perturbations imposed by natural environmental
dynamics or human disruptions” (Parrish et al. 2003).

As Tierney et al. (2009) describe, ecological integrity can be difficult to assess.
One approach builds on the Index of Biological Integrity (IBI), which was originally
used to interpret stream integrity based on 12 metrics that reflected the condition,
reproduction, composition, and abundance of fish species (Karr 1981). Each metric
was rated by comparing measured values with the values expected under relatively
unimpaired conditions, and the ratings were aggregated into a total score. Related
biotic indices have sought to assess the integrity of other aquatic and wetland ecosys-
tems, primarily via faunal (and more recently, floral) assemblages. Building upon
this foundation, others have suggested measuring the integrity of ecosystems by de-
veloping suites of indicators or metrics comprising the key biological, physical, and
functional attributes of those ecosystems (Andreasen et al. 2001; Parrish et al. 2003;
Mack and Kentula 2010).

For the purpose of communicating information about ecosystem condition to man-
agers, ecological integrity can be summarized as one or more metrics of ecosystem
composition, structure, and function. The acceptable ranges of these metrics are
established through knowledge of their natural variability at defined spatial and tem-
poral scales and their resistance to perturbation (Tierney et al. 2009). In some cases,
extensive data sets and prior research are available to determine the natural range
of variation; in other cases, an initial period of baseline data collection or expert
judgment can be used to establish the acceptable ranges. Regardless of the specifics
of how these ranges are developed, attention to potential ecological thresholds is im-
portant. Managers are particularly concerned about nonlinear effects near thresholds
that produce outsized impacts on resource condition or shift ecosystems into new
and unnatural stable states (Groffman et al. 2006). An example of such a dramatic
shift in an ecosystem’s state (cited in Groffman et al. 2006) is Florida Bay, which
in the 1990s abruptly shifted from an oligotrophic clear water system dominated by
seagrasses to a turbid system dominated by phytoplankton blooms. Knowledge of
the strength and location of thresholds like the one that led to the ecological shift
in Florida Bay allows scientists and managers to develop precautionary “assessment
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points” for metrics that will trigger action before the threshold is reached (Bennetts
et al. 2007). In this chapter, we use the term “ecological threshold” in the sense
implied by Groffman et al. (2006), to refer to a nonlinear response by a system to a
stressor. We follow Bennetts et al. (2007) in their use of “assessment point” to refer
to a value along the continuum of a metric that has relevance to managers, including
an ecological threshold.

Using ecological integrity to communicate with managers requires five steps,
often implemented iteratively: (1) document the scale of the project and the current
conceptual understanding of the ecosystem, (2) select appropriate metrics, (3) define
assessment points, (4) collect data and calculate metrics, and (5) produce a report
or other communication tool. In particular, steps 2 and 3 may be revisited multiple
times as a monitoring program develops and data is collected and analyzed, causing
scientists to rethink the metric choices and assessment points. This five-step process
shares a number of characteristics with other frameworks for developing research and
monitoring programs (e.g., Fancy and Bennetts 2012). The next sections cover these
steps in depth, and highlight places where knowledge of ecological thresholds fits into
the framework. We then present two case studies illustrating the use of an ecological
integrity approach to communicate ecosystem status to resource managers.

The Ecological Integrity Framework

Define Scale and Develop Conceptual Diagram

Begin by defining the scale, specifically the spatial and temporal scale of the ecolog-
ical system being evaluated. This includes documenting the geographic boundary of
the system and the specific features of the system within that boundary. The spatial
scale is equivalent to a statistical population, and can be general (e.g., forests of
the USA) or specific (e.g., Pitch Pine Woodlands in Acadia National Park greater
than 0.5 ha in areal extent and correctly identified on the 2003 vegetation map). The
temporal scale is also important, and includes consideration of the timing of data
collection (e.g., summer only or year-round) and the planned duration (e.g., one time
or repeated). Clear spatial and temporal scales are essential for data collection, and
will help guide the development of the conceptual diagram and metrics.

Conceptual ecological diagrams or models that describe major ecosystem func-
tions and delineate linkages between key ecosystem attributes and known stressors
or agents of change are an essential tool for identifying and interpreting metrics with
high ecological and management relevance (Fig. 10.1) (Noon 2003). The specific
features of conceptual diagrams can vary, and the approach can include models
that organize the linkages among on-site condition and patch size with surrounding
landscape attributes (Unnasch et al. 2009, Faber-Langendoen et al. 2012). Here we
focus on the primary components of integrity: composition, structure, and function.
Composition refers to the species making up the ecosystem, including overall
species richness and evenness. Structure means the physical characteristics of the
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system at multiple scales, including vertical stratification, physical substrates and
microhabitats, and landscape level features like patchiness and connectivity. Function
covers dynamic characteristics like species demography and interactions as well as
ecological processes like carbon, nitrogen, and water cycling. For each of these
components, it is essential to document the important ecological features, and how
they relate to one another, including aspects of the ecosystem that are important for
resource managers.

Next, consider the ecosystem drivers, or the factors that work to maintain the sys-
tem in its current state, and stressors that can disrupt the system. Formally, drivers
are external forces like climate, fire, and natural disturbance that have large scale
influences on natural systems (National Park Service 2012). In contrast, stressors
are perturbations to a system that are either foreign to the system or are applied at
an excessive (or deficient) level (Barrett et al. 1976). Stressors therefore can cause
a shift in the status of a driver, with potentially cascading effects on the ecosystem.
While considering the ecosystem drivers, think about and document the different
pathways through which the drivers and stressors can affect ecosystem composition,
structure, and function. It may help to distinguish between two different types of
drivers: external drivers (like climate) create an effect, while internal drivers (like
nutrient levels) convey the effect to the biota. Understanding the linkages whereby
internal drivers mediate or transfer the effects of human disturbance to the biotic
communities can be important for devising interventions to restore the system. The
conceptual diagram is also the first place to consider the potential impacts of eco-
logical thresholds. Are some stressors more likely to produce nonlinear or threshold
effects on ecosystems than others? For example, will an increase in atmospheric
deposition of nitrogen cause a sudden shift in trophic status of an aquatic system, or
a gradual change?

Your conceptual diagram may be a simple figure with supplemental text that de-
scribes ecological components and potential effects of stressors (e.g., Mitchell et al.
2006), or it may be a highly structured set of models and submodels that makes spe-
cific hypotheses about the mechanistic relationships between model elements (e.g.,
Miller et al. 2010a). Whatever the level of detail chosen, the goal is to formally doc-
ument the current understanding of the ecosystem— including known and potential
threshold effects—in a way that supports the selection of a suite of metrics suitable
for representing ecological integrity. Looking to the future, statistical methods now
exist that can permit conceptual diagrams to be translated into formal causal net-
work hypotheses, which can be evaluated using empirical data (Grace et al. 2010).
As knowledge of the ecosystem improves, the conceptual diagram or model should
be periodically updated, and the changes should be reviewed to determine whether
changes in metrics or assessment points are warranted.

Select Metrics

The second step in determining ecological integrity is identifying a limited number
of metrics that best distinguish condition classes or gradients from a highly impacted,
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degraded, or depauperate state to a relatively unimpaired, complete, and functioning
state. These metrics can be a single response measure (field measurement) but more
commonly they are calculated values based on field data. They may be properties
that typify a particular ecosystem or attributes that change predictably in response to
anthropogenic stress. The suite of metrics selected should be comprehensive enough
to incorporate composition, structure, and function of an ecosystem across the spatial
and temporal scales defined at the beginning of the previous step. Ideally, indicators
of the magnitude of key stressors acting upon the system will be included to increase
understanding of the relationships between stressors and effects (Tierney et al. 2009).
Developing effective metrics requires access to existing studies or pilot data so that
a variety of metrics can be calculated and assessed; this process may be iterative, as
initial data collection efforts demonstrate the need for revised metrics and potentially
different data.

When choosing metrics, consider the following four fundamental questions (Kurtz
et al. 2001): (1) Is the metric conceptually relevant? Conceptually relevant metrics
are related to the characteristics of the ecosystem or to the stressors that affect its in-
tegrity, and can provide information that is meaningful to resource managers. (2) Can
the metric be feasibly implemented? The most feasible metrics can be sampled and
measured using methods that are technically sound, appropriate, efficient, and inex-
pensive. (3) Is the response variability understood? Every metric has an associated
measurement error, temporal variability, and spatial variability, and the best metrics
will have low error and variability compared to the variability in the ecological com-
ponent or stressor it is designed to measure. In other words, good metrics have high
discriminatory ability, and the signal from the metric is not lost in measurement error
or environmental noise. Ideally the metric will be measured across a range of sites
that span the gradient of stressor levels (DeKeyser et al. 2003), and verified to show
a clear response to the stressor. (4) Is the metric interpretable and useful? The best
metrics provide information on ecological integrity that is meaningful to resource
managers.

Part of the process of selecting metrics should include exploring the relationship
between each metric and ecological condition, with explicit consideration of thresh-
old behavior. Indicators with thresholds at or just beyond the limits of a system’s
range of natural variability (Fig. 10.2a) can be excellent ecological integrity metrics,
since in this case, moving beyond the normal range produces a marked change in
the value of the indicator that should be easier to detect. Indicators with thresholds
within but near the edge of the range of natural variability (Fig. 10.2b) can also be
suitable ecological integrity metrics, because they can serve as an early warning of
potential change. However, indicators with thresholds far inside or outside the range
of natural variability (Fig. 10.2c, d) are usually poor ecological integrity metrics,
since they can lead to false alarms or not show a change until after the ecosystem has
fundamentally changed (although see below for a situation where Fig. 10.2d may be
a good metric).
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Fig. 10.2 The location of a threshold relative to the range of natural variation for a system affects
the value of potential metrics. a and b are suitable ecological integrity metrics, but c and d are
usually not

Determine Assessment Points

Once you have selected metrics, review the list and think about how you plan to
report ecological integrity to decision makers. Is it important for describing the
overall condition of systems to be able to arrive at a single number representing
ecological integrity derived from the suite of metrics, such as through an Index of
Biotic Integrity or other modeling approach (Karr 1991)? Or, will it be more valuable
to provide a set of metrics that reflects different components of the system’s overall
integrity? A single value is often attractive because of its simplicity, but you risk
oversimplification and difficulty interpreting its meaning. If you decide to combine a
set of metrics into a single summary metric, any data analyses and modeling should
be clearly documented, with assessment points usually developed for the summary
metric rather than the component metrics. On the other hand, a suite of metrics can
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provide more nuanced insight into particular aspects of ecological integrity that may
be at risk. In most situations, it will help to present a combination metric like an IBI
as an overall summary, while also including some or all of its component metrics,
which may have more direct management relevance and be easier to interpret.

For each final metric, establish assessment points that distinguish expected or
acceptable conditions from undesired ones that warrant concern, further evaluation,
or management action (Bennetts et al. 2007). Assessment points are “preselected
points along a continuum of resource-indicator values where scientists and managers
have together agreed that they want to stop and assess the status or trend of a resource
relative to program goals, natural variation, or potential concerns” (Bennetts et al.
2007). Based on Bennetts et al., we define two categories of assessment points that
are useful for ecological integrity reporting: ecological assessment points related to
ecosystem condition, and management assessment points derived from the goals of
resource managers. Types of management assessment points include surveillance
assessment points that indicate when extra attention, research, and planning are
needed; and action assessment points that define when management action should be
taken. Two or more assessment points can share the same metric value, such as when
action and ecological assessment points are identical. Alternatively, one category of
assessment point may have multiple values, such as when one ecological assessment
point represents the point where a system exceeds its range of natural variation and
additional ecological assessment points indicate different levels of degradation.

Ecological assessment points are derived from some characterization of either
natural or historical variability. Estimates of historical or natural variation in ecosys-
tem attributes provide a reference for gauging the effects of current anthropogenic
stressors, while at the same time recognizing the inherent natural variation in ecosys-
tems across space, time, and stages of ecological succession (Landres et al. 1999).
This may be empirically derived from the extant distribution of a metric across a de-
fined spatial and temporal scale (especially of relatively pristine ecosystems like large
wilderness areas or national parks), inferred from the best available information prior
to meaningful anthropogenic disturbance (e.g., paleoecological reconstructions) or
via models of ecosystem dynamics. In some cases, there is no relevant existing data
for one or more metrics, and in these cases, initial assessment points should be es-
tablished based on expert judgment or baseline data collection (e.g., the first 5 years
of data, assuming the sample design is appropriate for this purpose). Although all of
these provide useful insight, our understanding of historical and natural conditions
in many ecosystems relies on a limited number of key studies, and care must be
taken when extrapolating these data to other areas (Tierney et al. 2009). Whatever
the source of the data, our understanding of the range of natural variation and any
ecological assessment points based on this knowledge need to be periodically re-
viewed and updated to ensure that we are using the best available information for
decisions.

If you are confident that a nonlinearity in a metric’s functional form corresponds
to a true ecological threshold, it may make sense to use the threshold as an ecological
assessment point rather than strictly relying on the range of natural variability. This
aligns with the idea of ecological integrity including resistance to perturbation in
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Fig. 10.3 Assessment points for an ecological integrity metric that does not exhibit threshold
behavior

addition to the historical or natural variation in the system (Parrish et al. 2003). Even
though an ecosystem component may function within a certain range, it may be that
integrity (as measured by the particular metric) does not change noticeably unless
the range of natural variation is exceeded by a large amount (e.g., Fig. 10.2d). In
this situation, ecological integrity may not be threatened by exceeding the range of
natural variation, but it would be altered by exceeding the ecological threshold, so
the latter point may be more suitable for an ecological assessment point.

In many cases, the point where a metric’s value indicates that an ecosystem has
exceeded its range of natural variation—a critical ecological assessment point—
can also be used as an action assessment point. This is the point where active steps
need to be taken to bring the ecosystem back within the natural range. A separate
surveillance assessment point can be established near this point but within the natural
range of variation, indicating a need for vigilance and planning for potential corrective
measures (Fig. 10.3). In other cases, particularly when metrics exhibit thresholds near
an ecological assessment point, the placement of action and surveillance assessment
points may need to be adjusted (Fig. 10.4). Setting an action assessment point near the
ecological threshold will maximize the discriminatory ability of the assessment effort
and help ensure that action is not taken in the absence of a real change in ecological
integrity. A surveillance assessment point is best set where the metric’s value begins
to enter the zone where small changes in the ecological state begin to produce a large
effect on the metric (Fig. 10.4). In making these decisions, it is important to consider
the lag times associated with system response, however, because lag responses can
increase the need to anticipate a system’s approach to a threshold so that actions can
prevent further degradation (Contamin and Ellison 2009).

Action and surveillance assessment points may be shifted from an ecological
assessment point in some additional situations. One of these is when there is high
uncertainty in measurements of a metric. In this case, one must balance the risk
of delaying discovery of an ecological problem with that of falsely identifying a
problem. If you determine the risk of delaying discovery to be more important,



10 Getting the Message Across 209

Within the range of natural varia on Outside the range of natural varia on

Within the range of natural varia on Outside the range of natural varia on

Ecological Assessment Point

Ac on Assessment Point

Surveillance Assessment Point

Ecological Assessment Point

Surveillance Assessment Point

Ac on Assessment Point

Ecological Condi on Gradient

a

b

Ec
ol

og
ica

l I
nt

eg
rit

y 
M

et
ric

Ec
ol

og
ica

l I
nt

eg
rit

y 
M

et
ric

Fig. 10.4 Assessment points for ecological integrity metrics that exhibit threshold behavior. Panel
a illustrates a case where the threshold is close to the boundary between natural and unnatural
variation, while panel b illustrates a case where the threshold falls within the range of natural
variation

assessment points should be shifted inside the natural range of variation. If the risk
of falsely reporting a problem is more important, then shift the assessment point
outside the natural range of variation. You may also want to consider dropping this
metric, improving the precision of the measurement, or quantifying measurement
error through quality assurance and quality control procedures.

Another type of situation occurs when resource managers have a goal other than
ecological integrity, or when an ecosystem is already well outside of ecological in-
tegrity and interim recovery goals are needed. In these cases, ecological assessment
points still serve as valuable, science-based benchmarks, but the action and surveil-
lance points will likely be set relative to management targets or “utility thresholds”
(Nichols et al. 2012) chosen for their relevance to decision makers. For example,
managers of a historic site or a military base may be willing to accept some devi-
ations from ecological integrity in order to preserve the historic scene or military
readiness, and can benefit from working with scientists to set reasonable action and
surveillance assessment points that protect ecological integrity as much as possible.

After establishing assessment points for each metric, you should thoroughly doc-
ument the relevant spatial and temporal scales, information used in determining the



210 B. R. Mitchell et al.

natural range of variation and resistance to perturbation, implications of sampling
uncertainty, and all decisions regarding where to place assessment points. These
decisions may be based on statistical analyses, professional judgment (e.g., through
discussions with resource managers), or they may be somewhat arbitrary. It is impor-
tant to make the basis of all decisions clear and easily accessible in order to facilitate
periodic reviews and revisions (Fancy et al. 2009).

Collect Data and Calculate Metrics

Some amount of data collection probably happened before metrics were chosen and
assessment points defined, and this information is important to the previous steps
and for future iterations of the ecological integrity framework. Existing data can be
particularly valuable in determining whether metrics are feasible, with appropriately
understood response variability (Kurtz et al. 2001). In many cases, though, the con-
ceptual diagramming and metric selection process identifies new or different metrics
that have not previously been collected or calculated, so new data and analyses are
needed before indicators of ecological integrity can be estimated. Data collection
should be matched to the desired spatial and temporal scale defined in the first step
of the framework. This typically entails a sampling design focused on the statistical
population, but it is also possible to use a well-chosen set of index sites to docu-
ment site-specific trends, although this prohibits rigorous extrapolation to the full
population.

Regularly scheduled new data collection and metric calculation, typically inte-
grated into long-term ecological monitoring using detailed protocols (see Oakley
et al. 2003 for guidelines), is essential for providing up-to-date ecological integrity
data to decision makers. An extensive longitudinal data set for a population of sites
provides a foundation for testing hypotheses about relationships among ecological
components and stressors that are based on the conceptual diagram, and facilitates
updating the diagram. Longitudinal data also help to clarify temporal variability of
metrics and can uncover metrics that are highly correlated and thus duplicative and
unnecessary for continued use in ecological integrity reporting.

Report Results

The final step in the ecological integrity framework is to ensure that results reach
the hands of decision makers in a timely manner and in a format that is accessible
and useful. This can be a one or two page “brief” that presents the highlights for
upper-level administrators or a longer report with more detail for resource managers.
Regardless of format, the information should describe the spatial and temporal scale
and refrain from extrapolating beyond the data. It should include a simple summary
that illustrates metric values for sites or management units in relation to the estab-
lished assessment points, plus audience-appropriate explanations of each metric and
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key findings and recommendations. Ecological integrity reports also need to high-
light measurement or other uncertainties, including uncertainties about ecological
assessment points.

Although a variety of reporting approaches are possible, some of the authors (B.
Mitchell, G. Tierney, and K. Miller) have had success using a “stoplight” system,
where “Good” (green) represents an acceptable condition, “Caution” (yellow) in-
dicates that the surveillance assessment point has been passed and a problem may
exist, and “Significant Concern” (red) means that the action assessment point has
been passed and that an undesirable condition exists that may require management
correction (Tierney et al. 2009). A similar approach would categorize the condition
of sites as “Good,” “Moderate,” and “Poor” (e.g., James-Pirri et al. 2012). It is im-
portant not to raise a false alarm when historical information or the data have high
levels of uncertainty. One way to avoid this pitfall is by avoiding use of the “Signif-
icant Concern” category for metrics where there is uncertainty about the location of
an ecological assessment point; in these cases, it may help to define a “Caution” or
surveillance assessment point and defer decisions on other assessment points until
additional data are available.

In our experience, the most effective reporting approach has been a tiered system,
with short summaries pointing the way to a more detailed report that contains links
or references to the most detailed raw data, descriptions of the conceptual diagram,
metrics, assessment points, and data collection methods. Tiered reports allow de-
cision makers to start with the simplest summaries, and drill down to the level of
detail that is most appropriate for them. This approach also ensures maximum trans-
parency, by making it easy to find the raw data, rationale for the choice of metrics,
justifications for the assessment points, and data collection methods.

Wetland Ecological Integrity in Rocky Mountain National Park

The National Park Service (NPS) Rocky Mountain Inventory and Monitoring Net-
work (ROMN) is using the ecological integrity framework to monitor and report the
condition of wetlands in several park units. Here we focus on the process followed in
Rocky Mountain National Park (ROMO). ROMO is a large park in the North Central
Rockies of Colorado. Most of the park is designated wilderness, and it has important
wetland resources that support iconic wildlife such as elk and beaver.

Define Scale and Develop Conceptual Diagram

The primary spatial scales of interest for wetland monitoring in ROMO included
specific individual wetlands as well as the complete population of wetlands across the
park. Most sites were selected using a spatially balanced survey design (Stevens and
Olsen 2004) that allows unbiased estimation (Olsen et al. 1999) for the population
of wetlands in the park. Because implementing a survey in a park like ROMO is
expensive, these sites are sampled across time using a paneled structure (Urquhart
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Fig. 10.5 Simple conceptual diagram of the key drivers and responses of wetlands in Rocky
Mountain National Park

and Kincaid 1999). Additional annual monitoring is conducted at a subset of hand-
picked “sentinel” wetlands that are either representative of key wetland types in the
park or have management significance. Sentinel sites allow more detailed treatments
of the ecology of place (Billick and Pierce 2010) and are more efficient to monitor, but
do not statistically represent wetland resources throughout the park. The temporal
scale of interest is long term. Shorter term variation is important and the sample
design and analyses attempt to accommodate it, but the true power and utility of the
approach may not be realized for several years.

As with all NPS monitoring networks, ROMN developed conceptual diagrams
as part of its general monitoring plan (Britten et al. 2007). These were revisited
during the development of the wetland monitoring protocol (Fig. 10.5) (Schweiger
et al. 2010a, 2010b) to ensure that park-specific drivers and stressors were included
(in ROMO, beaver and ungulate herbivory), as well as more global threats like
anthropogenic hydrological alterations (Gage and Cooper 2009), climate change
(Field et al. 2007), and aerial nitrogen deposition (Baron et al. 2009).

Select Metrics

Metrics were selected by the ROMN using two strategies. First, several were defined
a priori based on conceptual diagramming. Second, and perhaps more importantly,
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a set of metrics was developed using a large pilot effort in the park and a series of
analyses and models (summarized below). This ensured that the metrics would be
scale-appropriate, ecologically responsive, efficient, and logistically feasible given
budget constraints. Using pilot data also allowed the ROMN to work with resource
managers to evaluate the management relevance of candidate metrics. All metrics
were related to ecosystem composition, structure, function, and key stressors—the
core elements of ecological integrity.

Compositional metrics were based on the wetland vegetation assemblage, which
was particularly important at ROMO because wetlands are biodiversity hotspots,
containing approximately 37 % of the park’s plant taxa within less than 4 % of its
area (Schweiger et al. 2010b). An a priori decision was made to focus on wetland
vegetation as the primary biological response measure given cost considerations, the
integrative and likely sensitive response of vegetation to wetland disturbance (Mack
2001), and its central role in nearly all wetland functions. Vascular and nonvascular
vegetation was sampled using a suite of nested plots at each site (Peet et al. 1998), and
the data were developed into both individual metrics and Indices of Biotic Integrity
(IBI) for each wetland type.

Wetland extent was the primary structural metric. This is because larger wetlands
are likely better buffered from disturbance; their vegetation typically remains more
intact and diverse (Risvold and Fonda 2001); and hydrologic services like water
storage and purification function more naturally (Cooper et al. 2006; Mitsch and
Gosselink 2007). Extent was quantified using the survey design and analysis of field
assays of individual wetland complex area and type.

Hydrology can serve a structural and functional role in wetlands, and was also
selected as a core metric. The hydrology of a wetland is likely one of the most
important drivers of its extent, type, and condition (Gage and Cooper 2009), but
because hydrology primarily affects wetlands via patterns in hydrologic variability, it
is a difficult and expensive metric to monitor. ROMN measured instantaneous ground
water depths at the peak of vegetation growth and development, when deviations from
the range of natural variation should be most meaningful. ROMN also continuously
recorded water table depths at sentinel sites and will integrate these more meaningful
data in the future.

Other functional metrics were related to water chemistry and wetland soils. For
water chemistry, ROMN focused on data that could be collected using a hand-held
probe: pH, specific conductance, and temperature. Nutrients and other analytes were
considered, but ROMN decided that the laboratory costs would be too high. The
network addressed wetland soils by determining percent organic matter, depth of peat,
and a suite of structural aspects like texture and horizon depths at their monitoring
sites. A more detailed set of parameters including minerals, soil pH, carbon and
nitrogen content, and cation exchange capacity were collected at sentinel sites, and
these more complete characterizations of the soil resource will be integrated in the
future.

The ROMN wetland conceptual diagram included stressors with strong hypoth-
esized or known effects on wetland ecological integrity. Anthropogenic disturbance
was estimated at the site, meso scale (wetland buffers), and landscape scale (the
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catchment of each wetland) through a series of measures of land use and cover,
hydrologic alterations, and physical/chemical disturbances. Example response mea-
sures included estimates of intensive land use such as roads, trails, structures, dams,
and ditches that have been shown to strongly influence wetland condition (Mack
2007; Lemly and Rocchio 2009). The individual disturbance indicators were com-
bined into a metric of Human Disturbance Index (HDI) following an approach similar
to Faber-Langendoen et al. (2006) and Lemly and Rocchio (2009). The HDI provides
an independent measure of wetland condition against which vegetation attributes can
be assessed to determine their relationship with human disturbance.

To incorporate the important role of natural disturbances in the park, several
measures of stress not directly due to anthropogenic factors were developed. For
example, beavers play an important role in shaping and maintaining wetlands in the
park (Baker et al. 2005), and the network included a metric of the extent of beaver
presence in ROMO wetlands. Similarly, the large elk herd at the park is a stressor to
woody species like Salix spp. (Baker et al. 2005), and ROMN defined three browse
metrics, including percent of dead stems, percent of crown dieback, and percent of
browsed live stems.

Determine Assessment Points

Several of the ROMN’s ecological assessment points were developed based on ex-
isting literature (especially Faber-Langendoen et al. (2006) and Lemly and Rocchio
(2009)), collective experience with wetlands in the park, and discussions with park
resource managers. This was the case for wetland extent, fen hydrology, some water
chemistry parameters, most soil metrics, and elk browse. These responses had some
existing science to support their assessment points, but they were not always specific
to ROMO and therefore may not necessarily reflect wetland ecology in the park.
These points represent a starting point for assessing ecological integrity, and will be
reviewed as more data are collected and additional research is conducted.

A key element of the ROMN approach is the empirical development of park-
specific reference conditions and ecological assessment points for wetland vegeta-
tion. The ROMN protocol adopted and modified methods for quantifying reference
distributions and ecological assessment points created over the last two decades
(Stoddard et al. 2006). The ROMN felt this was necessary because of the paucity of
established assessment points or relevant thresholds for wetland vegetation, as well
as the possible inappropriateness of applying existing regional research results to
ROMO. National parks like ROMO are often unique landscapes with largely intact
habitats and few of the anthropogenic stressors that structure wetland condition in
more developed landscapes. There are gradients in human disturbance across the
park, but they encompass a different range than broader landscapes and likely reflect
different stressors.

The ROMN approach required several steps and was based on pilot data from
over 300 sample events at 140 sites collected between 2007 and 2009. First, data
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Fig. 10.6 Map of Human Disturbance Index (HDI) values in ROMO wetlands (all types). HDI
ranges from ∼ 0 to ∼ 100. Reference, impacted, and highly impacted sites as defined by Colorado
Natural Heritage Program (CNHP) arbitrary breakpoints (< 33.67 reference, 33.67–66.67 impacted,
and > 66.67 highly impacted) are defined by the size and color of each point (larger circles and
redder colors indicate sites with more human disturbance). A clear gradient exists from high-to-low
HDI scores with higher disturbance in low elevation front country wetlands on both the east and
west sides of the park

were classified into three wetland types (fens, wet meadows, and riparian) based on
extensive prior wetland classification work in the region (Cooper 1998). Then the
HDI was generated for each site, and assigned to a priori disturbance classes based
on Colorado Natural Heritage Program break points established using professional
judgment (Fig. 10.6). Third, metrics that described distinct responses of vegetation
to anthropogenic disturbance were generated. Examples of metrics include per-
cent invasive species (which might be expected to increase with disturbance), mean
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conservatism score (a measure of the fidelity of plant species to intact or degraded
habitat that decreases with disturbance; Wilhelm and Masters 1995), and percent
moss cover (which tends to decrease with disturbance). In total, ROMN created over
130 candidate metrics. The best metrics were selected from the full list by choos-
ing the ones that were most strongly predictive of the anthropogenic disturbance
gradient and that passed various statistical tests (including information content, re-
producibility, independence from other metrics, and interpretability; Stoddard et al.
2008). The final metrics had meaningful responses to disturbance, were ecologically
interpretable, were not redundant, and had favorable precision. ROMN also looked
at relationships with environmental gradients like elevation and precipitation. If a
metric responded to a natural environmental driver in the reference set of wetlands,
ROMN statistically adjusted the data to remove the influence (Stoddard et al. 2008).
This step was important in ROMO because several metrics did covary with environ-
mental features, and these relationships can confound our ability to detect a response
to the HDI. Finally, the best metrics were summed and scaled to range from 0 to
10, with ecological integrity increasing with the score. This final combined metric
is an Index of Biological Integrity (IBI; Karr 1991; Mack 2001; Miller et al. 2006;
Mack 2007) that the ROMN interprets as a synthetic estimate of wetland ecological
integrity in the park.

The final IBI for each of the three wetland types contained between four and six
component metrics that described a broad spectrum of wetland vegetation response to
disturbance. The component metrics were distinct for each wetland type, but metrics
based on either species invasiveness or species conservatism occur in each IBI. While
the component metrics all had significant relationships with disturbance, each final
index had stronger relationships (R2 between 0.30 and 0.61) with the HDI than the
individual component metrics. This result suggests that the indices were integrating
ecological response and were likely meaningful indictors of the ecological integrity
of wetlands in the park (Karr and Chu 1997).

To incorporate relevant ecological thresholds and establish ecological assessment
points, the ROMN conducted a series of analyses to define condition classes spe-
cific for each wetland type. Regression tree models were used to determine change
points in a predictor variable that best distinguished groups of values of a response
variable. Reciprocal regression tree analyses (De’ath and Fabricius 2000) were con-
ducted, one using IBI values as the predictor and HDI as the response and one vice
versa to estimate these thresholds for each variable. Figure 10.7 is a riparian wetland
example of the relationship between IBI and HDI, including the calculated threshold
values. All three IBIs were best split into only two classes: “reference” or “non-
reference.” Importantly, these ratings are specific to ROMO. In other landscapes,
only two classes might suggest the final model was not very precise, but the ROMN
believes this accurately describes the distribution in the park. Wetlands near visitor
facilities, roads, and some park boundaries were often disturbed while wetlands in
the wilderness backcountry were largely intact. Finally, all IBI models strongly dis-
criminated among HDI classes, suggesting that there were ecological thresholds in
the park’s wetland vegetation communities that were suitable for use as ecological
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Fig. 10.7 Scatter plot of ROMO riparian wetland IBI vs. HDI. Linear model and Pearson cor-
relations in inset show strong relationship with HDI. Classification error rate was derived using
cross-validation models. Ecological assessment points based on threshold values (vertical and hori-
zontal lines on the figure with corresponding scores of HDI = 30.25 and IBI = 4.94) were generated
using regression tree models. (See Schweiger (2010b) for details)

assessment points, and that it will be possible to place novel sites into the correct
ecological integrity category most of the time (Hawkins et al. 2000).

Both the reference and nonreference classes were characterized by a range of
values at the appropriate scale (park rather than state or ecoregion). For reference
sites, this reflects the natural range of variability, and for disturbed sites, it reflects
variation due to human impacts plus the underlying natural variability. One of the
primary reasons for the modeling effort conducted by the ROMN was to define the
park-specific condition gradient from reference to impacted. This gradient in ROMO
may be quite different from the larger landscape; a non-reference designation in
ROMO may be a relatively intact wetland if the scale of the assessment were broader.

Because most of the sample sites used to generate the IBI models were from
a survey design, the ROMN used design-based analysis (Olsen et al. 1999) with
the IBI-based ecological assessment points (and many other metrics, see Schweiger
et al. 2010b) to estimate wetland condition at the population scale. Fig. 10.8 shows
an example of one of the key outputs from these analyses using the ROMO fen
IBI—a cumulative distribution function (CDF). Generally speaking, a CDF is an
“area so far” function of the probability distribution for a response or a metric.
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Fig. 10.8 Cumulative
distribution function (CDF)
of ROMO fen IBI. Green and
red regions on the figure are
based on where the ecological
assessment point of 5.64
intersects the curve. Using the
properties of a CDF, this
defines the percentage (or
area) of the ROMO fen
resource that is in impacted
(30.8 ± 20 %) and reference
(69.2 ± 20 %) condition
classes. (See Schweiger
(2010b) for details)

Graphical presentations of CDFs aid visualization of the probability distribution and
readily facilitate interpreting thresholds placed within the distribution by locating the
percentage of the response that is above or below the threshold. Using the threshold
of 5.64 in the IBI generated from the regression tree analysis, the proportion of
all fens in the park in an impacted and a reference state are shown graphically in
Fig. 10.8. Sixty-nine percent (± 20 %) of ROMO fen habitat is in a reference state
and 31 % (± 20 %) is in a nonreference condition.

These analyses and results define the baseline of wetland condition for long-term
monitoring in ROMN. Additionally, the ROMN approach to developing metrics and
assessment points facilitates the distillation of large volumes of ecological data into
concise results that decision makers can use for resource management.

Collect Data and Calculate Metrics

Select elements of the pilot summarized above also served as the initial monitoring
effort for wetlands in the park. The ROMN is currently reviewing what worked and
what did not within the pilot and finalizing long-term plans for continued wetland
monitoring in ROMO and other NPS units. Current plans include statistical sam-
pling of the park’s wetland population every 5–10 years, plus annual monitoring at
four sentinel wetland complexes (Schweiger et al. 2010a). This frequency of data
collection and recalculation of ecological integrity metrics will ensure that current
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information is available for resource managers, and that they have time to plan and
react to changing conditions. The ROMN is also working directly with the park
to develop related management assessment points based on the ecological assess-
ment points developed during the pilot, the management needs of the park, and the
precision of the wetland protocol.

Report Results

Now that ROMN has completed the pilot and its initial assessment of wetland ecolog-
ical integrity in the park, the network is developing a suite of products to convey the
results to managers, the public, and others. ROMN is developing concise “resource
briefs” suitable for nonscientists, plus website content and other summaries. These
documents will link to more detailed products that will include metric and assess-
ment point justifications, field sampling methods, and analysis details (Schweiger
et al. 2010a). This means that park managers and other stakeholders will have access
to relevant summary information on wetland ecological integrity at ROMO, and will
have the option of digging deeper to investigate the science behind each assessment.

Forest Ecological Integrity in Northeastern National Parks

Another example of the ecological integrity framework in action is forest moni-
toring in northeastern national parks. The NPS Northeast Temperate Inventory and
Monitoring Network (NETN) monitors forests in ten national parks, including Aca-
dia National Park (ACAD), Marsh-Billings-Rockefeller National Historical Park
(MABI), and Morristown National Historical Park (MORR). Covering over 14,000
ha, ACAD is situated on the coast of Maine, and is dominated by second-growth
spruce–fir forests that have had minimal management for nearly 100 years. MABI is
a small (225 ha) park in rural Vermont with an ongoing forestry operation. The park
is dominated by forest land, which consists of a patchwork of northern hardwoods
and monoculture conifer plantations. MORR, a 691 ha park in suburban New Jersey,
is predominantly northern hardwoods and is heavily impacted by invasive species
and browsing by white-tailed deer. These three parks are the focus of this example,
although NETN monitors and reports forest ecological integrity for the larger group.

Define Scale and Develop Conceptual Diagram

NETN defined its scale for forest ecological integrity as the long-term monitoring
of forest condition (and more open woodland communities at ACAD) within park
boundaries during the summer season. Within this population, permanent plots were
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stratified by park and selected using a spatially balanced random sample (Stevens
and Olsen 2004). Like the Rocky Mountain Network, NETN developed a conceptual
diagram for forests during the development of their monitoring plan (Mitchell et al.
2006; Fancy et al. 2009) and used this diagram during the metric selection process.
NETN evaluates ecological integrity of forested systems using the plot data and 13
metrics of ecological composition, structure, and function that are broadly applicable
across northeastern temperate forests (Tierney et al. 2009, 2010).

Select Metrics

NETN uses five composition metrics. Tree regeneration indicates the quantity and
composition of established tree seedlings and therefore of potential future canopy
composition, and is substantially impacted by a historically large eastern US popula-
tion of white-tailed deer (Odocoileus virginianus) (Cote et al. 2004). Tree condition,
based on qualitative observations of disease, pests, pathogens, and canopy foliage
problems, provides an early warning indicator of infestation, disease, or decline of
one or more species. Biotic homogenization is the process by which regional biodi-
versity declines over time, due to the addition of widespread exotic species and the
loss of native species (Olden and Rooney 2006); this metric can be calculated be-
tween site pairs as a simple ratio of species present at two sites over the total species
present at either site (Jaccard’s Similarity Index; Olden and Poff 2003). Invasive
exotic plant species exploit and alter habitat, and are monitored by recording the fre-
quency of 22 exotic species that are highly invasive in northeastern forest, woodland,
and successional habitats. Deer browse can affect understory plant composition in
addition to tree regeneration (Augustine and DeCalesta 2003), and NETN monitors
the change between monitoring events in the abundance of common preferred browse
species and unpalatable species.

The network’s structural forest ecological integrity metrics include two landscape
metrics and three stand-level metrics. Forest patch size strongly impacts habitat suit-
ability for a variety of taxa (Fahrig 2003), with larger forest patches supporting larger
populations of fauna and more native, specialist, and forest interior-dwelling species.
Human land use, based on the percentage of land area containing human land use
versus “natural” land use within a 50 ha (400 m radius) circle around each forest
plot, is used to estimate the impacts of habitat loss within a local neighborhood. The
stand-level metrics are stand structural class, snag abundance, and coarse woody
debris (CWD) volume. Using the method of Goodell and Faber-Langendoen (2007),
NETN calculates stand structural stage from tree size and canopy position measure-
ments; this metric helps the network assess altered disturbance regimes coincident
with global change and exotic pest and pathogen outbreaks (Dale et al. 2001). Dead
wood, in the form of snags (standing dead trees) and fallen CWD, is an important
structural component that provides necessary habitat for many forest taxa. Silvicul-
ture and land management often reduce the quantity and quality of dead wood, but
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ecologically based land management can retain or enhance these features (Keeton
2006).

The NETN also selected three metrics of ecosystem function: canopy tree growth
and mortality, acid stress, and nitrogen saturation. Decreased growth or elevated
mortality rates may indicate a particular health problem, such as sugar maple decline
(Duchesne et al. 2003), or may indicate a regional environmental stress (Dobbertin
2005). Acid stress (primarily from atmospheric deposition) is measured in forest
soil based on the molar ratio of calcium to aluminum (Cronan and Grigal 1995).
Nitrogen saturation (also from atmospheric deposition) may exacerbate the effects
of acidification (Aber et al. 1998) and is measured in forest soil based on the ratio of
carbon to nitrogen.

Determine Assessment Points

Once the metrics were identified, the NETN developed assessment points. NETN es-
tablished action and surveillance assessment points based on ecological assessment
points, using existing research whenever possible. If the available data suggested
a range of values for the limits of natural variation, the network typically created
a surveillance assessment point at the lower (more “natural”) value and an action
assessment point at the higher (less “natural”) value (Tierney et al. 2010). Because
NETN’s field methods and many of their metrics were closely related to methods
used by the well-established US Forest Service’s Forest Inventory and Analysis
(FIA) program (http://www.fia.fs.fed.us/), in some cases there were scientifically-
based ecological assessment points or existing baseline data to facilitate the process.
For example, assessment points for the tree regeneration metric were partly based on
FIA research (McWilliams et al. 2005), using a stocking ratio metric and associated
assessment point that varies by forest type and is partly based on a proposed metric
for detecting ungulate impacts in forests (Sweetapple and Nugent 2004). In other
cases, the FIA data were used as baseline data. This was the case for the tree growth
rate assessment points, which were based on FIA regional and species-specific pat-
terns (Tierney et al. 2010). A few NETN assessment points rely on comparisons
to baseline data collected by the NETN. For the biotic homogenization and indica-
tor browse metrics, assessment points were based on the changes from the baseline
condition rather than a comparison to predetermined values, given the challenges of
establishing historical baselines for these metrics (Tierney et al. 2010).

Most NETN assessment points were established by reviewing and applying exist-
ing research, and this is the primary place where the existence of ecological thresholds
played an integral role in the process. For example, Aber et al. (2003) compiled data
from sites across the northeastern USA and discovered that nitrification increased
sharply below a C:N ratio of 20–25. Additionally, the Indicators of Forest Ecosystem
Functioning (IFEF) database compiled data from sites across Europe and found that,
below a C:N ratio of 25, overall nitrate leaching was significantly higher and more
strongly correlated to nitrogen deposition (MacDonald et al. 2002). NETN used this
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research to establish a surveillance assessment point (“Caution” rating) at a C:N ratio
of 25, and an action assessment point (“Significant Concern” rating) at a C:N ratio of
20. Ecological thresholds are also present in the minimum habitat patch sizes needed
to support species. Kennedy et al. (2003) reviewed the available research, and found
that minimum patch areas ranged up to 1 ha for invertebrates, up to 10 ha for small
mammals, and up to 50 ha for the majority (75 %) of bird species, with much bigger
patch sizes needed to support large mammals. The relatively small parks for which
the NETN metric was designed could not independently support large mammal pop-
ulations. Therefore, the network chose ecological assessment points based on the
threshold patch sizes needed to support birds, small mammals, and invertebrates.

Collect Data and Calculate Metrics

NETN has been collecting data annually since 2006 at 350 fixed plots. Plot numbers
vary across the ten parks, with as few as ten plots (one plot for each two forested
hectares) at Weir Farm National Historic Site and up to 176 plots (1 plot for each
73 forested hectares) at ACAD. Half the plots at each of the network’s small parks
are sampled every other year, and a quarter of ACAD’s plots are sampled each
year (Tierney et al. 2010). Metrics are automatically calculated by the network’s
monitoring database at a minimum of once every complete sampling cycle (every
4 years). Often interim calculations are produced using the current year’s data or
a rolling window of the most recent 4 years. This frequency of data collection and
metric calculation ensures that there are always current data available to address the
needs of park managers.

Report Results

An integral part of the Northeast Temperate Network’s forest monitoring is producing
a variety of reports that ensure park managers are aware of current forest conditions,
that they have information explaining these conditions, and that they have access
to the raw data if they need to explore the summary information more fully. The
foundation of the NETN approach is simple summary tables (e.g., the comparison of
three parks in Table 10.1) that provide an intuitive scorecard for managers and help
them see the status of their park and how it compares to other network parks. Most
of the metrics in the table are assessed park-wide or by management unit (for some
of the larger parks). A few metrics, such as tree condition and tree regeneration, can
be assessed accurately at the plot scale, allowing for the use of pie charts to convey
the proportion of the park’s forest in each assessment category (Table 10.1).

The scorecard table suggests that ACAD is doing well, with all park-wide metrics
within the ecological assessment points, and a small percentage of plots indicating
poor integrity for the tree condition and regeneration metrics. Conditions at MABI
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Table 10.1 Forest ecological integrity at three Northeast Temperate Network parks, based on a
subset of ecological integrity metrics and data collected in 2007–2010. Green indicates that the
park (or a percentage of the park for multicolored pie charts) is within the range of natural variation;
yellow indicates that the surveillance (and first ecological) assessment point has been passed; red
indicates that the action (and second ecological) assessment point has been exceeded

Metric Acadia NP Marsh-Billings-

Rockefeller NHP

Morristown NHP

Composition: Indicator Invasive 
Species 

Composition: Tree Condition 

Composition: Tree Regeneration

Structure: Stand Structure

Structure: Snag Abundance

Structure: Coarse Woody Debris 
Volume

Function: Tree Mortality TBD

Function: Soil Acid Stress

Function: Soil Nitrogen Saturation

warrant close ongoing observation, since many of the metrics had scores between
the surveillance and action assessment points. In addition, tree regeneration is likely
inhibited at the park, and nitrogen saturation may have reached problematic levels.
This park has chosen to be proactive about forest condition, and projects ranging
from extensive invasive plant removal to silvicultural actions that increase snag and
coarse woody debris abundance will likely improve the park’s scores in the future.
MORR’s ratings are more checkered than the other parks. Although the structural and
functional metric ratings indicate a reasonably good condition (albeit with excess ni-
trogen deposition), the compositional metrics indicate some problems. In particular,
invasive plants are having a significant effect on plant diversity, and overabundant
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deer have effectively eliminated tree regeneration in much of the park. Both of these
issues are high priorities for park managers.

While the ecological integrity scorecard is great for an at-a-glance summary,
NETN makes sure to supplement the scores with additional details that include the
actual values and assessment points for each metric, as well as discussion about
the implications of the scores and possible corrective actions (e.g., Miller et al.
2010b). This information is reported at the park level, and when possible (for parks
with more plots), the scores and interpretation are provided for management units
within each park. Network staff also produce a series of resource briefs that highlight
key information from the more technical report (e.g., Fig. 10.9); these publications
are often popular with higher level managers as well as park education staff and
interested members of the public. The scorecard report and resource briefs always
provide citations or links to additional information, including the monitoring protocol
that documents the ecological integrity metrics and assessment points (Tierney et al.
2010). All of these reports and communication tools are intended to support and
supplement (rather than replace) regular in-depth data analyses and scientific reports
that will explore trends and patterns in the long-term data set. The whole range of
publications is organized and made available in digital format to resource managers
through the NETN web site, so that they can quickly locate information when the
need arises.

Conclusions

The ecological integrity framework is a powerful tool for organizing complex data
sets and conveying important information to resource managers. Even when man-
agers do not have the time or background to fully explore the statistics or threshold
dynamics that led to the choices of different ecological assessment points, they in-
tuitively grasp the idea of an ecological system being inside or outside its historical
range of variability. This framework has a number of important features. It can
accommodate application of ecological thresholds—where they exist—at multiple
points, particularly in the choice of suitable assessment points. In many cases, thresh-
olds facilitate the process, particularly when they occur near limits of the range of
historical variation of a system. The presence of threshold behavior in a metric can
help guide the development of assessment points, because thresholds indicate places
where the metric value changes rapidly (and can be detected more easily) in response
to changes in the system. Lack of clear thresholds make the identification of ecolog-
ical assessment points somewhat more arbitrary, but also allow for greater flexibility
in the choice of surveillance and action points.

Thresholds have an additional value to contribute to the framework, in that they
may highlight an important exception to the usual practice of setting assessment
points around the historical range of variation. If there is significant resistance to
perturbation in an ecosystem, with threshold behavior not occurring until well beyond
the historical range of variation, this may provide a scientific basis for shifting an
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National Park Service
U.S. Department of the Interior

Northeast Temperate Network

Resource Brief

Forest Health 
Coarse Woody Debris & Snags

The Northeast Temperate Network (NETN) began monitoring forest 
health in 2006. Since then, 260 permanent plots have been established.  
In 2009, NETN scientists will finish installing plots and collecting 
baseline data; resampling will begin in 2010, giving NETN scientists 
an even clearer picture of forest health. 

Temperate forests are made up of a complex, interconnected web 
of plant species,  wildlife, and abiotic cycles. Because it would be 
impractical to measure the many components of forest ecosystems, 
NETN scientists monitor and report on a few key measures of forest 
health, called “metrics”. For each metric, NETN scientists have 
defined a range of conditions that might be present at network parks. 
“Ecological integrity” ranks are then assigned by comparing existing 
conditions to those expected for a healthy forest. Conditions are 
labeled “Good” when they fall within an acceptable range of variation, 
“Caution” if they warrant concern, and “Significant Concern” if they 
require management correction. 

Coarse woody debris (i.e., dead trees and the remains of branches on 
the forest floor) and snags (i.e., standing dead trees) are one indicator 
of forest health. Forests in most NETN parks do not have enough 
snags or coarse woody debris. The Vanderbilt Mansion NHS was 
the exception, rating “good” for both these metrics. Acadia NP also 
rated “good” for snag density. The Home of Eleanor Roosevelt NHS 
and the Home of Franklin D. Roosevelt NHS rated “good” for coarse 
woody debris, but  just missed the “good” rating for snags because the 
percent of medium to large snags was too low.  

Status and Trends

The three Roosevelt-Vanderbilt park units had a “good” rating for coarse woody debris volume. This ecological indicator is based on 
the ratio of live tree volume to coarse woody debris volume measured in forest monitoring plots. Parks interested increasing coarse 
woody debris could fell or pull over trees, leaving them on the forest floor where they will provide important structure and contribute 
to a healthy functioning forest ecosystem.  

E X P E R I E N C E  Y O U R  A M E R I C A ™ April 2009

Continued »

Significant Concern:
< 5 med-lrg snags/ha

Caution:
< 10% standing trees are snags
or < 10% med-lrg trees are snags

Good:
≥10% standing trees are snags
& >10% med-lrg trees are snags

VAMA*

ACAD
ELRO/HOFR

MORR
SAGA

MABI
MIMA
SARA
WEFA

Snag Abundance
Ecological Integrity of
Northeast Temperate Network Parks

Significant Concern:
< 5% live tree volume

Caution:
5-15% live tree 
volume

Good:
> 15% 
live tree volume

ELRO/
HOFR

VAMA

MIMA 
WEFA

ACAD
SARAMORR

SAGAMABI

Coarse Woody Debris Volume
Ecological Integrity Ranks
for Northeast Temperate Network Parks

The Vanderbilt Mansion NHS was the only park unit with “good” snag
density. This ecological integrity measure is based on the number and size
of standing dead trees in monitoring plots. Most NETN park units contain
younger forests which often lack snags. Medium-large sized, low vigor trees
can be girdled to increase snag densities in young forest stands.
*NETN parks and their abbreviations are listed under Monitoring Program.

Fig. 10.9 Example northeast temperate network resource brief describing status of the coarse woody
debris and snag metrics in network parks

ecological assessment point beyond the historical range. For example, suppose an
ecosystem has a natural range of variation in its carbon to nitrogen ratio of 40–80,
but research shows no effects of nitrogen saturation until the ratio drops below 25.
This situation suggests placement of an ecological assessment point at a ratio of 25,
even though 40 represents the lower bound of the range of natural variation.
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Other valuable features of the framework stem from its focus on providing useful
and timely information to resource managers. The framework is transparent, since
decisions and analyses are documented and easily available for review. It is appro-
priate for a variety of audiences, particularly when a hierarchy of publications is
produced that vary in technical detail and allow readers to find their level of com-
fort, while keeping the full details within easy reach. The framework is also iterative
and easily integrated into the adaptive management cycle (Lancia et al. 1996). The
iterative nature of the framework is particularly apparent early in the process, when
one step in the framework often requires revisiting other steps. For example, initial
data collection may reveal that a metric has more variability or is more expensive
than originally expected, triggering a re-evaluation of the metric selection and as-
sessment points. Alternatively, a new publication and ongoing data collection may
reveal that a hypothesized relationship in the conceptual diagram was incorrect; this
may suggest new hypothesis, new metrics, and even the discontinuation of current
metrics. The ecological integrity framework can play a central role in the adaptive
management cycle by regularly reporting current results to managers, incorporating
new information (including the results of management actions and data analyses) into
the conceptual foundation of the framework, and making modifications to metrics
and reporting that reflect new knowledge.
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Chapter 11
Use, Misuse, and Limitations of Threshold
Indicator Taxa Analysis (TITAN) for Natural
Resource Management

Ryan S. King and Matthew E. Baker

Abstract Detection of ecological thresholds has broad relevance to management
of ecosystems. However, ecological community data present a distinct problem be-
cause current statistical methods used for identifying thresholds were not developed
for analysis of multiple, individual species abundances. We developed a new method,
Threshold Indicator Taxa ANalysis (TITAN), specifically to deal with some of the
limitations of existing methods for estimating community thresholds. Our objectives
in this chapter are to (1) summarize the theoretical basis for the method and related
methods, (2) provide a brief overview of how it works, (3) use a real data set to
illustrate an application of the method, and (4) conclude the chapter by addressing
several issues related to the appropriate use of the method, misconceptions about how
it works or what the results mean, and limitations that could lead to erroneous con-
clusions. We explain that step-function conceptualizations of community thresholds
are not sufficiently inclusive of all the response forms that satisfy threshold criteria,
how gradual responses of univariate community metrics do not rule out community
thresholds, and that linear regression techniques do not provide an adequate test for
the absence of thresholds, especially in the presence of long environmental gradients.
We note substantial misunderstanding in the recent literature regarding appropriate
use and interpretation of statistical change points identified by taxon-specific analysis
in TITAN, that univariate community metrics are inappropriate response variables
for such analyses, and that extreme variation in the density of the sample distri-
bution can affect results of any method, including TITAN. We end by reminding
users that despite the additional insight it brings to community analysis, TITAN is
neither a causal analysis nor a black box for developing regulatory criteria. Instead,
we intend TITAN to complement current analytical approaches, while highlighting
assumptions and flaws in the broader paradigms in which they are often applied.
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Introduction

There is a growing interest in the application of ecological thresholds for natural-
resource management (e.g., Huggett 2005; Suding and Hobbs 2009; Dodds et al.
2010). Indeed, threshold detection has broad relevance to management of aquatic
ecosystems, such as conservation (DeLuca et al. 2008; Hilderbrand et al. 2010),
biological invasions (King et al. 2007), ecosystem restoration (Walsh et al. 2005a;
Martin et al. 2009; Clements et al. 2010), development of numerical water-quality
criteria (King and Richardson 2003; Soranno et al. 2008), ecosystem management
(Richardson et al. 2007), and forecasting effects of climate change (Smol et al. 2005).

Despite the recent interest in ecological thresholds, application of the threshold
concept to aquatic-resource management remains tentative, if not contentious (e.g.,
Gaiser et al. 2008; Richardson et al. 2008). Threshold estimation depends upon the
selection of a response variable, assumed shape of the response, and appropriateness
of the corresponding statistical model, any of which may contribute to different
interpretations regarding the location of a threshold or whether a threshold even
exists (e.g., Walsh et al. 2005b; Moore and Palmer 2005; Dodds et al. 2010).

Ecological community data present a distinct problem because current statisti-
cal methods used for identifying thresholds were not developed for simultaneous
analysis of multiple, individual species abundances (Brenden et al. 2008; Anderson
et al. 2009). The vast majority of taxa in community data sets have low occur-
rence frequencies (i.e., do not occur in a large proportion of the sample units) and
have highly variable abundances which make their individual response difficult to
fit with various forms of regression analysis typically used for threshold detection
(e.g., piecewise regression, Toms and Lesperance 2003, significant zero crossings,
Sonderegger et al. 2009). Consequently, most investigators aggregate community
data into univariate responses, selecting a priori attributes that presumably represent
an important facet of community structure, such as the number of taxa, or deriv-
ing synthetic variables from multivariate analysis of taxa composition among sites
(e.g., dissimilarity metrics, ordination axes; King and Richardson 2005; Walsh et al.
2005a). While aggregating taxa into one or more response variables may, in some
instances, increase the community signal in response to anthropogenic gradients,
it also likely obscures nonlinear changes in one or more taxa, potentially underes-
timating or misrepresenting the effect of an anthropogenic gradient on ecological
communities. Thus, evaluating ecological community thresholds with existing ap-
proaches often involves undesirable generalities, loss of information, or assumptions
regarding taxon-specific responses.

We developed a new method, Threshold Indicator Taxa ANalysis (TITAN),
specifically to deal with some of the limitations of existing methods for estimating
community thresholds (Baker and King 2010). Since the publication of the method,
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we have published four additional papers describing applications of the method (King
and Baker 2010; King and Baker 2011a; King et al. 2011; Bernhardt et al. 2012)
and a detailed explanation of when to use it, how to interpret it, and what it does and
does not do, largely in response to misunderstanding and misrepresentation of the
approach by a few investigators (Baker and King 2013). Our objectives in this chap-
ter are to (1) summarize the theoretical basis for the method and related methods,
(2) provide a brief overview of how it works, (3) use a real data set to illustrate an
application of the method, and (4) conclude the chapter by addressing several issues
related to the appropriate use of the method, misconceptions about how it works or
what the results mean, and limitations that could lead to erroneous conclusions.

Community Thresholds and Novel Gradients

We define an ecological community threshold to mean that the frequency and/or abun-
dance of taxa will increase or decrease sharply at some level along an environmental
gradient, such that an incremental change in a driver such as urban intensity, toxic
compounds, or any number of anthropogenic variables results in a disproportionately
large change in community structure relative to elsewhere along the gradient (Baker
and King 2010). This definition does not necessarily imply a catastrophic, vertical
increase or decrease in the response, preceded and followed by zones of minimal
change (i.e., a step function), which is unrealistic for many ecological responses and
corresponds more closely to a regime shift or alternative stable state (see reviews by
Sheffer and Carpenter 2003 andAndersen et al. 2009). However, this interpretation is
one that we have frequently encountered in discussions about ecological thresholds
with other investigators. Moreover, our definition does not preclude the possibility
that some taxa may decline prior to or following a synchronous decline in multiple
taxa, but it is grounded in the fact that many interacting species may be influenced in
similar ways by an environmental driver, either physiologically or through disruption
of interspecific interactions (Økland et al. 2009).

Our definition of an ecological community threshold is particularly linked to and
relevant in the context of anthropogenic changes to natural environments (Fig. 11.1).
The physical and chemical conditions of many modern ecosystems increasingly di-
verge from environments known to have existed at any time in the history of Earth
(Fox 2007). These “no-analog” or novel environments can lead to wholesale changes
in community structure caused by a cascade of intra- and interspecific mechanisms
ranging from extirpation of species due to physiological stress, decoupling of posi-
tive interactions such as facilitation, relaxation of resource limitations on some while
imposing new ones on others, and altering competition or predation (Hobbs et al.
2006; Williams and Jackson 2007). Novel environmental gradients likely represent
a strong selective pressure favoring native taxa that are less specialized, have greater
physiological plasticity, or facilitate invasion of adaptive nonnative taxa (Stralberg
et al. 2009). Species replacement results in novel biotic communities that may be
difficult to manage, afford fewer ecosystem services, and may not respond to habitat
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Fig. 11.1 Conceptual diagram illustrating theoretical responses of a single taxon to a natural and
novel environmental gradient. The natural gradient represents a long gradient such as latitude.
The solid curve along this gradient represents the range of frequency and/or abundance expected
with increasing values along the axis. The novel gradient represents a “new” dimension and is
theoretically independent (or orthogonal) to the natural gradient. In this example, the novel gradient
has a negative effect on the taxon, but depending upon the location along the natural gradient, the
taxon may respond differently to the novel gradient

restoration efforts (Palmer et al. 2009; Clements et al. 2010). Thus, characterizing
taxon-specific responses to novel anthropogenic gradients is important for detecting
critical levels of alteration, understanding mechanisms of biodiversity loss, identify-
ing adaptive traits that confer success, assessing changes to ecosystem function, and
shaping restoration strategies.

A good illustration of a community response to novel gradients is the coinci-
dent decline of stream macroinvertebrate communities in response to anthropogenic
changes. Although it is widely debated whether stream communities truly exhibit
“threshold” responses, we suggest there is strong theoretical and empirical evidence
that they do. Many streams, particularly in old landscapes such as the Appalachian
Mountains, USA, exhibit high biodiversity as a result of subtle, yet critical differences
in stream flow velocities and material transport through time and space (e.g., Poff
1997). Diverse microhabitats have resulted in extensive adaptive radiation of many
stream-dwelling taxa (Vinson and Hawkins 1998), whereas moderate frequency and
magnitude of hydrological disturbances have maintained high levels of species rich-
ness at a local scale (Connell 1978). Facilitation among taxa is also documented
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in streams (Cardinale et al. 2002). Consequently, lotic species have coevolved to
possess unique morphological, behavioral, and physiological adaptations that corre-
spond to an often narrow range of environmental conditions. Small functional niches
undoubtedly render many species intolerant of conditions that fall outside those ex-
perienced in evolutionary time (sensu Shelford 1913). Thus, taxa sensitive to the
novel environment are selected against, sharply decline, and eventually disappear
(Fig. 11.2a).

The theoretical sensitivity posed above appears borne out in some empirical re-
sponses to anthropogenic stressor gradients where marked synchrony occurs in the
decline of sensitive taxa (e.g., King et al. 2011; Bernhardt et al. 2012). However,
synchrony does not mean that all taxa exhibit exactly the same response function,
but that their greatest declines (change in frequency and abundance) all occur within
a narrow range of the environmental gradient. Many of the responding taxa may
occupy distinct trophic positions and thus exhibit different responses, which is why
their coincident declines are strong evidence of community organization.

In contrast to the synchronous declines of sensitive taxa, positive-responding
taxa may or may not increase synchronously, and in our studies to date appear to
increase gradually in frequency and abundance at various levels of increasing novel
conditions (e.g., Baker and King 2010; King et al. 2011). The lack of synchronous
change points, that is, locations along the novel gradient that result in the greatest
amount of change in the response, and greater uncertainty in the location of individual
taxa change points implies that positive responding taxa probably do not represent
well-organized communities, but rather are composed of historically native taxa
that either directly (resource subsidy) or indirectly (e.g., realized niche expansion,
reduced competition or predation) benefited from it (Fig. 11.2b).

These theoretical and empirical responses represent the underlying basis for the
development of TITAN. The following section details in brief how the method works
and can be used to identify change points in individual taxa responses as well as
provide an assessment of the degree of synchrony in multiple taxa responses as
evidence for an ecological community threshold.

Threshold Indicator Taxa ANalysis (TITAN): What Is It and How
Does It Work?

TITAN is an analytical approach for identifying and distinguishing threshold-type
responses in ecological community data sets. Its basic premise is that community
response to environmental gradients, particularly novel environmental gradients, is
best detected empirically by aggregating the responses of individual taxa rather than
seeking change in community summary metrics (King and Baker 2010). This is
consistent with what Ferrier and Guisan (2006) identify as a “Predict first, assemble
later” approach to modeling communities. Analyzing individual taxa in this way
requires confronting the considerable variability in numerical abundance data and
uncertainty typically associated with sparse community data matrices, where many
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Fig. 11.2 Conceptual diagram illustrating theoretical responses of different taxa to a novel envi-
ronmental gradient. The x–y intercept represents absence of the anthropogenic stressor or a level
that falls within the normal range of conditions experienced during evolutionary time. The response
of Taxon A represents no change in its distribution along the gradient until a critical change point
or zone is reached (shaded region), which leads to a nonlinear decline and eventual extirpation at
a level beyond the initial change point. Taxon B represents a native taxon that is tolerant of the
novel gradient and either directly (resource subsidy) or indirectly (e.g., realized niche expansion,
reduced competition or predation) benefits, resulting in an indeterminate increase in its frequency
and abundance among sites with increasing values of the gradient. Taxon B could also be an invasive
taxon that is able to cross ecosystem boundaries and proliferate because of the altered and more
favorable novel conditions that previously limited its distribution
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taxa occur infrequently and irregularly in samples measured across time and space.
Confounding detection efforts, taxon abundances are often observed to vary as a result
of stochastic processes, sampling error, and strong correlation among unmeasured
environmental factors (e.g., King et al. 2005, 2011). Fortunately, this autocorrelation
means that the majority of variation in community structure can be explained with
relatively few dimensions. It also means that some taxa (though which ones are
not always clear) are likely to respond similarly to strong environmental drivers.
This redundancy is the basis for multivariate ordination methods that presuppose a
unimodal response model, but such methods are designed to detect species optima
and do not necessarily describe change. At its core, TITAN is a filtering process that
seeks to separate true and reliable response patterns of change from the high levels
of unexplained variability, or noise, in community data.

TITAN works by integrating a relatively simple and elegant measure of association
in taxon abundance with a nonparametric technique for detecting change. Indicator
species analysis (Dufrene and Legendre 1997) uses abundance-weighted occurrence
frequency to describe association between a particular taxon and groups of samples
defined by their order along an environmental gradient. Baker and King (2010)
provide explicit detail; however, for an intuitive understanding, it is perhaps useful
to consider the patterns of abundance in Fig. 11.2. A taxon’s indicator value (IndVal)
at any position along the gradient is a function of the relative abundance on either side
of a partition, weighted by its occurrence within each partition (i.e., the product of
both). In TITAN, the larger IndVal on each side of a partition is retained and compared
across partitions to find the value of the environmental gradient that results in the
greatest change in taxon abundance and frequency within the observed sample. This
value is a change point. However, a change point is not necessarily a “statistical
threshold” per se. It is simply the value of x that best partitions the data so that
difference in frequency and abundance is maximized. This analysis is repeated for
each taxon to provide a set of observed change points and the direction of that change.

To facilitate comparison across taxa, TITAN compares each taxon’s maximum
IndVal score to those expected if the same sampled abundances were randomly
distributed across the environmental gradient. A good indicator species is one that
occurs frequently, so that changes in its abundance are easy to detect, but that is not
the only kind of response worth noting. IndVal scores will always be small for rare,
variable, or sensitive taxa, even though they can nonetheless represent important
changes within a community. By comparison to the average IndVal scores derived
by random permutation, TITAN standardizes measures of change for any given taxon
to units of standard deviation (z scores; Baker and King 2010). Standardization em-
phasizes observed changes for each taxon relative to their own patterns of variability
in abundance and occurrence.

To better understand uncertainty surrounding the observed change points, TITAN
employs a bootstrap resampling technique (resampling with replacement; Manly
1997). However representative or large a sample may be, it remains only one esti-
mate of true underlying population patterns, and given a taxon-specific pattern of
abundance, another sample may yield an altogether different change point. Thus, for
every taxon the entire analysis is repeated many times (we recommend a minimum
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of 500), each with a slightly different collection of replicates drawn from the original
sample set to obtain a distribution of potential change points.

Information provided by the bootstrap is critical for interpreting results in TITAN.
In addition to the location and dispersion of the change-point distribution, TITAN
evaluates consistency in the response direction as purity, and the frequency of a
strong response magnitude as reliability (Baker and King 2010). Combined with a
minimum occurrence frequency, these diagnostic indices are used as filters to help
distinguish the signal produced by indicator taxa responses from stochastic noise
along the gradient. This filtering is part of what distinguishes TITAN from many
other multivariate techniques based on weighted averaging or dissimilarity.

Once indicator taxa have been identified, TITAN provides information that can
be used to identify a potential community-level threshold. A plot of filtered indicator
taxa showing change-point quantiles from bootstrap replicates provides evidence
regarding the existence of synchronous changes in the community structure. Because
the magnitude of all responses is standardized across taxa as z scores, their sum
reflects the magnitude of community change at any point along the gradient. Distinct
peaks in the sum(z) curve (maxima) plotted across the environmental gradient are
another indication of coincident change in community structure. When bootstrap
replicates used to compare the location of the sum(z) maxima across many sample
replicates show a narrow band, this constitutes evidence for a threshold response
(Baker and King 2010; King et al. 2011).

Case Study: Macroinvertebrate Community Response
to a Phosphorus Gradient in the Everglades

The Everglades (Florida, USA) is a large subtropical wetland that has experienced
significant anthropogenic changes in the past several decades. Modifications to hy-
drology, fire frequency and intensity, and other environmental factors all have played
a role in the alteration structure and functioning of the Everglades ecosystem, but
phosphorus (P)-enriched runoff from the Everglades Agricultural Area (EAA) is
widely viewed as the primary stressor (SFWMD 1992). An extensive canal-and-
levee system has compartmentalized most of the remaining Everglades ecosystem,
a system that also serves as a conduit for P from the EAA. Water-control structures
along the canals function as point sources of P to downstream portions of the wetland
ecosystem. In areas near water-control structures, P has been found to be largely re-
sponsible for facilitating invasion of cattail, vines, willows, and other plants that are
strongly limited by P (King et al. 2004; Richardson et al. 2007). Periphyton (floating
and attached mats of algae and bacteria), macroinvertebrate, and fish communities
have also changed dramatically in areas with even modest levels of P enrichment.
Thus, P enrichment in the Everglades serves as an excellent example of a novel
environmental gradient.

The data to be used for this example are from a previous study designed to identify
a concentration of surface-water total P (TP) that corresponded to abrupt changes in
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Fig. 11.3 Relationship
between surface-water total
phosphorus (TP) and distance
from the canal in the northern
Everglades

macroinvertebrate species composition in the Florida Everglades, USA (King and
Richardson 2003). Macroinvertebrate species composition (no/m2, 164 taxa, species
or morphospecies-level taxonomy) was measured from 126 marsh sampling stations
along a 10-km TP gradient. This gradient corresponds closely to proximity canal
inflow structures, the point-sources of P to the interior marsh. Concentrations of
TP in the data set ranged from < 10 to > 100 μg/L. The authors used several com-
munity variables and estimated TP change points using a univariate method called
nonparametric change-point analysis (nCPA), a binary partitioning method that is
computationally similar to regression tree analysis but incorporates bootstrapping for
confidence interval (CI) estimation and allows specification of distribution families
for response data (Qian et al. 2003). The resulting change points from their analysis
ranged from approximately 10–25 μg/L TP, and authors concluded that TP > 12–
15 μg/L was likely to correspond to ecologically significant changes in taxonomic
composition.

In our example, we reanalyzed macroinvertebrate community response to TP
as well as a second variable, distance from the canal inflow structures (canal, m),
that was not analyzed by King and Richardson (2003). Because canal represents
the source of TP, and TP responds in a nonlinear, negative manner to increasing
distance from the canal (Fig. 11.3), taxa that respond in a strongly negative direction
to increasing TP presumably should respond positively to increasing distance from
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the canal. Thus, taxa that are classified as negative indicators (z−) for TP should
be positive indicators (z+) for canal, assuming there is good correspondence in the
explanatory power between the variables. To be clear, this is by no means a causal
analysis but in this case substantial experimental work has been done to validate
observational results implying TP as a driver of community thresholds (King and
Richardson 2003). We will discuss the issue of confounded, intercorrelated variables
in the concluding section of this chapter.

Prior to TITAN analysis, we log10(x + 1) transformed taxa abundances to re-
duce the influence of highly variable taxa on indicator score calculations, although
it is certainly acceptable to use untransformed abundances in this nonparametric
analysis. Taxa with < 5 occurrences were deleted (following previous analyses
of these data). We ran TITAN using each variable separately to compare the rel-
ative strength of community response (sum(z)), number of threshold indicator
taxa, and the correspondence between individual taxa responses to both vari-
ables. The minimum split size (minimum number of observations required on
each side of a candidate change point) was set to 5, number of permutations was
set to 250, and the number of bootstrap replicates was set to 100 (although we
suggest using the default number of 500 in most cases for more precise confi-
dence limits and purity/reliability estimates). Step-by-step instructions on how to
load TITAN, import data, run the analysis, and graph results are provided online
(http://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2009.00007.x/suppinfo).

The first sets of results to examine are the individual threshold indicator taxa
change points, confidence limits, and other diagnostic statistics. Table 11.1 reports
a list of taxa that are deemed highly probable indicators of decline in response to a
novel gradient, in this case, positive change with increasing distance from the canal
(taxa classified as positive indicators, or z+) and negative change with increasing
levels of surface-water TP. Recall that these predictors are negatively related so it
is important to recognize that taxa that are negatively affected by a novel gradient
can be either classified as negative (z−) or positive (z+) indicators depending upon
the direction of the values of the gradient. The output from TITAN will not make
value judgments about which direction is “good” or “bad” so it is imperative that the
investigator be aware of this fact when sorting through output.

There are several columns of results included in Table 11.1. The first, Freq (Fre-
quency of occurrence) merely summarizes how many times a taxon occurred in the
data set. Note that a few taxa only occurred five times, the minimum requirement
for inclusion in this analysis. The next column (Obs.cp) is the observed value of the
predictor that resulted in the maximum indicator z score in the data set. The next two
columns report the raw IndVal and its standardized z score (z). Note that some taxa
have relatively low IndVal scores (recall that IndVal is scaled from 0–100) but rela-
tively high z scores. The reason for this is that IndVal does not reflect the magnitude
of difference in frequency and abundance between the groups of samples on either
side of the change point, whereas the z score does. The z does this by subtracting the
average IndVal score obtained by randomly reshuffling the data (250 permutations)
from the observed IndVal and dividing this difference by the standard deviation of
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the random IndVals. The advantage of this standardization is that a taxon with rela-
tively few occurrences but very strong fidelity to one end of the gradient can achieve
a large z score despite having a relatively small IndVal. Nevertheless, both statistics
are useful measures of taxa responses to the gradient.

The next column, CI-90 %, reports metrics of uncertainty about the change point
location of individual taxa. The 90 % CI is the 90th quantile of the distribution of
change points computed from 100 bootstrap replicates. In the case of an increasing
taxon (z+, distance from the canal), this is the 90th quantile on the left end of the
distribution, or the lowest level of the predictor where change points begin to be
detected using bootstrapping. In the case of a decreasing taxon, the 90th quantile
is near the highest level of the predictor where change points are detected using
bootstrapping. These CIs serve as conservative estimates of change-point locations.
Note that in some cases the 90 % CI is substantially higher (z−) or lower (z+) than
the observed change point. In these instances, this suggests a broader range of change
much like the taxon illustrated in Fig. 11.2b. We also acknowledge that CIs can be
inaccurate for taxa with relatively few occurrences, which would be the case for any
analysis, so strict interpretation of CIs for individual taxa is discouraged (Baker and
King 2010). However, the CIs do provide an informative reflection of variability in
IndVal scores among different samples of the data.

The final two columns report metrics of uncertainty about the repeatability of
a taxon as a potential threshold indicator. Purity is the proportion of times that a
taxon is given the same classification in each bootstrap replicate as in the observed
data set. So, taxa that receive a purity score of 1.00 were assigned as a z+ taxon
(distance from canal) or z− (TP) in every bootstrap replicate. The second metric is
reliability. It counts the number of times out of the n number of bootstrap replicates
that an individual taxon achieved a p–value < 0.05. The closer this value is to 1.00,
the more likely the taxon is indeed responding in a predictable manner to the novel
gradient. Note that we did not include a column for observed p-values; all of the
p-values for these taxa were less than or equal to the lowest possible value for
250 permutations (< 0.004). The observed p-value is neither informative, nor is it
an appropriate metric of statistical significance (Baker and King 2013). Taxa with
purity > 0.95 and reliability > 0.95 always achieve p < 0.05 because the former two
metrics are based on resampling of the data and thus much more robust indicators
of taxa response. Thus, this list of taxa is of those that passed these two filtering
criteria (purity > 0.95, reliability > 0.95). Note that for the sake of space, we did
not include in Table 11.1 the taxa that increased along the variables representing
the novel gradient (z− for distance from canal, z+ for TP), but did in the figures to
follow.

Before we move on to a discussion of the graphical results, note in Table 11.1 the
remarkable degree of overlap in the list of taxa that increase with distance from the
canal and decrease with increasing TP. We expected substantial overlap given the
correlation between variables but also some disagreement because of the moderate
amount of variability in TP concentration as a function of distance from the canal
(Fig. 11.3). The concordance between predictors provides at least some support for
the idea that the effect of the canal is a function of TP, given that we already know
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Fig. 11.4 Robust indicator taxa identified by TITAN in response to distance from the canal. In
panel a, horizontal lines represent 90 % CIs of observed change points (open or closed circles) for
each taxon. In panel b, taxa are ordered based on the 95th quantile of the bootstraps. Horizontal
lines extend from the lowest (declining taxa) or the highest predictor value (increasing taxa) to the
95th quantile of the distribution of change points for each taxa (“diving board plot”)

that the Everglades is very P limited and that experiments have validated strong
community responses to TP in isolation.

Graphical evaluation of individual taxa results from TITAN provides a much
cleaner depiction of most of the tabular output presented in Table 11.1. Figure 11.4
illustrates two types of graphs we developed for displaying indicator taxa results. In
Fig. 11.4a, the open and filled circles are the observed change points for each indicator
taxon that passed the screening criteria (as shown in Table 11.1). The horizontal lines
intersecting each point are the 5th and 95th quantiles of the bootstrap distribution
of change points for each taxon, i.e., confidence or variability bands such as those
illustrated in Fig. 11.2a, b. The y-axes show the code names of the indicator taxon
in rank order of the observed change point, starting with the lowest change point on
the top left axis (negative indicator taxa, z−) and the highest change point on the top
right (positive indicator taxa, z+). The size of the open or filled circles is proportional
to the indicator z score, so larger circles are taxa with stronger relative responses to
the gradient. Note that there actually were more taxa that favored conditions near the
canal than the natural condition at the opposite end of the gradient, as shown by the
longer list of taxa on the left y-axis.
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Fig. 11.5 Robust indicator taxa identified by TITAN in response to surface-water total phosphorus
(TP). In panel a, horizontal lines represent 90 % CIs of observed change points (open or closed
circles) for each taxon. In panel b, taxa are ordered based on the 95th quantile of the bootstraps.
Horizontal lines extend from the lowest (declining taxa) or the highest predictor value (increasing
taxa) to the 95th quantile of the distribution of change points for each taxa (“diving board plot”)

The second figure (Fig. 11.4b) illustrates the same information but in a different
way. In this figure, taxa are plotted in rank order of the CI-90 %. The open and filled
symbols are placed at CI-90 % and sized in proportion to z scores. The horizontal
lines are drawn from the 90 % CI to the y-axis to facilitate visualization of overlap
of the increasing and decreasing indicators as well as the degree of synchrony in
change point locations. We have termed this a “diving board plot” because the open
or filled symbol at the end of the horizontal line represents the point where a taxon
is likely to “dive.”

In both subfigures of Fig. 11.4, the pattern of many taxa increasing and decreasing
in a relatively narrow range of the novel gradient should be evident, particularly in
the Fig. 11.4b. The zone of overlap nicely illustrates a region of substantial turnover
in taxonomic composition. Despite relatively strong synchrony, there is evidence for
some degree of a continuum of change in the middle of the gradient rather than a
catastrophic “step function” type threshold.

However, Fig. 11.5 suggests that part of the reason for continuum of change with
distance from the canal is the variability in TP at different distances from the canal,
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Fig. 11.6 Scatterplots of response of a two representative negative indicators (Tanytarsus sp. R,
filled symbols, and Parakiefferiella sp. C, open symbols) and b two positive indicators (Goeldichi-
ronomus holoprasinus, filled symbol, and Caecidotea, open symbol) to the phosphorus gradient.
Note that TP is expressed on a logarithmic scale

as shown in Fig. 11.3. The response of negative indicators to TP is much more
abrupt and synchronous, ranging from about 10–40 ug/L TP. The strongest threshold
indicators responded quite synchronously between 10 and 20 ug/L TP, evidenced
by the clustering of larger filled symbols at low levels of TP. In some cases, taxa
occurred in nearly every sample unit to the left of the threshold and none of the
sample units to the right (Fig. 11.6a, b).

Recall that TITAN also provides a second set of results that attempts to synthe-
size individual taxa responses into an index of community-level change, sum(z).
Table 11.2 reports several community-level results based on the aggregate response
of negative and positive responding taxa, respectively. The raw sum(z) value is the
sum of all z scores (not just ones that met screening criteria) at the value of the pre-
dictor where sum(z) is maximized. This value is computed for negative and positive
responders separately. The sum(z) value is quite useful by itself because it provides a
metric of the aggregate magnitude of change among negative and positive indicator
taxa in the community. It is reasonable to compare the sum(z) value among multi-
ple predictors as a metric of explanatory power, but it is not reasonable to compare
sum(z) among different data sets because the absolute value is dependent upon the
number of taxa in the data set. In this case, the sum(z) for positive responses to
the canal gradient is slightly lower than sum(z) for the negative responses to the TP
gradient, suggesting that TP did a slightly better job of capturing the effect of enrich-
ment than the proximal “source” variable, canal. However, the opposite was true for
the taxa that favored conditions near the canal, where sum(z) negative exceeded the
TP sum(z) positive by a moderate value. This was also reflected in the larger number
of taxa that were deemed negative indicators to canal than positive indicators of TP
(59 vs. 54, respectively).
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Table 11.2 Community-level results from TITAN using distance from canal and total phosphorus
as predictors and macroinvertebrate taxa abundances as the response. (see Fig. 11.7)

Distance from canal (m) Total phosphorus (ug/L)

Negative Positive Negative Positive

Sum(z) 304 311 327 283
No. of indicator taxa 59 46 44 54
Sum(z) change pt. 5,739 7,956 14.62 31.68
CI 5 % 3,485 5,169 12.36 20.08
CI 10 % 3,578 5,277 12.66 22.55
CI 50 % 5,048 6,794 15.11 29.83
CI 90 % 6,077 7,956 21.28 37.86
CI 95 % 6,202 8,382 28.31 40.11

Sum(z) is the sum of all taxa z scores at the level of the predictor that resulted in the greatest change
in the aggregate response of negative (z−) or positive (z+) taxa. Sum(z) is a relative measure of
response magnitude. The number of indicator taxa reflects only those taxa that passed all screening
criteria (p < 0.05, purity > 0.95, reliability > 0.95; see Table 11.1). The sum(z) change point is the
value of the predictor that resulted in the greatest aggregate change among negative and positive
responding taxa, respectively. The CIs correspond to change point quantiles computed from the
bootstrap replicates and are displayed visually as a cumulative frequency curve in Fig. 11.7

The next series of results are the observed and bootstrap quantiles of change
points for the community-level response of negative and positive indicator taxa. The
observed change points for both sum(z−) and sum(z+) are relatively similar for both
predictors, reflecting the synchronous turnover in taxa in the zone of 6–8 km from the
canal and 14–31 ug/L TP. The location of synchronous decline in response to TP was
the tightest community-level response among the sum(z) change points, spanning a
90 % CI of 11–28 ug/L TP in comparison to the full range of values spanning ∼ 5 to
150 ug/L TP.

The last form of output from TITAN is the plot of all of the values of sum(z)
along the novel gradient (Fig. 11.7). These plots are arguably less intuitive but quite
informative once fully understood. The left y-axis is the sum of the z scores. As the
value of the gradient increases, the sum of the z scores will climb as the community-
level response increases in magnitude. The peak in the sum of the z scores represents
the observed change point. Beyond the peak, values will decline but may show
secondary peaks along the gradient where other groups of taxa change synchronously.
If the peak is very sharp such that the sum of the z scores increases and decreases
rapidly on either side of the peak, this is strong evidence for a sharp, synchronous
change in the community. If the peak is broad, such that there are many values along
the gradient that produce similar sum(z) scores, this is more indicative of a zone
of change rather than an abrupt threshold. Contrasting the response of the sum(z)
scores between canal and TP shows these two different responses. The response of
both increasing and decreasing taxa to the canal gradient is more gradual, such that
the peak in sum(z) bounces around in the middle of the gradient before declining
sharply on either end. Conversely, the negative response to TP is quite sharp, with
a clear peak evident at ∼ 15 ug/L. The positive response is less sharp but is still
consistent with a rapid, synchronous increase in multiple taxa around 30–40 ug/L
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Fig. 11.7 TITAN sum(z−) and sum(z+) values for all possible change points in response to distance
from canal (a) and total phosphorus (b). Peaks in sum(z−) correspond to locations along the gradient
where synchronous declines of taxa occur. Solid and dashed lines represent the cumulative frequency
distribution of change points among 100 bootstrap replicates for sum(z−) and sum(z+), respectively

TP. Finally, the right y-axis shows the cumulative frequency of sum(z) “peaks” among
the bootstrap replicates. Steep cumulative frequency curves will span only a narrow
range of x values and are further support for a community-level threshold. Broader
curves imply more gradual change. Collectively, these results support the conclusion
that macroinvertebrate communities respond strongly to TP, that the effect of TP on
community structure is nonlinear, and that the source of TP, the canal, explains most
of the same variability in community structure.

Misconceptions, Misuse, and Myths About Community
Thresholds and TITAN

In this concluding section, we will address several ideas or issues that we consider im-
portant points of clarification for users of TITAN and anyone interested in analyzing
ecological data in search of thresholds. We have attempted to group them but admit
that these cover a wide range of topics and may not follow a logical progression.

Community thresholds are not necessarily “step functions.” We have encoun-
tered numerous investigators who react to the idea of thresholds with much doubt
if not disdain. Although reasons vary, one apparent reason for this reaction is the
preconceived notion that a threshold necessarily implies a single point along a gra-
dient where everything falls apart, and prior to and following that point essentially
nothing happens. Perhaps the root of this confusion is the related but distinct theoret-
ical ideas of “regime shifts” or “alternative stable states” where an entire ecosystem
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undergoes a shift from one structural and functional identity to a very different one
once the system is pushed beyond some theoretical limit (e.g., Sheffer and Carpenter
2003). The best (and one of the few) example of such a shift is lake eutrophication
where a clear-water system with rooted macrophytes suddenly shifts to a turbid,
phytoplankton system once nutrient loading exceeds its assimilative capacity (Shef-
fer et al. 2001). While such examples probably exist for ecological communities in
response to novel gradients (and is actually approximated fairly well by the syn-
chronous declines of taxa to TP in our Everglades example), this definition is by no
means sufficiently inclusive of other responses that also may be deemed thresholds.
Per our own definition, a community threshold need only demonstrate that a certain
subset of taxa change in a relatively synchronous manner at a particular level of a
novel environmental gradient, and that additional change prior to or beyond that point
is entirely acceptable. Once investigators are willing to acknowledge this definition,
we submit that the threshold concept will be less offensive to their sensibilities.

Linear responses of univariate community metrics to environmental gradients do
not rule out community thresholds. It is of no surprise that different investigators can
come to different conclusions about the response of communities to novel gradients
using essentially identical data sets. One of the best examples of this has been the
ongoing debate about stream community response to watershed urbanization (e.g.,
Walsh et al. 2005; Cuffney et al. 2010; King and Baker 2010, 2011). Some investi-
gators claim no evidence in support of thresholds based on the result that variance in
univariate community metrics is well explained by a linear regression. Others have
claimed that a piecewise model with an immediate linear decline across a substantial
fraction of the gradient followed by a second zone of essentially little or no change is
the most probable response, whereas we have consistently detected a narrow zone of
urban intensity where multiple taxa begin to decline, indicative of what we consider
to be a community threshold (King and Baker 2010, 2011; King et al. 2011; Baker
and King 2013). How can one reconcile these disparate results?

It is our opinion, one we base on multiple empirical lines of evidence, that the use
of univariate community metrics as a response variable coupled with the very casual
application of linear models has obscured nonlinear changes in community data. We
have demonstrated this phenomenon using a simulation where we programmed taxa
responses to sharply decline at a particular level of a novel gradient and combined
these responses with more gradual increases (as in Fig. 11.2) and other taxa with
no response. Once these responses were combined into a single value per sample
unit, the response appeared roughly linear for most of the gradient whereas TITAN
revealed very sharp synchronous declines in the taxa that we had programmed (King
and Baker 2010). In sum, we caution the use of univariate metrics for community
threshold analysis without careful consideration of the location, magnitude, and
direction of individual taxa responses.

Linear regression does not provide a “test” for the absence of thresholds. We
also caution the use of linear regression for “testing” for the presence or absence of
thresholds (see King and Baker 2011). A significant p-value for a regression slope
does not mean that response is necessarily linear. Only a graphical examination of
the x–y relationship and the residuals from that relationship can yield the necessary
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information about the appropriateness of the linear model. If investigators are set
on analyzing univariate metrics, we suggest they read Zuur et al. (2010) and con-
sider using loess regression (e.g., King and Baker 2011), or even better, generalized
additive models (GAMs) in accordance with the assumptions of the analysis to deter-
mine whether the response has evidence of nonlinearity (e.g., Bernhardt et al. 2012).
GAMs fit smoothing functions to the response but will only smooth the response if
the addition of greater model complexity is deemed worthwhile based on cross val-
idation. If the estimated degrees of freedom exceed 1 and the smoother p-values are
< 0.001, it is highly likely that the response is nonlinear. GAMs also permit specifi-
cation of appropriate distribution families to match the distribution of response data
(e.g., negative binomial, Gaussian, etc).

Beware of long environmental gradients when dismissing thresholds. Another
issue related to the use of univariate response variables for threshold identification is
gradient length. The problem is that predictor variables that span a very wide range
of conditions (long gradients; for example, urban intensity from none to downtown
Chicago) can obscure sharp, nonlinear patterns at low levels of the gradient. If a
variable does not respond immediately to a novel gradient, (generally, they do not)
it may appear to do so if the response location is extreme relative to the complete
gradient length. This was a major point of King and Baker (2011), who critiqued a
different study that concluded responses to urbanization were linear but missed the
lack of response at low levels of the gradient because the gradient was so long and
difficult to visualize without looking more carefully at a narrower range of values.
Once viewed at levels of urban intensity between 0 and 20, the responses were
essentially flat until a critical level of urbanization was reached, which happened
to be similar to the levels of urbanization identified as community thresholds by
TITAN. Thus, we strongly recommend that users graph their data in such a way (log
transformed or truncated axis) to reveal low-level responses to novel gradients (Zuur
et al. 2010).

Do not use community metrics as response variables in TITAN. TITAN is de-
signed for taxa abundance data sets (matrix of abundances of multiple taxa by sample
units). Patterns of frequency of occurrence among sample units are the key compo-
nent of the IndVal calculation. Data sets dominated by species that occur in all
samples are poorly suited for TITAN because presence/absence of taxa no longer
contributes any information to the analysis. This issue becomes particularly problem-
atic when investigators attempt to use a matrix of community metrics (e.g., number
of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), percentage filterers, ratio
of weevils to platypus, etc). TITAN is not intended for use in this way because most
contain few if any nonzero values and do not approximate negative binomial dis-
tributed abundance data for which TITAN was designed. Such responses are better
modeled with other approaches, such as GAM (Zuur et al. 2010), nonparametric
multiplicative regression (NPMR; McCune 2006), or, in the rare case when data
(residual variance) are normally distributed, piecewise regression.

Statistical change points are not necessarily “thresholds.” Large data sets with
numerous taxa will almost certainly yield at least a few taxa that are identified as
having change points. In fact, even linear responses will yield a change point in
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TITAN because the method is designed to find taxa that have greater frequency and
abundance at one end of the gradient than another. A linear response will yield such a
pattern. Thus, one or a few change points alone does not imply a community threshold
using TITAN, although these responses are still potentially useful to managers. First,
we strongly encourage users to evaluate the uncertainty around observed change point
locations of individual taxa. If it is very broad, there is weak evidence for a sharp
change in its distribution with respect to the novel gradient. Narrow confidence or
variability bands provide greater support for a threshold-type response for a single
taxon. However, more importantly, we recommend that users focus on the distribution
of multiple taxa change points. Are the confidence limits narrow, and do they overlap
(i.e., are they relatively synchronous)? Does the sum(z) peak sharply or is it poorly
defined? If taxa change points are relatively widely distributed with broad confidence
limits and poorly defined sum(z) peaks, the response is probably better characterized
as a zone of gradual change. The main point here is that TITAN provides a lot of
different types of information but it is up to the investigator or manager to interpret
the output. See Baker and King (2013) for a thorough treatment of this issue.

Density of the distribution of sample units can affect results. The distribution
of sample units along environmental gradients can be an important factor for any
threshold analysis. If most of the data points are located near the low end of the
gradient, it can lead to misleading change points because there may not be sufficient
distribution of sample units at other levels of the gradient, particularly if there are
large gaps. Using TITAN or most any other method under these circumstances will
likely yield biased results and should be interpreted with caution, if at all (Daily et al.
2012).

TITAN is not a causal analysis. TITAN was designed primarily for use with
observational data, particularly large biomonitoring data sets that span a wide range
of novel environmental gradients. Such gradients are almost always confounded by
multiple, correlated variables which make it very difficult to make strong inference
about the cause of the observed response (e.g., King et al. 2005). We strongly caution
users to think carefully about their data prior to using TITAN. All of the criteria
used to define reference conditions and classify sites into comparable physiographic
groupings should be applied to TITAN (e.g., Stoddard et al. 2006).

TITAN is not intended to be black box for developing regulatory criteria. TITAN
has great potential to inform managers about critical levels of anthropogenic changes
that are associated with rapid changes in ecological communities. However, the po-
tential for confounded variables or study designs that lead to misleading results is
certainly a distinct possibility. We strongly discourage using output from TITAN as
the sole basis for supporting management decisions. We further suggest that multiple
lines of evidence be used to further support or refute TITAN results. Manipulative
field experiments and lab studies are certainly recommended when applicable. At a
minimum, we recommend that investigators carefully examine the list of taxa identi-
fied as threshold indicators and apply knowledge of species sensitivities, evolutionary
relationships, and life-history characteristics to support statistical conclusions.
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Conclusion

TITAN is a tool. All tools have limitations and can be misused. However, TITAN has
distinct advantages for detecting change in taxa distributions that may help identify
levels of environmental change associated with disproportionate declines or increases
in species abundances, which in turn may be indicative of community thresholds.

References

Andersen, T., J. Carstensen, E. Hernandez-Garcia, and C. M. Duarte. 2009. Ecological regime
shifts: Approaches to identification. Trends in Ecology and Evolution 24:49–57.

Baker, M. E., and R. S. King. 2010. A new method for detecting and interpreting biodiversity and
ecological community thresholds. Methods in Ecology and Evolution 1:25–37.

Baker, M. E., and R. S. King. 2013. Of TITAN and Straw Men: An appeal for greater understanding
of community data. Freshwater Science 32:(1) pages forthcoming.

Bernhardt, E. S., B. D. Lutz, R. S. King, J. P. Fay, C. E. Carter, A. M. Helton, and D. Campagna. 2012.
How many mountains can we mine? Assessing regional degradation of Central Appalachian
rivers by surface coal mining. Environmental Science and Technology 46:8115–8122.

Brenden, T. O., L. Wang, and Z. Su. 2008. Quantitative identification of disturbance thresholds in
support of aquatic-resource management. Environmental Management 42:821–832.

Clements, W. H., N. K. M. Vieira, and D. L. Sonderegger. 2010. The use of ecological thresholds
to assess recovery in lotic ecosystems. Journal of the North American Benthological Society
29:1017–1023.

Connell, J. H. 1978. Diversity in tropical rainforests and coral reefs. Science 199:1302–1310.
Cuffney, T. F., R. B. Brightbill, J. T. May, and I. R. Waite. 2010. Responses of benthic macroin-

vertebrates to environmental changes associated with urbanization in nine metropolitan areas.
Ecological Applications 20:1384–1401.

Daily, J. P., N. P. Hitt, D. R. Smith, and C. D. Snyder. 2012. Experimental and environmental factors
affect spurious detection of ecological thresholds. Ecology 93:17–23.

DeLuca, W.V., C. Studds, R. S. King, and P. P. Marra. 2008. Coastal development and the integrity of
estuarine waterbird communities: Threshold responses and the importance of scale. Biological
Conservation 141:2669–2678.

Dodds, W. K., W. H. Clements, K. Gido, R. H. Hilderbrand, and R. S. King. 2010. Thresholds,
breakpoints, and nonlinearity in aquatic ecosystems as related to management. Journal of the
North American Benthological Society 29:988–997.

Dufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species: The need for a
flexible asymmetrical approach. Ecological Monographs 67:345–366.

Ferrier, S, and A. Guisan. 2006. Spatial modelling of biodiversity at the community level. Journal
of Applied Ecology 43:393–404.

Fox, D. 2007. Back to the no-analog future? Science 316:823–825.
Gaiser, E. E., J. H. Richards, J. C. Trexler, and R. F. Doren. 2008. Comment on “Estimating

ecological thresholds for phosphorus in the Everglades.”. Environmental Science andTechnology
42:6770–6771.

Groffman, P. M., J. S. Baron, and T. Blett. 2006. Ecological thresholds: The key to successful
environmental management or an important concept with no practical application? Ecosystems
9:1–13.

Hobbs, R. J., S. Arico, J. Aronson, J. Baron, P. Bridgewater, V. A. Cramer, P. Epstein, J. Ewel, C. A.
Klink, A. E. Lugo, D. Norton, D. Ojima, D. M. Richardson, E. W. Sanderson, V. Fernando, Z.
Montserrat, Z. Regino, and M. Zobel. 2006. Novel ecosystems: Theoretical and management
aspects of the new ecological world order. Global Ecology and Biogeography 15:1–7.



11 Use, Misuse, and Limitations of Threshold Indicator Taxa Analysis (TITAN) . . . 253

Huggett, A. J. 2005. The concept and utility of ‘ecological thresholds’ in biodiversity conservation.
Biological Conservation 124:301–310.

King, R. S., and M. E. Baker. 2010. Considerations for analyzing ecological community thresh-
olds in response to anthropogenic environmental gradients. Journal of the North American
Benthological Society 29:998–1008.

King, R. S., and M. E. Baker. 2011. An alternative view of ecological community thresholds and
appropriate analyses for their detection. Ecological Applications 21:2833–2839.

King, R. S., and C. J. Richardson. 2003. Integrating bioassessment and ecological risk assess-
ment: an approach to developing numerical water-quality criteria. Environmental Management
31:795–809.

King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, P. F. Kazyak, and M. K. Hurd. 2005. Spatial
considerations for linking watershed land cover to ecological indicators in streams. Ecological
Applications 15:137–153.

King, R. S., W. V. DeLuca, D. F. Whigham, and P. P. Marra. 2007. Threshold effects of coastal ur-
banization on Phragmites australis (common reed) abundance and foliar nitrogen in Chesapeake
Bay. Estuaries and Coasts 30:469–481.

King, R. S., M. E. Baker, P. F. Kazyak, and D. E. Weller. 2011. How novel is too novel?
Stream community thresholds at exceptionally low levels of catchment urbanization. Ecological
Applications 21:1659–1678.

Manly, B. F. J. 1997. Randomization, bootstrap, and Monte Carlo methods in biology. 2nd ed.
London: Chapman & Hall.

McCune, B. 2006. Nonparametric habitat models with automatic interactions. Journal of Vegetation
Science 17:819–830.

Moore, A. A., and M. A. Palmer. 2005. Invertebrate biodiversity in agricultural and urban headwater
streams: Implications for conservation and management. Ecological Applications 15:1169–
1177.

Økland, B., O. Skarpaas, and K. Kausrud. 2009. Threshold facilitations of interacting species.
Population Ecology 51:513–523.

Palmer, M. A., H. Menninger, and E. S. Benhardt. 2009. River restoration, habitat heterogeneity,
and biodiversity: A failure of theory or practice? Freshwater Biology 55:205–222.

Poff, N. L. 1997. Landscape filters and species traits: Towards mechanistic understanding and
prediction in stream ecology. Journal of the North American Benthological Society 16:391–409.

Qian, S. S., R. S. King, and C. J. Richardson. 2003. Two methods for the detection of environmental
thresholds. Ecological Modelling 166:87–97.

Richardson, C. J., R. S. King, S. S. Qian, P. Vaithiyanathan, R. G. Qualls, and C. A. Stow. 2007.
Estimating ecological thresholds for phosphorus in the Everglades. Environmental Science and
Technology 41:8084–8091.

Richardson, C. J., R. S. King, S. S. Qian, P. Vaithiyanathan, R. G. Qualls, and C. A. Stow. 2008.
Response to comment on “Estimating ecological thresholds for phosphorus in the Everglades”.
Environmental Science and Technology 42:6772–6773.

Scheffer, M., and S. R. Carpenter. 2003. Catastrophic regime shifts in ecosystems: Linking theory
to observation. Trends in Ecology & Evolution 18:648–656.

Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker. 2001. Catastrophic shifts in
ecosystems. Nature 413 (6856): 591–596.

SFWMD (South Florida Water Management District). 1992. Surface water improvement plan for
the Everglades. West Palm Beach (FL): Supporting Information Document, South Florida Water
Management District.

Shelford, V. E. 1913. Animal communities in temperate North America. Chicago: University of
Chicago Press.

Smol, J. P., A. P. Wolfe, and H. J. B. Birks. 2005. Climate-driven regime shifts in the biological
communities of arctic lakes. Proceedings of the National Academy of Science of the United
States of America 102:4397–4402.



254 R. S. King and M. E. Baker

Sonderegger, D. L., H. Wang, W. H. Clements, and B. R. Noon. 2009. Using SiZer to detect
thresholds in ecological data. Frontiers in Ecology and the Environment 7:190–195.

Soranno, P. A., K. S. Cheruvelil, R. J. Stevenson, S. L. Rollins, S. W. Holden, S. Heaton, and E.
K. Torng. 2008. A framework for developing ecosystem-specific nutrient criteria: Integrating
biological thresholds with predictive modeling. Limnology and Oceanography 53:773–787.

Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson, and R. H. Norris. 2006. Setting expec-
tations for the ecological condition of streams: the concept of reference condition. Ecological
Applications 16 (4): 1267–1276.

Stralberg, D., D. Jongsomjit, C. A. Howell, M. A. Snyder, J. D. Alexander, J. A. Wiens, and T. L.
Root. 2009. Re-shuffling of species with climate disruption: A no-analog future for California
birds? PLoS One 4 (9): e6825.

Suding, K. N., and R. J. Hobbs. 2009. Threshold models in restoration and conservation: A
developing framework. Trends in Ecology and Evolution 24:271–279.

Toms, J., and M. L. Lesperance. 2003. Piecewise regression: A tool for identifying ecological
thresholds. Ecology 84:2034–2041.

Vinson, M. R., and C. P. Hawkins. 1998. Biodiversity of stream insects: Variation at local, basin,
and regional scales. Annual Review of Entomology 43:271–293.

Walsh, C. J., T. D. Fletcher, and A. R. Ladson. 2005a. Stream restoration in urban catchments
through redesigning stormwater systems: Looking to the catchment to save the stream. Journal
of the North American Benthological Society 24:690–705.

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan.
2005b. The urban stream syndrome: Current knowledge and the search for a cure. Journal of
the North American Benthological Society 24:706–723.

Williams, J. W., and S. T. Jackson. 2007. Novel climates, no-analog communities, and ecological
surprises. Frontiers in Ecology and the Environment 5:475–482.

Zuur, A. F., E. N. Ieno, C. S. Elphick. 2010. A protocol for data exploration to avoid common
statistical problems. Methods in Ecology and Evolution 1:3–14.



Chapter 12
Ecosystem Trajectories: A Statistical Approach
to Analyze Changing Pressure-Response
Relationships Over Time

Jacob Carstensen

Abstract There is increasing empirical evidence that ecosystem responses to chang-
ing pressures follow different pathways during the degradation and recovery phases. I
present a statistical inferential approach based on generalized additive models (GAM)
to substantiate such conclusions. The approach analyzes the time trajectories of de-
partures from a proposed functional relationship between pressure and response.
The trajectory analysis provides a general exploratory tool to uncover changes in
pressure-response relationships that may not be apparent from plotting the data as
well as a model diagnosis tool. Simulations revealed that the approach can separate
the time trajectory from the functional relationship, when the observed pressure vari-
able is well determined. Four coastal ecosystems from Duarte et al. (Estuaries and
Coasts 32:29–36, 2009) were reanalyzed to exemplify the approach, providing sta-
tistical evidence of separate pathways during eutrophication and oligotrophication.
For the many empirical studies on ecological regime shifts and shifting baselines I
recommend that the trajectory analysis, in combination with other analytical proce-
dures, is employed to document the existence of such effects with sufficient statistical
confidence.

Keywords Ecosystem restoration · Eutrophication · Generalized additive model ·
Multi-stressors · Regime shift · Shifting baseline · Statistical identification · Time
series analysis

Introduction

On a geological time scale, our planet has experienced a relatively stable environment
for the last 10,000 years (Petit et al. 1999), known to geologists as the Holocene,
but for the last couple of centuries, also termed the Anthropocene (Crutzen 2002),
human activities have become the main driver of environmental change at the global
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scale and also at the local scale throughout most regions of the earth (Rockström
et al. 2009). These anthropogenic drivers have exerted increased pressure on world’s
ecosystems (Vitousek et al. 1997), and the acknowledgment and scientific docu-
mentation of the associated deleterious effects have prompted political responses
to alleviate these pressures in an attempt to restore ecosystem functioning. Action
plans addressing various sources of emissions were established on the pervasive be-
lief that ecosystem responses to increasing pressures could be reversed and that a
previously observed and desired ecosystem state could be restored. The fundamental
tenet was that ecosystem decline and recovery would follow the same pathway, lin-
ear or nonlinear, and that such relationships between driver and response were time
invariant.

There is growing observational evidence that this tenet is essentially flawed. The
ozone layer has not been restored to past levels after the implementation of the Mon-
treal Protocol in 1987 for reducing emissions of chlorofluorocarbon (CFC) gases and
this lack of recovery is believed to be caused by climate warming and release of new
chemicals with a yet unknown effect to the ozone layer (Weatherhead and Andersen
2006). Commercial fish stocks have not recovered following reduced fishing pres-
sure, and climate change and complex food-web interactions have been suggested
as plausible explanations (Botsford et al. 1997). Nutrient reductions in coastal ar-
eas have not reduced phytoplankton biomass (Duarte et al. 2009) nor the extent of
hypoxia (Conley et al. 2007), and this is mainly attributed to climate change and
altering of the food web. Thus, many of the world’s ecosystems fail to return to
previously observed states after pressure reduction, because changes in other drivers
have shifted the baseline. This evidently leads to nonuniform time trajectories in the
relationship between pressure and response.

The concept that ecosystems respond nonlinearly to changes in the drivers, dis-
playing hysteresis-like behavior with alternative stable states, is not new (Holling
1973; May 1977). Lakes exhibit shifts between a clear state with dominance of sub-
merged aquatic vegetation and a turbid state dominated by phytoplankton (Scheffer
et al. 1997; Carpenter et al. 1999). The shift is typically driven by enhanced nutrient
input (mostly phosphorus) from human activity leading to increased phytoplankton
growth and subsequently shading of the submerged aquatic vegetation (Jeppesen et al.
1999). Tropical reefs alternate between corals states and states where macroalgae
overgrow the corals and prevent the settlement of coral larvae for continued recruit-
ment (Knowlton 1992). The resilience of the coral reefs has been eroded through
nutrient enrichment and overfishing (Scheffer et al. 2001), whereas the shift between
states appears to be triggered by events such as hurricanes and outbreak of diseases
affecting sea urchins (Mumby et al. 2007). The complex interactions in food webs
may similarly lead to regime shifts through cascading effects driven by eutrophica-
tion, overfishing, and invasive species (Daskalov et al. 2007; Casini et al. 2008).
Outbreaks of hypoxia can also lead to a sudden change in the biogeochemical pro-
cesses causing a positive feedback of nutrients to the water column through reduced
nitrification-denitrification, releases of ironbound phosphate, and reduced transfer
of energy to higher trophic levels (Conley et al. 2009b). Loss of benthic macrofauna
with hypoxia and thresholds associated with recolonization suggests a hysteresis-like
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behavior (Diaz and Rosenberg 2008). Thus, there are several examples from the liter-
ature of ecosystems displaying hysteresis behavior and the conceptual understanding
of the positive feedback mechanisms required for the existence of alternative stable
states has largely been established.

However, there is a gap in the literature between apparent regime shifts and the
application of a rigorous mathematical-statistical framework for the actual demon-
stration of such threshold effects and hysteresis responses (Andersen et al. 2009).
Moreover, most quantitative analyses of regime shifts are theoretical studies that
examine the behavior of a simple nonlinear model that is believed to capture the
essential mechanisms of the ecosystem (e.g., Carpenter et al. 1999; Ludwig et al.
2003; Guttal and Jayaprakash 2008). Although such models may mimic ecosystem
observations to a reasonable degree and hence provide support for the existence of
regime shifts, they do not offer statistical confidence in the existence of bistability,
i.e., in terms of quantifying the probability of a hysteresis response relative to a
simpler and uniform relationship.

Statistical tests can, in principle, be employed by comparing the likelihood of
two such competing models, but in practice this is more complicated as it requires
relatively simple mathematical representation of the ecosystem in question (i.e., few
parameters) and sufficient data to estimate these models and calculate their likelihood.
Consequently, scientists have resorted to simpler statistical procedures, typically
identification of change-points in time (e.g., Zeileis et al. 2003; Rodionov 2004), as
an exploratory data analysis indicating if abrupt changes may have occurred. Such
statistical methods have started to populate the ecological literature recently and
are the natural first step towards identifying potential drivers and mechanisms but
do not describe any driver-response relationship as time can never be the underlying
driver (Andersen et al. 2009). Moreover, change-point detection methods can identify
abrupt changes, both with respect to time and potential drivers although the latter is
rarely seen in the literature, but they do not provide inference for alternative stable
states. Therefore, the objective here is to supplement the growing set of statistical
methods used to analyze for potential regime shifts in ecosystems with a method
indicative of alternative stable states. The idea is to examine the time trajectory of an
ecosystem response variable relative to a hypothesized driver and test if this trajectory
is time invariant, i.e., the relationship is uniform across time.

Conceptualizing Ecosystem Responses

The literature is populated with conceptual figures displaying different categories of
driver-response relationships. May (1977) formulated a nonlinear differential equa-
tion and showed graphically that this model would exhibit two alternative stable
states for a specific parameter setting and one unstable state constituting a divide
between the two stable attractors. A perhaps better illustration of this concept was
the marble rolling in a rugged landscape that could have several attractors (Scheffer
1990; Scheffer et al. 1993; Scheffer et al. 2001). The ridge between the two basins
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of attraction constituted the unstable state where the ball would roll either direction.
Carpenter et al. (1999) presented a simple lake model with a sigmoid phosphorus
influx for the sources and a linear efflux for the sinks, and graphically demonstrated
how this could lead to alternative stable states and hysteresis responses. The main
conclusion from these studies was that the bistability figures could actually be derived
mathematically from the simple models exhibiting hysteresis.

On the other hand, the statistical approach to conceptualizing driver-response
relationship has been based on experiences from data exploration. De Young et al.
(2004) proposed three different types of responses: (1) linear, (2) abrupt change and
reversible, and (3) abrupt change and not directly reversible, the latter representing
a hysteresis-type behavior. Andersen et al. (2009) extended these to also consider
the time dimension, showing that abrupt changes in time series can occur even if
the driver-response relationship is strictly linear, because an abrupt change in the
driver is directly mediated to the response. They cautioned about over-interpreting
abrupt changes in biological time series, if the cause of the change was not within
the biological system itself.

A broad range of possible responses to increasing followed by decreasing pres-
sures on the ecosystem, derived from theory and observations, has been proposed
and synthesized into a few generic classes of responses (e.g., Duarte et al. 2009;
Kemp et al. 2009). Here, I will consider the four different response types presented
in Duarte et al. (2009) (Fig. 12.1). The uniform relationship between response and
pressure variable is an idealized situation (Fig. 12.1a), where nothing else changes
over time (termed “Return to Neverland” in Duarte et al. 2009). This is the fun-
damental type of relationship that managerial frameworks are built around, despite
increasing observational evidence that pressure-response relationships are not static.
The hysteresis relationship (Fig. 12.1b) resembles those obtained from theoretical
studies (e.g., May 1977; Scheffer et al. 2001) with alternative stable states within a
range of the pressure variable. It involves a resistance to return to the original state
when the pressure is alleviated. A shift in the ecosystem baseline (Fig. 12.1c) typi-
cally occurs in a multi-pressure system, which essentially includes all ecosystems,
and illustrates that the outcome, after reducing the main pressure on the system, is
different from the starting point, because other pressures have induced a shift (for
most ecosystems a shift to a less desirable state). Finally, ecosystems can display
combinations of hysteresis and shifting baselines (Fig. 12.1d).

One major problem in analyzing observations of pressure versus response and
identifying the most appropriate relationship is that Fig. 12.1 displays a steady-state
relationship, whereas observations do not necessarily represent a steady-state situ-
ation. The steady state can be assessed when all pressures and other perturbations
remain at a constant level for over a sufficiently long time for the ecosystem vari-
ables to stabilize. However, ecosystem dynamics are often associated with lags and
memory effects having a time scale exceeding that of the sampling. Essentially,
this implies that it can be difficult to distinguish hysteresis and shifting baselines
from the dynamic output of a linear system. To exemplify this, responses of four
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Fig. 12.1 Different types of ecosystem responses to increasing and decreasing pressure. (Redrawn
from Duarte et al. 2009)

linear dynamical systems are shown for an increasing followed by decreasing in-
put (Fig. 12.2). If there are no accumulating effects, the dynamical response to an
increasing/decreasing input equals the steady-state solution (Fig. 12.2a), but there
can be a delay (delayed exponential response) if the ecosystem variable linearly de-
pends on the input as well as previous states of the response (Fig. 12.2b). Lagged
responses or simple delays (i.e., the ecosystem variable depends on past and not
present values of the input variable) also give rise to delays, albeit less smooth, in the
response (Fig. 12.2c). Finally, a linear dynamical system combining lag and memory
effects can display almost hysteresis-like behavior (Fig. 12.2d). Thus, the example
illustrates that separating nonlinear dynamics leading to hysteresis and alternative
stable states from linear dynamical systems can indeed be difficult.
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Fig. 12.2 Linear system responses to increasing and decreasing driver. a Direct response or simple
gain, b memory effect (response equals 90 % weight on previous state and 10 % on driver), c lagged
response to the driver, and d combination of memory effect and lagged response

Methods for Identifying Pressure-Response Relationships

The theory for identification of linear dynamical systems is well described and in-
volves estimating the impulse response function from which the structure of the
transfer function can be inferred and subsequently estimated (Box and Jenkins 1976).
These standard-identification procedures are applicable only to input-output relation-
ships (open loop) and should not be employed when there is feedback in the system
(closed loop) (see e.g., Chatfield 1984 for discussion). However, I will refer to the
literature for more details on identification of linear systems.

The framework for nonlinear model selection is less rigorous than for linear mod-
els, and essentially boils down to formulating a number of candidate models that are
subsequently compared by various goodness-of-fit criteria. Two of the most common
are Akaike’s Information Criterion (AIC) (Akaike 1974) and Bayes Information Cri-
terion (BIC) (Schwarz 1978) that combine the maximum likelihood with a penalty
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for the number of parameters in the model. Application of these criteria may lead to
different optimal models and they should be used only as a guideline in the model
selection process. Hence, nonlinear modeling involves a large degree of subjectivity
in the formulation of alternative models, and for ecosystem modeling this implies
careful consideration of the mechanisms underlying the observations. It should also
be stressed that the use of information criteria selects for the best-fitting model, but
it does not provide a formal testing to determine if one model is significantly better
than another.

The above-mentioned methods for identification of linear systems and selection of
the most appropriate nonlinear model underlie the assumption that the observations
can be described by a parametric distribution and that the residuals are indepen-
dent. This also implies that the residuals should be uncorrelated with time. Many
ecosystem studies have suggested that pressure-response relationships are changing
with time (see above), but few have provided statistical inference to support these
conclusions (e.g., Hagy et al. 2004; Conley et al. 2009a; Carstensen and Weyd-
mann 2012). There are many model diagnosis tools available to test the assumptions
of proposed regression models (e.g., cross-validation, autocorrelation, correlation
with time, Portmanteau lack-of-fit), but I will focus on examining the time trajec-
tory of the ecosystem response to the pressure and provide a test for the significance
of departures from a proposed uniform relationship using the statistical framework
of Generalized Additive Models (GAM) (Hastie and Tibshirani 1990).

Let us assume that there is a uniform relationship between the pressure (x) and the
response given by the parametric function denoted f(x). Let us also assume that we
can describe potential departures from this relationship with a smooth nonparametric
function of time, denoted s(t). Consequently, we are interested in testing if the
combination of f(x) and s(t) gives a significantly better description of the response
variable than just f(x) alone. This can be formalized such as: Given there are n pairs
of observations for the pressure and response variables (xi , yi; i = 1. . . n), where yi

belongs to the exponential family of distributions (e.g., Normal, Binomial, Poisson,
Gamma) with location parameter (μ) that is linked (through a link function g(μ)) to
f(x) and s(t), we can test the null hypothesis

H0 : g(μ) = f (x)

versus the alternative

H1 : g(μ) = f (x) + s(t).

Both the parametric (f(x)) and the nonparametric (s(t)) functions are estimated by
means of the backfitting algorithm (see Hastie and Tibshirani 1990) that iteratively
finds an optimal fit for both functions. The significance of the alternative hypothesis
is tested by calculating the log ratio of the two models’ maximum likelihood values
(likelihood ratio test), which is approximately χ2(df)-distributed with df equal to the
approximate degrees of freedom of the smoothing function s(t). The likelihood ratio
test applies only because the model under H0 is a submodel of the full model (H1).
A simple example of the test above is a normal distributed response with f(x) being
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Fig. 12.3 Illustration of the linear model hypothesis (a) versus the time trajectory hypothesis (b).
Observations were simulated from the trajectory model in (b) with a relatively small noise added. To
illustrate the time dependency of the alternative hypothesis observations were connected in time (b)

linear and the identity function used as link function, i.e., g(μ) = μ (Fig. 12.3). The
pressure-response relationship appears linear when the time dependency of the ob-
servations is disregarded (Fig. 12.3a), but if observations are connected to constitute
a time trajectory a slightly more complicated relationship emerges (Fig. 12.3b). Thus,
the test formulated above examines if the likelihood of the alternative hypothesis is
larger than the likelihood of the null hypothesis with sufficient confidence.

The smoothness of s(t) is governed by df with lower degrees of freedom leading
to rather smooth fit, whereas higher degrees of freedom result in wiggly curves.
GAM normally offers to estimate the optimal degrees of freedom by cross-validation,
and this is the recommended setting. However, occasionally GAM does overfit the
data using cross-validation and this is reflected in high degrees of freedom in the
smoothing function. Thus, if the degrees of freedom gets high (> 4 as a rule of
thumb) it is recommended to constrain the degrees of freedom to a maximum of
four.

The trajectory of the pressure-response relationship can be graphically shown by
predicting the response variable as function of f(x) and s(t). This will produce a
smooth trajectory, provided that the pressure is a smooth function of time (contin-
uously increasing/decreasing). If the trend in the pressure variable is noisy, in the
sense that there are temporal fluctuations in addition to the overall trend, the resulting
trajectory based on predictions from a fluctuating input will result in less smooth tra-
jectory. Consequently, for displaying the trajectory it can be recommended to smooth
the pressure-input variable first and subsequently use the smoothed pressure time se-
ries for predicting (scoring) responses. The trajectory analysis will be exemplified
in the following with a simulation example and by means of observations from four
coastal ecosystems.
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Noise Contamination Simulation

The noise added to the trajectory model for illustrating the difference between the
two hypotheses in the previous section was small and the trajectory of the pressure-
response relationship was still apparent from the observations (Fig. 12.3b). In such
cases the observations themselves convincingly demonstrate a departure from the
simple linear model. This is not necessarily the case if more noise is added to the
relationship. To investigate the behavior of the method with more noisy data I have
considered the following alternative situations: (1) the underlying relationship be-
tween pressure and response is linear versus time trajectory, (2) the pressure is
increasing and decreasing linearly without versus with random variation (e.g., in-
terannual variation), and (3) observations of the response variable are noisy versus
observations of both pressure and response variables are noisy. These eight combina-
tions were analyzed for different magnitudes of random variation. For this purpose I
used the normal distribution for simulating random variates and defined a noise ratio
as the standard error of the random variation divided by the range of variation in
the pressure and response variables. Moreover, as many simulations and estimations
were carried out without user intervention the risk of overfitting GAM was tackled
by fixing the degrees of freedom of the GAM to four. However, it is important to
stress that the idea was not to perform a complete power analysis to decipher when
the method successfully identifies an existing trajectory for various combinations of
random variation and number of observations.

One might expect that the GAM would be significant only for the four cases based
on an underlying trajectory model, but two out of the four simulated examples with
an underlying linear model also had a significant trajectory (Fig. 12.4c, g). At first
glance this might seem surprising; however, both examples had observational noise
on the observed values of the pressure variable, whereas the two other examples, with
an underlying linear model and observation noise in the response variable only, did
not result in significant departures from linearity (Fig. 12.4a, e). An explanation is
that ordinary regression methods do not account for uncertainty in the independent
(or explanatory) variable, so observation noise may lead to significant departures
from linearity by sheer coincidence. Secondly, it should be noticed that the linear
model in Fig. 12.4c is not significant (regressions slope not different from zero)
and the linear slope in Fig. 12.4g is significant, albeit with less confidence than
Fig. 12.4a, e. Moreover, the method also failed to identify the linear part of the
trajectory with observation noise on both pressure and response (Fig. 12.4d) and the
estimated linear component in Fig. 12.4h had a slope substantially lower than the
linear part of the simulated trajectory (slope = 1). In fact, all the simulations with
observational noise on the pressure resulted in slope estimates significantly lower
than 1 (P < 0.0001 in Fig. 12.4c, d, g, and h, assessed by t-tests of the parameter
estimates), whereas the simulations without observational noise all had slopes not
significantly different from 1 (P > 0.1 in Fig.4. 4a, c, e, g). These results show that the
nonparametric smooth curve is actually capable of explaining the linear relationship
with the pressure variable as part of the smooth trend, and that the GAM to some
extent render the linear model insignificant, when observation noise is added to
the pressure variable, whereas this does not seem to be the case when there is no
observation noise on the pressure.
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Fig. 12.4 Simulated observations from a linear (left panel) and trajectory (right panel) pressure-
response relationship. a and b have observation noise on the response variable only. c and d have
observation noise on both pressure and response variables. e and f have observation noise on the
response variable and random variation added to the increasing and decreasing pressure trend. g and
h have observation noise on the response variable and both random variation and observation noise
on the pressure variable. The underlying linear model and the linear component of the trajectory
had slopes equal to 1 and no intercept. The smooth component was simulated with a sine function
of time. Noise ratio was set to 10 %
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Fig. 12.4 (continued)

The results exemplified in Fig. 12.4 did not represent a single isolated case but
were confirmed by numerous simulations. For each of the eight different combina-
tions in Fig. 12.4, the probability of finding a significant time trajectory was estimated
as the proportion of 10,000 replications having a significant time component (s(t)) in
the GAM. The linear model with observation noise only (Fig. 12.4a) had about 10–
11 % probability for a significant time trajectory, whereas the linear model that also
included random variation in the pressure (Fig. 12.4e) had about 17–19 % probability
for a significant time trajectory (Table 12.1). These probabilities did not decrease
with increasing noise ratio, as was the case for all the other models. Both the linear
model and the trajectory model with observation noise on both pressure and response
(Fig. 12.4c, d) generally gave higher probabilities for a significant time trajectory
than the other linear and trajectory models (Table 12.1). The probabilities for iden-
tifying a time trajectory decreased the most with the noise ratio for the models that
included the most uncertainty components, i.e., observation noise on both pressure
and response and random variation in pressure (Fig. 12.4g, h). Overall, there was
a high probability for finding a significant time trajectory, when present, for noise
ratios up to 60 %, yielding a power of approximately 80 % (Table 12.1). Even when
the noise approached the range of variation in the data (noise ratio ∼1) there was
still a considerable probability (> 40 %) for identifying a significant time trajectory,
when present (Table 12.1).

Coastal Ecosystem Recovery Example

Duarte et al. (2009) brought the concept of regime shifts and shifting baselines from
theory to practice by showing that these phenomenas actually take place and should be
considered in ecosystem management. Four coastal ecosystems with long-term moni-
toring data, all having experienced increasing nutrient inputs in the 1970s and 1980s
followed by decreasing nutrient inputs during the last two decades, demonstrated
idiosyncratic trajectories of phytoplankton biomass versus nutrient inputs. In
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Fig. 12.5 Reanalysis of trajectories from Duarte et al. (2009) using the GAM method presented
here. For comparison the linear model under the null hypothesis is also given. The sample trajec-
tories represent four intensively studied Northern European coastal ecosystems that experienced
significant eutrophication followed by oligotrophication. The full black symbols show the annual
average values and the red line shows the smooth trajectory developed here. Initial and final years of
the time series are indicated. Inserts show the time series and smooth GAM trend of total nitrogen
inputs to the ecosystems. Note the difference in scaling across ecosystems

all these systems, nutrient inputs approximately doubled from the 1970s to the 1980s
and then returned to the level of the 1970s. It was anticipated that the management
measures to reduce nutrient inputs would return the ecosystems to their original sta-
tus, i.e., phytoplankton biomass levels similar to that observed in the 1970s. However,
in all four systems, recent phytoplankton biomass concentrations were almost double
that of the 1970s despite similar levels of nutrient inputs. The trajectories in Duarte
et al. (2009) were computed as 5-year moving averages on both nutrient inputs and
phytoplankton annual means to reduce the variation in the data. Thus, although the
trajectories in Duarte et al. (2009) graphically displayed departures from an antici-
pated linear relationship (based on the eutrophication concept originally developed
for lakes, see Vollenweider 1968; Dillon and Rigler 1974), there was no statistical
evidence of this. Therefore, I reanalyzed these data to examine if the time trajectories
were significantly different from a linear pressure-response relationship.

All four coastal ecosystems had considerable variation in both pressure and
response variables, without any visually discernible pressure-response relation-
ship from the annual means (Fig. 12.5). None of the four systems actually had a
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Table 12.2 Statistics for the null hypothesis (H0: linear pressure-response model) versus the al-
ternative hypothesis. H1: linear pressure-response model and smooth time departure for the four
coastal ecosystem exemplifying the method. For the linear models (both H0 and H1) the para-
metric regression line (f(x)) and the probability for zero slope are given. For the nonparametric
time smoother (s(t)) the degrees of freedom (d.f.) for the smoother and its significance are given.
Coefficients of determination were calculated from the model deviance

Coastal
ecosystem

No.
of
years

Null hypothesis Alternative hypothesis

f(x) P(f(x)) R2 f(x) P(f(x)) d.f.
s(t)

P(s(t)) R2

(A) Marsdiep 31 7.57 + 0.046x 0.2310 0.0643 11.0 − 0.020x 0.4926 3.36 <0.0001 0.5048
(B) Helgoland 40 14.0 + 0.090x 0.0695 0.0841 21.4 + 0.042x 0.1966 3.89 <0.0001 0.6450
(C) Odense

Fjord
29 3.65 − 0.077x 0.8052 0.0023 3.35 + 0.043x 0.8485 3.88 <0.0001 0.5555

(D) Gulf of
Riga

31 1.72 + 0.016x 0.0512 0.2164 0.91 + 0.024x 0.0007 2.25 0.0004 0.5144

distinctive linear response to changing nutrient inputs (null hypothesis), although
the Helgoland and Gulf of Riga data (Fig. 12.5b, d) were borderline significant
with P values close to the standard significance level of 5 % (Table 12.2). For the
Marsdiep data the chlorophyll yield to increasing nutrient input was still positive
under H0, albeit nonsignificant (Fig. 12.5a), and the Odense Fjord data actually
gave rise to a weak negative linear relationship (Fig. 12.5c). In fact, testing for a
linear model only in these four systems would suggest that there is no relationship
between phytoplankton biomass and nutrient input, a result that is in contrast to
our general conceptual understanding of coastal ecosystem behavior. Such analyses,
based on the assumption of a time-invariant relationship between nutrient input and
phytoplankton biomass, could potentially lead to erroneous conclusions for nutrient
management in the coastal watersheds. The lack of explanatory power under the null
hypothesis was also seen in low R2-values (< 22 %, Table 12.2).

The alternative hypothesis, including both a linear pressure-response model and
a smooth time trend, explained considerably more variation in data (R2∼50–65 %)
but the linear component did not change much from that of the null hypothesis
(Table 12.2). Thus, the smooth time trend accounted for most of the explained varia-
tion, and the P values associated with s(t) indicated a high significance. The smooth
trend was selected by general cross-validation for the Marsdiep and Gulf of Riga
data, whereas the degrees of freedom for the smoother were constrained to be less
than four for Helgoland and Odense Fjord data. The general cross-validation method
resulted in degrees of freedom equal to 9.11 and 6.54 for these two ecosystems, re-
spectively, and therefore, the wiggliness of the smoother had to be constrained. The
estimated time trajectories (Fig. 12.5) generally showed the same behavior as those
found by moving averages in Duarte et al. (2009), although considerably smoother,
and the statistics confirmed that there was indeed a significant departure from the sim-
ple linear pressure-response relationship across time (Table 12.2). Thus, the method
delivered statistical inference to further support the theory of shifting baselines and
regime shifts in coastal-ecosystem responses to nutrient input.
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Discussion

Observations from ecosystem monitoring can be quite variable, often spanning sev-
eral orders of magnitude, resulting in a cloud of scattered observations as the basis for
identifying relationships between drivers and responses (e.g., Guildford and Hecky
2000; Ptacnik et al. 2008). The implication of the large data scatter is that many
observations are required to identify potential relationships and that the true nature
of the relationship is not visible. Today, many ecosystem monitoring programs have
been in operation for several decades, thereby alleviating the data requirements for
identifying relationships in the presence of noisy data. Despite the substantial source
of information that large data sets typically offer, most studies analyze for simple and
static relationships only, despite the availability of a large toolbox of statistical meth-
ods to gain further insight into the data (Andersen et al. 2009). The trajectory analysis
in this study presents a specific application of the wide class of GAM, specifically
designed to identify significant time departures from a proposed static relationship
in data. As such, the approach does not present a novel statistical development but
it documents the usefulness of analyzing time series by means of GAM to test the
implicit assumption of time invariance underlying most pressure-response relation-
ship in the literature. Therefore, this study fulfills the intended goal of providing
scientists, that are less experienced with the wide variety of statistical methods, a
standard approach for exploring structures in their data that may potentially lead to
further model development beyond the most common and simple relationships.

The trajectory analysis provides both a general exploratory tool to uncover changes
in pressure-response relationships that may not be visible from plotting the data,
and a model diagnosis tool. If there are significant time departures from a proposed
parametric relationship then clearly the assumption of independence across the resid-
uals is violated and the estimated parametric relationship will be biased. Secondly,
systematic deviations may give hints to refining the parametric relationship or ex-
tending the parametric component by including additional explanatory variables.
For instance, plotting the smooth trend component (s(t)) against various explanatory
factors may identify other pressures potentially affecting the ecosystem, and sub-
sequently include these as part of the functional relationship (f(x)) and reassess if
significant time departures are still present. Hence, the trajectory analysis becomes
part of a model identification framework. Essentially, such an iterative process can
continue until there are no more suggestions for model improvements and/or there
are no more systematic time departures from the relationship. This identification
framework may also include process-based models, although there are limitations to
the number of parameters that can be identified based on statistical principles. For
example, the smooth trend component for the four coastal ecosystems (Fig. 12.5)
could be plotted against temperature or grazing pressure to develop an improved
functional description of phytoplankton biomass responses to multiple pressures. In
fact, Jurgensone et al. (2011) showed that the increasing phytoplankton biomass in
the Gulf of Riga could be attributed to declines in zooplankton biomass.

The potential confounding of combined lag and memory effects with the smooth
trend component was not considered for the four coastal ecosystems above, although
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these effects could mimic, to some extent, the observed trajectories (cf. Figs. 12.3
and 12.5). Here, model intuition should also play an important role, because phy-
toplankton regeneration times and the residence times are substantially shorter than
the time resolution of the observations (annual values) for all systems. Although
internal inputs of nutrient regenerated from sedimenting organic material could have
responses on the interannual scale, the processes involved are more subtle and func-
tional relationships to describe these would go beyond the scope of introducing the
trajectory-analysis approach. However, it will be important to consider lag and mem-
ory effects for other types of ecosystem responses to recovery efforts, particularly
those involving long-lived organisms (Jones and Schmitz 2009).

Another issue of confounding effects was revealed in the simulation study, where
the smooth trend was also capable of explaining the underlying simulated linear rela-
tionship when observational noise was added to the pressure variable (Fig. 12.4c, d,
g, h), whereas both the functional relationship and the smooth time trajectory were
nicely separated when the pressure variable had no observational noise (Fig. 12.4a,
b, e, f). These tendencies were further confirmed from the multiple simulations with
different noise ratios (Table 12.1). Thus, the GAM is sufficiently flexible to overrule
an existing functional relationship when the exact value of the pressure variable is not
known. The simulations indicated that this phenomenon is pronounced only for noise
ratios above 10 % on the pressure variable. Most pressure variables are relatively well
determined compared to the ecosystem response. Emission estimates for various sub-
stances may have noise ratios below 10 % and climate effects, such as temperature
increases, can be measured with high precision and consequently, the noise on pres-
sure variables associated with climate change is likely considerably less than 10 %.
Thus, for most pressure-response relationships the noise on the pressure variable is
such that the underlying relationship can be separated from the smooth trend.

The trajectory analysis assumes separability of the functional relationship and the
smooth time trajectory (additive factors under H1), but it could be argued that time
interacts with the functional relationship such that the functional shape changes with
time. Such models can also be analyzed within the GAM framework using thin plate
splines. However, for the principle of parsimony such an avenue of analysis should
be pursued only, if the separability assumption is first invalidated. The good thing
about separability is that the significance of the functional relationship and smooth
time trend can be tested separately, which is not the case with a thin plate spline.
Furthermore, there can be an increased risk of overfitting data with a thin plate spline,
which requires a less heuristic constraining of the degrees of freedom, compared to
an additive form of the functional relationship and smooth time trend.

In summary, the trajectory analysis is a general exploratory tool that identifies
time departures in a proposed functional relationship. It can be used in an iterative
manner for model diagnosis and development. However, it should be stressed that
there are many other tools that have similar objectives, and that all these tools should
be used for guidance rather than providing a rigorous modeling framework.
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Chapter 13
Detection of Harbingers of Catastrophic Regime
Shifts in Drylands

Robert A. Washington-Allen, R. Douglas Ramsey, Thomas G. Van Niel
and Neil E. West

Abstract Harbingers are early warnings of imminent ecosystem collapse and thus
are aids to preventing land degradation. Dynamic systems are hypothesized to ex-
hibit dampening or inflation of critical attributes at or near a threshold, which is
a decreasing or increasing spatial or temporal trend, respectively. This behavior is
diagnostic of a state change and can be operationalized as an early detection system.
Consequently, we used a time series from 1972 to 1997 of seasonal soil-adjusted
vegetation index (SAVI) data, a proxy for canopy cover that was derived from Land-
sat imagery of the Marine Corps Air Ground Combat Center. We used dynamical,
trend, and autocorrelation function (ACF) time series analysis to find that the time
series had an increasing linear trend that correlated with wet periods of the Pacific
Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO). High and
low SAVI values were in wet and dry basins of attraction with a rapid shift from dry
to wet period from 1981 to 1982. Mean SAVI dampening appears to have occurred
2–3 years prior to the shift. Consequently, this study suggests that this dampening
trend of the mean SAVI can be used as a harbinger of land degradation.

Keywords Washington Allen—abrupt transition · Early warning · Imminent
change · Remote sensing · Threshold · Time series

Introduction

The major dust storms that occurred during the US Dust Bowl era of the 1930s were
hypothesized to be the result of the loss of vegetation cover at a critical point that led
to bare-ground patches that were fragmented at local scales abruptly increasing in
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number, area, and connectivity to the regional scale of the western USA (Peters et al.
2004). This loss of vegetation cover and the resulting dust storms were attributed to
multiyear severe droughts and land mismanagement that led to loss of agricultural
livelihoods, the economic collapse of the agricultural sector, and the creation of the
Soil Conservation Service, now the Natural Resources Conservation Service (NRCS)
by the US Department of Agriculture. The NRCS was created to prevent this type of
catastrophe from occurring again in rangelands and it would be advantageous to them
and other land management agencies if changes in rangeland ecosystem attributes,
e.g., vegetation cover, that lead to land degradation could be detected prior to a
threshold being exceeded. This idea would require the early detection of harbingers
or indicators of the imminent approach to a threshold (Brock and Carpenter 2006;
Scheffer et al. 2009).

One such harbinger is the observed increase or decrease, also called negative and
positive dampening, of the variability of measured community or ecosystem-level
characteristics, e.g., vegetation cover or bare-ground patch dynamics, in time and
space. This behavior harkens the change from one state to another or the approach
to a threshold (Allen et al. 2005; Brock and Carpenter 2006; Wardwell and Allen
2009; Biggs et al. 2009; Scheffer et al. 2009). Time series analysis of autocorre-
lation in individual ecosystem characteristics can be used to detect harbingers that
are represented as changes in key drivers and positive feedback interactions that are
expressed as near shifts or breaks in scale (Briske et al. 2010). Ludwig et al. (2000)
have shown that these large fluctuations in resource variability increase the success
of random events to affect system reorganization. Consequently, the purpose of the
study presented in this chapter is to determine whether the temporal behavior of a
remotely sensed indicator of Dryland vegetation response, i.e., a vegetation index,
under conditions of a known climatic regime shift can be used to retrospectively de-
tect local-site behavior that are harbingers or early warning indicators of the pending
approach of a threshold. A secondary purpose of this study is to detect the more and
less ecologically resilient portions of Drylands that are subject to military training
and testing activities. The US military installations occupy over 12 million ha of land,
much of which is in Drylands, and hosts the largest population density of endangered
species on federal lands (Benton et al. 2008). Consequently, this information would
be helpful for directing military training exercises to the more productive areas of
a landscape as well as directing ecological restoration practices to the most vul-
nerable. Consequently, this study will result in tools that will allow responsive land
management from managers, stakeholders, and other decision makers (Scheffer et al.
2009).

Definitions

Drylands are areas where the ratio of the mean annual precipitation to the mean an-
nual potential evapotranspiration ranges between 0 and 0.65. Drylands cover some
41 % of the terrestrial surface and provide ecosystem goods and services for 36 % of
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the world’s population (MEA 2005; Reynolds et al. 2007). However, the ecological
condition and trend of Drylands at regional and global scales is unknown, primar-
ily because they have demonstrated characteristics that are diagnostic of complex
adaptive systems including emergent spatial patterns at the landscape scale (e.g.,
Rietkerk et al. 2004), multiple dynamic regimes or states in space and time (Archer
1989; Westoby et al. 1989; Lockwood and Lockwood 1993; Mayer and Rietkerk
2004), and nonlinear discontinuous or abrupt transitions at thresholds in space (e.g.,
ecotones) and time (Archer 1989; Scheffer et al. 2001).

There are a number of synonyms for thresholds including transition zones and
tipping points (Washington-Allen et al. 2010). We define thresholds in the manner of
Archer (1989), Westoby et al. (1989), Friedel (1991), and Scheffer et al. (2001) where
a threshold is the abrupt transition from one state to another. Beisner et al. (2003)
demonstrated that a state can be viewed from the community and/or the ecosystem
levels of organization. For example, the US land management agencies used the con-
cept of vegetation succession, specifically the compositional change in either plant
functional types or physiognomic structure, e.g., the change of grassland to wood-
land, with respect to a reference state (usually the climax), as a way to monitor the
ecological condition and trend of rangelands (Dyksterhuis 1949; Westoby et al. 1989;
West 2003). This approach assumed linear and predictable vegetation dynamics, but
actual observations demonstrated both discontinuous and continuous behavior in
Dryland composition, spatial pattern, and biogeochemistry (Westoby et al. 1989;
Stringham et al. 2003; Washington-Allen et al. 2008, 2009). Consequently, this
community-level perspective has been expanded to include ecosystem science where
changes in hydrological or biogeochemical parameters such as soil infiltration or
nitrogen cycling are monitored and assessed in conjunction with vegetation compo-
sitional changes (Schlesinger et al. 1990; Stringham et al. 2003; Betlemeyer et al.
2004; Peterson et al. 2009).

Dryland degradation can be defined as a decrease in plant cover, density, pro-
ductivity, or some other plant or vegetation parameter or measurement of attributes
(Washington-Allen et al. 2004a, b; Washington-Allen et al. 2006). It is difficult to
separate the relative contributions of climate, fire, and land management practices,
particularly livestock grazing to changes in ecological indicators. Time series datasets
of ecological indicators and drivers for 10 or more years, are required in order to
replicate climatic drivers, such as the El Niño–Southern Oscillation (ENSO) that has
a return interval of 3 to 7 years (Glantz 2001), in order to be able to separate climatic
impacts from that of land management practices (Washington-Allen et al. 2006). The
40-year Landsat satellite image archive (1972 to the present), excluding Landsat 8,
has pixel resolutions of 15 m in the panchromatic (black and white) and 30 m reso-
lution for six of its multiple bands, and both 60 m and 120 m resolution for thermal
bands. Ecological indicators that are diagnostic of vegetation parameters can be de-
rived from the spectral and textural characteristics of historical imagery like Landsat
(Tueller 1989; Quattrochi and Pelletier 1991; Washington-Allen et al. 2006). For
example, the spectral characteristics of Landsat from blue to shortwave-infrared in
detecting the reflectance of vegetation allows the development of biophysical models
such as the Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1973) that
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Fig. 13.1 A true-color
Landsat image in the southern
Mojave Desert of the study
area: the Marine Corps Air
Ground Combat Center
(MCAGCC) in Twentynine
Palms, CA

relies on the difference in percent reflectance of incident near infrared (NIR) and red
(R) energy from leaf tissue. NDVI is calculated as:

NDVI = (NIR − R)/(NIR + R) (13.1)

NDVI has been significantly correlated with vegetation attributes that are commonly
collected in the field including leaf area index (LAI), plant cover, phytomass, and net
primary productivity (Sellers 1985). A nearly 40-year time series of Landsat NDVI
can be characterized to look at possible state changes.

Methods

Study Area

The 238,645 ha Marine Corps Air Ground Combat Center (MCAGCC) was estab-
lished in 1952 and is a training facility that is located in the Mojave Desert, near
Twentynine Palms, California (Fig. 13.1; NRED 1999). MCAGCC is in the Great
Basin section of the Basin and Range physiographic province in mountain ranges,
hills, alluvial fans, drainages, playas, and lava flows. Elevations on the facility range
from 213 m to 1250 m above sea level. Soil textures range from gravelly fine sand to
gravelly very fine sand with indurated calcic horizons. The vegetation is sparse and is
comprised mainly of small shrubs and grasses of which the predominant plant species
are creosotebush (Larrea tridentata), burrobrush (Coleogyne ramosissima), cheese-
bush (Hymenoclea salsola), and catclaw acacia (Acacia greggi). In the more alkaline
areas of the Mojave-dominant species are allscale (Atriplex polycarpa), wingscale
(Atriplex canescens), and alkali blite (Chenopodiium rubrum). The most common
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grass species is Indian ricegrass (Oryzopsis hymenoides). MCAGCC is habitat for the
federally listed endangered species, desert tortoise (Gopherus agassizii). Land use
at MCAGCC consists of live fire, combined arms, and maneuver training that simu-
lates combat situations using ground infantry, tracked vehicles including tanks, and
light-armored vehicles. There are also air-to-ground ordinance activities that result
in localized impact zones (Natural Resources and Environmental Division (NRED)
1999).

Climatic Events

Temperature in the Mojave Desert ranges from −13.3 ◦C to 48.3 ◦C. The average
precipitation from 1893 to 2001 was 137 mm year−1 with a range from 34 to 310 mm
year−1 (Hereford et al. 2004). The dry season is May through September and the
wet season is October through April (Hereford et al. 2004). Hereford et al. (2004,
2006) have shown that between 1893 and 2001, the Mojave experienced four major
drought periods in 1893–1904, 1942–1975, 1988–1991, and 1999 (Breshears et al.
2005; Overpeck and Udall 2010) and two major wet (flood) periods in 1905, 1941,
and 1976–1998. Hereford et al. (2004, 2006) using time series spectral analysis
showed that these drought and flood events were reflections of both 35-year and
5-year periodicities that relate to the Pacific Decadal Oscillation (PDO), an index
of the relative sea surface temperatures (SST) of the northern Pacific Ocean, and
the ENSO, an atmosphere–ocean interaction that involves the warming of SST in
the tropical Pacific Ocean from the equator to the southern coast of South America
(El Niño) and the back-and-forth exchange of air masses between the eastern and
western hemisphere at sub- and tropical latitudes (Southern Oscillation), respectively.
Hereford et al. (2004, 2006) show that major climatic regime shifts in the Mojave
were a function of the PDO cool phase (decreasing SST), that was manifest as the
1942–1975 drought, and PDO warm phase (increasing SST), that was manifest as
the 1976–1998 wet period. The PDO warm phase also included the 1982–1985 very
strong El Niño (Glantz 2001) and the 1988 La Niña drought called the “Great North
American Drought” (Trenberth et al. 1988; Riebsame et al. 1991; Washington-Allen
et al. 2009). La Niña is the cooling of SST in the tropical Pacific Ocean from the
equator to the southern coast of South America, field studies of vegetation dynamics
in the Mojave indicate that plant community composition changes with high mortality
of plants during droughts and recruitment during wet periods of both annual and
perennial grasses and woody plants (Beatley 1980; Webb et al. 2003; Hereford
et al. 2006). The 1989–1991 drought period was particularly noteworthy for the high
mortality of perennials (Webb et al. 2003), a phenomena which is currently being
observed in the large die-offs of tree species in the drought–stricken southwestern
USA (Breshears et al. 2005; Overpeck and Udall 2010). Additionally, Rundel and
Gibson (1996) have shown that primary productivity in the Mojave increased under
increased precipitation and of course decreased during droughts.
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Data Acquisition

A time series of historical dry and wet season Landsat images from 1976 to 1996
(21 scenes) and 1972 to 1997 (20 scenes) were acquired of MCAGCC, respectively.
The wet season dataset has a hiatus between the period 1972–1979 and is missing
portion of scenes for the period 1973–1978. However, the existing dataset overlaps
with the PDO cool phase from 1942 to 1975 and the warm phase from 1976 to 1998,
as well as the previously mentioned very strong ENSO event of 1982–1985 (Glantz
2001). The dry season scenes were selected between May and June and the wet
season scenes between October and November. For this study, six Landsat platforms
with two different radiometers including Landsat Multispectral Scanner (MSS) and
Thematic MapperTM have been deployed. Because of the differing formats of 5-
(Landsat MSS) and 8-bitTM and 30 m and 79 m pixel resolutions, images were: (1)
rectified to a common map projection and resampled to a common resolution (60 m);
(2) standardized by conversion to exoatmospheric reflectance values using Landsat
postlaunch calibration gains and biases (e.g., Markham and Barker 1986); and (3)
atmospherically corrected using a relative atmospheric correction procedure based
on the use of pseudoinvariant features for multitemporal imagery (Jensen 2005;
Washington-Allen et al. 2004a, b). The criteria for data acquisition were: low-cost
acquisition of scenes that were representative of the dry and wet season, ≤ 10 %
cloud cover, and anniversary dates between scenes. Path/Row location of scenes
differed between platforms and in some years full scenes of the study area could not
be acquired because the midline of the path/row grid passed through the study area,
e.g., 1972–1981, 1983, 1985, 1986, 1989–1995 for the wet season imagery. However,
at least 50 % of the study area was available for time series analysis. Table 13.1 lists
the characteristics of the image data set.

Indicator Development

The effectiveness of NDVI for discriminating vegetation response is substantially
reduced in drylands because of the sparser vegetation cover leading to increased
sensitivity to soil background moisture and reflectance effects on the vegetation
signal. Consequently the soil-adjusted vegetation index (SAVI) was developed from
the NDVI to increase the vegetation signal relative to the soil noise (Huete 1988).
SAVI is calculated as:

SAVI=[(NIR − R)/(NIR+R+L)] ∗ (1+L) (13.2)

The L is an adjustment factor which varies from 0–1 in accordance with soil back-
ground conditions (Huete 1988). The recommended L factor of 0.5 was used for all
images (Huete 1988).
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Table 13.1 The Landsat
satellite imagery dataset from
1972 to 1997 of the Marine
Corps Air Ground Combat
Center (MCAGCC) that was
used in this study

Acquisition Date Landsat scanner and number Season

10/02/1972 MSS 1 Wet
05/16/1976 MSS 2 Dry
06/16/1977 MSS 2 Dry
06/03/1978 MSS 2 Dry
10/28/1979 MSS 2 Wet
06/25/1979 MSS 2 Dry
10/23/1980 MSS 2 Wet
06/01/1980 MSS 2 Dry
11/05/1981 MSS 2 Wet
06/14/1981 MSS 2 Dry
12/12/1982 MSS 4 Wet
05/30/1982 MSS 3 Dry
11/13/1983 MSS 4 Wet
06/29/1983 MSS 4 Dry
11/30/1984 MSS 5 Wet
06/07/1984 MSS 5 Dry
11/1/1985 MSS 5 Wet
06/19/1985 MSS 5 Dry
11/13/1986 MSS 5 Wet
06/06/1986 MSS 5 Dry
11/16/1987 MSS 5 Wet
06/09/1987 MSS 5 Dry
10/24/1988 TM 5 Wet
06/02/1988 TM 5 Dry
10/20/1989 TM 5 Wet
06/05/1989 TM 5 Dry
10/30/1990 TM 5 Wet
06/08/1990 TM 5 Dry
11/11/1991 TM 5 Wet
06/04/1991 TM 5 Dry
10/28/1992 TM 5 Wet
06/14/1992 TM 5 Dry
11/07/1993 TM 5 Wet
06/16/1993 TM 5 Dry
11/19/1994 TM 5 Wet
06/19/1994 TM 5 Dry
10/05/1995 TM 5 Wet
05/30/1995 TM 5 Dry
11/08/1996 TM 5 Wet
06/08/1996 TM 5 Dry
10/26/1997 TM 5 Wet

Mean-Variance Plots

Graphical analysis of a dynamical system uses phase diagrams or portraits that de-
scribe the motion or trajectory of states through time (Morse et al. 2000). Pickup and
Foran (1987) developed a special case of this analysis called mean–variance analysis
(MVA) to characterize the spatiotemporal behavior of a remotely sensed vegetation
index (VI). Washington-Allen et al. (2008) provide a conceptual model of a VI in
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Fig. 13.2 A hypothetical statistical phase portrait of the interannual mean-variance dynamics of an
agricultural landscape’s vegetation index (VI). T = time. (Used with permission from Ecology &
Society)

mean-variance space where the hypothetical trajectory of a VI of an agricultural crop
that has been bred to minimize variability is described (Fig. 13.2). As previously dis-
cussed, the VI is a proxy for vegetation response, particularly percent canopy cover
or biomass. Consequently, an NDVI value can be treated as percent canopy cover.
The value of the VI variance represents the degree of landscape heterogeneity or
balance between bare soil and vegetated patches (Pickup and Foran 1987). Thus, the
variance and the mean together provide an indirect measure of a sites’ susceptibility
to soil erosion, where if a normal distribution is assumed, large VI variances indicate
the likelihood that pixels with low VI values at the distribution’s tails consist of either
reduced vegetation or bare soil cover (Fig. 13.2).

The phase portrait is divided into four sectors or states that are delineated by
the grand mean of the VI mean and the VI variance of a landscape’s VI time series
(Fig. 13.2). Each sector describes the state of a landscape’s trajectory. For example,
sector 1 (low mean and low variance) can be considered the most degraded state of this
landscape, sector 2 (low mean and high variance) indicates that a higher proportion
of the landscape tends towards bare ground and thus high susceptibility to erosion,
sector 3 (high mean and high variance) means a higher proportion of the landscape
has vegetation cover, but depending on skewness, a small proportion of the landscape
is susceptible to erosion, and sector 4 (high mean and low variance) would be the
most ideal and stable conditions for this VI landscape (Fig. 13.2). Mean-variance
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plots were developed for whole landscape response as well as for each individual
vegetation cover class. If the time series is long enough a mean-variance portrait
can be used to delineate both seasonal and interannual dynamics of a landscape and
discriminate regime shifts (Washington-Allen et al. 2008 and 2009).

Time Series Analysis

Characterization of the direction and strength of a trend can be accomplished with
regression analysis (Yafee and McGhee 2000). A significant slope (ß) is a measure
of the direction of trend, i.e., stable (0), increasing (+ ß) and decreasing (− ß), and
the magnitude of the coefficient of determination (r2) from a linear or polynomial
regression measures the strength of the trend (Yafee and McGhee 2000). The au-
tocorrelation function (ACF) can be used to detect thresholds in a vegetation index
time series (Turchin and Ellner 2000; Washington-Allen et al. 2009). An abrupt and
consistent sign change, i.e., (+) to (−) or vice versa and a significant ACF value
usually indicate a threshold and allows delineation of the time series into different
period states.

Results

SAVI Time Series

Figure 13.3 is the wet (1976–1996, a) and dry (1972–1997, b) season SAVI images
of MCAGCC. During the wet season, the vegetation response (SAVI) tends to be
from 0.05 to 0.44 throughout the period 1972–1997 (Fig. 13.3). However, during the
dry season the SAVI value from 1976 to 1982 ranged from 0.06 to −0.35 and from
1983 to 1996, they ranged between 0.06 and −0.64. Trend analysis of the dry and
wet season time series from 1972 to 1997 indicated a significant linear fit (r2 = 0.52,
p < 0.05) of increasing greenness from 1972 to 1997 (Fig. 13.4a). Examination of
the ACF for this SAVI time series indicated an abrupt dampening of ACF values from
lag 10 (0.10, 1981 compared to 1982) to lag 11 (0.28) to 15 (1981–1983 compared
to 1982–1984) and a switch in ACF sign from (+) to (−) correlation at lag 16 (the
dry season of 1985) (Fig. 13.4b). The trend of the SAVI variance from 1972 to 1997
was slightly increasing (r2 = 0.032), but not significant.

Mean-Variance Plots

The wet season phase diagram indicated oscillating temporal dynamics that suggested
one domain of attraction about the mean of the variance and the mean from 1972 to
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Fig. 13.3 a The wet (1972–1997) and b dry (1976–1996) season soil-adjusted vegetation index
(SAVI) image time series of the Marine Corps Air Ground Combat Center (MCAGCC) in the
southern Mojave Desert near Twentynine Palms, CA. The legend value range is ± 1 standard
deviations between SAVI values from the mean

1997 (Fig. 13.5a). However, the dry season phase diagram indicated three domains
of attraction: (1) from 1976 to 1982 of low SAVI and relatively higher variance,
particularly 1980, than the other domains; (2) from 1983 to 1989 the orbit near the
SAVI grand mean and variance; and (3) with relatively lower variance and higher
mean SAVI from 1990 to 1997 (Fig. 13.5b). When the ACF was calculated on the
dry season SAVI mean from 1976 to 1997 a switch in ACF sign from (+) to (−)
correlation at lag 6 (1981 compared to 1982) to 7 (1982 compared to 1983) was
detected (Fig. 13.6a). The trend in dry season SAVI mean ACF dampening was from
lag 1 (1976 compared to 1977) to lag 6 (1981 compared to 1982) (Fig. 13.6a). When
ACF was computed on the dry season SAVI variance from 1976 to 1996, a switch in
ACF sign from (+) to (−) correlation at lag 6 (1981 compared to 1982) to 7 (1982
compared to 1983) was detected (Fig. 13.6b). The dry season SAVI ACF variance
values from lag 3 to 6 decreased or dampened before the switch (Fig. 13.6b).

Discussion

The SAVI Landsat satellite time series was acquired at a time coincident with the
major climatic regime shifts of the PDO and ENSO, specifically the 30-year (1942–
1975) PDO cool phase drought and the 20-year (1976–1998) PDO warm phase wet
period that included the very strong 1982–1985 El Niño wet period and the severe



13 Detection of Harbingers of Catastrophic Regime Shifts in Drylands 283

Fig. 13.4 Times series of the combined wet and dry season mean soil-adjusted vegetation index
(SAVI) response for the Marine Corps Air Ground Combat Center (MCAGCC) from 1972 to 1997
(a). The linear fit suggests an increasing trend in greenness from 1972 to 1997. The autocorrelation
function (ACF) of the combined time series (b) indicates significant changes during the dry season
relative to the wet and that a regime shift had occurred between 1981 and 1982



284 R. A. Washington-Allen et al.

Fig. 13.5 Mean-Variance analysis of the dry (a) and wet (b) season soil-adjusted vegetation index
(SAVI) scenes of the Marine Corps Air Ground Combat Center (MCAGCC) from 1972 to 1997.
Three domains of attraction are evident during the dry season time series, whereas only one basin
is evident during the wet season

droughts of the 1988–1991 La Niña. However, due to the data hiatus in the wet season
imagery from 1973 to 1978, the PDO cool phase impact could not be detected.

The overall response of the Combat Center’s SAVI response from 1972 to 1997
was an increasing linear trend that was buoyed by the PDO warm phase wet period
and the increased wetness from the ENSO from 1982 to 1985 (Fig. 13.4). The
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Fig. 13.6 The autocorrelation function (ACF) of the dry season mean soil-adjusted vegetation index
(SAVI) (a) and the variance of SAVI (b) time series of the Marine Corps Air Ground Combat Center
(MCAGCC) from 1976 to 1997

temporal response from 1972 to 1997 was bimodal with an abrupt shift occurring
around 1981–1982 towards greater vegetation production. This regime shift was
prominently detected by the dry season mean-variance and ACF analyses (Figs. 13.5
and 13.6) and coincided with the increased wetness of the southern Mojave with
the inception of the El Niño wet period. The impacts of the droughts on vegetation
were prominently detected in the SAVI image dry season time series from 1976 to
1981. It is likely that areas of high mortality were detected in this time sequence and
could be further studied for persistence of drought impacts (Breshears et al. 2005;
Washington-Allen et al. 2004a). This also applied to productive portions of the
landscape and would be helpful for directing military training exercises to the more
ecologically resilient portions of the Combat Center. This assessment of the response
of the vegetation as measured by SAVI from 1972 to 1997, was consistent with the
field vegetation and climate studies by Beatley (1980) and Hereford et al. (2006). In
particular, the dry season response was more clearly indicative of vegetation response
to climate than the wet season as evidenced by significant dry season ACF values
in the overall time series (Fig. 13.4b). The dry season phase portrait indicated three
domains of attraction for the southern Mojave with the wettest period of production
during the years 1990–1996 (Fig. 13.5b). Consequently, Fig. 13.7 delineates the two
major vegetation dynamic regimes: 1972–1981 and 1982–1997, of the vegetation
response (SAVI) for the Combat Center.

Conclusions

A number of researchers have argued that either the dampening or increase of variance
as a threshold approach may provide an early warning indicator or harbingers of
change (Scheffer et al. 2009; Briske et al. 2010). However, though this behavior
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Fig. 13.7 The dry (1972–1981) and wet (1982–1997) dynamic regimes of the Marine Corps Air
Ground Combat Center (MCAGCC) from 1972 to 1997

was observed for the SAVI variance, it was not significant in the overall time series
nor for the dry season SAVI variance time series (Fig. 13.6b). We did find, however,
that the ACF behavior of the SAVI mean dampened at a threshold, i.e., the ACF
decreased from 1972 to 1981 and then changed sign from (+) to (−) ACF, and then
increased incrementally after the threshold was crossed, peaking at lag 26 (1990)
(Fig. 13.6a). In fact, the same dampening phenomenon is evident from 1990 in the
entire time series and at lag 14 (1990) to 1997 of the dry seasonACF (Fig. 13.6a). This
dampening behavior suggests that a regime shift from the wet period of 1976–1998
to (observed) drought conditions may occur. Albeit a postmortem, the dampening
of the ACF function from 1990 was a harbinger of the 1999–2003 droughts in the
Mojave (Hereford et al. 2006) and the present droughts from 1999 to 2009 in the
southwestern USA (Overpeck and Udall 2010). Consequently, the dampening of the
ACF after a peak may be a harbinger of a dynamic regime shift induced by ENSO and
the ACF sign change from (−) to (+) ACF or vice versa is indicative of a threshold.
For MCAGCC this provided an early warning for drought mitigation techniques,
as they go from a wet cycle to a dry, and implementation of ecological restoration
techniques, as they take advantage of the water subsidies provided by an El Niño
wet period (Holmgren and Scheffer 2001; Holmgren et al. 2001).
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Chapter 14
Ecological Thresholds for Salt Marsh Nekton
and Vegetation Communities

Mary-Jane James-Pirri, Jeffrey L. Swanson, Charles T. Roman,
Howard S. Ginsberg and James F. Heltshe

Abstract Salt marsh vegetation and nekton respond to stressors in estuarine sys-
tems, providing ideal indicators of change. Here we characterize the structure of
these communities along a gradient of anthropogenic stress (e.g., human population
size of watersheds, degree of hydrological alteration of marshes), identify ecological
thresholds that are linked to community condition, and provide potential decision
thresholds for land managers based on an evaluation of community condition. Salt
marsh nekton and vegetation community data (species composition and abundance)
were compiled from over 180 discrete data sets from marshes along theAtlantic coast
from Maine to Virginia. Using multivariate techniques (e.g., Principal Component
Analysis, Canonical Correspondence Analysis, Analysis of Similarities), patterns of
community change along a gradient of hydrologic impact and degree of watershed
development were elucidated. Several levels of community complexity, individual
species’ abundances, and relative abundances of life history-based groups were used
to identify potential metrics for ecological thresholds. The nekton community dis-
played shifts in community structure along a gradient of human population size
(e.g., anthropogenic stress gradient) in surrounding watersheds, from resident fish-
dominated communities at marshes in watersheds with low human populations to
shrimp-dominated communities (Palaemonidae species) in watersheds with high hu-
man populations. Vegetation communities from reference (relatively hydrologically
undisturbed) marshes were dominated by obligate halophytes (e.g., salt meadow
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grasses) with low proportions of invasive plants. Impacted (e.g., tidally restricted)
marshes had fewer halophytic obligate wetland plants, more facultative wetland
plant species, and higher proportions of invasive species. Shifts in characteristics of
nekton and vegetation communities toward the impacted state can be used as eco-
logical thresholds upon which decision thresholds for land managers can be based.
For example, detection of declining proportions of killifish and transient fish and
increasing proportions of Palaemonidae shrimp (the ecological threshold metrics),
would indicate a community changing from moderate to poor condition (the deci-
sion threshold), thereby triggering management actions. Ecological thresholds are
presented for both nekton and vegetation communities and are presented in the con-
text of a desired resource goal (good, moderate, poor condition) that can be used by
resource managers to evaluate responses to restoration activities or the overall con-
dition of the marsh community. Findings from this study are most directly relevant
to northeastern US salt marshes, but the methods to derive the ecological threshold
metrics can be applied to other regions.

Keywords Grass shrimp · Palaemonidae shrimp · Killifish · Fundulidae species ·
Salt marsh community condition · Salt marsh nekton · Salt marsh vegetation ·
Anthropogenic stress

Introduction

Salt marsh vegetation and nekton species composition and abundance clearly re-
spond to stressors in estuarine systems, thus providing ideal indicators of condition.
For example, vegetation changes have been documented in response to salt marsh
hydrologic alterations that are related to ditching activity (e.g., Bourn and Cottam
1950; Niering and Warren 1980), restriction of tidal action (e.g., Roman et al. 1984,
1995), and submergence related to sea-level rise (e.g., Donnelly and Bertness 2001;
Hartig et al. 2002). With nutrient enrichment of estuaries, changes in vegetation
species composition and primary productivity have been noted (e.g., Nixon and Ovi-
att 1973; Wigand et al. 2001). Characteristics of nekton (free-swimming fishes and
crustaceans), such as fish abundance, species richness, and growth rates of the com-
mon mummichog (Fundulus heteroclitus), have been shown to increase with nutrient
loading (LaBrecque et al. 1996; Tober et al. 1996) and respond quite rapidly to hydro-
logic alterations (e.g., Able et al. 2000; Roman et al. 2002). Further, nekton represent
a valuable monitoring indicator because of their essential role as forage for piscivo-
rous birds, economically valuable fishes, and marine mammals (e.g., Friedland et al.
1988; Sekiguchi 1995; Smith 1997).

The purpose of this study was to identify ecological thresholds that resource man-
agers can use to evaluate salt marsh condition. A quantitative knowledge of condition
can inform resource management decisions. We define ecological thresholds after
Martin et al. (2009) as changes in metric values (in this case nekton and vegetation
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community composition) that produce measureable shifts in community structure;
and decision thresholds as changes in metric values that should prompt specific
management actions. We analyzed extensive nekton and vegetation data sets from
marshes throughout the Maine toVirginia region, including marshes that varied along
a gradient from relatively undisturbed to highly impacted based on watershed land
use, watershed human population, and hydrologic alteration.

Methods

General Data Description

Existing data collected during monitoring efforts of salt marsh nekton and vegetation
communities at numerous sites were used for this project (Swanson 2009). The ma-
jority of data were collected between 2001 and 2006 using protocols developed by
the National Park Service for their Inventory and Monitoring Program (Roman et al.
2001; Raposa and Roman 2000; James-Pirri et al. 2008; James-Pirri et al. 2011).
Both nekton and vegetation data were multivariate data of community composition
(species) and abundance (density for nekton or percent cover for vegetation). Sites
and data spanned a wide latitudinal range (Fig. 14.1; Maine to Virginia) and included
varying degrees of disturbance as defined by watershed development (rural, agricul-
tural, suburban, and urban), human population size in the watershed, and hydrologic
impacts (e.g., tidal restrictions and hydrological alterations for mosquito control).
Sites were characterized as either reference or impacted sites. Reference sites were
grid ditched or occasionally unditched, but contained no other hydrological alter-
ations. Impacted sites were also grid ditched and had other hydrological alterations
including tidal restrictions, open marsh water management for mosquito control, or
were recently tidally restored. The majority of sites had data from multiple years
and some had data from both before and after recent human-made alterations or
restoration activities. The term “site” is used herein to identify data from a specific
marsh-year combination (e.g, data from Sachuest reference marsh sampled in 2000,
or Sachuest reference marsh sampled in 2003).

Nekton and Vegetation Collection Methods and Data Description

Nekton data were collected using two habitat-dependent enclosure gear types: a
throw trap in salt marsh pools and tidal creeks (Rozas and Minello 1997; Raposa et al.
2003) and a ditch net in salt marsh grid ditches or small tidal creeks (James-Pirri et al.
2010, James-Pirri et al. 2011). All sampling was conducted after the marsh surface
drained of water. Sampling stations were randomly located within each habitat. All
sampling was in summer (June–September), usually with 10–20 stations sampled
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Fig. 14.1 Location of salt marsh sites where data were collected. Impacted sites include
hydrologically altered, tide restricted, and recently tidally restored sites
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with each gear type during each summer sampling period, resulting in over 7,850
individual samples in the database. Nekton were identified to the level of species, if
possible. Average density (number individuals m−2) was calculated for each species
at each site and the data were standardized as relative species abundance, calculated
as the proportion of total nekton density for each site. Nekton data consisted of
81 individual salt marshes (43 reference and 38 hydrologically altered or impacted
marshes) resulting in a total of 185 sites (96 reference and 89 altered or impacted
sites), since several marshes were sampled over multiple years. A total of 50 species
(35 fish species and 15 crustacean species), with an additional 12 categories that
were only identified to family, were present in the data (Table 14.1).

At each site salt marsh vegetation was sampled in a minimum of 20 randomly
located 1 m2 vegetation plots oriented along transects that traversed the elevation
gradient (Elzinga et al. 2001; Roman et al. 2001; James-Pirri et al. 2007; James-Pirri
et al. 2011). Vegetation was sampled annually, from late August to early September,
using the point intercept method (50 point grid) to estimate percent cover for each
cover type (Kent and Coker 1992; Elzinga et al. 2001). Cover type categories included
all live vegetation (including vascular plants and algae), open water, and wrack/litter.
Vegetation data were from 70 individual salt marshes (40 reference and 30 altered
or impacted marshes), resulting in a total of 156 sites (80 reference and 76 altered or
impacted sites). There were 181 cover types represented (179 plant or macro-algae
species and two non-vegetative covers: standing water and litter/wrack) (Table 14.2).
Percent cover for each cover type was estimated for each vegetation plot (4,220
vegetation plots) and average percent cover was estimated for each site.

Watershed Landuse and Population Estimation

The marsh sites were located in 48 individual subwatersheds. Since there was no
national GIS watershed data set, subwatersheds were delineated from individual state
GIS coverages using the smallest available watershed. When state subwatershed data
were not available (e.g., Long Island, New York, and Massachusetts) subwatersheds
were delineated using Digital Elevation Model data in ArcGIS 9.1 software (ESRI
2005).

Landuse/land cover data were estimated for each subwatershed from the 2001
National Land Cover Data Set using ArcGIS 9.1. To standardize landuse among
the subwatersheds, watershed landuse data were converted to proportional data or
a percent that each land use type occupied within the subwatershed. In addition,
a smaller area (5 km radius from the middle of each site) around each marsh was
delineated inArcGIS 9.1 and estimates of landuse in this smaller area were calculated.

Population data for all subwatersheds were derived from the 2000 U.S. Census,
mapped by census block. The human population of an individual census block was
used only if more than 50 % of the block was within the watershed boundary.
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Table 14.1 Distribution of nekton species data and life history groups used in analyses

Grouping and Latin name Common name Presence (percent
of sites) (%)

Relative abundance
(percent of total
nekton density) (%)

Resident fish
Cyprinodon variegatus Sheepshead minnow 44 3
Dormitator maculatusa Fat sleeper 1 < 1
Fundulus species Killifish species 5 < 1
Fundulus diaphanus Banded killifish 4 < 1
Fundulus heteroclitus Mummichog 100 30
Fundulus luciae Spotfin killifish 12 < 1
Fundulus majalis Striped killifish 43 1
Gambusia holbrooki Eastern mosquitofish 2 < 1
Gambusia species Mosquitofish species 5 < 1
Lucania parva Rainwater killifish 32 1

Resident shrimp
Palaemonetes pugio Daggerblade grass

shrimp
49 22

Palaemonetes species Grass shrimp species 39 35
Palaemonetes vulgaris Marsh grass shrimp 1 1

Resident crustacean
Carcinus maenasb Green crab 56 1
Pagurus longicarpus Longwrist hermit crab 4 < 1
Pagurus species Hermit crab species 6 1
Uca pugnax Atlantic marsh fiddler

crab
7 < 1

Uca species Fiddler crab species 6 < 1

Transient fish
Alosa aestivalisa Blueback herring 1 < 1
Alosa pseudoharengus Alewife 2 < 1
Alosa sapidissima American shad 1 < 1
Ammodytes americanusa American sand lance 1 < 1
Anchoa mitchillia Bay anchovy 1 < 1
Anguilla rostrata American eel 44 < 1
Apeltes quadracus Fourspine stickleback 29 < 1
Brevoortia tyrannus Atlantic menhaden 9 1
Centropristis striata Black sea bass 1 < 1
Clupea harengus Atlantic herring 2 < 1
Gasterosteus aculeatus Threespine stickleback 15 < 1
Gobiosoma bosc Naked goby 1 < 1
Gobiosoma ginsburgi Seaboard goby 2 < 1
Goby species Goby species 1 < 1
Lepomis speciesa Sunfish species 1 < 1
Menidia beryillina Inland silverside 30 < 1
Menidia menidia Atlantic silverside 62 2
Menidia species Silverside species 8 < 1
Morone americana White perch 4 < 1
Mugil cephalus Striped mullet 3 < 1
Mugil curema White mullet 3 < 1
Notropis species Eastern shiner species 2 < 1
Opsanus tau Oyster toadfish 1 < 1



14 Ecological Thresholds for Salt Marsh Nekton and Vegetation Communities 297

Table 14.1 (continued)

Grouping and Latin name Common name Presence (percent
of sites) (%)

Relative abundance
(percent of total
nekton density) (%)

Paralichthys dentatusa Summer flounder 1 < 1
Pomatomus saltatrixa Bluefish 1 < 1
Pseudopleuronectes

americanus
Winter flounder 9 < 1

Pungitius pungitius Ninespine stickleback 29 < 1
Syngnathus fuscus Northern piepfish 12 < 1
Tautoga onitis Tautog 1 < 1
Tautogolabrus adspersus Cunner 1 < 1
Trinectes maculatus Hogchoker 1 < 1

Transient Crustacean
Callinectes sapidus Blue crab 35 < 1
Cancer irroratus Rock crab 1 < 1
Crangon septemspinosa Sevenspine bay shrimp 37 1
Dyspanopeus sayi Say mud crab 1 < 1
Hemigrapsus

sanguineusb
Asian shore crab 4 < 1

Libinia dubiaa Longnose spider crab 1 < 1
Libinia speciesa Spider crab species 1 < 1
Limulus polyphemusc American horseshoe

crab
8 < 1

Mud crab species Mud crab 6 < 1
Neopanope speciesa Grassflat crab spp 1 < 1
Ovalipes ocellatus Lady crab 3 < 1
Panopeus herbstii Atlantic mud crab 1 < 1
Rhithropanopeus harrisii Harris mud Crab 2 < 1
a Indicates species was found at only one site (a site was defined as a specific salt marsh and year
of data)
b Indicates exotic species. Species that were present at 10 % or more of the sites were considered
common species in preliminary analyses
c The American horseshoe crab was grouped with the transient crustaceans

Analyses

Several multivariate statistical analyses (e.g., Principal ComponentAnalyses, Canon-
ical Correspondence Analysis, Analysis of Similarities (ANOSIM), Similarity
Percentages (SIMPER) (Clarke and Warwick 2001; Clarke and Gorley 2006) were
performed to determine relationships among species composition and abundance, de-
gree of alteration (reference sites versus impacted sites), landuse pattern, and human
population density.

For nekton, the analyses included several iterations using all species, common
species (those present at > 10 % of the marshes), and groups based on life history
association with the salt marsh environment (Table 14.1). The life history groups
(after Bigelow and Schroeder 1953; Ayvazian et al. 1992; Able et al. 1996; Dee-
gan et al. 1997; Collette and Klein-MacPhee 2002; Elliot et al. 2007) were salt
marsh resident fish (e.g., killifish, Fundulidae species), resident shrimp (e.g., marsh
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Table 14.2 Wetland status and salinity tolerance for vegetation cover types. Wetland status and
salinity tolerance was based on data from USDA Plants database (USDA 2009)

Latin name Common name Presence (percent
of sites) (%)

Relative cover
(percent of total
cover) (%)

Wetland, high salinity tolerance
Ascophyllum species Brown algae species 3 < 1
Atriplex patula Spear saltbush 32 < 1
Chaetomorpha linum Green algae species 1 < 1
Cladophora species Green algae species 3 < 1
Distichlis spicata Saltgrass 91 11
Fucus and Ascophyllum Brown algae species 1 < 1
Fucus vesiculosus Bladderwrack 4 < 1
Iva frutescens MEa Jesuit’s bark 33 1
Juncus balticus MDa Baltic rush 8 < 1
Juncus gerardii Saltmeadow rush 41 5
Limonium carolinianumb

NYa
Carolina sea lavender 22 < 1

Limonium nashib NYa Sea lavender 21 < 1
Limonium speciesb Sea lavender species 2 < 1
Macro or filamentous green

algae
Macroalgae 13 < 1

Plantago maritima Goose tongue 36 1
Puccinellia distans and P.

maritima
Weeping/seaside

alkaligrass
26 1

Ruppia maritima Widgeongrass 3 < 1
Salicornia bigeloviib Dwarf saltwort 2 < 1
Salicornia maritimab Slender glasswort 51 1
Salicornia speciesb Glasswort species 29 1
Salicornia virginicab Virginia glasswort 6 1
Schoenoplectus maritimus

CTa, NJ, NY, RI
Cosmopolitan bulrush 3 < 1

Schoenoplectus robustus Sturdy bulrush 6 < 1
Solidago sempervirens Seaside golden rod 39 < 1
Spartina alterniflora Smooth cordgrass 97 25
Spartina patens Saltmeadow cordgrass 97 24
Suaeda linearisb Annual seepweed 3 < 1
Suaeda maritimaa Herbaceous seepweed 22 < 1
Symphyotrichum

tenuifoliumb
Perennial saltmarsh

aster
11 < 1

Wetland, Medium Salinity Tolerance
Agalinis maritima MEa Saltmarsh false

foxglove
23 < 1

Agrostis stolonifera Creeping bentgrass 10 < 1
Amaranthus cannabinus Tidalmarsh amaranth 4 < 1
Baccharis halimifolia Eastern baccharis 4 < 1
Eleocharis parvula Dwarf spikerush 2 < 1
Eleocharis rostellata MEa ,

RI
Beaked spikerush 1 < 1

Glaux maritima MDa, NJ, RI Sea milkwort 26 2 %
Hierochloe odorata MDa Sweetgrass 1 < 1
Iris versicolor Harlequin blueflag 1 < 1
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Table 14.2 (continued)

Latin name Common name Presence (percent
of sites) (%)

Relative cover
(percent of total
cover) (%)

Juncus arcticus MDb Arctic rush 1 < 1
Juncus canadensis Canadian rush 2 < 1
Juncus effusus var.

conglomeratus
Common rush 6 < 1

Kosteletzkya virginica Virginia saltmarsh
mallow

2 < 1

Lythrum lineare Wand lythrum 1 < 1
Lythrum salicariac Purple loosestrife 3 < 1
Polygonum sagittatum Arrowleaf tearthumb 2 < 1
Potentilla anserina anserina Silverweed cinquefoil 5 < 1
Schoenoplectus americanus American or Olney

bulrush
18 < 1

Schoenoplectus pungens Common threesquare 4 < 1
Spergularia salina Salt sandspurry 1 < 1
Symphyotrichum novi-belgiib New York aster 3 < 1
Symphyotrichum subulatum

MEa, NY
Eastern annual

saltmarsh aster
3 < 1

Triglochin maritimumb NJa Seaside arrowgrass 31 1
Typha angustifolia Narrowleaf cattail 12 < 1

Wetland, Low Salinity Tolerance
Argentina anserina Silverweed cinquefoil 8 < 1
Carex comosa Longhair sedge 1 < 1
Carex scoparia Broom sedge 3 < 1
Carex species Sedge species 4 < 1
Cyperus esculentus Yellow nutsedge 2 < 1
Eleocharis quadrangulata

CTa, NY
Squarestem spikerush 1 < 1

Hibiscus moscheutos Crimsoneyed
rosemallow

1 < 1

Lycopus americanus American water
horehound

4 < 1

Panicum rigidulum var.
pubescens

Redtop panicgrass 1 < 1

Photinia pyrifolia Red chokeberry 1 < 1
Phragmites australisb,c Common reed 29 3
Pluchea odorata var.

ordorata
Sweetscent 17 < 1

Poa palustris Fowl bluegrass 1 < 1
Scirpus cyperinus Woolgrass 3 < 1
Typha latifolia Broadleaf cattail 1 < 1
Verbena hastata Swamp verbena 1 < 1

Wetland, No Salinity Tolerance
Boehmeria cylindrica Smallspike false nettle 1 < 1
Carex straminea NYa Eastern straw sedge 2 < 1
Cuscuta gronoviic Scaldweed 1 < 1
Cyperus filicinus Fern flatsedge 2 < 1
Cyperus strigosus Strawcolored flatsedge 1 < 1
Dichanthelium

scabriusculum CTa, MA,
NY, MD

Wooly rosette grass 3 < 1
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Table 14.2 (continued)

Latin name Common name Presence (percent
of sites) (%)

Relative cover
(percent of total
cover) (%)

Doellingeria umbellata var.
umbellata

Parasol whitetop 1 < 1

Epilobium coloratum Purpleleaf willowherb 1 < 1
Epilobium leptophyllum Bog willowherb 3 < 1
Eupatorium dubium MEa Coastal plain joe pye

weed
3 < 1

Galium palustre Common marsh
bedstraw

1 < 1

Galium tinctorium Stiff marsh bedstraw 3 < 1
Galium trifidum Threepetal bedstraw 1 < 1
Glyceria canadensis Rattlesnake

mannagrass
1 < 1

Ilex verticillata Common winterberry 3 < 1
Impatiens capensis NYa Jewelweed 1 < 1
Lycopus uniflorus Northern bugleweed 1 < 1
Mentha arvensis Wild mint 1 < 1
Myrica gale Sweetgale 2 < 1
Onoclea sensibilis Sensitive fern 3 < 1
Petasites hybridus Pestilence wort 1 < 1
Polygonum hydropiper Marshpepper

knotweed
1 < 1

Ribes lacustre CTa, MA Prickly currant 1 < 1
Rosa palustris Swamp rose 1 < 1
Salix bebbiana MDa Bebb willow 1 < 1
Sparganium eurycarpum Broadfruit bur-reed 1 < 1
Spartina pectinata Prairie cordgrass 7 < 1
Sphagnum species Sphagnum species 1 < 1
Spiraea alba White meadowsweet 4 < 1
Spiraea tomentosa Steeplebush 4 < 1
Teucrium canadense Canada germander 3 < 1
Triadenum virginicum Virginia marsh St.

Johnswort
4 < 1

Vaccinium corymbosum Highbush blueberry 1 < 1
Vaccinium macrocarpon Cranberry 3 < 1

Wetland, unknown salinity tolerance
Oclemena nemoralis CTa Bog aster 1 < 1
Platanthera clavellata NYa Small green wood

orchid
1 < 1

Polygonum arifolium Halberdleaf tearthumb 1 < 1
Ptilimnium capillaceum RIa Herbwilliam 1 < 1
Schoenoplectus torreyi Torrey’s bulrush 1 < 1
Scutellaria galericulata Marsh skullcap 3 < 1

Transitional, high salinity tolerance
Ammophila breviligulata American beachgrass 5 < 1
Atriplex prostrata triangle orache 1 < 1
Atriplex species Saltbush species 2 < 1
Plantago species Plantain species 1 < 1
Transitional, Medium Salinity Tolerance
Agrostis hyemalis Winter bentgrass 1 < 1
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Table 14.2 (continued)

Latin name Common name Presence (percent
of sites) (%)

Relative cover
(percent of total
cover) (%)

Calystegia sepium Hedge false bindweed 8 < 1
Lathyrus japonicus Beach pea 1 < 1
Morella pensylvanica Northern bayberry 7 < 1
Panicum virgatum Switchgrass 22 < 1
Rosa rugosa Rugosa rose 3 < 1
Toxicodendron radicans Eastern poison ivy 7 < 1

Transitional, low salinity tolerance
Agrostis scabra Rough bentgrass 1 < 1
Ambrosia trifida Great ragweed 1 < 1
Amphicarpaea bracteata American hogpeanut 1 < 1
Artemisia stelleriana Oldwoman 1 < 1
Chenopodium album Lambsquarters 1 < 1
Festuca rubra Red fescue 21 < 1
Juncus tenuis Poverty rush 1 < 1
Lonicera japonicac Japanese honeysuckle 1 < 1
Polygonum ramosissimum NYb Bushy knotweed 1 < 1
Thelypteris palustris NYa Eastern marsh fern 4 < 1
Viburnum dentatum Southern Arrowwood 1 < 1

Transitional, No Salinity Tolerance
Acer rubrum Red maple 2 < 1
Achillea millefolium Common yarrow 3 < 1
Asclepias syriaca Common milkweed 1 < 1
Betula populifolia Gray birch 1 < 1
Elymus repens Quackgrass 8 < 1
Euthamia graminifolia

tenuifolia
Flat-top/slender

goldentop
4 < 1

Fragaria virginiana Virginia strawberry 1 < 1
Holcus lanatus Common velvetgrass 3 < 1
Juncus greenei Greene’s rush 1 < 1
Parthenocissus quinquefolia Virginia creeper 2 < 1
Phytolacca americana American pokeweed 1 < 1
Polygonum scandens Climbing false

buckwheat
1 < 1

Populus deltoides Eastern cottonwood 1 < 1
Prunus serotina Black cherry 3 < 1
Ribes hirtellum Hairystem gooseberry 2 < 1
Rosa virginiana Virginia rose 3 < 1
Schizachyrium scoparium Little bluestem 1 < 1
Smilax rotundifolia Roundleaf greenbrier 1 < 1
Solanum dulcamarac Climbing nightshade 1 < 1
Solidago canadensis Canada goldenrod 2 < 1
Solidago rugosa Wrinkleleaf goldenrod 3 < 1
Solidago simplex Mt. Albert goldenrod 1 < 1

Upland, medium salinity tolerance
Nuttallanthus canadensis Canada toadflax 1 < 1
Rosa carolina Carolina rose 3 < 1
Upland, Low Salinity Tolerance
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Table 14.2 (continued)

Latin name Common name Presence (percent
of sites) (%)

Relative cover
(percent of total
cover) (%)

Polygonella articulata Coastal jointweed 1 < 1
Prunus maritima CTa, MD, ME Beach plum 2 < 1

Upland, no salinity tolerance
Artemisia vulgaris Common wormwood 1 < 1
Celastrus orbiculatus Oriental bittersweet 2 < 1
Cirsium arvensec Canada thistle 1 < 1
Daucus carota Queen Anne’s lace 1 < 1
Deschampsia flexuosa Wavy hairgrass 3 < 1
Eragrostis spectabilis Purple lovegrass 1 < 1
Erechtites hieracifolia American burnweed 3 < 1
Heliopsis helianthoides Smooth oxeye 1 < 1
Hieracium aurantiacum Orange hawkweed 1 < 1
Hypochaeris radicata Hairy cat’s-ear 1 < 1
Lactuca canadensis Canada lettuce 1 < 1
Lechea intermedia Largepod pinweed 1 < 1
Lonicera morrowiic Morrow’s honeysuckle 1 < 1
Rumex acetosellac Common sheep sorrel 3 < 1
Solanum ptychanthum West Indian

nightshade
1 < 1

Solidago odora Anisescented
goldenrod

1 < 1

Sonchus arvensis Field sowthistle 1 < 1

Status unknown, medium salinity tolerance
Lechea maritima Beach pinweed 1 < 1
Lepidium species Pepperweed species 1 < 1

Status unknown, low salinity tolerance
Agrostis gigantea Redtop 1 < 1
Artemisia campestris Field sagewort 1 < 1

Status Unknown, No Salinity Tolerance
Rhus copallinum Winged sumac 3 < 1
Rhus species Sumac species 1 < 1
Spiraea species Spirea species 1 < 1

Non-vegetative covers
Litter/wrack Litter/wrack Not used
Water Water Not used

Nomenclature from USDA Plants Database
“-” indicates either wetland status or salinity tolerance or could not be definitively determined and
was assigned as “unknown”
a Indicates state-listed species and state where listed
b Indicates common species
cIndicates invasive species

grass shrimp, Palaemonidae species), resident crustaceans other than Palaemonidae
shrimp (e.g., Carcinus maenus, green crab), transient fish (e.g., flounders, silversides
(Menidia species)), and transient crustaceans (e.g., Callinectes sapidus, blue crab)
(Table 14.1). Resident shrimp and resident fish composed the majority of the data,
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(57 and 36 %, respectively, of the total relative abundance of the entire data set).
The other three groups each represented less than 5 % (transient fish, 4 %; transient
crustaceans, 2 %; resident crustaceans, 1 %). The resident categories were species
that primarily rely on the salt marsh for most life history stages, while the transient
categories included species that use salt marshes but were not exclusively found in
salt marshes (e.g., flounders, silversides, blue crab).

Due to the large size of the original vegetation data initial analyses were conducted
on the 21 common vegetation cover types (Table 14.2), defined as those that were
present at 25 % or more of the sites. To incorporate more than the common vegeta-
tion cover types in subsequent analyses, all vegetative cover types were categorized
according to wetland status (wetland, transitional, or upland plants) and salinity tol-
erance (none, low, medium, or high tolerance), based on information from the USDA
Plants Database (USDA 2009). Plants were also identified as state-listed (e.g., en-
dangered, threatened, vulnerable) or invasive/exotic if appropriate, as identified in
the USDA Plants Database (Table 14.2). Cover types of individual species in each
category were summed to obtain a percent cover for each category. The wetland
status and salinity tolerance categories resulted in a total of 17 groups (15 wetland
status and salinity tolerance groups and two groups for state-listed and invasive sta-
tus), some salinity tolerance and wetland status groups that had few occurrences
(< 5) were combined into similar groups for analyses.

If patterns in either nekton or vegetation communities were observed in initial
exploratory analyses, these were followed with additional analyses to determine if
there were any significant correlations with anthropogenic stressor indicators such
as the human population size of the watershed or surrounding land use.

Results

Nekton Analyses

The nekton community was dominated by the common mummichog (Fundulus het-
eroclitus) and Palaemonidae grass shrimp (Palaemonetes pugio, P. vulgaris, and
Palaemonetes species), together comprising 88 % of the total relative nekton abun-
dance (Table 14.2). All other species contributed 3 % or less to the total nekton
density. Mummichogs were present at all sites and Palaemonidae shrimp were present
at most sites (89 % of sites) (Table 14.1). Palaemonidae shrimp were the only species
that exceeded an average density of 70 individuals m−2 at any one site.

Initial Principal Component Analyses using all nekton species indicated that little
variation was explained by the first three principal components when either all sites
(n = 185) were included or when reference (n = 96) and impacted (n = 89) sites were
analyzed separately, with only 16–21 % of the variability explained by the first three
principal components. In all of these iterations, the first three principal components
were generally representative of species that only appeared sporadically in the data
(e.g., Harris mud crab, Rhithropanopeus harrisii; Eastern mosquito fish, Gambusia
holbrooki; fiddler crab species, Uca species; Table 14.1), and accounted for only a
small percent of the total variability in the data.
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Fig. 14.2 Graph of first and third principal components scores from the analyses using nekton life
history groups. Variation explained: 1st PC: 38 %; 3rd PC: 22 %

Principal ComponentAnalyses using the 17 common species increased the amount
of variability explained, with the first three principal components accounting for 34 %
of the variability (all sites, n = 185). When analyzed separately by reference and
impacted sites, there was an improvement with the first three principal components
accounting for 36 and 37 % of the variability, respectively. A graphic representation
of the first and second principal components (accounting for 26 % of the variability)
indicated the majority of sites were closely grouped together, thus limiting the ability
to distinguish differences among sites based on common nekton species.

Analysis of the five nekton life history groups resulted in a high percentage of
the variability (85 %) accounted for by the first three principal components (all
sites, n = 185). The first and third principal component separated sites according
to three of the five life history groups, resident fish, resident shrimp, and transient
fish (Fig. 14.2). The first principal component, accounting for 38 % of the variation,
had a high negative (88 %) correlation between resident fish (positive loading) and
resident shrimp (negative loading), separating sites that had high relative abundances
of resident fish from those with high relative abundances of resident shrimp. The third
principal component accounted for 22 % of the variability, and had high loadings for
transient fish and was indicative of sites where transient fish species were present.
The second principal component accounted for 26 % of the variation and had high
positive loadings for both resident and transient crustaceans. Similar results were
observed when just the 96 reference sites were analyzed (85 % of the variation ex-
plained by the first three principal components). A slightly higher proportion of the
variation (87 %) was explained when only the 89 impacted sites were used in the
analyses. Interestingly, the trends in the correlation matrix and proportion explained
by the three principal components were nearly identical when reference and impacted
sites were analyzed separately as when all sites were analyzed together.
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Watershed Population Size and Nekton Guilds

Human population size of the watershed was used as an indicator of development.
Six sites located within New York City (Jamaica Bay) were removed prior to the
analyses because they were extreme outliers in regards to total watershed population
size (∼ 1.8 million people, the next largest watershed population was 55,000 peo-
ple). There was no strong functional relationship between the dominant life history
groups (first principal component (resident fish and resident shrimp)) and watershed
population (all sites, Pearson Correlation Coefficient − 0.03, p = 0.67 n = 173; ref-
erence sites, Pearson Correlation Coefficient 0.02, p = 0.88, n = 90; impacted sites,
Pearson Correlation Coefficient − 0.10, p = 0.36, n = 83). This was likely attributed
to the high variability in dominant resident fish and shrimp groups at low population
levels (e.g., < 1,000 people), as they spanned the entire range of the first principal
component score. Based on these results sites with low populations in the surround-
ing watershed (< 1,000 people) were removed from further analyses to determine if
a stronger correlation could be found.

The first principal component was significantly correlated with log-transformed
population size (Pearson Correlation coefficient: − 0.036, p < 0.01, r2 = 0.12, im-
pacted and reference sites together (n = 94)) when the low population sites (< 1,000
people) were removed, with the first three principal components accounting for 82 %
of the total variation. The principal component loadings also remained similar with
the first principal component distinguishing between resident fish-dominated sites
(positive loading) and resident shrimp-dominated sites (negative loading). Transient
fish were represented by high positive loading in the second principal component,
while transient crustaceans and resident crabs were represented by positive load-
ings in the third principal component. When reference sites (n = 51) were analyzed
separately, the first three principal components accounted for 84 % of the total vari-
ation (41, 23, 20 %: first, second, and third principal components, respectively) and
a strong correlation was observed between the first principal component and to-
tal population (log transformed) (Pearson Correlation Coefficient: − 0.64, p < 0.01,
r2 = 0.40) (Fig. 14.3). Similar to the reference sites the three principal components for
the impacted sites (n = 43) accounted for 85 % of the variation in the nekton groups
and had similar percentages accounted for by the first three first principal compo-
nents, but the correlation between the first principal component and population size
was not significant (Pearson Correlation Coefficient: 0.03, p = 0.84).

Plotting the first and third principal components for the reference sites categorized
by population size showed that in high population watersheds (20,000–100,000 peo-
ple) the nekton communities were always dominated by the resident Palaemonidae
shrimp (Fig. 14.4). As watershed population size decreased, the nekton commu-
nity became dominated by resident fish (e.g., Fundulidae species), and at the lowest
watershed populations the presence of transient fish species increased.

Additional iterations using total species richness, fish species richness, and exotic
species richness yielded no useful results for distinguishing among sites with varying
types of hydrological impacts or with watershed population size.
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Land Use and Nekton Guilds

Principal Component Analyses using watershed land cover types (15 land cover
categories) were conducted to determine if the amount of developed land cover was
correlated with nekton community composition. The first three principal components
accounted for 54 % of the total variation. The first principal component score, which



14 Ecological Thresholds for Salt Marsh Nekton and Vegetation Communities 307

accounted for 22 % of the variability, loaded positively for all the developed land
cover categories and negatively on the natural land use types (e.g., rocks and sand,
emergent wetlands, grassland, and water); however, there were also several natural
land cover categories (e.g., shrub lands and forests types) that had positive loadings.
This pattern of loadings would make it difficult to use these land cover categories
as indicators of watershed development that might correlate with the nekton life
history groups. Additionally, there were no useful correlations (less than 10 % of the
variability explained) between the first principal component for the nekton groups
and the developed land cover categories for all iterations (all sites, reference sites,
and impacted sites).

The land cover within a 5 km buffer from the center of each site was estimated and
nekton residency structure was examined using Canonical Correspondence Analysis
to evaluate the relationship between the nekton life history groups and immediately
adjacent land cover. A significant correlation was observed between the nekton life
history groups and adjacent land cover for all reference sites (n = 96) with the first
axis (Pearson Correlation: 0.80, p = 0.01) and second axis (Pearson Correlation:
0.65, p = 0.01), accounting for 43 % of the variation. Reference sites tended to be
grouped by marshes with resident fish and transient fish (negative scores for the
first and second axes) and those that had predominately resident shrimp and resident
crabs (positive first and second axis scores). The land cover scores for wetland and
forested lands had negative first and second axes scores while the developed land
use categories had generally positive first and second axes scores. Therefore, sites
with high proportions of resident and transient fish tended to be surrounded by more
natural land (wetlands and forests); whereas, sites that were dominated by resident
shrimp and resident crabs tended to be associated with marshes that were surrounded
by developed land (Fig. 14.5). This analysis was in agreement with the previous
Principal Component Analyses indicating that shrimp-dominated communities were
associated with watersheds having higher human populations, corresponding with
more developed land.

Ecological Thresholds for Salt Marsh Nekton Communities

We propose a series of metrics and ecological thresholds for salt marsh nekton
community condition (Fig. 14.6, Table 14.3) that may be indicative of changes
in community condition. We developed ecological thresholds for three life history
groups (resident fish, transient fish, and resident (Palaemonidae) shrimp) based on
the 25th and 75th percentiles of relative abundance (sensu Plafkin et al. 1989; Dee-
gan et al. 1997; Hughes et al. 2002) along a gradient of watershed population size
using data from the reference sites as they provided the best correlation among these
life history groups with watershed population size (Fig. 14.4). If it is assumed that
reference sites in watersheds with low populations (1,000–5,000 people) were repre-
sentative of a desired condition and sites in watersheds with the higher populations
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Fig. 14.5 Canonical Correspondence Analysis biplot showing relationship among nekton life his-
tory groups and immediate adjacent land cover (5 km radius) for all reference sites (n = 96). The
five nekton groups are shown as symbols and land cover types shown as lines

were representative of a stressed condition, then the relative abundance of nekton in
these life history groups can provide the basis for ecological thresholds at differing
levels of anthropogenic stress (Table 14.3)

Other metrics that could be used as a basis for ecological thresholds are the
presence of invasive or exotic species and species richness. Invasive and/or exotic
species (e.g., Asian shore crab (Hemigrapsus sanguineus), green crab) are viewed
as potential threats to the salt marsh nekton community (Mack et al. 2000; USEPA
2008), and while they accounted for less than 0.5 % in our data their presence in
the nekton community should be noted (Table 14.3). There was no correlation with
nekton species richness for any of the iterations in our analyses; however, species
richness is clearly an indicator of ecosystem condition, with richness declining as
condition deteriorates (Karr 1981). Ecological thresholds for species richness were
estimated using the 10th, 50th, and 75th percentiles of species richness for all salt
marsh sites (Table 14.3).

To evaluate condition of the nekton community at an individual marsh site, a score
of 5 = good, 3 = moderate, or 1 = poor was assigned for each of the five metrics,
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Fig. 14.6 Estimation of metric values for ecological thresholds associated with nekton life history
groups. Metric values were based on proportion of catch (relative abundance) for reference sites
(n = 51) from three classes of watershed population size. Box plots are composed of 25th and 75th
percentile (box) with the 50th percentile shown as a solid circle, and 10th and 90th percentiles
shown as vertical lines

Table 14.3 Ecological thresholds for the relative abundance total nekton across a range of
community condition. Scores associated with each condition category are indicated in parentheses

Metric Good
condition (5)

Moderate
condition (3)

Poor
condition (1)

Resident fish (relative abundance)a > 60 % 30–60 % < 30 %
Resident shrimp (relative abundance)a < 15 % 15–50 % > 50 %
Transient fish (relative abundance)a > 15 % 15–4 % < 4 %
Exotic species absent – present
Species richnessb ≥ 10 6–9 ≤ 5
Overall Condition (sum of scores) 21–25 20–12 5–11
a Based on quartile values for reference sites in low population (1,000–5,000), moderate population
(5,000–15,000), and high population (15,000–100,000) watersheds (refer to Fig. 14.6)
b Based on 10th, 50th, and 75th percentile values for all sites

then summed to derive an overall condition score that ranged from 5 to 25, similar to
previous indices of nekton community condition (e.g., Karr 1981; Deegan et al. 1997;
Vile 2008) (Table 14.3). For example, assuming the data reveal that the proportion
of resident fish, resident shrimp, and transient fish was 75 % (score of 5), 10 %
(score of 5), and 10 % (score of 5), respectively, with exotic species absent (score
of 5) and a richness of 9 species (score of 3), the overall condition score would
be 21 or good. A declining trend in the overall score over time or a difference in
score between a reference and impacted site could be used as a decision threshold
to initiate management action and/or further study. An improving trend in condition
score could suggest that implemented management actions (e.g., restoration efforts)
were successful.
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Vegetation Analyses

The initial Principal Component analyses using all 156 sites and the 21 common
vegetation cover types indicated that only 40 % of the variation was explained by
the first three principal components. Similar results were obtained when reference
(n = 80) and impacted sites (n = 76) were analyzed separately, yielding 47 % and
41 % of the total variation explained by the first three components, respectively. There
were no significant correlations with the first principal component and watershed
population size (log transformed).

Similar to the nekton analyses, iterations were conducted using the 21 common
vegetation covers omitting sites in watersheds with extremely high human popula-
tions (∼1.8 million people). This did not improve the amount of variation explained
by the first three principal components when either all sites were analyzed or when
reference and impacted sites were analyzed separately, with the first three principal
components again explaining only about 44 % of the variation. As with the previous
analyses, there were no significant correlations with watershed population size.

More of the variation in the data were described by the 21 common vegetation
covers when sites in both high (∼1.8 million) and low (< 1,000) population wa-
tersheds were removed. In this iteration, the amount of variation explained by the
first three principal components for the reference sites (n = 43) was 54 and 56 % for
the impacted sites (n = 44). None of these iterations yielded significant correlations
between the first principal component and watershed population size.

Grouping all vegetation covers by wetland status and salinity tolerance
(Table 14.2) yielded the following results. For impacted sites (n = 76), the first three
principal components accounted for 68 % of the variation, while the first three prin-
cipal components of the reference sites (n = 80) only explained 48 % of the variation.
Neither of these iterations resulted in useful relationships with watershed population
size.

Canonical Correspondence Analysis indicated that land use within a 5 km radius
of the reference sites was correlated with the wetland status and salinity tolerance
groups. The first three axes explained 47 % of the variation in marsh vegetation,
with high correlations between land use cover and the first axis observed only for
herbaceous (0.703), hay (0.524), and emergent wetland (0.455) cover types. These
landuse categories tend to be associated with marshes having higher proportions of
wetland and transitional plants with medium salinity tolerances. It is likely that this
was a result of a correlation of the marshes with themselves, since most sites were
contained within a larger area of emergent wetland. For impacted sites, the first three
axes accounted for 67 % of the variation in wetland vegetation, with the first axis
accounting for 44 % of the variation. There were high correlations with some of the
developed land use categories with the first axis (medium intensity developed land,
− 0.77; high intensity developed land, − 0.53, low intensity development, − 0.34).
These land use covers tended to be associated with sites that had higher proportions
of invasive and low salinity tolerant wetland plants (Fig. 14.7).

There were distinct differences in the percent cover of the wetland status and salin-
ity tolerance groups among the different types of site impacts (Fig. 14.8). ANOSIM
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Fig. 14.7 Canonical Correspondence Analyses biplot showing relationship among wetland status
and salinity tolerance groups for marsh vegetation and immediate adjacent land cover (5 km radius)
for impacted marshes (n = 76). The four primary vegetation groups responsible for differences
among marshes, as determined by SIMPER analysis, are showing as symbols and land cover types
shown as lines

indicated that reference and hydrologically altered (e.g., open marsh water manage-
ment for mosquito control) sites had similar percent cover for the vegetation groups;
similarities were also observed between sites that were tide-restricted or had been
recently tidally restored. All other comparisons were significantly different (Global
R = 0.36, ANOSIM for all comparisons p < 0.01). SIMPER analyses indicated that
these four significant comparisons (reference vs. tide-restricted, reference vs. tide-
restoring, tide-restricted vs. hydrologically altered, tide-restoring vs. hydrologically
altered) the same four vegetation groups explained from 84 to 92 % of the overall
dissimilarity between the groups. High salinity tolerant wetland plants accounted for
the majority of the dissimilarity (42–68 %) for all four significant comparisons. Low
salinity tolerant wetland plants accounted for 9–17 % of the dissimilarity between
comparisons, followed by invasive species, which explained 8–17 % of the dissim-
ilarity, and medium salinity tolerant wetland plants, which accounted for 6–8 % of
the dissimilarity.

Ecological Thresholds for Vegetation Communities

Vegetation groups based on wetland status and salinity tolerance were found to be the
best descriptors across a gradient of physical marsh impacts. Four of the vegetation
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Fig. 14.8 Average percent cover (+ standard deviation) for the four primary vegetation groups by
degree of impact to marsh sites

groups, high salinity tolerant wetland plants, medium salinity tolerant wetland plants,
low salinity tolerant wetland plants, and invasive plants accounted for the majority
of variation, and thus seem to be good metrics to assess change (Figs. 14.7 and
14.8). Previous efforts have similarly identified the abundance or extent of salinity
tolerant vegetation as a metric to assess wetland status using smaller data sets (e.g.,
Konisky et al. 2006; Wigand et al. 2010). Konisky et al. (2006) used the abundance of
halophyte and brackish vegetation, whileWigand et al. (2010) incorporated the extent
of Spartina alterniflora and S. patens, as metrics in their assessment methodology.

The four vegetation wetland status and salinity tolerance groups accounted for 84–
92 % of the dissimilarity between marshes with differing degrees of physical impact
types. Additionally, the rank order of importance of these vegetation groups was
the same for all of the significant comparisons (from reference to severely impacted
marshes), indicating that these groups were important descriptors for all types of
marshes. Therefore, these groups can be useful indicators of vegetation community
change if the impact type is used as a proxy for anthropogenic stressor (in increasing
order of stress: reference, hydrologically altered, tide-restoring, and tide-restricted).
The percent cover of these groups can be used to assess the status of salt marsh
communities, assuming that reference marshes represent desired conditions or a
restoration target condition. Like the metrics for nekton, the 25th and 75th quartiles
of the percent cover of the four vegetation groups were used as ecological threshold
metrics (Fig. 14.9, Table 14.4). Scores were assigned to each condition category
(good = 5, moderate = 3, poor = 1), with the sum of the scores providing a guide
to the condition of the vegetation community. The scores range from 4 to 20, with
scores less than 9 representative of a poor salt marsh vegetation community, scores
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Fig. 14.9 Estimation of metric values for ecological thresholds associated with salt marsh vegetation
groups. Metric values were based on the percent cover of each vegetation group for relatively
undisturbed marshes (reference and hydrologically altered marshes) and disturbed marshes (tidally
restricted and recently tidally restored marshes). Box plots are composed of 25th and 75th percentile
(box) with the 50th percentile shown as a solid circle, and 10th and 90th percentiles shown as vertical
lines

Table 14.4 Ecological thresholds for percent cover the four primary vegetation groups across a
range of community condition

Metric Good
conditiona (5)

Moderate
conditionb (3)

Poor
conditionc (1)

High salinity tolerant, wetland plants > 55 % 40–55 % < 40 %
Medium salinity tolerant, wetland plants < 4 % 4–12 % > 12 %
Low salinity tolerant, wetland plants < 2 % 2–20 % > 20 %
Invasive plant species < 1 % 1–20 % > 20 %
Overall Condition (sum of scores) 18–20 10–17 4–9
a Based on quartile values for reference and hydrologically altered marshes (refer to Fig. 14.9)
b Based on quartiles in between “Good” and “Poor” condition
c Based on quartile values from restricted and restored marshes (refer to Fig. 14.9)

between 10 and 17 a moderate vegetation community, and a score above 18 indicative
of a salt marsh vegetation community in good condition.

Discussion

Life history characteristics and trophic status of fishes are commonly used as indi-
cators of biotic integrity as fish community structure reflects the quality of habitat.
These indices or metrics condense various attributes of the fish community (e.g.,
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species richness, dominance) and often vary in relation to differences in environ-
mental quality (Hughes et al. 2002). The majority of research on biotic indices for
fishes has been focused on estuarine and freshwater assemblages (e.g., Karr 1981;
Deegan et al. 1997; Martinho et al. 2008; Vile 2008) with little effort specifically tar-
geted on salt marsh nekton communities. We found that grouping nekton species by
life history characteristics was the best descriptor of salt marsh nekton communities.
Our analyses revealed that three nekton groups (resident shrimp, resident fish, and
transient fish) explained the majority of the variation and are reasonable candidates
for detecting changes in the salt marsh nekton community. Additionally, nekton com-
munity composition changed as human population increased in the watershed. The
nekton community of relatively undisturbed marshes (e.g., reference marshes) in low
population watersheds was characterized by a high proportion of resident marsh fish
species, the presence of transient fish, and a low proportion of Palaemonidae shrimp
(Fig. 14.8). As watershed population size increased there was a transition from a
resident fish-based community to a Palaemonidae shrimp-based community.

When the threshold values were applied to nekton communities sampled from im-
pacted marshes (only reference sites were used in our previous analyses for defining
metrics), the majority (73 %) of the marshes were classified as “moderate” condition.
Twenty-one percent were classified as “poor” condition and the remaining 6 % as
“good” condition. This classification corresponded relatively well with the marsh im-
pact type, as the majority of the nekton communities classified as moderate were from
marshes that had undergone open marsh water management activity for mosquito
control (which is a subtle impact when compared to a tidal restriction) or were sites
that had recently been tidally restored. When applied to the reference sites, 75 % of
the sites were classified as having “good” or “moderate” nekton communities. The
sites that were classified as having “poor” nekton communities (26 sites) were those
from areas of dense human population areas (Rhode Island and Long Island, New
York); however, four sites, were from low population watersheds in Maine and Mas-
sachusetts and were classified as low primarily due to low species richness (Maine
sites) or a Palaemonidae shrimp-dominated community (Massachusetts).

The utility of these metrics as decision thresholds is demonstrated by examining
the East Harbor tidal restoration project in Cape Cod National Seashore, MA. After
140 years of severe tidal restriction, tidal flow was reintroduced to the system in
2002. When the ecological threshold criteria were applied to nekton community data
sampled in 2003, shortly after tidal flow reintroduction and again three years after
tide restoration, the scores increased from “moderate” to “good,” indicating that the
nekton community was responding positively to the tidal restoration. This change
was primarily due to an increase in resident fish, decrease in resident Palaemonidae
shrimp, and increase in species richness. Conversely, scores from the urban Jamaica
Bay, NewYork, Gateway National Recreation Area, indicate that the nekton commu-
nity of the Big Egg marsh may be deteriorating, as scores from 2003 to 2006 show a
decline from “moderate” to “poor” condition. This was primarily due to an increase
in resident Palaemonidae shrimp and decrease in transient fish species. Thus, the
change in condition based on these metrics can be used as decision thresholds to
initiate further management action.
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Similar to the nekton metrics, the vegetation metrics were applied to a data base
of 20 salt marshes (seven tide-restricted or tide-restoring sites and 13 reference sites)
that were not used in the previous estimation of ecological thresholds (due a different
method of estimating percent cover, the visual estimate method). The sum of the per-
cent cover for the four vegetation metrics were calculated and assigned a score based
on the threshold values defined in Table 14.4. Four of the seven restricted/restoring
sites were classified as poor condition as expected. Three of the sites were estimated
as poor condition were from a tide-restricted site in Rhode Island (Sachuest Point
marsh) representing the vegetation community prior to re-introduction of tidal flow
and then 2 years immediately flowing tidal restoration. Prior to restoration, this site
was dominated by invasive species (e.g., common reed, Phragmites australis). In the
years immediately following tidal restoration there was a decrease in abundance of
common reed and other low salinity tolerant vegetation, such as cattail (Typha angus-
tifolia; Roman et al. 2002). While the vegetation metrics still ranked the condition
of the newly restored marsh as poor, the decrease in low salinity tolerant vegetation
was identified by the metric, and the score increased from 3 to 5 after tidal flow was
reintroduced to the restricted marsh. Data collected eight years post-restoration at
this same site, yielded a condition of moderate for the restored marsh, indicating
that the vegetation of the restored marsh had transitioned to the high salinity tolerant
wetland vegetation commonly found in marshes with unimpaired tidal flow. The data
sets from the reference site (Sachuest Point reference marsh) scored as moderate to
good condition, and similarly, of the thirteen sites considered reference marshes, ten
were classified in good condition and three were classified as moderate condition.
The three reference marshes classified as moderate tended to have lower scores for
invasive species and percent of low salinity tolerant wetland vegetation (i.e., fewer
invasive species and lower percent cover of brackish wetland plants). While it is
widely accepted that marshes unimpaired tidal flow tend to be dominated by salin-
ity tolerant wetland vegetation such as Spartina grasses and that tidally restricted
marshes tend to have higher percent cover of less saline tolerant species and more
invasive species (e.g., Phragmites; e.g., Roman et al 2002; Buchsbaum et al. 2006;
Konisky et al. 2006), our analyses provide ecological thresholds linked to commu-
nity condition that characterize reference and impacted sites. Similar to the nekton
metrics, the ecological thresholds for salt marsh vegetation appear to be applicable
along the northeastern US coast.

Future Directions

Because we have linked these ecological thresholds to salt marsh community condi-
tion, any shift from one condition to another or a cumulative decrease in condition
over all metrics can be used as decision thresholds to guide future management ac-
tions. For example, if it is found than an individual marsh deviates from the reference
standard, or if monitoring data indicate that the condition scores are changing, then
these results can be used as decision thresholds to trigger management activities.
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Alternatively, the thresholds can be used to interpret restoration response monitor-
ing data. This research provides resource managers with an approach to defining the
condition of salt marshes, based on the species composition and abundance of nekton
and vegetation communities. Supported by an extensive nekton and vegetation data
base, including multiple years of monitoring from over 80 salt marshes within the
Maine to Virginia region and including a broad diversity of conditions from relatively
undisturbed to highly impacted, we present ecological thresholds linked to salt marsh
community condition (from good to poor) for numerous metrics within a framework
similar to indices of biotic integrity. Within the northeast, several programs are sup-
porting the collection of long-term data on salt marsh nekton and vegetation that
could easily support the condition metrics presented in this paper (e.g., National
Park Service, US Fish and Wildlife Service, National Estuarine Research Reserves,
state agencies).

The metrics and ecological thresholds presented herein are relevant to salt marshes
of the northeastern United States. The methods used to define the metrics and de-
rive the ecological thresholds can be applied to other coastal regions, but a strong
foundation of region-specific data would be required to set the threshold values and
perhaps establish different metrics. In addition to the need for region-specific eco-
logical threshold metrics, it is expected that additional metrics may be included for
northeastern US salt marshes or condition thresholds presented in this paper will be
refined as new data become available and additional analyses are conducted.
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