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Preface

Quantum machine learning is a subject in the making, faced by huge expectations
due to its parent disciplines. On the one hand, there is a booming commercial
interest in quantum technologies, which are at the critical point of becoming
available for the implementation of quantum algorithms, and which have exceeded
the realm of a purely academic interest. On the other hand, machine learning along
with artificial intelligence is advertised as a central (if not the central) future
technology into which companies are bound to invest to avoid being left out.
Combining these two worlds invariably leads to an overwhelming interest in
quantum machine learning from the IT industry, an interest that is not always
matched by the scientific challenges that researchers are only beginning to explore.

To find out what quantum machine learning has to offer, its numerous possible
avenues first have to be explored by an interdisciplinary community of scientists.
We intend this book to be a possible starting point for this journey, as it introduces
some key concepts, ideas and algorithms that are the result of the first few years of
quantum machine learning research. Given the young nature of the discipline, we
expect a lot of new angles to be added to this collection in due time. Our aim is not
to provide a comprehensive literature review, but rather to summarise themes that
repeatedly appear in quantum machine learning, to put them into context and make
them accessible to a broader audience in order to foster future research.

On the highest level, we target readers with a background in either physics or
computer science that have a sound understanding of linear algebra and computer
algorithms. Having said that, quantum mechanics is a field based on advanced
mathematical theory (and it does by no means help with a simple physical intuition
either), and these access barriers are difficult to circumvent even with the most
well-intended introduction to quantum mechanics. Not every section is therefore
easy to understand for readers without experience in quantum computing. However,
we hope that the main concepts are within reach and try to give higher level
overviews wherever possible.
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Chapter 1
Introduction

Machine learning, on the one hand, is the art and science of making computers learn
from data how to solve problems instead of being explicitly programmed. Quantum
computing, on the other hand, describes information processing with devices based
on the laws of quantum theory. Both machine learning and quantum computing are
expected to play a role in how society deals with information in the future and it is
therefore only natural to ask how they could be combined. This question is explored
in the emerging discipline of quantum machine learning and is the subject of this
book.

In its broadest definition, quantum machine learning summarises approaches that
use synergies between machine learning and quantum information. For example,
researchers investigate how mathematical techniques from quantum theory can help
to develop newmethods in machine learning, or how we can use machine learning to
analyse measurement data of quantum experiments. Here we will use a much more
narrowdefinition of quantummachine learning and understand it asmachine learning
with quantum computers or quantum-assisted machine learning. Quantum machine
learning in this narrow sense looks at the opportunities that the current development of
quantum computers open up in the context of intelligent data mining. Does quantum
information add something new to how machines recognise patterns in data? Can
quantum computers help to solve problems faster, can they learn from fewer data
samples or are they able to deal with higher levels of noise? How can we develop
new machine learning techniques from the language in which quantum computing
is formulated? What are the ingredients of a quantum machine learning algorithm,
and where lie the bottlenecks? In the course of this book we will investigate these
questions and present different approaches to quantum machine learning research,
together with the concepts, language and tricks that are commonly used.

To set the stage, the following section introduces the background of quantum
machine learning. We then work through a toy example of how quantum computers
can learn from data, which will already display a number of issues discussed in the
course of this book.

© Springer Nature Switzerland AG 2018
M. Schuld and F. Petruccione, Supervised Learning with Quantum Computers,
Quantum Science and Technology, https://doi.org/10.1007/978-3-319-96424-9_1
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2 1 Introduction

1.1 Background

1.1.1 Merging Two Disciplines

Computers are physical devices based on electronic circuits which process infor-
mation. Algorithms (the computer programs or ‘software’) are the recipes of how
to manipulate the current in these circuits in order to execute computations. Al-
though the physical processes involve microscopic particles like electrons, atoms
and molecules, we can for all practical purposes describe them with a macroscopic,
classical theory of the electric properties of the circuits. But if microscopic systems
such as photons, electrons and atoms are directly used to process information, they
require another mathematical description to capture the fact that on small scales, na-
ture behaves radically different fromwhat our intuition teaches us. Thismathematical
framework is called quantum theory and since its development at the beginning of
the 20th century it has generally been considered to be the most comprehensive de-
scription of microscopic physics that we know of. A computer whose computations
can only be described with the laws of quantum theory is called a quantum computer.

Since the 1990s quantum physicists and computer scientists have been analysing
howquantumcomputers canbebuilt andwhat they could potentially be used for. They
developed several languages to describe computations executedby aquantumsystem,
languages that allow us to investigate these devices from a theoretical perspective.
An entire ‘zoo’ of quantum algorithms has been proposed and is waiting to be used
on physical hardware. The most famous language in which quantum algorithms are
formulated is the circuit model. The central concept is that of a qubit, which takes
the place of a classical bit, as well as quantum gates to perform computations on
qubits [1].

Building a quantum computer in the laboratory is not an easy task, as it requires
the accurate control of very small systems. At the same time, it is crucial not to disturb
the fragile quantum coherence of these systems, which would destroy the quantum
effects that we want to harvest. In order to preserve quantum coherence throughout
thousands of computational operations, error correction becomes crucial. But error
correction for quantum systems turns out to be much more difficult than for classical
ones, and becomes one of themajor engineering challenges in developing a full-scale
quantum computer. Implementations of most of the existing quantum algorithmswill
therefore have to wait a little longer.

However, full-scale quantum computers are widely believed to become available
in the future. The research field has left the purely academic sphere and is on the
agenda of the research labs of some of the largest IT companies. More and more
computer scientists and engineers come on board to add their skills to the quantum
computing community. Software toolboxes and quantum programming languages
based on most major classical computational languages are available, and more are
being developed every year. In summary, the realisation of quantum technology
became an international and interdisciplinary effort.
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While targeting full-scale devices, a lot of progress has been made in the develop-
ment of so called intermediate-term or small-scale devices. These devices have no
error correction, and count around 50–100 qubits that do not necessarily all speak
to one another due to limited connectivity. Small-scale quantum devices do in prin-
ciple have the power to test the advantages of quantum computing, and gave a new
incentive to theory-driven research in quantum algorithmic design. The holy grail
is currently to find a useful computational problem that can be solved by a small-
scale device, and with a (preferably exponential) speed-up in runtime to the best
known classical algorithm. In other words, the quest to find a ‘killer-app’, a compact
but powerful algorithm tailor made for early quantum technologies, is on. Machine
learning and its coremathematical problem, optimisation, are oftenmentioned as two
promising candidates, a circumstance that has given huge momentum to quantum
machine learning research in the last couple of years.

This brings us to the other parent discipline, machine learning. Machine learning
lies at the intersection of statistics, mathematics and computer science. It analy-
ses how computers can learn from prior examples - usually large datasets based on
highly complex and nonlinear relationships - how tomake predictions or solve unseen
problem instances. Machine learning was born as the data-driven side of artificial
intelligence research and tried to give machines human-like abilities such as image
recognition, language processing and decision making. While such tasks come nat-
urally to humans, we do not know in general how to make machines acquire similar
skills. For example, looking at an image of a mountain panorama it is unclear how to
relate the information that pixel (543,1352) is dark blue to the concept of a mountain.
Machine learning approaches this problem by making the computer recover patterns
from data, patterns that inherently contain these concepts.

Machine learning is also a discipline causing a lot of excitement in the academic
world as well as the IT sector (and certainly on a much larger scale than quantum
computing). It is predicted to change the way a large share of the world’s population
interacts with technology, a trend that has already started. As data is becoming
increasingly accessible, machine learning systems mature from research to business
solutions and are integrated into PCs, cell phones and household devices. They scan
through huge numbers of emails every day in order to pick out spammail, or through
masses of images on social platforms to identify offensive contents. They are used
in forecasting of macroeconomic variables, risk analysis as well as fraud detection
in financial institutions, as well as medical diagnosis.

What has been celebrated as ‘breakthroughs’ and innovation is thereby often
based on the growing sizes of datasets as well as computational power, rather than on
fundamentally new ideas.Methods such as neural networks, support vector machines
or AdaBoost, as well as the latest trend towards deep learningwere basically invented
in the 1990s and earlier. Finding genuinely new approaches is difficult as many tasks
translate into hard optimisation problems. To solve them, computers have to search
more or less blindly through a vast landscape of solutions to find the best candidate. A
lot of research therefore focuses on finding variations and approximations ofmethods
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that work well in practice, and machine learning is known to contain a fair share of
“black art” [2]. This is an interesting point of leverage for quantum computing, which
has the potential of contributing fundamentally new approaches to machine learning.

1.1.2 The Rise of Quantum Machine Learning

In recent years, there has been a growing body of literature with the objective of
combining the disciplines of quantum information processing and machine learn-
ing. Proposals that merge the two fields have been sporadically put forward since
quantum computing established itself as an independent discipline. Perhaps the ear-
liest notions were investigations into quantum models of neural networks starting
in 1995 [3]. These were mostly biologically inspired, hoping to find explanations
within quantum theory for how the brain works (an interesting quest which is still
controversially disputed for lack of evidence). In the early 2000s the question of sta-
tistical learning theory in a quantum setting was discussed, but received only limited
attention. A series of workshops on ‘Quantum Computation and Learning’ were or-
ganised, and in the proceedings of the third event, Bonner and Freivals mention that
“[q]uantum learning is a theory in the making and its scientific production is rather
fragmented” [4]. Sporadic publications on quantum machine learning algorithms
also appeared during that time, such as Ventura and Martinez’ quantum associative
memory [5] or Hartmut Neven’s ‘QBoost’ algorithm, which was implemented on
the first commercial quantum annealer, the D-Wave device, around 2009 [6].

The term ‘quantummachine learning’ came into use around 2013. Lloyd,Mohseni
and Rebentrost [7] mention the expression in their manuscript of 2013, and in
2014, Peter Wittek published an early monograph with the title Quantum Machine
Learning—What quantum computing means to data mining [8], which summarises
some of the early papers. From 2013 onwards, interest in the topic increased signif-
icantly [9] and produced a rapidly growing body of literature that covers all sorts
of topics related to joining the two disciplines. Various international workshops and
conferences1 have been organised and their number grew with every year. Numerous
groups, most of them still rooted in quantum information science, started research
projects and collaborations. Combining a dynamic multi-billion dollar market with
the still ‘mysterious’ and potentially profitable technology of quantum computing
has also sparked a lot of interest in industry.2

1Some early events include a workshop at the Neural Information Processing Systems (NIPS)
conference in Montreal, Canada in December 2015, the Quantum Machine Learning Workshop in
South Africa in July 2016 as well as a Quantum Machine Learning conference at the Perimeter
Institute in Waterloo, Canada, in August 2016.
2Illustrative examples are Google’s Quantum Artificial Intelligence Lab established in 2013, Mi-
crosoft’s Quantum Architectures and Computation group and IBM’s IBM Q initiative.
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1.1.3 Four Approaches

As mentioned before, there are several definitions of the term quantum machine
learning, and in order to clarify the scope of this book it is useful to locate our
definition in the wider research landscape. For this we use a typology introduced
by Aimeur, Brassard and Gambs [10]. It distinguishes four approaches of how to
combine quantum computing and machine learning, depending on whether one as-
sumes the data to be generated by a quantum (Q) or classical (C) system, and if the
information processing device is quantum (Q) or classical (C) (see Fig. 1.1).

The case CC refers to classical data being processed classically. This is of course
the conventional approach to machine learning, but in this context it relates to ma-
chine learning based on methods borrowed from quantum information research. An
example is the application of tensor networks, which have been developed for quan-
tum many-body-systems, to neural network training [11]. There are also numerous
‘quantum-inspired’ machine learning models, with varying degrees of foundation in
rigorous quantum theory.

The case QC investigates how machine learning can help with quantum comput-
ing. For example, when we want to get a comprehensive description of the internal
state of a quantum computer from as few measurements as possible we can use ma-
chine learning to analyse the measurement data [12]. Another idea is to learn phase
transitions in many-body quantum systems, a fundamental physical problem with
applications in the development of quantum computers [13]. Machine learning has
also been found useful to discriminate between quantum states emitted by a source,
or transformations executed by an experimental setup [14–16], and applications are
plenty.

In this book we use the term ‘quantum machine learning’ synonymously with the
remaining CQ and QQ approach on the right of Fig. 1.1. In fact, we focus mainly

Fig. 1.1 Four approaches
that combine quantum
computing and machine
learning
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on the CQ setting, which uses quantum computing to process classical datasets.
The datasets consist of observations from classical systems, such as text, images or
time series of macroeconomic variables, which are fed into a quantum computer for
analysis. This requires a quantum-classical interface, which is a challenge we discuss
in detail in the course of the book. The central task of the CQ approach is to design
quantum algorithms for data mining, and there are a number of strategies that have
been proposed by the community. They range from translations of classical machine
learning models into the language of quantum algorithms, to genuinely new models
derived from the working principles of quantum computers.

Wewillmostly be concernedwith supervised learning, inwhichonehas access to a
dataset with solutions to a problem, and uses these solutions as a supervision or figure
of merit when solving a new problem. However, we note that quantum reinforcement
learning [17, 18] and unsupervised learning [19–21] are active research fields adding
interesting angles to the content of this book.

The last approach, QQ, looks at ‘quantum data’ being processed by a quantum
computer. This can have two different meanings. First, the data could be derived
from measuring a quantum system in a physical experiment and feeding the values
back into a separate quantum processing device. A much more natural setting how-
ever arises where a quantum computer is first used to simulate the dynamics of a
quantum system (as investigated in the discipline of quantum simulation and with
fruitful applications to modeling physical and chemical properties that are otherwise
computationally intractable), and consequently takes the state of the quantum sys-
tem as an input to a quantum machine learning algorithm executed on the very same
device. The advantage of such an approach is that while measuring all information
of a quantum state may require a number of measurements that is exponential in
the system size, the quantum computer has immediate access to all this information
and can produce the result, for example a yes/no decision, directly—an exponential
speedup by design.

The QQ approach is doubtless very interesting, but there are presently only few
results in this direction (for example [17]). Some authors claim that their quantum
machine learning algorithm can easily be fed with quantum data, but the details may
be less obvious.Does learning fromquantumdata (i.e. thewave function of a quantum
system) produce different results to classical data? How can we combine the data
generation and data analysis unit effectively? Can we design algorithms that answer
important questions from experimentalists which would otherwise be intractable? In
short, although much of what is presented here can be used in the ‘quantum data’
setting as well, there are a number of interesting open problems specific to this case
that we will not be able to discuss in detail.

1.1.4 Quantum Computing for Supervised Learning

From now on we will focus on the CQ case for supervised learning problems. There
are two different strategies when designing quantum machine learning algorithms,
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and of course most researchers are working somewhere between the two extremes.
The first strategy aims at translating classical models into the language of quantum
mechanics in the hope to harvest algorithmic speedups. The sole goal is to reproduce
the results of a givenmodel, say a neural net or a Gaussian process, but to ‘outsource’
the computation or parts of the computation to a quantum device. The translational
approach requires significant expertise in quantumalgorithmic design. The challenge
is to assemble quantum routines that imitate the results of the classical algorithm
while keeping the computational resources as low as possible. While sometimes
extending the toolbox of quantum routines by some new tricks, learning does not
pose a genuinely new problem here. On the contrary, the computational tasks to
solve resemble rather general mathematical problems such as computing a nonlinear
function,matrix inversion or finding the optimumof a non-convex objective function.
Consequently, the boundaries of speedups that can be achieved are very much the
same as in ‘mainstream’ quantum computing. Quantum machine learning becomes
an application of quantum computing rather than a truly interdisciplinary field of
research.

The second strategy, whose many potential directions are still widely unexplored,
leaves the boundaries of known classicalmachine learningmodels. Instead of starting
with a classical algorithm, one starts with a quantum computer and asks what type
of machine learning model might fit its physical characteristics and constraints,
its formal language and its proposed advantages. This could lead to an entirely
new model or optimisation objective—or even an entirely new branch of machine
learning—that is derived from a quantum computational paradigm. We will call this
the exploratory approach. The exploratory approach does not necessarily rely on
a digital, universal quantum computer to implement quantum algorithms, but may
use any system obeying the laws of quantum mechanics to derive (and then train)
a model that is suitable to learn from data. The aim is not only to achieve runtime
speedups, but to contribute innovative methods to the machine learning community.
For this, a solid understanding—and feeling—for the intricacies of machine learning
is needed, in particular because the new model has to be analysed and benchmarked
to access its potential. We will investigate both strategies in the course of this book.

1.2 How Quantum Computers Can Classify Data

In order to build a first intuition of what it means to learn from classical data with a
quantum computer we want to present a toy example that is supposed to illustrate a
range of topics discussed throughout this book, and for which no previous knowledge
in either field is required. More precisely, we will look at how to implement a type
of nearest neighbour method with quantum interference induced by a Hadamard
gate. The example is a strongly simplified version of a quantum machine learning
algorithm proposed in [22], which will be presented in more detail in Sect. 6.2.4.2.
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Table 1.1 Mini-dataset for the quantum classifier example

Raw data Preprocessed data Survival

Price Cabin Price Cabin

Passenger 1 8,500 0910 0.85 0.36 1 (yes)

Passenger 2 1,200 2105 0.12 0.84 0 (no)

Passenger 3 7,800 1121 0.78 0.45 ?

1.2.1 The Squared-Distance Classifier

Machine learning always starts with a dataset. Inspired by the kaggle3 Titanic dataset,
let us consider a set of 2-dimensional input vectors {xm = (xm

0 , xm
1 )T },m = 1, . . . , M .

Each vector represents a passenger who was on the Titanic when the ship sank in
the tragic accident of 1912, and specifies two features of the passenger: The price
in dollars which she or he paid for the ticket (feature 0) and the passenger’s cabin
number (feature 1). Assume the ticket price is between $0 and $10,000, and the cabin
numbers range from 1 to 2,500. Each input vector xm is also assigned a label ym that
indicates if the passenger survived (ym = 1) or died (ym = 0).

To reduce the complexity even more (possibly to an absurd extent), we con-
sider a dataset of only 2 passengers, one who died and one who survived the event
(see Table1.1). The task is to find the probability of a third passenger of features
x̃ = (x̃0, x̃1)T and for whom no label is given, to survive or die. As is common in
machine learning, we preprocess the data in order to project it onto roughly the same
scales. Oftentimes, this is done by imposing zero mean and unit variance, but here
we will simply rescale the range of possible ticket prices and cabin numbers to the
interval [0, 1] and round the values to two decimal digits.

Possibly the simplest supervised machine learning method, which is still surpris-
ingly successful in many cases, is known as nearest neighbour. A new input is given
the same label as the data point closest to it (or, in a more popular version, the major-
ity of its k nearest neighbours). Closeness has to be defined by a distance measure,
for example the Euclidean distance between data points. A less frequent strategy
which we will consider here is to include all data points m = 1, . . . , M , but weigh
each one’s influence towards the decision by a weight

γm = 1 − 1

c
|x̃ − xm|2, (1.1)

where c is some constant. The weight γm measures the squared distance between
xm and the new input x̃, and by subtracting the distance from one we get a higher
weight for closer data points. We define the probability of assigning label ỹ to the

3Kaggle (www.kaggle.com) is an open data portal that became famous for hosting competitions
which anyone can enter to put her or his machine learning software to the test.

www.kaggle.com
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Fig. 1.2 The mini-dataset
displayed in a graph. The
similarity (Euclidean
distance) between
Passengers 1 and 3 is closer
than between Passengers 2
and 3
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new input x̃ as the sum over the weights of all M1 training inputs which are labeled
with ym = 1,

px̃(ỹ = 1) = 1

χ

1

M1

∑

m|ym=1

(
1 − 1

c
|x̃ − xm|2

)
. (1.2)

The probability of predicting label 0 for the new input is the same sum, but over
the weights of all inputs labeled with 0. The factor 1

χ
is included to make sure that

px̃(ỹ = 0) + px̃(ỹ = 1) = 1. We will call this model the squared-distance classifier.
A nearest neighbour method is based on the assumption that similar inputs should

have a similar output, which seems reasonable for the data at hand. People from
a similar income class and placed at a similar area on the ship might have similar
fates during the tragedy. If we had another feature without expressive power to
explain death or survival of a person, for example a ticket number that was assigned
randomly to the tickets, this method would obviously be less successful because
it tries to consider the similarity of ticket numbers. Applying the squared-distance
classifier to the mini-dataset, we see in Fig. 1.2 that Passenger 3 is closer to Passenger
1 than to Passenger 2, and our classifier would predict ‘survival’.

1.2.2 Interference with the Hadamard Transformation

Now we want to discuss how to use a quantum computer in a trivial way to compute
the result of the squared-distance classifier. Most quantum computers are based on
a mathematical model called a qubit, which can be understood as a random bit (a
Bernoulli randomvariable)whose description is not governed by classical probability
theory but by quantummechanics. The quantummachine learning algorithm requires
us to understand only one ‘single-qubit operation’ that acts on qubits, the so called
Hadamard transformation. We will illustrate what a Hadamard gate does to two
qubits by comparing it with an equivalent operation on two random bits. To rely
even more on intuition, we will refer to the two random bits as two coins that can be
tossed, and the quantum bits can be imagined as quantum versions of these coins.
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Table 1.2 Probability distribution over possible outcomes of the coin toss experiment, and its
equivalent with qubits

State Classical coin State Qubit

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

(heads, heads) 1 0.5 0.5 |heads〉|heads〉 1 0.5 1

(heads, tails) 0 0 0 |heads〉|tails〉 0 0 0

(tails, heads) 0 0.5 0.5 |tails〉|heads〉 0 0.5 0

(tails, tails) 0 0 0 |tails〉|tails〉 0 0 0

Imagine two fair coins c1 and c2 that can each be in state heads or tails with
equal probability. The space of possible states after tossing the coins (c1, c2) consists
of (heads, heads), (heads, tails), (tails, heads) and (heads, heads). As a preparation
Step 1, turn both coins to ‘heads’. In Step 2 toss the first coin only and check the
result. In Step 3 toss the first coin a second time and check the result again. Consider
repeating this experiment from scratch a sufficiently large number of times to count
the statistics, which in the limiting case of infinite repetitions can be interpreted as
probabilities.4 The first three columns of Table1.2 show these probabilities for our
little experiment. After the preparation step 1 the state is by definition (heads, heads).
After the first toss in step 2we observe the states (heads, heads) and (tails, heads) with
equal probability. After the second toss in step 3, we observe the same two states with
equal probability, and the probability distribution hence does not change between
step 2 and 3. Multiple coin tosses maintain the state of maximum uncertainty for the
observer regarding the first coin.

Compare this with two qubits q1 and q2. Again, performing a measurement called
a projective z-measurement (we will come to that later) a qubit can be found to be in
two different states (let us stick with calling them |heads〉 and |tails〉, but later it will
be |0〉 and |1〉). Start again with both qubits being in state |heads〉|heads〉. This means
that repeated measurements would always return the result |heads〉|heads〉, just as
in the classical case. Now we apply an operation called the Hadamard transform on
the first qubit, which is sometimes considered as the quantum equivalent of a fair
coin toss. Measuring the qubits after this operation will reveal the same probability
distribution as in the classical case, namely that the probability of |heads〉|heads〉
and |tails〉|heads〉 is both 0.5. However, if we apply the ‘Hadamard coin toss’ twice
without intermediate observation of the state, one will measure the qubits always in
state (heads, heads), no matter how often one repeats the experiment. This transition
from high uncertainty to a state of lower uncertainty is counterintuitive for classical
stochastic operations. As a side note beyond the scope of this chapter, it is crucial
that we do not measure the state of the qubits after Step 2 since this would return
a different distribution for Step 3—another interesting characteristic of quantum
mechanics.

4We are assuming a frequentist’s viewpoint for the moment.
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Let us have a closer look at the mathematical description of the Hadamard opera-
tion (and have a first venture into the world of quantum computing). In the classical
case, the first coin toss imposes a transformation

p =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ → p′ =

⎛

⎜⎜⎝

0.5
0
0.5
0

⎞

⎟⎟⎠ ,

where we have now written the four probabilities into a probability vector. The first
entry of that vector gives us the probability to observe state (heads, heads), the second
(heads, tails) and so forth. In linear algebra, a transformation between probability
vectors can always be described by a special matrix called a stochastic matrix, in
which rows add up to 1. Performing a coin toss on the first coin corresponds to a
stochastic matrix of the form

S = 1

2

⎛

⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞

⎟⎟⎠ .

Applying this matrix to p′ leads to a new state p′′ = Sp′, which is in this case equal
to p′.

This description works fundamentally differently when it comes to qubits gov-
erned by the probabilistic laws of quantum theory. Instead of stochastic matrices
acting on probability vectors, quantum objects can be described by unitary (and
complex) matrices acting on complex amplitude vectors. There is a close relation-
ship between probabilities and amplitudes: The probability of the two qubits to be
measured in a certain state is the absolute square of the corresponding amplitude. The
amplitude vector α describing the two qubits after preparing them in |heads〉|heads〉
would be

α =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ ,

which makes the probability of |heads〉|heads〉 equal to |1|2 = 1. In this case the
amplitude vector is identical to the probability vector of the quantum system. In the
quantum case, the stochastic matrix is replaced by a Hadamard transform acting on
the first qubit, which can be written as

H = 1√
2

⎛

⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞

⎟⎟⎠
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applied to the amplitude vector. Although H does not have complex entries, there
are negative entries, which is not possible for stochastic matrices and the laws of
classical probability theory. Multiplying this matrix with a results in

α′ = 1√
2

⎛

⎜⎜⎝

1
0
1
0

⎞

⎟⎟⎠ .

The probability of the outcomes |heads〉|heads〉 and |tails〉|heads〉 is equally given
by |√0.5|2 = 0.5 while the other states are never observed, as claimed in Table1.2.
If we apply the Hadamard matrix altogether twice, something interesting happens.
The negative sign ‘interferes amplitudes’ to produce again the initial state,

α′′ =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ .

This is exactly what we claimed in Table1.2.

More generally, if we apply the Hadamard to the first of n qubits in total, the
transformation matrix looks like

H (q1)
n = 1√

2

(
1 1
1 −1

)
, (1.3)

where I is the identity matrix of dimension N
2 × N

2 , and N = 2n. Applied to a general
amplitude vector that describes the state of n qubits we get

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
...

α N
2

α N
2 +1
...

αN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 + α N
2 +1

...

α N
2

+ αN

α1 − α N
2 +1

...

α N
2

− αN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we summarise the first half of the original amplitude vector’s entries as a and
the second half as b, the Hadamard transform produces a new vector of the form
(a + b, a − b)T .

Note that the Hadamard transformation was applied on one qubit only, but acts on
all 2n amplitudes. This ‘parallelism’ is an important source of the power of quantum
computation, andwith 100 qubitswecan apply the transformation to 2100 amplitudes.
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Of course, parallelism is a consequence of the probabilistic description and likewise
true for classical statistics. However, together with the effects of interference (i.e.,
the negative signs in the matrix), quantum computing researchers hope to gain a
significant advantage over classical computation.

1.2.3 Quantum Squared-Distance Classifier

Let us get back to our toy quantum machine learning algorithm. We can use the
Hadamard operation to compute the prediction of the squared-distance classifier by
following these four steps:
Step A—Some more data preprocessing
To begin with we need another round of data preprocessing in which the length of
each input vector (i.e., the ticket price and cabin number for each passenger) gets
normalised to one. This requirement projects the data onto a unit circle, so that only
information about the angles between data vectors remains. For some datasets this
is a desired effect because the length of data vectors has no expressive power, while
for others the loss of information is a problem. In the latter case one can use tricks
which we will discuss in Chap. 5. Luckily, for the data points chosen in this example
the normalisation does not change the outcome of a distance-based classifier (see
Fig. 1.3).
Step B—Data encoding
The dataset has to be encoded in a quantum system in order to use the Hadamard
transform. We will discuss different ways of doing so in Chap. 5. In this example the
data is represented by an amplitude vector (in a method we will later call amplitude
encoding). Table1.3 shows that we have six features to encode, plus two class labels.
Let us have a look at the features first. We need three qubits or ‘quantum coins’
(q1, q2, q3) with values q1, q2, q3 = 0, 1 to have 8 different measurement results.
(Only two qubits would not be sufficient, because we would only have four possible

price room survival

Passenger 1 0.921 0.390 yes (1)

Passenger 2 0.141 0.990 no (0)

Passenger 3 0.866 0.500 ?
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Fig. 1.3 Left: Additional preprocessing of the data. Each feature vector gets normalised to unit
length. Right: Preprocessed data displayed in a graph. The points now lie on a unit circle. The
Euclidean distance between Passengers 1 and 3 is still smaller than between Passengers 2 and 3
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Table 1.3 The transformation of the amplitude vector in the quantum machine learning algorithm

Qubit state Transformation of amplitude vector

q1 q2 q3 q4 Step B
αinit →

Step C
αinter →

Step D
αfinal

0 0 0 0 0 0 0

0 0 0 1 1√
4
0.921 1√

4
(0.921 + 0.866) 1√

4χ
(0.921 + 0.866)

0 0 1 0 0 0 0

0 0 1 1 1√
4
0.390 1√

4
(0.390 + 0.500) 1√

4χ
(0.390 + 0.500)

0 1 0 0 1√
4
0.141 1√

4
(0.141 + 0.866) 1√

4χ
(0.141 + 0.866)

0 1 0 1 0 0 0

0 1 1 0 1√
4
0.990 1√

4
(0.990 + 0.500) 1√

4χ
(0.990 + 0.500)

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 1 1√
4
0.866 1√

4
(0.921 − 0.866) 0

1 0 1 0 0 0 0

1 0 1 1 1√
4
0.500 1√

4
(0.390 − 0.500) 0

1 1 0 0 1√
4
0.866 1√

4
(0.141 − 0.866) 0

1 1 0 1 0 0 0

1 1 1 0 1√
4
0.500 1√

4
(0.990 − 0.500) 0

1 1 1 1 0 0 0

Data encoding starts with a quantum system whose amplitude vector contains the features as well
as some zeros (Step 2). The Hadamard transformation “interferes” blocks of amplitudes (Step 3).
Measuring the first qubit in state 0 (and aborting/repeating the entire routine if this observation
did not happen) effectively turns all amplitudes of the second block to zero and renormalises the
first block (Step 4). The renormalisation factor is given by χ = 1

4 (|0.921 + 0.866|2 + |0.390 +
0.500|2 + |0.141 + 0.866|2 + |0.990 + 0.500|2)

outcomes as in the example above). Each measurement result is associated with
an amplitude whose absolute square gives us the probability of this result being
observed. Amplitude encoding ‘writes’ the values of features into amplitudes and
uses operations such as the Hadamard transform to perform computations on the
features, for example additions and subtractions.

The amplitude vector we need to prepare is equivalent to the vector constructed by
concatenating the features of Passenger 1 and 2, as well as two copies of the features
of Passenger 3,

α = 1√
4

(0.921, 0.39, 0.141, 0.99, 0.866, 0.5, 0.866, 0.5)T .

The absolute square of all amplitudes has to sum up to 1, which is why we had to
include another scaling or normalisation factor of 1/

√
4 for the 4 data points. We
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now extend the state by a fourth qubit. For each feature encoded in an amplitude,
the fourth qubit is in the state that corresponds to the label of that feature vector.
(Since the new input does not have a target, we associate the first copy with the target
of Passenger 1 and the second copy with the target of Passenger 2, but there are
other choices that would work too). Table1.3 illuminates this idea further. Adding
the fourth qubit effectively pads the amplitude vector by some intermittent zeros,

αinit = 1√
4

(0, 0.921, 0, 0.39, 0.141, 0, 0.99, 0, 0, 0.866, 0, 0.5, 0.866, 0, 0.5, 0)T .

This way of associating an amplitude vector with data might seem arbitrary at
this stage, but we will see that it fulfils its purpose.
Step C—Hadamard transformation
Wenow‘toss’ thefirst ‘quantumcoin’q1, or in otherwords,wemultiply the amplitude
vector by the Hadamard matrix from Eq. (1.3). Chapter 3 will give a deeper account
of what this means in the framework of quantum computing, but for now this can
be understood at a single standard computational operation on a quantum computer,
comparable with an AND or OR gate on a classical machine. The result can be found
in column αinter of Table1.3. As stated before, the Hadamard transform computes the
sums and differences between blocks of amplitudes, in this case between the copies
of the new input to every training input.
Step D—Measure the first qubit
Now measure the first qubit, and only continue the algorithm if it is found in state
0 (otherwise start from scratch). This introduces an ‘if’ statement into the quantum
algorithm, and is similar to rejection sampling. After this operation we know that the
first qubit cannot be in state 1 (by sheer common sense). On the level of the amplitude
vector, we have to write zero amplitudes for states in which q1 = 1 and renormalise
all other amplitudes so that the amplitude vector is again overall normalised (see
column αfinal of Table1.3).
Step E—Measure the last qubit
Finally, we measure the last qubit. We have to repeat the entire routine for a number
of times to resolve the probability p(q4) (sincemeasurements only take samples from
the distribution). The probability p(q4 = 0) is interpreted as the output of themachine
learning model, or the probability that the classifier predicts the label 0 for the new
input. We now want to show that this is exactly the result of the squared-distance
classifier (1.2).

By the laws of quantum mechanics, the probability of observing q4 = 0 after the
data encoding and the Hadamard transformation can be computed by adding the
absolute squares of the amplitudes corresponding to q4 = 0 (i.e. the values of even
rows in Table1.3),

p(q4 = 0) = 1

4χ

(|0.141 + 0.866|2 + |0.990 + 0.500|2) ≈ 0.448,
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with χ = 1
4 (|0.921 + 0.866|2 + |0.390 + 0.500|2 + |0.141 + 0.866|2 + |0.990 +

0.500|2). Equivalently, the probability of observing q4 = 1 is given by

p(q4 = 1) = 1

4χ

(|0.921 + 0.866|2 + |0.390 + 0.500|2) ≈ 0.552,

and is obviously equal to 1 − p(q4 = 0). This is the same as

p(q4 = 0) = 1

χ

(
1 − 1

4
(|0.141 − 0.866|2 + |0.990 − 0.500|2)

)
≈ 0.448,

p(q4 = 1) = 1

4χ

(
1 − 1

4
(|0.921 − 0.866|2 + |0.390 − 0.500|2)

)
≈ 0.552.

Of course, the equivalence is no coincidence, but stems from the normalisation of
each feature vector in Step 1 and can be shown to always be true for this algorithm.
If we compare these last results to Eq. (1.2), we see that this is in fact exactly the
output of the squared-distance classifier, with the constant c now specified as c = 4.

The crux of the matter is that after data encoding, only one single computational
operation and two simple measurements (as well as a couple of repetitions of the
entire routine) were needed to get the result, the output of the classifier. This holds
true for any size of the input vectors or dataset. For example, if our dataset had 1
billion training vectors of size 1 million, we would still have an algorithm with the
same constant runtime of three elementary operations.

1.2.4 Insights from the Toy Example

As much as nearest neighbour is an oversimplification of machine learning, using
the Hadamard to calculate differences is a mere glimpse of what quantum computers
can do. There are many other approaches to design quantum machine learning algo-
rithms, for example to encode information into the state of the qubits, or to use the
quantumcomputer as a sampler.And although the promise of a data-size-independent
algorithm first sounds too good to be true, there are several things to consider. First,
the initial state αinit encoding the data has to be prepared, and if no shortcuts are
available, this requires another algorithm with a number of operations that is linear
in the dimension and size of the dataset (and we are back to square one). What is
more, the Hadamard transform belongs to the so called Clifford group of quantum
gates, which means that the simulation of the algorithm is classically tractable. On
the other hand, both arguments do not apply to the QQ approach discussed above,
in which we process quantum data and where true exponential speedups are to be
expected.
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Putting these considerations aside, the toy example of a quantum machine learn-
ing algorithm fulfilled a number of purposes here. First, it gave a basic idea of how
machine learning works, and second, it introduced the very basic logic of quan-
tum computing by manipulating amplitude vectors. Third, it actually introduced a
toy model quantum machine learning algorithm we can use to predict the survival
probability in the Titanic mini-dataset. And finally, it allows us to derive some in-
sights about quantum machine learning algorithms that will come up frequently in
the following chapters:

1. Data encoding is a crucial step of quantum machine learning with classical data,
and defines the working principle of the algorithm (here: interference with a
Hadamard transform). It is often a bottleneck for the runtime.

2. The quantum algorithm imposes certain requirements on preprocessing, for ex-
ample the unit length of input vectors.

3. The result of a quantum machine learning algorithm is a measurement.
4. Quantum machine learning algorithms are often inspired by a classical model, in

this case a special version of nearest neighbour.
5. The way quantum computers work can give rise to variations of models. For

example, we used the squared distance here because it suited the quantum for-
malism.

We will see more of these ideas in the following.

1.3 Organisation of the Book

The next seven chapters of this book can be distinguished into three parts:

• Chapters 2 and 3 are an introduction to the parent disciplines, machine learning
and quantum computing. These chapters intend to give a non-expert the concepts,
definitions and pointers necessary to grasp most of the content of the rest of the
chapters, and introduce a range of machine learning models as well as quantum
algorithms that will become important later.

• Chapters 4 and 5 give a background to quantummachine learning. The short Chap.
4 gives an overview of learning theory and its extensions to quantum mechanics.
It presents advantages that quantum computing has to offer for machine learning.
Chapter 5 discusses different strategies and simple algorithms to encode informa-
tion into quantum states. The concepts developed here are crucial for our approach
to quantum machine learning, and have to our knowledge not been laid out in the
literature before.

• Chapters 6, 7 and 8 present the main part of this book, namely different meth-
ods of designing quantum machine learning algorithms. As described before, the
intention is not a comprehensive literature review, but to give a number of illus-
trative examples from which the reader can venture into the literature on her own
behalf. Chapter 6 looks at tricks to create quantum algorithms for inference, in
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other words to compute a prediction if given an input. Chapter 7 is dedicated to
training and optimisation with quantum devices. Chapter 8 finally introduces some
ideas that leave the realm of what is known in machine learning and think about
quantum extensions of classical models, or how to use quantum devices as a model
black-box.

The conclusion in Chap. 9 is dedicated to the question of what role machine learning
plays for applications with intermediate-term quantum devices. The discussion of
quantum machine learning in a closer time horizon will also be useful to summarise
some problems and solutions which came up as the main themes of the book, while
giving an outlook to potential further research.
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Chapter 2
Machine Learning

Machine learning originally emerged as a sub-discipline of artificial intelligence
research where it extended areas such as computer perception, communication and
reasoning [1]. For humans, learning means finding patterns in previous experience
which help us to deal with an unknown situation. For example, someone who has
lived on a farm for thirty years will be very good at predicting the local weather.
Financial analysts pride themselves on being able to predict the immediate stock
market trajectory. This expertise is the result of many iterations of observing mean-
ingful indicators such as the clouds, wind and time of the year, or the global political
situation and macroeconomic variables. When speaking about machines, observa-
tions come in the formof data,while the solution to a newproblemmay be understood
as the output of an algorithm. Machine learning means to automate the process of
generalising from experience in order to make a prediction in an unknown situation,
and thereby tries to reproduce and enhance a skill typical to humans.

Although still related to artificial intelligence research,1 by the 1990s machine
learning had outgrown its foundations and became an independent discipline that
has—with some intermediate recessions—been expanding ever since. Today,
machine learning is another word for data-driven decision making or prediction. As
in the weather and stock market examples, the patterns from which the predictions
have to be derived are usually very complex and we have only little understanding
ourselves of the mechanisms of each system’s dynamics. In other words, it is very
difficult to hand shape a model of dynamic equations that captures the mechanism
we expect to produce the weather or stock market data (although such models do of
course exist). A machine learning approach starts instead with a very general, agnos-
tic mathematical model, and uses the data to adapt it to the case. When looking at
the final model we do not gain information on the physical mechanism, but consider

1For example, connections between deep neural networks and the visual cortex of our brain are an
active topic of research [2].
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it as a black box that has learned the patterns in the data in a sense that it produces
reliable predictions.

This chapter is an attempt to give a quantum physicist access to major ideas in the
vast landscape of machine learning research. There are four main concepts we want
to introduce:

1. the task of supervised learning for prediction by generalising from labelled
datasets (Sect. 2.1),

2. how to do inference with machine learning models (Sect. 2.2),
3. how to train models through optimisation (Sect. 2.3),
4. howwell-establishedmethods ofmachine learning combine specificmodelswith

training strategies (Sect. 2.4).

The terminology, logic and in particular the machine learning methods presented
in Sect. 2.4 will be referred to heavily when discussing quantum machine learning
algorithms in later chapters. Readers familiar with machine learning can skip this
chapter and refer to selected sections only when it becomes necessary. Excellent
textbooks for further reading have been written by Bishop [3] as well as Hastie et
al. [4], but many other good introductions were also used as a basis for this chapter
[5–10].

2.1 Prediction

Almost all machine learning algorithms have one thing in common: They are fed
with data and produce an answer to a question. In extreme cases the datasets can
consist of billions of values while the answer is only one single bit (see Fig. 2.1).
The term ‘answer’ can stand for many different types of outputs. For example, when
future values of a time series have to be predicted, it is a forecast, and when the
content of images is recognised it is a classification. In the context of medical or

Fig. 2.1 Machine learning
algorithms are like a funnel
that turns large datasets into
a simple decision
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Fig. 2.2 Illustration of image recognition (Example 2.1).While for humans, recognising the content
of pictures is a natural task, for computers it is much more difficult to make sense of their numerical
representation. Machine learning feeds example images and their content label to the computer,
which learns the underlying structure to classify previously unseen images

fault finding applications the computer produces a diagnosis and if a robot has to
act in an environment one can speak of a decision. Since the result of the algorithm
is always connected to some uncertainty, another common expression is a guess.
Here we will mostly use the term output or prediction of a model, while the data is
considered to be the input.

2.1.1 Four Examples for Prediction Tasks

Before looking at basic concepts of models, training and generalisation, let us have
a look at four typical prediction problems in machine learning.

Example 2.1 (Image recognition)While our brain seems to beoptimised to recognise
concepts such as ‘house’ or ‘mountain panorama’ from optical stimuli, it is not
obvious how to program a computer to do the same, as the relation between the
pixels’ Red-Green-Blue (RGB) values and the image’s content can be very complex.
In machine learning one does not try to explicitly implement such an algorithm, but
presents a large number of already labelled images to the computer from which it is
supposed to learn the relationship of the digital image representation and its content
(see Fig. 2.2). In other words, the complex and unknown input-output function of
pixel matrix → content of image has to be approximated. A ‘fruit-fly example’ for
image recognition is the famousMNIST dataset consisting of black andwhite images
of handwritten digits that have to be identified automatically. Current algorithms
guess the correct digit with a success rate of up to 99.65%.2 An important real-life
application for handwritten digit recognition is the processing of postal addresses on
mail.

2See http://yann.lecun.com/exdb/mnist/ as of January 2018.

http://yann.lecun.com/exdb/mnist/
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Example 2.2 (Time series forecasting) A time series is a set of data points recorded
in consecutive time intervals. An example is the development of the global oil price.
Imagine that for every day in the last two years one also records the values of
important macroeconomic variables such as the gold price, the DAX index and
the Gross Domestic Products of selected nations. These indicators will likely be
correlated to the oil price, and there will be many more independent variables that
are not recorded. In addition, the past oil price might itself have explanatory power
with regards to any consecutive one. The task is to predict on which day in the
upcoming month oil will be cheapest. This is an important question for companies
who use large amounts of natural resources in their production line.

Example 2.3 (Hypothesis guessing) In a notorious assessment test for job interviews,
a candidate is given a list of integers between 1 and 100, for example {4, 16, 36, 100}
and has to ‘complete’ the series, i.e. find new instances produced by the same rule.
In order to do so, the candidate has to guess the rule or hypothesis with which these
numbers were randomly generated. One guess may be the rule ‘even numbers out
of 100’ (H1), but one could also think of ‘multiples of 4’ (H2), or ‘powers to the 2’
(H3). One intuitive way of judging different hypotheses that all fit the data is to prefer
those that have a smaller amount of options, or in this example, that are true for a
smaller amount of numbers. For example, while H1 is true for 50 numbers, H2 is
true for only 25 numbers, and H3 only fits to 10 numbers. It would be a much bigger
coincidence to pick data with H1 that also fulfills H3 than the other way around. In
probabilistic terms, one may prefer the hypothesis for which generating exactly the
given dataset has the highest probability. (This example was originally proposed by
Josh Tenenbaum [6] and is illustrated in Fig. 2.3.)

Hypothesis 1:
Even numbers

Hypothesis 2:
Multiples of 4

Hypothesis 3:
Powers to the 2

2 4 6 8 10

12 14 16 18 20

22 24 26 28 30

32 34 36 38 40

42 44 46 48 50

52 54 56 58 60

62 64 66 68 70

72 74 76 78 80

82 84 86 88 90

92 94 96 98 100

4 8

12 16 20

24 28

32 36 40

44 48

52 56 60

64 68

72 76 80

84 88

92 96 100

1 4 9

16

25

36

49

64

81

100

Fig. 2.3 Illustration of hypothesis testing (Example 2.3). The circled numbers are given with the
task to find a natural number between 1 and 100 generated by the same rule. There are several
hypotheses that match the data and define the space of numbers to pick from
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Fig. 2.4 The black and
white marbles in the board
game Go can be arranged in
a vast number of
configurations

Example 2.4 (Board games) A very obvious application for machine learning is to
program machines to play games such as chess. The machine—in this context called
an agent—learns good strategies through trial games in which it gets rewarded for
successful policies and punished for unsuccessful ones. Often the agent does not
start its exploration completely clueless, but is pre-trained with data of moves from
professional games. While the world champion in chess was beaten by machine
learning software as early as the 1990s, the Asian board game Go is more complex
(see Fig. 2.4). There aremore possible positions ofmarbles on the board than atoms in
the universe, which can make brute force calculations of all possibilities prohibitive
for even one single step. However, one of the leading masters of Go had to admit
defeat to computer software in 2016, namely Google’s AlphaGo [11].

In these four examples, the inputs were given by images, time series, integers and
configurations of a board game while the outputs were the content of an image, a
price forecast, a number from a set or the next move in the game. If the training data
consists of input-output pairs as in Examples 2.1 and 2.2 one speaks of supervised
learning, while data that does not come with target outputs poses an unsupervised
learning problem as in Example 2.3. A third area of machine learning, illustrated by
Example 2.4 is reinforcement learning, in which an agent gets rewarded or punished
according to a given rule for its decisions, and the agent learns an optimal strategy
by trial and error. This book will focus on the task of supervised learning.

2.1.2 Supervised Learning

The basic structure of a supervised pattern recognition or prediction task can be
formally defined as follows.

Definition 2.1 (Supervised learning problem) Given an input domain X and an
output domain Y , a training data set D = {(x1, y1), . . . , (xM , yM)} of training pairs
(xm, ym) ∈ X × Y with m = 1, . . . , M of training inputs xm and target outputs ym ,
as well as a new unclassified input x̃ ∈ X , guess or predict the corresponding output
ỹ ∈ Y .
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Inmost applications considered here (and if not stated otherwise) the input domain
X is chosen to be the the spaceRN of real N -dimensional vectors, or for binary vari-
ables, the space of N -bit binary strings {0, 1}N . The input vectors are also called
feature vectors as they represent information on carefully selected features of an
instance. In cases where the raw data is not from a numerical domain or does not
have an obvious distance measure between instances one has to first find a suit-
able representation that maps the elements to numerical values. For example, in text
recognition one often uses so called ‘bags of words’, where each word in a dictio-
nary is associated with a standard basis vector of the RN , and N is the number of
words in the dictionary. A document is then defined by a vector where each element
corresponds to the number of times the corresponding word appears in the text.

Pre-processing the data is central for any machine learning application and in
practice often more important than which model is used for prediction [12]. The
choice of which features of an instance to consider is called feature selection. For
example, when preprocessing text data it is useful to exclude stopwords such as
‘and’ or ‘the’ which are very unlikely to tell us anything about the topic of the
text document. We can therefore ignore the corresponding dimensions in the bag of
words vector. Feature scaling changes some statistical properties of the data, such
as transforming it to have a zero mean and unit variance, which helps to avoid the
unwanted effect of vastly different scales (think for example of the yearly income
and age of a person). Lastly, feature engineering has the goal of crafting powerful
features, for example by combining several features in the original dataset to a single
one. In some sense, successful feature engineering is “half the job done” of prediction,
because we already recognise and extract the important patterns in the data, which
can then be further processed by a relatively simple model.

The choice of the output domain determines another important distinction in the
type of problem to be solved. If Y is a set of D discrete class labels {l1, . . . , lD} one
speaks of a classification task. Every D-class classification problem can be converted
into D − 1 classification!binary problems by successively asking whether the input
is in class ld , d = 1, . . . , D − 1 or not (also called the one-versus-all scheme). A
second strategy used in practice is to construct binary classifiers for pairs of labels,
train them on the training data available for the two labels only, and use all classifiers
together to make a decision on a new input (the one-versus-one scheme). An impor-
tant concept for the output domain is the so called one-hot encoding, which writes the
output of a model as a vector in which each dimension corresponds to one of the D
possible classes. For example,with D = 3 the prediction of the second classwould be
written as

y =
⎛
⎝
0
1
0

⎞
⎠ .

This is not only handy in the context of categorical classes (which cannot be easily
translated to a numerical scale), but has shown advantages in the field of neural
networks. The output of the model is usually not a binary vector, but a general real
vector in RD . This vector can be normalised to one and interpreted as a collection of
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probabilities for the respective classes. A popular normalisation strategy is to add a
so called softmax layer. For example, a 3-class classification model which produces
some raw output

f (x; θ) =
⎛
⎝

f1
f2
f3

⎞
⎠

can be mapped to a probability distribution (p1, p2, p3) with p1 + p2 + p3 = 1 via
the softmax function,

pi = e fi
∑

j e
f j

, i = 1, 2, 3.

From there, picking the label with the highest probability, say p1, produces the
prediction (1, 0, 0)T . Using probabilistic outputs has the advantage of revealing the
uncertainty associated with a prediction.

Regression refers to problems in which Y is the space of real numbers R or an
interval therein. Although classification and regression imply two different mathe-
matical structures, most machine learning methods have been formulated for both
versions. A classification method can often be generalised to regression by switching
to continuous variables and adjusting the functions or distributions accordingly,while
the outcome of regression can be discretised (i.e. through interpreting y > 0 → 1
and y ≤ 0 → 0).

Examples of inputs and outputs for classification and regression problems can
be found in Table 2.1. They might also illustrate why machine learning has gained
so much interest from industry and governments: Good solutions to any of these

Table 2.1 Examples of supervised pattern classification tasks in real-life applications

Input Output

Regression tasks

Last month’s oil price Tomorrow’s oil price

Search history of a user Chance to click on a car ad

Insurance customer details Chance of claiming

Multi-label classification tasks

Images Cat, dog or plane?

Recording of speech Words contained in speech

Text segment Prediction of next word to follow

Binary classification tasks

Text Links to terrorism?

Video Contains a cat?

Email Is spam?

Spectrum of cancer cell Malicious?
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problems are worth billions of dollars in military, medical, financial, technical or
commercial applications.

2.2 Models

The term ‘model’ and its role in machine learning is comparable with the term of a
‘state’ in quantummechanics—it is a central concept with a clear definition for those
who use it, but it takes practice to grasp all dimensions of it.Mathematically speaking,
a map from inputs to outputs as defined above, RN → R or {0, 1}N → {0, 1}, is a
function. From a computational perspective, mapping inputs to outputs is done via
an algorithm. On a more abstract level, a model specifies the rule or hypothesis that
leads from input to output. One could therefore define models in supervised machine
learning as functions, algorithms or rules that define a relationship between input
data and predictions. For us, the mathematical viewpoint will be the most important
one.

Wewant to distinguish between deterministic and probabilisticmodels. Themath-
ematical object defining a deterministic model is the actual function y = f (x) that
maps from inputs to outputs. We therefore define a deterministic model as follows:

Definition 2.2 (Deterministic model) Let X be an input domain and Y be an output
domain for a supervised learning problem. A deterministic model is a function

y = f (x; θ), (2.1)

with x ∈ X , y ∈ Y , and a set of real parameters θ = {θ1, . . . , θD}. We also call f
the model function. For general parameters Eq. (2.1) defines a model family.

Note that when we need the parameters to be organised as a vector rather than a set
we will often use the notationw = (w1, . . . , wD)T ∈ R

D and refer to it as theweight
vector.

A model can also depend on a set of hyperparameters which we do not include
explicitly. These hyperparameters define a certain model family from an even larger
set of possible models and they are usually high-level choices made by the person
selecting a model. In the example with the nearest neighbour method discussed in
Chap. 1, the hyperparameter was the distance measure that we chose, for example
the squared distance. The very same example also shows that the parameter set θ

may be empty and the model family only consists of one model.
Machine learning, as does statistics, has to deal with uncertainty, and a lot ofmeth-

ods can be formulated or reformulated in a probabilistic language or as probabilistic
models (as demonstrated in Ref. [6]). Probabilistic models understand the data inputs
and outputs as random variables drawn from an underlying probability distribution
p(x, y) or ‘ground truth’. One uses the data to construct a model distribution that
approximates the ground truth. From there one can compute the probability of a cer-
tain label given an input p(y|x) (a procedure called marginalisation which is very
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Fig. 2.5 Probabilistic models treat inputs and outputs (black dots on the x-y plane) as random
variables drawn from a “ground truth” probability distribution. We use the data to construct a
model distribution p(x, y), and derive the marginalised distribution over the outputs given the input
p(y|x). The maximum or mean of the marginal (also called class-conditional) distribution can be
interpreted as the output of the model. This is of course also possible for discrete inputs and outputs,
where the distribution can be displayed in a table listing all possible states of the random variables

similar to tracing out part of density matrices in quantum theory), and translate this
to a prediction (see Fig. 2.5).

We formally define a probabilistic model as follows:

Definition 2.3 (probabilistic model) Let X be an input domain and Y be an out-
put domain for a supervised learning problem. Let X,Y be random variables from
which we can draw samples x ∈ X , y ∈ Y , and let θ be a set of real parameters. A
probabilistic model refers to either the generative model distribution

p(x, y; θ),

or the discriminative model distribution

p(y|x; θ),

over the data.

Generative probabilistic models derive the full distribution from the dataset, while
discriminativemodels directly try to obtain the slimmer class-conditional distribution
p(y|x). Even though generative models contain a lot more information and it may
seem that they need more resources to be derived from data, it is by no means clear
which type of model is easier to learn [13].

Similarly to the deterministic case, probabilistic models depend on a set of param-
eters θ . Examples of such distributions in one dimension are the normal or Gaussian
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distribution with θ consisting of mean μ and variance σ 2,

p(x;μ, σ) = 1√
2πσ

e− (x−μ)2

2σ2 ,

or the Bernoulli distribution for binary variables with θ = q, 0 ≤ q ≤ 1,

p(x; q) = qx (1 − q)1−x .

Depending on the context, σ , μ and q can also be understood as hyperparameters of
a model, especially if another set of parameters is given.

As mentioned above, the probabilistic model can be used for prediction if we
include a rule of deriving outputs from the class-conditional distribution p(y|x)
given an input x̃ . There are two common practices [14]: The maximum a posteriori
estimate chooses the output ỹ for which p(y|x̃) is maximised,

ỹ = max
y

p(y|x̃), (2.2)

while an alternative is to take the mean of the distribution,

ỹ =
∫

dy p(y|x̃) y, (2.3)

which in classification tasks reduces to a sum.
The deterministic and probabilistic approach are highly interlinked. Asmentioned

above, the continuous outcome of a deterministicmodel can be turned into a probabil-
ity to predict a class. Introducing noise into amodel makes the outcome probabilistic.
Vice versa, probability distributions define a deterministic input-output relation if we
interpret the most likely label for a given input as the prediction. However, the logic
of model design and training is rather different for the two perspectives.

2.2.1 How Data Leads to a Predictive Model

Figure 2.6 shows four steps of how data leads to a predictive model in a supervised
learning problem. Given some preprocessed and carefully featurised data (upper
left), a generic model family has to be chosen (upper right). This can for example be
a linear function f (x1 . . . xN ) = w1x1 + · · · + wN xN with parameters w1, . . . , wN ,
or a sum of Heaveside functions with given thresholds as in the figure. However, we
could also choose a probabilistic model that defines a distribution over the input-
output space. The model is trained by fitting the parameters and hyperparameters
to the data (lower left). This means that a specific model function or distribution is
chosen from the family. In the case of a classification task, training defines a decision
boundary that separates the input space into regions of different classes. For instance,



2.2 Models 31

x y?

y

x

regression

y

x

classification

x yf(x)

y

x

regression

y

x

classification

x yf(x)

D

y

x

regression

y

x

classification

x yf(x)

y

x

regression

ỹ
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Fig. 2.6 The four basic steps of a generic supervised machine learning algorithm. Upper left: a
dataset of one-dimensional inputs x and outputs y is given, produced by an unknown relationship
between the two. Upper right: one chooses amodel family (in this case a linear model for regression,
and a step function for classification). Lower left: training means to fit the model to the dataD using
the training set. The test set is used to validate the trained model. Lower right: the model can then
be used to predict the output ỹ for a new input x̃

in the classification example of Fig. 2.6 the decision boundary chops the x-axis into
intervals in which data is predicted as a positive or negative value respectively. The
training step can be of a very different nature for different approaches to machine
learning. While sometimes it means to fit thousands of parameters after which the
data can be discarded, it can also refer to finding parameters that weigh the data
points to compute a prediction. A few models—so called lazy learners—derive the
prediction directly from the data without generalising from it first, which means that
there is no explicit training phase. Once a specific, trained model is derived from
the data it can be used for prediction (lower right). Another word for the process of
computing a prediction for a model is inference.

Machine learning research has developed an entire landscape of models and train-
ing strategies to solve supervised pattern recognition tasks and we will introduce
some of them below. Each method comes with a distinct language, mathematical
background and its own separate scientific community. It is interesting to note that
these methods are not only numerous and full of variations, but remarkably inter-
linked. Onemethod can often be derived from another even though the two are rooted
in very different theoretical backgrounds.3

3Different models also have different inductive biases. The inductive bias is the set of assumptions
that a model uses to generalise from data. For example, linear regression assumes some kind of
linear relationship between inputs and outputs, while nearest neighbour methods assume that close
neighbours share the same class, and support vector machines assume that a good model maximises
the margin between the decision boundary and the samples of each class.
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2.2.2 Estimating the Quality of a Model

One of the four steps in the preceding sectionwas to fit themodel of choice to the data
in order to select a ‘good’ model from the more general model family. Wementioned
several times that a goodmodel generalises from the data. But what does this actually
mean?While diving into training only in Sect. 2.3.1, we want to motivate the general
concepts of generalisation and overfitting here.

In order to optimise the parameters θ of a model, we need an objective that defines
the ‘cost’ of a certain set of parameters, formalised in terms of a cost function C. The
cost function can consist of different terms. Themost important term is the losswhich
measures how close the model predictions are to the target labels. For example, for
a classification task one could consider the accuracy,

accuracy = number of correctly classified examples

total number of examples
.

The opposite of the accuracy is the error,

error = 1 − accuracy = number of incorrectly classified examples

total number of examples
.

There are more sophisticated measures to be derived by counting correct predictions,
for example those that take false positives and false negatives into consideration. For
many optimisation algorithms the loss has to be continuous, as for example the
Eulidean distance between predictions and targets.

But optimising the loss on the training data cannot be the only figure of merit. The
goal of machine learning is to predict unseen instances, and a good model is defined
by its ability to generalise from the given data. In fact, in many cases perfect fits to
the training data produce much worse generalisation performance than models that
fit less well. This problem known as overfitting, and it is a central concept in machine
learning.

Overfitting becomes intuitive for a physicist when we consider the following
example. Assume you are an experimentalist who wants to recover the law with
which an experiment produced some data (see Fig. 2.7). One can always find a high-
order polynomial that goes through every data point and thus fits the data (here the
training set) perfectly well. However, if we look at an additional data point produced
by the same experiment, one might discover that the high-order polynomial (blue
dashed line) has a large prediction error, simply because it did not recover the trend
in the data. Meanwhile, a less flexible model (red dotted line) is much better suited
to reproduce the general structure of the physical law on which the experiment is
based.

A lot of machine learning research goes into the prevention of overfitting, or find-
ing the balance between flexible, powerful models and generalisation. Preventing a
model from overfitting is called regularisation. Regularisation can be achieved in
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Fig. 2.7 Illustration of the principle of overfitting in linear regression.While the bluemodel function
fits the data points perfectly well, it does not give a very accurate prediction for the new input.
Meanwhile, the red model recovers the trend in the data a lot better, even though it does not predict
any of them without error

many ways. On the level of model selection one might choose a less flexible model
family. One can also consider regularisation as part of the optimisation strategy, for
example by stopping iterative algorithms prematurely or pruning subsets of param-
eters to zero. The most common strategy is to write regularisation as a regulariser
into the cost function,

C(θ) = loss + regulariser.

Regularisers are penalty terms that impose additional constraints on the parameters
selected in training, for example forcing the solution to be sparse or to have a small
norm.

The goal of achieving a high generalisation performance has another important
consequence for training. If we use the entire labelled data set to train the model, we
can compute how well it fits the data, but have no means to estimate the generali-
sation performance (since new inputs are unlabelled). This is why one never trains
with the entire dataset, but divides it into three subsets. The training set is used to
minimise the cost function, while the validation and the test set serve as an estima-
tor for the generalisation performance. While the validation set is used to estimate
the performance after training in order to adapt hyperparamters (for example, the
strength of the regularisation term of the cost function), the test set is only touched
once the model is fully specified. This is necessary because while adapting hyper-
parameters the model is implicitly fitted to the validation set. However, here we will
limit ourselves to the distinction between training and test set only, assuming only
one ‘round’ of training so that the test set is neither explicitly nor implicitly used to
choose parameters and hyperparameters. Figure 2.8 illustrates the importance of a
test set to define the generalisation performance of amodel. Both plots show the same
training set but two different test sets that suggest two different ways to generalise
from the same training data.
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Fig. 2.8 Two different decision boundaries for a binary classification problem in two dimensions
and with the two classes ‘red circles’ and ‘blue squares’. Two different test datasets are displayed
as black outlines. For the test set displayed in the left case, a linear decision boundary shows a
good performance on the test set, while in the right case, the more flexible decision boundary is
favourable. Before looking at the test data we do not know which decision boundary is better

2.2.3 Bayesian Learning

What we have presented so far is a very common approach to learning, but there
are other approaches with a fundamentally different logic. An important alternative
is called Bayesian learning [5, 6, 15], and looks at learning from a probabilistic
perspective. Not surprisingly, this perspective considers probabilistic models and
translates learning into the mathematical or computational problem of integration
rather than optimisation.

Bayesian learning is based on Bayes famous rule

p(a|b) = p(b|a)p(a)

p(b)
, (2.4)

where a, b are values of random variables A, B, and p(a|b) is the conditional prob-
ability of a given b defined as

p(a|b) = p(a, b)

p(b)
.

Here, p(a, b) is the probability that both a and b occur. This rule comes with a
specific terminology that has influenced probabilistic machine learning significantly.
The term p(b|a) in Eq. (2.4) is called the likelihood, p(a) is the prior and p(a|b)
the posterior.

How can we use this rule in the context of learning? Given a training dataset D
as before and understanding inputs x and outputs y as random variables, we want to
find the probabilistic model p(x, y|D) which is likely to produce the data. Note that
we have now made the dependence on the data explicit. Formally one can write
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p(x, y|D) =
∫

dθ p(x, y|θ)p(θ |D). (2.5)

The first part of the integrand, p(x, y|θ), is the parametrised model distribution
p(x, y; θ) that we chose (see Definition 2.3), but written as a conditional probability.
The second part of the integrand, p(θ |D), is the probability that a certain set of
parameters is the ‘right one’, given the data. In a sense, this is exactly what we want
to achieve by training, namely to find an optimal θ given the data.

In order to compute the unknown term p(θ |D) we can use Bayes formula, which
reveals

p(θ |D) = p(D|θ)p(θ)∫
dθ p(D|θ)p(θ)

. (2.6)

The prior p(θ) describes our previous assumption as to which parameters lead to the
best model before seeing the data. For example, one could assume that the ‘correct’
parameters have a Gaussian distribution around zero. The prior is a very special
characteristic of Bayesian learning which allows us to make an educated guess at
the parameters without consulting the data, and under certain circumstances it can
be shown to have a close relation to regularisers in an objective function. If nothing
is known, the prior can be chosen to be uniform over a certain interval. The likeli-
hood p(D|θ) is the probability of seeing the data given certain parameters. Together
with the normalisation factor p(D) = ∫

p(D|θ)p(θ)dθ we get the desired posterior
p(θ |D) which is the probability of parameters θ after seeing the data.

The equation shifts the problem from finding the probability of parameters given
some data to finding how likely it is to observe our dataset if we assume some
parameters. This second question can be answered by consulting the model. Under
the assumption that the data samples are drawn independently, one can factorise the
distribution and write

p(D|θ) =
∏
m

p(xm, ym |θ).

Since the expression on the right can be computed, we could in theory integrate over
Eq. (2.5) to find the final answer. However, for high-dimensional parameters the exact
solution quickly becomes computationally intractable, and may be even difficult to
approximate via sampling. It is therefore common to approach the problem with
optimisation which leads to the famous maximum likelihood problem [15] (see Sect.
2.3.1), and considering the prior in a truly Bayesian fashion leads to the closely
related maximum a posteriori estimation.

In conclusion, it seems that optimisation and integration are two sides of the same
coin, and both are hard problems to solve when no additional structure is given.

2.2.4 Kernels and Feature Maps

It was mentioned above that there are two types of models. Some ‘absorb’ all infor-
mation gained from the data in the parameters and we can discard the data after
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training. However, some model functions depend on all or a subset of data points
D′ ⊆ D,

f (x; θ,D′).

The idea of data-dependent models is to define a similarity measure for the input
spaceX and compare training points with the new input. Similar inputs are assumed
to have similar outputs. One can weigh training inputs according to their importance
for the prediction, which is why the model includes some trainable parameters θ . If
many weights are zero, only very few data points are used for inference. A simple
example is again the nearest neighbour method from the introduction, where the
squared-distance was used to weigh the contribution a training point made to the
prediction of a new input.

When the similarity measure can be described as a so-called kernel, an entire
world of theory opens up which sheds a rather different light on machine learning
models, and has interesting parallels to quantum computing that will be explored
in Sect. 6.2. We therefore want to give a taste of kernel methods before revisiting
them in more detail later. In the context of machine learning, kernels are defined as
follows:

Definition 2.4 (Kernel) A (positive definite, real-valued) kernel is a bivariate func-
tion κ : X × X → R such that for any set X∫ = {x1, . . . , xM } ⊂ X the matrix K
with entries

Km,m ′ = κ(xm, xm
′
), xm, xm ∈ X∫ (2.7)

called kernel orGrammatrix, is positive semidefinite. As a consequence, κ(xm, xm
′
)

≥ 0 and κ(xm, xm
′
) = κ(xm, xm

′
).

Examples of popular kernel functions can be found in Table 2.2.
Under certain—but as it turns out fairly general—conditions formalised in the

so called representer theorem [16, 17] a model f (x; θ) that does not depend on the
data can be rewritten in terms of kernel functions. As an illustration, consider a linear
model with weights w = (w0, w1, . . . , wN )T and input x = (1, x1, . . . , xN )T ,

f (x; θ = w) = wT x .

If we fit thismodel to data {(xm, ym)},m = 1, . . . , M , using a common cost function,
the representer theorem guarantees that the optimal weight vector can be written as

Table 2.2 Examples of kernel functions as a distance measure between data points x, x ′ ∈ R
N

Name Kernel Hyperparameters

Linear xT x ′ –

Polynomial (xT x ′ + c)p p ∈ N, c ∈ R

Gaussian e−γ ||x−x ′ ||2 γ ∈ R
+

Exponential e−γ ||x−x ′ || γ ∈ R
+

Sigmoid tanh(xT x ′ + c) c ∈ R
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a linear combination of the data points,

wopt = 1

M

M∑
m=1

αmx
m,

with real coefficients αm . If we insert this weight back into the linear model, we get

f (x; θ = {αm},D) = 1

M

M∑
m=1

αm (xm)T x = 1

M

M∑
m=1

αm κ(xm, x).

The inner product (xm)T x is a linear kernel. We have translated the linear model
with N + 1 parameters w0, . . . , wN into a ‘kernelised’ model with M parameters
α1, . . . , αM . This formulation of a model is also called the dual form (as opposed to
the original primal form). The objective of training is now to fit the new parameters
which weigh the training data points.

Expressing a model in terms of a kernel function that measures distances to data
points allows us to use the so called kernel trick. The kernel trick can be described
as follows:

Given an algorithm which is formulated in terms of a positive definite kernel κ , one can
construct an alternative algorithm by replacing κ by another positive definite kernel κ ′. [18]

We can therefore build new models by simply exchanging one kernel with another.
It makes intuitive sense that the distance to data points is a useful way to compute

a prediction for a new data point. However, there is more to kernel functions than
just distance measures. A kernel can be interpreted as an inner product of data that
has been transformed by a feature map φ : X → F ,

k(x, x ′) = 〈φ(x), φ(x ′)〉.

The feature spaceF is a Hilbert space, a complete vector spacewith an inner product,
and φ as a—usually nonlinear—transformation that projects into F . This is interest-
ing because data can be easier to classify in higher dimensional spaces, for example
when it becomes linearly separable.

To illustrate how a feature map can make non-linearly separable data separable,
consider the following examples:

Example 2.5 (XOR function) The full dataset of the XOR function is given by

D = {((−1,−1)T , 1), ((−1, 1)T ,−1), ((1,−1)T ,−1), ((1, 1)T , 1)}

and is clearly not linearly separable. A feature map of the form φ((x1, x2)T ) =
(x1, x2, x1x2)T allows for a hyperplane cutting through the 3-dimensional space to
separate both classes (see Fig. 2.9).
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Fig. 2.9 While four data points labelled according to the XOR function (zeros as red circles and
ones as blue squares in opposite corners of the unit square) cannot be separated by a linear decision
boundary in X , the feature map to F from Example 2.5 separates the two classes by introducing a
third dimension

Example 2.6 (Concentric circles) Consider a dataset of two 2-dimensional concen-
tric circles, which is impossible to separate by a linear decision boundary (see Fig.
2.10). A polynomial feature map

φ((x1, x2)
T ) = (x1, x2, 0.5(x

2
1 + x22 ))

T

transforms the data into a linearly separable dataset in a 3-dimensional space.

Example 2.7 (Infinite dimensional feature spaces) Feature maps can even map into
spaces of infinite dimension. Consider the Gaussian kernel from Table 2.2 with
x, x ′ ∈ R

N and use the series expansion of the exponential function to get

κ(x, x ′) = e− 1
2 ||x−x ′ ||2

=
∞∑
j=0

(xT x ′)k

k! e− 1
2 |x |2e− 1

2 |x ′ |2

= 〈
φ(x), φ(x ′)

〉
.

The Gaussian kernel effectively implements a feature map, for example leading to
feature vectors with entries [19]

φ(x) =
(

1
√
k!

1
k

e− 1
2k ||x ||2

(
k

n1, . . . , nN

) 1
2

xn11 . . . xnN
N

)
,

with k = 0, . . . ,∞ and n1, . . . , nN such that
∑N

i=1 ni = k. Of course one never has
to calculate this rather ugly expression, and can instead evaluate the much simpler
Gaussian kernel function using the original inputs. Note that there are of course other
feature maps that lead to a Gaussian kernel [20].

In summary, many models can be expressed in terms of kernel expansions, which
makes them data-dependent. This shifts the optimisation problem to a different set
of parameters, namely the weights of the kernel functions. By replacing one kernel
function κ by another kernel function κ ′, we effectively change the feature map
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Fig. 2.10 Data points of two classes arranged as concentric circles in the 2-d plane cannot be
separated by a linear decision boundary (left), but the feature map from Example 2.6 projects the
data onto a square cone in 3 dimensions allows them to be divided by a hyperplane

and can potentially go into very high-dimensional spaces of many different shapes,
and hope that our data gets easier to classify in that space. That way simple linear
models can get the power of nonlinear classifiers. Of course, designing a good model
translates into finding a good feature space, which in turnmeans to find a good kernel.
Excellent introductions to kernel methods are found in [18, 21]. A number of kernel
methods will be introduced in Sect. 2.4.

2.3 Training

The goal of training is to select the best model for prediction from a model family.
This means we have to define an objective function that quantifies the quality of a
model given a set of parameters, and training becomes an optimisation problem over
the objective. Machine learning tends to define rather difficult optimisation problems
that require a lot of computational resources. This is why optimisation “lies at the
heart ofmachine learning” [22] and often defines the limits ofwhat is possible. In fact,
some major breakthroughs in the history of machine learning came with a new way
of solving an optimisation problem. For example, the two influential turning points
in neural networks research were the introduction of the backpropagation algorithm
in the 1980s [23],4 as well as the use of Boltzmann machines to train deep neural
networks in 2006 [24]. However, as outlined in the preceding section, optimisation
is only a means to generalisation.

4The original paper [23], a Technical Report byRumelhart, Hinton andWilliams, has close to 20,000
citation on Google Scholar at the time of writing. It is widely known today that the algorithm had
been invented by others long before this upsurge of attention.
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2.3.1 Cost Functions

As mentioned above, the cost function C(θ) is the function that quantifies the objec-
tive according to which we train the parameters of a model. We also said that the cost
function consists of different building blocks. The most important blocks are the loss
L(D, θ), which was introduced above to measure how well a model does in predict-
ing the training data, and the regulariser R(θ) which imposes extra constraints on
the optimisation. Regularisation has been found to help against overfitting. However,
many rather complex and high-dimensional models in use today seem to circumvent
this problem in a natural way, and theories of regularisation and overfitting are subject
to new questions [25].

Let us have a look at some popular loss functions and regularisers. Possibly the
most common choice for the loss function is the squared loss which compares the
outputs f (xm; θ) produced by the model when fed with training inputs xm with the
target outputs ym ,

L(θ) = 1

2

M∑
m=1

( f (xm; θ) − ym)2. (2.8)

The resulting optimisation problem is known in statistics as least-squares optimisa-
tion. In classification problem f and y are binary values, and the squared loss would
be a non-continuous function that quantifies the number of misclassified training
points. To make the loss continuous, f is during training often defined to be the
continuous output of the model, which only gets binarised when the model is used
to make predictions. The squared loss is also called 12 loss (not to be mixed up
with the L2 regulariser), and replacing ( f (xm; θ) − ym)2 with the absolute value
| f (xm; θ) − ym | gives rise to the 11 loss.

Anotherway to quantify the distance between outputs and targets is via the expres-
sion ym f (xm; θ), which is positive when the two numbers have the same sign and
negative if they are different. One can use this to compute the hinge loss,

L(θ) =
M∑

m=1

max(0, 1 − ym f (xm; θ)),

the logistic loss

L(θ) =
M∑

m=1

log(1 + e−ym f (xm ;θ)),

or, if the output of the model is a probability f (xm; θ) = pm , the cross entropy loss

L(θ) =
M∑

m=1

−ym log pm − (1 − ym) log(1 − pm),
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of a model (see Fig. 2.11). For multi-label classification with one-hot encoding,
the cross entropy can also be used to compare the multi-dimensional target y =
(y1, . . . , yD)T , y ∈ {0, 1} with the output probability distribution over predictions
f (x; θ) = (p1, . . . , pD)T ,

L(θ) = −
M∑

m=1

D∑
d=1

ymd log pmd .

Estimating the parameters of a probabilisticmodel given a dataset is typically done
through maximum likelihood estimation, a concept with a long-standing tradition in
statistics [4]. In fact, the square loss can be shown to be the maximum likelihood
solution under the assumption of Gaussian noise [3]. The underlying idea is to find
parameters θ so that there is a high probability that the data have been drawn from
the distribution p(x, y; θ). For this, we want to maximise the probability p(D|θ) of
sampling our dataD given parameter θ . It is standard practice to take the logarithm of
the likelihood and maximise the log-likelihood, as it does not change the solution of
the optimisation taskwhile giving it favourable properties. If the data is independently
and identically distributed (which means that samples do not influence each other
and are drawn from the same distribution), we have

log p(D|θ) = log
∏
m

p(xm, ym |θ) =
∑
m

log p(xm, ym |θ).

From Sect. 2.2.3 we know that p(xm, ym |θ) ∝ p(xm, ym; θ), and since constant fac-
tors also have no influence on the optimisation problem, themaximum log-likelihood
estimation problem means to find parameters θ∗ which maximise

θ∗ = max
θ

M∑
m=1

log p(xm, ym; θ). (2.9)

This idea has already been encountered in Example 2.3, as well as in the Bayesian
learning framework.
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In terms of regularisers, there are two common choices, L1 and L2 regularisation
(named after the norm they are based on). We will call them in our notation the RL1

and RL2 regulariser. The name comes from the respective norm to use. If we write
the parameters as a vector w for the moment and denote by | · | the absolute value,
we can define them as

RL1(w) = λ||w||21 =
∑
i

|wi |,

and
RL2(w) = λ||w||22 =

∑
i

w2
i ,

respectively. The L2 regulariser adds a penalty for the length of the parameter vec-
tor and therefore favours parameters with a small absolute value. Adding the L1

regulariser to the cost function favours sparse parameter vectors instead. The hyper-
parameter λ regulates how much the regularisation term contributes towards the cost
function.

2.3.2 Stochastic Gradient Descent

Once the cost function is constructed, machine learning reduces to the mathemat-
ical problem of optimising the cost function, which naturally becomes a computa-
tional problem for any realistic problem size. Mathematical optimisation theory has
developed an extensive framework to classify and solve optimisation problems [26]
which are called programmes, and there are important distinctions between types of
programmes that roughly define how difficult it is to find a global solution with a
computer. For some problems, even local or approximate solutions are hard to com-
pute. Themost important distinction is between convex problems for which a number
of algorithms and extensive theory exists, and non-convex problems that are a lot
harder to treat [27]. Convexity thereby refers to the objective function and possible
inequality constraint functions. Roughly speaking, a set is convex if a straight line
connecting any two points in that set lies inside the set. A function f : X → R is
convex if X is a convex domain and if a straight line connecting any two points of
the function lies ‘above’ the function (for more details see [26]).

To give an example, least-squares optimisation together with a model function
that is linear in the parameters forms a rather simple convex quadratic optimisation
problem that has a closed-form solution as we will show in the next section. For
general non-convex problems much less is known, and many machine learning prob-
lems fall into this category. Popular methods are therefore iterative searches such as
stochastic gradient descent, which performs a stepwise search for the minimum on
batches of the data. Especially in the field of neural networks, gradient-based search
methods stand almost without an alternative at the moment.

Gradient descent updates the parameters θ of a cost function C(θ) successively
towards the direction of steepest descent,
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Fig. 2.12 Steps of the training updates in a 1-dimensional parameter space. Gradient descent gets
stuck in local minima and convergence becomes very slow at saddle points

Fig. 2.13 Steps of the training updates in a 2-dimensional parameter spacewith a thin valley. Lower
values of the objective function are shaded darker. While conventional gradient descent converges
slower due to strong oscillations (red line starting on the left), the momentummethod of considering
the direction of past gradients leads to a straighter path (blue line starting on the right). Note that if
the learning rate is too high, the valley can be missed altogether and training updates could in fact
increase the cost function

θ(t+1) = θ(t) − η∇C(θ (t)), (2.10)

whereη is an external parameter called the learning rate and t an integer keeping track
of the current iteration. The gradient ∇C(θ(t)) always points towards the ascending
direction in the landscape of C , and following its negative means to descend into
valleys. As one can imagine, this method can get stuck in local minima if they exist
(see Fig. 2.12).5 Convergence to a minimum can take a prohibitively long time due
to saddle points in which gradients are vanishingly small and the steps therefore only
gradual. Another problem appears in thin valleys where the search path oscillates
heavily.

A solution to increase the convergence is to include a momentum, or to make the
change in parameters of step t dependent on the changewemade for the previous steps
t − 1 (see Fig. 2.13). This effectively dampens oscillations and chooses a straighter
path. Also the choice of a learning rate provides a lot of possibilities to shape the
convergence of the training algorithm. For example, one can choose a step-dependent
learning rate η(t) that decreases with each iteration, or adapt the learning rate to the
current gradient.

5For large neural networks of thousands of parameters, local minima seem in fact only a minor
problem since the search direction is likely to find a dimension in which a local minima in a subset
of the dimensions can be escaped.
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training step

test error

training error

Fig. 2.14 Typical behaviour of the error on the training and test set during training. While the
model learns to reduce the error on the training set, the test error usually begins to increase after a
certain number of training steps, an indicator that the model begins to overfit. Overfitting means to
learn the specific structure of the training set, so that the classifier looses its ability to generalise

Stochastic gradient descent uses only a subset of the training data for each update
to calculate the cost function. While the original definition of stochastic gradient
descent in fact only considered one randomly sampled training input per iteration,
themore common version usesmini-batches of randomly sampled data, and the batch
size becomes a hyperparameter for training. (Full-)batch gradient descent decreases
the cost function in each iteration (unless the learning rate is large enough to ‘jump
over minima’). Stochastic gradient descent shows fluctuations in training that get
stronger the smaller the batch size. However, the stochastic nature of the gradient
direction tends to help in finding minima faster and escaping local minima. An
important reason to still consider larger batch sizes is the prospect of parallelising
computations.

One last practical remark on overfitting may be useful. An iterative method allows
us to recognise overfitting by monitoring the error on the training and test set during
each step of the optimisation (see Fig. 2.14). Typically, test and training error start
to decrease together. When the training starts to fit the particulars of the training
set, thereby losing generalisation ability, the test error begins to rise while the train-
ing error continues to decrease. The optimal point to stop the optimisation is just
before the renewed increase of the test error, and one should consider regularisation
techniques to avoid such behaviour altogether.

2.4 Methods in Machine Learning

Let us briefly summarise the previous sections. A method in machine learning spec-
ifies a general ansatz for a model function or distribution that can be used for pre-
diction and a training strategy of how to use the data to construct a specific model
that generalises from the data. In supervised learning, the training objective is to
minimise the error between target outputs and predicted outputs for the training
set. However, this objective serves the overarching purpose of minimising the gen-
eralisation error, which is usually measured on a test or validation set. This section
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Table 2.3 Summary of the model functions f (x, w) and distributions p(x) of machine learning
methods presented in this section. As further established in the text, x is a model input, s, v, h and
o denote different kinds of units or random variables in probabilistic models, while w, W , θ and
γm are learnable parameters. We denote by ϕ a nonlinear (activation) function, t a time step, c a
specific class and by Mc the number of training samples from that class. ˜̃κ is a scalar kernel and κ̃

a vector of kernel functions, and K a kernel Gram matrix

Method Model function/distribution

Data fitting

Linear regression f (x; w) = wT x

Nonlinear regression f (x; w) = ϕ(w, x)

Artificial neural networks

Perceptron f (x; w) = ϕ(wT x)

Feed-forward neural network f (x;W1,W2, . . .) = · · ·ϕ2(W2ϕ1(W1x)) · · ·
Recurrent neural network f (x (t);W ) = ϕ(W f (x (t−1);W ))

Boltzmann machine p(v; θ) = 1
Z

∑
h e−E(v,h;θ)

Graphical models

Bayesian network p(s) = ∏
k
p(sk |πk; θ)

Hidden Markov model p(V, O) =
T∏
t=1

p(v(t)|v(t-1))
T∏
t=1

p(o(t)|v(t))

Kernel methods

Kernel density estimation p(x |y = c) = 1
Mc

∑M
m|ym=c κ(x − xm)

K-nearest neighbour p(x |y = c) = #NNc
k

Support vector machine f (x) =
M∑

m=1
γm ymκ(x, xm) + w0

Gaussian process p(y|x) = N [κ̃T K−1y; ˜̃κ − κ̃T K−1κ̃
]

introduces examples of supervised machine learning methods that become important
in the context of quantum machine learning. They are summarised in Table 2.3 for
quick reference. Note that the categorisation of different methods into data fitting,
neural networks, graphical models and kernel methods is to some extend arbitrary:
Boltzmann machines are graphical models as much as neural networks are a type of
nonlinear regression, while Gaussian processes and support vector machines can be
derived from linear models.

2.4.1 Data Fitting

Most physicists are familiar with statistical methods for data fitting such as linear
and nonlinear regression.6 These are well-established in statistics and data science

6In this context the term “regression” is both used for the problem of regression as well as the
model.
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but also play an important role in machine learning, illustrating the proximity of the
two fields.

2.4.1.1 Linear Regression

Needless to say, linear regression tackles the problem of regression outlined in Def-
inition 2.1 and is based on a deterministic linear model function (see Definition
2.2),

f (x;w) = wT x + w0, (2.11)

where the vector w ∈ R
N contains the parameters and x ∈ R

N is the input as usual.
The bias w0 can be included into wT x by adding it as an extra dimension to w

while padding x with an extra value x0 = 1, and will therefore be neglected in the
following. Note that the term ‘linear’ refers to linearity in the model parameters
only. A nonlinear feature map on the original input space can turn linear models into
powerful predictors that can very well be used to model nonlinear functions. A well
known example is the feature map

φ : x ∈ R → (1, x, x2, . . . , xd)T , (2.12)

so that f in Eq. (2.11) becomes

f (φ(x);w) = w0 + w1x + w2x
2 + · · · + wd x

d . (2.13)

We illustrate this example in Fig. 2.15. According to the Weierstrass approximation
theorem [28], any real single-valued function that is continuous on a real interval
[a, b] can be arbitrarily closely approximated by a polynomial function. Equation
(2.13) can therefore model any function for the limit d → ∞. In practice, approx-
imating a function to a small error might involve a large number of parameters wi ,
and other methods such as nonlinear regression or more intricate feature maps might
be preferable.

y

φ(x)

φ(xm), ym
)

ỹ

φ(x̃)

y

x

xm, ym
)

ỹ

x̃

Fig. 2.15 Illustration of linear regression with a feature map. The linear model can fit data well in
feature space (left), which in the original space appears as a nonlinear function (right)
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Learning in linear regression means to find the parameters w that fit f to the
training data in order to predict new data points. A very successful approach to find
the optimal7 parameters is least squares estimation. This approach uses the square
loss

L(w) =
M∑

m=1

(wT xm − ym)2. (2.14)

It is convenient to express this as a matrix equation,

L(w) = (Xw − y)T (Xw − y),

where we introduced the notation

y =
⎛
⎜⎝

y1

...

yM

⎞
⎟⎠ , X =

⎛
⎜⎝
x11 . . . x1N
...

. . .
...

xM
1 . . . xM

N

⎞
⎟⎠ , w =

⎛
⎜⎝

w1
...

wN

⎞
⎟⎠ .

We call X data or design matrix. If XT X is of full rank, the estimated parameter
vector can be calculated by the closed-form equation

w = (XT X)−1XT y. (2.15)

To show this, write (Xw − y)2 = (Xw − y)T (Xw − y) = yT y − 2wT XT y +
wT XT Xw and calculate the derivative ∂wL(w), which results in−2XT y + 2XT Xw.
At theminimum, this expression is zero. The solution to the least squares optimisation
problem for a linear regression model is therefore

w = X+y (2.16)

with
X+ = (XT X)−1XT . (2.17)

The matrix X+ is also called a pseudoinverse, a generalisation of the inverse for
non-square or square singular matrices. In computational terms, training a linear
regression model reduces to the inversion of a M × K dimensional data matrix,
where usually the dimension of the feature space K is larger than the dimension of
the input vectors. The fastest classical algorithms take time O(K δ), where for the
best current algorithms the constant δ is bounded by 2 ≤ δ ≤ 3.

An alternative way to solve this problem is to write the pseudoinverse as a singular
value decomposition. A singular value decomposition is the generalisation of an
eigendecomposition A = SDST , but for general (i.e. singular) matrices [29]. Any
real matrix can be written as A = UΣV T , where the orthogonal real matrices U, V

7Least squares can be shown to produce an unbiased estimator with minimum variance [4].
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carry the singular vectors ur , vr , r = 1, . . . , R as columns, where R is the rank of A.
Σ is a diagonal matrix of appropriate dimension containing the R nonzero singular
values σr . The inverse of A is calculated by inverting the singular values on the
diagonal and taking the transpose of U, V . Using the singular value decomposition
to decompose X in Eq. (2.17) yields

X+ = (XT X)−1XT

= (VΣUT UΣV T )−1VΣUT

= VΣ−2V T VΣUT

= VΣ−1UT ,

whereweusedUTU = 1which is true for orthogonalmatrices.With this formulation
of the pseudoinverse, the solution (2.16) can be expressed in terms of the singular
vectors and values,

w =
R∑

r=1

1

σr
uT
r y vr . (2.18)

The computational problem is now to find the singular value decomposition of X .

2.4.1.2 Nonlinear Regression

While in linear regression themodel function has a linear dependency on the parame-
ters, this conditiongets relaxed innonlinear regression.Onewayof derivingnonlinear
regression from the linear version is by replacing the nonlinear feature map φ (see
for example Eq. (2.13)) by a nonlinear function in the inputs and parameters,

f (x) = ϕ(w, x). (2.19)

Currently, the most successful nonlinear regression models in machine learning are
neural networks.

2.4.2 Artificial Neural Networks

From a mathematical perspective, neural networks can be seen as a nonlinear
regression model with a specific choice for the model function ϕ in Eq. (2.19)
[9], namely where the input to the nonlinear function is given by a linear model
ϕ(w, x) = ϕ(wT x), an expression which then gets nested several times. Historically
these models were derived from biological neural networks [30, 31] and they have
a beautiful graphical representation reminiscent of neurons that are connected by
synapses. The nonlinear function originally corresponded to the ‘integrate-and-fire’
principle found in biological neurons, which prescribes that a neuron fires once the
incoming signal surpasses a certain threshold value [32]. Neural network research
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was abandoned and revived a number of times during its history. Important mile-
stones were when Hopfield showed in 1982 that a certain type of network recovers
properties of a memory [31], the rediscovery of the backpropagation algorithm in the
late 80s [33], as well as recent developments in ‘deep’ neural network structures [24].

2.4.2.1 Perceptrons

Perceptrons are the basic building block of artificial neural networks. Their model
function is given by

f (x;w) = ϕ(wT x), (2.20)

where the inputs and outputs are either real or binary numbers. Sometimes the math-
ematical structure makes it convenient to choose {−1, 1} rather than {0, 1}. The
nonlinear function ϕ is called an activation function and in the original proposal of
a perceptron it referred to the sign or step function

sgn(a) =
{
1, if a ≥ 0,
−1, else.

The perceptron model can be trained by iterating through the data and updating the
weights according to

w
(t+1)
i = w

(t)
i + η(ym − ϕ(xTw(t)))xmi ,

where η is the learning rate. The computational properties of a perceptron have been
studied from as early as the 1960s [32, 34], and show that the learning rule always
converges to the optimal weights. However, after the initial excitement it was found
that this is only true for linearly separable datasets,8 excluding a simple XOR gate
from its scope (see Example 2.5). Only when perceptrons were combined to build
more complex structures did their power become apparent, and the perceptron model
is the core unit of artificial neural networks.

Figure 2.16 shows a perceptron in the typical graphical representation of neural
networks, in which inputs and outputs are understood as units with certain values
that are updated by the units that feed into them. The connections between units are
associated with a weight. The activation function for the output node is not always
drawn.

2.4.2.2 Feed-Forward Neural Networks

Feed forward neural networks have a model function of the form

8Remember that a dataset is linearly separable if it can be divided by a hyperplane in input space.
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Fig. 2.16 Illustration of the
perceptron model. The input
features are each displayed
as nodes of a graph, called
units or neurons. The input
units are connected to an
output unit by weighed
edges. Together with an
activation function ϕ for the
output unit, this graph
defines a model function
y = ϕ(wT x)

x0

x1

...

xN

y

w0

w1

wN

weights
neurons/units

IN
P
U
T

O
U
T
P
U
T

f (x,W1,W2, . . .) = · · · ϕ2 (W2 ϕ1(W1x)) · · · . (2.21)

Here ϕ1, ϕ2, . . . are nonlinear activation functions between appropriate spaces.
The parameters are summarised as weight matrices Wi , i = 1, 2, . . .. The dots indi-
cate thatwe could extend themodel by an arbitrary number of such nested activations,
as long as the outermost activation function has to map onto the output space Y .

Thismodel function is a concatenation of ‘linearmodels’ and activation functions,
and as the dots suggest, the concatenation can be repeatedmany times. An interesting
perspective on the success of neural networks is that they combine the flexibility of
nonlinear dynamics with the data processing power of linear algebra. An important
existence theorem by Hornik, Stincombe andWhite from 1989 [35] proves that only
one concatenation of the form

f (x,W1,W2) = W2 ϕ1(W1x)

suffices to make the model a universal function approximator, meaning that up to
finite precision it can be used to express any function on a compact domain (similar
to the polynomial from Eq. (2.13)). This might however require weight matrices of
very large dimensions.

In terms of their graphical representation, feed-forward neural networks connect
multiple perceptrons in layers so that the units of each layer are connected to the
units of the following layer (see Fig. 2.17). The first layer is made up of the input
units x1, . . . , xN , the following L layers contain the hidden units hl1, . . . , h

l
J (where

l = 1, . . . , L). The last layer contains the output unit(s). Each neuron is updated by an
activation function depending on all neurons feeding into it, and the update protocol
prescribes that each layer is updated after the previous one. This way, information is
‘fed forward’, and an input fed into the first layer is mapped onto an output that can
be read out from the last layer. The model for the single-hidden-layer feed-forward
neural network reads

f (x;W1,W2) = ϕ2( W2 ϕ1( W1x ) ). (2.22)
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Fig. 2.17 A feed-forward neural network (here with only one hidden layer) feeds information
forward through several layers

Fig. 2.18 Different options for activation functions: a hyperbolic tangent, a sigmoid function and
rectified linear units (ReLU)

A feed-forward neural network can be combined with a variety of possible acti-
vation functions. Common examples for these functions are a hyperbolic tangent, a
sigmoid ϕ(a) = 1

1+e−a , as well as ‘rectified linear units’ [36] that are zero for negative
inputs and linear functions for positive inputs (see Fig. 2.18). But also radial basis
functions have been used, and other activation functions might prove interesting in
future.

The square loss for a single-hidden-layer neural network for some labelled training
data D = {(xm, ym)}Mm=1 and the weight matrices W1,W2 reads

C(W1,W2,D) =
M∑

m=1

(ϕ2(W
T
2 ϕ1(W

T
1 xm)) − ym)2. (2.23)

For nonlinear activation functions this is in general a non-convex, nonlinear (and
hence difficult) optimisation problem. By far the most common training algorithm
for feed-forward neural networks is therefore gradient descent with
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x1

...

xi

...

xN

h1

...

hj

...

hJ

h = ϕ1(Wx)

y1

...

yk

...

yK

y = ϕ2(Ωh)

wij ωjk

Fig. 2.19 Neural network model used to explain the backpropagation algorithm. The green nodes
denote the input layer encoding the input features x1, . . . , xN , followed by the blue hidden layerwith
hidden units h1, . . . , hJ and the yellow output layer of units y1, . . . , yK . The activation function of
the hidden and output units are ϕ1, ϕ2, respectively. The weights are summarised in weight matrices
W and Ω

w
(t+1)
i j = w

(t)
i j − η

∂C(W1,W2)

∂wi j
. (2.24)

The updated weight w(t+1)
i j is the current weight w(t)

i j minus a step down towards the
direction of the steepest gradient with a step size or learning rate η. Computing gra-
dients for neural networks is called backpropagation [33] and although a notational
nightmare, we shall now walk through it. We will have a look at the weight update
for a neural network with a single hidden layer only, but the generalisation to more
layers is straightforward.

Let us first assemble all relevant expressions (see Fig. 2.19). Assume a cost func-
tion with squared loss and no regulariser (wherem = 1, . . . , M can refer to the entire
dataset or the current training data batch),

C(W1,W2) = 1

2

M∑
m=1

(
f (xm;W,Ω) − ym

)2
,

with the neural network model function

f (x;W,Ω) = ϕ2
(
Ωϕ1(W

T x)
)
,

where W ∈ R
J×N and Ω ∈ R

K×J , and N , J , K are the dimensions of the input,
hidden and output layer. For notational simplicity, we have renamed W1 = W and
W2 = Ω , and their entries are respectively denoted bywi j andω jk , while the kth row
vector is given by a single index, Wk and Ωk . We denote the vector summarising the
values of the input layer as x , and use h for the hidden layer and y for the output layer.
The linear ‘net’ inputs fed into an activation function will be denoted as netyk = Ωkh
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Fig. 2.20 Updating a
hidden-to-output layer
weight ωab only requires
gradients of the output unit
yb it leads to. For notation,
see Fig. 2.19

x1
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xN

h1
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hb
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hJ

h = ϕ1(Wx)

y1

...

yb

...

yK

y = ϕ2(Ωh)

wia ωab

for the output neurons and nethj = Wj x for the hidden layer. The goal is to compute
∂C

∂ω jk
, ∂C

∂wi j
for all i = 1 . . . N , j = 1 . . . J, k = 1 . . . K .

First calculate the derivatives of the hidden-to-output layer weights for e general
weight matrix element ωab (see Fig. 2.20),

∂C

∂ωab
= ∂C

∂yb

∂yb
∂netyb︸ ︷︷ ︸
δyb

∂netyb
∂ωab

.

The first two terms are summarised by δyb . The derivatives in the above expression
are

∂C

∂yb
= −

M∑
m=1

(
fb − ymb

)
,

∂yb
∂netyb

= (ϕ2)
′
b,

∂netyb
∂ωab

= ha .

Taking the derivative of theb’th component of the second activation function, (ϕ2)
′
b =

dϕ(z)b
dz , requires the activation function to be differentiable. It is no surprise that the

sigmoid, tanh and ‘rectified linear units’ (ReLU) activation functions are popular,
since their derivatives are rather simple. For example, the derivative of the sigmoid
function is given by ϕ′(z) = ϕ(z)(1 − ϕ(z)). Putting it all together we get

∂C

∂ωab
= −

M∑
m=1

(
fb − ymb

)
(ϕ2)

′
bha = δybha .
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Fig. 2.21 Updating an
input-to-hidden layer weight
requires gradients of all
output units and the hidden
unit it leads to. For notation,
see Fig. 2.19
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Now we know how to update the parameters in the second weight matrix Ω

which connects the hidden to the output layer. In order to calculate the update of the
input-to-hidden layer with weights wab we have to consider not only hb but also the
derivatives of all neurons that depend on hb (see Fig. 2.21), which in this case are all
neurons of the output layer, and that gets a little more messy.

∂C

∂wab
=

K∑
k=1

∂C

∂yk

∂yk
∂netyk︸ ︷︷ ︸
δyk

∂netyk
∂hb︸ ︷︷ ︸
ωbk

∂hb
∂nethb︸ ︷︷ ︸
(ϕ1)

′
b

∂nethb
∂wab︸ ︷︷ ︸

xa

=
(

K∑
k=1

δykωbk

)
(ϕ1)

′
b

︸ ︷︷ ︸
δhb

xa

= δhb xa .

The δ’s are also called the “errors” of a neuron, and one can now see that in order
to compute the error of a hidden neuron, one requires the errors of all following
neurons in the direction of the forward pass. In other words, the error has to be
‘backpropagated’ from right to left in the network, which is the reverse direction of
the classification.

The computational steps needed for one iteration in backpropagation grow poly-
nomial with the number of connections N J + J K [8] which can be costly for larger
architectures, especially in ‘deep’ networks of many layers. Also the convergence
time for the gradient algorithmcan be very long, and training state-of-the art networks
can take weeks on a supercomputer. Numerous tricks like layer-wise pre-training can
be used to facilitate training.
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2.4.2.3 Recurrent Neural Networks

While feed-forward neural networks are organised in layers, the graphical represen-
tation of recurrent neural networks is an all-to-all connected graph of units which are
collectively updated in discrete time steps (Fig. 2.22). Information is therefore not
fed-forward through layers, but ‘in time’. The input can be understood as the state
that some units are set to at time t = 0, while the output can be read from one or more
designated units at time T . The units that are neither fed with input, nor used to read
out the output, are called ‘hidden units’ and have a mere computational function.

Let s(t) = (s(t)
1 , . . . , s(t)

G )T describe the state of the G (hidden or visible) units of
a recurrent neural network at time t . The edge between si and s j is associated to a
weight wi j . The state of the network after each update is given by

s(t+1) = ϕ(WT s(t)),

where the R
G×G matrix W contains the weights and ϕ is a nonlinear activation

function.
A recurrent neural network can be ‘unfolded’ to a feed-forward structure with

T layers by interpreting every time step as a separate layer. It can then be trained
by backpropagation through time which works exactly like the standard backprop-
agation algorithm. This method has some unwanted properties, such as exploding
or vanishing gradients during training [37]. Proposals to improve on training range
from artificially ‘clipping’ the exploding gradients [37], to introducing time-delays
between units [38], to the use of unitary weight matrices [39]. Recurrent neural net-
works gained relatively little interest from themachine learning community for a long
time. However, and possibly due to the resemblance of the time-unfolded structure to
deep neural networks, this has been changing in the last few years [40]. A prominent
example for an application of a recurrent neural network is sequence-to-sequence
modeling for the translation of text.

One relatively simple class of recurrent neural networks for a task called ‘pattern
matching’ or ‘associative memory’ are Hopfield neural networks [31].9 Hopfield
networks have binary units, symmetric all-to-all connections with wi i = 0 for i =
1, . . . ,G, as well as a threshold activation function. One can easily show that for a
given training point sm1 , . . . , smG , choosing the weights wi j proportional to

∑
m smi s

m
j

leads to the sm being stable states or ‘attractors’ of the network [8]. Thismeans that an
update of these states acts as the identity, ϕ(WT sm) = sm . Moreover, the dynamics
of consecutive updates of the units decreases an Ising-type energy function,

E(s;W ) = −sTWs = −1

2

G∑
i, j=1

wi j si s j ,

9Although they are not first and foremost used for supervised learning, Hopfield networks appear
frequently in the quantum machine learning literature and are therefore mentioned here.
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Fig. 2.22 A recurrent neural network is represented by an all-to-all connected graph. The units
u1, . . . , u4 are used to represent inputs, and at a later time, the outputs of the model (green and
yellow nodes). The hidden units u5, u6, u7 (blue) are ‘not accessible’ and can be understood as
pure computational units, adding to the complexity of the dynamics of a recurrent neural net. The
network here follows the design of a Hopfield model which does not have self-connections of nodes
and where connections have symmetric weights

until one reaches one of these stable states. In other words, the updates drive the sys-
tem state from the initial configuration to the closest memorised training pattern [41].

An important characteristic of Hopfield networks is their storage capacity indi-
cating how many randomly selected patterns can be stably stored in the model of N
neurons. Without going much into detail [8], one can say that the ratio of storable
patterns to the size of the network is around 0.15. A network of N = 100 neurons
can consequently only store around 15 states. This is not much, considering that it
can represent 2100 patterns.

2.4.2.4 Boltzmann Machines

Boltzmann machines are probabilistic recurrent neural networks. As probabilistic
models, they do not exhibit a feed-forward or time dynamics, but define a probability
distribution over the states of the binary units s = (s1, . . . , sG). Again, the units can
be divided into visible units v = (v1, . . . , vN+K ) and hidden units h = (h1, . . . , hJ ).
The visible units can be further divided into input and output units if we deal with
a supervised pattern recognition task, so that the first N visible units encode the
inputs x1, . . . , xN , and the last K visible units vN+1, . . . , vN+K encode the output
y. In more general, Boltzmann machines do not necessarily require the distinction
between inputs and outputs and are primarily used for unsupervised learning.

Boltzmann machines can be understood as Hopfield neural networks [42] for
which every neuron carries a probability of being in state −1 or 1. Given a state
s1, .., si , .., sG of a Hopfield network, where all neurons but si are in a given state,
the probability of neuron si to be in state 1 is given by
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p(si = 1) = 1

1 + e
−∑

i ′
γi i ′ si si ′

. (2.25)

The term
∑

i ′ γi i ′si si ′ with the inter-neuron weights γi i ′ is the energy associated with
the given state and si ′ = 1. Overall, a Boltzmann machine assigns the following
parametrised probability distribution to possible values (or ‘states’) s = v, h:

p(v, h; θ) = 1

Z
e−E(v,h) (2.26)

where the partition function Z sums over all (v, h)

Z =
∑
v,h

e−E(v,h), (2.27)

The energy E is an Ising-type energy function that depends on a set of weights θ ,
and distinguishing between visible and hidden units makes the energy read

E(v, h) = −
∑
i, j

wi j vi h j −
∑
j, j ′

u j j ′ h jh j ′ −
∑
i,i ′

zii ′ vivi ′

−
∑
i

ai vi −
∑
j

b j h j ,

where the weights γ above are now divided into weights wi j between visible and
hidden units, weights u j j ′ between hidden units and weights zii ′ between visible
units (summarised by θ ). We also added the ‘local fields’ ai and b j which give each
separate unit a energy contribution. The joint probability distribution is thus given by
a Boltzmann distribution. This is nothing other than a spin-glass model in statistical
physics, where physical spins interact with different interaction strengths.

Since only the visible state v = (v1, . . . , vN+K ) is of interest, one can marginalise
the joint probability distribution over the hidden units by summing over all their
configurations,

p(v; θ) = 1

Z

∑
h

e−E(v,h), (2.28)

which is the probability distribution p(v) of a generative probabilistic machine learn-
ingmodel.10 Training aBoltzmannmachinemeans to determine connection and local
field strengths with which the model distribution is likely to generate the distribution
of training data points.

It turns out that general Boltzmann machines are hard to train and the model
only became popular when an efficient training algorithm for restricted Boltzmann
machines was found [43] (see Fig. 2.23). In a restricted Boltzmann machine (RBM),

10Note that this expression can be written in terms of the free energy F(s) known from physics,
and training a Boltzmann machine minimises the free energy of the model.
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Fig. 2.23 Graphical representation of a restricted Boltzmann machine with visible units
v1, . . . , vN+K and hidden units h1, . . . , hJ , in which the visible units include input and output
units. A full Boltzmann machine would also allow for connections in between hidden units as well
as in between visible units

visible units are only connected to hidden units and vice versa, so that uii ′ = z j j ′ = 0
and

ERBM(v, h) = −
∑
i j

wi j vi h j −
∑
i

aivi −
∑
j

b j h j .

The objective function is chosen according to maximum log-likelihood estimation,

C(θ) =
M∑

m=1

log p(vm; θ),

where sm represents the mth training data point. Inserting the formula for the prob-
abilities from Eq. (2.28), the gradient for the interaction weights wi j becomes

∂C(W )

∂wi j
= ∂

∂wi j

M∑
m=1

log p(vm)

=
∑
m

(
∂

∂wi j
log

∑
h

e−E(vm ,h)

)
− ∂

∂wi j
log Z

=
∑
m

1∑
h e

−E(vm ,h)

∂

∂wi j

∑
h

e−E(vm ,h) − 1

Z

∂

∂wi j

∑
v,h

e−E(v,h)
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=
∑
m

∑
h

e−E(vm ,h)

ZD
vm
i h j −

∑
v,h

e−E(v,h)

Z
vi h j , (2.29)

where ZD := ∑
h,m e−E(vm ,h) is the partition function over the data set only, while Z

includes a sum over all possible patterns v. Similar expressions can be derived for
the local fields. This result is not surprising: The first term is the expectation value of
the correlation between hidden and visible units over the data set distribution, while
the second term is the expectation value over the model distribution, and the goal of
learning is to find a model where the two are as close as possible. The result of Eq.
(2.29) is usually abbreviated as

∂C(W )

∂wi j
= 〈

vi h j
〉
data − 〈

vi h j
〉
model . (2.30)

Calculating
〈
vi h j

〉
data is relatively straightforward, since it is an average over all

data samples [44]. But even getting samples of
〈
vi h j

〉
model is intractable due to the

partition function Z that involves computing a number of states which grows expo-
nentially with the number of units. One approach would be to approximate it with
Gibbs sampling. This is aMarkov Chain Monte Carlomethod [45] in which, starting
with an initial state, the values of the random variables v1, . . . , vN+K , h1, . . . , hJ

are iteratively updated by drawing samples from the probability distribution (2.25).
After a while the process ‘thermalises’ and values of (s, h) (with a sufficient num-
ber of updates between them to avoid correlations) can be interpreted as samples
for the Boltzmann distribution

〈
si h j

〉
model. However, thermalisation can be very slow

and there is no method that indicates without fail whether an equilibrium is reached
[46]. Alsomean-field approximations known from statistical physics perform inmost
cases rather poorly [6]. This was why Boltzmann machines were replaced by neural
networks with backpropagation training algorithms in the 1980s [47], until in 2002
contrastive divergence was proposed [43] as a rather rough but effective approxima-
tionmethod. A number of quantummachine learning algorithms refer to this training
method, which is why it shall be sketched briefly.

Contrastive divergence is surprisingly simple. The idea is to use a Markov Chain
Monte Carlo sampling method, but stop the chain prematurely after only a few steps.
The Markov chain successively samples the state of the visible units as well as the
state of the hidden units. The sampling is designed in a way so that after many
steps in the chain, samples are approximately drawn according the the Boltzmann
distribution.

In the first step of the Markov chain one sets the visible units v(0) to a randomly
picked training sample vm . With the values of the visible units fixed, one samples the
hidden units h(0)

j one by one with the probability of Eq. (2.25). Since hidden units are
only connected to visible units in the restricted Boltzmann machine, this probability
is fully defined by the states of the visible units. Now fix the hidden units to the
sampled value and sample the visible units v(1) from Eq. (2.25) to start the first step
in the Markov chain. Again, the restriction in the connectivity makes the sampling
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Fig. 2.24 In contrastive divergence, the visible units of the Boltzmann machine are initialised with
a randomly drawn training sample vm in step t = 0. The hidden units h1, . . . , hJ are sampled from
a certain probability that depends on the state of the visible units. This completes one step in the
Markov chain, after which the visible units are again resampled with the fixed values for the hidden
units. This procedure is repeated for T steps and the final pair v(T ), h(T ) is used to approximate a
sample from the model distribution

only depend on the fixed hidden units. To finish the first step, resample the hidden
units fixing the visible state. This procedure is repeated T times after which one ends
up with a overall state v(T ), h(T ) of the Boltzmann machine (see Fig. 2.24). This state
is used as an approximate sample from the model distribution. The weight update in
Eq. (2.30) is therefore replaced by v(0)h(0) − v(T )h(T ). Against all intuition, only one
single step of this sampling and resampling procedure (T = 1) is sufficient because
theweights are updated inmany iterationswhich overall induces an average of sorts11

Although the contrastive divergence procedure actually does not lead to an update
of the parameters according to the gradient of an existing objective function [48], it
works well enough in many applications and became important for the training of
deep (i.e., multi-layer) neural networks.

2.4.3 Graphical Models

Graphical models are probabilistic models that use graphical representations to dis-
play and simplify probability distributions [7]. Again, let s = {s1, . . . , sG} denote
a set of visible and hidden binaey random variables, where the hidden variables
represent the input x and output y of a supervised machine learning task.

2.4.3.1 Bayesian Networks

A Bayesian network or belief network is a probabilistic model with conditional
independence assumptions that simplify the model distribution p(s). In probabil-
ity theory, a general joint probability distribution over s can be expressed by the
chain rule

11The idea for this approachoriginated from the attempt to approximate an altogether different objec-
tive function, the difference between two Kullback-Leibler (KL) divergences [46]. The Kullback-
Leibler divergence measures the similarity of two distributions can be interpreted as a free energy
[47].
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p(s1, . . . , sG) = p(s1)p(s2|s1)p(s3|s1, s2) . . . p(sG |s1, . . . , sG−1), (2.31)

which follows directly from the definition of a conditional probability

p(sG |sG−1, . . . , s1) = p(sG, . . . , s1)

p(sG−1, . . . , s1)
.

Two random variables a, b are conditionally independent given another random
variable z if p(a, b|z) = p(a|z)p(b|z). Assuming externally given conditional inde-
pendences between the variables si reduces the conditional probabilities in Eq. (2.31)
to p(si |πi ), where πi is the set of variables that si conditionally depends on. This
reduces the original probability distribution to

p(s1, . . . , sG) =
G∏
i=1

p(si |πi ). (2.32)

For example, the factor p(s3|s1, s2) in Eq. (2.31) reduces to p(s3|s2) if s3 is condi-
tionally independent of s1.

To use the model for inference, the conditional probabilities p(si |πi ) have to be
derived from the data with methods discussed before. If they are parametrised by
parameters θi , learning means to find the optimal parameters given the data, for
example with maximum (log)-likelihood estimation,

max
θ

∑
i,m

log p(smi |πi , θi ). (2.33)

Here, sm = (sm1 , . . . , smG ) is the m’th training point. To use Bayesian networks for
prediction in the supervised learning case, one conditions p(s) on the given input
x to get the class-conditional probability distribution p(y|x1 . . . xN ) over the corre-
sponding output variable x .

The important graphical representation of Bayesian nets as a directed acyclic
graph makes these independence relations a lot clearer (see Fig. 2.25). Each random
variable corresponds to a node in the graph. The parents of a node are all nodes
with a directed connection to it. The non-descendants of a node si are all nodes that
cannot be reached by following the connections starting from si . The connectivity
of a graph representing a Bayesian net follows the Markov condition: Any node
is conditionally independent of its non-descendants given its parents. The parents
of a node si therefore correspond to the variables πi . The conditional probabilities
p(si |πi ) are “attached” to each node of the graph, for example as local conditional
probability tables.

Note that the graph architecture can be understood as a hyperparameter similar to
the choice of the number and size of layers in neural networks.Not only the local prob-
abilities can be learnt, but also the structure of the graph. Structure learning is very
difficult, and even with an infinitely large dataset one can only learn directed connec-
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Fig. 2.25 An example of a Bayesian network with local conditional probability tables indicating
the conditional probabilities of a child node given the state of its parents. The variable ‘Rain’
is conditionally independent from the other two variables, while the variable ‘Sprinkler’ is only
conditionally independent from the variable ‘Grass wet’. If one knows the value of ‘Rain’ (the
input) and one wants to derive the probability of ‘Grass wet’ (the output), the ‘Sprinkler’ becomes
a hidden variable over which one has to marginalise. Each variable comes with a local probability
table listing the probability of the state of this variable given the state of the parents

tions up to a property calledMarkov equivalence [49]. This stems from the fact that
different directed graphs encode the same conditional (in)dependence statements.
Many algorithms define a scoring metric that measures the quality of a structure
given the data and find better graphs by brute force search [50].

Also inference inBayesian nets is generally a hard problem. In typical applications
of Bayesian nets for inference, one observes values for some of the variables while
the hidden variables remain unknown. In the example in Fig. 2.25 one might want
to know the probability for the grass to be wet (output) given that it rained (input).
Mathematically speaking, this means that the remainder of the si (the sprinkler) are
hidden units h over which one has to marginalise, so that

p(y|x) =
∑
h

p(y|x; h1 . . . hJ ).

For binary units, the sum over h grows exponentially with J and inference becomes
a NP-hard problem [51]. Some efficient inference algorithms for restricted classes of
Bayesian nets are known, such as the message passing algorithm which is in O(J )

(see [52] and references therein). Other solutions are approximate inference methods
such as Monte Carlo sampling, in most cases with unknown accuracy and running
time [6].

2.4.3.2 Hidden Markov Models

HiddenMarkovmodels are graphicalmodelswhose properties are a bit different from
the preceding methods, as they describe sequences of ‘chained events’. Consider the
problem of having a speech recording (i.e., a sequence of frequencies), and the task
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is to find the most likely sequence of words that correspond to the audio signal. The
sequence of words can be modeled as a sequence of values for a random variable
‘word’, while the audio signal is a sequence of frequencies that can be represented by
another random variable ‘signal’. In that sense, the inputs and outputs of the hidden
Markov model are sequences of values of random variables.

Let {h(t)} be a collection of random variables indexed by time t , and each random
variable can take values in {h1, . . . , hJ }. Let p(hi |h j ) with i, j = 1, . . . , J be the
time-independent transition probability that indicates how likely it is that the state of
h changes from value h j to hi . A (first order)Markov process is a stochastic process
where the state of the system changes according to the transition probabilities. The
Markov property refers to the fact that the current state only depends on the previous
one, but not on the history of the sequence. A possible sequence of a Markov process
from time 0 to T shall be denoted as H(T ) = h(0), . . . , h(T ).

We add a layer of complexity. In hiddenMarkov models the states h of the system
are unknown at any time (the corresponding units are hidden, and hence the name).
The only known values are the ‘observations’ at time t modeled by a second random
variable o(t) with possible values {o1, . . . , oS} [53]. What is also known are the
probabilities p(ok |h j ) of an observation os beingmade given that the system is in state
h j . Sequences of observations up to time T are denoted by O(T ) = o(1), . . . , o(T ).
Hidden Markov models are therefore ‘doubly embedded’ stochastic processes. An
example for a trajectory of the process is illustrated in Fig. 2.26 on the right, while
the left sketches a graph for the two different kinds of transition probabilities.

The motivation behind this model are machine learning tasks in which we have
data which is a signature or hint of the actual information that we are interested in.
In the speech recognition example, the states h may be the words uttered while the
observation is the signal in the recording of a word. Given a recording of a speech
as data, we are actually interested in the word sequence. The word sequence itself is
modeled by aMarkov process using transition probabilities that define how likely it is
to have oneword following another. The hiddenMarkovmodel can then be employed
to find the sequence of words that is the most likely given the recording of a speech.
Hidden Markov models also play an important role in many other applications such
as text prediction, DNA analysis and online handwriting recognition [3].

The machine learning task for hidden Markov models is is to find the most likely
state sequence H̃(T )given anobservation Õ(T ),which is a typical supervisedpattern
recognition problem (called state estimation in this context [6]). The probabilistic
model distribution of a hidden Markov model is given by

p(H(T ), O(T )) =
T∏
t=1

p(h(t)|h(t−1))

T∏
t=1

p(o(t)|h(t)),

where p(h(0)|h(−1)) = p(h(0)) is an initial value. In words, to find the probability of
a sequence of states H(T ) and a sequence of observations O(T ) to occur together,
one has to calculate the product of transitions between the states in the sequence,
p(h(0))p(h(1)|h(0)) . . . p(h(T )|h(T−1))multiplied by the product of probabilities of the
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Fig. 2.26 Illustration of a Hidden Markov model with three possible states h1, h2, h3 and a set of
possible observations o1, . . . , o12. The transition probabilities p(hi |h j ), i, j = 1, 2, 3 between the
states as well as the probabilities p(os |hi ) of an observation made given a state (with i = 1, 2, 3 and
s = 1, . . . , 12) define the model and are illustrated by the graph on the left. A possible trajectory of
the doubly stochastic Markov process unfolded in three time steps is sketched on the right: While
the state jumps from state h1 to h2 and back to h1, the observer ‘receives’ observations o12, o4
and o8

observations made given the state, p(o(0)|h(0))p(o(1)|h(1)) . . . p(o(T )|h(T )). Learning
in this context means to infer the transition probabilities {p(hi |h j ), p(ok |h j )} from
a training data set.

2.4.4 Kernel Methods

The following are some important methods for supervised learning that make use of
the concept of kernels, which we introduced in Sect. 2.2.4. The model functions and
distributions in kernel methods typically depend on the data. Training in this case
does not absorb the information from the data into parameters, but finds parameters
that define the importance of a data point for a decision.

2.4.4.1 Kernel Density Estimation

Kernel density estimation [6] for pattern classification derives a class-conditional
model distribution from data based on a simple idea. Given a similarity measure or
kernel on the input space, define the class-conditional distribution for class y = c as

p(x |y = c) =
M∑

m|ym=c

1

Mc
κ(x − xm). (2.34)
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Fig. 2.27 A kernel density estimator defines a probability distribution over data points that assigns
high probabilities to regions with lots of data. Here we have two different classes of data (red circles
represent Class 0 while blue squares represent Class 1). The full line shows the learned probability
distribution p(x |y = 0) over the inputs for Class 0, while the dashed line shows p(x |y = 1). The
kernel function κ defines the ‘smoothness’ of the overall distribution

This is the sum of a distance measure κ between all Mc ‘class c’ training inputs
(see Fig. 2.27). The total sum is larger if the training inputs from this class are close
to the new input. This classifier is therefore based on the notion of ‘similar inputs
have similar outputs’. Also called a Parzen window estimator [6], the distribution
is a smoothed version of a histogram over the data. We have used a variation of
this method in our Titanic example in the introduction and it is a simple example of
how to define a probabilistic model via kernels. Remember that the class-conditional
probability is related to the desired distribution for prediction, p(y|x), via Bayes
formula in the Bayesian learning framework (see Sect. 2.2.3).

2.4.4.2 k-Nearest Neighbour

The k-nearest neighbour method can be understood as a kernel density estimator
with a uniform kernel which is a non-zero constant in the radius that encircles the
k nearest neighbours and zero else [3]. Given the dataset, one selects the k closest
training inputs relative to the new input x̃ and according to a predefined distance
metric on the input space (examples are given in Table 2.4). The predicted class
label ỹ can be chosen according to the majority class amongst the neighbours when
we consider a classification task (see Fig. 2.28), or as the average of their target
outputs for regression tasks. Variations to this simple algorithm include weighting

Table 2.4 Examples of distance measures between data points x and x ′ for the nearest neighbour
classifier

Distance measure Data type Formula

Euclidean distance x, x ′ ∈ R
N

√∑N
i=1(xi − x ′

i )
2

Squared distance x, x ′ ∈ R
N ∑N

i=1(xi − x ′
i )
2

Cosine distance x, x ′ ∈ R
N xT x ′

|x ||x ′|
Hamming distance x, x ′ ∈ {0, 1}⊗N Number of differing bits
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Fig. 2.28 Illustration of k-nearest neighbour using the Euclidean distance measure. The symbols
show the 2-dimensional inputs that have each a class attribute ‘circle’ or ‘rectangle’. A new input
x̃ = (x̃1, x̃2) is classified according to its k = 6 nearest neighbours (i.e., taking the class label of
the majority of its neighbours, in this case ‘rectangle’)

the neighbours according to their distance [54], or replacing the training inputs of
each class by their centroids.

2.4.4.3 Support Vector machines

Support vector machines were very popular throughout the 1990s, when they took
over from neural networks as the method of choice. They can be derived from linear
models for which one tries to minimise the distance between the separating hyper-
plane and the training vectors (see Fig. 2.29). In other words, the model function
is very simple, but the optimisation problem is more involved than for example in
the perceptron model, where we just want to find a hyperplane that classifies all
data correct, irrespective of the margin. The power of support vector machines only

Fig. 2.29 A support vector
machine is derived from the
problem of finding the
discriminant hyperplane with
the largest margin to the
input vectors. The figure
shows the geometric
construction of the
expression for the distance
ds of the margin

x1

x2
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ds

w
ds w

||w||
xproj
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becomes clear when the inner product kernels appearing in the objective function
are replaced by other kernels that effectively implement feature maps [55].

The following outlines the somewhat technical derivation of the model following
the description of [3] and [10]. We consider a binary classification problem with
input domain X = R

N and output domain Y = {−1, 1} and assume for now that the
data is linearly separable. Start with a linear model,

f (x;w) = wT x + w0. (2.35)

If the data is linearly separable, there is a set of parameters w which defines a
hyperplane that separates the training data so that points of the two different classes
are on either side of the hyperplane. Mathematically this can be expressed by the
restriction f (xm;w) > 0 for training inputs with ym = 1, and f (xm;w) < 0 for data
points of class ym = −1. In summary, one can write

f (xm;w)ym > 0, (2.36)

form = 1, .., M . The goal is to find the decision boundary thatmaximises themargin,
which is the distance between the closest training points (the support vectors) xs and
the separating hyperplane. To formulate the margin via the model and weight vector,
decompose the input xs into its orthogonal projection onto the hyperplane xproj,
plus a vector of length ds that is orthogonal to the hyperplane (see Fig. 2.29). This
orthogonal direction is given by the unit vector w

||w|| , so that

xs = xproj + ds w

||w|| .

Calculating the output of this point for our model, f (xs) = wT xproj + ds w2

||w|| , and
noting that w and xproj are orthogonal by construction leads to the distance

ds = f (xs)

||w||
Here, || · || is the Euclidean norm. The support vector machine defines the deci-
sion boundary such that the margin is maximised while ensuring condition (2.36) is
fulfilled.

Since the decision boundary is the same for any length of w, there are infinitely
many solutions. We fix the length with the condition ds ||w|| = 1, so that that
the optimisation problem becomes equivalent to minimising ||w|| under the con-
straint f (xm;w)ym ≥ 1.Alternatively—andmore common—oneminimises 1

2 ||w||2
under the same constraint. Using Lagrangianmultipliers γ1, . . . , γM , this constrained
quadratic optimisation problem can be turned into an unconstrained version in which
we need to minimise the Lagrange function
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L(w,w0, {γ }) = 1

2
wTw −

M∑
m=1

γm
(
ym(wT xm + w0) − 1

)
.

The last step is to formulate the dual problem which does not depend on the weights.
Setting the derivative of L with respect to w to zero leads to the relation

w =
M∑

m=1

γm y
mxm, (2.37)

while setting the derivative of L with respect to w0 to zero leads to
∑

m γ m ym = 0.
Resubstituting these results in the objective function yields the Lagrangian function

Ld({γ }) =
M∑

m=1

γm − 1

2

M∑
m,m ′=1

γmγm ′ ym ym
′ 〈xm, xm

′ 〉, (2.38)

that has to be minimised with respect to the Lagrangian multipliers γm and subject
to the constraints γm ≥ 1 ∀m and

∑
m γm ym = 0. We used the 〈·, ·〉 notation for the

inner product here to emphasise that this expression can be interpreted as a kernel.
Note that if the data is not separable, one can introduce slack variables ξm that change
the right side of the inequality (2.36) to 1 − ξm , and minimise the slack variables
along with the other parameters in the Lagrange function.

Once the Lagrangian multipliers are found, the weights are determined by the
relation (2.37) and the new output is found as

ỹ =
M∑

m=1

γm y
m〈xm, x̃〉 + w0. (2.39)

Note that Eq. (2.38) defines the optimisation problem connected to a support vector
machine. The scalar product 〈xm, xm

′ 〉 is a linear kernel, and the kernel trick (Sect.
2.2.4) can be applied to let the support vector machine find a decision hyperplane in
a feature space. By this trick, support vector machines can find nonlinear decision
boundaries in input space. Solving this optimisation problem by convex optimisation
methods discussed in the context of linear models takes time in roughlyO(M3), but
in practice specialised linear solvers are used.

2.4.4.4 Gaussian Processes

Gaussian processes are a kernel method with again a rather different idea. Assume
we have a supervised regression task with X = R

N ,Y = R. The idea behind the
method of Gaussian processes is to assign a probability to every possible model
function f (x), favouring those we consider more likely, such as smooth functions.
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Fig. 2.30 Prior (left) functions drawn from a Gaussian process. The covariance determines the
smoothness of the sample functions. The training data points reduce the space of possible functions
and introduce certainty where the data values are. Samples from the posterior (right) are therefore
reduced to model functions that agree with the data points. The plots were made with the python
infpy package written by John Reid. Accessed through http://pythonhosted.org/infpy/

Out of the resulting ‘probability distribution over functions’ one selects only those
that agree with the data points inD to get a ‘posteriori over functions’ in the Bayesian
learning framework. The mean of this posteriori can be understood as the best guess
for f (x̃) at a certain point x̃ given the data, and the variance is the uncertainty of this
guess (see Fig. 2.30).

The details of this approach are based on rather technical details of whichwe try to
give a short overview. A Gaussian process (GP) is formally a “collection of random
variables, any finite number of which have a joint Gaussian distribution” [21]. In
this context the random variables are the outputs of the model function f (x). Given
a covariance function κ(x, x ′) and a number of inputs x1, . . . , xM , the definition of
a Gaussian process states that the outputs f (x1), . . . , f (xM) are random variables
sampled from the joint normal distribution N ,

⎛
⎜⎝

f (x1)
...

f (xM)

⎞
⎟⎠ ∼ N

⎡
⎢⎣

⎛
⎜⎝
m(x1)

...

m(xM)

⎞
⎟⎠ ,

⎛
⎜⎝

κ(x1, x1) . . . κ(x1, xM )
...

. . .
...

κ(xM , x1) . . . κ(xM , xM )

⎞
⎟⎠

⎤
⎥⎦ . (2.40)

As the notation suggests, the covariance function used in the covariance matrix is
nothing other than a kernel and responsible for the type of distribution over functions
defined by a Gaussian process. The Gaussian process is fully defined by the mean
and kernel, and can be written as

f (x) ∼ GP(m(x), κ(x, x ′)).

The mean is usually, and in the following, set to zero.
Model selection for aGaussian process refers to finding suitable kernels. Common

choices are the dot product have been shown in Table 2.2. The covariance matrix
made up of the kernel functions is positive semi-definite and therefore a kernel Gram
matrix.

http://pythonhosted.org/infpy/
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Equation (2.40) shows how to draw samples of model outputs f (x) for a set of
inputs, and if we increase the number of inputs we can get a good idea of what the
function sampled from the Gaussian process looks like. We can use the expression
in Eq. (2.40) for prediction. Instead of some general inputs, we consider the joint
distribution for the training data outputs as well as the new output f (x̃),

⎛
⎜⎜⎜⎝

f (x1)
...

f (xM)

f (x̃)

⎞
⎟⎟⎟⎠ ∼ N

⎡
⎢⎢⎢⎣

⎛
⎜⎝
0
...

0

⎞
⎟⎠ ,

⎛
⎜⎜⎜⎝

κ(x1, x1) . . . κ(x1, xM) κ(x1, x̃)
...

. . .
...

...

κ(xM , x1) . . . κ(xM , xM) κ(xM , x̃)
κ(x̃, x1) . . . κ(x̃, xM) κ(x̃, x̃)

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ . (2.41)

To get the desired probability distribution p(ỹ|x̃) over the predicted output f (x̃) = ỹ
we have to marginalise the distribution in Eq. (2.41) for the fixed values f (x1) =
y1, . . . , f (xM) = yM . This can be thought of as ‘cutting’ through the joint prob-
ability distribution in order to reduce the multivariate Gaussian distribution to a
univariate (one-dimensional) distribution. The technical algebraic details of obtain-
ing a marginal Gaussian distribution can be found in most statistics textbooks and
we only write down the result here12:

p(y|x) = N [y| κ̃T K−1y︸ ︷︷ ︸
mean μ

, ˜̃κ − κ̃T K−1κ̃︸ ︷︷ ︸
covariance δ

]
, (2.42)

with the notation

κ̃ =
⎛
⎜⎝

κ(x1, x̃)
...

κ(xM , x̃)

⎞
⎟⎠ , (2.43)

K =
⎛
⎜⎝

κ(x1, x1) . . . κ(x1, xM)
...

. . .
...

κ(xM , x1) . . . κ(xM , xM)

⎞
⎟⎠ , (2.44)

˜̃κ = κ(x̃, x̃), (2.45)

y =
⎛
⎜⎝

y1

...

yM

⎞
⎟⎠ . (2.46)

Besides model selection, which involves choosing the kernel and its hyperpa-
rameters, Gaussian processes do not have a distinct learning phase. With Eq. (2.42),
prediction is mainly a computational problem of efficiently inverting the

12Note that we only consider noise free data here, however, including Gaussian noise simply adds
a variance parameter to the matrix K . For more details, see [21].
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M × M-dimensional kernel matrix K . Gaussian processes do take a lot of compu-
tational resources when large datasets have to be processed [6], and many proposals
for approximations have been put forward [21].
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Chapter 3
Quantum Information

While the last chapter introduced readers without a firm background in machine
learning into the foundations, this chapter targets readers who are not closely famil-
iar with quantum information. Quantum theory is notorious for being complicated,
puzzling and difficult (or even impossible) to understand. Although this impression
is debatable, giving a short introduction into quantum theory is indeed a challenge
for two reasons: On the one hand its backbone, the mathematical apparatus with its
objects and equations requires some solid mathematical foundations in linear alge-
bra, and is usually formulated in theDirac notation [1] that takes a little practice to get
familiar with. On the other hand the physical reality this apparatus seeks to describe is
difficult to grasp from the point of our daily intuition about physical phenomena, and
the interpretation of the results this mathematical apparatus yields, unchallenged and
reproduced by thousands of experiments up to today, are still controversially debated.

There are many different ways to introduce quantum theory.1 Scott Aaronson, in
his online lecture notes2 remarks sarcastically that in order to learn about quantum
theory,

[...] you start with classical mechanics and electrodynamics, solving lots of grueling differ-
ential equations at every step. Then you learn about the “blackbody paradox” and various
strange experimental results, and the great crisis these things posed for physics. Next you
learn a complicated patchwork of ideas that physicists invented between 1900 and 1926 to
try to make the crisis go away. Then, if you’re lucky, after years of study you finally get
around to the central conceptual point: that nature is described not by probabilities (which
are always non-negative), but by numbers called amplitudes that can be positive, negative,
or even complex.

1Common didactic approaches are the historical account of discovering quantum theory, the empir-
ical account of experiments and their explanations, the Hamiltonian path from formal classical to
quantum mechanics, the optical approach of the wave-particle-dualism, and the axiomatic postula-
tion of its mathematical structure [2].
2The lecture notes are available at http://www.scottaaronson.com/democritus/, and led to the book
“Quantum Computing since Democritus” [3].
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From the perspective of quantum computing this comment certainly contains
some truth, since a central concept is the qubit, which is a rather simple quantum
system. This is why we will neglect many details of quantum theory and focus on
finite, discrete quantum systems.

In the following we will start with an intuition for what operators, states and
unitary evolutions are, and proceed to a more rigorous introduction to quantum
theory based on the Dirac notation. We then introduce quantum computing together
with the concepts of gates, qubits and quantum algorithms. As a preparation for later
chapters we then discuss different ways to encode information into quantum systems
and present some core quantum routines used in later chapter.

3.1 Introduction to Quantum Theory

3.1.1 What Is Quantum Theory?

Quantum theory (used synonymously with the term quantummechanics) is “first and
foremost a calculus for computing the probabilities of outcomes of measurements
made on physical systems” [4] called quantum systems. A quantum system is typ-
ically a collection of microscopic physical objects for which classical Newtonian
mechanics does not explain experimental observations. Examples are a hydrogen
atom, light of very low intensity, or a small number of electrons in a magnetic field.

Quantum theory incorporates classical mechanics as a limit case [5] and is often
celebrated as the most accurate physical theory ever developed.3 The reason why
despite this ‘superiority’ over classical mechanics the latter is still commonly used in
science and education is that quantummechanics is impractical to apply to large sys-
tems, as the calculations very soon become too complex to execute. At the same time,
quantum effects in macroscopic systems are usually small enough to be neglected
without a visible error and can formany purposes be replaced by easier, higher aggre-
gated classical models. However, and similar to machine learning in which a lot of
problems are uncomputable in their exact formulation, a range of solvable models
as well as powerful approximation techniques have been developed which lead to a
range of technological applications in the fields of medicine, chemistry, biology and
engineering.

Figure3.1 shows a brief historical overview of quantum theory. What Aaronson
describes as a “complicated patchwork of ideas that physicists invented between
1900 and 1926” forms the beginnings of quantum theory as it is still taught today,
and which was then used to rethink the entire body of physics knowledge. The
initial step is commonly attributed to the year 1900 whenMax Planck introduced the

3It shall be remarked that quantum theory has no notion of the concept of gravity, an open problem
troubling physicists who dream of the so called ‘Grand Unified Theory’ of quantum mechanics
and general relativity, and a hint towards the fact that quantum mechanics still has to be developed
further.
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Fig. 3.1 Timeline of the early years of quantum theory

idea that energy (in this case so called black-body radiation) can only take discrete
values as if existing as ‘quanta’ or small energetic portions. With this assumption he
was able to resolve a heated debate regarding the spectrum of black-body radiation
[6]. Almost in parallel, Albert Einstein made a similar discovery derived from the
statistical mechanics of gases and derived the concept of a photon—a portion or
energy quantum of light [7, 8].

In the following years, these early ideas of a ‘theory of energy quanta’ were
applied to atomic spectroscopy (most notably by Niels Bohr), and to light (by Louis
de Broglie) but still based on rather ad-hocmethods [6].Werner Heisenberg followed
by Jordan, Born and, independently, Paul Dirac formulated the first mathematically
consistent version of quantum theory referred to as matrix mechanics in 1925, with
which Wolfgang Pauli was able to derive the experimental results of measuring
the spectrum of a hydrogen atom. Heisenberg postulated his uncertainty principle
shortly after, stating that certain properties of a quantum system cannot be measured
accurately at the same time. In 1926, following a slightly different and less abstract
route, Erwin Schrödinger proposed his famous equation of motion for the ‘wave
function’ describing the state of a quantum system. These two approaches were
shown to be equivalent in the 1930s, and a more general version was finally proposed
by Dirac and Jordan. In the following years, quantum theory branched out into many
sub-disciplines such as quantum many-body systems, quantum thermodynamics,
quantum optics, and last but not least, quantum information processing.
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3.1.2 A First Taste

Quantum theory can be understood as a generalisation of classical probability theory
to make statements about the probabilities of the outcomes of measurements on
quantum systems [9]. The rigorous formulation of this generalisation requires some
serious mathematics (see for example [10]) and is beyond the scope of this book.
However, instead of directly diving into Hilbert spaces and Hermitian operators, this
section starts with a simple classical stochastic system and shows how to construct
the description for a very similar quantum system.

3.1.2.1 States and Observables

Consider a set of N mutually exclusive events S = {s1, . . . , sN }. In physics, events
usually refer to the outcomes ofmeasurements (‘observations’) onphysical properties
of a system, but one may also think of other examples such as ‘it is raining’ and ‘it
is not raining’. One can associate each event with a random variable X that can
take the values {x1, . . . , xN }, and define a probability distribution over these values
quantifying our knowledge on how likely an event is to occur. The probabilities
related to the N events, {p1, . . . , pN }, are real numbers, and they fulfill pi ≥ 0 and∑N

i=1 pi = 1. The expectation value of the random variable is defined as

〈X〉 =
N∑

i=1

pi xi , (3.1)

and is the weighed average of all values the random variable can take.

Example 3.1 (Particle in a rectangular box)
Consider the model of a particle in a 2-dimensional rectangular box which is divided
into four sections as illustrated in Fig. 3.2. The event space is given by the four events
of the particle being found in the first, second, third or fourth section, Sparticle =
{s1, s2, s3, s4}. The random variable X for the measurement result can take values
{1, 2, 3, 4}, and each measurement outcome has a probability pi , i = 1, . . . , 4 to
occur. For example, if p1 = 0.2, p2 = 0.2 , p3 = 0.2, p4 = 0.4 the expectation value
is given by 〈X〉 = 2.8 which reveals that the particle has a higher probability to be
in the right half than in the left.

From here one needs two steps in order to arrive at the description of a quantum
system with N different possible configurations or measurement outcomes: First,

1 2 3 4

Fig. 3.2 Illustration of the particle in a box from Example 3.1
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summarise the probabilities and the outcomes by matrices and vectors, and second,
replace real positive probabilities with complex amplitudes.4

For the first step, consider a vector of the square roots of probabilities p1, . . . , pN ,

q =
⎛

⎝

√
p1
...√
pN

⎞

⎠ = √
p1

⎛

⎝
1
...
0

⎞

⎠ + · · · + √
pN

⎛

⎝
0
...
1

⎞

⎠ , (3.2)

as well as a diagonal matrix X corresponding to the random variable with the same
name,

X =
⎛

⎝
x1 . . . 0
...

. . .
...

0 . . . xN

⎞

⎠ .

The expectation value of Eq. (3.1) can now be written as

〈X〉 = qT Xq =
N∑

i=1

pi xi . (3.3)

So far we just made the expression of the expectation value more complicated. In
Eq. (3.3), the matrix X contributes the values of the random variable, and the vector
q contains the square roots of the probabilities. For simplicity, both objects were
expressed in the standard basis ofR

N . One can see that the basis vector (1, 0, . . . , 0)T

forms a subspace of theR
N that is associated with the first event. Moreover, the outer

product of this basis vector with itself

(
1 . . . 0

)

⎛

⎜
⎝

1
...

0

⎞

⎟
⎠ =

⎛

⎜
⎝

1 . . . 0
...

. . .
...

0 . . . 0

⎞

⎟
⎠ (3.4)

is a projector onto this subspace.Multiplied to a vector, it ‘picks out’ the first element.
This is a motivation why in quantum probability theory, the measurement events are
represented by projectors onto subspaces which we will see in the next section. The
sum of all projectors to the subspaces of x1, . . . , xN is the identity.

Note that one does not have to use the standard basis, but that any other basis
{vi } for which the eigenvalue equations Xvi = xivi hold would have done the job,
as can be confirmed by decomposing q = q1v1 + · · · + qNvN and employing the
eigenvalue equation to calculate the expectation value.

4In this sense, Aaronson is right in saying that the “central conceptual point” of quantum theory
is “that nature is described not by probabilities […], but by numbers called amplitudes that can be
positive, negative, or even complex”.
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It turns out that Eq. (3.3) is already very close to howquantummechanics describes
expectation values, but some mathematical properties of the vectors and matrix are
slightly different. In order to turn Eq. (3.3) into the formula of computing expectation
values of measurements on quantum systems, we have to replace q with a complex
amplitude vector α = (α1, . . . , αN )T ∈ C

N , and X by a complex, self-adjoint matrix
O ∈ C

N×N . Another term for self-adjoint is Hermitian. Hermitian operators have
the property that they are equal to their complex-conjugate transpose, O = (O∗)T ,
where in quantummechanics, the symbol for the complex-conjugate transpose is the
dagger, (O∗)T = O†.

Let {v1, . . . , vN } be a basis of orthonormal eigenvectors of O which spans the
C

N , fulfilling eigenvalue equations Ovi = oivi and normalisations v
†
i v j = δi j for all

i, j = 1, . . . , N . Any amplitude vector α can be written as a linear combination of
this basis,5

α = α1v1 + · · · + αNvN .

The expectation value of the random variable O corresponding to the matrix O
now becomes

〈O〉 = α†Oα =
N∑

i=1

|αi |2vi †Ovi =
N∑

i=1

|αi |2oi . (3.5)

One can see that the |αi |2 take the role of the probabilities in the classical example, and
we therefore demand that

∑
i |αi |2 = 1 to ensure that the probabilities sum up to one.

If the basis {v1, . . . , vN } is the standard basis {(1, 0, . . . , 0)T , . . . , (0, 0, . . . , 1)T },
the αi will just be the entries of α, and the normalisation condition therefore means
that the amplitude vector has unit length.

The eigenvalues oi of O correspond to the values of the random variable or the
outcomes of measurements. For example, whenmeasuring the energy configurations
of an atom, oi would simply be an energy value in a given unit. However, without
further constraints the eigenvalues of a complex matrix can be complex, which does
not make any sense when looking at physically feasible variables (i.e., what is a
complex energy?). This is the reason to choose O to be a Hermitian operator, since
the eigenvalues of Hermitian operators are always real and therefore physical.

Since O (just like X in the classical example) contains information on the values
of the random variable, which in a physical setup correspond to possible observations
in a measurement, it is called an observable. The vector α tells us something about
the probability distribution of the measurement outcome and is a representation of a
so-called quantum state, since probabilistic information is everything we know about
the configuration a quantum system is in. Together, observables and states allow us
to calculate probabilities and expectation values of measurement outcomes.

5The spectral theorem of linear algebra guarantees that the eigenvectors of a Hermitian operator O
form a basis of theHilbert space, so that every amplitude vector can be decomposed into eigenvectors
of O .
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3.1.2.2 Unitary Evolutions

Physical theories define equations for the evolution of the state of a system over time.
Let us once more start with a classical stochastic description and show how to arrive
at quantum evolutions.

A map of a discrete probability distribution to another discrete probability dis-
tribution (describing the change of our knowledge over time) has to preserve the
property that the probabilities of all elementary events sum up to one. Consider the
case that we know the probability of transition from one state to the other in one dis-
crete time step. Then such an update can bemodelled by applying amatrix containing
these transition probabilities, to a probability vector p = (p1, . . . , pN )T ,

⎛

⎜
⎝

m11 . . . m1N
...

. . .
...

mN1 . . . mNN

⎞

⎟
⎠

⎛

⎜
⎝

p1
...

pN

⎞

⎟
⎠ =

⎛

⎜
⎝

p′
1
...

p′
N

⎞

⎟
⎠ ,

N∑

i=1

pi =
N∑

i=1

p′
i = 1. (3.6)

The transition matrix M = (m)i j has to ensure that the probability vector remains
normalised, which implies that M is a so-called stochastic matrix whose columns
sum up to one. The stochastic process resulting from the transition matrix is also
called a Markov process.

Example 3.2 (Stochastic description of the weather) We observe the weather on
consecutive days and know the probability that it is raining tomorrow if it was raining
today is 60% while the probability for the weather to change is 40%. Likewise, if
it was sunny, it rains tomorrow with 40% and it stays sunny with 60%. Let ptod =
(p1, p2)T describe the probability p1 that it is raining, or the probability p2 that it
is sunny today. We can now calculate the probability of the weather tomorrow by
applying the stochastic or transition matrix to the probabilistic state,

(
0.6 0.4
0.4 0.6

)

ptod = ptom

If we know that it was sunny today, ptod = (0, 1)T , the probability of sun will be 0.6
and of rain will be 0.4.

In quantum theory, we work with amplitude vectors with the property that the
entries’ sum of absolute squares has to sum up to one. Consequently, an evolution
has to be described by a unitary matrix (the complex equivalent of an orthogonal
transformation which is known to maintain lengths),

⎛

⎜
⎝

u11 . . . u1N
...

. . .
...

uN1 . . . uNN

⎞

⎟
⎠

⎛

⎜
⎝

α1
...

αN

⎞

⎟
⎠ =

⎛

⎜
⎝

α′
1
...

α′
N

⎞

⎟
⎠ ,

N∑

i=1

|αi |2 =
N∑

i=1

|α′
i |2 = 1. (3.7)



82 3 Quantum Information

A unitarymatrix has the property that its inverse is its complex conjugated,U−1 =
U †.

Besides unitary evolutions, one can performmeasurements on a quantum system,
which change the state. Although there are many subtleties, in their basic nature
quantummeasurements are equivalent to classical statistics. If we had a probabilistic
description ptom = (0.6, 0.4)T of the weather tomorrow as in Example 3.2, and we
wait one day to observe that the weather is sunny, our knowledge would be best
described by the updated probability state vector p′

tom = (1, 0)T . This discrete tran-
sition of (0.6, 0.4)T → (1, 0)T is in quantum theory sometimes referred to as the
‘collapse of the wavefunction’ (where the term ‘wavefunction’ refers to the quan-
tum state), but is in essence similar to a classical update of our state of knowledge:
If the weather is replaced by a quantum spin described by an amplitude vector
α = (

√
0.6,

√
0.4)T (where the first entry corresponds to the event ‘spin up’ and

the second to ‘spin down’, and we observe ‘spin up’, the amplitude vector after the
measurement would be given by α′ = (1, 0)T .

3.1.2.3 Composite Systems and Subsystems

In classical probability theory, sample spaces are combined using a tensor product.
Take the weather example: Let p = (p1, p2)T again describe the probability of rain
or sun, while q = (q1, q2)T denotes the probability of the wind blowing strong or
not. A combined description is a 4-dimensional vector c = (c1, c2, c3, c4)T contain-
ing the probability for the events ‘wind & sun’, ‘no wind & sun’, ‘wind & rain’,
‘no wind & rain’. These four events form the joint event space. If the events are
independent of each other, the probabilities of each elementary event multiply and
c = (q1 p1, q1 p2, q2 p1, q2 p2)T , which can be called a product state. If the probabil-
ities do not factorise, or in other words c cannot be expressed by a tensor product
of p and q, the two variables are non-separable. Creating a joint sample space in
the quantum case is done in exactly the same manner, but using amplitude vectors
instead of probability vectors.

Let us look at the opposite direction of how tomarginalise over parts of the system.
Marginalising over variables basically means to give up information about them, a
change in our state of knowledge towards more uncertainty. Given a multivariate
probability distribution, marginalising means to consider ‘cuts’ or ‘subspaces’ of the
distribution. Again, themarginalisation process in quantummechanics is structurally
the same in the classical setting, and has to be modelled ‘on top’ of the quantum
probability. For this one uses a slightly different description of quantum states than
amplitude vectors.

3.1.2.4 Density Matrices and Mixed States

Consider an amplitude vector α = (α1, α2)
T . We have perfect knowledge that α is

the state of the system, the state is pure. A stochastic description of this systemmeans
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that we are uncertain if our system is in state α = (α1, α2)
T or β = (β1, β2)

T , and
the overall state is called a statistical mixture of two pure states, or a mixed state.

We can incorporate statistical mixtures of quantum states into the formalism of
quantum mechanics by switching from amplitude vectors to so called density matri-
ces. A density matrix ρ that corresponds to a pure quantum state α is given by the
outer product ρ = ααT . To statisticians, this is known as the covariance matrix of α,
which for our 2-d example α = (α1, α2)

T reads

ρ = αα† =
(|α1|2 α1α

∗
2

α2α
∗
1 |α2|2

)

.

If we do not know the quantum state of the system, but we know that the system
is in state α with probability p1 and in state β with probability p2, the density matrix
to describe such a state reads

ρ = p1αα† + p2ββ† =
(
p1|α1|2 + p2|β1|2 p1α2α

∗
1 + p2β2β

∗
1

p1α1α
∗
2 + p2β1β

∗
2 p1|α2|2 + p2|β2|2

)

.

In other words, the density matrix formulation allows us to combine ‘quantum
statistics’ expressed by a quantum state, with ‘classical statistics’ or a probabilistic
state that describes our lack of knowledge. This is possible because ρ’s diagonal
contains probabilities and not amplitudes.

Thedensitymatrix notation lets us elegantly exclude a subsystem from the descrip-
tion, and the corresponding mathematical operation is to calculate the partial trace
over the subsystem.Wewill later see that this is closely related to the idea ofmarginal-
ising over distributions. The partial trace operation in matrix notation is the sum over
the diagonal elements in the corresponding space. Assume a state describing two
joint 2-dimensional system in density matrix notation is given by

ρAB =

⎛

⎜
⎜
⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞

⎟
⎟
⎠ ,

and the partial trace over the first subsystem is

trA{ρAB} =
(

ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)

,

while the state of the second subsystem is given by

trB{ρAB} =
(

ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44

)

.
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3.1.3 The Postulates of Quantum Mechanics

Let us switch gears after this more intuitive introduction of the formalism of quantum
theory, and formulate the framework of quantum mechanics more rigorously for
finite-dimensional systems with the help of a number of postulates. These postulates
pick up various concepts introduced in the previous section, to which we will refer
throughout, but generalise and formalise them with help of the Dirac notation. This
section is meant to serve as a reference for the remainder of the book, and may be
not immediately accessible for readers without a background in quantum physics. If
this is the case, we recommend to continue with Sect. 3.1.1 and return here when the
need for more depth arises.

The Dirac notation may be confusing to newcomers to quantum mechanics. Most
topics of quantum computing can actually be expressed in terms of matrices and
vectors, and we will frequently switch between the two notations. However, some
quantum systems have operators with a continuous eigenbasis, where discrete and
finite vectors are not very useful. Dirac notation is an abstraction that incorporates
such cases, and is the standard formalism in quantum computing. Table3.1 compares
the matrix and Dirac formalisms to illustrate their equivalence from a mathematical
perspective.

3.1.3.1 State Space

A quantummechanical state lives in a Hilbert spaceH, which is a complex separable
vector space. As mentioned, for the purposes of this book it suffices to consider

Table 3.1 Comparison of the two different formulations of quantum theory, Heisenberg’s matrix
notation and Dirac’s abstract formalism for discrete finite systems

Vector-matrix formalism Dirac formalism

Quantum state

Vector α = (α1, . . . , αN )T ∈ C
N State vector in Hilbert space |ψ〉 ∈ H

Observables

Hermitian matrix O ∈ C
N×N Hermitian operator O

Basis

{vi } basis of C
N {|vi 〉} basis of H

Eigenvalues

Ovi = oivi
oi eigenvalue to vi

O|vi 〉 = oi |vi 〉
oi eigenvalue to |vi 〉

Evolution

Uα = α′
U unitary matrix

U |ψ〉 = |ψ ′〉
U unitary operator
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discrete and finite-dimensional Hilbert spaces. These are isomorphic to the C
n , for

n = 2, 3, . . . and a quantum state therefore has a representation as a complex vector.
Vectors in Hilbert space are usually denoted by |ψ〉, where |·〉 is a ‘ket’. The

complex vector representation of a ket from a discrete and finite-dimensional Hilbert
space is exactly the amplitude vector α = (α1, . . . , αN )T that we introduced in the
previous section. The norm of a vector is defined in terms of the inner product onH,
which in Dirac notation is denoted by 〈·|·〉. The ‘left side’ of the inner product, 〈·|
is called a ‘bra’. The corresponding object in vector notation is a complex conjugate
row vector, α† = (α1, . . . , αN ). The inner product is linear in the ‘ket’ |·〉 argument
and anti-linear in the ‘bra’ 〈·|. Thus, for two vectors |ψ1〉 and |ψ2〉 inH we have

〈ψ2|ψ1〉∗ = 〈ψ1|ψ2〉.

The norm of a vector |ψ〉 ∈ H is then

||ψ || = √〈ψ |ψ〉.

For every vector in H there is a complete orthonormal basis {|ei 〉}, i ∈ N, with
〈ei |e j 〉 = δi j , such that

|ψ〉 =
∑

i

|ei 〉〈ei |ψ〉 =
∑

i

〈ei |ψ〉|ei 〉. (3.8)

A particular choice for such a complete orthonormal basis for the vector repre-
sentation of quantum states is the standard basis used in Eq. (3.2). Note that Eq.
(3.8) describes a basis change, since it expresses |ψ〉 in terms of the basis {|ei 〉}.
Furthermore, |ei 〉〈ei | denotes a projector on a one-dimensional sub-space. We have
already seen a projector for the standard basis in Eq. (3.4). Equation (3.8) expresses
the property of separability of Hilbert spaces. The same equation implies that the
completeness relation

1 =
∑

i

|ei 〉〈ei | (3.9)

holds (i.e., to make the first equality sign work).
In Sect. 3.1.2.4we saw that the state of a quantummechanical system is sometimes

not completely known, in which case we have to express it as a density matrix. Let
us revisit this concept in Dirac notation. Imagine a system is in one of the states |ψk〉,
k = 1, . . . , K , with a certain probability pk . The density operator ρ describing this
mixed quantum mechanical state is defined as

ρ =
K∑

k=1

pk |ψk〉〈ψi |, (3.10)

where all pk ≥ 0 and
∑

k pk = 1.
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3.1.3.2 Observables

As we saw before, observables of a quantum mechanical system are realised as self-
adjoint operators O in H that act on the ket |ψ〉 characterizing the system. Such
self-adjoint operators have a diagonal representation

O =
∑

i

oi |ei 〉〈ei |,

in terms of the set of eigenvalues {oi } and the corresponding eigenvectors |ei 〉.6 This
so-called spectral representation is unique and allows to calculate analytic functions
f of the observable according to the formula

f (O) =
∑

i

f (oi )|ei 〉〈ei |.

In particular, if the observable is a Hermitian operator H , then for a real scalar ε

U = exp(iεH)

is a unitary operator.
In general, expectation values of a quantum mechanical observable O can be

calculated as
〈O〉 = tr{ρO},

where ‘tr’ computes the trace of the operator. The trace operation in Dirac notation
‘sandwiches’ the expression inside the curly brackets by a sum over a full basis,

tr{A} =
∑

i

〈ei |A|ei 〉.

For a system in a pure state ρ = |ψ〉〈ψ |, the expression for the expectation value
of an observable reduces to

〈O〉 =
∑

i

〈ei |ψ〉〈ψ |O|ei 〉 =
∑

i

〈ψ |ei 〉〈ei |O|ψ〉 = 〈ψ |O|ψ〉,

where we used the completeness relation (3.9). We already encountered this formula
in matrix notation in Eq. (3.5).

6From this form of an operator one can see that the density matrix is also an operator on Hilbert
space, although it describes a quantum state.
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3.1.3.3 Time Evolution

The time evolution of a quantum mechanical system is described by the Schrödinger
equation

i�
d

dt
|ψ〉 = H |ψ〉,

where H denotes the Hamiltonian of the system and � is Planck’s constant. In the
next chapter wewill introduce several Hamiltonians relevant to quantum information
processing. For time-independent Hamiltonians the solutions of the Schrödinger
equation for an initial condition |ψ(t = 0)〉 = |ψ0〉 can be written as

|ψ(t)〉 = U (t)|ψ0〉, (3.11)

where
U (t) = exp(−i

t

�
H),

is the unitary time-evolution operator. The unitary operator in Eq. (3.11) corresponds
to the unitary matrix we encountered in Eq. (3.7).

The time evolution of a quantum system in a mixed state described by the density
operator ρ follows immediately from its definition (3.10),

i�
d

dt
ρ(t) = d

dt

∑

i

pi |ψi 〉〈ψi |

= [H, ρ], (3.12)

where we have used the Schrödinger equation and its Hermitian conjugate to derive
the second above equation, which is called the von Neumann equation. The formal
solution of the vonNeumann equation for initial conditionρ(t0) follows along similar
lines from Eq. (3.11)

ρ(t) = U (t, t0)ρ(t0)U
†(t, t0).

In other words, to evolve a density operator, we have to apply the unitary from
the left, and its complex conjugate from the right. Note that in theoretical physics
literature, as well as in this book, the constant � is usually set to 1 in order to simplify
the equations.

3.1.3.4 Quantum Measurement

For a quantum mechanical system in a pure state |ψ〉 we consider an observable O ,
with a discrete spectrum, i.e.,

O =
∑

i

oi Pi ,
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where Pi denotes the projector on the eigenspace spanned by the i-th eigenvector.
The oi are the measurement results of a measurement associated with projectors Pi .
(In Sect. 3.1.2.1 these were the events x1, . . . , xN .) Such a measurement is called a
projective measurement. According to the Born rule, the probability to obtain the
measurement result on is given by

p(on) = tr{Pn|ψ〉〈ψ |} = ||Pn|ψ〉||2.

The state of the system after the measurement is given by

|ψ〉 −→ Pn|ψ〉√〈ψ |Pn|ψ〉 .

In general, if the system is described by a density matrix ρ, the probability of
measuring on will be

p(on) = tr{Pnρ}

and the state of the system after the measurement will be7

PnρPn
tr{Pnρ} .

Consider now a measurement defined by a collection of operators {Am} that do
not necessarily have to be projectors. This is a more general case. If, again, the state
of the system is described by the pure state |ψ〉, the probability that the result om
related to operator Am occurs is given by

p(am) = 〈ψ |A†
m Am |ψ〉

and the state after the measurement is

Am |ψ〉
√

〈ψ |A†
m Am |ψ〉

.

The measurement operators satisfy the completeness relation
∑

m A†
m Am = 1. If we

define
Em = A†

m Am,

it follows that
∑

m Em = 1 and p(om) = 〈ψ |Em |ψ〉. The operators Em are called
PositiveOperator-ValuedMeasure (POVM) elements and their complete set is known
as a Positive Operator-Valued Measurement. This is the most common framework
to describe quantum measurements.

7This formalism is also known as the Lüders postulate.
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3.1.3.5 Composite Systems

We saw in Sect. 3.1.2.3 that in vector notation, a composite state of two joint quantum
systems is a tensor product of two quantum states, which of course carries over to
Dirac notation. Let us assume that our quantum system of interest Σ is composed of
two sub-systems, say Σ1 and Σ2. The sub-system Σi , i = 1, 2, is in a Hilbert space
Hi with dim(Hi ) = Ni , and is spanned by an orthonormal basis set {|eij 〉}, j ∈ N.
Then, the Hilbert spaceH of the total system Σ is given by the tensor product of the
Hilbert spaces of the two sub-systems, i. e., H1 and H2,

H = H1 ⊗ H2.

The states in this joint Hilbert space can be written as

N1∑

j=1

N2∑

k=1

c jk |e1j 〉 ⊗ |e2k 〉

and have dim(H) = N1N2. The coefficients c jk are complex scalars and satisfy∑
jk |c jk |2 = 1.

Composite quantum systems have the famous quantum feature of entanglement. If
a state |ψ〉 can be expressed as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉,

with |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, it is called separable. If the above representation
is not possible, the state is called entangled. Separability and entanglement work
similarly for density matrices. If the two subsystemsΣ1 andΣ2 are uncorrelated and
described by density matrices ρ1 and ρ2, respectively, then the total density matrix
ρ of the composite system Σ is given by

ρ = ρ1 ⊗ ρ2.

Operators O acting on the total Hilbert space H have the structure

O = O1 ⊗ O2,

where the operators O1 and O2 act on Σ1 and Σ2, respectively. In general, the
expectation value of such an operator can be calculated as

〈O〉 = tr{Oρ} = tr1{O1ρ1} · tr2{O2ρ2}, (3.13)

where tri , i = 1, 2 denotes the partial trace, which only sums over basis states of the
subsystem.
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Sometimes, one is interested in observables O that operate only on one of the two
subsystems, i.e.

O = O1 ⊗ 12.

In this case, the above expression for the expectation value (3.13) simplifies to

〈O〉 = tr1{O1ρ1}.

3.1.3.6 Open Quantum Systems

The above discussion is at the core of the theory of open quantum systems [11], where
one identifies Σ1 with the open system of interest (sometimes also referred to as the
reduced system) andΣ2 with its environment. The aim of the theory of open quantum
systems is to find an effective dynamical description for the open system, through an
appropriate elimination of the degrees of freedom of the environment. The starting
point is, of course, the Hamiltonian evolution of the total system. The density matrix
ρ of the total system Σ evolves according to the von Neumann equation (3.12)

d

dt
ρ = −i[H, ρ].

Introducing the reduced density matrix ρ1 of the open system Σ1 as the trace over
the degrees of freedom of system Σ2, i.e.,

ρ1 = tr2{ρ},

the dynamics of the open system can be obtained from (3.12)

d

dt
ρ1 = −i tr2{[H, ρ]}.

Of course, the above equation is as difficult to evaluate as the dynamical equation
of motion for the total system and appropriate approximations are needed to make it
useful. In the case of weak-coupling between the sub-systemsΣ1 andΣ2, a situation
that is typical in quantum optical applications, one can often assume (according to
the Born approximation) that the density matrix of the total system factorizes at all
times and that the density matrix of the environment is unchanged

ρ(t) ≈ ρ1(t) ⊗ ρ2.

If one further assumes that changes in the environment occur on time scales that
are not resolved, then the dynamics of the open system is described by the so-called
Markovian Quantum Master equation in Gorini-Kossakowski-Sudarshan-Lindblad
form [11], which reads
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d

dt
ρ1 = −i[H, ρ1] +

∑

k

γk

(

Lkρ1L
†
k − 1

2
L†
k Lkρ1 − 1

2
ρ1L

†
k Lk

)

. (3.14)

The operators Lk introduced above are usually referred to as Lindblad operators
and describe the transitions in the open system induced by the interaction with the
environment. The constants γk are the relaxation rates for the different decay modes
k of the open system.

3.2 Introduction to Quantum Computing

We will now turn to quantum computing, an application of quantum theory, where
the abstract concepts introduced in the previous section are filled withmoremeaning.

3.2.1 What Is Quantum Computing?

As quantum theory motivated physicists to rethink all aspects of their discipline from
anewperspective, itwas only amatter of timebefore the question arosewhat quantum
mechanics means to information processing. In a way, with the debates of non-
locality and Einstein’s “spooky action at a distance” this has already been part of the
early days of quantum mechanics. However, it took until the late 1980s for quantum
information processing research to form an independent sub-discipline. Quantum
computing is a subfield of quantum information processing, whose central questions
are: What is quantum information? Can we build a new type of computer based
on quantum systems? How can we formulate algorithms on such machines? What
does quantum theory mean for the limits of what is computable? What distinguishes
quantum computers from classical ones?

In the media (and possibly much fueled by researchers themselves hunting for
grants), quantum computing is still portrayed as the cure for all, mirrored in the
following remark from a machine learner’s perspective:

Much like artificial intelligence in its early days, the reputation of quantum computing has
been tarnished by grand promises and few concrete results. Talk of quantum computers is
often closely flanked by promises of polynomial time solutions to NP-Hard problems and
other such implausible appeals to blind optimism. [12, p. 3]

It is true that after more than 20years of establishing an independent research dis-
cipline, and not-surprisingly, there is still no final answer to many of the questions
posed.Most prominently,we still do not knowexactly howaquantumTuringmachine
compares to a classical Turing machine. Nevertheless, there is a lot more we know.
For example, we know that there are quantum algorithms that grow slower in runtime
with the size of the input than known classical algorithms solving the same problem
[13–15]. Relative to a black-box function or oracle, quantum algorithms are even
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Fig. 3.3 Timeline of quantum computing and quantum machine learning

proven to be faster than any possible classical algorithm. Another important result
is that every classical algorithm can be implemented on a quantum computer with
only polynomial overhead, so in theory a quantum computer is at least as good as a
classical computer [16] from the perspective of asymptotic complexity.

A rich landscape of quantum computational models and routines has been for-
mulated [17], and a database of algorithms is frequently updated by Stephen Jordan
at the American National Institute of Standards and Technology.8 Two influential
quantum algorithms were Shor’s factorisation algorithm [15] and Grover’s search
algorithm [13]. For one branch of the quantum machine learning literature, Harrow,
Hassidim and Lloyd’s quantum algorithm for linear systems of equations in 2009 set
another milestone. From roughly 2013 onwards, quantum machine learning became
its own subdiscipline of quantum computing (see Fig. 3.3).

Although there are a variety of computational models that formalise the idea of
quantum computation, most of them are based on the concept of a qubit, which is a
quantum system associated with two measurable events, and in some sense similar
to a random bit or biased coin toss as we saw in the introduction. Many popular
notions of quantum information claim that the power of quantum computers stems
from the fact that qubits can be in a linear combination of 0 and 1, so it can take
‘all states in between’. But also a classical random bit (i.e. a classical coin toss)
has this property to a certain extent. This is why sampling algorithms are often the
most suitable competitors to quantum routines. One major difference however is that
coefficients of the linear combination—the amplitudes—can be complex numbers in
the quantum case. In Chap. 1 we saw that a certain evolution can make amplitudes
even cancel each other out, or interferewith each other. This fact, together with other
subtleties can lead to measurement statistics that are non-classical, which means that
they cannot be reproduced by classical systems.

8http://math.nist.gov/quantum/zoo/.

http://math.nist.gov/quantum/zoo/
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A quantum computer can be understood as a physical implementation of n qubits
(or other basic quantum systems) with a precise control on the evolution of the
state. A quantum algorithm is a targeted manipulation of the quantum system with
a subsequent measurement to retrieve information from the system. In this sense a
quantumcomputer can be understood as a special sampling device:We choose certain
experimental configurations—such as the strength of a laser beam, or a magnetic
field—and read out a distribution over possible measurement outcomes.

An important theorem in quantum information states that any quantum evolution
(think again of manipulating the physical system in the lab) can be approximated by
a sequence of only a handful of elementary ‘manipulations’, called quantum gates,
which only act on one or two qubits at a time [18]. Based on this insight, quantum
algorithms are widely formulated as quantum circuits of these elementary gates. A
universal quantum computer consequently only has to know how to perform a small
set of operations on qubits, just like classical computers are build on a limited number
of logic gates. Runtime considerations usually count the number of quantum gates
it takes to implement the entire quantum algorithm. Efficient quantum algorithms
are based on evolutions whose decomposition into a circuit of gates grows at most
polynomially with the input size of the problem. We will speak more about runtime
and speedups in Chap.4.

As much as a classical bit is an abstract model of a binary system that can have
many different physical realisations in principle, a qubit can be used as a model
of many different physical quantum systems. Some current candidates for imple-
mentations are superconducting qubits [19], photonic setups [20], ion traps [21] or
topological properties of quasi-particles [22]. Each of them has advantages and dis-
advantages, and it is not unlikely that future architectures use a mixture of these
implementations.

3.2.2 Bits and Qubits

A qubit is realised as a quantum mechanical two-level system and as such can be
measured in two states, called the basis states. Traditionally, they are denoted by the
Dirac vectors |0〉 and |1〉.

For our purposes it therefore suffices to describe the transition from a classical to a
quantummechanical description of information processing—from bits to qubits—by
means of a very simple quantization procedure, namely

0 −→ |0〉,
1 −→ |1〉.

The vectors |0〉, |1〉 form a orthonormal basis of a 2-dimensional Hilbert space
which is also called the computational basis. As a consequence of the superposition
principle of quantum mechanics the most general state of a qubit is
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|ψ〉 = α1|0〉 + α2|1〉, (3.15)

whereα1, α2 ∈ C and because of the normalisation of the state vector |α1|2 + |α2|2 =
1. The Hermitian conjugate to the above ket-state, the bra-state, is then

〈ψ | = α∗
1〈0| + α∗

2〈1|,

where ∗ denotes complex conjugation.
As discussed in the previous sections, such a Dirac vector has a vector represen-

tation, since N -dimensional, discrete Hilbert spaces are isomorphic to the space of
complex vectors C

N . In vector notation, a general qubit is expressed as

|ψ〉 =
(

α1

α2

)

.

The Hermitian conjugate of this amplitude column vector is the transposed and
conjugated row vector

(α∗
1 , α

∗
2) ∈ C

2.

Furthermore, we can represent the two states |0〉 and |1〉 as the standard basis
vectors of the C

2,

|0〉 =
(
1
0

)

∈ C
2,

|1〉 =
(
0
1

)

∈ C
2.

Vector notation can be very useful to understand the effect of quantum gates. How-
ever, as common in quantum computing, we will predominantly use Dirac notation.

It is sometimes useful to have a geometric representation of a qubit. A generic
qubit in the pure state (3.15) can be parametrised as

|ψ〉 = exp (iγ )

(

cos
θ

2
|0〉 + exp (iφ) sin

θ

2
|1〉

)

,

where θ, φ and γ are real numbers with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π . The global
phase factor exp (iγ ) has no observable effect and will be omitted in the fol-
lowing. The angles θ and φ have the obvious interpretation as spherical coor-
dinates, so that the Hilbert space vector |ψ〉 can be visualised as the R

3 vector
(sin θ cosφ, sin θ sin φ, cosφ) pointing from the origin to the surface of a ball, the
so-called Bloch sphere. The Bloch sphere is illustrated in Fig. (3.4).9

The Dirac notation allows also for a compact description of the inner product
of two vectors in Hilbert space that was introduced in Sect. 3.1.3.1. Consider for

9Adapted from https://tex.stackexchange.com/questions/345420/how-to-draw-a-bloch-sphere.

https://tex.stackexchange.com/questions/345420/how-to-draw-a-bloch-sphere
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Fig. 3.4 The Bloch sphere
representation of a qubit

|ψ〉

x1

x2

x3

φ

θ

example, two vectors in C
2, |ψ1〉 = α1|0〉 + α2|1〉 and |ψ2〉 = β1|0〉 + β2|1〉, with

αi , βi ∈ C for i = 1, 2, |α1|2 + |α2|2 = 1 and |β1|2 + |β2|2 = 1. Since |0〉, |1〉 are
orthonormal, we have that

〈0|0〉 = 〈1|1〉 = 1, 〈0|1〉 = 〈1|0〉 = 0.

The inner product of |ψ1〉 and |ψ2〉 is therefore given by

〈ψ1|ψ2〉 = α∗
1β1 + α∗

2β2.

Of course, this is equivalent the scalar or vector product of the two corresponding
amplitude vectors. Similarly, the outer product of two states can be compactly written
as

|ψ1〉〈ψ2| =
(

α1β
∗
1 α1β

∗
2

α2β
∗
1 α2β

∗
2

)

,

which is the outer product of the amplitude vectors.
According to Sect. 3.1.3.5, n unentangled qubits are described by a tensor product

of single qubits,
|ψ〉 = |q1〉 ⊗ · · · ⊗ |qn〉.
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If the qubits are entangled, state |ψ〉 is no longer separable, and in the computa-
tional basis reads

|ψ〉 = α1|0 . . . 00〉 + α2|0 . . . 01〉 + · · · + α2n |1 . . . 11〉,

with αi ∈ C, and
∑2n

i=1 |αi |2 = 1. Here we introduce the common shorthand which
writes the tensor product |a〉 ⊗ |b〉 as |ab〉. The basis {|0 . . . 00〉, . . . , |1 . . . 11〉} is
the computational basis for n qubits. Note that for some algorithms the qubits are
divided into certain registers, which have different functions in the computation.

We will make heavy use of an elegant notation that summarises a Dirac vector in
computational basis as

|ψ〉 =
2n∑

i=1

αi |i〉. (3.16)

The expression |i〉 for indices 1 to 2n refers to the i th computational basis state
from the basis {|0 . . . 0〉, . . . , |1 . . . 1〉}. The sequence of zeros and ones in the basis
state at the same time corresponds to the binary representation of integer i − 1 (see
Table3.2). As a rule from now on, an index i between the Dirac bracket for a system
of n > 1 qubits refers to the i th computational basis state. The only exception is a
single qubit state, whose basis is traditionally referred to as |0〉, |1〉. The reason why
we introduce a differing convention for multi-qubit states is that we will use |i〉 often
as an index register that refers to the i th data input, and it is rather unnatural (and
becomes inconvenient) to number data points starting from 0.

Using this notation, a pure density matrix is given by

ρpure = |ψ〉〈ψ | =
N∑

i, j=1

α∗
i α j |i〉〈 j |. (3.17)

Table 3.2 The index i of an amplitude from the 23-dimensional quantum state vector refers to the
computational basis state |i〉. The binary string of the basis state has an integer representation of
i − 1

Amplitude Binary/integer Basis state Shorthand

α1 000 ↔ 0 |000〉 |1〉
α2 001 ↔ 1 |001〉 |2〉
α3 010 ↔ 2 |010〉 |3〉
α4 011 ↔ 3 |011〉 |4〉
α5 100 ↔ 4 |100〉 |5〉
α6 101 ↔ 5 |101〉 |6〉
α7 110 ↔ 6 |110〉 |7〉
α8 111 ↔ 7 |111〉 |8〉
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For a general mixed state the coefficients do not factorise and we get

ρmixed =
N∑

i, j=1

αi j |i〉〈 j |, αi j ∈ C. (3.18)

It is useful to consider the measurement of a qubit in the computational basis to
illustrate the more abstract content of Sect. 3.1.3.4. Let us assume that the state being
measured is the generic (normalised) qubit state |ψ〉 = α1|0〉 + α2|1〉. In this case
the projectors on the two possible eigenspaces are P0 = |0〉〈0| and P1 = |1〉〈1|. The
probability of obtaining the measurement outcome 0 is then

p(0) = tr{P0|ψ〉〈ψ |} = 〈ψ |P0|ψ〉 = |α1|2.

Similarly, one finds that p(1) = |α2|2. After the measurement, say of outcome 0,
the qubit is in the state

|ψ〉 → P0|ψ〉√〈ψ |P0|ψ〉 = |0〉.

A computational basis measurement can be understood as drawing a sample of
a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

3.2.3 Quantum Gates

Postulates 3.1.3.3 and 3.1.3.4 highlighted the evolution of quantum states, as well
as their measurement. In analogy, there are two basic operations on qubits that are
central to quantum computing,

• quantum logic gates,
• computational basis measurements.

Quantum logic gates are realised by unitary transformations introduced in Eqs. (3.7)
and (3.11). As we have seen, after a projective measurement in the computational
basis the state of the qubit |ψ〉 = α1|0〉 + α2|1〉, will be either |0〉 with probability
|α1|2 or |1〉 with probability |α2|2.

Single qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 �→ |1〉, (3.19)

|1〉 �→ |0〉. (3.20)
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It is represented by the matrix

X =
(
0 1
1 0

)

.

In vector-matrix notation it is easy to check that applying the X gate to the state
|0〉 results in the state |1〉

X |0〉 =
(
0 1
1 0

) (
1
0

)

=
(
0
1

)

= |1〉.

In otherwords, applied to a generic single qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single qubit gates are summarised in the Table3.3. The first three
gates X , Y , Z , are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)

, σy =
(
0 −i
i 0

)

, σz =
(
1 0
0 −1

)

, (3.21)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is

not to be confused with the Hamiltonian of the same symbol). The Hadamard was

Table 3.3 Some useful single qubit logic gates and their representations

Gate Circuit representation Matrix representation Dirac representation

X X

(
0 1

1 0

)

|1〉〈0| + |0〉〈1|

Y Y

(
0 −i

i 0

)

i |1〉〈0| − i |0〉〈1|

Z Z

(
1 0

0 −1

)

|1〉〈0| − |0〉〈1|

H H 1√
2

(
1 1

1 −1

)

1√
2
(|0〉 + |1〉)〈0| +

1√
2
(|0〉 − |1〉)〈1|

S S 1√
2

(
1 0

0 i

)

1√
2
|0〉〈0| + 1√

2
i |1〉〈1|

R R 1√
2

(
1 0

0 exp(−iπ/4)

)

1√
2
|0〉〈0| +

1√
2
exp−iπ/4 |1〉〈1|
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already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is given as

|0〉 �→ 1√
2
(|0〉 + |1〉), (3.22)

|1〉 �→ 1√
2
(|0〉 − |1〉). (3.23)

As made clear from the above expression, the role of H is to create superpositions
of qubits.

Of course, it is important to operate on more qubits at the same time as well.
The paradigmatic 2-qubit gate is the so-called CNOT gate, which is an example of
a controlled gate. The state of a qubit is changed, based on the value of another,
control, qubit. In the case of the CNOT gate, the NOT operation (or X opera-
tion) is performed, when the first qubit is in state |1〉; otherwise the second qubit is
unchanged

|00〉 �→ |00〉, |01〉 �→ |01〉, |10〉 �→ |11〉, |11〉 �→ |10〉. (3.24)

Accordingly, the matrix representation of the CNOT gate is given by

CNOT =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ .

The CNOT gate (3.24) is a special case of a more general controlled U gate

|00〉 �→ |00〉, |01〉 �→ |01〉, |10〉 �→ |1〉U |0〉, |11〉 �→ |1〉U |1〉, (3.25)

where U is an arbitrary single qubit unitary gate. For the CNOT, we obviously have
U = X . Any multiple qubit gate may be composed by a sequence of single qubit
gates and CNOT gates [18]. In Table3.4 we summarize some useful multi-qubit
gates.

Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Circuit
notation allows the graphical visualisation of a quantum routine, and we will intro-
duce it with our first little quantum algorithm, the entangling circuit shown in Fig.
(3.5).

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. (3.5) on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT ((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).
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Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT

•
⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞

⎟
⎟
⎟
⎠

SWAP

××
⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

T

•
•

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

|0〉2 H •
|0〉1

Fig. 3.5 Aquantum circuit that entangles two qubits displayed in graphical notation. A line denotes
a so called ‘quantum wire’ that indicates the time evolution of a qubit. The initial state of the qubit
is written to the left of the quantum wire, and sometimes the final state is written towards the right.
A gate sits on the wires that correspond to the qubits it acts on

Recalling the effect of the Hadamard gate H (3.22), the above expression becomes
a fully entangled state

CNOT (
1√
2
|0〉2 ⊗ |0〉1 + 1√

2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as the Bell state (Fig. 3.5).
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3.2.4 Quantum Parallelism and Function Evaluation

As a first larger example of a quantum algorithm we want to construct a quantum
logic circuit that evaluates a function f (x) (see also [17]). This simple algorithm
will already exhibit one of the salient features of quantum algorithms: quantum par-
allelism. Roughly speaking, we will see how a quantum computer is able to evaluate
many different values of the function f (x) at the same time, or in superposition.

To be specific we consider a very simple function f (x), that has a single bit as
input and a single bit as output, i.e. a function with a one bit domain and range,

f (x) : {0, 1} → {0, 1}.

Examples of such a function are the identity function

f (x) = 0, if x = 0 and f (x) = 1, if x = 1,

the constant functions

f (x) = 0 or f (x) = 1,

and the bit flip function

f (x) = 1, if x = 0 and f (x) = 0, if x = 1.

The idea is to construct a unitary transformation U f such that

(x, y)
U f−→ (x, y ⊕ f (x)). (3.26)

In the above equation the symbol ⊕ denotes mod 2 addition, i.e. 0 ⊕ 0 =
1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1. Note, that the more straightforward approach
x → f (x) is not suitable for quantum computation, as it is not unitary in general.
The unitary transformation U f is represented as a circuit diagram in Fig. 3.6.

For the initial value y = 0, Eq. (3.26) reduces to

(x, 0)
U f−→ (x, f (x)).

Fig. 3.6 The schematic
representation of the gate U f

|x〉
Uf

|x〉
|y〉 |y ⊕ f(x)〉
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It is easy to verify that U f is unitary, we just check that U 2
f = 1

(x, [y ⊕ f (x)]) U f−→ (x, [y ⊕ f (x)] ⊕ f (x)) = (x, y),

because f (x) ⊕ f (x) = 0, for any x . ExpressingU f in operator notation, this reads

U f (|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f (x)〉,

and we obtain the useful expression U f (|x〉 ⊗ |0〉) = |x〉 ⊗ | f (x)〉.
We are now in the position to demonstrate quantum parallelism. We consider the

quantum circuit of 2 qubits sketched in Fig. 3.7. The circuit acts in the following
way:

i. We apply the Hadamard gate to the first qubit in state |0〉 to obtain

H |0〉 = 1√
2
(|0〉 + |1〉).

ii. If the second qubit is in state |0〉, the state |ψ〉 after the application of the unitary
U f is

|ψ〉 = U f (H |0〉 ⊗ |0〉) = U f
1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |0〉)

= 1√
2

(|0〉 ⊗ | f (0)〉 + |1〉 ⊗ | f (1)〉)) .

It is now evident that the state |ψ〉 contains simultaneously the information on f (0)
and f (1). The circuit has produced a superposition in one single step state that
contains f (0) and f (1).

It is important to realize that the above procedure does not (yet) give us an advan-
tage over a classical computation. Although |ψ〉 is a superposition of f (0) and f (1),
in order to access the information we need to perform a measurement. If we measure∑

x=0,1 |x〉| f (x)〉with a computational basis measurement, we obtain only one value
of x and f (x). In fact, we are only able to get a value of our function at a random
argument. The real power of quantum algorithms will be made evident in the next
example where we follow [17].

|0〉 H
Uf|0〉

Fig. 3.7 A simple circuit to demonstrate quantum parallelism. The two-qubit gate is the unitary
U f described in the text
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3.3 An Example: The Deutsch-Josza Algorithm

3.3.1 The Deutsch Algorithm

The Deutsch algorithm exploits what we have learned so far to obtain information
about a global property of a function f (x). A function of a single bit can be either
constant ( f (0) = f (1)), or balanced ( f (0) �= f (1)). These properties are global,
because in order to establish them we need to calculate both f (0) and f (1) and
compare the results. As we will see a quantum computer can do better.

The quantum circuit of the Deutsch algorithm is depicted in Fig. 3.8. Essentially,
the Deutsch algorithms computes

|ψ3〉 = (H ⊗ 1)U f (H ⊗ H)|01〉, (3.27)

for an initial state |ψ0〉 = |01〉. Let us discuss the calculation of (3.27) step by step.

(i) In a first step we calculate |ψ1〉

|ψ1〉 = (H ⊗ H)|01〉 = 1√
2

(|0〉 + |1〉) 1√
2

(|0〉 − |1〉)

= 1

2
(|00〉 − |01〉 + |10〉 − |11〉) .

(ii) Next we apply U f to |ψ1〉. It is convenient to write |ψ1〉 as

|ψ1〉 = 1

2

(
1∑

x=0

|x〉
)

⊗ (|0〉 − |1〉).

In order to evaluate the action of U f on |ψ1〉 we consider separately the case
f (x) = 0 and f (x) = 1.
For the case f (x) = 0 we find

U f (|x〉 ⊗ (|0〉 − |1〉)) = |x, 0 ⊕ f (x)〉 − |x, 1 ⊕ f (x)〉 = |x, 0 ⊕ 0〉 − |x, 1 ⊕ 0〉
= |x〉(|0〉 − |1〉).

Similarly, for f (x) = 1 we find

Fig. 3.8 The quantum
circuit for the
implementation of the
Deutsch algorithm

|0〉2 H
Uf

H

|1〉1 H
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U f (|x〉 ⊗ (|0〉 − |1〉)) = |x, 0 ⊕ 1〉 − |x, 1 ⊕ 1〉
= −|x〉(|0〉 − |1〉).

The two above cases can elegantly be summarised as

|ψ2〉 = U f |ψ1〉 = 1

2

(
1∑

x=0

(−1) f (x)|x〉
)

⊗ (|0〉 − |1〉) = |φ〉 ⊗ 1√
2
(|0〉 − |1〉).

In other words, the net result after the application of U f on the input register is

|φ〉 = 1√
2

(
(−1) f (0)|0〉 + (−1) f (1)|1〉) .

(iii) In the last step, just before the measurement, we apply a Hadamard gate to the
input qubit

|ψ3〉 = (H ⊗ 1)

(

|φ〉 ⊗ 1√
2
(|0〉 − |1〉)

)

.

It is easy to calculate

H |φ〉 = 1

2

(
(−1) f (0) + (−1) f (1)

) |0〉 + 1

2

(
(−1) f (0) − (−1) f (1)

) |1〉.

If the measurement of the qubit gives the state |0〉, then we know that f (0) =
f (1), as the coefficient in front of |1〉 vanishes, and, hence the function f (x)
is constant. If the measurement gives the state |1〉, then f (0) �= f (1), and the
function is balanced.

Quantumparallelismhas allowed the calculation of the global properties of a function
without having to evaluate explicitly the values of the function.

3.3.2 The Deutsch-Josza Algorithm

The Deutsch algorithm can be generalised to functions with multiple input values.
Before explaining the general idea behind the so-called Deutsch-Josza algorithm it
is useful to briefly discuss how to generalize the input register from one qubit to n
qubits. Let us start by considering the example of the case of n = 3 qubits. In the
notation |x〉, x is one of the 8 numbers

000, 001, 010, 011, 100, 101, 110, 111.

In order to exemplify the power of this compact notation we consider the state
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|ψ〉 = H⊗3|000〉 = (H |0〉) ⊗ (H |0〉) ⊗ (H |0〉)
=

(
1√
2

)3

(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉) .

With the convention of Eq. (3.16) this state can now be compactly written as

|ψ〉 = H⊗3|000〉 = 1√
23

8∑

i=1

|i〉.

In general we have,

H⊗n|0⊗n〉 = 1√
2n

2n∑

i=1

|i〉.

The obvious generalisation of the operator U f can be defined as

U f |x ⊗ z〉 = |x ⊗ [z ⊕ f (x)]〉.

It is important to remark that in this more general case the symbol ⊕ denotes the
operation mod 2 addition without ‘carry over’. As an example, one might consider
1101 ⊕ 0111 = 1010.

Eventually, we are in the position to define the Deutsch-Josza problem [14]. We
are given a black box quantum computer (oracle) that implements the function f :
{0, 1}n −→ {0, 1}. We are promised that the function is either constant (all outputs 0
or all outputs 1) or balanced (returns 1 for half the inputs and 0 for the other half). The
task is to determine, whether the function is balanced or constant using the oracle.
At worse a classical computer will have to evaluate the function 2n/2 + 1 times. The
quantum algorithm suggested by Deutsch and Josza requires just one evaluation of
the function f [14]. The corresponding quantum circuit can be seen in Fig. 3.9.

In the following we will analyse the Deutsch-Josza algorithm step by step.

i. The input state is |ψ0〉 = |0〉⊗n ⊗ |1〉.
ii. After the application of the Hadamard gates on the input state |ψ0〉 the state

becomes

|0〉 / H⊗n

Uf

H⊗n

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 3.9 The quantum circuit for the implementation of theDeutsch-Josza algorithm. The backslash
symbol indicates that there are n quantum wires summarised as one
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|ψ1〉 = 1√
2n

2n∑

i=1

|i〉
[

1√
2
[|0〉 − |1〉]

]

,

where we used the compact index notation introduced in Eq. (3.16).
iii. After the evaluation of the function the state evolves to

|ψ2〉 = 1√
2n

2n∑

i=1

(−1) f (x)|i〉 1√
2
[|0〉 − |1〉]

iv. Now, we need to apply another Hadamard transformation to all qubits except
the last. We start by considering the effect of the Hadamard transformation.
For this we change from summing over an index to explicitly writing i − 1 =
x1, . . . , xn or z1, . . . , zn , where xk, zk are binary variables for all k = 1, . . . , n.
It is straightforward to check that

H⊗n|x1, . . . , xn〉 = 1√
2n

∑

z1,...,zn

(−1)x1z1+···xn zn |z1, . . . , zn〉

= 1√
2n

∑

z

(−1)x ·z|z〉,

wherewehave introduced the compact notation of bitwise inner product mod 2,
i.e. x · z = x1z1 + . . . xnzn . The third step of the Deutsch-Josza algorithm thus
leads to the state

|ψ3〉 = 1

2n
∑

z

∑

x

(−1)x ·z+ f (x)|z〉 1√
2
[|0〉 − |1〉].

v. Lastly, we have to evaluate the probability of measuring the state |0〉⊗n

p(0 . . . 0) =
∣
∣
∣
∣
∣

1

2n
∑

x

(−1) f (x)

∣
∣
∣
∣
∣

2

.

Of course, if f (x) = constant, constructive interference leads to p(0 . . . 0) =
1. Similarly, if the function f is balanced, destructive interference leads to
p(0 . . . 0) = 0.

3.3.3 Quantum Annealing and Other Computational Models

Although the circuit model of qubits and gates is by far the most common formalism,
there are some other computational models that we want to mention briefly. These
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have so far been shown to be equivalent up to a polynomial overhead, which means
that efficient translations from one to the other exist.

Prominent in the quantum machine learning literature is a technique called quan-
tum annealing, which can be understood as a heuristic to adiabatic quantum comput-
ing. Adiabatic quantum computing [23] is in a sense the analog version of quantum
computing [24] in which the solution of a computational problem is encoded in the
ground state (i.e. lowest energy state) of a Hamiltonian which defines the dynam-
ics of a system of n qubits. Starting with a quantum system in the ground state of
another Hamiltonian which is relatively simple to realise in a given experimental
setup, and slowly adjusting the system so that it is governed by the desired Hamilto-
nian ensures that the system is afterwards found in the ground state. The Hamiltonian
can for example be adjusted by changing the interaction strengths between the qubits.

It turns out that for many problems, to keep the system in the ground state during
the adjustment (the ‘annealing schedule’) requires a very slow evolution from one
to the other Hamiltonian, and often a time exponential in the problem size, which
shows once more that nature seems to set some universal bounds for computation.
Quantum annealingmay be seen as a heuristic or ‘shortcut’ to the adiabatic algorithm
whose dynamics work much like simulated annealing in computer science. The main
difference between classical and quantum annealing is that thermal fluctuations are
replaced by quantum fluctuations which enables the system to tunnel through high
and thin energy barriers. The probability of quantum tunnelling decreases exponen-
tially with the barrier width, but is independent of its height. That makes quantum
annealing especially fit for problems with a sharply ragged objective function (see
Fig. 3.10).

The great interest in quantumannealing by the quantummachine learning commu-
nity has been driven by the fact that an annealing device was the first commercially

E

x

Fig. 3.10 Illustration of quantum annealing in an energy landscape over (here continuous) states
x . The ground state is the configuration of lowest energy (black dot). Quantum tunnelling allows
the system state to go through high and thin energy barriers (gray dot on the left), while in classical
annealing techniques stochastic fluctuations have to be large enough to allow for jumps over peaks
(gray dot on the right)
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available hardware for quantum computing. Demonstrations of machine learning
with theD-Wave quantumannealer10 date back to as early as 2009 [25]. Current quan-
tum annealers are limited to solving a special kind of problem, so called quadratic
unconstrained binary optimisation problems which we will introduce in Chap. 7.
Measuring the performance of quantum annealing compared to classical annealing
schemes is a non-trivial problem, and although advantages of the quantum schemes
have been demonstrated in the literature mentioned above, general statements about
speed-ups and ‘real quantum behaviour’ are still controversial [26, 27].

Another famous quantum computationalmodel is one-way ormeasurement-based
quantum computing. The idea [28] is to prepare a highly entangled state called a clus-
ter state and to perform a series of single-qubit measurements which conditionally
depend on the output of former single-qubit measurements. This computation is of
course not unitary. The result can be either the state of the unmeasured qubits, or
the outcome of a final measurement [29]. Many important quantum algorithms have
been implemented using one-way computation [30–33]. However, there are notmany
investigations into quantum machine learning based on this model, and it is an open
question whether it offers a particularly suitable framework to approach learning
tasks.

While quantum annealing and one-way quantum computing still refer to qubits
as the basic computational unit, continuous-variable quantum computing [34, 35]
shows promising features for quantum machine learning [36, 37]. Continuous vari-
able systems encode information not in a discrete quantum system such as a qubit,
but in a quantum state with a continuous basis. The Hilbert space of such a system is
infinite-dimensional, which can potentially be leveraged to build machine learning
models [38].

3.4 Strategies of Information Encoding

There are different ways to encode information into a n-qubit system described by
a state (3.16), and we will introduce some relevant strategies in this section. While
for data mining and machine learning the question of information encoding becomes
central, this is not true for many other topics in quantum computing, which is pre-
sumably why quantum computing so far has no terminology for such strategies. We
will therefore refer to them as basis encoding, amplitude encoding, qsample encod-
ing and dynamic encoding. The encoding methods presented here will be explored
in more detail in Chap. 5, where we look at them in relation to quantum machine
learning algorithms.

An illustration of the different encoding methods can be found in Fig. 3.11 and
a summary of the notation used here can be found in Table3.5. It is interesting to
note that many quantum algorithms - such as the matrix inversion routine introduced
below—can be understood as strategies of transforming information from one kind
of encoding to the other.

10http://www.dwavesys.com/.

http://www.dwavesys.com/
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U = e−iHAt

Dynamic encoding of a Hermitian matrix A

|ψ〉 = α1 |00〉 + α2 |01〉 + α3 |10〉 + α4 |11〉

amplitude encoding of unit-length complex vector (α1, α2, α3, α4)T

basis encoding of binary string (10), e.g. to represent integer 2

Fig. 3.11 Illustration of the different encoding strategies for a quantum state of a 2-qubit system

Table 3.5 A summary of the different types of information encoding presented in the text, as well
as their possible variations

Classical data Properties Quantum state

Basis encoding

(b1, . . . , bd ), bi ∈ {0, 1} b encodes x ∈ R
N in binary |x〉 = |b1, . . . , bd 〉

Amplitude encoding

x ∈ R
2n ∑2n

i=1 |xi |2 = 1 |ψx 〉 = ∑2n
i=1 xi |i〉

A ∈ R
2n×2m ∑2n

i=1
∑2m

j=1 |ai j |2 = 1 |ψA〉 = ∑2n
i=1

∑2m
j=1 ai j |i〉| j〉

A ∈ R
2n×2n ∑2n

i=1 aii = 1, ai j = a∗
j i , A

pos.
ρA = ∑

i j ai j |i〉〈 j |

Qsample encoding

p(x), x ∈ {0, 1}⊗n ∑
x p(x) = 1

∑
x
√
p(x)|x〉

Dynamic encoding

A ∈ R
2n×2n A unitary UA with UA = A

A ∈ R
2n×2n A Hermitian HA with HA = A

A ∈ R
2n×2n – HÃ with Ã =

(
0 A

A† 0

)

3.4.1 Basis Encoding

Basis encoding associates a computational basis state of a n-qubit system (such as
|3〉 = |0011〉) with a classical n-bit-string (0011). In a way, this is the most straight
forward way of computation, since each bit gets literally replaced by a qubit, and a
‘computation’ acts in parallel on all bit sequences in a superposition. We have used
basis encoding in the algorithms investigated so far in this chapter.
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The value of the amplitudes αi of each basis state does not carry any other infor-
mation than to ‘mark’ the result of the computation with a high enough probability
of being measured. For example, if the basis state |0011〉 with amplitude α0011 has
a probability |α0011|2 > 0.5 of being measured, repeated execution of the algorithm
and measurement of the final state in the computational basis will reveal it as the
most likely measurement result, and hence the overall result of the algorithm. For
the basis encoding method, the goal of a quantum algorithm is therefore to increase
the probability or absolute square of the amplitude that corresponds to the basis state
encoding the solution.

Like in classical computers, basis encoding uses a binary representation of num-
bers. A quantum state |x〉 with x ∈ R will therefore refer to a binary representation
of x with the number n of bits that the qubit register encoding |x〉 provides. There
are different ways to represent a real number in binary form, for example by fixed
or floating point representations. In the following it is always assumed that such a
strategy is given, and we will elaborate more on this point where the need arises.

Example 3.4 (Basis encoding) Let us choose a binary fraction representation, where
each number in the interval [0, 1) is represented by a τ -bit string according to

x =
τ∑

k=1

bk
1

2k
. (3.28)

To encode a vector x = (0.1,−0.6, 1.0) in basis encoding, we have to first trans-
late it into a binary sequence, where we choose a binary fraction representation with
precision τ = 4 and the first bit encoding the sign,

0.1 → 0 0001 . . .

−0.6 → 1 1001 . . .

1.0 → 0 1111 . . .

The vector therefore corresponds to a binary sequence b = 00001 11001 01111
and can be represented by the quantum state |00001 11001 01111〉.

3.4.2 Amplitude Encoding

Amplitude encoding is much less common in quantum computing, as it associates
classical information such as a real vector with quantum amplitudes, and there are
different options to do so. A normalised classical vector x ∈ C

2n ,
∑

k |xk |2 = 1 can
be represented by the amplitudes of a quantum state |ψ〉 ∈ H via
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x =
⎛

⎜
⎝

x1
...

x2n

⎞

⎟
⎠ ↔ |ψx 〉 =

2n∑

j=1

x j | j〉.

In the same fashion a classical matrix A ∈ C
2n×2m with entries ai j that fulfil∑

i j |ai j |2 = 1, can be encoded as

|ψA〉 =
2m∑

i=1

2n∑

j=1

ai j |i〉| j〉

by enlarging the Hilbert space accordingly. This turns out to be rather useful for
quantum algorithms, since the ‘index registers’ |i〉, | j〉 refer to the i th row and the
j th column respectively. By fixing either of the register we can therefore address a
row or column of the matrix. For Hermitian positive trace-1 matrices A ∈ C

2n×2n ,
another option arises: One can associate its entries with the entries of a densitymatrix
ρA, so that ai j ↔ ρi j .

Encoding information into the probabilistic description of a quantum system nec-
essarily poses severe limitations on which operations can be executed. This becomes
particularly important when we want to perform a nonlinear map on the amplitudes,
which is impossible to implement in a unitary fashion. This has been extensively
debated under the keyword of nonlinear quantum theories [39, 40] and it has been
demonstrated that assumptions of nonlinear operators would immediately negate
fundamental principles of nature that are believed to be true [41, 42].

Another obvious restriction of this method is that only normalised classical vec-
tors can be processed. Effectively this means that quantum states represent the data
in one less dimension or with one less degree of freedom: A classical two dimen-
sional vector (x1, x2) can only be associated with an amplitude vector (α1, α2) of a
qubit which fulfils |α1|2 + |α2|2 = 1. This means that it lies on a unit circle, a one-
dimensional shape in two dimensional space. Three-dimensional vectors encoded in
three amplitudes of a 2-qubit quantum system (where the last of the four amplitudes
is redundant and set to zero) will reduce the 3-dimensional space to the surface of
a sphere, and so on. A remedy can be to increase the space of the classical vector
by one dimension xN+1 = 1 and normalise the resulting vector. The N -dimensional
space will then be embedded in a N + 1-dimensional space in which the data is
normalised without loss of information (Fig. 3.12).

Example 3.5 (Amplitude encoding) To encode the same vector from Example 3.4,
x = (0.1,−0.6, 1.0), in amplitude encoding, we have to first normalise it to unit
length (rounding to three digits here) and pad it with zeros to a dimension of integer
logarithm,

x ′ = (0.073,−0.438, 0.730, 0.000).
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x1-1 1 x1

x2

-1 1

Fig. 3.12 Data points in the one-dimensional interval [−1, 1] (left) canbeprojectedonto normalised
vectors by adding a constant value in a second dimension x2 and renormalising

Now it can be represented by a quantum state of 2 qubits:

0.073|00〉 − 0.438|01〉 + 0.730|10〉 + 0|11〉.

This state would at the same time encode the matrix

A =
(
0.073 −0.438
0.730 0.000

)

,

if we interpret the first qubit as an index for the row and the second qubit as an index
for the column.

3.4.3 Qsample Encoding

Consider an n-qubit quantum state described by an amplitude vector α =
(α1, . . . , α2n )

T . Measuring the n qubits in the computational basis is equivalent
to sampling a bit string of length n from a discrete probability distribution p1 =
|α1|2, . . . , p2n = |α2n |2. By ‘equivalent’ we mean that both the measurement and
the classical sampling routine draw samples with the same probability. This means
that we can use the amplitude vector to represent a classical discrete probability
distribution. Given a classical discrete probability distribution over binary strings
p1, . . . , p2n , the quantum state

|ψ〉 =
2n∑

i=1

√
pi |i〉

is sometimes referred to as a qsample [43, 44], a term that we will apply here as well.
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3.4.4 Dynamic Encoding

For some applications it can be useful to encode matrices into the dynamic evolution,
for example into unitary operators. While unitary operators obviously restrict the
class of matrices that they can represent, a useful option from [45] is to associate a
Hamiltonian H with a squarematrix A. In case A is notHermitian, one can sometimes
use the trick of instead encoding

Ã =
(
0 A
A† 0

)

, (3.29)

and only considering part of the output. This way, the eigenvalues of A can be pro-
cessed in a quantum routine, for example to multiply A or A−1 with an amplitude
encoded vector. Table3.5 summarises the different strategies of information encod-
ing mentioned here.

Example 3.6 (Hamiltonian encoding) The matrix

A =
(
0.073 −0.438
0.730 0.000

)

from Example 3.5 can also define the dynamics of a quantum system. Since A is not
Hermitian we define the Hamiltonian

H =

⎛

⎜
⎜
⎝

0 0 0.073 −0.438
0 0 0.730 0.000

0.073 0.730 0 0
−0.438 0.000 0 0

⎞

⎟
⎟
⎠

The effect of applying the Hamiltonian via e−i Ht to an amplitude vector α can be
calculated from the corresponding eigenvalue equations. The eigenvectors/values of
H are

v1 = (−0.108 −0.699 0.704 −0.065
)
, λ1 = −0.736

v2 = (
0.699 −0.108 0.065 0.704

)
, λ2 = −0.435

v3 = (
0.699 −0.108 −0.065 −0.704

)
, λ3 = 0.435

v4 = (
0.108 0.699 0.704 −0.064

)
, λ4 = 0.736.

These eigenvectors form a basis and hence α can be decomposed in this basis as

α = γ1v
2 + γ2v

2 + γ3v
3 + γ4v

4,

with γi = αT vi for i = 1, . . . , 4. Applying the Hamiltonian therefore leads to



114 3 Quantum Information

ψ = e−i Htα = e−iλ1tγ1v
1 + e−iλ2tγ2v

2 + e−iλ3tγ3v
3 + e−iλ4tγ4v

4,

or, in Dirac notation,

|ψ〉 = (−0.108e−iλ1tγ1 + 0.699e−iλ2tγ2 + 0.699e−iλ3tγ3 + 0.108e−iλ4tγ4)|00〉
+ (−0.699e−iλ1tγ1 − 0.108e−iλ2tγ2 − 0.108e−iλ3tγ3 + 0.699e−iλ4tγ4)|01〉
+ (0.704e−iλ1tγ1 + 0.065e−iλ2tγ2 − 0.065e−iλ3tγ3 + 0.704e−iλ4tγ4)|10〉
+ (−0.065e−iλ1tγ1 + 0.704e−iλ2tγ2 − 0.704e−iλ3tγ3 − 0.064e−iλ4tγ4)|10〉

3.5 Important Quantum Routines

The quantum machine learning algorithms in later chapters will make use of some
well-known (and a few less well-known) quantum routines that shall be introduced
briefly here. Also, we will discuss the asymptotic complexity - the growth of the
number of elementary operations needed with the input - of the routines, a concept
which will be introduced more rigorously in Sect. 4.1.

3.5.1 Grover Search

Grover’s algorithm (here used synonymously with the term amplitude amplifica-
tion) is a quantum routine that finds one or multiple entries in an unstructured (i.e.,
arbitrarily sorted) database of N entries in basis encoding, a task that on classical
computers takes N operations at worst and N/2 on average. More generally, it is a
routine that given a quantum state in superposition increases the amplitude of some
desired basis states, which is a crucial tool for quantum computing. To illustrate this,
imagine one had a 3-qubit register in uniform superposition that serves as an index
register, joint with a ‘flag’ ancilla qubit in the ground state as well as the database
entries ei in basis encoding,

|ψ〉 = α1|000〉|0〉|e1〉
+ α2|001〉|0〉|e2〉
+ α3|010〉|0〉|e3〉
+ α4|011〉|0〉|e4〉
+ α5|100〉|0〉|e5〉
+ α6|101〉|0〉|e6〉
+ α7|110〉|0〉|e7〉
+ α8|111〉|0〉|e8〉.
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Further, assume that therewas aknownquantumalgorithm that ‘marks’ the desired
output |011〉 of the computation by setting the ancilla to 1. This could be a quantum
version of a classical routine that analyses an entry and flags it if it is recognised
as the correct one, with the typical quantum property of applying it in parallel to an
exponential amount of entries. The result is state

|ψ ′〉 = a1|000〉|0〉|e1〉
+ α2|001〉|0〉|e2〉
+ α3|010〉|0〉|e3〉
+ α4|011〉|1〉|e4〉
+ α5|100〉|0〉|e5〉
+ α6|101〉|0〉|e6〉
+ α7|110〉|0〉|e7〉
+ α8|111〉|0〉|e8〉.

Grover search is an iterative quantum algorithm that increases the desired ampli-
tude α3 so that |α3|2 ≈ 1 and a measurement reveals the result of the computation. It
turns out that in order to increase the amplitude, one requires

√
N iterations (where

N = 2n is the number of basis states or amplitudes over which to ‘search’) and that
this is a lower bound for quantum algorithms for this kind of task [46, 47]. In other
words, for search in unstructured databases (a very generic search and optimisation
problem) we will not see an exponential speed-up of quantum computers as Grover
search is optimal. This is not surprising; if amplitude amplification could be done
exponentially faster, we could answer the question whether there is a right solution
and solve NP-hard problems at a wimp.11

One iteration of the Grover routine consists of the following steps:

1. Mark the desired state using the oracle and multiply the amplitude by −1
2. Apply a Hadamard transform on the index qubits
3. Apply a phase shift of −1 on every computational basis state but the first one

(|0 . . . 0〉)
4. Apply a Hadamard transform on the index qubits.

The third step implements an operator 2|0〉〈0| − 1 and together with the
Hadamards an ‘inversion about the average’ is performed. Steps 2–4 make up the so
called ’Grover operator’ which alters each amplitude according to

αi → −αi + 2ᾱ,

11The quadratic speed-up seems to be intrinsic in the structure of quantum probabilities, and derives
from the fact that one has to square amplitudes in order to get probabilities.
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where ᾱ = 1
N

∑
i αi is the average of all amplitudes. After a number of steps

proportional to
√
N the probability of measuring the state of the marked ampli-

tude is maximised if only one state has been marked. For several marked states the
final probability depends on their number B and the optimal result (probability of
one to measure one of the marked states) will be achieved after a number of steps
proportional to

√
N/B.

A helpful analysis and extension of Grover search for quantum superpositions
that are not uniform is given in [48] and shows that the distance of unmarked states
to the average of all unmarked states remains constant in every iteration, and the
same is true for marked states. In other words, the average gets shifted periodically.
Also, the study finds that although one can show that the optimal probability is
obtained after

√
N/B iterations, the value of that probability can vary considerably

depending on the initial distribution of the amplitudes. One therefore needs to pay
attentionwhenworkingwith non-uniform initial distributions. If the number of states
that are searched for is not known one can use the technique of quantum counting to
get an estimate [49].

Example 3.7 (Grover search) Let us have a look at Grover search for two qubits.
We start with a uniform superposition of four states with the aim of finding the third
one

0.5|00〉 + 0.5|01〉 + 0.5|10〉 + 0.5|11〉.

Step 1 in the first iteration marks the basis state

0.5|00〉 + 0.5|01〉 − 0.5|10〉 + 0.5|11〉.

Steps 2–4 in the first iteration are the reflection yielding

|10〉.

Steps 1–4 of the second iteration result in:

−0.5|00〉 − 0.5|01〉 + 0.5|10〉 − 0.5|11〉,

and Steps 1–4 of the third iteration yield:

−0.5|00〉 − 0.5|01〉 − 0.5|10〉 − 0.5|11〉,

from which the entire cycle starts up to a sign and ends in the uniform superposition
in three further steps. One finds that it takes one iteration until measuring the desired
state has unit probability, a situation which is revisited after 2 cycles. Amplitude
amplification has periodic dynamics.
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3.5.2 Quantum Phase Estimation

Quantum phase estimation is a routine that writes information encoded in the phase
ϕ of an amplitude α = |α|eiϕ into a basis state by making use of the quantum Fourier
transform. It is used extensively in quantum machine learning algorithms to extract
eigenvalues of operators that contain information about a training set.

3.5.2.1 Discrete Fourier Transform

ThequantumFourier transform implements a discrete Fourier transformon the values
of the amplitudes. As a reminder, the classical version of the Fourier transform maps
a real vector x ∈ R

2n to another vector y ∈ R
2n via

yk = 1√
2n

2n∑

j=1

e
2π i jk
2n x j k = 1, . . . , 2n, (3.30)

using O(n2n) steps. The quantum version maps a quantum state with amplitudes
encoding the xk to a quantum state whose amplitudes encode the yk ,

2n∑

j=1

x j | j〉 →
2n∑

k=1

1√
2n

⎡

⎣
2n∑

j

e
2π i jk
2n x j

⎤

⎦

︸ ︷︷ ︸
yk

|k〉,

in onlyO(n2) steps. We need n = m + �log(2 + 1
2ε )� qubits to get the firstm bits of

the binary string encoding the eigenstate with probability 1 − ε. A quantum Fourier
transform applied to a state that is only in one computational basis state | j〉 (which
corresponds to the classical case in which all but one x j are zero) makes the sum
over the j vanish and leaves

| j〉 →
2n∑

k=1

1√
2n

⎡

⎣
2n∑

j=1

e
2π i jk
2n x j

⎤

⎦

︸ ︷︷ ︸
yk

|k〉. (3.31)

In the quantum phase estimation procedure, the reverse of this transformation will
be used.

3.5.2.2 Estimating Phases

Given a unitary operator acting on n qubits, which, applied to |φ〉will revealU |φ〉 =
e2π i ϕ|φ〉 with ϕ ∈ [0, 1). The goal is to get an estimate of ϕ [50].
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In order to use the quantum Fourier transform, one needs a unitary transformation
that can implement powers of U conditioned on another index register of ν qubits,

2ν

∑

k=1

|k〉|φ〉 →
2ν

∑

k=1

|k〉U (k−1)|φ〉.

The (k − 1) in the exponent derives from our convention to denote by |k〉 the
kth computational basis state starting with k = 1. Of course, this routine effectively
applies U for k − 1 times, and unless U reveals some special structure, to stay
efficient, k always has to be of the order or smaller than n + ν. The routine to
implement powers of U always has to be given with the algorithm using quantum
phase estimation. Altogether, the transformation reads

1√
ν

2ν

∑

k=1

|k〉|φ〉 → 1√
2ν

2ν

∑

k=1

|k〉U (k−1)|φ〉,

= 1√
2ν

2ν

∑

k=1

|k〉(e2π i (k−1)ϕ|φ〉),

= 1√
2ν

2ν

∑

k=1

e2π i (k−1)ϕ|k〉|φ〉.

Note that the |φ〉 register is not entangledwith the rest of the state and can therefore
be discarded without any effect. The next step is to apply the inverse quantum Fourier
transform on the remaining index register. Consider first the case that ϕ = j

2ν for an
integer j , or in other words, j can exactly be represented by ν binary digits. The
inverse quantum Fourier transform from Eq. (3.31) can be applied and leaves us with
state | j〉. More precisely, j = b120 + · · · + bν

1
2(ν−1) has a ν-bit binary representation

which is at the same time the binary fraction representation of ϕ = b1
1
21 + · · · + bs

1
2ν

(see Eq.3.28).
In general, ϕ �= j

2ν , and the inverse quantum Fourier transform will result in

1√
2ν

2ν

∑

k=1

e2π i (k−1)(ϕ− j
2ν )|i〉|φ〉.

The probability distribution over the computational basis states

p j =
∣
∣
∣e2π i (k−1)(ϕ− j

2ν )
∣
∣
∣
2
,

depends on the difference between ϕ and the binary fraction representation of integer
j . The more accurate or ‘close’ the binary fraction representation corresponding to
integer j is, the higher the probability of measuring the basis state | j〉 that repre-
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sents ϕ [50]. In a sense, the result is therefore a distribution over different binary
representations of ϕ, and the smaller our error by representing it with n bits is, the
narrower the variance of the distribution around the correct representation. This is
what is meant when saying that the resulting state of the quantum phase estimation
algorithm ‘approximates’ the phase. The resources needed for quantum phase esti-
mation are the resources to implement powers of U as well as those to implement
the quantum Fourier transform.

3.5.3 Matrix Multiplication and Inversion

Quantum phase estimation can be used to multiply a matrix A ∈ R
N×N to a vector

x ∈ R
N in amplitude encoding, and with a procedure to invert eigenvalues, this can

be extended to matrix inversion. This is a rather technical quantum routine which is
at the heart of one approach to quantum machine learning. To understand the basic
idea, it is illuminating to write Ax in terms of A’s eigenvalues λr and eigenvectors
vr , r = 1, . . . , R. These fulfil the equations

Avr = λrvr .

The vector x can be written as a linear combination of the eigenvectors of A,

x =
R∑

r=1

(vT
r x)vr . (3.32)

Applying A to x leads to

Ax =
R∑

r=1

λr (v
T
r x)vr . (3.33)

and applying A−1 yields

A−1x =
R∑

r=1

λ−1
r (vT

r x)vr . (3.34)

Under certain conditions, quantum algorithms can find eigenvalues and eigen-
states of unitary operators exponentially fast [51]. This promises to be a powerful
tool, but one will see that it can only used for specific problems. We will introduce
the matrix multiplication algorithm and thenmention how to adapt it slightly in order
to do matrix inversion as proposed in [45] (also called the quantum linear systems of
equations routine or “HHL” after the seminal paper by Harrow, Hassidim and Lloyd
[45]).

Consider a quantum state |ψx 〉 that represents a normalised classical vector in
amplitude encoding. The goal is to map this quantum state to a normalised represen-
tation of Ax with
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|ψx 〉 =
R∑

r=1

〈ψvr |ψx 〉|ψvr 〉 → |ψAx 〉 =
R∑

r=1

λr 〈ψvr |ψx 〉|ψvr 〉.

This can be done in three steps. First, create a unitary operatorU = e2π i HA which
encodes A in Hamiltonian encoding, and apply it to |ψx 〉. Second, execute the phase
estimation procedure to write the eigenvalues of A into a register in basis encoding.
Third, use a small subroutine to translate the eigenvalues from basis encoding into
amplitude encoding.

1. Simulating A
In the first step, we need a unitary operator U whose eigenvalue equations are given
byU |ψvr 〉 = e2π iλr |ψvr 〉. If one can evolve a systemwith aHamiltonian HA encoding
the matrix A, the operatorU is given by e2π i HA . To resemble a Hamiltonian, A has to
be Hermitian, but the trick from Eq. (3.29) circumvents this requirement by doubling
the Hilbert with one additional qubit. Techniques to implement general H are called
Hamiltonian simulation and are discussed in Sect. 5.4.

The first step prepares a quantum state of the form

1√
K

K∑

k=1

|k〉e−2π i(k−1)HA |ψx 〉 = 1√
K

K∑

k=1

|k〉
R∑

r=1

e2π i(k−1)λr 〈ψvr |ψx 〉|ψvr 〉,

where on the right side, |ψx 〉 was simply expressed in A’s basis as defined in Eq.
(3.32), and K = 2ν where ν is again the number of qubits in the index register. This
is a slight simplification of the original proposal, in which for example the index
register |k〉 is not in a uniform superposition to exploit some further advantages, but
the principle remains the same.

2. Extracting the eigenvalues
In the second step, the quantum phase estimation routine is applied to the index
register |k〉 to ‘reduce’ its superposition to basis states encoding the eigenvalues,

1√
K

R∑

r=1

K∑

k=1

αk|r 〈ψvr |ψx 〉|k〉|ψvr 〉. (3.35)

As explained for the quantum phase estimation routine, the coefficients lead to
a large probability |αk|r |2 for computational basis states |k〉 that approximate the
eigenvalues λr well. If enough qubits ν are given in the |k〉 register, one can assume
that (3.35) is approximately

R∑

r=1

〈ψvr |ψx 〉|λr 〉|ψvr 〉,

where |λr 〉 basis encodes a ν qubit approximation of λr . The time needed to imple-
ment this step with an error ε in the final state is in O( 1

ε
) [45].
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3. Adjusting the amplitudes
The third step ‘writes’ the eigenvalues into the amplitudes by using a technique we
will present in more detail in Sect. 5.2.2.3. The idea is to apply a sequence of gates
which rotates an additional ancilla qubit as

R∑

r=1

〈ψvr |ψx 〉|λr 〉|ψvr 〉|0〉 →
R∑

r=1

〈ψvr |ψx 〉|λr 〉|ψvr 〉(
√
1 − λ2

r |0〉 + λr |1〉).

We then do apostselectivemeasurement, whichmeans that the ancilla ismeasured,
and the algorithm only continues if we measure it in state |1〉. We will call this
procedure branch selection. This makes sure we have the state

R∑

r=1

λr 〈ψvr |ψx 〉|λr 〉|ψvr 〉|0〉 →
R∑

r=1

λr 〈ψvr |ψx 〉|ψvr 〉,

where on the right side the eigenvalue register was ‘uncomputed’ with an inverse
quantum phase estimation algorithm, and the ancilla discarded. Note that this is only
possible because no terms in the sum interfere as a result (one could say that the
superposition is ‘kept intact’ by the |ψvr 〉 state). The final state |ψAx 〉 corresponds to
a normalised version of Ax in amplitude encoding.

Formatrix inversion, the last step is slightly adjusted:When conditionally rotating
the ancilla qubit, one writes the inverse of the eigenvalue 1

λr
into the respective

amplitude. Since there is no guarantee that these are smaller than 1, a normalisation
constant C has to be introduced that is of the order of the smallest eigenvalue, and
the conditional measurement yields up to normalisation factors

R∑

r=1

〈ψvr |ψx 〉|λ̃r 〉|ψvr 〉(
√

1 − C2

λ2
r

|0〉 + C

λr
|1〉) → C

R∑

r=1

1

λr
〈ψvr |ψx 〉|ψvr 〉.

The conditionalmeasurement is a non-unitary operation and requires the routine to
be repeated on averageO( 1

pacc
) times until it succeeds. For matrix multiplication, the

acceptance probability is given by pacc = ∑
r |〈ψvr |ψx 〉|2λ2

r while for the inversion
technique pacc = ∑

r |〈ψvr |ψx 〉|2 C2

λ2
r

≤ κ−2, where κ is the condition number of the
matrix defined as the ratio of the largest and the smallest eigenvalue. The condition
number is a measure of how ‘invertible’ or ‘singular’ a matrix is. Just like when
considering numerical stability in classical inversion techniques, when the condition
number is large, the quantum algorithm takes a long time to succeed on average. This
can sometimes be circumvented with so called preconditioning techniques [52].

Example 3.8 (Simulation of the quantum matrix inversion routine) Since the matrix
inversion routine is rather technical, this example shall illuminate howaquantumstate
gets successively manipulated by the routine. The matrix A and vector b considered
here are given by
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A =
( 2

3
1
3

1
3

2
3

)

, b =
(
0.275
0.966

)

.

The eigenvalues of A are λ1 = 1 and λ2 = 1/3, with the corresponding eigen-
vectors v1 = (1/

√
2, 1/

√
2)T and v2 = (−1/

√
2, 1/

√
2)T . The number of qubits

for the eigenvalue register is chosen as τ = 10, and the binary representation of
the eigenvalues then becomes λ1 = 1111111111 and λ2 = 0101010101. The error
of this representation is < 0.001. The constant C is chosen to be half the smallest
eigenvalue, C = 0.5λmin = 1

6 .
The qubits are divided into three registers: The first qubit is the ancilla used for

the postselection, the following ten qubits form the eigenvalue register, and the last
qubit initially encodes the vector b, while after the routine it will encode the solution
x .

Encoding b into the last qubit yields

|ψ〉 = 0.275|0 0000000000 0〉 + 0.966|0 0000000000 1〉.

After simulating A and writing the eigenvalues into the second register via phase
estimation in Step 2 we get

|ψ〉 = − 0.343|0 0101010101 0〉
+ 0.343|0 0101010101 1〉
+ 0.618|0 1111111111 0〉
+ 0.618|0 1111111111 1〉.

Rotating the ancilla conditioned on the eigenvalue register leads to

|ψ〉 = − 0.297|0 0101010101 0〉
+ 0.297|0 0101010101 1〉
+ 0.609|0 1111111111 0〉
+ 0.609|0 1111111111 1〉
− 0.172|1 0101010101 0〉
+ 0.172|1 0101010101 1〉
+ 0.103|1 1111111111 0〉
+ 0.103|1 1111111111 1〉,

and uncomputing (reversing the computation) in the eigenvalue register prepares the
state
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|ψ〉 = 0.312|0 0000000000 0〉
+ 0.907|0 0000000000 1〉
− 0.069|1 0000000000 0〉
+ 0.275|1 0000000000 1〉

After a successful conditional measurement of the ancilla in 1 we get

|ψ〉 = −0.242|1 0000000000 0〉 + 0.970|1 0000000000 1〉.

The probability of success is given by

p(1) = (−0.069)2 + 0.2752 = 0.080.

The amplitudes now encode the result of the computation, A−1b, as a normalised
vector. The final, renormalised result of the quantum algorithm can be extracted
by taking the last amplitude vector (−0.242, 0.970)T and multiplying it with the
renormalisation factor C/

√
p(1) = 0.588. Note that we can estimate p(1) from the

conditional measurement of the algorithm, andC is our choice, so that the ‘classical’
renormalisation can always be accomplished if needed. In applications we would
be interested in extracting some compact information from the final quantum state,
rather than measuring each amplitude.

The result after renormalisation is x = (−0.412, 1.648)T . A quick calculation by
hand or using a linear algebra library confirms that this is the correct outcome up to
an error from the finite bit precision used in the calculation.

The Dirac notation shows beautifully how the routine starts with a small super-
position (here of only two basis states) that gets ‘blown up’ and then again reduced
to encode the two-dimensional output.
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Chapter 4
Quantum Advantages

Before coming to the design of quantummachine learning algorithms, this chapter is
an interlude to discuss how quantum computing can actually assist machine learning.
Although quantum computing researchers often focus on asymptotic computational
speedups, there ismore than onemeasure ofmerit when it comes tomachine learning.
We will discuss three dimensions here, namely the computational complexity, the
sample complexity and the model complexity.1 While the section on computational
complexity allows us to establish the terminology already used in previous chapter-
s with more care, the section on sample complexity ventures briefly into quantum
extensions of statistical learning theory. The last section on model complexity pro-
vides arguments towards what has been called the exploratory approach to quantum
machine learning, in which quantum physics is used as a resource to build new types
of models altogether.

4.1 Computational Complexity of Learning

The concept of runtime complexity and speedups has already been used in the pre-
vious sections and is the most common figure of merit when accessing potential
contributions of quantum computing to machine learning. Quantum machine learn-
ing inherited this focus on runtime speedups from quantum computing, where—for
lack of practical experiments—researchers mostly resort to proving theoretical run-
time bounds to advertise the power of their algorithms. Let us briefly introduce the
basics of asymptotic computational complexity.

The runtime of an algorithm on a computer is the time it takes to execute the
algorithm, in other words, the number of elementary operations multiplied by their
respective execution times. In conventional computers, the number of elementary

1The three dimensions were first introduced by Peter Wittek and Vedran Dunjko.
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operations could in theory still be established by choosing the fastest implementations
for every subroutine and count the logic gates. However, with fast technological
advancements in the IT industry it becomes obvious that a device-dependent runtime
is not a suitable theoretical tool to measure the general speed of an algorithm. This
is why computational complexity theory looks at the asymptotic complexity or the
rate of growth of the runtime with the size n of the input. “Asymptotic” thereby
refers to the fact that one is interested in laws for sufficiently large inputs only. If the
resources needed to execute an algorithm or the number of elementary operations
grow polynomially (that is, not more than a factor nc for a constant c) with the size of
the input n, it is tractable and the problem in theory efficiently solvable. Of course, if c
is large, even polynomial runtime algorithms can take too long to make them feasible
for certain applications. The argument is that if we just wait a reasonable amount of
time, our technology could in principle master the task. Exponential growth makes
an algorithm intractable and the problem hard because for large enough problem
sizes, it quickly becomes impossible to solve the problem.

An illustrative example for an intractable problem is guessing the number com-
bination for the security code of a safe, which without further structure requires a
brute force search: While a code of two digits only requires 100 attempts in the
worst case (and half of those guesses in the average case), a code of n = 10 digits
requires ten billion guesses in the worst case, and a code of n = 30 digits has more
possible configurations than our estimation for the number of stars in the universe.
No advancement in computer technology could possibly crack this code.

When thinking about quantum computers, estimating the actual runtime of an
algorithm is even more problematic. Not only do we not have a unique implemen-
tation of qubits yet that gives us a set of elementary operations to work with, but
even if we agreed on a set of elementary gates as well as a technology, it is nontrivial
to decompose quantum algorithms into this set. In many cases, we can claim that
we know there is such a sequence of elementary gates, but it is by no means clear
how to construct it. The vast majority of authors in quantum information processing
are therefore interested in the asymptotic complexity of their routines, and how they
compare to classical algorithms. In a qubit-based quantum computer, the input is
considered to be the number of qubits n, which we already hinted at by the notation.
To avoid confusion when looking at different concepts for the input, we will call
polynomial algorithms regarding the number of qubits qubit-efficient. Algorithms
which are efficient with respect to the number of amplitudes (see for example Grover
search 3.5.1) will be referred to as amplitude-efficient.

The field of quantum complexity theory has been developed as an extension to
classical complexity theory [1, 2] and is based on the question whether quantum
computers are in principle able to solve computational problems faster in relation
to the runtime complexity. In the following, complexity will always refer to the
asymptotic runtime complexity unless stated otherwise. A runtime advantage in this
context is called a quantum enhancement, quantum advantage, or simply a quantum
speedup. Demonstrating an exponential speedup has been controversially referred to
as quantum supremacy.
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A collaboration of researchers at the forefront of benchmarking quantum com-
puters came up with a useful typology for the term of ‘quantum speedup’ [3] which
shows the nuances of the term:

1. A provable quantum speedup requires a proof that there can be no classical
algorithm that performs as well or better than the quantum algorithm. Such a
provable speedup has been demonstrated for Grover’s algorithm, which scales
quadratically better than classical [4] given that there is an oracle to mark the
desired state [5].

2. A strong quantum speedup compares the quantum algorithmwith the best known
classical algorithm. The most famous example of a strong speedup is Shor’s
quantum algorithm to factorise prime numbers in time growing polynomially
(instead of exponentially) with the number of digits of the prime number, which
due to far-reaching consequences for cryptography systems gave rise to the first
major investments into quantum computing.

3. If we relax the term ‘best classical algorithm’ (which is often not known) to the
‘best available classical algorithm’ we get the definition of a common quantum
speedup.

4. The fourth category of potential quantum speedup relaxes the conditions further
by comparing two specific algorithms and relating the speedup to this instance
only.

5. Lastly, and useful when doing benchmarking with quantum annealers, is the
limited quantum speedup that compares to “corresponding” algorithms such as
quantum and classical annealing.

Although the holy grail of quantum computing remains to find a provable ex-
ponential speedup, the wider definition of a quantum advantage in terms of the
asymptotic complexity opens a lot more avenues for realistic investigations. Two
common pitfalls have to be avoided. Firstly, quantum algorithms often have to be
compared with classical sampling, which is likewise non-deterministic and has close
relations to quantum computing. Secondly, complexity can easily be hidden in spa-
tial resources, and one could argue that quantum computers have to be compared to
cluster computing, which will surely be its main competitor in years to come [3, 6].

We want to introduce some particulars of how to formulate the asymptotic com-
plexity of a (quantum) machine learning algorithm. The ‘size’ of the input in the
context of machine learning usually refers to the number of data points M as well as
the number of features N . Since this differs from what the quantum computing com-
munity considers as an input, we will call algorithms that are efficient with regards
to the data “data-efficient”. When dealing with sparse inputs that can be represented
more compactly, the number of features is replaced by the maximum number s of
nonzero elements in any training input. Complexity analysis commonly considers
other numbers of merit. The error ε of a mathematical object z is the precision to
which z′ calculated by the algorithm is correct, ε = ||z − z′|| (with a suitable norm).
When dealing with matrices, the condition number κ , which is the ratio of the largest
and the smallest eigenvalue or singular value, is sometimes of interest to find an
upper bound for the runtime (since κ gives us an idea of the eigenvalue spectrum of
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Fig. 4.1 Illustration of the big-O notation. If a function f (x) (in this context f is the runtime and
x the input) is ‘in’O(g(x)), there exists a λ ∈ R such that | f (x)| ≤ λg(x) for large enough x . The
Ω symbol stands for the inequality | f (x)| ≥ λg(x), while theΘ symbol signifies that there are two
λ1 < λ2 ∈ R such that f (x) lies between the functions λ1g(x) and λ2g(x)

the matrix). Many quantum machine learning algorithms have a chance of failure,
for example because of a conditional measurement. In this case the average number
of attempts required to execute it successfully needs to be taken into account as well.
A success probability of ps generally leads to a factor of 1/ps in the runtime. For
example, if the algorithm will only succeed in 1% of the cases, one has to repeat it
on average for 100 times to encounter a successful run.

To express the asymptotic complexity, the runtime’s dependency on these vari-
ables is given in the"big-O" notation (see Fig. 4.1):

• O(g(x)) means that the true runtime f has an upper bound of λg(x) for some
λ ∈ R, a function g and the variable x .

• Ω(g(x)) means that the runtime has a lower bound of λg(x) for some λ ∈ R.
• Θ(g(x)) means that the run time has a lower bound of λ1g(x) and an upper bound
of λ2g(x) for some λ1, λ2 ∈ R.

Having introduced time complexity, the question remains what speedups can be
detected specifically in quantum machine learning. Of course, machine learning is
based on common computational routines such as search or matrix inversion, and
quantum machine learning derives its advantages from tools developed by the quan-
tum information processing community. It is therefore no surprise that the speedups
achieved in quantum machine learning are directly derived from the speedups in
quantum computing. Roughly speaking (and with more details in the next chapters),
three different types of speedups can be claimed:

1. Provable quadratic quantum speedups arise from variations of Grover’s algorith-
m or quantum walks applied to search problems. Note that learning can always
be understood as a search in a space of hypotheses [7].

2. Exponential speedups are naturally more tricky, even if we only look at the
categories of either strong or common speedups. Within the discipline, they
are usually only claimed by quantum machine learning algorithms that execute
linear algebra computations in amplitude encoding. But these come with serious
conditions, for example about the sparsity or redundancy in the dataset.
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3. More specific comparisons occur when quantum annealing is used to solve op-
timisation problems derived from machine learning tasks [8], or to prepare a
quantum system in a certain distribution [9]. It is not clear yet whether any prov-
able speedups will occur, but benchmarking against specific classical algorithms
show that there are problems where quantum annealing can be of advantage for
sampling problems.

Altogether, computational complexity is of course important formachine learning,
since it defines what is practically possible. However, limiting the focus only on this
aspect severely and unnecessarily limits the scope of quantum machine learning.
Very often, provably hard problems in machine learning can be solved for relevant
special cases, sometimes without even a solid theoretical understanding why this is
so. It is therefore important to look for other aspects in which quantum computing
could contribute to machine learning.

4.2 Sample Complexity

Besides the asymptotic computational complexity, the so called sample complexity
is an important figure of merit in classical machine learning, and offers a wealth of
theoretical results regarding the subject of learning, summarised under the keyword
statistical learning theory [10]. It also offers a door to explore more fundamental
questions of quantum machine learning, for example what it means to learn in a
quantum setting, or how we can formulate a quantum learning theory [11]. Although
such questions are not the focus of this book, we use this opportunity for a small
excursion into the more theoretical branch of quantum machine learning.

loosensee 1 Sample complexity refers to the number of samples needed to gen-
eralise from data. Samples can either be given as training instances drawn from a
certain distribution (examples) or by computing outputs to specifically chosen inputs
(queries). For the supervised pattern recognition problem we analysed so far, the
dataset is given as examples and no queries can be made. One can easily imagine
a slightly different setting where queries are possible, for example when a certain
experiment results in input-output pairs, and we can choose the settings for the ex-
periment to generate the data.

Considerations about sample complexity are usually based on binary functions
f : {0, 1}N → {0, 1}. The sample complexity of a machine learning algorithm refers
to the number of samples that are required to learn a concept from a given concept
class. A concept is the rule f that divides the input space into subsets of the two class
labels 0 and 1, in other words, it is the law that we want to recover with a model.

There are two important settings in which sample complexity is analysed.

1. In exact learning from membership queries [12], one learns the function f by
querying a membership oracle with inputs x and receives the answer whether
f (x) evaluates to 1 or not.
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membership
oracle

quantum
membership

oracle

example
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quantum
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oracle

x

f(x) f(x); x ∼ p(x)

|x, 0〉

|x, f(x)〉

|0...0〉

∑

x

√
p(x)|x, f(x)〉

Fig. 4.2 Different types of oracles to determine the sample complexity of a learning algorithm. A
membership oracle takes queries for a certain input x and returns the class f (x), while an example
oracle is activated and draws samples of x from a certain (usually unknown) distribution p(x),
returning the class of x . The quantum version of a membership oracle is a function evaluation on a
register |x, 0〉, while a quantum example oracle has been defined as the qsample of the distribution
p(x)

2. The framework of Probably Approximately Correct (PAC) learning was intro-
duced by Valiant [13] and asks how many examples from the original concept
are needed in the worst case to train a model so that the probability of an error
ε (i.e., the probability of assigning the wrong label) is smaller than 1 − δ for
0 ≤ δ ≤ 1. The examples are drawn from an arbitrary distribution via an exam-
ple oracle. This framework is closely related to the Vapnik-Chervonenkis- or
VC-dimension of a model (see Sect. 4.3).

To translate these two settings into a quantum framework (see Fig. 4.2), a quantum
membership oracle as well as a quantum example oracle are introduced. They are in
a sense parallelised versions of the classical sample generators, and with quantum
interference of amplitudes we can hope to extract more information from the dis-
tribution than possible in the classical case. Rather surprisingly, it turns out that the
classical and quantum sample complexity are polynomially equivalent, or as stated
by Servedio and Gortler [14]:

[F]or any learning problem, if there is a quantum learning algorithm which uses polyno-
mially many [samples] then there must also exist a classical learning algorithm which uses
polynomially many [samples].

Note that this only concerns the sample complexity; the same authors find an in-
stance for a problem that is efficiently learnable by a quantum algorithm in terms of
computational complexity, while the best classical algorithm is intractable.
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4.2.1 Exact Learning from Membership Queries

Sample complexity in relation to queries is closely related to the concept of ‘quantum
query complexity’ which is an important figure of merit in quantum computing in
the oracular setting (for example to determine the runtime of Grover’s algorithm). A
quantum oracle can be described as a unitary operation

U : |x, 0〉 → |x, 0 ⊕ f (x)〉,

where x ∈ {0, 1}n is encoded in the computational basis.
Two famous quantum algorithms that demonstrate how for specific types of prob-

lems only a single quantum query can be sufficient, are the Deutsch-Josza algorithm
(see Sect. 3.3.1) as well as the famous Bernstein-Vazirani algorithm [1] that we did
not discuss here. They are both based on the principle of applying the quantum oracle
to a register in uniform superposition, thereby querying all possible inputs in paral-
lel. Writing the outcome into the phase and interfering the amplitudes then reveals
information on the concept, for example if it was a balanced (half of all inputs map
to 1) or constant (all inputs map to 1) function. Note that this does not mean that
the function itself is learnt (i.e., which inputs of the balanced function map to 0 or
1 respectively) and is therefore not sufficient as an example to prove theorems on
general quantum learnability.

In 2003, Hunziker et al. [15] introduced a larger framework which they call “im-
patient learning” and proposed the following two conjectures on the actual number
of samples required in the (asymptotic) quantum setting:
Conjecture 1: For any family of concept classesC = {Ci }with |C | → ∞, there exists
a quantum learning algorithm with membership oracle query complexity O(

√|C |).
Conjecture 2: For any family of concept classes C = {Ci } containing |C | → ∞
concepts, there exists a quantum learning algorithm with membership oracle query
complexity O(

log |C |√
γ

), where γ ≤ 1/3 is a measure of how easy it is to distinguish
between concepts, and small γ indicate a harder class to learn.

While the first conjecture was proven by Ambainis et al. [16], the second conjec-
ture was resolved in a series of contributions [14, 17, 18]. The classical upper bound
for exact learning from membership queries is given by O(

log |C |
γ

).
Servedio and Gortler [14] compared these results and found that if any class C

of boolean functions f : {0, 1}n → {0, 1} is learnable from Q quantum member-
ship queries, it is then learnable by at most O(nQ3) classical membership queries.
This result shows that classical and quantum learnability have at most a polynomial
overhead. It becomes apparent that no exponential speedup can be expected from
quantum sample complexity for exact learning with membership queries.
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4.2.2 PAC Learning from Examples

It is a well-established fact from classical learning theory that a (ε, δ)-PAC learning
algorithm for a non-trivial concept class C of Vapnik-Chervonenkis-dimension d
requires at least Ω( 1

ε
log 1

δ
+ d

ε
) examples, but can be learnt with at most O( 1

ε
log 1

δ

+ d
ε
log 1

ε
) examples [19, 20].

A first contribution to quantum PAC learning was made by Bshouty and Jack-
son in 1998 [21], who define the important notion of a quantum example oracle.
The quantum example oracle is equivalent to what has been introduced earlier as a
qsample, ∑

i

√
p(x)|x, f (x)〉, (4.1)

where the probabilities of measuring the basis states in the computational basis re-
flects the distribution p(x) from which the examples are drawn. They show that a
certain class of functions (so called “polynomial-size disjunctive normal formexpres-
sions” which are actively investigated in the PAC literature) are efficiently learnable
by a quantum computer from ‘quantum example oracles’ which draw examples from
a uniform distribution. This speedup is achieved by interfering the amplitudes of the
qsamplewith a quantumFourier transform.2 However, the PACmodel requires learn-
ability under any distribution, and the results of Bshouty and Jackson do therefore
not lead to a statement about the general quantum PAC case.

Servedio and Gortler [14] use the definition of a quantum example oracle from
Eq. (4.1) to show that the equivalence of classical and quantum learning extends to
the PAC framework. They prove that if any class C of boolean functions f {0, 1}n →
{0, 1} is learnable from Q evaluations of the quantum example oracle, it is then
learnable by O(nQ) classical examples. Improvements in a later paper by Atici
and Servedio [17] prove a lower bound on quantum learning that is close to the
classical setting, i.e. that any (ε, δ)-PAC learning algorithm for a concept class of
Vapnik-Chervonenkis-dimension d must make at least Ω( 1

ε
log 1

δ
+ d +

√
d

ε
) calls

to the quantum example oracle from Eq. (4.1). This was again improved by [22] to
finally show that in the PAC setting, quantum and classical learners require the same
amount of examples up to a constant factor. This also holds true for the agnostic
learning framework, which loosens PAC learning by looking for a hypothesis that is
sufficiently close to the best one [11].

As a summary, under the quantum formulation of classical learning theory based
on the oracles from Fig. 4.2, we are not expecting any exponential advantages from
quantum computing.

2Applying a quantum Fourier transform effectively changes the distribution from which to sample,
which leaves some question whether the comparison to a static ‘classical example generator’ is fair.
However, they show that while the quantum example oracle can be simulated by a membership
query oracle, this is not true vice versa. It seems therefore that the quantum example oracle ranges
somewhere between a query and an example oracle.



4.2 Sample Complexity 135

4.2.3 Introducing Noise

Even though the evidence suggests that classical and quantum sample complexity
are similar up to at most polynomial factors, an interesting observation derives from
the introduction of noise into the model. Noise refers to corrupted query results or
examples for which the value f (x) is flipped with probability μ. For the quantum
example oracle, noise is introduced by replacing the oracle with a mixture of the
original qsample and a corrupted qsample weighted by μ. In the PAC setting with
a uniform distribution investigated by Bshouty and Jackson, the quantum algorithm
can still learn the function by consuming more examples, while noise is believed
to render the classical problem unlearnable [21]. A similar observation is made by
Cross, Smith and Smolin [23], who consider the problem of learning n-bit parity
functions by membership queries and examples, a task that is easy both classically
and quantumly, and in the sample as well as time complexity sense. Parity functions
evaluate to 1 if the the input string contains an odd number of 1’s. However, Cross et
al. find that in the presence of noise, the classical case becomes intractable while the
quantum samples required only grow logarithmically. To ensure a fair comparison,
the classical oracle is modelled as a dephased quantum channel of the membership
oracle and the quantum example oracle respectively. As a toy model the authors
consider a slight adaptation of the Bernstein-Vazirani algorithm. These observations
might be evidence enough that a fourth category of potential quantum advantages,
the robustness against noise, could be a fruitful avenue for further research.

4.3 Model Complexity

Lastly, we will come to the third potential advantage that quantum computing could
offer machine learning. The term ‘model complexity’ is a wide concept that refers
to the flexibility, capacity, richness or expressive power of a model. For example,
a model giving rise to linear decision boundaries is less flexible than a model with
more complex decision boundaries. A linear fit in regression is less flexible than a
higher-order polynomial. Roughly speaking, more complex model families offer a
larger space of possible trained models and therefore have a better chance to fit the
training data.

Of course, this does not mean that more flexible models have a higher generali-
sation power. In fact, they are much more prone to overfitting, which is quantified
by Vapnik’s famous upper bound for the generalisation error εgen. With probability
of at least 1 − δ for some δ > 0 the bound is given by [24]

εgen ≤ εemp +
√

1

M

(
d

(
log

(
2M

d

)
+ 1

)
+ log

(
4

δ

))
. (4.2)
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The generalisation error is bounded from above by the ‘empirical error’ εemp on the
training set, plus an expression that depends on the so called Vapnik-Chervonenkis-
dimensiond. TheVC-dimensionof amodel is closely related to themodel complexity
and is defined for binary models, f : X → {0, 1}. It refers to the maximum number
of data points M assigned to two classes for which a hypothesis or ‘trained version’
of the model f (x; θ) makes no classification error, or shatters the data. For the next
higher number of points M + 1 there is no dataset that can always be shattered, no
matter how the labels are assigned. For example, a linear decision boundary can
shatter three data points, but there are label assignments for which it cannot separate
four data points. Inequality (4.2) states that we are interested in a low training error
as well as a low flexibility of the model, as previously remarked in Sect. 2.2.2 in
the context of overfitting and regularisation. This means that we are interested in the
‘slimmest’ model possible that can still capture the pattern which has to be learnt.

To investigate how quantum models can help machine learning is very much in
the spirit of the ‘exploratory approach’ to quantum machine learning and will be
subject of Chap. 8. By the term ‘quantum model’ we refer to a machine learning
model that is derived from the dynamics of a quantum system and can therefore
be implemented using a quantum device. For example, we will discuss Hopfield
networks that are extended via the quantum Ising model, or a neural network where
one layer is computed by a quantum circuit.

Asking how quantummodels can offer advantages in terms of themodel complex-
ity has two dimensions. On the theoretical side, an analysis of the VC-dimension of
quantummodels could reveal interesting comparisons to equivalent classes of classi-
cal models. In the example above, one could compare a quantum and classical Hop-
field network to find out what effect quantum extensions have on the VC-dimension.
Given the challenge this poses already in classical machine learning, numerical s-
tudies may be crucial in answering this question.

On the more practical side, quantum models could prove to be a useful ansatz
to capture patterns in certain datasets. An approach to find a slim but powerful
model is to choose a model family which can express the natural dynamics of the
system producing the data. For example, nonlinearities in the updating function of
recurrent neural networks allow us to represent nonlinear dynamics of the real-world
systems they try to recover. In probabilistic graphical models we assume that the
system has inherent independence relations between variables. In short, an open
question with regards to the model complexity is whether certain quantum models
are better at capturing patterns and correlations in data, and if yes, which problems
are suitable for quantum computing. One seemingly obvious case for the use of
quantum models is when the system producing the data is a quantum system, which
has been termed the QQ case in the introduction. Still, so far there are no studies
that show how a quantum model is better in capturing quantum correlations. We
see that the contribution of quantum computing to model complexity has many
outstanding theoretical and practical research questions that the quantum machine
learning community is only beginning to explore.
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Chapter 5
Information Encoding

If we want to use a quantum computer to learn from classical data—which was in
the introduction referred to as the CQ case—we have to think about how to represent
features by a quantum system. We furthermore have to design a recipe for “loading”
data from a classical memory into the quantum computer. In quantum computing,
this process is called state preparation um machine learning algorithm.

Classical machine learning textbooks rarely discuss matters of data representa-
tion and data transfer to the processing hardware (although considerations ofmemory
access become important in big data applications). For quantum algorithms, these
questions cannot be ignored (see Fig. 5.1). The strategy of how to represent informa-
tion as a quantum state provides the context of how to design the quantum algorithm
and what speedups one can hope to harvest. The actual procedure of encoding data
into the quantum system is part of the algorithm and may account for a crucial part
of the complexity.1 Theoretical frameworks, software and hardware that address the
interface between the classical memory and the quantum device are therefore central
for technological implementations of quantummachine learning. Issues of efficiency,
precision and noise play an important role in performance evaluation. This is even
more true since most quantum machine learning algorithms deliver probabilistic
results and the entire routine—including state preparation—may have to be repeated
many times. These arguments call for a thorough discussion of “data encoding”
approaches and routines, which is why we dedicate this entire chapter to questions
of data representationwith quantumstates.Wewill systematically go through the four
encoding methods distinguished in Sect. 3.4 and discuss state preparation routines
and the consequences for algorithm design.

1This is not only true for quantum machine learning algorithms. For example, the classically hard
graph isomorphism problem is efficiently solvable on a quantum computer if a superposition of
isomorph graphs can be created efficiently [1].
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Classical

dataset D
new input x̃

Machine learning
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Quantum
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new input x̃
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Quantum machine
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Prediction ỹ

Quantum system

state preparation

unitary evolution
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Fig. 5.1 In order to solve supervisedmachine learning tasks based on classical datasets, the quantum
algorithm requires an information encoding and read out step that are in general highly non-trivial
procedures, and it is important to consider them in the runtime. Adapted from [2]

Table 5.1 Comparison of the four encoding strategies for a dataset of M inputs with N features
each. While basis, amplitude and Hamiltonian encoding aim at representing a full data set by
the quantum system, qsample encoding works a little different in that it represents a probability
distribution over random variables. It therefore does not have a dependency on the number of inputs
M . *Only certain datasets or models can be encoded in this time. See text for details.

Encoding Number of qubits Runtime of state prep Input features

Basis N O(MN ) Binary

Amplitude logN O(MN )/O(log(MN ))* Continuous

Qsample N O(2N )/O(N )* Binary

Hamiltonian logN O(MN )/O(log(MN ))* Continuous

A central figure of merit for state preparation is the asymptotic runtime, and an
overview of runtimes for the four encoding methods is provided in Table5.1. In
machine learning, the input of the algorithm is the data, and an efficient algorithm
is efficient in the dimension of the data inputs N and the number of data points M .
In quantum computing an efficient algorithm has a polynomial runtime with respect
to the number of qubits. Since data can be encoded into qubits or amplitudes, the
expression “efficient” can have different meanings in quantummachine learning, and
this easily gets confusing. To facilitate the discussion, we will use the terms intro-
duced in Sect. 4.1 and call an algorithm either amplitude-efficient or qubit-efficient,
depending on what we consider as an input. It is obvious that if the data is encoded
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into the amplitudes or operators of a quantum system (as in amplitude and Hamil-
tonian encoding), amplitude-efficient state preparation routines are also efficient in
terms of the data set. If we encode data into qubits, qubit-efficient state preparation
is efficient in the data set size. We will see that there are some very interesting cases
in which we encode data into amplitudes or Hamiltonians, but can guarantee qubit-
efficient state preparation routines. In these cases, we prepare data in time which
is logarithmic in the data size itself. Of course, this requires either a very specific
access to or a very special structure of the data.

Before we start, a safe assumption when nothing more about the hardware is
known is that we have a n-qubit system in the ground state |0...0〉 and that the data is
accessible from a classical memory. In some cases we will also require some specific
classical preprocessing. We consider data sets D = {x1, ..., xM } of N -dimensional
real feature vectors. Note that many algorithms require the labels to be encoded in
qubits entangled with the inputs, but for the sake of simplicity we will focus on
unlabelled data in this chapter.

5.1 Basis Encoding

Assume we are given a binary dataset D where each pattern xm ∈ D is a binary
string of the form xm = (bm1 , ..., bmN )with bmi ∈ {0, 1} for i = 1, ...,N .We can prepare
a superposition of basis states |xm〉 that qubit-wise correspond to the binary input
patterns,

|D〉 = 1√
M

M∑

m=1

|xm〉. (5.1)

For example, given two binary inputs x1 = (01, 01)T , x2 = (11, 10)T , where fea-
tures are encoded with a binary precision of τ = 2, we can write them as binary pat-
terns x1 = (0110), x2 = (1110). These patterns can be associated with basis states
|0110〉, |1110〉, and the full data superposition reads

|D〉 = 1√
2
|0101〉 + 1√

2
|1110〉. (5.2)

The amplitude vector corresponding to State (5.1) has entries 1√
M

for basis states
that are associated with a binary pattern from the dataset, and zero entries otherwise.
For Eq. (5.2), the amplitude vector is given by

α = (0, 0, 0, 0, 0,
1√
2
, 0, 0, 0, 0, 0, 0, 0, 0,

1√
2
, 0)T
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Since—except in very low dimensions—the total number of amplitudes 2Nτ is much
larger than the number of nonzero amplitudes M , basis encoded datasets generally
give rise to sparse amplitude vectors.

5.1.1 Preparing Superpositions of Inputs

An elegant way to construct such ‘data superpositions’ in time linear in M and N
has been introduced by Ventura, Martinez and others [3, 4], and will be summarised
here as an example of basis encoded state preparation. The circuit for one step in the
routine is shown in Fig. 5.2. We will simplify things by considering binary inputs in
which every bit represents one feature, or τ = 1.

We require a quantum system

|l1, ..., lN ; a1, a2; s1, ..., sN 〉

with three registers: a loading register of N qubits |l1, ..., lN 〉, the ancilla register
|a1, a2〉 with two qubits and the N -qubit storage register |s1, ..., sN 〉. We start in the
ground state and apply a Hadamard to the second ancilla to get

1√
2
|0, ..., 0; 0, 0; 0, ..., 0〉 + 1√

2
|0, ..., 0; 0, 1; 0, ..., 0〉.

The left term, flagged with a2 = 0, is called thememory branch, while the right term,
flaggedwitha2 = 1, is theprocessing branch. The algorithm iteratively loads patterns
into the loading register and ‘breaks away’ the right size of terms from the processing

A B C D E

|l1〉 Xxm
1 •

COMP RESET

|s1〉 X

|l2〉 Xxm
2 •

|s2〉 X

|a1〉 X •
|a2〉 • • • U(μ)

Fig. 5.2 Circuit for one step of Ventura and Martinez state preparation routine as described in
the text for an example of 2-bit input patterns. The storage and loading qubits are in a slightly
different order to facilitate the display. (A) The pattern is written into the loading register by NOT
gates. Taking the gate to the power of the bit value xmi is a convenient way to apply the flip only
when xmi = 1. (B) Transfer the pattern to the storage register of the processing branch. (C) Split the
processing branch. (D) Flip the first ancilla back conditioned on a successful comparison of loading
and storage branch. (E) Reset the registers to prepare for the next patterns



5.1 Basis Encoding 143

branch to add it to the memory branch (Fig. 5.3). This way the superposition of
patterns is ‘grown’ step by step.

To explain how one iteration works, assume that the first m training vectors have
already been encoded after iterations 1, ...,m of the algorithm. This leads to the
state

|ψ(m)〉 = 1√
M

m∑

k=1

|0, ..., 0; 00; xk1, ..., xkN 〉 +
√
M − m

M
|0, ..., 0; 01; 0, ..., 0〉.

(5.3)

The memory branch stores the first m inputs in its storage register, while the storage
register of the processing branch is in the ground state. In both branches the loading
register is also in the ground state.

To execute the (m + 1)th step of the algorithm,write the (m + 1)th pattern xm+1 =
(xm+1

1 , ..., xm+1
N ) into the qubits of the loading register (which will write it into both

branches). This can be done by applying an X gate to all qubits that correspond
to nonzero bits in the input pattern. Next, in the processing branch the pattern gets
copied into the storage register using a CNOT gate on each of the N qubits. To limit
the execution to the processing branch only we have to control the CNOTs with the
second ancilla being in a2 = 1. This leads to

1√
M

m∑

k=1

|xm+1
1 , ..., xm+1

N ;00; xk1, ..., xkN 〉

+
√
M − m

M
|xm+1

1 , ..., xm+1
N ; 01; xm+1

1 , ..., xm+1
N 〉.

Using a CNOT gate, we flip a1 = 1 if a2 = 1, which is only true for the processing
branch. Afterwards apply the single qubit unitary

Ua2(μ) =
⎛

⎝

√
μ−1
μ

1√
μ

−1√
μ

√
μ−1
μ

⎞

⎠

with μ = M + 1 − (m + 1) to qubit a2 but controlled by a1. On the full quantum
state, this operation amounts to

1loading ⊗ ca1Ua2(μ) ⊗ 1storage.

This splits the processing branch into two subbranches, one that can be “added” to
the memory branch and one that will remain the processing branch for the next step,
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processing branch memory branch

new pattern

load

split

store

Fig. 5.3 Illustration of Ventura and Martinez state preparation routine [3]. The superposition is
divided into a processing and memory term, flagged by an ancilla. New training input patterns get
successively loaded into the processing branch, which gets ‘split’ by a Hadamard on an ancilla, and
the pattern gets ‘merged’ into the memory term

1√
M

m∑

k=1

|xm+1
1 ,..., xm+1

N ; 00; xk1, ..., xkN 〉

+ 1√
M

|xm+1
1 , ..., xm+1

N ; 10; xm+1
1 , ..., xm+1

N 〉

+
√
M − (m + 1)√

M
|xm+1

1 , ..., xm+1
N ; 11; xm+1

1 , ..., xm+1
N 〉

To add the subbranch marked by |a1a2〉 = |10〉 to the memory branch, we have to
flip a1 back to 1. To confine this operation to the desired subbranch we can condition
it on an operation that compares if the loading and storage register are in the same
state (which is only true for the two processing subbranches), and that a2 = 1 (which
is only true for the desired subbranch). Also, the storage register of the processing
branch as well as the loading register of both branches has to be reset to the ground
state by reversing the previous operations, before the next iteration begins. After the
(m + 1)th iteration we start with a state similar to Eq. (5.3) but with m → m + 1.
The routine requires O(MN ) steps, and succeeds with certainty.

There are interesting alternative proposals for architectures of quantum Random
Access Memories, devices that load patterns ‘in parallel’ into a quantum register.
These devices are designed to query an index register |m〉 and load the mth binary
pattern into a second register in basis encoding, |m〉|0...0〉 → |m〉|xm〉. Most impor-
tantly, this operation can be executed in parallel. Given a superposition of the index
register, the quantum random access memory is supposed to implement the operation

1√
M

M−1∑

m=0

|m〉|0...0〉 → 1√
M

M−1∑

m=0

|m〉|xm〉. (5.4)

We will get back to this in the next section, where another step allows us to prepare
amplitude encoded quantum states. Ideas for architectures which realise this kind of
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‘query access’ in logarithmic time regarding the number of items to be loaded have
been brought forward [5], but a hardware realising such an operation is still an open
challenge [6, 7].

5.1.2 Computing in Basis Encoding

Acting on binary features encoded as qubits gives us themost computational freedom
to design quantum algorithms. In principle, each operation on bits that we can execute
on a classical computer can be done on a quantum computer as well. The argument
is roughly the following: A Toffoli gate implements the logic operation

Input Output
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

and is a universal gate for Boolean logic [8]. Universality implies that any binary
function f : {0, 1}⊗N → {0, 1}⊗D can be implemented by a succession of Toffoli
gates and possibly some ‘garbage’ bits. The special role of the Toffoli gate stems
from the fact that it is reversible. If one only sees the state after the operation, one
can deduce the exact state before the operation (i.e., if the first two bits are 11,
flip the third one). No information is lost in the operation, which is in physical
terms a non-dissipative operation. In mathematical terms the matrix representing
the operation has an inverse. Reversible gates, and hence also the Toffoli gate, can
be implemented on a quantum computer. In conclusion, if any classical algorithm
can efficiently be formulated in terms of Toffoli gates, and these can always be
implemented on a quantum computer, this means that any classical algorithm can
efficiently be translated to a quantum algorithm. The reformulation of a classical
algorithm with Toffoli gates may however have a large polynomial overhead and
slow down the routines significantly.

Note that once encoded into a superposition, the data inputs can be processed in
quantum parallel (see Sect. 3.2.4). For example, if a routine

A(|x〉 ⊗ |0〉) → |x〉 ⊗ |f (x)〉
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is known to implement a machine learning model f and write the binary predic-
tion f (x) into the state of a qubit, we can perform inference in parallel on the data
superposition,

A
(

1√
M

M∑

m=1

|xm〉 ⊗ |0〉
)

→ 1√
M

M∑

m=1

|xm〉 ⊗ |f (xm)〉.

From this superposition one can extract statistical information, for example by mea-
suring the last qubit. Such a measurement reveals the expectation value of the pre-
diction of the entire dataset.

5.1.3 Sampling from a Qubit

As the previous example shows, the result of a quantummachine learning model can
be basis encoded as well. For binary classification this only requires one qubit. If the
qubit is in state |f (x)〉 = |1〉 the prediction is 1 and if the qubit is in state |f (x)〉 = |0〉
the prediction is 0. A superposition can be interpreted as a probabilistic output that
provides information on the uncertainty of the result.

In order to read out the state of the qubit we have to measure it, and we want to
briefly address how to obtain the prediction estimate from measurements, as well
as what number of measurements are needed for a reliable prediction. The field of
reconstructing a quantum state from measurements is called quantum tomography,
and there are very sophisticated ways in which samples from these measurements
can be used to estimate the density matrix that describe the state. Here we consider a
much simpler problem, namely to estimate the probability of measuring basis state
|0〉 or |1〉. In other words, we are just interested in the diagonal elements of the
density matrix, not in the entire state. Estimating the ouptut of a quantum model in
basis encoding is therefore a ‘classical’ rather than a ‘quantum task’.

Let the final state of the output qubit be given by the density matrix

ρ =
(

ρ00 ρ01
ρ10 ρ11

)
.

We need the density matrix formalism from Chap.3 here because the quantum com-
puter may be in a state where other qubits are entangled with the output qubit, and the
single-qubit-state is therefore a mixed state. We assume that the quantum algorithm
is error-free, so that repeating it always leads to precisely the same density matrix ρ
to take measurements from. The diagonal elements ρ00 and ρ11 fulfil ρ00 + ρ11 = 1
and give us the probability of measuring the qubit in state |0〉 or |1〉 respectively. We
associate ρ11 with the probabilistic output f (x) = p which gives us the probability
that model f predicts y = 1 for the input x.
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To get an estimate p̂ of p we have to repeat the entire algorithm S times and
perform a computational basis measurement on the output qubit in each run. This
produces a set of samples Ω = {y1, ..., yS} of outcomes, and we assume the samples
stem from a distribution that returns 0 with probability 1 − p and 1 with probability
p. Measuring a single qubit is therefore equivalent to sampling from a Bernoulli
distribution, a problem widely investigated in statistics.2 There are various strategies
of how to get an estimate p̂ from samples Ω . Most prominent, maximum likelihood
estimation leads to the rather intuitive ‘frequentist estimator’ p̂ = p̄ = 1

S

∑S
i=1 yi

which is nothing else than the average over all outcomes.
An important question is how many samples from the single qubit measurement

we need to estimate pwith error ε. In physics language, wewant an ‘error bar’ ε of our
estimation p̂ ± ε, or the confidence interval [p̂ − ε, p̂ + ε]. A confidence interval is
valid for a pre-defined confidence level, for example of 99%. The confidence level has
the following meaning: If we have different sets of samples S1, ...,SS and compute
estimators and confidence intervals for each of them, p̂S1 ± εS1 , ..., p̂SS ± εSS , the
confidence level is the proportion of sample sets for which the true value p lies within
the confidence interval around p̂. The confidence level is usually expressed by a so
called z-value, for example, a z-value of 2.58 corresponds to a confidence of 99%.
This correspondence can be looked up in tables.

Frequently used is the Wald interval which is suited for cases of large S and
p ≈ 0.5. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
.

This is maximised for p = 0.5, so that we can assume the overall error of our esti-
mation ε to be at most

ε ≤ z

2
√
S

with a confidence level of z. In other words, for a given ε and z we need O(ε−2)

samples of the qubit measurement. If we want to have an error bar of at most ε = 0.1
and a confidence level of 99% we need about 167 samples, and an error of ε = 0.01
with confidence 99% requires at most 17, 000 samples. This is a vast number, but
only needed if the estimator is equal to 0.5, which is the worst case scenario of an
undecided classifier (and we may not want to rely on the decision very much in any
case). One can also see that the bound fails for p → 0, 1 [9].

There are other estimates that also work when p is close to either zero or one. A
more refined alternative is theWilson score interval [10] with the following estimator
for p,

p̂ = 1

1 + z2
S

(
p̄ + z2

2S

)
,

2Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e. with what probability the coin produces ‘heads’.
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Fig. 5.4 Relationship
between the sample size S
and the mean value
p̄ = 1

S

∑S
i=1 yi for different

errors ε for the Wilson score
interval of a Bernoulli
parameter estimation
problem as described in the
text

and the error

ε = z

1 + z2
S

(
p̄(1 − p̄)

S
+ z2

4S2

) 1
2

,

with p̄ being the average of all samples as defined above. Again this is maximised
for p̄ = 0.5 and with a confidence level z we can state that the overall error of our
estimation is bounded by

ε ≤
√
z2
S + z2

4S2
.

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4

+ z2

8ε2
.

With the Wilson score, a confidence level of 99% suggests that we need 173 single
qubit measurements to guarantee an error of less than 0.1. However, now we can
test the cases p̄ = 0, 1 for which S = z2( 1

2ε − 1). For ε = 0.1 we only need about 27
measurements for the same confidence level (see Fig. 5.4).

5.2 Amplitude Encoding

An entire branch of quantum machine learning algorithms encode the dataset into
the amplitudes of a quantum state
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|ψD〉 =
M∑

m=1

N∑

i=1

xmi |i〉|m〉

=
M∑

m=1

|ψxm〉|m〉. (5.5)

This quantum state has an amplitude vector of dimension NM that is constructed
by concatenating all training inputs, α = (x11, ..., x

1
N , ..., xM1 , ..., xMN )T . As discussed

in Sect. 3.4.2, the dataset has to be normalised so that the absolute square of the
amplitude vector is one, |α|2 = 1. The training outputs can either be basis encoded
in an extra qubit |ym〉 entangled with the |m〉 register, or encoded in the amplitudes
of a separate quantum register,

|ψy〉 =
M∑

m=1

ym|m〉.

Amplitude encoding of datasets therefore requires the ability to prepare an arbitrary
state

|ψ〉 =
∑

i

αi|i〉, (5.6)

both efficiently and robustly.
The main advantage of amplitude encoding is that we only need n = logNM

qubits to encode a dataset ofM inputs with N features each. If the quantum machine
learning algorithm is polynomial in n (or qubit-efficient), it has a logarithmic run-
time dependency on the data set size. Promises of exponential speedups from qubit-
efficient quantum machine learning algorithms sound strange to machine learning
practitioners, because simply loading the NM features from the memory hardware
takes time that is of course linear in NM . And indeed, the promises only hold if state
preparation can also be done qubit-efficiently [11]. This is in fact possible in some
cases that exhibit a lot of structure. As a trivial example, if the goal is to produce
a vector of uniform entries we simply need to apply n Hadamard gates - a qubit-
efficient state preparation time. Similarly, s-sparse vectors can be prepared with the
routines from the previous section in time sn. On the other hand, there are subspaces
in a Hilbert space that cannot be reached from a given initial state with qubit-efficient
algorithms [12] (see Fig. 5.5). It is therefore an important and nontrivial open ques-
tion which classes of relevant states for machine learning with amplitude encoding
can be prepared qubit-efficiently.

Similar caution is necessary for the readout of all amplitudes. If the result of the
computation is encoded in one specific amplitude αi only, the number of measure-
ments needed to retrieve it scale with the number of amplitudes (and to measure the
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Fig. 5.5 Starting from the n-qubit ground state |0...0〉 some quantum states in C2n can be reached
by a quantum algorithm that grows polynomially with n, while others require algorithms that grow
exponentially with n. In amplitude encoding the number of features is 2n, and state preparation
routines that are polynomial in the number of qubits are therefore logarithmic in the number of
features

state corresponding to that amplitude once requires on averageO(1/|αi|2) repetitions
of the entire routine). This is why the result of quantummachine learning algorithms
based on amplitude encoding is often designed in a different manner, for example
through a single-qubit measurement as explained in the previous section,.

How can we prepare an arbitrary vector like in Eq. (5.6)? We will first discuss a
scheme that is amplitude-efficient (and thereby efficient in N ,M ) and then look at
qubit-efficient schemes and their limitations.

5.2.1 State Preparation in Linear Time

Given an n qubit quantum computer, the theoretical lower bound of the depth of an
arbitrary state preparation circuit is known to be 1

n2
n [13–17]. Current algorithms

perform slightly worse with slighly less than 2n parallel operations, most of which
are expensive 2-qubit gates. To illustrate one way of doing state preparation in linear
time, let us have a look at the routine presented byMöttönen et al. [18]. They consider
the reverse problem, namely to map an arbitrary state |ψ〉 to the ground state |0...0〉.
In order to use this algorithm for our purpose we simply need to invert each and
every operation and apply them in reverse order.

The basic idea is to control a rotation on qubit qs by all possible states of the
previous qubits q1, ..., qs−1, using sequences of so called multi-controlled rotations.
In other words, we explicitly do a different rotation for each possible branch of the
superposition, the one inwhich the previous qubitswere in state |0..0〉 to the branch in
which they are in |1...1〉. This is comparable to tossing s − 1 coins and manipulating
the sth coin differently depending on the measurement outcome via a look-up table.

A full sequence of multi-controlled rotations around vectors vi with angles βi

consists of the successive application of the 2s−1 gates
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cq1=0 · · · cqs−1=0 Rqs(v
1,β1) |q1...qs−1〉|qs〉

cq1=0 · · · cqs−1=1 Rqs(v
2,β2) |q1...qs−1〉|qs〉

...

cq1=1 · · · cqs−1=1 Rqs(v
2s−1

,β2s−1) |q1...qs−1〉|qs〉.

For example, for s = 3 a full sequence consists of the gates

cq1=0cq2=0 Rq3(v
1,β1) |q1q2〉|q3〉

cq1=0cq2=1 Rq3(v
2,β2) |q1q2〉|q3〉

cq1=1cq2=0 Rq3(v
3,β3) |q1q2〉|q3〉

cq1=1cq2=1 Rq3(v
4,β4) |q1q2〉|q3〉,

which rotate q3 in a different way for all four branches of the superposition of q1, q2.
The circuit symbol of a single multi-controlled rotation is

|q1〉...|qn−1〉 •
|qn〉 R(v,β)

(5.7)

where white circles indicate a control on qubit q being in state 1, or cq=1, and black
circles a control on qubit q being in state 0, cq=0. The circuit diagram of a full
sequence of multi-controlled rotations on the third of three qubits is

|q1〉 • •
|q2〉 • •
|q3〉 R(v[1],β1) R(v[2],β2) R(v[3],β3) R(v[4],β4)

(5.8)

Of course, we need a prescription to decompose sequences of multi-controlled
rotations into elementary gates. If there are s − 1 control qubits, this is possible with
2s CNOTs and 2s single qubit gates [14, 18]. For example, a multi-controlled rotation
applied to the third of three qubits would have the decomposition

|q1〉 •|q2〉 • •
|q3〉 R(v, δ1) R(v, δ2) R(v, δ̃3)

into three single-controlled rotations.
For a general quantum state one has to apply two cascades of such operations,

where each cascade is a sequences of multi-controlled rotations that run trough all
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qubits q1 to qn. The first cascade uses Rz-rotations (which fixes the rotation axis v)
and has the effect of ‘equalising’ the phases until the state only has one global phase
which we can ignore (remember, we are doing reverse state preparation). The second
cascade applies Ry rotations and has the effect of ‘equalising’ all amplitudes to result
in the ground state. Since we are usually interested in real amplitude vectors, we can
neglect the first cascade and end up with the circuit

|q1〉
· · ·

•
· · ·

• Ry(β
n
1)

...|qn-1〉 • Ry(β
2
1) Ry(β

2
2n-2)

|qn〉 Ry(β
1
1) Ry(β

1
2n-1)

The choice of the rotation angles β is related to the amplitudes of the original state
as follows:

βs
j = 2 arcsin

⎛

⎜⎜⎜⎜⎝

√
2s−1∑
l=1

|α(2j−1)2s−1+l |2
√

2s∑
l=1

|α(j−1)2s+l |2

⎞

⎟⎟⎟⎟⎠
(5.9)

Example 5.1 We want to prepare the state

|ψ〉 = √
0.2|000〉 + √

0.5|010〉 + √
0.2|110〉 + √

0.1|111〉,

with the amplitudes a0 = √
0.2, a2 = √

0.5, a6 = √
0.2, a7 = √

0.1. The circuit
requires seven multi-controlled y-rotations

cq1=0cq2=0 Ry,q3(β
1
1), β1

1 = 0

cq1=0cq2=1 Ry,q3(β
1
2), β1

2 = 0

cq1=1cq2=0 Ry,q3(β
1
3), β1

3 = 0

cq1=1cq2=1 Ry,q3(β
1
4), β1

4 = 1.231..

cq1=0 Ry,q2(β
2
1), β2

1 = 2.014..

cq1=1 Ry,q2(β
2
2), β2

2 = 3.142..

Ry,q1(β
3
1), β3

1 = 1.159..
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We are left with only four gates to apply, and with the approximate values

sin
(1.231

2

)
= 0.577, cos

(1.231
2

)
= 0.816

sin
(2.014

2

)
= 0.845, cos

(2.014
2

)
= 0.534

sin
(3.142

2

)
= 1.000, cos

(3.142
2

)
= 0

sin
(1.159

2

)
= 0.548, cos

(1.159
2

)
= 0.837,

these gates can be written as

cq1=1cq2=1 Ry,q3(β
1
4) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0.816 0.577
0 0 0 0 0 0 −0.577 0.816

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

cq1=0 Ry,q2(β
2
1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.534 0 0.845 0 0 0 0 0
0 0.534 0 0.845 0 0 0 0

−0.845 0 0.534 0 0 0 0 0
0 −0.845 0 0.534 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

cq1=1 Ry,q2(β
2
2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

Ry,q1(β
3
1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.837 0 0 0 0.548 0 0 0
0 0.837 0 0 0 0.548 0 0
0 0 0.837 0 0 0 0.548 0
0 0 0 0.837 0 0 0 0.548

−0.548 0 0 0 0.837 0 0 0
0 −0.548 0 0 0 0.837 0 0
0 0 −0.548 0 0 0 0.837 0
0 0 0 −0.548 0 0 0 0.837

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying these gates to the amplitude vector (
√
0.2, 0,

√
0.5, 0, 0, 0,

√
0.2,

√
0.1)T ,

the effect of the first operation is to set the last entry to zero, the second operation sets
the third entry to zero and the third operation swaps the 5th element with the 7th. The
last operation finally cancels the 5th element and results in (1, 0, 0, 0, 0, 0, 0, 0)T as
desired. State preparation means to apply the inverse gates in the inverse order.

5.2.2 Qubit-Efficient State Preparation

The above routine is always possible to use for amplitude-efficient state preparation,
but requires an exponential number of operations regarding the number of qubits.
In the gate model of quantum computing, a number of proposals have been brought
forward to prepare specific classes of states qubit-efficiently, or in log(MN ).Wewant
to present some of those ideas and the conditions to which they apply.

5.2.2.1 Parallelism-Based Approach

Grover and Rudolph suggest a scheme that is linear in the number of qubits for the
case that we know an efficiently integrable one-dimensional probability distribution
p(a) of which the state is a discrete representation [19]. More precisely, the desired
state has to be of the form

|ψ〉 =
2n∑

i=1

√
p(iΔa)|i〉 =

2n∑

i=1

√
pi|i〉,

withΔa = 1
2n . The desired quantum state is a coarse grained qsample (see Sect. 3.4.3)

of a continuous distribution p(a) (see Fig. 5.6). The “efficiently integrable” condition
means that we need an algorithm on a classical computer that calculates definite
integrals of the probability distribution efficiently, like for the Gaussian distribution.
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p(a) α100t=3

β101t=3

00 01 10 11 a

Fig. 5.6 Grover and Rudolph’s state preparation algorithm for efficiently integrable probability
distributions [19]. After step t = 2 the domain is divided into four regions i = 00, 01, 10, 11 of size
Δx = 1/22, which defines a 2-qubit quantum state with amplitudes p00, p01, p10, p11 (indicated by
the black dots). In the third step, each of the four regions (here demonstrated for i = 10) gets split
into two. The parametersα and β are the probability to find a random variable in the left or right part
of the region. This procedure successively prepares a finer and finer discretisation of the probability
distribution

The idea of the scheme is to successively rotate each of the n qubits and get a
finer and finer coarse graining of the distribution. Assume Step (t − 1) prepared a
qsample

|ψ(t−1)〉 =
2t−1∑

i=1

√
p(t−1)
i |i〉|00...0〉.

The index register |i〉 contains the first t − 1 qubits. The next step t rotates the t’th
qubit according to

|ψ(t)〉 =
2t∑

i=1

√
p(t−1)
i |i〉(√αi|0〉 +√βi|1〉)|0...0〉,

such that αi, [βi] are the probabilities for a random variable to lie in the left [right]
half of the i’th interval of the probability distribution. In the tth step, the input domain
is discretised into 2t equidistant intervals which is visualised in Fig. 5.6. This defines
a new qsample

|ψ(t)〉 =
2t∑

i=1

√
p(t)
i |i〉|0...0〉,

where the index register now has t qubits and the remaining qubits in the ground
state are reduced by one. With each step, this process prepares an increasingly fine
discretisation of the probability distribution p(a).



156 5 Information Encoding

TheGrover andRudolph suggestion is in fact rather similar to the state preparation
routine in the previous section, but this time we do not have to hardcode the ‘lookup-
table’ for each state of the first t − 1 qubits, but we can use quantum parallelism to
compute the values αi,βi for all possible combinations. This more general version
of the idea was proposed by Kaye and Mosca [20], who do not refer to probability
distributions but demand that the conditional probability p(qk = 1|q1...qk−1), which
is the chance that given the state q1...qk−1 of the previous qubits, the k’th qubit is in
state 1, is easy to compute. It is an interesting task to find classical datasets which
allow for this trick.

5.2.2.2 Oracle-Based Approach

Soklakov and Schack [21] propose an alternative qubit-efficient scheme to approx-
imately prepare quantum states whose amplitudes αi = √

pi represent a discrete
probability distribution pi, i = 1, ..., 2n = N , and all probabilities pi are of the order
of 1/ηN for 0 < η < 1. With this condition, they can use a Grover-type algorithm
which with probability greater than 1 − ν has an error smaller than ε in the result,
and which is polynomial in η−1, ε−1, ν−1. To sketch the basic idea (Fig. 5.7), a series
of oracles is defined which successively marks basis states whose amplitudes are
increased by amplitude amplification. The first oracle only marks basis states |i〉 for
which the desired probability pi is larger than a rather high threshold. With each
step (defining a new oracle) the threshold is lowered by a constant amount. In the
end, large amplitudes have been grown in more steps than small ones, and the final
distribution is as fine as the number of steps allows. One pitfall is that we need to
know the optimal number of Grover iterations for a given oracle. For this quantum
counting can be applied to estimate the number of marked states in the current step.
As with all oracle-based algorithms, the algorithm requires an implementation of the
oracle to be used in practice.

5.2.2.3 Quantum Random Access Memory

Under the condition that the states to prepare are sufficiently uniform, a more generic
approach is to refer to the quantum random access memory introduced in Eq. (5.4).
The quantum random access memory allows access of classically stored information
in superposition by querying an index register and is referred to by many authors in
quantum machine learning [22–25]. In Sect. 5.1.1 this was used to prepare a dataset
in basis encoding, but with one additional step we can extend its application to
amplitude encoding as well. This step involves a conditional rotation and branch
selection procedure that we already encountered in Step 3 of the quantum matrix
inversion routine of Sect. 3.5.3. Let us assume the quantum random access memory
prepared a state
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i

pi

θk

Fig. 5.7 In the k’th step of the routine of Soklakov and Schack [21], an oracle is applied to mark
the states whose probabilities pi are larger than a certain threshold θk (here in red). These states are
amplified with the Grover iterator, resulting in a state that looks qualitatively like the red bars only.
In the next step, the threshold is lowered to include the states with a slightly smaller probability in
amplitude amplification, until the desired distribution of the pi is prepared

1√
N

N∑

i=1

|i〉|xi〉|0〉,

where xi ≤ 1 are the entries of a classical real vector we want to amplitude encode.
Now rotate the ancilla qubit conditional on the |xi〉 register to get

1√
N

N∑

i=1

|i〉|xi〉(
√
1 − |xi|2|0〉 + xi|1〉). (5.10)

The details of this step depend on how xi is encoded into the register. If we assume
binary fraction encoding, such a conditional rotation could be implemented by τ
single-qubit conditional rotations on the ancilla that are controlled by the q1...qτ

qubits of the second register. For qubit qk the rotation would turn the amplitude
closer to |1〉 by a value of 1

2k .
Now the ancilla has to be measured to ‘select the desired branch’ of the super-

position (see Fig. 5.8). If the measurement results in |1〉 we know that the resulting
state is in

1√
Npacc

N∑

i=1

xi|i〉|xi〉|1〉,

where pacc is the success or acceptance probability that renormalises the state. Dis-
carding the last register and uncomputing the last but one (which is possible because
the superposition is ‘kept up’ by the index register and no unwanted interference hap-
pens), we get a state that amplitude encodes a vector x = (x1, ..., xN )T . Of course,
one could also start with a non-uniform superposition and would get a product of the
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Fig. 5.8 Schematic illustration of the postselective measurement of the branch selection procedure.
The two states 0 and 1 of the ancilla qubit are entangled with two different states marked in red and
blue. A post-selectivemeasurement selects only one branch of the superposition (here the 0-branch).
The state entangled with this branch is formally renormalised

initial and new amplitude. If the measurement results in |0〉, we have to repeat the
entire routine.

The routine for arbitrary state preparation with a quantum random access memory
succeeds only with a probability of pacc =∑i |xi|2/N which obviously depends on
the state to encode. A uniform distributionwith xi = 1 ensures that pacc =∑i

1
N = 1,

and in the extreme case of only one non-zero amplitude of 1 we get pacc = 1
N , which

is exponentially small in the number of qubits n. In other words, we would have to
repeat the measurement O(N = 2n) times on average to prepare the correct state.
Luckily, very sparse states can be prepared by other methods. For example, for a
one-sparse vector one can simply flip the qubit register from the ground state into a
basis state representing the index i. Zhao et al. [26] therefore propose that in case of s
sparse vectors, one does not apply the quantum random access memory to a uniform
superposition, but a superposition

1√
s

∑

i|xi 	=0

|i〉

of the basis states representing indices of non-zero amplitudes (Fig. 5.7).
There are many other possible ways to prepare quantum states beyond quantum

circuits. An interesting perspective is offered by Aharanov et al. [1]. They present the
framework of “adiabatic state generation” as a natural (and polynomially equivalent)
alternative to state preparation in the gate model. The idea is to perform an adiabatic
evolution of a quantum system that is initially in the ground state of a generic Hamil-
tonian, to the ground state of a final Hamiltonian. If the evolution is performed slow
enough, we end up with the system in the ground state of the final Hamiltonian,
which is the state we wish to prepare. This translates the question of which initial
states can be easily prepared to the question of which ground states of Hamiltonians
are in reach of adiabatic schemes, i.e. have small spectral gaps between the ground
and the first excited state. A somewhat related idea is to use the unique stationary
states of a dissipative process in an open quantum system.

In summary, quantum state preparation for amplitude encoded states relevant to
machine learning algorithms is a topic that still requires a lot of attention, and claims
of exponential speedups from qubit-efficient state preparation algorithms should
therefore be viewed with a pinch of skepticism.
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5.2.3 Computing with Amplitudes

In contrast to basis encoding, amplitude encoding radically limits the type of com-
putations we can perform. As we saw in Chap.3, there are two general operations
for the manipulation of amplitudes in the formalism of quantum theory: unitary
transformations and measurements.

As stated in detail in Chap.3, unitary transformations are linear transformations of
the amplitude vector that preserve its length. Even if we consider subsystems (where
the evolution is not unitary any more), we still get linear dynamics, for example
expressed by the so called Kraus formalism (see [27]). In fact, it has been shown that
introducing a ‘coherent’ nonlinearity to quantumevolution implies the ability to solve
NP-hard problems [28]. Essentially this is because we could increase exponentially
small signals in a superposition to efficiently measurable information. With this,
Grover search could be done exponentially faster. It has also been claimed that any
nonlinear map would allow for super-luminal communication [29] and negate the
laws of thermodynamics [30]. In short, a nonlinear version of quantum theory can
be considered highly unlikely.3

A projective measurement is clearly a nonlinear operation, but its outcome is
stochastic and if averaging over several runs it will reflect the distribution of ampli-
tudes. But not all is lost: An important way to introduce nonlinearities on the level
of amplitudes are post-selective measurements that we used in the branch selection
scheme of the previous section. In a post-selective measurement of a single qubit,
the state of the qubit is measured in the computational basis and the algorithm is only
continued if this qubit is found in a particular state. This condition works like an “if”
statement in programming. Post-selection has the effect of setting the amplitudes in
a branch of superpositions to zero, namely the branch that is entangled with the qubit
in the state of an unsuccessful measurement. Note that in most cases we can push the
post-selection to the end of the algorithm and reject final measurement outcomes if
the result of said qubit is in the desired state. A second, closely related idea is to use
so called repeat-until-success circuits [32]. Here the unsuccessful measurement does
not result in repeating the entire algorithm, but prescribes a small correction, which
restores the state before the postselective measurement. Postselection can therefore
be repeated until success is observed. As mentioned before, these procedures are
non-unitary and for runtime considerations the likeliness of success has to be taken
into account.

5.3 Qsample Encoding

Qsample encoding has been introduced to associate a real amplitude vector
(
√
p1, ...,

√
pN )T with a classical discrete probability distribution p1, ..., pN . This

is in a sense a hybrid case of basis and amplitude encoding, since the information

3Note that there are effective nonlinear dynamics, see for example [31].
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we are interested in is represented by amplitudes, but the N features are encoded in
the qubits. An amplitude-efficient quantum algorithm is therefore exponential in the
input dimension N , while a qubit-efficient algorithm is polynomial in the input.

For a given probability distribution, state preparation works the same way as
in amplitude encoding. In some cases the distribution may be a discretisation of a
parametrised continuous and efficiently integrable distribution p(x), in which case
the implicit Grover-Rudolph scheme can be applied.

The probabilistic nature of quantum systems lets usmanipulate the classical distri-
bution with the quantum system and implement some standard statistic computations
generically. We can prepare joint distributions easily, marginalise over qubits ‘for
free’, andwe can perform a rejection sampling step via branch selection. Thesemeth-
ods are nothing other than an application of basic quantum theory from Sects. 3.1.2.3
and 3.1.3.5, but can be useful when regarded from the perspective of manipulating
distributions represented by a qsample.

5.3.1 Joining Distributions

When joining two quantum systems representing a qsample,

|ψ1〉 =
2n∑

i=1

√
ui |i〉,

and

|ψ2〉 =
2n∑

j=1

√
sj |j〉,

the joint state of the total system is described as a tensor product of the two states
(see Sect. 3.1.2.3),

|ψ1〉 ⊗ |ψ2〉 =
2n∑

i,j

√
uisj |i〉|j〉.

Sampling the binary string ij from this state is observed with probability uisj, which
is a product of the two original probabilities. In other words, the qsample of two joint
qsamples is a product distribution.

5.3.2 Marginalisation

Given a qsample,

|ψ〉 =
2n∑

i=1

√
pi |i〉.
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Themathematical operation of tracing over a qubit qk corresponds to omitting the kth
qubit from the description, leading to a statistical ensemble over all possible states
of that qubit Sect. 3.1.2.3. The resulting state is in general (that is, unless the k’th
qubit was unentangled) a mixed state.

To write down the effect of a trace operation is awkward and hides the simplicity
of the concept, but we will attempt to do it anyways in order to show the equivalence
to marginalisation. Remember that the ith computational basis state |i〉 represents a
binary sequence, more precisely the binary representation of i − 1 (for example, |1〉
represents |0...0〉). Let us define the shorthand i¬k for the binary sequence indicated
by i, but without the kth bit, and let ik=0,1 be the same sequence, but this time the kth
bit is set to either 0 or 1. Also, let 〈i|0k〉 and 〈i|1k〉 be the inner product between |i〉
and a state 1 ⊗ |0〉 ⊗ 1 and 1 ⊗ |1〉 ⊗ 1, respectively, where |0〉, |1〉 sits at the kth
position. With this notation, tracing out the kth qubit has the following effect,

trk {|ψ〉〈ψ|} = trk

{
∑

i

∑

i′

√
p(i)p(i′) |i〉〈i′|

}

=
∑

i

∑

i′

√
p(i)p(i′)

(〈0k |i〉〈i′|0k〉 + 〈1k |i〉〈i′|1k〉
)

=
∑

i¬k

∑

i′¬k

(√
p(ik=0)p(i′k=0) +

√
p(ik=1)p(i′k=1)

) |i¬k〉〈i′¬k |.

The probability to measure the computational basis state |i¬k〉 is given by the corre-
sponding diagonal element of the resulting density matrix, which is given by

(√
p(ik=0)p(ik=0) +√p(ik=1)p(ik=1)

) = (p(ik=0) + p(ik=1)
)
.

This is the sum of the probability of finding k in 0 and the probability of finding k in
1, just as we would expect from common sense.

In the classical case, given a probability distribution p(b1...bn) over n-bit strings
b1...bN , marginalising over the state of the k’th bit will yield the marginal
distribution

p(i¬k) = p(b1..bk−1bk+1..bn) (5.11)

= p(b1..bk = 0..bn) + p(b1..bk = 1..bn). (5.12)

This demonstrates that the tracing in the quantum formalism is a ‘classical’ sta-
tistical marginalisation. In other words, dropping the k’th qubit from our algorithm
effectively implements a qsample representing a marginal distribution.
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5.3.3 Rejection Sampling

There is a close relationship between branch selection or postselection and classical
rejection sampling, which can help to understand, design and compare quantum
algorithms. Rejection sampling is a method to draw samples from a distribution
p(x) that is difficult to sample from, but for which the probabilities at each point
x are easy to evaluate. The idea is to use a distribution q(x) from which it is easy
to draw samples (i.e., a Gaussian or uniform distribution), and scale it such that
p(x) ≤ Kq(x) for an integer K < ∞ (see Fig. 5.9). One then draws a sample x′ from
q(x) as well as a random number u′ from the interval [0, 1]. One accepts the sample
if u′Kq(x′) < p(x′) and rejects it otherwise. In other words, the chance to accept the
sample from q(x) depends on the ratio of the original and the alternative distribution.

Obviously, if Kq(x′) and p(x′) are almost equal, the acceptance probability is
very high, but in regions where p(x′) << Kq(x′) we will almost never accept. When
repeating this procedure, the accepted samples x′ are effectively drawn from p(x).
The general probability of acceptance can be calculated as

pacc =
〈
p

(
u <

p(x)

Kq(x)

)〉

=
〈
p(x)

Kq(x)

〉

=
∫

p(x)

Kq(x)
q(x)dx

= 1

K

∫
p(x)dx = 1

K
,

which shows that K is an important figure of merit for the runtime [33]. The larger it
is, or the bigger the difference between the two distributions, the more samples are
rejected.

In branch selection, we have a quantum state of the form

Fig. 5.9 Illustration of
rejection sampling. In order
to sample from the desired
distribution p(x) (smooth
line) one samples x′ instead
from a distribution K q(x)
(dotted line) and accepts the
sample with a probability
depending on the proportion
of the two distributions at
that point x

p(x)

K q(x)

Kq(x′)

p(x′)

x′
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N∑

i=1

√
ai|i〉(

√
1 − bi|0〉 +

√
bi|1〉),

where from Eq. (5.10) the uniform coefficients 1√
N
were replaced by more general

amplitudes
√
a1, ...,

√
aN , and the value xi was replaced by

√
bi to avoid confusion

with the classical notation. For ease of comparison with classical probability theory,
let us assume that the ai and bi are all real numbers in [0, 1]. Bymeasuring the |i〉 reg-
ister we sample from the distributionA = {a1, ..., aN }, but our goal is to sample from
the ‘unknown’ distribution B = {a1b1, ..., aNbN }. The conditional measurement on
the ancilla therefore plays the role of the rejection step if we associate

q(x) ↔ A (5.13)

p(x) ↔ B. (5.14)

To see this, consider the probability bi of measuring the ancilla in |1〉 for state |i〉
and compare it to the ‘rejection sampling’ probability of success for sample i. Using
the replacement of Eqs. (5.14) we get pacc(i) = p(uai < aibi) = p(u < bi) = bi. The
general probability of acceptance is

pacc = 〈p(u < bi)〉
= 〈bi〉
=
∑

i

biai,

where the expectation value is taken with respect to the distributionA. This is equiv-
alent to the probability of a successful branch selection.

5.4 Hamiltonian Encoding

While the approaches discussed so far encode features explicitly into quantum states,
we can choose an implicit encoding which uses the features to define the evolution
of the quantum system. This approach differs a bit from the previous ones. Instead
of preparing a quantum state which contains the features or a distribution in its
mathematical description, they now define an evolution applied to a state.

We mentioned in Sect. 3.4.4 that there are different ways to encode data into the
dynamics of a quantum system, and focused on Hamiltonian encoding. Hamiltonian
encoding associates the Hamiltonian of a system with a matrix that represents the
data, such as the design matrix X containing the feature vectors as rows, or the Gram
matrix X TX . As discussed in Sect. 3.4.2, we may have to use preprocessing tricks
that make this matrix Hermitian. Section3.5.3 presented ways in which Hamiltonian
encoding allows us to extract eigenvalues of matrices, or to multiply them to an
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amplitude vector. We therefore want to summarise some results on the resources
needed to evolve a system by a given Hamiltonian. Similar to amplitude encoding,
the general case will yield amplitude-efficient state preparation algorithms, while for
some limited datasets we can get qubit-efficient schemes. Possibly not surprisingly,
this is most prominently the case for sparse data.

To use Hamiltonian encoding we need to be able to implement an evolution

|ψ′〉 = e−iHAt|ψ〉 (5.15)

on a quantum computer. The Hamiltonian HA “encodes” a Hermitian matrix A of
the same dimensions, which means that the matrix representation of HA is entry-
wise equivalent to A. The initial quantum state |ψ〉 describes a system of n qubits,
and one can think of the final state |ψ′〉 as a quantum state that now“contains” the
information encoded into theHamiltonian—for exampleH ’s eigenvalues in the phase
of the amplitudes.

The process of implementing a given Hamiltonian evolution on a quantum com-
puter is calledHamiltonian simulation [34]. Sinceweonly consider time-independent
Hamiltonians, any unitary transformation can be written as e−iHAt . Hamiltonian sim-
ulation on a gate-based quantum computer4 is therefore very closely related to the
question of how to decompose a unitary into quantum gates. However, an operator-
valued exponential function is not trivial to evaluate, and given H there are more
practical ways than computing the unitary matrix U = e−iHAt and decomposing it
into gates.

The problem of (digital) Hamiltonian simulation can be formulated as follows:
Given a Hamiltonian H , a quantum state |ψ〉, an error ε > 0, the evolution time t
(which can be imagined as a scaling factor to H ), and an appropriate norm || · || that
measures the distance between quantum states, find an algorithm which implements
the evolution of Eq. (5.15) so that the final state of the algorithm, |ψ̃〉, is ε-close to
the desired final state |ψ′〉,

|| |ψ′〉 − |ψ̃〉|| ≤ ε.

We want to summarise the basic ideas of Hamiltonian simulation and then state the
results for qubit-efficient simulations.

5.4.1 Polynomial Time Hamiltonian Simulation

Consider aHamiltonianH that can be decomposed into a sumof several “elementary”
HamiltoniansH =∑K

k=1 Hk so that eachHk is easy to simulate. For non-commuting

4Hamiltonian simulation research can be distinguished into analog and digital approaches to sim-
ulation. Roughly speaking, analog simulation finds quantum systems that “naturally” simulate
Hamiltonians, while digital simulation decomposes the time evolution into quantum gates, which
is more relevant in the context of this book.
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Hk , we cannot apply the factorisation rule for scalar exponentials, or

e
−i
∑
k
Hk t 	=

∏

k

e−iHk t .

An important idea introduced by Seth Lloyd in his seminal paper in 1996 [35] was
to use the first-order Suzuki-Trotter formula instead,

e
−i
∑
k
Hk t =

∏

k

e−iHk t + O(t2). (5.16)

TheTrotter formula states that for small t the factorisation rule is approximately valid.
This can be leveraged when we write the evolution of H for time t as a sequence of
small time-steps of length Δt,

e−iHt = (e−iHΔt)
t

Δt .

While for the left side, the Trotter formula has a large error, for each small time step
Δt, the error in Eq. (5.16) becomes negligible. Of course, there is a trade-off: The
smaller Δt, the more often the sequence has to be repeated. But overall, we have a
way to simulate H by simulating the terms Hk .

This approach shows that if we know a decomposition of Hamiltonians into sums
of elementary Hamiltonians that we know how to simulate, we can approximately
evolve the system in the desired way. The case-specific decomposition may still be
non-trivial, and some examples are summarised in [34]. One example for such a
decomposition is a sum of Pauli operators. Every Hamiltonian can be written as

H =
∑

k1,··· ,kn=1,x,y,z

ak1,...,kn(σ
1
k1 ⊗ · · · ⊗ σn

kn). (5.17)

The sum runs over all possible tensor products of Pauli operators applied to the n
qubits, and the coefficients

ak1,··· ,kn = 1

2n
tr{(σ1

k1 ⊗ · · · ⊗ σn
kn)H },

define the entries of the Hamiltonian. For example, for two qubits we can write

H2 = a1,1(σ
1
1 ⊗ σ2

1) + a1,x(σ
1
1 ⊗ σ2

x ) + · · · + az,z(σ
1
z ⊗ σ2

z ).

This decomposition has 4n = 2n × 2n terms in general. If the evolution describes a
physical problem we can hope that only local interactions—terms in which σi = 1
for all but a few neighbouring qubits—are involved. For machine learning this could
also be interesting, when the features are generated by a “local” process and we can
hope that correlations in the data reduce the number of terms in the sum of Eq. (5.17).
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5.4.2 Qubit-Efficient Simulation of Hamiltonians

There are special classes of Hamiltonians that can be simulated in time that is loga-
rithmic in their dimension. If the Hamiltonian encodes a data matrix, this means that
the runtime is also logarithmic in the dimension of the dataset. The most prominent
example are Hamiltonians that only act on a constant number of qubits, so called
strictly local Hamiltonians [35]. This is not surprising when we remember that a
local Hamiltonian can be expressed by a constant number of terms constructed from
Pauli operators.

More generally, it has been shown that sparse Hamiltonians can be simulated
qubit-efficiently [1, 36, 37].An s-sparseHamiltonian has atmost s non-zero elements
in each row and column. One usually assumes that the non-zero elements of are given
by “oracular” access, whichmeans that for integers i, l ∈ 2n × [1...s], we have access
to the lth non-zero element from the ith row. For example, the non-zero elements
could be stored in a sparse array representation in a classical memory, which we can
use to load them into a quantum register via the oracle call |i, j, 0〉 → |i, j,Hij〉.

Recent proposals [37–39] manage to reduce the asymptotic runtime of former
work considerably. They employ a combination of demanding techniques which go
beyond the scope of this book, which is whywe only state the result. To recapture, we
want to simulate an s-sparseHamiltonianH for time t and to error ε, andH ’s non-zero
elements are accessible by an efficient oracle. Writing τ = s||H ||maxt, the number
of times we have to query the classical memory for elements of the Hamiltonian
grows as

O
(

τ
log( τ

ε
)

log(log( τ
ε
))

)

and the number of 2-qubit gates we need grows with

O
(

τ
(
n + log

5
2 (

τ

ε
)
) log( τ

ε
)

log(log( τ
ε
))

)
.

The runtime of the algorithm that simulates H is hence roughly linear in s and
n, which is the number of qubits. This ensures a poly-logarithmic and therefore
logarithmic dependency on the dimension of the matrix Awe wish to encode into the
Hamiltonian. It was also shown that this runtime is nearly optimal for Hamiltonian
simulation of sparse Hamiltonians.

Note that there are other classes of qubit-efficiently simulable Hamiltonians. One
class are Hamiltonians where the positions of the nonzero entries define a tree-
like graph. For example, if a Hamiltonian has the non-zero elements at positions
(i, j) = {(1, 2), (1, 3), (3, 6), (3, 7)}, we can read each index pair as an edge between
nodes, and the graph structure is shown in Fig. 5.10. The proof draws on techniques
of quantum walks [40]. How applicable such structures are to machine learning
applications is an open question.
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Fig. 5.10 Tree structure for
the example of sparse
Hamiltonian simulation in
the text

1

2 3

6 7

5.4.3 Density Matrix Exponentiation

There are special conditions under in which we can guarantee qubit-efficiency for
densely populated Hamiltonians. The most important in the context of quantum
machine learning is the technique of density matrix exponentiation. This technique
can be used for more general amplitude-efficient simulations, but becomes qubit-
efficient for low-rankHamiltonians. Instead of querying an oracle, the data is initially
encoded in a density matrix, for which we can apply techniques from previous sec-
tions. Although density matrix exponentiation relies on many technical details and
its understanding requires a high level of quantum computing expertise, we want to
try to briefly sketch the outline of the idea. This section is consequently suited for
more advanced readers.

The goal of density matrix exponentiation is to simulate a Hamiltonian eiHρt that
encodes a non-sparse density matrix ρ and apply it to a quantum state σ. This is
only possible because both operators are Hermitian, and every density matrix has an
entry-wise equivalent Hamiltonian. It turns out that simulating Hρ is approximately
equivalent to simulating a swap operator S, applying it to the state ρ ⊗ σ and taking
a trace operation. A swap operator is sparse and its simulation therefore efficient. It
also means that whatever data we can encode in the entries of a density matrix, we
can approximately encode it into a Hamiltonian.

The formal relation reads

tr2
{
e−iSΔt(σ ⊗ ρ)eiSΔt

} = σ − iΔt[ρ,σ] + O(Δt2) (5.18)

≈ e−iρΔtσeiρΔt . (5.19)

Note that σ − iΔt[ρ,σ] are the first terms of the exponential series e−iρΔtσeiρΔt . In
words, simulating the swap operator that ‘exchanges’ the state of the qubits of state
ρ and σ for a short time Δt, and taking the trace over the second quantum system
results in an effective dynamic as if exponentiating the second density matrix.

To prove the relation, consider two general mixed states ρ =∑N
i,i′=1 aii′ |i〉〈i′| and

σ =∑N
jj′=1 bj,j′ |j〉〈j′|, where {|i〉}, {|j〉} are the computational bases in the Hilbert

spaces of the respective states, which have the same dimension. Now write the
operator-valued exponential functions as a series
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tr2
{
e−iSΔt(σ ⊗ ρ)eiSΔt

} = tr2

⎧
⎨

⎩

∞∑

k,k ′=0

(−i)kΔtk ik
′
Δtk

′

k!k ′! Sk(σ ⊗ ρ)Sk ′

⎫
⎬

⎭

and apply the swap operators. Since S2 = 1, higher order terms in the series only
differ in the prefactor, and forΔt << 1 the higher orders quickly vanish.We therefore
only write the first few terms explicitly and summarise the vanishing tail of the series
in a O(Δt2) term,

tr2
{(∑

ii′

∑

jj′
aii′bjj′ |j〉〈j′| ⊗ |i〉〈i′|

)
+ iΔt

(∑

ii′

∑

jj′
aii′bjj′ |j〉〈j′| ⊗ |i〉〈i′|

)
S

−iΔtS
(∑

ii′

∑

jj′
aii′bjj′ |j〉〈j′| ⊗ |i〉〈i′|

)
+ O(Δt2)

}
.

Next, apply the swap operator and the trace operation. Tracing out the second system
means to ‘sandwich’ the entire expression by

∑
k〈k| · |k〉, where {|k〉} is a full set of

computational basis vectors in the Hilbert space of the second system. We get

∑

jj′
bjj′ |j〉〈j′| + iΔt

∑

ij

∑

k

akibjk |j〉〈i| − iΔt
∑

ij

∑

k

aikbkj|i〉〈j| + O(Δt2).

This is in fact the same asσ − iΔt[ρ,σ] + O(Δt2), which can be shown by executing
the commutator [a, b] = ab − ba,

σ + iΔt(σρ − ρσ) + O(Δt2),

and inserting the expressions for ρ and σ,

σ + iΔt
(∑

ii′

∑

jj′
aii′bjj′ |j〉〈j′||i〉〈i′| −

∑

ii′

∑

jj′
aii′bjj′ |i〉〈i′||j〉〈j′|) + O(Δt2

)
.

Note that the expressions ρσ and σρ from the commutator are not abbreviated tensor
products, but common matrix products, and we can use the relations 〈j′|i〉 = δj′,i and
〈i′|j〉 = δi′,j for orthonormal basis states. The error of the approximation is inO(Δt2)
which is negligible for sufficiently small simulation times Δt.

Density matrix exponentiation is often used in combination with phase estimation
presented in Sects. 3.5.2 and 3.5.3. Once a density matrix containing data is exponen-
tiated, we can ‘apply’ it to some amplitude encoded state and extract eigenvalues of ρ
through a phase estimation routine using the the inverse quantum Fourier transform.
However, to do so we need to be able to prepare powers of (e−iHρΔt)k (compare to
Uk in Sect. 3.5.2).

Lloyd et al. [41] show that this can be done by using of the order ofO(ε−3) copies
of ρ joined with an index register of d qubits in superposition,
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2d∑

k=1

|k〉〈k| ⊗ σ ⊗ ρ(1) ⊗ . . . ⊗ ρ(2d ).

Instead of simulating a single swap operator, we now have to simulate a sequence of
2-qubit swap operators, each of which swaps the first state σ with the gth copy of ρ.
The swap operator sequences are entangled with an index register, so that for index
|k〉 the sequence of swap operators runs up to copy ρ(k),

1

K

K∑

k=1

|kΔt〉〈kΔt| ⊗
k∏

g=1

e−iSgΔt

After taking the trace over all copies of ρ, this effectively implements the evolution

K∑

k=1

|k〉〈k| ⊗ e−ikHρΔtσ eikHρΔt + O(Δt2),

which is precisely in the form required to apply the quantum Fourier transform. For
a proof, simply write out the expressions as seen above.

Density matrix exponentiation is qubit-efficient for low-rank matrices, given that
the state ρ can be prepared qubit-efficiently. To see this, we first have to note that
the desired accuracy is not necessarily a constant, but depends on the size of Hρ,
especially when we are interested in the eigenvalues of ρ. For example, consider the
eigenvalues are approximately uniform. Since trρ = 1, they are of the order of 1

N if
N is the number of diagonal elements or the dimension of the Hilbert space of ρ. We
certainly want the error to be smaller than the eigenvalues themselves, which means
that ε < 1

N . The number of copies needed for the density matrix exponentiation in
superposition hence grows with N 3, and since we have to apply swap operators to
each copies, the runtime grows accordingly.

As a consequence, density matrix exponentiation for phase estimation is only
polynomial in the number of qubits or qubit-efficient if the eigenvalues of Hρ are
dominated by a few large eigenvalues that do not require a small error to be resolved.
In other words, the matrix has to be well approximable by a low-rank matrix. For
design matrices containing the dataset, this means that the data is highly redundant.
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Chapter 6
Quantum Computing for Inference

After the discussion of classical-quantum interfaces, we are now ready to dive into
techniques that can bee used to construct quantum machine learning algorithms.
As laid out in the introduction, there are two strategies to solve learning task with
quantumcomputers. First, one can try to translate a classicalmachine learningmethod
into the language of quantum computing. The challenge here is to combine quantum
routines in a clever way so that the overall quantum algorithm reproduces the results
of the classical model. The second strategy is more exploratory and creates new
models that are tailor-made for the working principles of a quantum device. Here,
the numerical analysis of the model performance can be much more important than
theoretical promises of asymptotic speedups. In the remaining chapters we will look
at methods that are useful for both approaches.

This chapter will focus on the first approach and present building blocks for quan-
tum algorithms for inference, which we understand as algorithms that implement an
input-output map y = f (x) or a probability distribution p(y|x) of a machine learning
model. We will introduce a number of techniques, tricks, subroutines and concepts
that are commonly used as building blocks in different branches of the quantum
machine learning literature. The techniques rely very much on the encoding method,
and the language developed in the previous chapter will play an important role.

The next Chap.7 will look at training, or how to solve optimisation problems that
typically occur in machine learning with a quantum computer. Chapter 8 considers
the exploratory approach more closely and looks at genuine quantum models such
as Ising models, generic quantum circuits or quantum walks, and shows some first
attempts of how to turn these into machine learning algorithms.

6.1 Linear Models

A linear model, presented before in the contexts of linear regression (Sect. 2.4.1.1)
and perceptrons (Sect. 2.4.2.1), is a parametrised model function mapping
N -dimensional inputs x = (x1, ..., xN )T to K-dimensional outputs y = (y1, ..., yK )T .
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The function is linear in a set of weight parameters that can be written as a K × N -
dimensional weight matrix W ,

f (x;W ) = Wx. (6.1)

The output can be the multi-dimensional result of a regression task, or it can be
interpreted as a one-hot encoding to a multi-label classification task (see Sect. 2.1.2).
Linear models also appear as linear layersof neural networks, i.e. a layer where the
activation function is the identity.

When the output is a scalar, we have that K = 1 and the linear model becomes an
inner product between the input and a weight vector w = (w1, ..., wN )

T ,

f (x;w) = wT x + w0 = w0 + w1x1 + · · · + wNxN . (6.2)

As mentioned before, it is common to include the bias w0 in the inner product
by extending the parameter vector to w = (w0, w1, ..., wN )

T and considering the
extended input x = (1, x1, ..., xN )T , which is why we will mostly ignore it in the
formalism.

In this section we present different strategies to implement a linear model with a
quantum computer. First we look at models of the form (6.2) where the inputs are
represented in amplitude encoding. The goal is to evaluate the inner product 〈ψw|ψx〉
if theweights are likewise amplitude encoded, or 〈0|U (w)|ψx〉 if they define a unitary
evolution. Remember that we use |ψa〉 to denote the quantum state representing a
real and normalised vector a in amplitude encoding, and thatU (w) is a parametrised
unitary circuit. We will show how a general quantum evolution can be interpreted
as a certain type of the general linear model (6.1), and how one can concatenate
quantum evolutions as linear layers of a neural network. We then present strategies
that encode the weights as a unitary evolution, U (w)|x〉, but where the inputs are
now basis encoded. Lastly, we discuss how to add nonlinearities in the different
encodings.

6.1.1 Inner Products with Interference Circuits

A natural way to represent a scalar-valued linear model on a quantum computer is
to encode the inputs x and parameters w in quantum state vectors via amplitude
encoding, |ψx〉, |ψw〉 (see Sects. 3.4.2, 5.2), and compute their inner product,

〈ψw|ψx〉 = f (x;w) = wT x.

Inner products of quantum states are a central feature in quantum theory, where the
terms ‘ket’ and ‘bra’ originate from “braket”, 〈·|·〉, which is the mathematical symbol
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of an inner product. However, while playing a prominent role in the mathematical
description of quantum theory, it is actually not trivial to measure the inner product
between two quantum states. There is a family of small quantum circuits that use
interference between different branches of a superposition to fulfil this task [1]. The
most well-known of the inner product interference routines is the so called swap test
and returns the absolute value of the inner product of two separate quantum states.

6.1.1.1 The Swap Test

Weconsider twoqubit registers in the respective quantumstates |ψa〉, |ψb〉 that encode
the real vectors a and b. The swap test is a common trick to ‘write’ the absolute square
of their inner product, |〈ψa|ψb〉|2, into the probability of measuring an ancilla qubit
in a certain state. To achieve this, one creates a superposition of the ancilla qubit and
swaps the quantum states in one branch of the superposition, after which they are
interfered (see Fig. 6.1).

Starting with a state |0〉|ψa〉|ψb〉, a Hadamard on the ancilla—the qubit in the first
register—leads to

1√
2
(|0〉 + |1〉)|ψa〉|ψb〉.

We now apply a swap operator on the two registers |ψa〉, |ψb〉 which is conditioned
on the ancilla being in state 1. This operation swaps the states |ψa〉|ψb〉 → |ψb〉|ψa〉
in the branch marked by the first qubit being in state 1,

1√
2
(|0〉|ψa〉|ψb〉 + |1〉|ψa〉|ψb〉).

Another Hadamard applied to the ancilla results in the state

|ψ〉 = 1

2
|0〉 ⊗ (|ψa〉|ψb〉 + |ψb〉|ψa〉) + 1

2
|1〉 ⊗ (|ψa〉|ψb〉 − |ψb〉|ψa〉) .

This computes two branches of a superposition, one containing a sum between the
‘unswapped’ and ‘swapped’ states of the two registers, and the other containing their

Fig. 6.1 Schematic illustration of the swap test routine. An ancilla qubit in state 0 is prepared
together with two quantum states (turquois and red shapes). The ancilla is superposed and the two
states are swapped in the branch marked by the ancilla’s 1 state. The ancilla is then interfered,
writing the sum and difference of the original and the swapped order into each branch
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difference. The probability of measuring the ancilla qubit in state 0, the acceptance
probability is given by

p0 = |〈0|ψ〉|2 = 1

2
− 1

2
|〈ψa|ψb〉|2, (6.3)

and reveals the absolute value of the inner product through

|〈ψa|ψb〉| = √
1 − 2p0. (6.4)

In the more general case that the two input states are mixed states ρa and ρb, the same
routine can be applied and the success probability of the postselective measurement
is given by [2]

p0 = 1

2
− 1

2
tr{ρaρb}

Note that here the expression ρaρb is not an abbreviation of the tensor product, but
a matrix product.

With a little trick in the way information is encoded into the amplitudes [3] it is
possible to reveal the sign of the inner product using the swap test. One simply has to
extend the vectors a → a′ and b → b′ by one extra dimension N + 1, so that a′, b′ ∈
R

N+1. The entry of the extra dimension is set to the constant value 1. To renormalise,
we have to then multiply the entire N + 1-dimensional vector with 1√

2
. This way,

the amplitude vector (α1, ...,αN )
T becomes ( 1√

2
α1, ...,

1√
2
αN ,

1√
2
)T . If part of the

amplitude vector has been padded with zeros, this extension comes at no extra cost
in the number of qubits. Only if we have already 2n features (including the bias) to
encode, this requires us to add one qubit to extend the dimensions of theHilbert space.

With the extra constant dimension, the result of the swap test between |ψa′ 〉, |ψb′ 〉
will be

p(0) = 1

2
− 1

2
|〈ψa′ |ψb′ 〉|2,

= 1

2
− 1

2
|1
2
a1b1 + · · · + 1

2
aNbN + 1

2
|2,

= 1

2
− 1

2
|1
2
aTb + 1

2
|2.

Since aTb ∈ [−1, 1], the expression | 12aTb + 1
2 | is guaranteed to lie in the positive

interval [0, 1]. As opposed to Eq. (6.4) we therefore do not have to worry about only
retrieving the absolute value. Hence, we can extract the inner product of the original
vectors via

aTb = 2
√
1 − 2p0 − 1,

and since p0 ∈ [0, 1
2 ], this value does indeed lie in the interval [−1, 1].
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6.1.1.2 Interference Circuit

There is another, slightlymore elegant routine to extract inner products, but it requires
more sophisticated state preparation. First, let us note that for unit vectors there is a
close relationship between the vector sum and the inner product: Given two real unit
vectors a, bwhose inner product one wishes to compute (with |a|2 = |b|2 = 1), then

(a + b)T (a + b) =
∑

i

(ai + bi)
2

=
∑

i

a2i +
∑

i

b2i + 2
∑

i

aibi

= 2 + 2aTb.

A geometric illustration is given in Fig. 6.2.
This fact has implicitly been used in the swap test routine, and helps to evaluate

the inner product of two quantum states together with the correct sign without tricks
like the constant shift introduced above. As a precondition, we need to be able to
prepare the initial state

|ψ〉 = 1√
2
(|0〉|ψa〉 + |1〉|ψb〉) . (6.5)

Note that in comparison with the swap test routine, here there is a superposition of
states |ψa〉, |ψb〉 in one register, as opposed to each state having its own register (see
Fig. 6.3). In the standard computational basis, quantum state (6.5) corresponds to an
amplitude vector

α = (a1, ..., aN , b1, ..., bN )
T .

If we have a routineA to prepare |ψa〉 and another routine B to prepare |ψb〉, one has
to implement these routines conditioned on the respective states of the ancilla qubit
prepared in |+〉 = 1√

2
(|0〉 + |1〉).

a + ba

b

a + b

a

b
a + b

ab

Fig. 6.2 Geometric illustration showing the relation between inner products of two normalised
vectors a and b with their sum. The sum of parallel normalised vectors is at the maximum value,
while the sum of antiparallel vectors is zero. This is exploited in the interference circuits introduces
in this section
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Fig. 6.3 Schematic illustration of the interference routine for the calculation of inner products. The
two states (blue and red shape) are initially entangled with the 0 and 1 state of an ancilla. Interfering
the two branches through a Hadamard gate applied to the ancilla writes the sum and difference of
the two states into each branch

Once state (6.5) is prepared, a Hadamard gate on the ancilla will result in

|ψ〉 = 1

2
|0〉 ⊗ (|ψa〉 + |ψb〉) + 1

2
|1〉 ⊗ (|ψa〉 − |ψb〉).

Formally speaking, the ancilla state |0〉 is entangled to an unnormalised quantum
state |ψa+b〉 that encodes the sum of a and b via amplitude encoding. The acceptance
probability p(0) = |〈0|ψ〉|2 of the ancilla being measured in state 0 is given by

p(0) = 1

4
〈ψa+b|ψa+b〉,

= 1

4
(2 + aTb),

= 1

2
+ 1

2
aTb.

This time, there is no absolute value that obscures the sign of the result.
If a and b are complex vectors (for example, the result of a unitary evolution), the

interference routine reveals only the real part of the inner product,

p(0) = 1

4
(2 +

∑

i

a∗
i bi +

∑

i

a∗
i bi),

= 1

2
+ 1

2
Re{a†b}.

This is not surprising, because ameasurement always results in a real value, otherwise
it would be unphysical.

Besides state preparation, evaluating the inner product on a quantum computer
requires only one additional qubit and a number of gates that is at most linear in
the number of qubits (and hence qubit-efficient, or logarithmic in the feature space
dimension). The number of measurements grows with the desired precision (see
Sect. 5.1.3). If weights and inputs are encoded in the amplitudes of the same register,
we can even reduce this to a single Hadamard operation plus measurements, without
the need for an extra qubit.
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6.1.2 A Quantum Circuit as a Linear Model

We still assume that the inputs are given in amplitude encoding, |ψx〉, but now look
at the case where the model parameters w are “dynamically encoded” in a unitary,
or more general, in a quantum circuit.

6.1.2.1 Unitary Linear Model

Rather trivially, a linear unitary transformation can be interpreted as a special linear
model,

|ψx′ 〉 = U |ψx〉,

that maps a N -dimensional complex vector onto a N -dimensional complex vector. If
we want to get a scalar output, we still need to sum up the elements of x′. An elegant
way to do this is to compute the inner product of the final state with a uniform
distribution |ψu〉 = 1√

N

∑
i |i〉, which would effectively implement the model

f (x; θ) = 〈ψu|U |ψx〉,
= 1√

N
(u11 + · · · + uN1)

︸ ︷︷ ︸
w1

x1 + · · · + 1√
N
(uN1 + · · · + uNN )

︸ ︷︷ ︸
wN

xN ,

= w1x1 + · · · + wNxN .

If we summarise the coefficients 1√
N
(u1i + · · · + uNi) aswi, i = 1, ...,N , like shown

above, this is the original linear function from Eq. (6.2). From a geometrical per-
spective, the output is represented by a measure of ‘uniformness’ of the stateU |ψx〉,
or the overlap with the uniform superposition. Of course, this is just another way
to formulate the idea in the previous section: If we write |ψw〉 = U †|ψu〉 we can
understand the unitary as a state preparation routine for the parameter quantum state
from before. Training the model with data means to find a circuit or unitary evolution
U that captures the input-output relation from the data.

6.1.2.2 Non-unitary Linear Model

An interesting twist appears when we look at linear models that map from R
N to a

lower-dimensional vector space RK , K < N to implement the layer of a neural net
as in Eq. (6.1). If we want to allow for arbitrary concatenation of linear layers, the
input encoding of the quantum algorithm has to be of the same type as the output
encoding, which is not the case for the interference routines above. If we also want to
reduce the dimensionality in the map, we have to consider a subsystem of the qubits
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as the output of the evolution (see also [4]). This forces us to use the language of
density matrices which was introduced in Sect. 3.1.2.3.

Consider a densitymatrix ρx that encodes an input x on its diagonal, i.e. diag{ρx} =
(x1, ..., xN )T . For example, we could encode the square roots of the features xi,
i = 1, ...,N in amplitude encoding in a n = logN qubit quantum system, |ψ√

x〉 =∑
i
√
xi|i〉, and computing the density matrix of this pure state, ρx = |ψ√

x〉〈ψ√
x|

results in the desired encoding. A unitary evolution in this language is formally
written as

ρx′ = UρxU
†.

From here, we trace out the first 1, ..., n − k of the n qubits so that we end up with
only the last k qubits, reducing the Hilbert space from N = log n dimensions to
K = log k dimensions. This yields the “hidden layer density matrix”

ρh = tr1,...,n−k{ρx′ }.

Weare not restricted to reducing the dimension: Adding qubits ρh ⊗ |0 . . . 0〉〈0 . . . 0|,
and extending the further evolution to these new qubits can increase the dimension
of the Hilbert space again.

Figure6.4 shows an example of unitary evolutions, system reductions and exten-
sions in the graphical representation of neural networks, where the diagonal of the
densitymatrix at any given point of the evolution is interpreted as a layer of ‘neurons’.
Initially the quantum system consists of three qubits

|in〉〈in| = |q1, q2, q3〉〈q1, q2, q3|.

|in〉〈in|

|h1〉〈h1|

|h〉〈h|

|h2〉〈h2|

|out〉〈out|

Fig. 6.4 Formally, performing unitary transformations, tracing qubits out and joining qubits corre-
sponds to a neural network structure. The layers correspond to the diagonal of the according density
matrix. Shown here is the evolution described in the text
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A unitary evolution applies a linear transformation that leads to an intermediate layer,

|h1〉〈h1| = U1|in〉〈in|U †
1 .

Tracing out the first qubit yields the hidden layer,

|h〉〈h| = tr1{|h1〉〈h1|},

and joining a qubit in the ground state,

|h2〉〈h2| = |h2〉〈h2| ⊗ |q4 = 0〉〈q4 = 0|.

creates a quantum state whose density matrix has again 8 diagonal elements, but 4
of them have a probability zero (i.e., those corresponding with the last qubit being in
state 1, which it is obviously not). This density matrix can be interpreted as a second
intermediate layer. Another full unitary on qubits q2, q3, q4 generates a quantum state
that represents the ‘output layer’,

|out〉〈out| = U2|h2〉〈h2|U †
2 .

The decision which qubit is traced out defines the connectivity between a bigger and
a smaller layer.

Example 6.1 For n = 2 and the ‘input’ density matrix

ρx =

⎛

⎜⎜
⎝

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞

⎟⎟
⎠ ,

tracing out the first or second qubit results respectively in

tr1ρx =
(
a11 + a33 a12 + a34
a21 + a43 a22 + a44

)
, tr2ρx =

(
a11 + a22 a13 + a24
a31 + a42 a33 + a44

)
.

Tracing out the first qubit consequently adds inputs 1, 3 and 2, 4 to define the two
units of the following layer, while tracing out the second qubit adds inputs 1, 2
and 3, 4.

Note that in general the first trace operation turns the pure state (full information on
the state) into a mixed state (we lost the information about some qubits). The trace
operation maintains the linearity, but now the full evolution of a linear layer is no
longer described by a unitary operator.
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6.1.3 Linear Models in Basis Encoding

We now tend to the case that inputs and outputs of the linear model are basis encoded.
Implementing the model requires us to find a quantum circuit U (w) that takes the
state |x〉|0...0〉 to |x〉|wT x〉, where the result of the linear model is written into the
qubits of the second register.

There are many different ways to achieve this transformation, and as an exam-
ple we will present an idea based on the quantum phase estimation algorithm from
Sect. 3.5.2. It first constructs an evolutionU (w)|x〉|j〉 = e2πi(j−1)wT x|x〉|j〉, fromwhich
quantum phase estimation can write the phase wT x into the second quantum regis-
ter [5].

Consider a state
|x1...xN 〉|0...0〉, (6.6)

where the second register contains ν qubits in the ground state (ν is a hyperparameter
that determines the precision of the output). The first step is to put the second register
into a uniform superposition by using Hadamards on each of its qubits, leading
to 1√

2ν

∑2ν

j=1 |x1, ..., xN 〉|j〉. The circuit with the desired eigenvalue for eigenstate
|x1, ..., xN 〉 can be constructed by using a sequence k = 1, ...,N of parametrised
single qubit gatesUk(wk) acting on the kth qubit of the input register. The gates have
the form of an S gate from Table3.3 but with a variable phase defined by wk ,

Uk(wk) =
(
1 0
0 e2πiwk

)
.

The full circuit reads

U (w) = Un(wn)...U2(w2)U1(w1)U0(w0).

The “bias gate” U0 adds a global phase of 2πiw0, where w0 is a real bias parameter
in [0, 1). Altogether, applying this circuit to the initial state results in

U (w)|x1, ..., xN 〉|0...0〉 = e2πiw
T x|x1, ..., xN 〉|0...0〉.

For phase estimation, we need an oracle O that can apply powers of U (w),

|x〉|j〉 O−→ U (w)j−1|x〉|j〉,

for j = 1...2ν . Remember that we defined |j〉 to be the jth computational basis state,
and since wewant |0...0〉 to produceU (w)0, we have to use j − 1 in the exponent. For
sufficiently small ν, this can always be constructed by applying U (w) conditioned
on the qubits of the index register. For example, if the last qubit is in 1, apply U (w)

once, if the second last qubit is also in 1, apply U (w) twice more, and if the kth last
qubit is in 1 apply U (w) 2k−1 times more.
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With help of such an oracle we can prepare a state

1√
2ν

2ν∑

j=1

|x1, ..., xN 〉e2πi(j−1)wT x|j〉.

The quantum phase estimation routine (introduced in Sect. 3.5.2) applies an inverse
quantum Fourier transform, and if wT x ≈ (j − 1)/2ν for a particular integer j, this
approximately results in a quantum state |x〉|wT x〉 that represents the “phase”wT x in
basis encoding. For cases wT x �= (j − 1)/2ν it can be shown that in order to obtain
wT x accurately up to νacc bits of precisionwith a success probability of 1 − ε, one has
to choose ν = νacc + �log (2 + 1

2ε ) [6]. SincewT x ∈ [0, 1), The qubits q1, ..., qν of
register |wT x〉 represent the phase via the relationship

wT x ≈ q1
1

20
+ . . . + qν

1

2ν−1
.

The computational complexity of this routine with regards to N (the number of
features) and τ (the number of bits to represent each feature) is inO(Nτ ), comparable
to the classical linear model. The dependency on the number of output qubits or
precision hyperparameter ν is slightly more difficult. After ν Hadamards, the oracle
to implement powers of U (w) in the most naive form presented above needs to be
calledO(

∑2ν−1

i=0 i) times. The inverse quantumFourier transform requires ν(ν+1)
2 + 3 ν

2
gates [6]. We will see below that when implementing a step function on the result to
extend this routine to a perceptron model, we are only interested in the value of the
first qubit, and ν is therefore sufficiently small.

Linear models in basis encoding such as the example presented here open up a
couple of interesting avenues. For example, one can process training sets in superpo-
sition by starting with the state

∑M
m=1 |xm〉 instead of |x〉, so that the entire procedure

gets applied in parallel. The result would likewise be a superposition of outputs.
From measurements on the output register one can retrieve the accuracy or success
rate on an entire dataset in parallel.

6.1.4 Nonlinear Activations

Alinearmodel is not verypowerfulwhen it comes to data that is not linearly separable.
We therefore need nonlinearities in the model function. To focus the discussion, we
will look at how to introduce nonlinearities from the perspective of neural networks
where they enter as nonlinear activation functions ϕ mapping a net input v to ϕ(v).
However, the observations can be used in other contexts as well.
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6.1.4.1 Amplitude Encoding

In terms of amplitude encoding, applying an activation function to a layer means to
implement the map |ψv〉 → |ψϕ(v)〉 for a vector or scalar v, an operation that cannot
be achieved by a standard unitary quantum evolution. This has been discussed in
Sect. 5.2, where it was illustrated why nonlinear transformations of amplitudes are
very likely to be unphysical. However, as we mentioned there is one element in
quantum theory that allows for nonlinear updates of the amplitudes: measurement.
Measurement outcomes are non-deterministic, and we have seen in Sect. 5.2.2.3 how
to make them deterministic by using branch selection. For example, we could store
the net input v temporarily in basis encoding and use the trick of conditional rotation
of an ancilla to prepare a state

|ψ〉|0〉|v〉 → |ψ〉
(
ϕ(v)|0〉 +

√
1 − ϕ(v)2|1〉

)
|v〉,

where during the conditional rotation of the ancilla we also applied a function ϕ.
From here, branch selectionwould lead to a state proportional toϕ(v)|ψ〉|v〉where—
depending on the implementation—we could try and invert the storage operation to
get rid of the last register. This is a costly detour, and it is therefore questionable
if amplitude encoding is suitable for the implementation of feed-forward neural
networks. In the next section we will look at an alternative strategy to give amplitude
encoding more power, namely through so called kernel methods.

6.1.4.2 Basis Encoding

In basis encoding, nonlinear transformations of the form |v〉|0〉 → |v〉|ϕ(v)〉 can
be implemented deterministically. As mentioned in Sect. 5.1.2 one can always take
a classical algorithm to compute ϕ on the level of logical gates, translate it into a
reversible routine and use this as a quantum algorithm.Depending on the desired non-
linearity, there may be much more efficient options. As three illustrative examples,
we consider popular nonlinear functions used as activations in neural networks, the
step function, as well as rectified linear units and a sigmoid function (see Fig. 2.18).

For simplicity, we will fix the details of the binary representation and consider
fixed point arithmetic. The real scalar v is represented by a (1 + τl + τr)-bit binary
sequence

bsbτl−1 · · · b1b0.b−1b−2 · · · b−τr . (6.7)

The first bit bs indicates the sign, and τl, τr are the numbers of bits left and right of
the decimal dot (called integer and fractional bits). A real number can be retrieved
from the bit string via

v = (−1)bs(bτl−12
τl−1 + · · · + b02

0 + b−12
−1 + b−22

−2 + · · · + b−τr2
−τr ).
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For example, the binary sequence 111.101 with τl = 2 and τr = 3 corresponds to
the real number (−1)(2 + 1 + 0.5 + 0.125) = −3.625.

A step function defined as

ϕ(v) =
{
0, if v ≤ 0,

1, else,

is most trivial to implement in this representation [5], and one does not even require
an extra output register to encode the result. Instead, the sign qubit of the input
register can be interpreted as the output, and the step function is implemented by the
‘effective map’ |v〉 = |bsbτl−1...〉 → |bs〉.

Also rectified linear units,

ϕ(v) =
{
0, if v ≥ 0,

v, else,

are simple to realise. Conditioned on the sign (qu)bit bs, either copy the input register
into the output register, or do nothing. This requires a sequence of NOT gates, each
controlled by |bs〉 as well as |bk〉 for k = τl − 1, ..., 0, ...,−τr . The NOT is applied
to the k’th qubit of the output register.

The sigmoid nonlinearity,

ϕ(v; δ) = 1

1 + e−δv
,

poses a bigger challenge. An implementation via division and exponential function
is rather demanding in terms of the number of elementary operations as well as the
spacial resources. There are a number of more efficient approximationmethods, such
as piecewise linear approximation [7]. If the overall precision (i.e. the number of bits
to represent a real number) is not very high, one can write down a boolean function
that reproduces the sigmoid function for binary numbers explicitly. This means to
define the binary representation of ϕ(v) for every possible binary representation of
the input v. For example, if the input is v = −3.625 with the above binary represen-
tation 111.101, the output of the sigmoid function, ϕ(v, δ = 0.1) = 0.410355..., is
approximated by the bitstring 000.011.

Of course, this approach would mean to store a look-up-table of possible inputs
and their outputs, whose size grows exponentially with the precision. However,
there are optimisation methods to reduce the size of the look-up table significantly,
such as Quine-McCluskey [8, 9] methods, whose idea is sketched in the following
example.
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Fig. 6.5 Sigmoid function with δ = 10 where the output has been approximated by a binary
representation and reconverted into a real number. The precision τ = s1.6 means that the binary
representation has one sign bit, one integer bit and six fractional bits which is sufficient for a rather
smooth approximation

Example 6.2 (Quine-McCluskey method) Consider an arbitrary boolean function:

x1 x2 x3 y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

We can see that the inputs {001, 011, 100, 110} belong to the output class 1. In a
quantum algorithm one could for example apply four multi-controlled NOT gates,
that together only flip the output qubit if the three qubits are in one of these states.
But one can summarise this set significantly by recognising that the y = 1 cases all
have the structure {0 · 1, 1 · 0} (marked in the table above). Hence, we only have to
control on 2 qubits instead of 3.

There are different options to compute the summarised boolean function, which is
NP-hard in general, but only has to be done once. For low precisions the cost is
acceptable. Figure6.5 illustrates that one only needs 6 fractional bits for a rather
smooth approximation of the sigmoid function that is scaled to the [−1, 1] interval.

6.1.4.3 Angle Encoding

Before finishing this section, we want to have a look at a third type of encoding
that has not been discussed before but may be interesting in the context of quantum
neural networks. Assume that by some previous operations, the net input θ = w0 +
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Fig. 6.6 A y-rotation Ry(v)

rotates the Bloch vector by
an angle v around the y axis
(that is, in the x-z-plane)

w1x1 + ... + wNxN is written into the angle of an ancilla or “net input qubit”, which
is entangled with an output qubit in some arbitrary state |ψ〉,

Ry(2v)|0〉 ⊗ |ψ〉out.

As a reminder, the rotation around the y axis is defined as

Ry(2v) =
(
cos v − sin v
sin v cos v

)
.

The net input qubit is hence rotated around the y axis by an angle v (see Fig. 6.6),
and Ry(2v)|0〉 = cos v|0〉 + sin v|1〉.1 The goal is now to rotate the output qubit by
a nonlinear activation ϕ which depends on v, in other words, we want to prepare the
output qubit in state Ry(2ϕ(v))|ψ〉.

An elegant way to accomplish this task has been introduced by Cao et al. [11] for
the sigmoid-like function ϕ(v) = arctan(tan2(v)) by using so called repeat-until-
success circuits [12, 13]. As mentioned briefly in Sect. 5.2.3, repeat-until-success
circuits apply an evolution to ancillas and an output qubit, and measuring the ancilla
in state 0 leads to the desired state of the output qubit, while when measuring state
1, one can reset the circuit by a simple procedure and apply the evolution once
more. This is repeated until finally the ancilla is measured in 0. In contrast to branch
selection or postselective measurements, we do not have to repeat the entire routine
up to the evolution in questionwhen the undesired result wasmeasured for the ancilla.

Let us have a closer look at the simplified circuit in Fig. 6.7 to understand the basic
principle of the angle encoded activation function.2 The first gate writes the net input
into the angle of the ‘net input qubit’ as explained above. The second, conditional
gate results in the state

1Such an angle encoded qubit has been called a quron [10] in the context of quantum neural
networks.
2Thanks to Gian Giacomo Guerreschi for this simplified presentation.
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|0〉 Ry(2v) • Rz(− π
2 ) R†

y(2v)

|ψ〉out −iY

Fig. 6.7 Repeat-until-success circuit that turns the output qubit by a sigmoid-like activation function
depending on the net input v encoded in the net qubit

Ry(2v)|0〉 ⊗ |ψ〉out − sin(v)|1〉 ⊗ (1 + iY )|ψ〉out.

The third gate reverses the net input encoding step. Note that R†
y(2v) = Ry(−2v).

Due to the conditional evolution of the second gate, this leads to interference effects
and yields

= |0〉|ψ〉out − sin(v) (sin(v)|0〉 + cos(v)|1〉) ⊗ (1 + iY )|ψ〉out
= |0〉 (

1 − sin2(v)1 − i sin2(v)Y )
) |ψ〉out − |1〉 sin(v) cos(v)(1 + iY )|ψ〉out

= |0〉 (
cos2(v)1 − i sin2(v)Y )

) |ψ〉out − |1〉 sin(v) cos(v)(1 + iY )|ψ〉out.

If we measure the net input qubit in state |0〉 we have to renormalise by a factor
(cos4(v) + sin4(v))− 1

2 and get the desired result

cos2(v)1 − i sin2(v)Y
√
cos4(v) + sin4(v)

= Ry(2ϕ(v)).

Else, if the measurement returns 1, we get the state 1√
2
(1 + iY )|ψ〉out. Note that here

the measurement induces a renormalisation factor (sin(v) cos(v))−1 which cancels
the dependence on v out. We therefore simply have to reverse the constant operation
1√
2
(1 + iY ) and can try again.
This basic idea can be extended to perceptron models and feed-forward neural

networks for which the value of a neuron is encoded in the angles as described above
[11]. Of course, the non-deterministic nature of repeat-until-success circuits implies
that the runtime is on average slightly longer than the feed-forward pass in a classical
neural network, since we have to repeat parts of the algorithm in case of unsuccessful
measurement outcomes. Still, the proposal is an interesting realisation of a nonlinear
activation function in the context of quantum computing.

6.2 Kernel Methods

Section6.1.4 demonstrated thatwhile there is awealth ofmethods to implement linear
models, nonlinearities can be a lot trickier, especially when it comes to amplitude
encoding. In Sect. 2.2.4 of the introduction to machine learning another strategy has
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Fig. 6.8 Kernelmethods compute the distance between data point x and x′ through a kernelκ(x, x′).
For every positive definite kernel there is a feature space F produced by mapping inputs with a
nonlinear map ϕ(x), so that the kernel of two inputs is equal to the inner product of their feature
mapped versions, κ(x, x′) = 〈ϕ(x)|ϕ(x′)〉

been already revealed to give linear models more power: feature spaces, based on
the theory of kernel methods. We will show in this section that feature spaces and
quantumHilbert spaces have a surprisingly similar mathematical formalism and how
this can be used for quantum machine learning. More details can be found in [14].

To recapitulate the highlights from Sect. 2.2.4, one can understand a (positive
semi-definite) kernel as a distance measure on the input space, and use it to compute
the distance between each training input and the new input we aim to classify, and
favour the class of “closer” training data when the decision for the prediction is
taken. Such a kernel corresponds to an inner product of data points mapped to a
higher dimensional feature space (see Fig. 6.8). The representer theorem shows how
a large class of trainedmodels can be expressed in terms of kernels. Finally, the kernel
trick allows us to construct a variety ofmodels that are formulated in terms of a kernel
function by replacing it with another kernel function. The following Sect. 6.2.1 will
review these concepts once more with slightly more mathematical foundation, after
which we show how to understand state preparation and information encoding as a
‘quantum feature map’ (Sect. 6.2.3). Finally, we discuss how to compute kernels or
distance measures on input space on a quantum computer (Sect. 6.2.4) and show how
to construct density matrices that correspond to a kernel Gram matrix (Sect. 6.2.5).

6.2.1 Kernels and Feature Maps

Let us revisit some concepts from Sect. 2.2.4, following the textbook of Schölkopf
and Smola [15]. Let X be a non-empty set of patterns or inputs. As a reminder, a
(positive semi-definite) kernel was defined as a map κ : X × X → C where for any
subset of the input set x1, ..., xM ∈ X withM ≥ 2 the Gram matrix with entries

Kij = κ(xi, xj)
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is positive definite. Kernels fulfil κ(x, x) ≥ 0 and κ(x, x′) = κ(x′, x)∗ where the star
marks the complex conjugate.

We can always construct a feature map from a kernel. A feature map was intro-
duced before as a map φ : X → F from the input space into a feature space. Previ-
ously we looked at some examples where the feature space was a real vector space
R

K with K > N , for example the map from (x1, x2)T to (x1, x2, x21 + x22)
T . It turns

out a feature space can be formalised much more generally as we will see now.
The feature map that can always be constructed from a kernel κ (sometimes called

the “canonical feature map”) maps from the input set to complex-valued functions
on the input set,

φ : X → C
X , x → κ(·, x). (6.8)

Here, the feature vectors in C
X are themselves functions that map from the input

space to the space of complex numbers X → C. The functions in feature space are
kernels with one “open slot”.

From this feature map we can construct a feature space that is a vector space with
an inner product (see [15, 16]). The vector space contains linear combinations of
{κ(·, xm)}, where {x1, ..., xM } ⊆ X is an arbitrary set of inputs,

f (·) =
M∑

m=1

νmκ(·, xm),

with coefficients νm ∈ R. Using a second vector of the same form,

g(·) =
M ′∑

m′=1

μm′κ(·, xm′),

the inner product can be defined as

〈f , g〉 =
M∑

m=1

M ′∑

m′=1

ν∗
mμm′κ(xm, xm′).

With this inner product, the feature map has the property

〈φ(x)|φ(x′)〉 = 〈κ(·, x),κ(·, x′)〉 = κ(x, x′).

Read from right to left, this relationship is a core idea of the theory of kernel meth-
ods which we introduced before: A kernel of two inputs x and x′ computes the inner
product of the same inputs mapped to a feature space. As a mere technicality in this
context, one can extend the inner product vector space by the norm ||f || = √〈·, ·〉
and the limit points of Cauchy series under this norm, and get a Hilbert space called
the Reproducing Kernel Hilbert Space.
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One can also argue vice versa and construct a kernel from a vector space with an
inner product. It follows from the above that given a mapping φ : X → H, whereH
is a Hilbert space with vectors φ(x), one can define a kernel via

κ(x, x′) = 〈φ(x),φ(x′)〉.

To see why the resulting kernel is indeed positive semi-definite as requested in the
definition, consider some patterns x1, ..., xM ∈ X . Then for arbitrary cm, cm′ ∈ C,

M∑

m,m′=1

cmc
∗
m′κ(xm, xm′) = 〈

∑

m

cmφ(xm),
∑

m′
cm′φ(xm′)〉

= ||
∑

m

cmφ(xm)||2 ≥ 0

The first equality sign is due to the bi-linearity of the inner product, while the inequal-
ity sign follows from the properties of a squared norm.

6.2.2 The Representer Theorem

Kernel methods use models for machine learning that are based on kernel functions
that measure distances between data inputs. They have been popular in the 1990s,
before neural networks became again the center of interest of mainstream machine
learning research. However, they are not simply a specific ansatz for a model. The
wide scope of kernel methods is revealed by the representer theorem introduced in
Sect. 2.2.4. Also here we want to go into slightly more detail in order to motivate
kernelmethods as a rather general framework. This can also show away of translating
a range on models into a “kernelised” version.

Consider an input domain X , a kernel κ : X × X → R, a data set D consisting
of data pairs (xm, ym) ∈ X × R and a class of model functions f : X → R that can
be written in the form

f (x) =
∞∑

l=1

μlκ(x, x
l), (6.9)

with x, xl ∈ X , μl ∈ R and ||f || < ∞. (The norm is taken from the Reproducing
Kernel Hilbert Space associated with κ). Furthermore, assume a cost function C :
D → R that quantifies the quality of a model by comparing predicted outputs f (xm)
with targets ym, and which has a regularisation term of the form g(||f ||) where
g : [0,∞) → R is a strictlymonotonically increasing function. For example,C could
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be a least squares loss with a l1 regularisation. The representer theorem says that any
function f minimising the cost function C can be written as

f (x) =
M∑

m=1

νmκ(x, xm). (6.10)

Note that the model function (6.9) from the feature space is expressed by an infinite
sum,while expression (6.10) is formulated in termsof kernels over the (finite) training
inputs xm.3 In short, a large class of typical machine learning problems can be solved
by a model that is an expansion over kernels of training data. And although we
derived it in a different fashion, the inference model for support vector machines in
Eq. (2.39) had exactly this form (associating νm with the Lagrange parameters times
the target outputs).

The following example shows how one can use the representer theorem to turn a
simple linear model into its ‘kernelised’ version.

Example 6.3 (Kernelised linear model) Take a standard linear model function
f (x) = wT x. This is of the required form in Eq. (6.9) if we chooseX = R

N , μl = wl

for l = 1...N and μl = 0 for l > N , as well as xl = êl to be the standard basis and κ
to be an inner product kernel:

∞∑

l=1

μlκ(x, xi) =
N∑

i=1

wi x
T êi = wT x.

Considering a square loss objective with l1 regularisation and g(||f ||) = ||f || with a
standard norm, we can apply the representer theorem. According to the theorem, the
optimal linear model with regards to the objective can be expressed as

f (x) =
∑

m

νmκ(x, xm).

If we choose κ(x, xm) = xT xm (a linear kernel), this means that the weight vector has
effectively been expanded in terms of the training inputs, w = ∑

m νmxm. In short,
the optimal weight vector lies in the subspace spanned by the data.

The kernelised version of amodel is nowamenable to the kernel trick. By exchang-
ing κ for another kernel κ′, we can change the feature space in which the data gets
effectively mapped.

3The form of Eq. (6.10) is a so called non-parametric model: The number of (potentially zero)
parameters νm grows with the sizeM of the training set.
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6.2.3 Quantum Kernels

Quantum states—just like feature vectors—also live in Hilbert spaces and allow for
a very natural definition of a quantum kernel.4 Input encoding (as discussed at length
in Chap.5) maps x to a vector in a Hilbert space. The main ingredient of a quantum
kernel is simply to interpret the process of encoding an input x ∈ X into a quantum
state |φ(x)〉 as a feature map.5

If the quantum state |φ(x)〉 is interpreted as a feature vector in amplitude encoding
(which we call a quantum feature state), the inner product of two such quantum
feature states can be associated with a quantum kernel

κ(x, x′) = 〈φ(x)|φ(x′)〉.

Hence, an inner product of quantum states produced by an input encoding routine
is always a kernel. Any quantum computer that can compute such an inner product
can therefore be used to estimate the kernel, and the estimates can be fed into a
classical kernel method. If the result of this inner product is impossible to simulate
on a classical computer, the kernel is classically intractable. A challenge is therefore
to find quantum kernels for which we have a quantum advantage and which at the
same time prove interesting for machine learning.

The quantum kernel itself depends solely on the input encoding routine, which
is the state preparation circuit that ‘writes’ the input into the quantum state |φ(x)〉.
Different encoding strategies give rise to different kernels. To illustrate this, we look
at five different input encoding strategies—some of which have been mentioned
before—and present their associated quantum kernel (following [14]).

Basis encoding. If the input patterns x are binary strings of length n with integer
representation i, and we chose basis encoding (see Sect. 5.1), the feature map maps
the binary string to a computational basis state,

φ : i → |i〉.

The computational basis state corresponds to a standard basis vector in a 2n-
dimensional Hilbert space. The associated quantum kernel is given by the Kronecker
delta

κ(i, j) = 〈i|j〉 = δij,

which is of course a very strict similarity measure on input space, since it only yields
a nonzero value (indicating similarity) for inputs that are exactly the same.

4In fact, the Hilbert space of some quantum systems can easily be constructed as a reproducing
kernel Hilbert space [14].
5Strictly speaking, according to the definition in Eq. (6.8) a feature map maps an input to a function,
and not to a vector. However, a quantum state is also called a wave function, and a more general
definition of a feature map is a map from X to a general Hilbert space. We can therefore overlook
this subtlety here and refer to [14] for more details.
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Amplitude encoding. If the input patterns x ∈ R
N are real vectors of length

N = 2n and we chose amplitude encoding (see Sect. 5.2), we get the feature map

φ : x → |ψx〉.

If the input x is normalised to one, its dimension is a power of 2, n = log2 N , and
we only use the real subspace of the complex vector space, this map is simply the
identity. The kernel is the inner product

κ(x, x′) = 〈ψx|ψx′ 〉 = xT x′,

which is also known as a linear kernel.

Copies of quantum states. Using the trick from [17], we canmap an input x ∈ R
N

to copies of an amplitude encoded quantum state,

φ : x → |ψx〉 ⊗ · · · ⊗ |ψx〉

and, no surprise, get the homogeneous polynomial kernel

κ(x, x′) = 〈ψx|ψx′ 〉 ⊗ · · · ⊗ 〈ψx|ψx′ 〉 = (xT x′)d .

If the original inputs are extended by some constant features, for example when
padding the input to reach the next power of 2, the constant features can play a
similar role to the offset c of a general polynomial kernel κ(x, x′) = (xT x′ + c)d

[18].

Angle encoding. Given x = (x1, .., xN )T ∈ R
N once more, we can encode one

feature per qubit like in Sect. 6.1.4.3. To recap, the feature xi is encoded in a qubit as
|q(xi)〉 = cos(xi)|0〉 + sin(xi)|1〉 (see also [19]). We get the feature map

φ : x →
(
cos x1
sin x1

)
⊗ · · · ⊗

(
cos xN
sin xN

)
,

and the corresponding kernel is a cosine kernel:

κ(x, x′) =
(
sin x1
sin x1

)T (
cos x′

1
sin x′

1

)
⊗ · · · ⊗

(
cos xN
sin xN

)T (
cos x′

N
sin x′

N

)

=
N∏

i=1

(sin xi sin x
′
i + cos xi cos x

′
i)

=
N∏

i=1

cos(xi − x′
i).
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Coherent states. As remarked in Reference [20], coherent states can be used to
explicitly compute so called radial basis function kernels (see Table2.2),

κ(x, x′) = e−δ|x−x′ |2 ,

for the case δ = 1.
Coherent states are known in the field of quantum optics as a description of light

modes. Formally, they are superpositions of so called Fock states, which are basis
states from an infinite-dimensional discrete basis {|0〉, |1〉, |2〉, ...}.

A coherent state has the form

|α〉 = e− |α|2
2

∞∑

n=0

αn

√
n! |n〉,

for α ∈ C. Encoding a real scalar input c ∈ R into a coherent state |α = c〉 = |αc〉,
induces a feature map to an infinite-dimensional space,

φ : c → |αc〉.

We can encode a real vector x = (x1, ..., xN )T in N joint coherent states,

|αx〉 = |αx1〉 ⊗ |αx2〉 ⊗ · · · ⊗ |αxN 〉.

For two coherent states |αx〉, |αx′ 〉, the kernel corresponding to this feature map is

κ(x, x′) = e
−

( |x|2
2 + |x′ |2

2 −x†x′
)

,

and its absolute value is given by

|κ(x, x′)| = |〈αx|αx′ 〉| = e− 1
2 |x−x′|2 .

Since products of kernels are also kernels, we can construct a new kernel

κ̃(x, x′) = κ(x, x′) · κ(x, x′)∗,

which is the desired radial basis function or Gaussian kernel.
According to the generalised definition of coherent states, one of their character-

istics is that inner products of basis states are not orthogonal, which means that their
inner product is not zero [21]. Generalised coherent states therefore allow the feature
map to map inputs to basis states, while still producing more interesting kernels than
a simple delta function as in the basis encoding example above [14, 20].

It is interesting to note that one cannot only use the quantum computer to estimate
the kernel function, but apply a quantum circuit to state |φ(x)〉 to process the input
in the ‘feature Hilbert space’. For example, a trainable or variational circuit (see
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Sects. 7.3 and 8.2) can learn how to process the feature quantum state and compute a
prediction from it. Such an approach has been termed the explicit approach to build
a quantum classifier from feature maps, since it explicitly computes in feature space
instead of implicitly using kernel functions [14].

6.2.4 Distance-Based Classifiers

The last section showed that inner products of quantum states |φ(x)〉 compute a
‘quantum’ kernel function κ(x, x′) = 〈φ(x)|φ(x′)〉. Of course, we can also use quan-
tum algorithms to implement kernelised classifiers directly, that is without preparing
|φ(x)〉. This is the strategy of classical kernel methods, which never visit the feature
space, but perform computations on the inputs only.

In this section we illustrate with two examples how quantum algorithms can
compute the prediction of a generic kernel-based model

f (x) =
M∑

m=1

μmκ(x, xm), (6.11)

with real weights μm and training inputs {xm}Mm=1 rather naturally. This is the same
model for which the representer theorem promises wide applications (see Eq.6.10).
Remember that a kernel function is a distance measure between x and x′, which is
why such a model can also be called a distance-based classifier.

As so often in this book, the two following models are examples for basis and
amplitude encoded inputs. The latter revisits the algorithm that has in a simplified
example been introduced in the introduction.

6.2.4.1 Kernelised Classifier with Basis Encoded Inputs

To implement a kernelised binary classifier using basis encoding, we need a sub-
routine that calculates the distance between two vectors encoded into computational
basis states. Obviously, the details of the binary representation as well as the desired
measure dictate the design of such a routine. A refreshingly simple example has been
proposed in [22] and was adapted to classification in [23] which we will extend here.

Assume that the inputs are encoded in a fixed point binary representation as
introduced in Eq. (6.7). To work with a concrete case, we choose two digits left
of the decimal point and four digits right of it. This means that every feature xi is
translated to a 6-bit binary sequence bsb1b0.b−1b−2b−3 with the relation

xi = (−1)bs(b12
1 + b02

0 + b−1
1

21
+ b−2

1

22
+ b−3

1

23
),
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where the first bit bs indicates the sign. Encoding all N features into the qubits of a
6N -qubit register leads to the computational basis state

|x〉 = |(bs)1, (b1)1, ..., (b−3)1, · · · , (bs)N , (b1)N , ..., (b−3)N 〉.

We want to compare two vectors x and x′ through a quantum routine that takes
the two states |x〉|x′〉 encoded in this fashion. Compare each pair of qubits (bj)i, (b′

j)i
with an XOR gate that writes the result

(dj)i =
{
0, if (bj)i = (b′

j)i

1, else,

into the corresponding qubit of the second register,

|(bs)1, · · · , (b−3)N 〉|(ds)1...(d−3)N 〉.

The second register is now a ‘distance’ register |d(x, x′)〉 which has ones at qubit
positions where |x〉 and |x′〉 did not coincide. Formally, the distance can be read out
from the distance register as

d(x, x′) =
N∑

i=1

(−1)(ds)i
∑

j=1,0,...,−3

(dj)i 2
j.

We can extract this measure and write it into the phase of the quantum state with
a suitable sequence of conditional phase-rotations. This ability to write the distance
measure into the phase of a quantum state directly leads to a kernelised classifier.
Assumewe start with a basis encoded superposition of training inputs entangled with
their targets and joined by the new input x̃, and in the fashion outlined above we turn
the second register into a distance register |d(x, x′)〉 that stores the distance bits. We
also add a an ancilla in uniform superposition,

1√
M

M∑

m=1

|xm, ym〉|d(xm, x̃)〉 1√
2
(|0〉 + |1〉).

We write the positive distance (that we assume here to lie in [0, 1]) into the phase of
the branch entangled with the ancilla in 0, and the negative distance into the phase
of the branch entangled with the ancilla in 1, getting

1√
2M

M∑

m=1

|xm, ym〉|d(xm, x)〉(ei π
2 d(x

m,x̃)|0〉 + e−i π
2 d(x

m,x̃)|1〉).
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Now we interfere the two branches by a Hadamard gate applied to the ancilla qubit.
This results in

1√
M

M∑

m=1

|xm, ym〉|d(xm, x̃)〉
(
cos

(π

2
d(xm, x̃)

)|0〉 + i sin
(π

2
d(xm, x̃)

)|1〉
)
.

A conditional measurement on the ancilla selects the cosine branch (flagged by
|0〉) via postselection. The probability of acceptance is given by

pacc = 1

M

M∑

m=1

cos2
(π

2
d(xm, x̃)

)
.

This probability is also a measure of how close the data is to the new input: If the
distance d(xm, x̃) is large, the sine branch of the superposition will have a larger
probability to be measured. In the worst case scenario, all training vectors have a
distance to x̃ that is close to 1 and the probability of the conditional measurement to
succeed will be close to zero. However, in this case the data might not reveal a lot of
information for the classification of the new input anyways, and the probability of
acceptance can therefore be seen as a measure of how well-posed the classification
problem is in the first place.

After a successful conditional measurement, the state becomes

1√
Mpacc

M∑

m=1

cos(
π

2
d(xm, x̃))|xm; ym〉,

where we ignored the distance register. The training inputs and targets are now
weighedby the cosine of their distance to the new input.Wecan extract a classification
from this state in two different manners. A measurement on the class qubit |ym〉 will
have a probability of

p(ỹ = 0) = 1

Mpacc

∑

m|ym=0

cos2
(π

2
d(xm, x̃)

)
,

to predict class 0 and a complementary probability of

p(ỹ = 1) = 1

Mpacc

∑

m|ym=1

cos2
(π

2
d(xm, x̃)

)

to predict class 1. Alternatively, when measuring the entire basis state |xm; ym〉, we
have a probability of

p(m) = 1

Mpacc
cos2

(π

2
d(xm, x̃)

)
,
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to pick the mth training vector, and closer training vectors are thus more likely to be
sampled by the measurement. Doing this repeatedly and recording the state of the
class qubit of the samples, we can estimate whether label ym = 0 or ym = 1 is more
present ‘in the neighbourhood’ of x̃.

6.2.4.2 Kernelised Classifier with Amplitude Encoded Inputs

We have already seen in Sect. 6.1 that interference can compute the Euclidean dis-
tance between amplitude vectors. This has also been used in the simplified example
of a quantummachine learning algorithm in the introduction. Here we want to revisit
this idea in more detail and present a slightly more rigorous description of a distance-
based classifier via interference circuits following [24] (Fig. 6.9).

Consider four registers |0〉a|0 . . . 0〉m|0 . . . 0〉i|0〉c, that we will use to encode the
ancilla, the m index over the training data, the i index over the features, and the
class label, respectively. As an initial state, one requires the (normalised) training
set {(xm, ym)}Mm=1 and the new input x̃ to be encoded in the amplitudes of a quantum
state of the form

1√
2M

M∑

m=1

(|0〉|ψx̃〉 + |1〉|ψxm〉) |ym〉|m〉,

with

|ψxm〉 =
N∑

i=1

xmi |i〉, |ψx̃〉 =
N∑

i=1

x̃i|i〉.

A Hadamard gate on the ancilla interferes the two states and results in

1

2
√
M

M∑

m=1

(
|0〉[|ψx̃〉 + |ψxm〉

] + |1〉[|ψx〉 − |ψxm〉
])|ym〉|m〉.

|0〉a H a

|0 ... 0〉m

S(data)|0 ... 0〉i

|0〉c c

Fig. 6.9 Classification circuit of the distance-based classifier explained in the text. After state
preparation S(data), the circuit only applies a Hadamard and two singe-qubit measurements to
draw a sample of the prediction. Repeated applications of the circuit lead to an estimation for the
prediction
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A conditional measurement to find the ancilla in |0〉 selects the first branch with
a success probability

pacc = 1

4M

∑

m

∑

i

|x̃i + xmi |2,

which is equal to

1 − 1

4M

∑

m

∑

i

|xi − xmi |2.

As with the basis encoded kernelised classifier, the branch selection procedure is
more likely to succeed if the collective Euclidean distance of the training set to the
new input is small. In the worst case, x ≈ −xm for allm = 1...M , and acceptance will
be very unlikely. However, this means also here that the new input is ‘far away’ from
the dataset, an indicator for the low expressive power of a classification algorithm
based on distances.

If the conditional measurement was successful, the result is given by

1

2
√
Mpacc

M∑

m=1

N∑

i=1

(
x̃i + xmi

) |i〉|ym〉|m〉.

The probability of measuring the class qubit |ym〉 in state 0 and predicting class 0 is
given by

p(ỹ = 0) = 1

4Mpacc

∑

m|ym=0

|x̃ + xm|2,

which is the same as

p(ỹ = 0) = 1 − 1

4Mpacc

∑

m|ym=0

|x̃ − xm|2,

due to the normalisation of the inputs.

Expressing the probability to predict class 0 by the squared distance shows that it
is higher the closer the class 0 training vectors are to the input. The kernel in Eq. (6.11)
is hence given by κ(x, x′) = 1 − 1

c |x − x′|2 where c is a constant. Figure6.10 shows
an example of how such a kernel weighs normalised 2-dimensional inputs.

Note that also in the amplitude encoded case, as an alternative them-register could
be measured to sample training inputs and their classes with a probability depending
on their squared distance to the new input.
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Fig. 6.10 Example of how
the kernelised binary
classifier in this section
weighs neighbouring training
inputs to come to a decision.
The inputs are normalised
and lie on a unit circle. The
influence of a training input
on the prediction of the new
input (black square) is
depicted by the colour
scheme, and lighter dots
have less influence

6.2.5 Density Gram Matrices

To conclude the discussion of kernel methods and quantum computing, we want to
mention another close analogy that can be useful for the design of quantum machine
learning algorithms, namely the formal equivalence between kernel Gram matrices
and density matrices. Gram matrices are used in a number of models introduced in
Chap.2, for example the support vector machine or Gaussian processes.

As a reminder, given a training set of inputs {x1, · · · , xM } and a kernel κ(x, x′),
the Gram matrix K is the matrix with entries

(K)m,m′ = κ(xm, xm
′
).

Gram matrices (of positive semi-definite kernels κ) are positive semi-definite and
symmetric, and if we normalise it to unit trace,

K ′ = K

tr {K} ,

it has the same mathematical form as a density matrix describing a mixed quantum
state. One can therefore prepare a quantum state where the density matrix is entry-
wise equivalent to a given Grammatrix.We call such a density matrix a density Gram
matrix. This was first explicitly used for a quantum machine learning algorithm in
[17] for a linear kernel,

κ(x, x′) = xT x′.

We want to sketch their idea of how to prepare the corresponding density Gram
matrix.

We need to first prepare a quantum state where the entire dataset is amplitude
encoded,



202 6 Quantum Computing for Inference

|ψD〉 = 1√
M

M∑

m=1

|m〉|ψxm〉 (6.12)

with the normalised training inputs in amplitude encoding |ψxm〉 = ∑
i x

m
i |i〉. The

corresponding pure density matrix reads

ρD = |ψD〉〈ψD| = 1

M

M∑

m,m′=1

|m〉〈m′| ⊗ |ψxm〉〈ψxm′ |. (6.13)

Taking the partial trace over the register |i〉 in |ψxm〉 computes the mixed quantum
state of the m register only. Mathematically, we have to sum over a complete basis
(i.e. the computational basis {|k〉} ) in the N -dimensional Hilbert space of the qubits
of register |i〉,

tri{ρD} =
N∑

k=1

〈k|ρD|k〉.

The computational basis states 〈k|, |k〉 do not act on the m register,

tri{ρD} =
N∑

k=1

〈k|ψD〉〈ψD|k〉

= 1

M

N∑

k=1

M∑

m,m′=1

|m〉〈m′| 〈k|ψxm〉〈ψxm′ |k〉

= 1

M

M∑

m,m′=1

(
N∑

k=1

〈k|ψxm〉〈ψxm′ |k〉
)

|m〉〈m′|.

The expressions 〈k|ψxm〉, 〈ψxm′ |k〉 are nothing else than the kth component of themth
and m′th training vector respectively. The expression in the bracket is therefore the
inner product of these two training vectors. This becomes immediately clear when
we turn around the inner products and remove the identity

∑
k |k〉〈k| = 1,

N∑

k=1

〈k|ψxm〉〈ψxm′ |k〉 =
N∑

k=1

〈ψxm′ |k〉〈k|ψxm〉

= 〈ψxm′ |ψxm〉.

We end up with an M × M -dimensional density matrix that describes the state of
the |m〉 register as a statistical mixture,

tri{ρD} = 1

M

M∑

m,m′=1

〈ψxm |ψxm′ 〉 |m〉〈m′| .
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This density matrix has entries

ρm,m′ = 〈ψxm |ψxm′ 〉 = (xm)T (xm
′
) = κ(xm, xm

′
) (6.14)

and is therefore identical to the normalised Gram matrix K ′ with a linear, i.e. inner
product kernel.

As we have seen in Sect. 6.2.3 there is a simple way of generalising this result for
polynomial kernels of order d ,

κ(x, x′) = (
xT x′ + c

)d
,

with c = 0. Instead of a single copy of |ψxm〉 in Eq. (6.13), start with d copies of
|ψxm〉,

1√
M

M∑

m=1

|m〉 ⊗ |ψxm〉 ⊗ · · · ⊗ |ψxm〉.

Consequently, instead of using n qubits to encode 2n-dimensional inputs, we need
d registers of n qubits, or dn qubits altogether. The state preparation routine for the
|ψxm〉 has to be repeated (or applied in parallel) for each register. The density matrix
corresponding to this state is

ρD = 1

M

M∑

m,m′=1

|m〉〈m′| ⊗ |ψxm〉〈ψxm′ | ⊗ · · · ⊗ |ψxm〉〈ψxm′ |.

Tracing out all i registers now results in a reduced density matrix with entries

ρm,m′ =
(
(xm)T (xm

′
)
)d = κ(xm, xm

′
),

and corresponds to a normalised Gram matrix for a polynomial kernel with constant
offset c = 0.

In order to include the constant we have to extend the amplitude encoded xm by
constant entries. Let

√
c = √

c1, ...,
√
cN be a N -dimensional vector of constants.

One can add an ancilla to each |i〉 register in state |ψxm〉 and prepare copies of

|0〉|ψxm〉 + |1〉|ψ√
c〉.

The inner products 〈ψxm |ψxm′ 〉 in Eq. (6.14) are now replaced by 〈ψxm |ψxm′ 〉 +
〈ψ√

c|ψ√
c〉 and the resulting kernel has an offset c. With this trick, density Gram

matrices of general polynomial kernels can be created.
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6.3 Probabilistic Models

Wehave so far only dealt with deterministicmodels in this section.Quantummechan-
ics is a probabilistic theory, and it is therefore only natural to search for points of
leverage for quantum computing with regards to probabilistic models.

From the perspective of supervised learning, a probabilistic model was defined
as a generative probability distribution p(x, y) or a discriminative probability distri-
bution p(y|x) over inputs x and labels y, which consist of binary random variables
x1, ..., xN , y1, ..., yK . Probabilistic models often have a graphical representation, in
which case they are referred to as probabilistic graphical models. Each variable is
associated with a vertex of a graph. Edges indicate interdependence relations such
as conditional independence or direct correlation.

6.3.1 Qsamples as Probabilistic Models

A quantum state can be associated with a probabilistic model by using a technique
that has been introduced as qsample encoding in Sect. 5.3. A qubit is associated
with the binary random variable, so that a basis state |i〉 = |x, y〉 describes a specific
sample of the randomvariables, which is a possible data point. The squared amplitude
corresponding to this basis state is then interpreted as the probability of data point
(x, y),

p(x, y) ⇔ |p(x, y)〉 =
∑

x,y

√
p(x, y)|x, y〉.

One can now draw samples from the distribution by measuring the qubits in the
computational basis. To take multiple samples, we have to re-prepare the qsample
from scratch each time.

As mentioned in Sect. 5.3.2, using quantum states we get marginal distributions
‘for free’. For example, given the qsample for p(x, y), we get the qsample of the
distribution over the labels only,

p(y) =
∑

x

p(x, y) ⇔ trx{|p(x, y)〉〈p(x, y)|},

by simply tracing over (in other words, ignoring) the qubits that encode the inputs
x. This is not surprising, because we are in a way “simulating” the probabilistic
model by a probabilistic quantum system, where such operations come naturally.
However, quantum theory does not seem to offer ‘magic powers’ for computing the
discriminative distribution of a given observation x = e for the input. In other words,
given the qsample |p(y|x)〉 we cannot easily prepare the qsample |p(y|e)〉, at least
not without further assumptions. This means that inference is still a hard problem.



6.3 Probabilistic Models 205

Most proposals combining quantum computing and probabilistic models use
quantum algorithms to facilitate the preparation of (possibly discriminative) qsam-
ples from which one can sample (x, y) or y for a given evidence e. Often, amplitude
amplification offers the quantum advantage of a quadratic speedup. The ability of
sampling can be used for inference as discussed in this chapter, but also for training,
which is whywewill revisit the idea of preparing qsamples with a quantum computer
in the next chapter.

Here wewill present two examples of classical models—Bayesian nets and Boltz-
mann machines—and illustrate how to prepare a qsample that corresponds to a prob-
abilistic model. Each example reveals a different strategy of preparing the qsam-
ple, namely with regards to distributions where each variable is only conditionally
dependent on a few parent variables, or distributions that have a good mean-field
approximation.

6.3.2 Qsamples with Conditional Independence Relations

To recapitulate, Bayesian netswith vertices s1...sG represent a probability distribution
of the form

p(s1, ..., sG) =
G∏

i=1

p(si|πi),

where πi is the set of |πi| parent nodes to si ∈ {0, 1}. One can prepare a qsample
|p(s1, ..., sG)〉 of this probability distribution in time O(n2|π|max) [25], where |π|max

is the largest number of parents any vertex has. For later use we denote this state
preparation routine by AS .

The state preparation routine is similar to arbitrary state preparation we encoun-
tered in Sect. 5.2, but since the state of qubit i only depends on its parents, its rotation
is only conditioned on the parent qubits. More precisely, we take a quantum state
of G qubits corresponding to the random variables or vertices of the net, and rotate
qubit qi from |0〉 to √

1 − p(si|πi)|0〉 + √
p(si|πi)|1〉, conditioned on the state of the

qubits representing the parents πi. Each possible state of the parents has to be consid-
ered with a separate conditional operation. The probability p(si|πi) can be read from
the probability tables of the Bayesian net. The conditioning therefore introduces the
exponential dependency on the number of parent nodes, since we need to cater for
any of their possible binary values. For instance, if si has three parent nodes, then
p(si|πi) describes a distribution over 23 possible values for the nodes in set πi. We
illustrate how to prepare a qsample for the Bayesian net shown in Fig. 2.25 in the
following example.

Example 6.4 (Preparing a Bayesian net qsample) In the example Bayesian net
from Sect. 2.4.3.1 which is reprinted in Fig. 6.11, one would require a register of
three qubits |0R0S0G〉 to represent the three binary variables ‘Rain’, ‘Sprinkler’ and
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qR = 0 qR =1
0.8 0.2

qS = 0 qS =1
qR = 0 0.6 0.4
qR =1 0.99 0.01

qG =0 qG =1
qR =0 qS =0
qR =0 qS =1
qR =1 qS =0
qR =1 qS =1

1.0 0.0
0.1 0.9
0.2 0.8
0.01 0.99

|qR〉 |qS〉

|qG〉

Fig. 6.11 The Bayesian network example from Sect. 2.4.3.1, which is used to demonstrate the
preparation of a qsample to perform quantum inference on Bayesian networks. In the quantum
model, each random variable corresponds to a qubit

‘Grass’. The only node without a parent is ‘Rain’, and the rotation is therefore uncon-
ditional,

|0R0S0G〉 → (
√
0.8|0R〉 + √

0.2|1R〉)|0S0G〉.

Now rotate every successive node of the belief network conditioned on the state of its
parents. This is possible because of the acyclic structure of the graph. For example,
the second qubit will be rotated around the y-axis by

√
0.4 or

√
0.01 controlled by

the first qubit being in |0〉 or |1〉,
[√

0.8 |0〉(√0.6 |0〉 + √
0.4 |1〉) + √

0.2 |1〉(√0.99 |0〉 + √
0.01 |1〉)

]
|0G〉

Rotating the last qubit |0G〉 requires four rotation gates, each controlled by two qubits,
to finally obtain

|p(RSG)〉 = √
0.48 |100〉 + √

0.032 |101〉 + √
0.00002 |110〉 + √

0.00198 |111〉.

Obviously, for each qubit i one needs 2|πi | rotations. The resources for state prepara-
tion therefore grow with O(G2|π|max). We can therefore prepare quantum states for
models with sparse dependence relations efficiently.

Once the qsample is prepared, the goal of inference in the context of supervised
learning is to get the probability of a certain label given some input x = x̃. The new
input plays the role of the observation or evidence e. For binary classification we can
interpret the first node s1 as the output and the remaining nodes s2, ..., sG as the input
to the model. The probability distribution of the Bayesian net can then be written as

p(s1, ..., sG) = p(y, x1, ..., xN ) = p(x, y).
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For inference, the nodes or qubits encoding x are replaced by the observed values or
evidence x̃. Our goal is therefore to obtain the discriminative distribution p(y|x̃) that
allows us to guess a label y. The most straight-forward approach is to draw samples
(x, y) and reject every sample where x �= x̃. The resulting samples are drawn from
p(y|x̃).

With regards to the quantum model, inference requires us to prepare a qsample
|p(y|x̃)〉. Based on the ideas of quantum rejection sampling introduced in [26], Low
and Chuang [25] show that amplitude amplification can make measurements of a
qsample quadratically more efficient than classical rejection sampling. Given the
original Bayesian net qsample |p(x, y)〉, one can formally separate the superposition
into two subbranches, one with basis states that are consistent with the evidence x̃
and one with all other basis states x that do not confirm the evidence,

|p(x, y)〉 = √
p(x̃)|y, x̃〉 + √

1 − p(x̃)|s, x〉.

We can apply amplitude amplification to boost the probability of the left branch, the
one containing the evidence. A part of the amplitude amplification routine is to apply
the state preparation routine AS for each iteration. The number of iterations of the
algorithm (each applyingAS ) needed to fully amplify the ‘evidence’ branch—thereby
making it certain to draw samples from qsample |p(y|x̃)〉—is inO(p(x̃)− 1

2 ). Overall,
one therefore achieves a runtime ofO(n2|π|maxp(x̃)− 1

2 ), which is exponentially worse
with respect to the maximum number of parents, but quadratically better with respect
to the probability of observing the evidence than classical inference with rejection
sampling.

6.3.3 Qsamples of Mean-Field Approximations

Bayesian nets allow for an elegant state preparation routine due to their intrinsic
structure that factorises the distribution. In other cases one has to resort to approxi-
mations in order to use the favourable properties of factorisation. One idea is to start
with a qsample of a mean-field approximation of the desired distribution (which has
to be computed classically beforehand) and then use branch selection to refine the
distribution. This has been introduced in the context of Boltzmann machines [27]
which we will use as an example here. The advantage of these two steps is that a
mean-field approximation is a product state, and we will see that it can be prepared
by simply rotating each qubit in the qsample register successively. State preparation
can—under certain circumstances—be therefore qubit-efficient.

To go into a bit more detail, remember that Boltzmann machines are probabilistic
models defined by the model distribution

p(v, h) = e−E(v,h)

∑
v,h e

−E(v,h)



208 6 Quantum Computing for Inference

over the visible variables v1, ..., vN+K and the hidden variables h1, ..., hJ , with the
learnable energy function E(v, h) = E(v, h; θ) (see also Eq.2.26). As before, we
summarise visible and hidden units with s1, ..., sG where G = N + K + J .

Our goal is to prepare the qsample |p(s)〉.We start insteadwith preparing a qsample
|q(s)〉 of the mean-field distribution q(s). The mean-field distribution is a product
distribution,whichmeans it can be computed as the product of Bernoulli distributions
over individual features,

q(s) = g(s1;μ1)g(s2;μ2) · · · g(sG;μG).

The individual distributions have the form

g(si;μi) =
{

μi, if si = 1,

1 − μi, else,

for 0 ≤ μi ≤ 1 and i = 1, ...,G. The mean-field distribution has the property that
it minimises the Kullback-Leibler divergence to the desired Boltzmann distribution
p(s, h) (which is a common measure of distance between distributions). The mean
field parameters μi have to be obtained in a classical calculation. We assume further-
more that a real constant k ≥ 1 is known such that p(s) ≤ kq(s).

To prepare a qsample of the form

∑

s

√
q(s)|s〉,

where |s〉 = |s1...sG〉 abbreviates a state of the network in basis encoding, one simply
has to rotate qubit i around the y-axis to

|0〉i → √
1 − μi|0〉i + √

μi|1〉i,

for all qubits i = 1, ...,G (similar to the Bayesian network state preparation routine,
but without conditioning on the parents).

We have a qsample corresponding to the mean field approximation of the target
distribution. The second step is based on branch selection presented in Sect. 5.2.2.3.
First, add an extra register and load another distribution p̄(s) in basis encoding to
obtain ∑

s

√
q(s)|s〉|p̄(s)〉.

This second distribution is constructed in such a way that q(s)p̄(s) is proportional to
p(s). Rotating an extra ancilla qubit,

∑

s

√
q(s)|s〉|p̄(s)〉

(√
1 − p̄(s)|0〉 + √

p̄(s)|1〉
)
,
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and selecting the branch inwhich the ancilla is in state |1〉 leads to the desired qsample
|p(s)〉. The success probability is larger than 1/k. If the approximation q(s)was exact,
k = 1, and the branch selection succeeds with certainty. The larger the divergence
between q(s) and p(s), the smaller the success of the conditional measurement. This
scheme is therefore useful for Boltzmann distributions that are close to a product
distribution, or where the individual variables are not very correlated.

Boltzmann distributions play an important role in quantum machine learning due
to their natural proximity to quantum mechanics. In the machine learning literature,
Boltzmann distributions are frequently called ‘Gibbs distribution’6 and they do not
only play a role inBoltzmannmachines, but also in othermodels such asMarkov logic
networks [28]. In the next chapter wewill discuss other ways of how to prepare Gibbs
distribution qsamples with quantum annealing (Sect. 7.4), and variational circuits
(Sect. 7.3). There are also conventional quantumcircuits to prepare such states exactly
[29, 30], but not qubit-efficiently.

In summary, interpreting a quantum state as a qsample corresponding to a proba-
bilistic model is a fruitful way to combinemachine learning and quantum computing,
and a very natural intersection are Boltzmann or Gibbs distributions.
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Chapter 7
Quantum Computing for Training

The previous chapter looked into strategies of implementing inference algorithms on
a quantum computer, or how to compute the prediction of a model using a quantum
instead of a classical device. This chapter will be concerned with how to optimise
models using quantum computers, a subject targeted by a large share of the quantum
machine learning literature.

We will look at four different approaches to optimisation in quantum machine
learning: linear algebra calculus, search, hybrid routines for gradient descent and
adiabatic methods. The first two approaches are largely based on two famous quan-
tum algorithms: the Harrow-Hassidim-Lloyd (HHL) algorithm for matrix inversion
andGrover’s routine for unstructured search, respectively. The third approach tackles
gradient descent, one of the most frequently used optimisation methods in machine
learning, which has no clear quantum equivalent. This is why hybrid or variational
approaches are consulted, in which inference is made on a quantum device, but the
optimisation is performed classically. Lastly, the adiabatic approach loosely sum-
marises analog techniques where the result of an optimisation problem is encoded
into the ground state of a quantum system, and the goal of optimisation is to generate
this ground state, starting in a state that is relatively easy to prepare. Increasingly,
this technique is also used to prepare qsamples which can be used as distributions
for sampling-based classical training methods, a strategy that promises to be more
fruitful in the face of noise-prone and sparsely connected early technologies.

The output of the quantum(-assisted) optimisation algorithm may be a quantum
state representing the trained parameters, or it might be a classical description of the
optimal parameters, or samples from amodel distribution.While some of the routines
presented here can be ‘plugged’ into classicalmachine learning algorithms, others are
parts of quantum implementations of machine learning algorithms. Unsurprisingly,
the choice of information encoding plays again an important role in this chapter.
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7.1 Quantum Blas

The quantum computing community developed a rich collection of quantum algo-
rithms for basic linear algebra subroutines, or quantum blas [1], in analogy to the
linear algebra libraries of various programming platforms. Quantum blas include
routines such as matrix multiplication, matrix inversion and singular value decompo-
sition. These can be used to solve optimisation problems, and heavily rely on the idea
of amplitude encoding. The quantummachine learning algorithms based on quantum
blas are rather technical combinations of the subroutines introduced in previous chap-
ters (see also Table7.1), to which we will refer extensively. Amongst them are state
preparation for amplitude encoding (Sect. 5.2), Hamiltonian evolution (Sect. 5.4),
density matrix exponentiation (Sect. 5.4.3), quantum matrix inversion (Sect. 3.5.3),
quantum phase estimation (Sect. 3.5.2), and branch selection (Sect. 5.2.3).

Quantum machine learning algorithms constructed from quantum blas inherit a
runtime that is logarithmic in the input dimension N as well as the training set size
M provided a certain structure in the inputs is given. They have different polynomial
dependencies on the desired maximum error and/or the condition number of the
design matrix constructed from the data. Our goal here is not to give an accurate
runtime analysis, which can be found in the original references and is often paved
with subtleties. Instead we want to focus on two main points: (1) How the machine
learning problem translates to a linear algebra calculation, and (2) how to combine
quantum subroutines to solve the task. Before coming to that part, the next section is
an attempt to give readers with a less extensive background in quantum computing
an idea of how the algorithms work.

7.1.1 Basic Idea

A number of learning algorithms contain linear algebra routines such as inverting a
matrix or finding a matrix’ eigenvalues and eigenvectors. The matrices are usually
constructed from the training set (i.e., the designmatrix that carries all training inputs
as rows), and therefore grow with the dimension N and/or number of the training
vectorsM . The basic idea of the linear algebra approach in quantummachine learning
is to use quantum systems for linear algebra calculus, where the design matrix is
represented by the Hamiltonian of the system via dynamic encoding.

To illustrate this with an example, consider the linear algebra task of a multipli-
cation of a vector and a unitary matrix, which we encountered in the discussion of
linear models in amplitude encoding in the last chapter. The evolution of a quan-
tum system can be mathematically expressed as Uα, where U is a unitary matrix
and α is the complex vector of 2n amplitudes. Performing this evolution effectively
implements the unitary matrix multiplication, and the state of the quantum system
after the evolution encodes the result of the multiplication. But one can do much
more: Quantum systems are natural eigendecomposers in the sense that the results of
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measurements are eigenvalues of operators to certain eigenstates (see Sect. 3.1.3.4).
One can say that the dynamics of the quantum system emulates a linear algebra cal-
culation. This can be used for matrix inversion, as demonstrated in the algorithm for
linear systems by Harrow, Hassidim and Lloyd [2] (see Sect. 3.5.3). In this algorithm
one prepares a special quantum system whose evolution is defined by the matrix that
is to be inverted, and the physical evolution allows us to invert the eigenvalues of
that matrix and read out some desired information via measurements.

The crux of this idea is the same as in amplitude encoding. Many quantum blas
require a number of manipulations that is polynomial in the number n of qubits,
which means that they are qubit-efficient. Algorithms composed of such subroutines
depend only logarithmic on the number N = 2n of amplitudes, and the same usually
applies to the number of training vectors M . A logarithmic dependency is a signifi-
cant speedup. For example, a training set of one billion (bn) vectors that each have
dimension one million can be represented in a Hamiltonian (using the previous trick
of extending the rectangular design matrix to a 2 bn × 2 bn Hermitian matrix) of a
n = 31 qubit system.

Of course, there has to be a caveat: similar to state preparation, simulating such
a Hamiltonian in general may take of the order of 4 bn operations. But we saw
interesting exceptions in Sect. 5.4, for example where the Hamiltonian is sparse
or low-rank. This obviously poses restrictions on the data one can deal with, and
only little has been done to find out which datasets could fulfil the requirements of
qubit-efficient processing. Still, the promises of simulating linear algebra calculus
with quantum systems for big data applications are impressive, and therefore worth
investigating.

7.1.2 Matrix Inversion for Training

This section presents some selected examples of classical machine learning algo-
rithms that rely on eigenvalue decomposition or matrix inversion, and for which
quantum algorithms have been proposed. The basic building blocks are summarised
in Table7.1.

7.1.2.1 Inverting Data Matrices

The first suggestion to use Harrow, Hassidim and Lloyd’s (HHL’s) quantum matrix
inversion technique for statistical data analysis was proposed by Wiebe, Braun and
Lloyd [3]. Closely related to machine learning, their goal was to ‘quantise’ linear
regression for data fitting, in which the best model parameters of a linear function for
some data points have to be found. In Sect. 2.4.1.1 it has been shown that basic linear
regression (i.e., without regularisation) reduces to finding a solution to the equation

w = (XT X)−1XT y, (7.1)
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Table 7.1 Simplified overview of the quantum blas based quantum machine learning algorithms
presented in this chapter. The design matrix X is composed of the training inputs, and y is a
vector of training outputs. ur ,vr , σr are singular vectors/values of XT X and K is a kernel matrix.
Abbreviations: HHL—quantum matrix inversion routine, HHL−—quantum matrix multiplication
routine (omitting the inversion of the eigenvalues), HHLDME—quantum matrix inversion routine
with density matrix exponentiation to simulate the required Hamiltonian, SWAP—interference
circuit to evaluate inner products of quantum states.

Classical method Computation Strategy Refs.

Data matrix inversion

Linear regression
(sparse)

(X†X)X†y HHL−, HHL [3]

Linear regression
(low-rank)

R∑

r=1
σ−1
r urvTr y HHLDME [4]

Kernel matrix inversion

Support vector
machine

K−1y HHLDME [5]

Gaussian process κT K−1y and κT K−1κ HHL + SWAP [6]

Adjacency matrix inversion

Hopfield network HHL + HHLDME [1]

where w is a N -dimensional vector containing the model parameters, y is a M-
dimensional vector containing the target outputs y1, . . . , yM from the dataset, and
the rows of the data matrix X are the N -dimensional training inputs x1, . . . , xM . The
most demanding computational problem behind linear regression is the inversion of
the square of the data matrix, (XT X)−1.

As a rough reminder, the HHL routine solves a linear system of equations Az = b
by amplitude encoding b into a quantum state and applying the evolution ei HAt |ψb〉,
where A is encoded into theHamiltonian HA (wherewe can use the trick of Sect. 3.4.4
for non-Hermitian A and therefore assume without loss of generality that A is Her-
mitian). Quantum phase estimation can extract the eigenvalues of HA and store them
in basis encoding, and some quantum post-processing writes them as amplitudes and
inverts them, which effectively computes the quantum state |ψA−1b〉. Omitting the
inversion step multiplies the matrix A as it is, |ψAb〉.

From Eq. (7.1) we can see that in order to computew, one has to perform a matrix
multiplication as well as a multiplication with an inverted matrix. This can be done
by applying HHL twice. The first step, XT y, is computed following the HHL routine
with A → XT and b → y, but without inverting X . In a second step, the original
HHL routine for matrix inversion is used with A−1 → (XT X)−1 applied to the result
of the first step, b → XT y. The outputs of the quantum algorithm are the normalised
trained model parameters encoded in the amplitudes of the quantum state |ψw〉. This
quantum state can be used with a quantum inference algorithm from the last chapter,
or by reading out the parameters via quantum tomography.
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The runtime of the routine grows with the condition number κ of the data matrix
X with O(κ6), where the Hamiltonian simulation as well as the conditional mea-
surement in the branch selection are each responsible for a termO(κ3). Hamiltonian
simulation furthermore contributes a linear dependency on the sparsity s of the data
matrix with the most recent methods [7]. The runtime grows with the inverse error
asO(1/ log ε)when modern Hamiltonian simulation methods are used. Reading out
the parameters through measurements requires a number of repetitions that is of the
order of N .

A slight variation on the linear regression algorithm allows us to replace the
sparsity condition with the requirement that the design matrix is of low rank, or close
to a low rank matrix, and requires only one step of the matrix inversion technique
[4, 8]. A low rank means that the data is highly redundant and reducible to only
a few vectors. The basic idea is to express the design matrix as a singular value
decomposition, which leads to a slightly different expression for the solution w in
terms of the singular values σr and singular vectors ur , vr of the data design matrix,

w =
R∑

r=1

σ−1
r urv

T
r y.

The singular vectors of X are the eigenvectors of XT X , while the singular values of
X are the square roots of the eigenvalues of XT X . We therefore only need to perform
one eigendecomposition of XT X , thereby “saving” the matrix multiplication with
XT above. But there is another advantage to taking the route of the singular value
decomposition. Since XT X is always a positive definite matrix, we can encode it in a
densitymatrixρXT X (aswehave shown inSect. 6.2.5) and use the technique of density
matrix exponentiation to apply eiρXT X t for a time t . Density matrix exponentiation
takes the role of Hamiltonian simulation in the original HHL routine. As discussed
before, density matrix exponentiation can yield exponential speedups for eigenvalue
extraction if XT X can be approximated by a low-rank matrix.

7.1.2.2 Inverting Kernel Matrices

The square of the design matrix, XT X , is an example of a larger class of positive
definite matrices, namely kernel Gram matrices that we discussed before. The idea
to use density matrix exponentiation for optimisation was in fact first explored in the
context of kernel methods by Rebentrost, Mohseni and Lloyd’s quantum machine
learning algorithm for support vector machines [5]. It was also the first proposal that
applied quantum blas to machine learning in the stricter sense.

While support vector machines as presented in Sect. 2.4.4.3 do not directly lead to
a matrix inversion problem, a version called least-squares support vector machines
[9] turns the convex quadratic optimisation into least squares optimisation. In short,
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by replacing the inequality constraints in Eq. (2.36)with equalities, the support vector
machine (with a linear kernel) becomes equivalent to a regression problem of the
form ⎛

⎜
⎝

0 1 . . . 1
1
...
1

K

⎞

⎟
⎠

(
w0

γ

)

=
(
0
y

)

,

with the kernelGrammatrix K of entries (K )mm ′ = (xm)T xm
′
, theLagrangian param-

eters γ = (γ1, . . . , γM)T , and a scalar biasw0 ∈ R. To obtain the γi one has to invert
the kernel matrix. Note that we simplified the formalism by ignoring so called ‘slack
parameters’ that cater for non-linearly separable datasets.

After preparing the kernel matrix as a density matrix, one can use the density
matrix exponentiation technique to simulate eiρK t and proceed with the HHL algo-
rithm to apply K−1 to a quantum state |ψy〉 to obtain |ψK−1 y〉. We call this version
of HHL with density matrix exponentiation (DME) for the Hamiltonian simulation
in short the HHLDME routine.

The outcome of the algorithm is a quantum state that encodes the bias w0 as well
as the Lagrangian parameters γ1, . . . , γM as

|ψw0,γ 〉 = 1

w2
0 + ∑

m γ 2
m

(

w0|0..0〉 +
M∑

m=1

γm |m + 1〉
)

.

With the help of an interference circuit, this state can be used to classify new inputs
[5].

Another classicalmachine learning algorithmwhoseoptimisationmethod requires
a kernel matrix inversion are Gaussian processes (see Sect. 2.4.4.4). In Gaussian pro-
cesses, the model distribution (see Eq. (2.42)) is given by

p(y|x,D) = N [
y| κT K−1y

︸ ︷︷ ︸
mean

, κ̂ − κT K−1κ︸ ︷︷ ︸
covariance

]
,

where κ̂ = κ(x̃, x̃) is the kernel function with the new input x̃ ‘in both slots’, κ

describes the vector (κ(x̃, x1), . . . , κ(x̃, xM ))T which takes the new input and the
respective training inputs, and K is the kernel Gram matrix for the training inputs
with entries κ(xm, xm

′
) for m,m ′ = 1 . . . M . Again the main computational task

is the inversion of a M × M dimensional kernel matrix to compute the mean and
variance at a new input x̃ . In order to compute these values, Zhao et al. [6] essentially
apply the HHL routine to prepare a quantum state representing K−1y. For the inner
product with κT one can use an interference circuit as the one shown in the previous
chapter.
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7.1.2.3 Inverting Adjacency Matrices

Amongst the problems that can be mapped to matrix inversion is (maybe surpris-
ingly) also the Hopfield model. As presented in Sect. 2.4.2.3, the Hopfield model is
a recurrent neural network with certain restrictions on the connectivity, which can
be used for associative memory. To “train” such a model, one can set the weighing
or adjacency matrix of the graph to

W = 1

MN

M∑

m=1

xm(xm)T − 1

N
1,

a technique known as the Hebbian learning rule [10]. This rule foresees that every
weight wi j connecting two units i, j is chosen as the average of the product xi x j of
features over the entire dataset. The famous thumb rule is “neurons that fire together,
wire together”.

Given a new pattern x̃ of which only some values are known (and the others are
set to zero), the usual operation mode of a Hopfield network is to update randomly
selected units according to a step activation rule (i.e., if the weighted sum of the
adjacent neural values is larger than a threshold value, a neuron gets set to 1, else to
0). One can show that this decreases or maintains the energy E = − 1

2 x
TWx + wT x

until the ‘closest’ memory pattern is found. The vector w contains the “constant
fields” that weigh each feature.

The matrix inversion formulation of a Hopfield neural network can be achieved
by noting that wewant the known units of the new input to coincide with the solution,
which means that

Px = x̃, (7.2)

if P is a projector onto the known features’ subspace. We can then construct the
Langrangian for this optimisation problem to minimise E under the side constraint
of Eq. (7.2),

L = −1

2
xTWx + wT x − γ T (Px − x̃) + λ

2
xT x .

In this equation, the vector γ and the scalar λ are Lagrangian parameters to learn.
The optimisation problem can be written as a system of linear equations of the form
Az = b with

A =
(
W − λ1 P

P 0

)

, z =
(
x
γ

)

, b =
(

w

x̃

)

.

Pattern retrieval or associative memory recall can be done by applying the pseu-
doinverse A+ to a quantum state |ψb〉 that encodes the vector b. However, A cannot
be assumed to be sparse. One can therefore use a mixed approach: Decompose A
into the three matrices B, C , and D,
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A =
(
0 P
P 0

)

+
(−(λ + 1

N )1 0
0 0

)

+
(

1
MN

∑
m xm(xm)T 0
0 0

)

= B + C + D.

According to the so called Suzuki-Trotter formula that we introduced in Eq. (5.16),
instead of exponentiating or simulating ei At , one can simulate the three steps
ei BteiCtei Dt , if we accept an error of O(t2). While B and C are sparse and can be
treated with Hamiltonian simulation, D is not sparse. However, D contains the sum
of outer products of the training vectors which we can associate with the quantum
state

ρW = 1

M

M∑

m=1

|xm〉〈xm |.

If we can prepare copies of ρW , we can use density matrix exponentiation to simulate
ei Dt . The quantum algorithm for associative memory recall in Hopfield networks
shows how to combine the preceding approaches to solve more and more complex
problems.

7.1.3 Speedups and Further Applications

The preceding examples demonstrated how quantum blas can be combined and
applied to machine learning optimisation problems whose solutions are formulated
as a linear algebra computation. The subroutines are rather involved, and require
a full-blown fault tolerant quantum computer that can execute a large number of
gates coherently. As mentioned before, the promise of this approach does not lie in
near-term applications, but in the longer-term potential for exponential speedups.

Overall, one can roughly summarise under which conditions quantum blas-based
training algorithms are qubit-efficient, thereby bearing a super-polynomial speedup
for machine learning tasks relative to the input dimension N and the data set size M
(see also [11]):

1. The input matrix has a constant sparsity (when Hamiltonian simulation is used)
or can be approximated by a constant rank matrix (when density matrix expo-
nentiation is used). This means that the sparsity or the rank of the matrix do not
grow with the data size and are reasonably small.

2. The input state which the (inverted) matrix is applied to can be prepared in
logarithmic time in N , M .

3. The condition number of the matrix that has to be inverted depends at most
poly-logarithmically on the data size and is reasonably small. Note that this can
sometimes be ensured by clever preprocessing of the data [12].

4. We do not request the final state as classical information, whichmeans that we do
not have to read out every amplitude via repeated measurements. Authors refer
to three possible scenarios here. We are a) only interested in some properties of
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the solution, or we can b) feed the solution into an efficient quantum inference
routine, or it is enough to c) sample from the solution.

Note that a question that is often left open is what these requirements posed on the
data sets mean for machine learning, for example whether they still define a useful
problem. Also reformulating a classical problem as a least-squares or quadratic opti-
misation problem might change the statistical properties of the model significantly
and influence the quality of solutions.

Matrix inversion was used here as an illustrative example of how to exploit quan-
tum blas for supervised machine learning. There are many other machine learning
algorithms based on linear algebra routines. For example, the density matrix expo-
nentiation routine introduced in Sect. 5.4.3 in the context of simulating Hamiltonians
has originally been proposed as a principal component analysis technique [13], where
the task is to identify the dominant eigenvalues of a datamatrix. This scheme has been
used for a quantum algorithm for dimensionality reduction and classification [14].
An application beyond supervised learning are recommendation systems, where the
main task is matrix completion [15]. Recommendation systems are based on a pref-
erence matrix R that stores a rating of M users for N different items (an illustrative
example is the user rating of movies) and which is incomplete. The learning task is
to predict the unknown rating of a user for a specific item, which is given by an entry
of the preference matrix. The complete preference matrix R is assumed to be of low
rank, which can be interpreted as there are being only a few ‘prototypes of taste’ that
allow us to deduce user rankings from others. Beyond these examples, the literature
on quantum machine learning with quantum blas is continuously growing.

7.2 Search and Amplitude Amplification

The second line of approaches in using quantum computing for optimisation is
based on Grover search and amplitude amplification, which has been introduced
in Sect. 3.5.1. These algorithms typically promise a quadratic speedup compared to
classical techniques. We illustrate the idea with three examples. First, we present
the Dürr-Høyer algorithm which extends Grover’s routine to solve an optimisation
(rather than a search) problem. This technique has been proposed in the context
of nearest neighbour [16] and clustering [17] methods to find closest data points.
Second, we look at a slight modification [18] of Grover search to handle data super-
positions, in which we want to maintain zero amplitude for data points that are not
present in a given dataset to speed up the search. This has been applied to associative
memory but can potentially be useful in other contexts as well. Third, we will look
at an example that uses amplitude amplification to search for the best model, in this
case amongst decision boundaries of a perceptron.
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7.2.1 Finding Closest Neighbours

Dürr andHøyer [19] developed aquantumsubroutine usingGrover’s algorithm tofind
theminimumof a functionC(x) over binary strings x ∈ {0, 1}n . Let 1√

N

∑
x |x〉|xcurr〉

be a superposition where we want to search through all possible basis states |x〉. In
each step an oracle marks all states |x〉 that encode an input x so that C(x) is smaller
than C(xcurr) (see Fig. 7.1). To perform the comparison, xcurr is saved in an extra
register. The marked amplitudes get amplified, and the |x〉 register measured to draw
a sample x ′. If the result x ′ is indeed smaller than xcurr, one replaces the current
minimum by the newly found one, xcurr = x ′. The routine gets repeated until the
oracle runs empty, at which point xcurr is the desired minimum.

In principle, this routine could be used to find the set of model parameters |w〉
that minimises a given cost function, and brute force search could be improved by a
quadratic speedup. However, it is not difficult to see that this search over all possible
sets of parameters is hard in the first place. If we have D parameters and each is
discretised with precision τ , we have to search over 2Dτ binary strings, and even an
improvement to

√
2Dτ would be hopeless.

However, the Dürr andHøyer routine can be applied to the task of finding the clos-
est neighbour in clustering [17] and nearest neighbour methods [16]. For example,
given a data superposition

|[x̃]〉
M−1∑

m=0

|m〉|[xm]〉|0 . . . 0〉,

C(x)

x

C(xcurr)

xcurr

Fig. 7.1 Illustration of Dürr and Høyer’s optimisation algorithm. A quantum register in uniform
superposition represents the inputs xm in basis encoding. In each iteration all states |xm〉 with a
lower cost than the current best solution, C(xcurr) > C(xm) (here shown with slightly longer blue
ticks), are marked by an oracle and their amplitudes are amplified. The register is measured and if
the result x ′ fulfills C(xcurr) > C(x ′), the current candidate for the minimum (longest red tick) gets
replaced by x ′
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where [x̃], [xm] indicates that the encoding of the new input and the training inputs
is arbitrary. To find the nearest neighbour of the new input x̃ amongst the training
inputs xm , one has to compute the distance between the new input and all training
points (see also Sect. 6.2.4) in superposition and write it into the last register,

|[x̃]〉
M−1∑

m=0

|m〉|[xm]〉|[dist(x̃, xm)]〉.

This “distance register” stores the “cost” of a training point and can serve as a lookup
table for the cost function. Iteratively reducing the subspace of possible solutions
to the training points that have a lower cost than some current candidate xl will
eventually find the closest neighbour.

7.2.2 Adapting Grover’s Search to Data Superpositions

In some contexts it can be useful to restrict Grover’s search to a subspace of basis
vectors. For example, the data superposition in basis encoding,

1√
M

M∑

m=1

|xm〉,

corresponds to a sparse amplitude vector that has entries 1√
M

for basis states that
correspond to a training input, and zero else. Standard Grover search rotates this data
superposition by the average, and thereby assigns a nonzero amplitude to training
inputs that were not in the database. This can decrease the success probability of
measuring the desired result significantly.

Example 7.1 (Common Grover search. [18])
We want to amplify the amplitude of search string 0110 in a sparse uniform super-
position,

|ψ〉 = 1√
6
(|0000〉 + |0011〉 + |0110〉 + |1001〉 + |1100〉 + |1111〉),

which in vector notation corresponds to the amplitude vector

1√
6
(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1)T .

In conventional Grover search, the first step is to mark the target state by a negative
phase,
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1√
6
(1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0, 1)T ,

afterwhich every amplitudeαi is ‘rotated’ or transformedviaαi → −αi + 2ᾱ (where
ᾱ is the average of all amplitudes) to get

1

2
√
6
(−1, 1, 1,−1, 1, 1, 3, 1, 1,−1, 1, 1,−1, 1, 1,−1)T .

In the second iteration we mark again the target state

1

2
√
6
(−1, 1, 1,−1, 1, 1,−3, 1, 1,−1, 1, 1,−1, 1, 1,−1)T

and each amplitude gets updated as

1

8
√
6
(5,−3,−3, 5,−3,−3, 13,−3,−3, 5,−3,−3, 5,−3,−3, 5)T .

As we see, the basis states that are not part of the data superposition end up having
a non-negligible probability to be measured.

Ventura andMartinez [18] therefore introduce a simple adaptation to the amplitude
amplification routine that maintains the zero amplitudes. After the desired state is
marked and the Grover operator is applied for the first time rotating all amplitudes
by the average, a new step is inserted which marks all states that were originally in
the database superposition. The effect gives all states but the desired one the same
phase and absolute value, so that the search can continue as if starting in a uniform
superposition of all possible states.

Example 7.2 (Ventura-Martinez version of Grover search [18])
Getting back to the previous example and applying the Ventura-Martinez trick, start-
ing with the same initial state, marking the target, and ‘rotating’ the amplitudes for
the first time,

1

2
√
6
(−1, 1, 1,−1, 1, 1, 3, 1, 1,−1, 1, 1,−1, 1, 1,−1)T ,

the adapted routine ‘marks’ all amplitude that correspond to states in the data super-
position,

1

2
√
6
(1, 1, 1, 1, 1, 1,−3, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

followed by another rotation,

1

4
√
6
(1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1)T .
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From now on we can proceed with Grover search as usual. The second iteration
marks again the target,

1

4
√
6
(1, 1, 1, 1, 1, 1,−9, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

and the rotation leads to

1

16
√
6
(−1,−1,−1,−1,−1,−1, 39,−1,−1,−1,−1,−1,−1,−1,−1, −1)T .

It is obvious from this example that the amplitude amplification process is much
faster, i.e. leads to amuch larger probability ofmeasuring the target state thanwithout
the adaptation.

7.2.3 Amplitude Amplification for Perceptron Training

Another straight forward application of amplitude amplification to machine learning
is suggested in [20] and targets the training of perceptrons. Perceptron models have
the advantage that rigorous bounds for training are known. Using the standard learn-
ing algorithm outlined in Sect. 2.4.2.1 and for training vectors of unit norm1 assigned
to two classes that are each separated by a positive margin γ , the training is guaran-
teed to converge to a zero classification error on the training set in O( 1

γ 2 ) iterations
over the training inputs. A slightly different approach to training in combination with
amplitude amplification allows us to improve this to O( 1√

γ
).

The basic idea is to use a dual representation of the hyperplanes that separate
the data correctly. In this representation, the hyperplanes or decision boundaries are
depicted as points on a hypersphere (determined by the normalised weight vector)
while training points define planes that cut through the hypersphere and define a
“bad” subspace in which the desired solution is not allowed to lie, as well as a
“good” subspace of allowed solutions (see Fig. 7.2). Assume we have K randomly
sampled decision boundaries, represented by their weight vectors w1, . . . , wK . One
can show that a sample decision boundary perfectly separates the training set with
probabilityO(γ ). In turn, thismeanswe have to startwithO( 1

γ
) samples tomake sure

the procedure does work on average. This is the first ‘quadratic speedup’ compared
toO( 1

γ 2 ), and so far a purely classical one. The advantage of this step is that we only
have K potential decision boundaries, with which we can now perform a Grover
search of the best.

The second speedup comes from Grover search itself and is therefore a quantum
speedup. We basis encode the weight vectors in a data superposition

1An assumption that allows us to omit that the bounds also depend on the norm.
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Fig. 7.2 In the dual representation, the normal vector of the separating hyperplanes w1 and w2

of a perceptron model are represented by points on a hypersphere, while the training set identifies
a feasible region for the separating hyperplanes. Each training vector corresponds to a plane that
‘cuts away’ part of the hypersphere (illustrated by the grey planes)

1√
K

K∑

k=1

|wk〉,

and gradually reinforce the amplitude of the weight vectorswk that were found in the
feasible subspace defined by the training data. For this purpose we need a quantum
subroutine or ‘oracle’ that marks such ‘desirable’ weight vectors in the superposi-
tion. For example, considering only one training input, such an oracle would mark
all weight vectors that classify the single input correctly. The number of iterations
needed grows with O( 1√

γ
). This convergence result can also be translated into an

improvement of the mistake bound or the maximum number of misclassified data
points in the test set after training [20].

7.3 Hybrid Training for Variational Algorithms

With full-blown fault-tolerant quantum computers still in the future, a class of hybrid
classical-quantum algorithms has become popular to design near-term applications
for quantum devices of the first generation. The idea of hybrid training of varia-
tional algorithms is to use a quantum device—possibly together with some classical
processing—to compute the value of an objective function C(θ) for a given set of
classical parameters θ . A classical algorithm is then used to optimise over the param-
eters by making queries to the quantum device [21].

As shown in Fig. 7.3, the quantum device implements a parametrised circuitU (θ)

that prepares a state U (θ)|0〉 = |ψ(θ)〉 which depends on a set of circuit parame-
ters θ . A parametrised circuit can be thought of as a family of circuits where the
parameters define one particular member of the family. For simplicity we will only
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Quantum device
|0〉

U(θ)
...

...

|0〉

Classical device

θ(t)

θ(t+1)θ(t+1)

update

rerun

Fig. 7.3 The idea of a hybrid quantum-classical training algorithm for variational circuits is to use
the quantum device to compute terms of an objective function or its derivatives, and subsequently
use a classical device to compute better circuit parameters with respect to the objective. The entire
routine gets iterated until the objective is minimised or maximised

consider unitary circuits here, but the concepts are easily extended to the evolution
of subsystems and mixed states.

Measurements on the final state |ψ(θ)〉 return estimates of expectation values,
for example the energy expectation value, or the state of a certain qubit. These
expectations depend on the circuit parameters θ . A cost function C(θ) uses the
expectation values to define how good θ is in a given problem context. The goal of
the algorithm is to find the circuit parameters θ of the variational circuit U (θ) that
minimise C(θ).

To find the optimal circuit parameters, a classical algorithm iteratively queries the
quantum device. These queries can either be the expectation values that define the
cost, or—as wewill see below—different expectation values that reveal the gradients
of the variational circuit. Since training is a joint effort by a quantum and a classical
algorithm, the training is called a “hybrid” scheme.

The variational circuit U (θ) is an ansatz that defines a set of all possible states
|ψ(θ)〉 it is able to prepare. It is typically much smaller than the space of all unitaries,
since that would require a number of parameters that is quadratic in the Hilbert space
dimension, which quickly becomes prohibitive with a growing number of qubits.
Similar to the task of choosing a good model in machine learning, a fundamental
challenge in variational algorithms lies in finding an ansatz that is rich enough to allow
the parametrised state to approximate interesting solutions to the problemwith as few
parameters as possible. An interesting point is that for qubit-efficient circuits U (θ)

that are not classically simulable, the overall training scheme exhibits an exponential
quantum speedup, because the objective function could not be computed efficiently
on a classical computer.

The great appeal of variational schemes is that they are suitable for near-term
quantum technologies for the following reasons. Firstly, they do only require a frac-
tion of the overall algorithm to run coherently (that is, as a quantum circuit), which
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leads tomuch smaller circuits. Second, there aremany possible ansätze for the circuit,
which means that it can be designed based on the strength of the device. Third, the
fact that the circuit is learned can introduce robustness against systematic errors—if
for example a certain quantum gate in the device systematically over-rotates the state,
the parameters adjust themselves to correct for the error. Fourth, compared to other
types of algorithms, optimisation as an iterative scheme can work with noise, for
example in the estimations of the objective function terms.

In the context of this book, hybrid training of variational circuits is a promising
candidate for quantummachine learning on near-term quantum devices. To show the
working principle of variational circuits we will present two of the first variational
algorithms from the quantum computing literature. We will then sketch two appli-
cations of these algorithms in quantum machine learning. The final sectionwill have
a closer look at how to perform the parameter updates on a classical computer, and
explores different strategies of hybrid training that can be used in conjunction with
these methods.

7.3.1 Variational Algorithms

The canon of quantum computing has been extended by a variety of variational
algorithms. The first example, the variational eigensolver, stems from the physics-
inspired problemof findingminimumenergy eigenstates. The second example, the so
called quantum approximate optimisation algorithm or QAOA, aims at solving com-
binatorial optimisation problems, and defines an interesting ansatz for the variational
circuit itself.

7.3.1.1 Variational Eigensolvers

Variational algorithms were initially proposed as a prescription to find ground
states—that is, lowest energy eigenstates—of quantum systems, where the cost is
simply the energy expectation value. These schemes are also called variational eigen-
solvers [22]. The variational principle of quantum mechanics tells us that the ground
state |ψ〉 minimises the expectation

〈ψ |H |ψ〉
〈ψ |ψ〉 , (7.3)

where H is the Hamiltonian of the system. The best approximation |ψ(θ∗)〉 to the
ground state given an ansatz |ψ(θ)〉 minimises (7.3) over all sets of parameters θ .
Assuming the kets are normalised, the cost function of the variational algorithm is
therefore given by

C(θ) = 〈ψ(θ)|H |ψ(θ)〉.
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The quantum device estimates C(θ) for an initial parameter set and hybrid training
iteratively lowers the energy of the system by minimising the cost function.

In theory, we can perform measurements on the state |ψ(θ)〉 to get an estimate
of the expectation value of H . However, for general Hamiltonians this can involve a
prohibitive number of measurements.

Example 7.3 ((Estimation of energy expectation)) Consider the Hamiltonian H of a
26 = 64 dimensionalHilbert space, i.e., |ψ(θ)〉 can be expressed by a 64-dimensional
amplitude vector and describes a system of 6 qubits. Assume H has a −1 at the 13th
diagonal entry and zeros else, in other words, the ground state of the Hamiltonian
is the 13th basis state of the 6-qubit system. The expectation value 〈ψ(θ)|H |ψ(θ)〉
is then effectively the probability of measuring the 13th computational basis state,
multiplied by (−1). Naively, to determine this probability we would have to measure
the state |ψ(θ)〉 repeatedly in the computational basis and divide the number of times
we observe the 13th basis state by the total number of measurements. For a uniform
superposition we need of the order of 2n measurements to do this, which is infeasible
for larger systems and defies the use of a quantum device altogether.

Luckily, in many practical cases H can be written as a weighted sum of local (i.e.
1- or 2-qubit) operators, H = ∑

k hk Hk with hk ∈ R ∀k. We have already discussed
such a case for qubit-efficient Hamiltonian simulation in Sect. 5.4.1. The overall
expectation is then given by a sum

C(θ) =
∑

k

hk〈ψ(θ)|Hk |ψ(θ)〉

of the estimates of ‘local’ expectation values 〈ψ(θ)|Hk |ψ(θ)〉. The local estimates
are multiplied by the coefficients hk and summed up on the classical device. These
‘local’ energy expectations are much easier to estimate, which reduces the number
of required measurements dramatically. If the number of local terms in the objective
function is small enough, i.e. it only grows polynomially with the number of qubits,
estimating the energy expectation through measurements from the quantum device
is qubit-efficient.

To give one example, remember that the Hamiltonian of a qubit system can always
be written as a sum over Pauli operators,

H =
∑

i,α

hiασ i
α +

∑

i, j
α,β

hi jα,βσ i
ασ

j
β + · · · , (7.4)

and the expectation value becomes sum of expectations,

〈H〉 =
∑

i,α

hiα〈σ i
α〉 +

∑

i, j
α,β

hi jα,β〈σ i
ασ

j
β 〉 + · · · ,
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where the superscripts i, j denote the qubit that the Pauli-operator acts on, while
the subscripts define the Pauli operator α, β = 1, x, y, z. From this representation
we see that the energy expectation becomes qubit-efficient if the Hamiltonian can
be written as a sum of only a few (i.e. tractably many) terms, each involving only
a few Pauli operators. This is common in quantum chemistry, where Hamiltonians
describe electronic systems under Born-Oppenheimer approximation, as well as in
many-body physics and the famous Ising/Heisenberg model [22].

Generally speaking, variational quantum eigensolvers minimise the expectation
value of an operator, here the Hamiltonian, using a quantum device to estimate the
expectation. Eigensolvers are particularly interesting in cases where the estimation
is qubit-efficient on a quantum device, while simulations on a classical computer are
intractable.

7.3.1.2 Quantum Approximate Optimisation Algorithm

Another popular variational algorithm has been presented by Farhi and Goldstone,
and in its original version solves a combinatorial optimisation problem [23]. For us,
the most important aspect is the ansatz for |ψ(θ)〉 for a given problem that will be
adapted to prepare Gibbs states in the quantum machine learning algorithm below.

Consider an objective function that counts the number of statements from a pre-
defined set of statements {Ck} which are satisfied by a given bit string z = {0, 1}⊗n ,

C(z) =
∑

k

Ck(z).

A statement can for instance be “(z1 ∧ z2) ∨ z3”, which is fulfilled for z = z1z2z3 =
000 but violated by z = 010. If statement k is fulfilled by z, Ck(z) is 1, and else it
is 0. We can represent this objective function by the expectation values 〈z|C |z〉 of a
quantum operator that we also call C . In matrix representation, the operator contains
on its diagonal the number of statements satisfied by a bit string z, whereby the
integer representation i of z defines the element Hi+1,i+1 = C(z) of the Hamiltonian
(the ‘+1’is necessary to start the index count from 1). The matrix has only zero
off-diagonal elements.

Example 7.4 Consider an objective function defined on bit strings of length n =
2 with statements C1(z1, z2) = (z1 ∧ z2) and C1(z1, z2) = (z1 ∨ z2), the matrix
expression of operator C = C1 + C2 would be given by

⎛

⎜
⎜
⎝

〈00|C |00〉 〈00|C |01〉 〈00|C |10〉 〈00|C |11〉
〈01|C |00〉 〈01|C |01〉 〈01|C |10〉 〈01|C |11〉
〈10|C |00〉 〈10|C |01〉 〈10|C |10〉 〈10|C |11〉
〈11|C |00〉 〈11|C |01〉 〈11|C |10〉 〈11|C |11〉

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

⎞

⎟
⎟
⎠ ,

and contains the number of fulfilled statements on the diagonal.
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If we interpret a quantum state |ψ〉 = ∑
z αz|z〉 as a qsample that defines a prob-

ability distribution over z-strings, then 〈ψ |C |ψ〉 is the expectation value of operator
C under this distribution. Measuring |ψ〉 in the computational basis means to draw
samples from the space of all bit strings.

We now define the ansatz |ψ(θ)〉 of the variational algorithm. For this we need a
second operator, a sum of Pauli σx or ‘flip operators’ on all bits,

B =
n∑

i=1

σ i
x .

Together, B and C define the ansatz for the parametrised state preparation scheme.
Consider the two parametrised unitaries

U (B, β) = exp−iβB, U (C, γ ) = exp−iγC .

Starting with a uniform superposition |s〉 = 1√
2n

∑
z |z〉 and alternately applying

U (B, β) U (C, γ ) for short times t prepares the parametrised state

|ψ(θ)〉 = U (B, βK )U (C, γK ) . . .U (B, β1)U (C, γ1)|s〉.

The set of parameters θ consists of the 2K parameters β1, . . . , βK , γ1, . . . , γK .
Farhi andGoldstein have shown that for K → ∞, themaximumexpectation value

over all θ is equal to the maximum of the objective function,

lim
K→∞ max

θ
〈ψ(θ)|C |ψ(θ)〉 = max

z
C(z).

Let θ∗ be the parameter set that maximises 〈ψ(θ)|C |ψ(θ)〉. The above suggests that
sampling computational basis states from |ψ(θ∗)〉 will reveal good candidates for z,
since the state assigns more probability to basis states that correspond to z values
which fulfil a lot of statements. For example, if in the extreme case there is only
one z′ that fulfills all statements and all other z fulfil none of them, we would get
|ψ(θ∗)〉 = |z′〉 as the optimal solution, and sampling would always retrieve z′. Note
that a “good candidate” in this context does not refer to a high probability to sample
the optimal z, but to draw a reasonably good solution for which C(z) is close to the
global optimum. Farhi and Goldstone’s investigations suggest that also for low K ,
even for K = 1, this algorithm can have useful solutions.

As a final side-note, the quantum approximate optimisation algorithm has its
origins in the quantum adiabatic algorithm, in which a simple starting Hamiltonian
(corresponding to B) gets slowly turned into the target Hamiltonian (hereC) without
leaving the ground state. Instead of a smooth continuous transition one uses two
rapidly alternating evolutions defined byU (B, β) andU (C, γ ). A subsequent paper
by Farhi and Harrow [24] claims that sampling from |ψ(θ)〉 even for small circuit
depths K is classically intractable, giving this model a potential exponential quantum
advantage.
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7.3.2 Variational Quantum Machine Learning Algorithms

Based on these two variational algorithms, we present two suggestions of how to use
variational algorithms in the context of quantum machine learning. First, we discuss
how the variational eigensolvers can be extended to implement a binary classifier
in which the expectation value of a quantum observable is interpreted as the output
of a machine learning model. Second, we show how to use quantum approximate
optimisation to prepare approximations of Gibbs states. These Gibbs states can be
used as qsamples to train Boltzmann machines.

7.3.2.1 Variational Classifiers

The idea of a variational eigensolver can be extended for supervised learning tasks
by interpreting the expectation value of an observable O as the output of a classifier,

f (x; θ) = 〈ψ(x; θ)|O|ψ(x; θ)〉. (7.5)

The resulting model is what we call a variational classifier. Note that the variational
circuit also has to depend on the model inputs x .

One way to associate an expectation value with a binary model output f (x; θ) is
to define

f (x; θ) = 〈ψ(x; θ)|σ j
z |ψ(x; θ)〉,

where the right side is the expectation value of the σz operator applied to the j th
qubit. The σz operator measures whether a qubit is in state 0 or 1, and the expectation
value is equivalent (up to a simple transformation) to measuring the probability of
this qubit being in state 1, as we have discussed several times before.

Example 7.5 The expectation value ofσz with respect to thefirst qubit of the quantum
state |ψ〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉 is given by

〈ψ |σ 1
z |ψ〉 = |a0|2 + |a1|2 − |a2|2 − |a3|2,

while with respect to the second qubit the expectation value is

〈ψ |σ 2
z |ψ〉 = |a0|2 − |a1|2 + |a2|2 − |a3|2.

The expectation value hence sums up the probabilities corresponding to basis states
where the qubit is in state 1, and subtracts those where the qubit is in state 0. We can
translate the expectation value into a probability of measuring the qubit in state 1 by
performing the scaling-shift

p(q j = 1) = 0.5〈〈ψ |σ j
z |ψ〉〉 + 1.
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When defining the model output as an expectation value, the standard squared
loss cost function, which measures the difference between the model outputs and the
targets ym for each training sample m = 1, . . . , M , becomes

C(θ) =
M∑

m=1

(〈ψ(xm; θ)|σ j
z |ψ(xm; θ)〉 − ym)2.

Compared to variational eigensolvers, the cost function is no longer the expec-
tation value itself, but a function of the expectation value. The model outputs
〈ψ(xm; θ)|σ j

z |ψ(xm; θ)〉 are evaluated by the quantum device, while the classical
device helps to update the parameters θ with respect the cost C(θ).

For models in which the outputs are not classical but quantum states of a single
qubit, we can extend the above cost function idea to consider the expectation value
of all three single-qubit Pauli operators and their target values [25],

C(θ) =
M∑

m=1

∑

k=x,y,z

(〈ψ(xm, θ)|σk |ψ(xm, θ)〉 − 〈σk〉mtarget)2.

Here 〈σα〉mtarget is the target value of the mth training input. Note that measuring a
single-qubit σx [σy] observable can be realised by applying a σx [σy] gate to the qubit,
thereby rotating its basis, and subsequently measuring the σz observable. Hence,
measuring any Pauli operator is comparably simple.

7.3.2.2 Variational Preparation of Boltzmann Qsamples

The quantum approximate optimisation algorithm (QAOA) suggests an interesting
ansatz for the quantumstate prepared by a variational circuit.Herewewill review [26]
how to use the ansatz to prepare approximate qsamples of Boltzmann distributions

ρBM = e−δH

tr{e−δH } , (7.6)

where
H =

∑

i, j∈s
wi jσ

z
i σ

z
j +

∑

i∈s
biσ

z
i

is the Boltzmann Hamiltonian which corresponds to the energy function of a Boltz-
mann machine. The expression i, j ∈ s means that the index runs over all qubits
q1, . . . , qG that represent the units of the model, i.e. the visible and the hidden units.
The density matrix ρBM corresponds to the probability distribution of Eq. (2.26) writ-
ten in the language of quantummechanics. In quantum theory it is also called aGibbs
state or thermal state with respect to the Hamiltonian H , since the evolution of the
system does not change the state. Samples from the Gibbs state can help to com-
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pute the weight update in a gradient descent algorithm for the training of (quantum)
Boltzmann machines [26]. The technique to prepare ρBM with the QAOA has been
called quantum approximate thermalisation [26].

In quantum approximate thermalisation, the operator B of the QAOA is replaced
by the mixer Hamiltonian

HM =
∑

i∈s
σ i
x ,

while the operatorC is replaced by H from above. As in theQAOA, theHamiltonians
are applied for K iterations in an alternating fashion,

K∏

k=1

e−iβk HM e−iγk H ,

with the real, classical parameters {β1, . . . , βK , γ1, . . . , γK }. The goal is to find the
parameters for which this sequence of operators approximately transforms the initial
state2

ρ0 = e−δHM

tr{e−δHM } ,

to the desired Boltzmann qsample from Eq. (7.6).
The iterative parameter optimization minimises the cost

C(β1, . . . , γK ) = tr{ρBM(β1, . . . , γK ) H}

by a numerical method such as Nelder-Mead. For this one has to estimate C with a
quantum device or a simulation thereof. The cost is the expectation of H with respect
to its approximate thermal state ρBM.

Recall from Sect. 2.4.2.4 that for maximum likelihood optimisation in the training
of Boltzmann machines one has to not only sample the values of ‘neurons’ from the
model distribution (which is the Boltzmann distribution we just looked at), but also
from a “data” distribution where the visible units are ‘clamped’ to a training input.
We therefore also need to prepare ‘clamped’ Boltzmann qsamples. For this one can
use the same procedure as before, but has to use slightly different operators,

H̃M =
∑

i∈h
σ i
x , H̃ =

∑

i, j∈s|(i∈h)∨( j∈h))

wi jσ
z
i σ

z
j +

∑

i∈h
biσ

z
i ,

2The initial state plays the role of the uniform superposition that we started with in the origi-
nal quantum approximate optimisation algorithm. It can be prepared by starting with the state
⊗

j

√

2 cosh(δ)
∑

± e∓ β
2 |±〉 j |±〉E j and tracing out the E j (‘environment’) register (which has as

many qubits as the visible register) [26].
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where h is the set of qubits associated with hidden units. These clamped or ‘partial’
Hamiltonians exclude terms from the full Hamiltonians which are acting on visible
units only. The initial state is now the thermal state of H̃M with the visible units pre-
pared in a randomly sampled training input |xm〉, in other words, they are ‘clamped’
to a specific value. An interesting variation uses either a superposition or a statistical
mixture of training inputs for the visible qubits, called quantum randomised clamp-
ing, which was reported to improve the results of numerical simulations significantly
[26].

7.3.3 Numerical Optimisation Methods

We have so far ignored the issue of how to optimise the classical parameters θ =
θ1, . . . , θD in the hybrid training scheme. Since the quantum algorithm provides
measurement samples for the expectation of an operator, we only have an estimation
of the output, whose precision can be increased by repeating the algorithm and
measurement. We distinguish three classes of methods to use these measurement
estimates for optimisation, derivative-free, numerical gradient-based and analytical
gradient-based methods.

7.3.3.1 Derivative-Free Methods

As the name suggests, derivative-free methods do not use gradients for optimisation.
Amongst derivative-free methods one can again distinguish between one-shot and
iterative methods. One-shot methods compute the optimal parameters on a classical
computer and use the quantum device solely for state preparation. An example has
been suggested in the context of the quantum approximate optimisation algorithm
and the so-called MaxCut problem for graphs with bounded degree [23]. However,
such classical solutions are very problem-specific, can be computationally expensive
and may be difficult to construct.

Iterative derivative-free methods use successive evaluations of the objective func-
tion (and thereby of the expectation values estimated from the quantum computer)

Fig. 7.4 The Nelder-Mead or simplex algorithm finds the minimum by successively updating the
node of a simplex that has the highest cost value. It is gradient-free and simple to implement, but
not very robust in high-dimensional landscapes
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for optimisation. A prominent example is the Nelder-Mead method [27], in which
the vertices of a D + 1-simplex are iteratively updated, incrementally shrinking the
area of the simplex around a minimum (Fig. 7.4). The algorithm terminates when
either the distance between the points or the differences of the cost between two
updates fall under a certain threshold. Other well-known candidates are genetic and
particle swarm optimisation algorithms, but little is known about their performance
in the context of variational quantum computing (for an exception see [28]).

7.3.3.2 Numerical Gradient-Based Methods

Gradient-based methods also have two sub-categories, numerical and analytical
methods. If only black-box access to the cost function is provided, one can use
finite-differences to compute the gradient numerically,

∂C(θ)

∂θl
= C(θ1, .., θl , .., θD) − C(θ1, .., θl + Δθl, .., θD)

Δθl
+ O(Δθ2

l ) + O(
ε

Δθl
).

(7.7)
The last term stems from the error of the estimation of the cost function C(θ), and ε

is the error of the estimation.
Guerreschi et al. [29] provide some useful rules when considering the finite-

differences method to compute gradients. Most importantly, we want the error inter-
vals of the two cost function evaluations not to overlap. In other words, the difference
betweenC(θ1, . . . , θl , . . . , θD) andC(θ1, . . . , θl + Δθl, . . . , θD)has to be larger than
twice the error (see Fig. 7.5), which means by Eq. (7.7) that

2ε ≤ Δθl
∂C(θ)

∂θl
.

Fig. 7.5 The finite-difference method approximates a gradient with the linear function determined
by function evaluations at two points with distance Δθ (here for a one-dimensional parameter
space). The precision ε for each function evaluationC(θ) has to be smaller for small gradients (left)
than for large ones (right)
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As a consequence, the smaller the gradient, the more precision we need in estimating
the cost function, and the more repetitions of the algorithm are required. Numerical
finite-differences methods are therefore particularly difficult in situations where the
minimum has to be approximated closely, or when the optimisation landscape has
many saddle points, and where the algorithm produces measurements with a high
variance.

7.3.3.3 Analytical Gradient-Based Methods

The second type of gradient-based methods uses analytical gradients [29–31]. Con-
sider a quantum circuit

U (θ) = G(θL) . . .G(θl) . . .G(θ1),

that consists of L parametrised “elementary unitary blocks” G. These blocks are
each defined by a set of parameters θl , l = 1, . . . , L . Let μ be an arbitrary parameter
in θ . The analytical gradient ∇μC(U (θ)) of a cost function C(U (θ)) that depends
on the variational circuit usually consists of the ‘derivative of the circuit’, ∂μU (θ).
We define the partial derivative of a matrix here as the matrix that results from taking
the partial derivative of each element.

The problem with the expression ∂μU (θ) is that these derivatives of circuits are
themselves not necessarily unitaries, and therefore no quantum circuits. That means
we cannot estimate any expectations from these circuits with the quantum device.
However, one can often use tricks to estimate ∂μU (θ) with the device, and thereby
use the analytical gradients in a hybrid training scheme. If possible, this is much
preferred over numerical gradients that are less robust.

Assume that μ only appears in the set of parameters θl (although the calculation
becomes only slightly more complex when several parameters are tied to each other).
Then

∂μU (θ) = G(θL) . . . ∂μG(θl) . . .G(θ1). (7.8)

This is significant: Due to its linearity, the ‘derivative of the circuit’ is exactly the
same as the original circuit except from one block.

A useful observation arises for cases in which

∂μG(θl) =
∑

i

aiGi (θl) (7.9)

holds. This means that the derivative of the unitary block can be computed as the
weighed sum of other blocks. Below we will discuss two cases, one where Gi (θl) =
G(ri (θl)) (which means that only the parameters are transformed by a set of known
and fixed functions ri ), and the other where the Gi form a decomposition of the
generator O of the gate G = expiθl O for a single parameter θl .

Inserted back into expression (7.8), one finds
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∂μU (θ) =
∑

i

aiG(θL) . . .Gi (θl) . . .G(θ1) =
∑

i

aiUi (θ). (7.10)

The ‘derivative of a circuit’ is a linear combination of circuits. The gradient can there-
fore often be estimated by running the original variational circuit but with slightly
different parameters or gates, and by combining the different outputs on the classical
device. This has been termed a classical linear combination of unitaries [31]. The
classical linear combination of unitaries trick allows us to use exactly the same quan-
tum hardware to estimate gradients. Of course, the particulars of the computation
depend on the parametrisation of the blocks G, the cost function and the expectation
value that is evaluated from the circuit.

7.3.4 Analytical Gradients of a Variational Classifier

7.3.4.1 Derivatives of Gates

To give a concrete example of this still rather abstract notion of estimating gradients
of circuits, consider a circuit constructed from elementary blocks that are general
single qubit gates (see also [31] and Sect. 8.2.1),

G(α, β, γ ) =
(

eiβ cosα eiγ sin α

−e−iγ sin α e−iβ cosα

)

. (7.11)

“General” in this context means that any single qubit gate (up to an unmeasurable
global phase factor) can be represented in this form [32]. The derivative of such a
gate with respect to the parameters μ = α, β, γ are as follows:

∂αG(α, β, γ ) = G(α + π

2
, β, γ ), (7.12)

∂βG(α, β, γ ) = 1

2
G(α, β + π

2
, 0) + 1

2
G(α, β + π

2
, π), (7.13)

∂γG(α, β, γ ) = 1

2
G(α, 0, γ + π

2
) + 1

2
G(α, π, γ + π

2
). (7.14)

Comparing this to Eq. (7.9), one sees that the transformations ri (θ) of the parameters
consists of shifting some parameters by π

2 and setting others to a constant. This is
hence an illustration of the case where the linear combination of gates uses the same
gate, but with transformed parameters, Gi (θl) = G(ri (θl)). Controlled single qubit
gates can be decomposed into linear combinations of unitaries in a similar fashion.

As a second example, consider a variational circuit that is parametrised as Pauli
matrices, so that the building blocks read

G(μ) = eiμO
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with O being a tensor product of Pauli operators σx , σy and σz including the identity
1, each acting on one of the n qubits. The derivative of a gate eiμO is formally given
by

∂μe
iμO = i OeiμO ,

and since we can apply the Pauli gates as unitaries, we can simply add O as a
further gate to construct the derivative circuit [30]. If O was a non-unitary Hermitian
operator, we could try to decompose it into a linear combination of unitaries.

7.3.4.2 Computing the Gradient

Now assume a variational classifier as introduced in Sect. 7.3.2.1, where the model
is represented by a quantum expectation value 〈ψ(x; θ)|σz|ψ(x; θ)〉, with σz being
applied to a single specified qubit. Formally, derivatives of this function are computed
as

∂μ 〈ψ(x, θ)|σz|ψ(x, θ)〉 = 〈∂μψ(x, θ)|σz|ψ(x, θ)〉 + 〈ψ(x, θ)|σz|∂μψ(x, θ)〉
= Re{〈∂μψ(x, θ)|σz|ψ(x, θ)〉}, (7.15)

with |ψ(x, θ)〉 = U (x, θ)|0〉. The derivative of the (quantum) model is nothing but
the real part of the inner product between two states: The original variational circuit
together with a final σz gate on a predefined output qubit, σz|ψ(x, θ)〉, as well as the
state produced by applying the derivative of the circuit, |∂μψ(x, θ)〉 = ∂μU (x, θ)|0〉.

Using the classical linear combination of unitaries in Eq. (7.10) to compute the
derivative ∂μU (x, θ), we can express the right side of Eq. (7.15) by the real part of
a linear combination of inner products, Re{∑i ai 〈Ai |B〉}, between

|Ai 〉 = Ui (x, θ)|0〉

and
|B〉 = σzU (x, θ)|0〉.

We showed in Sect. 6.1 how to compute the real part of the inner product of two quan-
tum states. As a reminder, one has to prepare the two states |Ai 〉 and |B〉 conditioned
on the state of an ancilla qubit,

|0〉|Ai 〉 + |1〉|B〉,

and apply a Hadamard to the ancilla after which it gets measured. The advantage we
have in this example is that |Ai 〉 and |B〉 only differ in one elementary block, or in
one qubit gate, as well as one σz operator. In other words, only two gates have to be
applied conditioned to the ancilla qubit, and the rest of the circuit can be executed in
its original version.
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Whenwe are dealing with the Pauli-matrix-generator-form of the second example
from above, the evaluation of gradients becomes surprisingly simple [33]. Let us go
back to the derivative of the expectation value in Eq. (7.15). If the gate that we want
to derive is of the form e−iμσ , where σ is an arbitrary Pauli matrix, we get

∂μ 〈ψ(x, θ)|σz|ψ(x, θ)〉 = 〈0| . . . ∂μe
−iμσ . . . σz . . . eiμσ . . . |0〉

+〈0| . . . e−iμσ . . . σz . . . ∂μe
iμσ . . . |0〉

= 〈0| . . . (−iσ)e−iμσ . . . σz . . . eiμσ . . . |0〉
+〈0| . . . e−iμσ . . . σz . . . (iσ)eiμσ . . . |0〉

= 〈0| . . . (1 − iσ)e−iμσ . . . σz . . . (1 + iσ)eiμσ . . . |0〉
+〈0| . . . (1 + iσ)e−iμσ . . . σz . . . (1 − iσ)eiμσ . . . |0〉

In the last step we used the well-known relation

expiμσ = cos(μ)1 + i sin(μ)σ.

Noting that (1 ± iσ) = e±i π
2 σ , we find that we can estimate the analytical gradient of

the expectation value by evaluating the original expectation once with an additional
ei

π
2 σ gate, and once with an additional gate e−i π

2 σ gate. The additional gate is inserted
before (or after) the gate that we derive for. (Of course, this is equivalent to shifting
the μ parameter by ±π

2 for the two evaluations.) One can show that we can write an
expression like Re{∑i ai 〈Ai |B〉} as the difference of two expectation values for any
generator that is unitary and Hermitian.

In summary, for certain cases of variational quantummachine learningprotocols—
namely those including derivatives of circuits that can be estimated from a classical
linear combination of unitaries—we can use slightly different circuits to estimate
analytical gradients. This is a very useful alternative to numerical methods.

7.4 Quantum Adiabatic Machine Learning

The last type of quantum algorithms for training we discuss in this chapter is based
on the ideas of adiabatic quantum computing and annealing (see Sect. 3.3.3). The
goal is to prepare the ground state of a quantum system, the quantum state of n
qubits with the lowest energy. The ground state typically encodes the solution to a
binary optimisation problem, or represents a qsample from which we want to draw
samples. The dataset typically defines the Hamiltonian (and thereby the dynamics) of
the system, which can be understood as a type ofHamiltonian or dynamic encoding.

Quantum annealing appears prominently in the quantum machine learning litera-
ture, which is partly due to the fact that it was one of the first technologies for which
experiments beyond proof-of-principle setups were possible. An early generation of
studies looked at how to formulate machine learning tasks as an optimisation prob-
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lem that could be solved by quantum annealing (see following Sect. 7.4.1) and tested
the ideas with the D-Wave device. However, experiments confirmed the ambiguous
results of other quantum annealing studies, where there is still no conclusive answer
as to which speedups are possible with this technique [34, 35]. It is therefore not
clear where the advantage compared to classical annealing and sampling techniques
lies. Noise and connectivity issues in this early-stage technology further complicated
the picture.

Quantum machine learning research therefore focused on another twist of the
story. Instead of employing annealing devices as an analogue solver of optimisation
problems, they are used as an analogue sampler (see Sect. 7.4.2). The annealing
procedure prepares a quantum state that can be interpreted as a qsample from which
measurements can draw samples. One important observation was for example that
the qsample distribution prepared by D-Wave may be sufficiently close to a classical
Gibbs distribution to use the samples for the training of a Boltzmann machine.

Beyond annealing, other proposals, most of them experimental in nature, have
sporadically been brought forward and some of them are summarised in Sect. 7.4.3.

7.4.1 Quadratic Unconstrained Optimisation

The first generations of D-Wave’s commercial quantum annealing devices con-
sisted of up to n = 1024 physical qubits with sparse programmable interaction
strengths of an Ising-type model, and annealed objective functions in the format
of quadratic unconstrained binary optimisation. The ground state or solution is the
binary sequence x1 . . . xn that minimises the ‘energy function’

n∑

i≤ j=1

wi j xi x j , (7.16)

with the coefficients or weights wi j . A central task for this approach of quantum
machine learning is therefore to cast a learning task into such an optimisation prob-
lem.

There have been a number of proposals of how to translate machine learning
problems into an unconstrained binary optimisation problem (see also Sect. 8.3.3).
Machine learning problems that lend themselves especially well for combinatorial
optimisation are structure learning problems for graphs, for example of Bayesian
nets [36]. Each edge of the graph is associated to a qubit in state 1, while a missing
edge corresponds to a state 0 qubit, so that the graph connectivity is represented by
a binary string. For example, a fully connected graph of K nodes is represented by
a register of K (K−1)

2 qubits in state |11 . . . .1〉, Under the assumption for Bayesian
nets that no node has more than |π |max parents, a ‘score Hamiltonian’ can be defined
that assigns an energy value to every permitted graph architecture/bit string, and the
string with the lowest energy is found via quantum annealing. Other examples have
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been in the area of image matching (recognising that two images show the same
content but in different light conditions or camera perspectives) [37], as well as in
software verification and validation [38].

A machine learning task that naturally comes in the shape of a quadratic uncon-
strained optimisation problem is the memory recall of a Hopfield neural network
(see also Sect. 2.4.2.3). In Eq. (7.16) the weights wi j are determined by a learning
rule such as the Hebb rule, and define the solution to the corresponding minimisation
problem. The xi , x j are bits of the new input pattern with binary features. Quantum
annealing then retrieves the ‘closest’ pattern—the nearest minimum energy state—in
the ‘memory’ of the Hopfield energy function.

7.4.2 Annealing Devices as Samplers

Much of the more recent work on quantum annealing for training uses annealing
devices in a less obvious way, namely to sample from an approximation to the Gibbs
distribution in order to estimate the expectations

〈vi h j 〉model =
∑

v,h

e−E(v,h)

Z
vi h j

in Eq. (2.30) for the training ofBoltzmannmachines.Wehave already seen a variation
of this idea in the previous Sect. based on the quantum approximate optimisation
algorithm.

It turns out that the natural distributions generated by quantum annealers can be
understood as approximations to the Boltzmann distribution [39]. Strictly speaking
these would be quantum Boltzmann distributions, where the (Heisenberg) energy
function includes a transverse field term for the spins, but under certain conditions
quantum dynamics might not play a major role. Experiments on the D-Wave device
showed that the distributions it prepares as qsamples can in fact significantly deviate
from a classical Boltzmann distribution, and the deviations are difficult to model
due to out-of-equilibrium effects of fast annealing schedules [40]. However, the
distributions obtained still seem toworkwell for the training of (possibly pre-trained)
Boltzmann machines, and improvements in the number of training steps compared
to contrastive divergence have been reported both for experimental applications and
numerical simulations [40–44]. As an application, samples from the D-Wave device
have been shown to successfully reconstruct and generate handwritten digits [41, 44].
A great advantage compared to contrastive divergence is also that fully connected
Boltzmann machines can be used.

While conceptually, the idea of using physical hardware to generically ‘simulate’
a distribution seems very fruitful, the details of the implementationwith the relatively
newhardware are at this stage rather challenging [44]. For example, researchers report
Gaussian noise perturbing the parameters fed into the systemby an unknown function
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which prohibits precise calibration. A constant challenge is also the translation of the
coupling of visible and hidden units (or even an all-to-all coupling for unrestricted
Boltzmann machines) into the sparse architecture of the connections between qubits
in the D-Wave quantum annealer. Fully connected models need to be encoded in a
clever way to suit the typical chimera graph structure.

Figure7.6a shows the connectivity of qubits in the early D-Wave devices. Only
those qubits that are connected by an edge can communicate with each other. We
cannot natively represent a fully connected graph by the qubits and their interaction,
but have only limited connectivity between nodes (see Fig. 7.6b). One therefore needs
clever embedding strategies in which one variable in the model or one node in the
graph is represented by multiple qubits. Another solution to deal with connectivity
is to consider only problems with a structure that suits the limitations of the chimera
graph connectivity. In the example of Fig. 7.6c the task is to embed an image repre-
sented by amatrix of pixels into the chimera graph. Assuming that only pixels that are
close to each other are correlated, we associate blocks of neighbouring pixels with
blocks of densely interconnected qubits (where the connection runs through some
hidden units). For instance, the blocks of pixel 1a and 4d are not directly connected
in the chimera graph structure, but also lie in opposite corners of the image and are
therefore not expected to be correlated as much as neighbouring pixels.

Another serious problem when using the D-Wave device as a sampler is the finite
‘effective inverse temperature’ of the device. The distribution implemented by the
machine contains an inverse temperature parameter β in e−βE(s,h)

Z , which can fluctuate

Fig. 7.6 In the original D-Wave annealing device, the qubits are connected by a so called chimera
graph structure shown in a for a 32 qubit system. Some qubits in the chimera graph (green-yellow
vertices) are used as visible units, while others (blue vertices with dotted outline) are used as
hidden units. If we want the interactions between qubits to represent the weights between variables
in a graphical model, we can therefore only encode sparse models with a connectivity shown in
(b). However, in some applications the limited connectivity is not a problem. For example, when
embedding the pixels of an image c into the chimera graph, we can use the assumption that not all
pixels are strongly correlated, and associate pixels that are far away from each other with qubits in
blocks that are not directly connected. Figure adapted from [42], with thanks to Marcello Benedetti
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during the annealing process. Estimating this effective inverse temperature allows
us to correct the samples taken from the annealer and use them to approximate the
desired Boltzmann distribution [42].

The D-Wave device is only one example of an early-stage quantum technology,
and we use it here to point out that another myriad of challenges appear when using
real quantum devices for quantum machine learning. Connectivity and noise are
two issues that occur in other platforms as well. These experimental challenges are
constantly met with new engineering solutions, which may open another research
branch to quantum machine learning altogether. We will discuss this point further in
the conclusion when we consider quantum machine learning with intermediate-term
quantum devices.

7.4.3 Beyond Annealing

Physical implementations other than quantum annealers or gate-based quantum com-
puters have been used to investigate the idea of encoding the solution of a machine
learning problem into the ground state of a quantum system. For example, an early
contribution of a rather different kind was made by Horn and Gottlieb [46]. Their
idea is to define a potential V for a Hamiltonian (which is traditionally decomposed
into a kinetic and potential energy, H = T + V ) such that a wave function with
high probabilities in regions of high data density is the ground state of the Hamilto-
nian. The wave function serves as a kernel density estimator function introduced in
Sect. 2.4.4.1. This idea has been subsequently used for clustering [47].

Another contribution is a demonstration that shows how an Hopfield-network-
like associative memory recall can be executed with a nuclear magnetic resonance
setup [45]. The proof-of-principle experiment only looks at binary strings of length
2. The idea is to encode the two binary values into the spectrum of nuclear spins
in H and C atoms (see Fig. 7.7). A positive peak at the left region of the spectrum
indicates a 1 while a negative peak in the right part of the spectrum indicates a
−1. A ‘no signal’ encodes a 0, which means that the bit is unknown. Setting a
weight parameter to w = 1 stores the two memory patterns (−1, 1), (1,−1) into
the spectrum of the nuclear magnetic resonance system, while the configuration
w = −1 stores the patterns (−1,−1), (1, 1). Starting the system with inputs x in that
have blanks at different positions leads to the desired memory recall. For example,
for w = 1, the input x in = (−1, 0) recalls the memory pattern x∗ = (−1, 1). This
is a minimal example of a quantum associative memory implemented by a quantum
physical system. Interesting enough, the quantum model can lead to ground states
that are superpositions of patterns.

These two examples illustrate that even though the focus of quantum machine
learning lies on quantum computing devices, there are other quantum systems and
experimental setups which can implement quantum machine learning algorithms or
models.
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Fig. 7.7 Associated memory recall with atomic spectra of H and C atoms. Each spectrum encodes
a−1 by a negative peak towards the left and a 1 by a positive peak towards the right. If both positive
and negative peaks are present, the signal represents a superposition of −1 and 1. Depending on the
‘weight’ w = 1,−1, starting with an input signal x in1 , x in2 with a blank (0 or no signal) at different
positions retrieves different solutions (x∗

1 , x∗
2 ) from the memory. Image modified from [45]
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Chapter 8
Learning with Quantum Models

The last two chapters were mainly concerned with the translation of known machine
learning models and optimisation techniques into quantum algorithms in order to
harvest potential runtime speedups known from quantum computing. This chapter
will look into ‘genuine’ quantum models for machine learning which either have no
direct equivalent in classical machine learning, or which are quantum extensions of
classical models with a new quality of dynamics. A quantummodel as we understand
it here is amodel function or distribution that is based on themathematical formalism
of quantum theory, or naturally implemented by a quantum device. For example, it
has been obvious from the last chapters that Gibbs distributions play a prominent
role in some areas of machine learning. At the same time, quantum systems can be
in a ‘Gibbs state’. Previously, we described a number of attempts to use the quantum
Gibbs states in order to sample froma (classical)Gibbs distribution.Butwhat happens
if we just use the ‘quantum Gibbs distribution’? What properties would such models
or training schemes exhibit?What ifwe use other distributions that are easy to prepare
on a quantum device but difficult on a classical one, and construct machine learning
algorithms from them? How powerful are the classifiers constructed from variational
circuits in Sect. 7.3.2.1, that is if we use the input-output relation of a quantum circuit
as a core machine learning model f (x) and train the circuit to generalise from data?

This chapter sheds some light onto what has been earlier called the exploratory
approach of quantum machine learning. It focuses less on speedups, but is interested
in creating and analysing new models based on quantum mechanics, that serve as
an addition to the machine learning literature. Although still in its infancy, the great
appeal of this approach is that it is suited for near-term or noisy as well as non-
universal quantum devices, because of the change in perspective: We start with a
quantum system and ask whether it can be used for supervised learning, rather than
translating models that were tailor-made for classical computers.

In the usual demeanour of this book we will present a couple of illustrative exam-
ples rather than an exhaustive literature review. Amongst them are quantum exten-
sions of Ising models (Sect. 8.1) as well as variational circuits (Sect. 8.2). The last
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Sect. 8.3 summarises further ideas, namely to replace Markov chains by quantum
Markov chains, to use quantum superposition for ensemble methods, and to create
special cost functions to be optimised by quantum annealing.

8.1 Quantum Extensions of Ising-Type Models

Hopfield networks and Boltzmann machines are both important machine learning
methods that are based on one of the most successful family of models in physics, so
called Ising models. The original Ising model describes ferromagnetic properties in
statistical mechanics, namely the behaviour of a set of two-dimensional spin systems
that interact with each other via certain nearest-neighbour interactions. We use the
term in a wider sense here, to denote models of interacting units or particles of any
connectivity and weight.

The Ising model is also no stranger to machine learning. Hopfield networks—
which have a historical significance in reconnecting artificial neural networks with
brain research—have in fact been introduced by a physicist, James Hopfield, who
transferred the results from statistical physics to recurrent neural networks. Boltz-
mann machines can be understood as a probabilistic version of Hopfield networks.
In both cases, the spins or particles are associated with binary variables or neurons,
while the interactions correspond to the weights that connect the units. The physical
equivalence gives rise to a well-defined quantum extension of these two methods
which we will review in the following.

Let us first briefly summarise some central equationswhich have been explained in
more detail in Sects. 2.4.2.3 and 2.4.2.4. Hopfield networks and Boltzmannmachines
are both a special case of recurrent neural networks consisting of G binary variables
s = s1...sG with si ∈ {−1, 1} or si ∈ {0, 1} for all i = 1, . . . ,G. The units can be
distinguished into a set of visible and hidden units s = vh = v1...vNv

h1...hNh with
Nv + Nh = N .1 We can define an Ising-type energy function that assigns a real value
to each configuration of the system,

E(s) = −
∑

i, j

wi j si s j −
∑

i

bi si , (8.1)

with parameters {wi j , bi } and i, j = 1, . . . ,G.
InHopfieldmodels theweights are symmetric (wi j=w j i ) and non-self-connecting

(wi i = 0), and there is no constant field bi = 0. With this architecture, the state of
each unit is successively (synchronously or chronologically) updated according to
the perceptron rule,

1In earlier chapters we referred to the number of visible units as N + K to stress that in a supervised
learning setting, the visible units can be divided into N input and K output units. For the sake of
simplicity we will not make this distinction here.



8.1 Quantum Extensions of Ising-Type Models 249

s(t+1)
i = sgn(

∑

j

wi j s
(t)
j ).

The updates can be shown to lower or maintain the energy of the state in every time
step t → t + 1, until it converges to the closest local minimum. These dynamics can
be interpreted as an associative memory recall of patterns saved in minima.

The recall algorithm is similar to a Monte Carlo algorithm at zero temperature.
In every step a random neuron si is picked and the state is flipped to s̄i if does not
increase the energy, that means if

E(s1 . . . s̄i . . . sN ) ≤ E(s1 . . . si . . . sN ).

A generalised version of the Hopfield model [1] allows for a finite temperature and
probabilistic updates of units in the associative memory recall. If one defines the
probability of updating unit si to go from s = s1 . . . si . . . sN to s̄ = s1 . . . s̄i . . . sN as

p(s̄) = 1

1 + e−2E(s̄)
,

we arrive at Boltzmann machines (with the temperature parameter set to 1). Here
the binary units are random variables and the energy function defines the probability
distribution over states {s} via

p(s) = 1

Z
e−E(s). (8.2)

As before, Z is the partition function

Z =
∑

s

e−E(s). (8.3)

For restricted Boltzmann machines, the parameters wi j connecting two hidden or
two visible units are set to zero.

8.1.1 The Quantum Ising Model

In the transition to quantum mechanics, the interacting units of the Ising model are
replaced by qubits, the Hamiltonian energy function becomes an operator

H = −1

2

∑

i j

wi jσ
i
zσ

j
z −

∑

i

biσ
i
z ,
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by replacing the values si by Pauli-σz operators acting on the i th or j th qubit. When
we express the Hamiltonian as a matrix in the computational basis, it is diagonal.
The reason for this is that the computational basis {|k〉} is an eigenbasis to the σz

operator, which means that the off-diagonal elements disappear, or 〈k|σ i
z |k ′〉 = 0 and

〈k|σ i
zσ

j
z |k ′〉 = 0 for all i, j if k �= k ′. The eigenvalues on the diagonal are the values

of the energy function (8.1). For example, the Ising Hamiltonian for a 2-qubit system
takes the following shape:

H =

⎛

⎜⎜⎝

E(s = 00) 0 0 0
0 E(s = 01) 0 0
0 0 E(s = 10) 0
0 0 0 E(s = 11)

⎞

⎟⎟⎠ ,

where we omitted the dependence on θ from Eq. (8.1).
The quantum state of the system (here expressed as a density matrix) defines a

probability distribution over the computational basis states. For an Ising model it is
given by

ρ = 1

Z
e−H , (8.4)

with the partition function being elegantly expressed by a trace,

Z = tr{e−H }.

For diagonal matrices H , the matrix exponential e−H is equal to a matrix carrying
exponentials of the diagonal elements on its diagonal. Consequently, ρ is diagonal
with

diag{ρ} = (
1

Z
e−E(s=0...0), ...,

1

Z
e−E(s=1...1)).

The diagonal elements of the density matrix define the Boltzmann probability distri-
bution of Eqs. (8.2) and (8.3) for all different possible states of the system’s spins or
neurons, and the operator formalism is fully equivalent to the classical formalism.

Having formulated the (still classical) Ising model in the language of quantum
mechanics, it is not difficult to introduce quantum effects by adding terms with the
other two Pauli operators that do not commute with σz . Non-commuting operators do
not share an eigenbasis, and the resulting operator is not diagonal in the computational
basis. It is therefore not anymore a different mathematical formalism for the classical
Ising model, but the non-zero off-diagonal elements give rise to genuine quantum
dynamics.

It is common to only introduce a few ‘quantum terms’, such as the transverse or
x-field,

H = −1

2

∑

i j

wi jσ
i
zσ

j
z −

∑

i

biσ
i
z −

∑

i

ciσ
i
x , (8.5)
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where the Pauli operator σ i
x is applied to the i th qubit with a strength ci . Since the

Hamiltonian for the transverse Isingmodel is no longer diagonal in the computational
basis, superpositions of basis states are eigenstates of H , and the system exhibits
different dynamics compared to the classical system.

The strategy of extending the Hamiltonian illustrates a more general recipe to
design quantum versions of machine learning models based on statistical physics:

1. Formulate the classical model in the language of quantum mechanics, for exam-
ple using quantum state ρ to describe the probability distribution, and using
operators to describe the ‘evolution’ of the system

2. Add terms that account for quantum effects, such as a transverse field in the
Hamiltonian or, as we will see below, a coherent term in a master equation

3. Analyse the resulting quantummodel for learning and characterise effects deriv-
ing from the extension.

We will now show some examples from the literature of how this has been done
for Boltzmannmachines and Hopfield networks. Point 3, the analysis of the quantum
extension formachine learning purposes, is still mainly an open issue in the literature.

8.1.2 Training Quantum Boltzmann Machines

The above strategy of adding a transverse field to the Hamiltonian has been used to
propose a quantum version of Boltzmann machines by Amin et al. [2]. The quantum
Boltzmann machine defines the model as the quantum state ρ from Eq. (8.4) with
the ‘tansverse’ Hamiltonian (8.5). One can understand ρ as a qsample, from which
we can draw samples of computational basis states that correspond to states of the
visible units. A crucial question is how to train such a model to learn the weights
wi j , bi and ci . As it turns out, the strategy from classical training does not carry over
to the quantum model.

In order to write down the gradient from Eq. (2.29) in the language of quantum
mechanics, we need to define the probability of observing the visible state v′ by
means of the model ρ,

p(v′) = tr{Λv′ρ}.

The operator
Λv′ = |v′〉〈v′| ⊗ 1h,

is a projector that in matrix notation has a single 1 entry at the diagonal position
〈v′| · |v′〉 and zeros else. In other words, the operator ‘picks out’ the diagonal element
ρv′v′ , which is the probability to measure the computational basis state |v′〉 or to
sample v′ from the quantum model. With this definition and inserting the expression
for ρ from Eq. (8.4), the log likelihood objective becomes
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C(θ) = −
M∑

m=1

log
tr{Λvme−H(θ)}
tr{e−H(θ)} , (8.6)

where we state the dependence of H on the parameters θ = {wi j , bi , ci } now explic-
itly.2 Compared to maximum likelihood estimation we consider the negative log-
likelihood to formulate a cost function, which is minimised.

For gradient descent optimisation we need the derivative of the objective function
for each parameter μ ∈ θ , which, applying logarithm derivation rules, is given by

∂μC(θ) =
M∑

m=1

(
tr{Λv∂μe−H(θ)}
tr{Λve−H(θ)} − tr{∂μe−H(θ)}

tr{e−H(θ)}
)

. (8.7)

In the classical version of Eq. (2.9) we were able to execute the partial derivation
via the chain rule, which for the interaction parameters μ = wi j ended up to be
the difference of two expectation values over units from the data versus the model
distribution from Eq. (2.30),

∂wi j C(θ) = 〈si s j 〉data − 〈si s j 〉model.

These expectation values were approximated via sampling, for example with the
contrastive divergence approach.

Using the quantum model, the operators ∂wi j H and H do not commute, which
means that the chain rule of basic derivation cannot be applied. However, due to the
properties of the trace, one still finds a similar relation for the right term in Eq. (8.7),

tr{∂wi j e
−H(θ)} = −tr{e−H(θ)∂wi j H(θ)}.

The trace over ‘operator’ ∂wi j H(θ) for a Gibbs state ρ = e−H(θ) divided by the
partition function tr{e−H(θ)} is nothing other than the expectation value over the
Boltzmanndistribution 〈∂wi j H(θ)〉model = 〈σ i

z , σ
j
z 〉model. For the left termofEq. (8.7),

tr{Λv∂wi j e
−H(θ)}

tr{e−H(θ)} , (8.8)

the additional operator inside the trace prohibits this trick. Without a strategy to
approximate this term, common training methods are therefore not applicable, even
if we only consider restricted Boltzmann machines. This is a good example of how
quantum extensions can require different approaches for training.

A strategy proposed in [2] is to replace the Hamiltonian H in this troublesome
term in Eq. (8.8) with a “clamped” Hamiltonian Hm(θ) = H(θ) − lnΛvm , which
penalises any states other than |vm〉. One can show that the new cost function is an

2Note that we simplified the original expression in [2] to be consistent with the more common
definition of the log-likelihood introduced in Sect. 2.9.
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upper bound for the original objective from Eq. (8.6). We can hence write the left
term in Eq. (8.7) as

M∑

m=1

p(vm; θ)
tr{e−Hm (θ)∂wi j Hm(θ)}

tr{e−Hm (θ)} = 〈∂wi j Hm(θ)〉data = 〈σ i
z , σ

j
z 〉data.

One can show that this corresponds to minimising an upper bound of the objective
[2]. This works well for parameter updates wi j , bi , but fails for the updating rule of
the ci , the parameters of the transverse field strength, which in the worst case have to
be simply guessed. However, trainingwith samples from a (clamped) quantumBoltz-
mann machine can have better convergence properties than a classical Boltzmann
machine [2].

Other versions of quantumBoltzmannmachines have been proposed, for example
using a fermionic rather than a stochastic Hamiltonian, more general (i.e. quantum)
training data sets, as well as relative entropy rather than a log-likelihood objective [3].

8.1.3 Quantum Hopfield Models

A number of studies on ‘quantum Hopfield models’ follow the same approach as in
the previous section and investigate how the introduction of an transverse field term
as in Eq. (8.5) changes the dynamics of the associative memory recall. For example,
qualitative differences regarding noise and the capacity (ratio of stored patterns to
system size) of the network have been reported [4–7]. But, as we will establish in
this section, one can also look at quantum extensions of Ising-type models starting
from the differential equations of the system. As an example, we follow Rotondo et
al. [8] who formulate a quantum version of the Hopfield model as an open quantum
system governed by a quantum master equation. We have not covered this topic
much in the foundations of Chap. 3, and will therefore only sketch the general idea
here. Interested readers can refer to [9] for more details on the theory and description
of open quantum systems.

Unitary evolutions in quantum mechanics – which we have discussed at length—
are the solution of the Schrödinger equation (3.1.3.3), which applies to closed quan-
tum systems. In closed quantum systems, no information about the state is lost and
the evolution is fully reversible. But the associative memory dynamics of a mem-
ory recall is a dissipative evolution in which the energy of the system is not pre-
served, which means that we do not have reversible dynamics. This requires an open
quantum systems approach, where the equivalence of the Schrödinger equation is
a quantum master equation.3 A popular formulation of a quantum master equation

3Master equations appear in many other sub-disciplines of physics.
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describing the evolution of a dissipative quantum system is theGorini-Kossakowski-
Sudarshan-Lindblad equation that we mentioned in Sect. 3.1.3.6. As a reminder, the
GKSL equation defines the time evolution of a density operator, in this case

d

dt
ρ = −i[H, ρ] +

K∑

k=1

∑

γ=±

(
Lkγ ρL†

kγ − 1

2
L†
kγ Lkγ ρ − 1

2
ρL†

kγ Lkγ }
)

. (8.9)

The first part, −i[H, ρ], describes the coherent part of the evolution, namely the
quantum effects. The second part, containing the Lindblad operators Lkγ , describes
a stochastic evolution, which can be roughly thought of as transitions between states
of the system represented by the Lkγ , according to a probability defined by ρ.

For the quantum version of the Hopfield model’s dynamic, the jump operators
Lkγ are defined as

Lk± = e∓1/2ΔEk

√
2 cosh(ΔEk)

σ k
±.

The value of ΔEk is the energy difference of a system in state s and a system in state
s̄ resulting from flipping the state of the kth unit. Furthermore, the plus/minus Pauli
operators are defined as σ k± = (σ i

x ± iσ i
y)/2. For the coherent term, the Hamiltonian

can for example be chosen as the transverse field term from before,

H = c
∑

i

σ i
x ,

butwith constant coefficients ci = c. If the coherent term is not included, theLindblad
equation becomes a classical equation. Rotondo et al. [8] show this in detail in the
Heisenberg picture, where instead of the dynamics of the state ρ in Eq. (8.9), one
looks at the same (but purely classical) dynamics for the σ k

z operators,

d

dt
σ k
z =

K∑

k=1

∑

γ=±

(
Lkγ σ k

z L
†
kγ − 1

2
L†
kγ Lkγ σ k

z − 1

2
σ k
z L

†
kγ Lkγ

)

and finds that the operator expectation value 〈σ k
z 〉 has the same expression as the

well-known mean field approximation for the value of each spin in the classical spin
glass model,

〈sk〉 = tanh

⎛

⎝
∑

j

wi j 〈s j 〉
⎞

⎠ .

The dynamics of the quantum model can be analysed with mean-field techniques
that lead to a phase diagram [8]. Phase diagrams are important tools in statistical
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physics to study the behaviour of a system in different parameter regimes. In this
case we are interested in the phase diagram of field strength parameter c and the
temperature T . For any temperature, if c is sufficiently low, the general structure of
the classical associative memory remains valid. For large temperatures and large c
there is a parametric phase where the model converges to a zero pattern. A qualita-
tively new dynamics enters for small temperatures and large field strengths and is a
limit cycle phase. This means that the state of the system periodically goes through
a fixed sequence of states, a limit cycle. Such limit cycles are known from classical
Hopfieldmodelswith asymmetric connectionswi j �= w j i . For example, an asymmet-
ric Hopfield network with two nodes s1, s2 and connections w12 = −0.5, w21 = 0.5
will update the state of the two nodes according to

s(t+1)
1 = ϕ(−0.5s(t)

2 ), s(t+1)
2 = ϕ(0.5s(t)

1 ),

which, starting with s1 = 1, s2 = 1 and with ϕ being a step function with a threshold
at 0, sends the state into the limit cycle

(
1
1

)
→

(−1
1

)
→

(−1
−1

)
→

(
1

−1

)
→

(
1
1

)
.

Hopfield remarked that Hopfield networks with asymmetric connections show a
similar behaviour to dynamics of the Ising model at finite temperature [10]. Rotondo
et al. argue that the limit-cycle phase of the quantum Hopfield model is instead a
product of competition between coherent and dissipative dynamics, not a result of
asymmetry or self-connections. The quantum model therefore promises to exhibit
another quality of dynamics compared to the classical one.

8.1.4 Other Probabilistic Models

Not only Ising-type models have natural quantum extensions. Another probabilistic
model that lends itself easily to this purpose are hidden Markov models, where
a system undergoes a sequence of state transitions under observations, and either
the transition/observation probabilities, or the next transition is to be learned (see
Sect. 2.4.3.2). State transitions and observation probabilities are central to quantum
physics as well, where they can be elegantly described in the formalism of density
matrices and open quantum systems.

Monras, Beige and Wiesner [11] introduce a quantum formulation of hidden
Markov models, in which the state of the system is a density matrix ρ and state
transitions are formally represented by so called Kraus operators K with associated
probabilities tr{Kρ} [9]. Although the primary idea is to use these quantum models
to learn about partially observable quantum systems, Monras et al. observe that
the number of internal states necessary for generating some stochastic processes is
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smaller than of a comparable classical model.4 The ‘reinforcement learning’ version
of hidden Markov models are partially observable Markov decision processes and
have been generalised to a quantum setting by Barry, Barry and Aaronson [13]. They
show that a certain type of problem—the existence of a sequence of actions that can
reach a certain goal state—is undecidable for quantum models. Another variation of
a hidden Markov model is proposed in [14] and is based on a certain formulation of
quantum Markov processes.

A further branch of ‘quantum-extendable’ probabilisticmodels are graphicalmod-
els. Leifer et al. [15] give a quantummechanical version of belief propagation, which
is an algorithm for inference in graphicalmodels. Directed graphicalmodels inwhich
a directed edge stands for a causal influence are called causal models. A goal that
gains increasing attention in the classical machine learning community is to discover
causal structure from data, which is possible only to some extent [16] in the classical
case. Quantum systems exhibit very different causal properties, and it is sometimes
possible to infer the full causal structure of a model from (quantum) data [17, 18].
Costa and Shrapnel [19] introduce quantum analogues of causal models for the dis-
covery of causal structure, and propose a translation for central concepts such as the
‘Markov condition’ or ‘faithfulness’. Whether such quantum models can have any
use for classical data (or even for quantum data) is a largely open question.

8.2 Variational Classifiers and Neural Networks

The second approach presented in this chapter is based on variational quantum cir-
cuits which have been introduced in Sect. 7.3 in the context of hybrid training. As
a reminder, a variational circuit is a quantum circuit that consists of parametrised
gates, and where the parameters (and thereby the circuit) can be optimised or learnt
according to a certain objective. If we use some circuit parameters to feed inputs into
the circuit, and understand the result computed by the circuit as an output, we can
interpret a variational circuit as a mathematical model for supervised learning.

Learning models based on variational circuits are a prime example for the
exploratory approach to quantum machine learning. The quantum device is used
as a computational (sub-)routine in a mathematical model. It is treated as a black-
box that produces—or assists in producing—predictions when fed with (possibly
pre-processed) inputs. Hence, one works with a model that can be naturally imple-
mented by a quantum device.

In the following we will revisit the ansatz of Sect. 7.3.3.2, where we considered
a decomposition of a variational circuit into parametrised single-qubit gates and
controlled versions thereof. We want to show now how to interpret such a quantum
gate as a linear layer in the language of neural networks. This may help to tap into

4In a later paper, Monras and Winter [12] also perform a mathematical investigation into the task
of learning a model from example data in the quantum setting, i.e. to ask whether there is there a
quantum process that realises a set of measurements or observations.
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the rich theory for neural nets in order to develop and analyse quantum models
based on variational circuits. It also raises interesting questions about the number of
parameters needed to build a sufficiently powerful classifier. We will finally look at
some proposals from classical machine learning to decompose N × N -dimensional
unitaries into matrices which can be computed in time O(N ) or below.

8.2.1 Gates as Linear Layers

Let us consider a variational circuit that consists of parametrised gates as defined in
Eq. (7.11) of the previous section. Instead of trigonometric functions, we can use two
complex numbers z, u ∈ C with each a real and an imaginary value as parameters,

G(z, v) =
(

z u
−u∗ z∗

)
. (8.10)

To neglect the global phase we can include the condition that |z|2 + |v|2 = 1. An
advantage of this parametrisation is that it does not introduce nonlinear dependencies
of the circuit parameters on the model output, while a disadvantage in practice is
that during training the normalisation condition has to be enforced. We will use this
parametrisation here simply for ease of notation.

Let us have a look at the structure of the overall matrix representation of a (con-
trolled) single qubit gate. As a reminder, a single qubit gate applied to the i th qubit
of an n qubit register has the following structure:

Gqi = 11 ⊗ · · · ⊗ G(z, v)︸ ︷︷ ︸
position i

⊗ · · · ⊗ 1n.

The 2n × 2n matrix Gqi is sparse and its structure depends on which qubit i the gate
acts on.

Example 8.1 (Parametrised single qubit gate). For n = 3 and i = 1:

Gq1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

z v 0 0 0 0 0 0
−v∗ z 0 0 0 0 0 0
0 0 z v 0 0 0 0
0 0 −v∗ z∗ 0 0 0 0
0 0 0 0 z v 0 0
0 0 0 0 −v∗ z∗ 0 0
0 0 0 0 0 0 z v
0 0 0 0 0 0 −v∗ z∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (8.11)

while for n = 3 and i = 2:
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Gq2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

z 0 v 0 0 0 0 0
0 z 0 v 0 0 0 0

−v∗ 0 z∗ 0 0 0 0 0
0 −v∗ 0 z∗ 0 0 0 0
0 0 0 0 z 0 v 0
0 0 0 0 0 z 0 v
0 0 0 0 −v∗ 0 z∗ 0
0 0 0 0 0 −v∗ 0 z∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (8.12)

and lastly n = 3 and i = 3 yields

Gq3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

z 0 0 0 v 0 0 0
0 z 0 0 0 v 0 0
0 0 z 0 0 0 v 0
0 0 0 z 0 0 0 v

−v∗ 0 0 0 z∗ 0 0 0
0 −v∗ 0 0 0 z∗ 0 0
0 0 −v∗ 0 0 0 z∗ 0
0 0 0 −v∗ 0 0 0 z∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (8.13)

To make the elementary gate set universal, we also consider the application of the
single qubit gate Gqi controlled by another qubit j , which we denote by cq j Gqi . A
single qubit gate applied to qubit i and controlled by qubit j carries a ‘diagonal unit
entry’ in some columns and rows as opposed to the single qubit gate.

Example 8.2 (Controlled parametrised single qubit gate). Gq1 from Eq. (8.11) can
be controlled by q3 and becomes

cq3Gq2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 z 0 u 0 0 0 0
0 0 1 0 0 0 0 0
0 −u∗ 0 z∗ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 z 0 u
0 0 0 0 0 0 1 0
0 0 0 0 0 −u∗ 0 z∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.14)

As a product of matrices, a variational circuit

U (θ) = G(θL) · · ·G(θ1)

with θ1, . . . , θL ⊂ θ can be understood as a sequence of linear layers of a neural
network where the layers have a constant size. This perspective allows us to use
graphical representations to visualise the connectivity power of a single qubit gate
and helps to understand the mechanics of the unitary circuit as a classifier. The
position of the qubit as well as the control qubit determine the architecture of each
layer, i.e. which units are connected and which weights are tied (i.e., have the same
value).



8.2 Variational Classifiers and Neural Networks 259

Gq2 cq3Gq2

Fig. 8.1 The single qubit gate Gq2 (left) and the controlled single qubit gate cq3Gq2 (right) from
the examples applied to a system of 3 qubits drawn in the graphical representation of neural net-
works. The gates take a quantum state with amplitude vector (α1, . . . , α8)

T to a quantum state
(α′

1, . . . , α
′
8)

T . The solid line is an ‘identity’ connection of weight 1, while all other line styles indi-
cate varying weight parameters. Two lines of the same style means that the corresponding weight
parameters are tied, i.e. they have the same value at all times

To illustrate this, consider the matrix Gq2 from Eq. (8.11), a single qubit gate
acting on the second of 3 qubits. If we interpret the 23 = 8-dimensional amplitude
vector of the quantum state that the gate acts on as an input layer, the 8-dimensional
output state as the output layer, and the gate as a connection matrix between the
two, this would yield the graphical representation from the left side of Fig. 8.1. The
control breaks this highly symmetric structure by replacing some connections by
identities which carry over the value of the previous layer (see right side of Fig. 8.1).
It becomes obvious that a single qubit gate connects four sets of two variables with
the same weights, in other words, it ties the parameters of these connections. The
control removes half of the ties and replaces them with identities.

An interesting viewpoint is that stacking many such unitary layers creates a deep
architecture that does not change the length of vectors, which can have useful prop-
erties for training [20].

8.2.2 Considering the Model Parameter Count

The number of parameters or weights trained in a conventional neural network is at
least as large as the input, since each input unit has to be connected to the following
layer. In a variational quantum circuit, we have typically much fewer parameters than
inputs. Mathematically speaking, a single qubit gate implements a matrix multipli-
cation that transforms all N amplitudes, however large N is, controlled by only three
parameters. Of course, this matrix multiplication has a lot of structure or ‘strongly
tied weights’.
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...

...

...

quantum
device

output

Fig. 8.2 In hybrid architectures for neural networks, the quantum device computes part of the
model. We demonstrate this for a feed-forward neural network. The classical neural network (layers
of green and blue circles) can be understood as a feature selection procedure that learns to feed
useful and highly compressed features into the quantum device, which then ‘calculates’ the output
of the model

It is an interesting questionwhat representational power a quantumclassifier based
on a variational circuit has if we keep the number of parameters poly-logarithmic
in the input dimension of the data. For example, imagine a 10 qubit system where
the gate matrices act on 210-dimensional vectors, while the circuit has only a depth
of 100 gates and hence of the order of 300 parameters. This is reminiscent of com-
pact representations of weight matrices with tensor networks, to which some rich
connections can be made [21]. First investigations on quantum classifiers based on
variational circuits with a poly-logarithmic number of parameters in the size of the
Hilbert space are promising [22], but there are yet many open questions.

Keeping the parameter count low is especially important if we use the feature
maps from Sect. 6.2 to introduce nonlinearities into the model. If the feature map
maps an input to an infinite-dimensional input layer which the circuit is applied to,
we necessarily have much fewer parameters than ‘hidden neurons’ in the layer.

On the other end of the spectrum, there is a situation in which a parameter count
of variational circuits can be of the order of the input. While so far we considered
the variational circuit to define the quantum model that is trained by a classical
algorithm, one can also hybridise inference—in other words the model—by using
quantum-assisted or hybrid architectures. A hybrid architecture of a neural network
has a ‘quantum layer’, while all remaining layers are standard classical neural net-
work layers. Typically, the quantum layerwould be of low-width and in the ‘deep end’
of a deep neural network (see Fig. 8.2), where it only has to dealwith low-dimensional
features. This circumvents the need for a resource-intense classical-quantum inter-
face to feed the data into the quantum device. If the input dimension to the quantum
layer is low enough, we can also easily allow for a number of parameters that is
polynomial in this dimension. The idea of hybrid architectures has been originally
proposed for probabilistic models, where one samples the states of some hidden units
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from a quantum device and computes classical samples for the next hidden and vis-
ible layer from the quantum samples [23]. Whether this approach shows significant
advantages in real applications is still mostly an open research question.

8.2.3 Circuits with a Linear Number of Parameters

An alternative connection between unitary circuits and neural networks comes inter-
estingly enough from the classical machine learning literature. In the context of
recurrent neural networks, unitary weight matrices that update the neurons in every
time step are used to avoid the exploding/vanishing gradients problem [24–26]. A
unitary matrix has the property of preserving the length of the vector it is applied to
and therefore maintains the scale of the signal fed forward (in time), and the errors
propagated backwards.

The proposal in Arjovsky et al. [24] aims at a decomposition of an N × N unitary
matrix U into several unitary matrices which all have the property that they can be
computed in time O(N ),

U = D3T2F
−1D2ΠT1FD1.

The decomposition includes the following types of matrices:

• The three matrices D1, D2, D3 are diagonal with diag{D} = (eiω1 , ..., eiωN ) and
real parameters ω1, ..., ωN .

• The twomatrices T1, T2 are reflection matrices defined by a N -dimensional reflec-
tion vector v via

Ti = 1 − 2
viv

†
i

||vi ||2 ,

for i = 1, 2.
• The fixed matrices F, F−1 implement a Fourier transform and its inverse.
• The fixed matrix Π implements a constant permutation.

The learnable parameters are in this case the {ω} of each diagonal matrices, as
well as the entries of the reflection vectors that define T1 and T2. In total, these are
5N parameters, and all computations can be performed linear in N . To a quantum
computing expert, the building blocks of the unitary layer are all very familiar from
quantum computing, and such a layer—excluding the final nonlinear activation used
in the paper [24], could be implemented as a variational circuit. Most notably, the
Fourier transform can be implemented in poly-logarithmic time relative to N , a
well-known exponential speedup (see Sect. 3.5.2).

Another unitary decomposition ansatz from the literature on unitary recurrent
neural nets allows us to tune through architectures from O( N

2 ) parameters to a full
representation of a general unitary with O(N 2) parameters. It is inspired by an
influential physics paper by Reck, Zeilinger, Bernstein and Bertani [27], and its later
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Fig. 8.3 Right: A 2-level
rotation Ti j can be
interpreted as a linear layer
that connects only two
dimensions i and j .
Summarising several 2-level
rotations to a single 2-level
rotation layer connects pairs
of adjacent dimensions with
each other

Tij

...
i

j

...

...
i′

j′

...

T12...TN−1,N

...

...

...

...

extension [28]. The original paper showed how to experimentally realise any unitary
transformation through a network of certain building blocks (in their case, between
a set of optical channels via beam splitters). On a more abstract level, these building
blocks can be written as 2-level rotation operators, each of which has the form

Ti j (α, β) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · · · · 0
0 1

...
...

. . .
...

... eiα cosβ − sin β
...

... eiα sin β cosβ
...

...
. . .

...
... 1 0
0 · · · · · · · · · · · · · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.15)

Applied to an amplitude vector, this operator only touches the i th and j th amplitude
and rotates them similar to a single qubit rotation controlled by all other qubits. In
the graphical representation of layers we introduced above, this operation correlates
two input nodes as depicted in Fig. 8.3.

Anyunitarymatrix canbedecomposed into the networkof 2-level-rotations shown
in Fig. 8.4 (see [28] for a proof). Formally the network can be written as

U = (T1,2...TN−1,N ) (T2,3...TN−2,N−1) (T1,2...TN−1,N ) ...(T1,2...TN−1,N ).

In other words, the network is a concatenation of even and odd 2-level rotation layers
(summarised in the round brakets). Odd layers connect neighbours [1, 2], [3, 4] . . .,
while even layers connect neighbours [2, 3], [4, 5] . . .. The full parametrisation
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Fig. 8.4 A square grid of 8
rotation layers (where the 28
parametrised Ti j rotations
from Eq. (8.15) sit at
intersections of the dotted
lines) can represent any
unitary transformation of an
8-dimensional input vector,
represented by the circles

requires N (N − 1)/2 rotation gates. Reducing the number of layers can be a useful
strategy to limit the number of model parameters, as shown in [25].

Not surprisingly, also this building block of a unitary layer is common in quantum
computing. The study of unitary layers in neural networks therefore offers a fruitful
connection between quantum machine learning models based on variational circuits
and classical machine learning.

8.3 Other Approaches to Build Quantum Models

In this last section, three other ideas to create quantum models for machine learning
are summarised in order to demonstrate the variety of the explorative approach. The
first idea is again to replace a classical formalism, Markov chains or random walks,
by the quantum version [29]. The second idea looks at quantum superposition and
how it can be used to create ensembles of classifiers in parallel to get a “training-free”
predictor [30]. The final idea was one of the first demonstrations of quantummachine
learning andconstructs a cost function for binary classificationwith ensembles,which
is tailor-made for the D-Wave device [31].

8.3.1 Quantum Walk Models

Any graph of N vertices—such as the graph in Fig. 8.5—gives rise to aMarkov chain.
A Markov chain is a sequence of states that is governed by a stochastic process (see
also Sect. 3.1.2.2). Markov chains are described by a stochastic matrix R

N×N with∑N
j=1 mi j = 1 and entries mi j representing the weight of the directed edge going
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Fig. 8.5 A weighed directed
graph of three nodes and the
corresponding Markov chain
represented by stochastic
matrix M
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from vertex i to j . These weights can be interpreted as a transition probability to go
from site i to j . Repeatedly applying M to a n-dimensional stochastic vector π with∑N

l=1 πl = 1 evolves an initial probability distribution through discrete time steps,
whereby π(t + 1) only depends on π(t) and the graph architecture (hence the name
‘Markov chain’). With this formalism, the probability of being at vertex i changes
according to

dπi

dt
= −

∑

j

Mi jπ j (t). (8.16)

Markov chains with equal probability to jump from site i to any of the d sites
adjacent to i are also known as random walks on a graph. Random walks are based
on the idea of an abstract walker who in each step tosses a d-dimensional coin to
choose one of d possible directions at random (or, in the language of graphs, chooses
a random vertex that is connected to the vertex the walker is currently at). Random
walks have been proven to be powerful tools in constructing efficient algorithms in
computer science (see references in [32]).

In the most common quantum equivalent of random walks [33–37], a quantum
walker walks between sites by changing its position state |i〉 ∈ {|1〉, ..., |N 〉}. To
decide the next position, a ‘quantum coin’ is tossed, which is a qubit register with N
degrees of freedom. The coin toss is performed by applying a unitary operator, and
the next position is chosen conditioned on the state of the ‘coin register’, which can
of course be in a superposition. The difference to classical walks is twofold: First,
the various paths interfere with one another, and a measurement samples from the
final distribution. Secondly, the unitarity of quantumwalks implies that the evolution
is reversible.

There is another, equivalent definition [38] which derives quantum walks via the
quantisationofMarkov chains [39], andwhich featuredmore prominently in quantum
machine learning.We follow [29, 40] and their concise presentation to briefly outline
the formalism of these Szegedy quantum walks. Given a Markov chain M on a graph
of N nodes. We represent an edge between the i th and j th node by the quantum state
|i〉| j〉. Define the operator

Π =
N∑

j=1

|ψ j 〉〈ψ j |,
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P1

P2

P3

P4

P5

P6

Fig. 8.6 In Google’s PageRank algorithm, a graph of links (edges) between homepages (nodes)
is created and the Markov process or random walk on the graph will show a high probability for
nodes with lots of neighbours linking to them, which is represented by the darkness of the node.
Here, P4 is the most strongly ranked page, followed by P3 and P2. Quantum walks show evidence
of weighing ‘second hubs’ such as node P3 and P2 stronger than classical PageRank

with5

|ψ j 〉 =
N∑

k=1

√
Mk, j | j〉|k〉,

as well as the swap operator

S =
N∑

j,k=1

| j, k〉〈k, j |.

One step of the quantumwalk corresponds to applying the operatorU = S(2Π − 1).
While the the term in the brackets is a reflection around the subspace spanned by the
|ψ j 〉, the swap operator can be interpreted as taking the step to the next node.

Random walks are similar to Grover search and the Ising model in the sense that
where ever they appear one can make the attempt of replacing them by their quantum
version and hope for an improvement. The goal of the exercise is either to obtain
a (usually quadratic) speedup in the time of reaching a desired node, or to obtain a
different quality of the Markov chain’s dynamics. Paparo andMartin-Delgado’s [29]
approach toGoogle’s PageRank algorithmwith tools of Szegedy quantumwalks is an
example of the latter. PageRank attributes weights to homepages and was the initial
core routine of the famous Google search routine, now replaced by more advanced
methods. The ranking is based on a rule that gives high weights to sites that are
linked by many other pages, while not linking to many other pages themselves.

5Note that this is something in between an amplitude encoded matrix and a qsample according to
the terminology developed in Sect. 3.4.
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Fig. 8.7 Ensemble methods
consult the predictions of
varios classifiers to increase
the overall predictive power
of a model. Adapted from
[30] selection

procedure

f(x; θ1)

f(x; θ2)

...
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Homepages can therefore be understood as a graph where directed edges represent
links between pages (see Fig. 8.6). A Markov chain on the graph will after many
iterations lead to a probability distribution over nodes, where nodes that have many
directed edges leading to them have a high probability of being visited, while those
with few connections or many outgoing edges get a much smaller ‘weight’.

Paparo andMartin-Delgado quantise theMarkov chain associatedwith the PageR-
ank algorithm using a Szegedy quantumwalk and analyse the properties of the result-
ing quantum Markov chain via its spectral properties [29]. Their simulations show
that the quantum version weighs pages differently than the classical PageRank algo-
rithm. In a follow-up study Paparo et al. find that the “quantum PageRank algorithm
is capable of unveiling the structure of the graph to a finer degree”, for example by
giving more weight to “secondary hubs” of less importance than the most referenced
pages [41]. Another study [42] confirms these findings and notes that the quantum
version “resolves ranking degeneracy” of pages with a similar weight. Even though
being not directly related to supervised learning, this line of research is a beautiful
example for the qualitative difference a quantum extension of a model can give rise
to, as we already saw in Sect. 8.1.

Quantumwalks have been used in the context of reinforcement learning [41] based
on the projective simulation model [43]. Projective simulation is a formulation of
supervised learning which considers a graph of interconnected ‘memory clips’, and
upon a stimulus (a new input or percept) the agent performs an internal random
walk on the graph until one of the memory clips is connected to an action (output).
Replacing the random walk by a quantum walk can yield a quadratic speedup in
the transversing time of the graph from inputs to outputs. For certain graph types,
exponential speedups in hitting times have been established [44], and it remains to
be seen if this can find application in machine learning as well.

8.3.2 Superposition and Quantum Ensembles

In the preceding chapter we saw that coherent or ‘quantum’ training is difficult,
especially if the model leads to a nonconvex objective function for the selection of
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model parameters θ . We will now demonstrate how a change in perspective, namely
to consider integration instead of optimisation, could potentially be a solution to this
problem. This idea is derived from classical ensemble methods and their links to
Bayesian learning.

Consider a parametrised deterministic model

y = f (x; θ), (8.17)

for a supervised learning task with input x and parameters θ . Themodel also depends
on a set of hyperparameters, for example defining the architecture of a neural network.
Now, training the model can lead to very different results depending on the initial
choice of parameters. Even if we pick the best set of parameters by consulting the
test set, we will most likely neglect other candidates that recover a local structure
in input space much better than the best overall candidate. For example, one model
might have learned how to deal with outliers very well, but at the expense of being
slightly less accurate with the rest of the inputs.

Ensemble methods try to construct better classifiers by considering not only one
trained model but an entire committee of them. An ensemble of trained models (also
called ‘experts’, ‘ensemble members’, ‘committee members’ or ‘classifiers’) takes
the decision for a new prediction together, thereby combining the advantages of its
members (see Fig. 8.7). Considering how familiar the principle of shared decision
making is in most societies, it is surprising that this thought only gained widespread
attention in machine learning as late as the 1990s. It is by now standard practice to
use ensemble methods on top of a core machine learning routine.

There are numerous proposals for ensemble methods, and they can be distin-
guished by the selection procedure of choosing the members of the ensemble, as
well as the procedure of decision making. For example, mixtures of experts train a
number of classifiers using a specific error function and in the next step train a ‘gating
network’ that weighs the predictions of each expert to produce a final answer [45].
Bagging [46] and Boosting [47] train classifiers on different partitions of the training
set and decide by a majority voting rule. Any ensemble method that selects different
versions of the model family (8.17) can be formally written as

y = g

⎛

⎝
∫

θ

w(θ) f (x; θ)

⎞

⎠ , (8.18)

where g defines the map to the chosen output space (i.e., a sign function). The
argument of g is the expectation value of all models over a weight distribution w(θ).
Note that this principle is similar to a perceptron, where the incoming nodes are the
model predictions instead of inputs. The weighing distribution w(θ) defines which
models are selected and which are not, and of course it has to ensure that the integral
actually exists. In case that a finite number of models are considered, the integral is
replaced by a sum.
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The expression (8.18) closely resembles theBayesian learningmodel in Sect. 2.2.3
if we associate f (x; θ) with the likelihood p(x |θ), and w(θ) with the conditional
probability of a parameter given the dataD, p(θ |D). This opens up an important link
between ensembles and Bayesian learning (studied in the theory of Bayesian Model
Averaging [48]): Instead of training a few classifiers and combining their decisions,
we can weigh and add all possible classifiers with a clever rule.

Thinking about ensembles from a quantum perspective, quantum parallelism
immediately comes to mind. We want to review a very general framework of how,
given a quantum classifier, one can use superposition to construct an ensemble of
classifiers according to (8.18). The details to this idea can be found in [30], together
with a more concrete example for application.

We need two basic ingredients. First, we need a quantum classifier, by which we
mean a quantum routineA which maps a quantum state that ‘encodes a model’ |[θ ]〉
via its parameters θ , as well as a quantum state |[x]〉 encoding an input x , to an output
state | f (x; θ)〉,

A |[x]〉|[θ ]〉|0〉 → |[x]〉|[θ ]〉| f (x; θ)〉.

To keep things as abstract as possible, we indicate by the brackets “[·]” that the
information encoding strategy can be arbitrary, except from the output which is basis
encoded. Assuming the task is binary classification, we can understand the a single
output qubit to encode the final result. We have discussed in Chap.6 how to construct
such models. Note thatA can be implemented in parallel to a superposition of states
in the ‘model register’.

A |[x]〉
∑

θ

αθ |[θ ]〉 |0〉 → |[x]〉
∑

θ

αθ |[θ ]〉 | f (x; θ)〉.

Second, we need a state preparation routine that defines the weighing distribution
and thereby the quantum ensemble (given the base quantum classifier). Consider a
uniform superposition 1√

2n

∑
θ |[θ ]〉 of all 2n possible models encoded into the n

qubits of register |[θ ]〉. We define W as a routine that prepares a qsample from a
uniform distribution over the classifiers,

W 1√
2n

∑

θ

|[θ ]〉|0〉 →
∑

θ

√
wθ |θ〉|0〉.

Note that the distribution is here discrete because we are thinking of qubit systems,
but a continuous variable quantum system may be used as well.

Applying the two routines one after the other yields

WA |[x]〉 1√
2n

∑

θ

|[θ ]〉|0〉 → |[x]〉
∑

θ

√
wθ |[θ ]〉| f (x; θ)〉.

The state on the right hand side is a weighed superposition of all predictions f (x; θ).
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The expectation value of the σz operator, which, as remarked in Sect. 7.3.2.1, is
equivalent to the probability of measuring the output qubit in state 1, reveals the
average prediction of the ensemble. In short, model selection is shifted from optimi-
sation to find the best set of parameters θ∗, to preparing a qsample of a distribution
that strengthens the influence of good models towards a collective decision. The dis-
tribution could for instance favour models with a good performance on the training
set, which can be evaluated in quantum parallel for each model [30]. Finally, the
distributions can include complex and negative amplitudes, so that the prediction is
the result of quantum interference. Once more, the question in which situations this
can be useful is still investigated by current research.

8.3.3 QBoost

QBoost was developed by researchers atGoogle andD-Wave labs [31, 49, 50] before
quantum machine learning became popular, and it is a beautiful illustration of how
casting a problem into the format amenable for quantumannealing devices can lead to
new methods for machine learning. The basic machine learning model is—again—
an ensemble of K binary classifiers fk(x), k = 1, . . . , K , that are combined by a
weighted sum of the form f (x) = sgn(

∑K
k=1 wT fk(x)) with x ∈ R

N and f (x) ∈
{−1, 1}. We assume that the individual classifiers are trained, and therefore omit
their model parameters.

Training the ensemble means to find the weights of the individual classifiers. We
choose to minimise a least-squares loss function, and add a L0 regularisation term
to prevent overfitting,

1

M

M∑

m=1

( f (xm) − ym)2 + λ||w||0,

where || · ||0 counts the number of nonzero parameters (and is hence a sparsity-
inducing norm), and λ tunes the strength of regularisation. The problem is already in
the form of quadratic unconstrained binary optimisation as can be seen by evaluating
the square brackets,

K∑

k,k ′=1

wkwk ′

(
M∑

m=1

fk(x
m) fk ′(xm)

)
+

K∑

k=1

wk
(
λ − 2 fk(x

m)ym
)
.

The known terms
∑

m fk(xm) fk ′(xm) and λ − 2 fk(xm)ym serve as the interaction
and field strengths of the Ising model, while the weights take the role of the xi , x j

from Eq. (7.16). This is sometimes called an inverse Ising model.
However, the formulation requires that the weights wi , i = 1, . . . , K are binary

variables. One can replace them by binary strings with a little more modelling effort,
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Fig. 8.8 Illustration of
QBoost. Several classifiers
hk(x) are combined by a
perceptron-like gating
network that builds the
weighed sum of the indiviual
predictions and applies a step
activation function on the
result to retrieve the
combined classification
decision y

h1(x)

h2(x)

...

hK(x)

y

w1

w2

wN

but current quantum hardware limits us to a very low bit depth τ if wi ∈ {0, 1}τ .
Luckily, estimations show that low-bit representations of parameters can still rep-
resent a sufficiently rich space of decision boundaries, or more precisely that “the
required bit depth for weight variables only grows logarithmically with the ratio of
the number of training examples to the number of features” [49]. This is consistent
with some successful application of binary weights to deep neural networks [51]
(Fig. 8.8).

Neven and his co-workers claim that compared to AdaBoost, the structure of
the QBoost cost function shows various advantages even if executed on a classi-
cal computer (and with a predefined set of weak classifiers fk(x)). It produces a
strong classifier that in some cases is able to beat classical AdaBoost through a
lower generalization error, employing fewer weak classifiers and requiring fewer
boosting iterations. These advantages are suspected to be largely due to an intrin-
sic regularisation by the low-bit depth binary representation of the weights and the
good performance of the least-square objective function (as opposed to AdaBoost’s
stepwise weighing of the training vectors).

Denchev et al. [52] add to this work by introducing a special loss function (q-
loss) for perceptron models of the form used for QBoost. This loss function can
be generically formulated as a quadratic unconstrained optimisation problem, and
promises better robustness against large outliers than the square loss. Less optimistic
results are obtained by Dulny and Kim [53], who find that in a realistic setting using
a Kaggle6 competition dataset, classical state-of-the-art methods perform better than
QBoost. Even though research in cost functions tailor-made to quantum annealers
has since been less in the focus of quantum machine learning, QBoost illustrates
once more the exploratory approach, but this time with a cost function adapted to a
quantum device, rather than the model itself.

6See https://www.kaggle.com/.

https://www.kaggle.com/
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Chapter 9
Prospects for Near-Term Quantum
Machine Learning

In order to run the quantum machine learning algorithms presented in this book we
often assumed to have a universal, large-scale, error-corrected quantum computer
available. Universal means that the computer can implement any unitary operation
for the quantum system it is based on, and therefore any quantum algorithm we can
think of. Large-scale refers to the fact that we have a reasonably high number of
qubits (or alternative elementary quantum systems) at hand. Error-corrected means
that the outcomes of the algorithm are exactly described by the theoretical equations
of quantum theory, in other words, the computer does not make any errors in the
computation besides those stemming from numerical instability.

But as we discussed in the introduction, quantum computing is an emerging tech-
nology, and the first generation of quantum computers, which have been called noisy
intermediate-term devices [1], does not fulfil these conditions. Firstly, intermediate-
term devices are not necessarily universal. Sometimes they do not aim at universality,
for example in the case of quantum annealers that are specialised to solve a specific
problem. But even quantum computers that in principle are designed as universal
devices may not have fully connected architectures, or only implement a subset of
gates reliably. Secondly, we usually have a rather small number of qubits available,
which is why intermediate-term devices are also called small-scale devices. Thirdly,
early-generation quantum computers are noisy. Not only do the gates have a limited
fidelity or precision, they also do not have mechanisms to detect and correct errors
that decohere the qubits and disturb the calculation. Hence, we can only apply a
small number of gates before the result of the computation is too noisy to be useful.

While for non-universality, every technology has different challenges to which
solutions will be increasingly available, the small scale and noisiness of most early
technologies impose general limitations on the ‘size’ of the quantum algorithms they
can implement: We only have a small number of qubits (i.e., a low circuit width) and
have to keep the number of gates (the circuit depth) likewise small enough to contain
error propagation. As a rule of thumb, the quantum community currently speaks of
intermediate-term algorithms if we use of the order of 100 qubits and of the order
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of 1, 000 gates. An important question is therefore what approaches to quantum
machine learning are actually feasible in noisy intermediate-term devices. In other
words, are there quantum machine learning algorithms for real-life problems that
use only about 100 qubits, have a circuit depth of about 1, 000 gates and are robust
to some reasonable levels of noise?

This last question is the subject of active research, and given its difficulty it might
remain so for some time. In this final chapter we want to discuss some aspects of the
question in the context of what has been presented in this book, both as a summary
and as an outlook.

9.1 Small Versus Big Data

We have attributed a lot of space in this book to questions of data encoding, or how
to feed the full information we have for a certain problem, most notably the dataset,
into the quantum device. In many situations, it is the bottleneck of an algorithm.
This was driven to the extreme in our introductory ‘Titanic’ classification example
in Chap.1, where besides data encoding, the algorithm only took one Hadamard gate
and two measurements to produce a prediction. It is not surprising that in general,
data encoding costs linear time in the data size, because every feature has to be
addressed. Even fancy technologies like quantum Random Access Memories would
still require the data to be written into the memory. The linear costs pose a dilemma
for intermediate-term applications: A dataset of only 100 inputs, each of dimension
10, would already “use up” of the order of 1, 000 gates. In addition to that, data
representation in basis encoding has severe spatial limitations for the dimension of
the data; if every feature is encoded in a τ -bit binary sequence, we can only encode
100/τ features into 100 qubits.

The bottleneck of data encoding means that, besides some few special cases,
quantum machine learning will most likely not offer intermediate-term solutions
for big data processing. Of course, some algorithms—most notably hybrid training
schemes—only process a subset of samples from the dataset at a time, thereby lifting
the restrictions on the number M of data samples. For example, in Sect. 7.3.3.2 we
looked at hybrid gradient descent training where the quantum device was used to es-
timate numerical or analytical gradients. Combining this with single-batch stochastic
gradient descent, the quantum device only has to process one data point at a time,
and the quantum subroutine is independent of the number of samples in the training
set. Another example are hybrid kernel methods in which the quantum computer
computes the ‘quantum kernel’ as a measure of distance between two data points
(see Sect. 6.2.3). However, if the dimension N of the data samples is large, we still
have to face the problem of extensive time and spatial resources needed to feed the
samples into a quantum computer.

In order to deal with high-dimensional data we have two basic options. First,
we can introduce structure that allows faster state preparation at the cost of accu-
racy. We call this largely unexplored strategy approximate data encoding. We have
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indirectly touched upon this topic in the context of probabilistic models in Sect. 6.3.
The task of preparing a qsample, which in principle is nothing else than arbitrary state
preparation, was addressed by preparing a mean field approximation of the distribu-
tion instead, which was linear—rather than exponential—in the number of qubits.
Another topic in which approximate data encoding played a role was in the quan-
tum basic linear algebra routines in combination with density matrix exponentiation,
where once the data was given as a density matrix, we could read out eigenvalues of
its low-rank approximation qubit-efficiently (Sect. 5.4.3). Whether the ‘sweet spot’
in the trade-off between state preparation time/circuit length and accuracy of the
desired state is useful for pattern recognition, and whether it suits the requirements
of intermediate-term devices are both open questions.

Second, we have touched upon the suggestion of considering quantum-assisted
model architectures, in which only a small part of the machine learning model is
computed by the quantum device. It was suggested in the literature that the deep and
compact layers in a deep learning model could play this role. Again, we introduce
structure to reduce complexity. While approximate data encoding would try to be
as faithful as possible to the original dataset, the idea of deep quantum layers is to
use a classical part of the model to select a few powerful features that are fed into
the quantum device. Hopes are that the quantum device can use the reduced features
more easily, or explore a different class of feature reduction strategies. Again, a
lot more research is required to determine the potential of quantum-assisted model
architectures, and an important question is how to incorporate them into training
algorithms such as gradient descent.

There is one setting in which high-dimensional (even exponentially large) inputs
could be classified by quantum machine learning algorithms, and this is the idea of
using ‘quantum data’. This has been discussed in Sect. 1.1.3 of the introduction, but
has not been the topic of later chapters because of a lack of research results at the
time of writing. The idea was to use quantummachine learning algorithms to classify
quantum states that are produced by a quantum simulator. Althoughmachine learning
for problems in quantum physics has shown fruitful applications, the combination
of solving a quantum problem by a quantum machine learning algorithm is still a
mostly untouched research agenda.

Although the promise of quantum methods for big data sounds appealing and
the difficulties sobering, one should possibly not be too concerned. Besides the
worldwide excitement about big data, problems where data collection is expensive
or where data is naturally limited are plentiful, and there are many settings where
predictors have to be built for extremely small datasets. An example is data gen-
erated by biological experiments, or specific data from the domain of reasoning. If
quantum computing can show a qualitative advantage, for example in terms of what
we discussed as ‘model complexity’ in Sect. 4.3, there will indeed be worthwhile
applications in the area of small data.
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9.2 Hybrid Versus Fully Coherent Approaches

In the course of this book we have seen quantum algorithms that range from the
fully coherent training and classification strategies based on quantum basic linear
algebra (blas) routines, to hybrid schemes where only a small part of the model is
computed by a quantum device. Unsurprisingly, the latter is much more suitable
for intermediate-term technologies. Hybrid quantum algorithms have the advantage
of using quantum devices only for relatively short routines intermitted by classical
computations. Another great advantage of hybrid techniques is that the parameters
are available as classical information, whichmeans they can be easily stored and used
to predict multiple inputs. In contrast, many quantum blas-based algorithms produce
a quantum state that encodes the trained parameters, and classification consumes
this quantum state so that training has to be fully repeated for every prediction. Even
if ‘quantum memories’ to store the quantum parameter state were developed, the
no-cloning theorem in quantum physics prohibits the replication of the state.

Amongst hybrid algorithms, variational circuits are particularly promising (see
Sects. 7.3 and 8.2). Here, an ansatz of a parametrised circuit is chosen and the pa-
rameters are fitted to optimise a certain objective. For example, one can define an
input-output relation with regards to the quantum circuit and train it to generalise the
input-output relations from the training data. While the idea is rather simple, the im-
plementation opens a Pandora’s box of questions, some of which we have previously
mentioned. What is a good ansatz for such a circuit for a given problem? We would
like the ansatz to be slim in the circuit depth, width and the number of parameters
used, but also as expressive as possible. This is nothing other than one of the funda-
mental questions of machine learning, namely to find simple but powerful models.
Every hyperparameter allows more flexibility, but also complicates model selection
for practical applications. Training is another issue. How can we train a model that is
not given as a mathematical equation, but as a physical quantum algorithm? Can we
do better than numerical optimisation, for example by using techniques such as the
classical linear combination of unitaries presented in Sect. 7.3.3.2? The parametrisa-
tion of the quantum circuit can play a significant role in the difficulty to train amodel,
as it defines the landscape of the objective function. What are good parametrisation
strategies? Do we have to extend the tricks of classical iterative training, such as mo-
mentum and adaptive learning rates, by those fitted to quantummachine learning? In
short, variational algorithms for machine learning open a rich research area with the
potential of developing an entirely new subfield of classical machine learning. In the
larger picture, quantum machine learning could even pioneer a more general class
of approaches in which ‘black-box’ analogue physical devices are used as machine
learning models and trained by classical computers.
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9.3 Qualitative Versus Quantitative Advantages

Quantum computing is a discipline with strong roots in theory. While the mathemat-
ical foundations were basically laid in the 1930s, we are still exploring the wealth of
their practical applications today. This is also true for quantum computing, where al-
gorithmic design had to revert to theoretical proofs to advertise the power of quantum
algorithms, since without hardware numerical arguments were often out of reach.
Quantum machine learning seems to follow in these footsteps, and a large share of
the early literature tries to find speedups that quantum computing could contribute to
machine learning (see for example the Section on quantum blas for optimisation 7.1).
In other words, the role of quantum computing is to offer a quantitative advantage
defined in terms of asymptotic computational complexity as discussed in Sect. 4.1.
The methods of choice are likewise purely theoretical, involving proofs of upper
and lower bounds for runtime guarantees, and the ‘holy grail’ is to show exponen-
tial speedups for quantum machine learning. Such speedups are typically proven by
imposing very specific constraints on the data, and little is known on applications
that fulfil these constraints, or whether the resulting algorithm is useful in practice.
Needless to say, judging from the journey quantum computing has taken so far, it is
highly unlikely that it provides solutions to NP-complete problems and can solve all
issues in machine learning.

On the other hand, machine learning methods tend to be based on problems that
are in general intractable, a fact that does not stop the same methods from being very
successful for specific cases. Consider for example non-convex optimisation in high-
dimensional spaces, which is generally intractable, but still solved to satisfaction by
the machine learning algorithms in use. Methods employed in machine learning are
largely of practical nature, and breakthroughs often the result of huge numerical
experiments.1 Computational complexity is one figure of merit among others such
as the generalisation power of a model, its ease of use, mathematical and algorithmic
simplicity and wide applicability, whether it allows the user to interpret the results,
and if its power and limits are theoretically understood.

Quantum machine learning may therefore have to rethink its roots in quantum
computing and develop into a truly interdisciplinary field. We have motivated this
in our distinction between explorative versus translational approaches in Sect. 1.1.4.
Especially in the first generation of papers on quantum machine learning, it was
popular to choose the prototype of a classical machine learning model and try to
reproduce it with a quantum algorithm that promises some asymptotic speedup,
in other words to translate the model into the language of quantum computing.
The explorative approach that we highlighted in Chap.8 is interested in creating
new models, new dynamics and new training strategies that extend the canon of
machine learning. Instead of theoretical analysis, these contributions benchmark their
models against standard algorithms in numeric experiments. Their paths may diverge

1A prominent joke attributes the success in machine learning to “graduate descent”, describing a
worldwide army of graduate students that manually search through the infinite space of possible
models.
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from what is popular in classical machine learning at the moment. For example,
it was demonstrated in Sects. 6.2 and 6.3 where it was argued that the ideas of
kernel methods and probabilistic models are much closer to quantum theory than the
principle of huge feed-forward neural networks. The overall goal of the explorative
approach is to identify a new quality that quantum theory can contribute to pattern
recognition.

Of course, whether to focus on qualitative versus quantitative advantages is not
necessarily an ‘either-or’ question. Constraints stemming from computational com-
plexity are a major factor in shaping successful algorithms, and speedups, even
quadratic ones, can prove hugely useful. It may not be possible to simulate a quan-
tum model classically, which is in itself an exponential speedup. And the theoretical
rigour of quantum researchers can prove a useful resource to develop the theory
side of machine learning. But with intermediate-term quantum technologies paving
the way to turn quantum computing into a numerical playground, quantum machine
learning has good reasons to be at the forefront of these efforts.

9.4 What Machine Learning Can Do for Quantum
Computing

This book tried to show ways of how quantum computing can help with machine
learning, in particular with supervised learning. We want to conclude by turning the
question around and ask what machine learning has to offer for quantum computing.
One answer is trivial. Many researchers hope that machine learning can contribute
a ‘killer app’ that makes quantum computing commercially viable. By connecting
the emerging technology of quantum computing with a multi-billion dollar market,
investments are much more prone to flow and help building large-scale quantum
computers.

But another answer has been touched upon in the previous three sections of this
conclusion. Quantum computing on the one hand is predominantly focused on theo-
retical quantum speedups, rather than hybrid algorithms that offer a new quality and
which draw their motivation from successful numerical implementations rather than
proofs. Machine learning on the other hand has to deal with uncertainty, noise, hard
optimisation tasks and the ill-posed mathematical problem of generalisation. Maybe
machine learning can inspire quantum computing in the era of intermediate-scale
devices to add a number of methods to the toolbox, methods that are less rigorous
and more practical, less quantitative and more qualitative.

Finally, machine learning is not only a field in computer science, but also based
on philosophical questions of what it means to learn. Quantum machine learning
carries the concept of learning into quantum information processing, and opens up a
lot of questions on an abstract level—questions that aim at increasing our knowledge
rather than finding commercial applications.
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