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Preface

String Theory revolutionized not just how we view the physical world but also how
we view Mathematics. Conversely, through String Theory, many physicists first
became acquainted with beautiful fields of Mathematics, like Algebraic Geometry.
The cross-pollination of insights and motivations between String Theory and
Mathematics led to remarkable insights in both fields.

One such deep instance is that of Mirror Symmetry, a duality in String Theory
that provides a powerful computational tool—allowing one to exchange difficult
computations for simpler ones. The full range of consequences of Mirror Symmetry
in Mathematics may never be understood. On the other hand, Mirror Symmetry has
already provided spectacular insight in enumerative geometry [1] leading to a
revolution in the field [2–6]. Two related mathematical proposals for Mirror
Symmetry arose afterward. The Strominger–Yau–Zaslow or SYZ conjecture [7]
posits that mirror manifolds arise from the process of T-dualization; each space
admits torus fibrations over a common base, and the exchange between the two
amounts to dualization of the torus fibers. The Homological Mirror Symmetry of
Kontsevich [8] states that an equivalence of categories underlies all phenomena of
Mirror Symmetry. It provides a deep and hitherto-unknown connection between the
fields of Algebraic Geometry and Symplectic Geometry and has become a robust
field of Mathematics itself in a short time.

This book consists of a series of introductory lectures on Mirror Symmetry and
its surrounding topics. These lectures were provided by participants in the PIMS
Superschool School for Derived Categories and D-Branes in July 2016. Together,
they form a comprehensive introduction to the field which integrates perspectives
from mathematicians and physicists alike.

The intent is to provide a pleasant and broad introduction into modern research
topics surrounding String Theory and Mirror Symmetry which is approachable to
readers who are new to the subject. Mathematical readers should expect to come
away with a broader perspective on this field and a bit of physical intuition.
Physicists will gain an introductory overview of the developing mathematical
realization of physical predictions. Topics include constructions of various mirror
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pairs, approaches to Mirror Symmetry, connections to homological algebra, and
physical motivations.

Of particular interest is the connection between GLSMs, D-branes, birational
geometry, and derived categories. This is one of the broader themes of the text and
is explained from a physical and mathematical perspective. The introductory lec-
tures provided herein highlight many features of this emerging field and give
concrete connections between the physics and the math.

Columbia, USA Matthew Ballard
Edmonton, Canada Charles Doran
Edmonton, Canada David Favero
Blacksburg, USA Eric Sharpe
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Symbols for “Abelian and Triangulated
Categories”

Chantelle Hanratty1

1. C or D: A specific category
2. Ob(C): The objects in the category C
3. HomC(A, B) or Hom(A, B): Morphisms (in the category C) between the objects

A and B
4. ffi: Isomorphic
5. F�1: The inverse functor to a functor F
6. A[n]: The object A shifted n times in a triangulated category; Tn (A)
7. f [n]: The map Tn ( f ): A[n] ! B[n], where f : A ! B.
8. f�, f � : If f: A! B, then f� and f � are the induced maps between morphism groups

Hom(X, A) ! Hom(X, B) and Hom(B, X) ! Hom(A, X) respectively.

1University of Alberta, Edmonton, AB, Canada, e-mail: hanratty@ualberta.ca.
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Part I
Derived Categories and Related Topics

in Algebraic Geometry



Abelian and Triangulated Categories

Chantelle Hanratty

1 Preface

The followingmaterial is standard and based largely on the discussion of triangulated
categories in the first chapter of [7]. Background information on categories, functors,
and additive and abelian categories, as presented in [4], is also included throughout.
The proposition at the end of the notes is paraphrased from Proposition 1.34 of [7];
however, the lemmas and corollaries to this proposition are independently observed in
order to give amore detailed proof andmotivation for the proposition. Any additional
sources are cited inline throughout.

2 Introduction

Triangulated categories were developed independently by Jean-Louis Verdier and
Dieter Puppe in the 1960s. Puppe’s work was originally published as [2] in 1961
and Verdier’s work was originally part of his unpublished PhD thesis, which was
reprinted in 1996 as [10]. Today there are numerous applications to triangulated
categories, such as derived categories of coherent sheaves, the theory of motives,
stable homotopy theory, Fukaya categories, and stable module categories [6, P. 1] [9,
P. 70].

The purpose of these notes is to provide enough background information to define
triangulated categories. We begin the notes by defining additive categories. We con-
tinue by providing background information onmonomorphisms, epimorphisms, ker-
nels, and cokernels, which we use to define abelian categories. Finally we give a full

C. Hanratty (B)
University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
e-mail: hanratty@ualberta.ca

© Springer International Publishing AG, part of Springer Nature 2018
M. Ballard et al. (eds.), Superschool on Derived Categories and D-branes,
Springer Proceedings in Mathematics & Statistics 240,
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4 C. Hanratty

definition of triangulated categories and conclude by describing some basic results
on triangulated categories, leading to a long exact sequence of morphism groups.

3 Additive Categories

3.1 Definition of Additive Categories

Definition 1 An additive category C is a category satisfying the following axioms:

1. For every two objects A, B ∈ Ob(C ), HomC (A, B) is an abelian group.
2. Function composition is bilinear. That is for every f, f1, f2 ∈ HomC (A, B), and

g, g1, g2 ∈ HomC (B,C) we have g ◦ ( f1 + f2) = (g ◦ f1) + (g ◦ f2) and
(g1 + g2) ◦ f = (g1 ◦ f ) + (g2 ◦ f ).

3. C has a zero object. That is there is an object 0 such that Hom(A, 0) ∼=
Hom(0, A) ∼= 0 is the trivial group for any object A ∈ Ob(C ).

4. For every two objects A1, A2 in C , there exists an object A that is both a product
and a coproduct (sum) of A1 and A2.

Note: Two equivalent definitions of a zero object are 0 such that Hom(0, 0) = 0
or 0 that is both an initial and a final object in the category.

3.2 k-Linear Categories

Definition 2 A k-linear category is a special type of additive category in which all
homomorphism groups are vector spaces over a field k and function composition is
bilinear over k.

3.3 Additive Functors

For any functor, F : C → D , between additive categories, and every two objects
A, B ∈ Ob(C ), we get an induced map F : Hom(A, B) → Hom(F(A), F(B)).

Definition 3 A functor F is called an additive functor if the induced map is a group
homomorphism. That is F( f + g) = F( f ) + F(g) for any f, g : A → B.

Definition 4 A functor between two k-linear categories is k-linear if the induced
map is k-bilinear. That is F(k1 f + k2g) = k1F( f ) + k2F(g) for any f, g : A → B
and k1, k2 ∈ k.
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4 Abelian Categories

Roughly speaking an abelian category is an additive category with kernels and cok-
ernels. This is powerful because it makes it possible to define exact sequences,
homology, and cohomology. Before giving the proper definition, we will delve into
the necessary background in category theory, etc., to make the definition complete.

4.1 Some Category Theory

4.1.1 Monomorphisms and Epimorphisms

In many familiar categories, such as sets and groups, monomorphisms and epimor-
phisms are the typical notions of injective and surjective maps respectively. In a
general category theoretic sense, we get the following.

Definition 5 A map f : A → B is called a monomorphism if for any pair of mor-
phisms x : C → A and y : C → A such that f ◦ x = f ◦ y, we also have x = y.

Definition 6 A map f : A → B is called an epimorphism if for any pair of mor-
phisms x : B → C and y : B → C such that x ◦ f = y ◦ f , we also have x = y.

Although there are many categories in which monomorphisms are injections and
epimorphims are surjections, it is important to note that these definitions do not coin-
cide in every category.

Example 1 LetC be the categorywhere the objects areHausdorff topological spaces
and the morphisms are continuous functions. Then the inclusion Q ↪→ R is an epi-
morphism in this category even though it is not surjective.

4.1.2 Difference Kernels and Cokernels

In order to define a category theoretic kernel and cokernel, we first need to define
the notion of difference kernels and difference cokernels.

Definition 7 Let x, y : A → B be two morphisms, then a difference kernel of x and
y is a morphism k : K → A satisfying the following two conditions.

• x ◦ k = y ◦ k
• Let j : J → A be another map satisfying the first condition. Then there exists a
unique map l : J → K such that the following diagram commutes.
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J

K A

j
l

k

We can think of the first property as requiring x and y to be equal on K , and the
second property as choosing the “largest” object with this property.

Proposition 1 Any difference kernel is a monomorphism.

Proof See [4, Proposition 1.61] for a proof of this statement. �

Definition 8 Let x, y : A → B be two morphisms, then a difference cokernel of x
and y is a morphism c : B → C satisfying the following two conditions.

• c ◦ x = c ◦ y.
• Let j : B → J be another map satisfying the first condition. Then there exists a
unique map l : C → J such that the following diagram commutes.

J

B Cc

j
l

We can think of the first property as requiring x and y to be equal on C , and the
second property as choosing the “largest” object with this property.

Proposition 2 Any difference cokernel is an epimorphism.

Proof Apply the previous proposition to the opposite category. �

4.1.3 Kernels and Cokernels

Kernels and cokernels are only well defined in a category with a zero object. Recall
a zero object is an object such that for any other object A, we have Hom(A, 0) and
Hom(0, A) each have exactly one element.

In such a category 0 : A → B is defined as the composition of the unique maps
A → 0 → B.

Definition 9 Let f : A → B be a morphism. Then we define the kernel of f to be
the difference kernel of f and 0, and the cokernel to be the difference cokernel of f
and 0.

Therefore a kernel is a map k : K → A such that f ◦ k = 0, and for any other
j : J → A such that f ◦ j = 0, there exists a map l : J → K making the following
diagram commute.



Abelian and Triangulated Categories 7

J

K A

j
l

k

Definition 10 Similarly a cokernel is a map c : B → C such that c ◦ f = 0. Fur-
thermore for any other j : B → J satisfying the first condition there exists a unique
l : C → J making the following diagram commute.

J

B Cc

j
l

4.2 Definition of Abelian Categories

Definition 11 An abelian category is an additive category such that:

• If f : A → B is a morphism in the category, f has both a kernel and a cokernel.
• If f : A → B is a monomorphism in the category, then f is a kernel of some map.
• If f : A → B is an epimorphism in the category, then f is a cokernel of some
map.

Note: There is an equivalent characterization of the second and third bullets that
requires a certain natural map between the image of f and the coimage of f to be
an isomorphism; however, we will not describe this in detail.

4.3 Examples

Example 2 (Some abelian categories)

• The category of modules over a commutative ring R is abelian.
• The category of sheaves (of abelian groups) over a topological space X is an
abelian.

• For a given scheme X , the categories of coherent and quasi-coherent sheaves over
X are abelian.

Example 3 (A category that is additive but not abelian) Let R be any non-noetherian
commutative ring, and let C be the category of finitely generated modules over this
ring. Then C is additive, but not abelian.
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Proof (that C is not abelian) One of the equivalent definitions of a noetherian com-
mutative ring is that every ideal is finitely generated. Since by assumption R is not
abelian, there exists an ideal that is not finitely generated, call it I .

By proposition 2.3 in [1], a module over R is finitely generated iff it is isomorphic
to a quotient of Rn . Therefore R/I is a finitely generated module.

R and R/I are both objects in C , so in order for C to be abelian, the projection
P : R → R/I must have a kernel. However, the kernel of this map is I , which is not
an object in this category. Thus C is not abelian.

We thank the Mathematics Stack Exchange community for help with this proof.
Note: We have proved that the kernel of P , in the category of modules, is not

finitely generated. However, the category of finitely generated modules could have a
kernel that is not a kernel in the category of modules. Therefore for this proof to be
completely correct, we also need to show that any kernel in the category of finitely
generated modules is also a kernel in the category of modules. �

Example 4 (A category that is not additive) LetC be the category of sets. Intuitively
it makes sense thatC is not additive because there is no natural way to define addition
of functions whose codomain is not an abelian group. More concretely, the category
of sets does not have a zero object so it cannot be abelian.

5 Triangulated Categories

5.1 Some More Category Theory

Let F : C → D be a functor and A, B any two objects in Ob(C ).

There is an induced map

F : HomC (A, B) → HomD (F(A), F(B))

f �→ F( f ).

Definition 12 F is full if the above map is surjective for each A, B ∈ Ob(C ). That
is all of the maps F(A) → F(B) come from maps A → B.

Definition 13 F is faithful if the above map is injective for each A, B ∈ Ob(C ).

Definition 14 ([8, P. 53]) F is essentially surjective if every object B ∈ D is iso-
morphic to an object F(A) for some A ∈ C . Note: We don’t require that B = F(A),
only that they are isomorphic.
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5.1.1 Equivalence of Categories

Definition 15 Two categories C ,D are called equivalent if there exists a full, faith-
ful, essentially surjective functor F : C → D . This equivalence is called additive if
the functor is additive.

Note: There is an equivalent definition of equivalence. The categoriesC andD are
equivalent if there are two functors F : C → D , and G : D → C such that G ◦ F
and F ◦ G are naturally isomorphic to the identity functor.Wewrite this asG = F−1.

5.2 Definition of Triangulated Categories

A triangulated category D is a special type of additive category. Such a category
must have a “shift functor,” a “set of distinguished triangles,” and follow a set of
special axioms called the TR axioms.

Definition 16 The shift functor is an additive equivalence T : D → D .
Therefore

• T is a full, faithful, essentially surjective functor from D to itself.
• For A, B ∈ Ob(D) and f, g : A → B we have T ( f + g) = T ( f ) + T (g).

Definition 17 Given a fixed shift functor, a triangle consists of

• Three objects A, B,C ∈ Ob(D)

• Morphisms a ∈ Hom(A, B), b ∈ Hom(B,C), c ∈ Hom(C, T (A))

That is we get a diagram

A
a−→ B

b−→ C
c−→ T (A).

Definition 18 In a triangulated category, we choose a subset of triangles, which we
call distinguished triangles. This subset must follow the TR axioms which we will
describe below.

5.2.1 Notation

Let A, B ∈ Ob(D), f : A → B and n ∈ Z.
Then A[n] = T n(A) = T ◦ · · · ◦ T (A) and f [n] = T n( f ) = T ◦ · · · ◦ T ( f ).
Note that since T ( f ) : T (A) → T (B), we get

f [n] : A[n] → B[n].

Note: Since T is an additive equivalence, it has an inverse. Therefore letting n be
negative makes sense. We use the notation A[−n] to denote T−1 ◦ · · · ◦ T−1A.
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5.2.2 Morphisms of Triangles

Let
A → B → C → A[1]

and
A′ → B ′ → C ′ → A′[1]

be two triangles.

Definition 19 A morphism of triangles consists of maps f : A → A′, g : B → B ′
and h : C → C ′ such that the following diagram commutes.

A B C A[1]

A′ B′ C′ A′[1]

f g h f [1]

If each map f, g, h is an isomorphism, then we call the diagram an isomorphism
of triangles.

5.3 Axioms

We call the axioms for triangulated categories TR1, TR2, TR3 and TR4.

5.3.1 TR1

The first axiom has three parts. Each part guarantees the existence of some type of
distinguished triangle.

(1) For every object A there exists a triangle

A
idA−→ A

0−→ 0
0−→ A[1].

These triangles must always be distinguished.
(2) Distinguishedness is preserved under isomorphism. That is if two triangles

are isomorphic they must both be distinguished or not distinguished.
(3)Let f : A → B be a morphism. Then there exists a distinguished triangle

A
f−→ B → C → A[1]

that “completes” f . The object C is called the mapping cone of f .
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5.3.2 TR2

Let
T1 = A

a−→ B
b−→ C

c−→ A[1]

be a distinguished triangle.
Then the triangle

T2 = B
b−→ C

c−→ A[1] −a[1]−−−→ B[1]

is also distinguished.
Conversely if T2 is distinguished, T1 must also be distinguished.

5.3.3 TR3

Consider a commutative diagram of distinguished triangles as below.

A B C A[1]

A′ B′ C′ A′[1]

f g f [1]

Any such diagram can be completed to a (not necessarily unique) morphism of
triangles,

A B C A[1]

A′ B′ C′ A′[1]

f g h f [1] .

Note: It is straightforward to show, using TR2, that as long as you have any two
out of three of the morphisms, f, g, h, you can prove the existence of the third.

5.3.4 TR4 The Octahedral Axiom

The TR4 axiom is the most complicated axiom for triangulated categories. The
following description is adapted from the description found in [5, PP. 21–22].

Let u : X → Y and v : Y → Z be any two maps.
Then there is a composition map w := v ◦ u : X → Z .

By TR1 we can complete all three of these maps into distinguished triangles.
Let U, V,W be the mapping cones of u, v,w respectively so we get distinguished
triangles
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X
u−→ Y

u′−→ U
u′′−→ X [1]

Y
v−→ Z

v′−→ V
v′′−→ Y [1]

X
w−→ Z

w′−→ W
w′′−→ X [1]

TR4 states that there exists a distinguished triangle

U
f−→ W

g−→ V
h−→ U [1]

such that the following diagram commutes. This diagram forms the vertices and
edges of an octahedron, giving the axiom its name.

X

U

W

Y

V

Z

w

u v

u′ v′

w′f g

u′′

h

v′′

w′′

Note: The dashed lines represent maps going into X [1],Y [1],U [1] as opposed
to X,Y,U . The code for making the above commutative diagram was found at [3].

5.4 Results about Triangulated Categories

Lemma 1 Let A be any object in a triangulated category. Then the triangle

0
0−→ A

id−→ A
0−→ 0

is distinguished.

Proof By TR1 we know that

A
id−→ A

0−→ 0
0−→ A[1]

is distinguished .
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Therefore by TR2 we have that

A
0−→ 0

0−→ A[1] −id−→ A[1]

is distinguished.
Applying TR2 again we get that

0
0−→ A[1] −id−→ A[1] −0−→ 0[1]

is also distinguished.
Since A was arbitrary, replacing A with A[−1] implies that

0
0−→ A

−id−→ A
−0−→ 0[1]

is distinguished.
Consider the following isomorphism of triangles.

0 A A 0

0 A A 0

0

0

id

−id

0

id 0
0 −id 0

By TR1, since the bottom triangle is distinguished, so must be the top.
Therefore

0
0−→ A[1] id−→ A[1] 0−→ 0[1]

is indeed distinguished, proving the claim. �

Lemma 2 Let A
f−→ B

g−→ C
h−→ A[1] be a distinguished triangle. Then g ◦ f = 0.

Proof By the last lemma, we have that

0 → C
id−→ C → 0

is distinguished.
Consider the following commutative diagram.

A B C A[1]

0 C C 0[1]

f g

g id

0 id

h

0
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Then by TR3 there exists a morphism A → 0 making the diagram commute.
However the only possible morphism A → 0 is 0.

A B C A[1]

0 C C 0[1]

f

0

g

g id 0

0 id

h

0

Therefore by the resulting commutative diagram, we have that g ◦ f = 0 as
required. �

Proposition 3 Let D be a triangulated category and A
f−→ B

g−→ C
h−→ A[1] a dis-

tinguished triangle in this category. Then for any object X we get the following
induced sequences on homomorphism groups.

Hom(X, A)
f∗−→ Hom(X, B)

g∗−→ Hom(X,C)

Hom(A, X)
f ∗←− Hom(B, X)

g∗←− Hom(C, X)

These sequences are exact.

Proof (for the first sequence)
Exactness of this sequence means that kerg∗ = imf∗.
First we will prove kerg∗ ⊆ imf∗.
Let j : X → B be an element of kerg∗. Then g ◦ j = 0.
By TR1 we have that the triangle

X
id−→ X → 0 → X [1]

is distinguished.
Consider the following commutative diagram.

X X 0 X [1]

A B C A[1]

id

j

0

0

0

f g h

ApplyingTR3, there exists amorphismα : X → Amaking the triangle commute.
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X X 0 X [1]

A B C A[1]

id

α j

0

0

0

α [1]
f g h

Therefore j ◦ id = j = f ◦ α = f∗α, and j is indeed an element of imf∗.
Next we will prove kerg∗ ⊇ imf∗.
Let k : X → A be arbitrary. Then f∗(k) = f ◦ k is an arbitrary element of Im( f∗).

Then g∗( f ◦ k) = g ◦ f ◦ k. By the Lemma2 g ◦ f = 0, so f ◦ k is an element of
ker(g∗).

The proof for the other sequence is similar.

Corollary 1 Let D be a triangulated category and A
f−→ B

g−→ C
h−→ A[1] a distin-

guished triangle in this category. Then for any object X there is an exact sequence

· · ·Hom(X, A)
f∗−→ Hom(X, B)

g∗−→ Hom(X,C)
h∗−→ Hom(X, A[1]) − f [1]∗−−−→ Hom

(X, B[1]) −g[1]∗−−−→ · · · .

Proof This follows from applying TR2 to the previous proposition. �
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Derived Categories and Derived Functors

Nitin Kumar Chidambaram

1 Category of Complexes and Homotopy Category

Given an abelian categoryA let us define the category of complexes Kom(A ). Chain
complexes, denoted A•, are diagrams of the form

where Ai ∈ Obj (A ) and di ∈ Mor(A ) such that di ◦ di−1 = 0, and themorphisms
between chain complexes, say f : A• → B•, are defined as commutative diagrams
of the form

Definition 1 The category of complexes Kom(A ) of an abelian category A is the
category with objects as chain complexes A• and morphisms as morphisms between
chain complexes.

Remark 1 Kom(A ) is an abelian category. The verification of the existence of ker-
nels and cokernels is straightforward.
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Remark 2 The mapping A → ( ) defines
an equivalence of A with a full subcategory of Kom(A ).

We shall define two functors on the category of complexes which are important
to us:

Definition 2 The shift functor T : Kom(A ) → Kom(A ) is defined as the following
— A•[1] := T (A•) is the complex with A•[1]i := Ai+1 and differential di

A[1] :=
−di+1

A . And f [1] := T ( f ) of the morphism f : A• → B• is the morphism such that
f [1]i = f i+1.

Remark 3 The shift functor defines an equivalence of categories.

Remark 4 The shift functor does not give Kom(A ) the structure of a triangulated
category! The problem lies in defining exact triangles.

Definition 3 The cohomology functor Hi : Kom(A ) → A is defined as the fol-
lowing on objects — Hi (A•) := Ker (di )/ Im (di−1). The morphism f i : Ai → Bi

descend to the cohomology Hi ( f ) : Hi (A) → Hi (B).

Remark 5 A complex, A•, is called acyclic if Hi (A•) = 0 ∀ i ∈ Z.

Remark 6 A short exact sequence in Kom(A )

induces a long exact sequence in cohomology

Let us define quasi-isomorphisms which will be essential for defining derived
categories now.

Definition 4 Amorphismof complexes f : A• → B• is called a quasi-isomorphism
(or qis) if the induced maps on cohomology are isomorphisms, i.e. Hi ( f ) : Hi (A•)
→ Hi (B•) is an isomorphism ∀i ∈ Z.

In the derived category, we wish to make all quasi-isomorphisms invertible (i.e.
isomorphisms). In order to do this, we will first pass to the homotopy category of
chain complexes which will make a certain class of quasi-isomorphisms invertible
(namely the ones that have an inverse up to homotopy).
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Definition 5 (Homotopy of morphisms) Two morphisms of complexes f, g : A• →
B• are said to be homotopic (denoted f ∼ g ) if there exists morphisms hi : Ai →
Bi−1 , i ∈ Z such that

f i − gi = hi+1 ◦ di
A + di−1

B ◦ hi

Definition 6 (Homotopy category of chain complexes) The homotopy category of
chain complexes, K(A ) is the category with the same objects as Kom(A ) and mor-
phismsdefinedup to homotopy, i.e. HomK (A )(A•, B•) = HomKom(A )(A•, B•)/ ∼.

The verification that this is well defined is fairly straightforward.
We also note that this construction is well defined for any additive category (not

necessarily abelian).

Remark 7 If f ∼ g : A• → B•, Hi ( f ) = Hi (g).

Remark 8 If f, g : A• → B•, such that f ◦ g ∼ I d and g ◦ f ∼ I d, then f and g
are inverses in K (A )

Now, we can finally define our object of interest, i.e the derived category.

2 Defining the Derived Category

First of all, let us state the existence result:

Theorem 1 Let A be an abelian category and let Kom(A ) be the category of
complexes. Then there exists a category D(A ), the derived category of A , and a
functor

Q : Kom(A ) → D(A )

such that:

• If f : A• → B• is a quasi-isomorphism, then Q(f) is an isomorphism in D(A ).
• Any functor F : Kom(A ) → D satisfying the above condition factorizes uniquely
over Q : Kom(A ) → D(A ):
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Before we proceed to construct this derived category explicitly, let us make a
couple of observations:

Remark 9 The functor Q identifies objects of K(A ) with the objects of D(A ).

Remark 10 The cohomology objects Hi (A•) where A• ∈ D(A ) are well defined
objects of the abelian categoryA . In other words the cohomology functors Hi factor
through Q.

Now we proceed to construct the derived category. The morphisms in the derived
category are constructed as follows.We representmorphisms A• → B• in the derived
category by equivalence classes of diagrams called roofs:

Two roofs representing A• → B• are said to be equivalent if they are dominated in
the homotopy category K (A ) by a third roof, i.e. there exists a commutative diagram
in K (A ) of the form:

Now we need to define composition of morphism. Say we are given two morphisms:

We want the composition to be defined as:
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(1)

We will show that this diagram exists and is defined uniquely in the derived category,
by introducing a construction called the mapping cone. This mapping cone construc-
tion will also tell us how to give the derived category the structure of a triangulated
category.

3 Derived Category as a Triangulated Category

Let us define the mapping cone first.

Definition 7 Let f : A• → B• be a morphism in Kom(A ). The mapping cone C(f)
is defined as the complex such that:

C( f )i := Ai+1
⊕

Bi and

di
C( f ) :=

(
−di+1

A 0

f i+1 di
B

)

Also, there exists two natural morphisms

τ : B• → C( f ) and π : C( f ) → A•[1]

given by the natural injection and surjection respectively.

Remark 11 is a short exact sequence in Kom(A ) (We
will define this as a distinguished triangle in D(A ) eventually.)

Proposition 1 (TR3) A commutative diagram can be completed as follows

Proof We construct the morphism by sending Ai+1
1 ⊂ C( f1)i to Ai+1

2 ⊂ C( f2)i by
the given morphism A•

1 → A•
2 and similarly for Bi ⊂ of C( f1)i . By construction the

diagram is commutative. �
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Proposition 2 (TR2) Let f : A• → B• be a complex morphism. Then there exists
a complex morphism g : A•[1] → C(τ ) which is invertible in K(A ) that makes the
following diagram commutative in K(A ):

Proof The morphism g : A•[1] → C(τ ) is defined on

as (− f i+1, id, 0). See Proposition 2.16 in [1] for details. �
The following proposition will let us define composition in the derived category.

Lemma 1 (Extension lemma) Given a quasi-isomorphims f : A• → B• and a mor-
phism g : C• → B•, there exists the following commutative diagram in K(A ):

Proof First of all, we use the mapping cone construction on f to get a short exact
sequence by Remark11: B → C( f ) → A[1]. As f is a quasi-isomorphism, passing
to the long exact sequence in cohomology gives us that Hi (C( f )) = 0 for all i ∈ Z.
Now, using the mapping cone construction on τ ◦ g we know that there exists a
morphism of complexes given by

Furthermore, by Remark11, we know that this is a short exact sequence. So we pass
to the long exact sequence in cohomology and using that Hi (C( f )) = 0 we get that
C•
0 := C(τ ◦ g)[−1] → C• is a quasi-isomorphism.
All that remains to be shown is that there exists a map C•

0 → A• so that we get a
commutative diagram. For this, we use TR3 to show the isomorphism A• � C(τ ).
Thenwe construct the naturalmapC(τ ◦ g) → C(τ ) and use the isomorphism above
to get C•

0 → A•.
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The commutativity is clear. �

Corollary 1 The composition of roofs defined by (1) is well-defined and unique.

Proof Apply the extension lemma to the diagram

This shows that a roof representing composition exists. Uniqueness can also be
proved using the extension lemma multiple times. �

Now that we have defined composition, let us give the homotopy category and
the derived category the structure of a triangulated category as follows:

Definition 8 Adistinguished triangle in D(A ) (or K(A )) is any triangle isomorphic
to a triangle of the form:

Proposition 3 Distinguished triangles as defined above along with the shift functor
turn both the homotopy category and the derived category into triangulated cate-
gories.

Also the functor QA : K (A ) → D(A ) is an exact functor of triangulated cate-
gories.

Proof See IV.2 in [2]. �

Remark 12 The general procedure to construct a derived category is called local-
ization, in this case we use the set of quasi-isomorphisms in K(A ) as our localizing
class of morphisms.

Remark 13 For a semi-simple abelian category, any complex in the derived category
is isomorphic to it’s cohomology complex.

Remark 14 The distinguished triangles in the derived category should be thought of
as a generalization of exact triples in an abelian category. Any distinguished triangle
in the derived category, say

generates a long exact sequence in cohomology in the abelian category:
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Let us introduce bounded categories now. These will be useful in defining derived
functors.

Definition 9 Let Kom∗(A ), with * = + , − or b, be the category of complexes A•
such that Ai = 0 for i 
 0, i � 0, or |i | � 0 respectively.

We can construct bounded homotopy categories and bounded derived categories
using Kom∗(A ).

The bounded derived category is equivalent to a cohomologically bounded full
subcategory of the unbounded derived category. More precisely:

Proposition 4 The natural inclusion functor D∗(A ) → D(A ), with * = + , − or
b, defines an equivalence of D∗(A ) with the full triangulated subcategory of objects
A• ∈ D(A ) such that Hi (A•) = 0 for i 
 0, i � 0, or |i | � 0 respectively.

Proof The idea is that the acyclic part of a complex in the derived category can be
replaced by 0. See Proposition 2.30 in [1] for details of the construction. �

4 Equivalence Between Homotopy Category of Injectives
in A and the Derived Category D(A )

In certain abelian categories (containing enough injectives or projectives), we can
avoidworkingwith the derived categories which are harder to understand, but instead
work with some homotopy categories which are better understood and easier to work
with (in the sense that the morphisms are honest morphisms of complexes).

First of all let us definewhat injective and projective objects in an abelian category
are. There exist multiple equivalent definitions which we shall not state here.

Definition 10 An object I ∈ A is called injective if HomA (−, I ) is exact. Dually,
P ∈ A is called projective if HomA (P,−) is exact.

Definition 11 A category A is said to have enough injectives (or projectives) if
there exists an injective morphism A → I (or a projective morphism P → A) for
all objects A ∈ A .

Remark 15 Not all abelian categories have enough projectives or enough injectives.
For example the category of quasicoherent OX -modules on a scheme X, QCoh(X)

has enough injectives but not enough projectives.

Remark 16 An injective resolution is a quasi-isomorphism between a complex A• ∈
Kom(A ) and a complex I • ∈ Kom(A ) such that I i are injective and I i = 0 for
i < 0. Similarly we define projective resolutions using projective objects.

Proposition 5 Let A be an abelian category with enough injectives. For any com-
plex A• ∈ K+(A ) there exists a complex I • ∈ K+(A ), with I i injectives, and a
quasi-isomorphism A• → I •.



Derived Categories and Derived Functors 25

Proof See III.5 in [2]. �

The class of injectivesI forms a full additive subcategory of the abelian category
A . We can also define the triangulated category K ∗(I ) which is the (bounded)
homotopy category of this additive category. K ∗(I ) is called the homotopy category
of injectives of A . Dually, we can carry out the same construction (assuming the
existence of enough projectives) to get the homotopy category of projectives K ∗(P).

Proposition 6 If A contains enough injectives, the natural functor

i : K+(I ) → D+(A ) (2)

is an exact equivalence of triangulated categories.

Proof See Proposition 2.40 in [1]. �

Remark 17 The above proposition allows us to work with K+(I ) instead of the
much more complicated D+(A ). The inverse functor replaces any object in D+(A )

with an injective resolution of this object. We also have the isomorphism

HomD+(A )(A, B) � HomK+(I )(i
−1(A), i−1(B))

which allows us to compute morphisms in the derived category by morphisms of
complexes between injective resolutions up to homotopy (which avoids working
with roofs).

5 Derived Functors

If we have a functor F : A → B between two abelian categories, a natural question
to ask is whether we can define a canonical functor between the derived categories.
It turns out that the naive extension only makes sense for an exact functor.

Hence we need to introduce the more complicated idea of a derived functor be-
tween the derived categories. For a left exact functor F : A → B, we define a right
derived functor RF : D+(A ) → D+(B). Or given a right exact functor we can
define a left derived functor LF : D−(A ) → D−(B).

Now let us define the right derived functor RF : D+(A ) → D+(B) given the
left exact functor F : A → B, where we also assume thatA has enough injectives.
Recall Proposition 6 and consider the following diagram.
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where K(F) is the functor F applied to every object and morphism in the complex
(this is well defined for the homotopy categories). Note that this functor is exact as
a triangulated functor between triangulated categories.

Definition 12 The right derived functor of F is the functor

RF := QB ◦ K (F) ◦ i−1 : D+(A ) → D+(B). (3)

Proposition 7 1. RF : D+(A ) → D+(B) is an exact functor of triangulated cat-
egories.

2. There exists a natural morphism of functors QB ◦ K (F) → RF ◦ QA .
3. Suppose G : D+(A ) → D+(B) is an exact functor. Then any functor morphism

QB ◦ K (F) → G ◦ QA factors through a unique functor morphism RF → G.

Proof 1. The functor i is exact, hence i−1 is exact; and all other functors are exact.
For parts 2 and 3, see III6.1 in [2]. �

We also define the higher right derived functors as follows.

Definition 13 Let RF : D+(A ) → D+(B) be the right derived functor of the left
exact functor F : A → B. Then for any complex A• ∈ D+(A ) we define:

Ri F(A•) := Hi (RF(A•)) ∈ B

The induced functors

Ri F : A → B

are called the higher derived functors of F.

Remark 18 Ri F(A) = 0 for i < 0 and R0F(A) = F(A) for any A ∈ A .

Remark 19 An object A ∈ A is called F-acyclic if Ri F(A) = 0 for i �= 0.

The right derived functor RF roughly measures how much the functor F fails to
be exact on the right. More precisely,

Proposition 8 Let RF : D+(A ) → D+(B) be the right derived functor of the left
exact functor F : A → B. Then any short exact sequence

induces a long exact sequence
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Proof Any short exact sequence in A gives rise to a distinguished triangle,

in D(A ). Applying the exact functor RF, we get another distinguished triangle

This distinguished triangle gives us a long exact sequence in cohomology according
to Remark14. �

Finally, let us look at an example of a derived functor. Consider the left exact
functor Hom(A, − ) : A → Ab. The familiar Ext functors are the right derived
functors of this functor.

Definition 14 If A has enough injectives, we define

Exti (A,−) := Hi ◦ RHom(A,−)

But in fact, these functors have a natural interpretation as just morphisms in the
derived category. More precisely,

Proposition 9 Let A, B be objects of an abelian categoryA that has enough injec-
tives. Then there are natural isomorphisms

ExtiA (A, B) � HomD(A )(A, B[i])

Proof See Proposition 2.56 in [1].

Dually, the Tor functors are constructed as the left derived functors of the right
exact ⊗ functor.
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Introduction to Quivers

Minako Chinen

1 Quivers and Path Algebras

Definition 1 A quiver Q is a directed graph consisting of a set of vertices Q0, a set
of arrows Q1, and maps h, t : Q0 → Q1 which specify the head and tail.

t(a) h(a)a

We assume that both Q0 and Q1 are finite sets and that Q is connected.

Definition 2 A nontrivial path p in Q of length n from vertex i ∈ Q0 to vertex
j ∈ Q0 is a sequence of arrows a1, . . . , an .

i= t(a1) h(a1) = t(a2) · · · h(an) = ja1 a2 an

with h(ak) = t (ak+1) for 1 ≤ k ≤ n; we set t (p) := t (a1) and h(p) := h(an). In
addition, each vertex i ∈ Q0 gives a trivial path ei of length 0with h(ei ) = t (ei ) = i .
A cycle is a nontrivial path with the same head and tail, and Q is called acyclic if it
contains no cycles.

Here is an example of a quiver with no cycles. We will revisit this quiver later.
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Example 1 (Beilinson quiver [2]) The quiver with two vertices and a pair of arrows

1 2

is called the Beilinson quiver for P1. More generally the Beilinson quiver for Pn is
the quiver

v0 v1 · · · vn...
...

...

consisting of n + 1 vertices v0, . . . vn and there are n + 1 arrows between vertices.

Definition 3 Let k be a field and Q be a finite connected quiver. The path algebra
kQ of Q is the associative algebra whose underlying k-vector space is spanned by all
paths in Q. The multiplication of paths p = a1 . . . an and q = b1 . . . bm is defined
by the concatenation

p · q =
{
p · q if h(p) = t (q)

0 otherwise

t(p) · · · h(p) = t(q) · · · h(q)a1 an b1 bm

There are several important facts about the path algebra which we don’t prove.

Remark 1 [1–3]

1. The path algebra kQ is graded by path length, i.e. kQ = ⊕
l∈N(kQ)l where

(kQ)l denotes the vector space spanned by paths of length l and (kQ)l · (kQ)m ⊆
(kQ)l+m . The zero graded subring (kQ)0 ⊂ kQ spanned by trivial paths ei is a
semisimple ring.

2. kQ is finite dimensional over k if and only if Q is acyclic.
3. The trivial paths ei are orthogonal idempotents of kQ and

∑
i∈Q0

ei = 1; i.e.
e2i = ei , ei e j = 0 if i �= j .

4. Using the decomposition
∑

i∈Q0
ei = 1, we get kQ ∼= ⊕

i∈Q0
kQei

a. kQei is a k-vector space spanned by paths starting at i
b. Every indecomposable projective kQ-module happens to be one of

{kQei }i∈Q0 , and in fact ei is a primitive idempotent.

Note that because there is a One-to-One correspondence between simple modules
and projective indecomposablemodules up to isomorphism, being able to decompose
kQ into projective indecomposable modules allows us to express kQ using different
“building blocks” other than simple modules [4].
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2 The Category of Quiver Representations

Definition 4 A representation of the quiver Q consists of a k-vector space Vi for
each i ∈ Q0 and a k-linear map fa : Vt (a) → Vh(a) for each arrow a ∈ Q1. We write
the representation of Q as a tuple V = ((Vi )i∈Q0 , ( fa)a∈Q1). A representation is said
to be finite dimensional if each vector space Vi has finite dimension over k. The
dimension vector of V is the tuple of nonnegative integers dimV = (dimVi )i∈Q0 .

Just to have a better understanding of a representation of a quiver, we will take a
look at one simple example. Say we have a quiver given by

Q : 1 2 3a
b

c

The representation of this quiver consists of three vector spaces V1, V2, V3 corre-
sponding to the three vertices and three k-linear maps fa, fb, fc corresponding to
the arrows of Q.

V : V1 V2 V3
fa

fb

fc

Definition 5 Suppose thatV = ((Vi )i∈Q0 , ( fa)a∈Q1) andW = ((Wj ) j∈Q0 , (gb)b∈Q1)

are both representation of a quiver Q. Amorphism φ : V → W between two repre-
sentations is a collection of k-linear maps {φi : Vi → Wi | i ∈ Q0} such that the
diagram commutes.

Vt(a) Vh(a)

Wt(a) Wh(a)

fa

t(a) h(a)

ga

With the notion of morphism between two representations, we can now define a
category of finite dimensional representation of Q.

Definition 6 A category of finite dimensional representations of the quiver Q
denoted by rep(Q) consists of

• objects: representations V of Q
• morphisms: the morphisms between the finite dimensional representations of Q
which we just have defined.

There are two important properties of this category which we will not give proofs.
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Remark 2 [2, 3]

1. rep(Q) is equivalent to the category of finitely generated left
kQ-modules kQ-mod

2. rep(Q) is an Abelian category

The first remark allows us to obtain a finitely generated left kQ-module from a
given representation of a quiver Q and vice versa. In the next example, we will see
how to obtain a representation of Q from a left kQ-module.

Example 2 Given a left kQ-module (more precisely a projective indecomposable
module) kQe j where j ∈ Q0 is fixed, the corresponding representation ((Vi )i∈Q0 ,

( fa)a∈Q1) consists of the vector spaces

Vi = ei (kQe j )

spanned by paths p starting at j ∈ Q0 and ending at i ∈ Q0 and the k-linear map
associated to a path a ∈ Q1

fa : Vt (a) → Vh(a)

p 	→ pa

defined by concatenation of the path a.

Before we move on to another example, let us introduce the notion of a simple
representation S(i) of Q at a fixed vertex i ∈ Q0.

S(i) = ((S(i) j ) j∈Q0 , ( fa)a∈Q1)

the vector space S(i) j =
{
k if i = j

0 if i �= j

the k-linear map fa = 0 for any a ∈ Q1

The following shows two simple representations at each vertex of a quiver Q
consisting of a single arrow going from a vertex 1 to vertex 2.

If we have Q : 1 2a then

S(1) : k 00

S(2) : 0 k0

What we did to obtain the simple representations, is put a 1 dimensional vector
space k at the vertex we fixed in the beginning and then put 0 for every other vertex.
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Moreover all the k-linear maps are zero maps. Note that any simple representation
of a quiver Q is isomorphic to S(i) for a unique i ∈ Q0 [1].

The following example shows how to determine a kQ-module associated to a
given representation of Q.

Example 3 Given the simple representation S(i) for some i ∈ Q0, the corresponding
kQ-module is a quotient module

kQei/〈nontrivial paths starting at i〉 = k

where kQei is the vector space generated by all paths starting at the vertex i . This
is a 1-dimensional vector space spanned by the trivial path ei , and its kQ-module
structure is defined by

⎧⎪⎨
⎪⎩
etm = m if t = i

etm = 0 if t �= i

am = 0 for any m ∈ k and a ∈ Q1

.

3 Bound Quivers

Definition 7 A relation in Q is a linear combination of paths

l∑
i=1

ci pi

where ci ∈ k and pi is a path such that t (p1) = · · · = t (pl) and h(p1) = · · · = h(pl).
A quiver Q with a set R of relations is called a bound quiver (or a quiver with
relations) denoted by (Q, R).

Like before, we can define a representation of a bound quiver (Q, R). The only
difference is that we now have to incorporate the relations.

Definition 8 A representation of a bound quiver (Q, R) consists of a k-vector
space Vi for each i ∈ Q0 and a k-linear map fa : Vt (a) → Vh(a) for each a ∈ Q1 such
that if r ∈ R then fr = 0.

For example, if r = ac − 2bc ∈ R where a, b, c are arrows of Q, then the corre-
sponding k-linear map is fr = fa fc − 2 fb fc = 0.

Note that any finite set R of relations in Q generates a two sided ideal I = 〈R〉 in
the path algebra kQ. Therefore the path algebra for the bounded quiver (Q, R) is
kQ/I .

We have seen the Beilinson quiver in the beginning of the talk. Now we are going
to add some relations to it. In general, the Beilinson quiver for Pn with a set of
relations has geometric significance.
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Example 4 (Bound Beilinson quiver for P2 [2]) Consider the case when n = 2. We
have Q0 = {0, 1, 2} and Q1 = {a1, a2, a3, b1, b2, b3}.

0 1 2a1
a0

a2
b1
b0

b2

Set R = {a0b1 − a1b0, a1b2 − a2b1, a2b0 − a0b2}. Then the quotient algebra kQ/

〈R〉 is isomorphic to the endomorphism algebra of the vector bundleOP2 ⊕ OP2(1) ⊕
OP2(2) [2].

Let us make two final remarks before we end.

Remark 3 [2]

1. Finite dimensional representations of (Q,R) form a Abelian category denoted by
rep(Q,R)

2. rep(Q,R) is equivalent to the category of finitely generated kQ/I -modules
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Semi-orthogonal Decompositions
of Derived Categories

Yijia Liu

1 Preliminaries

We start with some definitions. The first question to answer is: what is orthogonality
and why do we prefer “semi” to “full” orthogonality?

Definition 1 Let A be a full subcategory of a triangulated category T :

1. the left orthogonal of A is

⊥A := {T ∈ T |Hom(T, A[l]) = 0,∀l ∈ Z,∀A ∈ A }; (1)

2. the right orthogonal of A is

A ⊥ := {T ∈ T |Hom(A[l], T ) = 0,∀l ∈ Z,∀A ∈ A }. (2)

Definition 2 LetA ,B be full triangulated subcategories of a triangulated category
T . We say that T has an orthogonal decomposition (OD), if

1. Hom(A ,B) = 0 = Hom(B,A )

2. Any object T ∈ T fits in a distinguished triangle (d.t.)

A → T → B → · (3)

with A ∈ A , B ∈ B.

We write T = A ⊕ B.

However, this is a too strong condition since we have:
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Remark 1 Db(X) has a nontrivial OD ⇔ X is disconnected.

Proof (⇐) Suppose that X has two disjoint components Y and Z with corresponding
embeddings i , j . Then for any T ∈ Db(X), the split exact sequence:

0 → i∗i∗T → T → j∗ j∗T → 0 (4)

induces the desired distinguished triangle.
(⇒) It suffices to split OX = OY ⊕ OZ . This can be done using e.g. Lemma 4.10

of [16]. �

So OD detects whether X is connected and that is it. We have to weaken the
definition.

Definition 3 LetA ,B be full triangulated subcategories of a triangulated category
T . We say that T has a semiorthogonal decomposition (SOD), if

1. Hom(A ,B) = 0
2. Any object T ∈ T fits in a d.t.

A → T → B → · (5)

with A ∈ A , B ∈ B.

We write T =< B,A >. (Be careful with the order).

In general:

Definition 4 LetA1,A2, . . . ,An be full triangulated subcategories of a triangulated
category T . We say that T has a semiorthogonal decomposition (SOD), if

1. Hom(Ai ,A j ) = 0, i > j
2. A1,A2, . . . ,An generate T . i.e. For any object T ∈ T , we have Ti ∈ T , i =

0, 1, . . . , n and a sequence:

0 = Tn → Tn−1 → · · · → T1 → T0 = T (6)

with cone(Ti → Ti−1) ∈ Ai . (We can use n − 1 d.t. to generate any given object.)

We write T =< A1,A2, . . . ,An >.

The easiest way to build a SOD is to find an admissible subcategory.
Recall: A full triangulated subcategoryA ⊂ T is right admissible if the embed-

ding functor i : A → T has a right adjoint i ! : T → A . It is equivalent to: any
T ∈ T fits in a d.t.

A → T → B → · (7)

with A ∈ A , B ∈ A ⊥. (In this case i !(T ) = A and is well-defined.)
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There is a dual definition for left admissible. In fact, if T admits a Serre functor,
then these two notions are equivalent, by Bondal and Kapranov [3]. This is true
for our first example (S = ( ⊗ ωX )[n]) and for derived categories of modules over
finite dimensional finite global dimensional algebra (e.g. path algebra of any finite
acyclic quiver).

We immediately get:

Remark 2 A is admissible ⇒ ⊥A , A ⊥ are full triangulated subcategories of T
(actually admissible with the existence of a Serre functor), which implies the exis-
tence of two SODs of T :

T =< A , ⊥A > (8)

and
T =< A ⊥,A > . (9)

Moreover:

Remark 3 A1, . . . ,An semiorthogonal admissible subcategories ⇒ < A1, . . . ,

Al > is admissible and can be extended to a SOD of T , for each 0 ≤ l ≤ n:

T =< A1, . . . ,Al ,
⊥ < A1, . . . ,Al > ∩ < Al+1, . . . ,An >⊥,Al+1, . . . ,An > .

(10)

The simplest admissible subcategory is equivalent to Db(Vecf.d.
k ), which is gener-

ated by an exceptional object. Let’s make a dumb observation. Every functor

Db(Vecf.d.
k ) → T (11)

is determined by the image of the 0-complex k, say E ∈ T , denoted by ϕE . Note
ϕE (V •) = V • ⊗ E . By tensor-hom adjunction, its right adjoint is given by

ϕ!
E (F) = Hom•(E, F) = ⊕Hom(E, F[k])[−k], (12)

with trivial differentials. Therefore ϕE is a fully faithful embedding ⇔ ϕ!
EϕE

∼=
I d ⇔ Hom•(E, E) = k as 0-complex, since ϕ!

EϕE (V •) = Hom•(E, V • ⊗ E) =
Hom•(E, E) ⊗ V •.

In this spirit, we define:

Definition 5 An object E is exceptional if

Hom(E, E[l]) =
{
k if l = 0
0 if l �= 0 (13)

Adding semiorthogonality, we define:

Definition 6 A collection of exceptional objects E• = E1, . . . , Er is exceptional of
length r if

Hom(Ei , E j [l]) = 0, for i > j. (14)
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• It is strong if in addition

Hom(Ei , E j [l]) = 0, for l �= 0. (15)

Recall: For an exceptional collection we have a SOD:

T =< A , E1, . . . , Er >, (16)

where A =< E1, . . . , Er >⊥.
• It is full if A = 0.

2 Two Classes of Examples

Let us return to our two classes of examples. We will start with the second one since
that is easier.

2.1 Derived Categories of Bound Quivers Db(Q, I)

Consider the case when Q is finite, ordered: Q0 = {1, 2, . . . , n} and s(a) < t (a),
for any a ∈ Q1. In this case, Q is acyclic and A = kQ/I is called a quiver algebra.
Let el be the path of length zero at vertex l. As a right A-module over itself, A can
be decomposed to

A =
⊕
q∈Q0

Pq , (17)

with Pq = eq A, where Pq are indecomposable projective modules. We have for any
right A-module M a natural isomorphism:

Hom(Pq , M) ∼= Mq := Meq . (18)

Indeed, P1, P2, . . . , Pn is a full strong exceptional collection of Db(Q, I ).

2.2 Derived Categories of Coherent Sheaves Db(X)

Let us return back to the first class of examples. In general, it is hard to find even an
exceptional object, let alone a full strong exceptional collection.

Remark 4 • OX is exceptional⇔ hi,0(X) = 0 for i > 0. In this case, any line bundle
is exceptional. ⇒ Every Fano has a SOD.
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On the contrary,
• NoCY has a SOD. Indeed, suppose it has one as< A ,B >, with Hom(B,A ) =
0. Since its Serre functor is ( ⊗ ωX )[n] = [n], Hom(A ,B) = Hom
(B,A [n])� = 0 and therefore it is an OD A ⊕ B.

Having a full exceptional collection is even more restrictive. For curves, only P
1

has SODs (and a full exceptional collection). For surfaces, King [11] showed that
all rational surfaces admit full exceptional collections and they are conjecturally the
only surfaces doing so. Kawamata [10] proved any toric variety has a full exceptional
collection. The classification is still beyond touch at the moment.

Some constraints for X to admit a full exceptional collection can be seen in the
following properties.

Proposition 1 If X admits a full exceptional collection E• = E1, E2, . . . , Er of
length r , then:

1. Hp,q(X) = 0, ∀p �= q and χ(X) = ∑
h p,p = r . In particular, pg = q = 0 for

surfaces.
2. The Grothendieck group K0(X) is free abelian of rank r with basis the isomor-

phism classes of exceptional objects [Ei ].
Proof 1. We apply Hochschild–Konstant–Rosenberg’s theorem:

HH•(X) =
⊕
p−q=i

Hp,q(X) (19)

and used the fact that Hochschild homology is additive w.r.t. SOD (see [12]).
The result follows the fact that each piece is isomorphic to Db(pt).

2. Easy to prove that K0 is additive w.r.t. SOD. Then notice that

K0(< Ei >) = K0(D
b(pt)) = Z . (20)

�

Remark 5 These properties are necessary conditions, however they are not sufficient.
For instance, it was shown by Böhning, Graf von Bothmer, Katzarkov and Sosna [7]
that Barlow surface admits a exceptional collection of length 11 which gives rise to
a basis of K0. But it is not full since its orthogonal is a phantom category!

Well, how do we determine when an exceptional collection is full or not? We can
follow the ideal of Beilinson to find a resolution of the diagonal, more precisely:

Lemma 1 Let E• = E1, E2, . . . , En be an exceptional collection of sheaves on X.
Assume there exists a resolution of the diagonal OΔ on X × X:

0 → E1 � F1 → · · · → En � Fn → OΔ → 0. (21)

(Here F• is not necessarily exceptional.) Then E• is full.
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Recall that:

X×Y

X Y

p1 p2

• Exterior tensor product:
E � F := p∗

1E ⊗ p∗
2F. (22)

• Fourier–Mukai transform w.r.t.F on X × Y :

FMF : Db(Y ) → Db(X) (23)

E �→ p1∗(F ⊗ p∗
2(E )). (24)

Proof This resolution is equivalent to a list of short exact sequences:

0 → Hk−1 → Ek � Fk → Hk → 0, k = 1, . . . , n, (25)

with Hi sheaves on X × X , H0 = 0, Hn = OΔ.We use an induction on k to show that
∀C ∈ Db(X), FMHk (C) ∈< E1, . . . , Ek >. When k = 0 it is trivial. In the inductive
step, the above short exact sequence induces a distinguished triangle

FMHk−1(C) → FMEk�Fk (C) → FMHk (C) → · , (26)

where FMHk−1(C) ∈< E1, . . . , Ek−1 > by inductive assumption and FMEk�Fk (C) =
Ek ⊗ Γ (Fk ⊗ C). Therefore FMHk (C) ∈< E1, . . . , Ek >. In particular when k = n,
FMHn = FMOn = I dDb(X) ⇒ C ∈< E1, E2, . . . , En >. Since C is arbitrary, E• is
full, as desired. �

We have the following theorem for projective spaces:

Theorem 1 (Beilinson [2]) For F = O(−1) � Ω1(1) on P
n × P

n, there exists a
resolution of OΔ:

0 → ∧nF → · · · ∧2 F → F → O � O → OΔ → 0. (27)

Proof Find a global section of O(1) � T (−1) (s =
n∑

i=0

xi � ∂

∂yi
) with zero locus

Δ. Then apply the Koszul resolution. �

Note that ∧kF = ∧k(O(−1) � Ω1(1)) = O(−k) � Ωk(k), here Ωk(k) :=
∧k(Ω1(1)). Therefore as a corollary we have:
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Corollary 1 O(−n),O(−n + 1), . . . ,O(1),O is a full strong exceptional collec-
tion for Db(Pn).

Proof It suffices to check it is a strong exceptional collection. Let Ei = O(i − 1 −
n), i = 1, . . . , n + 1.

HomD(Ei , E j [l]) = HomD(O(i − 1 − n),O( j − 1 − n)[l]),
= ExtlO (O(i − 1 − n),O( j − 1 − n)),

= Rl HomO (O(i − 1 − n),O( j − 1 − n)),

= RlΓ (Pn,O( j − i)),

= Hl(Pn,O( j − i)), (28)

=
{
0 if l �= 0
Γ (Pn,O( j − i)) = Sym j−i V � if l = 0,

=
{
k if l = 0 and i = j
0 if l = 0, i > j or l �= 0.

�

Remark 6 One can check similarly its dual: Ωn(n),Ωn−1(n − 1), . . . ,Ω1(1),O is
also a full strong exceptionally collection for Db(Pn).

2.3 Actions on SODs

We can see from above remark that a derived category, admitting a full exceptional
collection, may have many other full exceptional collections, or more generally
many SODs. Precisely speaking, there are two groups acting on the set of SODs of
a triangulated category T : AutT and a braid group of so-called mutations.

Let us now define a mutation. Roughly a mutation on a SOD removes an object
in it and add a new object at some other place. Consider an admissible subcategory
B ofT . Recall that we have a pair of SOD ofT :T =< B⊥,B >=< B, ⊥B >.
We need to define an action, denoted RB , that sends the first SOD to the second one,
namely an equivalence of categories RB : B⊥ → ⊥B. We denote A := B⊥ and
RBA := ⊥B. SinceB is admissible, so is RBA . Therefore the embedding functor
i : RBA → T has a right adjoint i ! : T → RBA . Restrict it to A , we define:

RB := i !|A : A → RBA . (29)

Remark 7 RB is an equivalence of categories. Indeed its inverse is given by the left
adjoint of the embedding functor j : A → T restricted to RBA :

j∗|RB A : RBA → A . (30)
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Definition 7 The admissible subcategory RBA together with the functor RB real-
izes a transformation fromB⊥ to ⊥B and is called the right mutation ofA through
B.

Remark 8 RB acting on the SOD < A ,B > is the SOD < B, RBA >.

Remark 9 We can similarly define the left mutation of B through A . The explicit
image of an object under the mutation functor is given by finding a distinguished
triangle.

Now we can define the mutations on exceptional collections.

Definition 8 Let E• = E1, . . . , Er be an exceptional collection. For each i =
1, . . . , r − 1, we define the left/right ith mutation of E• by:

Li (E•) = E1, . . . , Ei−1, LEi Ei+1, Ei , Ei+2, . . . , En, (31)

Ri (E•) = E1, . . . , Ei−1, Ei+1, REi+1Ei , Ei+2, . . . , En. (32)

Remark 10 One can check the following properties:

• Li (E•), Ri (E•) are exceptional collections. They are full if E• is.
• The mutations have relations:

Li Ri = Ri Li = I d, (33)

Li+1Li Li+1 = Li Li+1Li , (34)

Ri+1Ri Ri+1 = Ri Ri+1Ri , (35)

Li L j = L j Li , Ri R j = R j Ri , for |i − j | � 2. (36)

Therefore generators Li and Ri with these relations form a braid group.

Return back to our two classes of examples.

Example 1 (Db(Q, I )) We have seen that P1, . . . , Pn is a full strong exceptional
collection of Db(Q, I ). Let A =< P1, . . . , Pn−1 >. Then Db(Q, I ) =< A , Pn >

under the action of LA is < LA Pn,A >, where

LA = i∗|⊥A : ⊥A → A ⊥, i : A ⊥ ↪→ Db(Q, I ). (37)

We claim that LA Pn = i∗Pn = Sn. To define i∗, we consider the distinguished tri-
angle:

0 → ⊕n−1
k=1(Pn)k → Pn → Sn → 0. (38)

Note that ⊕n−1
k=1(Pn)k ∈ A ⊂ ⊥(A ⊥), it suffices to check that Sn ∈ A ⊥. Indeed

Hom(Pi , Sn[l]) =
{
Hom(Pi , Sn) ∼= (Sn)i = en Aenei = 0 if l = 0
Extl(Pi , Sn) = 0 since Pi is projective if l �= 0

(39)
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for i < n and ∀ l ∈ Z.
Therefore we have a new full exceptional collection Sn, P1, . . . , Pn−1. However

it is no longer strong, since Hom(P1, Sn[1]) = Hom(S1, Sn[1]) = Ext1(S1, Sn) =
the number of arrows from 1 to n �= 0. So strongness is not preserved by muta-
tions! Continuing the mutations, we have a series of full (not strong) exceptional
collections:

Sn, Sn−1, P1, . . . , Pn−2 (40)

Sn, Sn−1, Sn−2, P1, . . . , Pn−3 (41)

· · · · · · (42)

Sn, Sn−1, . . . , S1 (43)

Example 2 (Db(Pn)) Start with the full strong exceptional collection

O,O(1), . . . ,O(n), (44)

one could check that

L<O ,...,O (k)>O(k + 1) ∼= Ωk+1(k + 1)[k + 1], for k = 0, . . . , n − 1. (45)

Thus step by step we have another full (and actually strong) exceptional collection

Ωn(n)[n], . . . ,Ω1(1)[1],O. (46)

In fact it is proved that any full exceptional collection of Db(Pn) arises in this way.

2.4 More Examples

From the well-known SODs of Db(X), we can also construct SODs of some new
categories, such as the derived categories of its projective bundle and birational
transforms. Roughly their SODs have the following correspondence:

• Projective bundle of rank n ↔ “add” n-copies of the base under twists.

• Birational transforms

⎧
⎨
⎩
Blowup ↔ “add” items
Flip ↔ “remove” items
Flop ↔ equivalent categories

Consider a vector bundle of rank n + 1, π : E → X . We associate it with a pro-
jective bundle p : P := P(E) → X . We have:

Theorem 2 (Orlov [14]) The pullback functor p∗ : Db(X) → Db(P) is fully faithful
and there exists a SOD

Db(P) =< Db(X)−n,D
b(X)−n+1, . . . ,D

b(X)−1,D
b(X)0 > . (47)
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Here Db(X)0 = p∗ Db(X), Db(X)−k = p∗ Db(X) ⊗ OP(k) for k = 1, . . . , n.
In particular, if X admits a full exceptional collection, so does P.

Applying this theorem on trivial bundles we have:

Corollary 2 If X, Y are smooth projective varieties admitting full exceptional col-
lections E1, . . . , Em and F1, . . . , Fn respectively. Then {Ei � Fj } is a full exceptional
collection on X × Y with compatible order.

Example 3 P
n × P

n admits a full exceptional collection O(i, j) := O(i) � O( j),
0 � i, j � n. In particular, Db(P1 × P

1) =< O,O(0, 1),O(1, 0),O(1, 1) > .

Now we turn to the case of blowups. Let i : Y ↪→ X denote a closed smooth
subvariety of codimension c = codim(Y |X) in a smooth projective variety X . The
blowup of X in Y is a fiber square:

Here i, j are embeddings of smooth varieties, p : P(NY |X ) → Y is a projective
bundle of rank c − 1 and π : X̃ → X is a natural projective morphism.

Let O(1) be the canonical line bundle on Ỹ . By Theorem 2:

Db(Ỹ ) =< Db(Y )−(c−1), . . . ,D
b(Y )−1,D

b(Y )0 >, (48)

where Db(Y )0 = p∗ Db(Y ), Db(Y )k = p∗ Db(Y ) ⊗ O(k). The embedding functor
j∗ : Db(Ỹ ) → Db(X̃) is not full, however we restrict it to Db(Y )k , then it is full. We
have the following Blowup formula:

Theorem 3 (Orlov [14])

1. π∗ : Db(X) → Db(X̃) is a fully faithful embedding.
2. j∗ : Db(Ỹ ) → Db(X̃) restricted to Db(Y )k is a fully faithful embedding.

3. Db(X̃) =< D̃bY−(c−1), . . . , D̃bY−1,Db(X)0 >,

where Db(X)0 = π∗ Db(X), D̃bY−k = j∗ Db(Y )k .

In particular, if X and Y both admit full exceptional collections, so does X̃ .

Example 4 (P̃2
p) We consider P

2 blown up at one point (c = 2). Let E be the excep-
tional divisor. Then

Db(P̃2
p)

∼=< OE (−1),OP2(−2),OP2(−1),OP2 > . (49)
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3 Connections

Let us now try to establish a connection between our two classes of examples. For a
smooth projective variety X , every full strong exceptional collection E• defines so-
called tilting sheaf T = ⊕

Ei . Let A = EndO X (T ), then we can understand Db(X)

via Db(mod- A), which is a significant simplification. Because it has finite length
and can be visualized via the corresponding bound quiver (Q, I ).

First, we define:

Definition 9 T ∈ Coh(X) is a tilting sheaf if

1. A := EndO X (T ), called the tilting algebra, has finite global dimension (i.e. max-
imal projective dimension of any object in mod- A is finite).

2. ExtkO X
(T, T ) = 0, ∀ k > 0.

3. T generates Db(X).

If T is locally free, then it is called a tilting bundle.

Remark 11 Every full strong exceptional collection E• = E1, . . . , Er of vector bun-
dles defines a tilting bundle T = ⊕r

i=1 Ei . Indeed, (2) and (3) are trivial. To see (1),
notice that

Hom(Ei , E j ) = H 0(X, E j ⊗ E−1
i ) (50)

=
⎧⎨
⎩
kd if i < j
k if i = j
0 if i > j

(51)

⇒ A ∼= an algebra of lower triangle matrix.
⇒ A is a finite dimensional and finite global dimensional algebra.

The correspondence lies in the following theorem, due independently to Baer and
Bondal.

Theorem 4 (Baer [1], Bondal [5]) The functor HomO X (T, ) : Coh(X) → mod-A
induces an equivalence of triangulated categories

RHom(T, ) : Db(X) → Db(mod- A) (52)

with quasi-inverse
⊗L

A T : Db(mod- A) → Db(X). (53)

In addition, since the tilting algebra is finite dimensional over k, we have:

Proposition 2 When A is a tilting algebra, we have an isomorphism A ∼= kQ/ <

I >, a path algebra of a bound quiver (Q, I ), where

1. The vertices of Q correspond to Ei .



46 Y. Liu

2. The edges from i to j correspond to a basis of the vector space HomO X (Ei , E j ).
3. Two paths are equal (their different is in I ) if the corresponding morphisms are

equal.

Remark 12 • Q constructed above is finite and ordered.
• Db(X) ∼= Db(mod- A) ∼= Db(mod- kQ/ < I >) ∼= Db(rep(Q, I )op).

Example 5 (P1) Db(P1) =< E1, E2 >=< O,O(1) > . HomO (E1, E2) = Γ (O
(1)) = kx + ky. Therefore

A =
[
k 0
k2 k

]
(54)

and we obtain the Kronecker quiver:

0 1

x

y

Example 6 (P2) Db(P2) =< E1, E2, E3 >=< O,O(1),O(2) > .HomO (E1,

E2) = HomO (E2, E3)= Γ (O(1))= kx + ky + kz.HomO (E1, E3)=Γ (O(2))=kx2

+ ky2 + kz2 + kxy + kxz + kyz. Therefore

A =
⎡
⎣

k 0 0
k3 k 0
k6 k3 k

⎤
⎦ (55)

and we obtain the quiver

0 1

a1
a2
a3

1 2

b1
b2
b3

with relations aib j = a jbi , i, j ∈ {1, 2, 3}.
More generally:

Example 7 (Pn) We obtain the Beilinson quiver:

0 1
...

a(1)1

a(1)n+1

2
...

a(2)1

a(2)n+1

· · · · · · n−1 n...

a(n)1

a(n)n+1

with relations a(l)
i a(l+1)

j = a(l)
j a(l+1)

i , i, j ∈ {1, 2, . . . , n + 1}, l ∈ {1, . . . , n − 1}.
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Example 8 (P1 × P
1) Db(P1 × P

1) =< E1, E2, E3, E4 >=< O,O(0, 1),
O(1, 0),O(1, 1) > .

Hom(E2, E3) = 0, (56)

Hom(E1, E2) = kx1 + ky1 = Hom(E3, E4), (57)

Hom(E1, E3) = kx2 + ky2 = Hom(E2, E4), (58)

Hom(E1, E4) = kx1y1 + kx1y2 + kx2y1 + kx2y2. (59)

⇒ A =
⎡
⎢⎣

k 0 0 0
k2 k 0 0
k2 0 k 0
k4 k2 k2 k

⎤
⎥⎦ (60)

and the bound quiver

1 3
b1

b2

2 4
c1

c2
a1 a2 d1 d2

with relations aic j = b jdi , i, j ∈ {1, 2}.

Example 9 (P̃2
p) X = P̃2

p = P(OP1 ⊕ OP1(1)). For (k, l) ∈ Z
2, OX (k, l) :=

OX (kD1 + lD4) ∈ Pic X. Then Db(X) =< O,O(1, 0),O(0, 1),O(1, 1) >.

⇒ A =

⎡
⎢⎢⎣

k 0 0 0
k2 k 0 0
k3 k k 0
k6 k3 k2 k

⎤
⎥⎥⎦ (61)

and the bound quiver

1 2
a1

a2

3 4
c1

c2

d eb

with relations dci = aie, i ∈ {1, 2}, a2bc1 = a1bc2.
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Introduction to Stability Conditions

Rebecca Tramel

1 Motivation

Let X be a smooth projective Calabi–Yau variety over C. Then Db(X), the derived
category of coherent sheaves on X , is equivalent to the category of D-branes on
X [9]. In [10], Douglas defined a notion of stability for D-branes on X called �-
stability. This notion of stability was meant to pick out BPS-branes on X . In [7],
Bridgeland aimed to define a notion of stability directly for objects in Db(X) which
would correspond to �-stability for D-branes. Bridgeland’s stability can be defined
on any triangulated category, and hence has been studied in other cases, such as for
varieties which are not Calabi–Yau.

2 Definition of Stability

2.1 Example: P
1

Consider the example of Coh(P1), the category of coherent sheaves on P
1. The

objects in this category are all direct sums of the following building blocks:

1. Line bundles O(n), n ∈ Z.
2. Torsion sheaves Onx , x ∈ P

1.

There are two invariants which can be assigned to each type of sheaf. First, there is
the rank of the sheaf. The rank of a line bundle is 1, and the rank of a skyscraper
sheaf is 0. Further, there is the degree of the sheaf. The degree of the line bundle
O(n) is n, and the degree of the torsion sheaf Onx is n.

Both the rank and degree functions can be defined more generally for any sheaf
on P

1. Both invariants are additive on short exact sequences. So, for example, the

R. Tramel (B)
Mount Holyoke College, South Hadley, MA, USA
e-mail: rtramel@illinois.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. Ballard et al. (eds.), Superschool on Derived Categories and D-branes,
Springer Proceedings in Mathematics & Statistics 240,
https://doi.org/10.1007/978-3-319-91626-2_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91626-2_5&domain=pdf


50 R. Tramel

rank and degree ofO(2) ⊕ O(4) ⊕ Ox are 2 and 7 respectively. Similarly, all objects
in Db(Coh(P1)) are extensions or shifts of line bundles and torsion sheaves, hence
we could define the degree and rank functions for any objects in Db(Coh(P1)).

We can define a group homomorphism Z : K (Db(Coh(P1))) → C as

Z(E ·) = −degree(E ·) + i rank(E ·)

for E · ∈ Db(Coh(P1)). This is well-defined since degree and rank are additive
on short exact sequences. Further, if we consider the subcategory Coh(P1) inside
Db(Coh(P1)), the image is the upper half plane.

degree

rank

O(−1)O(1)O(2) O. . . . . .

OxOx ⊕ Oy. . .

1

2

3

For each E · ∈ Db(Coh(P1)) we can write Z(E ·) = m(E ·)eπiφ(E) for some
m(E ·) > 0. We call m(E ·) the mass of E · and φ(E ·) the phase of E ·. Note that
for objects E in Coh(P1), the phase lies in the range 0 < φ(E) ≤ 1.

For E ∈ Coh(P1), we say E is Z -stable if for all subsheaves F � E , φ(F) <

φ(E). We say E is semistable if for all subsheaves F � E , φ(F) ≤ φ(E). It is easy
to check that the only stable sheaves are line bundles and skyscraper sheaves, and
that a sheaf is semistable if and only if it is either a direct sum of skyscraper sheaves
or a direct sum of line bundles all of the same degree.

We can use this fact to construct a filtration of a sheaf E ∈ Coh(P1) whose suc-
cessive quotients are semistable sheaves of strictly decreasing phase as follows.
We write E = ⊕

xi∈P1 Ox ⊕ ⊕s
j=1 O(n j ) for a collection of points xi ∈ P

1 and
n1 ≥ n2 ≥ · · · ≥ ns . Then we can construct a filtration
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0 E1 E2 · · · Et E

⊕
xi∈P1 Oxi

⊕
nj=n1

O(nj)
⊕

nj=ns
O(ns)

by building E out of its summands, one type at a time. Such a filtration is called a
Harder-Narasimhan, or HN, filtration.

2.2 Definition

Definition 2.1 Let D be a triangulated category. A heart of a bounded t-structure is
a full additive subcategory A of D satisfying

1. Homi (A, B) = 0 for i < 0 and A, B ∈ A.
2. Objects in Db(X) have filtrations by cohomology objects in A. That is, for all

nonzero E · ∈ Db(X), there is a sequence of exact triangles

0 = E·
0 E·

1 E·
2 · · · E·

n−1 E·
n = E·

A·
1 A·

2 A·
n

such that Ai [−ki ] ∈ A for integers k1 > · · · > kn .

Definition 2.2 ([7, Proposition 5.3]) A Bridgeland stability condition is a pair σ =
(Z ,A) where Z : K0(Db(X)) → C is a group homomorphism and A is a heart of a
bounded t-structure. The pair must further satisfy that

1. Z(A \ {0}) ⊆ {reiπφ | r > 0, 0 < φ ≤ 1}. Define the phase of 0 �= E ∈ A to be
φ(E) := φ. We say E ∈ A is Z -semistable if for all nonzero subobjects F ∈ A
of E , φ(F) ≤ φ(E). E is Z -stable if for all nonzero subobjects F ∈ A of E ,
φ(F) < φ(E).

2. The objects of A have Harder-Narasimhan filtrations with respect to Z . That is,
for every E ∈ A there is a unique sequence of inclusions

0 = E0 ⊆ E1 ⊆ · · · ⊆ En−1 ⊆ En = E

such that the successive quotients Ei/Ei−1 are Z -semistable, and the phases
φ(E1/E0) > φ(E2/E1) > · · · > φ(En−1/En−2) > φ(En/En−1).

There is an alternate definition of a Bridgeland stability condition, given in [7,
Definition 5.1]. I will give this definition as well. First, we must define a slicing of a
triangulated category.
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Definition 2.3 A slicing P of a triangulated category D consists of full additive
subcategories P(φ) for each φ ∈ R satisfying

1. For all φ ∈ R, P(φ + 1) = P(φ)[1].
2. If φ1 > φ2, A1 ∈ P(φ1), and A2 ∈ P(φ2), then Hom(A1, A2) = 0.
3. For every E ∈ D, there is a finite sequence of real numbers

φ1 > φ2 > · · · > φn

so that there is a sequence of exact triangles

0 = E·
0 E·

1 E·
2 · · · E·

n−1 E·
n = E·

A·
1 A·

2 A·
n

such that Ai ∈ P(φi ) for each i = 1, . . . , n.

Definition 2.4 A stability condition σ = (Z ,P) on D consists of a group
homomorphism Z : K (D) → C and a slicing P such that if 0 �= E · ∈ P(φ), then
Z(E ·) = m(E)eπiφ(E ·) for some m(E ·) ∈ R>0.

In this definition, the semistable objects of phase φ are defined to be the objects
of P(φ). Note that the phase of an arbitrary E · ∈ D is not well-defined, only the
objects of slicings P(φ) have well-defined phase.

This definition is equivalent to the previous definition. The heartA is replaced by
the category P(0, 1], the extension closure of the collection of objects in P(φ) for
0 < φ ≤ 1. That this category is necessarily abelian is shown in [7, Proposition 5.3].
In fact, one can show that all the subcategories P(φ) are abelian [7, Lemma 5.2].

3 Examples

3.1 Curves

For a smooth projective curve C of genus g, stability conditions can be constructed
of the type described for P

1, with heart Coh(S) and central charge Z = −degree +
i rank. Note that for g > 0, sheaves are more complicated, and vector bundles are
no longer necessarily direct sums of line bundles. Hence HN filtrations must be
constructed more carefully.

There is an action of G̃L
+
(2, R) [7, Lemma8.2] on the space of stability conditions

on C (or on any smooth projective variety). If we consider an element of this group
to be a pair (T, f ) where T is a linear transformation from R

2 to R
2 which is

an orientation preserving isomorphism, and f : R → R is increasing, and satisfies
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f (φ + 1) = f (φ) + 1 for all φ ∈ R, then it acts on a stability condition (Z ,P) by
replacing Z with T−1Z , and replacing P(φ) with P( f (φ)).

In fact, if g > 0, then up to the action of G̃L
+
(2, R) the previous construction of

stability conditions on a curve in terms of rank and degree gives all possible stability
conditions on C [11]. There are other possible stability conditions on P

1 described
in [5, 12].

3.2 Quivers

First, consider the following quiver, Q.

A representation V of this quiver consists of a choice of two vector spaces, V1 and
V2, and two linear maps x and y from V1 to V2.

V1 V2

x

y

Suppose we wish to define a stability condition on Q. We may start with the
abelian category Rep(Q). If we pick any two numbers z1, z2 ∈ C which lie in the
upper half plane or along the negative real axis, we can define a central charge

Z(V ) = z1dim(V1) + z2dim(V2).

In other words, we choose the images of the two simple representations, S1 and S2,
pictured below.

S1 :

C 0

0

0
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S2 :

0 C

0

0

We can then extend our central charge to complexes of representations by requiring it
to be additive on exact triangles. We claim that the pair (Rep(Q), Z) is a Bridgeland
stability condition on Db(Rep(Q)).

The fact that the image of Rep(Q) lies in the upper half plane follows from the
fact that dimensions are positive, and from the choice of z1 and z2. It remains to
show that each representation V of Q has an HN filtration. This is argued nicely in
[2, Theorem 2.1.6]

It is interesting to note in this example how the choice of z1 and z2 controls which
representations are stable. Suppose first that we pick z2 so that its phase is larger than
z1. S2 is a subobject of any representation for which V2 �= 0, and S1 is a quotient
of any representation for which V1 �= 0. Hence no object can be stable besides the
simple representations.

On the other hand, suppose we choose z1 so that its phase is larger than z2. Then
again, S1 and S2 are necessarily stable. Now, however, so is any representation for
which V1 and V2 are one-dimensional. Hence, these stable objects are parameterized
by the choice of linear maps x, y. Up to scaling, we can suppose x = 1. In this way,
we see a one-to-one correspondence between stable representations of Q and points
of P

1.
Reference [6] shows that there is an equivalence of categories Db(Rep(Q)) ∼=

Db(Coh(P1)). This equivalence is given explicitly by the functor RHom(O ⊕
O(1),−) : Db(Coh(P1)) → Db(Rep(Q)). Such an equivalence always sends a heart
of a bounded t-structure to a heart of a bounded t-structure. Hence if we consider
the stability conditions we have constructed here on Rep(Q), there should be corre-
sponding stability conditions on a heart inDb(Coh(P1)). Note that the inverse image
of Rep(Q) under this equivalence is not Coh(P1), so this already gives an example
of a stability condition on P

1 with a heart that is not Coh(P1). The heart on P
1 we

get via this map can also be constructed by the process of tilting, described below.

3.3 Surfaces, Threefolds, and Higher Dimensional Varieties

Let X be a smooth projective variety of dimension n. In order to define a central
charge, we may wish to start with the example of curves and generalize the ideas
of degree and rank. In order to do this, we may choose an ample divisor ω on X ,
and use the Chern characters of sheaves on X to define the central charge. This is
convenient, since these quantities are once again additive on short exact sequences.
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For a sheaf E ∈ Coh(X) (or an object E · ∈ Db(Coh(X)), our numerical invariants
are now ωn · ch0(E·),ωn−1 · ch1(E·), . . ., ω0chn(E·). Note that if n = 1, this does not
depend on the choice of ω, and gives us exactly the rank and degree of E .

However, it is not possible to define a stability condition on the heart Coh(X)with
central charge in terms of these quantities for n > 1. Hence we must find a different
choice of abelian subcategory of Db(Coh(X)). One technique for constructing new
hearts inside Db(Coh(X)) is called tilting. In order to perform the process of tilting,
one chooses two full additive subcategories T and F in Coh(X) which form what is
called a torsion pair.

Definition 3.1 A torsion pair in a heart A is a pair (T ,F) of full additive subcate-
gories of A such that

1. If T ∈ T and F ∈ F , then Hom(T, F) = 0.
2. For all E ∈ A there is an object T ∈ T and F ∈ F so that the sequence 0 →

T → E → F → 0 is exact.

We then replace our category Coh(X) with the tilt

A# = {E · ∈ Db(X) | H 0
A(E ·) ∈ T , H−1

A (E ·) ∈ F , Hi
A(E ·) = 0 for i �= 0,−1}

whose elements are 2-term complexes with restrictions on cohomology. This process
can then be repeated to construct more hearts.

If X is a surface, it is shown in [1, 8] that this process can be used to construct
stability conditions on X . In particular, we choose another class B ∈ NSR(X), and
then can write the central charge formula explicitly as

Z(E ·) = −
∫

X
eB+iωch(E·).

In particular, [1] shows that this central charge, paired with a heart which is a single
tilt of Coh(X) given explicitly in terms of ω and B, give a stability condition on X .

For n > 2, one might hope a similar process might work. We might hope that the
same central charge formula, and a heart constructed in terms of ω and B by tilting
Coh(X) perhaps n − 1 times could give a stability condition on X . Unfortunately,
this has been difficult to prove. It is conjectured true for threefolds in [4], with the
heart given explicitly, although the exact conjecture in [4] has been shown not to
hold for certain threefolds in [14]. It is shown only for certain threefolds, in [3, 4,
13].
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1 Introduction

We work over the complex numbers C and our aim is to describe some aspects of
Geometric Invariant Theory (GIT). Everything we describe here is well-known and
we follow the excellent treatments given in a number of works, notably [2–4, 6–11],
closely. We include no proofs for the results that we state. Instead, here we content
ourselves with stating and describing some of the main theorems of GIT, while, at
the same time, still providing detailed references as to where accessible proofs can
be found in the literature. Further, we illustrate aspects of the general theory by
considering important instructive examples.

Broadly speaking, GIT concerns questions related to a reductive group G acting
on an algebraic variety X . It is a technique for forming quotient spaces in algebraic
geometry and provides a fundamental method for the construction and study of
moduli spaces of projective varieties. To begin with, one issue in forming quotients
in algebraic geometry is that the orbit space X/G does not exist, in general, in the
category of separated algebraic varieties. Instead, to form quotients of X by G, the
idea of GIT is to first choose a G-linearization of an ample line bundle L on X and
then construct a good categorical quotient X//G. This quotient depends, in general,
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on the choice of G-linearization, and it is an interesting question to understand the
extent to which the quotient is independent both of the G-linearization of the line
bundle L and also of the line bundle L itself.

As mentioned, the purpose of these notes is to give a brief introduction and
summary of the most basic concepts and questions related to GIT. It is hoped that
the interested reader will consult the references for more details and further study.

2 Reductive Groups

Since GIT concerns taking quotients of an algebraic variety acted on by a reductive
algebraic group, we start by briefly explaining some of these concepts. To this end,
first we recall that an algebraic group is a group G together with the structure of
an algebraic variety such that the maps G × G → G, (g, g′) �→ gg′ and G → G,
g �→ g−1 are morphisms of algebraic varieties. Next we recall that a linear algebraic
group is an algebraic group G which can be realized as a Zariski closed subset of the
general linear group

GLn(C) := SpecC[T11, T12, . . . , Tnn, D−1],

where D = det(Ti j ), for some n.

Example 2.1 The following are examples of linear algebraic groups:

(a) SLn(C) = SpecC[T11, T12, . . . , Tnn]/(det(Ti j ) − 1) (Type An−1);

(b) Sp2n(C) = {g ∈ GL2n(C) : t g Jg = J }, for J =
(

0 In
−In 0

)
(Type Cn);

(c) the other classical and exceptional simple groups (i.e., those of Types Bn , Dn ,
F4, G2, E6, E7, E8); and

(d) algebraic tori Gn
m = GL1(C) × · · · × GL1(C)︸ ︷︷ ︸

n-times

= (C×)n .

The concept of a reductive group is deeply tied to the concept of complete
reducibility of rational actions of linear algebraic groups. In this direction, we recall
that a linear algebraic group is reductive if its radical (i.e., its unique maximal con-
nected solvable normal subgroup) is isomorphic to a direct product copies of C

×,
see for example [1, p. 158] and [2, p. 42].

Example 2.2 All of the groups described in Example 2.1 are reductive while the
additive group Ga is not reductive, see for instance [2, Exercise 4.1, p. 62].

Next, we say that a rational (right) action of a linear algebraic group G on a
finitely generated C-algebra R is a map

R × G → R, defined by (s, g) �→ sg

with the properties that:

(a) sgg
′ = (sg)g

′
and se = s for all s ∈ R, g, g′ ∈ G and e the identity of G;
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(b) the map s �→ sg is a C-algebra automorphism of R for all g ∈ G; and
(c) every element of R is contained in a finite dimensional subspace V which is

invariant under G and on which G acts by a rational representation, i.e., by a
homomorphism of algebraic groups:

ρ : G → GL(V ) � GLn(C),

for n = dim V , [9, p. 47].
Given a rational action of a linear algebraic group G on a finitely generated

C-algebra R, one formulation of Hilbert’s 14th problem asks if the G-invariant sub-
algebra

RG = {s ∈ R : sg = s, for all g ∈ G}

is finitely generated, see for instance [9, p. 47] or [2, Chap. 4] for more details.
Furthermore, a related question concerns the concept of complete reducibility

which is essentially the question of as towhether or not a given rational representation
decomposes into a direct sum of representations each of which possesses no proper
invariant subspaces, [9, p. 48].

Two important theorems related to reductive groups are:

Theorem 2.3 ([9, Remark 3.2, p. 48]) A (complex) linear algebraic group G is
reductive if and only if every rational representation is completely reducible. Further,
if a (complex) reductive group G acts linearly on C

n, then for every invariant point
0 �= v ∈ C

n, there exists an invariant homogeneous polynomial s of positive degree
with s(v) �= 0.

Theorem 2.4 ([9, Theorem 3.4, p. 49], [2, Theorem 3.3, p. 41]) If a (complex)
reductive group G acts rationally on a finitely generated C-algebra R, then RG is
finitely generated.

Remark 2.5 Similar more technical theorems hold true over fields of positive char-
acteristic. In that setting, one needs to distinguish between the concepts of a linear
algebraic group being reductive, geometrically reductive, and/or linearly reductive,
see [9, Remark 3.2, p. 48], for instance, for a more detailed discussion.

Example 2.6 A rational action of Gm on a finitely generated C-algebra R is equiv-
alent to giving a Z-grading, that is a decomposition of the form R = ⊕

i∈Z Ri with
Ri R j ⊂ Ri+ j and dimC Ri < ∞. For a more detailed explanation, see [2, Exam-
ple 3.1, p. 38].

3 Group Quotients

In this section, we discuss concepts related to taking group quotients within the
category of algebraic varieties. To this end, let G be an algebraic group acting on
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an algebraic variety X . In particular, we are given a morphism σ : G × X → X
of algebraic varieties such that σ(g, σ (g′, x)) = σ(gg′, x) and σ(e, x) = x, for all
g, g′ ∈ G, all x ∈ X , and e the identity of G, [9, p. 43].

We state a couple of definitions.

Definition 3.1 ([10, Definition 1.4, p. 515]) A morphism f : X → Y of algebraic
varieties is a categorical quotient if the following properties hold true:

(a) the morphism f is G-invariant, i.e., for the trivial action of G on Y , f is a
G-morphism; and

(b) for all G-morphisms g : X → Z , there exists a unique morphism h : Y → Z
such that g = h ◦ f .

Remark 3.2 A categorical quotient is uniquely determined up to isomorphism.

Definition 3.3 ([10, Definition 1.5, p. 516]) Assume that G is linear. A G-morphism
f : X → Y of algebraic varieties is said to be a good quotient if the following
properties hold true:

(a) f is a surjective, affine G-invariant morphism;
(b) f∗(OX )G = OY ; and
(c) if Z is a closed G-stable subset of X , then f (Z) is closed in Y . Further, if

Z1 and Z2 are two closed G-stable subsets of X such that Z1 ∩ Z2 = ∅, then
f (Z1) ∩ f (Z2) = ∅.

Definition 3.4 ([10, Definition 1.6, p. 516]) Assume that G is linear. A G-morphism
f : X → Y of algebraic varieties is said to be a geometric quotient if the following
properties hold true:

(a) f is a good quotient; and
(b) for all x ∈ X , the G-orbit O(x) through x is closed in X .

In general we have the implications:

Geometric Quotient ⇒ Good Quotient ⇒ Categorical Quotient;

the first two implications are clear from the definitions and we refer to [10, p. 516]
for details concerning the fact that a good quotient is a categorical quotient.

4 Linearization of an Invertible Sheaf

Here, we discuss the concept of linearizing a line bundle with respect to a group
action. Throughout this section, we let X be an irreducible algebraic variety over
C, we let L be a line bundle on X , we let G be a reductive group acting on X
via σ : G × X → X and we denote the group law on G by μ : G × G → G. The
following definition is fundamental to GIT.
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Definition 4.1 ([8, Definition 1.6, p. 30], [2, p. 104]) A G-linearization of L with
respect to σ is an isomorphism of OG×X -modules

φ : σ ∗L ∼−→ p∗
2L

satisfying the cocycle condition, that is the diagram, of maps of line bundles on
G × G × X ,

(σ ◦ (1G × σ))∗L
(1G×σ)∗φ �� (p2 ◦ (1G × σ))∗L

��
(σ ◦ (μ × 1X ))∗L

(μ×1X )∗φ �� (p2 ◦ (μ × 1X ))∗L

commutes.

The concept of a G-linearization of L with respect to σ can bemademore concrete
in a number of ways. To begin with, if a ∈ G(C), then let τa : X → X denote the
automorphism defined by x �→ a · x . Then if L admits a G-linearization with respect
to σ , the isomorphism φ restricts to an isomorphism

φa : τ ∗
a L

∼−→ L .

The cocycle condition then implies that

φab = φb ◦ τ ∗
b φa ,

for all a, b ∈ G(C); equivalently the diagram

τ ∗
abL

φab ��

τ ∗
b φa ���

��
��

��
�

L

τ ∗
b L

φb

��

commutes, [8, p. 31].

Next let L = Spec
(⊕

m�0 L
⊗m

)
be the total space of L and π : L → X the

projection; then L = S (L /X) the sheaf of sections of π , [5, Exercise II.5.18]. A
G-linearization

φ : σ ∗L ∼−→ p∗
2L

corresponds canonically to a bundle isomorphism

(G × X) ×X L
∼←− (G × X) ×X L : �
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which corresponds canonically to a G-bundle action

Σ = p2 ◦ � : G × L → L

of G on L which covers σ . In particular, the diagram

G × L
Σ ��

1G×π

��

L

π

����
G × X

σ
�� X

commutes. Conversely, every G-bundle action

Σ : G × L → L

which covers σ determines a G-linearization φ of L with respect to σ , [8, p. 31].
Since the concept ofG-linearization can be a source of confusion,we providemore

details concerning the natural bijective correspondence between G-linearizations of
L and those of L . To this end, if a ∈ G(C), then let τ ∗

aL denote the total space of
τ ∗
a L . In particular, τ

∗
aL = X ×X L and given a G-linearization� ofL , we obtain,

for each a ∈ G(C), a (linear) automorphism of L covering τa . By the universal
property of Cartesian squares, �a induces a (linear) isomorphism

φ̃a : L ∼−→ τ ∗
aL

over X . Setting φa = φ̃−1
a , we naturally obtain an OX -module isomorphism

φa : τ ∗
a L

∼−→ L .

The collection of such isomorphismsφa , for a ∈ G(C), determine theG-linearization

φ : σ ∗L ∼−→ p∗
2L

corresponding to �.
Another important feature of G-linearizations is that they allow for the study

of H0(X, L)G the space of G-invariant sections of L with respect to φ, [8, p. 32]
compare also with [2, Sect. 7.3, p. 110]. In particular, given a G-linearization φ of
L , we obtain a representation of G on H0(X, L). This representation is defined, for
each a ∈ G(C), by:

H0(X, L)
φ̃a−→ H0(X, τ ∗

a L)
τ ∗−a−→ H0(X, L). (1)
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Alternatively, but equivalently, we can define H0(X, L)G as the invariants for the
dual action of G on H0(X, L). This (dual) action is defined, for each a ∈ G(C), by:

H0(X, L)
τ ∗
a−→ H0(X, τ ∗

a L)
φa−→ H0(X, L); (2)

the representation (1) is related to the dual action (2) via:

φa ◦ τ ∗
a = (τ ∗

−a ◦ φ̃a)
−1.

It is not difficult to check that the tensor product of two G-linearized line bundles
and the inverse of two G-linearized line bundles are naturally G-linearized. In partic-
ular, the collection of G-linearized line bundles modulo isomorphism form a group
which we denote by PicG(X). Furthermore, if f : X → Y is a G-linear morphism
of algebraic varieties over C, then there is an induced homomorphism

f ∗ : PicG(Y ) → PicG(X),

[8, p. 32]. When (Y, f ) is a geometric quotient of X by G and if the action of G on
X is free, then a consequence of descent theory is that

PicG(X) � Pic(Y ),

see [8, p. 32]. As one final related comment, we note that if G is connected, if X
is normal and if L is a line bundle on X , then some tensor power of L is always
linearizable, [8, Corollary 1.6, p. 35].

Example 4.2 (Compare with [2, Example 8.4, p. 123]) Let the multiplicative group
Gm act on A

n := SpecC[x1, . . . , xn] by

t · x = t · (x1, . . . , xn) := (tr1x1, . . . , t
rn xn),

for integers r1, . . . , rn . We then have that Pic(An) = 0 while, by contrast,

PicGm (An) = Z.

To see this, since Pic(An) = 0, every line bundle onA
n is isomorphic to the trivial

line bundle L = OAn with total space L = A
n × A

1. As one consequence of this
fact, it follows that the collection of isomorphism classes of Gm-linearizations of L
with respect to our given Gm-action on A

n is in bijection with the collection of those
determined by the formula

t · (x, v) = (t · x, tav),

for some a ∈ Z and x = (x1, . . . , xn) ∈ A
n , v ∈ A

1. In particular, if La denotes the
trivial line bundle L = OAn with Gm-linearization determined by a ∈ Z, then the
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isomorphism
PicGm (An)

∼−→ Z

is set-up by a �→ La .
We now consider H0(An, L⊗d)Gm the space of Gm-invariant sections for the Gm-

linearization on L⊗d determined by a ∈ Z. To this end, sections s ∈ H0(An, L⊗d)

are in bijection with morphisms

s : A
n → L ⊗d = A

n × A
1

given by
s(x) = (x, F(x)),

for some polynomial F(x) ∈ C[x1, . . . , xn]. Using this bijection, the sections s ∈
H0(An, L⊗d) fixed by the dual action

H0(An, L⊗d)
τ ∗
t−→ H0(An, τ ∗

t L
⊗d)

φt−→ H0(An, L⊗d)

are of the form s(x) = (x, F(x)), where F ∈ C[x1, . . . , xn] has the property that

F(t · x) = tda F(x), (3)

for each t ∈ Gm and each x ∈ A
n . Indeed, to see that (3) holds true, we simply note,

as in [2, p. 123], that theGm-action given by (1), applied to our givenGm-linearization
on L⊗d , takes the form:

t · s(x) = (x, tda F(t−1 · x)),

for each x ∈ A
n and each t ∈ Gm . In particular, H0(An, L⊗d)Gm = C[x1, . . . , xn]da

where the grading on C[x1, . . . , xn] is given by deg(xi ) = ri .

5 Semi-Stability and the First Main Theorem of GIT

Let X be an algebraic variety and G a reductive group acting on X . In this section,
we discuss the concept of semi-stability for X with respect to G and then state, in
Theorem 5.1, the first main theorem of GIT. This theorem pertains to existence of
good categorical quotients.

First of all, recall that a line bundle L on X is said to be ample if there exists a
morphism f : X → P

n , for some n, such that f maps X isomorphically onto a quasi-
projective variety in P

n and f ∗OPn (1) � L⊗d for some d ∈ Z>0. Next, let L be a
G-linearized ample line bundle on X . The subsets of semistable, stable and unstable
points of X , with respect to the G-linearized ample line bundle L , are described
respectively by:
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Xss(L) := {x ∈ X : there exists s ∈ H0(X, L⊗d)G such that s(x) �= 0},

Xs(L) := {x ∈ Xss(L) : G · x is closed in Xss(L) and the stabilizer Gx is finite}

and
Xus(L) := X \ Xss(L),

see for instance [3, p. 6].
Having defined the concepts of semi-stability and stability, we can state the first

main theorem of GIT:

Theorem 5.1 ([9, Theorem 3.21, p. 84], [8, Theorem 1.10, p. 38], [10, Theorem
1.1, p. 517]) Let L be a G-linearized ample line bundle on X. There exists a good
(categorical) quotient

π : Xss(L) → Xss(L)//G.

Further, there exists an open subset U ⊆ Xss(L)//G such that Xs(L) = π−1(U ) and
such that (U, π |Xs (L)) is a geometric quotient of Xs(L) by G. Finally, there exists an
ample line bundle M on Xss(L)//G such that π∗(M) � L⊗d |Xss (L), for some d > 0.
In particular, Xss(L)//G is a quasi-projective variety.

In the setting of Theorem 5.1, we make the following remarks.

Remark 5.2 (a) The sets Xss(L), Xs(L), Xus(L) and the quotient Xss(L)//G remain
unchanged if we replace L by L⊗d for some d > 0.

(b) The sets Xss(L), Xs(L), Xus(L) and the quotient Xss(L)//G are not in general
independent of the choice of G-linearization.

(c) The set Xss(L) and the quotient Xss(L)//G are independent of the G-algebraic
equivalence class of L , [11, Proposition 2.1].

An important special case of Theorem 5.1 reads:

Proposition 5.3 ([10, Theorem 1.1 B]) In addition to the assumptions of Theorem
5.1, assume that X is projective and let

R =
⊕
d�0

H0(X, L⊗d).

Then
Xss(L)//G � Proj

(
RG

)
.

In particular, Xss(L)//G is a projective variety.

Example 5.4 ([11, Example 1.16, p. 699], [2, Example 8.6, p. 125])We now consider
the case of G = Gm acting on X = A

4 by

t · (x1, . . . , x4) = (t x1, t x2, t
−1x3, t

−1x4)
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and we consider GIT quotients with respect to the G-linear line bundle La , for a ∈ Z.
To this end, let R = C[x1, x2, x3, x4] with grading defined by

deg(x1) = deg(x2) = 1 and deg(x3) = deg(x4) = −1

and put R = ⊕
d�0 Rd . Recall that we then have that

H0(X, L⊗d)G = H0(X, L⊗d)Gm = H0(X, L⊗d
a )Gm = Rda .

Consider first the case that a = 0. In this case, we have for all d > 0, that

H0(X, L⊗d)G = R0

and since 1 ∈ R0, it follows that X = Xss(L). Also

R0 = RG = C[x1x3, x1x4, x2x3, x2x4]

which is isomorphic to

RG � C[T1, T2, T3, T4]/〈T1T4 − T2T3〉.

A consequence of this is that, when a = 0, the quotient admits an isomorphism

Xss(L)//Gm � Y0 ⊆ A
4,

with Y0 defined by T1T4 − T2T3 = 0.
Next consider the case a > 0. Without loss of generality we assume that a = 1,

see for example [11, p. 694] or [2, Exercise 8.3, p. 127] for more details. Then

⊕
d>0

H0(X, L⊗d)G =
⊕
d>0

Rd = R>0 = x1R�0 + x2R�0

and we deduce that
Xss(L) = A

4 \ V (x1, x2)

which is covered by the affine open subsetsUi defined by the conditions that xi �= 0,
for i = 1, 2. Further

OX (U1)
G = R(x1) = R0[x2/x1],

OX (U2)
G = R(x2) = R0[x1/x2],

and it follows, since R0 = C[x1x3, x1x4, x2x3, x2x4], that

Y+ := Xss(L)//Gm



A Brief Introduction to Geometric Invariant … 67

is isomorphic to the closed subvariety of A
4 × P

1 given by:

Y+ = V (T1X2 − T3X1, T2X2 − T4X1, T1T4 − T2T3) ⊆ A
4 × P

1.

Indeed, if Y ′
i is the subset of Y+ given by the condition that Xi �= 0, for i = 1, 2, then

OY+(Y ′
i ) � OX (Ui )

G

and we check that these isomorphism glue. In addition, there exists a canonical
morphism f+ : Y+ → Y0 which is given by the inclusion of rings R0 ↪→ R(xi ) and,
in fact,

Y+ = BLT1=T3=0(Y0)

and f+ : Y+ → Y0 is a small resolution because the exceptional set is of codimension
>1.

Next consider the case thata < 0.Againwithout loss of generalitywemay assume
that a = −1. In this case, we can show:

Xss(L)//Gm � Y−1 = V (T1X4 − T2X3, T3X4 − T4X3, T1T4 − T2T3) ⊆ A
4 × P

1.

In this setting, the variety Y−1 admits a canonical morphism f− : Y− → Y0 and the
birational morphisms f+ and f− fit into a diagram:

Y+

f+ ���
��

��
��

Y−

f−����
��
��
�

Y0

which is called a flip. The varieties Y+ and Y− are not isomorphic but they are
isomorphic outside the fibres f −1

± (0) � P
1.

Example 5.5 (Toric varieties, [2, Chap. 12]) Let T = Gr
m act linearly on A

n by the
formula

(t1, . . . , tr ) · (x1, . . . , xn) = (ta1x1, . . . , t
an xn)

where

a j = (a1 j , . . . , ar j ) ∈ Z
r , and ta j = t

a1 j
1 . . . t

ar j
r , for j = 1, . . . , n.

We view the a j as elements of X(T) = Z
r the character group of T. The group of

T-linearized line bundles on A
n has the form

PicT(An) � X(T) � Z
r .
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Fix a = (α1, . . . , αr ) ∈ Z
r and denote by La the linearized line bundle with total

space La linearized by:

t · (x,w) = (t · x, taw) = (t · x, tα1
1 . . . tαr

r w).

We then have, as in Example 4.2, that F ∈ H0(An, L⊗d) = C[x1, . . . , xn], for d � 0,
is an element of H0(An, L⊗d)T, the space of invariant sections for the linearization
of L⊗d determined by a, if and only if

F(ta1x1, . . . , t
an xn) = tdaF(x1, . . . , xn).

Equivalently, F is a linear combination of monomials

xm := xm1
1 · · · · · xmn

n , for m = (m1, . . . ,mn) ∈ Z
n
�0,

such that
m1a1 + · · · + mnan = da;

equivalently ⎛
⎜⎝
a11 . . . a1n
...

...

ar1 . . . arn

⎞
⎟⎠

⎛
⎜⎝
m1
...

mn

⎞
⎟⎠ = A · m = da, (4)

for A = (ai j ).
Let Sd be the set of non-negative integral solutions to (4) and C[Sd ] the C-vector

space that it determines. We then have that �(An, L⊗d)T = C[Sd ] and
⊕
d�0

�(An, L⊗d)T � C[S] :=
⊕
d�0

C[Sd ] =
⊕
d�0

C[S]d .

Next, fix a minimal set of monomial generators xm1 , . . . , xm� for the ideal

C[S]>0 :=
⊕
d>0

C[Sd ] =
⊕
d>0

C[S]d

and for eachm j = (m1 j , . . . ,mnj ), for j = 1, . . . , �, let I j := {i : mi j �= 0} and for
each subset I ⊆ {1, . . . , n} let xI = ∏

i∈I
xi . We then have:

(An)ss(L) =
�⋃

j=1

D(xI j )

where D(xI j ) = A
n \ {xI j = 0}.
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Finally, let Zn → Z
r be the map given by the matrix A, let M := ker A denote its

kernel, let N be the image of (Zn)∨ → M∨, the dual map of the inclusion M ↪→ Z
n ,

and put q := n − rank(A). Further let Σ be the N -fan formed by the � convex cones

σ j ⊆ NR = N ⊗ R � R
q

spanned by the vectors e∨
i , i /∈ I j ; here e∨

1 , . . . , e∨
n is the dual basis of the standard

basis e1, . . . , en of Z
n and e∨

i denotes the image of e∨
i in M∨. In particular, Σ is a

finite collection of rational convex polyhedral cones {σi } in R
q with the property that

σi
⋂

σ j is a common face of σi and σ j .
The fan Σ determines a toric variety XΣ . In more detail, for each cone σ ∈ Σ ,

put
σ∨ = {y ∈ R

q : x · y � 0, for all x ∈ σ }

and let Aσ := C[σ∨ ∩ M] be the semi-group algebra determined by σ∨ ∩ M . That
the Aσ are finitely generated C-algebras follows from Gordan’s lemma, see for
example [2, Lemma 12.1, p. 189]. In addition, the affine varieties Xσ := Spec Aσ ,
for σ ∈ Σ , glue together to form the toric variety XΣ and the following theorem
expresses this toric variety as a GIT quotient for the line bundle L = OAn linearized
by a ∈ Z

r .

Theorem 5.6 ([2, Theorem 12.1, p. 192]) In the above setting,

(An)ss(L)//T � XΣ.

6 The Numerical Criterion

Let G be a reductive group acting on an irreducible projective variety X and L the
total space of a G-linearized ample line bundle L ∈ PicG(X). In this section, we
describe, in Theorem 6.1, the numerical criterion for stability, which, perhaps, can
be seen as the second main theorem of GIT.

With this in mind, for every x ∈ X and every 1-parameter subgroup

λ(t) : Gm = C
× → G,

the subgroup λ(t) acts on the fibreL |x0 over the point

x0 := lim
t→0

λ(t) · x

via the character
t �→ tm

L (x,λ)
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for some integer mL(x, λ); put

μL(x, λ) := −mL(x, λ),

compare with [8, Definition 2.2, p. 49]. In what follows we refer to the integer
mL(x, λ) as the λ-weight of x . Furthermore, we remark that the definition of x0 is
given by the valuative criterion for properness of X over C, see [8, p. 49] for a more
detailed explanation.

The second main theorem of GIT expresses the conditions for semi-stability and
stability for x ∈ X with respect to L in terms of the functions μL(x, λ).

Theorem 6.1 ([8, Theorem 2.1, p. 49], [9, Theorem 4.9, p. 105], [3, p. 10]) In the
above setting, the following assertions hold true:

(a) x ∈ Xss(L) if and only if μL(x, λ) � 0 for all 1-parameter subgroups λ; and
(b) x ∈ Xs(L) if and only if μL(x, λ) > 0 for all 1-parameter subgroups λ.

In what follows, motivated by the numerical criterion Theorem 6.1, given a 1-
parameter subgroup λ, we say that x ∈ X is λ-semi-stable if μL(x, λ) � 0 and that
x ∈ X is λ-unstable if μL(x, λ) < 0.

As explained in [3, Sect. 1.1.5], we can use the Weight polytope to give a com-
binatorial description of the numerical criteria for the case of a linear action of the
torus. To this end, we consider the torus T = Gn

m acting linearly on an irreducible
variety X in P(V ∗). Then X(T) � Z

n via the isomorphism that associates to every
(r1, . . . , rn) ∈ Z

n , the homomorphism χ : T → Gm defined by the formula

χ(t1, . . . , tn) = tr11 . . . trnn .

Furthermore, every 1-parameter subgroup λ(t) : Gm → T is given by the formula

λ(t) = (tr1 , . . . , trn ),

for some (r1, . . . , rn) ∈ Z
n . Thus, in this way, we can identify the set of 1-parameter

subgroups, which we denote by X∗(T), of T with the group Z
n .

Now, let λ ∈ X∗(T) and χ ∈ X(T). The composition χ ◦ λ is a homomorphism

χ ◦ λ : Gm → Gm

and hence is defined by an integer which we denote by 〈λ, χ〉. In addition, the pairing

X∗(T) × X(T) → Z,

defined by
(λ, χ) �→ 〈λ, χ〉,
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is isomorphic to the natural dot product pairing

Z
n × Z

n → Z.

Thus, if we now let
V ∗ =

⊕
χ∈X(T)

Vχ ,

where
Vχ = {v ∈ V ∗ : t · v = χ(t) · v},

then we can write every v ∈ V ∗ as

v =
∑
χ

vχ ,

where vχ ∈ Vχ . The group T acts on the vector v by the formula

t · v =
∑

χ

χ(t) · vχ ,

for t ∈ T, and we set

wt(V ∗) = {χ ∈ X(T) : Vχ �= {0}}.

This is a finite subset of Z
n and its convex hull in R

n is called the weight polytope
and is denoted by wt(V ∗).

Concretely, let x ∈ P(V ∗) = Proj Sym•(V ) be represented by a vector

v =
∑

χ

vχ ∈ V ∗.

We set
wt(x) = {χ : vχ �= 0};

this is the weight set of x and we define the weight polytope of x by setting:

wt(x) = convex hull of wt(x) inX(T) ⊗ R.

In this setting, we have:

−μL(x, λ) = mL(x, λ) = min
χ∈wt(x)

〈λ, χ〉,

for L = OP(V ∗)(1)|X , compare with [4, Definition 4.16].
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Example 6.2 ([4, p. 202] or [7, Sect. 1.9]) Consider now the case of the 1-parameter
subgroup

λ(t) = diag(ta, tb, t c), with a + b + c = 0,

of the diagonal torus T ⊆ SL3(C), acting on P
Nd = P(V ∗), for Nd = (d+2

d

) − 1, the
projective space of plane curves of degree d.

In this case, wt(V ∗) is the 3-simplex with barycentre (d/3, d/3, d/3). In what
follows, we identify the top vertex of the simplex with the monomial xd , the bottom
left vertex of the simplex with the monomial yd and the bottom right vertex of the
simplex with the monomial zd . We also view λ as determining a line ai + bj +
ck = 0 passing through the point (d/3, d/3, d/3). This line cuts the simplex in
two. Monomials in the top half (including those on the line) are semi-stable while
monomials in the bottom half (excluding those on the line) are unstable.

Further, if
s(x, y, z) =

∑
i+ j+k=d

ci jk x
i y j zk ,

then
wt(s) = {(i, j, k) : ci jk �= 0}.

We can also consider the case of cubic curves in more detail. For instance suppose
we fix the 1-parameter subgroup

λ(t) = diag(t−5, t1, t4).

We then can make the table:

Monomial x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

λ-weight −15 −9 −6 −3 0 3 3 6 9 12

from which it is clear that the λ-semi-stable monomials are

x3, x2y, x2z, xy2, xyz

while the λ-unstable monomials are

xz2, y3, y2z, yz2, z3.

Furthermore, if, for example,

s = x3 + x2y + z3,

then
mO

P
Nd (1)(s, λ) = min{−15,−9, 12} = −15
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so that s is λ-semi-stable. On the other hand, if, for example, s = y3 + y2z, then

mO
P
Nd (1)(s, λ) = min{3, 6} = 3

and so s is λ-unstable.
It turns out that the stability of a degree 3 form s(x, y, z) is related to the singu-

larities of the curve it defines. For instance, s(x, y, z) will be λ-stable if and only if
the curve it defines is smooth, while s(x, y, z) will have at worst nodes if and only if
the curve it defines is λ-semi-stable, see [4, p. 204] for a more complete discussion.

7 Stratifying the Unstable Locus

In this final section, we make some remarks about stratifying the unstable locus.
For the most part we follow [3, Sect. 1.3]. To this end, let G be a reductive group
acting on a projective variety X and let L ∈ PicG(X) be an ample G-linearized line
bundle on X . Furthermore, let T be a maximal torus of G and W = NG(T)/T its
Weyl group. Let X∗(T) denote the set of 1-parameter subgroups of T and X∗(G) the
set of 1-parameter subgroups of G. We then have

X∗(T) ⊗ R � R
n ,

for n = dim T. Next, fix a W-invariant norm || · || on R
n and for every 1-parameter

subgroup λ(t) of G define
||λ|| := || Int(g) ◦ λ||

for Int(g) an inner automorphism of G such that Int(g) ◦ λ ∈ X∗(T). For each x ∈ X ,
put

mL(x, λ) := mL(x, λ)

||λ||
and

ML(x) := sup
λ∈X∗(G)

mL(x, λ).

In what follows, we say that a 1-parameter subgroup λ(t) ∈ X∗(G) is adapted to x ,
with respect to L , if

ML(x) = mL(x, λ)

||λ|| ,

and we denote by �L(x), the set of primitive (i.e., not divisible by a positive integer)
adapted 1-parameter subgroups.

For each integer d > 0 and each conjugacy class 〈λ〉 of a 1-parameter subgroup
λ ∈ X∗(G) put
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SL
d,〈λ〉 := {x ∈ X : ML(x)= d and there exists g ∈ G such that Int(g) ◦ λ ∈ �L(x)}.

Then, if C denotes the set of conjugacy classes of 1-parameter subgroups of G, we
can write

X = Xss(L)
⋃ ⎛

⎝ ⋃
d>0,〈λ〉∈C

SL
d,〈τ 〉

⎞
⎠ .

This is a finite stratification of X into Zariski locally closed G-invariant subvarieties
of X .

In fact, more is true:

Theorem 7.1 ([3, Theorem 1.3.9, p. 16]) In the setting of this section, the following
assertions hold true:

(a) the set of locally closed subvarieties S of X which can be realized as the stratum
SL
d,〈τ 〉 for some ample L ∈ PicG(X), d > 0 and λ ∈ X∗(G) is finite; and

(b) the set of possible open subsets of X which can be realized as the set of semistable
points with respect to some ample G-linearized line bundle is finite.

As a final comment we note that, inside of NSG(X) ⊗ R, the G-linearized real
Néron-Severi space of X , for NSG(X), theNéron-Severi group ofG-linearized ample
line bundles modulo homological equivalence, we have the G-ample cone CG(X).
This is the convex cone spanned by the classes of G-linearized ample line bundles
on X .

In this direction, the starting point to the study of CG(X) is:

Theorem 7.2 ([3, Theorem 0.2.3, p. 8], [11, Theorem 2.3, p. 701]) The following
assertions hold true:

(a) there are only finitely many chambers, walls and cells inside of CG(X);
(b) each wall of CG(X) is a closed convex cone in CG(X); and
(c) the closure of a chamber ofCG(X) is a rational polyhedral cone inside ofCG(X).
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Birational Geometry and Derived
Categories

Colin Diemer

The aim of these notes is to describe some relations between the birational geometry
of algebraic varieties and their associated derived categories. This is a large subject
with several diverging paths, sowe’ll restrict our focus to the realmof topics discussed
at the Alberta superschool. Being lecture notes, the discussion here is somewhat
informal, and we only attempt a general overview, and referring the reader to the
relevant original research articles for details. Given the background of the participants
of the Alberta superschool, these notes take the somewhat unorthodox approach
of assuming that the reader has modest familiarity with derived and triangulated
categories, but is perhaps not as familiar with themore cabalistic aspects of birational
geometry.

We’ll start with some of the basic (read: Hartshorne level) notions of birational
geometry, along with some elementary observations about how these might interact
with derived categories of coherent sheaves. The default reference for the general
theory of birational geometry is the book of Kollár and Mori [17], although the more
elementary Bulletin article by Kollár [16] is also a classic and highly recommended.
Many of the results on derived categories discussed in these notes are covered in
detail in Huybrecht’s book [12], and specifically in chapters “A Brief Introduction
to Geometric Invariant, Introduction to Mirror Symmetry, Differential Graded Cat-
egories and this chapter”. Historically these results on derived categories emerged
from the pioneering work of Bondal and Orlov, for which we refer to their ICM
address [4].

Let X be an algebraic variety; for ease in exposition we will only work over the
field k = C in these notes. Associated to X we have another field, namely the field
of rational functions on X , denoted C(X). If two varieties X and Y are such that
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C(X) ∼= C(Y ) as fields, we say that X and Y are birational. Varieties are birational
exactly when they are isomorphic generically, i.e when the local rings of their generic
points are isomorphic. Chow’s lemma says that any variety is birational to a projective
variety, so we will often tacitly assume that any variety in this article is projective or
at least quasi-projective. Hironaka’s big theorem says that any variety is birational to
a smooth variety; however, for many purposes it is best to not assume X is smooth as
there may be spaces birational to X with mild singularities, but with some desirable
properties, as we will see.

Example: Rational varieties. Let X = P
n . Then

C(X) ∼= C(x1, . . . , xn)

is the usual field of rational functions. Varieties whose function fields are isomorphic
toC(Pn) for some n are dubbed rational. For example, products of projective spaces
are rational, but they not actually isomorphic to a single projective space. Explicit
criteria for determining the rationality of a given variety are often quite delicate. We
will not purse the matter here, but see Kuznetsov’s article [18] for a survey of how
methods from derived categories apply to problems in rationality.

In practice we are interested in the more geometric manifestations of birationality.
Two varieties X and Y are birational if and only if there exist Zariski open subsets
UX ⊆ X andUY ⊆ Y and an honest isomorphism of varieties f : UX

∼→ UY . When
X and Y are birational we write

f : X ��� Y.

Of course, the direction of the arrow is rather arbitrary aswe also have f −1 : Y ��� X .
If f is actually defined on all of X , i.e. f extends to an honest morphism of varieties
we say, not surprisingly, that we have a birational morphism. If f : X → Y is a
birational morphism, the locus in X where f is not a local isomorphism is called the
exceptional locus, denoted Exc( f ) ⊂ X . If X is smooth or had mild singularities,1

then Exc( f ) is codimension one, i.e. a divisor (“van der Waerden purity”).

Remark: In his thesis [29], Usnich observed a very direct relation between bira-
tionality and derived categories (see also [19]). Let X be smooth and let Dbcoh(X)

be the usual bounded derived category of coherent sheaves on X . Let coh1(X) be
the full subcategory of coh(X) consisting of sheaves having support of codimension
≥1. By standard methods, one can form the quotient category

coh1(X) := coh(X)/coh1(X).

It is not terribly hard to see that coh1(X) is equivalent to the (abelian) category of
finite dimensional vector spaces over the function fieldC(X) (and is thus a birational

1Here “mild” actually means normal andQ-factorial. The author apologizes for occasionally taking
the liberty to be relaxed about types of singularities in this article, despite their fundamental role in
birational geometry.
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invariant). One can also form the derived category

Db
1(X) := Db(coh1(X)),

and it is likewise not too hard to verify that X and Y are birational if and only if
Db

1(X) and Db
1(Y ) are equivalent as triangulated categories. Unfortunately, beyond

the articles mentioned above, the structure of these quotient categories does not
appear to have been much studied (Usnich was able to make some progress on its
structure for X = P

2). In the remainder of these notes we will thus instead look at
Dbcoh(X) directly.

The subject of birational geometry studies equivalence classes of varieties up to
birational equivalence. In particular, it asks for criteria for when two varieties are
or are not birational, and aims to find canonical representatives of a given birational
equivalence class. Restricting to smooth varieties, one may ask (and indeed, many
have) the analogous questions for the derived categories of coherent sheaves of
varieties up to equivalences of triangulated categories.

Caution: A thoughtful inspection of the definition of birationality suggests heuristi-
cally that relating the derived categories of birational varieties will, in general, be a
hopeless endeavor. If we view the derived category of coherent sheaves Dbcoh(X) as
naively consisting of (complexes) of things like vector bundles or structure sheaves
of subvarieties, then such objects have no a priori reason to behave well under bira-
tional morphisms. For example, if we take the structure sheaf of a point Op where
p ∈ Exc( f ) and view it as a complex concentrated in degree zero, it is not at all
obvious what type of object it should correspond to in Dbcoh(Y ) under a hypothet-
ical correspondence between the derived categories. The situation is even worse if
f is not a morphism but only birational, so that the value of f on sine p ∈ X need
not even be well-defined. In these notes we’ll try to get a feeling for some situations
where one actually can make sense of such issues.

Before proceeding, let’s review some more basic facts and constructions.

Example: algebraic curves. Here one has the following two well-known theorems:

1. If C ��� C ′ are smooth projective curves which are birational, then C and C ′ are
actually isomorphic.

2. IfC is any curve, then it is birational to a smooth projective curve (which is unique
by the above) via normalization.

So if one restricts to smooth curves, birational geometry is fundamentally uninterest-
ing in dimension one. This matches up well with the situation for derived categories:
two smooth curves have equivalent derived categories of coherent sheaves if and
only if the curves are isomorphic. That said, the cautious reader may note that the
proof2 of this is slightly non-trivial, as the case of elliptic curves needs to be han-
dled separately. Recall that elliptic curves are in particular curves whose canonical

2See e.g. Theorem 6.15 in [12].
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bundle KC is trivial. We should remark that the other curves (i.e. curves with genus
>0 having KC ample, and rational curves having −KC ample) can be handled by a
special case of the following important theorem of Bondal-Orlov.

Theorem: Let X and Y be smooth projective varieties of any dimension and such
that Dbcoh(X) ∼= Dbcoh(Y ) as triangulated categories. If the canonical divisor KX

is either ample or anti-ample,3 then X and Y are isomorphic.

The theorem states that, up to isomorphism the space X can be recovered com-
pletely from its derived category. The hypotheses on the canonical bundle are in very
rough analogy with the general classification theory in birational geometry, as we’ll
see later on.

Remark: The Bondal-Orlov theorem suggests that varieties with KX trivial (i.e.
Calabi–Yau) may have auto-equivalences which do not come from automorphisms
of X (or even other obvious homological operations such as degree shifts or twists
by invertible objects). Indeed, such exotic auto-equivalences can and do exist, and
this is a rich and ongoing topic of study, going under the title “spherical functors.”
We will regretfully not discuss this topic here, and defer only to the original article
of Seidel and Thomas where they were first studied [26]. Likewise, when KX is
neither ample nor anti-ample, it is possible to have another variety Y and a derived
equivalence

Dbcoh(X) ∼= Dbcoh(Y ),

but X and Y are not birational. The famous example is the so-called Pfaffian-
Grassmannian derived equivalence, for which we refer to the work of Borisov–
Căldăraru [5]. (A more elementary example is Mukai’s observation that the derived
categories of an abelian variety and its dual variety are equivalent.) Generaliza-
tions of the Pfaffian-Grassmannian equivalence and the general phenomenon of non-
birational derived equivalences is still a very active line of research. For these notes,
we simply take their existence as further evidence that one needs to tread carefully
when relating the two subjects.

With such cautions in mind, let’s move on to the most basic situation where
birational morphisms do actually induce easily understood functors between derived
categories.

Example: blow-ups. Let X be a smooth projective variety of dimension≥2. If Z ⊂ X
is any smooth subvariety of codimension r ≥ 2, we can form the blow-up BlZ (X),
which is itself smooth projective, and the blow-down map is a birational morphism
π : BlZ (X) → X . For derived categories, one has the famous semiorthogonal decom-
position of Bondal Orlov:

Dbcoh(BlZ (X)) = 〈Dbcoh(Z), . . .Dbcoh(Z)
︸ ︷︷ ︸

r−copies

,Dbcoh(X)〉.

3I.e. −KX is ample.
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In particular, the derived pull-back

π∗ : Dbcoh(X) → Dbcoh(BlZ (X))

is a fully-faithful embedding.

It is desirable to understand how this semi-orthogonal decomposition can be gen-
eralized. We suggested above that it is unreasonable to expect such a decomposition
for arbitrary birational morphisms. The proposed class of preferred birational mor-
phisms will indeed come from the main structure theories in higher dimensional
birational geometry, which we will now attempt to survey. Once that is in place
we can state the main conjectures and results connecting this theory with derived
categories and functors between them.

The main structure theories alluded to above all center around the question of
trying to find a preferred or distinguished birational model for a given variety X . The
existence of blow-ups means that in dimension at least two there are always infinitely
many smooth varieties in the same birational equivalence class. This suggests that
finding a unique or at least distinguished representative within a birational equiva-
lence class is not so trivial. The theory developed to accomplish this is called the
minimal model program (MMP) or the Mori program. As a warm up, let’s review
how this works for surfaces.

Example: surfaces and blow-ups. If f : Blp(S) → S is the blow-up of a smooth
surface at a point, then Exc( f ) = C ∼= P

1 is a rational curve and the self-intersection
is −1, i.e. is a −1 curve. A theorem of Castelnuovo says that the converse is true
as well: any −1 curve on a smooth surface can be blown-down, and the resulting
surface is smooth. By adjunction, having C2 = −1 and C rational is equivalent to
KS · C = −1. Thus, for surfaces, blowing-down can be controlled by looking at
intersections of rational curves with the canonical divisor.

Remark: The fact that Exc( f ) ∼= P
1 for blowing up smooth points on surfaces gen-

eralizes in a certain way to higher dimensions. Namely, if f : X → Y is a birational
morphism with X smooth and f not an isomorphism, then through the general point
of any component of Exc( f ) there is a rational curve contracted by f , i.e. Exc( f ) is
“uniruled.” Unfortunately, the higher dimensional analogue of Castelnuovo’s con-
tractibility theorem is a much more delicate issue and one of the many issues that
the MMP tackles.

The MMP for surfaces: Here the MMP is not so bad, although requires some non-
trivial work to fill in all the details in the proofs. It was basically known to Zariski,
although is now usually terminologically re-packaged a bit after Mori’s work.

Theorem (baby MMP for surfaces): A smooth projective surface is birational to
either:

1. P
1 × C for some curve C , or

2. A smooth surface S’ which the property that KS′ · C ≥ 0 for any curve C ⊂ S′
(i.e. S′ is a “minimal model”).
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Note that rational surfaces (including P2 itself) are subsumed in the first case as they
are birational to P

1 × P
1. The reader may know that there are further sub-cases and

refinements one can include in the above theorem via certain numerical invariants,
and the above version was formulated for brevity’s sake.

A sketch of a proof of this classification is as follows: first you want to contract all
−1 curves. You can do this iteratively by Castelnuovo. A surface may actually have
infinitely many −1 curves (the blow up of P2 at nine general points is the standard
example), but blowing down lowers the rank of H2 (or the Picard number) by one,
so the process actually terminates finitely. So we need to show that a smooth surface
which is not birational to a product and which has no −1 curves is a minimal model.
Suppose for contradiction that one has a curve C on such a surface which is such
that KS · C < 0. A theorem of Mori (“bend and break”) says that if a curve C is
such that KS · C < 0, then you actually have a rational curve with the same property,
i.e. we may assume that C ∼= P

1. Since we are not birational to a product, our curve
does not deform, so C2 ≤ 0 (recall the self-intersection is the degree of the normal
bundle). A quick inspection of the adjunction formula shows that C is forced to be
a −1 curve, a contradiction.

Remark: It is important to understand the extent to which the above is a reasonable
classification. The first case in the theorem looks like a good output for a classifica-
tion: products of curves are easy to understand, and we’ve effectively reduced our
study a problem in a lower dimension. But why would we be satisfied with having
minimalmodels as an output as in the second case? The definition does not shedmuch
light on what such an S′ actually looks like. There are deep conceptual answers to
this (key words: “abundance conjecture” and “canonical models”). A more heuristic
argument is the following easy fact.

Proposition: Let f : X → Y a birational morphism (here X may be of any dimen-
sion) and suppose that X contains no rational curves. Then f is an isomorphism.

The proposition follows trivially from the remark above about the uniruledness
of exceptional loci. Intuitively, the proposition says that a birational model free of
rational curves is minimal in the sense that it cannot have any non-trivial birational
morphisms coming out of it. (Such models are sometimes called “absolute minimal
models” in the literature, though terminology differs). A related observation, which
follows immediately from the bend and break theorem, is that if X contains no
rational curves, then KX is nef. So morally we take the definition of minimal model
to be simultaneously a weakening of the property of having no rational curves and
of the property of being an absolute minimal model. A main goal of the MMP is to
establish the existence of minimal models in higher dimensions via a process very
roughly analogous to blowing down −1 curves.

Remark: We haven’t said anything about derived categories for some time. For
now, let’s only remark briefly that smooth varieties with KX ample (i.e. canonically
polarized varieties) are in particular minimal models and thus potential and desirable
outputs of the MMP. Above, we saw that the structure of their derived categories are
particular nice in that the derived category completely determines the variety. On
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the other hand, varieties with KX trivial (i.e. Calabi–Yau) are also minimal models,
and as noted above their derived categories can have exotic auto-equivalences. In
a very rough sense, we see that the structure of the derived category reflects how
complicated the variety is from the perspective of the MMP.

TheMMP in higher dimensions. One can mimic the surface case discussed above,
but essentially every aspect requires technical improvements to even state properly,
and monstrous amounts of historical efforts to prove. For our purposes, let’s focus on
one aspect: how to generalize the process of blowing down a−1 curve. The following
is a succinct version of what are known as the Cone Theorem and Contraction
Theorem of Mori.

Theorem: Suppose X is a smooth variety which is not a minimal model. Then there
is an extremal curve4 C such that KX · C < 0 and there exists a normal variety Y
equipped with a birational morphism f : X → Y which obeys:

• f (C) is a point.
• ρ(X) − ρ(Y ) = 1 where ρ denotes Picard number.
• −KX is f -ample.

The birational morphisms f : X → Y supplied by the theorem are called extremal
contractions. The third condition is actually automatic if you instead carefully define
which curves besides C are to be contracted.

There end up being only three main sub-cases to study depending on the behavior
of f . First, f could be a fibration inwhich case the situation is similar to that of a ruled
surface - this situation is called the Mori Fiber Space case. Or f could contract a
divisor containingC , inwhich case it is similar to a blow-down - this situation is called
a divisorial contraction. The last case is when f contracts something of smaller
codimension, this is called a small extremal contraction. They are the hardest case
to deal with, as we will soon see. The idea of the MMP is then to produce a minimal
model by iteratively running extremal contractions.

Caution: If one starts with X = P
n and tries to run the above process, you’ll observe

that the output would be the trivial Mori Fiber Space X → {point}. This is fine, and
reminds us that when KX is sufficiently negative (e.g. Fano), the birational model
one gets as an output of the MMP will have a (possibly trivial) fibration structure
with Fano fibers. Thus, the birational classification of varieties in the first sub-case
is a topic a bit detached from the MMP.

The Problem. So why are things so much harder in higher dimensions than for
surfaces, even granted the above theorem? The obstruction is that one may not be
able iterate the contraction theorem for a subtle reason: the above theorem did not
guarantee Y has to be smooth (or anything except normal) even if X was smooth. In
practice, for the small extremal contractions, Y is so singular5 that KY will not be

4I won’t define “extremal” except to say that it’s a suitable generalization of being a −1 curve on
a surface. The definition is not hard, but formulating it is a bit orthogonal to our purposes in these
notes.
5I.e. is Y is not Q-factorial.
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well behaved for the purposes of computing intersection numbers, and such a Y will
be too singular to apply the contraction theorem to for iteration.

The fix: flips. Let f : X → Y be a small extremal contraction. Let X+ be a vari-
ety with mild singularities which is not isomorphic to X , but itself admits a small
birational morphism f + : X+ → Y . This is called a flip of f .

There is some structure hidden in the definition of a flip. Recall that −KX is
f -ample. One can argue that KX+ has to be f +-ample (note the sign change). In
practice we can’t require X+ smooth, but will allow singularities which are are mild
enough to still beQ-factorial (so-called terminal singularities). The following result
was due to Mori in dimension three [20], and Birkar–Cascini–Hackon–McKernan
[3] in all dimensions.

Huge Theorem: flips exist.

There’s a variant of the definition of a flip where you require instead that KX is f -
trivial (and thus KX+ is f +-trivial). This is a flop. These don’t show up directly in the
MMP. However, instead of “minimizing” within a birational equivalence class, they
reflect the ambiguity in choices of minimal models. Namely, we have the following
theorem of Kawamata [16]:

Theorem: If X and Y are minimal models which are birational, then they are bira-
tional via a sequence of flops.

Let’s see an example of flips/flops which avoids messy singularities.

Example: Atiyah flips/flops. Let X be smooth and suppose there is a subvariety
Y ⊂ X such that Y ∼= P

k and the normal bundle obeys

NY |X ∼= OY (−1)⊕l+1

(so k + l + 1 = dim(X)). Notice that the condition on the normal bundle is very
similar to the contractibility criterion for rational curves in the surface case. If we
blow up X along Y it’s easy to see that the exceptional locus is now

P
k × P

l ⊂ BlY (X).

It’s also easy to see that we can blow down “in the other direction” giving a smooth
variety X+ containing Y+ ∼= P

l . The composition of the inverse of the first blow-up
with the second blow down is a birational map which is a flip when k < l and a flop
when k = l. When k = l we actually have that X is isomorphic to X+ as spaces, but
the composed birational map is not the identity.

The general philosophy is that the distinguished birational maps coming from the
MMP are exactly the types of birational morphisms for which one should hope for a
corresponding functor of derived categories (wewill review some precise conjectures
below). We’ve already seen an example of this with the blow-up and the fully-
faithful functor Dbcoh(X) → Dbcoh(BlY (X)). So at least in simple cases where the
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singularities are under-control, divisorial contractions give a fully-faithful functor.
Likewise, in the nicest cases, the Mori fiber spaces appearing the MMP will be
actual fiber bundles, and then induce fully-faithful functors due to standard results
on derived categories of bundles. To emphasize the core idea being suggested, we
quote Bondal and Orlov:

“This suggests the idea that the minimal model program of the birational geom-
etry can be viewed as a minimization of the derived category Dbcoh(X) in a given
birational class of X.”

Here the process of minimization is implemented by fully-faithful functors. We
state in particular, the following conjecture of Bondal and Orlov which has attracted
a fair amount of attention.

Conjecture: Let f : X → X+ be either a flip or a flop. Assume for simplicity that
both spaces are smooth. Then there exists a fully-faithful functor Dbcoh(X+) →
Dbcoh(X), which is an equivalence in the flop case.

The smoothness hypotheses are unreasonable from the perspective of the MMP,
but there are various workarounds for formulating the conjecture with certain classes
of singularities, which we will not discuss here, but see for example the article of
Abramovich and Chen for some such methods [1]. We also remark that Kawamata
[13] proposed a more general conjecture where the notion of a flop is generalized to
a K-equivalence, which is roughly any birational map that preserves the respective
canonical divisors, and the notion of flip is generalized to a K-dominance.

A subtle aspect of the conjecture is that it does not actually state what the hypo-
thetical fully-faithful functor should be. Unlike the case with, say, blow-ups, flips and
flops are not birational morphisms, i.e. are not defined everywhere, and so a naive
functor like derived pull-back does not make sense. Elsewhere in the superschool,
we’ve see the general Yoga of producing functors between derived categories via
Fourier–Mukai kernels. That is, if we can find an interesting object

K ∈ Dbcoh(X × X+)

we get a corresponding Fourier–Mukai functor

�K : Dbcoh(X+) → Dbcoh(X).

One can hope that clever choices of K may produce the conjectured fully-faithful
functors.

Perhaps themost obvious candidate for an interestingFourier–Mukai kernelwould
be the structure sheaf of a resolution of the birational map f : X ��� X+, i.e. a
space Z with two birational morphisms g : Z → X and h : Z → X+ and such that
f = g−1 ◦ h on X \ Exc( f ). Such a Z always exists by resolution of singularities,
and the Fourier–Mukai functor is simply the derived functor

h∗g∗ : Dbcoh(X+) → Dbcoh(X).
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In special situations this does indeed produce the desired fully-faithful functor: in
Bondal-Orlov’s original article they proved this for the Atiyah flips and flop. The
proof is not terribly difficult, but perhaps more subtle than one might expect. The
main geometric feature that helps in their proof is that in the Atiyah case the resolu-
tion Z is by construction built via the explicit blow-ups, so one can utilize the two
semiorthogonal decomposition on Dbcoh(Z) to aid in the calculations.

Unfortunately, a simultaneous resolution of f : X ��� X+ does not always result
in a fully-faithful functor for more general types of flips or flops. The first example
is the so-called Mukai flop. This is a modest variation of the Atiyah example where
now X is a smooth variety of dimension 2n containing a subvariety Y ∼= P

n with
NY |X ∼= �Y . Here one can also blow-up and blow-down in an analogous way to
obtain a flop. However, Namikawa [22] observed that one can find explicit line
bundles L on X such Ext2(L , L) = 0 but Ext2(h∗g∗L , h∗g∗L) �= 0, thus violating
fully-faithfulness.

Soon thereafter, though, Namikawa [23] proved the derived equivalence for the
Mukai flop using a different kernel. Recall that flips and flops arised from a small
contraction X → Y coming from the MMP where the birational model X+ also has
a small contraction X+ → Y . Thus one can form the fiber product

X ×Y X+

and take that as a Fourier–Mukai kernel (note that typically such a fiber product is
highly singular, and thus is perhaps a more threatening object to work with than the
simultaneous resolution). In addition to giving the correct kernel for the Mukai flop,
the fiber product is the correct choice of kernel object for a dramatically large class
of flops.

Theorem (Bridgeland [6]): Let f : X ��� X+ be a flop with X and X+ both smooth
and dim(X) = 3. Then Dbcoh(X) ∼= Dbcoh(X+).

It was observed a posteriori by Chen [9] that Bridgeland’s equivalence is actually
implemented by taking the fiber product as the kernel object. Abramovich and Chen
[1] generalized Bridgeland’s proof to include Q-Gorenstein terminal singularities
and establish the fully-faithfulness for threefold flips as well.

Remark: As alluded to by Chen’s result, Bridgeland did not actually construct the
derived equivalence by studying a Fourier–Mukai kernel object directly. Indeed, for
threefold flops Bridgeland gave a complete and explicit answer to a problem alluded
to near the start of this article: where do point objects go under a flop equivalence?
The answer ends up being so-called “perverse point sheaves.” In turn, this allows
Bridgeland to actually construct the flopped space X+ as a moduli space of perverse
point sheaves with respect to the small contraction X → Y . Bridgeland’s argument
relies highly on the fact that the small contraction X → Y contracts only a curve
in case of dimension three, and thus regretfully has not yet been fully generalized
to other types of small contractions which can arise in higher dimensions. We also
remark that shortly after Bridgeland’s proof, van den Bergh [30] gave a different
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approach to establishing threefold flop equivalences by reducing to the case where
Y is affine and constructing a projective generator for the category of perverse point
sheaves, so that both Dbcoh(X) and Dbcoh(X+) become mutually equivalent to the
derived category of modules over the endomorphism algebra of this generator.

Unfortunately, it is known that the fiber product X ×Y X+ does not always induce
a derived equivalence. Themain (and I believe, only explicitly known) class of exam-
ples are the so-called stratified Mukai flops. This is yet again another generalization
of the Atiyah flop, and also a generalization of the Mukai flop, where now the space
is the cotangent bundle of a Grassmannian. Namikawa [23] observed that neither the
common resolution nor the fiber product give an equivalence (see also Kawamata
[14] for the G(2, 4) case). Nevertheless, an explicit kernel inducing an equivalence
was constructed by Cautis, Kamnitzer, and Licata [7, 8]. Their argument is highly
adapted to the geometry of the stratified Mukai flop, and does not appear to suggest
any general approach to constructing promising integral kernels. In summary we
see that the Bondal-Orlov conjecture is still open, despite a complete answer for
threefolds and some important classes of explicit higher dimensional flops.

We end these notes with some discussion of some quite recent approaches to
answer similar questions, but by using geometric invariant theory (GIT) as an inter-
mediate construction to describe birational maps. Since the fundamentals of geo-
metric invariant theory were discussed in other talks at the superschool, let’s give an
extremely concise summary mostly to fix notation; we refer the reader to the original
source [21] for details as well as the beautiful yet unpublished lecture notes of Reid
[24].

Given a variety X equipped with the action of a reductive algebraic group G and
an ample line bundle L , we say the action is linearized if we choose a lift of the G
action to the total space Tot(L) such that the projection is equivariant and each g ∈ G
gives an isomorphism L ∼= g∗L . It is well-known that so long as X is normal, then for
any G action on X and ample L , at least some power L⊗n will admit a linearization.
We allow for the case where X is only quasi-projective; for example if X is affine
then L = OX is ample. Given such data, GIT produces an open subset Xss(L) ⊂ X
called the semistable-points of X for the linearized action, which is designed so that
the quotient Xss(L)/G is well-behaved. (Although our notation does not reflect as
such, this depends not only on L but on the choice of linearization, which is crucial
for what follows).

Example: C∗ acting on an affine variety. Let X = Spec(R) be an affine variety
equipped with the trivial line bundle C × X . It is easy to see that a C

∗ action on
X equivalent to specifying a Z-grading R = ⊕

Ri . Likewise, a linearized action
corresponds to aZ-grading on R[x] = ⊕

R[x]i where Ri ⊆ R[x]i and xn ∈ R[x]−n

(then here corresponds to the choice of linearization).We thendefine theGITquotient

X//nC
∗ := ProjR[x]C∗ = ProjR[x]0 = Proj

⊕

i∈N
Rni z

i . (1)



88 C. Diemer

Note that the resulting space only depends on whether n = 0, n > 0, or n < 0.We
thus denote these three spaces by X//0, X//+ and X//− respectively. By comparing
with Mumford’s definition of the semistable locus, one can easily check that they
each correspond to Xss(O)/C∗ for the respective linearizations.

When X = C
n and so R = C[x1, . . . xn] we can connect this story to the Atiyah

flips/flop. Namely, let C∗ act on X so that x1, . . . xk have degree 1, and xk+1, . . . , xn
have degree −1. Notationally, it is cleaner to instead write n = k + l and R =
C[x1, . . . xk, y1, . . . yl ] where the yi have degree −1. Then the invariant ring R =
k[x1, . . . xk, y1, . . . yl ]C∗

is generated by monomials xi y j for i = 1, . . . , k, j =
1, . . . l. These monomials are subject to the relations governed by vanishing of the
2 × 2 minors of the matrix k × l matrix (xi y j ). The corresponding affine variety is
the cone over Pk × P

l embedded via the Segre embedding. The two GIT quotients
X//+ and X//− correspond to removing the unstable loci x1 = · · · = xk = 0 and
y1 = · · · yl = 0 respectively. In this way we recover the blow-up diagramwhich pro-
duced the Atiyah flips (and when k = l, the flop), and the respective GIT quotients
are the total spaces TotPlO(−1)⊕k and TotPkO(−1)⊕l .

As suggested above, this example can be generalized dramatically, as was done
by Thaddeus [28] and Dolgachev–Hu [10]. Briefly, the point is that for any reductive
G acting on a normal projective variety X one can identify the space of linearizations
of L as the lattice points of a certain convex cone, called the GIT cone. One can then
subdivide this cone into convex locally polyhedral subcones (GIT chambers) where
characters in the interior of a given subcone result in the same GIT quotient. In the
above example, the GIT cone was all of R = Z ⊗Z R, and the three chambers were
R≤0, {0}, and R≥0. We now supply a laundry list of results concerning this structure.
In general, if twoGIT adjacent chambers meet along a wall, we refer to the respective
GIT quotients also as X//0, X//+, X//−, where X//0 corresponds to choosing a
linearization in the interior of the wall itself (this is entirely analogous to the case
of a C∗ action, but now depends on the choice of a particular wall). At this level of
detail, the choice of sign ± is arbitrary, but item (3) on the list below may justify
this ambiguity to you. We now supply a list of various important facts related to this
structure; the first three may be found in [28], and the last is due toWłodarczyk [31].

1. There are always only finitely many walls in the GIT cone.
2. Byconstruction there are alwayspropermorphisms X//+ → X//0 and X//− →

X//0 (this follows from the observation that the semistable loci for the ± cham-
bers are subsets of the semistable locus for the wall). So long as X//+ or X//−
are both non-empty, these morphisms are birational, and we thus have a birational
map X//+ ��� X//−. If this birational map is small, it satisfies the properties
of a flip, except that the relative Picard number need not necessarily be one.

3. If G acts on a variety X with ample line bundle L consider a family of lineariza-
tions parametrized by a simplex � in the GIT cone. Then there exists another
variety Z with an action by a torus T ∼= (C∗)k and ample line bundle L ′ such that
� also lies in the GIT cone for the T action on Z , and for any t ∈ � one has
X//tG = Z//t T . In particular, if � is a line segment, T ∼= C

∗.
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4. If f : X → Y is any birational morphism of projective, normal, Q− factorial
varieties, then there exists a space Z equipped with a C∗ action and a line bundle
L such that X = Z//+ andY = Z//− and f is induced fromaGITwall-crossing
as in the above. If X and Y are smooth, then Z may be chosen to be smooth as
well.

Morally, wemay summarize these statements as saying that the study of birational
morphisms is secretly encoded in GIT wall-crossings, and moreover in the world of
only C

∗ actions. Frequently, the space Z appearing in (3) is called a master space
and the space Z appearing in (4) is called a birational cobordism. Both have explicit
constructions which we omit for brevity’s sake.

One may very well wonder if this machinery could be used to prove conjectures
about the fully-faithfulness of the functors appearing the Mori program as discussed
above. Indeed, there is a recently developed approach to this going under the nom
de plume of grade restriction windows. Some aspects of this can be seen in the
works of Kawamata and van den Bergh mentioned above, although it was actually
the physicists Herbst, Hori, and Page who suggested merging the study of equiva-
lences of derived categories with GIT. These physicists’ ideas were brought into the
mathematical literature by Segal [25], and the theory was formalized in the works of
Halpern-Leistner [11] and Ballard, Favero, Katzarkov [2].

Roughly, the idea is the following: instead of considering just derived categories
of coherent sheaves Dbcoh(X), we consider derived categories of equivariant coher-
ent sheaves DbcohG(X) to incorporate the G action on X . If Xss ⊂ X denotes the
semistable locus coming from a linearized ample line bundle, we have the obvious
derived restriction functor

r : DbcohG(X) → DbcohG(Xss).

One would like to find an adjoint functor, hopefully fully-faithful, to instead describe
DbcohG(Xss) as sitting inside DbcohG(X). With such a functor, one could hope
to compare derived categories across a GIT wall-crossing or across a birational
cobordism. Note that taking the derived pushforward along the inclusion Xss ⊂ X
will not work as coherent sheaves do not push-forward to coherent sheaves along an
open immersion, so such an adjoint functor must be constructed in a non-obvious
way. The main results of [2, 11] assert that this does indeed work, albeit with some
technicalities.

The core idea is to consider subcategories (“windows”) in DbcohG(X) whose
objects have prescribed weights with respect to the action. To make sense of this,
one should instead consider actions by C∗ or by a one parameter subgroup

λ : C∗ → G

of the G action. At a fixed point for the action, one can certainly make sense of the
weight of the action on the fiber of a locally free sheaf and this number is constant
along connected components of the fixed locus. We thus assume that the fixed locus
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is connected (or else choose a connected component), and will define the possible
“weights” of any complex of coherent sheaves by seeing what weights the terms in
a quasi-equivalent complex of locally free equivariant vector bundles has. In other
words, given a set of integers I , we define the window

W λ
I ⊂ DbcohG(X)

to be those objects which have a representative with weights in I with respect to λ,
again with respect to a chosen connected component of the fixed locus.

One then considers the restriction of the restriction of the restriction functor:

rI : W λ
I → DbcohG(Xss).

The main result of [2, 11] states that for a particular choice of I the functor rI is
actually an equivalence. The details of the proofs are beyond the scope of these notes;
we only comment that the fully-faithfulness portion of the result can be reformulated
as the vanishing of the local cohomologies of all objects with such weights along
the un-stable locus, and such a statement had been observed earlier in the under-
ived setting (i.e. working with cohomologies of vector bundles) by Teleman [27].
The remaining part of the result is the essential surjectivity of rI . In full general-
ity this requires careful calculations to show that any object of DbcohG(Xss) has a
quasi-equivalent representative with weights in I . In concrete examples, such as in
the Atiyah flop below, one may have an explicit semi-orthogonal decomposition to
compare with which makes this process easier to verify. Towards proving essential
surjectivity in general, we remark only that a useful technical observation is that one
may twist by objects supported on the unstable-locus (which is a trivial object in
DbcohG(Xss)) to attempt to alter the weights. In lieu of supplying more details to
the above arguments, we review the Atiyah flop from this perspective, which was
indeed the observation of [25] on which these results built.

Example: Let C∗ act on C2n = SpecC[x1, . . . , xn, y1, . . . yn] with n ≥ 2 so that the
xi ’s have weight 1 and the yi ’s have weight −1. We have seen above that performing
the GIT wall-crossing gives the local Atiyah flop between the space TotPnO(−1)⊕n

and itself. The derived category DbcohC
∗
(C2n) is generated by the various lineariza-

tions of the trivial line bundle. Let’s writeO[k] for the trivial line bundle with weight
k under the C∗ action, and so more precisely we have

DbcohC
∗
(C2n) = 〈O[k] | k ∈ Z〉.

By a famous result of Beilinson, the derived category of Pn admits a semiorthogonal
decomposition

Dbcoh(Pn) = 〈O,O(1), . . . ,O(n + 1)〉.
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Pulling back along the projection induces a similar semiorthogonal decomposition of
Dbcoh(TotPnO(−1)⊕n). We thus take I = {0, . . . , k + 1} and consider the window
subcategory

WI = 〈O,O[1], . . . ,O[n + 1]〉.

It is easy to see that the derived restriction along either side of the wall gives the
expected equivalence WI

∼= Dbcoh(TotPnO(−1)⊕n). Note that if we compose these
two isomorphisms, the (auto-) equivalence

Dbcoh(TotPnO(−1)⊕n) ∼= Dbcoh(TotPnO(−1)⊕n)

is not the identity functor. For example, if E is a sheaf on one side, to compute its
image under the isomorphism, one must resolve it by the objects O(k) and lift to a
complex of objects built out of the O[k]’s, but then derive restrict along the other
semistable locus. For example, if n = 2 one can compute explicitly that this process
sends O to O, but sends O(1) to the complex O(−1)⊕2 → O.

At present the machinery of grade restriction windows has been used to reproduce
many interesting flop equivalences (although not enough to reproduce for example
Bridgeland’s result), but it is not clear at present how successful this method will be
in general.
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Part II
Approaches to Mirror Symmetry



Introduction to Mirror Symmetry

Richard Derryberry

1 A Guide to the References

• The material on complex geometry, Hodge theory and Kähler geometry can
be found in [5].

• A derivation of the Hodge diamond symmetries from mirror symmetry can be
found in [4].

• An explanation of the numerology for the quintic threefold can be found in the
corresponding lecture of [1].

• The homotopy version of the Lefschetz hyperplane theorem is due to [2].
• The book [3] is a good general reference, as well as containing a lot of content
overlap with the above.

2 Review of Differential Forms and Complex Geometry

2.1 Differential Topology

Webegin by recalling the definition of deRhamcohomology: on a smooth n-manifold
M we assign the dg-algebra of differential forms on M , (�•(M), ddR). These are
sections of the exterior algebra on the bundle T ∗M , with grading given by form
degree and differential the de Rham differential d = ddR. Concretely, recall that in
local coordinates (x1, . . . , xn) the de Rham differential is defined on functions by

d f = ∂ f

∂xi
dxi ,
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where we have used the Einstein convention of summing over pairs of raised and
lowered indices, and is extended to higher degree forms via the Leibniz rule. We
define the de Rham cohomology of M to be the cohomology of (�•(M), ddR), i.e.

Hk
dR(M) = ker(d : �k → �k+1)

im (d : �k−1 → �k)
.

We will define the Betti numbers of a closed manifold M to be bk = dim Hk
dR(M) –

this is a nonstandard definition, but for a closed smooth manifold it is equivalent to
the standard definition from algebraic topology. There is in this case a symmetry on
the Betti numbers bk = bn−k , implied by the stronger theorem of Poincaré duality.

2.2 Complex Geometry

We now review some facts and definitions from complex geometry. Let (X, J ) be a
complex d-manifold.1 Unless required for clarity we will omit the complex structure
operator J , and we will call X a (complex) d-fold for short.

We will write T X and T ∗X for the holomorphic tangent and cotangent bundles of
X , obtained by the natural identification of the tangent bundlewith the+i-eigenspace
of J in the complexified tangent bundle

T X ⊗ C ∼= T 1,0X
︸ ︷︷ ︸

+i

⊕ T 0,1X
︸ ︷︷ ︸

−i

.

Dualizing this decomposition similarly decomposes the complexified cotangent
bundle into (1, 0) and (0, 1) summands, and we define

(T p,q X)∗ =
p

∧

(T 1,0X)∗ ⊗
q

∧

(T 0,1X)∗

the sections of which are the differential (p, q)-forms �p,q(X). By composing the
de Rham differential with the projection maps �1(X;C) → �p,q(X), p + q = 1,
we obtain a decomposition

ddR = ∂ + ∂̄, ∂ : �p,q(X) → �p+1,q(X), ∂̄ : �p,q(X) → �p,q+1(X).

By taking cohomology with respect to the ∂̄-operator, we arrive at the Dolbeault
cohomology groups

H p,q(X) = ker(∂̄ : �p,q → �p,q+1)

im (∂̄ : �p,q−1 → �p,q)
,

1The dimension d here is the complex dimension of the manifold.
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and we define the Hodge numbers of X to be the dimensions h p,q(X) = dimC

H p,q(X).

Remark The Dolbeault theorem allows us to identify H p,q(X) with the sheaf coho-
mology groups Hq(�p), where �p is the sheaf of holomorphic p-forms on X .

We may present the Hodge numbers graphically in the Hodge diamond of X ; e.g.
the Hodge diamond of a 3-fold is

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

↖∂ ∂̄ ↗

(Hodge diamond for a complex 3-fold)

We remark that although it is not displayed in the above diamond, there is a sym-
metry between Hodge numbers of the form h p,q = hd−p,d−q . This symmetry can in
particular be derived via the theorem of Serre duality.

3 Kähler Geometry

3.1 Definition and Examples

Recall that a symplectic form on amanifold M is a closed and non-degenerate 2-form
ω ∈ �2(M).

Definition 1 A Kähler manifold is the data of a complex manifold equipped with
a symplectic form, (X, J,ω), satisfying the condition that the symmetric 2-tensor g
defined by g(V,W ) = ω(V, JW ) is a Riemannian metric for which J is orthogonal.

Remark A Riemannian metric g for which J is orthogonal is called a Hermitian
metric.We note in passing that it would have been equivalent to require theHermitian
metric g be data and dω = 0 be a condition.

Observe that the above also implies that (J ∗ω)(V,W ) = ω(JV, JW ) = ω(V,W ),
i.e. that ω is a (1, 1)-form.

Example 1 Consider the projective space CP
n = (Cn+1 − {0})/C×, and let s :

CP
n → C

n+1 − {0} be a local section of the projection map (i.e. a set of local coor-
dinates). Define a 2-form locally by



98 R. Derryberry

ωFS = −i ∂̄∂ log |s|.

It is an exercise to show that this is independent of the choice of section, and that the
global 2-form obtained is a Kähler form. The form ωFS is called the Fubini-Study
form.

The example of projective space now provides us with a wealth of further examples
of Kähler manifolds via the following proposition.

Proposition 3.1 Any complex submanifold of a Kähler manifold is naturally Kähler.

Proof This follows immediately from the fact that the restriction of a Riemannian
metric to a submanifold is a Riemannian metric, and the invariance of the tangent
bundle of a complex submanifold under the complex structure operator.

3.2 Hodge Theory

On a closed Riemannian manifold (M, g) there is a deep relationship between the
de Rham cohomology of M and solutions to the Laplace equation–harmonic forms–
which goes by the name of Hodge theory. Specifically, letting Hk(M) denote the
space of harmonic k-forms, Hodge theory provides an isomorphism

Hk(M) ∼= Hk
dR(M).

Onclosed complexmanifolds, aKähler structure allows us to refine this to a statement
about Dolbeault cohomology and its relation to de Rham cohomology, leading to the
following extra relations between Hodge and Betti numbers:

h p,q = hq,p, bk =
∑

p+q=k

h p,q .

Introducing these symmetries and the symmetry obtained from Serre duality, we can
refine the Hodge diamond for a Kähler 3-fold to the following (we include the Betti
numbers also):

h0,0 b0 = h0,0

h1,0 h1,0 b1 = 2h1,0

h2,0 h1,1 h2,0 b2 = 2h2,0 + h1,1

h3,0 h2,1 h2,1 h3,0 b3 = 2h3,0 + 2h2,1

h2,0 h1,1 h2,0 b2 = 2h2,0 + h1,1

h1,0 h1,0 b1 = 2h1,0

h0,0 b0 = h0,0

(Hodge diamond for a Kähler 3-fold)
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4 Mirror Symmetry and Calabi–Yau Manifolds

4.1 Statement of Mirror Symmetry

The version of mirror symmetry that we will discuss has the following, rough prin-
cipal at its core:

Two manifolds X and X∨ are mirror dual if there is a correspondence between the parameters deforming the
Kähler structures of one manifold and the parameters deforming the complex structures of the other manifold.

Note that in the above formulation there are many structures that X and X∨ must
have that we have failed to make explicit.

4.2 Calabi–Yau Manifolds

Wewill partially remedy the omission of any necessary structures on X and X∨ now.

Definition 2 The canonical bundle of a complex d-fold X is KX := ∧d T ∗X , the
bundle of holomorphic d-forms on X .

Definition 3 A compact Kähler manifold X is called Calabi–Yau if it has trivial
canonical bundle.

From here on out we will assume that all manifolds are connected and simply
connected Calabi–Yau.

Remark The simple connectedness assumption implies that the Calabi–Yau condi-
tion is equivalent to the vanishing of the first Chern class c1(X), as there are then no
topologically trivial but holomorphically nontrivial line bundles.

Our assumptions allow us to further reduce the number of parameters in the Hodge
diamond for a 3-fold as follows:

(1) Triviality of the canonical bundle implies that h3,0 = 1 (in words: up to scaling
there is a unique holomorphic top form).

(2) Connectedness implies b0 = 1.
(3) Simply connected implies b1 = 0, hence h0,1 = 0.
(4) Serre duality together with triviality of the canonical bundle implies that h0,2 =

h0,1 = 0.

This leaves two parameters remaining in the Hodge diamond:
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1 1
0 0 0

0 h1,1 0 h1,1

1 h2,1 h2,1 1 2(h2,1 + 1)
0 h1,1 0 h1,1

0 0 0
1 1

(Hodge diamond for a connected,
simply connected Calabi–Yau 3-fold)

4.3 Mirror Symmetry for Simply Connected Calabi–Yau
3-Folds

We may interpret the parameters h1,1 and h2,1 as follows.
First, recall that a Kähler form ω on X is a closed (1,1)-form. The converse is

not true for two reasons: an arbitrary (1,1)-form need not come from a real 2-form,
and even if it does it may not satisfy the required positivity condition. Under certain
assumptions however–including our case of a simply-connected Calabi–Yau 3-fold–
the space of admissible Kähler forms is an open cone inside of H 2

dR(X), and so

the space of (1,1)-forms whose real part is Kähler is open inside of H 1,1(X). We
therefore say that the number of Kähler parameters is given by h1,1(X).

Second, recall that infinitesimal deformations of the complex structure of a man-
ifold X are parametrized by H 1(T X). Triviality of KX implies triviality of its dual
∧3 T X , and so the wedge pairing

∧ : T X ⊗
2

∧

T X →
3

∧

T X

induces an identification T X ∼= ∧2 T ∗X . Hence H 1(T X) = H 1(
∧2 T ∗X) =

H 2,1(X), and so h2,1(X) is the number of complex structure parameters for X .
The rough principal given above now leads us to make the following prediction:

If two simply connected Calabi-Yau 3-folds X and X∨ are mirror dual, then

h1,1(X) = h2,1(X∨) and h1,1(X∨) = h2,1(X).

Remark This prediction may be refined to h p,q(X) = hd−p,q(X∨) on higher dimen-
sional Calabi–Yau manifolds with H 2(O) = 0.

5 Canonical Example: The Quintic Threefold

Consider the zero set Q ⊂ CP
4 of a degree 5 polynomial p, i.e. p is a section of

O(5). Since Q is cut out of CP4 by a single equation, it is a 3-fold. Assuming Q is
nonsingular, it inherits a Kähler structure from the Fubini-Study metric for CP4.

Q is simply connected by the Lefschetz hyperplane theorem (π1(Q)
∼→ π1

(CP4) = 0) and by the adjunction formula
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c(Q) = (1 + c1(H))5

1 + 5c1(H)
= 1 + O(c1(H)2)

where H is the hyperplane bundle on CP
4, we see that c1(Q) = 0. Hence Q is a

Calabi–Yau 3-fold.
There are 126 degree 5 monomials in 5 variables, hence the dimension of the

space H 0(O(5)|Q) of homogeneous degree 5 polynomials not vanishing on Q is
125 (one simply excludes p). Counting (infinitesimal) deformations of CP4 gives

dim H 0(TCP4) = dim(PGL5C) = dim(GL5C) − dim(C×) = 52 − 1 = 24.

Recalling that we have T Q ∼= ∧2 T ∗Q (since Q is Calabi–Yau),

H 0(T Q) = H 0(�2
Q) = H 2,0(Q) = 0

by calculations we have already performed for the Hodge diamond of a simply-
connected threefold. Taking the long exact sequence associated to the Euler sequence

0 → OCP
4 → OCP

4(1)⊕(5) → TCP4 → 0

gives us H 1(TCP4) = 0; hence the long exact sequence associated to the adjunction
short exact sequence

0 → T Q → TCP4 → O(5)|Q → 0

yields
H 1(T Q) = H 0(O(5)|Q)/H 0(TCP4).

Via dimension counting we see that dim H 1(T Q) = 125 − 24 = 101. Hence, h2,1

(Q) = 101. We also have that h1,1 = 1 (this is another consequence of the Lefschetz
hyperplane theorem: H2(Q) = H2(CP

4) = Z), and so the Hodge diamond for the
quintic 3-fold is

1
0 0

0 1 0
1 101 101 1
0 1 0

0 0
1

(Hodge diamond for the
quintic 3-fold)

We want to construct a mirror to the quintic. Consider the family of quintics

Qψ = {[X0 : · · · : X4] ∈ CP
4 | fψ = X5

0 + · · · + X5
4 − 5ψX0X1X2X3X4 = 0}.
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Calculating the derivative of fψ , one shows that Qψ is smooth provided ψ is not a
fifth root of unity.

Let G = {(a0, . . . , a4) ∈ (Z/5Z)5 | ∑

ai = 0}/〈(a, a, a, a, a)〉 ∼= (Z/5Z)3. G
acts on Qψ via

(a0, a1, a2, a3, a4) · [X0 : X1 : X2 : X3 : X4] = [X0ξ
a0 : X1ξ

a1 : X2ξ
a2 : X3ξ

a3 : X4ξ
a4 ]

where ξ = e
2πi
5 . This action is not free, and the points with nontrivial stabiliser–

where at least two of the homogeneous coordinates vanish–produce singularities in
Qψ/G. We may find a construct a “good” (in this case meaning crepant) resolution
of the singularities of this quotient using techniques from toric geometry to obtain
a nonsingular space Q∨

ψ – as a part of this process, the singularities are replaced by
new algebraic cycles which introduce 100 new h1,1 parameters. Together with the
original hyperplane class, we find that h1,1(Q∨

ψ) = 101.
Furthermore, we see that we have at least a one parameter family of deformations

in complex structure given by the coordinate ψ5. It is possible to show that this is
the only family of deformations, hence h2,1(Q∨

ψ) = 1, and so the Hodge diamond
for Q∨

ψ is

1
0 0

0 101 0
1 1 1 1
0 101 0
0 0

1

(Hodge diamond for Q∨
ψ)

which is as predicted for the mirror to the quintic.
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Batyrev Mirror Symmetry

Mattia Talpo

1 Introduction

This short note is a survey about an explicit construction for mirror families of
Calabi–Yau varieties, due to Batyrev and later generalized by Batyrev–Borisov, that
uses toric geometry and polar duality for lattice polytopes. The construction is about
Calabi–Yau hypersurfaces in a Fano toric variety.

Historically, after the first example of the quintic threefold [1], many other exam-
ples of Calabi–Yau threefolds and mirror pairs were constructed using hypersurfaces
in weighted projective spaces. For some of these examples though, the mirror was
missing. Batyrev’s construction [2] put these examples in a more systematic frame-
work and provided themissingmirrors.Moreover it was later generalized to complete
intersections in Fano toric varieties by Batyrev–Borisov [3], and brought combina-
torics and toric geometry into the picture. It also partly inspired the Gross–Siebert
program [4–6].

The material for this contribution is mostly taken from Cox’s expository paper
“Mirror Symmetry and Polar Duality of Polytopes” [7], and parts of Cox–Katz,
“Mirror Symmetry and Algebraic Geometry” [8] (in particular Sects. 4.1 and 4.2).
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2 Polar Duality of Lattice Polytopes

Batyrev’s construction relates mirror pairs with a duality for lattice polytopes.

Definition 1 A polytope Δ is the convex envelope Conv(x1, . . . xm) of a finite num-
ber of points in R

n .

A supporting hyperplane of a polytope Δ is a hyperplane H in R
n such that

Δ ∩ H �= ∅, and Δ is completely contained in one of the two closed half-spaces that
H determines in R

n . A face of a polytope Δ is the intersection Δ ∩ H , where H
is a supporting hyperplane. This is again a polytope. The dimension of a polytope
is the dimension of the affine subspace of Rn spanned by Δ. Every polytope Δ

determines a unique minimal set of points {v1, . . . , vk}, called its vertices, such that
Δ = Conv(v1, . . . , vk). These points also coincidewith the faces ofΔof dimension 0.

Recall also that a lattice M is a free abelian group of finite rank, i.e. an abelian
group isomorphic to Zn for some n. Sometimes it is better not to choose a basis (i.e.
the subset corresponding to the standard basis ofZn via some isomorphismM ∼= Z

n),
but we will always assume to have chosen one.

Definition 2 A lattice polytope is a polytope in some affine spaceRn whose vertices
have coordinates in Zn .

From now on we will assume that our lattice polytopes are full dimensional (i.e.
they are not contained in any proper affine hyperplane of the ambient space) and that
0 ∈ Int(Δ). Here Int(Δ) denotes the topological interior of Δ, which also coincides
with the complement of all proper faces.

The dual or polar Δ◦ of Δ is another polytope, defined by

Δ◦ = {a ∈ R
n | 〈a, b〉 ≥ −1 for all b ∈ Δ}

= {a ∈ R
n | 〈a, v〉 ≥ −1 for all vertices v of Δ} (by convexity)

where we denote by 〈·, ·〉 the standard scalar product of Rn . Note that if one does
not want to choose a basis of the lattice M , then the same formulas define the
dual of a polytope Δ ⊆ MR := M ⊗ R as a polytope in the dual vector space Δ◦ ⊆
M∨

R
= M∨ ⊗ R, and in this case 〈·, ·〉 : MR × M∨

R
→ R denotes the natural pairing

(v, f ) �→ f (v).
It is not hard to check that the setΔ◦ is indeed a polytope (by the second description

it follows that it is a finite intersection of half-spaces, so it is enough to show that it
is bounded).

Example 1 IfΔ is the square [−1, 1] × [−1, 1] thenΔ◦ is the polygon with vertices
(±1, 0), (0,±1), as in the following picture.
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Δ
(-1,1) (1,1)

(-1,-1) (1,-1)

Δ ◦
(0,1)

(1,0)

(0,-1)

(-1,0)

One can also check that (Δ◦)◦ = Δ, so that this operation is indeed a “duality.”
Moreover, there is an inclusion-reversing combinatorial correspondence between
i-dimensional faces of Δ and (n − 1 − i)-dimensional faces of Δ◦.

The polytopeΔ◦ is not always a lattice polytope. For example, it is easily verified
that (2Δ)◦ = 1

2Δ
◦, and the latter might not be a lattice polytope. This applies to the

previous example, as 1
2Δ

◦ = Conv((± 1
2 , 0), (0,± 1

2 )) is not a lattice polytope in that
case.

Definition 3 A lattice polytope Δ is reflexive if (0 ∈ Int(Δ) and) Δ◦ is a lattice
polytope.

There are a few equivalent characterizations of this property. We will mention a
couple of these; for details, see for example [9, Chap. 2].

One can prove that every facet (i.e. codimension 1 face) F of a polytope Δ has a
unique inward-pointing normal vector uF such that

F = {a ∈ Δ | 〈a, uF 〉 = −1}.

In Example 1, if F is the segment [−1, 1] × {1}, then uF = (0,−1), and for the other
facets we get the other vertices of the dual Δ◦.

In fact we always have Δ◦ = Conv(uF | F a facet of Δ), so that

Proposition 1 A lattice polytope Δ is reflexive if and only if every uF ∈ R
n is a

lattice point (i.e. is in Zn ⊆ R
n).

Another characterization is the following (which is given as the definition of a
reflexive polytope in [2]):

Proposition 2 A lattice polytope Δ is reflexive if and only if for every facet F of Δ
there is no lattice point between the affine hyperplane spanned by F and its translate
passing through the origin.

As a consequence, the origin is the only lattice point in the interior of a reflexive
polytope Δ.
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Remark 1 From the last observation, via the results of [10], it follows that in every
dimension n there is only a finite number of reflexive lattice polytopes up to integral
change of coordinates (i.e. transformation by an element of GL(n,Z)). For n = 2
there are 16 equivalence classes, for n = 3 they are 4 319 and for n = 4 (which is
the important case for Mirror Symmetry, since it corresponds to 3-folds) there are
473 800 776 (!) equivalence classes (this was proven in [11]).

The idea for BatyrevMirror Symmetry is that this duality among lattice polytopes
realizes Mirror Symmetry for Calabi–Yau hypersurfaces in Fano toric varieties, as
we will explain in the next sections.

3 Varieties from Lattice Polytopes

A lattice polytope in R
n gives rise to a projective variety. This process is part of a

long story, the theory of toric varieties (see [9, 12]).

Definition 4 A toric variety is a normal algebraic variety X with an open embedding
T ⊆ X of a torus T = (C×)n and an action T × X → X that extends the multipli-
cation action of T on itself.

It turns out that this set of data is completely encoded by a combinatorial poly-
hedral object in a lattice (the co-character lattice of the torus Hom(C×, T ), usually
denoted by N in the literature), called a fan: this is a collection of cones, intersecting
nicely (i.e. along common faces). The geometry of the toric variety is completely
controlled by the combinatorics of this object: geometric properties of the variety
can be translated in combinatorial or convex-geometric properties of the fan, and
some algebraic invariants (for example sheaf cohomology of divisors) are explicitly
computable. Because of this, toric varieties are usually a useful testing ground for
new conjectures and theories about varieties in general.

A lattice polytope is an alternative incarnation of the underlying combinatorics of
a certain class of toric varieties. Strictly speaking, the polytope also records the infor-
mation of a torus invariant ample divisor on X , that gives in particular embeddings
in projective space.

Here is a quickway to define the toric variety XΔ associated to a lattice polytopeΔ.
First note that any lattice point m = (a1, . . . , an) ∈ Z

n gives a “Laurent monomial”

tm = ta11 · · · tann
which is a regular function on the torus (C×)n (so that negative exponents make
perfect sense).

Now we need to assume that Δ has “enough lattice points”, or else modify it a
bit. This is a technical condition, called normality of the polytope: a lattice polytope
Δ ⊆ R

n is normal if for all n,m ∈ N we have
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(nΔ) ∩ Z
n + (mΔ) ∩ Z

n = ((n + m)Δ) ∩ Z
n.

Here nΔ denotes the dilated polytope {a ∈ R
n | a = nb for some b ∈ Δ}, and +

denotes the Minkowski sum of polytopes, defined as

Δ + Δ′ = {a + b ∈ R
n | a ∈ Δ, b ∈ Δ′}

for polytopesΔ,Δ′ ⊆ R
n . For example, one can show that the standard simplexConv

(0, e1, . . . , en) ⊆ R
n is a normal polytope, while the polytope Conv(0, e1, e2, e1 +

e2 + 3e3) ⊆ R
3 is not normal. Here and in what follows, as customary, ei denote the

elements of the standard basis of Rn .
If Δ is not normal, one uses instead the polytope kΔ (which will be normal for

k ≥ n − 1, see [9, Theorem 2.2.12]) in the construction that follows. This is related to
ampleness versus very ampleness of the toric divisor encoded by the given polytope
Δ. There is also a property of polytopes called very ampleness, implied by normality,
and relevant for this construction. See [9, Sect. 2.2] for details.

Assuming that Δ is normal, consider Δ ∩ Z
n = {m0, . . . ,mk}, which is a finite

set, and the map

(C×)n → P
k given by (t1, . . . , tn) �→ [tm0 : · · · : tmk ]

where tmi is theLaurentmonomial described above.Thismap turns out to be injective,
and one defines the toric variety XΔ as the closure of its image.

Reflexive lattice polytopes give rise, in this manner, to projective Fano toric vari-
eties. Recall that “Fano” means that the anticanonical divisor −KXΔ

is ample, for a
smooth variety. We will allow some singularities and say that a variety X is Fano if
it is Gorenstein and the dual of the dualizing sheaf ω∨

X (which is a line bundle) is
ample.

Proposition 3 [8, Proposition 3.5.5] The toric variety XΔ is Fano if and only if Δ

is a reflexive polytope.

Lattice points onΔ also give interesting hypersurfaces in XΔ: keeping the notation
as before, the equation

a0t
m0 + · · · + akt

mk = 0 (1)

defines a hypersurface in (C×)n (for any given coefficients a0, . . . , ak ∈ C), and the
closure of this in XΔ is then a hypersurface V ⊆ XΔ. Moreover, if Δ is reflexive
every such hypersurface is a divisor in the same divisor class, the anticanonical class
| − KXΔ

|.
Example 2 The quintic threefold in P4 can be recovered using this construction. Let
Δn denote the standard simplex Conv(0, e1, . . . , en) in Rn .

Let us take Δ ⊆ Z
4 to be

5Δ4 − (1, 1, 1, 1) = {a ∈ R
4 | a = 5b − (1, 1, 1, 1) for some b ∈ Δ4}.
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In other words, Δ is the convex envelope of the vectors

(−1,−1, −1, −1), (4, −1, −1, −1), (−1, 4, −1, −1), (−1,−1, 4, −1), (−1,−1, −1, 4)

obtained from the vertices 0, 5e1, 5e2, 5e3, 5e4 of 5Δ4 by subtracting the vector
(1, 1, 1, 1).

This is a reflexive polytope in R
4, and by applying the construction described

above, one can check that XΔ = P
4, and that (after homogenizing the corresponding

Eq. (1)) the hypersurface V is an arbitrary quintic threefold in P
4 (the exponent

vectors that show up in the lattice points of Δ give all homogeneous monomials of
degree 5 after homogenizing).

4 Batyrev’s Construction

We can now talk about Batyrev’s construction. Given a reflexive n-dimensional poly-
tope Δ, one can consider the projective toric variety XΔ (of dimension n), which
will be a Fano toric variety, and a general divisor in the anticanonical linear system
V ∈ | − KXΔ

|. For example one can take V to be determined by a Laurent polyno-
mial as in Eq. (1). For the moment let us pretend that everything is smooth (typically
this is false).

A (nice) anticanonical hypersurface in aFanovariety is going to have trivial canon-
ical bundle (by the adjunction formula KD = (KX + D)|D), so, taking for granted
that also the other conditions about vanishing of cohomologies will be satisfied, it is
going to be a Calabi–Yau variety, of complex dimension n − 1. The basic idea is that
by considering the dual Δ◦ and a general divisor in the anticanonical linear system
of XΔ◦ , we get a different Calabi–Yau variety V ◦ which should be mirror to V (or
rather, the family of hypersurfaces V should be mirror to the family of hypersurfaces
V ◦ - we will make this abuse of terminology from now on).

In reality things are more technical, because often XΔ is too singular, and needs
to be resolved via blowups in order for the divisor V to be a “nice” Calabi–Yau
variety (i.e. with nice singularities). One also wants the resolution to be crepant, i.e.
to preserve the canonical bundle, and for n ≥ 3 the projective toric variety given by
an n-dimensional lattice polytope does not need to admit a full crepant resolution
(i.e. producing a smooth variety as its outcome), so the best one can do is partially
resolve it.

Blowing up along a torus-invariant subvariety is quite convenient using toric
language, because it corresponds to combinatorial operations on the fan and polytope
associated to the toric variety. We will not go into details here, we will only mention
that Batyrev introduces the notion of a “maximal projective crepant partial (MPCP)
desingularization” for XΔ, corresponding to certain triangulations of the polytope
Δ. This is a birational map X ′ → XΔ which partially resolves the singularities of
XΔ and preserves the canonical divisor. By taking a general anticanonical divisor
on X ′ we get a nice Calabi–Yau variety V (see [8, Proposition 4.1.3]). These MPCP
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desingularizations always exist in this context, and usually there is more than one
choice.

By choosing a MPCP for XΔ and one for XΔ◦ , we get Calabi–Yau varieties V and
V ◦ as general anticanonical sections of the partial resolutions, and these should form
mirror pairs. In the case of threefolds (so when Δ lives in R

4), V and V ◦ actually
turn out to be smooth. Some of the expected consequences of Mirror Symmetry have
indeed been proven for Batyrev mirrors V and V ◦.

Recall that, for a smooth projective complex variety X , theHodge number h p,q(X)

is the dimension dim Hq(X,Ω
p
X ) as a complex vector space, where Ω

p
X = ΩX ∧

· · · ∧ ΩX is the wedge product of p copies of the sheaf of Kähler differentials ΩX of
X . The Hodge numbers are usually arranged in a diagram called theHodge diamond,
depicted below for dim X = 3.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

These numbers have two important symmetries: Hodge theory implies that h p,q =
hq,p, and Serre duality implies that hn−p,n−q = h p,q . If in addition X is a Calabi–
Yau threefold, we also have h0,0 = h3,0 = 1 and h1,0 = h2,0 = 0, so that the above
diagram can be simplified to the following one

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

whose only relevant numbers are h1,1 and h2,1. Recall also that these Hodge num-
bers h1,1 = dim H 1(X,ΩX ) and h2,1 = dim H 1(X,Ω2

X ) = dim H 1(X, TX ) (where
TX

∼= Ω∨
X is the tangent bundle of X , and we used the fact that Ω3

X
∼= OX ) give

the number of parameters of deformations of a complexified Kähler class on X ,
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and of the complex structure of X respectively. Mirror symmetry predicts that
h1,1(X) = h2,1(X∨) and h2,1(X) = h1,1(X∨), where X∨ denotes the mirror of X ;
in other words, the Hodge diamonds of X and X∨ should be related by a reflection
with respect to a diagonal line through the center.

More generally, if X is a Calabi–Yau manifold of dimension bigger than 3, Mirror
symmetry predicts (among other facts) that h p,q(X) = hn−p,q(X∨) and hn−p,q(X) =
h p,q(X∨). For Batyrev’s construction, indeed this is known to be the case for p =
q = 1 (see below for some discussion about the general statement).

Theorem 1 ([8, Theorem 4.1.5], [2, Theorem 4.4.3]) The “Hodge numbers Mirror
Symmetry” for p = q = 1 holds for Batyrev mirrors, i.e. we have the equality of
Hodge numbers h1,1(V ) = hdim V−1,1(V ◦) and hdim V−1,1(V ) = h1,1(V ◦).

If we perform the construction starting from a reflexive lattice polytope Δ ⊆ R
4,

so that dim V = dim V ◦ = 3, then this is all that is needed to get the full symmetry
relation between the Hodge diamonds of V and V ◦. The proof of the theorem is
a computation of the Hodge numbers by using the dictionary of toric geometry to
reduce to combinatorics.

There are also other (partial) results about correspondence of complex/Kähler
moduli spaces and correlation functions of the A-model and B-model, that we will
not get into. See [8, Section 4.1.2] for a thorough discussion.

On the other hand, there are still also some open questions: it is not known

1. whether using this construction with a 4-dimensional reflexive polytope, V and
V ◦ give isomorphic SCFTs (this is known for some cases, like the quintic three-
fold);

2. whether for a reflexive n-dimensional polytope with n ≥ 5, the relations h p,q

(V ) = hdim V−p,q(V ◦) and hdim V−p,q(V ) = h p,q(V ◦) hold or not.

Question (2) has been partially answered in later work of Batyrev and Borisov [13].
Namely, they prove that for the string-theoreticHodge numbers h p,q

st (defined in [14]),
one has the equalities h p,q

st (V ) = hdim V−p,q
st (V ◦) and hdim V−p,q

st (V ) = h p,q
st (V ◦)

where V and V ◦ are Batyrev mirrors. Their result [13, Theorem 4.15] actually also
covers the more general case of complete intersections in Fano toric varieties of [3].
Moreover, if V is smooth or q = 1, then h p,q

st (V ) = h p,q(V ), so with these assump-
tions the answer to question (2) is known to be positive.

5 The Quintic Threefold

The original example of Mirror Symmetry for the quintic threefold falls into this
general framework.We already saw how to obtain the quintic as a Calabi–Yau hyper-
surface in the Fano toric variety P

4, using a polytope Δ in Example 2.
The dual of that polytope Δ is

Δ◦ = Conv(e1, e2, e3, e4, (−1,−1,−1,−1)).
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In fact, Δ has 5 facets F1, F2, F3, F4, F5, with supporting hyperplanes with equa-
tions xi = −1 for 0 ≤ i ≤ 4 and x1 + x2 + x3 + x4 = 1. The corresponding inner
normal vectors (i.e. the vector uF such that the facet F is described as the inter-
section of Δ with the hyperplane 〈a, uF 〉 = −1) are then given by e1, e2, e3, e4 and
(−1,−1,−1,−1) respectively. The claim now follows by the description of Δ◦
as Δ◦ = Conv(uF | F a facet of Δ). Note that both Δ and Δ◦ are combinatorially
standard simplices (in the sense that there is a bijection between their faces and the
faces of a standard simplex, compatible with inclusion and intersections), but the
way they are positioned in the lattice is important. For example Δ has 125 lattice
points, whereas Δ◦ has only 6.

Using Δ◦ as lattice polytope, one can check that XΔ◦ can be identified with the
quotient P4/G, where G is the group

G = {(a1, a2, a3, a4, a5) ∈ (Z/5)5 | a1 + a2 + a3 + a4 + a5 = 0}/(Z/5).

Here the quotient is by the diagonal subgroup, and G acts on P
4 by multiplication

by roots of unity in the obvious way.
Indeed, the primitive lattice generators of the rays of the normal fan of Δ◦ (which

is the fan corresponding to the toric variety XΔ◦ ) are precisely the vertices

(−1,−1, −1, −1), (4, −1, −1, −1), (−1, 4, −1, −1), (−1,−1, 4, −1), (−1,−1, −1, 4)

of Δ. if we denote by M ⊆ Z
4 the sublattice generated by these vectors, then by [9,

Proposition 3.3.7] there is an isomorphism XΔ◦ ∼= XΔ◦, M/(Z4/M), where XΔ◦, M
denotes the toric variety corresponding to the polytope Δ◦ with respect to the lattice
M , and the quotient is for the natural action of the finite group (Z4/M) on XΔ◦, M .
The quotient (Z4/M) is isomorphic to the group G described above, and XΔ◦, M is
isomorphic to P

4, as can be verified by checking that the normal fan of Δ◦ in M is
isomorphic to the fan for P4. See [9, Example 5.4.10] for more details.

As mentioned above the polytope Δ◦ has 6 lattice points (the five vertices and the
origin), so Eq. (1) in this case becomes

c0 + c1t1 + c2t2 + c3t3 + c4t4 + c5t
−1
1 t−1

2 t−1
3 t−1

4 = 0

which by using the coordinates of P4 and homogenizing (in a “toric” sense - see [9,
Sect. 5.4]) becomes

c0x
5
0 + c1x

5
1 + c2x

5
2 + c3x

5
3 + c4x

5
4 + c5x0x1x2x3x4 = 0.

By rescaling the coordinates one can assume c0 = c1 = c2 = c3 = c4 = 1. This
recovers the equation

x50 + x51 + x52 + x53 + x54 + ψx0x1x2x3x4 = 0
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that gives the mirror pencil of hypersurfaces (after resolving the singularities).

6 Further Developments

Batyrev–Borisov [3, 15] generalize the above to Calabi–Yau complete intersections
in Fano toric varieties. The combinatorics becomes more complicated, but the basic
idea is similar.

This time, the starting data is an (r + d)-dimensional reflexive polytope Δ,
together with a decomposition as a Minkowski sum

Δ = Δ1 + · · · + Δr

where Δi are lattice polytopes containing the origin (possibly on their boundary).
This is called a nef-partition. The lattice points of each Δi determine a family of
hypersurfaces of the Fano toric variety XΔ, and choosing for each i a generic hyper-
surface Vi among these, the intersection V1 ∩ · · · ∩ Vr is a a d-dimensional complete
intersection Calabi–Yau variety, that needs to be partially resolved, as in the case of
hypersurfaces.

To produce the mirror family the idea is to use polar duality again, but with a
variation with respect to the hypersurface case, because the origin might not be an
interior lattice point of Δi . Instead, one defines polytopes ∇i by the formula

∇i = {a ∈ R
d | 〈a, b〉 ≥ −1 for all b ∈ Δi and 〈a, b〉 ≥ 0 for all b ∈ Δ j , j �= i}.

One can prove that∇i are lattice polytopes containing the origin, and the Minkowski
sum∇ = ∇1 + · · · ∇r is a reflexive polytope of dimension r + d. This gives the dual
nef-partition, and by applying the same procedure outlined above, one obtains the
mirror of the subvariety corresponding to the original nef-partition. See [7, Sect. 6]
or the original papers for more details.

TheGross–Siebert program [4–6]mixes SYZMirror Symmetrywith theBatyrev–
Borisov construction. The idea of that is the following: given a Calabi–Yau manifold
X , in order to find amirror X∨, degenerate it (in a niceway) to a union of toric varieties
glued along toric strata (i.e. orbits for the action of the torus on the respective toric
variety). Note that this “degenerate” variety will not be smooth.

From the degeneration one can extract combinatorial gadget (which actually has
more structure...), called the dual intersection complex, that one can dualize via a
discrete Legendre transform, in a way that is similar to the polar polyhedron con-
struction. From the dual of the dual intersection complex we can construct a central
fiber, again union of toric varieties glued along toric strata, and (with a lot of work!)
construct a smoothing. The idea is that the smoothing should be mirror to the X that
we started with.

In [16] Gross compares this construction to the one of Batyrev–Borisov. He shows
that indeed nef-partitions give rise to toric degenerations, and that the algorithm
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that we crudely outlined above produces the same result as the Batyrev–Borisov
construction.

Acknowledgements I am happy to thank the anonymous referee for useful comments and sugges-
tions.
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Introduction to Differential Graded
Categories

Alex A. Takeda

1 Motivation

In past talks at this conference we have seen the definition of a triangulated category
and some examples of familiar triangulated categories, including the homotopy cat-
egory H (R) and the derived category D(R) of modules over some ring R. These
categories are defined by applying certain constructions to the category C (R) of
complexes of R-modules; the derived category is usually defined by some local-
ization construction. Both these categories get their triangulated structures from the
abelian structure of Mod(R) and the shift operation on complexes.

However, there is a number of ways in which the derived category is insufficient
or problematic; one could say that in passing to this localization one forgets too
much data. For example, the derived category D(R) is not abelian: it does not have
limits or colimits, and the existence of the kernel or cokernel of a morphism is not
guaranteed. In fact one can show the existence of the weaker notion of homotopy
limits or colimits, but the derived category with only the triangulated structure does
not give a prescription for how to construct them.

Example 1 Here is an example from [14] of how the derived category fails to have
kernels. Consider the derived category D(Z) of Z-modules. For two ordinary Z-
modules M, N , seen as objects of the derived category in degree zero, the maps
betweenM and a shift of N in the derived category are calculated by the Ext functors:

D(Z)(M, N [i]) = Exti (M, N ) .

Let us take M = N = Z/2. There is one nontrivial element in Ext1(Z/2,Z/2),
represented by the Z/4 extension
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Z/2
×2−→ Z/4 → Z/2 ,

which represents the nontrivial morphism f ∈ Hom(Z/2,Z/2[1]). Now suppose
this map had a kernel K i.e. there was an exact sequence

0 → K → Z/2 → Z/2[1]

inD(Z). For any i , applying the left exact functor Hom0(Z[−i],−) = Homi (Z,−)

we would get an exact sequence of (ordinary) Z-modules

0 → Homi (Z, K ) → Homi (Z,Z/2) → Homi+1(Z,Z/2) .

Taking i �= 0 we see that Homi (Z, K ) = 0 and taking i = 0 we get an isomorphism
Hom0(Z, K ) ∼= Hom0(Z,Z/2) = Z/2. So the morphism K → Z/2 is an isomor-
phism in D(Z) since it induces isomorphisms on all cohomology groups, implying
the extension Z/2 → Z/2[1] is trivial, which gives a contradiction.

2 Definitions

2.1 dg Categories

Let k be a commutative ring. A differential graded (dg) module over k is a Z-graded
complex of k-modules V = ⊕nV n endowed with a differential dV : V n → V n+1. A
morphism f : V → W of dg k-modules is a (degree zero) morphism of the chain
complexes, i.e. a family of morphisms fn : V n → Wn intertwining the differentials.
The category C (k) of dg k-modules admits a monoidal structure given by the graded
tensor product

(V ⊗ W )n =
⊕

i+ j=n

V i ⊗ W j ,

whose differential acts on homogeneous objects by a graded version of the Leibniz
rule

dV⊗W (a ⊗ b) = dV (a) ⊗ b + (−1)deg aa ⊗ dW (b) ,

and the unit of this monoidal structure is the dg-module given by k in degree zero.

Definition 1 AdgcategoryA is a category enriched overC (k), i.e. a categorywhere
the morphism spaces A (X,Y ) are dg k-modules and the compositions A (X,Y ) ⊗
A (Y, Z) → A (X, Z) are morphisms of dg k-modules.

A dg category with only one object is the same as a differential graded algebra,
i.e. a k-algebra with a k-linear differential satisfying d2 = 0 and the graded Leibniz
rule. Given any dg category A we can define the closed category Z0(A ) with the
same objects but morphisms spaces given by closed morphisms of degree 0, i.e.
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Z0(A )(X,Y ) = Z0(A (X,Y )) = ker(d0 : A (X,Y )0 → A (X,Y )1) .

This forms a category since the composition of two closed morphisms is closed by
the Leibniz rule. More importantly, we can form the cohomology category H 0(A )

with morphism spaces

H 0(A )(X,Y ) = H 0(A (X,Y )) = ker(d0)/ im(d−1) .

This also gives a category; one can show that any choices of representatives for two
classes in H 0(A (X,Y )) leads to the same class under composition.

Remark 1 The category C (k) of dg k-modules is not itself a dg category, as the
morphism spaces are just usual k-modules without any extra structure. One can
enrich this into a dg category as in the next example.

2.2 The dg Category of R-Modules

Definition 2 For any k-algebra R, the dg category of right (left) R-modules Cdg(R)

has as objects chain complexes M of right (left) R-modules. The morphisms are first
defined as graded k-modules: an element ofCdg(R)(M, N )n is a family ofmorphisms
of left (right) R-modules f n : Mp → N p+n . These gradedmorphism spaces are then
given the structure of dg k-modules by the differential

d f = dN ◦ f − (−1)n f ◦ dM

which endows them with the structure of dg k-modules.

Remark 2 From now one we will use the right module structure by default, noting
explicitly when we want left modules.

It is easy to check from the definitions that Z0(Cdg(R)) is just the category C (R)

of chain complexes of R-modules, with morphisms given by degree zero maps inter-
twining the differentials. Taking the zeroth cohomology category H 0(Cdg(R)) one
gets the homotopy category H (R), whose morphism spaces given by degree zero
maps modulo maps homotopic to zero. We say that Cdg(R) is a dg enhancement
of H (R); it is in a similar way that we will construct dg enhancements of derived
categories.

3 Triangulated Structures and dg Categories

The dg category of modules Cdg(R) is somewhat special in the sense that its zeroth
cohomology category C (R) is triangulated. Note that in general this is not the case;
in a dg category the Hom spaces are graded but not the objects, so it is unclear what
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taking cones and shifts of objects means. We can enforce this condition for a general
dg category by looking at representability of the cone and shift functors acting on
the Hom spaces.

Definition 3 A dg category A is (strongly) pretriangulated if for every object X
and integer n, the functor A op → C (k) given by

Z 	→ A (Z , X)[n]

is representable, and for every morphism f : X → Y , the functor A op → C (k)
given by

Z → Cone( f : A (Z , X) → A (Z ,Y ))

is representable. We will call the objects representing these functors X [n] and C f ,
respectively.

It is easy to see that if a dg category A is pretriangulated, then its zeroth coho-
mology category H 0(A ) is a triangulated (ordinary) category, with shifts and dis-
tinguished triangles inherited from the corresponding representing objects in A .

Example 2 For any k-algebra R, the dg category Cdg(R) of modules over R is a
pretriangulated dg category, with the shift and cone objects naturally just given by
the shift and cone of chain complexes. Naturally its zeroth cohomology category is
the homotopy category H (R) with the usual triangulated structure.

In general, every dg category has a pretriangulated envelope pretr(A )with a fully
faithful embedding

A ↪→ pretr(A )

satisfying the universal property that any functorA → B to a pretriangulated cate-
goryB factors through it. The pretriangulated envelope can be constructed explicitly
with the use of twisted complexes [2], which we will not describe in detail here.

4 Functor Categories and Modules over dg Categories

We have seen that given an (ordinary) k-algebra R one can construct two different
dg categories from it: a category with only one object and self-homs given by R in
degree zero, or the dg category of R-modules Cdg(R). We would like to do the same
and define a dg category of modules over an arbitrary dg k-algebra A .

However, if we try to naïvely generalize the definition of Cdg above to a case
where A has nonzero elements in multiple degrees, it would be necessary to keep
track of a lot of different degrees by hand, which is very inconvenient. The correct
way to do this is to formalize module categories as functor categories, and once we
do so it is not any more work to define modules over arbitrary dg categories.



Introduction to Differential Graded Categories 119

4.1 The Category of dg Categories

A dg functor F between two dg categoriesA ,B is a functor respecting the dg struc-
ture of the morphism spaces, i.e. such thatA (X,Y ) → B(FX, FY ) is a morphism
in C (k) for every pair of objects. This allows us to consider the category of dg cate-
gories. For set-theoretic reasons it is wise to restrict to (essentially) small categories,
i.e. such that the isomorphism classes of objects form a set.

Definition 4 The category dg-Catk of small dg categories over k has as objects small
dg categories over k and as morphisms dg functors between them.

Theorem 1 dg-Catk is a symmetric monoidal category with a tensor product ⊗ and
an internal Hom functor H om, with an internal adjunctions

H om(A ⊗ B,C ) ∼= H om(A ,H om(B,C )) .

The monoidal structure is given by the following tensor product of categories:
A ⊗ B has objects given by pairs of objects (XA, XB) in A ,B and morphism
spaces given by tensor of morphism spaces in C (k):

HomA ⊗B ((XA, XB), (YA,YB)) = HomA (XA,YA) ⊗ HomB (XB,YB) .

The internal hom category H om(A ,B) has as objects dg functors A → B,
with the degree n piece H om(A ,B)(F,G)n of a morphism space given by a
family of degree n morphisms

φX ∈ (B(FX,GX))n, (G f )(φX ) = (φY )(F f ) ,

for all f ∈ A (X,Y ). This graded k-module inherits a differential induced from the
differential inB(FX,GX), giving H om(A ,B) the structure of a dg category.

4.2 Modules over dg Categories

The internal hom in dg-Catk lets us construct new dg categories as categories of
functors; consider an arbitrary small dg category A over k, possibly with multiple
objects and hom spaces in many degrees. We can define categories of modules over
it as functor categories using H om:

Definition 5 The dg category of right modules over A is defined by the internal
Hom from the opposite category:

Cdg(A ) = H om(A op,Cdg(k)) ,

and the category of leftmodules overA is analogously defined asH om(A ,Cdg(k)).
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We can get ordinary categories from these by taking the closed and cohomology
categories: we define the category of A -modules C (A ) = Z0(Cdg(A )) and the
homotopy category of A -modules H (A ) = H 0(Cdg(A )). It is easy to check that
when A is the dg category with one object and self-homs given by an ordinary k-
algebra R, these notions agree with our previous definitions of Cdg(R), C (R) and
H (R).

Lemma 1 For any dg categoryA the dg category ofA -modules Cdg(A ) is pretri-
angulated, with shifts and cones inherited from the target category Cdg(k).

4.3 The Yoneda Embedding

For any ring R, there is a distinguished object in Cdg(R), the unit of the monoidal
structure, given by R placed in degree zero, with self-homs given by R itself. Looking
at R as a dg category concentrated in degree zero, we see this is just the image of the
obvious embedding of dg categories R → Cdg(R).

This can be generalized to an arbitrary dg category A over k in the setting
described above: for any object X of A we define the object X̂ in Cdg(A ) given by
the functor HomA (X,−). This is the Yoneda embedding

A → Cdg(A ) ,

which one can easily check is a fully faithful dg functor.
As we remark above, the dg category Cdg(A ) is automatically triangulated, even

ifA itself is not: for any functor M : A → Cdg(k) one can compose it with the shift
[n] in Cdg(k) to get M[n].

Let us take now the triangulated hull of the collection {X̂ [n]} of all the shifts
of the images of all the objects X under the Yoneda embedding. Remember that
the triangulated hull of a collection of objects is the smallest triangulated subcate-
gory containing those objects. In our case we will denote this triangulated hull by
perdg(A ), the dg category of perfect complexes over A . From this we can also get
the ordinary category of perfect complexes by per(A ) = Z0(perdg(A )). Note that
definition, the Yoneda embedding factors through perdg(A ), and we will also call
this map the Yoneda embedding.

4.4 The dg Derived Category

As we stated in the beginning of the talk, one main objective of defining dg cate-
gories is to come up with enhancements of triangulated categories that contain more
structure, that is, to find pretriangulated dg categories whose H 0 category recovers
some triangulated category we want to study.
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It is not clear that we should be able to find a meaningful dg enhancement of
an arbitrary triangulated category, but in specific cases, when the triangulated cate-
gory is given in some algebraic or geometric context, we can often find natural dg
enhancements. We have seen an example of this already: for any ring R we defined
the dg category Cdg(R) so that it gives an enhancement of the homotopy category
H 0(Cdg(R)) = H (R). It is then a natural question to ask whether the derived cate-
gory D(R) (and also D(A ) for some general dg category A ) also has a similar dg
enhancement. More generally, we can ask whether other derived categories of inter-
est, such as derived categories of quasicoherent or coherent sheaves on a scheme X ,
possess similar dg enhancements.

The answer turns out to be that all these examples do have dg enhancements, and
some even have several different dg enhancements: for example the derived category
of quasicoherent sheavesD(qcohX) on a separated noetherian scheme X has at least
three different constructions of a dg enhancement [13]. One of these constructions
involves a familiar construction of quotients of categories.

Proposition 1 ([4, 13]) For any dg category A with a full dg subcategoryB there
is a dg category denotedA /B with an universal morphism (up to quasiequivalence)
in dg-Catk

A → A /B

such that any dg functor A → C with the property that the corresponding map
on homotopy categories H 0(A ) → H 0(C ) sends all elements of B to zero factors
through A → A /B.

This quotient dg category can be constructed easily when e.g. the ground ring k is
a field; in general the construction is more involved. We can apply this to construct
dg enhancements of our familiar derived categories.

Example 3 Consider the dg category Cdg(qcohX) of unbounded complexes of qua-
sicoherent sheaves on a separated noetherian scheme X , and the full dg subcategory
A cdg(qcohX) spanned by all the acyclic complexes. The quotient

Ddg(qcohX) = Cdg(qcohX)/A cdg(qcohX)

is an enhancement of the category D(qcohX).

We can apply this same construction to any abelian category C in place of
qcoh(X): applied toC = Mod(R)we get a dg categoryDdg(R)which is an enhance-
ment of the derived category D(R). These dg enhancements are referred to in the
literature as the dg derived category of an abelian category.

When actually computing morphisms in the derived category, it is often more
useful to use the formalism of fibrant and cofibrant replacements, which are gen-
eralizations of projective and injective resolutions. A more rigorous and thorough
treatment of these techniques goes through the discussion of Quillen model struc-
tures but we will avoid that and refer to more competent sources [6]. In our specific



122 A. A. Takeda

case we can define the cofibrant and fibrant objects of the category of dg modules
over some arbitrary dg category A as follows:

Definition 6 An object P of C (A ) is cofibrant if for every surjective quasi-
equivalence L → M , every P → M factors through L . An object I of C (A ) is
fibrant if for every injective quasi-equivalence L → M , every L → I extends to M .

Lemma 2 The category C (A ) admits cofibrant and fibrant replacements; i.e. for
any object M there are quasi-isomorphisms P → M and M → I where P is cofi-
brant and I is fibrant. Moreover all objects M̂ in the image of the Yoneda embedding
A → C (A ) are cofibrant.

So we can also define the derived category and compute its morphisms by using
e.g. the fibrant replacement and computing in the homotopy category:

D(A )(X,Y ) = H (A )(P,Y ) = H 0(Cdg(P,Y )) .

5 Additive Invariants

5.1 Hochschild Homology of Associative Algebras

Hochschild homology and cohomology were initially defined as invariants of asso-
ciative algebras, but the definition can be extended to dg algebras and dg categories,
and we can use the dg enhancements we constructed above to define invariants of
e.g. derived categories of coherent sheaves.

Definition 7 Given an associative k-algebra A and an A-bimoduleM , theHochschild
chain complex of A with coefficients in the bimodule M is concentrated in non-
positive degrees and is defined by [1, 7]

C−n(A, M) = M ⊗ A⊗n ,

for n ≥ 0 with a differential d : C−n(A, M) → C−n+1(A, M) given by

d(m ⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ · · · ⊗ an +
n−1∑

i=1

m ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm ⊗ a1 ⊗ · · · ⊗ an−1 .

The Hochschild homology of A with coefficients in M is defined as the cohomol-
ogy of this complex: HHn(A, M) = H−n(C∗(A, M)). Hochschild cohomology is
defined using a dual complex concentrated in non-negative degrees

Cn(A, M) = Hom(A⊗n, M) ,
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with a differential d : Cn(A, M) → Cn+1(A, M) given by

d f (a1, . . . , an+1) = a1 f (a2, . . . , an+1) +
n∑

i=1

(−1)i f (a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1 f (a1, . . . , an)an+1 .

Remark 3 Here we reverse the degrees and direction of the differential in the
Hochschild homology complex from the usual conventions just so that it is also
cohomologically graded, since it will simplify our notation in the future.

To get an invariant of associative algebras, we can take M to be the diagonal
bimodule AΔ, i.e. just A as a bimodule over itself with the left and right algebra
actions, and get the Hochschild (co)homology of A: HHn(A) = HHn(A, AΔ) and
HHn(A) = HHn(A, AΔ). We can also stop before taking the (co)homology of the
complex and define the Hochschild complex as an object of C (k).

Besides the dg structure Hochschild homology and cohomology of A carry extra
structures; for instance HH∗(A) automatically carries an S1 actionwhich allows us to
also define further invariants such as cyclic homology and negative cyclic homology,
which we refer to other sources [11]

Example 4 Let A be an associative algebra over k. Then its first two Hochschild
homologies are

HH0(A) = A/[A, A], HH1(A) = Ω1(A) ,

where Ω1(A) is the vector space of Kähler differentials on A, i.e. spanned over A
by symbols da for a ∈ A, modulo the relations

dx = 0, d(a + b) = da + db, d(ab) = da b + adb

for every x ∈ k, a, b ∈ A. Note that if A is the algebra of functions on somemanifold
then the Kähler differentials is an algebraic version of the space of one-forms. The
fact that the first Hochschild homology captures the space of one-forms is our first
example of a more general fact we’ll get to later, the Hochschild-Kostant-Rosenberg
theorem.

The first two Hochschild cohomologies are

HH 0(A) = Z(A), HH 1(A) = Der(A)/I nn(A) ,

where Der(A) is the space of derivations of A and I nn(A) ⊆ Der(A) are the deriva-
tions given by commutators with some element in A. More generally for some A-
bimodule M

HH0(A, M) = M/[M, A], HH 0(A, M) = ZA(M) ,

i.e. respectively the coinvariants and the invariants under the adjoint A action.
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Hochschild homology can be given an interpretation in terms of derived functors
in the category of (A, A)-bimodules, i.e. A ⊗ Aop-modules. Given any bimodule
N in Mod(A ⊗ Aop), there are two functors Mod(A ⊗ Aop) → Mod(k) given by
N ⊗A⊗Aop − and HomA⊗Aop (N ,−). It is easy to check from the definitions that by
taking N = AΔ, this calculates the zeroth degree Hochschild homology and coho-
mology

HH0(A, M) = AΔ ⊗A⊗Aop M, HH 0(A, M) = HomA⊗Aop (AΔ, M) .

As you might expect the higher Hochschild homologies and cohomologies are
the derived functors of the tensor and hom of bimodules: there is a left derived tensor
AΔ ⊗L

A⊗Aop − and a right derived hom RHomA⊗Aop (AΔ,−), both functors from the
derived category D(A ⊗ Aop) → D(k), which calculate the Hochschild homology
and cohomology

HH•(A, M) = A ⊗L
A⊗Aop M, HH •(A, M) = RHomA⊗Aop (A, M) .

The connection between this more abstract definition and the explicit definition
above is due to the fact that there is a standard free resolution of the diagonal bimodule
AΔ given by the bar complex C̄n(A) given in non-positive degrees by

C̄−n(A) = A ⊗ A⊗n ⊗ A

with the differential d : C̄−n(A) → C̄−n+1(A) given by

d(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) =
i=n∑

i=0

(−1)i a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 .

and one can check that for any (A, A)-bimodule M there is a quasi-isomorphism of
complexes

C̄∗(A) ⊗A⊗Aop M ∼= C∗(A, M)

with the complex we initially used to define Hochschild homology.

Example 5 Consider a finite quiver Q with n vertices and no oriented cycles, and
take A = kQ to be its path algebra. Remember that A as a vector space over k is
spanned by all the paths in Q, so as an algebra it is generated by the idempotents ei
(one for each vertex) and the elements fi j (one for each edge i → j), subject to the
composition rules given by concatenation of paths. Note that since Q is finite, there
is an identity element 1 = ∑

i ei , and up to scaling it is the only central element, so
Z(A) = k1. Note also that every path x with length ≥1 is in the commutator ideal;
i.e. if x starts at the vertex i , then x = [ei , x]. Thus we have that

HH 0(A) 
 k HH0(A) 
 kQ/〈 fi j 〉 
 k⊗n ,
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where k⊗n is spanned by the basis {ei }.
It can also be shown [3] that in this casewhere Q has no oriented cycles, there is no

higherHochschild homology: HHi (kQ) = 0 for i ≥ 1. TheHochschild cohomology
groups are more complicated [7]: HHi (kQ) = 0 for i ≥ 2 but

dim HH 1(kQ) = 1 − n +
∑

edge i j

(number of paths i → j) .

We can check that this is zero if and only if the underlying graph is a tree (even
if the quiver has no oriented cycles the underlying graph might have cycles). This
examples shows howHochschild homology and cohomology can have quite different
behaviors.

5.2 Hochschild Homology of dg Algebras and dg Categories

The definition above can be easily extended to dg algebras and dg categories. For a
dg categoryA over k, remember that we defined the dg categoryCdg(A ) of modules
over A . We can also define the dg category Cdg(A ⊗ A op) of (A ,A )-bimodules
using the tensor and internal hom structure of dg-Catk .

There is also a diagonal bimoduleAΔ defined by the Hom functorA ⊗ A op →
Cdg(k) of A :

AΔ : (Y, X) 	→ A (X,Y ) .

Similarly to what we saw above, for any bimodule M there is a bimodule ten-
sor functor M ⊗A ⊗A op − and a bimodule Hom functor HomA ⊗A op (M ,−) both
mapping Cdg(A ⊗ A op) → Cdg(k). They give rise to derived functors Ddg(A ⊗
A op) → Ddg(k) so just as above we can define the Hochschild homology and coho-
mology of a dg category by

HH∗(A ) = AΔ ⊗L
A ⊗A op AΔ, HH∗(A ) = RHomA ⊗A op (AΔ,AΔ) .

This definition agrees with the earlier definitions when A is the dg category with
one object and with self-homs given by some (dg) algebra.

5.3 Hochschild Homology of dg Enhancements
of Triangulated Categories

Suppose now that we have a triangulated categoryT with a dg enhancementD(C ),
i.e. we have some dg algebra C and a triangulated equivalence T ∼= D(C ). This
allows us to define additive invariants for the triangulated category T : in particular
we can define the Hochschild (co)homology of T as the Hochschild (co)homology
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of the dg algebra C . In general these invariants will depend on the particular dg
enhancement we pick, but in some useful contexts the choice of dg enhancement
does not matter for any of the additive invariants: e.g. when T = Db(CohX) for a
smooth proper scheme X [12].

Let X be a smooth projective variety, and consider the derived categoryDb(X) =
Db(Coh X). Here we follow [10]. It is known that Db(X) has a strong generator
E , i.e. any object A of Db(X) can be generated by E by taking a finite sequence
of cones, shifts and finite summands. Consider the dg algebra of endomorphisms
A = RHom(E, E). Then we have a triangulated equivalence Db(X) ∼= Db(A ),
and we can define the Hochschild (co)homology of the derived category of coherent
sheaves on X as the Hochschild (co)homology of the dg algebra A :

HH∗(X) = HH∗(A ), HH∗(X) = HH∗(A ) .

Another way of defining Hochschild (co)homology for a scheme X is to just adapt
to a geometric setting the notion of Hochschild homology as the self-tensor of the
diagonal and Hochschild cohomology as the self-homs of the diagonal, by defining

HH∗(X) = H
∗(X × X,Δ∗OX ⊗L Δ∗OX ), HH∗(X) = Hom∗

X×X (Δ∗OX ,Δ∗OX ) .

Here Δ : X → X × X is the diagonal embedding, H calculates the hypercohomol-
ogy of a complex of sheaves and all the functors are implicitly understood as the
corresponding derived functors on the categories of coherent sheaves.

One can prove that these two definitions of Hochschild (co)homology agree
regardless of the particular choice of strongly generating object E . Besides being
a calculational tool, the definition using the dg enhancement also shows that
Hochschild homology satisfies a very nice property under semiorthogonal decom-
position. Suppose we have a triangulated categoryT with a strong generator E , and
a semiorthogonal decomposition

T = 〈T1, . . .Tn〉

into pieces Ti . Then we can look at the projection Ei of E onto each piece Ti .
One can show that this gives strongly generating objects, so using the dg algebras
Ai = RHom(Ei , Ei ), we get a direct sum decomposition of Hochschild homology

HH∗(T ) =
⊕

HH∗(Ti ) .

Note that we do not get a similar decomposition for Hochschild cohomology.

Example 6 Consider the derived category D(kQ) of representations of an acyclic
quiver Q with n vertices. Here we already have a dg enhancement given byDdg(kQ).
This corresponds as picking as generating object the algebra kQ itself. Remember
that we have a decomposition of (right) kQ-modules
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kQ =
⊕

α∈Q
Pα

into the projective modules Pα given by all the paths starting at the vertex α.
Let us choose a total ordering of the vertices of Q compatible with the partial

ordering given by the quiver structure, i.e. we require α < β if there is a non-zero
path going from α to β. Then we see that we have a semiorthogonal orthogonal
decomposition of the category D(kQ) with n pieces Tα , each one with a single
object given by the projective Pα . Each piece is equivalent to the category D(k)
and has Hochschild homology given by HH0(Ti ) = Hom(Pα, Pα) = k and zero in
higher degrees. So from the direct sum decomposition we recover the result

HH0(D(kQ)) 
 kn, HHi (D(kQ)) = 0, i ≥ 1 .

5.4 The Hochschild-Kostant-Rosenberg Theorem

The classical statement of the Hochschild-Kostant-Rosenberg theorem [8] is a gener-
alizationof the fact that for a commutative k-algebra R, thefirstHochschild homology
gives the space of Kähler differentials.

Theorem 2 Let R be a finitely presented k-algebra, where k has characteristic zero.
Suppose also that R is smooth i.e. the space of Kähler differentialsΩ1

R is a projective
R-module. Then we have an isomorphism

HHn(R) ∼= Ωn
R = ∧nΩ1

R .

There is also a version of the HKR theorem for the category of coherent sheaves
on a smooth projective variety X . Let us again denote the diagonal inclusion by
Δ : X → X × X and define two complexes of sheaves in Db(Coh X):

H H• = Δ∗Δ∗OX , H H • = Δ!Δ∗OX .

These are sheafy versions of the Hochschild homology and cohomology: taking
global sections one can show that

HH∗(X) = H
∗(X,H H•), HH∗(X) = H

∗(X,H H •) .

The HKR theorem then also holds at the sheaf level:

Theorem 3 Let X be a smooth projective variety of dimension n. Then there are
quasi-isomorphisms

H H• 

n⊕

p=0

Ω
p
X [p], H H • 


n⊕

p=0

T p
X [p] ,
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where Ω
p
X = ∧pΩ1

X is the sheaf of p-forms on X and T p
X = ∧pT 1

X where T 1
X is the

tangent sheaf of X.

So in the case of a smooth projective variety X over C, taking global sections of
this sheaf calculates theHochschild homology of X in terms of theHodge groups of X

HHk(X) ∼=
⊕

p−q=k

H p(X,Ω
q
X ) =

⊕

p−q=k

H p,q(X) .

In particular, since derived equivalences preserves the Hochschild homologywe con-
clude that any derived equivalenceD(X) ∼= D(X ′) preserves the sum

∑
p−q=k h

p,q ,
i.e. the column sums of the Hodge diamond.
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6. W. Dwyer, L. Spaliński, Homotopy theories and model categories, in Handbook of Algebraic

Topology, ed. by I.M. James. (Elsevier, 1995) 73–126
7. D. Happel, Hochschild cohomology of finite-dimensional algebras, Lecture Notes in Mathe-

matics 1404 (Springer, 1989)
8. G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras, Trans-

actions AMS 102 No.3, 383–408 (1962).
9. B. Keller, On differential graded categories, Proceedings ICM 2 (2006)
10. A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, arXiv:0904.4330
11. J.-L. Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften 301, (1998)
12. V. Lunts, D. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math.

Soc. 23 853–908 (2010).
13. D. Orlov, Smooth and proper noncommutative schemes and gluing of dg categories, Advances

in Mathematics 302, 59–105 (2016).
14. B. Toën, Lectures on DG-categories, in Topics in Algebraic and Topological K-Theory, Lecture

Notes in Mathematics 2008 (Springer 2011) 243–301

www.math.uni-bonn.de/ag/stroppel/MA_DhyanAranha.pdf
www.math.uni-bonn.de/ag/stroppel/MA_DhyanAranha.pdf
http://arxiv.org/abs/0710.3070
http://arxiv.org/abs/0904.4330


Introduction to Symplectic Geometry
and Fukaya Category

Alex Zhongyi Zhang

1 Symplectic Geometry

Definition 1 (symplectic form) Given a vector space V , a symplectic form ω is a
non-degenerate, anti-symmetric bilinear form. namely, ∀ v ∈ V,ω(v,w) = 0,∀ w ∈
V ⇐⇒ v = 0 and ω(v,w) = −ω(w, v). Such a vector space V is called a sym-
plectic vector space.

We know from linear algebra that all symplectic vector spaces must have even
dimensions. Let W ⊆ V,Wω := {v ∈ V,ω(v,w) = 0 ∀w ∈ W },
Definition 2 Given a symplectic vector space (V,ω), a subspace W ⊆ V is called
isotropic if W ⊆ Wω, i.e.ω|W = 0;

W is coisotropic if W ⊇ Wω ,
W is symplectic if ω|W is also a symplectic form on W .
W is Lagrangian if it is isotropic and dim W = 1

2dimV .

We have ∀ W ⊂ V , dim W+ dim Wω = dim V , therefore, Wωω = W . The
Euclidean spaceR2n is a symplectic vector space equippedwith the standard symplec-
tic form ω0 = ∑n

i=1 xi ∧ yi . Also, for any symplectic vector space, we have s sym-
plectic basis u1, . . . un; v1, . . . , vn such that ω(u j , uk) = ω(v j , vk) = 0,ω(u,vk) =
δk j . Namely, we have a map � : R2n → V such that �∗ω = ω0.

Definition 3 (symplectomorphism) Sp(V,ω) = {� ∈ Gl(V )
∣
∣�∗ω = ω}, the linear

isomorphisms that preserves the symplectic structure are called symplectomor-
phisms. Since we know that V � R

2n by the paragraph above, we can identify
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Sp(V, w) as the maps {�∣
∣�∗ω0 = ω0} = {A∣

∣At J0A = J0}. If we identify R2n with
C

n , then J0 acts as i .

Lemma 4 Sp(2n) ∩ O(2n) = Sp(2n) ∩ Gl(n,C) = O(2n) ∩ Gl(n,C) � U (n),
and U (n) is a maximal compact subgroup of the symplectic group and Sp(2n) is
homotopy equivalent to U (n).

Sketch of proof.The first equation is amatter ofwriting down explicitly the definitions
and calculate. We have a polar decomposition ∀ � ∈ Sp(2n),� = U P whereU :=
� · (�t�)− 1

2 ∈ U (n). P = (�t�)
1
2 is symplectic symmetric and positive definite.

Let Ut := (�t�)− 1
2 t ∈ Sp(2n) for t ∈ [0, 1], this gives a deformation retract from

Sp(2n) to U (n). (Further details may be found in Chap.2 of [1].) �

Corollary 5 π1(Sp(2n)) = π1(U (n)) = π1(S1) � Z, where the second equality is
induced by the complex determinant function.

Now we try to associate an integer μ to any loop in the Lagrangian Grassman-
nian � : R/Z → LGr(n) such that μ(�1) = μ(�2) if and only if �1 and �2 are
homotopic. It should also satisfy μ(� ⊕ �′) = μ(�) + μ(�′), and λ0(t) = eπi t has
the number 1 associated to it. This integer is the Maslov index of the loop. Actu-
ally LGr(n) � U (n)/O(n), therefore, π1(LG(n)) = π1(U (n)/O(n)) � Z, which
is induced by μ.

More generally, we have theMaslov index for any 2nd relative homotopy group:

μ : π2(M, L) → Z

defined as follows: if amap u : (D2, S1) → (M, L) represent a class [u] ∈ π2(M, L),
we trivialize the pullback of the tangent bundle u∗T Mon D2 and get the trivial rank
2n bundle. Take the tangent bundle T L restricted to S1 along this trivialization which
gives a loop in LGr(n). Then we define the Maslov index of [u] as the Maslov index
for as above.

Theminimal Maslov number NL is defined as the smallest positive integer that
the image of the map μ hits in Z. We set NL = ∞ if the Maslov index μ vanishes.

Definition 6 (symplectic manifold) Now a symplectic structure on a smooth mani-
fold M is a non degenerate closed 2-form ω, namely (TqM,ωp) is a symplectic vec-
tor space ∀p ∈ M . Non-degeneracy implies that ωn = ω ∧ ω ∧ . . . ω doesn’t vanish,
which implies that M is oriented.

A symplectomorphismof (M,ω) = Symp(M,ω) := {φ ∈ Di f f (M)
∣
∣φ∗ω = ω}.

There is a systematic way to construct a symplectomorphism from a function
H : M → R. First define a vector field XH ∈ X (M,ω) by iXH ω = dH , the non-
degeneracy of ω implies the existence of such a vector field. Note since d(iXH ω) =
ddH = 0, we have LXH ω = (diX + iXd)ω = 0. Let ψt be the local flow generated
by XH , namely dψt

dt = XH (ψt ), then ψt is a symplectomorphism. In this case, we
call ψt the Hamiltonian flow generated by H .
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Now dH(Xh) = iXH ωXH = 0, thus XH is tangent to the level sets of H . For
example, if we were to have the height function on the sphere, then with the standard
symplectic form on the sphere induced volume form on R

3, we have ω = dθ ∧ dz,
then XH = ∂

∂θ
, the flow φt is rotation of S2 at constant speed.

Basic examples:

(1) (R2n,ω0)
(2) any oriented Riemann surface with area form;
(3) T

2n = R
2n/Z2n with the standard form ω0 on the quotient space.

(4) Cotangent bundle of any manifold. T ∗M with canonical 1-form λcan ∈
�1(T ∗M),ω = −dλcan , where λcan = ∑n

1 yidxi . Here the yi are the coordi-
nates for dxi , namely we have coordinate charts T ∗U → R

n × R
n, (q, v∗) �→

(x(q), y(q, v∗)), and T(q,0)(T ∗M) � T M ⊕ T ∗
q M .

Proposition 7 λcan is characterized by the property thatσ∗λcan = σ,∀ σ ∈ �1(M).

This is because if we write out σ = ∑
a j (x)dx j , then as a map in local charts,

we should get (x1, . . . , xn, a1(x), . . . an(x)), and σ∗(
∑

y jdx j ) = σ.

Proposition 8 The image of a 1-form σ is Lagrangian in T ∗M ⇐⇒ σ is closed.

Proof dσ = dσ∗λcan = σ∗(dλcan) = dλcan

∣
∣�σ. �

(5) CP
n and Fubini-Study form: Consider the function ρ on C

n: z �→log (|z|2 +
1). This function is strictly plurisubharmonic, with ∂∂̄ρ = 1

(|z|2+1)2 ; therefore

ωFS := 1
2∂∂̄ρ is Kähler.

Now on a chartU0 = (z1, . . . , zn) ⊆ CPn , the transition function on U = U0 ∩
U1 looks like ϕ0,1(z1, . . . , zn) = ( 1

z1
, · · · zn

z1
), this map maps (U ) biholomor-

phically onto itself with ϕ∗(log(|z|2 + 1)) = log(|z|2 + 1) + log(|z1|−2). Thus,
∂∂̄ϕ∗(log(|z|2 + 1)) = ∂∂̄ϕ∗(log(|z|2 + 1)) + ∂∂̄log(|z1|−2) = ∂∂̄ϕ∗(log
(|z|2 + 1)). So we can “glue” ϕ∗

i ωFS together to give a Kähler structure on
CP

n .

Nowwe introduce a very important property of symplecticmanifold,which claims
that locally, all symplectic manifolds look the same; however, the global structure
would be different.

Theorem 9 (Darboux) Given a symplectic manifold (M,ω), ∀ p ∈ M, there exists
a neighborhood Up ⊆ M such that ω restricted to Up is symplectomorphic to the
standard ω0 in R2n, where dim M = 2n.

The proof of Darboux’s theorem uses the so call Moser’s trick, details can be
found in Chap.2 of [1].
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2 Lagrangian Floer Colomology

Definition 10 (Lagrangian) Now let (M,ω) be a symplectic manifold, N ⊂ M is
isotopic if ω|N = 0.This implies that dimN ≤ 1

2dimM as ω is non-degenerate.If L
is isotopic and dim L = 1

2dim M , then we say L is Lagrangian.

Now suppose we have compact lagrangians L0, L1 ⊂ (M,ω), L0 � L1 ⇒ L0 ∩
L1 is a finite set of points.

Definition 11 (Monotone) We say a Lagrangian submanifold L ⊆ M isMonotone
if ∀ A ∈ π2(M, L) we have a fixed λ ∈ R

+ such that:

∫

A
ω = λ · μL(A)

From now on we work over monotone Lagrangians with minimal Maslov number
NL at least 2.

Definition 12 The Floer complex

CF∗(L0, L1) := � < L0 ∩ L1 >

Which is a �- vector space with basis = L0 ∩ L1 � := {�ai T λi |ai ∈ K, lim
i→∞λi =

+∞} is the Novikov field with coefficient in K.

If we have 2c1(T M) = 0 and the maslov class μL vanishes, then we can make
CF∗(L0, L1) a Z−graded complex, else it is Z2-graded.

Definition 13 Now given p, q ∈ L0 ∩ L1, define M̂(p, q, J ) = {u : R × [0, 1] →
M

∣
∣Du ◦ j = J ◦ Du, u(s, 0) ∈ L0, u(s, 1) ∈ L1, lim

s→∞u(s, t) = p, lim
s→−∞u(s, t) = q}.

Then we have an R action on M̂(p, q, J ) by r · u(s, t) = u(s + r, t), the moduli
space M(p, q, J ) := M̂(p, q, J )/R.

Remark 14 The equation Du ◦ j = J ◦ Du is just saying ∂J u = 0.

Now we define differential on the complex:

Definition 15 ∀p ∈ CF∗(L0 ∩ L1),

∂ p :=
∑

q∈L0∩L1,ind(β)=1

(#M(p, q,β, J ))T ω(β) · q, (1)

Where ω(β) is the energy of the J-holomorphic map u which is represented by β in
π2(M, L0 ∪ L1), it is defined as

ω(u) :=
∫

R×[0,1]
u∗ω =

∫ ∫

|∂u
∂s

|2dsdt ≥ 0
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Remark 16 If the linearized operator D ¯∂J,u
is surjective at ∀u ∈ M̂(p, q, J ), then

we have M̂(p, q, J ) is a manifold of dimension μL0∪L1(u) (the Maslov index of u,
note that π1((LGr)) = π1(U (n)/O(n)) � Z.)

Remark 17 Gromov’s compactness claims that given any positive upper bound E0

on energy, there are only finitely many homotopy class β = [u] such thatω(u) ≤ E0,
therefore,we know that theRHSofEq. 1 iswell defined.Namely, for anyfixed energy
E , #M(p, q,β, J )) is finite.

Proposition 18 Assume [ω] · π2(M, Li ) = 0 for i = 0, 1 and L0, L1 are oriented,
compact Lagrangians equipped with spin structure, then ∂ is well defined and satis-
fies ∂2 = 0, and the Lagrangian Floer cohomology HF∗(L0, L1) := H∗(CF(L0,

L1; ∂)) is independent of the almost complex structure J and invariant under Hamil-
tonian isotopes of L0 or L1.

The idea of the proof of ∂2 = 0 is to look at a J-holomorphicmap u withμ(u) = 2,
then Gromov’s compactness say that for a sequence of J−holomorphic maps with
bounded energy, there exists subsequence that converges to nodal configurations. In
the case when μ(u) = 2, we have three possible configurations.

(1) Sphere bubbles, a J-holomorphic sphere is connected to the J-holomorphic strip
at an interior point of the strip. This is the case when some energy concentrates
at the interior point.

(2) Disc bubble: a J-holomorphic disc connected with the J-holomorphic strip at a
point on L0 or L1, this is the case when some energy concentrates at a point on
the boundary.

(3) Broken strip, there are energy concentrates at ±∞.

Proposition 19 ω · π2(M, Li ) = 0 implies there are no disc bubbles or sphere bub-
bles.

Proof The idea is the energy of the bubbles have to be zero, which implies that they
are constant. Look at the long exact sequence of homology groups

· · · → π2(L) → π2(M) → π2(M, L)
∂−→ π1(L) → · · ·

Note that ω · π2(M, Li ) = 0 automatically implies that ∀ β ∈ π2(M, L),
∫
β ω = 0,

thus no disc bubbles with boundary on L0 or L1. Since ω|L = 0 by definition of
Lagrangian manifolds, we have ∀ η ∈ π2(L), we have

∫
η ω = 0. By the exactness at

π2(M), ∀ α ∈ π2(M), we have
∫
α ω = 0. Thus no sphere bubbles. �

Gromov compactness claims that after adding the 3 possible configurations,
M(p, q, J ) is compact. However, since ω · π2(M, Li ) = 0, we are only allowed
to have broken strips.

However, the signed count of the number of boundary points of a 1-dimensional
manifold is zero. A gluing theorem states that any broken strip is locally the limit of
a sequence of index 2 J-holomorphic strips. And
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∂M(p, q, [u], J ) =
∐

r∈L0∩L1[u′]+[u′′]=[u]
ind([u′])=ind([u′′])=1

(
M(p, r; [u′], J ) × M(r, q; [u′′], J )

)
(2)

HF∗(L , L) is defined as HF∗(L0,ϕH (L))whereϕH (L) is Hamiltonian isotopic
to L because HF∗ is invariant under Hamiltonian perturbation. namely the original
J-holomorphic equation is replaced with

∂u

∂s
+ J (u, t)

(
∂u

∂t
− XH (t, u)

)

= 0 (3)

Example 20 Consider L ⊆ T ∗L as the zero section of the cotangent bundle, suppose
f : L → R is aMorse function, let H = π∗ f , thenϕH ( f ) = �d f ⊆ T ∗L . Thus L ∩
ϕH (L) = critical points of f , and CF∗(L ,ϕ(L)) � CM∗( f ) (the Morse complex)
as vector space. The Moduli space of J-holomorphic strips from p to q corresponds
1−1 to the Moduli space of Morse flow liness from p to q. So we have an iso of
chain complex (CF∗(L ,ϕ(L), ∂) � (CM∗( f ), dM)

The main idea is that under “good” conditions, we have Lagrangian Floer homol-
ogy is isomorphic to theMorse homologywhich is isomorphic to the singular homol-
ogy.

Theorem 21 (Albers, 2007) For a 2n-dimensional, closed, symplectic manifold M
anda closed,monotone, Lagrangian submanifold L ⊂ M ofminimalMaslov number
NL ≥ 2, there exist homomorphisms

ϕk : HFk(L ,φH (L)) → Hn−k(L;Z/2) for k ≤ NL − 2

Where H : S1 × M → R is a Hamiltonian function and φH the corresponding
Hamiltoniandiffeomorphism.For n − NL + 2 ≤ k ≤ NL − 2,ϕk is an isomorphism.

See [2] for more details.

Remark 22 This morphism above is not always an isomorphism, a counterexam-
ple can be found in [3] where a construction by Audin and Polterovich provides
Lagrangian embeddings of spheres Sk into R2n .

Remark 23 We might imagine that every Lagrangian can be embedded locally in
T ∗L in a neighborhood byWeinstein’s Lagrangian neighborhood theorem below and
use the idea of zero section in Example20 to think of Lagrangian Floer homology
as Morse homology; however, Weinstein’s Lagrangian neighborhood theorem is a
local result, so we don’t always have a rigorous isomorphism globally.

Theorem 24 (Weinstein’s Lagrangian neighborhood theorem) ∀L ⊆ M a
Lagrangian sub manifold, there exists a neighborhood U that is symplectic to a
neighborhood of L ⊆ T ∗L.

Details of the proof can be found in Chap.3 of [1]
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3 Product Structure and Fukaya Category

Definition 25 We define μ1 : CF∗(L0, L1) → CF∗(L0, L1)[1] as the differential
∂. We can also define

μ2 : CF∗(L0, L1) ⊗� CF∗(L1, L2) → CF∗(L0, L2)

by the following equation:

μ2(p, q) :=
∑

q∈L0∩L2[u]:ind([u])=0

(#M(p, q, r; [u], J ))T ω([u]) r. (4)

Where M(p, p, r; [u], J )) denotes, for a disc with three given points z0, z1, z2 on
the boundary, a J-holomorphic map from D to M that represents [u] in π2(M) and
extends continuously to the closed disc, mapping the boundary arcs from z0 to z1, z1
to z2, z2 to z3 to L0, L1, L2 respectively, while the z0, z1, z2 are mapped to p, q, r
respectively.

Proposition 26 If ω · π2(M, Li ) = 0,∀i ∈ {0, 1, 2}, then μ2 satisfies the Leibniz
rule with proper signs with respect to ∂; in particular,

∂(μ2(p, q)) = ±μ2(∂ p, q) ± μ2(p, ∂q) (5)

The idea of the proof is similar to that of ∂2 = 0, we look at the index 1 moduli
spaces of J-holomorphic discs and their compactification. Still assuming transversal-
ity,M(p, q, r; [u], J ) is a smooth 1-dimensional manifold and admits a compactifi-
cationM(p, q, r; [u], J ) by adding nodal trees (there is no disc or sphere bubble by
the assumption that the symplectic form vanishes on relative homotopy classes). and
there can be strip breaking happening at any of the three points p, q, r . If it breaks
at p, it represents μ2(∂ p, q); at q then represents μ2(p, ∂q); if at r, then represents
∂μ2(p, q). Since the signed count of the boundary of a 1-dimensional manifold is 0,
we have Eq.5.

Therefore, μ2 defines a product in Floer cohomology as well, namely

[μ2] : HF∗(L0, L1) ⊗ HF∗(L1, L2) → HF∗(L0, L2).

If L0 = L1 = L2, then [μ2] is the cup product on HF∗(L).

Proposition 27 (Associativity of μ2) We have

μ2(p, μ2(q, r)) ± μ2(μ2(p, q), r) = ±μ3(∂ p, q, r) ± μ3(p, ∂q, r) ± μ3(p, q, ∂r)

± ∂μ3(p, q, r) (6)

This is because μ3(p, q, r) is defined similar as the sum of the number of J-
holomorphic maps of a disc (with four points z0, z1, z2, z3 on its boundary to M ,
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with the map converges to the points p, q, r, s ∈ M near the four points and the arcs
in between each adjacent pair of zi to Li ), weighted with the symplectic energy. Then
by Gromov compactness, the boundary of 1-dimensional moduli spaces are of two
kinds:

(1) Those with a broken strip on the boundary of D at a nodal point of D while
the other three marked points remain on ∂D, there are four of these, corresponding
to the four summands on the RHS of Eq.6.

(2) Those that corresponds to a degeneration of the domain to the boundary of
M̄0,4, namely to a pair of discs, each of whose boundary carries two marked points,
and the disc connects to the J-holomorphic strip with a nodal point, there are two
marked points left on the disc. There are two of these, corresponding to the two
summands on the LHS of Eq.6.

Thus the singed count of the number of boundary points of a 1-dimensional
manifold with boundary give Eq.6.

More generally, consider L0, . . . Lk ⊆ M , compact, oriented Lagrangians with
spin structure. pi ∈ Li−1 ∩ Li , we define

μk : CF(Lk−1, Lk) ⊗ · · · ⊗ CF(L1, L2) ⊗ CF(L0, L1) −→ CF(L0, Lk)

μk(pk, . . . , p1) =
∑

q∈L0∩Lk )[u]:ind([u])=2−k

(#M(p1, . . . , pk, q; [u], J ))T ω([u]) q, (7)

where the dimension of the moduli spaces are

dimM(p1, . . . , pk , q; [u], J ) = k − 2 + ind([u]) = k − 2 + deg(q) −
k∑

i=1
deg(pi ). (8)

The special case is when k = 1. We had

μ1 = ∂ : CF∗(L0, L1) → CF∗(L0, L1),

∂ p =
∑

q∈L0∩L1)[u]:ind([u])=1

(#M(p, q; [u], J ))T ω([u]) q

Proposition 28 If ω · π2(M, Li ) = 0, ∀i , then the operations μk satisfy the A∞-
relations

k∑

�=1

k−�∑

j=0

(−1)∗μk+1−�(pk, . . . , p j+�+1,μ
�(p j+�, . . . , p j+1), p j , . . . , p1) = 0, (9)

where ∗ = j + deg(p1) + · · · + deg(p j ).
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Example 29 (1) k = 1, Eq.9 is the same as μ2 = 0,
(2) k = 2, Eq.9 is the Leibniz’ rule
(3) k = 3, Eq.9 is the associativity law of [μ2] in HF∗.

For higher k, this gives an explicit homotopy for certain compatibility property
among the preceding ones.

The proof is similar to that of the associativity law, we study dimension-1 moduli
spaces of J-holomorphic discs and their compactification, fix p1, . . . pk and q, and [u]
such that ind[u] = 3 − k, assume J is chosen generically so we have transversality
and then M(p1, . . . pk, q; [u], J ) compactifies to a 1-dimensional manifold with
boundary, and the boundary points are either of an index 1 J-holomorphic strip
breaking off at one of the (k + 1) points or a pair of discs each contain at least two
marked points. Those consists of the summands of the Eq.9.

Definition 30 (Fukaya Category) Given a symplectic manifold (M,ω) such that
2c1(T M) = 0, consider the category consisting of the following data:

(1) Objects: compact, oriented Lagrangians Li equipped with spin structure, such
that [ω] · π2(M, Li ) = 0with vanishingMaslov index, togetherwith a spin struc-
ture.

(2) hom-spaces: hom∗
F(M)(L0, L1) := CF∗(L0, L1), with differential μ1 and com-

position μ2

(3) higher operations and A∞ relations (9) for μs .

See [4, 5] for more details.

Remark 31 In our previous definition, we may allow c1(T M),μL to be nonzero if
we only need a Z/2-grading; and we may also drop the spin structure if we are
content to work over characteristic 2.
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Introduction to Homological Mirror
Symmetry

Andrew Harder

1 Introduction

1.1 Background

Mirror symmetry states that to every Calabi-Yau manifold X with complex structure
and symplectic symplectic structure there is another dual manifold X∨, so that the
properties of X associated to the complex structure (e.g. periods, bounded derived
category of coherent sheaves) reproduce properties of X∨ associated to its symplectic
structure (e.g. counts of pseudo holomorphic curves and discs).

This idea originated in physics, specifically string theory, where the relevant state-
ment is that the A twisted TQFT obtained from X is equivalent to the B twisted TQFT
obtained from X∨ and vice versa. Using this, Candelas and de la Ossa and collabora-
tors [1] in the late 80s and early 90s were able to make predictions regarding counts
of rational curves on Calabi-Yau varieties. Subsequently, there was a flurry of activity
towards making rigorous these predictions. Early successes include Givental’s theo-
rems [2] on the quantum cohomology of complete intersections in toric varieties and
periods of their duals, and theorems of Batyrev and Borisov [3, 4] which show that,
if X and X∨ are a mirror pair of dimension d which are constructed combinatorially
as complete intersections in toric varieties, then

h p,q(X) = hd−q,p(X∨).

Homological mirror symmetry [5] takes these observations and puts them into a
categorical context. In this context, the B-side invariants (B branes) take the form of
complexes of coherent sheaves on X , and the A-side invariants (A branes) take the
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form of Lagrangian submanifolds, and equivalence between these sets of invariants
is interpreted as an equivalence between the bounded derived category of coherent
sheaves on X and the Fukaya category of X∨. There are many problems with this
vague statement, since, at first blush, theFukaya category and the category of coherent
sheaves on a variety are very different categories. The Fukaya category is naturally
an A∞ category, without any sort of triangulated structure in general, so explaining
what we mean when we say that it is equivalent to a C-linear triangulated category
takes some explaining.

1.2 Outline

Wewill proceed as follows. Section2 will be devoted to developing some categorical
background necessary for stating homologicalmirror symmetry.Wewill explain how
one can get a k-linear triangulated, Karoubi complete category out of an A∞ category.
We will also explain how to get dg and A∞ extensions of Db(coh(X)), and we will
state the expected equivalence for mirror pairs of Calabi-Yau varieties.

In Sect. 3 we will discuss what is known about homological mirror symmetry, and
we will explain extensions of the original mirror symmetry conjecture to the case of
Fano varieties and varieties of general type.

1.3 Other Sources

Besides the foundational articles cited in the introduction, there are several overviews
of homological mirror symmetry in the literature. Ballard’s [6] article provides a
compact overview of the subject, with lengthy discussions on homological mirror
symmetry for both P

1 and the elliptic curve. The reader could do much worse than
reading [6], then returning to the current manuscript for some comments on how the
subject has changed in the past nine years.

A large amount of backgroundmaterial, alongwith detailed proofs ofmany results
can also be found in [7, Chap. 8]. Finally, both Kontsevich [5] and Seidel [8] have
given ICM talks regarding homological mirror symmetry. Both of these articles are
very good starting points - indeed, [5] is the starting point for homological mirror
symmetry.

2 The Categorical Setup

In this section we will develop the categorical framework necessary to state
homological mirror symmetry in enough generality to discuss at least state what
is known. The main conjecture of Kontsevich is that if X and X∨ are mirror mani-
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folds (equipped with appropriate complexified Kähler structures ω,ω∨ and complex
structures, I, I∨), then there is an embedding of triangulated C-linear categories

H0TwF(X,ω) ↪→ Db(coh(X∨, I∨))

and vice versa. We will explain what all of this notation means in this section. As
well, the more modern formulation involves not just triangulatedC-linear categories
but an equivalence of A∞ categories. A proper formulation of mirror symmetry will
also involve Karoubi completion.

We assume that the reader is acquainted with notions of Fukaya categories. Basic
references on this topic have proliferated in recent years, [9–11]. Equally, we will
assume that the reader has some knowledge of algebraic geometry and specifically
of derived categories of coherent sheaves on smooth projective varieties [12].

2.1 Dg Categories

On the B-side of mirror symmetry (complex structure), the most natural class of
categories are called dg categories. A category is a differential graded (dg) category
if for each a, b ∈ Ob(C) there is a vector space homC(a, b) over a field k which
satisfies the following conditions;

(1) It is a Z-graded vector space, the graded piece of weight i being denoted
homi

C(a, b).
(2) It has a chosen differential

dC : homC(a, b) −→ homC(a, b)

which increases degree by 1.
(3) If f, g are in homi

C(a, b), hom j
C(b, c) respectively, then

dC(g · f ) = (dCg) · f + (−1)i+ jg · (dC f )

(4) For each a ∈ Ob(C), there is some ia ∈ hom0
A(a, a) so that ia · f = f for any

f ∈ hom j
C(b, a) and g · ia = g = ib · g for any g ∈ hom j

C(a, b).

In Sect. 4.4, we will use differential Z/2-graded categories, denoted d(Z/2)g cate-
gories. These are categories where the grading in (1) is by Z/2 instead of Z, though
all other axioms are unchanged.

Example 2.1 The most basic example of a dg category which will be useful later
is that of chain complexes over an abelian category A. Let’s define K(A) to be the
category whose objects are chain complexes (a•, da) of elements in A, and whose
homomorphisms are,
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hom�((a•, da), (b•, db)) =
∏

i

homA(ai , b�+i )

equipped with the differential d given by the map

d f = db · f + (−1)� f · da
where f ∈ hom�((a•, da), (b•, db)). �

Example 2.2 A dg algebra A gives rise to a dg category with a single object e so
that homC(e, e) = A. �

To any dg category C, one has its homotopy category H0C. We let Ob(H0C) =
Ob(C), and if we denote by [a] the object in H0C corresponding to a ∈ Ob(C), then
homH0C([a], [b]) = H0(homC(a, b), d). This is a k-linear category.

If we have a category C and a dg category C so that H0C is equivalent to C, then
we say that C is a dg enhancement of C.

2.2 A∞ Categories

On the A-side of homological mirror symmetry, the most important homological
objects are A∞ categories. We begin with the standard caveat that A∞ categories are
not categories in the classical sense, since composition of morphisms need not be
associative, however the point is that we will allow associativity to fail in a controlled
manner.

Definition 2.3 An A∞ category A is a collection of objects Ob(A) along with Z-
graded vector spaces homA(a, b) for any pair of a, b ∈ Ob(C) so that the following
conditions hold.

(1) For every n > 0 and every set of objects a0, . . . , an ∈ Ob(A), there are maps

mA
n (a0, . . . , an) : homA(an−1, an) ⊗ · · · ⊗ homA(a0, a1) → homA(a0, an)[2 − i]

(2) These maps satisfy the quadratic A∞ associativity relations,

∑

m,n

(−1)τnmA
d−m+1( fd , . . . , fm+n+1,m

A
m ( fn+m, . . . , fn−1), fn, . . . , f1) = 0

for fi ∈ homA(ai−1, ai ) and τn = −n + ∑
i |ai |

�
For instance, the A∞ relations imply that
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mA
1 (mA

1 ( f )) = 0,

mA
2 ( f1,m

A
2 ( f2, f3)) − mA

2 (mA
2 ( f1, f2), f3) = mA

1 (mA
3 ( f1, f2, f3))

+mA
3 (mA

1 ( f1), f2, f3) + mA
3 ( f1,m

A
1 ( f2), f3) + mA

3 ( f1, f2,m
A
1 ( f3))

So mA
1 can be thought of as a differential and if we think about mA

2 as composition
of morphisms, then the second relation says that composition is associative up to
some factor involving m3. As in the case of dg categories, we may construct a
homotopy category H0A whose objects are those of A and whose homomorphisms
are the 0th cohomology of the morphism complexes of A with respect to mA

1 . We
will not assume that our A∞ categories have units (though we did for dg categories).
Instead,we assume that their homotopy categories have units. An A∞ categorywhose
homotopy category has a unit is called cohomologically unital or c-unital [10].

Remark 2.4 We may also consider Z/2-graded A∞ categories by insisting that the
grading on homA be by Z/2Z instead of Z.

Remark 2.5 One canmodify this construction to allow a nontrivialm0 map, bywhich
we mean a map from the underlying field k to homA(a, a) for all a ∈ Ob(A). Such
categories are called curved or obstructed A∞ categories, and they play a role in
mirror symmetry for Fano manifolds [13]. However, curved A∞ categories do not
admit homotopy categories, which complicates their homotopy theory. �

In the case where allmi s vanish if i > 2, the A∞ relations say thatA is a dg category,
possibly without units. Therefore, the category of dg categories embeds into the
category of A∞ categories.

An A∞ category C for which m1 vanishes is called a minimal A∞ category. In
this case, if a, b are two objects in C, then

homH0C(a, b) = hom0
C(a, b).

An A∞ functor between two A∞ categoriesA andB is a map on objects and homo-
morphisms in the usual way which satisfies additional conditions with respect to the
A∞ structure maps. We will not reproduce these formulas here but direct the reader
to [14] for more details.

An A∞ functor f : A → B is called a quasi equivalence if the functor that it
induces H0A → H0B is an equivalence of categories.

2.3 Triangulated Karoubi Closures

Given a dg or A∞ category C, one would like to find a triangulated category which
contains C. Broadly, a triangulated category is a category which admits a shift func-
tor [1] and in which one can take (perhaps non-canonically), mapping cones of
morphisms. The goal now is to formally add these features to an A∞ category.
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One way of doing this is to take the category of twisted complexes over C, which
we will denote TwC. Twisted complexes were first defined by Bondal and Kapranov
[15] for dg categories, the definition for A∞ categories that we give here comes from
a number of sources, specifically work of Keller [14], Lefèvre-Hasegawa [16] or
Seidel [10, 17]. We begin by taking the category ZC which formally incorporates
shifts into C.

Definition 2.6 Let ZC be the category whose objects are formal pairs (a, n) with
a ∈ Ob(C) and n ∈ Z. We define

homZC((a, n), (b,m)) = homC(a, b)[m − n].

The A∞ structure is as in C.

The categoryZC admits formal shifts of objects sending
⊕

i ai [i] to
⊕

i ai [i + 1],
and C is equivalent to the full subcategory of objects in the form a[0]. We now need
to add formal mapping cones in order to get a triangulated A∞ category. This is done
as follows.

Definition 2.7 Let us take the category TwC so that Ob(TwC) is made up of pairs
(b, δ) for A = (a1, . . . , an) ∈ Ob(ZC)n and δ a matrix of morphisms, δi, j hom1

ZC

(a j , ai ) a strictly upper triangular matrix, i.e. δi, j = 0 if i ≥ j . We also require that
the Maurer-Cartan equation,

∞∑

i=1

mZC
i (δ, . . . , δ) = 0

is satisfied. Here, we implicitly extend the definition of mZC
i to matrices of homo-

morphisms in a straightforward way. This is a finite sum by the fact that we have
chosen δ to be strictly upper triangular. The space of morphisms between (A, δ) and
(B, τ ) is

⊕
i, j hom�C(ai , b j ) equipped with a twisted set of composition maps. If

we take (Ai , δi ) for i = 1, . . . , n and fi ∈ homTwC((Ai−1, δi−1), (Ai , δi )) then we
define

mTwC
d ( fd , . . . , f1) =

∑

j0,..., jd≥0

mZC
i (δd , . . . , δd︸ ︷︷ ︸

jd

, ad , δd−1, . . . , δd−1︸ ︷︷ ︸
jd−1

, ad−1, . . . ).

�
If f ∈ hom0

TwC((a, δa), (b, δb)) and mTwC
1 ( f ) = 0, then we may define the map-

ping cone of f ,

cone( f ) =
(
a[1] ⊕ b,

(
δa 0
f δb

))

The category TwC should be thought of as the smallest triangulated A∞ category
containingC as a full subcategory. This is analogous to taking the category of bounded
complexes over an abelian category.
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Definition 2.8 An A∞ category is called triangulated if the natural embedding

C ↪→ TwC

is a quasi equivalence of A∞ categories. In the dg case, Bondal and Kapranov [15]
call such categories pretriangulated. �

If an A∞ category is triangulated, then its homotopy category is a k-linear trian-
gulated category.

One might expect at this point that there is an equivalence between TwF(X) and
an A∞ category whose homotopy category is equivalent to Db(coh(X)). However,
the categoryDb(coh(X)) isKaroubi complete, whereas TwF(X) does not necessarily
have this property.

Definition 2.9 A category T is calledKaroubi complete (or split closed), if for every
p ∈ homT(a, a) so that p2 = p, there is a pair ofmorphisms s : a → b and i : b → a
so that s · i = idb and i · s = p.Wewill say that an A∞ category is Karoubi complete
if its homotopy category is Karoubi complete.

The object b in this definition is called the direct image of f . �

Given a k-linear triangulated category, T, we say that a functor F : T → S is
a Karoubi completion of T if F is full and faithful and for every c ∈ S there is
some p ∈ homT(a, a) so that c is isomorphic to a direct image of F(p). A functor
F : A → B of triangulated A∞ categories is a a Karoubi completion of A if the
functor induced on homotopy categories is a Karoubi completion.

Proposition 2.10 (Seidel [10])Every triangulated A∞ category C admits a Karoubi
completion, and any pair of Karoubi completions of C are quasi equivalent.

In fact, Seidel produces such a completion explicitly, which we will not describe
in detail, but we will call �C.

2.4 Enhancements of Db(coh(X))

The goal of this section is to show that there are dg categories whose homotopy
categories are equivalent to the bounded derived category of coherent sheaves on a
variety X .

Definition 2.11 A dg (resp. A∞) enhancement of a triangulated category T is a dg
(resp. A∞) category C whose homotopy category is equivalent to T. �

In mirror symmetry, categories of B-branes are usually described in terms of
categories of coherent sheaves. Let X be a smooth projective variety over a field k.
Then associated to X is the category qcoh(X) of quasi coherent sheaves. One can
then take the category of complexes of quasicoherent sheaves, K(qcoh(X)). This is
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naturally a dg category, where homomorphism complexes are given as in Example
2.1. A complex I • is called h-injective if for every complex J • isomorphic to 0 in
D(qcoh(X)),

homK(qcoh(X))(J
•, I •) ∼= 0.

Here ∼= denotes quasi isomorphism of complexes. The full subcategory I(X) of
h-injective complexes of quasi coherent sheaves has homotopy category which is
equivalent to the derived category of quasi coherent sheaves, D(qcoh(X)). The
bounded derived category of coherent sheaves on X can be written as a full subcate-
gory of D(qcoh(X))made up of bounded complexes whose cohomology sheaves are
coherent. Therefore, there is a full subcategory of D(qcoh(X))which is equivalent to
Db(coh(X)). Since I(X) has, up to equivalence in the homotopy category, the same
objects as D(qcoh(X)), we can defineDb

dg(coh(X)) to be the full subcategory of I(X)

made up of objects which are equivalent to objects in Db(coh(X)) ⊆ D(qcoh(X)).
The category Db

dg(coh(X)) has homotopy category which is equivalent to
Db(coh(X)), hence it is a dg enhancement of Db(coh(X)). There are many dg en-
hancements of categories of coherent sheaves; several are described in [18, 19], but
a beautiful result of Lunts and Orlov shows that any pair of dg enhancements of
Db(coh(X)) are quasi equivalent.

2.5 Homological Mirror Symmetry for Calabi–Yau Manifolds

We are now equipped to state what homological mirror symmetry means for a pair
of Calabi–Yau manifolds.

Definition 2.12 Let (X, I,ω) and (X∨, I∨,ω∨) be a pair of Calabi–Yau varieties.
If there is a quasi equivalence of A∞ categories,

�TwF(X,ω) ∼= Db
dg(coh(X

∨, I∨))

and vice versa, then we say that (X, I,ω) and (X∨, I∨,ω∨) are homologically mirror
to one another. �

It is quite difficult to show that mirror symmetry holds precisely as in Definition
2.12. Versions of homological mirror symmetry are known for certain Calabi–Yau
varieties of higher dimension, though in these cases, one has that the Fukaya category
of (X,ω) is defined over the Novikov field, not C, so no such equivalence can hold.
Therefore, the right hand side is replaced by a Calabi–Yau variety over �Q, which
should be thought of as a small deformation of a highly degenerate Calabi–Yau
variety. This will be explained in more detail in Sect. 3.2.
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3 Mirror Symmetry for Calabi–Yau Manifolds

This sectionwill describe some known results regardingmirror symmetry forCalabi–
Yau varieties. We begin by explaining the most accessible case, that of the elliptic
curve, then we will explain what is known in higher dimensions.

3.1 The Elliptic Curve

The form of homological mirror symmetry for elliptic curves discussed here was
sketched by Kontsevich [5], where it was noticed that the Floer product between
certain Lagrangian submanifolds on an elliptic curve can be used to recover classical
theta functions. Therefore, there is close resemblance between Floer products and
compositions of line bundle homomorphisms. This was made precise a little later by
Polishchuk and Zaslow [20]. There are other proofs of homological mirror symmetry
for elliptic curves that have appeared in recent years, due to Lekili and Perutz [21],
as well as Abouzaid and Smith [22] which are similar to one another in spirit, and are
similar to the proofs of homological mirror symmetry in higher dimensions discussed
in Sect. 3.2.

In this section, we will review some of the most convincing evidence for homo-
logical mirror symmetry in the case of an elliptic curve. The reader can refer to [20,
Sect. 4] for details. Let’s represent E as R2/Z2 be the square torus. We choose a
symplectic form

ds2 = adx ∧ dy

so that E has area a. Then everyLagrangian can bewritten uniquely up to hamiltonian
isotopy as the image in E of a line of rational slope. We will also need to choose a
B-field, b ∈ H2(E,R) again represented by a form bdx ∧ dy. The data (b + ia)dx ∧
dy is called a complexified Kähler form on E . From here on, we will denote by E
the torus R2/Z2 equipped with the complexified Kähler form (b + ia)dx ∧ dy, and
by E ′, the complex torus C/(Z + Zτ ) for τ = b + ia.

The elements of the Fukaya category of E are quadruples of Lagrangians with
gradings, spin structure and flat unitary bundles.

We wish to show that there is a relationship between the subcategory of F(E)

made up of Lagrangians on E descending from lines of slope d ∈ Z equipped with
unitary rank one local system and the category of line bundles on E ′ of degree d. We
will outline some coarse heuristics first.

If we pick a slope d, then there is an S1 of Lagrangians of slope d depending
on the x-intercept of the corresponding line in R

2. A unitary local system on such
a Lagrangian is determined by its holonomy, which in this case, is just a number in
S1. Therefore, for a given slope d, there is an S1 × S1s worth of Lagrangians branes
with this slope. Topologically, this corresponds to the fact that the moduli space of
degree d line bundles on E ′ is isomorphic to E ′, in other words it is topologically a
torus.
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The relationship is obviously deeper than this; let’s say we have a pair of line
bundles L1 and L2 of degrees d1 and d2. Then we might ask what the space of
homomorphisms looks like between L1 and L2. We know that if d1 < d2,

dimC hom0
E ′(L1,L2) = dimC H0(E ′,L2 ⊗ L−1

1 ) = d2 − d1

by the Riemann-Roch theorem. Now let us take two Lagrangians branes L#
1 and L#

2
with rank one unitary local systems and so that the Lagrangian submanifolds L1 and
L2 underlying these branes come from lines in R of slopes d1 and d2 respectively.
Then homF(E)(L#

1, L
#
2) is simply a vector space whose basis is given by the intersec-

tion points of L1 and L2. A priori, the degree of these homomorphisms depends on
gradings on L#

1 and L#
2, but regardless, homF(E)(L#

1, L
#
2) is concentrated in a single

degree n. One can arrange matters so that if d1 < d2 then n = 0. It is easy to see that
L1 ∩ L2 is a union of d2 − d1 points, so

dimC hom0
F(E)(L

#
1, L

#
2) = d2 − d1.

So dimC homE ′(L1,L2) = dimC homF(E)(L#
1, L

#
2). What’s more interesting is the

result of composing homomorphisms. Recall that for a line bundle on an elliptic
curve E ′, where E ′ is written as C/(Z + Zτ ) for τ ∈ H, then sections of any line
bundleL can be represented as entire functions on Cwhich satisfy certain functional
equations. Let us give a simple example of this which appears in [23]. Define theta
functions with rational characteristics a, b as

θa,b(z; τ ) =
∑

n∈Z
exp(πi(n + a)2τ + 2πi(n + a)(z + b)),

The function s = θ0,0(z; τ ) is a basis of sections for L = OE ′((0)) where (0) is the
point in E ′ mapped to by 0 under the covering map C → C/(Z + Zτ ). One may
write sections of L2 as t1 = θ0,0(2τ , 2z) and t2 = θ 1

2 ,0
(2τ , 2z). A classical result is

that the identity

θ0,0(τ , z)2 = θ0,0(2τ , 0)θ0,0(2τ , 2z) + θ 1
2 ,0

(2τ , 0)θ 1
2 ,0

(2τ , 2z).

This relation as saying that the map

homE (L,L2) ⊗ homE ′(OE ′ ,L) → homE ′(OE ,L2)

can bewritten in terms of the basis s of H0(E ′,L) and the basis t1, t2 of H0(E ′,L2) as

s2 = θ0,0(2τ , 0)t1 + θ 1
2 ,0

(2τ , 0)t2,

(herewe regard s, t1, t2 as homomorphisms between bundles obtained bymultiplying
by the corresponding section).More generally, ifwe represent sections of line bundles
L1,L2 and L1 ⊗ L2 as theta functions on E , then the maps
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homE ′(L1,L1 ⊗ L2) ⊗ homE ′(OE ′ ,L1) → homE ′(OE ′ ,L1 ⊗ L2)

have relations whose coefficients are obtained by evaluating theta functions for some
values of τ and z.

On the other hand, homomorphisims in F(E) come with chosen bases, coming
from points of intersection between Lagrangians. In the Fukaya category, one has
that if p ∈ L1 ∩ L2, q ∈ L2 ∩ L3 then

m2(p, q) =
∑

r∈L1∩L3

C(p, q, r)r

where

C(p, q, r) =
∑

φ∈M(p,q,r)

± exp

(
2πi

∫

D
φ∗ω

)
hol(φ(∂D)).

HereM(p, q, r) is themoduli space of immersed pseudoholomorphic discsφ : D →
E with boundary along L1, L2 and L3 and whose vertices are p, q and r . The term
hol(φ(∂D)) is a term measuring the holonomy of the induced local system around
the boundary of D. In this case, this reduces to counting immersed triangles in E
with edges in L1, L2 and L3 and vertices p, q and r with weighs corresponding to
the area of the given triangle and holonomy around its boundary. These counts can
be done in such a way that the value of C(p, q, r) is identified with a translate of
a theta function evaluated at τ = b + ia, z = 0. For instance, if we let L1 be the
Lagrangian of slope 0 passing through the origin, L2 a Lagrangian of slope 1 passing
through the origin and L3 a Lagrangian of slope 2 passing through the origin, then
L1 ∩ L2 = e1 = (0, 0) = L2 ∩ L3 and L1 ∩ L3 = {e1, e2 = (1/2, 0)}. Equip all of
these Lagrangians with trivial flat unitary bundles of rank 1. Then we have that

m2(e1, e1) = C(e1, e1, e1)e2 + C(e1, e1, e2)e2.

Polishchuk and Zaslow compute that

C(e1, e1, e1) = θ0,0(2(b + ia), 0), C(e1, e1, e2) = θ 1
2 ,0

(2(b + ia), 0).

Therefore, the map sending Li �→ Li has the same composition maps on both sides.
More generally we match the canonical bases of homE ′(L1,L2) coming from

theta functions with the canonical bases of homF(E)(L#
1, L

#
2), then m2 on F(E)

can be matched with composition of homomorphisms of line bundles. Since one
can show that m1 vanishes, this is enough to show that a partial equivalence holds
between Db(coh(E ′)) and H0F(E). The main theorem of [20] extends this to vector
bundles and shows that

Theorem 3.1 There is an equivalence of graded categories,

Db(coh(E ′)) ∼= H0F(E).
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Polishchuk [24] has sharpened this result to prove that there is a natural minimal
A∞ enhancement of Db(coh(E ′)) so that the higher multiplications agree with those
in F(E) [24]. See [6, Sect. 4] for a more detailed discussion.

3.2 Calabi–Yau Varieties in Higher Dimension

Seidel outlined an approach to homological mirror symmetry in his 2002 ICM lecture
[8] based on deformation theory of Fukaya categories. The basic idea has its roots in
classical mirror symmetry. In its roughest form, mirror symmetry is an isomorphism
between the complexified Kähler moduli space of X and the complex moduli space
of X∨. The catch is that this isomorphism might only hold between a neighbourhood
of a very bad point in the boundary of the complexmoduli space of X∨ corresponding
to a very singular Calabi–Yau variety, and a neighbourhood of the large radius limit
in of the moduli space of complexified Kähler forms on X . So we might begin by
looking a degenerate Calabi–Yau varieties, and try to relate them to the Fukaya cat-
egories of Calabi–Yau varieties with large complexified Kähler forms. If we replace
a complexified Kähler form with an ample divisor, and we make that divisor very
large, this corresponds to giving more and more importance to the complement of
this divisor in X .

The idea is then that the Fukaya category of the complement of an ample hy-
persurface in a compact Calabi–Yau manifold is expected to be equivalent to the
category of perfect complexes on a degenerate mirror Calabi–Yau variety.

This is beautifully exhibited in papers of Lekili and Perutz [21] and Lekili and
Polishchuk [25], where it is shown that the exact Fukaya category of a 2-torusTwith
n points removed satisfies

DπF(T \ {p1, . . . , pn}) ∼= Perf(Gn)

where Gn is a cycle of n rational curves and Perf(Gn) denotes its category of perfect
complexes.

The next step in Seidel’s approach is to define the relative Fukaya category of
X with respect to D, denoted F(X, D). This is a category with the same objects
as F(X\D), but whose homomorphisms are deformed over �Z by counting discs
intersecting D k times with weight qk . Recall that elements of �Z are certain infi-
nite series in a variable q with fractional exponents. When we specialize to q = 0
we recover the Fukaya category F(X\D), and when we specialize to the algebraic
closure of the fraction field of �Z, denoted �Q, then we should recover F(X).

Seidel uses this idea to prove a version ofmirror symmetry for quarticK3 surfaces.
Consider

G =
{

(a1, a2, a3, a4) ∈ (Z/4)4 :
∑

i

ai = 0

}
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and let Xq be a minimal resolution of the K3 surface over �Q defined by

(qx4 + y4 + z4 + w4) + xyzw ⊆ P
3/G,

where G is used to act component-wise on P3. Then there is some A∞ enhancement
Db∞(coh(Xq)) of Db(coh(Xq)) so that

Theorem 3.2 There is an equivalence of A∞ categories over �Q,

ψ∗Db
∞(coh(Xq)) ∼= DπF(X),

for some continuous automorphism ψ of �Q.

To prove this, Seidel uses the fact that X\D admits a Lefschetz fibration, then the
work of [10] allows him to computeF(X\D). He then uses results on the deformation
theory of categories to conclude that his equivalence holds.

Nick Sheridan [13] has proved similar results (by slightly different methods) for
degree (n + 1) hypersurfaces in Pn .

4 Mirror Symmetry for Fano Manifolds

It is expected that a version of homologicalmirror symmetry holds for Fanomanifolds
as well. Recall the definition of a Fano manifold:

Definition 4.1 A smooth projective variety is called Fano if its anticanonical line
bundle ω−1

X = ∧dim X
�X is ample.

Example 4.2 If X is a smooth hypersurface inPn cut out by a homogeneous equation
of degree ≤ n, then X is a Fano variety, since ω−1

X = OPn (n − deg X) by adjunction.
�

Example 4.3 Choose 0 ≤ k ≤ 8 points in general position on P2. Then denote by Sk
the blow up of P2 in these points. The variety Sk is a Fano variety called a del Pezzo
surface. Any Fano surface is either equal to Sk for some k, or P1 × P

1. �

If X is a Fano variety and we assume that we have chosen D a normal crossings
anticanonical divisor with σD a section of ωX vanishing along D, then σD is a
nonvanishing section of ωX\D , hence it provides an isomorphism between ωX\D and
OX\D . Therefore X\D is a Calabi–Yau variety, so U = X\D has a mirror Calabi–
Yaumanifold V . In his seminal work, [26], Auroux demonstrates that putting D back
into U corresponds to choosing a regular function on V . Therefore, the mirror to a
Fano manifold is a pair of (V,w) where V is a noncompact Calabi–Yau variety and
w is a regular function on V . This pair is called a Landau-Ginzburg model.

Remark 4.4 This formulation of mirror symmetry for Fano manifolds goes back
further than Auroux, of course. It has been understood for a long time in the physics
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Table 1 Categories involved
in mirror symmetry for Fano
varieties and
Landau-Ginzburg models

B side A side

Fano Db(coh(X))
∐

λ F(X)λ

LG
∐

λ MF(V,w − λ) FS(V,w)

literature [27] and even in the mathematical literature [2] that the mirror of a Fano
manifold is a Landau-Ginzburg model. We refer to Auroux’s work to emphasize the
fact that he gives a mathematical explanation for why mirror symmetry takes this
form. �

The next two sections are devoted to explaining how homological mirror symme-
try is formulated for Fanomanifolds. The challenge that we are confronted with is the
fact that the function w is an integral part of the Landau-Ginzburg model, therefore
we must construct categories which integrate w in some way. A summary is given
in Table1.

In Table1, the row “Fano” denotes the A side and B side categories associated
to a Fano variety, and the row “LG” denotes the categories associated to a Landau–
Ginzburg model. Mirror symmetry is a relation between the Fano A side (resp. B
side) category and the Landau–Ginzburg B side (resp. A side) category.

4.1 The Directed Fukaya Category

There is an issue when trying to define the Fukaya category of a noncompact man-
ifold, which is that if on allows noncompact Lagrangian branes, then it can be hard
to control their behaviour. The solution is to force our Lagrangian branes to have
specified behaviour in a neighbourhood of the boundary of M . Not much is known
about Fukaya categories defined this way, as far as I’m aware, but Seidel has con-
structed a category called the directed Fukaya category or the category of vanishing
cycles which should capture the same information. The problem with Seidel’s cat-
egory is that it assumes that the function w has only extremely mild singularities.
This assumption is fine in low dimensions, or for the mirrors of simple varieties, but
in many interesting examples w is very badly behaved.

Let us take (E,ω, J ) to be the data of an symplectic manifold E of dimension
2d where ω ∈ �2

E is a symplectic form on E , and J is an almost complex structure
which is compatible with ω. We will let π be a symplectic morphism from E to an
open subset S ⊆ R

2 which is compatible with this almost complex structure. We will
assume that this is Lefschetz fibration. In effect, this means that π has a finite number
of critical points, and near the critical points, π looks like

d∑

i=1

x2i
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Fig. 1 Vanishing cycle of a
node

where xi are coordinates with respect to the almost complex structure J . We also
must assume that π behaves nicely “at infinity” in the fibers. For instance, this means
that if one removes fibers ofπ containing critical points, whichwe denote crit(π), one
obtains a symplectic fiber bundle over S\�. The symplectic structure on E allows
us to define a parallel transport between fibers of π along paths in S. If we choose a
differentiable map γ : [a, b] → S, we get a symplectomorphism ργ : Eγ(a) → Eγ(b).

Let us denote by �π the set of critical values of π. Take p ∈ � and consider a
point s near p and a smooth map γ : [0, 1] → S so that γ(0) = s and γ(1) = p.

If we let x be the critical point of π in Ep then we may define

B =
{
y ∈ Eγ(s) : 0 ≤ s ≤ 1 with lim

t→1
ργ|[s,t](y) = x

}

which is a ball in E whose boundary in Es is a Lagrangian sphere. This set is depicted
in Fig. 1.

We will choose a base point s in S and a path γp from s to every p ∈ �π which
do not intersect each other except at s. The paths γp can be cyclically ordered by
choosing one to be γ1, the one to it’s left to be γ2 and so on. This gives us an ordered
set of Lagrangian spheres in Es , whichwe denote L1, . . . , Lk , where k = |�π|.When
d = 1, we choose the nontrivial spin structure on Li , otherwise, there is only one
possible spin structure on Li . We can choose gradings arbitrarily, and the resulting
structure allows us to promote Li to Lagrangian branes L#

i , elements of F(Es)where
Es := π−1(s).

Let us denote � = {γp : p ∈ �π}. Using the notation of Auroux, Katzarkov and
Orlov, we define the category Lagvc(π, �) to be the category with k objects �i cor-
responding to the L#

i above, and so that
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homLagvc(π,�)(�i , � j ) =

⎧
⎪⎨

⎪⎩

homF(Es )(L
#
i , L

#
j ) if i < j,

k · id�i if i = j,

0 if i > j.

Composition of homomorphisms is taken inside of F(Es) if i < j , and composition
with id�i is the identity. This category is called several things in the literature, but we
will call it the directed Fukaya category of Lagrangian vanishing cycles. It is clear
that the category Lagvc(π, �) depends heavily on �, but it is a theorem of Seidel
[28] that the category of twisted complexes over Lagvc(π, �) is invariant under a
certain braid group action on the set of all paths, called mutations. We will denote
DbLagvc(π, �) the category H0TwLagvc(π, �).

The category DbLagvc(π, �) has a full exceptional collection of objects given by
�1, . . . , �k , therefore it is closely related to categories of representations of certain
algebras.

4.2 Mirror Symmetry

This allows us to state the homological mirror symetry for some Fano varieties.

Conjecture 4.5 If X is a Fano variety and its mirror Landau–Ginzburg model
((E,ω, J ),π) is a symplectic Lefschetz fibration then there is an equivalence of
categories

Db(coh(X)) ∼= DbLagvc(π, �).

This has been proven in a number of cases. The most basic is that of del Pezzo
surfaces [29]. In this case, the Landau–Ginzburgmirror of X is given by the following
construction.

We take first of all the Landau–Ginzburg mirror of P2. This is written as the pair

(C×)2, π(x, y) = x + y + 1

xy
.

One can compactify (C×)2 to a surface X9 which is fibered over P1 by a function
f and so that f|(C×)2 is equal to π. The fibers over 3ζ i3 are nodal elliptic curves, the
fiber over ∞ is a chain of 9 rational curves and every other fiber is a smooth genus 1
curve. We can deform X9 smoothly so that for each 0 ≤ n ≤ 8 there are 3 + n nodal
elliptic curve fibers over points in A

1 = P
1\∞ and the fiber over ∞ is a chain of

9 − n curves. Call the resulting surface X9−n for each n, and let f9−n be the morphism
from X9−n to P1. Let

Y9−n = X9−n\f−1
9−n(∞), w9−n = f9−n|Y9−n .
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Then, for an appropriate choice of symplectic form on Y9−n , Auroux, Katzarkov and
Orlov prove that homological mirror symmetry holds.

Theorem 4.6 (Auroux, Katzarkov and Orlov, [23]) For an appropriate choice of
complexified Kähler form β + iω on Y9−n and a choice of basis of paths �, there is
a del Pezzo surface Sn so that

Db(coh(Sn)) ∼= DbLagvc(w9−n, �).

In fact, [23] proves much more than this. If one lets β + iω be a general sym-
plectic form on Y9−n which does not come from a symplectic form on X9−n , then
there is no Sn so that Db(coh(Sn)) ∼= DbLagvc(w9−n, �). Instead, one can interpret
DbLagvc(w9−n, �) as the derived category of coherent sheaves on a noncomutative
del Pezzo surface. This is said precisely in [23, Sect. 2].

The computations of [23] are similar to those of Polishchuk and Zaslow’s, since
nontrivial part of DbLagvc(w9−n, �) occurs in the Fukaya category of a smooth fiber
of w9−n , which is just a two dimensional torus. In the case of the Landau–Ginzburg
mirror of P2, if we choose s = 0 to be straight line paths to 3ζ i3, then it not difficult to
compute that the vanishing cycles are Hamiltonian isotopic to Lagrangians of slopes
0, 3, 6. Therefore, under Polishchuk and Zaslow’s correspondence, there are line
bundles of degrees 0, 3, 6 corresponding to these Lagrangians. These three objects
should correspond to the restrictions of OP2 ,OP2(1),OP2(2) to a smooth cubic curve
in P2, which, as we know, should be mirror to the fiber of w9.

4.3 Other Results

Auroux,Katzarkov andOrlovhaveprovedvery similar results forweightedprojective
planes and Hirzebruch surfaces in [29]. Ueda proved homological mirror symmetry
for toric del Pezzo surfaces in [30]. In [31], Futaki andUeda prove homologicalmirror
symmetry holds for all projective spaces and many weighted projective spaces. In
[32], Abouzaid uses a different approach to prove homological mirror symmetry for
many toric Fano varieties.A radically different formof homologicalmirror symmetry
for Fano varieties appears in the work of Zaslow and collaborators [33–35], which
replaces Fukaya categories with the dg category of perverse sheaves on (C×)n with
microlocal support in a given singular Lagrangian.

4.4 Categories of Matrix Factorizations

We will now discuss the B model category associated to a Landau–Ginzburg model.
This category is known as the category of matrix factorizations. Interestingly, the
Fukaya category of a Fano variety only has a Z/2-grading, so we will find a d(Z/2)g
category corresponding to it.
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Consider the pair (V,w) where V is an affine variety and w ∈ C[V ] is a regular
function1.Define the categoryMF(V,w) so that Ob(MF(V,w)) is made up of triples

P = (P0, P1, δ1, δ2)

with P0, P1 ∈ mod(C[V ]), and δ0 ∈ homC[V ](P0, P1) and δ1 ∈ homC[V ](P1, P2) so
that δ0 · δ1 = w · idP1 and δ1 · δ0 = w · idP0 . We can also envision objects as pairs,

P =
(
P0 ⊕ P1, δ =

(
0 δ1
δ0 0

))
.

We define homomorphisms as,

homMF(V,w)(P, Q) = homC[V ](P0, Q0) ⊕ homC[V ](P1, Q1)

⊕ homC[V ](P0, Q1) ⊕ homC[V ](P1, Q0).

This is given the structure of a Z/2-graded complex where the first two terms are in
degree 0 and the second two are in degree 1. We will write homomorphisms then as
matrices. There is a differential on this complex given by

dφ = dQφ + (−1)degφφdP .

The categoryMF(V,w) is a triangulated d(Z/2)g category, and hence its homotopy
category is a triangulated category.

Orlov [36] has shown that this category has geometric meaning. There is an
equivalence,

H0MF(V,w) ∼= Db
sg(w

−1(0)).

The category Db
sg(w

−1(0)) is by definition the Verdier quotient of the category
Db(coh(w−1(0))) by its full subcategory of perfect complexes denoted Perf(w−1(0)).
If w−1(0) is a smooth variety, then Db

sg(w
−1(0)), so Dsg(w−1(0)), and by proxy

MF(V,w), measure how singular w−1(0) is.

4.5 Mirror Symmetry

One expects that if X is a Fano manifold and (V,w) is its Landau–Ginzburg mirror
there is an equivalence between H0MF(V,w) and th Fukaya category of a Fano
variety. We will now outline how this correspondence is expected to go.

The Fukaya category of a Fano manifold whose symplectic structure is given by
the class of ω−1

X is in general obstructed. This means that there is a non trivial m0

1One can forget the condition that X be affine, though this comes at the cost of clarity.
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class taking part in the A∞ relations. For each object L#, there is a constant λL so
that if f ∈ homF(X)(L#

1, L
#
2) then

m1(m1( f )) = (λL1 − λL2) f.

As was mentioned earlier, obstructed A∞ categories are hard to work with, so our
goal will be to break F(X) into pieces. For each λ ∈ C, the full subcategory of F(X)

made up of A-branes L# so that λL = λ can be given the structure of an unobstructed
A∞ category. Therefore, for all λ ∈ C, we get a categoryF(X)λ. There is only a finite
number of values of λ for which F(X)λ is non trivial.

On the other hand, we have a category of matrix factorizations for each λ ∈ C,
obtained as MF(X,w − λ). Homological mirror symmetry then predicts that

Conjecture 4.7 If X and (V,w) form a homologically mirror dual pair, then for
each λ ∈ C, there is an equivalence of categories,

DπF(X)λ ∼= H0MF(X,w − λ).

This has been proved by Sheridan for degree a Fano hypersurfaces in P
n−1. Par-

ticularly, Sheridan takes the potential function

Zn
a := u1 . . . un +

n∑

j=1

uaj

as a polynomial map from C
n to C. He then lets Wn

a = Zn
a + wn

a for some constant
wn

a . Then the group

(�n
a )

∗ = {(ζ1, . . . , ζn) ∈ (Z/a)n : ζ1 + · · · + ζn = 0}

acts naturally on C
n , and so that Wn

a descends to a regular function W̃n
a on V n

a . We
let V n

a = C
n/(�a

n )
∗, then we define the pair

(V n
a , W̃n

a)

to be theLandau–Ginzburgmirror of a smoothdegreea hypersurface inPn+1, denoted
Xn
a . Then Sheridan shows that for the pair Xn

a and (V n
a ,Wn

a), Conjecture 4.7 holds.
Properly, one should first take a smooth crepant resolution of V n

a , since it is highly
singular at the origin, however the resulting category will be equivalent. This is
discussed in [28] and [37].

Remark 4.8 We should note that there are expected to be other homological mirrors
to a given Fano variety. The construction of mirrors of Fano manifolds of Auroux
discussed at the beginning of this section produces a mirror of dimension equal
to that of the original Fano manifold. In Sheridan’s construction, the mirror has
dimension dim Xn

a + 2. In the case of hypersurfaces in projective space, there is
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another construction of the mirror manifold [2] which should, in theory, produce
the same thing as Auroux’s construction. There is a construction called Knörrer
periodicity [36] which likely relates the categories of matrix factorizations of the LG
mirrors constructed by Givental to those of Sheridan.

5 Mirror Symmetry for Varieties of General Type

Recall the following definition.

Definition 5.1 A smooth projective variety is said to be of general type if its canon-
ical bundle is ample.

Stereotypical examples of varieties of general type are curves of genus ≥ 2 and
smooth hypersurfaces in Pn of degree ≥ n + 2.

Katzarkov [38] has conjectured that a form of homological mirror symmetry
holds for varieties of general type. In this case the mirror is again conjectured to
be a Landau–Ginzburg model. Furthermore, if X is a variety of general type and
(V,w) is its mirror, then we expect that V is not of the same dimension as X , a
phenomenon that was somewhat pathological in Sheridan’s proof of homological
mirror symmetry.

Conjecture 5.2 If X and (V,w) are homologically mirror dual, then

MF(V,w) ∼= F(X)

Note that this differs from homological mirror symmetry for Fano varieties in that
we are only considering matrix factorizations with respect to w, not w − λ for all
λ ∈ C.

The best understood case of homological mirror symmetry for manifolds of gen-
eral type, by which I mean the only case in which Conjecture 5.2 has been proven,
is that of curves of genus ≥ 2. We will review what is known here.

Consider a compact Riemann surface Mg of genus g, equipped with a natural
symplectic form (of which there is, up to equivalence and scaling, only one). We
construct its Landau–Ginzburg mirror, starting with the data

V = C
3, wg = −z1z2z3 + z2g+1

1 + z2g+1
2 + z2g+1

3 .

Thenone takes the quotient ofC3 by a subgroup Kg of SL3(C) isomorphic toZ/(2g +
1) generated by the matrix ⎛

⎝
ζ 0 0
0 ζ 0
0 0 ζ2g−1

⎞

⎠ .

Note thatwg is invariant under the action of this group, thus it descends to a function
w′

g on C
3/Kg . The quotient space C/Kg has a singularity at the image of (0, 0, 0),
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but this singularity can be crepantly resolved by toric methods. The resulting variety
is a smooth variety Hg admits the following morphism

Hg → C
3/Kg

w′
g−→ C

which we will denote w̃g . The pair (Hg, w̃g) is the Landau–Ginzburg mirror of Mg.
The following theorem is proved by Seidel in the case where g = 2 and by Efimov
[37] in the case where g > 2. One does not know that that category Db

sg(w̃
−1(0)) is

Karoubi complete, so it is necessary to add some objects for it to be equivalent to
Dπ(F(Mg)). Denote by Db

sg(w̃
−1(0)) the Karoubi completion of Db

sg(w̃
−1(0)).

Theorem 5.3 (Seidel [28], Efimov [37]) There is an equivalence of Z/2 graded
triangulated categories,

Db
sg(w̃

−1
g (0)) ∼= DπF(Mg).

The proof of this result proceeds as follows. Seidel and Efimov find 2g + 1 gen-
erators of DπF(Mg) and compute part of the A∞ structure on the homomorphisms
between them. Then they compute a minimal A∞ category which is equivalent to a
dg extension of Db

sg(w̃
−1
g (0)). Then they compare A∞ structures to show that these

categories are equivalent.
The fact that the Landau–Ginzburg mirror of Mg is obtained as the resolution of

a quotient of C3 plays a key role in the proofs appearing in [28] and [37], however
this does not seem to be a general feature. A more general construction of mirrors of
varieties of general type which are complete intersections in smooth toric varieties
appears in work of Katzarkov, Gross and Ruddat [39]. They do not prove results
about homological mirror symmetry, however. Their results are exclusively in terms
of the cohomology of X and its mirror.

One would expect that an version of homological mirror symmetry holds between
the Fukaya-Seidel category of (Hg, w̃g) and Mg . Precisely, we should let H 0

g be the
preimage of a small disc in C containing 0, and let w̃0

g be the restriction of w̃0 to
H 0

g . There is a Fukaya-style category F(H 0
g , w̃0

g) associated to the pair (H
0
g , w̃0

g). We
conjecture that;

Conjecture 5.4 For some choice of symplectic form on Hg and for some choice of
complex structure on Mg , there is an equivalence of categories,

Db(coh(Mg)) ∼= Dπ(F(H 0
g , w̃0

g)).

The issue with this is similar to the issue we confronted when discussing homo-
logical mirror symmetry for more complicated Fano varieties, that is, the category
F(H 0

g , w̃0
g) is not very well understood. To my knowledge, this version of mirror

symmetry is completely open.
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The SYZ Conjecture via Homological
Mirror Symmetry

Dori Bejleri

1 Introduction

These are expanded notes based on a talk given at the Superschool on Derived
Categories and D-branes held at the University of Alberta in July of 2016. The goal
of these notes is to give a motivated introduction to the Strominger-Yau-Zaslow
(SYZ) conjecture from the point of view of homological mirror symmetry.

The SYZ conjecture was proposed in [35] and attempts to give a geometric expla-
nation for the phenomena of mirror symmetry. To date, it is still the best template for
constructing mirrors X̌ to a given Calabi–Yau n-fold X . We aim to give the reader
an idea of why one should believe some form of this conjecture and a feeling for the
ideas involved without getting into the formidable details. We assume some back-
ground on classical mirror symmetry and homological mirror symmetry as covered
for example in the relevant articles in this volume.

Should the readers appetite be sufficiently whet, she is encouraged to seek out
one of the many more detailed surveys such as [2, 3, 10–12, 18–20] etc.

2 From Homological Mirror Symmetry to Torus Fibrations

Suppose X and X̌ aremirror dual Kähler Calabi–Yau n-folds. Kontsevich’s homolog-
ical mirror symmetry conjecture [29] posits that there is an equivalence of categories

Fuk(X) ∼= Db(Coh(X̌))
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between1 the Fukaya category of X and the derived category of X̌ . This should make
precise the physical expectation that “the A-model on X is equivalent to the B-model
on X̌ .” The basic idea of the correspondence is summarized by the following table:

A-model on X B-model on X̌

Objects Lagrangians with flat U (m)-connection (L ,∇) (complexes) of coherent sheaves F
Morphisms Floer cohomology groups HF∗(L , M) Ext groups Ext∗(F,G)

Endomorphism algebra HF∗(L , L) = H∗(L) Ext∗(F,F)

Nowwe can now try to understand how this correspondence shouldwork in simple
cases. The simplest coherent sheaves on X̌ are structure sheaves of points Op and
indeed X̌ is the moduli space for such sheaves:

{Op : p ∈ X̌} ∼= X̌ .

Therefore there must be a family of Lagrangians with flat connections (L p,∇p)

parametrized by p ∈ X̌ and satisfying

H∗(L p) ∼= Ext∗(Op,Op).

Let us compute the right hand side explicitly.
This question is local so we can reduce to an affine neighborhood U of p. Since

U is smooth at p, then p is the zero set of a sectionOU → V ∼= O⊕n
U . Dualizing, we

obtain an exact sequence

V ∗ s �� OU
�� Op

�� 0

that we can extend by the Koszul resolution

0 �� ∧n V ∗ sn �� ∧n−1 V ∗ sn−1 �� . . .
s2 �� V ∗ s �� OU �� Op �� 0 .

where

sk(v1 ∧ . . . ∧ vk) =
k∑

i=1

s(vi )v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk .

Truncating and applying Hom(−,Op) gives us

0
∧n Vp

�� ∧n−1 Vp
�� . . .�� Vp

�� kp�� 0��

1One should work with the dg/A∞ enhancements of these categories but we ignore that here.
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where kp is the skyscraper sheaf at p, Vp is the fiber of V , and all the morphisms are
0 since s(w) vanishes at p for any w. It follows that

Ext∗(Op,Op) =
n⊕

k=0

k∧
Vp

where Vp is an n-dimensional vector space (in fact isomorphic by the section s to
TpU ).

Therefore we are looking for Lagrangians L p in X with

H∗(L p) ∼=
n⊕

k=0

k∧
Vp

where Vp is an n-dimensional vector space. If we stare at this for a while, we realize
this is exactly the cohomology of an n-torus; H∗(L p) ∼= H∗(T n). This suggests that
points p ∈ X̌ might correspond to Lagrangian tori in X with flat connections.

We are led to consider the geometry of Lagrangian tori in the symplectic manifold
(X,ω). The first thing to note is that under the isomorphism T X ∼= T ∗X induced
by the symplectic form, the normal bundle of a Lagrangian L is identified with its
cotangent bundle:

NL X ∼= T ∗L .

In fact,more is true. There is always a tubular neighborhoodof Nε(L) in X isomorphic
to a neighborhood of L in NL X , and under this identification we get that Nε(L) is
symplectomorphic to a neighborhood of the zero section in T ∗L with the usual
symplectic form by the Weinstein neighborhood theorem [38, Corollary 6.2].

On the other hand, if L ∼= T n is an n-torus then T ∗L ∼= R
n × T n is the trivial

bundle. Therefore we can consider the projection

μ : R
n × T n → R

n .

This is a Lagrangian torus fibration over T ∗L over an affine space. The restriction
of μ to the tubular neighborhood Nε(L) under the aforementioned identification
equips X with the structure of a Lagrangian torus fibration, at least locally around a
Lagrangian torus.

The SYZ conjecture predicts that this is true globally: given a Calabi–Yau mani-
fold X for whichwe expect mirror symmetry to hold, then X should be equippedwith
a global Lagrangian torus fibration μ : X → B which locally around smooth fibers
looks like the fibration T ∗T n → R

n over a flat base. By the previous discussion, X̌
should be the moduli space of pairs (L ,∇) where L is a Lagrangian torus fiber of
μ and ∇ is a flat unitary connection on the L . However μ can, and often will, have
singular Lagrangian fibers (see Remark 2.1.ii) and understanding how these singular
fibers affect X̌ is the greatest source of difficulty in tackling the SYZ conjecture.
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Let us momentarily restrict to the open locus B0 ⊂ B over which μ has smooth
torus fibers and denote the restriction μ0 : X0 → B0. Then there is an open subset
X̌0 ⊂ X̌ for which the description as a moduli space of pairs (L ,∇) of a smooth
Lagrangian torus fiber of μ0 equipped with a flat unitary connection makes sense.
We can ask what structure does X̌0 gain from the existence of μ : X → B?

Viewing B0 as the space of smooth fibers ofμ, there is a naturalmap μ̌0 : X̌0 → B0

given by (L ,∇) �→ L . Now a flat unitary connection ∇ is equivalent to a homomor-
phism

Hom(π1(L),U (m)).

Since X̌0 must be 2n real dimensional and μ̌0 is a fibration over an n real dimensional
base, the fibers must be n real dimensional and so m = 1. That is, the fibers of μ̌0

are given by
Hom(π1(L),U (1)) ∼= (L)∗

the dual torus of L . Ignoring singular Lagrangians, X̌0 ⊂ X̌ is equipped with a dual
Lagrangian torus fibration μ̌0 : X̌0 → B0 ⊂ B!

Conjecture 1 (Strominger-Yau-Zaslow [35]) Mirror Calabi–Yau manifolds are
equipped with special Lagrangian fibrations

X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

such that μ and μ̌ are dual torus fibrations over a dense open locus B0 ⊂ B of the
base.

Remark 2.1 (i) We will discuss the notion of a special Lagrangian and the reason
for this condition in 2.1.

(ii) Note that unless χ(X) = 0, then the fibration μ must have singularities. Indeed
the only compact CY manifolds with smooth Lagrangian torus fibrations are
tori.

(iii) From the point of view of symplectic geometry, Lagrangian torus fibrations are
natural to consider. Indeed a theorem of Arnol’d and Liouville states that the
smooth fibers of any Lagrangian fibration of a symplectic manifold are tori [8,
Sect. 49].

This conjecture suggests a recipe for constructing mirror duals to a given Calabi–
Yau X . Indeed we pick a μ : X → B and look at the restriction μ0 : X0 → B0 to the
smooth locus. Thenμ0 is a Lagrangian torus fibrationwhichwemay dualize to obtain
μ̌0 : X̌0 → B0. Then we compactify X0 by adding back the boundary X \ X0 =: D
and hope that this suggests away to compactify the dual fibration to obtain amirror X̌ .
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It turns out the story is not so simple and understanding how to compactify X̌0 and
endow it with a complex structure leads to many difficulties arising from instanton
corrections and convergence issues for Floer differentials. Furthermore this strategy
to construct the dual depends not only on X but also on the chosen fibration μ and
indeed we can obtain different mirrors by picking different fibrations, or even from
the same fibration by picking a different “compactification” recipe. This leads to
mirrors that are Landau-Ginzburg models and allows us to extend the statement of
mirror symmetry outside of the Calabi–Yau case ([9, 28], etc). Finally, there are
major issues in constructing Lagrangian torus fibrations in general. Indeed it is not
known if they exist for a general Calabi–Yau, and in fact they are only expected to
exist in the large complex structure limit (LCSL) [24, 30]. This leads to studying
SYZ mirror symmetry in the context LCSL degenerations of CY manifolds as in the
Gross-Siebert program [20, 21]. We discuss these ideas in more detail in Sect. 5.

2.1 Some Remarks on Special Lagrangians

As stated, the SYZ conjecture is about special Lagrangian (sLag) torus fibrations
rather than arbitrary torus fibrations. Recall that a Calabi–Yau manifold has a non-
vanishing holomorphic volume form � ∈ H 0(X,�n

X ).

Definition 2.2 ALagrangian L ⊂ X is special if there exists a choice of� such that

Im(�)|L = 0.

There are several reasons to consider special Lagrangians:

• SLags minimize the volume within their homology class. In physics this corre-
sponds to the fact these are the BPS branes (see Sect. 2.2). Mathematically, this
corresponds to the existence of a conjectural Bridgeland-Douglas stability condi-
tion on the Fukaya category whose stable objects are the special Lagrangians (see
for example [27]).

• SLags give canonical representatives within a Hamiltonian isotopy class of
Lagrangians. Indeed a theorem of Thomas and Yau [37, Theorem 4.3] states that
under some assumptions, there is a unique sLag within each Hamiltonian defor-
mation class.

• The deformation theory of sLag tori is well understood and endows the base B
of a sLag fibration with the structures needed to realize mirror symmetry, at least
away from the singularities. We will discuss this in more detail in Sect. 4.1.

However, it is much easier to construct torus fibrations than it is to construct sLag
torus fibrations and in fact its an open problem whether the latter exist for a general
Calabi–Yau. Therefore for many partial results and in many examples, one must
get by with ignoring the special condition and considering only Lagrangian torus
fibrations.
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2.2 A Remark on D-branes and T-Duality

Strominger-Yau-Zaslow’s original motivation in [35] differed slightly form the story
above. Their argument used the physics of D-branes, that is, boundary conditions
for open strings in the A- or B-model.2

They gave roughly the following argument for Calabi–Yau threefolds . The mod-
uli space of D03 B-branes on X̌ must the moduli space of some BPS A-brane on
X . The BPS condition and supersymmetry necessitate that this is a D3 brane con-
sisting of a special Lagrangian L equipped with a flatU (1) connection. Topological
considerations force b1(L) = 3 and so the space of flat U (1) connections

Hom(π1(L),U (1)) ∼= T 3

is a 3 torus. Thus X̌ must fibered by D3 A-branes homeomorphic to tori and by
running the same argument with the roles of X and X̌ reversed, we must get a
fibration by tori on X as well.

The connection with homological mirror symmetry, which was discovered later,
comes from the interpretation of the Fukaya category and the derived category as
the categories of topological D-branes for the A- and B-model respectively. The
morphisms in the categories correspond to massless open string states between two
D-branes.

Now one can consider what happens if we take a D6 B-brane given by a line
bundle L on X̌ . By using an argument similar to the one above, or computing

Ext∗(L,Op) ∼= k[0],

we4 see that there is a one dimensional space of string states between L and Op.
Therefore the Lagrangian S in X dual to L must satisfy

HF∗(S, L) = k[0].

Remembering that the Floer homology groups count intersection points of
Lagrangians, this suggests that S must be a section of the fibration μ.

In summary, the SYZ Conjecture states that mirror symmetry interchanges D0

B-branes on X̌ with D3 Lagrangian torus A-branes on X and D6 B-branes on X̌
with D3 Lagrangian sections on X . On a smooth torus fiber of the fibration, this
is interchanging D0 and D3 branes on dual 3-tori. This duality on each torus is
precisely what physicists call T -duality and one of the major insights of [35] is that
in the presence of dual sLag fibrations, mirror symmetry is equivalent to fiberwise
T -duality.

2For background on D-branes see for example [2] or the other entries in this volume.
3D0, D3, …denote 0-dimensional, 3-dimensional, …D-branes.
4That is, k in degree zero and 0 in other degrees.
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3 Hodge Symmetries from SYZ

The first computational evidence that led to mirror symmetry was the interchange of
Hodge numbers

h1,1(X) = h1,2(X̌)

h1,2(X) = h1,1(X̌)
(1)

for compact simply connected mirror Calabi–Yau threefolds X and X̌ . Thus the first
check of the SYZ conjecture is if it implies the interchange of Hodge numbers. We
will show this under a simplifying assumption on the SYZ fibrations.

Let f : X → B be a proper fibration and let i : B0 ⊂ B be the locus over which
f is smooth so that f0 : X0 → B0 is the restriction. Then the higher direct image of
the constant sheaf Rp f∗R is a constructible sheaf with

i∗Rp f∗R ∼= Rp( f0)∗R

for each p ≥ 0. Furthermore, Rp( f0)∗R is the local system on B0 with fibers the
cohomology groups H p(Xb, R) for b ∈ B0 since f0 is a submersion.

Definition 3.1 We say that f is simple if we can recover the constructible sheaf
Rp f∗R by the formula

i∗Rp( f0)∗R ∼= Rp f∗R

for all p ≥ 0.

Proposition 3.2 Suppose X and X̌ are compact simply connectedCalabi–Yau three-
folds with dual sLag fibrations

X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

such that μ and μ̌ are simple. Assume further that μ and μ̌ admit sections. Then the
Hodge numbers of X and X̌ are interchanged as in (1).

Before the proof, we will review some facts about tori. If T is an n-torus, there is
a canonical identification

T ∼= H1(T, R)/�T

where �T denotes the lattice H1(T, Z)/tors ⊂ H1(T, R). Then the isomorphism
H 1(T, R) ∼= H1(T, R)∗ induces an identification

T ∗ ∼= H 1(T, R)/�∗
T
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where �∗
T = H 1(T, Z)/tors ⊂ H 1(T, R). It follows that H1(T ∗, R) = H 1(T, R)

and �T ∗ = �∗
T . More generally, denoting V = H1(T, R), there are isomorphisms

H p(T, R) ∼=
p∧
V ∗,

H p(T ∗, R) ∼=
p∧
V .

After fixing an identification
∧n V ∼= R, Poincaré duality gives rise to isomorphisms

H p(T, R) ∼= Hn−p(T ∗, R)

compatible with the identification �∗
T = �T ∗ .

Proof of Proposition 3.2 Applying the above discussion fiber by fiber to the smooth
torus bundle μ0 : X0 → B0, we obtain an isomorphism of torus bundles

R1(μ0)∗(R/Z) := (R1(μ0)∗R)/(R1(μ0)∗Z/tors) ∼= X̌0

over B. Similarly X0
∼= R1(μ̌0)∗(R/Z) and Poincaré duality gives rise to

Rp(μ0)∗R ∼= R3−p(μ̌0)∗R.

By the simple assumption on μ and μ̌ it follows that

Rpμ∗R ∼= R3−pμ̌∗R. (2)

We want to use this isomorphism combined with the Leray spectral sequence to
conclude the relation on Hodge numbers.

Let us analyze the cohomology of X and X̌ . First, H 1(X, R) = 0 by the simply
connected assumption and so H 5(X, R) = 0 by Poincaré duality. This implies the
Hodge numbers h0,1(X), h1,0(X), h2,3(X) and h3,2(X) are all zero. By Serre duality,
h2,0 = h0,2(X) = h0,1(X) = 0. Furthermore, h1,3 = h3,1 = h1(X,�3

X ) = h0,1 = 0
by the Calabi–Yau condition. Finally, h3,3 = h0,0 = 1 is evident and h0,3 = h3,0 =
h0(X,�3

X ) = 1 again by the Calabi–Yau condition. Putting this together gives us the
following relation between Hodge numbers and Betti numbers:

h1,1(X) = b2(X) = b4(X) = h2,2(X)

b3(X) = 2 + h1,2(X) + h2,1(X) = 2(1 + h1,2(X))

Of course the same is also true for X̌ . Thus it would suffice to show

b3(X̌) = 2 + h1,1(X) + h2,2(X) = 2(1 + h1,1(X)) (3)
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fromwhich it follows that h1,1(X) = h1,2(X̌) as well as h1,1(X̌) = h1,2(X) by apply-
ing the same argument to X .

The sheaves R3μ∗R and R0μ∗R are both isomorphic to the constant sheafR. As X
is simply connected, so is B sowededuceH 1(B, R) = 0 and similarly H 2(B, R) = 0
by Poincaré duality. Thus H 1(B, R0μ∗R) = H 2(B, R0μ∗R) = H 1(B, R3μ∗R) =
H 2(B, R3μ∗R) = 0 and Hi (B, R jμ∗R) = R for i, j = 0, 3. Next the vanishing
H 1(X, R) = H 5(X, R) imply that H 0(B, R1μ∗R) = H 3(B, R2μ∗R) = 0. Apply-
ing the same reasoning to μ̌ and using the isomorphism (2), we get

H 0(B, R2μ∗R) = H 0(B, R1μ̌∗R) = 0,

H 3(B, R1μ∗R) = H 3(B, R2μ̌∗R) = 0.

Putting this all together, the E2 page of the Leray spectral sequence for μ becomes

R

d1

������
�����

�����
�����

����� 0 0 R

0 H 1(B, R
2μ∗R) H 2(B, R

2μ∗R) 0

0 H 1(B, R
1μ∗R)

d2

������
�����

�����
�����

�����
� H 2(B, R

1μ∗R) 0

R 0 0 R

with the only possibly nonzero differentials depicted above. We claim in fact that d1
and d2 must also be zero.

Indeed let S ⊂ X be a section of μ. Then S induces a nonzero section s ∈ R ∼=
H 0(B, R3μ∗R) since it intersects each fiber in codimension 3. Furthermore S must
represent a nonzero cohomology class on X and so s ∈ ker(d1). This forces d1 to
be the zero map since H 0(B, R3μ∗R) is one dimensional. Similarly, the fibers of μ
give rise to a nonzero class in f ∈ H 3(B, R0μ∗R) ∼= R. Since the class of a fiber is
also nonzero in the cohomology of X as the fibers intersect the section, then f must
remain nonzero in coker(d2); that is, d2 must be zero.

This means the Leray spectral sequence for μ degenerates at the E2 page and
similarly for μ̌. In particular, we can compute

h1,1(X) = b2(X) = h1(B, R1μ∗R) = h1(B, R2μ̌∗R),

h2,2(X) = b4(X) = h2(B, R2μ∗R) = h2(B, R1μ̌∗R),

where we have again used (2). Therefore we can verify

b3(X̌) = 2 + h1(B, R2μ̌∗R) + h2(B, R1μ̌∗R) = 2 + h1,1(X) + h2,2(X)
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as required. �

Remark 3.3 The argument above (originally appearing in [16]) was generalized by
Gross in [17] to obtain a relation between the integral cohomologies of X and X̌ .

The reader may object that there are several assumptions required in the above
result. The existence of a section isn’t a serious assumption. Indeed all that was
required in the proof is the existence of a cohomology class that behaves like a
section with respect to cup products. As we already saw in 2.2, mirror symmetry
necessitate the existence of such Lagrangians on X dual to line bundles on X̌ and
vice versa. The simplicity assumption, on the other hand, is serious and isn’t always
satisfied. However, this still gives us a good heuristic check of SYZmirror symmetry.

4 Semi-flat Mirror Symmetry

In this section we will consider the case where μ and μ̌ are smooth sLag fibrations
so that B0 = B. This is often called the semi-flat case.

In this case we will see that the existence of dual sLag fibrations endows B with
the extra structure of an integral affinemanifoldwhich results in a toymodel ofmirror
symmetry on B. In fact, we will see that the dual SYZ fibrations can be recovered
from this integral affine structure. Finally, we will discuss an approach to realize
HMS conjecture in the semi-flat case.

4.1 The Moduli Space of Special Lagrangians

The starting point is the following theorem of McLean:

Theorem 4.1 (McLean [32, Sect. 3]) Let (X, J,ω,�) be a Kähler Calabi–Yau n-
fold. Then the moduli space M of special Lagrangian submanifolds is a smooth
manifold. Furthermore, there are natural identifications

Hn−1(L , R) ∼= TLM ∼= H 1(L , R)

of the tangent space to any sLag submanifold L ⊂ X.

The idea is that a deformation of L is given by a normal vector field v ∈
C∞(NL X, R). Then we obtain a 1-form α ∈ �1(L , R) and an n − 1-form β ∈
�n−1(L , R) by contraction with ω and Im� respectively:

α = −ivω,

β = ivIm�.
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It turns out that α and β determine each other and that v induces a sLag deformation
of L if and only if α and β are both closed. This gives the above isomorphisms by
the maps v �→ [α] ∈ H 1(L , R) and v �→ [β] ∈ Hn−1(L , R) respectively.

Note in particular that the isomorphism TLM ∼= H 1(L , R) depends on the sym-
plectic structure ω and the isomorphism TLM ∼= Hn−1(L , R) depends on the com-
plex structure through the holomorphic volume form �.

Definition 4.2 An integral affine manifold M is a smooth manifold equipped with
transition functions in the affine group R

n
� GLn(Z). Equivalently it is a manifold

M equipped with a local system of integral lattices � ⊂ T M .

The equivalence in Definition 4.2 can be seen by noting that if the transition
functions of M are affine transformations, they preserve the integral lattice defined
in local coordinates by

� := Span
Z

(
∂

∂y1
, . . . ,

∂

∂yn

)

⊂ TU. (4)

On the other hand, if there exists a local system of integral lattice � ⊂ T M with
a compatible flat connection ∇ on T M , then on a small enough coordinate patch
we can choose coordinates such that � is the coordinate lattice and the transition
functions must be linear isomorphisms on this lattice.

The vector spaces H 1(L , R) and Hn−1(L , R) glue together to form vector bun-
dles on M. Explicitly, if L ⊂ X × M is the universal family of sLags over M
with projection π : L → M then these bundles are R1π∗R and Rn−1π∗R respec-
tively. Similarly, the integral cohomology groups H 1(L , Z)/tors ⊂ H 1(L , R) and
Hn−1(L , Z)/tors ⊂ Hn−1(L , R) glue together into local systems of integral lat-
tices R1π∗Z/tors ⊂ R1π∗R and Rn−1π∗Z/tors ⊂ Rn−1π∗R. Applying Theorem
4.1 fiber by fiber yields two integral affine structures on M:

Corollary 4.3 There are isomorphisms R1π∗R ∼= TM ∼= Rn−1π∗R which endow
M with two integral affine structures given by the integral lattices

R1π∗Z/tors ⊂ R1π∗R ∼= TM,

Rn−1π∗Z/tors ⊂ Rn−1π∗R ∼= TM.

Poincare duality induces an isomorphism TM ∼= T ∗M exchanging the lattices and
their duals.

4.2 Mirror Symmetry for Integral Affine Structures

4.2.1 From SYZ Fibrations to Integral Affine Structures

Now let us return to the case of dual SYZ fibrations
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X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

where both μ and μ̌ are smooth. Then dim B = n = dim H 1(L , R) is the dimension
of the moduli space of sLag n-tori in X and so B must be an open subset of the
moduli space M.

In particular, byCorollary 4.3, the symplectic formω and the holomorphic volume
form � on X induces two integral affine structures on B explicitly given by

�ω := R1μ∗Z/tors ⊂ R1μ∗R ∼= T B,

�� := Rn−1μ∗Z/tors ⊂ Rn−1μ∗R ∼= T B.

Wecall these theKähler and complex integral affine structures respectively. Similarly
the symplectic and holomorphic forms ω̌ and �̌ on X̌ induce two other integral affine
structures

�ω̌ := R1μ̌∗Z/tors ⊂ R1μ̌∗R ∼= T B,

��̌ := Rn−1μ̌∗Z/tors ⊂ Rn−1μ̌∗R ∼= T B,

on B. The fact that these torus fibrations are dual implies natural isomorphisms

R1μ∗R ∼= Rn−1μ̌∗R,

Rn−1μ∗R ∼= R1μ̌∗R.

The top isomorphism exchanges �ω and ��̌ while the bottom isomorphism
exchanges �ω̌ and ��. We can summarize this as follows: SYZ mirror symmetry
for smooth sLag torus fibrations interchanges the complex and Kähler integral affine
structures on the base B.

4.2.2 From Integral Affine Structures to SYZ Fibrations

We can go in the other direction and recover the mirror SYZ fibrations μ and μ̌ from
the integral affine structures on the base B. The key is the following proposition:

Proposition 4.4 Let (B,� ⊂ T B) be an integral affine manifold. Then the torus
fibration T B/� → B has a natural complex structure and the dual torus fibration
T ∗B/�∗ → B has a natural symplectic structure.

Proof Locally we can find a coordinate chart U ⊂ B with coordinates y1, . . . , yn
such that � is a coordinate lattice as in (4). Then the coordinate functions on TU
are given by y1, . . . , yn and x1 = dy1, . . . , xn = dyn and we can define holomorphic
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coordinates on TU by z j = x j + √−1y j . Since the transition functions on B pre-
serve the lattice, they induce transition functions on T B that are holomorphic with
respect to these coordinates giving T B the structure of a complex manifold.

Consider the holomorphic functions defined locally by

q j := e2π
√−1z j .

These functions are invariant under integral affine transition functions as well as
global translations by � and so they give a compatible system of holomorphic coor-
dinates for T B/�.

Similarly, in local coordinatesU where� is the coordinate lattice, then�∗ ⊂ T ∗U
is generated by dy1, . . . , dyn as a lattice in T ∗U . Therefore the standard symplectic
structure on T ∗B is invariant by �∗ and descends to T ∗B/�∗. ��

Now suppose B is a smooth manifold equipped with two integral affine structures
�0,�1 ⊂ T B as well as an isomorphism T B ∼= T ∗B such that �0

∼= (�1)
∗ and

�1
∼= (�0)

∗. Then we have dual torus fibrations

X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

where X := T B/�0
∼= T ∗B/(�1)

∗ and X̌ := T ∗B/(�0)
∗ ∼= T B/(�1). This con-

struction satisfies the following properties:

(a) if �0 and �1 are the integral affine structures associated to SYZ dual torus
fibrations as in Sect. 4.2.1, then this construction recovers the original fibrations;

(b) �0 determines the complex structure of X and the symplectic structure of X̌ ;
(c) �1 determines the symplectic structure of X and the complex structure of X̌ .

As a result we recover one of the main predictions of mirror symmetry: deformations
of the complex structure on X are the sameas deformations of the symplectic structure
on X̌ and vice versa.

Remark 4.5 There is an extra piece of structure on B that we haven’t discussed. This
is a Hessian metric g realizing the identification T B ∼= T ∗B. Recall that a Hessian
metric is a Riemannian metric that is locally the Hessian of some smooth potential
function K . The two integral affine structures on B endow it with two different sets
of local coordinates and the potential functions in these coordinates are related by
the Legendre transform. In fact the complex and symplectic structures constructed
in Proposition 4.4 can be recovered from the potential function so mirror symmetry
in this context is governed by the Legendre transform [25] [2, Sect. 6.1.2].
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4.3 The SYZ Transform

To finish off the discussion of semi-flat mirror symmetry, we turn our attention to
the HMS conjecture. The goal is to construct a geometric functor

� : Fuk(X) → Db(Coh(X̌))

from the Fukaya category of X to the derived category of coherent sheaves on X̌
using the geometry of the dual fibrations. The first step is to produce an object of
Db(Coh(X̌)) from a Lagrangian L ⊂ X equipped with a flat unitary connection. We
will attempt to do this by exploiting the interpretation of a point p ∈ X as a flat
U (1)-connection on the dual fiber.

Let L ⊂ X be a Lagrangian section of μ corresponding to a map σ : B → X ,
equipped with the trivial connection. By restricting L to each fiber of μ, we obtain a
family of flat U (1)-connections

{∇σ(b)}b∈B

on the fibers of μ̌ : X̌ → B. These glue together to give a flat U (1)-connection on a
complex line bundle L on X̌ . It turns out this connection gives L the structure of a
holomorphic line bundle on X̌ (endowed with the complex structure constructed in
the last subsection).

This construction was generalized by [7] (see also [31]) as follows. As X is the
moduli space of flat U (1)-connections on the fibers of μ̌ : X̌ → B, there exists a
universal bundle with connection (P,∇P) on X ×B X̌ . Now given (L , E,∇) where
L ⊂ X is a multisection transverse to the fibers of μ and (E,∇) is a flat unitary vector
bundle on L , define the SYZ transform by

�SY Z (L , E,∇) := (prX̌ )∗((prL)∗E ⊗ (i × id)∗P)

where prL , prX̌ : L ×B X̌ → L , X̌ are the projections and (i × id) : L ×B X̌ →
X ×B X̌ is the inclusion.Note that�SY Z (L , E,∇) comes equippedwith a connection
we denote ∇(L ,E,∇).

Theorem 4.6 ([7, Theorem 1.1]) If L ⊂ X is Lagrangian, then ∇(L ,E,∇) endows
�SY Z (L , E,∇) with the structure of a holomorphic vector bundle on X̌ . When X
and X̌ are dual elliptic curves fibered over S1, then every holomorphic vector bundle
on X̌ is obtained this way.

Viewingholomorphic vector bundles as objects in Db(Coh(X̌)),wehope to extend
the SYZ transform to an equivalence � : Fuk(X) → Db(Coh(X̌)), thus realizing
the HMS conjecture. While this hope hasn’t been realized in general, it has in some
special cases.

When X and X̌ are dual elliptic curves fibered over S1, a HMS equivalence �

is constructed by hand in [34]. One can check that their functor � does indeed
extend the SYZ transform �SY Z . In fact, assuming Theorem 4.6, it is not so hard
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to construct � at least on the level of objects. Each coherent sheaf on the curve X
can be decomposed as a direct sum of a torsion sheaf and a vector bundle. Vector
bundles are taken care of by Theorem 4.6. Torsion sheaves are successive extensions
of skyscrapers at points which correspond to S1 fibers ofμ : X → B. Formore recent
work on understanding the SYZ transform see [12] and the references therein.

5 Constructing Mirrors

We now move on to the general problem of constructing mirrors. Given a Kähler
Calabi–Yau n-fold (X, J,ω,�), the SYZ conjecture suggests the following strategy
for constructing a mirror.

5.0.1 Strategy

(i) produce a special Lagrangian fibration μ : X → B;5

(ii) dualize the smooth locus μ0 : X0 → B0 to obtain a semi-flat mirror
μ̌0 : X̌0 → B0;

(iii) compactify X̌0 to obtain a CY n-fold with a dual SYZ fibration μ̌ : X̌ → B;
(iv) use the geometry of the dual fibrations to construct a HMS equivalence

� : Fuk(X) → Db(Coh(X̌)).

5.0.2 Obstacles

There are many obstacles to carrying out 5.0.1 and (ii) is the only step where a totally
satisfactory answer is known as we discussed in Sect. 4.

Producing sLagfibrations on a compactCalabi–Yaun-folds is a hardopenproblem
in general. Furthermore, work of Joyce [26] suggests that even when sLag fibrations
exist, they might be ill-behaved. The map μ is not necessarily differentiable and
may have real codimension one discriminant locus in the base B. In this case B0 is
disconnected and one needs to perform steps (ii) and (iii) on each component and
then glue.

Compactifying X̌0 to a complex manifold also poses problems. There are obstruc-
tions to extending the semi-flat complex structure on X̌0 to any compactification. To
remedy this, one needs to take a small deformation of X̌0 by modifying the complex
structure using instanton corrections.

5This choice is the reason that X may have several mirrors.
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Step (iv) has been realized in some special cases (e.g. [1, 3–5, 30] and references
therein) but a general theory for producing an equivalence � given an SYZ mirror
is still elusive.

5.1 Instanton Corrections

The small deformation of the complex structure on the dual X̌0 is necessitated by
the existence of obstructed Lagrangians. The point is that the Fukaya category of X
doesn’t contain all pairs (L ,∇) of Lagrangians with flat connection but only those
pairs where L is unobstructed.

ALagrangian L is unobstructed if certain counts of holomorphic discs bounded by
L cancel out so that the Floer differential satisfies d2 = 0. In particular, if L doesn’t
bound any nonconstant holomorphic discs, then it is unobstructed. A problem arises
if μ : X → B has singular fibers because then the smooth torus fibers may bound
nontrivial holomorphic discs known as disc instantons. For example, any vanishing
1-cycle on a nearby fiber sweeps out such a disc.

To construct the dual X̌ as a complex moduli space of objects in the Fukaya
we need to account for the effect of these instantons on the objects in the Fukaya
category. This is done by modifying the semi-flat complex structure using counts of
such disc instantons.

In fact, one can explicitly write down the coordinates for the semi-flat complex
structure described in Sect. 4 in terms of the symplectic area of cylinders swept out by
isotopy of nearby smooth Lagrangian fibers as in Sect. 5.3. Then the discs bounded
by obstructed Lagrangians lead to nontrivial monodromy of the semi-flat complex
on X̌0 which is an obstruction to the complex structure extending to a compactifica-
tion X̌ . The instanton corrections are given by multiplying these coordinates by the
generating series for virtual counts of holomorphic discs bounded by the fibers.

For more details on instanton corrections, see for example [1, 10, 36].

5.2 From Torus Fibrations to Degenerations

Heuristics from physics suggest that X will admit an SYZfibration in the limit toward
a maximally unipotent degeneration.6 It was independently conjectured in [24, 30]
that if X → D is such a degeneration over a disc (where X = Xε for for some small
ε � 1) and gt is a suitably normalizedmetric onXt , then theGromov-Hausdorff limit
of the metric spaces (Xt , gt ) collapses the Lagrangian torus fibers onto the base B
of an SYZ fibration. Furthermore, this base should be recovered as the dual complex
of the special fiber of X → D endowed with the appropriate singular integral affine

6That is, a degeneration with maximally unipotent monodromy. These are sometimes known as
large complex structure limits (LCSL).
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structure. Then one can hope to reconstruct the instanton corrected SYZ dual directly
from data on B.

This allows one to bypass the issue of constructing a sLag fibration by instead
constructing a maximally unipotent degeneration. Toric degenerations are particu-
larly well suited for this purpose. This is the point of view taken in the Gross-Siebert
program [20, 21] and gives rise to a version of SYZ mirror symmetry purely within
algebraic geometry. In this setting the instanton corrections should come from loga-
rithmic Gromov-Witten invariants of the degeneration as constructed in [6, 13, 23]
and these invariants can be computed tropically from data on the base B. For more
on this see for example [18, 19, 22].

5.3 Beyond the Calabi–Yau Case

The SYZ approach can also be used to understand mirror symmetry beyond the case
of Calabi–Yau manifolds. The most natural generalization involves log Calabi–Yau
pairs (X, D) where D ⊂ X is a boundary divisor and the sheaf ωX (D) of top forms
with logarithmic poles along D is trivial. That is, D is a section of the anticanonical
sheaf ω−1

X and X \ D is an open Calabi–Yau.
In this case the mirror should consist of a pair (M,W ) consisting of a complex

manifold M with a holomorphic function W : M → C. The pair (M,W ) is known
as a Landau-Ginzburg model and the function W is the superpotential [28]. Homo-
logical mirror symmetry takes the form of an equivalence

� : Fuk(X, D) → MF(M,W )

between a version of the Fukaya category for pairs (X, D) and the category ofmatrix
factorizations of (M,W ). Recall that a matrix factorization is a 2-periodic complex

(

. . . �� P0
d �� P1

d �� P0 �� . . .

)

of coherent sheaves on M satisfying d2 = W . By a theorem of Orlov [33], the cate-
gory MF(M,W ) is equivalent to the derived category of singularities Db

sing({W =
0}).7

The SYZ conjecture gives a recipe for constructing the Landau-Ginzburg dual
(M,W ). Here we give the version as stated in [9]:

Conjecture 2 Let (X, J,ω) be a compact Kähler manifold and D a section of K−1
X .

Suppose μ : U = X \ D → B is an SYZ fibration where U is equipped with a holo-
morphic volume form �. Then the mirror to (X, D) is the Landau-Ginzburg model
(Ǔ ,W ) where

7Here we’ve assumed for simplicity that the only critical value of W is at 0 ∈ C.
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μ̌ : Ǔ → B

is the SYZ dual fibration equipped with the instanton corrected complex structure
and the superpotential W is computed by counting holomorphic discs in (X, D).

We briefly recall the construction of the superpotential. Let μ0 : U0 → B0 be the
smooth locus of the fibration so that Ǔ0 is the semi-flat dual. Consider a family of
relative homology classes AL ∈ H2(X, L; Z) as the Lagrangian torus fiber L varies.
Then the function

zA : Ǔ0 → C zA(L ,∇) = exp

(

−
∫

AL

ω

)

hol∇(∂AL).

is a holomorphic local coordinate on Ǔ0.
Let

m0(L ,∇) =
∑

β∈H2(X,L;Z)

nβ(L)zβ

where nβ(L) is Gromov-Witten count of holomorphic discs in X bounded by L and
intersecting D transversally.8 This is a holomorphic function on Ǔ0 when it is defined
but in general it only becomes well defined after instanton correcting the complex
structure. The idea is that the number nβ(L) jumps across an obstructed Lagrangian
L that bounds disc instantons in X \ D. Instanton corrections account for this and so
m0 should extend to a holomorphic function W on the instanton corrected dual Ǔ .

In fact m0 is the obstruction to Floer homology constructed in [15]. That is,
d2 = m0 where d is the Floer differential on the Floer complex CF∗(L , L). This
explains why the Landau-Ginzburg superpotential W should be given by m0. If
one believes homological mirror symmetry, then obstructed chain complexes in the
Fukaya category should lead to matrix factorizations with W = m0 on the mirror.

Example 5.1 Let X = P
1 with anticanonical divisor {0,∞} = D. Then U = C

∗
admits a sLag fibrationμ : U → B where B is the open interval (0,∞) andμ−1(r) =
{|z| = r} is a circle. The dual is Ǔ = C

∗ is also an algebraic torus and there are no
instanton corrections since all the fibers of μ are smooth. Each sLag circle L ⊂ U ⊂
X cuts X into two discs D0 and D∞ whose classes satisfy [D0] + [D∞] = [P1] in
H2(X, L; Z) so that the corresponding coordinate functions z0 and z∞ on Ǔ satisfy
z0z∞ = 1. Furthermore,

exp

(

−
∫

D0

ω

)

exp

(

−
∫

D∞
ω

)

= e−A

where A = ∫
P1 ω is the symplectic area. Furthermore, it is easy to see that n[D0](L) =

n[D1](L) = 1. Putting it together and rescaling by a factor, we obtain the superpo-
tential

8More precisely, the sum is over curve classes β with Maslov index μ(β) = 2.
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W = z0 + e−A

z0
: C

∗ → C.

A similar argument works for any Fano toric pair (X, D) where μ is the moment
map, B is the interior of the moment polytope P , Ǔ = (C∗)n is an algebraic torus,
and W is given as a sum over facets of P [9, 14].
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Part III
Physical Motivations



The Derived Category of Coherent
Sheaves and B-model Topological String
Theory

Stephen Pietromonaco

1 Topological Closed String Theories

The starting point for closed string topological string theories is the non-linear sigma
model which studies maps φ : Σ → X , where Σ is a compact, oriented Riemann
surface called the ‘worldsheet’ andwe take X to be a Calabi–Yau threefold, called the
‘target space.’ If only closed strings are present, Σ is taken to be without boundary.
We can take local complex coordinates (z, z̄) on Σ , and wi = φi (z, z̄) on X . We
have a Kähler metric gi j̄ , as well as an anti-symmetric B-field Bi j̄ on X . Of course,
the indices here correspond to tensor components in the complex coordinates wi .

The theory becomes topological after performing one of two possible twists.
In what sense is the theory topological? Such a non-linear sigma model is a two-
dimensional quantumfield theory definedon thefixedRiemann surfaceΣ . Therefore,
to say the twisted theory is topological is to say there exists a subsector of operators
such that the correlation functions are independent of the metric on the worldsheet.
It is crucial to not confuse the metric on the worldsheet with the metric on the target
Calabi–Yau. I will review the two topologically twisted models which Witten [4]
called the A and B models. The A-model will depend only on the Kähler structure
on X while the B-model will depend only on the complex structure. So there will
indeed be partial dependence on the target space metric, the exact form of which will
depend on the model under consideration. In addition, I will define a BRST operator
Q (this operator will be different in the A and B models). The physical observables
of the topological subsector will consist of products of local operators, each of which
is invariant under the BRST operator Q. By convention, we denote the target space
by Y in the A-model and as X in the B-model.

Let TX be the complexified tangent bundle of X , which can be decomposed as
TX = T (1,0)

X ⊕ T (0,1)
X . The fermions in the theory require a choice of square-root
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bundles K 1/2 and K
1/2

, where K and K are the canonical and anti-canonical bundles
on Σ , respectively. The non-linear sigma model action is given by: (equation (2.4)
in [4])

S =
∫

Σ

d2z

(
1

2
gi j∂zφ

i ∂z̄φ
j + i

2
Bi j ∂zφ

i ∂z̄φ
j + iψ ī−Dzψ

i−giī + iψ ī+Dz̄ψ
i+gīi + Riī j j̄ψ

i+ψ ī+ψ
j
−ψ

j̄
−
)

,

(1)

where Riī j j̄ is the Riemann tensor on X , Dz is the ∂ operator on K
1/2 ⊗ φ∗T (1,0)

X ,
arising by pulling back the holomorphic part of the Levi–Civita connection on TX .
Likewise, Dz̄ is the ∂ operator on K 1/2 ⊗ φ∗T (1,0)

X . The fermion fields are sections
of the following bundles,

ψ i
+ ∈ Γ

(
K 1/2 ⊗ φ∗T (1,0)

X

)
, ψ ī

+ ∈ Γ
(
K 1/2 ⊗ φ∗T (0,1)

X

)
,

ψ i
− ∈ Γ

(
K

1/2 ⊗ φ∗T (1,0)
X

)
, ψ ī

− ∈ Γ
(
K

1/2 ⊗ φ∗T (0,1)
X

)
.

(2)

The sigma model action above is really a worldsheet action; the integral is over
two-forms on Σ . Therefore, all of the structures described above need to be pulled
back to Σ via φ, which implies that the pullback of the metric, the B-field, and the

connection will all inherit φ dependence. As mentioned, ψ i±, ψ
j̄
± are the fermionic

fields and the bosonic fields are the local coordinates φi and φ j̄ .1

The supersymmetry (SUSY) transformations are generated by the four infinites-
imal fermionic parameters α+, α̃+, α−, α̃−. The first two are anti-holomorphic sec-

tions of K
−1/2

and the latter two are holomorphic sections of K−1/2. We refer the
reader to Eq. (2.5) in [4] for the full form of the supersymmetry transformations.
Since we have four SUSY parameters, two of each chirality, we say the resulting
theory has “worldsheet N = (2, 2) supersymmetry.”

1.1 Closed String A-model

Let Y be the Calabi–Yau target space in the A-model. We consider here a restricted
symmetry such that α̃− = α+ = 0 and α = α− = α̃+. In other words, we have only
one SUSY parameter which we call α. We now perform the first of two possible
topological twists to construct the A-model topological string theory. Consider the
field χ ∈ Γ

(
φ∗TX

)
which projects into φ∗T (1,0)

X as χ i = ψ i+ and into φ∗T (0,1)
X as

χ ī = ψ ī−. We regard ψ ī+ as a (1, 0) form on Σ valued in φ∗T (0,1)
X and following [4],

denote it as ψ ī
z . Likewise, ψ i− is a (0, 1) form valued in φ∗T (1,0)

X , denoted ψ i
z̄ . The

A-model SUSY transformations are

1Having the bosonic fields correspond to the local coordinates on a Riemannian manifold is an idea
originating in ‘supersymmetric quantum mechanics.’
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δφi = iαχ i

δφ ī = iαχ ī

δχ i = δχ ī = 0

δψ ī
z = −α∂zφ

ī − iαχ j̄Γ ī
j̄ m̄

ψ m̄
z

δψ i
z̄ = −α∂z̄φ

i − iαχ jΓ i
jmψm

z̄

(3)

whereΓ i
jm is the holomorphic part of the Levi–Civita connection on the complexified

tangent bundle and Γ ī
j̄ m̄

is the anti-holomorphic part. Corresponding to the single
SUSYparameterα, we define the operator Q to be its generator.As such, the variation
of any local operatorW under a SUSY transformation with parameter α, is given by

δW = −iα{Q,W }. (4)

One can show from the action that Q2 = 0, on-shell. This means that though there
may be non-zero terms equated to Q2, they will vanish if the equations of motion
are satisfied. Thus, we have a nilpotent operator Q which is commonly referred to
as a BRST operator. With this in hand, we can rewrite the sigma model action as,

S =
∫

Σ

i{Q, V } − 2π i
∫

Σ

φ∗(B + i J ), (5)

where V = 2πgi j̄ (ψ
j̄
z ∂̄φi + ∂φ j̄ψ i

z̄ ) and B + i J ∈ H 2(Y,C) is the complexified
Kähler form. Given an operator W , we say W is Q-closed if {Q,W } = 0 and we
say it is Q-exact if W = {Q,W ′}, for some operator W ′. We also call a Q-closed
operator ‘BRST invariant.’ We will take it as a fact that a correlation function of a
Q-exact operator must vanish

〈{Q,W1W2 . . .}〉 = 0. (6)

Let us assume that W2,W3, . . . are Q-closed operators, and consider the correlation
function 〈{Q,W1W2 . . .}〉 for any operator W1. By the fact cited above, this correla-
tion function vanishes. Moreover, since Q behaves like a differential, we can apply
Leibniz’ rule to get

0 = 〈{Q,W1W2 . . .}〉 = 〈W1{Q,W2W3 . . .}〉 + 〈{Q,W1}W2W3 . . .〉. (7)

Since W2,W3, . . . are Q-closed operators, the term 〈W1{Q,W2W3 . . .}〉 will vanish
when expanded using Leibniz’ rule. All that remains is the correlation function
〈{Q,W1}W2W3 . . .〉 involving one Q-exact operator and the rest, Q-closed. Since
the original correlation function vanished, clearly this one must too. Therefore, the
presence of evenone Q-exact operator annihilates the correlation function.We should
then restrict attention to Q-closed operators:
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In the topological subsector, the physical observables are products of local oper-
ators, all of which are Q-closed (i.e. BRST invariant).
We note that a shift in the action by a Q-exact operator S → S + ∫

Σ
{Q, S′} will

leave all correlation functions invariant. In the sigma model action, the only place
the complex structure of Y appears is in the term V . If we deform the complex struc-
ture V → V + δV , this leads to a deformation of the action S → S + ∫

Σ
{Q, δV },

which will leave all physical observables invariant. Thus, it appears that the A-model
topological field theory is independent of the complex structure we choose to endow
Y with. Clearly, it explicitly depends on the Kähler structure on the target space,
through the term 2π i

∫
Σ

(B + i J ).

By the SUSY transformations (3) we have δχ i = δχ ī = 0, where χ i and χ ī are
the fermionic superpartners of φi and φ ī , respectively. This means the operators χ i

and χ ī are Q-closed. Thus, we have a basis of local BRST invariant operators on Σ ,
which we can use to write a general operator as

Wa = aI1···Ipχ
I1 · · · χ Ip , (8)

where here the capital Iq denotes unbarred indices, and

a = aI1···Ip dφ I1 · · · dφ Ip , (9)

is a p-form on Y . By computing the variation of the operator Wa , we find that
{Q,Wa} = −Wda , with a rather remarkable conclusion:

A local operator Wa is Q-closed (BRST invariant) if and only if da = 0. In
other words, we can identify the Q-cohomology in the A-model with the de
Rham cohomology H∗(Y,C) on the target space. Notice this is consistent with
the A-model being independent of the complex structure on Y .
A correlation function in the closed string A-model is given by the following path
integral,

〈WaWb · · · 〉 =
∫

DφDψDχe−SWaWb · · · . (10)

Here, we will focus just on the bosonic map φ : Σ → Y . It turns out that in the
topological sector, we want to restrict to maps such that the term {Q, V } in the action
vanishes. Looking at the form of V , we see that we must insist ∂̄φi = ∂φ ī = 0, i.e. φ
is a holomorphic map. So instead of performing the path integral over all maps, we
localize to only the holomorphic ones. In this context, such a holomorphic map is
called a worldsheet instanton. We can consider the degree-d worldsheet instantons
and their moduli space Md . For example, a degree-0 map simply sends all of Σ to
a point in Y , implyingM0 = Y . We get the following reduction of the path integral

∫
DφDψDχ −→

∑
d

∫
M d

(Dφ)d

∫
DψDχ. (11)
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Since the relevant space of operators in the A-model is identified with the de
Rham cohomology H∗(Y,C), there is a natural grading by the degree of the forms.
In physics, this is called the “ghost number,” meaning if a ∈ H p(Y,C), then the
operator Wa is said to have ghost number p. One should imagine the worldsheet
instantons to be “wrapped” on the two-cycles in Y . Roughly speaking, this explains
the dependence of the A-model on the Kähler structure of Y . The theory turns out to
be independent of the complex structure.

1.2 Closed String B-model

If we perform the opposite twist we get the closed string B-model where certain
fields are simply sections of different bundles over Σ . For purposes of anomaly
cancellation, we will take c1(X) = 0, i.e. take the target space to be Calabi–Yau.

Define the following combinations of the fermionic fields, η j̄ = ψ
j̄
+ + ψ

j̄
−, and θ j =

g jk̄(ψ
k̄+ − ψ k̄−) where now the fermionic fields are sections of the following bundles

ψ ī
± ∈ Γ

(
φ∗T (0,1)

X

)
, ψ i

+ ∈ Γ
(
K ⊗ φ∗T (1,0)

X

)
, ψ i

− ∈ Γ
(
K ⊗ φ∗T (1,0)

X

)
. (12)

Let ρi be a one-form on Σ valued in φ∗T (1,0)
X whose (1, 0) part is ψ i+ and (0, 1) part

is ψ i−. The B-model SUSY transformations are,

δφi = 0

δφ ī = iαηī

δηī = δθi = 0

δρi = −αdφi .

(13)

The physical local observables are again given by products of BRST invariant fields,

WA = A
j1... jp
k̄1...k̄q

ηk̄1 . . . ηk̄q θ j1 . . . θ jp . (14)

Clearly, such an object is a (0, q)-form, valued in the bundle
∧p T (1,0)

X . Analogously
to the A-model, we find that

{Q,WA} = −W∂̄A. (15)

In other words, in the B-model the Q-cohomology is the Dolbeault cohomology
on the target space H0,q(X,

∧ p T (1,0)
X ), with forms valued in an exterior power

of the holomorphic tangent bundle.
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Also, like theA-model, the path integral localizes to only certainmapsφ, but in this
case the condition is that ∂̄φ k̄ = ∂φ k̄ = 0. This can only be satisfied if φ is a constant
map from the worldsheet into X . Clearly, the moduli space of such maps is simply
M0 = X . The upshot of this is that physical observables in the B-model are given
simply by ordinary integrals over the target space. These are essentially the period
integrals over the non-vanishing holomorphic (3, 0)-form Ω . When considering
mirror symmetry, people often say something like, “a hard computation on one side
can be converted to a trivial computation on the other side.” This idea applies here:
on the A-side, correlation functions require a sum of integrals over non-trivial moduli
spaces,while on theB-side, the computation reduces to simply period integrals. These
period integrals are indicative of the dependence of the B-model on the complex
structure of X as well as the independence of the Kähler structure.

1.3 Topological Field Theory Versus Topological
String Theory?

It is a good time to rectify a common confusion between topological field theories
and topological string theories. Simply put, we take a topological field theory to be
such that there exists a subsector where the correlation functions are independent
of the metric on the spacetime; in our case, the string worldsheet. The correlation
functions are then given by a path integral over the bosonic fields φi and well as
the fermionic fields, described in the previous section. However, we only implicitly
mention a fixedmetric hαβ on the stringworksheetΣ itself.We certainly do not allow
for dynamics of hαβ , as it is not summed over in the path integral. Topological string
theory arises from including the worldsheet metric as a dynamical field, which we
include in the path integral prescription for correlation functions. We describe this
as “coupling a topological field theory to worldsheet gravity.” Thus, our correlation
functions now involve a sum over the genus g of Σ , as well as an integral over the
moduli space of complex structures on Σ . This should come as no surprise, since
string theory is a theory of quantum gravity. Indeed, quantum gravity is by definition
a quantum field theory where the metric on spacetime (in this case, the worldsheet) is
dynamical and included in the path integral. Themathematically rigorous foundation
of topological string theory is known as Gromov-Witten theory.

2 The Open String B-model

With the closed string theory in hand, we now endeavor to include open strings in
the theory. This simply amounts to allowing the worldsheet Σ to have a boundary,
denoted ∂Σ . These worldsheet boundaries have the interpretation of open string
endpoints. Under the map φ : Σ → X , the image of ∂Σ is required to live on
certain special submanifolds of X called D-branes. One should interpret the
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D-branes as providing boundary conditions on the open string endpoints: the end-
points are forced to lie on the D-brane (Dirichlet boundary conditions), while they
are allowed tomove freelywithin theD-brane itself (Neumann boundary conditions).
In more physical language, we say that D-branes are non-perturbative solutions of
an effective field theory. Interestingly enough, these non-perturbative solutions were
actually expected for quite a long time. However, the true magic of their discovery
[5] is that they allow for a two-dimensional analysis, via the open string worldsheet.
This was quite exciting and unexpected. In other words, we expected some non-
perturbative solutions to exist, but had no idea these objects would support open
string endpoints.

We should immediately exorcise any confusions about the distinction between
boundaries ofΣ and punctures inΣ .Withworldsheets involving only closed strings,
the strings themselves are represented by “loops” stretching out to the infinite past or
future. Using the conformal invariance of the worldsheet theory, we can map these
to simply point-like punctures on the surface of Σ . In the path integral prescription,
these punctures are superficially filled in to give a compact Riemann surface, at the
expense of inserting a vertex operator at that point, representing the closed string
state. Genuine boundaries of Σ are different, however. A boundary component of
Σ is superficially partitioned by punctures. These punctures represent open string
states stretching out to the infinite past or future, while the remaining segments of
the boundary component are precisely what we think of as the open string endpoints
“moving in time.”

Let X be a Calabi–Yau threefold. To the roughest approximation, a Dp-brane in
the context of topological string theory is a real p-dimensional submanifold of X , i.e.
a representative of a class in Hp(X,Z). The p refers to the spatial dimensions of the
D-brane and hence, a Dp-brane has a (p + 1)-dimensional worldvolume. The time
direction lies outside the Calabi–Yau and plays essentially no role in a topological
string theory.

A D-brane however, is much more than just a submanifold. As introduced above,
D-branes support open string endpoints. Hence, these open string endpoints appear
as “particle worldlines” in the (p + 1)-dimensional worldvolume of the Dp-brane.
Indeed there are good physical reasons to interpret this as the D-brane giving rise to a
quantumfield theory or gauge theory on itsworldvolume. In the context of topological
strings, we ignore the time direction and consider a gauge theory on simply the p-
dimensional subspace of X . In a gauge theory on a spacetime Z , the physical fields
are connections on, or sections of a vector bundle associated to a principal bundle
defined on Z . Since the endpoints of open strings appear as gauge-theoretic particles
in the D-brane, we are inclined to consider a D-brane as a submanifold along with
a vector bundle supported on it. In the B-model, the objects are holomorphic, so we
take the bundles to be holomorphic. Therefore as a first pass, we make the following
naïve definition of a D-brane:

Naïve Definition 1 A single Dp-brane in the B-model topological string theory, for
p = 0, 2, 4, 6 is a complex dimension p/2 holomorphic submanifold Z of a Calabi–
Yau threefold X along with a holomorphic line bundle L → Z .
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It will soon become apparent that a stack of multiple D-branes will correspond
to higher rank bundles. We would like to build the category of B-model D-branes
such that the objects are defined on the ambient Calabi–Yau X . Under the natural
inclusion Z ↪→ X we can pushforward holomorphic vector bundles to sheaves on
X . Clearly such a pushforward is not a holomorphic vector bundle on X : vector
bundles always have sections on small enough open sets, whereas this pushforward
has no sections on any open set outside Z . We must broaden our consideration from
merely the geometrical category of holomorphic vector bundles to the algebraic or
sheaf-theoretic category of coherent sheaves. As we will see later, we actually must
further enlarge our category. We will be compelled to understand B-model D-branes
as complexes of coherent sheaves, modulo various equivalences. To explain these
ideas we introduce now some of the required algebraic geometry.

2.1 Coherent Sheaves and D-branes

For some of the foundational algebraic geometry to follow, I refer the reader to [6,
7]. Let X be a compact, smooth complex manifold, or more generally a scheme, with
OX its structure sheaf of regular functions. We begin by defining a sheaf-theoretic
generalization of the notion of a module over a ring. This is known as an OX -
module, and is the largest category of sheaves we will need to consider. It contains as
subcategories the coherent sheaves and locally-free sheaves, which wewill introduce
shortly.

Definition 1 For E a sheaf on X , we say E is an OX -module, if for all open sets
U ⊆ X , the sections E (U ) constitute an OX (U )-module. In addition, the restriction
morphisms must be compatible with the module structure, in the following sense:
consider nested open sets V ⊆ U and define sections f ∈ OX (U ), s ∈ E (U ). We
require that ( f · s)|V = f |V · s|V , where we denote the restriction morphism as the
familiar function restriction.

Notice thatOX -modules are a generalization of modules over a ring. The intrinsic
geometry of X gives rise to the structure sheaf OX which naturally assigns a ring
OX (U ) to each open set. It is precisely this ring of local functions which provides
the multiplication, turning E (U ) into an OX (U )-module. Hence, an OX -module is
really a sheaf of modules. The OX -modules constitute an abelian category. This
should come as no surprise given that abelian categories are in some sense modeled
on the category of modules over a ring.

Trivially,OX itself is anOX -module.More generally,O⊕N
X is anOX -module called

‘the freeOX -module of rank N .’ A particularly refined subcategory ofOX -modules is
those which look locally likeO⊕N

X for some N . This leads to the following definition,
which will allow us to identify certain specialOX -modules with holomorphic vector
bundles.
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Definition 2 A sheaf E on X is called locally-free of rank N if there exists an open
cover {Uα} of X such that E |Uα

∼= OX |⊕N
Uα

.

One can show that locally-free sheaves of rank N form a category. Given that vec-
tor bundles trivialize over special open sets, locally-free sheaves seem to correspond
exactly to holomorphic vector bundles. The correspondence is made precise by the
following Proposition.

Proposition 1 There exists a one-to-one correspondence between holomorphic vec-
tor bundles of rank N on X and locally-free sheaves of rank N on X.

Proof The proof here is very elementary, and we only sketch it. Given a holomorphic
vector bundle E on X , for all open sets U , define E (U ) to be the sections of the
vector bundle over U . Since the vector bundle must trivialize, this resulting sheaf
will of course be locally-free. Conversely, given a locally-free sheaf E , using the
given isomorphism E |Uα

∼= OX |⊕N
Uα

, we can define holomorphic transition functions,
which will produce a holomorphic vector bundle E .

Given holomorphic vector bundles E and F , wewill usually denote their correspond-
ing locally-free sheaves by E and F , respectively.

D6-branes and Locally-Free Sheaves

In topological string theory on a Calabi–Yau threefold X , whenwe talk about “space-
filling branes” we mean a D6-brane whose underlying homology class is a multiple
of the fundamental class of X . Quite simply, D6-branes are in one-to-one correspon-
dence with locally-free sheaves on X . This provides a translation between a precise
mathematical notion and a phrase appearing frequently in the physics literature:

A stack of N D6-branes wrapping a Calabi–Yau threefold X corresponds to a
rank N locally-free sheaf on X .

On a D6-brane, we specify purely Neumann boundary conditions, which allow the
open string endpoint to move freely within X . This choice corresponds to the con-
straint

θ j = g jk̄(ψ
k̄
+ − ψ k̄

−) = 0. (16)

Like we saw in the brief analysis of the closed string B-model, the BRST operator
Q is taken to be the Dolbeault operator ∂̄ , and we only take our local operators on
the worldsheet to consist of Q-closed local operators. Recalling the SUSY transfor-
mations (13), these are precisely θ j and η j̄ . But the space-filling condition forces the
θ j to vanish, so our local operators will only depend on η j̄ , and of course φ. Thus,
since j̄ is an anti-holomorphic index, we conclude that our local operators must be
(0, q)-forms, possibly valued in some bundle.

Let us attempt to construct a well-defined D-brane category, assuming at first that
the only objects are D6-branes. By the above correspondence, the objects are simply
given by a bundle E → X . To give a pair of objects, is to give a pair of bundles on
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X , E1 → X and E2 → X . Since these are bundles over the same base manifold, we
can define Hom(E1, E2) to be the bundle morphisms between them. It will be useful
to note here that Hom(E1, E2) � E∗

1 ⊗ E2 is itself a vector bundle with fiber defined
as Hom(E1, E2)(x) = Hom(E1(x), E2(x)), for all x ∈ X .

We then take our local operators representing an open string state to be WA,
where A is a (0, q)-form valued in the bundle Hom(E1, E2). Therefore, it is natural
to define the morphisms from E1 → X to E2 → X (equivalently the open string
states stretching from one D6-brane to the other), to be the Dolbeault cohomology
group

H 0,q
∂̄

(
X,Hom(E1, E2)

)
.

by the familiar Čech-Dolbealt isomorphism, the Dolbeault cohomology group above
is isomorphic to Čech cohomology

H 0,q
∂̄

(
X,Hom(E1, E2)

) � Ȟq
(
X,H om(E1,E2)

)
, (17)

where E1 and E2 are the locally-free sheaves corresponding to the vector bundles
E1 and E2. In the B-model, specifically in the case of space-filling branes, we can
unambiguously assign a ‘ghost number’ q to an open string. We will see that this
will be less clean when considering branes of non-zero codimension.

As a simple example, we can compute a three-point correlator of open string states
[3]. Consider three D6-branes corresponding to holomorphic vector bundles E1, E2,
and E3. Let us call the three local operators WA, WB , and WC , where

A ∈ H0,1
∂̄

(
X,Hom(E1, E2)

)
, B ∈ H0,1

∂̄

(
X,Hom(E2, E3)

)
, C ∈ H0,1

∂̄

(
X,Hom(E3, E1)

)
. (18)

Recall that in the B-model, since instantons are suppressed, the correlation functions
are given simply by integrals over X . Indeed, the path integrals in the topological
sector include only contributions from the moduli spaceM0 of degree zero harmonic
maps into X . But of course, these are simply constant maps, and M0 = X . This
implies,

〈WAWBWC 〉 =
∫
X
Tr(A ∧ B ∧ C) ∧ Ω. (19)

The ‘integrand’ is a (3, 3)-form, which is natural to integrate over a threefold. Of
course, when wedging forms valued in the bundle Hom(Ei , E j ), we implicitly com-
pose the morphisms.

The Mukai Vector and D-Brane Charges

We have seen that when considering only D6-branes on a threefold, it sufficed to
model them as objects in the category of locally-free sheaves. The goal of this section
is to gently acquaint the reader with some of the more general coherent sheaves
needed to formalize D4, D2, and D0-branes. For a rigorous definition of coherent
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sheaves, see [6]. For my purposes, it will suffice to think very roughly of coherent
sheaves as the minimal, full abelian category arising as the “completion” of the
category of locally-free sheaves upon adding all kernels and cokernels.

Naïve Definition 2 In the B-model topological string on a Calabi–Yau threefold X ,
a D-brane corresponds to a coherent sheafF on X . The support of the sheaf supp(F )

defines the underlying homology class of the D-brane.

Branes need not be pure dimensional. For example, a coherent sheaf F can be
supported on curves and points. We interpret such an F as a bound state of D0-D2
branes. Such brane configurations occur, for example, in Donaldson–Thomas theory.
A helpful device for guiding intuition here is the Mukai vector or equivalently, the
D-brane charges [8] associated to a coherent sheaf.

Definition 3 Let X be a smooth n-dimensional variety and letF be a coherent sheaf
on X . The Mukai vector is defined to be

v(F ) = ch(F )
√
td(X) = (v0, . . . , vn) ∈ H 2∗(X,Q). (20)

If X is also projective, then the D-brane charge is given simply by the Poincaré dual
of the Mukai vector2

Q(F ) = PD
(
ch(F )

√
td(X)

) ∈ H2∗(X,Q). (21)

By convention, we order the charges as Q(F ) = (Qn, . . . ,Q0), where Qi ∈
H2i (X,Q) is called the D2i-charge.

Recall that based on the naïve definition, we concluded that the coherent sheaves
which most directly correspond to physical D-branes are pushforwards of holomor-
phic vector bundles along inclusions.3 Let X be an n-dimensional smooth, projective
variety and let ι : Z ↪→ X be the inclusion of the m-dimensional subvariety Z into
X . In addition, let E be a rank N holomorphic vector bundle on Z .

Lemma 1 Given X, Z, and E as described above, we have

chk(ι∗E) = 0, for all k < n − m,

PD
(
chn−m(ι∗E)

) = N [Z ] ∈ H2m(X,Q).
(22)

Proof This is a straightforward computation which can be found, for example, in
[10].

This simple result about the Chern character of pushforwards of vector bundles,
immediately implies the following corollary about the D-brane charges.

2In [9], the authors introduce ‘gamma classes’ which encode corrections to the factor of
√
tdX .

3This is not quite true. Due to a phenomenon related to the Freed-Witten anomaly, one must also
tensor by K−1/2

Z where KZ is the canonical bundle of Z . There is a nice discussion of this in [2, 3].
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Corollary 1 Again, given X, Z, and E as above, the D-brane charges satisfy

Qk(ι∗E) = 0, for all k > n − m,

Qm(ι∗E) = N [Z ] ∈ H2m(X,Q).
(23)

Proof Using the Lemma, we note that
(
ch(ι∗E)

√
td(X)

)
k = 0 for all k < n − m.

Poincaré dualizing, this shows that all entires in the D-brane charge vanish for k >

n − m, thus proving the first claim. Note that
(√

td(X)
)
0 = 1, and so

(
ch(ι∗E)

√
td(X)

)
n−m = chn−m(ι∗E). (24)

By Poincaré dualizing and applying the Lemma oncemore, the second claim follows.

This corollary provides a precise mathematical translation of a phrase, prevalent in
the physics literature, generalizing onemade earlier about D6-branes and locally-free
sheaves:

In physics, one often hears about “a stack of N D-branes wrapping a holomor-
phic cycle Z ⊆ X .” Mathematically, this corresponds to a rank N holomorphic
vector bundle on Z.

Let us introduce nowa fewof the familiar coherent sheaves onemight encounter on
aCalabi–Yau threefold X . It has been previously observed that D6-branes correspond
to locally-free sheaves. In non-zero codimension, D4, D2, and D0-branes correspond
to torsion sheaves. A torsion sheaf is a coherent sheaf F of rank zero, which is
encoded into the Mukai vector as v0 = 0, or equivalently into the D-brane charges
as Q3 = 0.

Let Z be a holomorphic subvariety of X . This gives rise to a short exact sequence

0 → IZ → OX → OZ → 0, (25)

where OZ is the structure sheaf on Z and IZ is called an ideal sheaf. In algebraic
geometry, an ideal sheaf on X is a rank one torsion-free sheafIZ with trivial determi-
nant. There is necessarily an injective sheaf morphism IZ → OX and the cokernel
defines a subscheme Z ⊆ X along with the short exact sequence above. If Z is a
divisor, then IZ is actually a line bundle, and OZ is an example of a D4-brane. If
Z is supported only on curves and points, then OZ indeed corresponds to D2 or
D0-branes, as expected. However, in that case IZ is a rank one torsion-free sheaf
which is not locally-free.

Ideal sheaves have no immediate interpretation as D-branes. However, notice that
because the Chern character is additive on short exact sequences, applyingQ to (25),
the D-brane charges are seen to satisfy

Q(OX ) = Q(IZ ) + Q(OZ ), (26)
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which looks like a manifestation of charge conservation. This is perhaps hinting that
an ideal sheaf may have an interpretation as a bound-state of a brane (OX ) and a
suitably defined anti-brane (OZ ) coupled via a map OX → OZ .

2.2 Summary and Outlook

Roughly speaking, one may think of the category of coherent sheaves Coh(X) as
containing all of the locally-free sheaves on X , plus all of the ideal sheaves, struc-
ture sheaves, and pushforwards of sheaves arising from holomorphic vector bundles
on subvarieties. Thus, if we want to expand beyond the world of vector bundles,
considering the coherent sheaves is the most natural first step. We hope to argue
that the derived category DbCoh(X) will be large enough to account for all B-model
D-branes at this point. In the following sectionwewill introduce some of themachin-
ery of homological algebra and sheaf cohomology. There are at least two indications
so far that such machinery should be important.

Recall that we have only done one computation in this section: in the case of
two D6-branes, we computed the spectrum of open string states stretching between
the branes. Here we used that D6-branes correspond to vector bundles E1 → X
and E2 → X , and since they share a common base space, the group of morphisms
Hom(E1, E2)waswell-defined.But in higher codimension, branes neednot intersect,
and certainly will not be given simply by a locally-free sheaf. For example, we can
have a brane supported on a divisor, and another supported on a curve with open
strings stretching between. Or we can have a stack of N D0-branes supporting open
string endpoints. In this setting, it is natural to expect the Ext Groups to encode the
open string spectra, as they are a natural generalization of bundle morphisms.

In addition, the ideal sheaf short exact sequencewe encountered is perhaps hinting
that we should consider complexes of coherent sheaves. We saw that the application
of the D-brane charge Q to such a short exact sequence seems to encode a charge
conservation. The physical BRST formalism provides a natural grading by the ghost
number, so we can consider a D-brane as a direct sum, graded by the ghost number.
Turning on VEVs for a tachyon field, will deform this direct sum to a genuine
complex. The second motivation to consider complexes, comes from the general
philosophy of resolutions. It’s often beneficial to replace an arbitrary element of a
category by a tower of “pleasant” objects. In otherwords, you have resolved the object
by a complex of nice objects. The coherent sheaves we find to be particularly pleasant
are the locally-free sheaves associated to space-filling branes. Given a coherent sheaf
which is not locally-free (coming from aD0-, D2-, orD4-brane)we can find a locally-
free resolution.

Once in the category of complexes of coherent sheaves, the glaring question
is, are there physical reasons to identify complexes up to homotopy and quasi-
isomorphism? Remarkably, the answer is conjecturally, yes. Identifying homo-
topic maps between D-branes will be natural from the BRST formalism. We will
interpret quasi-isomorphic complexes to be in the same “universality class” of
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Renormalization Group flow on the worldsheet. Moreover, we can realize this flow
as brane/anti-brane annihilation via a non-zero tachyon VEV.

3 Sheaf Cohomology, Derived Functors, and Ext Groups

We begin with a few remarks pertaining to the global sections of a sheaf. We assume
the reader is familiar with Čech cohomology.

Remark 1 Given a sheafF on X , the zeroth Čech cohomology group computes the
global sections,

Γ (X,F ) � Ȟ 0(X,F ).

Remark 2 Given an OX -module F , the global sections of F correspond to mor-
phisms OX → F ,

Γ (X,F ) � Hom(OX ,F ).

We should also record the familiar isomorphism between Čech cohomology and
Dolbeault cohomology.

Remark 3 Let Ω p be the sheaf of holomorphic p-forms on X . The Čech-Dolbeault
isomorphism states that

H p,q
∂̄

(X) � Ȟq(X,Ω p). (27)

More generally, we can let E be a holomorphic vector bundle on X , with corre-
sponding locally-free sheaf E . The generalized Čech-Dolbeault isomorphism relates
(p, q)-forms valued in E to the sheaf E ⊗ Ω p

H p,q
∂̄

(X, E) � Ȟq(X,E ⊗ Ω p). (28)

One important idea will be that of resolutions. The general philosophy of resolu-
tions is that given an arbitrary object A in some category, it might be preferable to
replace A by a tower of especially pleasant objects in the category. One often speaks
of injective, projective, flasque/flabby, or free resolutions. These focus our attention
on especially nice, or rigid objects in the category. This provides a way of defining
derived functorswhich can be evaluated at such arbitrary objects A. This can be done
in some generality in the category of R-modules over a ring R. However, we will
focus on the category of OX -modules. In this category, using resolutions to define
derived functors will immediately give a definition of sheaf cohomology. This sheaf
cohomology is extremely abstract, so is not terribly helpful in explicit computations,
but it agrees with Čech cohomology, and will allow for the definition of the Ext
groups.
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Given an injective resolution of some object A,

0 −−−−→ A −−−−→ I0 −−−−→ I1 −−−−→ . . . (29)

and a left-exact functor F , we get a complex

0 −−−−→ F(I0) −−−−→ F(I1) −−−−→ F(I2) −−−−→ . . . (30)

Wedefine the nth right derived functor of F at A, denotedRn F(A), to be the nth coho-
mology of the above sequence. From here on, wewill restrict attention to the category
of OX -modules, with the primary left-exact functor of interest being Hom(OX ,−).
By an earlier remark, we may also refer to Hom(OX ,−) as the global section functor
since acting on any sheaf results in the group of global sections. We arrive finally at
the important definition of sheaf cohomology

Definition 4 We define sheaf cohomology for OX -modules to be the right derived
functor of the left-exact global sections functor Hom(OX ,−). Given an OX -module
F , then the nth sheaf cohomology group of F is

Hn(X,F ) = RnHom(OX ,−)(F ). (31)

The most pressing point to be made after a definition using derived functors, is that
the result is independent of the particular resolution we chose. Resolutions of a given
object are generally far from unique, and it would clearly be problematic if we got a
different result for sheaf cohomology depending on which resolution we chose; this
is not the case.

Remark 4 The 0th sheaf cohomology group computes the global sections of the
sheaf. In particular, it agrees with Čech cohomology.

Proof The proof here is very straightforward. In general for a right derived functor,
we have R0F(A) = F(A), since the functor F is left-exact. Using this, we compute

H 0(X,F ) = R0Hom(OX ,−)(F ) = Hom(OX ,F ) = F (X) (32)

The definition of sheaf cohomology using derived functors is quite abstract. In fact,
it’s so abstract, that it’s essentially immune to computations. However, this same
abstraction makes it incredibly elegant to use in theory building. When needed for
actual computations, the best approach is to prove that it is isomorphic to something
like Čech cohomology which is far more computable.

Theorem 1 Given anOX -moduleF , the Čech and sheaf cohomologies are isomor-
phic,

Hn(X,F ) � Ȟ n(X,F ). (33)

Proof I refer the reader to Theorem 4.5 in [6].
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We have defined sheaf cohomology for arbitrary OX -modules, however we can sim-
ply restrict attention to the coherent sheaves if we like. The reason being, the coherent
sheaves are a full subcategory, meaning the morphisms are the same in the subcat-
egory, as they are in the original category. In fact, in applications to D-branes, we
will usually regard the locally-free sheaves as the particularly nice objects within the
category of coherent sheaves. Thus we’ll want to take an arbitrary coherent sheaf,
and resolve it using a tower of locally-free sheaves. First, we must introduce the Ext
groups.

Definition 5 Let E be an OX -module. The functor Hom(E ,−) is left-exact, so we
may consider its right derived functor evaluated at an OX -module F . This allows
for the following definition of the Ext groups,

Extn(E ,F ) = RnHom(E ,−)(F ). (34)

There are a few simple examples where the Ext groups correspond to familiar quan-
tities:

Ext0(E ,F ) = R0Hom(E ,−)(F ) = Hom(E ,F ), (35)

and
Extn(OX ,F ) = RnHom(OX ,−)(F ) = Hn(X,F ). (36)

Thus, we see that Ext groups at least encode abelian groups of sheaf morphisms and
sheaf cohomology groups. In addition, we have the following useful result, known
as Serre duality.

Theorem 2 In the case where X is a Calabi–Yau m-fold, for all n = 0, . . . ,m

Extn(E ,F ) � Extm−n(F ,E ). (37)

Consider two holomorphic vector bundles E and F on X , with corresponding
locally-free sheaves E andF . The space of vector bundle morphisms Hom(E, F) is
actually itself a vector bundle, with fiber defined by Hom(E, F)(x) = Hom(E(x),
F(x)), for all x ∈ X . Since Hom(E, F) is a holomorphic vector bundle, there exists
a corresponding locally-free sheaf which we denote asH om(E ,F ). It is very easy
to get mixed up here with the notation, so we briefly summarize,

Hom(E, F) = the holomorphic vector bundle of bundle morphisms

H om(E ,F ) = locally-free sheaf associated to Hom(E, F)

Hom(E ,F ) = abelian group of sheaf morphisms fromE toF .

Moreover, Hom(E ,F ) is actually the abelian group of global sections of H om
(E ,F ). By the Čech-Dolbeault-Sheaf isomorphism,
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H 0,q
∂̄

(X,Hom(E, F)) ∼= Ȟq(X,H om(E ,F )) ∼= Hq(X,H om(E ,F )). (38)

Since R0Hom(OX ,−)(F ) = Hom(OX ,F ) gives the global sections of F , and
Extq(OX ,F ) ∼= Hq(X,F ), we can conclude analogously that,

Extq(E ,F ) ∼= Hq(X,H om(E ,F )) ∼= H 0,q
∂̄

(X,Hom(E, F)) (39)

With this, we have finally converted all complex geometry of D-branes into algebraic
and sheaf-theoretic language. For X a Calabi–Yau threefold, we conclude from (39)
and (17),

Given two stacks of D6-branes in the B-model with associated locally-free
sheaves E and F , the open strings states stretching from E to F with ghost
number q, are given by the abelian group Extq(E ,F ).

4 The Derived Category and Complexes of D-branes

For the time being, I would like to restrict attention to D6-branes modeled as locally-
free sheaves, as opposed to more general coherent sheaves. We saw above that given
two stacks of D6-branes wrapping a Calabi–Yau threefold X with corresponding
holomorphic vector bundles E and F , we can ask about themorphisms between them.
These were shown to be given by the Dolbeault cohomology H 0,q

∂̄
(X,Hom(E, F))

or equivalently, Extq(E ,F ). We identify each morphism with a string state, and the
ghost number or R-charge of the string corresponds to q. Mathematically, we can
think of this q as providing a natural Z-grading. Given a D-brane with holomorphic
vector bundle E (or locally-free sheaf E ), we can consider all strings attached to it
as being graded by an integer. Thus, it seems natural to initially consider direct sums
of locally-free sheaves on X ,

E =
⊕
n∈Z

E n. (40)

The above direct sum can trivially regarded as a complex with all maps being zero

E • = (
. . .

0−−−−→ E −1 0−−−−→ E 0 0−−−−→ E 1 0−−−−→ . . .
)
. (41)

Simply put, we want to deform away from the trivial case of direct sums by turning
on non-zero maps between the E i in the above sequence. These non-zero maps
will be called tachyons for reasons to be explained shortly. Once we do this, the
D-branes will correspond to elements in the category of complexes Kom(C ), where
C is the category of locally-free sheaves on X . However, physically, the string states
correspond to elements in Q-cohomology, so we need to identify all states differing
by a Q-exact terms. Remarkably, this identification on the physics side, corresponds
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precisely to identifying complexes up to homotopy in Kom(C ). This places the
B-model D-branes in correspondence with the homotopy category K(C ).

This correspondence is certainly elegant, but there is a fundamental problem here.
Most importantly, the homological algebra described just above requires that the
category be abelian. The category of locally-free sheaves is additive, but not abelian.
The resolution here will be to extend our consideration to the category of coherent
sheaves Coh(X), which is an abelian category containing the category of locally-free
sheaves C . This seemingly dangerous problem was actually hinting that we weren’t
considering all of the branes that we need to. As we saw in an earlier section, the
locally-free sheaves cannot describe D4, D2, nor D0-branes; these require torsion
sheaves. Thus, extending to coherent sheaves is well-motivated both mathematically
and physically.

Given the homotopy categoryKCoh(X) of coherent sheaves, it is tempting to iden-
tify quasi-isomorphisms and arrive at the (bounded) derived category DbCoh(X). But
is there any physical motivation for this? Indeed, we will argue that two complexes
which are quasi-isomorphic lie in the same universality class of the renormalization
group flow. In other words, one complex can be thought of as condensing to another
[11]. This explains the use of the term tachyon: in string theory, a tachyon is a particle
which signifies an instability. This instability corresponds to the branes in a complex
annihilating each other.

4.1 Deformation of Complexes

Let us begin by considering a stack of D6-branes on a threefold X given by a holo-
morphic vector bundle E (with associated sheaf E ), which decomposes as the direct
sum

E =
⊕
n∈Z

E n, (42)

where each E i is a locally-free sheaf on X . The open string states from E to itself,
correspond to linear combinations of elements in Ext∗(E ,E ). For all n, k the string
states with ghost number q correspond to elements of Extk(E n,E n−k+q). For exam-
ple, when k = 1, the string with ghost number q = 1 correspond to elements in
Ext1(E n,E n), which describe deformations of the locally-free sheaf E associated to
the vector bundle E . The more pressing case to consider is k = 0. Here, the ghost
number q = 1 strings are elements of Ext0(E n,E n+1) � Hom(E n,E n+1). Let us
define d = ∑

dn ∈ Hom(E ,E ), where

dn ∈ Hom(E n,E n+1). (43)

Thus, dn is a holomorphic map from E n to E n+1.We can use d to deform the physical
sigma model action
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δS =
∮

∂Σ

(ψ i
+ + ψ i

−)∂i d, (44)

and then prove that deforming the action by δS, requires a deformation of the BRST
operator as well

Q = Q0 + d. (45)

We need to retain the nilpotence Q2 = 0 of the BRST operator, which leads to the
constraint

{Q0, d} + d2 = 0. (46)

The two terms above must individually vanish. The constraint {Q0, d} = 0 is merely
the statement that d is a holomorphic map, recalling that in the B-model, the unde-
formed BRST operator is Q0 = ∂̄ . The condition d2 = 0 can be expanded in terms
of successive maps, and we see that

dn+1dn = 0. (47)

Thus, the nilpotence of the deformed BRST operator Q is translated into the con-
ditions that each dn must be a holomorphic map, and the consecutive application of
two successive maps must vanish. That is to say E is deformed into the complex

E • = (
. . .

dn−1−−−−→ E n dn−−−−→ E n+1 dn+1−−−−→ E n+2 dn+2−−−−→ . . .
)

(48)

Consider now the slightly more general case of open strings stretching from a
stack of D6-branes E • to another stack of D6-branesF •. Let both E • andF • consist
of a collection of objects (graded by ghost number) constituting a trivial complex;
namely, E • and F • decompose into direct sums. We deform the theory by turning
on the differentials dE and dF , yielding two non-trivial complexes. The deformed
BRST operator can be shown to be

Q = Q0 + dE − dF . (49)

Let f n : E n → F n be a collection of maps from the elements of the complex E •,
to the complexF •. These should be thought of intuitively as strings stretching from
E n toF n . What are the conditions that the map of complexes f is BRST invariant?
We require

Q f n = Q0 f
n + f n+1dE − dF f n = 0. (50)

Like above, this factors into two independent constraints. First, we require Q0 f n = 0
for all n. That is to say f n is a holomorphic map, f n ∈ Hom(E n,F n). The second
condition is that f n+1dE = dF f n . This is precisely what it means for f to define a
morphism of complexes. Moreover, if two such maps f and f ′ differ by a Q-exact
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term,
f ′ = f + Qh, (51)

then we see that f and f ′ are homotopic morphisms of complexes. Therefore, quoti-
enting by homotopy equivalence is the mathematical manifestation of passing to Q-
cohomology, which is well-motivated physically. In order that a map f : E • → F •

be a genuine morphism of complexes, we require that f be BRST invariant (Q-
closed) which is precisely the physical notion of corresponding to an allowed open
string state. Moreover, two such states f and f ′ are deemed physically equivalent
if and only if they differ by a Q-exact term, and this coincides with the definition
of f and f ′ being homotopic chain maps! We conclude that the homotopy category
K(C ) naturally models stacks of D6-branes in the B-model.

4.2 Renormalization Group (RG) Flow
and Quasi-Isomorphisms

Given the homotopy category K(C ), it is clearly tempting to ask if there is any
physical motivation to identify quasi-isomorphisms, landing us once and for all in
the derived category. I hope to outline the state-of-the-art conjecture that D-branes in
the B-model related by a quasi-isomorphism correspond to physical configurations
related by worldsheet renormalization group (RG) flow; in some loose sense, the
branes and anti-branes at least partially annihilate.

Branes, Anti-branes, and Tachyons

First, we introduce some terminology. Given a D-brane represented as a complex,

E • = (
. . .

dn−1−−−−→ E n dn−−−−→ E n+1 dn+1−−−−→ E n+2 dn+2−−−−→ . . .
)

(52)

we consider the entries of the complex to be alternating branes and anti-branes, and
we call the maps dn tachyons. In string theory, a tachyon indicates an instability in a
physical system. Indeed, herewemean that non-zero tachyons dn lead to an instability
of the configuration of D-branes. In the trivial case where all dn vanish, the system
appears to be in a stable state, but with non-zero tachyons, the configuration may
flow via the renormalization group to a more stable system.

In physics, two theories related by renormalization group flow are said to lie in the
same universality class. The conjecture here is that the physical universality classes
correspond to the equivalence classes of quasi-isomorphisms. It’s crucial to note that
two theories in the same universality class, are not equivalent physical theories. RG
flow represents a flow in the “space of theories” to a completely different physical
theory.

We seem to have argued that the category of D-branes in the B-model topological
string is the (bounded) derived category Db(C ) of locally-free sheaves on X . How-
ever, as mentioned earlier, the locally-free sheaves are not an abelian category. The
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natural guess is to pass to the coherent sheaves which are essentially the abelian-
ization of the locally-free sheaves. Indeed, we have seen that a D-brane naïvely
corresponds to a coherent sheaf, making this extension reasonable. Therefore, the
conjectural conclusion provided by [2, 3] is,

The category of D-branes in the B-model topological string is the (bounded)
derived category DbCoh(X) of coherent sheaves on a Calabi–Yau threefold X .
Quotienting by homotopy corresponds to identifying states up to Q-exact terms.
Quasi-isomorphism corresponds to worldsheet RG flow and brane/anti-brane
annihilation.

This is fundamentally built on the original conjecture of Kontsevich [1] relating
homological algebra and mirror symmetry.

5 Examples

Example 1: Elementary Brane/Anti-Brane Annihilation
The following example is as simple as it gets, but it illustrates well all of the features
of the discussion above. Consider the following complex,

. . . −−−−→ 0 −−−−→ E
c−−−−→ E −−−−→ 0 −−−−→ . . . (53)

where E can be any coherent sheaf supported on a subvariety Z of X . If the above
map c is identically zero, then we essentially have two copies of E which do not
couple in any sense, and the complex decomposes into a direct sum E ⊕ E . This
can be thought of as two stacks of D-branes wrapped on Z which do not interact. If,
however, we turn on the map c �= 0, physically, we have added a VEV for a tachyon
field, which indicates an unstable coupling between the branes. The E on the left
represents an anti-brane while the E on the right represents a brane. Intuitively, we
physically expect the branes to annihilate due to this instability. In other words, this
sequence should be in the same universality class as the zero complex. Indeed, in
this case this sequence is quasi-isomorphic to its cohomology, which is simply zero
in every entry, for c �= 0. And so the intuition is verified: the unstable configuration
is quasi-isomorphic to the zero complex, signifying brane/anti-brane annihilation.

Example 2: D4-branes
Let Z ⊆ X be a codimension one complex subvariety of X , i.e. a divisor. This
means Z is cut out by a section of a line bundle O(−Z), which is given locally
by the vanishing of a holomorphic function f . Since O(−Z) consists simply of all
holomorphic functions vanishing identically on Z , it naturally injects into OX . The
cokernel of this map O(−Z) → OX is simply the structure sheaf of Z , denoted OZ .
Thus, we have the following short exact sequence of sheaves,

0 −−−−→ O(−Z)
f−−−−→ OX −−−−→ OZ −−−−→ 0. (54)
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Wecan reinterpret this exact sequence. Let us define the complex (not exact sequence)
E •,

E • = (
. . . −−−−→ 0 −−−−→ O(−Z)

f−−−−→ OX −−−−→ 0 −−−−→ . . .
)
, (55)

where we takeOX to be in the zeroth degree slot. It’s straightforward to compute the
cohomology of this complex, where we get zero in all degrees except H 0(E •

) =
OX/O(−Z) = OZ . Since we are working in codimension one, O(−Z) is a locally-
free sheaf, sowe see that we have recovered the coherent sheafOZ as the cohomology
of a complex of locally-free sheaves. Thus, we can interpret the complex E • as
consisting of a brane and an anti-brane annihilating to yield simplyOZ as the endpoint
of renormalization group flow. It’s natural to considerOZ as associated to aD4-brane,
since it is supported on a four real dimensional manifold Z .

Interpreting this example in another light, we regard O(−Z) → OX as a locally-
free resolution of the torsion coherent sheaf OZ . Of course, the cohomology of a
resolution coincides with the original object, itself. In this way, we can imagine
resolving any coherent sheaf supported on a complex subvariety by locally-free
sheaves. This is what we meant above, when we mentioned that coherent sheaves
arise naturally from complexes of locally-free sheaves, under RG flow.

Example 3: D0-branes

Let us take X to be a Calabi–Yau threefold which we can study locally as C3 with
coordinates (x, y, z). We define a map

O⊕3
X

(x y z)−−−−→ OX , (56)

defined by taking a triple of holomorphic functions ( f1, f2, f3) to the holomorphic
function x f1 + y f2 + z f3. Since the cokernel of this map should be OX modulo the
image of this map, we expect that a section of the cokernel must vanish away from
the origin in C

3, but can take any complex value at the origin. Letting p denote the
origin in C

3, we see that the cokernel of the above map is simply the skyscraper
sheafOp at p. Moreover, we naturally have a surjective mapOX → Op arising from
evaluating a holomorphic function at p. Thus, the skyscraper sheaf Op is a coherent
sheaf. We have the exact sequence

O⊕3
X

(x y z)−−−−→ OX −−−−→ Op −−−−→ 0. (57)

Indeed, this map has a kernel, corresponding to the sheaf of all functions vanishing
at p; this is the ideal sheaf of p. Finally, this gives the short exact sequence

0 −−−−→ Ip −−−−→ OX −−−−→ Op −−−−→ 0. (58)

Just like in the previous example, we can define the complex E •,
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E • = (
. . . −−−−→ 0 −−−−→ Ip −−−−→ OX −−−−→ 0 −−−−→ . . .

)
, (59)

and trivially compute the cohomology of the complex to vanish in all degrees except
H 0(E •

) = OX/Ip = Op. Once again, we recover a general coherent sheaf as the
cohomology of a complex of coherent sheaves. The only difference here is that Ip

is no longer a locally-free sheaf. Rather, it can be though of roughly as a trivial line
bundle outside the origin, where there is no fiber.

Example 4: Branes Wrapping Curves and Points

The setting most closely aligned with modern enumerative geometry and string the-
ory consists of studying one-dimensional sheaves on aCalabi–Yau threefold X . These
are sheaves which have a complex one-dimensional support. The Gromov-Witten,
Donaldson–Thomas, and Gopakumar–Vafa invariants often package themselves into
partition functions exhibiting remarkable properties, and uncovering surprising con-
nections to subjects like modular forms, and representation theory, to name just a
few. As a final example, I would like to briefly outline the connection two of these
invariants have with the content of this article.

The Donaldson–Thomas invariants are a (virtual) count of subschemes Z ⊆ X
supported on a fixed homology class β ∈ H2(X,Z). and whose structure sheaf OZ

has a fixed holomorphic Euler characteristic. Such subschemes can be supported on
both curves and points. We therefore think of OZ as a bound state of D2-D0 branes.
However, there is necessarily a surjectivemapOX → OZ , with kernelIZ . Therefore,
one often hears the Donaldson–Thomas invariants described as enumerating bound
states of D2-D0 (anti) branes within a single D6-brane.

The Gopakumar–Vafa invariants are integers which count BPS states of D2-
branes wrapped on curves in X . Given a class β ∈ H2(X,Z) we can consider the
moduli spaceM (0, 0, β, 1) of pure one-dimensional sheavesF supported on class
β with D-brane chargeQ(F ) = (0, 0, β, 1). Recently, a proposal emerged [12] for
extracting the Gopakumar–Vafa invariants from M (0, 0, β, 1) consistent with their
known relation to Gromov-Witten theory.

Due to the combined shortness of my talk, and immense breadth of this subject,
I necessarily had to omit certain important topics and examples. Particularly, some
explicit computations of open string states as Ext groups. These are covered excel-
lently in [2, 3] to which I refer the reader. In particular, [2] contains quite a few very
enlightening examples. Another topic I had to omit is spectral sequences; a great
discussion can be found in [3].
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Introduction to Topological String
Theories

Kento Osuga

1 Mathematical Background

In this section, we give mathematical definitions and some results that physicists
might not be familiar with, but these are necessary to understand the topological
A-model and B-model and mirror symmetry. See [1, 2] for more details.

1.1 Complex Manifolds

Anm-dimensional complexmanifold is defined to be a 2m-dimensional realmanifold
which locally looks Cm with holomorphic transition functions, hence any complex
manifold is a real manifold. The converse is however not always true and we need
to introduce the concept of complex structure. Let M be an 2m-dimensional real
manifold with tangent bundle T M and cotangent bundle T ∗M , and we denote by
�(⊗k T M ⊗l T ∗M) the space of tensor fields of rank (k, l). We define an almost
complex structure J ∈ �(T M ⊗ T ∗M) to be a smooth tensor field of rank (1,1) on
M satisfying J a

c J c
b = −δa

b . Then we define the Nijenhuis tensor N which locally
takes the form

N a
bc = J d

b (∂d J a
c − ∂c J a

d ) − J d
c (∂d J a

b − ∂b J a
d ). (1)

If N = 0 everywhere, J is called a complex structure. It is proven that an
2m-dimensional real manifold can be considered to be an m-dimensional complex
manifold only if it admits a complex structure J . Roughly speaking, a complex
structure tells how to mix local coordinates (zi , z̄i ).
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1.2 Calabi–Yau Manifold

A Hermitian metric h on a complex vector bundle E over a complex manifold M is
a smooth section h ∈ �(E ⊗ E) satisfying

h(u, v̄) = h(ū, v), h(u, ū) ≥ 0, u, v ∈ E . (2)

Locally h can be written as
h = hab̄dza ⊗ dzb̄. (3)

The Riemannian metric g on complexified cotangent bundle T ∗
C M is defined to

be the real part of the Hermitian metric

g = 1

2
(h + h̄). (4)

On the other hand, the imaginary part

ω = i

2
(h − h̄), (5)

is called the Hermitian form. All h, g, ω are compatible with a complex structure
J , i.e., h(u, v̄) = h(Ju, J v̄). Also note that any of these three uniquely determines
the other two. A Kähler manifold is defined to be a complex manifold with the non-
degenerate closed Hermitian form dω = 0 and ω in this case is called a Kähler form.
It is known that locally a Kähler form is given by a so-called Kähler potential K as

ωab̄ = igab̄ = i∂a ∂̄b̄ K . (6)

One can calculate the Riemann tensors by the Riemannian metric g and it turns
out that all Rab = Rāb̄ = 0 on a Kähler manifold. A Calabi–Yau manifold is defined
to be a compact Ricci flat Kähler manifold, which is our interest in topological string
theories.

1.3 Cohomologies

On a complex manifold M , we define a (p,q)-form1 which locally is given as

A = Aa1···apb1···bq (z, z̄)dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq . (7)

1Do not be confused with type (k,l) tensors.
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The space of p-forms on M is the direct sum of the space of (p − q, q) forms over q.
Accordingly there exists three different exterior derivatives, namely d which maps
p-forms to (p + 1)-forms, ∂ which maps (p, q)-forms to (p + 1, q)-forms and ∂̄

which maps (p, q) to (p, q + 1)-froms. They are all nilpotent.
Let us denote d-cohomology, ∂-cohomology and ∂̄-cohomology by H p(M),

H p,q
∂ (M), and H p,q

∂̄
(M) respectively. Then a Kähler form ω is, for example, in

H 2(M) and also in H 1,1(M). There is no relation among these cohomologies in
general but if M is a Kähler manifold, it is known that H p,q

∂ (M) = H p,q
∂̄

(M) and

H p(M) =
⊕

H p−q,q(M). (8)

We call h p,q = dim H p,q(M) the Hodge numbers of M and for a Kähler manifold
they satisfy the following relations

h(p,q) = h(q,p), h(p,q) = h(m−p,m−q). (9)

1.4 Chern Class

Let us consider a connection form2 ω̃ on M and define the curvature form Ω as

Ω = dω̃ + ω̃ ∧ ω̃. (10)

Then the Chern class is defined as

c(M) = det

(
I + iΩ

2π

)
= c0(M) + c1(M) + c2(M) + · · · , (11)

where nth Chern class cn(M) is given by the term with n powers of Ω .
In particular, we find

c0(M) = 1, c1(M) = iTr(Ω)

2π
. (12)

For a Calabi–Yau manifold, it is known that c1(M) = 0, which becomes a key to
define the B-model in Sect. 6. Note that the requirement of the Ricci flatness is indeed
equivalent to the requirement c1(M) = 0.

One may be concerned that this definition relies on a connection ω̃ so different
choices of a connection gives different Chern classes. However, this turns out to be
an overthinking. The Chern classes are independent of the choice of connection.

2This is called a spin connection in supergravity.
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1.5 Moduli Spaces of Calabi–Yau manifolds

We denote a Calabi–Yau manifold by MC within this subsection. There is a theorem
by Calabi and Yau that given a complex manifold with vanishing first Chern class,
there is precisely one Calabi–Yau manifold in each Kähler class. We thus define
the moduli space MC of Calabi–Yau manifolds to be a space of all possible Kähler
classes and complex structures on MC . It is shown that h2,0 = h0,2 are fixed by
dim(MC), and especially they are zero if dim(MC) ≥ 3.

It is suggested that the Kähler part of M is related to H 1,1(MC) since ω ∈
H 1,1(MC). More precisely, the tangent space of it is isomorphic to H 1,1(MC). On
the other hand, the complex structure part of M is more complicated in general so
let us stick on M of dimensions three. In this case, the tangent space of infinitesimal
deformation of complex structure of M is shown to be isomorphic to H 2,1(M). In
fact one can explicitly calculate some of the Hodge numbers for the Calabi–Yau
3-fold and the hodge diamond becomes

1
0 0

0 h1,1 0
1 h2,1 h2,1 1
0 h1,1 0

0 0
1

(13)

Themirror symmetry between twoCalabi–Yau threefolds is a duality under reflec-
tion along the diagonal line, i.e. by interchanging h1,1 and h2,1, or in other words
H 1,1(M) (Kähler classes) and H 2,1(M) (complex structures) of two mirror pair the-
ories.

2 Topological and Cohomological Field Theory

Discussions in this section and here after are based on [2, 3]. Our interests in quantum
field theories are correlation functions, or observables, of physical operators in some
certain background. Here a background includes a choice of a manifold, metric and
coupling constants. A topological field theory, TFT, is defined to be a theory if all
physical observables are independent of the choice of the metric. So obviously any
observable has no explicit dependence of the metric, though it implicitly can.

This is a quite powerful requirement. Since one can freely change the metric and
coordinates in TFT, and these two end up with changing insertion points of local
operators without varying observables. That is, order of operators does not matter
and observables are independent of insertion points in contrast to standard quantum
field theories.
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A cohomological field theory, CohFT or sometimes called a Witten’s type TFT,
is a TFT with the following properties.

• There is a global Grassmann scalar symmetry operator Q such that Q2 = 0.
• All physical operators Oi are Q-closed, {Q,Oi } = 0.
• The vacuum state is Q-symmetric, Q|0 = 0.
• The EM tensor Tμν is Q-exact, Tμν = {Q, Gμν}, where Gμν is some operator.

The first three are properties of any quantum field theory with a BRST charge.
These three ensure that observables of physical operators Oi are invariant under a
Q-exact shift with some operator Λ

Oi ∼ Oi + {Q,Λi }. (14)

The fourth one is crucial tomake a theory topological. Let us consider a functional
derivative of an observable with respect to the metric g. Since physical operators are
required to be independent of the metric, we have

δ

δgμν
〈Oi1 · · ·Oin 〉 = i

∫
DφOi1 · · ·Oin

δS

δgμν
ei S[φ],

= i 〈Oi1 · · ·Oin {Q, Gμν}〉 ,

= 0, (15)

where φ is a field in the theory.
As a simple example, if the action is Q-exact, the theory is a CohFT since the

functional derivative with respect to the metric should be also Q-exact. Further since
the action is given by

exp
i

h

{
Q,

∫

M
V

}
, (16)

we have

d

dh
〈Oi1 · · ·Oin 〉 = 0. (17)

Therefore in this case, all correlation functions are given in the classical limit
(h → 0).

2.1 Nonlocal Operators

Consider an observable of physical local operators {Oi (xi )}. Since topological invari-
ance of the theory implies that it is independent of insertion points xi , the derivative
with respect to, for example, x1 vanishes
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dx1 〈O1(x1) · · ·Ok(xk)〉 = 〈dO1(x1) · · ·Ok(xk)〉 = 0. (18)

This means that dO must be Q-exact

dO (0)(x1) = {Q,O (1)(x1)}, (19)

where we denote the original physical operator by O (0) and the associated local
operator by O (1). If C is a closed circle in M , then

U (C) =
∮

C
O (1) (20)

is Q-closed. In fact,

{Q, U (C)} =
∮

C
dO (0) = 0. (21)

Topological invariance implies that δU (C) under small displacements ofC should
be Q-exact. Since Stoke’s theorem gives for a small area A with two boundaries
C1, C2, ∮

C1

O (1) −
∮

C2

O (1) =
∫

A
dO (1), (22)

it is again shown that dO (1) must be Q-exact dO (1) = {Q,O (2)}. Thus we have
another nonlocal operator for a closed two-dimensional surface S.

U (S) =
∫

S
O (2). (23)

One can of course repeat this procedure and eventually obtain a Q-closed nonlocal
operator

U (M) =
∫

M
O (m), (24)

where m is dimensions of M . Since this is independent of the metric by construction
and Q-closed, one can freely addO (m) into the action S with some coupling constants
without spoiling the cohomological property.

3 Twisted N = 2 Supersymmetry

Let us consider a two-dimensional N = 2 supersymmetric theory in the superfield
formulation. There are two bosonic local variables z, z̄ and two Grassmann vari-
ables θ± and their complex conjugate θ̄±. In our conventions, we define θ̄− to be a
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complex conjugate of θ+. This is because under the Lorentz transformation z �→
e2iαz, Grassmann variables are changed as

θ± �→ e±iαθ±, θ̄∓ �→ e±iαθ̄±. (25)

In the superfield formulation, the set of supersymmetry generators is represented
by

H = − d

idx0
= −i(∂z − ∂z̄),

P = − d

dx1
= −i(∂z + ∂z̄),

M = 2z∂z − 2z̄∂z̄ + θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
− θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−
, (26)

Q± = ∂

∂θ±
+ i θ̄±∂±,

Q± = − ∂

∂θ̄±
− iθ±∂±,

where z = x1 + i x0. Note that the complex conjugate of ∂θ̄+ is −∂θ− . Their commu-
tators are

[M, H ] = −2P, [M, P] = −2H,

[M, Q±] = ∓Q±, [M, Q±] = ∓Q±, (27)

{Q±, Q±} = P ± H,

and others are zero. Note that transformations of supercharges under the Lorentz
operator M are a half of those of H, P which represents that they are spinorial
quantities.

Let Φ be a superfield, then a super transformation is given by a Grassmann
parameter ε± as δΦ = (ε− Q+ + ε+ Q−)Φ. However since there are no constant
covariant spinors ε± for arbitrary manifolds, these supersymmetries Q± are not
global in general.

Fortunately since we have two supersymmetries, there is an additionalU (1) sym-
metry, called an R-symmetry, between them and it plays an important role in con-
structing a CohFT. In particular, consider the following two independent RV , RA

transformations

RV : (θ+, θ̄+) �→ (e−iβθ+, eiβ θ̄+), (θ−, θ̄−) �→ (e−iβθ−, eiβ θ̄−),

RA : (θ+, θ̄+) �→ (e−iβθ+, eiβ θ̄+), (θ−, θ̄−) �→ (eiβθ−, e−iβ θ̄−),
(28)
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and they leave z, z̄ invariant. That is, these are rotation among Grassmann variables.
Their generators in terms of θ and nonzero commutators are given by

FV = −θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
− θ−

∂

∂θ−
− θ̄+

∂

∂θ̄−
,

FA = −θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
+ θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−
,

(29)

[FV , Q±] = +Q±, [FV , Q±] = −Q±,

[FA, Q±] = ±Q±, [FA, Q±] = ∓Q±.
(30)

Note that these commutators are different from those in (27), though they are similar
as FV , FA are basically generators of U (1).

Now we get to a crucial argument. Let us define a new Lorentz operator as

MA = M − FV , or MB = M − FA, (31)

then their commutators with H, P remains unchanged while those with supercharges
are

[MA, Q+] = −2Q+, [MB, Q+] = −2Q+,

[MA, Q−] = 0, [MB, Q+] = +2Q+,

[MA, Q+] = 0, [MB, Q+] = 0,

[MA, Q−] = +2Q−, [MB, Q−] = 0. (32)

A theory with the Lorentz generator MA is called A-twisted and one with MB is
B-twisted. In an A-twisted theory, if one defines Q A = Q+ + Q− then we have

[MA, Q A] = 0, {Q A, Q A} = 0, (33)

The first commutator shows that Q A transforms as a scalar under the Lorentz trans-
formation MA so does its associated parameter εA. That is, Q A-symmetry is globally
defined. The second equation suggests that one can construct a CohFT with Q A.

Similarly in a B-twisted model, commutators with Q B = Q+ + Q− are

[MB, Q B] = 0, {Q B, Q B} = 0, (34)

which suggests the existence of another CohFT. Note that these observations only
guarantee the first condition for a CohFT. We will explicitly see in the next section
that we can indeed construct two CohFTs from N = 2 supersymmetric theory.
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4 Sigma Model and R-anomalies

We study a supersymmetric nonlinear sigma model in two dimensions, which gives
the topological A-model and B-model after twisting. Let Σ be a Riemann surface of
two dimensions and M be a target space of complex dimensions m with the metric g
then the sigma model governs maps Φ : Σ → M . The on-shell action of this model
is given as

S = 2t
∫

Σ

d2z

(
1

2
gI J ∂zφ

I ∂z̄φ
J + i

2
gI J ψ

I
−Δzψ

J
−

+ i

2
gI J ψ

I
+Δz̄ψ

J
+ + 1

4
RI J K Lψ I

+ψ J
+ψ K

− ψ L
−

)
, (35)

where t is a coupling constant and Δ is the covariant derivative with respect to the
metric on both Σ and M .

Let K , K be the canonical, and anti-canonical line bundles ofΣ andT 1,0M, T 0,1M
be the complexified tangent bundles of M respectively. Then each field lives in

φa ∈ Φ∗(T 1,0M), (36)

φā ∈ Φ∗(T 0,1M), (37)

ψa
+ ∈ K 1/2 ⊗ Φ∗(T 1,0M), (38)

ψ ā
+ ∈ K 1/2 ⊗ Φ∗(T 0,1M), (39)

ψa
− ∈ K

1/2 ⊗ Φ∗(T 1,0M), (40)

ψ ā
− ∈ K

1/2 ⊗ Φ∗(T 0,1M). (41)

If M is Kähler, then it has the supersymmetry transformations listed below. (If M is
not Kähler, it is still supersymmetric, just not with (2,2) supersymmetry, only (1,1).)

Let ε−, ε̄− ∈ K −1/2 and ε−, ε̄− ∈ K
−1/2

. Then the super transformation laws with
these parameters are respectively

δφa = iε−ψa
+ + iε+ψa

−,

δφā = i ε̄−ψ ā
+ + i ε̄+ψ ā

−,

δψa
+ = −ε̄−∂zφ

a − iε+ψb
−�a

bcψ
c
+,

δψ ā
+ = −ε−∂zφ

ā − i ε̄+ψ b̄
−�ā

b̄c̄
ψ c̄

+, (42)

δψa
− = −ε̄+∂z̄φ

a − iε−ψb
+�a

bcψ
c
−,

δψ ā
− = −ε+∂z̄φ

ā − i ε̄−ψ b̄
+�ā

b̄c̄
ψ c̄

+.
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Now let us discuss the R-anomalies. For simplicity, we drop the a-indices and
±-indices. In quantum field theories with fermions, one needs to be careful about
their zero modes. In our model (35), the following part is problematic

∫
Dψ Dψ exp(ψΔψ). (43)

If ψ is expanded as ψ = ∑
ψ(k), it is given by

∏

k,l

∫
dψ(k)dψ

(l)
exp

(
ψ

(l)
Δψ(k)

)
. (44)

Thus if ψ has some zero modes, the path integral vanishes since
∫

dθ = 0 for any
Grassmann variable θ . We give some facts below which we omit proofs since they
are too technical:

• Except in some special cases, one can show that the number of zero modes of ψ±
is |k±| and that of ψ± is zero if k± is positive, while the number of zero modes of
ψ± is zero and that of ψ± is |k±| if k± is negative.

• k± satisfy k+ = −k−. Thus one can choose k = k− then there are k zero modes of
ψ−, ψ+, and no zero modes of ψ+, ψ− if k ≥ 0.

• k is given by the first Chern class of the target space as

k =
∫

φ(Σ)

c1(M). (45)

• The last term is small perturbation in string scale. However since small perturbative
effect is not expected to give some change of the integer number k± in topological
theories, we ignore the contribution from this term to k±.

Therefore in this model, we need to insert local operators to have nonzero observ-
ables and those are given in the following form

∫
Dψ+ Dψ+ Dψ− Dψ−Wa1···ak b̄1···b̄k

(
k∏

i=1

ψ
ai− ψ

b̄i

+

)
ei S, (46)

where we have assumed k ≥ 0. Equation (28) shows that the product of ψ− and ψ+
is invariant under the RV -symmetry, while it is not under RA. Thus the RA-symmetry
is broken unless k = 0. We arrive at the same conclusion if k ≤ 0. This implies that
the A-twisting is defined for any Kähler target space, but the B-twisting can only
be defined for Calabi–Yau target spaces since otherwise the RA symmetry is not
well-defined. In the next section, we twist this sigma model into the A-model and
B-model to investigate more details.
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5 The A-model

In the A-model, the spinors live in the following bundles

ψa
z := ψa

+ ∈ K ⊗ Φ∗(T 1,0(M)),

χa := ψa
− ∈ Φ∗(T 1,0(M)),

χ ā := ψ ā
+ ∈ Φ∗(T 0,1(M)), (47)

ψ ā
z̄ := ψ ā

− ∈ K ⊗ Φ∗(T 0,1(M)).

By (42), by setting ε− = ε+ = 0 and ε+ = ε, ε− = ε to be constants, we have

δφa = iεχa

δφā = i ε̄χ ā

δχa = δχ ā = 0 (48)

δψa
z = −ε̄∂zφ

a − iεχb
−�a

bcψ
c
z

δψ ā
z̄ = −ε∂z̄φ

ā − i ε̄χ b̄
−�ā

b̄c̄
ψ c̄

z̄

Note that δ2, or Q2
A vanishes up to the equations ofmotion.We can of course consider

the off-shell formalism and then Q2 = 0 without using the equations of motion.
The on-shell action becomes

S = 2t
∫

Σ

dz

(
1

2
gI J ∂zφ

I ∂z̄φ
J + igābψ

ā
z̄ Δzχ

b

+igab̄ψ
a
z Δz̄χ

b̄ + 1

2
Rab̄cd̄ψ

a
z ψ b̄

z̄ χ cχ d̄

)
,

∼ i t
∫

Σ

dz{Q A, V } + t
∫

Σ

Φ∗(ω), (49)

where the second term is the pull back of the target space Kähler form and the last
line is true up to terms vanishing by the ψ-equations of motion. This does not make
any difference in the A-model as shown shortly. V is given by

V = gab̄

(
ψa

z ∂zφ
b̄ + ψ b̄

z̄ ∂z̄φ
a
)

. (50)

The second termof (49) dependsonlyon the cohomologyclass ofω and thehomotopy
class of the map Φ. Let us denote it by i tβ · ω then the action is given by

S = −tβ · ω +
∫

Σ

{Q A, V }. (51)
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We can put i tβ · ω out from the path integral so a physical observable takes the form

〈
∏

a

Oa〉 = e−tβ·ω
∫

DφDχ Dψ
∏

a

Oaeit{Q A,
∫

V }. (52)

As discussed in Sect. 2, the path integral part is independent of t hence we can
calculate it in the classical limit as long as �(tβ · ω) > 0. The t-dependence factor
is called an instanton number.

The remaining terms in the Lagrangian can be written as

{Q A, V } = L − 2tgab̄

(
∂zφ

a∂z̄φ
b̄ − ∂zφ

b̄∂z̄φ
a
)

, (53)

In particular, it includes only ∂z̄φ
a and ∂zφ

ā . Then one realizes that L is minimized
(classical limit) when φ is holomorphic

∂z̄φ
a = ∂zφ

ā = 0. (54)

Thus the A-model sums over holomorphic maps fromΣ → M . In general, the space
of such maps is finite hence the path integral reduces to a finite dimensional integral
and it is known to be m(1 − g) for a Calabi–Yau manifold where g is the number of
genus of Σ .

Note that the instanton factor obviously depends on the choice of Kähler classes
while it is independent of complex structures of M hence all information about
complex structures of M is embedded in the definition of V . If one modifies a
complex structure of M , the variation of the action gives

δS = {Q A,

∫

M
δV }, (55)

which is irrelevant in CohFTs. Therefore, the A-model depends on the Kähler classes
on M but not their complex structures.

5.1 Local Operators

In order to construct local operators independent of both the worldsheet metric and
diffeomorphism, one can use only φ, χ but not ψ because ψ behaves as a vector
and the z-indices should be either contracted by the metric or integrated out into
a nonlocal operator. χ is on the other hand a fermion even after twisting hence a
well-defined local operator is in the form

OA = Aa1···apb̄1···b̄q
(φ)χa1 · · ·χap χ b̄1 · · ·χ b̄q . (56)
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By using (48), a simple calculation shows

{Q A,OA} = −Od A (57)

with d the exterior derivative acting on A. Indeed the de Rham cohomology on M
turns out to be isomorphic to the Q A-cohomology of the A-model as long as we
consider only local operators.

Let us come back to the question why there is no need of terms vanishing by
the ψ-equations of motion in (49). One can define a new operator Q̃ A such that
the second line of (49) is given by equality but instead the transformation law for
ψ in (48) is modified. Then one can of course consider another topological theory
with Q̃ A and what potentially changes is only the Q̃ A-cohomology, i.e. the form
of local operators. However since Q̃ A-operations on φ, χ are precisely the same as
Q A-operations, local operators given in (56) is not modified at all. Therefore there
is no topological difference between the A-model with Q A and Q̃ A.

After twisting, spinors are not in the same bundle as before so that the number of
zero modes is also different. For example, it is known that the number of zero modes
of χ is

k = m(1 − g), (58)

if the target space is a Calabi–Yau manifold, which is the same as the dimensions
of the space of the map φ3 and no zero modes of ψ for k ≥ 0. If k is negative,
one can regard that there is no zero mode of χ but |k| zero modes of ψ . However
in this case, one cannot construct local topological theories because ψ should be
inserted which is either nonlocal or is contracted by the worldsheet metric. Thus
nonzero observables in the local A-model are only the partition function if g = 1
and (m, m)-point functions if g = 0.

6 The B-model

In the B-model, the spinors live in the following bundles

ψa
+ ∈ K ⊗ Φ∗(T 1,0(M)),

ψa
− ∈ K ⊗ Φ∗(T 1,0(M)),

ψ ā
+ ∈ Φ∗(T 0,1(M)), (59)

ψ ā
− ∈ Φ∗(T 0,1(M)).

3This is not a coincidence. One can intuitively see from the isomorphism between d-cohomology
and Q A-cohomology by using the transformation laws of φ, χ .
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It is convenient to define spinors as

ηā = ψ ā
+ + ψ ā

−,

θa = gab̄(ψ
ā
+ − ψ ā

−), (60)

ρa
z = ψa

+, ρa
z̄ = ψa

−,

then by setting ε− = ε+ = 0 and ε̄− = ε+ = ε to be constants, the super transfor-
mations become much simpler than those of the A-model

δφā = iεηā,

δρ = −εdφa, (61)

δφa = δηā = δθa = 0.

The B-model Lagrangian is

L = t
∫

Σ

d2z

(
gI J ∂zφ

I ∂z̄φ
J + igab̄η

ā(Δzρ
b
z̄ + Δz̄ρ

b
z )

+iθa(Δz̄ρ
a
z − Δzρ

a
z̄ ) + Rab̄cd̄ρ

a
z ρc

z̄ η
b̄gd̄eθe

)
,

= i t
∫

Σ

d2z{Q B, V } + tW, (62)

where

V = gab̄

(
ρa

z ∂z̄φ
b̄ + ρa

z̄ ∂zφ
b̄
)

, (63)

W = −
∫

Σ

(
θa Dρa + i

2
Rab̄cd̄ρ

a ∧ ρcηb̄gd̄eθe

)
, (64)

where Δ is the extended exterior derivative on Σ . Note that this is an equality and
we did not use any equations of motion, unlike the A-model. Note that since W is an
integral of a (1,1)-form overΣ , it is independent of the worldsheet metric. Therefore
this model satisfies the requirements to be a CohFT.

Just like the A-model, any local operator should be consisted of φ, θ and η thus
it takes the form

OB = B
a1···ap

b̄1···b̄q
(φ)θa1 · · · θap η

b̄1 · · · ηb̄q , (65)

and by (61), one simply gets

{Q B,OB} = −O∂̄ B . (66)
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In contrast to the A-model, local operators include θ so that we cannot use the θ

equations of motion. Note that since B
a1···ap

b̄1···b̄q
in (65) has not only subscripts but also

superscripts, the Q B-cohomology is isomorphc to ⊕p,q Hq(M,∧pT 1,0M).
Fortunately this θ -dependence of W makes the B-model rather simpler. Since θ is

linear in W , and V is independent of it, one can redefine θ �→ θ/t hence we can get
rid of the t-dependence of the W term. The remaining V term is Q B-exact hence it
is independent of t . Accordingly any observable in B-model is proportional to some
power of t coming from the path-integral measure and local operators.

The path integral part is calculated in the classical limit similar to the A-model.
In the B-model, the V term has both (∂z̄φ

a, ∂zφ
ā) and (∂zφ

a, ∂z̄φ
ā) so that the

Lagrangian is minimized when

∂z̄φ
a = ∂zφ

ā = ∂zφ
a = ∂z̄φ

ā = 0. (67)

This is just a set of constant maps Φ : Σ → M . The space of such maps is a copy
of M hence the path integral simply reduces to an integral over M .

The number of fermion zero modes again changes after twisting. If the target
space is a Calabi–Yau, it is known that the difference of the number of η, θ zero
modes and that of ρ zero modes is k = m(1 − g). Note that the objects integrated
over M is not a (0, m)-form but (m, m)-form thus it is natural to contract with a
holomorphic (m, 0)-form Ω

Ba1···am

b̄1···b̄m
�→ B

a1···ap

b̄1···b̄q
Ωa1···ap Ωa′

1···a′
p
. (68)

Therefore, an observable of the B-model is an integral of wedge products of forms B
and Ω over M , which one can classically calculate. It is shown for Calabi–Yau man-
ifolds that the space of holomorphic (m,0)-forms is isomorphic to that of ∧d T 1,0M .

All properties of the B-model discussed so far are much simpler than those of the
A-model. The only thing which is not so clear yet to see is that it is independent of
Kähler classes. In fact a tedious calculation shows that a modification of the Kähler
metric on M changes W in (62) by {Q, · · · }. On the other hand, it is easy to see
by the above argument that it depends on complex structures since observables are
determined by the choice of the holomorphic (m, 0)-form Ω . As a conclusion the
A-model and B-model are a mirror pair under interchange of their Kähler class and
complex structure.

7 The Fixed Point Theorem

Weexplainwhy themapsφ reduce to holomorphicmaps in the A-model and constant
maps in the B-model here in an alternative way.

Consider an arbitrary quantum field theory with a group of symmetry G. Let F
be the configuration space of all fields in the theory then the path integral of some
operator O is
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∫

F
Oe−S = Vol(G) ·

∫

F/G
Oe−S +

∫

F0

Oe−S, (69)

where F0 is a subspace invariant under the G-action. Notice that if G is Grassmann,
Vol(F) should be also Grassmann and which implies that it vanishes because

∫
dθ =

0. Therefore the first term is zero.
Now let us consider F to be a nilpotent group then F0 is defined by fields such

that δΦ = 0. In the A-model (48) gives

∂z̄φ
a = ∂zφ

ā = 0, (70)

while in the B-model we have by (61)

dφa = 0. (71)

Thus F0 is the space of holomorphic maps in the A-model and the space of constants
maps in the B-model respectively.

8 Topological String Theories

We only focus on closed string theories so that there is no need to worry about
boundary conditions. The main difference between topological field theories and
topological string theories is whether or not we path-integrate over the worldsheet
metric hμν . This makes theories more interesting.

8.1 R-anomalies

Note that the sigma model given in Sect. 4 becomes a super-conformal field the-
ory once we couple the worldsheet metric in the action. There are three (bosonic)
local symmetries, namely two diffeomorphisms and the Weyl symmetry, in two-
dimensional CFT and the number of independent components of the metric is also
three. Thus one can always locally gauge-fix the metric in the flat form

hμν = ημν. (72)

However this is globally impossible since there are parameters that cannot be
gauged away. In general, there is no parameter for a sphere, one parameter for a
torus, the famousmodular parameter τ , and for higher genus there aremg = 3(g − 1)
parameters left.

Let us first consider the g > 1 case, for which the number of parameters is
3(g − 1). Conformal transformations in two dimensions are equivalent to holomor-
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phic transformations hence these modular parameters in fact describe change of
complex structure on Σ , which can be parametrized by μz

z̄, μ̄
z̄
z as

dz �→ dz + cμz
z̄d z̄, dz̄ �→ dz̄ + c̄μ̄z̄

zdz (73)

where c, c̄ are infinitesimal constants. After gauge-fixing the metric, one still need
to integrate over this 3(g − 1)-dimensional moduli space M̃g . The measure of M̃g

should be invariant under coordinate transformations of Σ so μz
z̄, μ̄

z̄
z should be con-

tracted by Gzz, Gz̄z̄ and integrated over Σ , where G is the Q-partner of the EM
tensor4. Thus, let (mi , m̄i ) be coordinates on M̃g then it is natural to guess the form
of the measure as

∫

M̃g

3(g−1)∏

i

dmi dm̄i

∫

Σ

Gzzμ
z
z̄(i)

∫

Σ

Gz̄z̄μ̄
z̄
z(i). (74)

It is indeed proven that this is correct, that is, this is invariant under coordinate
transformations on M̃g . We have arrived at the first crucial point of topological string
theories. Even though the metric itself is independent of R-transformation, its path
integral measure is not invariant under R-transformation because of fermionic fields
G, G. One can then see that the product of these twoG, G has no RV -chargewhile the
RA-charge is 2, thus the total RA-charge is 6(g − 1). On the other hand as discussed
before, the fermion zero mode requires 2m(1 − g) RA-charges after twisting to be
nonzero. Therefore the partition function vanishes for any genus g > 1 unlessm = 3,
a Calabi–Yau threefold.

For a sphere, there is no modular parameter so one can copy all results from
topological filed theories and observables of (3, 3)-forms are evaluated. The only
difference is that one needs to fix three rotational symmetries of a sphere. In particular
for a Calabi–Yau threefold, this can be done to consider three -point functions with
three marked points. That is, these points are fixed as a gauge choice.

For a torus, there is one modular parameter so we need to insert one local (1,1)-
form to have nonzero observables because then the RA-charge is consistent. Similar
to the case for a sphere, there is a axial symmetry on a tours hence the insertion point
of the local operator should be fixed.

As a summary for Calabi–Yau threefolds, nonzero observables of local operators
are a three-point function of (3,3)-forms on a sphere, a one-point function of (1,1)-
forms on a torus and partition functions for any higher genus.

4This result should be rigorously achieved by the Fadeev-Popov method so that the contracting
tensor is suggested to be fermionic and Gzz, Ḡ z̄z̄ are the most natural choice.
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8.2 Weyl Anomaly

In CFT, there is another anomaly we have to consider carefully, which is the Weyl
anomaly coming from the central charge of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + c

12
m(m2 − 1)δm+n, (75)

and similarly for the right moving modes L̄m .
To twist a theory, we need to use the R-symmetry, which is a U (1) symmetry.

Thus by the Noether theorem, there exist associated conserved currents J (z), J̄ (z̄).
For open strings, J̄ (z̄) is the complex conjugate of J (z), on the other hand for closed
strings, they are independent. The modes of J satisfy

[Lm, Jn] = −n Jm+n, [Jm, Jn] = c

3
mδm+n, (76)

and similarly for J n . Thus by using these currents J, J , we can define the new stress
tensors as

T̃ ± = T ± 1

2
∂ J, T̃ ± = T ± 1

2
∂̄ J , (77)

and we denote their modes as L̃±
m, ˜̄L ±

m . This is another important point of topological
string theories that the newmodes simply obey theWitt algebra, i.e. no central charge.

[L̃±
m, L̃±

n ] = (m − n)L̃±
m+n, [L̃ ±

m, L̃ ±
n ] = (m − n)L̃ ±

m+n. (78)

As a result, there is no Weyl anomaly.
It turns out that this shift of the stress tensors is equivalent to the A-twisting or

B-twisting. In this sense, twisted string theories are somewhat more fundamental
to define anomaly-free consistent theories. For simplicity, let us choose + for both
definitions in (77) then the zero modes are

L̃0 = L0 − 1

2
J0, (79)

and similarly for the left-moving mode. The generators of the R-symmetry and the
new Lorentz symmetry M̃ are defined as

FL = 2π i J0, FR = 2π i J̄0, (80)

M̃ = 2π i(L̃0 − L̃0) = M − 1

2
(FL − FR), (81)

where M is the generator of the Lorentz symmetry before the shift. (29) implies
that FV + FA only acts on +-indices, i.e. left-moving indices and FV − FA on
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left-moving indices. That is, they are the generators of left- and right-moving
currents and it is natural to identify them with FL and FR . More accurately, they
are identified as

FV = 1

2
(FL + FR), FA = 1

2
(FL − FR). (82)

Thus (81) is none other than the Lorentz generator for the B-model and a similar

argument works for the A-model if one choose − sigh in the T̃ shift (77).
Further discussions about topological string theories, in particular nonlocal oper-

ators, are left to [2].
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An Overview of B-branes in Gauged
Linear Sigma Models

Nafiz Ishtiaque

1 Introduction

Two dimensional superconformal field theories (SCFTs) with N = (2, 2) super-
symmetry have been a topic of much investigation for a long time, partly due to their
essential role in string theory. Some natural objects to study in any field theory are
boundaries in the space-time manifold preserving various amount of symmetry. In
case of supersymmetric theories, in the presence of boundaries, at most half of the
supersymmetry can be preserved. The boundaries preserving this maximal amount
of supersymmetry are known as BPS D-branes. The BPS D-branes in N = (2, 2)
SCFTs are particularly interesting objects as they provide the best (most manage-
able) probes of “stringy” geometry that we have so far. In particular, they have played
a central role in our understanding of string dualities.1 There are two inequivalent
subalgebras of N = (2, 2) superconformal algebras (SCAs) containing half of the
supersymmetry, they are known as N = 2A and N = 2B SCAs, and the BPS D-
branes that preserve these subalgebras are called the A-branes and the B-branes
respectively. The principal objects of study in this review are the B-branes.

TheN =(2, 2) SCFTs have a moduli space with a product structure:MN =(2,2)
SCFT =

MK × MC , where MK and MC correspond to the Kähler and complex structure
moduli of someCalabi–Yau (CY)manifold. The infinitesimal deformations (preserv-
ing superconformal symmetry) of these SCFTs are generated by exactly marginal
operators which correspond to the tangents to these moduli spaces. It is usually dif-
ficult, beyond perturbation theory, to study the algebraic structures of operators in
full generality of a quantum field theory (QFT). But, the exactly marginal operators

N. Ishtiaque (B)
Perimeter Institute for Theoretical Physics, University of Waterloo, Waterloo, ON, Canada
e-mail: nishtiaque@perimeterinstitute.ca

1Of particular relevance to the topic of this review is the mirror symmetry, where D-branes underlie
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corresponding toMK andMC belong to two special subsectors of operators, known
respectively as the twisted chiral ring (Rtc) and the chiral ring (Rc), that can be
studied in isolation with exact precision. These rings, Rc and Rtc, are independent
of Kähler deformations and complex structure deformations respectively. Another
defining feature ofRc andRtc is that they correspond to the Q-cohomology of oper-
ators for a supercharge Q inN = 2B andN = 2A algebras respectively. This leads
us to the fact that the boundary chiral ring and the boundary twisted chiral ring2

contain some supersymmetry invariant data about the B-branes and the A-branes
respectively. These supersymmetric data are of particular interest due to the fact that
they are protected under renormalization (RG), which facilitates many exact com-
putations. Furthermore, the chiral (twisted-chiral) sector of the B-branes (A-branes)
should be independent of the Kähler (complex structure) moduli and should vary
with the complex structure (Kähler) moduli.

The independence of the boundary chiral ring from the Kähler moduli in presence
of a B-brane does not mean that the B-branes are completely unaffected by a change
in the Kähler moduli, what it means is that the chiral sectors of the B-branes over
different points of the Kähler moduli space are isomorphic to each other,3 often quite
non-trivially. Finding a unifying description of the chiral sectors of the B-branes over
the bulk of the Kähler moduli space was the principal motivation and result of the
comprehensive work [3] and is the topic of this review.

A priori, it is a difficult task to relate the B-branes at different points of the
Kähler moduli spaceMK , because at different points, the low energy theory can look
drastically differentwith different looking descriptions for theB-braneswhich are not
trivially identified. For example, in some region ofMK , the theory may be described
by a non-linear sigma model on a non-compact Calabi–Yau and in another region by
an orbifold theorywith a discrete gauge group. The B-branes in these two theories are
described as objects in some derived categories associated to the Calabi–Yau and the
orbifold. The fact that these two categories are equivalent is a non-trivial statement
which is familiar in the math literature as categorical McKay correspondence [4, 5].
Another example of such equivalence is when the low energy theory at two different
regions are described by a non-linear sigma model on a compact Calabi–Yau and
a Landau-Ginzburg (LG) type theory. The relevant categorical equivalence in this
case, between a derived category of CY hypersurfaces defined by some polynomial
and the category of matrix factroization of the same polynomial, was established by
Orlov [6]. Explaining these equivalences from a physical definition of the B-branes
and their chiral sectors was part of the motivation for the paper [3].

The main tool in overcoming the obstacle of having different looking theories
at different places in MK , is to use an ultraviolet (UV) description of the theories,
called the gauged linear sigma model (GLSM) [7], which includes as parameters
the coordinates of MK . Depending on the values of these parameters it flows to
the various infrared (IR) descriptions under renormalization. Therefore, having a
description of the B-branes in the GLSM allows to see the fate of these B-branes

2Elements of the chiral and the twisted chiral rings that can be placed at a boundary.
3In a categorical sense, which we will make a bit clearer over the course of the review.
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underRGflowandmakes the connection between the IRB-branes in different regions
of MK physically transparent.

In this spirit we begin, in Sect. 2 by reviewing some basic facts about GLSMs and
their low energy description in the absence of boundary. All of this and much more
was discussed at length by Witten in [7]. In Sect. 3 we review the characterization
of N = 2B preserving boundaries in GLSM and the boundary chiral rings. We
will see that these branes can be thought of as objects in a homotopy category of
graded modules for certain rings and the chiral ring elements correspond to the
morphisms in the category. In the last section, Sect. 4, we review the identification
of the GLSM B-branes and the IR B-branes, and the mechanism of relating the
chiral sectors of these IR B-branes in different regions of MK . It turns out that the
relation between the GLSM B-branes and the IR B-branes is many to one and the
IR branes are better described as objects in some derived category. These last two
sections comprise a much abridged summary of a portion of the extensive work
[3]. In the appendix we collect some background information about theN = (2, 2)
supersymmetry algebra and some general remarks about Chan–Paton spaces relevant
for describing the branes.

We shouldmention as a disclaimer that themain focus of this review is to point out
the emergence of some mathematical notions purely from physical considerations.
We will not go into much details of the relevant mathematics and we will often be
rather schematic. A good (physics friendly) reference for much of the mathematics
involved is [8].

2 GLSMWithout Boundary

On a (1 + 1)D space-time Σ (also called the world-sheet),N = (2, 2) GLSMs are
supersymmetric QFTs of maps:

x : Σ → C
N , (1)

with some gauge group T . Using coordinates for CN , the map x can be thought
of as a collection of N maps x = (x1, . . . , xN ) where for any p ∈ Σ , xi (p) is the
i th coordinate of x(p). We will only consider compact abelian gauge groups T ∼=
U (1)1 × · · · ×U (1)k . Let us denote the charge of xi under U (1)a by Qa

i , i.e., an
arbitrary element g := (eiφa , . . . , eiφk ) ∈ T acts on the fields (1) as:

g : xi �→ ei
∑k

a=1 Q
a
i φa x i . (2)

Note that for k ≥ N , a (k − N )-dimensional subalgebra of the gauge algebra⊕k
a=1 u(1)a acts trivially on the fields, thereforewithout loss of generalitywe assume

k ≤ N . Supersymmetry introduces superpartners for the fields xi and we end up with
chiral multipletsΦ i = (xi , ψ i , Fi )whereψ i ’s are Dirac fermions and Fi ’s are com-
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plex scalars. Similarly the gauge fields for the gauge group sit in vector multiplets
Va = (σa, va,μ, λa, Da) for a ∈ {1, . . . , k}, where σa are complex scalars, va is the
1-form gauge field for U (1)a , λa is a Dirac fermion, and Da’s are real scalars. If
there exists a gauge invariant holomorphic polynomialW : Cn → C then this can be
included as additional data defining the theory. With all these data given, and upon
defining the field strength superfields Σa := D+D−Va (which are twisted chiral),
the Lagrangian of the theory, in the absence of space-time boundary, can be written
most conveniently as a sum of several superspace integrals (Berezin integrals):

Lbulk =
∫

d2θd2θ

(

−1

2

k∑

a,b=1

(e−2)abΣaΣb +
N∑

i=1

Φ
i
e
∑k

a=1 Q
a
i VaΦ i

)

+ �
∫

dθ+dθ−
(

−
k∑

a=1

taΣa

)

+ �
∫

dθ+dθ− W (Φ) . (3)

In order to write the above Lagrangian we have introduced the gauge couplings e2ab
(which are real numbers) and (e−2) refers to the inverse of the k × k-matrix e2ab. We
have also introduced the complexified Fayet-Iliopoulos (FI) parameters:

ta := ra − iθa

2π
, (4)

where ra’s are called the real FI parameters and θa’s the topological theta angles.

2.1 Symmetries

The Lagrangian (3) has manifest (2, 2) supersymmetry since it is composed of (2, 2)
superspace integrals.4 Other global symmetries include space-time isometry (the
Lorentz symmetry)U (1)L and an axial U (1)A R-symmetry.5 If the superpotential is
quasi-homogeneous, i.e., if it satisfies:

W (ξ pi x i ) = ξ 2W (xi ) , (5)

for some numbers pi ∈ R, then there is a vector U (1)V R-symmetry as well. The
action of these symmetry groups and the gauge group can be summerized by men-
tioning the respective charges of various objects:

4Which implies that the supersymmetry variation of this Lagrangian is a total derivative, and in the
absence of boundaries the action is invariant.
5An R-symmetry is a symmetry that acts nontrivially on the fermionic coordinates of the superspace
and is not part of the space-time isometry.
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Φ i Σ θ± θ
±

U (1)L 0 0 ± ±
U (1)a , a ∈ {1, . . . , k} Qa

i 0 0 0
U (1)V pi 0 + −
U (1)A 0 2 ± ∓

(6)

Though the axial R-symmetry is always present classicaly, it is generically broken
quantum mechanically due to anomaly of the fermion (of the chiral multiplets) mea-
sure:

δu(1)A

(
N∏

i=1

Dψ iDψ
i

)

∝
k∑

a=1

N∑

i=1

Qa
i c1(Ea)

N∏

i=1

Dψ iDψ
i
, (7)

where Ea denotes the U (1)a-bundle over Σ and c1(Ea) ∈ Z refers to its first Chern
number. Note that, the twisted chiral superspace integral from the Lagrangian (3), in
terms of the component fields, become:

�
∫

dθ+dθ−
(

−
k∑

a=1

taΣa

)

= −
k∑

a=1

(

raDa + θa

2π
va,01

)

, (8)

where va,01 := ∂0va,1 − ∂1va,0 is the gauge field strength. Since

1

2π

∫

Σ

d2y va,01 = c1(Ea) ∈ Z , (9)

and in a path integral θ -angles will only appear in exponentials

exp

(
iθa
2π

∫

d2y va,01

)

, (10)

the θ -angles are truly angular variables, θa ∼ θa + 2π . Furthermore, we see that a
change of the θ -angles is equivalent to a field redefinition via an axial R-rotation
when (7) is nonzero. Therefore, in such cases the θ -angles are not actual parameters
of the theory. They become true parameters when the following condition is met:

N∑

i=1

Qa
i = 0 ∀a ∈ {1, . . . , k} . (11)

This condition is called theCalabi–Yau condition because when this condition holds,
for some range of the FI parameters, the linear sigma model flows in the infrared
to a non-linear sigma model with a Calabi–Yau target space. Unlike the axial R-
symmetry, the vector R-symmetry is anomaly free whenever it exists as a classical
symmetry (i.e., when the superpotential is quasi-homogeneous).
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The N = (2, 2) superconformal algebra necessarily includes both the axial and
the vector R-symmetry [9]. Therefore, unless both of these R-symmetries exist as
quantum symmetries in the UV GLSM, it will not flow to a non-trivial IR conformal
fixed point. Since our primary goal is to describe B-branes in the IR SCFTs, we
will only consider GLSMs with quasi-homogeneous superpotentials (5) and gauge
charges satisfying the CY condition (11) to ensure that both of the R-symmetries are
preserved quantum mechanically.

2.2 Low Energy Phases

Performing the superspace integrals we get the Lagrangian in terms of the component
fields. Then we find that the component fields Da and Fi do not have any kinetic
terms and therefore in a path integral we can perform the integrations over these
fields, the outcome of which is simply to replace them by solving their classical
equations of motion, which are algebraic.6 These fields are called auxiliary fields and
after integrating them out the classical potential for the rest of the bosonic scalars
become:

U (σ, x) :=
N∑

i=1

∣
∣
∣
∣
∣

k∑

a=1

Qa
i σax

i

∣
∣
∣
∣
∣

2

+ e2

2

k∑

a=1

(
N∑

i=1

Qa
i |xi |2 − ra

)2

+
N∑

i=1

∣
∣
∣
∣
∂W (x)

∂xi

∣
∣
∣
∣

2

,

(12)
where x = (x1, . . . , xN ) ∈ C

N and we have assumed a simple form of the gauge
couplings e2ab = e2δab which makes no qualitative difference in our discussion.

2.2.1 Classical Analysis

A classical analysis of the space of vacua sheds some light on the qualitative nature
of the low energy description of the theory. The classical space of vacua is the space
of solutions of the equation:

U (σ, x) = 0 . (13)

The qualitative nature of this space of solutions depends on the real FI parameters.
Since the three terms of (12) are positive semi-definite, they must all separately
vanish for U to vanish. Let us pick some generic values of the real FI parameters
r := (r1, . . . , rk). Nowwe set the second term in (12) to zero (the resulting equations
are called the D-term equations):

6It may seem a little redundant to introduce them in the first place. They serve the purpose of closing
the supersymmetry algebra (on the fields) off shell (without using equations of motion) which is of
paramount importance in some cases, such as in discussing supersymmetry in curved backgrounds,
but they play no significant role for us at the moment.
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N∑

i=1

Qa
i |xi |2 = ra , ∀a ∈ {1, . . . , k} (14)

The space of solutions to this system of equations is (real) (N − k) dimensional and
therefore at most (N − k) of the xi ’s can be simultaneously zero (due to the generic
nature of the ra’s). By setting the first term of (12) to zero we find the following
equations:

k∑

a=1

Qa
i σa = 0 ∀i ∈ {1, . . . , N } such that xi �= 0 . (15)

Thus we have a homegenous system of at least k linear equations in k variables, the
only solution being:

σa = 0 ∀a ∈ {1, . . . , k} . (16)

This shows that for generic r , the gauge group is either completely broken or reduces
to some discrete subgroup at low energy (i.e. no continuous degree of freedom left
in the gauge multiplets). Note that not all of the solutions of (14) are physically
distinguishable since some of them can be related by the action of the gauge group.
Therefore, we should consider the quotient space:

Xr :=
{

(x1, . . . , xN ) ∈ C
N

∣
∣
∣
∣

N∑

i=1

Qa
i |xi |2 = ra

}/

T = C
N//T . (17)

This is a symplectic quotient of CN by T , since the D-term equations (14) can be
interpreted as setting the moment maps of the T -action on CN to zero. Equivalently,
Xr can be written as a toric variety, i.e., an ordinary quotient of CN (minus some
“bad” points) by the complexified gauge group (a complex algebraic torus):

Xr = (CN
∖
Δr
) /

TC , (18)

where the deleted set Δr is the set of points whose TC-orbits do not pass through
the space of solutions to the D-term equations (14). In this form it is clear how the
dependence on the real FI parameters enter into the determination of the classical
space of vacua, the real FI parameters determine the deleted set. Finally by setting
the last term of the potential (12) to zero we find that the classical space of vacua is
given by the intersection7:

Vacclr := Xr ∩ {x = (x1, . . . , xN ) ∈ C
N
∣
∣ dW (x) = 0

}
(19)

7The equations dW = 0 are called the F-term equations. Also note that, as defined, the classical
space of vacua Vacclr has a metric induced from the Fubiny-Study type metric on the toric variety
Xr . If we could add all quantum corrections corresponding to integrating out all the massive modes,
we would find that this metric (which appears in the kinetic term for the xi ’s) gets modified to a
Ricci-Flat (Calabi–Yau) metric [10].
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The vacuum configurations where fields from chiral multiplets8 acquire non-zero
values, such as in the above description, are referred to as the Higgs branch of
vacua. These vacua are characterized by the possibility of breaking the gauge group
completely, or to some discrete subgroup.9

The geometry10 of Vacclr varies smoothly with varying r , except when r falls into
some (real codimension one) hypersurfaces where solutions to the D-term equations
(14) includemore than (N − k) of the xi ’s vanishing. In such non-generic cases, some
of the σa’s become unconstrained. Such hypersurfaces are invariant under scaling,11

so the space of real FI parameters, let it be denoted by R
k
FI, becomes divided into

cones, the cones are called phases of the low energy theory. The boundaries of these
cones, i.e. the hypersurfaces, are called phase boundaries or singular loci.12 At least
classically, we can expect the nature of the low energy theory to be qualitatively the
same in a given phase, but the nature changes significantly across phases.

IfW = 0, then all excitations transverse to the classical space of vacuaVacclr = Xr

acquire masses from the second term of the potential (12), so the low energy theory
consists of excitations tangential to Xr . In the absence of any residual discrete gauge
symmetry, such theories are known as non-linear sigma models with target Xr . If
some discrete gauge symmetry Γ survives and the space of vacua can be realized as
a global orbifold Xr = X ′

r/Γ , the low energy theories are known as orbifold theories
[11]: Γ -gauged sigma models on X ′

r .
In the presence of a non-trivial superpotential, there are phaseswhere some excita-

tions tangential to Xr but transverse to Vacclr picks upmasses from the superpotential.
The extreme example of such cases is when all such excitations become massive,
i.e., only excitations tangential to Vacclr remain massless, these are called purely
geometric phases or non-linear sigma models on Vacclr . The opposite extreme is the
Landau-Ginzburg phase where Vacclr consists of just a single point and all excitations
of the fields xi become massless, possibly with some discrete gauge symmetry.

Thus, classically, the real FI parametersRk
FI and any parameters that my appear in

the superpotential, parametrize the low energy theories. The FI parameters13 become
the Kähler moduli, denoted as MK , of the target space for the low energy theory
and the superpotential paratemeters become the complex structure moduli, denoted
as MC . As we have seen, the classical Kähler moduli space is divided into discon-
nected phases by the singular loci. This picutre changes significantly with quantum
corrections.

8More generally, fields that transform under faithful representations of the gauge group.
9Unlike fields from vectormultiplets which transform under the adjoint representation and therefore
can break the gauge group only upto the maximal torus.
10More specifically, the Kähler geometry.
11Since, if x is a solution of (14) for some r then

√
ξ x is a solution of (14) for ξr .

12The singular nature arises from integrating out the σa’s (which become massless on these loci)
and trying to keep only the chiral multiplet fields as dynamical, which only works well away from
the singularity.
13Classically we can only see the effects of the real FI parameters but after including quantum
corrections, the true parameters of the lowenergy theorieswill be the complexifiedFI parameters (4).
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2.2.2 Quantum Corrections

Quantum mechanically the space of low energy theories depend in addtion to the
real FI parameters, on the θ -angles. In our classical analysis the phase boundaries
(i.e. the singular loci) were places in the Kähler moduli spaceMK where a Coulomb
branch could open up, i.e., a complex scalar σa from the vector multiplets became
unconstrained (massless).When this happenswe can go to arbitrary large14 values for
this σa and this gives the chiral fields xi large masses by the first term in the potential
(12). So we can look at the one loop effect of integrating out these massive fields.15

To see how the picture of the moduli space changes in the quantum theory we can
assume large values for σa and look at its one loop effective potential Ueff(σ ) after
integrating out the xi ’s. The zero locus of this potential in terms of the parameters
is the quantum corrected singular loci inMK . We will illustrate this procedure with
a concrete example and we will see that the effective potential Ueff depends on the
complexifiedFI parameter ta = ra − iθa

2π and the singular regions comprise a complex
hypersurface in the space of these complex FI parameters. Therefore, unlike the
classical result where the singular regions divided the Rk

FI into disconnected phases,
in the quantum corrected picture the phases are all continuously connected.

Example 1 The example we consider is a U (1) gauge theory with the following
chiral fields with gauge charges satisfying the Calabi–Yau condition (11):

Fields x1 x2 x3 x4

Gauge charges, Qi 1 1 1 −3
. (20)

We consider the theory without a superpotential. There is one real FI parameter
r ∈ RFI. In constructing the space of vacua Xr for r > 0 and r < 0, the respective
deleted sets are:

Δ+ = {x1 = x2 = x3 = 0} for r > 0 ,

Δ− = {x4 = 0} for r < 0 .
(21)

At low energy the r > 0 phase is described by a non-linear sigma model on X+ :=
OCP2(−3) and the r < 0 phase is described by the orbifold theory on X− := C

3/Z3.16

Classically these two phases are separated by the singularity at the origin.
For large σ , i.e. |σ | � e, the effect of integrating out the massive chiral fields is

to introduce the following effective action for σ [7, 10]:

Ueff(σ ) = e2eff
2

|reff − iθmin|2 . (22)

14Compared to the scale of theory set by the gauge coupling e, which has mass dimension 1.
15The one loop contribution to the effective potential is exact due to a non-renormalization theorem
for the twisted superpotential.
16For r > 0, the baseCP2 is the quotient {C3\Δ+}/C× by the complexified gauge group, where the
C
3 is spanned by (x1, x2, x3), and x4 becomes the coordinate on the fiber. For r < 0, {C\Δ−}/C×

is a point which is invariant under a discrete gauge group Z3 ⊂ U (1) and (x1, x2, x3) spans the C3

carrying a nontrivial representation of Z3.
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Fig. 1 A typical Kähler moduli spaceMK with singularities, for some toric variety (dimC MK =
1). The θ direction is 2π periodic

where, eeff is the renormalized coupling, reff = r +∑i Qi log |Qi | and |θmin|2 =
minn∈Z (θ + sπ + 2πn)2 with s being the sum of the positive charges,
s :=∑Qi≥0 Qi . Thus, the solution to the equation Ueff(σ ) = 0 is given by:

r = r0 := −
∑

i

Qi log |Qi | , θ = sπ (mod 2π) . (23)

So we see that the singular locus in the one complex dimensional Käler moduli space
is a one complex codimensional hypersurface (Fig. 1).

3 Boundaries

Branes are subspaces of the target space where the world-sheet can end. Having
boundaries of theworld-sheet necessarily breaks some symmetries of theworld-sheet
theory. Partial symmetry can be preserved by introducing boundary interactions. We
are interested in describing BPS D-branes preserving half (N = 2B to be particular)
of the world-sheet supersymmetry.

In the presence of boundaries the action Sbulk = ∫
Σ
d2yLbulk, where Lbulk is

given by (3), is not supersymmetric since the supersymmetry variation of Lbulk is
a total derivative and therefore the variation is a boundary integral. We add to it a
boundary action:

Sbulk → S = Sbulk + Sbdry , Sbdry =
∫

∂Σ

dyLbdry , (24)

such that the variation of the boundary interaction cancels the variation of the bulk
action for some supercharge Q:

δQ S = 0 . (25)

If we can do this then the superchargeQ is preserved in presence of the boundary. It
is only possible to preserve at most two of the four supercharges of theN = (2, 2)
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algebra. In what follows we will be concerned withN = 2B preserving boundaries,
i.e., the B-branes. The explicit form of Sbdry that makes S 2B-invariant can be found
in [12, 13].

It turns out that the choice of boundary interaction, Lbdry in (24), is not unique.
For two choices of boundary interactions,L 1

bdry andL
2
bdry, the difference in the cor-

responding boundary actions, namely
∫
∂Σ

dy
(
L 1

bdry − L 2
bdry

)
, is necessarily 2B-

invariant on its own. Thus, different 2B-invariant boundary actions give rise to dif-
ferent B-branes. In the following we discuss how to characterize these N = 2B
supersymmetric boundaries.

3.1 Chan–Paton Factors

Chan–Paton factors are essentially degrees of freedom associated to boundaries of
our worldsheet. Various group actions can be defined on the boundary which leads to
the introduction of these degrees of freedom and eventually associates rich structures
to the boundaries which describe the branes. An introduction to these Chan–Paton
spaces have been included in Sect. 1.B. Here we discuss the Chan–Paton spaces
describing the GLSM B-branes.

3.1.1 Gauge Group, U(1)k: Wilson Line Branes

In a gauge theory, a natural operator supported on a line defect or a boundary C is
the Wilson line17:

TrWρ(C) , with Wρ(C) := P exp

(

i
∫

C
ρ∗(A)

)

, (26)

where A is the 1-form gauge field and ρ is a representation of the gauge group (so
that the push forward ρ∗ is a representation of the Lie algebra). For a line C with end
points pi and p f , under a gauge transformation A → gAg−1 − igdg−1, the operator
Wρ(C) transforms as:

Wρ(C) → ρ
(
g(p f )

)
Wρ(C)ρ

(
g−1(ti )

)
, (27)

so for a closed loopC the operatorWρ(C) transforms under the adjoint representation
of the gauge group andTrWρ(C) is gauge invariant. In supersymmetric theories these
operators are invariant under at most half of the supersymmetry or less, depending
on the geometry of C and boundary conditions, and in order to preserve any amount

17The symbol P means path ordered which is a prescription to make sense of the exponential of
the integral of a matrix valued connections in the cases where the matrices from different points are
non-commuting.
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of supersymmetry at all the exponential in (26) has to be properly modified, which
can be done canonically.

In a N -(2, 2) GLSM with gauge group T = U (1)k there are Wilson lines that
are N = 2B invariant. First let us consider irreducible representations of T . These
representations are parametrized by k-tuples of weights, such as q := (q1, . . . , qk),
where qi is the weight for the i th U (1) factor of the gauge group. Note that for
a representation of U (1), such as U (1) � λ �→ λs , to be truly a representation of
U (1) as opposed to that of a multiple cover of it, the weight s has to be an integer.18

Therefore from now on we will assume that the weights qi of the U (1) factors of T
are all integers, i.e., we assume q ∈ Z

k . We refer to the irrep ofU (1)k corresponding
to the weight q as ρq :

ρq : U (1)k → U (C) ∼= U (1) , ρq : g �→
k∏

a=1

gq
a

a , (28)

where g := (g1, . . . , gk) is an arbitrary element of U (1)k . For concreteness of for-
mulas, let us imagine aworld-sheet with a boundary along the temporal direction.We
are taking the y0 and y1 coordinates to correspond to time and space respectively and
we are considering a boundary at y1 = 0. Now, the Wilson line boundary interaction
corresponding to this representation is (c.f. the log of (26)):

− i

2

∫

dy0
∫

dθdθ ρq
∗ (V ) = i

∫

dy0 ρq
∗ (v0 − �σ) , (29)

where V is the vector superfield for U (1)k and the superspace integral is over the
entireN = 2B boundary superspace [13]making itmanifestly 2B-invariant.Abrane
characterized by such an elementary boundary interaction will be referred to as:

W (q) . (30)

More general representations of U (1)k are characterized by some number, say n,
of k-tuple weights q := (q1, . . . , qn) with qi ∈ Z

k , and a multiplicity for each of the
weights. Let us denote the module for such a general representation by Vq and the
weight spaces for the weights qi by Vqi . Then this representation can written as:

ρq : U (1)k → U (Vq) , ρq : g �→
⎛

⎜
⎝

ρq1(g) idVq1

. . .

ρqn (g) idVqn

⎞

⎟
⎠ , (31)

where ρqi ’s are the irreps from (28).We can interpret these representations by consid-
ering the irreducible representations as the basic boundary conditions and introduc-

18A representationU (1) � λ �→ λ
a
b for some a, b ∈ Z with gcd(a, b) = 1, is an |a|-fold represen-

tation of the |b|-fold cover of U (1).
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ing Vq as a Chan–Paton space at the end points of the open strings (see Sect. 1.B).19

The N = 2B invariant Wilson line action for a general representation is a direct
generalization of (29):

i
∫

dy0 ρq
∗ (v0 − �σ) . (32)

Such a boundary action is a direct sum of elementary boundary actions, and the
corresponding notation for a brane described by this boundary action is:

n⊕

i=1

W (qi )
⊕ dim Vqi . (33)

This notation is limited in its expressibility of all the properties of the brane that
we will describe in the rest of this section and for that reason we will not use this
notation again until Sect. 4 where we will be primarily concerned with the gauge
charges associated to a brane and this notation will be economic.

3.1.2 Fermion Number, Z2: Matrix Factorization

The Wilson line action (32) that we have discussed so far is N = 2B invariant on
its own and different choices of such terms correspond to different branes. What
all B-branes have in common is the minimal boundary action that we must add
to the bulk action to preserve N = 2B supersymmetry. It turns out [3] that in the
presence of nonzero superpotential, in order to preserve 2B supersymmetry, we have
to introduce a composite fermionic field, whichwewill call Q, living on the boundary
of the world-sheet, and Q is a polynomial function of the chiral multiplet fields xi .
The Q-dependent part of the minimal boundary action is [3]:

∫

dy0 I0 , I0 := −1

2
{Q, Q†} + 1

2

N∑

i=1

(

ψ i ∂

∂xi
Q + h.c.

)

, (34)

where ψ i := ψ i+ + ψ i− and xi are fields from the chiral multiplets restricted to the
boundary. The fermionic field Q must satisfy some constraints in order to preserve
2B supersymmetry which we will discuss shortly. But first note that, as a boundary
operator Q acts on the Chan–Paton space V (just like the boundary operator ρq

∗ (v0 −
�σ) in the Wilson line boundary interaction (32)). A bit more precisely, since Q ∈
C[x1, . . . , xN ] =: C[x], Q acts as an operator on the C[x]-module Vx := C[x] ⊗C

V . Since Q is a fermionic operator, it can be assigned a non-trivial charge under
a Z2 group action under which Q2 is bosonic. This makes the Chan–Paton space

19Note that when we mention string we simply mean that our space is one dimensional. In the
honest string theory one needs to further couple the world-sheet SCFT to a ghost system to gauge
world-sheet diffeomorphism.
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Z2-graded with a graded action of Q:

(35)
where we have defined V od/ev

x := C[x] ⊗C V od/ev. The Z2 charge measures the
fermion number of a vector modulo 2, acting with the fermionic (odd) operator
Q changes this charge by 1.

Now on to the constraints on Q. First of all, for the action (34) to be gauge
invariant, we must impose on Q gauge equivariance:

ρ
(
g−1
)
Q(g · x)ρ (g) = Q(x) , (36)

where ρ is the representation of U (1)k associated with the Chan–Paton space V ,
g ∈ U (1)k , and x ∈ C

N . The whole purpose of the boundary action (34) is to cancel
the variation of the bulk superpotential action (world-sheet integral of the last term
in (3)).20 To that end, let us note the variation of the superpotential action generated
by a 2B supersymmetry transformation parametrized by the Dirac spinor ε:

δ �
∫

Σ

d2y
∫

dθ+dθ− W (Φ) = −�
∫

dy0
N∑

i=1

εψ i ∂W (x)

∂xi
. (37)

Let us also write down the variation of the boundary interaction from (34) generated
by ε (note that we are not assuming ε to be constant)21:

δI0 = �
⎧
⎨

⎩

N∑

i=1

(

εψ i ∂Q
2(x)

∂xi

)

−
[
εQ†, Q2

]
⎫
⎬

⎭
− iD0

(
εQ + εQ†

)
+ i
(
ε̇Q + ε̇Q†

)
,

(38)
where D0 is the gauge covariant derivative along the y0 direction. The boundary
integral of the first term in (38) cancels (37) if and only if Q satisfies:

Q2(x) = W (x) idV . (39)

The above equation is referred to as a matrix factorization ofW . The second term in
(38) is a total derivative and does not contribute when integrated over the boundary.

20The rest of the minimal boundary action to cancel the variation of the world-sheet integral of the
rest of the terms in (3) is not going to play any part in our discussion, so we are not going to talk
about them. They can be found in [3, 12, 13].
21The actual 2B supersymmetry is generated by constant ε, so in a variation generated by time
dependent ε, any term that behaves as O(ε̇) can be ignored as far as symmetry preservation is
concerned, but such terms help to recognize various contributions to the Noether charge associated
to the symmetry.
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The third term will vanish when we make the supersymmetry parameter ε constant,
but it shows, via Noether’s construction, that the supercharge generating N = 2B
supersymmetry gets modified at the boundary:

Qbulk → QB := Qbulk + Qbdry , Qbdry = i Q
∣
∣
y1=0 − i Q

∣
∣
y1=L , (40)

where we are considering two temporal boundaries at spatial positions y1 = 0 and
y1 = L . Importantly, this boundary modifiation ensures the nilpotence of the total
supercharge. The bulk supercharge, in the presence of a non-trivial superpotential
and the boundary, is not nilpotent [3]:

Q2
bulk = W

∣
∣
y1=L − W

∣
∣
y1=0 , (41)

and this is canceled by Q2
bdry due to (39) so that we end up with theN = 2B algebra

(see (87)):
Q2

B = 0 . (42)

Equations (36) and (39) are all the constraints that Q has to satisfy.

3.1.3 Vector R-Symmery, U(1)V : Differential Grading

We are interested in GLSMs with vector U (1) R-symmetry, denoted by U (1)V , so
that the theory flows to a non-trivial conformal fixed point in the extreme infrared. In
that case, the bulk supercharge Qbulk has U (1)V -charge 1 (88). Since the boundary
odd operator Q is now a part of the total supercharge along with Qbulk (see (40)),
we must assign the same U (1)V -charge to Q. Consequently, the Chan–Paton space
V must carry an action of U (1)V . We pick a representation R : U (1)V → U (V )

with weights (νmin, νmin + 1, . . . , νmax)where ν j ∈ Z. We require the representation
to be such that the R-charge modulo 2 matches with the Z2 grading of V , i.e., a
U (1)V -weight space decomposition of V satisfies:

V =
νmax⊕

j=νmin

V j with V od =
⊕

j : odd
V j , V ev =

⊕

j : even
V j , (43)

where V j is theU (1)V -weight space with weight j so that the representation R can
be explicitly written as:

R : λ �→
⎛

⎜
⎝

λνmin idV νmin

. . .

λνmax idV νmax

⎞

⎟
⎠ , λ ∈ U (1)V . (44)
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The R-symmetry commutes with the gauge symmetry, implying that each V j is a
direct sum of U (1)k-weight spaces. Since Q increases the R-charge of a vector by
1, Q can be thought of as a collection of odd operators Q = (dνmin , . . . , dνmax

)
:

· · · d j−1−−→ V j
x

d j−→ V j+1
x

d j+1−−→ · · · . (45)

With a nonzero superpotential this is not a standard cochain complex since the dif-
ferential Q is not nilpotent: d j+1 ◦ d j = W idV j

x
(due to (39)). This is sometimes

referred to as a differential twisted byW . This can be remedied by defining the ring:

RW := C[x1, . . . , xn]/〈W 〉 , (46)

where 〈W 〉 is the ideal generated by the polynomial W , and instead of working with
the C[x]-module Vx , we now consider the following RW -module:

VW := RW ⊗C V . (47)

The good thing about this module is that W acts trivially on it, furthermore VW

inherits all the gradings of V .22 Therefore, we can build a genuine cochain complex
using VW :

· · · d j−1−−→ V j
W

d j−→ V j+1
W

d j+1−−→ · · · . (48)

Let us summerize our description of a GLSM B-brane:

A GLSM B-braneB is defined by the data (V , ρ, R, Q), where V is a Chan–
Paton space carrying a representation ρ of the gauge group T = U (1)k , a
representation R of the U (1)V R-symmetry group that commutes with T ,
and a matrix factorization Q2 = W idV of the superpotentialW , where the T -
equivariant operator Q hasR-charge 1.All these data is encoded in the complex
(48) of the twisted modules V j

W = (C[x]/〈W 〉) ⊗C V j where j refers to the
Z-grading by U (1)V , i.e., V j is the U (1)V -weight space with weight j and
the implicit Zk-gradings by T are compatible with this Z-grading.

We will refer to the complex (48) associated to a B-brane B as C (B). In the
next section we will relate the QB-invariant open string states to certain morphisms
between these cochain complexes.

22We use the same notation to denote the gradings of VW as we did for V , just by replacing V
with VW .
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3.2 Open String States in the Chiral Sector

A satisfactory description of branes must provide two aspects: how to characterize
the branes, and how to characterize the states in the Hilbert space that we get after
quantizing a string23 in the presence of these branes. By now we have some idea of
how to do the former and in this section we discuss the latter in the limited context
of BPS or chiral states.

3.2.1 Some Generalities and the Chiral Ring

The chiral sector of the open string Hilbert space consists of states that are invariant
under QB :

QB |Ψ 〉 = 0 . (49)

This sector, owing to being QB-invariant, is robust under various supersymmetry
preserving deformations, in particular, it is robust under rescaling of the world-sheet
metric,24 i.e., renormalization. Therefore, the chiral states are particularly interesting
if we care about the low energy dynamics of our theory. Analogous to (49), chiral
operators are the QB-invariant operators:

[QB,O] = 0 . (50)

The hermitian conjugates of (49) and the above equation define the anti-chiral states
and operators respectively. There is in fact a one to one correspondence between
chiral states and local chiral operators. This follows from the fact that the chiral
states and operators are invariant under RG flow and therefore the state-operator
correspondence that exists between them in the IR CFT works in the UV GLSM as
well. In this review we are interested in chiral operators that can be inserted on the
boundary. Once inserted, we can have two differentN = 2B boundary conditions on
the two sides of this operator, and a path integral on a half-disc in a half-plane with
such boundary conditions gives us the chiral state corresponding to this operator.
This is essentially the state-operator correspondence between a chiral open string
state between two boundaries of an infinite strip and a local chiral operator on the
boundary of a half-plane with two boundary conditions on the two sides (see Fig. 2).

These chiral operators have non-singular operator product expansion among them
[14] and this allows to define the following product of two chiral operators O1 and
O2:

(O1O2)(y) := lim
y′→y

O1(y)O2(y
′) . (51)

23A time slice of the worldsheet.
24The chiral sector is invariant under any continuous world-sheet metric deformation.
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Fig. 2 State-operator correspondence: The operator OΨ on the right hand side is defined so that a
path integral on the shaded region in the upper half-plane with the boundary conditions B1(i) and
B2( j) produces the wave function for the state |Ψ 〉 ∈ H (B1(i),B2( j)) (c.f. (89))

The product of two chiral operators is again a chiral operator and this turns the chiral
sector into a ring called the chiral ring.25 If we denote the chiral ring between two
branes26 Bi and B j as HQB

(Bi ,B j ) then the OPE defines a map as follows:

HQB
(B1,B2) × HQB

(B2,B3) → HQB
(B1,B3) . (52)

In constructing the chiral ring we are not only restricting to operators obeying (50),
we also identify QB-exact operators

27 with zero because all correlation functions
involving a QB-exact operator and other chiral operators are zero:

〈[QB,O1]O2〉 = 0 , (53)

which follows from a Ward identity28 for QB and the chirality of O2. Therefore, the
chiral ring is really the QB-cohomology of the local operators.

3.2.2 The Chiral Ring Between Two Branes

The local operators of the theory are arbitrary functions of the fields. In the presence
of a boundary, in order to formulate a well posed initial value problem, the dynamical
fields need to be constrained by boundary conditions (such as Dirichlet, Neuman or
generalizations thereof). These boundary conditions can break some symmetries of
the bulk theory, we of course want to preserve N = 2B supersymmetry. Before
mentioning the 2B-invariant boundary conditions, let us take a simplifying limit.

25The chiral ring is also an aglebra over C, but it is more commonly referred to as a ring.
26In the language of Sect. 1.B, each braneBi comes with an index setIi of the Chan–Paton indices,
so that for each index k ∈ Ii we have a basic boundary condition Bi (k) associated to the brane
Bi , and the Hilbert space for the open string betweenB1 andB2 has the following decomposition:
H (B1,B2) =⊕i∈I 1

j∈I 2

H (B1(i),B2( j)).

27Which are automatically chiral due to the nilpotence of QB .
28Which simply says that the expectation value of the supersymmetry variation of an operator in a
supersymmetric vacuum is zero.
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We will construct the chiral boundary local operators in the far ultraviolet, which
corresponds to the limit e → 0. Even though the chiral ring is RG invariant, there are
some subtleties involved with this limit, which we are going to ignore in this review,
for details see [3]. In this limit, the coefficient in front of the vector multiplet kinetic
terms (see (3)) diverges and those fields freeze to their classical values, becoming
backgrounds. So we only have the chiral multiplet fields to construct the chiral ring
with. In the limit e → 0, the standard N = 2B invariant boundary conditions are
Neuman:

∂1x
i = 0 , ψ i

+ = ψ i
− , ∂1(ψ

i
+ + ψ i

−) = 0 , Fi = 0 . (54)

We will make the further assumption that our strings are sufficiently small compared
to the length scale of the target space. This allows us to treat the string as point particle
and ignore stringy excitations. Since we are assuming the target space volume to be
too large compared to the string length, this approximation is called the large volume
limit. It is also known as zero mode approximation becuase, since we are ignoring
the stringy excitations, we will only use the zero modes of the fields to construct
our operators. It turns out though, that this approximation is exact for the chiral
ring.29 This can be argued by showing that the chiral ring is independent of any
length scale on the world-sheet. With these approximations, the complex computing
QB-cohomology of the bulk chiral operators can be constructed just from the zero

modes of xi , xi , and ψ
i
± [15].30 When we put these operators on the boundary, the

boundary conditions (54) further reduce the set of fields by settingψ
i
+ − ψ

i
− to zero.

The action of the bulk supercharge Qbulk on the fields we have left is as follows31:

[i Qbulk, x
i ] = 0 , [i Qbulk, x

i ] = ψ
i
+ + ψ

i
− , {i Qbulk, ψ

i
+ + ψ

i
−} = 0 .

(55)
If we identify ψ

i
+ + ψ

i
− with dxi , then the action of Qbulk coincides with the action

of the Dolbeault differential ∂ . The action of the full superchage QB will also include
the action of the boundary supercharge Qbdry which we will discuss later.

Theoperatorswecan construct from xi , xi anddxi correspond to anti-holomorphic
forms in Ω0,• (

C
N
)
and to get the chiral ring we take the QB-cohomology. Let

us clarify all the data we have. We are interested in chiral operators interpolating
between two branes, let us say B1 = (V1, ρ1, R1, Q1) and B2 = (V2, ρ2, R2, Q2).
Then according to the general discussion of Sect. 1.B, the operators should be val-
ued in Hom(V1,V2). The Hom(V1,V2)-valued anti-holomorphic forms are charged

29This is a nontrivial result, for example, it is not true for the twisted chiral ring (QA-cohomology)
which receives world-sheet instanton corrections.
30Let us say ψ i+O is chiral for some operator O . Then 0 = [Qbulk, ψ

i+O] = −2(∂+xi )O −
ψ i+[Qbulk,O] where 2∂+ = ∂0 + ∂1. If O is chiral then 2(∂+xi )O = 0 implies O is zero and so is
ψ i+O . If O is not chiral then 2(∂+xi )O + ψ i+[Qbulk,O] = 0 implies O must be of the form ψ i+O ′
for some O ′ in which case ψ i+O = ψ i+ψ i+O ′ = 0 since ψ i+ is anti-commuting.
31The action of N = (2, 2) supersymmetry on the fields of GLSM can be found in [3, 7].
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under both the gauge group and theU (1)V R-symmetry group. The R-charge is rele-
vant for the differential grading since the supercharge QB has R-charge 1. So we will
write Hom•(V1,V2) as a reminder that these maps carry Z-grading by U (1)V . Fur-
thermore, only gauge invariant operators are physical. Now the chiral ring elements
with R-charge p are given by the QB-cohomology:

H p
QB

(B1,B2) = H p
QB

(
Ω0,• (

C
N ,Hom•(V1,V2)

)T)
, (56)

where the degree of the complex is a sum of the form degree and the degree of the
morphisms in Hom•(V1,V2).

The action of QB on an operatorO on the boundary betweenB1 andB2 is given
by:

i QB : O �→ ∂O + Q2O − (−1)|O |OQ1 , (57)

where |O| is the R-charge32 ofO and the action of the boundary supercharges comes
from Noether’s construction of the supercharge in presence of the boundaries. Using
the property of CN that any ∂-closed p-form on C

N is ∂-exact for p > 0, it can be
shown that the cohomologies (56) are concentrated on holomorphic or polynomial
functions [3], i.e.:

H p
QB

(B1,B2) ∼= H p
Qhol

B

(
Hom•(V1,V2)

T
)

. (58)

Restricted to the subspace of holomorphic functions, the action of the supercharge
(57) simplifies to

i QB : O �→ Q2O − (−1)|O |OQ1 . (59)

Now recall from the end of Sect. 3.1 that the data of a B-brane B can be encoded
in a cochain complex that we called C (B) (48). These complexes were built out
of RW -modules VW (see (47) and (46)) which were Zk-graded (by the gauge group
T = U (1)k).33 Gauge invariant chiral holmorphic functions valued in Hom(V1,V2)

now precisely correspond to chainmaps34 betwenC (B1) andC (B2) as gradedRW -
modules.35 Identifying a chain map of the form [QB,O]with zero for some arbitrary
local operator O , as we do in the chiral ring, is then equivalent to identifying chain
maps upto homotopy. Thus we reach the conclusion that the chiral ring elements
between two branes B1 and B2 are in one to one correspondence with the cochain
maps upto homotopy, betweenC (B1) andC (B2)where these areZk-graded cochain

32Which is a sum of the form degree (as ψ
i
+ + ψ

i
− has R-charge 1) and the degree of the

Hom(V1,V1) part (which is due to the xi ’s and xi ’s).
33In addition to the (differential) Z-grading by U (1)V .
34The condition of chirality QB(O) = [QB ,O] = 0 for Hom(V1,V2)-valued holomorphic func-
tions is equivalent to the condition for O : C (B1) → C (B2) to be a cochain map (see (59)).
35A morphism between two Zk -gradedRW -modules is a morphism that preserves the grading, i.e.,
the morphisms themselves have Zk -degree zero, in our context this means that the morphisms are
gauge invariant.
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complexes of RW -modules. One last thing to add is that, a cochain map will have
differential degree, i.e. R-charge, zero, on the other hand the chiral ring contains
elements of all possible degrees (Z-graded). To allow this, given two branes B1

and B2 we must consider cochain maps between C (B1) and C (B2)[p] where [p]
denotes the same complex shifted p times to the left. Finally, our description of the
chiral ring is:

The degree p chiral ring elements between two branes B1 and B2 are the
morphisms between C (B1) and C (B2)[p] in the homotopy category of Zk-
graded complexes of RW -modules:

H p
QB

(B1,B1) ∼= HomK(gr-RW ) (C (B1),C (B2)[p]) . (60)

From the discussion of this section and the last, it is clear that, as far as the
chiral sector is concerned, the GLSM B-branes are well described by the homotopy
category of some graded modules. The branes appear as objects of this category and
the chiral ring between them corresponds to the morphisms.

4 Relations with the IR Branes

In this sectionwewill define a projection from theGLSMB-branes to the IRB-branes
and we will see that we get the stable IR branes if we identify the projections up to
quasi-isomorphisms. This tells us that the low energy branes are objects in a derived
category. We will only sketch out the key ideas here, and to avoid many technical
complexities wewill describe the relevant ideas for theorieswithout a superpotential,
so that at a generic point in the Kähler moduli space MK , the low energy theory is
described by a non-linear sigma model on a non-compact toric variety Xr (17).

4.1 Tracking Branes to the Infrared

The gauge theory becomes strongly coupled as we go to the infrared, the deep
infrared limit corresponds to taking e → ∞. In this limit the kinetic terms for the
vector multiplet fields vanish (see (3)) and therefore these fields acquire algebraic
equations of motion. Let us illustrate this limit for a U (1) gauge field with a Wilson
line interaction on a boundary with charge q. Now, in the limit e → ∞, the zeroth
component v0 of the gauge field appears in the action as:
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1

2π

∫

Σ
d2y

N∑

i=1

Q2
i |xi |2

⎛

⎝v20 −
∑N

j=1 i Q j (x
j ∂0x

j − ∂0x
j x j )

∑N
i=1 Q

2
i |xi |2

v0 + · · ·
⎞

⎠−
∫

∂Σ

(
θ

2π
+ q

)

v0 ,

(61)
where the · · · includes terms involving fermions and will vanish on a vacuum back-
ground. We can do the same computation for v1 and after putting them together,
the algebraic equation of motion for the one form v that we get by varying these
expressions is that v becomes the pullback:

v = x∗A , (62)

where A is the connection of the holomorphic line bundle O(1) on Xr . Then the
Wilson line (29) with charge q corresponds to the holomorphic line bundle O(q),
which is the low energy brane supported on Xr corresponding to the Wilson line
brane in the GLSM. We thus get the following projection from GLSM B-branes to
IR B-branes:

π : W (q) �→ O(q) . (63)

Not all branes are stable in the infrared however. We have to find a zero of the
potential {Q, Q†} in the boundary action (34), just as we found the zero of the
potential of the bulk action in Sect. 2.2. If {Q, Q†} is positive everywhere on Xr then
the entire brane is unstable and it will vanish by the mechanism of brane anti-brane
annihilation [16]. Such a brane is called trivial in the infrared. For example, if we do
not care about the U (1)V R-symmetry then we can have a constant superpotential
W = c and then the ring RW (46) and consequently the modules VW (47) will
vanish, resulting in a null complex (brane) (48).More interesting examples of infrared
trivial branes arise from the existence of the deleted sets Δr while constructing Xr

as a quotient (18). If {Q, Q†} is strictily positive everywhere in C
N\Δr , then the

corresponding brane will be infrared trivial. The fact that the deleted set varies from
phase to phase now makes phase transition for branes rather interesting, since a UV
brane that is trivial in one IR phase may be non-trivial in another. This makes the
projection of a GLSM B-brane complex C (B) to an IR complex phase dependent,
let us make it explicit in notation:

πr : W (q) �→ O(q) , πr : Q(x)
∣
∣
x∈CN �→ Q(x)

∣
∣
x∈Xr

. (64)

Similarly, for any cochain map φ : C (B1) → C (B2) between two GLSM B-brane
complexes, the projection πr (φ) : πr (C (B1)) → πr (C (B2)) is defined by project-
ing x ∈ C

N to x ∈ Xr :

πr : φ(x)
∣
∣
x∈CN �→ φ(x)

∣
∣
x∈Xr

. (65)
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Given two UV B-branes we would like to know whether they will flow to the
same IR branes or not. The non-trivial answer to this question is that36:

Two GLSM B-branes B1 and B2 flow to the same IR brane in a phase
containing r ∈ MK , if there exists a quasi-isomorphism ϕ : πr (C (B1)) →
πr (C (B2)).

Wewill omit the proof of this here,which can be found in [3]. The key observations
behind this proof are that, a brane can be deformed to another quasi-isomorphic brane
by brane anti-brane annihilation and some deformations of the boundary actions
that do not affect the low energy physics. We can observe that if two branes have
quasi-isomorphic projections in some phase then we can turn one of them into an
anti-brane and the combined brane anti-brane system is indeed trivial in the infrared
(in that phase), signaling the fact that the two original branes are indistinguishable
at low energy in that phase. Concretely, turning one of the branes, say B1, into
anti-brane entails shifting the associated complex C (B1) by a step, i.e., we consider
the complex C (B1)[1]. Then the bound state of the two branes is the mapping
cone of the respective complexes, which depends on the choice of a cochain map
φ : C (B1) → C (B2). We denote the cone as C(φ):

C(φ) = C (B1)[1] ⊕ C (B2) , (66)

with the differential:

QC(φ) :=
(−Q1 0

φ Q2

)

. (67)

It is not difficult to prove that the complex πr (C(φ)) is exact if and only if πr (φ) is a
quasi-isomorphism. An exact complex is quasi-isomorphic to the null complex by a
trivial cochainmap:πr (C(φ)) → 0. Therefore we see that complete brane anti-brane
annihilation takes place in the brane C (B1)[1] ⊕ C (B2) if and only if πr (B1) and
πr (B2) are quasi-isomorphic.37 We thus reach the conclusion that the low energy
branes are better described as objects in a derived version of the homotopy category
that describes the GLSM B-branes.38

Let us denote the homotopy category of GLSM B-branes (in a theory with N
chiral multiplets and gauge group T ) as D(CN , T ) and the derived category of IR

36A quasi-isomorphism is a cochain map that induces an isomorphism of cohomology. Recall that
in physical terms, cochain maps are chiral ring elements.
37Perhaps we should say “if πr (C (B1)) and πr (C (B2)) are quasi-isomorphic,” but we will not put
much effort into distinguishing a brane from its complex.
38In passing from a homotopy category to the derived category one introduces formal inverses for
the quasi-isomorphisms (and all compositions of morphisms involving these inverses) so that they
can be treated as genuine isomorphisms. Also note that, this conclusion is consistent with the, by
now standard, result that the low energy branes in a geometric phase are objects in the derived
category of coherent sheaves supported on the CY target space of the IR sigma model [1, 17, 18].
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B-branes on the toric variety Xr as D(Xr ).39 Then the projection (64) is a map:

πr : D(CN , T ) → D(Xr ) . (68)

Note that now we are thinking of this map as first taking the projection (64) and
then localizing the quasi-isomorphisms. Localizing simply means adding formal
inverses of the quasi-isomorphisms together with all the compositions involving
these inverses. Then we can treat the quasi-isomorphisms as honest isomorphisms
and the isomorphism classes of the objects are now in one to one correspondence
with the stable IR B-branes.

Example 2 Let us look at a concrete example of quasi-isomorphism in the simple
U (1) gauge theory that we considered in Example 1.We consider the GLSMB-brane
B in the phase r > 040:

C (B) : W −3(−1)
d−3−→ W −2(0)⊕3 d−2−→ W −1(1)⊕3 d−1−→ W 0(2) , (69)

where the differentials are defined as:

d−3 :=
⎛

⎝
x1

x2

x3

⎞

⎠ , d−2 :=
⎛

⎝
0 x3 −x2

−x3 0 x1

x2 −x1 0

⎞

⎠ , d−1 := ( x1 x2 x3
)

. (70)

The differential on the total complex C (B) is:

Q =

⎛

⎜
⎜
⎝

0
d−3

d−2

d−1 0

⎞

⎟
⎟
⎠ , satisfying {Q, Q†} =

(
3∑

i=1

|xi |2
)

idC (B ) . (71)

Recalling that the deleted set in the geometric phase r > 0 was Δ+ = {x1 = x2 =
x3 = 0}, we see that the boundary potential {Q, Q†} is strictly positive in this phase
and therefore the braneB is trivial in the IR, i.e. π+(B) ∼= 0. It can also be checked
that the projection of the complex (69) in this phase is exact, reaching the same
conclusion that it is quasi-isomorphic to the null complex. This implies that we can
write this brane as a bound state of two branes C (B1)[1] and C (B2) so that π+(B1)

and π+(B2) are quasi-isomorphic. This can be achieved by breaking the complex at
an arrow and shifting one of the two resulting complexes, e.g.:

39If we have non-trivial superpotential we need to mention that as well in the notation for the GLSM
B-brane category.
40The following complex represents the cochain complex (48), which in the absence of a superpo-
tential is the same as (45). We are using the notation W introduced in the context of Wilson line
branes (see “Wilson line branes” in Sect. 3.1) instead of using the Chan–Paton spaces to highlight
the gauge charges, which plays a crucial role in the computations of the next section. The superscript
on W denotes the R-charge.
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(72)
The cochain map π+(d−1) : π+(C (B1)) → π+(C (B2)) being the quasi-
isomorphism.

On the other hand, in the orbifold phase r < 0, the deleted set is Δ− = {x4 = 0}
and the boundary potential is vanishing at the orbifold point p := {x1 = x2 = x3 =
0}. Therefore, the brane B localizes at p at low energy and, in particular, is non-
vanishing. This also implies that π−(B1) and π−(B2) are not quasi-isomorphic in
this phase.

4.2 Grade Restriction Rule

The next step in the story of branes is to consider how to transport the IR B-branes
from one phase to another. The GLSM approach to brane proves to be particularly
suited to answer this question. The difficulties in transporting branes arise when
we consider branes near a phase boundary. To precisely study the nature of the
branes near such singular loci, we have to be careful about quantum corrections. We
will proceed analogously as we did in computing quantum corrections for theories
without boundary. We look at the effective action for the vector multiplet scalar
after integrating out the chiral multiplet fields, this time with Wilson line boundary
interaction. When the theory is formulated on a strip of width L , the result is [3]:

Ueff(σ ) = L
e2eff
2

|reff − iθeff |2 + 2

[

−
(

θ

2π
+ q

)

�σ + s

2
|�σ |

]

, (73)

where reff = r +∑i Qi log |Qi | as before, s =∑Qi≥0 Qi as before, and θeff = θ −
sgn(�σ)sπ . The linear dependence on σ means that whenever there is a Coulomb
branch, i.e. σ is unconstrained, the potential can become unbounded from below.
Such potentials signal instability in a physical system since it appears that there is no
stable vacuum.Thepotential becomes bounded frombelowand therefore the problem
of instability is cured if the gauge charge of the Wilson line brane is constrained:

− s

2
<

θ

2π
+ q <

s

2
. (74)

Wilson line branes with charges satisfying this constraint can be safely transported
through phase boundaries without becoming unstable. This criterion for stable brane
transport in the Kähler moduli space was one of the key results of [3], where the
constraint (74) was termed the grade restriction rule.
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Fig. 3 Brane transport through a window in a Kähler moduli space. r0 = −∑i Qi log Qi , as in
(23)

Since the theta angle θ is a periodic variable, we must specify a window in the
complexified Kähler moduli space, through which we wish to transport a brane.
Figure 3 shows such a window w and a schematic path to transport branes along.
Given awindoww, we define the set of gauge charges that satisfy the grade restriction
rule (74):

Nw :=
{

n ∈ Z | ∀θ ∈ w : − s

2
<

θ

2π
+ q <

s

2

}

. (75)

A GLSM B-brane with charge q will be called grade restricted with respect to a
window w if q ∈ Nw. The set of all grade restricted brane with respect to a window
w will be called T w.

The main goal is to find a one to one correspondence between IR branes in
different phases. We find this correspondence by transporting branes across phase
boundaries. The general prescription for doing so is the following: Suppose we are
given a window w between two adjacent phases, one containing r ∈ MK and the
other r ′ ∈ MK . Then given an IR braneBIR ∈ D(Xr ) in the phase containing r , we
first lift it to a GLSM brane B ∈ D(CN , T ) satisfying πr (B) = BIR. If B /∈ T w,
then we find another brane B′ such that B′ ∈ T w and πr (B′) is quasi-isomorphic
to πr (B). Now we can transport this brane B′ across the window and then project
down in the adjacent phase with the outcome πr ′(B′).

Given any two adjacent phases containing r, r ′ ∈ MK and a window w between
them, there is a unique lift from D(Xr ) and D(Xr ′) to T w [3] which we will denote
as ωw

r,r ′ and ωw
r ′,r respectively. We can draw all the relevant maps in the following

diagram:

(76)
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Brane transport from D(Xr ) to D(Xr ′) is the composition:

D(Xr )
ωw
r,r ′−−→ T w πr ′−→ D(Xr ′) . (77)

Transport in the other direction is defined similarly.

Example 3 We illustrate this mechanism of brane transport in the context of our
example U (1) gauge theory (see Examples1, 2). The singularities in the Kähler
moduli space are at r = 3 log 3 and θ ∈ 3π + 2πZ. In the geometric phase r > 0,
where branes are represented by holomorphic bundles (coherent sheaves to be more
precise) we pick the brane41 O(2) and we wish to transport it from the phase r > 0
to the orbifold phase r < 0 through the window w : −π < θ < π . The obvious
lift of this brane to a GLSM brane is W (2). But note that in the window w the
grade restricted gauge charges are Nw = {−1, 0, 1} so the GLSM brane W (2) is
not grade restricted. On the other hand in Example2 we saw that the brane C (B1) :
W −2(−1)

d−3−→ W −1(0)⊕3 d−2−→ W 0(1)⊕3 is quasi-isomorphic toW 0(2) at lowenergy
in the phase r > 0, andB1 is grade restricted. Therefore, we can transportB1 over
to the phase r < 0 and project down to π−(B1):

π−(B1) : O(−1)
d−3−→ O(0)⊕3 d−2−→ O(1)⊕3 . (78)

The above brane is the image in D(X−) of O(2) ∈ D(X+) under brane transport.

More generally, consider a GLSM with abelian gauge group T that reduces, in a
phase, to an orbifold theory Xorb = C

N/Γ with a discrete gauge group Γ ⊂ T . The
GLSM Chan–Paton space reduces to a representation of the discrete gauge group
Γ and the low energy branes in the orbifold phase are complexes of Γ -equivariant
vector bundles on C

N , D(Xorb) ∼= DΓ (CN ). Other phases of this GLSM are given
by partial or complete crepant resolutions of the orbifold singularity. If we denote
such a resolution as X res, then the brane transport establishes a correspondence of
D-branes between these phases:

(79)
Considering the mapping between the chiral sectors, this becomes an equivalence of
derived categories which is known as McKay correspondence [4, 5].

In more general cases, with non-zero superpotential, complexes of sheaves are
replaced by matrix factorizations of the superpotential and low energy computation
becomes more involved as some of the fields can acquire masses from the superpo-
tential and need to be integrated out. The main ideas remain unchanged. The low
energy branes are still the GLSM branes upto phase dependent quasi-isomorphisms.
The grade restriction rules are the same and brane transport works similarly. In the

41We use an underline to point out the R-charge (differential degree) zero part of a complex.
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math literature, the relevant equivalence of derived categories, that of CY hypersur-
face defined by a polynomial and ofmatrix factorization of the same polynomial, was
established by Orlov [6]. Details including relation between the physical perspective
of brane transport and Orlov’s construction of categorical equivalence can be found
in [3].

AN = (2, 2) Supersymmetry

Our world-sheet has, as time and space coordinates, y0 and y1 respectively, with
a Lorentzian signature ds2 = −(dy0)2 + (dy1)2. It is convenient to introduce light
cone coordinates and their derivatives:

z± := y0 ± y1 , ∂± := ∂

∂z± = 1

2
(∂0 ± ∂1) . (80)

The N = (2, 2) supersymmetry algebra contains four supercharges:

Q+ , Q− , Q+ , Q− , (81)

and the following bosonic generators:

Time translation: H := ∂0 , (82a)

Spatial translation: P := ∂1 , (82b)

Rotation: M := x0∂1 + x1∂0 . (82c)

Depending on the field theory, this algebra may be augmented by two U (1)
R-symmetry generators:

FV , FA , (83)

corresponding to the vector R-symmetry (U (1)V ) and the axial R-symmetry (U (1)A)
respectively. The non-zero commutation relations are:

{Q±, Q±} = H ± P , (84a)

[iM, Q±] = ∓Q± , [iM, Q±] = ∓Q± , (84b)

[FV , Q±] = −Q± , [FV , Q±] = Q± , (84c)

[FA, Q±] = ∓Q± , [FA, Q±] = ±Q± . (84d)

The hermiticity property of the supercharges is:

Q†
± = Q± . (85)
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The bosonic operators are all hermitian.
Two distinguished subalgebras of the above algebra containing half of the super-

symmetry are defined with the following supercharges:

N = 2A : QA , Q†
A , QA := Q+ + Q− , (86a)

N = 2B : QB , Q†
B , QB := Q+ + Q− . (86b)

They satisfy the same anti-commutation relations, for Q ∈ {QA, QB}:

{Q, Q†} = 2H , Q2 = Q†2 = 0 . (87)

Their charges under the R-symmetries play important role in our analysis:

[FV , QA] = 0 , [FA, QA] = QA , (88a)

[FV , QB] = QB , [FA, QB] = 0 , (88b)

which implies that a Q-complex (computing some cohomology of interest) will
be Z-graded by the U (1)V for Q = QB and U (1)A for Q = QA, given that these
R-symmetries are preserved by the quantum theory.

B Chan–Paton Space

Let us consider a general setup of having a QFT on a world-sheet (a surface) Σ

with boundary. We may have a set of possible boundary conditions42 that we can
assign to the fields of the theory, let us call this set of basic boundary conditions B0.
Each connected component of the boundary ∂Σ corresponds to a brane (to which
the component is thought to be attached) or equivalently, each boundary condition
corresponds to a brane. If we have a configuration of multiple branes with a boundary
condition for each of them then we can label each brane with an index, let us call
the index setI , and collect all these boundary conditions in the mapB : I → B0.
The indices in the setI are called Chan–Paton indices. This way each end point of
the strings will carry an index of its own. More generally it may be possible, and at
times necessary, to consider linear combinations of indices attached to an end point,
or to allow some group to act on them.

For example, if we have N coincident identical branes then there may be a sym-
metry rotating those branes (among each other). Once we introduce an index for each
brane, I = {1, . . . , N }, we can define the mapB : I → B0 to send each index to

42A boundary condition can involve literally boundary conditions for the fields at the boundary
along with boundary actions supported on the boundary that help preserve some of the symmetries
of the bulk theory.
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the same boundary condition. Now some rotation subgroup43 of GL(CN ) acting on
the indices inI can become a symmetry of the theory. Another way to interpret this
is to imagine, instead of a stack of N branes, just a single brane with a vector bundle
like structure where the fiber over each point isCN . Then an open string that ends on
this brane has not only a specific position on the brane attached to its end point but
also a specific position along the fiber and some subgroup of GL(CN ) can act on this
position along the fiber. In this picture it is said that the end points of the open strings
always have a vector space attached to them, the vector spaces being the fibers over
the points on the branes where the end points are attached. These vector spaces are
called Chan–Paton spaces, we will use the letter V to refer to Chan–Paton spaces.

Let us schematically discuss some fairly general properties of open string Hilbert
spaces in the presence of non-trivial Chan–Paton spaces. We will parametrize time
and space with y0 and y1 respectively, then in the presence of two boundaries
at y1 = 0 and y1 = L , computing correlation functions on the semi-infinite strip
[0, L] × [−∞, t] defines wave functions in the Hilbert space associated to the open
string at time t (see Fig. 4). To do the path integral we have to use two boundary condi-
tions for the twoboundaries and specify a value for thefields at time t . These boundary
conditions can include different boundary actions to preserve some symmetry. Corre-
sponding to two boundary conditionsB(i) andB( j) for i, j ∈ I , let us choose two
boundary actions Ii (y1 = 0) := ∫ t

−∞ dy0 Li and I j (y1 = L) := ∫ t
−∞ dy0 L j sup-

ported on y1 = 0 and y1 = L respectively. Now a state in the Hilbert space at time
t is defined by the path integral with some operator insertion:

Ψ
j
i (φ0) :=

∫

φ(t)=φ0

Dφ OΨ (φ)ei(S+Ii (y1=0)+I j (y1=L)) , (89)

where the path integral is over all field configurations that take the specific value
φ0 at time t and satisfy some boundary conditions (such as Dirichlet, Neuman etc.)
at the boundaries. We have put the indices at different heights to keep track of the

Fig. 4 Wave function on an open string with two boundaries

43We are using the term “rotation” loosely, the actual symmetry depends on the details of the theory,
it can be U (N ), SO(N ), Sp(N ), etc.
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orientation of the string. The Hilbert space consisting of all such wave functions for
fixed i and j will be called H (B(i),B( j)). The total open string Hilbert space is
a direct sum over all possible boundary conditions:

H =
⊕

i, j∈I
H (B(i),B( j)) . (90)

Since the indices inI can be thought to represent the basis vectors of theChan–Paton
space V , in an index free notation the wave function Ψ

j
i becomes valued in V ∗ ⊗

V = Hom(V ,V ).44 More generally, we can consider two different configurations
of branes for the two end points of an open string. Equivalently, we can have two
different index sets and sets of basic boundary conditions, i.e., two different Chan–
Paton spaces, V1 and V2, for the two ends. In such cases the open string states will
be valued in Hom(V1,V2).
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