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Preface to the Second Edition

Several changes have been made to the text in this second edition relative to the
first, and no chapter has been left untouched in the process. The changes are of two
types. One is an expansion of the scope of the material covered. The other is the
introduction of new developments of the field. The revisions have resulted in two
new chapters and several new sections. In addition to these changes, uncountably
many minor changes have been made in figures and in the text to improve read-
ability. A part of the preparation of this edition was the correction of the errors and
(mostly) misprints spotted in the first edition. During this process, it became clear to
me that while two errors may cancel each other, mistakes never do. Happily, most
mistakes were of minor importance.

The idea behind the book remains unchanged: To provide a guided tour of a
number of interesting phenomena in the field. A reader who compares this edition
with the first will realize that occasionally the presentation has changed radically.
But although the flavor may have changed here and there, hopefully the nutritional
value still makes it worth for the reader to consume the dish.

I want to thank Takeshi Furukawa, Bernd von Issendorff, Vitali Zhaunerchyk,
and Mathias Weber for providing illustrative experimental data; Petr Slavic€k for an
educational conversation on holy water at an Erice Workshop; and Hanna
Vehkamiki for enlightening me on the first nucleation theorem.

Corrections, suggestions, and error reports are welcome and can be mailed to me
at klavshansen@tju.edu.cn.

Tianjin, China Klavs Hansen
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Preface to the First Edition

This book is a developed version of lecture notes that were prepared for graduate
students at the University of Gothenburg and Chalmers University of Technology.
It aims to fulfill two needs. First of all, it should summarize some of the relevant
literature and provide a collection of results for anybody who works with statistical
aspects of nanoparticles. Thermal processes are ubiquitous and a proper under-
standing of the field is necessary for a complete description of the physics of
nanoparticles. It is therefore important to have collected a number of results that
refer specifically to small particles and the special features they exhibit.

But a mere collection of literature results would limit the usefulness of the book.
A textbook which only reviewed literature results would run a serious risk of
degenerating into a supermarket for shopping for the equation which seemed to fit
some particular data set. The other purpose is therefore to derive results from
scratch in a manner that allows the reader to follow the important steps in the
derivation and to gain an understanding of the applicability and the limitations
of the equations, both from the literature and of the homegrown variety. The term
‘homegrown’ does not carry any derogatory meaning. As with food, homemade
may be worse or better than dishes sold ready-made. And as with food, one usually
wants to know the ingredients before the dish is consumed. One important
Leitmotif of the derivations presented here is to make it clear to the reader what are
physical assumptions and what are mathematical approximations. A calculation of
some physical quantity may at the same time be extremely precise, less accurate and
completely unreliable. One should not confuse precision in the numerical estimate
of the consequences of a model with the accuracy with which the model has been
derived. And one should under no circumstances confuse the accuracy of a model
calculation with its reliability.

With these two purposes in mind, the material in this book is often presented in
more than one way and some of it is redundant from a strictly logical point of view.
Occasionally models are elaborated beyond the applicability to a real physical
system. The purpose of this is mainly to explore the limits of the approximations
and demonstrate the power of the methods. On the other hand, some problems are
presented and solved with a degree of simplification which is not on par with the

ix



X Preface to the First Edition

best available experimental data of specific systems. Readers should be equipped
with the necessary tools to improve on the text and to provide their own solutions
for specific systems. The text also contains subjects and subsections that are
intended to provide examples and illustrations. I trust that the reader will be able to
distinguish between fundamental results, applications and illustrative examples.

The book has a strong emphasis on microcanonical physics. Supported particles
are very relevant for applications of nanotechnology but fundamental properties of
nanosystems are best studied free of the disturbing and frequently uncontrolled
influence of a substrate. A large number of experiments have been and more will
continue to be performed in molecular beams, ion traps and storage rings, for which
the microcanonical description is the appropriate one. But since microcanonical
properties can be converted to canonical by a simple integration, also workers who
equilibrate their particles to a external heat bath will find useful results here.

Books on statistical physics are full of equations. Remarkably, one can get away
with very little advanced mathematics and yet describe a very wide range of
observable phenomena. The number of equations is therefore not a measure of the
level of mathematical sophistication the student is required to master. They are
simply there to show how one gets from point a to point b, and to show what point
b looks like. After all, equations are economically expressed figures.

This book also contains material which is covered in most basic courses on
statistical physics. Experience has shown that these skills often need to be brushed
up and that some recapitulation of subjects is necessary in practice. When the
present text falls short of this target, the reader can consult the additional reading
list in Appendix A.

I have received a number of suggestions for the contents and corrections to the
text that have helped immensely, from O. Echt (Chapters 1, 3, 7), V. V. Kresin
(Chapter 12), and from students who have taken my course. But as the sole author
of this manuscript I have no other to blame for its shortcomings.

Perfectionism is only the desire to spend time admiring your (almost) completed
work, and it is time to publish this volume. Readers will hopefully report sug-
gestions, misprints, miscalculations and plain errors to me at klavs.hansen@-
physics.gu.se.

Gothenburg, Sweden Klavs Hansen
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Chapter 1 ®)
Introduction Check for

Statistical physics is basically counting. In the words of E. Schrodinger, ‘There is,
essentially, only one problem in statistical thermodynamics, the distribution of a given
amount of energy E over N identical systems. Or perhaps better, to determine the
distribution of an assembly of N identical systems over the possible states in which
the system can find itself, given that the energy of the assembly is a constant E”.' The
calculation of the microscopic energy levels per se is not the problem of statistical
mechanics. That problem is of course very important but is left to other branches of
physics, primarily applied quantum mechanics. This text will therefore not include
much material on details of quantum mechanical calculations of level structures. It
should be kept in mind, though, that one of the purposes of the application of statistical
physics to nanoparticles is to provide experimentally testable models for the behavior
of the systems at finite temperatures in order to assess important quantities of the
system, such as energy splittings etc.

After having accepted that the word ‘Statistical’ is relevant, one may still ask why
itis necessary to have a special treatment of nanoparticles. Why not just reread the old
textbooks in statistical physics? The reason is that the finite number of constituents
(atoms, molecules) of the nanometer-sized particles we will be dealing with gives
rise to special phenomena that do not appear in macroscopic systems.?

Finite temperature is a fact of life for all particle sizes, but it plays a very different
role for large and small particles. Generally, the larger the number of degrees of free-
dom of a particle, the harder it is to prepare in the ground state. In condensed matter,
which is often concerned with a practically infinite number of particles, this problem
takes the extreme form that it is not possible to reach a temperature of zero kelvin.
For small molecules, on the other hand, excitations usually only play a role for the

VE. Schrédinger, Statistical Thermodynamics, The Syndics of the Cambridge University Press,
1952.

21 nanometer = 1 nm = 10~ m.
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translational and rotational degrees of freedom because the vibrational frequen-
cies give excitation energies that are well beyond ambient temperatures. Likewise,
electronic excitations of molecules are generally not possible at ambient tempera-
ture, except for the cases where ground state degeneracies have been lifted and the
molecules can be excited around in these few, almost degenerate states. But even for
lifted ground state degeneracies are the level splittings frequently much larger than
the temperature and strongly inhibit inter-level excitation.
We can make a simple estimate of the particle size that divides these two regimes.
The quantum energy of the lowest vibrational frequency of a particle with radius r
is on the order of? ’
hw ~ h7 (1.1)

where vy is the speed of sound in the particle. Equating this energy to the temperature
will give us the typical radius for which the vibrational quantum energies are low
enough to be thermally excited. Solving for » we have

hvy
r~ ——~1nm, (1.2)
kgT

if we use vy = 10* m/s and 7 = 100 K. This radius is indeed not very different
from the size of smallish molecules. Thus, for the vibrational degrees of freedom the
transition from an effectively zero kelvin atom at ambient conditions to large systems
where zero kelvin is practically unattainable occurs in the nanoparticle size range. A
similar transition arises for electronic excitations in metallic particles, where the size
of the particle determines the spacing between electronic levels. For large particles the
spacing is reduced to the extent that thermal electronic excitations become possible.

Another reason small systems need a special treatment is fluctuations. When
thermal properties of large particles or large collections of particles are observed,
the observed quantities can be identified with the thermal average values. When
the number of constituents in the system is small, this connection is not automatic
because fluctuations are relatively large and need to be considered explicitly.

The third reason for giving nanoparticles special consideration is that we can do
things with these that we cannot do with macroscopic particles, like measure the
masses in mass spectrometers and select particles according to the number of net
charges they have, down to the ultimate resolution of one unit of charge. In a few
cases we can even prepare gas phase samples of all particles composed of exactly
the same number of atoms and having exactly the same geometrical and electronic
structure, e.g. the all-carbon molecules called fullerenes.

The fourth reason is that particles composed of a small number of monomers
(usually an atom but it can also be a small molecule) have properties that depend on

3The term ‘on the order of’, indicated by the symbol ~, is used to describe an approximate rela-
tionship between quantities and indicates the leading order term without any attempt to determine
multiplicative dimensionless constants. As an example, the volume of a sphere is on the order of
its radius cubed.
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the precise number of constituents in a non-trivial fashion. This goes for structure and
energy alike. There are different ways particles can have size dependent properties.
One example is the smooth dependence due to the ratio of surface and interior (‘bulk’)
atoms, which can be extremely different for small and large particles. Another less
trivial example is that the binding energies of metal clusters depend strongly on the
number of valence electrons in the particle. Yet another is how binding energies and
geometric structures of rare gas clusters depend on the number of atoms in the cluster.
For these systems, also the thermal properties have a non-trivial size dependence.
Quantities that are proportional to the system size in the macroscopic limit are not
so for systems that exhibit such size dependencies. For thermal excitation energies,
E, and entropies, S, for example, one in general has that for a given temperature

E(T)y , E(T)yt

(1.3)
N N +1

S(Mn , S(M)n41
N N+1"~

for small particles.

The non-equalities in (1.3) violates the principle of corresponding states, which
states that the equations of state for a range of different systems, under some con-
ditions which we need not go into detail with here, can be expressed in terms of a

universal function, u, as
P T v
—=ul=—], (1.4)
P, T. v,

where P is the pressure, 7' the temperature, v the volume per particle, and the same
symbols with subscript ¢ are material-specific quantities.
Small is really different.

1.1 Basic Thermodynamic Concepts

Thermodynamics is traditionally concerned with properties of equilibrium systems.
The word ‘equilibrium’ means that macroscopic properties do not change with time.
In general, an observable quantity of a thermodynamic system will have an erratic
behavior if measured over time, deviating up and down in a random or seemingly
random fashion from one instance to the next. If, for example, the pressure of a gas
at constant volume and temperature is measured, a sufficiently fine instrument will
be able to detect variations with time corresponding to the random time molecules
with random momenta hit the measurement instrument.

Determining a mean value consists of disregarding these fluctuations. In practice
this is done by averaging a measurement over a time interval which is long compared
to the time scale of the fluctuations. The result of this averaging is the mean, or
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average, value which, for a generic quantity A, is written as (A) or A. The formal
definition of an average of x is

[ f(x)AK)dx

A) =
W= o

(1.5)

where f(x) is the distribution over which A is averaged. As an example x may be
the momentum, f(x) the distribution of momenta, and A the kinetic energy of a
particle. The distribution here is one-dimensional but may be multidimensional with
an obvious generalization of the integrals in the definition.

From the definition we see that averaging is a linear operator:

(¢A + BB) = a(A) + B(B). (1.6)
By the definition of time averages we have
A(r) = (A) +8A(), (1.7)
where § A is the fluctuating part of A which averages to zero:
(8A(1)) = 0. (1.8)
Equilibrium implies that the mean does not change with time:

d(A) _
—— =0 (equilibrium). (1.9)
dr

You may not be at ease with the separation of time scales implied in the above
definition of mean values, i.e. one time scale over which the average is performed
and a longer time scale over which potential changes in this mean is measured.
One can then instead consider a collection of systems with the same macroscopic
characteristics and use the mean over systems in this ensemble to obtain a mean value.
This is the origin of the word ‘ensemble’ which we will use below to label systems
with certain macroscopic parameters fixed. These macroscopically identical systems
will generally be in different microstates, i.e. be in different quantum states. If the
system is in equilibrium and is ergodic, averages of this ensemble will be identical to
equilibrium time averages. Ergodic systems are those for which every microstate of
the system consistent with the external parameters (energy, pressure etc.) is reached
in the course of the time development of the system. This very important assumption
of equal a priori probabilities will be made implicitly throughout the calculations
presented here.

Like averages, fluctuations do not change with time once equilibrium is reached,
and by their nature they average to zero. But even if the average of the fluctuating
part of A is zero, this is not the case for the average of its square,
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((64)%) > 0. (1.10)

The standard deviation, or root-mean-square standard deviation, is used as a measure
of the fluctuations;

oa = V(A2 — (A)2 = /((8A)?). (1.11)

The argument of the square root is known as the variance of A for the distribution.
The square root ensures that the dimension of this is the same as of the mean and
that these two quantities can be compared directly.

The variance is an example of a moment of a distribution (or, to be precise, of
the difference between a moment and the square of another). Generally, the n’th
moment of A in a distribution is defined as (A"). For normalized distributions, the
zeroth moment is unity, the first moment is the average, or mean value, the second is
the variance plus the average squared etc. A specific state has a certain distribution
of values of A and hence a specific set of moments, some of which may be infinite.
If one or more of the moments of two distributions are different, the distributions are
also different.

Relative fluctuations depend on the size of the system, and usually the smaller the
systems, the more important the fluctuations. If the contribution of a small part of a
system to the average of the whole system is independent of the contributions from
the rest of the system, averages for the whole system will be the sum of averages
from the subsystems:

(A) =) (A;) o« N. (1.12)

The fluctuations will also be independent under the same conditions. They add in
square:
oF = (8A%) =) (8A}) « N. (1.13)

i
This gives the relative standard deviation

o b
(A~ UN

For macroscopic systems one can ignore any corrections from terms proportional to
1/+/N, but obviously this is not so for a small system. A system composed of a large
number of small systems (atoms, molecules, nanoparticles) will, however, still have
averages and fluctuations that obey this systematics of large numbers.

As an illustration of these concepts, consider an ideal gas. A macroscopic amount
of gas at some externally imposed and time independent conditions have vanishingly
small fluctuations in observable quantities in most situations. This holds also for
non-ideal gases and explains why thermodynamic tables contain measured values of
energy and entropy of this and that gas, but not their fluctuations. For a sufficiently
small amount of gas where /N ~ 1, this picture changes. The ultimate smallness

(1.14)
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for a gas is a single molecule. If one measures the momenta of the center of mass
motion of this lonely molecule, one will find values that change over time with fairly
large relative variations. If enough of these values are measured, the eventual result
will be a Maxwell-Boltzmann distribution. This important distribution will be treated
in Sect.2.2. Here we just mention that the fluctuation in the kinetic energy of this
single particle distribution is on the order of the mean value, in good agreement with
a naive application of the 1/+/N rule.

Another example of the importance of fluctuations is Brownian motion. This type
of motion is observed in microscopes for small particles suspended in a liquid or
a gas. Collisions of the molecules in the fluid with the suspended particle cause an
incessant, erratic motion of the particle, due to the fluctuating magnitude and direction
of the momentum transfer in the particle-molecule collisions. The displacement of
the particle with time averages out to zero if many trajectories are followed because
there is an equal probability to go left and right, up and down, and back and forth. But
there is a non-zero average square displacement from the starting point. This non-
zero value indicates that the particle diffuses. The degree of diffusion will, everything
else equal, increase with decreasing particle size. The quantitative description of
this phenomenon was made by Einstein who used measured values of diffusion
constants for particles with a well-defined size to calculate the value of Avogadro’s
number. Avogadro’s number, usually denoted by N, has the value 6.0 - 10?3, It is
the number of molecules in one mole and connects the atomic mass scale with the
easier to measure macroscopic mass scale. It also connects the gas constant R and
Boltzmann’s constant, R = Nakg. The value of kg is 1.38 - 1072 J/K.*

Thermodynamics describes systems in thermal equilibrium in terms of macro-
scopic and therefore observable variables. These variables can be grouped according
to different criteria. One criterion is whether or not they are intensive or exten-
sive. Pressure, chemical potential (which we will meet below) and temperature are
examples of intensive quantities: you get the same, not twice the temperature if you
double the size of your system with respect to volume, particle number and excitation
energy. Energy and entropy are examples of extensive variables; double the size of
(a macroscopic) system and you get twice the amount of energy and entropy. It has
been suggested that a system is defined as small if these quantities are not extensive.
That definition makes self-gravitating systems such as stars small. The long range
of the gravitational potential means that two stars of similar sizes that are brought
together will have a potential energy which is different from twice the value of a
single star. We will use the word ‘small’ in a more restricted sense, viz. for systems
that posses a number of constituents which does not exceed unity by very many
orders of magnitude. In most cases this also means that the spatial extension of these
particles is small. Given the typical size of an atom of a few Angstrom,’ this gives
particle dimensions in the nanometer range.

Instead of a classification of variables as intensive or extensive, they can be clas-
sified according to whether or not they are of mechanical origin. Thermal energy and

4Some frequently used constants of nature are given in Appendix B.
S1IA=10""m.
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pressure are mechanical in the sense that they can be understood in terms of New-
tonian mechanics. Pressure is the sum of all momentum changes perpendicular to a
surface per unit area, divided by the time interval used to measure them, and thermal
energy is the sum of internal excitation energies of all the parts of the system, be they
one-body energies as in the ideal gas, or described by interactions that involve more
particles.

In contrast, temperature and entropy are quantities that are specific to thermody-
namics and statistical physics. This is also true for quantities that involve the entropy,
such as the chemical potential. They cannot be defined with a simple extension of
mechanical concepts. Gibbs’ formula for entropy clearly shows its non-Newtonian
nature. According to this expression, entropy is a number associated with a proba-
bility distribution. If i is a state of the system and P; the probability that the system
is in this state, Gibbs’ entropy is

S=—ks ) PIn(P), (1.15)

where the summation runs over all possible states. Qualitatively, (1.15) says that the
entropy is a measure of the lack of knowledge about the system. If the system is in a
specific state with a probability approaching unity, the entropy is close to zero which
indeed is a result one must require of a reasonable definition of entropy. If the system
has  equally probably states, P; = Q™! and the entropy becomes

S = kg In(), (1.16)

which is Boltzmann’s formula and his epitaph.

It can be shown that the entropy in (1.15) is consistent with the definition in terms
of energy transfer into the system with 1/ 7T as the integrating factor. One can use the
definition to derive the Maxwell-Boltzmann distribution for an ideal gas, by requiring
that the equilibrium distribution is the one that corresponds to the maximum entropy
of the system, consistent with the values of the macroscopic parameters.

There is a limit to how many external parameters one can impose on a system
in equilibrium. It is for example not possible to simultaneously impose values of
temperature, volume and pressure for a system of, say, 1.602 - 10'° argon atoms.
Only two of those quantities can be imposed externally. The third will be decided by
the system itself. On the other hand, there is also a minimum number of parameters
needed to specify the complete macroscopic state of the system. The maximum and
minimum numbers are identical and we can reason our way to this number. Consider
for simplicity a system with only one element or chemical compound. If we specify
the type and number of particles as well as the volume, we can make a ‘Gedanken
calculation’ of the energy levels of the system, and we have thus implicitly specified
the energy levels in the quantum mechanical description of the system. Not that we
necessarily know them, but we know they are there. Still, knowing the individual
quantum states is not enough to determine the state of the system. The population
of the levels is so far undecided, and only become fixed if we specify, say, the
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temperature in the canonical ensemble. This is what the temperature does for a
living, as we will also see later. Hence we need to specify three external parameters.
The three external parameters need not be volume, particle number and tempera-
ture. Other sets can be chosen, but they have to be three in number,® irrespective of
which ones are chosen. This can be understood as follows: If we specify e.g. volume,
particle number and temperature, all other quantities are in principle fluctuating vari-
ables, i.e. their variances are non-zero. For a macroscopic system the fluctuations
are minute and measured values are in practice identical to the mean values. This
means that instead of specifying the particle number, say, in the example above,
we may just instead specify the chemical potential. The description is virtually the
same. Hence we can replace the specification of one external parameter by another,
properly chosen; The number of parameters does not change in the process.

The number 3 for the degrees of freedom for a macroscopic system holds for a
single component and single phase system, for example a gas/liquid/solid made up
of identical molecules. In general a system may be composed of different molecules
which can be in different phases, liquid or gas phase or one of the many different
solid phases some compounds are blessed with. Gibbs derived an expression, known
as Gibbs’ phase rule, which gives the number of macroscopic degrees of freedom,
f, for a chemical system with ¢ components and p phases as

f=c—p+2. (1.17)

For the simplest case with one phase and one component, this rule states that f = 2,
contradicting the above statement that f = 3. The reason is that the number of
molecules is not considered a degree of freedom in (1.17). Equation (1.17) accounts
for a system like a test tube with some fixed amount of material and states how many
external parameters a chemist can change independently without adding or extracting
material from the test tube. Alternatively, one may consider the concentration a
single variable, and thus reducing two variable, volume and particle number, to a
single parameter. This conforms perhaps better to an intuitive understanding of the
problem; If the density is given for bulk material, only the temperature can be varied.
This holds to the same extent that the system’s properties are independent of its
size, which is manifestly not the case for nanoparticles, and this is also the reason
phase diagrams for pure substances are two-dimensional, usually with pressure and
temperature as the variables. If the number of atoms is not given, Gibbs’ phase rule
should therefore be modified to

f=c—p+3, (1.18)
which correctly predicts the number three for our one component-one phase system.

Once we have worked out the interpretation of Gibbs’ phase rule for bulk matter,
we need to change numbers again for gas phase nanoparticles. Not because of the

6Then, shalt thou count to three, no more, no less. Three shalt be the number thou shalt count, and
the number of the counting shalt be three.” Monty Python and the Holy Grail.
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nano part but because of the gas phase part of their nature. As we will see in Chap. 8,
the volume into which a particle is embedded affects only its translational degrees of
freedom. These decouple exactly from all other degrees of freedom. The decoupling
requires that the volume is so large it does not influence the internal state of the
particles, which is what is assumed when the adjective ‘gas phase’ is used here. The
number of variables determining the phase of a freely floating particle is therefore
reduced to two. One is usually size. The other can be temperature, energy or chemical
potential.

There is not unlimited freedom to use any sets of variables as externally imposed
parameters. One cannot specify, for example, both the temperature and the energy of
a system to simultaneously have fixed, non-fluctuating values. These two quantities
are called conjugate variables. Pressure and volume is another pair. We will not go
into detail with the application of these rules. You will recognize pairs of so-called
conjugate variables when confronted with the recipe for calculating quantities in
specific ensembles.

The external parameters needed to specify the thermodynamic system are called
its degrees of freedom (d.o.f.). The term refers to macroscopic quantities that can be
changed independently. It is also used in statistical physics where the term instead
refers to microscopic quantities that can be varied independently, i.e. coordinates
in a generalized meaning, including e.g. electron spin, and sometimes also as the
number of these coordinates. Examples are the number of rotational degrees of
freedom for a diatomic molecule (d.o.f. = 2), the rotational degrees of freedom for
a non-linear molecule (d.o.f. = 3), the translational degrees of freedom for a free
electron (d.o.f. = 3), and the spin of an electron (d.o.f. = 1). With this use of the
word, the number becomes temperature dependent. For example, the temperature of
a gas may be so low that molecular vibrations cannot be excited whereas at elevated
temperatures vibrationally excited states will have a non-zero population.

1.2 Ensembles

In thermal equilibrium the link between the microscopic and macroscopic properties
of a system is provided by the partition function (‘Zustandssumme’ in German). The
partition function, usually denoted by Z East and by O West of the Atlantic, is a
mathematical function of the three macroscopic degrees of freedom. The thermo-
dynamic quantities of a system can be derived from its partition function by simple
operations, such as taking derivative etc. The freedom in the choice of the macro-
scopic degrees of freedom means that there exists a number of different ensembles
and therefore different types of partition functions.

The three most frequently used ensembles are the microcanonical ensemble, where
particle number, N, volume, V, and energy, E, are specified as external parame-
ters; the canonical ensemble where N, V, T are specified; and the grand canonical
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ensemble where V, T, and u, the chemical potential, are specified. We will mainly
be concerned with the microcanonical and the canonical ensembles. The grand
canonical ensemble is useful for quantum statistics for reasons that will become
clear when we calculate an example.

1.3 The Microcanonical Ensemble

The microcanonical partition function’ is the number of states of a system with a
specified energy, volume and number of constituents (atoms, molecules):

Zne(N,V,E)=p(E) (microcanonical). (1.19)

Although the quantities N and V' do not appear on the right hand side of this equation,
they are there implicitly. The need to specify the volume in the partition function is
not intuitively clear if you work with a free particle, as discussed in connection with
Gibbs’ phase rule. One usually does not associate a nucleus, an atom or a cluster
with a volume the size of a vacuum chamber in a lab. But it is in fact meaningful.
If the particle is thermally equilibrated with respect to its translational degrees of
freedom, the volume of the vacuum chamber will enter in the translational part
of the partition function, although it will have no effect on the intrinsic properties of
the particle, which do not change if the size of the vacuum chamber is changed from
a lot of empty space to even more empty space.

1.4 The Level Density

The quantity p(E) is known as the level density at energy E. In the form p(E)dE it
gives the number of states between the energies £ and E + dE. Itis a very important
quantity in statistical physics so some of its general properties will be presented in
detail. It is related to the average difference between two levels E,,, E, 1+

1
Ey)= — . 1.20
PE) (Eiy1 — Ej) (120)

The average is taken over an energy interval broad enough to wash out the rapid
state-to-state fluctuations in E;; — E;, but still small enough for the average to be
considered as pertaining to a precise energy. Equation (1.20) is meaningful if the
states are closely spaced. At low energies and for small systems, this may not be the
situation. Then the level density is better described as a sum of § functions,

"It is tempting but probably wasted effort to suggest to rename this ‘the nanocanonical partition
function’ and ‘the nanocanonical ensemble’.
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Fig. 1.1 The level density for six harmonic oscillators with an average frequency (hw) = 1. The
six fundamental excitations are indicated with arrows. All other peaks are combinations of one or
more of these, containing at least two energy quanta. The two lowest frequencies are close to the
ratio 1:2, which causes a near degeneracy of overtones. The Lorentzian broadening causes these
near degenerate peaks to be slightly higher, as illustrated in the inset. The choice of unit for p,
(B{w))~", is arbitrary. Another choice will give a simple scaling of the ordinate values

p(E) =) S(E —Ep, (1.21)

where E; is the energy of the state i and the sum runs over all i’s. (See Appendix C
for some properties of the § function.)

There is nothing fundamentally different between these two descriptions. They
look different just as an airplane seen from the front looks different from one seen
from the side. Figure 1.1 shows an example of a level density for a system composed of
six harmonic oscillators with randomly selected quantum energies, hwy, k = 1, .., 6,
with an average value of 1. For display purposes the § functions of infinitely long
lived quantum states have been broadened with the normalized Lorentzian shapes,

l r
7 (hw — hwy)? + (T'/2)2

(1.22)

with a width of I' = 0.002(hw). In the limit ' — O, this line-shape has the property
of the § function. Even for a system this small and for total energies below ten average
vibrational quanta is the level spacing very small and the spectrum is well on the
way to fuse into a continuum at the high energy end of the figure.

The assumption of equilibrium means that all states of the system with the same
total energy E are populated with the same probability. More precisely: if the system’s
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Fig. 1.2 The integrated level 104
density for the six harmonic
oscillators in Fig. 1.1

energy is within the small energy interval § E, the probability that the system is
measured to be in some state, i, within that interval is

P, = ; (1.23)
p(E)SE
independent of i.

In order to get better acquainted with the concept of level density we will show
some important applications. Consider a microcanonical system, i.e. an isolated
system with a certain energy and a definite set of state energies. We label the states
with the index i and can then calculate the total number of states, N;, which have
energies below some specified value of E as

N,(E) = Z@(E—E,-), (1.24)

where the step function ® (x), the integral of the § function, is 1 ifx > 0,0if x < O,
and 1/2 for x = 0. Figure 1.2 shows the level density of Fig. 1.1 integrated this way.
The transition from a step-like function to a function which is effectively smooth
and for which the continuum approximation can be used happens already around
E ~2h{w) in this representation. This is by definition also the energy at which
the levels are sufficiently dense to convert the summation into an integration over a
continuous function. Above this energy we can without any further ado differentiate
the result with respect to energy to get the level density p(E):

dN,(E)

p(E) = iE

(1.25)

From this somewhat formal definition of p we see that the number of states in the
energy interval  E around E is equal to p(E)SE, as already mentioned. The level
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density has dimension 1/energy, and the value of p (E) therefore depends on the units
you use.

Occasionally, one uses the term density of states (DOS) synonymously with the
level density we have defined here. At other times, however, DOS denotes the density
of excitations of a single degree of freedom, as used for the single particle excitation
spectrum of electrons in a Fermi gas, for example. The level density is the number of
all combinations of singly and multi-electron excitations that give a specific energy.
We will make the distinction here and use the expression level density for the density
of states of an entire system.

For harmonic oscillators, ‘the fruit fly of physics’, level densities can be calculated
approximately with simple means. The harmonic oscillator is not only simple, it is
also a good approximation to the motion of the nuclei in condensed matter (phonons)
and molecules (vibrations). The level density of a single harmonic oscillator with
quantum energy hw is

p(E) =Y 8(E — ihw). (1.26)
i=0

We have set the energy of the quantum ground state to zero so the usual iw/2 does
not appear. It is possible to get rid of the § functions if one looks at the problem on
the scale of hw. There is precisely one state in this energy interval, and we can then
write the smooth version of this level density as p = 1/hw.

Now consider two harmonic oscillators (h.o.) with the same frequency. For an
energy which is a multiple of hw, the total level density, p,, is a convolution of the
single h.o. level densities, denoted by p;;

n

,oz(E:nfLa)):Zpl(n—i)pl(i):ZLl:n+l. (1.27)
i=0 i=0

Let’s repeat the calculation for three oscillators:

n n n
pr(E = nl) = 3" patn = 1) = Y+ 1= 1~ [C+ 1= a2
i=0 i=0

(1.28)
where the sum was approximated with an integral. The situation is depicted in Fig. 1.3.
For p, one gets p, &~ n° /3! This can be repeated ad nauseam to give pr=pr1/(f—
1) or, for f oscillators and with the energy scale hw reintroduced;

1 E\'

This is a crude approximation in absolute terms but it captures the essential features of
a better calculation at not too low energies. Equation (1.29) is a poor approximation
at low energies, because we approximated a discrete sum with an integral in the



14 1 Introduction

Fig. 1.3 The states for three
degenerate harmonic
oscillators on the £ = 20 hw
surface. The axis are the
quantum numbers and states
are restricted to reside on
integer points on a two
dimensional surface in the
three-dimensional space

derivation, which is a better approximation the higher the energy is. We will return
to this problem later and show that one gets a better approximation in the high energy
limit, E/hw > 1, by adding f/2 to the scaled energy, n,

1 £\

One important feature of (1.29, 1.30) which survives all improvements of the equation
is that level densities grow rapidly with the excitation energy, and the more rapidly
the larger the system is.

1.5 Temperature and Boltzmann Factor

Let’s now couple two otherwise isolated systems, one of which consists of h.o. and
one which we can leave unspecified. By assumption, the total energy is conserved,
and we imagine that the two systems can exchange energy freely without destroying
the level structure of either system. This is of course an approximation; if the systems
couple, there must be coupling matrix elements and they will have the unavoidable
consequence that energy levels change. We will ignore these changes because they
canbe made arbitrarily small if we are prepared to wait long enough for an equilibrium
to establish. This is a Gedanken experiment, so we will gladly accept this. Still
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assuming ergodicity, every state of the combined system, which is microcanonical,
is then occupied with the same probability.

We will first consider the situation when the unspecified system has only two
states, like the spin of an electron in a magnetic field, with the energies E, E| + AE.
Without loss of generality we can assume that £ is equal to zero. The probabilities
of the small system being in the two states are

P, « p(E), P, x p(E — AE), (1.31)
where p is the level density of the large system. The normalized probabilities are

_ p(E) P p(E — AE)
p(E) + p(E — AE)’ 27 p(E)+p(E — AE)

Py (1.32)

If the energy E of the big system is large enough, in a sense which will be discussed
below, we can rewrite the two probabilities with a Taylor-expansion of the logarithm
of p(E) to first order in AE:

gaInte(E))

In(p(E — AE)) = 1In(p(E)) — A T

(1.33)
Let’s consider the nature of this logarithmic derivative. The level density is a quan-
tity with dimension, and at first glance the above expansion may seem ill-defined.
Logarithms of quantities with dimensions are usually not encouraged. But logarith-
mic derivatives of dimensionful® quantities are actually well-defined, whenever the
logarithm itself is well-defined. Formally it can be written as

din(p(E)) _ 1 dp(E)
dE  ~ p(E) dE

(1.34)

Any multiplicative dimension on p cancels from this expression. Another way of
understanding this is to calculate the number of states in a small interval of width
SE around E to get p(E)SE. Then one can take the derivative of the logarithm
of this pure number. Since §E is a constant it will drop out from the derivative of
In(p(E)SE).

We can express the probabilities in (1.32) in a simpler form if we pretend that the
expansion in (1.33) is exact with the terms given:

_ p(E) _ 1 _
p(E) +p(E—AE) 14 exp (_AEdlnng(E») 1 +eBAE’

P (1.35)

8Yes, it is a word.
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and
o (CAEUEEY)
"o - ; 1.36
’ 1 +exp (—AEM) 1 + e—BAE (1.36)
dE
where we have used the notation
dIn(p(E))
g P (1.37)

At this point it is just that, notation. Later it will be clear that the choice of symbol on
the right hand side is not accidental. These expressions are beginning to look familiar
if you have solved some problems in statistical physics.

We can now generalize the two-level system to a small system with any kind of
level density, py, coupled to a large system. For the sake of argument we will describe
both systems with a harmonic oscillator level density, similar to the leading order
term in (1.29), although we will take the energy to be a continuous variable. The
number of degrees of freedom for the large and the small system are denoted f and
s, respectively, and we have s < f. The probability that the energy is partitioned
with E — ¢ to the large system and ¢ to the small system is the product of the numbers
of states in the two systems at these energies, ps(¢)de and ps(E — €)de. The total
number of states for a given ¢ is therefore

P(E, ) x ps(e)de py(E — €)de. (1.38)
The value of §¢ can be absorbed into a normalization constant, ¢, to give
P(E, &) =cps(e) ps(E —¢). (1.39)

The distribution of ¢ depends on E, s and f. When the number of oscillators increases,
with the average energy per d.o.f., E/f, kept fixed, it converges to a certain limiting
distribution which we will now find.

Let’s first show that in that limit the most probable value, ¢,,, of € only depends
on E and f through the ratio E/f. The peak of the distribution of ¢ is found as
the derivative of the logarithm of the distribution (the logarithm is a monotonically
increasing function of its argument):

dIn[ps(e)ps(E = )]
de

=0. (1.40)

If we introduce the explicit form of the h.o. level density from (1.29), this gives the
peak energy &,
s—1

Em =
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Let now f go to infinity, keeping £/f constant. Then the right hand side of (1.41)
approaches a constant value which is independent of ¢,,. With the specific choice of
ps itisequalto (s — 1) E/f. In the more general case, beyond the harmonic oscillator
description, it will still only depend on £/ and s.

Because ¢»/E is small we can expand the distribution (1.39) in €. One may naively
try to perform the expansion directly in the level density of the large system:

dos(E) | 1dp/(E)
- 142
aE ‘T2 a °F (1.42)

pr(E—¢g) = ps(E) —

This turns out to be a bad idea. The ratio of the second and first order terms in this
expansion is —/¢/2e. With the estimate of ¢ ~ ¢, the ratio of the second to first
order term becomes

1d%p/(E dps(E
1d7ps( )82/ pr(E) s

. 1.43
2 dE? dE 2 (143)

The second order term is as least as important as the first order term in this expansion.
Higher order terms in ¢ in the expansion will also contribute significantly for similar
reasons. Hence it is impossible to calculate the whole ¢ distribution without including
alarge number of terms derived from the large system. This is not convenient. Neither
is it necessary.

The cause of these problems is the fact that the level density is a rapidly varying
function of energy. Instead of an expansion of the function itself, one then expands
the logarithm of the function. After expansion and re-exponentiating one has

dinp,(E)) & dIn(p,(E))
dE 2 dE?

pr(E —¢g) = pr(E) exp (—s ) . (1.44)

This makes the terms in the exponential with second and higher order derivatives
small. For our example the second order term will be of order #*//£? which goes to
zero when f — oo in the prescribed way, both on an absolute scale and relative to
the first derivative term. Higher order terms will contribute even less. This solves our
problems with finding a rapid convergence of the expansion series.

We will identify the logarithmic derivative of the large system’s level density with
the reciprocal temperature of the system,

o 5 dIn(pr(E))
ksT ~— dE '

(1.45)

The temperature is a property of an infinitely large system and has by definition no
intrinsic fluctuations.” The large system is called a heat bath.

Landau and Lifshitz disagree with this statement and derive results for temperature fluctuations.
Our derivation of a canonical temperature renders fluctuations impossible. Heated discussions (pun
intended) erupt on this subject in the literature from time to time.
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In most situations, kg will be set equal to unity (see Exercise 1.4). This means that
the same units must be used for temperature and energy and that heat capacities and
entropies are dimensionless. That should cause no problem. Consider it a reminder
that units must be right before plugging numbers into any computer.

The distribution of excitation energies, ¢, in the system with level density p(¢)
can be written in terms of the temperature as

P(T, &)  p(e)e ke (1.46)

This is the Boltzmann distribution, and the exponential is the Boltzmann factor.

As a check of the definition of temperature, it should reproduce one of the num-
bered laws in thermodynamics (the zeroth, if you’re counting), viz. that two systems
in equilibrium with a third will also be in equilibrium with each other. We will short-
cut that proof and just show that that two systems brought in contact will equilibrate
to the same temperature. This can be done easily and we can in fact also understand
the origin of this empirical rule. Consider two heat baths with level densities p; and
02 in thermal contact. The partitioning of energy in equilibrium will be determined
by the product p;(E;)p2(E — E;). Finding the maximum of this distribution gives
the equation

dIn(p(E1)) n dIn(p2(E — Ey)) _ dIn(pi(E1))  dIn(px(E — Ey))

=0,
dE; dE, dE, dE
(1.47)
or
_ 1 (1.48)
T, ‘

which is the required relation, easily derived.

The concepts of temperature and heat bath were derived here for a collection of
harmonic oscillators. One may be worried that the discreteness of the energy transfer
from the heat bath to the smaller system makes the temperature definition less than
universal. It is possible to let the quantum energy decrease to a sufficiently small
value, at least for some degrees of freedom. This is not an imaginary procedure.
Solids described by the Debye model of vibrations have arbitrarily small frequencies
in the limit of infinite system size. But any sufficiently large system can be used,
at least as long as the level density does not have a local maximum as a function
of energy. In practice any system large enough will have an infinitely small level
spacing and the level density can be considered a continuous function.

What all this shows is that one can derive the Boltzmann factor simply from
counting states, since this is what the level density does. One often sees the statement
that thermodynamics is a balance between energy, i.e. the Boltzmann factor, and
entropy which is effectively the logarithm of the level density, or the number of
available states. As you have just seen, this view is a little superficial. Both of these
competing factors have their origin in level densities; the entropy from that of the
system itself and the Boltzmann factor from the level density of the heat bath.
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Fig. 1.4 The energy distribution for a single harmonic oscillator in thermal contact with a heat
bath of f harmonic oscillators of the same frequency, calculated with (1.39). The total energy per
total number of degrees of freedom is taken constant, E/(f + 1) = 5 hv. The distributions are cal-
culated as P(g) o (5(f + 1) + f/2 — &)/ ~!. Something resembling a Boltzmann factor is already
beginning to appear for f = 2. For f = 10 oscillators the curve already bears a strong resemblance
to the Boltzmann factor (f = 00), and for f = 50 the curves are almost indistinguishable

The way we have derived the Boltzmann factor also explains the paradox of
the equal a priori probabilities. The appearance of the Boltzmann factor seems to
contradict the assumption that all states are occupied with equal probability. This
is surprising since the canonical distribution was derived using this assumption.
The inconsistency is only apparent. The explanation is that the Boltzmann factor
determines the population of the states in the small system alone, and does not
include the heat bath. If one considers the system composed of both the small system
and the heat bath, the assumption of equal a priori probabilities still holds.

Figure 1.4 shows how the Boltzmann factor appears when the small system is a
single h.o. and the size of the heat bath increases from one h.o. (which is a very small
heat bath, indeed) to an infinite number of harmonic oscillators, all with identical
level spacings.

1.6 The Canonical Ensemble

After this review of the microcanonical ensemble which included the definition of
temperature, we can proceed to define the canonical partition function. It is defined
as the sum of states, weighted with the Boltzmann factor:

Z.(N,V,T) = Ze—/’Ef (canonical), (1.49)

1

where i runs over all distinct quantum states and 8 = !/k;7. We will often leave out
the subscript and arguments that give the type of partition function if these are clear
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from the context. The canonical partition function is the normalization constant of
the probability density in (1.46);

pe)e /BT pe)e /T

P(T,¢e) = =
( ) fooop(g)efg/kBng Z.

(1.50)

In terms of quantum states, the state i is populated with a probability P; which is
proportional to the Boltzmann factor exp(—E; / kg T') for that state:
efﬂEi

P(T) = Z

(1.51)

The sum over all states can be written in a form which may seem formalistic but
which will shortly turn out to be useful:

Z = / [Z S(E — E,~):| dE. (1.52)

The integrand ), §(E — E;) is a sum of § functions and converts the sum over states
into an integral over energy. The integrand is nothing but the level density;

ZS(E—Ei) = p(E). (1.53)
We can then write the canonical partition function as
Z.(N,V,T) = /p(E)e*ﬂEdE = / Zme(N, V, E)e PEdE (1.54)

The rewrite of the discrete sum in (1.49) into the continuous integral in (1.54) is
valid irrespective of the energy spacing between the quantum states summed over.
If the spacing is sufficiently small, the level density is for all purposes a continuous
function and the integral in (1.54) should cause no conceptual problem. If the levels
have an average spacing which is comparable to or larger than some fraction of the
temperature, the level density needs to be described in terms of a discrete spectrum,
i.e. a sum of § functions. In both cases, however, one can use the integral in (1.54).

In mathematical terms (1.54) is the Laplace transform of the level density. The
Laplace transform can be inverted, and if you know the partition function for every
temperature, you therefore also know the level density. This will be used with an
approximate inverse Laplace transform in Chap.4.

There is an important energy functional associated with the canonical partition
function, called Helmholtz’ free energy, F'. It is defined as
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ZC = Ze_ﬂE[ = e_ﬂF, (155)

Among other things, F is the normalization of the quantum level population proba-
bilities:
P =e PED, (1.56)

From the definition of F and the partition function as a sum of Boltzmann factors,
the word ‘energy’ in the name ‘free energy’ seems reasonable: It is an energy which
is a function of a certain sum over the energies of all the states of the system. Solving

(1.55) for F gives:
F=-Tlh (Z e—f‘Ef> . (1.57)

We can understand the role of the summation in more detail if we express it in terms
of a characteristic energy of the system. There is only one quantity that qualifies as a
characteristic energy, viz. the mean excitation energy, E, at the specified temperature,

and we can write _
e PF = Ze’ﬂE’ = ge PE. (1.58)
i

The quantity g is introduced to make the last equality in (1.58) correct. It is the
effective number of the thermally populated states that contribute to the sum in the
partition function. This number can be understood as the number of states of the
system up to an energy which is on the order of E. The (temperature dependent)
number g looks similar to the exponential of the entropy, by Boltzmann’s relation
between the entropy S and the number of states W

S = kg In(W) (1.59)

This is exactly what it is. We can see this explicitly by calculating the entropy of the
canonical ensemble with Gibbs’ entropy formula:

—BE; —BE;
_Zez ln<eZ ) (1.60)

e PE
=) 5 (BEi +In(2))

,BE,-e_ﬂEi e PE
:Zi: ~ +Z,-: ~ In(2).

S=-Y Pin(P)

The first term is the thermal excitation energy divided by the temperature, SE, and
the last term sums up to give In(Z). Hence we have
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S=BE+In(Z)=BE—-BF = F=E—TS. (1.61)

In other words: _
Z, = e PEeS, (1.62)

The value of F depends on the choice of the zero of energy. If the energy of the
ground state is set to zero, the free energy is always negative for finite temperature
because the partition function is never less than unity. Because F = E — T'S < 0,
the entropy term is always numerically greater than the thermal excitation energy,

TS > E. (1.63)

This is consistent with the macroscopic definition of entropy

T dE
S = — (1.64)
0

which is easy to see when it is rewritten as

T T T _
TS 2/ —dE > / dE = E. (1.65)
o T’ 0

By the same kind of argument it is possible to show that the free energy varies either
quadratically or with a higher power of T for low temperatures (see Exercise 1.10).

In usual terrestrial environments, one does not work in a zero pressure environ-
ment, or at least did not when the foundation of thermodynamics was laid down, and
this motivated the definition of a variation of Helmholtz free energy, viz. Gibbs free

energy;
G=F+PV, (1.66)

where P is the ambient pressure and V the volume of the system. In parallel, one
defines the enthalpy, H, as the energy modified by the pressure-volume term;

H=E+PV. (1.67)

The difference between results calculated for F and G get their largest contribution
from the degrees of freedom associated with the translational motion, and the highest
relative difference is seen for a monoatomic gasses. The average internal energy per
atom of such a gas is 37/2, and the enthalpy is 57 /2. Disregarding translational
motion, however, the difference between enthalpy and energy is usually negligible.
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1.7 Mean Values in the Canonical Ensemble

As an example of how to apply the Boltzmann distribution we will calculate an
expression for the mean energy, E

% Jo Ep(E)e E/TdE
T p(E)eE/TAE

(1.68)

It is easy to verify that this is equal to

o _Ld Ehatyp) L4, __d
E= </0 o(E)e dE>_ Zdﬂz_ dlBln(Z) (1.69)

The heat capacity can also be calculated in terms of properties of the distribution.
We will show most steps here for a full illustration of this type of calculations:

_dE _ ,dE 1dz\  ,(1dZ (1dz)\?
== = (z) = (zd—ﬂz‘<m)) o
= p? (E /oo E’p(E)e PEAE —Ez> — B2E2-E).
0

Easy to do and we also learn that heat capacities are fluctuations in energy.
Partition functions are effectively summarizing a lot of information about an
equilibrium system, but they cannot tell you everything there is to know about it.
Quantities beyond energy, entropy and such quantities derived from partition func-
tions by elementary operations may need to be found by calculations of other sums.
For the calculation of such sums, one uses the probability distribution in the form of
a sum over the quantum states of the system. In principle this proceeds by writing
down the value of the observable, call it A, for every state of the system, A;. Then
this is summed over all states with the probability that the system is in the particular
state, not unlike the way one calculates expectation values in quantum mechanics;

1
- §ZAie’ﬁE". (1.71)

An example of the questions one can answer with such a calculation is ‘What is the
probability that at least half the degrees of freedom are in their quantum mechanical
ground state?’” Then A; is 1 if the state i fulfills the criterion and zero otherwise.
Calculations of this type can be performed with an operator known as the density
operator. From quantum mechanics we know that all information of a system is
contained in its wave function, so if we can write thermal expectation values in terms
of wave functions, or more generally in terms of quantum states, we have solved the



24 1 Introduction

problem of characterizing a state in as much detail as possible. This is accomplished
with the quantum mechanical expectation values of the operator, summed over every
energy eigenstate;

1 o
— : \a—BEi
A= E E (i|Ali)e s (1.72)

i
where A is the operator of the observable A and the brackets indicate the quantum

mechanical expectation value of the operator in state i. If we introduce the density
operator p (not to be confused with the level density), defined as

o= Ze—f‘Ef|i><i|, (1.73)

we can write the partition function as

Z= Z<j|p|j> = Tr(p) = ZefﬁEu (1.74)
J J

where Tr is the trace operation which consists of summing the diagonal elements.
The thermal average of the expectation values of the operator A can be expressed
with p as

1 A N
A=—Ti(Ap) = > GilAplj) (1.75)

which is (1.72). The choice of orthonormal quantum states, (i|j) = &; j, was used in
the construction of the density operator.

1.8 The Grand Canonical Ensemble

The grand canonical partition function is the sum over canonical partition functions
with all possible particle numbers, with the weight of each term in the sum determined
by a quantity known as the chemical potential:

o0
Zoe(u,V,T) = Z Z.(N, V, T)eP*N  (grand canonical). (1.76)
N=0
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N denotes the number of replicas of the particles/atoms/molecules present in the
system and not the size of the particle. For some systems these two are identical, for
example if N is the number of electrons in a Fermi gas. In another situation they are
different, as when N is the number of dimers, X,, of atom X in a gas.

In (1.76) the chemical potential determines the average particle number, N. Both
the microcanonical and the canonical ensembles have fixed particle numbers by
definition, whereas the grand canonical ensemble has a fixed chemical potential.
Consequently its conjugate variable, the particle number, is not rigorously conserved.
One calculates the mean particle number in the ensemble as

1 o]

— B]

N = NZ.efrN = Ta— In(Zy). (1.77)
P .

=0

Zye &

Just like temperature is not a property of a (finite) isolated system, but of a heat bath
connected to it, so is the chemical potential not a property of the system but of a
sufficiently large reservoir of particles (and energy) that can be exchanged with our
system. Loosely speaking, the chemical potential is the price one pays to extract a
particle from the reservoir into the system. This is analogous to the role of temperature
in the canonical ensemble, in which the temperature is the price for the energy transfer
from the heat bath to the system. A more negative chemical potential of the reservoir
means that a particle will need to be lifted higher to insert it into the system. This
will be reflected in a more rapid decrease with N of the exponential factor in (1.76)
and consequently a smaller average N.

We can find 1 in terms of canonical quantities by considering the value of N for
which the sum in (1.76) has an extremum and the second derivative is negative. The
value of the second derivative gives the fluctuation of the particle number. The N for
which the summand in (1.77) attains its maximum value will be a good approximation
to the mean of N if the third and higher derivatives give small contributions over
the range of N-values determined by this width of the N-distribution. Under these
conditions the mean is determined implicitly as the maximum of the summand of
(1.77) or, equivalently, as the maximum of the logarithm of the summand:

0

—In(Z,) =0. 1.78
Pu+ 54 In(Ze) (1.78)
With the definition of the free energy of the canonical partition function, this translates

into F
=" (1.79)

oN
where Fy is the free energy of the canonical partition function.

As an example we calculate the chemical potential of a large number of non-
interacting, identical and therefore indistinguishable particles. An approximate real-
ization of this situation is a gas of identical molecules (the approximation refers to
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the non-interacting aspect). If the canonical partition function for a single particle is
denoted by z, the total canonical partition function for N of these systems is

ZN

Z.(N) = Tk (1.80)
The power N reflects that each of the particles in the gas contributes the factor z
to the total partition function. The factorial denominator is the consequence of the
indistinguishability of the particles. The consequences of this indistinguishability
will be discussed in more detail in Chap. 2. Evaluating (1.79) with a finite difference
instead of a derivative,

dlnZ.(N)

oV ~ In(Z.(N)) —In(Z.(N — 1)), (1.81)

one gets a chemical potential of
uw=—T1In(z/N). (1.82)

As a check that this defines the maximum of the particle number distribution, we
calculate the second logarithmic derivative of the partition function and confirm that
it is negative; ,

¥hzw) 1 (1.83)

N2 N

Hence the sum in (1.76) has a maximum for the value of N given by (1.82). The free
energy, on the other hand, has a positive curvature as a function of N, indicating that
the free energy is at a minimum. This is a general result; free energies are minimized
in equilibrium. The chemical potential is a property of the particle reservoir and the
value of the chemical potential calculated in (1.82) is therefore the value this reservoir
must have to ensure chemical equilibrium between the system and the reservoir with
N particles in the system on average. Conversely, if N does not match the number
corresponding to the chemical potential of the reservoir, particles will flow between
the two.

The indeterminate particle number can be a serious disadvantage for the use of
the grand canonical ensemble in the description of the thermal properties of small
particles if the properties of these depend critically on the number of constituents.
Addition of one atom to a 10 atom cluster, for example, will often change the structure
and energy of the particle significantly. For this reason the grand canonical ensemble
should be used with care when the interest centers on size specific features. On the
other hand, a fluctuating particle number may represent the physical situation, for
example in cases where chemical reactions take place and there is a reservoir of
atoms or molecules which can accept or donate these. In these cases the use of the
grand canonical ensemble is warranted.
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If you believe that the definitions of the partition functions are meaningful, you
can begin to understand Schrodinger’s remark quoted in the introduction. The simple
microcanonical partition function is the mother of the canonical partition function,
the grandmother of the grand canonical partition function and is, as you can see from
the definition in (1.19), simply a number of states.

Exercises

1.1 Show that the variance of a quantity and of its fluctuating part is identical when
averaging over time, i.e. that (A%) — (A)% = ((§A)?).

1.2 The diffusion equation reads

DV?ec = —, (1.84)

at

where D is the so-called diffusion constant and V is the Laplace operator,

92 92 92
Vie — 4+ — 4+ —. 1.85
dx2 + dy? + 072 (1.85)

The diffusion constant has dimension length squared divided by time, which already
tells you that diffusing particles move a typical length /D¢ during time 7. Solve
the equation with all particles initially at the origin. Hint: Make the Ansatz that the
solution is of the form

c o t%e vl (1.86)

with r2 = x> 4+ y2 + 22

1.3 Consider a particle of mass equal to that of the electron moving in a linear box
of length 1 nm. Use (1.20) to find the level density as a function of energy.

1.4 When we set Boltzmann’s constant equal to one, the temperature is measured
in the same units as the energy. Why can we do that? Show that a unit Boltzmann’s
constant makes heat capacities dimensionless. A frequently used energy unit is the
electronvolt which has the numerical value 0.1602 aJ = 1.602 - 10~'? J. What is the
conversion from eV to K (how many kelvin is one electronvolt)? Answer the same
question for cm ™! and kJ/mol. The energy unit wavenumber is defined as the energy
of a photon with wavelength 1cm. It is often used in spectroscopy. The kJ/mol is
standard in chemical thermodynamics.

1.5 What is the unit of entropy?

1.6 Calculate the temperature for the f = oo case in Fig. 1.4.
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1.7 Calculate the mean and width of the energy distribution of one h.o. in contact with
another system composed of two h.o., of 10 h.o. and of infinitely many h.o, i.e. the
mean and width of the curves shown in Fig. 1.4, but for an arbitrary energy. Assume
all frequencies are identical, keep the energy per degree of freedom independent of
size and use the discrete level density.

1.8 In the early days of hadron physics when people started discovering all sorts
of strange and supposedly elementary particles related to neutrons and protons, it
was noted by Hagedorn that the number of particles increases exponentially with the
mass of the particle, roughly as exp(mc?/200 MeV). This led him to postulate that
there would be an absolute highest temperature. Why would he say that and what is
the value of this Hagedorn temperature in kelvin?

1.9 What is the second and fourth moment of a Gaussian distribution with variance

o2 and mean zero, L
G=e /%, (1.87)

Some relevant integrals are found in Appendix C.
Use these results to calculate the fourth moment of a Gaussian with variance o2 and
first moment x.

1.10 In this exercise you will show that the free energy of a large canonical system
decreases quadratically or with a higher power of T at low T'. To do so, assume that
the thermal excitation energy of the system can be written as a Taylor series in the
temperature. This assumption requires that the system is large, or more precisely that
the temperature is on the order of or larger than the lowest excitation energy.

Set the zero order term in the expansion to zero. This just defines the zero of
energy. Use the macroscopic definition of the entropy to show that the first order
term is also zero, i.e. that the zero temperature heat capacity is zero.

Conclude that the entropy at 7 = 0 is zero and further that the free energy varies
quadratically or with a higher power of temperature for low temperatures. Use the
definition of the free energy and the properties of the partition function to verify that
the variation is indeed a decrease and not an increase.

Finally, show that the condition of a large system is necessary by attempting an
expansion of the free energy of a system with a finite gap between the ground state
and the first excited state, i.e. with the spectrum 0, E;, E,, .. ..

1.11 If the Hamiltonian of a system separates into two parts where each coordinate
appears in only one of them,

H = H, + H,, (1.88)
the energies will also be a sum

E(1,2) = E| + E,. (1.89)

Show that for a canonical ensemble, the partition function of this type of Hamilton
function is the product of the two partition functions calculated separately,
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Zi2=7Z\Z,. (1.90)

The combined level density of two sets of degrees of freedom is the convolution of
the two level densities. A convolution of f and g is defined as the integral

/ fx)g(y — x)dx. (1.91)

You have therefore shown that the level density, i.e. a microcanonical partition func-
tion, for such a system is a convolution and that it gives rise to a canonical partition
function which is a product.

1.12 Given the Maxwell-Boltzmann distribution for the momentum of an ideal gas
in three dimensions, ,
f(p)ydp = cp?e PP />dp, (1.92)

where p = /p? + p? + p2, find the mean value, (E}), and variance oy of the kinetic

energy of a single atom. Then use the relations for the average, ( E ;), and variance,
¢ 10r- Of the sum of kinetic energies for N atoms with the same mass

Mz

(Ek.ot) (1.93)

N
O or Z (1.94)

to find the exact values of the relative standard deviation of the kinetic energy as a
function of the number of particles in the gas.

1.13 What is the probability that a (quantum mechanical) canonical system is in its
ground state, expressed in terms of Z.?

1.14 Consider a system that has a value of —T In(z./N) that s less than the chemical
potential of a reservoir to which it is connected. Do particles flow into or out of the
system?

1.15 What is the chemical potential of photons?



Chapter 2 ®)
The Relation Between Classical Guca i
and Quantum Statistics

The definition of thermal average values in the canonical ensemble as a sum over
all states with a Boltzmann factor as the weight, given in (1.71), is rigorous. It is
also useful insofar as the levels and their degeneracies can be calculated quantum
mechanically. This is possible for a number of Hamiltonians but certainly not for all
interesting ones. A classical treatment provides an alternative. A classical description
of a system requires that quantum numbers are large compared to unity and is useful
because one does not need to know the quantum spectrum of the system to apply it. It
is therefore desirable to know precisely how classical and quantal statistical methods
are related.

There are two approaches to explain the classical-quantum statistics connection.
One can either start from the truth as we have learned it at school, that the statistics
of applied quantum mechanics is fundamental and derive classical statistics in the
limit of large quantum numbers; the ‘bottom-up’ approach. Alternatively one can
use an approach closer to the historical development; start with classical dynamics
and postulate certain rules which will turn out to give the right result; the ‘top-down’
approach. We will do both. One advantage of the ‘bottom-up’ approach is that it
provide some training in the ensembles that were introduced in Chap. 1. The main
but not exclusive virtue of the ‘top-down’ approach is conceptual; you will be wiser
after having understood the procedure.

An essential step toward application of the classical equations of motion and
determining the range of validity of the results, is to establish the rule which relates
the classical and the quantum mechanical counting of states. We also need to consider
the special quantum mechanical effects of the indistinguishability of particles. We
will start with the latter.

Quantum statistical mechanics is influenced in an essential manner by the sym-
metry of the wave function upon exchange of identical particles. It is well known
from quantum mechanics that fermions of the same type (half-integer spin particles,
electrons being the prime example), are described by a wave function that must be
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antisymmetric on exchange of any two of the fermions. This has the consequence
that two identical fermions cannot be in the same single particle quantum state. This
rule is absolutely essential for the description of the types of matter where bound
state electrons are involved, be it in atoms, molecules and solids, and irrespective of
whether these solids are metals or insulators. Basically the Pauli exclusion principle,
as the rule is called, prohibits most of the states one would otherwise include in a
counting of states. For identical bosons (integer spin particles) an analogous rule
applies, except that the wave function must be symmetric. This means that bosons
are social particles and will tend to cluster together. The consequences of this is
probably best known for the Bose-Einstein condensates which you can read about
in press releases from the Nobel committee. But even everyday objects like lasers(!)
work precisely because of this social tendency because photons are bosons.

Quantum mechanically, identical particles are indistinguishable. Even in the clas-
sical limit, the partition functions therefore need to be divided by the number of
possible permutations of the number of particles in the system. For N identical parti-
cles this number is N! Hence the canonical partition function of N indistinguishable
particles with the single particle partition function z is

ZN

Zsz»

(2.1)
which we have already used in the Introduction. The factor of N! appears only if the
particles really are indistinguishable, which means that it will be applicable for a gas
but not for atoms in a solid, where the atoms can be identified by their position in the
lattice. Molecules in a gas will move around freely apart from infrequent collisions
with other molecules and possibly the walls of a container, and after some time it
becomes impossible to determine the position of a specific molecule, even classically.

As indicated, indistinguishability may be a time dependent question. We can
speculate on the time scales. If we perform a Gedanken experiment where we measure
the positions of gas molecules at some specific time such that we can tell them apart
at the time of measurement, even if they are otherwise indistinguishable, the entropy
will be less than before the measurement. The entropy of the measurement device
increases during this process, so no violation of the rule that the total entropy of a
closed system cannot decrease occurs. For the sake of argument, we assume that the
measurement is done such that the wave functions of individual molecules collapse
to Gaussian wave packets, and for simplicity consider the subsequent development
as a one-dimensional problem. The wave packets spread out as

2
(Ax)? = (Ax(0))* + (%t) ) (2.2)

For a Gaussian wave packet, Ap = hAx(0)/2 and we can therefore express Ax in
terms of Ax(0) and time as



2 The Relation Between Classical and Quantum Statistics 33

(Ax)? = (Ax(0))* + (LOZ (2.3)
2mAx(©0) ) '

We can find the time it takes for two identical molecules to have a quantum mechanical
overlap and become indistinguishable. This time depends on Ax(0). The longest
value of this time for two particles a distance d apart corresponds to Ax(0) = d/2+/2
and is equal to r = md?/8h ~ m/hp*/?, where m is the mass of the particle and p the
gas density. For an ideal gas at Standard Pressure and Temperature of P = 1 bar =
1.013 x 10° N/rnz, T =293 K, the time ist ~ (m/1u) x 2 - 10719 5. This time is
short but not zero.

The example is a little artificial because the width of the wave packet corresponds
to a very low kinetic energy. A more realistic estimate is obtained by using the average
root-mean-square thermal speed (p?)'/?/m = /2T /m. Under the same conditions
as before, this gives t ~ d/m/T = /m/Tp~ "3 =2.107'2 sfora 1 u particle (the
initial width of the wave packet can be ignored in this calculation).

In practise this time dependence causes few problems for gases. For liquids the
situation may be different because the motion of atoms is constrained, but not com-
pletely hindered as it is in a solid at low temperature. The calculation of the thermal
properties including the proper distinguishability factor may then be non-trivial and
depends on the specific molecular properties of the liquid state. We will leave this
subject for future studies.

A consequence of quantum statistics is that the counting of states is often much
more complicated for a system with a fixed number of particles than for a sys-
tem with a fixed chemical potential. In a grand canonical ensemble, with its fixed
chemical potential and fluctuating particle number, the partition function is calcu-
lated with a summation over all particle numbers, with the chemical potential as
the constant price you pay for the addition of a single particle. In the canonical and
microcanonical ensembles you need to restrict the summation over states to those
that have precisely the right number of particles. Implementation of this restriction is
in general a non-trivial task, and the description of fermionic and bosonic systems is
usually very cumbersome in the canonical ensemble and is best done with the grand
canonical ensemble. There are exceptions. Bosons such as photons and phonons are
cases for which the canonical partition functions can often be calculated analytically.
Disregarding those, the feasibility of summing over states with the correct quantum
statistics is the single important property that makes the grand canonical ensemble
useful and in practice the ensemble of choice, even in cases where particle numbers
are conserved. The practical, computational advantages of the ensemble can simply
outweigh this inconsistency.

The cases where the grand canonical ensemble is particularly useful are those
where the system can be described in the independent particle approximation, i.e.
where the energies of the system can be written as sums of single particle state
energies, and when at the same time the system is a strongly degenerate fermionic
or bosonic system. Strongly degenerate means for fermions that the lowest energy
single particle states are occupied with a probability which is close to unity, and
for bosons that a significant fraction of the particles are in the lowest energy state.
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For fermions, the energy of the highest occupied level at zero temperature is called
the Fermi energy and is on the order of usual molecular electronic energies, i.e.
several eV. For bosons, the highest occupied level at zero temperature is simply the
single particle ground state, which we can assign zero energy. For sufficiently low
temperatures we therefore have

u~ E; (fermions, low temperature) 2.4)
pu=~0 (bosons, low temperature). (2.5)

2.1 Fermi and Bose Statistics of Independent Particles

Fermionic and bosonic systems of independent particle states are prototype ‘bottom-
up’ situations and are the natural choices to illustrate a concrete application of the
grand canonical ensemble and the transition from quantum to classical statistics.

Irrespective of whether a system is strongly degenerate or not, i.e. whether or
not the occupation number is small compared to unity or not, the total energy for a
specific many-particle state is given in the single particle picture by

E =Zn,sj, (2.6)
J

and the number of particles by

N=>Y nj (2.7)
J

where n; is the occupation number of state j, i.e. the (integer) number of particles
in that single particle state. The canonical partition function is therefore

Ze(NV. Ty = ) O, o720, 2.8)

(ny1,n2,...)

where the sum runs over all combinations of the n;’s consistent with the permutation
symmetry of the particles. The permutation symmetry requires that

n; =0,1 (fermions) (2.9)
nj=0,1,...N —1, N (bosons) (2.10)

The Kronecker delta 4, ,,, which is one if n = m and zero otherwise, picks out the
configurations with the right total number of particles in (2.8).

The grand canonical partition function given in (1.76) can, with (2.8), be
written as
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00
ch. = Z Z 6sz’1j e7@32/"f5.f eﬁ/l/N. 2.11)

N=0 (ny,ns,...)

The limit Note that the N in (2.10) is replaced by co. Summation over all values of
N cancels the Kronecker delta because

D bum =1, (2.12)

for any value of n. We can then sum unrestricted over all sets of occupation numbers,
apart from the permutational symmetry constraint in (2.9, 2.10). We have:

Zi= Y e ITmeE 2.13)

(ny,n2,...)

The exponential can be factorized into contributions from each level, and one ends
with a product of grand canonical partition functions for individual levels:

Zye = ]_[ Z e et | (2.14)
i\

This expression is valid for both fermions and bosons. The difference between the
two shows up when one calculates the sums, taking the permitted particle numbers
into account,

Zye = l_[ (1 + e’ﬂ(fff“)) (fermions, independent particles), (2.15)
J

and

Zye = 1_[ (1—e _“’))_l (bosons, independent particles). (2.16)
Jj

From the partition functions one finds the populations of the individual quantum
states to be
e 0Ej—m

- = (2.17)

Dj

(+ for fermions, — for bosons). These populations are illustrated in Fig. 2.1 for both
types of systems, both with N = 100 particles and with single particle states that are
equidistant in energy, €; = jA, where j is a non-negative integer. Also shown are
the chemical potentials for temperatures from 7 = 5A to 50A.

The similarity between the bosonic and fermionic chemical potentials shown
in Fig.2.1 is in fact an identity, as will be shown in Chap. 10. Note the very high
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Fig. 2.1 The population in
single particle states for

N = 100 bosons (top frame)
and fermions (bottom frame)
in the grand canonical
ensemble for equidistant
single particle spectra at
temperatures 5-50. All
energies and temperatures
are in units of the spacing in
the single particle spectrum,
A. The chemical potentials
vs. temperature are shown in
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temperature needed to cause any change in the chemical potential away from its zero
temperature value. This is caused by the large number of particles in the system in
combination with the equidistant level spacing. A higher electron number will extend
the flat piece even more. See Chap. 10 for details.

The stage is now set to find the classical limit of the thermal properties of the
quantum gases. This limit is defined as the situation where the occupation number
of each state is much less than unity; p; < 1. We can ignore the exponential in the
denominator in (2.17) and get

N = Z e Pi—m — efu Z e, (2.18)
J J

The sum is nothing but the canonical partition function for a single particle (iden-
tical expressions for a fermion and a boson), z. |, and we find that the chemical
potential is

p=—T1In(z.1/N). (2.19)

This chemical potential should be compared with the one calculated for a classical
gas of indistinguishable molecules, (1.82), in Chap. 1. Apart from the replacement
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of a fixed number N of atoms with an average number, N, the two expressions are
identical. Because the chemical potential is the derivative of the canonical partition
function, this also mean that the classical limit of the (canonical) partition functions
for non-interacting bosons and fermions have the same form as the classical limit
written down in Chap. 1, (1.80). It is noteworthy that the indistinguishability factor
N! appeared automatically here, without any need to introduce it by hand.'

2.2 Classical Phase Space

Solet’s turn to the second point of this chapter, the ‘top-down’ approach. In a quantum
description of matter you have well-defined energy levels which can be numbered and
counted. In classical mechanics this is not the case. An instructive example is (again)
the harmonic oscillator. Quantum mechanically it has one more state each time the
energy is increased by Aw. Suppose you had not solved the quantum mechanical
problem and still had to decide the number of states of the system at a certain energy.
What would you do?

The solution is found when we take a closer look at the classical counterpart of
the Hilbert space used in quantum mechanics. It is called phase space and is, like the
Hilbert space, a multi-dimensional space. Unlike Hilbert space it is not spanned by
square integrable functions, but the coordinates and momenta of all the particles in
the system. These coordinates and momenta need not be the usual linear quantities
you learn about in the first course on mechanics, but can be generalized coordinates
and their conjugate momenta, an angle and its associated angular momentum, for
example.

A system of N particles will span a 6N dimensional space, or more generally
2d N dimensions if for some reason the physical space is d dimensional. A state of
the system is defined as the point in this 6N dimensional space that specifies all the
momenta and coordinates. The classical microcanonical partition function is the area
of the surface with the prescribed energy, embedded into this space. It does not sound
as if it is easy to calculate, and usually it isn’t. The canonical partition function is
often an easier target. It is calculated as the integral over the whole space with the
Boltzmann factor as the weight function:

Z x / e PEdx;dpidx,dps . .. dxsydpay, (2.20)

where the energy E is a function of all coordinates and momenta:

E = E(x1,X2,...,X3N, D1, D2+ - - -» P3N)- (2.21)

Historical remark: The factor was postulated by Gibbs before quantum mechanics was even an
idea, in order to get the correct additivity of the entropy of a classical gas.
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As an application of the classical distribution we will calculate a few results for
an ideal gas. In an ideal gas the molecules do not interact with each other or anything
else, and the Hamiltonian is therefore a sum of the kinetic energies of all molecules,
which for simplicity will be assumed to have the same mass m in this example:

»?
H= Z o (2.22)

The Boltzmann factor therefore factorizes, and for every molecule the momentum
distribution is

2
3 pE+r}+r?

P(px, py, pr)dpxdp,dp, xe™” 2 dp,dpydp,. (2.23)

The distribution is spherically symmetric in momentum space. With p* = p? + p} +
pz2 and integrating out the angular dependence, which just gives a multiplicative
constant of 47, we have

p*
P(p)dp « pre PEdp o vie P 2dy. (2.24)

This is the Maxwell-Boltzmann distribution of momenta or speeds of gas molecules
in an ideal gas in three dimensions.

The absence of intermolecular interactions is an unnecessary restriction. Any
realistic Hamiltonian will contain terms that represent the interaction of the gas
molecules with each other. It may even describe a condensed phase where interactions
are plentiful. As long as the interaction terms only depend on the positions and not
on the momenta/velocities of the molecules, the coordinates can be integrated out
independently of the momenta,” and consequently the velocity distribution is still
given by (2.24) for these situations.

The classical partition function in (2.20) still leaves out the value of the constant
of proportionality. A suggestion of what that constant can be is found in the dimen-
sions of Z. If we want to have any correspondence between the classical and the
quantum cases, we must at least demand that the dimensions of the two quantities
are identical. The quantum partition function is dimensionless, as it is a sum over
pure numbers. But the integral in Z in (2.20) has dimension of coordinate times
momentum, all to the power 3N. If you calculate the dimensions of the product of a
coordinate and its conjugate momentum, you get the dimension of Planck’s constant
(recall Heisenberg’s indeterminacy relations for position and momentum). This is no
accident. The normalization constant is 1/ 43V In other words: one state of a system
with 3N sets of conjugate coordinates and momenta has a volume of #*" in phase
space. We can define a semiclassical canonical partition function as

2In principle. In practice it is not that easy. This is another Gedanken calculation.
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1
Zsemiclass = ”TN ZL'lass . (225)

It should be clear that this prescription only works for systems that actually have
a classical description. This rules out the application of (2.25) to spins and similar
degrees of freedom.

For many purposes the multiplicative constant difference between the semiclas-
sical expression and the truly classical partition functions is no problem, because
any multiplicative constant drops out when calculating observables with logarithmic
derivatives or comparing volumes in phase space of similar dimensionality. For cal-
culations of entropies, it does count, however. But even for entropies, the accounting
will not be affected if one considers reaction where the d.o.f. is the same before and
after the reaction. Only if the net amount of d.o.f changes in the reaction will the
pre-integral factor matter. A change in the d.o.f. will occur when one or more exci-
tations is frozen out or thawed during the reaction, which happens by changing the
quantum energy of excitations from below to above the temperature or vice versa.

Equation (2.25) will be justified with the calculation of several examples at the
end of this chapter, combined with the hope that the perfect agreement with our
Ansatz will convince you that all other classically meaningful cases can be treated
this way. Before that, we will calculate some general results for the classical limit.

2.3 A Few Elementary and Useful Results from Classical
Statistical Mechanics

The classical partition function allows a simple estimate of the high energy/
temperature limit of the thermal properties of the systems for which the classical
limit exists. A coordinate g; may appear in quadratic form uncoupled from other
coordinates and momenta in the Hamiltonian, H:

H=oaq +H'( p), (2.26)

where p is the set of all momenta and ¢’ is the set of all coordinates except g;. The
contribution to the canonical partition function from ¢; can then be factored out:

1 - 1 —Blag?+H' :
Z= 5 |e T [dg;dp; = o | e Hea g, [ Tdg;dp; (2.27)
J j

J
1 —Bag? 1 —BH' :
Z/Ee e d%/We T Tdadp.
j

where the primed product of differentials is the one where dg; is left out. The last
integral is denoted Z’ and then
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/ 1 —Bag?
7 =17 E e i dq, (228)

If g; can take all values, the integration over ¢; can be expressed in closed form;

z-1 [T 2.29
_Zﬁ_a' (2.29)

It should be clear that this holds for all degrees of freedom that separate the same
way ¢; did, coordinates and momenta alike. Consequently, the contributions to the
partition function from all those degrees of freedom will be proportional to /1/3 =
VT, taken to a power which is this number of degrees of freedom. It is equally clear
that the factorization does not depend on whether or not the Hamiltonian is quadratic
in the degree of freedom or has some other functional form, although the value of
the specific integral will.
The average thermal energy of the system in the canonical ensemble is

@) _ Oln (E) Com@z) _ T

(E) = a9 a7 93 5+(E), (2.30)

with the above meaning of the primed quantity. Hence the contribution to the thermal
energy is 7 /2 from each degree of freedom that enters into the energy quadratically.
With this result, the canonical properties of the Maxwell-Boltzmann distribution can
practically be read off the Hamiltonian without any further work. The canonical
partition function for an ideal gas of N particles is

Z o N2 = N2, (2.31)
and the average kinetic energy is

dIn(z) 3N
55 = =T (2.32)

(E) =

The 3 appears because of the number of independent coordinates/momenta in space.
The heat capacity from these types of degrees of freedom is also easy to find. For
one d.o.f. it is simply C = !/2 (= kg/2), and it is additive, like the energy. Note that
the value of v does not appear in either of these quantities.

These rules, known as equipartition, can be very useful because they quickly give
values for the classical thermal energies and heat capacities. One use is to judge,
from experimental data, whether certain d.o.f.’s are classical or not. Historically,
equipartition was a problem for statistical mechanics because the heat capacity of
electrons in metals was observed not to obey this simple law. Not knowing the Pauli
principle, it was very difficult to explain their anomalously low heat capacity.
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Another simple observation can be very useful. If the level density can be written
as a power of the excitation energy, the partition function is easily calculated to be:

o0
7 x f ESle PEdE « 75 = T°. (2.33)
0

The converse also holds; a partition function of the latter form will only arise from
a power law level density, with the powers of the two related as s and s — 1.

2.4 Semiclassical Calculations of Spectra

In special cases it is possible to calculate the spectrum of a system without solving
the Schroédinger equation, and instead make use of the semiclassical spectrum. In this
section, you will learn (or relearn) about the method, which has the great advantage
that it is easily implementable. The downside is that it is not generally applicable. In
fact, we will restrict the treatment to one-dimensional potentials and non-degenerate
levels.

Semiclassical levels are determined as the energies of the classical orbits that
fulfil the condition that the action integral around a closed classical orbit is an integer
multiple of Planck’s constant /4, i.e.

%pdx = nh. (2.34)

As an aside we recall that de Broglie’s relation between momentum and wavelength
gives the identical and well known criterion that the classical trajectory should have
a length corresponding to an integer number of wavelengths, A;

n= yg %dx = f A~ dx. (2.35)

The momentum p is a function of the coordinate x, given by the potential and the

total energy, E;
P =+ 2u(E = V(x)), (2.36)

and the task is then to evaluate the action integral in (2.34) with this momentum.

To illustrate the idea, consider the particle in a box. The potential is constant and
set to zero between 0 and L, and to infinity outside of this region. The quantum
number of the state with energy E is

2 [k JVSUEL
n=> / QuE)2dx = + (2.37)
0
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which gives the energy
h2
E=——n? (2.38)
8uL?
in complete agreement with an exact and fully quantum mechanical solution. Problem
2.3 asks you to solve similar problems for a couple of other potentials.

2.5 Quantum Corrections to Interatomic Potentials

Above we discussed how to convert the classical canonical partition function to the
semiclassical by division with a factor 27/ to an appropriate power, and to account
for the indistinguishability with the factor 1/N! In this section we will go a step
closer to the quantum limit and calculate quantum corrections to the equations of
motion for particles interacting with a two-body potential.

The classical motion of a particle represents it as a point moving on a trajectory.
The correction we will calculate here amounts to treating it as a propagating wave
packet. The simplest of these are Gaussian. In X-space;

¢ ox e*TT0/2, (2.39)

The probability distribution |¢|? for this wave function in coordinate space has the

width |
(AT?) = —. (2.40)
2

For the momentum the width is equal to the thermal width:
(AP = (2mEy) = 3mT. (2.41)

This relation expresses that the particle is not in a pure momentum eigenstate, but
rather in a superposition of kinetic energy eigenstates with a width determined by the
temperature. Next we use the Heisenberg indeterminacy relations, better known under
the slightly more convenient names Heisenberg uncertainty relations, or uncertainty
principle, to relate the width of the wave packet to the temperature;

ApAx =12 h. (2.42)

(The equality holds for a Gaussian wave packet.) This gives the shape parameter, «,
of the wave packet in terms of the temperature:

_ 6mT
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Because we are dealing with two-body interatomic potentials, we can replace the
mass m with the reduced mass, ;& = (!/m + !/m)~!, in the following.

The next step is to place the wave packet on a potential energy surface, because this
is what we are interested in. This introduces other length scales in the problem that
may not be compatible with the one determined by T'. Specifically, if the temperature
is low, the wave packet in (2.39) will be very broad and reach into regions of very high
energy. When the presumed wave packet spreads into regions with potential energies
that are much higher than Ap? /2y, itis a sign that the Ansatz Gaussian wave function
is a poor description of the physical situation. For a quantitative calculation of where
this limitation sets in, we use the example of a one-dimensional harmonic oscillator.
We have the criterion:

ho\® _ Ap?
12 pw* Ax? = 12 pw? (—) < ly (2.44)
2Ap

This requirement means that the potential energy associated with the width of the
wave packet is less than the kinetic energy of the same. Using that the kinetic energy is
half the total energy for a harmonic oscillator, Ap?/2 = E /2, we get the condition
for using the Gaussian wave packet

E > 1hhw, (2.45)

which looks like a reasonable requirement. It tells us that we are dealing with a high
temperature approximation of the quantum contribution to the equations of motion.
The condition is illustrated in Fig.2.2.

After having established the limit of the approximation, we proceed with the
calculation of the average potential. It is the average over the wave packet:

Fig. 2.2 Two situations where the wave packet dynamics can (left) and cannot (right) be used,
according to the criterion in (2.44). The potentials are quadratic and the wave packets are Gaussian.
The energies calculated from the widths of the wave packets are given as dotted lines
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Vi = [ VA7 + RDIoF dF, (2.46)

where V is the classical potential, and 7 is the relative interatomic coordinates. The
integrand is a function of the distance between the two atoms and the integration is
over a three-dimensional space. We perform the integral with an expansion in these
coordinates to second order in the distance. First R is expressed in polar coordinates
with the z-axis along the line connecting the atoms,

R? R?
~r+ > + Rcos — — cos? 0,
r
(2.47)
where r =|r|, R =|R|, and terms to second order in R relative to the leading order
term have been retained. The expansion of the potential along the interatomic axis,
retaining terms to the same order, gives;

|7+ R| = (R2 sin? @ + (r + R cos 49)2)1/2

2 2

R R
V=V +VF (2_ + Rcos — — cos? 9) +12V"R*cos?§ + - - (2.48)
r r

This gives the effective (quadratic Feynman-Hibbs) potential

6 3/2 767HR2
Voru ()~ (Wﬁl;#) /e on? (2.49)

RZ R2 _
X |:V(r) + V() <2r + Rcosf — - cos? 9) +1/2V"R? cos? 9:| d¢do sinf R2dR.

The integrals are standard. We get

Voru(r) =V () + U V' 4+ 2V (2.50)
r)y=V(r — . .
ord 24uT r

This is the effective two-body potential in the high energy limit for the classical
potential V. Figure2.3 shows a calculation of the correction to the Lennard-Jones
potential at the temperature 14.4 K (= 6¢/50, using the well depth ¢ = 120 K of
argon). The quantum correction term increases when the temperature is lowered. At
the already fairly low temperature used in the calculation for the figure (see Problem
2.4), the main effect of the correction is found at small distances where it effectively
increases the hard sphere radius by a small amount and leaves the rest of the potential
unchanged.
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2.6 Classical Limits, Example 1: The Harmonic Oscillator

We will now give a few examples of the classical limit of thermal properties of
single particle systems with known or traceable quantum mechanical properties. First
the harmonic oscillator. The canonical partition function for a quantum harmonic
oscillator is one of the simplest to calculate. It is

O 1
qu = Ze—‘@nﬁw = m (251)
n=0

At high temperatures, T > hw, the average quantum number is large and one
approaches the classical limit:

1 1
T— (1= Bho+ P2 ) Bho(1 = B2 4.

T (), e T
N — — )= —+1A
hw 2T ) hw

The next-to-leading term of 1/2 is the same !/2 that appeared in the improved formula
for the level density, (1.30). This will be demonstrated explicitly in Chap.4.
Let’s now calculate the classical partition function. The energy is

qu =

(2.52)

2
|
E= f—m + 5mwzxz. (2.53)

Inserting this into (2.20) we have:

> * 2 1 2,2
Zelass = / dx / dp e Plmt!/me) (2.54)
—0o0 —00
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The exponential factorizes into two parts which depend on x and p alone. We there-
fore end up with two Gaussian integrals that can be done*

o 31 2.2 o g2°
Zclass = f g Pmex dX/ e "mdp (2.55)
—00 —00

[2 0 o f2m g e | 2nT
=|:ﬂ_m;‘/;ooe dx:||:7/;ooepdp:|—w.

If you compare this with the leading order in Z,,, from (2.52) you see that the missing
constant of proportionality is A:

1
qu = chlasw (256)

At least our rule in (2.25) holds for the harmonic oscillator.
We can use semiclassical quantization to understand the origin of this rule. Semi-
classically, the energy of a harmonic oscillator is quantized as
2

E = L +1/2 mw?x? = nhw, (2.57)
2m

where n is a non-negative integer. This equation defines a curve in phase space which
is an ellipse (or a circle, if you prefer, if you redefine the mass or time suitably) on
which the semiclassical harmonic oscillator moves. The length of the two axes are
determined by solving (2.57) with p = 0 and x = O for the biggest values of the
coordinate x and the momentum p with the result

2 h 1/2
Xo = <L> . po = Cumhw)\?. (2.58)
mw

We can find the volume in phase space, V,,, of the lowest n + 1 states that have the
quantum numbers from O to n, as the area of the ellipse:

V., = mxopo = m2nhw = nh. (2.59)

The volume in phase space of state n is then nh — (n — 1)h = h. It is illustrated in
Fig.2.4.

As the alert reader will have noticed, the ground state is not represented correctly
this way. This is a general problem, both with semiclassical quantization and with the

3If we are average physicists, that is. As Predrag Cvitanovic remarked, a Gaussian integral is the
only integral an average physicist can do (Classics Illustrated: Field Theory, NORDITA Lecture
notes, 1983).
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Fig. 2.4 The phase space of
a single harmonic oscillator. n=1
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classical partition function. At energies comparable to or below the lowest quantum
mechanical excitation this is an example of the dangers of using semiclassical results
for small quantum numbers.

2.7 Classical Limits, Example 2: A Free Particle

The free particle is particularly important because it is frequently encountered. There
are no discrete quantum numbers associated with the translational motion, and we
need a trick to calculate the level density (which for a single particle is also the
density of states). The trick is to regularize the calculation by using the particle-
in-a-box solutions for the energy eigenstates, and then let the size of the box go to
infinity.

The energy of a particle in a box is given by

R2m?
E =
2mL?

(n? + n% +n2), (2.60)

where L is the length of the box and (ny, ny, n;) is a set of positive integers. The
equation for the energy looks like the equation for a sphere in the three-dimensional
space spanned by n,, n, and n_, with radius

VEImL
= N () 2.61)
7

The radius and volume of the sphere are dimensionless. To count the number of
states with energy up to E, we should count the number of lattice points inside the
volume defined by this radius. This is difficult to do exactly and we will use the
volume instead, corresponding to a high energy approximation. The relative error
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of the result will approach zero when the energy goes to infinity. More correctly, we
will use the part of the volume where all coordinates are positive, because negative
quantum numbers do not give rise to new states. To avoid such double counting we
therefore need to divide the whole volume of the sphere by 23 = 8. Hence the total
number of states below E is

3
1 v E2mL 14r (~E2mL
N(E)= -V |r= Y200 _ J20 (V2202 (2.62)
8 b 83 hm
The level density for the physical volume of L is therefore
dN; (E) LY 1/2 3
pyn(E) = — = = sm*AxE V2L, (2.63)

Let’s now calculate the analogous level density according to the classical-to-
quantum recipe. The volume element in phase space is *

dv, = dxdp, (2.64)

and the total volume up to energy E is

_[pm<E 5 @mE)'? 5 .. (2m E)3?
Vi(E) = dx dp=L 4rp-dp = L4m ——.
v=L3 0

3
(2.65)
The density of classical phase space at energy E is then:
dVs(E
Petass (E) = % = L*42rm*?E'. (2.66)

We see that for a free particle the quantum mechanical translational level density is
the volume in phase space divided by A3

1
,qu (E) - ﬁpclam(E) (267)

Another way of stating this result is to write the density of translational states for a
free particle in three dimensions as

1

dn:h3

dxdp. (2.68)

4A quantity is a vector in this section, not an average.
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In this example we have calculated the level density and not the partition function.
This makes no difference for the conclusions about a multiplicative factor. A constant
multiplied on the level density will give the same constant multiplied on the partition
function, and vice versa.

2.8 Classical Limits, Example 3: A Particle in the Earth
Gravitational Field

The third example is the case of a particle in a constant gravitational field close to
earth, bouncing back when it hits the surface;

V(x) =mgx, x>0,

Vix) =00, x<0. (2.69)

The potential in the other two dimensions is constant, and since these solutions are
the well-known plane waves, we can ignore these and concentrate on the vertical
direction. The semiclassical partition function for this d.o.f. is

1 o0 e —ﬂ(ﬁ-&-mrx)
Z = n / dx / e T\ dp. (2.70)
0 —00

Both integrals in this expression can be done easily, and the result is

,_ L [mn 1 o)
~h\ B Bgm’ '

Z is proportional to a power of the temperature and we can therefore apply the results
from Sect.2.3 on the functional form of the level density. Explicitly, if we calculate
the partition function as

(o]

Z= / p(E)e PEdE, (2.72)
0
we can set p(E) = cE'/?, which gives us
o0 ) oo
Z=c / E'2e PEJE = 5732 / x'2e*dx. (2.73)
0 0
With the substitution u = x!/? one gets

o0
Z=cB?2 / ule du. (2.74)
0
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The integral can be done easily if we know one trick and how to do a Gaussian
integral.’ The trick will occasionally be useful so here it is:

o d [ d
/ 2edy = —— e " dx =——1) /z
0 da a=1 da «@

This gives
32T \/_

- ﬁ. (2.75)
a=1 4

Z=cB" (2.76)
We can now identify the two different expressions for Z in (2.71,2.76) and find
that they agree provided
23/2

= W (2.77)
By expressing the partition function in two equivalent ways, we have derived the
level density for a particle in a constant gravitational field, complete with numerical
constants.

Because the level density is the reciprocal of the average of the spacing between
two neighboring quantum mechanical levels (see (1.20)), the calculation therefore
allow us to draw conclusions about the quantum energies of the system. This may
seem a little surprising at first sight. It should not be, though, because that is what
we learn from Niels Bohr’s Correspondence Principle. For large quantum numbers
the quantum mechanical solution must have observables that approach those of the
analogous classical problem.

To show explicitly that this is indeed correct and that the introduction of 1/ /4 into
(2.70) is justified, we find the quantum eigenstates for the problem by solving the
Schrodinger equation. For the gravitational potential it reads

hz
— %v% + gmxyp = E, (2.78)

with ¢(x) = 0 for x < 0. Expressing the height in scaled dimensionless units as

o) 2 1/3
U= x ( ’i';g> , (2.79)
one gets the equation
d%p om (W2 N\

SPredrag Cvitanovic has remarked...
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We have used the same symbol for the wave function although it is a different function
of u than of x. The quantization is imposed by the boundary condition (0) = 0.
Note that the scaled energy is dimensionless like the scaled coordinate. If the zero
of the scaled coordinate u is shifted by €, v = u — ¢, the equation reads

— W =0, 2.81)

with the condition that ¢)(—¢) = 0. The differential equation is second order and
thus has two solutions. These are known as the Airy functions Ai and Bi. Only Ai
are relevant solutions here (decreasing for sufficiently large positive values of v).
The zeroes are given asymptotically by (37 (4n — 1)/8)%/3 ~ (37/2)*3n?/3, with
corrections on the order 1/n. The energies for large quantum numbers are then

2 2.\ 2/3 2/3 2 2\ 2/3
E =l (2N (3TN e i (2my (2.82)
T Toam 2 2 2m \ R?

The level density is

(E) : BE) (2.83)
PUE)=9E, = 20 :
4 ghm!/
i.e. identical to the above result.
Exercises
2.1 The translational partition function of an ideal gas atom is
s (2.84)
Ze,l = T 3" .
&5

Use this to calculate the chemical potential for a helium gas at the standard conditions,
i.e. for pressure equal to 1 bar and temperature 293 K. Repeat the calculation for the
same density but at 1000 K. Pay attention to the sign. Now dilute the helium a factor
three. What is the change in chemical potential?

2.2 Calculate and plot the thermal excitation energy of a quantum mechanical har-
monic oscillator. Perform a high temperature expansion to get the four highest powers
of T. Compare the precision of the expansion numerically to the exact solution as a
function of temperature.

2.3 Consider first the harmonic oscillator with a potential 1/2pw?x? with excitation
energy E. Use the simplified semiclassical procedure derived to show that this gives
the spectrum
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E = nhw, (2.85)

. o1
n
=—=—. 2.86
P=89E ™ hw (2-86)
Repeat the calculation for the gravitational potential and compare the result with the
previously derived level density.

2.4 In the calculation of the Feynman-Hibbs leading order correction to interatomic
potentials, the temperature of 14.4 K was used. Is this within the region of validity
of the calculation?

2.5 Calculate the Feynman-Hibbs correction for a harmonic oscillator potential.

2.6 Consider the phase space of an N atom particle of which all vibrational degrees
of freedom are so highly excited that they can be considered classical. An isolated
particle will not sample the whole phase space, because conservation laws restrict
the motion. What is the dimension of the subspace on which the particle moves when
all these conservation laws are taken into account?

2.7 Which way does the oscillator move in Fig.2.4.

2.8 Consider the analogue to Fig. 2.4 for a partly hindered rotor. They occur in nature
when a group of atoms is bound to the rest of a molecule by a single bond that can
be rotated. A typical example is the group CH3, which can rotate around the bond
connecting the carbon atom to wherever it is attached. Draw generic phase space
trajectories for this situation for energies above and below the energy needed to pass
a high potential energy point. To be specific, consider three identical barriers located
equidistantly in the angular coordinate.

2.9 Calculate the volume of phase space in units of 4 of a gold atom in a 1 cm?
container with kinetic energy between 0.1 and 1 eV.

2.10 Find the scaling that leads from (2.78) to (2.80). It is not enough to verify that
the solution give is correct.

2.11 Consider the level density of a particle in a spherical box. Use dimensional
arguments that the level density must have the form

E\ 1
p(E) = f (7) — (2.87)

mR? mR?

where m is the mass of the particle and R the radius. After this, repeat the determina-
tion of the level density in analogy to the calculation for the particle in a gravitational
field. Finally, compare with the solution of the full quantum mechanical problem.
All relevant mathematical information can be found in Handbook of Mathematical
Functions (see Appendix A).



Chapter 3 ()
Microcanonical Temperature oo

The definition of temperature in Chap. 1 arose out of a need to understand some
basic thermodynamics. If a system has the possibility to exchange energy with a
heat bath, the Boltzmann factor will be the weight that expresses the decrease in the
number of available states for the heat bath when some energy is transferred out of
it and into the smaller system. In this chapter we will apply this definition to a small
microcanonical system, i.e. without contact with an external heat bath.

It sounds contradictory that one can have a temperature when the system is one of
constant energy and when temperatures are only defined for ensembles where energy
can be exchanged with a heat bath of practically infinite size. In standard statistical
mechanics the problem would be dispensed with by the observation that the choice
of ensemble doesn’t matter because average values and fixed, externally imposed
values will be practically identical due to the extremely small relative fluctuations
in a macroscopic system. This is not so for a finite system, as discussed in Chap. 1.
Nevertheless, a microcanonical temperature can be defined. It does require some
care when handling it, though. Once it is established, however, it will be both a
conceptually and practically useful quantity.

3.1 Definition

Consider a system with a level density p(E). It is a function of the system’s energy,
as indicated, and may also depend on other quantities, like angular momentum. For
the sake of argument we will ignore these dependencies. This is partly a question
of convenience and partly a question of identifying the most relevant quantity of the
problem. The functional form of the level density will be left unspecified initially.
The canonical description provides the average excitation energy as a func-
tion of the temperature, E(T). We will try to establish the inverse relation for a
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microcanonical system, i.e. to derive a temperature from the excitation energy, 7 (E).
This is accomplished with the expansion already encountered in (1.44):

din(p(E)) | & & In(p(E)) _ &> & In(p(E)

In(p(E = &) =In(p(E) —e—% 21 dE? 31 dE3

3.1
In analogy with the definition of the canonical temperature, we will define the micro-
canonical temperature of a system with level density p(E) as

_ (dIn(e(EN\~!
T=<T) . 3.2)

The meaning of this equation is different, though. The level density now refers to
the system itself, and not to a heat bath with which the system is in contact. Here
we cannot expect the higher order derivatives of the level density to vanish, because
the heat capacity is not arbitrarily large, which is the key to the simplification of
the canonical temperature. Expressing the level density with the microcanonical
temperature requires at least one higher order term:

(E — &) = p(E) Lo ] (33)
—&) = exp|l—ée=—=——+—--- |, .
P PREIEXR\ 87 ~ Q1o

with the microcanonical heat capacity defined as C'~! = 9T /3 E.

There are things this temperature can do and things it definitely cannot do. It can
not be used to calculate thermal fluctuations of the excitation energy and, by the same
token, it can also not (definitely not!) be used to calculate thermal excitation energy
distributions of the entire system by inserting it into a Boltzmann factor. But it can
be used a convenient tool when the ¢ in (3.1) is small compared with E because then
the higher order terms will also be small. Integrals of the type

E o0
/ p(E — g)de ~ ,o(E)/ e */Tde = Tp(E), (3.4)
0 0

are then easily calculated.

Figure 3.1 illustrates the use of the microcanonical temperature with an example
from nuclear physics. In experiments where nuclei are collided at high energy, the
debris can under some conditions be described as originating from a hot soup of
nuclear matter. Measuring the right averages experimentally will give you our new
friend, the microcanonical temperature. This is what is plotted vs. a scaled collision
energy. For the nuclei in the figure, the temperature is on the order of several MeV.
At high collision energies the curve clearly deviates from the predicted low energy
behavior which is approximately 7 o< +/E (nucleons are fermions. See Chap. 10 for
the explanation of how this dependence arises). The deviation is interpreted as a
signature of a nuclear phase transition. Similar curves are found in simulations of
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clusters and we will see other examples of this type of curves in Chap. 13 on phase
transitions.

To get some quantitative intuition for the concept of a microcanonical temperature,
let’s calculate it for the approximate level density, which we will have occasion to
use later,

p(E) =a (E + Ep)°. (3.5)

The three parameters a, Ey, and s represent different physical quantities. s is related
to the high temperature canonical heat capacity as discussed in the previous chapter,
Ey is an offset in the relation between temperature and thermal energy, and a is
related to the entropy of the system. All three parameters will be discussed in detail
in connection with vibrational level densities in Chap. 4. For the present purpose we
note that they can be adjusted to reproduce the value, slope and curvature of the level
density vs. energy and can therefore be expected to represent a level density over a
reasonable broad energy interval.

When s is sufficiently large this level density will act as a normal heat bath.
For small s it will be a sort of baby heat bath. From (3.5) and the definition of the
microcanonical temperature we find its value;

_E+E

N

T (3.6)

Itis worthwhile here to compare with the relation between the corresponding canoni-
cal quantities. The mean energy in the canonical ensemble is, in the high temperature
limit,

E+ Ey

E = HT — E T =
s+1) 0= s 1

(3.7)

From this result it is clear that s 4- 1 is the canonical heat capacity. Equation (3.7)
is the same as the microcanonical value, apart from the fact that the canonical heat
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capacity s + 1 appears in the relation, vs. s in the microcanonical version. The general
expansion of the level density in terms of the microcanonical temperature, (3.3),
applied to the specific choice of level density in (3.5) becomes

p(E—a)=,0(E)exp<—£—8——8—+~-). (3.8)

3.2 Finite Size Heat Bath

When s is not too close to unity one can often use the microcanonical temperature
and just keep the first order € term in the expansion of the level density. This approx-
imation can fail for two reasons. One is that s is small. When s ~ 1 the higher order
terms in the expansion in (3.1) will not automatically be small, as seen from the
example calculation in (3.8). The other possible reason is that & may not be small.
This will be the case if it is an activation energy, representing the energy threshold
that needs to be overcome before some specific reaction can happen.

The expression ‘activated process’ is used for a process that requires so much
energy localized on a specific degree of freedom or small set of degrees of freedom
that it does not happen immediately, even if the total energy content exceeds the
threshold energy for the process. An activated process is characterized by the presence
of aratio of two level densities in the expression for the rate constant that describe the
speed with which the reaction proceeds. The activation energy, denoted by E,, can be
very much higher than 7', and it is for those situations a special treatment is required.
On top of the activation energy, which is a fixed number, an activated process may
also consume a small statistical component. The distributions of such energies can
also be described with an effective temperature. By necessity, this temperature must
be influenced by E, . In short, we need to repair the equations to answer the questions
arising from a large activation energy.

We do this with an expression where the second order term is incorporated as a
correction to the temperature:

2¢C

E,
p(E — E,) ~ p(E)exp <_T—E"> . (3.9)

The additional term in the denominator, suggested by C. Klots, is the leading order
term of a correction to the temperature called the finite heat bath correction, and
(3.9) is known as the finite heat bath (FHB) approximation. The physical picture of
this is intuitive clear. The exponential is simply the Boltzmann factor, evaluated at
a temperature which is the average temperature of the ‘before’ value, 7' (no energy
extracted), and the ‘after’ situation, T — E,/C’, where E, has been removed from
the system, leading to a decrease in the microcanonical temperature by the amount
AT = E,/C’. What the formula says is that the difference in the logarithm of the
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Fig. 3.2 The first order finite heat bath approximation for 100 harmonic oscillators. The vibrational
quantum energies are all identical with a value of hw = 0.04 eV, giving an the energy offset (see
(1.30)) of Eg =2 eV, and E, = 3 eV. The slightly curved line is the logarithm of the level density,
calculated in the high energy limit, vs. excitation energy. The FHB approximation is the straight line
tangent to the curve at 8.5 eV. The lower straight line connects the p’s of the energies £ and £ — E,,.
These two lines are parallel when the approximation is perfect. From the figure it is clear that the
FHB correction improves the estimate significantly compared to the case where the derivatives at
either E or E — E, are used

level densities can be well approximated by the derivative at the midpoint times the
interval length E,,.

Figure 3.2 is a sketch of the idea with a numerical example. To appreciate the
quality of the approximation, another illustration for the same model system is given
in Fig.3.3. It shows the ratio of the approximate to the exact ratios of level densities
(the ratio of the level densities of the cold (energy E — E,) and hot (energy E)
systems), evaluated for all possible values of the finite heat bath correction:

E, 1
_E | p(E-E)’
o p(E)

exp (3.10)

vs. E' for E — E, < E' < E. The leading order FHB correction gives a fairly accu-
rate value of the ratio of level densities, even though the correction of the temperature
amounts to a significant fraction of the total energy content (compare the ordinate
scales of Figs.3.2 and 3.3).

Up to this point, the finite heat bath approximation has been applied to a single
system. This is a somewhat artificial situation because an activated process is bound
to tie up some degrees of freedom and the level densities in the numerator and the
denominator can not be expected to be identical. A more physical application is
therefore to use it to describe the ratio of level densities of two different systems, and
the finite heat bath is indeed useful for the manipulation of expressions describing
rate constants of activated processes that involve such ratios. We will write a rate
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constant in a generic form which will be justified in Chap.5 for unimolecular rate

constants:
Pp (E - Ea)

, 3.11
or(E) G-I

k=f

where f is arelatively slowly varying function of energy, E,, is the activation energy,
and the subscripts p, r refer to the product particle and the initial state (reactant
particle), respectively.

In the canonical ensemble the activation energy E, enters a Boltzmann factor,
exp(—E,/T) in the Arrhenius formula

k= we BT (3.12)

which was discovered by Svante Arrhenius in connection with his work on atmo-
spheric warming by CO, more than a century ago. It describes a rate constant in
a canonical ensemble. It is a very simple and accurate expression, considering the
number of parameters that enter it. It is also very convenient for a number of pur-
poses, because its inverse is easily found. We will therefore try to mimic its behavior
by expressing (3.11) in exponential form;

k = ge BT, (3.13)

where T, is a properly chosen temperature.

There are several possible choices for 7,, because a change in the definition can
be offset by a simultaneous redefinition of g. Infinitely many, in fact. To see this, we
calculate the simultaneous changes in g and 7, required to keep the observable rate
constant unchanged. To make the point we will even restrict ourselves to changes in
g that can be parametrized as a single dimensionless factor, «, that multiplies k. In
other words we require that

ge=EolTe — guge=EalT:. (3.14)
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This equation is easily solved for 7, in terms of « and 7. The solution is

T = Te+.
1+ + In(a)

(3.15)

This gives the 7, that produces exactly the same rate constant with the pre-exponential
factor ag as T, does with the pre-exponential factor g. With even the best experimental
data it is therefore not possible to determine the value of g before 7, has been defined
or vice versa, neither from measurements of rate constants nor from an analytical
expression for the rate constant. We must therefore consider the definition of the
microcanonical temperature for this problem carefully.

One possible definition of 7, was made by C. Klots who defined an equivalent
temperature, 7*, the isokinetic temperature, as the temperature which gives the same
rate constant in a canonical ensemble as the microcanonical rate constant at the
excitation energy E:

k(T*) = k(E). (3.16)

This implicitly defines T+ as a function of the energy. The definition is certainly
possible. We will use another definition that does not involve canonical quantities.

A fairly accurate expression for rate constants can be obtained with a rewrite of
the ratio of level densities in (3.11). We will use the parametrization of the individual
level densities of (3.5), with subscripts r and p referring to reactant and product
state, respectively. For a reasonable realistic description we must allow that s, # s,
which makes all three constants for both level densities free parameters. With the
definitions As = s, — §,, 5 = (s, + 5,)/2 and the definition

E,=E,+E, —E,, (3.17)

we get the rate constant

a B (E +E —E )s,;+As/2
E)=fL(E+E,—E,)(E+E,)]"*/? P4
k(E) fa, [(E+E,—EJ)(E+E)] E+ By 57

(E+E, —E)*
(E+E)

~ [ (E+E - E) (3.18)
a,

Equating the last fraction to a Boltzmann factor yields the effective emission tem-
perature, T,:
, E+E, —E)
bt = ETE BT (3.19)
(E + Er)s

The choice of E/, as the activation energy is natural in the light of the functional form
of the ratio in (3.19). Solving (3.19) for 7, gives
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T_E+E,—El;/2 1 E? +1 E? N
‘T 5 12s E+ E, 245 (E + E,)?

(3.20)

The fact that the activation energy appears only in the combination E, + E, — E,
means that for all intents and purposes, E/, is the measured activation energy for the
problem. We remind the reader that £, and E, (denoted by Ej in (3.5)) are defined
as the offsets in the canonical energy-temperature relation, also known as the caloric
curve.

With this temperature the rate constant is calculated to

K(E)~ f2(E + E, — E|)= e F/T:, 3.21)
a,

with E/ defined in (3.17) and 7, defined in (3.20). The factor f, which is only
required to be a slowly varying function of energy, can be calculated with results that
are derived in Chap. 5.

There are several features here that should be noted in (3.21). One is that the ratio
of the a’s appear as a pre-exponential, as we expect it to do. The other is that the
excitation energy of the product particle, modified by an energy offset, appears in the
expression to the small power s, — s,, in addition to the strong dependence on this
energy in the temperature of the exponential. This is also not entirely unsurprising,
if for no other reason then because of dimensionality. The last important feature is
the fact already mentioned that the apparent activation energy differs from the true,
quantum mechanical value by the amount E, — E,. If the level densities can be
calculated from vibrational degrees of freedom in the harmonic approximation, E,
and E, are the zero point energies of these oscillators, and the apparent, or effective,
activation energy E/, is then the activation energy of the corresponding classical
systems. For identical average frequencies in product and reactant, the difference
amounts to E, — E,, = 3/2nhw for loss of an n atom fragment. In general, however,
one cannot expect to have such a simple interpretation. The equation remains valid
beyond these cases, however.

One of the main lessons of (3.21) is that it provides a microcanonical analogue of
the canonical Arrhenius expression. Using the leading order term for 7, gives

-
El3

k~ we BB (3.22)

with the frequency factor from (3.21);
_ % 1\—As
w=f—(E+E, —E) . (3.23)
a

The fact that the temperature is not usually measured directly and that the denom-
inator of the fraction in the exponential in (3.22) has additional terms makes the
interpretation of data in this setting less straightforward than for the canonical
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expression. Setting the terms E,, E, to zero in a fitted experimental value will result
in an uncontrolled error.

Often the effective temperature and not the energy is the experimentally deter-
mined quantity, and the inverse of (3.20) is required. We invert it by successive
approximations to next-to-leading order:

1 E/Z
E~Tys—-E +E 24+ ——4— ... 3.24
g +E,/ +12E+E,+ (3.24)
1 E?

~NTS —E +E 24 ——"94
S —E A+ B/ T RTs+E 2

Equations (3.17, 3.20, 3.21, 3.24) are the main results of this section.

A numerical comparison between exact and approximate rate constants is shown
in Fig.3.4. The system for which the rates are calculated is the same as used in
Fig.3.2 for the precursor. The decay was the loss of a single atom, and the frequency
factor f was set to 10" s~!. The two rate constants were thus

9998 97(ho)’ _p.r,

(E+E,—E,)?

99.98-97(hw)® (E+E, —E,\"’
(E+E,)? E+E,

kapp = (3.25)

kexact =

The results derived above work in most situations. They do fail for small systems.
For those, reactions can take place with excitation energies that are close to threshold.
This makes the second and higher order terms in (3.20) important. As will be shown in
Chap. 7, decay rates will, under certain conditions, be proportional to the heat capacity
of the decaying particles. Measurements of decay rates under these conditions is a
commonly applied experimental technique, and it is therefore of importance to have
values for the effective heat capacity also for small particles. This is derived in the
following.
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We will start the derivation by requiring that the heat capacity is constant, if
possible; that is, to demand that

E =CT, — E,, (3.26)

and that the Arrhenius expression in (3.21) holds. The definition of w is retained. In
principle the value of the modified E/, could also be kept free, but it will turn out to
be unchanged compared to the previously determined value, so we will make this
choice from the start. The heat capacity C and the constant E( are both unknown
at this point. Once they are determined, the caloric curve in (3.26) determines the
temperature, of course.

To avoid a cluttered notation scaled energies will be defined as

E+E,
E;

Ey— E,
E,

, (3.27)
X0 =
After taking the sth root and the logarithm of the Arrhenius expression we have that
Cv —1 —1
— — (x + x0) =ln(1—x ) (3.28)
s

The right hand side is calculated with an expansion to first order in the scaled energy,
X5

1

1
In (1 —x"-") B (In (1 _x/—l))2 (1—x=1)x’

(x + x0) ~ ; (x —x"), (3.29)

s
C

where x’ is the expansion point. Choosing an expansion point is equivalent to choos-
ing a rate constant and therefore an experimental time scale. The requirement that the
expression is Arrhenius-type means that the left hand side of (3.29) at the expansion
point is equal to

5 1
In(w/k) ~ In(1—x~1)

(x +x9) =

s
C (3.30)
If we identify k with 1/¢, In(w/ k) is replaced with In(wt). Due to the large value
of the argument of the logarithm, the logarithm can be considered constant over a
reasonably large range of times/rate constants. Typically it varies less than 10% if
the time varies a factor 10.

From (3.30) we find the terms on the right hand side of (3.29). Reintroducing the
scaling parameters and introducing the shorthand G = In(wt) gives:

E+Ey 1 .5 gnr  _om2(E+E 1
e Al (el - ). @31
cer et U=\ T T 631
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Identifying the coefficients to different powers of E gives
G* 512
C=—e 9 (1—eCF)", (3.32)

N

and

Eo = E;ge*m (1= 9" —E (1-¢ )" +E (3.33)

~ (i S) g 1o Gy
T\ s ’ s) )

The last approximation can be used for G = 25 and 5 > 9 to an accuracy better than
1%. There is some time dependence in the heat capacity due to the factor e ~¢/*. For
example, for a dynamic range of a factor of ten in time and the size 6, this implies a
reduction of around 20% from that factor. Half of this is compensated by an increase
in the factor G.

The effect of the finite size is to reduce the heat capacity, most strongly for small
sizes. Figure 3.5 shows the size dependence of the C, before and after correction.
There is a clear cutoff two to three cluster sizes above the one induced by the reduction
due to vibrational and rotational motion, i.e. the —6 in C (uncorrected) = 3N — 6.
The shift is clearly visible in experimental data.

3.3 Level Densities and Canonical Partition Functions

The microcanonical temperature is useful for easy manipulations of corrections to
rate constants of activated processes. It is also useful when converting canonical ther-
mal properties into microcanonical ones. This section will be devoted to extracting
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level densities from canonical partition functions with the help of the microcanonical
temperature.

The canonical partition function is the Laplace transform of the level density, as
expressed in (1.54). Once the level density is known for all energies, the partition
function can be calculated by an single integration. It is also possible to invert the
transformation with the inverse Laplace transform. This requires a canonical partition
function that has been continued analytically into the complex plane. Then the inverse
Laplace transform is given by

1
p(E) = —— / PEZ(B) dp. (3.34)
2

The variable B is complex, and the integral is along a line with constant real part of 8
in the complex plane to the right of any singularity in Z(8). Denoting the imaginary
and real part of B8 as Im(8) and Re(f), respectively we have:

p(E) = 2—71” / " RGIHIMVE Z1Re(8) + iIm(B)]dIm(B). (335

This inversion formula can occasionally be useful but is unfortunately often not
practically applicable. The effort invested into finding a general and closed expression
for vibrational level densities at low energies, even in the simplest harmonic oscillator
approximation, testifies to this.

Instead, we will calculate two approximate expressions, by postulating a simple
form for the level density and then calculate forward and identifying the parameters
in the partition function with those of the level density. The first calculation is done to
gain some intuitive understanding of the result, the second to obtain a more accurate
expression. The latter actually turns out to be very accurate, as will be demonstrated
in applications in Chap. 4.

In the first approximation, we ignore the difference between the canonical and the
microcanonical temperature and use the canonical caloric curve E(T) to find 7 (E)
by inversion. The level density is approximated with the exponential of the canonical
entropy,

p(E) ~ 5D, (3.36)

Obviously a parameter with dimension reciprocal energy is missing from this expres-
sion. We can repair this deficiency by noting that energy fluctuations in the canonical
ensemble is 20 = 2,/C,T. This is the effective range of energies over which states
are sampled to give the entropy canonically. We therefore have the approximate
relation

S~ (p(E)2/aT) , (3.37)
or 1
p(E) ~ ———e5. (3.38)

2/ C,T



3.3 Level Densities and Canonical Partition Functions 65

10%
1032
1029
1026
1023
1020
1017
1014
10

10°

10°

107

']O'1 T T T T =
0 1 2 3 4 5

p, e* pe™

11

Adaa,
adAbAAA aa
/aas aa

Fig. 3.6 Boltzmann factor (dashed line) for a temperature of 0.05 (in energy units), and level
density for a system with heat capacity 50 and a small positive energy offset in the caloric curve
(full line). The dotted line is the product of the two, with the maximum of the integrand, E,,,
indicated with a vertical line, and the saddle point expansion with triangles. The factors and the
product have been scaled with different constants for display purposes. The inset shows a linear
plot of p(E) exp(—BE), for the same energy range

This estimate is already close to the final result.

In the more accurate procedure one uses a saddle point expansion of the integrand
in the canonical partition function, p (E) exp(—B E). In that procedure the logarithm
of the integrand is expanded around its maximum to second order which makes the
integrand Gaussian and the integral easy to perform. The word ‘saddle’ refers to
the fact that the curvatures have different signs in the real and imaginary directions,
similar to the topography of a saddle. Figure 3.6 illustrates the procedure.

Assuming that the logarithm of the level density is sufficiently smoothly varying
to be represented by an expansion to second order in energy, we can write the partition
function as

Z(B) ~ p(En) X (3.39)
o0 d1n(p(E)) 19%In(p(E)) 2
/O exp ( — BE + =g, (E = En) + 5 |p, (E = E,) )dE.

If we chose the expansion point E,, such that dIn(p(E))/dE|g, = B, the first two
terms in the exponential cancel and we have

1d*In(p(E))

Z(p) = p(Em)/O exp (—ﬂEm + =

Y |Em(E—E,,,)2> dE (3.40)

If the mean of the integrand, E,,, is bigger than a few times the width of the function,
1/\/—d2In(p(E))/dE2, the integration limit zero can be replaced with —oo and the
integral performed to give
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172
Z(B) = p(E,)e FPEin (2—”|> ) (3.41)
E,

_ CIn(p(E)
dE?

The second derivative is negative as required for convergence of the integral, hence
the sign in the square root. We find the value as

ChnpE),  _ ddineE),  _d o,
TlEm = d—Ed—E|E,,, = d_Eﬂ =—-pC. (3.42)
or |
) _
(%m) =-T2C. (3.43)

This last equality assumes an approximate identity of the microcanonical and the
canonical temperatures and heat capacities. This can be verified a posteriori. Equation
(3.43) is consistent with the result from Chap.1 (1.70) that heat capacities in a
canonical ensemble are related to the energy fluctuation. The reciprocal of the second
logarithmic derivative of the level density sets the scale for the energy fluctuations
because it is simply the variance of a certain Gaussian distribution.

With the relation (3.43) we can proceed to calculate the canonical mean thermal
energy, E,as E = — J ]géz). With (3.40) for Z we have

— dIn(p(En)) IE, , 1dIn(?)
E=———""+E, - 344
%6 +E,+pB op +3 a5 (3.44)
For the last term (3.43) was used. The first term is
al E, dl E,)) dE, dE,
_AG(E) I (En) dEn (3.45)

3B dE,  dp g

This term appears with the opposite sign of the third term in (3.44), they cancel and
we are left with .
E(TY=E,+T. (3.46)

This result says that when a system is so well behaved that a saddle point expansion
of the population probability in the canonical ensemble is a good approximation, the
product of level density and Boltzmann factor peaks at an energy which is 7" less than
the average thermal energy. The peak was determined by equating the logarithmic
derivative of the level density with the reciprocal temperature, which is the definition
of the microcanonical temperature for the system at the (microcanonical) energy
E, . The T that appears in (3.46) is therefore the microcanonical temperature. This
means that we can find this temperature by solving (3.46) for 7', for a given value of
E,,. This can be very convenient in practical applications, because it is often easier
to calculate the canonical partition function than to calculate level densities. The
equation will have to be solved numerically, but that often turns out to be very easy
with an iterative procedure that will be sketched below.
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We can now use the relation between the canonical and microcanonical energies
and the microcanonical temperature to get the desired expression for the level density.
With the microcanonical temperature found with (3.46) and inserted into (3.40) we
have:

p(En) ~ Z(B)ePEn (3.47)

1
V27 T?C,

where also (3.43) was used. Equation (3.47) says that the level density at the energy
E,, is equal to the combination of canonical values on the right hand side of the equa-
tion. We also see, using that the partition function is the exponential of Helmholtz’
free energy, Z = exp(—BF) = exp(—B(E — TS)), together with (3.47), that

S
~__C (3.48)

P J2nT?C,’

This is the desired result. It tells us, among other things and once again, that the
entropy is essentially the logarithm of the level density. The relation is made complete
by the square root factor, which just accounts for the energy interval over which the
states are summed to give the total number of states.

The accuracy of (3.47) is very good. If we want to increase it, we can do so
by continuing the expansion of the level density in E to higher orders in (3.39),
expanding the exponential and integrating term by term. The third order term gives
zero because the integrand is an odd function around E,,. The leading order correction
is therefore the fourth order term. We will leave the calculation of that correction to
the reader and just mention that it will turn out to be of order 1/C. This translates to
‘small correction’ for any but the smallest systems and/or lowest temperatures.

The practical use of (3.47) with (3.46) to calculate level densities is greatly facili-
tated by the facts that the canonical heat capacity is always non-negative and that this
is also the case for its derivative with respect to temperature for harmonic oscillators.
This means that an iterative solution to (3.46) has a simple convergence behavior and
can be based on a first order expansion of the energy in the temperature for these sys-
tems. With the initial temperature 7’ we have that E(T") ~ E(T) 4+ C(T')(T' — T).
With E(T) = E,, + T, we have the solution to first order

., E,+T —E(T)
T~T ) 3.49
+ ca (3.49)

Due to the positive curvature of the caloric curve, a single iteration will give an
estimate for 7' that is above the solution of (3.46). The values of C are positive
(except for the uninteresting point 7 = 0) and this will ensure convergence once the
input temperature in (3.49) is above the solution. Hence convergence is ensured for
all initial guesses. The situation is illustrated in Fig. 3.7. The appearance of the extra
term T in the numerator (3.49) does not change this behavior as long as C — kg is
still positive.The choice of initial temperature in the iteration is therefore not crucial,
and one may use the energy per oscillator, E/s.
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Fig. 3.7 A generic heat
capacity with first order 1
solutions to (3.46) for two
initial temperatures, above
(T7) and below (7>) the exact
solution to (3.46). The first
iteration gives the new
temperatures found at the
abscissa of the intercept of
the two straight lines with the
horizontal line at energy E,, T

E (arb. units)

0.0 T T T T
0.0 0.1 0.2 0.3 0.4 0.5

T (arb. units)

Exercises

3.1 Calculate the level density for 20 harmonic oscillators with all the vibrational
frequencies equal to 10'3 Hz, and a total energy of 3 al.

3.2 Estimate the magnitude of the third order term in the expansion formula (3.8)
for an arbitrary number of oscillators by setting ¢ = 7. Guess the right solution for
all higher order terms. Does the expansion make sense? If not, why? If it does, why?

3.3 Invert (3.20) with the third term included. You can do this either by solving a
cubic equation (see Handbook of Mathematical Functions referenced in Appendix
A), or by use of successive approximations. With frequency factors of 10! s~! and
observation times of 1 ms, determine the particle size (heat capacity) for which the
next to leading order term must be included, and the size for which the next term is
needed.

3.4 The canonical partition for a particle in a cubic box with side lengths L,

Z=Y e Bo P+ (3.50)
n,lk

can be calculated as an integral

> = Y. <P IV
Z3 %/ dn/ dl/ dke " a2 . (3.51)
0 0 0

This gives the leading order in 7. The next-to-leading order contribution is calculated
by improving this integration. In one dimension the integral is

7y~ — ez dn — 1/2 = —(,Beo) 12 _1)2, (3.52)
2 )

1/00 e JT
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where the last term is introduced to avoid counting the zero quantum numbers and the
shorthand €y = h?m?/2mL? is used. Since the problem is separable in coordinates,
we have

3
Zy=17; = (%ﬁ(ﬂeo)l/z - 1/2) ) (3.53)

Find the level density to the accuracy corresponding to the inclusion of the next-to-
leading order term in the partition function.

3.5 An Aug cluster evaporates an atom, with an activation energy of E, = 2.25
eV at a parent microcanonical temperature of 1700 K. Use harmonic oscillator level
densities to estimate the ratio of rate constants calculated with and without the leading
order finite heat bath correction, i.e. with and without subtracting the term E,/2C,
from the microcanonical temperature. You can set £, = E, = 0.

3.6 Quantify the condition that allows us to calculate (3.40) as a Gaussian integral.



Chapter 4 ®
Thermal Properties of Vibrations e

The thermal properties of a particle is to a large degree determined by the motion of
the nuclei, and it is therefore of great interest to have a good idea about their behavior.
Vibrational motion involving the nuclei have frequencies of typically w = 10'%s~!
to 10'*s~!, which translates into quantum energies of 0.01-0.1 eV. In contrast, the
energy scale of electronic excitations, which is the only other serious player in this
game when it comes to counting the d.o.f., is 1 eV and above, for molecules and
small particles at least.

4.1 Normal Modes

The motion of the nuclei in any piece of material is in principle included in the
description of the wave function of the entire system, including the electrons. This
description is simplified considerably by separating the motion of the electrons and
the nuclei with the Born-Oppenheimer separation where the nuclear motion is taking
place on a so-called Born-Oppenheimer (BO) surface which is an effective potential
energy surface for the nuclei, provided by the wave function of the electrons and the
electrostatic internuclear repulsion. Even though the Born-Oppenheimer separation
is an approximation, a determination of reliable potential surfaces for even a small
particle still requires a serious amount of quantum mechanical calculations. And
quantum mechanics does not stop with the calculation of these potential energies.
The nuclear motion on a BO surface is of course also quantized.

In order to understand this quantized motion, one begins by considering the corre-
sponding classical motion. When the energy per degree of freedom is small compared
with the binding energy of a monomer, say, the motion can be described as coupled
harmonic oscillators. The potential energy can then be written as a bilinear sum in the
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displacement, x;, of the atoms from their equilibrium positions, collectively denoted
by the vector x:

o*v
Ox i Ox j

VARV@E)+ Y 12 XiXj. (4.1)
i,j

The zero of energy, V (X), can be set to zero without loss of generality, and the
linear term vanishes because the expansion points are the equilibrium positions. Note
that V can be considered a function of the coordinates or the displacements from the
equilibrium positions without any change in the second derivatives. The matrix

eV _ Vi 4.2
8xi8)€j B ( ’ )
calculated at the equilibrium position, is called the Hessian matrix. Together with
the masses of the atoms it determines the equations of motion of the vibrations to the
extent they can be considered harmonic, both classically and quantum mechanically.
If the interactions are local, only the displacements of neighboring atoms couple and
contribute to V. In general, however, interactions are non-zero for other combina-
tions of i and j than just those that correspond to coordinates on nearest-neighbor
atoms. Irrespective of the precise range of the interaction, the matrix will couple the
vibrational motion of individual atoms directly or indirectly.

To find the motion, the kinetic energy must also be included. It is

K= 1ami}. (4.3)

This is diagonal but in general not proportional to the unit matrix because the
masses need not be identical. The m;’s are only guaranteed identical for the three
values of i that correspond to a displacement of a specific atom in the three directions
of space. Only for a particle of all-identical atoms is K proportional to the unit matrix.

To find the vibrational frequencies, one has to decouple the vibrations that are
coupled by the Hessian matrix from each other with the purpose of writing the
Hamiltonian as a sum of independent oscillators. This can be accomplished by a
direct diagonalization of the Hessian, but only in the special cases where all the
masses are identical, because then the kinetic energy is proportional to the unit
matrix. In these situations the Hessian diagonalizes directly to give the frequencies

wr=\/m. (4.4)

If the particle contains two or more different atoms of different masses, the matrix
that diagonalizes the Hessian will un-diagonalize the kinetic energy term. The dif-
ferent masses can be cause by the presence of different elements but the effect is
there also for different isotopes of the same element.
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The solution to this problem is to define mass-weighted displacement coordinates,
X; —> ii = X/ ;. (45)

In terms of these coordinates the Hamilton function becomes

H:K+V:Zl/2 +Zl/28x8x, (4.6)

: o*v
=) 1ax+ )y 1) %X
lZ ! ; /MM ; axiaxj
EZI/ZXL?+ZI/2V,'J%,'EJ'.
i ij

This makes the kinetic energy proportional to the unit matrix and the mass weighted
Hessian \7, ; can therefore be diagonalized without un-diagonalizing the kinetic
energy matrix. The Hessian is a real symmetric matrix and those may be diago-
nalized with the method of Jacobi transformations, which is described in texts on
numerical analysis. After diagonalization, which gives the eigenvalues )\, one has
a Hamiltonian which is the sum of independent degrees of freedom:

H=Y 1pi+ > N, 4.7)
k k

where u; is the k’th linear combination of X;, the square is the inner (vector) prod-
uct and ) is the k’th eigenvalue of the transformed Hessian V; ;. Comparing the
expression (4.7) with the Hamilton function for a harmonic oscillator,

Hy, = Y2mx® 4+ Yamw?x?, (4.8)

we see that the frequency for the kth eigenvector is w; = /). The eigenvectors can
be converted to the amplitudes of the physical vibrations by multiplication of each
component by the square root of the relevant mass.

As a simple but very instructive demonstration of the procedure we will consider
the vibrations of a diatomic molecule. The potential energy is given by the square of
the deviation of the bond length relative to the equilibrium value xy:

=12k (X1 — Xa2| — x0)?, (4.9)

where x; are the Cartesian coordinates of atom k. The second derivative of this
potential energy with respect to coordinates 7; and 7; is
PV 0|x1 — x2| 0|x; — X»|
;O o on;

, (4.10)
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plus a term which is zero in the equilibrium position. The coordinates 7;, 1; can
each run over all of the six Cartesian coordinates of the two atoms. Performing the
derivatives one gets

DV _ & — - ) @.11)
By, = 2 M0 =), :

where the primed coordinate is the Cartesian coordinate of the other atom, along the
same spatial axis, e.g. 7); is the y-coordinate of atom 1 if #; is the y-coordinate of
atom 2 etc. We place the molecule along the y-axis and find that only the following
matrix elements are non-zero:

Viny, = Vioy = —k (4.12)
View = Vi = k.

After weighting with the masses, these elements become

Lov_k (4.13)
my Oy?  my '
10V &k
my 9y} my

1 o*v 1 v k

NLGU) a}’18)’2 - A/ niy 3)’26M B _\/mlmz.

The eigenvalues are found, as usual, as the zeros of the characteristic polynomial,
which in this case gives the equation

2
X‘((i—A) (i—x)— k ):0, (4.14)
ny my miymy

with the solutions

11
A=0, k(——l——). (4.15)

n ny

The zero frequency solution has a five-fold multiplicity. Zero frequencies generally
correspond to the rotational or translational motion of the particle, because there is
no potential energy associated with those degrees of freedom, hence no restoring
force and the vibrational frequencies are then zero. The zero eigenvalues in (4.15)
correspond to the translational motion of the molecule along the three axes and the
two rotational modes possible for a linear molecule. Degenerate modes can be mixed
as you desire. Any sets of linear combination of these modes go for these, as long as
the orthonormality is conserved. We can chose the zero mode (A = 0) corresponding
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to the motion along the y direction. This is represented by a vector with six entries
of which four are zero. In the mass weighted coordinates it is:

= , (4.16)

where the first three components give the x, y, z amplitudes of atom 1 and the three
last the same amplitudes of atoms 2. Division of the two components of this mode
by their respective weight /m; removes the mass weighting. Leaving out all the
inessential zeros associated with the motion in the x, z directions from the vector, it

becomes
x| = G) 4.17)

which is indeed the expected translation in the y direction.

The non-zero eigenvalue gives the frequency [k (m% + #) This is equal to

w = +/k/p where p is the reduced mass of the system,
-—=— 4 —, (4.18)

as it must be for a two-body problem. The mode associated with this frequency is

_(ym
i = (—Jm_1> (4.19)

or, after undoing the mass weighting,

"ﬁ
= V7T ]|. (4.20)

If we go a distance § along this mode, the displacement of the center of mass will be

my mi
YCM=5(m1,/——m2,/—> =0, 4.21)
ni my

which is precisely as expected for a vibration.

The procedure, with or without mass weighting, provides the desired linear com-
binations of atomic displacements that decouple from each other. They are called
normal coordinates and their motion normal modes. When the basically harmonic
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motion of the nuclei of sufficiently large particles is quantized, these modes are
known as phonons. They are basically quantized sound waves, hence the name.

Diagonalization of the potential energy means that the motion of a single normal
coordinate will involve a large number of atomic coordinates, even when atoms only
interact with nearest neighbor interactions. Conversely, if just a single atom is excited
it will also involve a number of normal modes.

There are s = 3N coordinates for N atom particles. If the particle is not fixed
to some point in space, however, some of these will have vanishing frequencies, as
we already saw for the diatomic particle. A free particle will have an unrestricted
translational motion of the center of mass (that’s the definition of free in physics).
This reduces the number of vibrational normal modes by three. A free particle can
also rotate freely. A linear particle has two rotational axis and a nonlinear particle
three of these. This adds up to a number of vibrational normal modes of s = 3N — 6
for a non-linear particle and s = 3N — 5 for a linear.

The case of a large particle composed of identical-mass atoms will be illus-
trated with the calculation of the Hessian matrix for Lennard-Jones (LJ) clusters.
Another example of a spectrum is given in Chap.9, where the normal modes of a
one-dimensional linear chain is calculated analytically with the purpose of comparing
it to numerical simulations.

LJ clusters are model systems that describe neutral rare gas clusters fairly well
and have a potential energy which is

-2y ((2) - (2))-+z2((2) - (7)) e

i#] i i

where r;; is the distance between atoms i and j. The parameter ¢ is an energy and o
is a length, both of which have values characteristic of the rare gas in question. For
more details about this potential, see Chap. 12. It is convenient to scale the energy
and the length to get the expression

v=>"2 (ri;” - rl.;é) =4y > (r,.;” - ri;6> . (4.23)

i#j i j>i

The factor 4 makes the minimum energy of two atoms equal to —1. Because the dis-
tances involve all three Cartesian coordinates of the two atoms, it is most convenient
for the present calculation to number the atoms and indicate the Cartesian coordinate
explicitly next to the atom number. The Hessian is then written

o*v

Vz(k, Oé, l, ﬂ) = m,

(4.24)

where roman subscripts number the atoms and run from 1 to N, and Greek subscripts
label the Cartesian coordinates x, y, z which for bookkeeping reasons is identified
with 1, 2, 3. We calculate the first derivative, the negative of the force, to be
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frequency

N1

0 5 10 15 20 25 30 35

Fig. 4.1 The vibrational spectrum of the N = 55 Lennard-Jones cluster, calculated with the meth-
ods described in the text. For this specific particle the frequently used Debye model described in
the text below is of marginal validity

oV
G =2 ; (_12r,.;‘4 + 6rl-;8) (io = xja) (O — 0j0)  (425)
, o

- 42 (=127 4+ 6r) (%0 — xia) (1= 0c) -

In this expression it is to be understood that terms of the kind (1 — & x)/r), are
identically zero for all powers p wheni = k. The second derivative gives the Hessian:
v
8xk,aal,[3
=4 Z (=12r "+ 6r%) (1= 61i) (Bt — 611) S

(4.26)

+4) (12 1450 = 6 8" (k0 — Xi.0) (i s — Xi.5) (G0 — Sr)(1 = Oc.i)

=24 Z (1= 6ix) (00 — 6i0) i
X [(1 — 2ri;6) 6@,/} + (28",‘;8 - 8”,‘22) (xk,a - xi.u)(xk,ﬂ - xi,ﬂ)] s

When one places this in an array in a computer, the Hessian matrix element cor-
responding to this derivative can conveniently be numbered as (3(k — 1) + «, 3(I —
1) 4+ [3). Figure4.1 shows the result of a calculation of the 3N — 6 = 159 non-zero
vibrational frequencies of the N = 55 Lennard-Jones cluster.
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4.2 Thermal Properties of Harmonic Oscillators

After having given a procedure to determine the vibrational frequencies of a particle,
we can now consider the thermal properties of such a particle. We will start with the
high energy limit of the level density.

For vibrational motion, high energy is defined as an energy per degree of freedom,
E /s, which is large compared with any vibrational energy quantum of the system. We
have seen earlier that the harmonic oscillator level density for identical frequencies
can be written, in the simplest approximation, as

Es—l
e 27

where w is the vibrational frequency and s is the number of oscillators. This result
was found by convoluting the level densities of all s oscillators, treating the energy as
a continuous variable. We will now improve on this result and generalize to different
frequencies. The method will be to calculate the canonical partition function both
exactly and in terms of a postulated level density, and adjust the parameters in the
postulated level density to get agreement.

Let’s first calculate the canonical partition function. The oscillators are decoupled
and the partition function can be written down immediately as the product of partition
functions of the individual oscillators, but it may be instructive to see the calculation
made explicitly, so let’s do this. The total energy of a given state is the sum of all the
oscillator energies,

E = iniﬁwi, (428)

where n; can take all non-negative integer values, the sum runs over all vibrational
modes, and the zero point of energy is chosen as the quantum mechanical ground
state. The partition function is

Z =" e xinha (4.29)

n;

The exponential can be factored into exponentials and the sum over states can be
performed for each oscillator separately. This gives

Z= ﬁ i I (4.30)

i=1

The partition function is the product of the partition functions of the individual
oscillators, as it should be for independent degrees of freedom. The excitation energy
in the high temperature limit for a single harmonic oscillator is
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—= Ol (1— e*ﬁh‘”)f1 hwe—Bhw
E=- o3 T~ obhw =T —1phw+ O(hw/T).  (431)

Because the oscillators are independent, the total energy is the sum of energies of
the individual oscillators.

— hw,-e_ﬁﬁ“"’
E:Zm%sT—l/zszi. (4.32)

The first term on the right hand side, s T, corresponds to a canonical high temperature
heat capacity of s and a level density which is proportional to energy to the power
s —1, p(E) x E*~!, as shown in Sect.2.3. The second term in (4.32) is also easy to
include into the level density. It simply corresponds to a shift of the energy by the
same amount:

s—1

Z x / (E +12 hw,«> e PEdE (4.33)
0 i
= / ES'e PE exp (*3/2 Z hwi> dE

/23" hw;

oo
~~ / E*'e PE exp (*3/2 Z hw,-) dE

0

=exp (5/22hwi> T (s — 1)!

1

Calculating E for this partition function confirms that it indeed gives the caloric curve
in (4.32). The extension of the integral to zero in the third step is justified because
we are considering the high temperature limit which means the integrand peaks at
the energy E + 1/2 ), hw; = sT which is high compared to the lower limit on the
integral. The contribution to the integral from the low energy part can therefore be
ignored.

This establishes the functional form of the high energy section of the level density
to next-to-leading order in the energy, apart from a multiplicative factor. Calculations
of energies or heat capacities cannot give us information about this, because one
takes the logarithmic derivative of Z to get the energy, and multiplicative constants
cancel in that process. Instead we can use the free energy, F, because it contains
the entropy and the entropy is essentially the logarithm of the number of states and
therefore depends on the unknown numerical constant multiplying E*~!. The free
energy calculated with the partition function in (4.30) is

F=-Tln(Z)=T Zln (1—e )~ T Zln (Bhw; — 1/2(Bhw)?)  (4.34)
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~T Y In(Bhw) — 12 ha.

The partition function for the level density p(E) = c¢(E + 1/2); hw;)*~! was cal-
culated in (4.33), apart from the multiplicative factor c. Introducing it into the level
density gives the corresponding free energy as:

F=—Th (c ROYLEY Ly 1)!) (4.35)

= —TIn(c) — 1/2Zhwi —sTIn(T) —Tln((s — 1)!).

If we compare this with (4.34) term-by-term, we can check our previous calculation
and find the constant c. We have identical expressions provided

1
= 4.36
T = DI, hws (4.36)
Hence the harmonic oscillator level density in the high temperature limit is
s—1
E + l/2 Zi hw,»

(s — DT, hwi

Figure 4.2 illustrates how this approximation fares. The figure shows ratios of the
exact to the approximate high energy level densities from (4.37) for a number of
systems of different sizes, all to the power 1/s. The exact values is calculated with the
Beyer-Swinehart procedure that will be derived below. The curves thus correspond
loosely speaking to the ratio of exponentials of the exact and approximate values of the
entropies per degree of freedom. As expected from the nature of the high temperature
approximation, the calculated quality of the approximation is good when the energy
per oscillator is large compared to the average frequency and becomes worse at low
energies.

We used the type of level density given by (4.37) in Chap. 3 for the definition of
microcanonical temperatures. We can now also write down an improved version of the
high temperature limit for the microcanonical temperatures for harmonic oscillators:

T, = (microcanonical) (4.38)

Oln(p(E)\ ™' _ E+12Y, hw
< OE ) B s—1

The canonical relation between (mean thermal) excitation energy and the (fixed
value) temperature is;

E=sT -1 Z Jiw; (canonical). (4.39)
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Fig. 4.2 A comparison of
the harmonic oscillator level
densities calculated with the
Beyer-Swinehart algorithm
and the high temperature
limit in (4.37). The
vibrational frequencies were
selected randomly in the
interval from O to 2 and the
average normalized to unity.
The frames show the ratios
of the two calculations for

s =5, 10, 20 and 200
oscillators in the system, to
the power 1/s. The abscissa
is the energy per degree of
freedom. Several curves
were calculated but only one
of each is shown. The others
were similar. The §=20
representation of the data is 0
chosen to emphasize the 1 -
scaling of the error. Both the

absolute and the relative

error increases rapidly with

size, but the error in the

entropy per degree of

freedom stays constant 0 T T

s=5

[p(exact) / p(approx)]"®

=200

E/s

As before, where only the first term was calculated, the only difference between the
canonical and microcanonical expression is the replacement of the canonical value
s with the microcanonical s — 1, equivalent to the relation

E = E(T,) — T, (4.40)

in agreement with (3.46).

4.3 Debye Particles

The method to calculate the vibrational spectrum of a particle, given the second
derivatives of the potential energy function, was presented above, but no general
property of the spectra of vibrational frequencies has actually been given so far,
apart from the number of non-zero frequencies of a free particle. It is clear that the
vibrational spectrum depends on the nature of a system and in order to make specific
statements about it in detail, we need to know the interaction potential to apply the
diagonalization procedure. This information is rarely available for nanoparticles.
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This lack of information is mainly due to the irregular structures of small particles.
The simplifications one can apply to a periodic lattice are usually not available to
real nanoparticles. Worse, it is rarely possible to even know the precise structure of
a particle, even composed of as little as a few tens of atoms, so even if the effective
interaction is known, the Hessian cannot be calculated.

An alternative to the diagonalization of a specific structure Hessian is to extrap-
olate vibrational spectra from bulk values. For sufficiently large particles this is
expected to be meaningful. The model we will use for this purpose is derived using
the nature of the motion of the atoms in the solid as sound waves. This is a long
wavelength approximation and it is most interesting for low temperatures where
long wavelength vibrations are the only ones that are thermally excited. It relates
the frequency to the speed of sound, c, by the dispersion relation w = ck, where k is
the wave vector. The dispersion relation is identical to that of electromagnetic waves
(light) with the speed of sound substituting the speed of light.

In a solid there are two transverse and one longitudinal types of modes. For a
single one of these polarizations the density of states is similar to that of a single
polarization mode of light. Light will be treated in Chap. 6 where it will be shown
that the level density has a quadratic dependence on the frequency. Per polarization
direction it is: 2y

w

g(w)ydw = mdw. “4.41)
For a more realistic parametrization of the phonon spectrum, one must take into
account that the two transverse and the single longitudinal types of mode present
in monoatomic crystals have different speeds. The speed of the longitudinal modes,
¢|, and the speed of the two perpendicular types of modes, ¢, are different and one
could in principle operate with two different distributions of the type in (4.41). We
will simplify and define the effective speed of sound as the sum of inverse powers:

3¢ =2e + ¢ (4.42)

The number of modes in the particle determines the frequency, wp, at which the spec-
trum terminates. In bulk where the difference between 3N and 3N — 6 is irrelevant,

we have ) s
“D 3 V Vw;
3N = =2 4.43
/ 27rzc3 2wl (4.43)
or 13
N
wp =c <67r27> : (4.44)

The final result for the spectrum is therefore

2
g(w)dw = 9N:’—3dw w < wp. (4.45)
D
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The cutoff frequency wp in the theory (the Debye frequency) is often given in tem-
perature units, Tp = hwp/ kg, and is then naturally called the Debye temperature.

The spectrum was suggested by Debye to explain the low temperature heat capac-
ity of solids, which were found experimentally to vary as T3, and the spectral density
in (4.45) is best used to describe bulk crystals composed of monoatomic species at
low temperature excitation energy per d.o.f. In an older theory by Einstein, which we
will meet below, all frequencies were assumed to be identical. This is often called an
Einstein spectrum and a piece of matter described with such a spectrum an Einstein
crystal.

All thermal properties of a Debye nanoparticle are determined by the spectrum
in (4.45). We will first use this to calculate the low temperature heat capacity, with
the expected 73 dependence. The heat capacity is the sum of the heat capacities of
the individual oscillators and is (see Exercise 4.2):

A\ 2 —hw; /T w 2 2 —hw/T
CZZ<@) e %/ N (@) .
- T (1 — e—hw;/T) 0 wp \ T (1 — e—hw/T)

(4.46)
With the substitution x = hw/T we have

T 3 phwp/T et
4
C=9N (—) / WS dx. (4.47)
hop ) Jo (1 —c)

First a check: For high temperatures the upper integration limitis small, hwp /T <
1, and the exponential in the numerator can be set to unity, whereas the denominator
is approximated by x2. This gives

T \3 [hwn/T T \3 Fwp 3
C~I9N|— 2dx =9N|— ) 15[ —==) =3N, (448
(iog) [ wae=on (i) o (552) =ov am

as expected (right?). This confirms that we got the numerical factors right.

In the more interesting limit of low temperatures, fuwp/ T is big and the integrand
in (4.47) is essentially zero when the upper limit is reached. We can therefore approx-
imate the integral by setting the upper limit to infinity. The integral is then simply
a temperature independent number and this gives us the T3 law without any further
ado. If we also want the numerical coefficient we need to perform the integral. It is
calculated to

o0 . e~ _ _ ﬁ
/0 ey _eix)zdx = (W=, (4.49)

where ( is Riemann’s zeta function. The low temperature heat capacity then becomes

120N T\ 120¢N /T
c~ 2T =T () (4.50)
5 th 5 TD
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Fig. 4.3 The thermal excitation energies at low temperatures of the positively charged 139 atom
sodium cluster. The dark line is the bulk heat capacity, scaled to the 3N — 6 vibrational degrees
of freedom. The dashed line is the fit to the experimental data with the Debye model. The fitted
temperature is 164 £ 10 K, consistent with the bulk value of 154K in Table4.1. Reprinted from
C. Hock et al., Phys. Rev. B, 84 (2011) 113401, http://prb.aps.org/abstract/PRB/v84/i11/e113401.
Copyright (2001) by the American Physical Society

or, expressing the Debye temperature in terms of the speed of sound (4.44),

272V (T
C~ ) 4.51)

5 \he

Figure 4.3 shows measured thermal energies in the NaT39 cluster at low temper-
atures. The good agreement between the experimental data and the Debye model
suggests a strong similarity between the vibrational spectra of bulk matter and the
N = 139 sodium particle. In particular there is no gap in the low energy part of the
spectrum. This would have been manifested as a strong decrease of the heat capacity
at low energies.

Measured Debye temperatures vary a lot across the periodic table. Table 4.1 lists
a compilation of literature data. For some elements several rather different values
can be found in the literature and the numbers in the table should be taken with a
grain of salt.

To find the high energy/temperature limit for the level density specific to a Debye
particle, we can use the general formula given in (4.37). This requires the calculation
of a couple of numbers related to the spectrum. The average is easily calculated:

M — éwD. (4.52)

W =75 4
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Table 4.1 Measured Debye temperatures (in kelvin) for some elements

Groupl Group2 Group3 Group4 Group5 Group6 Group7  Group 8

Li 376 Be 1000

Na 154 Mg3l18

K94 Ca 232 Sc 359 Ti 325 V 358 Cr 525 Mn 400 Fe 445

Rb 55 Sr 147 Y 256 Zr 299 Nb 241 Mo 450 Tc 454 Ru 555

Cs 40 Ba 110 La 207 Hf 252 Ta 258 W 330 Re 416 Os 467

Group9 Group 10 Group 11  Group 12 Group 13  Group 14 Group 15 Group 18
B 1250 C 1860 Ne 75
Al409 Si 675 Ar 85

Co 385 Ni 383 Cu 330 Zn 200 Ga 240 Ge 400 As 285 Kr73

Rh 415 Pd 279 Ag221 Cd 120 In119 Sn 185 Sb 200 Xe 64

Ir 425 Pt 230 Au 167 Hg 100 T1 96 Pb 86 Bi 120

The product of the frequencies is calculated as

3N 3N 3N
1_[ wj =exp | In l—[ wj = exp Z In (wj) . (4.53)
j=1 j=1 j=1

To an accuracy which is not worse than the physical assumptions involved in the use
of the spectrum, we can replace the sum of logarithms with an integral,

wp 2

3N wn
Z In (wj) x / g(w) In(w)dw = / 9NW—3 In(w)dw. (4.54)
j=1 0 0 Wp
Partial integration gives
3N
[Twi~wpe™. (4.55)
j=1

With the help of the general expression in (4.37) we can then approximate the high
energy limit of the level density of a Debye particle as

3 3N—-1
eV (E 4+ 3Nhwp)

(BN — )! (hwp)3V (high energy limit). (4.56)

pp(E) ~

For a free particle, replace 3N with 3N — 6.

An important fact of life is that interatomic potentials are in general not absolutely
harmonic. The finite, and usually positive thermal expansion coefficients are due to
the anharmonic components in the potential. This will render the Debye model less
precise at high temperatures, when T exceeds some fraction of /wp. Another factor



86 4 Thermal Properties of Vibrations

that blurs our nice and simple picture is the non-isotropy of the material that must be
expected to influence the vibrational spectrum, for example at the surface which is an
important factor in shaping the vibrational spectrum of nanoparticles. All this said,
we can nevertheless consider the Debye spectrum as a useful first approximation for
not too small particles.

4.4 Degenerate Oscillators

In an Einstein crystal all vibrational frequencies are identical, and for this problem
one can calculate the level density exactly. It is a sum of § functions, located at
multiples of the quantum energy. The canonical thermal properties of this system are
easy to calculate and we will leave it as an exercise for the reader (if it is still needed
at this point). The determination of the microcanonical partition function reduces to
the combinatorics problem of how many ways one can distribute Ny = E /hw units
into s boxes. The problem is equivalent to counting how many ways one can put Ng
cows into a stable with s enclosures when there is room for more than one cow in
each enclosure.! The trick to solve this problem is that, instead of placing animals
in enclosures, one lines up the animals and places the separators around them. There
are s — 1 separators. The first separator can be located in either of Ng + 1 different
positions, the next in Ng + 2 different positions etc. This gives a total number of
partitionings of (Ng + s — 1)!/Ng!if we could tell the separators apart. But we can’t
and therefore we need to divide by the number of permutations of them, (s — 1)! This
gives us a total of (Ng + s — 1)!/Ng!(s — 1)! ways to distribute Ng identical units
into s boxes.

Leaving agriculture and translating the result into level densities with the proper
unit conversions we get:

1 (s )
PE) =7 (L)i(s — D @57

The formula is still discrete and the level density should be understood as the ampli-
tude of the § functions at the energies indicated in the argument.

The situation described by the equation is rather unrealistic, one almost never’
has a collection of completely degenerate oscillators. It is nevertheless very useful
because it provides us with a quick estimate of thermal quantities in closed form.

It is useful to develop an intuition of how the factorials work in the ratios. As
a start we can find the high energy limit. The factors 1/Aw and 1/(s — 1)! already
appear in the general expression in (4.37) and it is only necessary to check the

1To avoid any misunderstanding of any kind whatsoever, it should be pointed out that the calculation
also works with pigs.

2This is the expression mathematicians use when they mean never.
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behavior of the rest of the expression, i.e. the factor in the dimensionless
variables. The check is best done on the logarithm of the fraction. Instead of using
the approximations of the I" function, we calculate directly the logarithm of the ratio:

(Ng+s—1)!
Nel

s—1

(Ng +s —1)! :
In (T) = i;ln(zv,; + ). (4.58)

If each term is expanded around Ng 4 s/2 we get the s — 1 leading order constant
terms In(Ng + s/2). The first order terms in i / Ng sum to zero because of our choice
of expansion point. To second order in s /(2Ng + s) the result is

In (M 4.59)

s—1 .
(i —+/2)?
~ (s = ) In(Ng +3/2) = 12

— (Ng + /)%

We see that the leading term in this approximation combined with the two factors that
are already factored out give precisely the same high temperature limit as calculated
for the general case, (4.37).

It is worthwhile spending a moment on the last term in (4.59). The sum can be
calculated but we approximate it with an integral and get

s—1

(i —s/2)? 1 $3
WNet2 W 46
; Vet W (4.60)

For a given energy per degree of freedom, Ng/s, this correction is proportional to
size, s. A numerical comparison of the left hand side of (4.59) with the first term on
the right hand side shows that this correction is rather small for Ng/s 2 1 and that
the leading order approximation can thus be used for the logarithm, at least when we
are interested in values per oscillator. What the approximately constant value of the
corrections per degree of freedom also says is that the quality of the approximation
calculated for 10 oscillators in Fig.4.4 can be considered essentially universal for
Einstein crystals.

The exact solution in (4.57) allows us to find an exact expression for the micro-
canonical temperature defined in Chap. 3 for this system. Instead of a derivative we
use a finite difference over the interval 2hw, centered at E':

_ In(p(E + hw)) — In(p(E — hw))_

4.61
B o (4.61)
Inserting (4.57) gives, with Np = E/hw > 1,
In ((Ng;s>§\1,vg+ls—1>>
8= e(Ng+1) (4.62)

2hw
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Fig. 4.4 The level density for 10 degenerate harmonic oscillators. The full line is the exact calcu-
lation and the dotted line the high temperature limit for the ten degenerate oscillators. The dashed
line is the high energy result including the next-to-leading order correction, as calculated in the text.
Even for energies as low as £ = 10, which corresponds to an average of one quantum per oscillator,
is the high temperature approximation rather good. Including the calculated correction makes the
approximation at E = 10 good to a 3 - 1073 relative precision

Then we can use that (Ng + 1)Ng ~ (Ng + 1/2)? and (Ng +s5 — 1)(Ng +5) &~
(Ng + s — 1/2)? to get

Nets—1 (s—D)h
11’1( Ili’Ei‘/z ) . In (1 + Eerhw/uZ))

= = , 4.63
b hw hw (463)
or, equivalently,
hw
T=—F—_. (4.64)
In (1+ 5205)
It is interesting also to consider the inverted expression, E((3):
hw — Dhw
E+—= (s(—) (microcanonical). (4.65)
2 efhw _ 1

This looks a lot like the analogous relation for the canonical case of s degenerate
harmonic oscillators:

(E) she T (canonical). (4.66)

= efhw _

The differences are the small offset of fw/2 in energy on the left hand side of (4.64),
and the apparent reduction in the number of degrees of freedom, from s to s — 1
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when going from canonical to microcanonical. This reduction was already seen in
the calculation of the high energy limit. In the case of degenerate oscillators we have
now seen that it works for arbitrary temperatures.

4.5 The Beyer-Swinehart Algorithm

The sections above have provided us with an approximate solution at high excitation
energies for any distribution of vibrational frequencies, and an exact solution for
all energies for the special case where all frequencies are identical. Those solutions
cover a large selection of the problems you will encounter in practice, and since
the solutions can be written down in closed form, they are particularly useful. But
obviously not all situations can be reduced to one of those cases.

Fortunately there exist a couple of methods to use in other situations. One is the
very powerful method known as the Beyer-Swinehart algorithm after the inventors. It
is numerical in nature, must be implemented on a computer and is therefore limited
to a reasonable number of oscillators. Precisely how many you will have to ask
your computer about, but compared to quantum mechanical calculations of realistic
frequencies, the computer requirements are usually minuscule.

The idea is very simple. The harmonic oscillators are independent and the energy
can be written as a sum of energies over individual oscillators. For such a system
the level density is a convolution of the level densities of the individual degrees of
freedom, as was already used when we derived the Boltzmann factor and defined
the temperature in Chap. 1. This means that if the set of » harmonic oscillators w;
have a total level density of p(E, n), one can find the total level density for the n + 1
oscillator system, where an oscillator with frequency w,.| has been added, as the
convolution

E
p(E,n+1) = / p(E — €, n) (Z 5(e — khwnH)) de. (4.67)
0

k=0

The sum in the bracket is the level density of the n + 1°th oscillator. The sum over k
runs to infinity, but p(E — €, n) can only be non-zero when the integer & is less than
or equal to [E /fwy,+1] ([x] is the integer part of x, i.e. the highest integer not larger
than x). If we integrate over ¢, the result is a discrete sum over all possible energy
partitionings;
LE/hwp1]
p(En+1)= Y p(E—khwni1,n). (4.68)
k=0

This is basically it. It is a recurrence relation and is well suited for implementation
on a computer. The recurrence is initialized by calculating the level density of the
first oscillator as the sum of § functions at the multiples of the energy quantum.
The final result does not depend on the numbering of the frequencies, although the
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intermediate level densities do. The result is exact up to the numerical precision one
choses to work with. The standard check for sufficient precision is to improve the
resolution until you reach a level density that does not change any more.

Because the Beyer-Swinehart algorithm is a convolution by nature, it can be easily
modified to account for anharmonicities in the vibrational spectrum. The presence
of anharmonicities mean that the harmonic spectrum ¢, (k) = kfw, where k is a
non-negative integer, is replaced by a general spectrum E, (k). The recurrence then
reads

P(E.n+1)=Y" p(E— Eysi (k). n). (4.69)
k

For molecules investigated by spectroscopic methods, anharmonicities in the poten-
tial are often represented by a Taylor series in the vibrational quantum number. The
leading order correction is negative in most, if not all cases, indicating a tendency
for the energy levels to become more closely spaced as one moves up in vibrational
energy. Such behavior is easily taken into account in the implementation of (4.69).
For completeness it should be mentioned that the sum in (4.69) must be limited
to terms where E,(k + 1) > E, (k). Otherwise levels move down in energy with
increasing quantum number. This is forbidden by mathematical theorems on eigen-
values as well as by common sense, and you can be sure that you have stretched the

fitted formula beyond its breaking point.

When anharmonicities are not important, (4.68) can be rewritten in a form which
allows a considerable saving in computational effort for systems with many degrees
of freedom. If one writes (4.68) with the energy E — hw, in the argument, it reads

[(E—hewn)/hen] (E/hwn]
pE—hwgmy= Y p(E~(k+Dhwgn=1)= 3 p(E—khwy.n—1).
k=0 k=1
(4.70)
Forming the difference between this equation and (4.68) at energy E gives
p(E,n) = p(E — T, n) + p(E,n — 1). (4.71)

The reduction in computing time is a factor which is on the order of the total energy in
units of a typical frequency, E /hw. This saving will often translate into a reduction of
computer time with a factor on the order of the number of atoms in the particle, which
can be important if the algorithm is used in a trial-and-error fitting of experimental
data, for example.

Incidentally, the problem of counting how many ways one can distribute a certain
amount of energy on a specific number of oscillators with specified frequencies is
equivalent to the problem of how many ways one can change a certain amount of
money. Figure4.5 shows the calculated values for the Swedish kronor which used
to have the denominations 0.5, 1, 5, 10 kr (all coins), 20, 50, 100, 500 and 1000 kr
(notes). The high numbers would be very time consuming to find with a direct count.
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Fig. 4.5 The number of ways to change the amount of money given on the abscissa with the
denominations of the money units given in the text. Also shown are the number of ways if only
coins or only notes are used. The trivial change (100 kr — 100 kr) is included in the number. Clearly
the number is not additive with respect to the number of different denominations used, although the
logarithms seem to be approximately additive (see Exercise 4.7)

4.6 Vibrational Level Densities from Canonical Quantities

Recurrence relations are by nature very compact and easy to program but are also
completely opaque; there is no way one can understand from one of these algorithms
how the final result looks like and it will be very difficult to see whether one ends up
with exponentially growing solutions, solutions that grow like powers of the energy
or even super-exponential solutions. Fits of experimental data must then very often
be performed as trial and error in the vibrational frequencies, running a code a large
number of times. For molecules with a large number of vibrational degrees of freedom
this can be very taxing for a computer (and for the patience of a scientist). So however
much we appreciate a procedure that, like the Beyer-Swinehart algorithm, gives us
exact results, it is always good to have a general and analytical approximation for
a problem. A couple of more or less schematic methods were given earlier in this
chapter.

Itis possible to combine the transparency of analytical solutions with the accuracy
of exact numerical procedures. The procedure derived in Chap. 3, which is based on
inversion of the canonical partition function, (3.463.47) is of almost similar accu-
racy as the Beyer-Swinehart algorithm when the discrete nature of the excitations is
ignored, and for large systems it is vastly faster because the level density for a specific
energy can be calculated with a few iterations of (3.46) and a couple of algebraic
operations. Because we now have the tools to judge the quality of the equation by
comparison with exact results calculated with the Beyer-Swinehart algorithm, we
will do this.

Figure 4.6 shows the errors in the level densities calculated with (3.47, 3.46) for
the vibrational frequencies of a Lennard-Jones cluster of 55 atoms. To appreciate
the precision of the result obtained with the approximate inversion formula, two
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Fig. 4.6 Comparison of
approximate equations for
level densities with the
numerically exact
Beyer-Swinehart calculation
for the 55 atom
Lennard-Jones cluster. The
full line is the ratio of the
Beyer-Swinehart calculation
to the values given by (3.47),
and the dotted line is the
Beyer-Swinehart result o
divided by Haarhoff’s
approximation (see Sect.4.7)
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arrows in the figure have been inserted at energies of £ = 0.1sh{w) = 15.97(w)
and E = 37h(w). The good agreement already at the total energy content of three
average quanta is quite remarkable. The oscillations below that value are due to the
discreteness of the excitations and cannot be reproduced with (3.47).

Another advantage of the algorithm is that its applicability extends beyond the
reign of the Beyer-Swinehart algorithm, which is designed only to handle vibrational
degrees of freedom. All types of excitations can be handled with a method that
converts canonical to microcanonical partition functions.

4.7 Other Computational Schemes

In addition to the method developed above there are two other functions in frequent
use in the literature, due to Haarhoff and to Witten & Rabinovitch, and this chapter
would not be complete without mentioning these methods. Both attempt to solve the
problem of the low energy end of the spectrum, which is the obstacle to obtaining
reliable vibrational level densities.

The idea behind the Witten & Rabinovitch method is to approximate the low
energy level density of a system of oscillators with a varying, energy dependent
number of oscillators. When the excitation energy per degree of freedom is reduced
to values that compare with the vibrational frequencies of the particle, degrees of
freedom will begin to freeze out. Vibrations with quantum energies several times the
average energy per degree of freedom will be excited so rarely that they contribute
only little to the total level density.

This freeze-out is mimicked by an energy-dependent reduction of the parameters
that appear in the high energy limit. One of these is the energy offset, which we have
seenis 1/2 )", fw; in the high temperature limit. The other is the number of degrees of
freedom, which appears as the power on the energy. This is sound physical reasoning,
but in practice the determination of the effective values of these parameters, valid
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for any molecule, is less than straightforward, and they were found by Witten &
Rabinovitch by a fit to values calculated numerically for fairly small molecules. Two
different expressions were needed, covering different energy regions, and containing
a lower energy cut-off below which the theory is undefined. For large particles with
1000 vibrational degrees of freedom, say, the algorithm is often off by a very serious
amount, and in summary it cannot be recommended for nanoparticles.

The method developed by Haarhoff is essentially a high temperature expansion.
The quantity expanded is the Laplace transform of the level density, i.e. the canonical
partition function. The expansion is then transformed back. Some tricks are applied
to include higher order terms, and the procedure gives a single formula for the
level density, in terms of scaled parameters. The theory has the appealing feature
that the result is obtained in closed form, but it fails at low energies and for large
particles. The low energy failure is almost unavoidable because the method is based
on an expansion in powers of the reciprocal excitation energy. Given the other tools
presented in this chapter (the Beyer-Swinehart algorithm for small particles and
the canonical-microcanonical inversion for larger particles) the Haarhoff equation is
practically obsolete.

4.8 Level Densities from Bulk Properties

We have spent some time calculating level densities based on the assumption that
excitations can be build by vibrational excitations, and sometimes even harmonic
ones, to boot. This is not completely realistic. There are usually a number of effects
that will destroy this simple picture. One is thermal excitation of valence electrons.
This effect is treated in detail in Chap. 10. Another is anharmonicities in the vibra-
tional motion of the nuclei. This effect can be treated with a modification of the
Beyer-Swinehart algorithm, as mentioned above, but only up to some temperature.
Yet another effect is the very strong anharmonicities associated with melting.

For a number of elements these effects can be quite strong. Heat capacity mea-
surements of bulk materials at elevated temperatures will often show values higher
than the Dulong-Petit value of 3kg per atom, even below the melting temperature.
Figure4.7 illustrates the problem with plots of experimentally measured bulk heat
capacities of several elements.

Often one does not want to attempt to account for these effects one by one but
simply chose to extrapolate the bulk thermal properties to finite sizes. There is no
guarantee that this will give a good representation of the finite size particle, of course,
and the judgement must ultimately be made by experiments. If one does chose to do
the extrapolation, level densities can be extracted with simple means now we have
established a connection between canonical values and level densities.

Thermal properties will often be represented by a caloric curve, E(T) or by a
table of heat capacities vs. temperature, C,(T), i.e. the heat capacity at constant
and ambient pressure and not at constant volume, C,(7T). For condensed matter
the difference is small and we will ignore it and use C, to denote the measured
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Fig. 4.7 Experimentally measured value of the heat capacity per atom for some metallic elements.
The curves start at room temperature and end at the melting points. The dotted line is the Dulong-
Petit value. Measured values are heat capacities at constant pressure, not volume, hence the subscript
p- The difference between the two for a condensed phase is usually marginal

values. By division with the number of atoms one gets the values per atom, e(T),
and ¢, (T'). To get the corresponding curves for a particle of N atoms one would to a
first approximation multiply with N. For free particles this overestimates the number
of degrees of freedom by 6, viz. the number of d.o.f.’s that represent translational and
rotational motion and that are not present as vibrational motion. Effectively there are
two thermal atoms fewer than inertial atoms in a free particle. The reduction of the
effective number of atoms holds only if the heat capacity is carried predominantly
by the motion of the nuclei, but this should be a good approximation in most cases.
The particle thermal properties are therefore given as

E = (N —2e(), 4.72)
C, = (N —2)ey(T), 4.73)
T
S(T) = (N — 2)/ Soar, (4.74)
o I

if only internal degrees of freedom are included. With these input functions all ingre-
dients are in place to use the connection between canonical properties and micro-
canonical level densities given in (3.46, 3.47) that can be used without any further ado.

Exercises

4.1 Show that the mode in (4.16) is indeed a zero mode for its Hamiltonian.
4.2 Show that the heat capacity for harmonic oscillators is given by

efhw,v/T

A \?
C = Z (T) —(1 mperyel (4.75)
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and show that the leading order high temperature limit is independent of the frequen-
cies. This limit is the Dulong-Petit law when given for a mole. Calculate this value
in units J/K mol.

4.3 Find the leading order correction to the low temperature 7> heat capacity of a
Debye particle.

4.4 Find the high energy entropy of a Debye crystal.

4.5 Use the Debye temperatures to find the speed of sound in five different elements
of your choice.

4.6 We will try to verify the calculation of the level density of degenerate harmonic
oscillators. For this purpose we will use induction and the solution in (4.57) in the
dimensionless form with N = E /hw.

Let’s first verify that the equation holds for an arbitrary positive integer N and
one oscillator, s = 1. Since 0! = 1, one calculates one possible state, which is indeed
true. The question is whether it is true for s 4 1 if it is true for s. To show this, we
calculate the convolution of the number of states at energy N for s oscillators with
the corresponding number for a single oscillator. This should give number of states
at energy N for s + 1 oscillators. (Note that if you want to check this formula with
(4.57) that the values of the s that appear in the two equations differ by one.) Use that
the level density of a single harmonic oscillator is a sum of equidistant § functions

to show that the number is
N

(N+s—1-1i)! e
ggﬁvfﬁﬁtTi (4.76)

To calculate this sum, first prove the relationship between ratios of factorials:

(p+ 1! . p! n p!
m(p+1—m) ml(p—m) (m—D(p+1—m)!

4.77)

where p and m are arbitrary non-negative integers with p > m. With standard nota-
tion this can be written as

(p21)=<£>+(m31)~ (4.78)

Use this relation recursively to show that

p+1\ _~~(P—J
< . >_;<m_j>. (4.79)

Make the proper identifications and show that this is the desired result.
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4.7 The number of ways you can change a certain amount of money is illustrated
in Fig.4.5 with values calculated with the Beyer-Swinehart algorithm. For Swedish
currency the number depends on the different denominations of coins and notes put
into circulation by Sveriges Riksbank. From the figure it seems that the number
obtained for coin-changes-only and the number for notes-changes-only multiply
approximately to the correct number, i.e. they are multiplicative, not additive.

You can show that this is expected, under some conditions. Assume that the
coins-only curve, C(A), is proportional to A%, and the notes-only curve has a similar
behavior, N(A) o A?, where A is the amount and o and 3 are dimensionless num-
bers. Calculate the total number of possible changes. What is the condition v and
G must fulfill for the logarithms of the two curves to be strictly additive, and what
happens if this condition is not fulfilled?

4.8 Integrate (4.71) with a Boltzmann factor to find a recurrence relation for the
calculation of the corresponding canonical partition functions.

4.9 The subject of this problem is to derive an alternative expression for the harmonic
oscillator level density in (4.37). Like that equation, it will be valid for high energies.
The strategy is to take the known canonical partition function and approximate it
with a form for which the level density is known. Step one is to multiply and divide
the canonical partition function with the partition function for the same number,
N, of harmonic oscillators but with a common frequency, w’. Next, multiply and
divide by the ratio ]_[[N= 0 €Xp(—f(w" — w;)/2), where the w;’s are the frequencies of
the problem. Then expand the factors (1 — exp(—(w)) exp(Sw) in Bw. This gives
factors of the form Bw + (Bw)3/24 + - - - (with subscripts or primes, as it may be).
Extract the factors Sw. This gives factors of the type

W 1+ 2 (Bw;)?

_— 4.80
wi 1+ 3 (Bw;)? (50

Expand the product of these to first order in (3w)? and set the coefficient of 5 to
zero. This defines the choice of w’. Show that the canonical partition function then
becomes

N /N
3. ‘ ’ w
Z~(1—e W)y N ]e 02—, (4.81)
i=1 [T wi

with the choice w’ = /3" w?/N. Use this to extract the level density.



Chapter 5 ®)
Rate Constants for Emission of Atoms Geda
and Electrons

One of the most important types of processes in the physics of free nanoparticles is the
emission of energy in some form. Particles flying around in vacuum with excitation
energies beyond those that correspond to ambient temperature will sooner or later
emit their excess internal energy. This is bound to happen, because even in vacuum
will the particles interact with the rest of the world by radiation and sooner or later
equilibrate to the temperature they see from the walls of the vacuum chamber. But
emission (and absorption) of photons is not the only possible relaxation mechanism.
Particles can also emit massive fragments like electrons, atoms or small molecules.
Emission of massive particles or electrically charged particles is much easier to detect
than photon emission. Lose one photon and you may or may not (usually not) change
the external attributes of the particle a lot. Lose one electron and the motion in electric
and magnetic fields is completely changed.

Although equilibrium will set in sooner or later, ‘later’ may be after a very long
time. This open the possibility to use the quasi-equilibrium processes as diagnostic
tools, and it is therefore of major interest to be able to describe the behavior of the
particles before any external equilibrium can be established.

The general framework for the description of dissipation of excess energy is pro-
vided by the theory of unimolecular decay. As the name suggests, unimolecular
decay involves only one precursor molecule, that is, the reaction is not provoked by,
for example, the collision of two molecules. This chapter will teach you the basics
of the theory for these types of decay. It is implicit in all the following considera-
tions that the internal equilibration times in these reactions is much shorter than any
equilibration time due to interactions with the surroundings.

The possible thermal reactions are, representing particles as composed of a single
species of monomers, X, for simplicity:
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X% — X% _, +Xu  evaporation (5.1)
X4 - x4 yen thermionic emission (5.2)
X - X% +hv radiation (5.3)
X4 — X9_,, + X977 fission (5.4)

Only the first two will be treated in this chapter. In the chemical literature, the theory
describing this type of reactions is often referred to as transition state theory. A
separate chapter is devoted to thermal radiation. Fission processes which, like the
other processes in the list, can be partly direct and partly thermal, will not be treated
at all. There are applications where fission plays an important role, as for example in
electrospray ion sources, which is a very gentle method for producing gas phase ions,
but their description usually involves only thermal processes as a minor ingredient.

The starting point for a theory of something changing, A — B, is to be able to
tell A and B apart. Is it a meaningful question to ask if this particle has lost an
atom during the preceding 10 ws? The answer is yes. We may not know the answer
if we didn’t do the measurement, but at least we can tell the difference between a
particle containing 92 potassium atoms and one containing 91. There is only a small
part of the total number of states explored by a free particle that cannot be assigned
either one of these two labels. As another example, consider a neutral Wy cluster
which emits an electron 3 s after being hit by a light pulse from a laser. During
perhaps 10 fs the electron is on the way out, not part of the cluster but not yet free
to do as it pleases. We cannot really say if the cluster is neutral or charged. After the
electron has been emitted, the cluster is charged and flies through a Time-of-Flight
mass spectrometer for 50 s and is then detected. The bottom line is that the state
of uncertainty for us only lasts a very short time compared to all the time the cluster
spends as an object with well-defined mass, charge and energy.

In terms of phase space, there are therefore different parts that can each be labelled
practically unambiguously by the size of the particle, by the charge state and by
the energy. Considering a single, specific reaction, this implies that we can divide
the phase space into a reactant (or parent) part and a product (or daughter) part.
Unimolecular reaction theory describes quantitatively the rate constant of crossing
from the reactant part of this phase space to the product part. The idea is illustrated
in Fig.5.1.

Figure 5.1 is also intended to suggest that a decay is a rare process, properly under-
stood. The system rattles around for a long time before it manages to hit the small
connection between the two parts of phase space. Time constants of microseconds
are routinely encountered in experiments, and although this seems extremely fast
at first glance, it is not. The classification of fast or slow should be made by com-
paring to an equilibration time, i.e. the time it takes for an initial excitation to be
dissipated into all possible degrees of freedom. If the time constant is long compared
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Fig. 5.1 A schematic
representation of the phase
space describing a
unimolecular reaction. The
process for which we want to
determine the rate constant is
indicated by the arrow
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with this, the decay is slow, by definition.! A slow decay ensures that the decaying
system samples a representative part of the phase space before it decays. This is
known as complete statistical mixing. In nuclear physics, which has contributed a
lot to the development of the contents of this chapter, this is known as the formation
of a compound nucleus.

Statistical mixing or compound particle formation means that decays occur inde-
pendently of the way the excitation energy was brought into the particle. When the
particle decays, is has effectively forgotten how it was excited initially, apart from the
conserved quantities of energy, momentum and angular momentum.? In this situation

the decay is exponential
P _ kP (5.5)
e ’ )

where P is the population and k is the rate constant we want to calculate in this
chapter.

Before we start deriving equations for k, it is worth emphasizing the background
for the exponential decay. In spite of the frequent occurrence and even more frequent
use (and occasional abuse), it actually only pertains to the special situations where
the system decays out of a single state. In radioactive decay, such single initial states
are the norm because decaying nuclei tend to exist in a specific quasi-stable quantum
state. It is also observed in thermal decay processes, in situations where the energy
distributions are continuously being reestablished by collisions and whatever form of
mechanisms one has for exchange of energy and other quantities. Then the population
has a practically constant distribution of all the quantities that determine a reaction

IThis is an example of the general principle that only dimensionless quantities can be considered
big or small. Big or small, fast or slow or any other quantitative adjective always refers to some,
often implicit, reference value.

2The linear momentum will turn out to be conserved automatically by implementation of energy
conservation because it is a two-body problem.
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rate, in particular the energy. Then the decay occurs, by definition, from a single
state, although this is not a pure eigenstate of the Hamiltonian.

In settings where the rate constants compare with or are higher than the equili-
bration times, the situation changes. Precisely how decays then proceed will be the
subject of a later chapter. On the other hand, it is important to keep in mind from
the start that this does not in itself invalidates the characterization of the decay of a
single, isolated particle as exponential in time.

The decay of an isolated particle with complete statistical mixing therefore
belongs to the special class for which exponential decays occur, and it make good
sense to continue with the development of the theory for this type of decay.

5.1 Atomic Evaporation

The first rate constant that will be calculated describes atomic evaporation. The
calculation will serve as a template for the treatment of other types of decay, and
we will go into some detail with the derivation. To define the involved phase space,
imagine you enclose the system in a box with walls that reflect all particles when
they hit and that you then leave the system alone for long enough for the particle
to evaporate an atom and recombine with it a large number of times. We have a
stationary distribution which, on the average, does not change with time. If probed
at some random time, the system will then be found in the two states, ‘reactant’ and
‘product’, according to the statistical weights of these two parts of the system. The
statistical weight of one of these systems is the number of quantum states available at
acertain energy or, in the classical description, of the volume of phase space assigned
to the state. Correspondingly, they are the level densities times some small energy
interval, p(E)JE.

Stationarity requires that the rate of going from one part of phase space into the
other is the same as the rate going the other way. These rates are the rate constants
times the respective populations. We therefore have

wkformatiun = Lkdecayv (56)
pp(E) + pr(E) pp(E) + pr(E)

where subscripts P, r refer to product and reactant states, respectively. The prod-
uct state includes two particles (of size N — 1 and 1), hence the capitalized P.
The argument leading to (5.6) is the principle of detailed balance. The principle is
founded on microscopic reversibility which in turn expresses that the modulus of a
matrix element for a process is the same as for the inverse process. It is the basis of
the second law of thermodynamics. The second law of thermodynamics states that
the entropy of an isolated system increases with time or remains constant when the
system is in a steady state or during a reversible process. In equilibrium, regions of
phase space are populated proportional to their volume, and this is also what gives
the maximum entropy for the given constraints. Violation of detailed balance would
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Fig. 5.2 The capture rate.
The concentration of the
particle is 1/ V which,
together with the volume
covered during the time
interval dr gives the
probability of capture during
that time interval

vdr

make it possible for a system to develop away from that distribution, toward lower
entropy.

It is therefore hard to get around (5.6). The only requirement that must be fulfilled
for the use of detailed balance is that decay and formation happens statistically,
because only then can level densities be expected to represent the states of the system.

The ratio of level densities in (5.6) is the normalized population of the two species.
If we know one of the rate constants & rormazion OF Kgecay and the level densities, clearly
we know the other rate constant. It so happens that we can calculate the rate constant
for formation. For the evaporation of a single atom from a particle the inverse process
has a formation rate constant of

1
kformatian = VJ(U)U’ (5.7

where v is the relative speed and o is the cross section for fusion of the atom and
the product particle, and 1/V is the concentration of the particle. The calculation is
illustrated in Fig.5.2.

As indicated in (5.7), the capture cross section may depend on the relative speed,
or kinetic energy, of the two particles. One may also specify the relative angular
momentum, which has some advantages when the problems are formulated quantum
mechanically, but we will stick with the energy dependence. It should be stressed
that the use of the cross section is not just a fancy way of introducing a fit parameter
with no physical importance. The cross section is a real physical quantity that can
be measured in independent experiments. It is sometimes parametrized in terms of a
sticking coefficient which is the ratio of the attachment cross section to a geometric
cross section. A convenient definition of a geometric cross section for X y_; and X
colliding is 04e, = 7rr12(1 + (N — 1)/3)2, where the monomer radius r is related to
the bulk particle density, pj, by the relation p, = 3/(4rr;), provided the densities
are identical to bulk densities. A little more general it can be written as oy, =
T(ry—1 + i)’

However, we also know that cross sections need not refer to some geometric
size values calculated from tabulated bond lengths or bulk densities. It can easily
be different, both larger and smaller. A cross section may be exactly zero below
a certain collision energy. This will be the case when you have a threshold for
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attachment of the atom to the product. This situation is often found in chemical
reactions and is dealt with by adding the barrier height to the activation energy for
the process but can equally well be understood in terms of the cross section. Another
type of cross section arises when the two fragments interact with attractive long range
potentials. Section5.6 will present calculations for several simple intermolecular
potentials of both attractive and repulsive types and relate them to kinetic energy
release distributions.

The classical approximation for the motion of the small fragment in the reverse
process of attachment is usually a good description for atoms or heavier fragments
colliding with a large particle, because the de Broglie wavelength of the atom is much
smaller than the dimension of the particle (see Exercise 5.9), and we rarely need to
worry about quantum corrections to the classical collision cross section.

With these caveats we can combine (5.6, 5.7) to get the decay rate constant:

K(E) = Loy PP2E)
V. pe(E)

(5.8)

We have eliminated the subscript decay on k because from now on we will only deal
with this constant, unless otherwise mentioned. Equation (5.8) is almost the desired
result, but we can be a little more specific. The level density of the product, pp, is
that of the system comprising the free atom and the product particle. We know the
density of states for a free atom with mass m and degeneracy g which was given in
(2.63):

dx dp
dn=g AR 5.9
corresponding to a free particle translational level density of
74 3/2
pde = g47rx/§%51/2d5, (5.10)

where ¢ is the kinetic energy of the atom. Because we are dealing with a two-body
problem, the mass m is the reduced mass of the atom and the product particle, and €
is the sum of the two translational energies in the center of mass system. Often these
can be approximated by the values for the atom alone. The factor g is any degeneracy
the atom may have, for example due to an intrinsic angular momentum. If we specify
the rate constant with respect to the kinetic energy of the atom, the product level
density is
3/2

d%pp(E, 6) = g4ﬂﬁv%6]/2pp(E —E,—o), (5.11)
where p, is the level density of the size N — 1 product particle. This level density
denotes the internal degrees of freedom of the product particle alone. The parameter
E, is the activation energy required to remove an atom from the reactant particle.
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ground
state

ground a
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Fig.5.3 The energetics of unimolecular decay. Vibrational levels are indicated schematically by the
horizontal lines. The arrow indicates the decay at constant total energy. The kinetic energy release
and the internal degrees of freedom of X are set to zero for simplicity. When added, they will tilt
the arrow slightly downward. The activation energy is the difference of ground state energies, as
indicated. By energy conservation, the excitation energy of the product is reduced by this amount

This energy, and the kinetic energy ¢, are both extracted from the internal degrees of
freedom of the particle and hence must be subtracted from E in the argument of the
level density. Figure 5.3 illustrates the situation.

Together with (5.8) the level density in (5.11) gives the rate constant for atomic

evaporation
m pp(E B Ea B 6)
k(E,e)de = ngf_ﬁo(e)e o (E) de. (5.12)

The volume has disappeared from this expression, which is certainly comforting. On
physical grounds we do not expect some arbitrary volume to influence the evapora-
tion rate constant (if it is not too small, see Exercise 5.2). The volume would have
been relevant if we had instead considered the relative populations of N and N — 1,
because the translational entropy depends on the volume.

Equation (5.12) is the Weisskopf formula for evaporation of particles from ...
whatever. It was originally derived to describe neutron evaporation from excited
nuclei but is rather general and equally good for nanoparticles. There is no size or
energy restrictions on the applicability of detailed balance. The application of the
formula is particularly simple for particles that interact with a spherical or almost
spherical potential, because the capture cross section, which may not be available as
an experimentally measured parameter, can then be modelled. If the capture cross
section is known there is little reason not to use this formula.

We need to account for momentum conservation. One may wonder why energy
conservation is implemented but conservation of linear momentum is not in (5.12).
Surely linear momentum is as conserved as energy! But this conservation law is
actually taken into account implicitly. Formally one could write the level density of
the final state as a phase space integral over the two particles in the final state and
implement momentum conservation with a § function in the difference between the
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initial and final momenta. Integrating over one of the particles’ momentum, that of
the heavy particle say, will cancel that momentum and the ¢ function and leave us
with the phase space integral over one momentum. But this is exactly what we are
doing when we interpret the mass and the kinetic energy as pertaining to the outgoing
channel and not to the atom, so we do not need to go through that particular piece of
x-erei.’

We can integrate over the kinetic energy of the decay channel with the use of the
microcanonical temperature of the product (daughter) particle, T,. We expand the
level density of the product

pp(E —E, —¢) ~e“/Tp (E - E,). (5.13)

With the definition -
[y o@eexp(—e/Ty)de

(o) (5.14)
fOE eexp(—e/Ty)de
we get the total decay rate
m pp(E — E,)
k(E) = I : 5.15
(B) = g (o) 22 (5.15)

For cross sections that do not vary too strongly with energy, the integrand in (5.14)
peaks around € ~ T,, and in these cases we have (o) =~ o(Ty). This is useful for a
first estimate and often also sufficient for the second, but should be used only for the
calculation of the total rate constant. Describing kinetic energy release distributions
requires that the energy-specified cross section is retained.

5.2 Rate Constants with Microcanonical Temperatures

The ratio of the level densities in (5.15) is the most strongly varying factor of any
unimolecular rate constant, not just for atomic evaporation, but equally well for
thermal emission of both larger and smaller particles. As discussed in Chap. 3, this
ratio can be approximated with a Boltzmann factor to give an Arrhenius rate constant
if the temperature used is the finite heat bath temperature, roughly the average of the
precursor and the product microcanonical temperatures. It also requires a redefinition
of the activation energy. The expression is, with the prefactors calculated here, given
by

29 (VT2 2(E + E, — E)»—ve ElT, (5.16)

E) =
k(E) w2h3 ay

3Einstein’s expression for unnecessary use of formulae. Wordplay on ‘Hexerei’ (witchcraft).
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where the parameters a;, E; (i =r,t) are defined through the level density p; =
a;(E+E;)* E,=E,+ E, — Ep,, and T is defined as

E+E —E/J/)2 1 E? 1 E?
I=——"—7/""——-—-= + 5= +oo (5.17)
s 12sE+E, 245 (E+ E,)?

with 5 the average of s, and s,. m is the reduced mass and g the degeneracy of the
atomic fragment.

As already mentioned, a few points should be kept in mind when using these
equations. One is the cross sections which, as already mentioned, do not necessarily
have values equal to any simply defined geometric size. The second is the reliability
of the level density calculations. Very precise calculations of harmonic oscillator
level densities may be completely invalidated by anharmonicities and other effects
and, as we have seen from Fig. 4.7, anharmonicities do occur.*

It is possible to test the validity of the formula for w by comparison with macro-
scopic data. The factor in front of the ratio of the level densities needs to be integrated
over ¢ to be understood as a frequency factor, w. For a comparison with the bulk data
the capture cross section must be set energy independent and geometric, assuming
that a gas molecule sticks to a surface of the same material with unit probability, i.e.
has a sticking coefficient of one. This is usually the case. Zinc behaves differently, but
this is one of the few cases where soft like-on-like collisions do not lead to automatic
fusion. The frequency factor then becomes

oy = 2L oI (E + E, — Ej)"™ (5.18)

m2h3 a,

where the capture cross section is the geometric, o = 7rr12\, = 7rr12N 213, We will
absorb g into the a-coefficients and use the harmonic oscillator values, a,/a, ~
(hw,)?* (BN — 8.5)3. Together with the energy in the parenthesis and the fact that the
reduction in heat capacity, s, — s, is 3 for harmonic oscillators and evaporation of a
single atom, we get

Wy TrEN?BT ! (hw,)?, (5.19)

2R3
where w, is the geometric average of the vibrational frequencies, assumed identical
for reactant and product.

This value can now be compared with observed macroscopic values, as derived
from measured vapor pressure data. With the parametrization

P = Ae B/T, (5.20)

the empirical parameter A is related to w. Using the ideal gas law to relate the
condensation and evaporation in equilibrium gives

“4This is a case where the distinction between precision, accuracy, and reliability is essential (see
preface to first edition).
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Fig. 5.4 The calculated 10" 3
frequency factors, exclusive ]
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with (5.19) vs. the 3
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where v is the average thermal speed of an atom in the gas, and S a surface area.
Cancelling the exponentials we get

A_ 8
w=—=vS=A,/—S. (5.22)
T mmT

Values for w calculated with (5.22) and (5.19) are shown in Fig. 5.4 for a number
of elements, plotted against each other. The elements shown are the ones for which
the experimental data have been fitted with the equation P = A exp(—B/T) in the
range from room temperature to the melting point. The two equations for the w’s
have different temperature dependences, but both are weak, and the values for the
figure are calculated with the midpoint of the range used to fit A. The areas S and
o were both set to 7rr12, i.e. the area of one atom, with r; calculated from the bulk
density.

The values for the w’s given by the Debye frequency are also shown in the figure
from the same elements. For the vibrational quantum energy /uw, in (5.19), the values
hwpe~!/3, calculated in (4.55), were used. All Debye temperatures were below the
lowest fitted range, except for one (Li, with Tp = 376 K). The vapor composition
is in all cases shown measured to be overwhelmingly or exclusively monomers.
Note that the different notation for the Debye frequency and the observed/calculated
frequency factors is purely notational and no factor of 27 has been left out in the
comparison.
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The agreement between calculated and measured values is fairly good, with
only a single outlier (tin). The good agreement is partly due to the relatively low
temperatures; all the data points refer to solids. At higher temperatures, if not before
than at least above the melting point, one expects deviations from any calculation
that uses harmonic vibrations as an essential input.

In heuristically justified theories the value of w is often identified with the typical
vibrational frequency of the material, often represented by the Debye frequency,
although this is manifestly not correct. The misconception has been kept alive by the
fact that the two time scales differ by only two orders of magnitude. A difference
of this magnitude can easily be hidden in experimental uncertainties if the data are
measured on millisecond time scales, say, but Fig. 5.4 leaves no doubt that the Debye
frequency gives a poor prediction for the frequency factor. This should not surprise; it
is not designed for that purpose. Below we will see calculations of even much larger
frequency factors which you need to be very crude, even on a logarithmic scale, to
approximate with any intrinsic vibrational frequency in the particles.

The fact that w is often larger than the vibrational frequency also means that it
will be larger than the inverse thermal equilibration time, or the time needed for
an excitation to dissipate into accessible degrees of freedom, because equilibration
times cannot be shorter than the typical vibrational period. Rate constants that are
higher than the inverse of this time cannot therefore be expected to be correctly
described by (5.12). If one takes the hint from nuclear physics, the breakdown of the
complete mixing assumption occurs when the energy per degree of freedom is a good
fraction of the activation energy, E,, 0.3—-0.4. This suggests that (5.12) is good after
equilibration times of 0.1-10 ps and longer. If the system decays before statistical
mixing is achieved, the description depends on more system specific parameters
and must include some dynamics. Also the precise time for the crossover from
a dynamics-specific decay to a statistical decay depends on the system. We will
continue to work with the assumption of complete statistical mixing unless explicitly
mentioned.

5.3 Large Fragments

When the small fragment evaporated is a molecule instead of an atom, it will contain
internal degrees of freedom beyond just degeneracies, viz. rotational, vibrational
and electronic. Some of these will be activated, in particular rotations, but often also
vibrational motion and occasionally even electronic motion, for low-lying excited
electronic states. This is the meaning of the word ‘larger’ here; more than just trans-
lational degrees of freedom. With the low quantum energies of rotations, large is
almost automatically equivalent to two or more atoms. The degeneracy factor g in
(5.12) is a special case of a small fragment with internal degrees of freedom. It is
energy independent and just gives a multiplicative factor. This special case need not
change our definition of large.
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Any degree of freedom which is thermally activated will contribute to the total
level density for large fragment and add to the entropy of the final state. This will
usually increase the decay rate constant, although this increase will be reduced by the
loss of degrees of freedom of the larger fragment. The rotational degrees of freedom
play an important role here, beyond their low quantum energies. If we calculate the
degrees of freedom before and after the decay and for simplicity assume all rotational
and vibrational degrees of freedom are active and electronic are not, we see that we
lose some vibrational degrees of freedom and gain some rotational. For two products
emerging from the single reactant, all considered non-linear, the changes are —6
for the vibrational and +3 for the rotational degrees of freedom. For a single linear
product, as produced in dimer evaporation, the changes are —5 and +2.

Although the bulk part of the level density is vibrational, the loss of a few of those
usually does not change it by a significant amount compared with the gain in entropy
from the appearance of just a few more rotational degrees of freedom, because of
the large ratio of the quantum energies of the vibrational and the rotational degrees
of freedom. The larger the fragments, the larger the moment of inertia and therefore
the smaller the rotational constants and the higher the rotational entropy. For decays
of e.g. biological molecules which can break up into fragments composed of tens of
atoms or more, the gain in rotational entropies can be very large.

Before we embark on a quantitative calculation of these effects, it is necessary to
consider to which degree detailed balance is capable of describing such a situation.
The critical point is the question whether or not the inverse reaction capture cross
section is easily parametrized and does not require a geometric factor. If present
such a factor can potentially suppress the cross section by a very large factor if, for
example, precise orientations of both molecules are needed in the collision.

To formulate the question quantitatively, we note that the Ansatz of compound
particle formation does not imply that the fragments need to fuse on the time scales
that characterize a collision. The requirement is less severe, namely that the product
is incorporated into the final state of the particle/cluster/molecule and equilibrates
to internal degrees of freedom before it decays again. Otherwise a calculated rate
constant would not describe the decay of the fused state, i.e. the state we are interested
in describing the decay of. This is illustrated schematically in Fig.5.5.

By the same token, decay processes need not happen in one step but can occur
through a partial detachment of the fragment followed by a complete dissociation at
a later time. One advantage of the detailed balance description is that such details
of the process need not be known. Complications only arise if the intermediate
configurations carry appreciable statistical weight relative to the total density of
states, in which case the problem reduces to the technical problem of including them
into the level density.

For a more quantitative consideration let’s reduce the question to the bare bones,
and make the simplifying assumptions that there is a single intermediate state,
denoted by i, and it is similar to the ground state, denoted by 0, with respect to
vibrational properties, specifically the level density. The indicator i can also refer
to isomer, which is the standard cluster notation for a configuration different from
the ground state and for which all the vibrational frequencies are real, corresponding
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to the absence of negative eigenvalues in the Hessian. Chemists prefer to call them
conformers. We can group the states |A), |B), |C) into one intermediate, |i). Then
the whole reaction scheme for attachment and dissociation is

|p) = 1i) = 10). (5.23)

The attachment reaction moves from left to right, and the dissociation back again.
The dissociation may happen after several attempts where state |i) is populated and
decays to |0) without causing any modifications of the theory. The crucial question
is if such processes also happen for |p) and [i).

An example of a situation approximately described by this reaction scheme is the
attachment and evaporation of a water molecule to a water cluster. Water molecules
are highly polarized and the bond between the hydrogen atoms and an oxygen atom
of another molecule, aptly named the hydrogen bond, is a fairly large part of the
total binding energy of a molecule to the cluster. Molecules in the surface of a water
cluster can break one of the hydrogen bonds and have the hydrogen atom dangling
out in vacuum, while still being bound to the cluster by the other. This corresponds
roughly to the isomeric state, although the two vibrational frequencies of the dangling
hydrogen may not be positive and the state not truly isomeric in the above sense of
the simplified reaction in (5.23), albeit hopefully close enough for the analogy to
work. Figure 5.6 depicts the situation and defines the energies.
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Fig. 5.6 A schematic
illustration of the potential
energy surface involved in an
attachment and decay
process occurring through an
intermediate
isomer/conformer state

|0>

The decay constant in the absence of the isomer is proportional to the ratio of
level densities
pp(E — Do)

po(E)

k , (noisomer), (5.24)

where E is the total excitation energy. For the decay from the isomeric state, the
analogous expression is, with E; the excitation energy in the isomeric state, equal to

pp(E; — D;)
pi(E;)

k P;, (decay through isomeric state), (5.25)

where P; is the probability of the particle being in the isomeric state, as opposed to
the global minimum state;
pi(E;)

= — (5.26)
po(E) + pi (E;)

The final state is the same in the presence and absence of an isomeric gateway state
and the difference in the numerators of (5.24, 5.25) is in the argument of the level
density. But these two energies are clearly the identical;

E,—D;=E—(Dy—D;)—D; =E — D,. (5.27)

Equation (5.25) can therefore be written as

pp(E—=Do) | pp(E—Dy)  pi(E)
pi(E) " pi(E) po(E)+ pi(Ep)

_ pp(E—Dy) pp(E — Dy)

" po(E) +pi(E))  po(E) + pi(E — (Do — Dy))’

k (5.28)

The only difference between the rate constants of the two situations is therefore that
the term p; (E — (Doy — D;)) is added to po(E) in the isomeric case. This is usually
a small correction (see Exercise 5.3).
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The conclusion is that if a low energy collision of the fragments does not lead
to a too rapid decay, the presence of a complicated decay trajectory involving an
intermediate state will not cause any problems in the application of detailed balance.
This will be assumed in the following.

To proceed with a quantitative estimate of the rate constants, we will make the
approximation that the energy, ¢, of the fragments are written as a sum of independent
contributions from translational (e,), vibrational (¢,), rotational (¢,) and electronic
degrees of freedom (&),

eE=¢ +ey+e +eq. (5.29)

This is definitely not true in any rigorous sense. There are couplings between rota-
tions and vibrations, as is well known, and vibrational frequencies depend on the
molecules’ Born-Oppenheimer surfaces, i.e. the electronic quantum numbers, and
so on. Nevertheless, the inclusion of these cross terms will usually only give rise
to relatively minor corrections. For the vibrational-rotational (vib-rot) coupling, this
is so because the coupling is weak. The vibrational frequencies, rotational proper-
ties and electronic degeneracies of electronically excited states may be significantly
different from those of the ground state. For relatively small particles or insulator
or semiconductor particles, the probability of electronic excitations are usually also
small because electronic excitations in those species are high in energy, and for that
reason will potentially large differences in state properties usually not appear with
any appreciable weight. For large metal particles, however, electronic excitations
need to be considered.

Two situations involving large fragments will be now be analysed. One where the
‘large’ fragment, although larger than an atom, is still composed of only a few atoms.
Then its internal degrees of freedom will carry away only a small fraction of the total
energy, typically 7 /2 or T per degree of freedom. This facilitates the calculation of
the total level density of the product state which, as always, is a convolution of the
level densities of all the degrees of freedom. Denote with subscript x the quantities
pertaining to a generic d.o.f. Then the combined level density is

)
pn(E) = /0 pe(e0) pi(E — 2)de,. (530)

The upper limit on the integral can be replaced with infinity without measurable loss
of precision and we will do that in the following without necessarily mentioning it.
Because in this case the vibrational degrees of freedom of the product particle are
sufficiently numerous, we can use the same expansion as when we calculated the
integral over ¢, for the atomic evaporation,

px(E) ~ pi(E") / pe(en)e /T EVe = p(E") Z (T (E")), (5.31)
0

identifying E’ with the product energy E — E,. Hence the convolution corresponds
to a multiplication with the canonical partition function of the integrated degree of
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freedom. When the rotations, vibrations and electronic degrees of freedom of the
small fragment decouple, we integrate independently over these in the same way and
get the rate constant

pp(E = Es — &)

de;. 5.32
o(E) -3

m
k(E, 6;)(18, = WU(EI)EthZrZel

All the Z’s will be functions of the product temperature, T (E — E,), as will the
kinetic energy release distributions. This expression only differs from the one for
atomic evaporation by the additional factors given by the canonical partition func-
tions, and as before the total rate constant is found by integration over the translational
kinetic energy &;:

m 2
k(E) = W(Uyrd ZyZy Ze

pp(E - Eu)

5.33
p(E) 639

The degeneracy factor g which appeared earlier has disappeared because it is most
reasonable to consider it part of Z,;. Note that in the convolution we have implicitly
assumed that the capture cross section for the inverse process only depends on the
kinetic energy of the decay channel. This may of course be wrong. If you know
a better expression for the cross section, nothing stops you from deriving a better
version of (5.33) for your system.

When the internal degrees of freedom of the small fragment couple too strongly
to allow the factorization of the partition functions, the rate constant must be calcu-

lated as
pp(E — E,)

k(E) =
®) pr(E)

<J>szzv,r,el ) (534)

m2h3

where Z, , . is the combined canonical partition function for all degrees of freedom
of the small, molecular fragment. Smallish large fragments will often be characterized
in the literature and there will therefore often be data available that allow a calculation
of the most important contributions to this sum.

The product temperature was used in (5.33) to calculate the canonical partition
functions. For better precision one may prefer to use the temperature estimated at
the excitation energy E — E, — F,, — E, — E,;, where the last three terms are the
mean canonical values. This can be iterated if one so desires.

The most important new features in (5.33) are the canonical partition functions.
In order of increasing importance they are Z,;, Z,, Z,, which is not surprisingly
also the order of decreasing quantum energies. Table5.1 gives the values for the
relevant quantum energies for some dimers. As mentioned above, the rotational
quantum energies in particular will be low compared to the product temperatures
in most situations where unimolecular reactions are involved, and Z, will therefore
often give a large enhancement of the rate constant frequency factor for molecular
evaporation, on the order of 7/ B (the precise meaning of the rotational constant is
discussed in Chap. 8).
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Table 5.1 Constants of some

‘ - Element B (cm™1) w (em™) E. (cm™)

diatomic molecules. Isotope 7

numbers are given because Liy 0.67 351 14,070

values depend on the masses 23 Nay 0.155 159 14,680
¥K, 0.057 92 11,680
2¢, 1.82 1855 716
63Cu, 0.109 265 20,400
107 Agy 0.051 192 23,000
197 Au, 0.028 191 19,670
Sy, 0.21 537 1,874
32Cry 0.23 452 14,100

One must consider if the inclusion of the new degrees of freedom into the expres-
sions for the rate constant obeys the known conservation laws, and if not, how impor-
tant the errors committed are. The conserved quantities are energy, momentum, and
angular momentum. Energy conservation is included to a good approximation but still
only approximately because of the expansion used to get the microcanonical temper-
ature used for the integration over ¢,, €,, and €,;. We walked into this approximation
with open eyes and will accept it without any further ado. The linear momentum
is also conserved, for the same reason it is in the atomic evaporation case. The last
quantity that must be conserved is angular momentum. This conservation law has
not been implemented rigorously. We have implicitly assumed that it is possible to
integrate with an identical weight for all rotational states of the small fragment. This
is a decent approximation if the large fragment carries an angular momentum which
is large compared to that of the small fragment.

The second case of large fragments deals with fragments of comparable size.
For those, the expansion in (5.31) must be examined. It seems obvious that the
expansion must fail when the break-up becomes more symmetric. Then there is no
way of deciding which one of the product particles should be treated as the smaller
fragment and which one as the heat bath. The question is if one can use the simple
expansion in (5.34) to assign a temperature calculated from the energy E — E, to
the fragments.

To give a specific answer to this question we use the level densities, p, for the two
fragments labelled 1 and 2 given by;

pi(E) =a;ES7, i=1,2. (5.35)
The average energy deposited into the fragment 2, say, is then

_ o mE—9em(de _ Tis+ D51 +52)

JEpUE —)pa(e)de  TETG1+s2+ 1)
52

(E) (5.36)

=F

S1+ 52

which is hardly a surprising result. The same result holds for (E;) with 1 and 2
exchanged.



114 5 Rate Constants for Emission of Atoms and Electrons

The question is then a question of the magnitude of the relative change in 77 with
this value of E,. With the above result one gets:

1 dT1 52
——FE, = —. (5.37)
T1 dE 1 S1
For a variation of the temperature below, say, 10%, one therefore requires a ratio of
fragment sizes of 0.1 or less, independent of the absolute size.

For the decays that do not allow a treatment of the microcanonical-to-canonical
type, another procedure must be devised. First determine the level density of both
fragments, including the numerical constants. If one or both of these cannot be simply
parametrized, use a numerical integration to find the level density of the combined
system. If they can be parametrized as simple functions that can be convoluted ana-
Iytically, just do that. This may actually be easier done than said. The vibrational level
densities of two particles, for example, is simply the level density of the combined
collection of oscillators. In the high temperature limit, where the each take the form
pi(E) = (E + Ep,;) s~ D/6i=DHT jTwj i, the convoluted high energy level density
is simply
_ (E + Eo, + Eg)" ™!

(s1 452+ DT Aw; [ hwjs

p(E) (5.38)

The technique holds for all energies and all pairs of level densities that can be
parametrized similarly, though, and is not restricted to these standard forms.

5.4 RRKM Theory

The theory presented so far is based on detailed balance and is used mainly by
physicists. Chemists tend to favor an alternative formulation, from which the term
transition state theory derives, and which is identified with the main architects by
the abbreviation RRKM (Rice, Ramsperger, Kassel, Marcus). As the term ‘transition
state’ suggests, the basic idea behind the theory is to consider a decaying particle at
the point where the atom is just leaving on a trajectory, called the reaction coordinate.
The motion along this coordinate is free at the top of a barrier. The transition state may
be equal to the asymptotically separated fragments in the absence of an activation
barrier for the reverse process, i.e. when the top of the barrier is not a hill but a plateau.
All other degrees of freedom are described as harmonic oscillators. The transition
state is assumed to be populated according to the statistical weight of the state, and
the total statistical weight of the transition state is the convolution of the vibrational
degrees of freedom for the transition state, p,, with the translational level density of
the reaction coordinate, relative to the total level density of the reactant, p, (E):

E—E,—¢)dxd
W,dxdp = pil £) dx p.
pr(E) h

(5.39)
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The phase space element dxdp/h is the one-dimensional phase space integral in
the semiclassical approximation, E, is the height of the barrier and ¢ is the kinetic
energy of the reaction coordinate, € = pz/ 2m, where m is the reduced mass of the
two products. The length of the reaction coordinate is L and we can then integrate
over dx. The integration is trivial and we get

p(E—E,—¢)L

W.dp =
r pr(E)  h

(5.40)

This weight is specified with respect to €. The total rate constant is this population
of the transition state times the flow out, which is the speed divided by L,

v
krrxkm = Wi —. 541
L
Writing vdp = de gives
p(E—E;—¢€)
k de = ———=de, 5.42
RRKMUE I (E) € ( )

which is the desired expression.

The reader may wonder if we have not double-counted the number of states leading
to dissociation in this expression. After all, the velocity in the reaction coordinate can
point in either direction and only one leads to dissociation. This is not the case. The
level density used was derived from dxd p/ k, and the transformation of the derivative
dp = /m/2ede implicitly assumed that only positive momenta were considered.
Had both directions been included in the calculation, the number of states would
have been twice that. The factor of one half needed to pick out the right direction
would then cancel that extra factor of two.

It is worth recalling to what the level densities entering (5.42) refer. The denom-
inator is clear. It is the total vibrational level density of the reactant. The numerator
is the level density of all vibrational degrees of freedom in the transition state. The
number of these is one less than the number for the reactant particle, i.e. 3N — 7,
although the final product will only have 3N — 9 vibrational degrees of freedom (for
evaporation of an atom). The reason is that the reaction is assumed to take place along
a one-dimensional trajectory, and hence only one vibrational degree of freedom is
converted into a translational d.o.f. The two remaining d.o.f.’s which will ultimately
be converted into translational d.o.f.’s are considered vibrational at this point. And
since there is no reason these vibrations should not be excited, they contribute to
the level density p,. The RRKM rate constant derived here thus corresponds to the
emission of an atom through a saddle point in the potential. It is a saddle point in
1 4+ 2 dimensions, it should be remembered, and not the usual 1 + 1 dimensions of
a real saddle.

The physical picture described by the saddle point motion has consequences for
the total rate constant. It will also have consequences for the predicted kinetic energy
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release distributions which will be treated in the Sect. 5.7. Integrating over all possible
kinetic energy releases in (5.42) corresponds to summing over all partitionings of
the energy between the translational kinetic energy in the reaction coordinate and
the energy stored in the vibrations in the transition state particle, or

[ pi(E — E, — e)de
hpr(E)

krrxm = ; (5.43)

where the €’s are the possible reaction coordinate kinetic energies. Thus one can
rewrite the rate constant equivalently with a summation over all vibrational states of
the product:

> j Pt (Ej)

, 5.44
hp:(E) 644

kRRKM =

where E; is any energy the product can take, below the limit £ — E, imposed by
energy conservation.

There is a good deal of similarity between the detailed balance and the RRKM the-
ory. The similarities reflect that these two theories both describe activated processes.
The differences are reflected in the frequency factor multiplying the ratio of level
densities, which is due to the different treatment of the transition states in the two
theories. Detailed balance is best suited to describe the situation where the transition
state is equal to the asymptotically separated state, whereas RRKM is designed to
describe situations where particle emission occurs along a coordinate that crosses a
saddle point.

The kinetic energy release distributions is a very efficient test of the nature of
the transition state, and can provide a clear experimental signature for the different
transition states. Decays describable by the RRKM theory produce gaps in the energy
distributions, which is absent in decays through transition states that are not saddle
points. The experimental literature seems to favour the latter situation, even for
molecular dissociation for which RRKM was developed, although bona fidle RRKM
spectra also appear occasionally. For nanoparticles a natural guess would disfavour
saddle point transition states.

5.5 Electron Emission

Thermal emission of electrons is so similar to atomic evaporation that one almost
doesn’t need a separate section to describe it. There are a few differences, however.
One is the word. For electrons it is called thermionic emission. Another is that
the degeneracy g for electron emission is always 2, because this is the electron
spin degeneracy. More important numerically is the difference in mass between
an electron and an atom. The phase space factor of the emitted particle is directly
proportional to the mass, which causes a considerable numerical difference between
the rate constants for these two types of emission processes.
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The mass of the electron also causes us to consider the quantization of angular
momentum. The angular momentum quantum number is on the order of

lmax ~ 5.45
- (5.45)

where r is the radius of the particle, m, the mass of the electron and T the product ion
temperature. The effect of the small electron mass may therefore have consequences
for absorption cross sections. As an example we calculate that the /,,,,, is 1.5 for the
values r = 1 nm, T = 2000 K. A classical description is therefore borderline and
we must expect quantum corrections to some of these. We will not calculate these
here, although they may be needed for the interpretation of precise experiments.

Yet another difference is the capture cross section. Electrons interact with a particle
differently from what an atom does. When an atom hits a particle with thermal speeds,
it will gain some energy from the short range attraction experienced when it is close
to the particle. Some fraction of this interaction energy and the initial thermal kinetic
energy of the channel will dissipate into the vibrations of the particle during the
collision. This reduces the energy available for a bouncing re-exit and if the total
energy of the atom ends up negative before the rebounce, which does not take a lot
of dissipation, it will be bound. The sticking coefficient will then be effectively unity
for such collisions.

Two things make the energy transfer relatively inefficient in electron-particle
collisions compared to atom-particle collisions. One is that the masses of the colliding
particles are so dissimilar compared with the two particles in atom-atom collisions.
This, by plain Newtonian dynamics, reduces the energy transfer. The other reason is
that the excitation spectrum of moving atoms (vibrations, phonons) have low quantum
energies compared to electronic excitations. The energy transfer is then not prevented
because of a mismatch between the energy and the energy of a reception state. For
electron-particle collisions things are less favorable. Either an impinging electron
excites a vibration, which is a suppressed process because of the mass mismatch, or
the electron excites an electronic state, which is also disfavored because electronic
excitation energies are high and far between.

What these hand waving arguments say is that generally the capture of electrons
can not be expected to be as efficient as that of atoms. This is important in partic-
ular for attachment of electrons to neutral particles and hence for thermal emission
of electrons from anions. For emission from neutral species, the problem is most
likely much less severe, although few experimental data are available on absolute
attachment cross sections. This is due to an effect which partly compensates the
mass ratio effect mentioned. Electrons impinging onto an ion are caught in a strong
potential and gain a kinetic energy roughly corresponding to the ionization energy
before they collide with the particle. This means that the relative energy loss (the
degree of inelasticity) in the collision does not have to be very large to reduce the
energy to less than the energy needed to escape, and hence capture the electron.

If one assumes that capture is efficient and the electron is captured on contact, the
cross section can be calculated classically to a good approximation for a spherically
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symmetric, attractive potential as (see Sect.5.6),
V(R
o(e) = TR? <|(—)' + 1) , (5.46)
€

where R is the capture distance and V (R) is the interaction energy at that distance. For
metallic particles, defined as particles containing freely mobile valence electrons, one
may want to add a contribution from the image charge. Effectively that adds more
short range attraction to the potential. We will stick with (5.46). With that cross
section detailed balance gives the thermionic emission rate constant from neutral
species

(E—D —¢)

Me rR2(V(R)| +o)lm "~ "9y, (5.47)

k(E,e)de =2
(B, e)de =2 pr(E)

The activation energy for the process is the ionization energy (or ionization potential),
@. The rate constant for thermal electron detachment from an anion can be calculated
(classically) with the cross sections found in the last part of this chapter.

5.6 Kinetic Energy Release in Unimolecular Reactions

A very important measurable quantity in molecular beam experiments is the kinetic
energy of the fragments produced in a unimolecular reaction. The kinetic energy is
determined by a combination of the reverse process cross section and the microcanon-
ical temperature of the particle. The basic formalism required to solve this problem
has been established previously in the chapter. We saw little difference between the
expressions for the electron- and atom emission rate constants and this is true also
for kinetic energy release. The differences appear when the equations are applied
due to differences in the capture cross section where they differ significantly.

In the following sections we will calculate the kinetic energy release distributions
for a couple of cross sections of different types. The material covered here does
not exhaust the subject, by far. One interesting class of processes not included here
are emission involving particles with permanent dipole moments. The problem of
emission of an electron in the image charge potential of a metal cluster is also not
given explicitly but can be solved with the methods given here.

The kinetic energy distributions can be calculated with (5.12). The relevant part
reads:

k(E,e) xo(e)ep,(E — E; —¢) o a(e)eexp(—¢e/T), (5.48)

where E is the excitation energy of the parent particle, ¢ is the kinetic energy of the
decay channel, i.e. the sum of the translational kinetic energy of the two fragments,
o (¢) is the cross section for capture of the fragment in the inverse process, p,, is the
level density of the product particle, E, is the activation energy of the process, and
T is the microcanonical temperature of the product particle. Because the expansion
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of p, is made in € and not in E, — ¢, the convergence is rapid and we do not need to
involve the finite heat bath correction in this case.

In the simplest application of this equation, the cross section is independent of
the collision energy &, as is the case for a geometric capture cross section. Then the
distributions are given by

k(E,e)de oc ce/Tde, (5.49)

It is instructive to compare this distribution with a gas in equilibrium at temperature
T (areal, canonical temperature). The distribution of momenta or energies in such a
gas is given by the Maxwell-Boltzmann distribution

P(T,e) x e /Td3p o /ee /T de. (5.50)

Apart from the different origins of the temperature in the Boltzmann factors, the
difference between this distribution and (5.49) is the pre-exponential, a power of 1/2
and 1, respectively, on the energy. These powers both refer to free particles, and if one
considers a sufficiently large surface in the application of (5.49) one would naively
expect that the difference between these two distributions should disappear. For the
microcanonical distribution we have even gone to great pains to define a temperature
so that the two distributions have all the chances in the world to look similar.

The reason they are different, also in the bulk limit, is that they are distributions
of different things. The Maxwell-Boltzmann distribution in (5.50) is the distribution
of kinetic energies you would measure if you picked an atom at random from the
gas sufficiently many times to measure the distribution. The average energy of a
Maxwell-Boltzmann distribution is the well-known %T. The kinetic energy release
in (5.49), on the other hand, is the distribution of kinetic energies one measures if one
puts up an imaginary surface somewhere around the emitting particle and measures
the kinetic energies of the atoms passing through this surface. In fact, you don’t even
need an emitting particle to do this Gedanken experiment, just put up a screen in a gas
and measure the kinetic energies of the atoms passing through it. This is not the same
as picking an atom at random because the flux through the surface is biased in favour
of the fast molecules. The bias is the speed (see (5.8)) and the speed is essentially
the square root of the energy. This is what causes the difference between the two
distributions. Indeed, the average energy of a particle from a Maxwell-Boltzmann
distribution that hits a surface located at z = 0 is given by

—3(Lm?
B I dp, [7 v.amu’e B(3mv )dpxdpy

(Ex) — = -
Jo dpz [, vze_“’(%""’z)dpxdpy

=2T. (5.51)

(The number of particles hitting the surface during a time interval §¢ is proportional
to v,dt). This is also the mean value of the distribution in (5.49), as we have now
understood.

After this exercise, let’s turn to a more general situation where the interaction is
not simply an absorbing sphere but also has a long range tail which will be assumed
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spherically symmetric. Due to the surface tension, particles tend to be close to spher-
ical because this shape minimizes the surface area, and therefore also tend to produce
a spherical interaction potential, in particular at long distances. Moving on an inward
trajectory in such an approximately spherical potential, the small fragment will be
captured on arrival at a certain distance. The sticking at this critical distance does not
have to be assumed unity, but for the purpose of calculating kinetic energy release
distributions it will be taken as independent of the relative speed of the particles at
that point. If not independent of the speed, the sticking coefficient s = 1 must be
replaced by a function of the energy, s(¢). We will continue with the s = 1 descrip-
tion, with the assumption implicit in that choice that it is also independent of the
angular momentum of the large particle. That assumption is definitely not univer-
sally valid for molecular fragmentation, for which care should therefore be exercised
when applying the results here.

We will begin with a potential relevant for the interaction of an ionic and a polar-
izable fragment or for two neutral polarizable particles. It has the form

2 o0

1 € C6+2n
Vir)=—a——5— — , 5.52
(r) 2% Greg)rt ; 642 (5.32)

where the first term is the potential due to the polarizability « of the neutral fragment
in an ion-neutral system. For a pair of neutral particles, the first term is therefore
absent.

Most of the literature data on polarizability are in Gaussian units. This is not
going to change for a long time so we need a conversion factor. The Gaussian unit
of polarizability is volume, specifically cm?, but one also finds units of a} or A>. In
any case, the conversion between the SI unit and the Gaussian unit is

o = 47epa’ ( Gaussian). (5.53)

This makes the polarizability part of the potential equal to

Vi) = —ta & (5.54)
= Aregrt’ ’
For convenience we can use the definition
&2 o
o =d =d'14.4eVA (5.55)
47T€0

Some values for elements are given in Table5.2.

Initially we will consider point-like particles captured in a potential of the form
given in (5.52). The cross section can be calculated by application of energy and
angular momentum conservation. The angular momentum in the relative motion of
the small fragment and the product is conserved due to the symmetry of the potential.
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Table 5.2 Measured atomic

Vel RS . - Group 1 Group 2 Group 8
polarizabilities in atomic units
(see Appendix B for He 1.384
conversion factors) Lil64 Be 37.8 Ne 2.668
Na 163 Mg 71.3 Ar 11.09
K291 Ca 159 Kr 16.74
Rb 319 Sr 202 Xe 27.34
Cs 402 Ba 272

With the impact parameter b, this means that L = vobm = b(2me)'/? = m0r? is
constant, where vy the relative speed of the asymptotically separated particles, m is
the reduced mass of the two fragments, and 6 the angular coordinate in the plane
where the motion takes place. The impact parameter is defined as the smallest distance
between the two centres of mass one would have in a trajectory where the interactions
were hypothetically switched off; mathematically

(5.56)

for the asymptotically separated fragments. The two conservation laws give the rela-
tion .
mi?  (0r)’m mi? b?
e=V@r)+—+ =V@r)+——+e—, (5.57)
2 2 2 r2

where the angular momentum conservation was used in the last equality together
with e = mv3/2.
In the turning point of the radial motion, if it exists, 7 = 0. For this point the

equation reduces to
2

b
V(ir)+e——e=0. (5.58)
r

The solution to this equation can be illustrated graphically with the rewrite

r2V(r) _
. —

r? — b2 (5.59)

The right hand side of this equation is, as a function of rZ a straight line with unit
slope and a negative offset, and the left hand side is a negative function with positive
slope and a negative curvature. The lowest curve in Fig.5.7, labeled 7>V (r)/es,
illustrates the behavior of both sides of the equation for the point-like particles we
are considering here.
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o

Fig. 5.7 Schematics of the b2 b
left and right hand side of 0 : 2
(5.59). The low energy curve
with g7 corresponds to the
cross section given by (5.61)
with the value Wb%. The high
energy curve, for €1,
corresponds to the modified
geometric cross section in
(5.65) with the value 7b3.
The capture radius ry is
indicated by the dotted
vertical line, and the values
of b%, b% given on the top
axis

T
PVirite,  rPV(rie, 2

For a fixed energy (5.59) has solutions for values of »? larger than or equal to the
values where the straight line is tangential to the 7>V (r) curve. The two conditions
that the curves are tangential are (5.59) and the equation

2
i(" V(’)>=i(r2_b2)=1. (5.60)

dr? € dr?

The negative curvature of 72V (r) ensures that there is precisely one real solution
for b? to these two equations. A little algebra gives the value of this critical impact
parameter b. and hence the capture cross section;

"

b2 1« o Cor2n 561
Ocap =Th, = r + 2r +Zr4+2n , 5.61)
n=0 "¢

where r. is determined as the root of:

o n
o Z( +2) :jj —e=0. (5.62)

Physically, r. is the smallest radial turning point that for a given energy does not
lead to capture. If the impact parameter is reduced, the particle is guaranteed to
be captured, and if it is increased, the particle is guaranteed to turn around in the
radial motion and escape. In the special case when Cg,2, = 0 (n > 2) and only o
is non-zero, (5.62) is easily solved to give the Langevin cross section,

2 7N\ 1/2
Ceap =T <i> . (5.63)
3
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So far, all results have referred to point particles. That will be sufficient for a
range of parameters, as we will see below, but the finite size of the colliding particles
will in general modify the cross section. So let’s add a finite capture radius, ry, to the
problem. The different lengths, r., ro and b, are illustrated in Fig. 5.8. From the above
equation for . and the properties of the potential it is easy to see that r. increases
monotonically when e decreases. Furthermore, the derivative db?/de is negative,
which can be verified by differentiation of the cross section and using the equation
which determines r.. The cross section is therefore given by (5.61, 5.62) when

~ o Cé12n
e<E=o+ Z( +2) 66:22". (5.64)
0 n=0

This energy is in general not the negative of the potential energy at ry.

For energies exceeding € we have two turning points in the radial motion, of which
the smallest, unphysical one, is inside the particle and corresponds to the turning
point in a hypothetical radially confined motion. The cross section is determined by
the largest turning point and can be found with reference to Fig.5.7 from (5.59),
evaluated at the capture radius, 9. We have

2 1 o > C6+2n -
Ocap =T | 1 + 21’0 + m , EZE. (5.65)
n=0 "0

The cross section is continuous across the critical energy €.

The trajectories for different impact parameters and two different values of o”
and ¢ are shown in Fig. 5.8 for a numerical calculation of the —1/r* potential with
two different energies. The capture distance ry has arbitrarily been set to unity. In the
solution of the equations of motion the time is scaled as 7 = t+/2¢/m. The equations
of motion that are solved are then

o _ b dr_ 0 "\ (5.66)
dr — r2’ dr r2 o 2ert ’ '

where the sign depends on whether the particle is on the incoming or outgoing branch
of the trajectory. The two situations shown correspond to a high (¢ > €) and a low
energy (¢ < €) cross sections.

As another illustration we have calculated the kinetic energy releases for the case
where « is the only non-vanishing coefficient in the potential. Equations (5.61, 5.65)
give, after scaling with the temperature, the kinetic energy release distributions

YR L PECT (5.67)
T 2riT ’ ~ T o ‘

o \'"? e
P(e) x 2 (—) e /T <@,
© (2rgT) T =
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¢ b=b,
2 2
b
Y 0 Y O r rO
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“ e=1, a=1 ] £=0.2, =10
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Fig. 5.8 Two sets of trajectories in a 1/r* attractive potential. The left frame is a high energy and
the right frame a low energy collision, as indicated by the value of ¢. The right figure also shows
some of the important lengths used in the text. ro = 1 by definition, r. has a definite value because
the energy is specified, equal to +/5 in the units used (5.62). The impact parameter b takes all
positive values. The critical value b, is equal to /10 in the right frame (see (5.61))

Fig. 5.9 Kinetic energy
distributions calculated with
(5.67) for six different
polarizabilities. V (rg) = —¢
is the interaction potential at
the capture radius

€ o(e) e,
interaction strengths
V(r,)T=0,04,0.8,.,2

P(g) (arb. units)

where the constant of proportionality is the same. Curves for different values of
o /2r¢T are shown in Fig.5.9.

It is relatively easy to derive the capture cross sections for the situation where the
potential is determined by the Cg coefficient. This is the leading approximation to
most interactions between neutral particles. The equation for the critical distance 7.

becomes 16

C 2C

S N rC=<—6> , (5.68)
re €

and the cross section for low energy therefore

o =3—7T & ” e<% (5.69)
cap ) - s X I‘g . .
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At high energies the cross section becomes

1C 2C
Oeap = T73 (1 +g—§>, e> =2 (5.70)

o o

Another important type of capture cross sections is the one generated by a
Coulomb potential. It is relevant for electron emission from neutral and positively
charged particles. Both particles, the product and the electron are charged. We will
also here assume a finite capture radius, ry, below which the electron is captured.
Equation (5.58) for the turning point of the radial motion still holds for this potential
because it was derived using only the spherical symmetry of the long range potential.
Introducing the special form of the potential one has that at the radial turning point

Ze? b?

E—
4mregr r2’

(5.71)

£=—

where Z is the charge after electron emission (Z > 1). The physical (positive) solu-
tion for 1/r is

1 Ze? + 1 4 Ze? 2 (5.72)
re  4meg2be b? 4dreg2b2e )’ ’
showing that
dr,
— > 0. (5.73)
db

Consequently, the largest impact parameter that will give capture for a given energy,
b., is given by (5.71) with r. = ry. This gives

Ze* 1
o = (1 + -z -) . (5.74)
drmegrg €

The Coulomb capture cross section differs from the polarizability cross section
in the analytical behavior; it is described by a single function for all energies. It is
similar in the sense that this function is the same as the one for the high energy
part of the polarizability potential, although the constants with dimension energy are
obviously different in the two cases.

One may wonder how an extended attractive force can lead to a larger emission
rate than, for example, no external force. One would intuitively expect the emission
rate to be smaller, because the potential has some time to act on the small fragment
when it flies away and to pull it back into the particle.

The simple explanation is to consider how the momentum and kinetic energy is
divided into the radial and angular parts. For the sake of the argument, one can imagine
that the potential is constant and less than the asymptotic value out to a radius which
is larger than the capture radius, so the particle is described by two radii, one small
within which the fragments equilibrate, and one large within which the fragments
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Fig. 5.10 Illustration of the
effect of a long range
potential on the escape
probability for a fragment
moving outward. The black
part signifies the part of the
particle where the velocity
distribution is created. The
larger open circle is the
range of the potential. A few
velocities are indicated with
arrows. It is clear from
inspection of the figure that
the radial component
increases when the outer
radius increases

only move. Fragments emitted from the small core will have all possible ratios of
radial to angular velocities, but only the radial momentum can be used to climb the
activation energy barrier. As the fragments move radially outward, the distribution
of radial to angular velocities will change, also in the absence of any thermalizing
action. This is a consequence of simple geometry, as illustrated in Fig.5.10. Some of
the angular velocity will be converted into radial velocity, increasing the chance of
having enough energy in the radial motion to overcome the activation energy barrier.
Hence a long range potential will have a larger fraction of particles with sufficient
radial energy to climb the potential and be emitted than a short range potential,
everything else equal.

5.7 Kinetic Energy Release in RRKM Theory

The kinetic energy release distributions in RRKM theory are calculated on the basis
of the idea of a translational degree of freedom equilibrated at and moving through
a potential energy saddle point along a reaction coordinate, just like the total rate
constant was derived, as consistency requires. This motion will give rise to a thermal
distribution corresponding to a single translational degree of freedom, multiplied
with the flux, which is proportional to the speed of the particle. The kinetic energy
distribution along the reaction coordinate is therefore

Prrrm(e) o ve =/ Tdv oc e/ Tde, (5.75)
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where T is the microcanonical temperature of the transition state. This is consistent
with the expression for the rate constant, found in Sect.5.1:

p(E—E; —¢)
k de = ————~de, 5.76
RRKMUE 2l (E) € ( )

where p, is the level density at the transition state, and p,(E) is the parent level
density (E, is the activation energy, and 4 is 27h). With the usual expansion of the
logarithm of the level density in ¢, (5.76) is identical to (5.75).

Equation (5.75) predicts a Boltzmann distribution for the kinetic energy along the
reaction coordinate. If there is no reverse activation barrier present, i.e. if the saddle
point is flat in the outgoing direction, the resulting measured energy has the mean
value 7. At the transition state there will be two other directions that in the standard
RRKM case are taken to give a parabolic potential. For a particle with a spherical
long range potential and without a reverse activation barrier, this saddle point must
be replaced by a plateau where the kinetic energy gets contributions from all three
directions. Hence this gives the same result as detailed balance when the flux factor
is included. When one has a transition state which is a real saddle point, where the
asymptotic potential is below that of the transition state, equivalent to the presence
of a reverse activation barrier, the difference in potential energy AE should simply
be added to the energy in thermal distribution to get the observed distribution,

P(e)de xx e 2B/ T g, (5.77)

fore > AE, and zero otherwise. T is the microcanonical temperature at the transition
state.

Exercises

5.1 Calculate the ratio of density of states of product and reactant for a process that
occurs with a rate constant of 10* s~!, an inverse process cross section of 10718 m2,
a speed of the emitted product (electron, say) of 10° m, and a volume of 100 L. How
long do you need to wait on the average before the electron is attached to the particle

again?

5.2 The volume cancels in the derivation of (5.12), and similarly also in the expres-
sions for thermal emission of electrons and photons. This is true if the volume is large
enough for the quantized level structure of the free particle to be ignored. Estimate
for atoms and electrons the size of the confining box where the level structure begins
to influence the emission rate constants. Use your favorite atom and typical values,
or an evaporated helium atom and the energy 0.4 K.

5.3 Consider the effect of an isomer on the decay constant, following (5.24, 5.25).
Make the assumption initially that p; (E) = po(E), and that they can be calculated
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as the vibrational values for harmonic oscillators in the high temperature limit in
the leading order approximation. Show that if the vibrational frequencies of the two
states are identical, the isomeric contribution to the level density will always be
smaller than that of the minimum energy state.

Next assume that the vibrational frequencies of the isomer are lower than the
minimum energy state. Determine how much softer they must be to contribute equally
to the level density. The answer depends on the number of oscillators. Assume that
the average energy is per oscillator is D; /10. Hint: Expand the logarithm of the level
densities to leading order.

5.4 Calculate the atomic emission rate constant for a particle composed of harmonic
oscillators with a Debye vibrational spectrum. Use your favorite atom and calculate
numbers for a wide range of energies. Guesstimate a reasonable activation energy or
look up the bulk value.

5.5 Using a range of Arrhenius-expression frequency factors w = 10'*N?/? to w =
101 N2/3, calculate the range of values of In(wt) for experimental times ¢ ranging
from 10 ns to 1 ms (this will be relevant in a following chapter).

5.6 In (5.33) the degrees of freedom of the small fragment beyond the translational
channel were expressed in terms of their canonical partition functions. This can also
be done for the translational degree of freedom. Do this.

5.7 Show that the units of the rate constants calculated in this chapter are correct.
5.8 Calculate the value of v in (5.22).

5.9 Find the typical values of the de Broglie wavelength of an evaporating atom for
two of your favorite systems and compare them with the size of the system. Estimate
the angular momentum, in units of 7, of the relative motion of the small fragment and
the product particle. Conclude about the classical vs. quantum mechanical description
of the process.

5.10 Forevaporation of a large fragment, find the change in the number of vibrational
and rotational degrees of freedom in the process for the possible reactant and product
geometries not mentioned in the text.

5.11 Discuss whether a statistical decay can give rise to discrete kinetic energy
release distributions.

5.12 Show that the turning point in the radial motion in a —1/r* potential for the
critical impact parameter corresponds to the maximum of the effective radial potential

o L2

—_—+ — 5.78
2r2 + 2ur?’ ( )

Verp(r) = —

with a the redefined polarizability, L the angular momentum and x the reduced mass.
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5.13 Consider a surface composed of atoms that interact with an atom above the
surface with a long range potential proportional to r~". Show that the effective
potential from the surface varies as » "+ if the surface layer is thin, and as r ~"*+3 if
it is infinitely or just sufficiently thick. Discuss qualitatively how this is modified for
a finite size and spherical particle at long distances.

5.14 Verify that the numbers given in the caption to Fig. 5.8 are correct.



Chapter 6 ®)
Radiation e

The scientific history of thermal photon emission is undoubtedly glorious. As every
science student knows, we owe Planck’s constant and the birth of quantum mechanics
to work on precisely this problem. And just as small particles have analogues of many
other macroscopic phenomena, so does radiation from small particles. There is a rich
literature on the emission of thermal infrared radiation from molecules, partly driven
by the desire to understand astrophysical phenomena. There has been considerably
less interest in the thermal part of the bluer side of the electromagnetic spectrum.
Presumably this priority has been motivated by the expectation that high energy
excitations will not happen in small systems by thermal means, and visible photons
therefore not emitted thermally.

Well, we know better now. This chapter is dedicated to the description of the
thermal radiation from particles, small and very small. It will build on the detailed
balance presented in the previous chapter, with the proper modifications.

6.1 Photon Level Density

Photon emission incorporates several new features compared to the emission of
massive particles such as atoms and electrons. The first is that the level density
of the emitted particle is different. Photons are relativistic and full-blown quantum
mechanical particles, which means that we cannot use the semiclassical and non-
relativistic free particle level density in (5.10), and we must retrace the calculation
of level densities.

The starting point of the calculation is identical to the one used for massive
particles; We enclose a photon in a volume, which for simplicity will be considered
cubic with side lengths L, and quantize the levels in this volume. The standing wave
solutions in one dimension give, as for massive particles;
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n—=L, n=1,2,...,00, (6.1)

where A is the wavelength, but where the energy of the particle is now hv = hc/A
instead of the semiclassical (h/1)%/2m.

To generalize to three dimensions, write the quantization condition in terms of
the photon wave vector

2
k = Tﬂ = n% (6.2)
which in three dimensions becomes
-7
k= Z(nx,ny,nz), ni€Z,. (6.3)
The energy squared is
_ 2
E?2 = (h)? = (he)*K> = (hc)? (%) (% + 12 +n). (6.4)
If we rewrite this as
20L\? ) ) 5
—C =n,+ ny +n, (6.5)

we see that the n’s that fulfil this condition are the (integer) coordinates of those
points that reside on the positive octant part of the spherical shell with radius 2vL/c.
Figure 6.1 illustrates the situation with the 2d analogue. The states are numbered
with consecutive positive integers, and each state therefore has a volume of one
in these units. The total number of states up to the energy /v is then 1/2% of the
volume enclosed by this shell. Inclusion of the factor of two due to the two pos-
sible polarization directions of the photon gives the number of states up to photon
energy hv

3
N(hv) = g%ﬂ (2”%) . (6.6)

The level density of a photon is then

dN (hv) 8w v2L3

ppn(hv)d(hv) = ) d(hv) = Td(hv), 6.7)

which has units of reciprocal energy. The number of states per frequency interval is

8mv2L3
Ppr(v)dy = = dv. (6.8)
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Fig. 6.1 The energy levels 184 ¢ ¢ © o o ¢ o o o o o o o o o o o o
Of a’ phOton in a N L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]
two-dimensional box of . o
equal side lengths. A . o
constant energy surface is a . o
7 /2 arc of a circle in the . o
diagram, as shown. All states .
in the quarter disk have . e
energies below that of the . .
states residing on the surface . .

T
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This level density is the number of ways a single photon can be distributed over a
physical volume L3. If one instead calculated the number of ways one could distribute
a given energy over the same volume, irrespective over many photons this energy
was distributed, it would be much larger. This can be seen if you split the energy into
two photons of energy hv; and hv, with kv 4+ hv, = hv (for details, see Exercise
6.1).

6.2 The Photon Emission Rate Constants

We now introduce the photon level density into the equation for rate constants. The
formation rate constantis o (E — hv, v)c/V, where E is the excitation energy of the
particle. Volumes cancel, as before, and we get:

Tv? p(E — hv)
= o(E —hv, U)de. (6.9)

8
k(E, hv)dv =

This is the rate constant per frequency interval for emission of a photon with frequency
v, and it is therefore dimensionless.

The photon emission rate constant in (6.9) looks a lot like the emission rate
constant for atoms and electrons, with a ratio of level densities and a prefactor which
is reasonably energy independent.
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One major difference between the emission of an atom/electron and a photon is
the role of the activation energy. On emission of a photon, all excitation energy lost
by the emitting particle is converted into the energy of the photon. For low energy
photons this will effectively make photon emission a process without the very strong
suppression of the emission caused by the presence of activation energies. Low
energy photons means here that they have energies not significantly exceeding the
excitation energy per degree of freedom;

hv < (6.10)

M.lhj

In this situation, a substantial fraction of the particles can have emitting states pop-
ulated and the emission rate is then mainly limited by the matrix element between
the pre- and post-photon-emitting states or, equivalently, the inverse process cross
section. This means that thermal photon emission may compete with other emission
types under some conditions, even when the photon absorption cross section is small
compared with the absorption cross section for massive particles.

Another difference to massive particle emission is the strong reduction of the
factor 87v%/c*0 (E — hv, v) compared with the corresponding factor for massive
particle emission, even if the cross sections would be identical. Assume that this is
the case, for the sake of argument. Inserting Planck’s constant to make the photon
emission factor one of rate per energy interval, the ratio of the two factors is then

81?2 2.2

W h=v N hv
me
253

6.11)

emc?  mc?’

Bl

where the last estimate follows from the fact that both the photon energy and the
kinetic energy of an atomic evaporative or thermionic emission channel are on the
order of the temperature. This ratio is an exceedingly small number which would
suppress photon emission very strongly without the compensating reduction of the
rate of the competing channel by the presence of its activation energy.

In spite of this suppressing factor and a potentially small photon absorption cross
section, photon emission will dominate over other channels at sufficiently low excita-
tion energies, precisely because it decreases much slower than these when the energy
(temperature) is reduced. For the same reason, photon emission is also favoured by
high dissociation energies, and it has been observed directly for clusters of different
refractive materials (C, W, Nb), and indirectly from clusters of silicon, gold and
boron.

The quantum statistics of photons introduces a third effect which makes thermal
photon emission different from the other channels. The absorption of a photon com-
petes with stimulated emission. Instead of absorbing a photon, a particle may emit
an additional photon. The possibility this process can happen is a consequence of
the bosonic nature of the photon (it has spin 1 ).

As taught us by Einstein, stimulated emission happens with a rate which is propor-
tional to the radiation density, which in our case is ~v/ V. This is the same volume, or
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concentration, dependence as the absorption rate constant. If we want to relate a
measured photo absorption cross section to the photon absorption cross section that
appears in (6.9), we therefore need to consider both the stimulated emission and the
absorption processes simultaneously.

When one measures the photon absorption cross section, the quantity recorded is
the amount of transmitted light through a sample of the material. This is converted
into a cross section, 0y,.4s, via Lambert-Beer’s law,

I(L) = Iye ot (6.12)

where n is the density of particles in the sample of length L. This cross section
includes both the absorption cross section o (E — hv, v), and the reduction of the
absorption due to stimulated emission of photons from the particles. We can calculate
this contribution if we take stimulated emission into account in the calculation of the
formation cross section. So we need to redo the calculation of the cross section. For
a single photon in the volume V/, the relative rate of decrease of the photon number
with time is

1dpP o(E — hv,v)c

A v + By (E — hv, v)hvv. (6.13)
The first term has already appeared above. The second term is the contribution from
stimulated emission which increases the number of free photons, as indicated by
the positive value of the term. The fraction hv/V is the energy density and we
have redefined the meaning of the Einstein coefficient B;; to be the coefficient per
frequency interval. With arewrite of (6.13) we can get the effective photon absorption
Cross section;

1dP h
FIZ_% (J(E—hv, V) = Boy(E — hv, U)?v). (6.14)
The effective cross section is just the factor in the bracket;

h
Omeas (E — v, v) = 6 (E — hv, v) — Byy (E — hv, v)——. (6.15)
C

This may not be awfully transparent (no pun intended). There is, however, a rela-
tion between this B-coefficient and the one for spontaneous emission, called the
A-coefficient,
A(E,v) 8whv3
Byu(E,v) ¢

) (6.16)

where the A has also been redefined to denote the rate constant per frequency interval.
But A is nothing but our rate constant from (6.9). In this expression it should be
evaluated at the energy E — hv, because that is the relevant energy for B, in (6.15).
If we then substitute (6.9) into (6.16) and that equation into (6.15) and cancel factors,
we get
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p(E —2hv)

Omeas(E —hv,v) =0 (E — hv,v) — o (E — 2hv, v)m.

(6.17)

The second term in (6.17) is the contribution from stimulated emission. It is
absent for atom and electron evaporation. It may also be absent for thermal radiation,
which happens if the energy E — hv is below hv. Then energy conservation prevents
stimulated emission; Formally this is obtained if we set p(E — 2hv) =0 for E <
2hv. But this is not the most interesting situation if we care about thermal photon
emission, because in general energies will be so high that both terms will be present
in (6.17).

If we don’t know the dependence of o (E, v) on E, we are stuck. Absorption
cross sections do in fact depend on the energy content of the particle, for example
because thermal populations are temperature dependent, and cross sections depend
on the initial state. We nevertheless want to have some idea of what the equations tell
us, and therefore consider the emission from a particle with a heat capacity which
is so high that the emission of a single photon does not significantly change the
temperature and modify the spectrum. Then both terms on the right hand side of
(6.17) include the same cross section, o (E, v) = o (v). This gives the rate constant
for emission of a photon for an absorption cross section which is independent of
particle energy:

8 v? o)
_ p(E)
k(E,v) = C—zgmeas(‘))m~ (6.18)
P(E—hv)

If the heat capacity is not too small, we can approximate the ratio of level densities

as
PE—2hv)  p(E—hv)

~ (6.19)
p(E — hv) p(E)
where T is the microcanonical temperature (see Chap. 3), and we get
8?2 e /T
k(T,v) = 2 a(v)1 —eThiT (6.20)

If the cross section is geometric and independent of frequency, (6.20) is the Planck
radiation formula. To see this, first set the cross section to the constant value
o = S/4 (why 1/47), where S is the surface area, and then integrate hvk (T, v) over
all frequencies to get the total emitted power:

© By § e /T 2aSh [~ 5 e ™17
P=1{ dv = VS _qu. (621)
0 0

2 A4]l_—emT T 2 1 —em/T ="
(black body, geometric cross section)

The integral is calculated to (T/h)4 3¢4)=(T/ h)4714/15. This gives an emitted
power of
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_ 7 ks s
60732

(6.22)

where Boltzmann’s constant has been reintroduced. The constant in front of the factor
ST* is indeed Stefan-Boltzmann’s constant. It has the value ogg = (130 K)™* eV
s~' A=2. Hence the bulk limit is reproduced correctly, as required.

To get some idea of the magnitude of total photon emission rate constants, we
consider the maximum integrated photo-absorption cross section. This is given by a
so-called sum rule. When the interaction between the particle and light is described
in the dipole approximation, where the wavelength of the light is required to be much
longer than the dimension of the particle, the photo absorption cross section obeys
the Thomas-Reiche-Kuhn (TRK) sum rule:

e 2m?

~ N,1.09eVAZ?, (6.23)

/ o (w)dhw = N,h
0

4 ey meC

where N, is the number of valence electrons. For the sake of argument we represent
the cross section as a § function,

o = N,1.09 eVA2§(hv — hvy). (6.24)

With a photon energy /vy = 0.5 eV, for example, 87v2 /c? = 4.1 - 1078 A2, which
gives the rate constant

K(E) = (6.25)
® 8ry? o, p(E —h E—h
/ = 5(hv — hup)N,1.09 eVA?E (E —hv) p(E = hv) dv
0 ¢ p(E)  p(E—hv)— p(E —2hv)
gty PE=R  p(E = hw)

p(E)  p(E —hvy) — p(E — 2hvg)

For this numerical example, the prefactor to the ratios of level densities is then 8
orders of magnitude or so smaller than for atomic evaporation, depending on the
number of valence electrons.

6.3 IR Emission

The emission of radiation from optically active vibrations is so common and has
features that allow us to specify the nature of the radiation in more detail than usual
that it is worth an explicit treatment. The universally used term for this radiation is
infrared (IR) radiation, as this is the wavelength region in which the radiation is
emitted. Infrared stretches from 700 nm and upward to 1 mm or thereabouts (defini-
tions differ slightly), corresponding to photon energies of 1.8 to 1.2 - 1073 eV. This
covers all possible vibrations one encounters in practice, and includes the energy
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scales of some molecular rotations at the low end and some electronic transitions at
the high end. Rotational transitions occur simultaneously with vibrational, but we
will ignore this complication in the following.

Vibrational transitions require a non-vanishing matrix element of the operator
representing the photons between the initial and final state of the absorber. For vibra-
tional transitions, the largest contribution is proportional to the matrix element of
the first order term of an expansion of the dipole moment, p, with respect to the
vibrational coordinate,

9
m o 8-“k(M|x|N>, (6.26)
X

where the states |[M) and |N) represent the state of the oscillator with M respective
N vibrational quanta. The zeroth order term in the expansion is the permanent dipole
moment which may be non-zero, but it does not connect states with different values
of M and N because these are orthogonal and the zeroth order term is simply a
constant. That term will therefore not cause any IR transitions. It will cause rotational
transitions, though.

Not all vibrations will have a non-vanishing derivative of the dipole moment
and therefore associated radiative transitions. This will be the case for a dimer (a
molecule composed of two identical atoms). The requirement on the dipole moment
is intuitively clear; The only interaction between the particle and light is through
the dipole moment. If the dipole moment does not change as a mode vibrates, the
light is blind to this vibration and cannot excite it. A charge on the particle does not
change this conclusion. The charge only causes the center of mass to move but will
not induce vibrations.

What is less transparent is which modes have a non-vanishing derivative and
are therefore optically active. This question can be answered by application of group
theory. It would unfortunately take us too far astray if we tried to give this an adequate
treatment, and we refer to textbooks in physical chemistry for this subject.

Assume now that we have identified a vibrational mode that can radiate. The
quantum mechanical selection rules for the transition can be found easily when the
position operator in (6.26) is written in terms of the raising and lowering operators
a and a' of the emitting mode as

x =,/ h (a+ah, (6.27)
2mw

where w is the vibrational frequency and m is a mass, with a precise definition we
won’t specify except to note that it is related to atomic masses. The relation in (6.27)
holds for harmonic oscillators. For anharmonic oscillators there will be more terms
with higher powers of a, a” that relax the selection rules and give rise to more possible
transitions than found below. They are usually less intense and we will ignore them
here.

The two lowering and raising operators a,a’ act by changing the number of
vibrational quanta in a state as
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a|lN) =~/N|N — 1), (6.28)
a'IN)y =+/N+1|N + 1), (6.29)

corresponding to stimulated emission (a) and absorption of radiation (a). The stim-
ulated emission will have the matrix element with modulus squared equal to

ymM,N,_\z = Nhv |[(M|N — 1)|*> = Nhvdy n_1, (6.30)
and the absorption the value
v = (N + Dho [(MIN + 1) = (N + Dhvsy yoi. (6.31)

For both cases, the photon energy must conform to Bohr’s frequency condition on
the emitted and absorbed light, viz. that the photon energy is equal to the difference
in energy of the involved states:

|Eny — Epml| = hvo, (6.32)

as required by energy conservation. The cross section for absorption in state N is
then

on o [myn | (6.33)
=v8(v —vg)(N + 1).

Introducing the constant of proportionality, oy and integrating over photon energies
cancels the § function and gives

oy = vyoo(N + 1). (6.34)

This cross section is not energy-independent, o (E — hv) # o (E — 2hv), as we had
to assume to proceed from (6.17), and it does not make sense to use that equation
as we don’t need it here. Instead we can calculate the energy dependence directly as
the value averaged over the population of excited states. After integration over the
photon energy, cancelling the § function, we have the cross section averaged over
the populations Py (E) of the vibrational states of the IR active mode:

[E/hv] [E/hv]

"(E — Nh
o(Ey= Y onPy(E)= Y oo(N + 1)"(—E”) (6.35)
N=0 N=0 'O( )
ey p'(E — Nhv)

- N p2ET T
001;)( +1) o (E)

where p(E) is the total level density and po'(E — Nhv) is the level density of the
whole system less the contribution from the emitting mode.
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Inserting this cross section, with the argument E — hvy, into (6.9) we get

8rvd R o' (E — (N + Dhwp)
k(E) = —2 N+1 6.36
(E) chON;(+) B (6.36)
3 [E/hv] ’
(E Nhl)o)
= yELiE i)
% Z p(E)

Note that the rate constant here is the total rate constant, and not the differential value
per frequency interval, as in (6.18). We can express the factors multiplying the ratios
of level densities in terms of Einstein’s A-coefficient, A, for the transition which
gives

[E/hv]

, 6.37
p(E) (6:37)

which is the IR emission rate constant for IR radiation of an isolated microcanonical
particle.

It seems that stimulated emission has disappeared from (6.36). This is not the
case. This is easiest seen in the canonical ensemble. Exercise 6.7 helps you to see
this.

Figure 6.2 shows three examples of the temperature dependence of the IR rate
constant from a single oscillator calculated with (6.36).
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Fig. 6.2 The IR emission rate constants vs. temperature for a particle with a single IR active mode
of quantum energies v = 500, 1000, and 2000 K, and a cross section corresponding to 100 km/mol.
The curves do not depend on the size of the particle because the mode is decoupled from all others
in the particle, i.e. is truly harmonic. The curve continues to grow linearly at higher temperatures.
The curves for the three different vibrational quantum energies scale, and really just show the same
curve in different magnification
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IR cross sections are usually much smaller than those associated with electronic
transitions. This is a consequence of the much larger mass that enters in the denomi-
nator in (6.27), compared to the mass of the electron which is relevant for electronic
transitions. The reason IR radiation is still observable and often dominant is a good
example of the previously mentioned effect, viz. that the small matrix element is
compensated by the relatively large Boltzmann-like factor p(E — hvg)/p(E).

Quantum mechanically calculated infrared cross sections are often given in the
peculiar unit of km/mol. In order to translate a number from these units, multiply by
the photon wavelength and divide by Avogadro’s number, N4. Hence a infrared
intensity of 100km/mol for a 0.1 eV photon is equivalent to a cross section of
2.06-1072* m?,

6.4 Photon Emission from a Metal Particle

The most dominant low energy absorption feature in small metal particles is the
surface plasmon resonance. This resonance can be understood in classical terms as
the collective motion of the valence electrons in the approximately harmonic potential
felt by these electrons when their center of mass is displaced a small distance from
the equilibrium position where the negative charge of the electrons and the positive
charges of the residual atoms almost cancel. The lifetime of the resonance is usually
only a few times the period of oscillation. As any other resonance it therefore has a
finite width and will extend both up and down in energy from the centroid energy,
which is the name for the resonance peak position. A calculation of the classical
photo-absorption cross section gives a low energy tail on the cross section that varies
approximately as the frequency squared. The full classical form is (w = 27 v):

e? w?

(6.38)

o= N, ,
meceo” < (@2 — D)2 + () )2

where e is the electron charge, m, the electron mass, N, the number of valence
electrons, w; the surface plasmon frequency, and y the damping. The choice of
constant in front of the pseudo-Lorentzian peak shape is made to have the resonance
exhaust the TRK sum rule and (6.38) therefore represents the plasmon with the
biggest radiative contribution possible. In real situations the contribution may be
less, but it is not likely to be significantly less if the plasmon is present at all. It is a
collective resonance, after all.

The two parameters that characterize the resonance are the width, y, and the
centroid of the resonance, w,. The width is a fraction of the resonance energy and
may depend on temperature. The value of w; is proportional to the square root of
the valence electron density in the free electron gas approximation. If the valence
electrons are spread out over a sphere with radius r, the resonance frequency is

2
2 e N,

= — 6.39
S 4meom, 13 (6.39)
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where m, is the electron mass. Values are typically several eV, depending on the metal
through the factor N, /r® which essentially is the electron density in the particle. The
bulk plasmon, for which the generic term ‘plasmon frequency’ is often used, is a
factor /3 higher than the surface plasmon frequency.

Because this resonance is found to account for a large fraction of the low energy
photon absorption cross section for a number of metals, it accounts for a correspond-
ingly large part of the thermal photon emission. | When the resonance centroid
energy is much larger than the temperature, fiw; 3> kg7, and the width is not too
large, y < wy, the expression can be simplified in the low energy regime to

2 2 2
e 10} 24rya)_

6.40
meceoy w? c w? (640

In these cases, the emitted power varies with the 6th power of the temperature, vs.
the 4th power for black body radiation.

6.5 Recurrent Fluorescence

Recently, radiation has been observed from thermally populated electronic states in
molecules and small clusters. The process is known as recurrent fluorescence. The
word ‘recurrent’ refers to the fact that the theory originally developed for the process
assumed that the excitation energy was introduced into the particle by a photon
absorbed into a specific electronically excited state.

Such a photo-excited state will often survive for some time, with the original
geometry intact or more often having moved on the excited state Born-Oppenheimer
surface into a geometry distorted relative to that of the ground state. Irrespective of
the precise geometry, the system can then relax to the ground state or to some other
low lying state by emission of a photon.

This relaxation is a common occurrence and is probably the one you hear about.
But it competes with other channels known as radiationless transitions, in which
the particle goes through a configuration where BO surfaces cross and the particle
transfers to the electronic ground state, directly or in several steps. A molecule
undergoing recurrent fluorescence follows this path but in addition also returns to
the original electronically excited state. After reaching thermal equilibrium, a certain
fraction of the particles will be in the absorbing state, and from these a photon can
be emitted, in a process that is outwardly identical to a normal fluorescent photon
emission.

Figure 6.3 illustrates the situation when the initial excitation is by photon absorp-
tion. In addition to the processes indicated in the figure, vibrational radiative tran-
sitions may occur, in particular from the electronic ground state, because it has the
highest vibrational excitation energy. Since the emission is from a thermally equili-
brated system, any way of exciting the system to the same energy will produce the

! Also for carbon, which is metallic in the sense of astronomers: Anything but hydrogen and helium.
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Fig. 6.3 Schematics of the recurrent fluorescence phenomenon. The electronic ground state particle
absorbs a photon that promotes it to the electronically excited state indicated by an asterisk. Repeated
inter-system crossings, indicated by the horizontal double arrow, populates the electronic ground
state and the excited state according to their statistical weight. The excited state may emit a photon,
shown by the dashed arrow, from this equilibrated system. A number of possible and competing
decay channels have been left out of the figure for clarity

same light, and there is no fundamental difference between this process and photon
emission connected with, say, infrared photons from vibrational transitions. It does
exhibit the thermal nature of the process explicitly, however, and it is a good example
of a thermal photon emission which proceeds via an activation energy, because the
photons can have energies far above the temperature of the emitting particles.

The recurrent fluorescence mechanism is not expected to produce sharply defined
photon energies. The energies of the emitted photons are determined by a few factors
that will contribute to the smearing of the photon energy. One is the Franck-Condon
factor, which spreads the emission over a number of vibrational states and therefore
smears it energetically. This factor is also at work in the absorption, although the
effect may have different magnitudes in the two situations, because the transitions are
rarely taking place with the same nuclear coordinates on the two BO surfaces. The
shift from absorbing, ground state geometry to an excited state emitting geometry
also shifts the peak position.

Another contribution to the smearing is related to this shift in geometry. Relaxing
to a lower point on the BO surface after excitation releases vibrational energy which
will cause the surroundings of the excited state minimum geometry to be explored
thermally. When the two BO surfaces are not aligned, also the energy difference, i.e.
the photon energy, will therefore be sampled from a wider distribution.
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Fig.6.4 The first detected recurrent fluorescent photons, emitted from C¢ clusters in an electrostatic
storage ring. The photons are emitted by a cluster bunch that pass a photo-multiplier detector at the
times 24, 63, and 103 s, where they give rise to the observed peaks. The photon energy is 2.04 eV

If one measures the photon emission rate constant, for example by the means
outlined in Chap. 7, it is possible to get information about the energy of the emitted
photon even without measuring it directly. This is possible because the TRK sum rule
sets a rigorous upper limit on the possible absorption cross section for all absorbing
species, not just for metallic particles with quasi-free electrons. The sum rule can be
converted into a constraint on the cross section in (6.18), expressed in terms of the
oscillator strength, f, which conforms to the inequality

f =N, (6.41)

where N, is the number of valence electrons. With the emitted frequency vy the
expression becomes

P(E—hw)

_ —21y,—1 .2 p(E)

p(E—hw)

Figure 6.5 shows the behaviour of (6.42) for cases with the simple level density
p o E*~! for some values of s and energies per degree of freedom, E /s, around
0.2 eV. The difference between different sizes is minor, whereas the temperature
is clearly more important. The shapes of the curves is defined essentially by the
increasing factor v2, and the suppressing factor of the level densities, effectively the
Boltzmann factor which prevents high energy excitations from radiating by reducing
the thermal population of the emitting state. Photon emission rate constants can
be determined experimentally with different methods. One is given in Chap.7. An
experimental value fixes the ordinate value in Fig. 6.5. It is clear from the figure that
this determines both an upper and a lower limit for the energy of the emitting state,
and just the upper limit expected from the Boltzmann suppression, the lower limit
caused by the photon phase space factor v?.
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Fig. 6.5 The photon emission rate constants of (6.42) for f = 1 and the parameters indicated

The determination of the best limits by this procedure requires that the oscillator
strength of the transition is known. The oscillator strength enters as a multiplica-
tive factor on the curves and they will shift up or down with the value. Instead of
best limits, one can derive the most conservative limits by assuming the maximum
oscillator strength. This will still be useful, at least for small particles with a limited
number of valence electrons. Another interesting number one can extract from (6.42)
is the minimum oscillator strength required to produce an observed transition. By
inspection of (6.42) we see that for sufficiently small oscillator strengths there will
not be any photon energy with sufficient phase space and large enough Boltzmann
factor to produce the observed rate constant. Both of these limits will provide guides
for further experimental search for the emitting state.

Exercises

6.1 Use dimensional analysis to show that the combined level density of two photons
with total energy /v in a large volume V has the form

V2(hv)?

o (6.43)

In addition to the dimensional analysis, you need to know that the result is propor-
tional to the square of the volume, V2. A large volume ensures that you can ignore
the cases where two photons of the same energy are in the same state, which would
give rise to double counting. Use the level density of (6.7) to calculate the value
of the numerical constant missing in the dimensional analysis, and show that it is
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3272 /15. Compare the result with (6.7) with V = 107> m? and hv = 1eV. Calculate
the hypothetical volume where the ratio of the two would be unity, and compare the
result with the wavelength of a single photon with energy hv.

6.2 Use (6.11) to calculate an estimate of the ratio of the frequency factors for photon
and atomic emission for your favourite atoms and a 0.1 eV photon.

6.3 Use (6.40) and the assumption leading to this equation to calculate an approxi-
mate expression for the emitted spectrum, the emitted power, the spectrally integrated
emission rate constant and the mean photon energy. Compare results with Planck
radiation for the same system.

6.4 Calculate the formula for the IR photon emission rate constant from the first
vibrationally excited state by dimensional arguments. Use that the emission is pro-
portional to the same matrix element squared that is responsible for absorption. It is
proportional to the derivative of the dipole moment with respect to nuclear separation.
Other relevant parameters for the problem are the coefficient in front of the raising
and lowering operators, f, the transition energy and the speed of light. Calculate a
number with typical values of the mass of the oscillator and the transition energy.

6.5 Calculate the absorption cross section that gives rise to emission of IR radiation
centered at hw = 0.1 eV, with a small spectral width and with a rate constant of 100
s~! from a particle with a microcanonical temperature temperature of 1000 K. Ignore
the finite heat bath effect. Repeat the calculation for the same parameters but include
the finite heat correction for a heat capacity of 30.

6.6 The photon emission rate constants can be approximated by an expression that is
similar to the Planck radiation formula if the microcanonical temperature is used and
the heat capacity is sufficiently large, as described in the text. Evaluate the correction
due to the finite heat capacity to this Planck expression numerically for a real system
of your own choice with a small to moderate heat capacity.

6.7 Use (6.37) and the canonical ensemble population density
1 _BE
P(E) = Ep(E)e (6.44)

of the of states with energy E to calculate the IR emission rate constant of a single
harmonic vibrational mode in a particle. You can assume it does not couple to other
modes and the canonical partition function therefore factorizes.

6.8 Show that the photon emission rate constant varies linearly with photon energy
in (6.42) for small photon energies.

6.9 Isitpossible, in principle at least, to use photon emission rates as a thermometer
for the microcanonical temperature?

6.10 The emission of photons from electronically excited states seems to violate the
principle of detailed balance, because the emitted photon energy is usually less than
the absorbed. Explain why this breakdown is only apparent.



Chapter 7 ®)
The Evaporative Ensemble e

Free and supported particles are generally different, and properties such as energy
and structure are best studied in their pure form in free particles to avoid the effects of
the interaction with a substrate, unless this interaction is the object of study. A large
number of studies have therefore been performed on free clusters, either in molecular
beams or in devices such as storage rings or ion traps, which are devices where ions
can be stored for extended periods of time. If the particles are produced sufficiently
cold and the experiments do not involve a significant energy transfer to the particle, no
reactions that change the mass and/or the charge will occur during the experimental
time. This means that one can identify the precursor of the products one is measuring
in an experiment, which is not a trivial matter for neutral particles given the usually
broad mass distributions produced in most particle sources. For these situations one
can describe the systems with the microcanonical ensemble, apart from the short
times during which the particles are exposed to some external manipulation (laser
light, collisions), and possibly exchange of thermal radiation with the surroundings.
Or more correctly, by a collection of microcanonical ensembles, very likely with
different but individually conserved energies between the scientists’ probing.

At the other extreme, particles that are prepared as hot as possible ‘under the cir-
cumstances’ will have certain properties that derive from this specific experimental
condition. Some of these properties, energy distributions and decay rates in particu-
lar, will either be independent of the precise system studied or have scalable values.
Knowing the systematics associated with this setting will allow us to extract prop-
erties of the systems. This is the subject of this chapter. Stated negatively, it will
also help us to avoid some commonly seen errors. It turns out that a quantitative
formulation of the vaguely sounding expression ‘under the circumstances’ is the key
to understanding the properties of ensembles of hot systems.

© Springer International Publishing AG, part of Springer Nature 2018 147
K. Hansen, Statistical Physics of Nanoparticles in the Gas Phase,

Springer Series on Atomic, Optical, and Plasma Physics 73,
https://doi.org/10.1007/978-3-319-90062-9_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90062-9_7&domain=pdf
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7.1 Decay of Isolated Particles

The special features of ensembles of freely decaying particles appear as the con-
sequences of two properties of evaporating particles. The first is that the energy is
conserved between two decays. By decay we will here understand emission of an
atom, an electron or a photon; a unimolecular reaction, in short. Absorption of a
photon from the ambient radiation may also occur. If the absorption and emission of
radiation is sufficiently rapid, the particle is in thermal equilibrium with a heat bath.
We will restrict our cases to an absorption which is so weak it can be considered
absent. Likewise, there is no continuous flux of atoms or electrons onto the particle.
All changes in the composition of the particle are losses. When mass and energy
is lost, we cannot describe the system as a microcanonical ensemble. The situation
where a collection of particles lose energy and mass by evaporation in vacuum in
the absence of equilibration with external energy sources is instead the situation
described by the evaporative ensemble.

The second important feature is the enormous separation between the experimen-
tal time scales and any measured lifetimes on one hand, and on the other hand the
intrinsic time scales for the unimolecular decay of the particles. The lifetime is typ-
ically given by flight times for ions over centimeters to meters or more, at thermal
or keV energies, corresponding to times of several tens of nanoseconds and longer,
or by the storage times in a storage device. Those times can exceed hours, and for
Penning traps even months.

The decay time scales defined by the internal properties of the particle can poten-
tially vary over a very large range. The Arrhenius form captures the essential features
of an activated process rate constant;

k = we BT (7.1)

where w is a frequency which is energy independent or at least has only a weak
dependence on energy compared to the energy dependence of the exponential func-
tion. The properties of w, the value of T as a function of the excitation energy and
the proper interpretation of E, are all worked out in detail in Chap.5. The results
from that chapter are implicit here, although simplifications will be made. For the
purpose of molecular beam experiments, the rate constant can take essentially all
values between zero and 10'? s~!, corresponding to decay times of a picosecond to
essentially infinity, which in these situations is defined by the ion beam retention
time.

When the observation time is much longer than 1/w, the highest microcanonical
temperature that can be sustained by the particle is significantly less than the evap-
orative activation energy, E,, which in the following will be assumed identical to
the dissociation energy with the modifications introduced in Chap.5. The highest
possible temperature the particles can have on this time scale is be estimated with
the relation

E,

km ~ 1/t = Tm N .
ax / ax ln(a)t)

(7.2)
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Fig. 7.1 The fraction of particles with decay rate constant given by (7.4) that have not decayed at
the times indicated. The crossover from no decay to an entirely decayed population is not completely
sharp, but the shape of the curve does not change much with time, the most significant change being
a minor increase in the numerical value of the slope at the crossover energies with time

A more rigorous derivation of this relation will be made below. The situation is
illustrated in Fig. 7.1, where the fraction, P, of surviving particles is shown as function
of excitation energy, E, for three different times.

P(E) = e *B), (7.3)

The example is calculated with the rate constant

016 s 1ey3 (E—3eV+18-0.01eV)"

k=1 20
(E +21-0.01 eV)

(7.4)

This is the rate constant for a 9-mer, described as a collection of harmonic oscillators
with an average frequency of 0.02 eV in the high energy limit. The non-exponential
form of the rate constant is used to emphasize that the results that will be derived
below do not depend on the exact functional form for the rate constant, nor do they
require that a microcanonical temperature is defined.

The curves in Fig. 7.1 are the survival probabilities, but represent equally well the
surviving population up to a constant factor, provided the initial population density is
sufficiently flat. Precisely how flat is a question that will be investigated below. Unless
otherwise mentioned, we will make the assumption that the survival probability also
represents the population density of the surviving population.

The quantity In(wt), which we have already encountered in Chap. 3, appears so
often that it merits a name. It is called the Gspann parameter after J. Gspann who
first suggested that there would be a highest temperature in an ensemble of freely
evaporating particles. We define
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G = In(wt). (7.5)

It is also denoted by y in the literature. For @ = 10'® s™! and ¢t = 10 s the value
is G = 25. The Gspann parameter connects the highest microcanonical tempera-
ture in the ensemble to the activation energy. In the leading order finite heat bath
approximation of the microcanonical temperature it is

T, —E"+ Ea (7.6)
max — G 2CN5 .

where Cy is the heat capacity and the last term is the first order finite heat bath
correction.

Let’s now understand Fig. 7.1 in detail. The fact that the cutoff value of the energy
depends on time, and also that it is not completely sharp is easily understood by
considering the properties of (7.3). Consider first the diffuseness of the cutoff. The
derivative with respect to energy (7.3) is

dP E,

_ —kt
E = _CNTZkte . (77)

We will ignore the T2 dependence because it varies slowly with energy compared
with the energy dependence of the rate constants. Then the numerical value of the
derivative peaks at kt = 1, which is what we intuited in (7.2). Inserting this solution
into (7.7) gives us a numerically largest slope of

dp E, G?
bl =——2 = e !, (7.8)
dE Imax CNT2 CNEa

where the definition of G was used. Thus the slope changes only slowly with time, as
we already saw in the numerical example given in Fig.7.1, through the logarithmic
factor G? = In(wt)>.

The slope at the cut-off depends on particle size. Obviously the activation energies,
E,, will have size dependences in general, but the most important one is due to the
size dependence of the heat capacity in the denominator. This dependence is absent
if we consider the slope in the P vs. T curve instead,

dp G?
=——e

— 7.9
dT lmax E, ( )

With k¢ = 1 at the crossover point, we can solve for the crossover temperature, 7, .
The result is (7.2) without any qualifications on the equality sign. This result is exact
for an Arrhenius rate constant, but is also a good approximation for other expressions
that give better descriptions of the rate constants, and with the results in Sect. 5.2 we
can translate the results of (7.3) to the properties of more realistic rate constants, if
desired.
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The approximate constancy of the slope of this survival curve allows us to find
not only the time dependence of the crossover energy but also the decay rate, R. The
decay rate is defined as the number of particles decaying per unit time, not to be
confused with the rate constant. For a flat initial energy distribution with amplitude
litis

dpP
R=- —dE. (7.10)
o dr
One way of calculating this is, instead of attempting a direct assault on the integral,
to look at the time dependence of the crossover energy. The decay rate is proportional
to the time derivative of this energy:

_ dEm _ dTm _ CNEa _ CNEa
T T T ey T Ve

(7.11)

The main time dependence in this expression is the reciprocal of time. The constant of
proportionality g, is the density of excitation energies, defined such that the number
of particles that have an excitation energy between E and E + dE is equal to gdE.
Equation (7.11) tells us that an ensemble of mass-selected, isolated particles will
decay essentially with a power law in time as long as g is constant.

The leading order power law decay is modified by the time dependence of the
Gspann parameter. As a rule of thumb, for decays that occur on time scales of nano-
to microseconds, a change in temperature of 10% corresponds to a factor of 20 in
decay time, or conversely, that the factor G> changes 15% over a time interval that
spans a factor of 10. The modification can be expressed as a correction to the power
—1. In a power law decay we have a linear relation between logarithms of rates and
times:

Rxt™ = In(R)=—pln(t) +¢ (7.12)

and p can be found as the derivative of the logarithm of R with respect to the logarithm
of t:

dIn(R)
= - . 7.13
P =m0 (7.13)
Calculating the corrected power gives
dIn(R) d
= (—In(t) — 2In(In(wr))) = -1 — 2/G. (7.14)

dIn(z) ~ dln()

The reduction of the power with —2/ In(wt) is on the order of 5-10%, depending a
little on the precise value of w, i.e. the nature of the process, and the measurement
time.

There are a few other small corrections to the 1/t decay in addition to the one
generated by the Gspann parameter time dependence. One is the effect of finite heat
capacities. We can find an expression for this and the previously calculated correction
simultaneously for rate constants of the more general form
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E+E,—E,\!
k~o 2 Er— B , (7.15)
E+E,

where E, and E, are constants, and as usual E, is the activation energy for the
decay. Simplifications were made by setting w constant and using the same heat
capacity for both product and precursor. As before the decay rate is found by setting
k(Eq)t = 1, solving for E,,,, with (7.15) and taking the time derivative. We have,
with the notation § = 1/(Cy — 1):

dE ax o E,+E — EP (Sa)75 —1-8

Ro— - 13, 7.16
e A (7.16)

which gives

din(—%Emes)  dln(—9Emae)

_ d _ d
dIn(r) dr
——1—8—25ﬂ (7.17)
- 1 — (wt)=%" ’

We introduce G = In(wt) and write the power as

—-G$§

—. (7.18)

p=1+3+2ale

The first correction is appreciable for very small particles, composed of on the order
of several atoms. The second correction generalizes the 2/ G correction calculated
above. It is always less than the limit 2/ G which is reached at large heat capacities,
Cy > G. The behavior of (7.18) is shown in Fig.7.2.

The power law decay is important enough to warrant an alternative derivation.
The decay rate at time ¢ is generally given by the integral of the surviving fraction
times the decay rate constant and the density of particles with energy E, g(E):

Fig. 7.2 The behavior of p
calculated in (7.18) for

G = 25 and a heat capacity
of Cy =3N — 8.5, 1.3
corresponding to the average
of the reactant and the
product, both described as D 1.2+
high temperature ideal
harmonic oscillators

1.4+

0 5 10 15 20 25 30



7.1 Decay of Isolated Particles 153
o0
R = / g(EYk(E)e M ENdE. (7.19)
0

If, as before, we assume a constant density, g(E) = g, we can take that factor outside
the integral. Next, substitute the rate constant for the energy in the integral:

o dk\ 7! o0 dink\ ™!
R = ke ¥ (—) dk= ki dk. 7.20
g/o ¢ (dE) g/o ¢ (dE) 720

The integral’s upper limit is extended to infinity whereas the formally correct value is
k(E = 00). The substitution is justified because observation times are so long that the
highest rate constant is much greater than the value 1/¢, which is where the integrand
peaks. Furthermore, under these conditions we expect that the logarithmic derivative
of k is a slowly varying function compared with the argument of the exponential,
—kt, and can therefore be taken outside the integral. Evaluated at k = 1/t it all gives:

dink\™ o0 dlnk\ ™ 1 [
R~g i ‘ / e Mdk =g 1 ‘ —/ e ¥ dkr.
dE k=1/t Jo dE k=1/tt Jo

(7.21)
The integral is unity and we end up with
dink\™ 1
R~ ‘ = 7.22
g ( dE ) k=1/t t (722)

To check if the approximation of the logarithmic derivative of k that appears in
this equation with a constant is permissible, we need to specify an expression for k.
We consider the by now familiar expression k = wp,(E — E,)/p,(E), where p is
the level density of the product state and reactant (parent) particle, and calculate

dlnk dln [0»(E — Eo)/p(E)]

(I E,
dE dE T,

~
~

T, CnNT,T,

(7.23)

for identical heat capacities. The product T}, 7, can be approximated with the square
of the emission temperature, 7', in the Arrhenius expression; 7,7, = T?. T has
been defined previously (see Chap.3) where the quality of the approximation was
discussed. With E,/T = In(w/k) we have

dInk N In(w/k)?

(7.24)
dE E.Cy

The condition for approximating the right hand side with a constant is that k < @
or 1 <« wt. With respect to energies and temperatures this translates to 7 < E,.
Combining (7.22,7.23) gives (7.11) again.

A third derivation of the power law decay also starts from the integral in (7.19)
and uses a saddle point expansion to calculate it. This is left as an exercise.
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At first glance it may seem that we have just derived the same time dependence
in (7.11) that we put into the derivation from the outset, (7.2). Although the two
equations look identical, they really describe different things: (7.2) gives the highest
rate constant (k) one can have in the ensemble, whereas (7.11) gives an expression
for the ensemble-averaged decay rate (R) one observes in an experiment. The 1/¢
decay rate is derived with only (7.2) and the fact that the rate constant is a rapidly
varying function of energy. Exercise 7.1 illustrates the argument with an example
of a hypothetical highest rate constant that does not vary with time as 1/7 but still
produces a 1/¢ decay rate.

It is worth emphasizing that the non-exponential decay appears even though the
individual decays are completely statistical and each have the well-known exponen-
tial form. The power law is a result of adding many independent decays of this type
with different decay constants. An integration over decay constants means that there
are no characteristic time scales left in the problem, which is reflected in the fact
that a power law in time does not contain any characteristic time. It is therefore not
possible to extract any activation energy associated with a specific rate constant from
apower law decay, at least under the condition that, as assumed so far, only one decay
channel is activated. When two competing decays occur in parallel, the situation is
much more favourable for determining system-specific parameters (see Sect. 7.8).

An experimental example of the power law decay is given in Fig. 7.3 which shows
decay rates for a small anionic silver cluster measured in an ion storage ring. This
storage device is capable of holding on to the ions for seconds by accelerating them to
a fixed energy and then circulating them in a racetrack-shaped flight tube in vacuum,
guiding their motion with static electric fields. The decay rate is measured as the rate
of production of neutral particles in this experiment.

The results we have derived for the decay rates so far require that the energy
distribution is relatively flat in the energy interval over which the decay takes place.
As claimed, it is usually a good approximation to set g to a constant. To have a
quantitative criterion for the applicability of this approximation, and also to be able

Fig. 7.3 The experimentally T T T
measured decay rate of Agy . 10000 + 3

The data are measured in the ] \\ Ag,
electrostatic storage ring 1

ELISA. Reprinted from ] e

K. Hansen et al. Phys. Rev. 1000 5 . O r . E
Lett. 87 (2001) 123401, 3 ]
http://prl.aps.org/abstract/ 1 1

PRL/v87/i12/e123401.
Copyright (2001) by the 100
American Physical Society ]
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to apply the corrections that may be present, we need to calculate decay rates includ-
ing the variation of the distribution. A simple parametrization of the energy distri-
bution is

g(E) = ae®, (7.25)

where b can be either positive or negative. The decay rate is then calculated as

dE nax
dt

Epax (1) Epax (t+dt)

Rdt oc/ g(E)dE —/ G(EYAE = —g(Epmar) dr, (7.26)
0 0

or

dE dE
R o« —g(Epax = - ebE”’Mﬂ. 7.27
9(Epax) ar a ar (7.27)

Taking the double-logarithmic derivative of this rate, the effect of the non-constant
energy distribution is to change the power of the decay into

E,Cy
G?

p—p+b (7.28)

The nature of this correction differs from the other small corrections we have
calculated above because it depends on the experimental conditions used to prepare
the ensemble, and it will change if they are changed, e.g. if the power and/or the
color of laser light used to excite the particles are changed.

We can find a good estimate for » from observed abundance spectra, provided the
particle abundance distribution is measured as produced, without any later externally
enforced cooling of their internal degrees of freedom. The width of the energy distri-
bution for a specific size is then close to E, for particles with heat capacities below
a few hundred, as we will see below. An exponentially varying energy distribution
as (7.25) will therefore translate into an exponentially varying mass distribution,

Iy =d exp(b'N), (7.29)
where the two coefficients b and b’ are related as
b = —bE,. (7.30)

The minus sign appears because high energies appear as low masses. Hence, for a
mass abundance spectrum that varies approximately exponentially, Iy = a’ exp(b'N)
over a not too narrow size range, we have the correction

Cy

= (7.31)

p—>p-Vb

instead of (7.28).
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If one prepares the ensemble by laser excitation, there will potentially also be
an effect on the decay from the non-smooth energy distribution caused by the dis-
creteness of the energies absorbed. This discreteness will be partly washed out by
the width of the initial internal energy distributions generated by the particle source
and from whatever other smearing there may appear, such as the stochastic kinetic
energy release that will appear during evaporation. We will calculate a conservative
estimate of the effect of the discrete excitation energy caused by photon absorption
by ignoring this smearing.

When the photon energies are sufficiently small, it is clear that the distributions of
absorbed energy can be considered continuous. Quantitatively, if the rate constants of
a particle having absorbed n photons is denoted k,,, the ratio of two particles having
absorbed consecutive numbers of photons, r = k, 41/ k,, must be sufficiently close
to unity for the discreteness of the photons to be unobservable. Hence the method
of excitation by multiple photon absorption does not change the power law decay
provided

din(k CyE,
n—()hv<xz>hv<x N

v < Sr (7.32)

where x is a pure number. As will be calculated, it turns out to be around In(7),
depending on the quality and statistics of the experiment. Figure 7.4 shows the decay
rates vs. time in a number of ensembles where the decay constants differ by a factor
r, i.e the figure shows the curves

2] r=2
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Fig. 7.4 The curves show the decay rates for series of geometrically spaced rate constants given
by (7.33) for different values of » (full lines). No thermal smearing is included. The curves are
offset for display purposes by a factor 1.3 between consecutive values of r. The curves calculated
with the approximate expression derived in the text, (7.39), are also shown (dashed), but are hardly
discernible on the scale of the figure. The good agreement between the two is striking considering
that only the two lowest order terms are included in the Fourier series resulting in (7.39)
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R = Z kor"e k" (7.33)

n=—0oQ

for different values of . On inspection of the figure one sees that the curves are well
represented by a simple 1/¢ functional form up to at least r = 4.

We calculate the correction to the power law decay for the situation described in
(7.33) by observing that the product of rate and time is periodic in the logarithm of
the time with the period In(r). This suggests the use of a Fourier series for the curve
Rt in In(kot),

o0 . .
Ri= 3 Cpew (7.34)

j=—00

The coefficients in this expansion are

oo

In(r) 1 kore ™) _idg JInkot)
/ > kote" ek e T2 T d In(kot ). (7.35)
n

€= In(r)

We substitute x = In(kot) and note that the sum of integrals adds up to the integral
over all real values of In(kot). This gives us

2756 (7.36)

Ci= ln(r)
The coefficient of the constant term, j = 0, is calculated to

1
In(r)”

Co = (7.37)

We can calculate the higher order terms with a saddlepoint expansion. With the
notation « = j2m/In(r), the saddle is located at x = In(—1 + i«). Thus, the value
of that integral is approximated with

0
C/‘ ~ / (1 _ ia)e—1+1a—1a1n(1—wt)e%(1a—1)(x—1n(1—1ot))“dx. (738)
T In(r) Jow

After performing the Gaussian integral, the result can be simplified by noting that
|| is usually large compared to unity, and that therefore factors In(1 — i) can be
expanded as In(—ia) — 1/(ir). After alittle algebra and adding the j = 1, —1 terms,

this gives
1 1 N v 2 <2 In(kot) N ¢) (7.39)
~ € ¢ CcoS hb—— .
In(r)  (In(r))*? In(r)
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The phase is:

e Ly (22 7.40
¢= ”<_§+1n(r) " () n(ln(r)>>' (7.40)

From Fig. 7.4 the zeroth and the first order terms alone are seen to give a very good
approximation to the amplitude, even for values of r that at first sight seem very
large.

The ratio of the first and the zeroth Fourier coefficient in (7.39), which gives
the magnitude of the deviation from a 1/¢ decay, oscillates between +0.05 when
r = 7.8. If this is taken to be the highest acceptable oscillation, the photon energies
that produce power law decays are limited by (7.32) to

c
hy < 1n(7.8)EuG—’Z = 0.0INE,, (7.41)

when Cy = 3N and G = 25 is used.

One way of understanding the result qualitatively is that a power law decay appears
when enough different rate constants contribute to the decay at any given time. This
is effectively a smearing of the energy of the decaying particles. As mentioned, the
above result is a conservative estimate. Any other smearing of the energy, and there
are more reasons for this to occur than you may like to think, will increase the right
hand side of (7.41). If the power law decay monitored is that of a particle which is
the product of several evaporations, another and very efficient smearing effect comes
into play and should be added to the picture (independent sources of smearing add,
they don’t replace each other). Because dissociation energies are rarely constant wrt.
size and also rarely an exact multiple of a photon energy, the equidistantly spaced §
functions of the photon energy distributions will, upon evaporation of a number
of monomers, be placed practically randomly on the energy axis between Nhv
and (N + 1)hv, say. This means that the criterion on photon energies in (7.41)
changes to

hv <0.0INARE,, (7.42)

when An denote the number of different initial, ¢+ = 0, particle sizes that contribute
to a particle observed at time 7. Although An is rarely known, it is easy to see that
this more relaxed condition can be a lot easier to fulfil than (7.41), in particular
considering both photon absorption statistics and laser beam inhomogeneities.

7.2 Abundances, Small Particles

One of the first quantitative measurements to perform when a cluster apparatus is
commissioned is to record an abundance spectrum. Shapes of abundance spectra
reflect a lot of factors, such as carrier gas pressures and temperature in the source,
the geometry of the flow channel leading from the source to the vacuum, laser pulse
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energies, degree of focusing, photon energies etc. These are the factors that will
determine the mean sizes and widths of particle size distributions and the value of
the parameter b of the energy in (7.25) in the nascent distribution.

In addition, spectra often reflect special stabilities of particles of certain sizes that
have become known as magic numbers. The size-to-size variations in such abundance
spectra at the magic numbers are usually generated in a way that makes an analysis
in terms of the evaporative ensemble ideal.

The most important requirement for the analysis is that the particles have under-
gone at least one decay before measurement. This is not a necessary condition for
every result in this chapter, but for abundances is easy to understand; if part of the
beam consists of cold particles that have never evaporated, there is no way evapo-
rative processes will give any information about this fraction, and there is no way
of knowing how large this fraction is when detecting the particles. In most of the
remainder of this chapter we will assume that this condition is fulfilled and remind the
reader that this can and should be verified experimentally in each case by variations
of the source and/or excitation conditions.

The existence of a highest temperature for a given particle size in the ensemble,
discussed in detail above, automatically ensures that there is also a lowest temperature
for the decay product of this size under these conditions. This lowest temperature,
or energy, is determined by energy conservation:

Emin,N—l = Emax,N - Ea.N — Ekin,v,rot,el (743)

where for simplicity we have assumed that the decay is monomer loss, and we have
added a size dependence to E,. The term with E,_y accounts for energy conservation
and it is therefore the true activation energy that enters this equation, not the one
corrected with the energy offsets in (3.17) which is used in the rate constant. The last
term on the right hand side is the sum of the kinetic energy release and the internal
degrees of freedom of the small fragment. It is usually small enough to be left out in
this context without serious problems. The relation says implicitly that no particles
of size N with energy less than E,, vy have decayed to produce particles of size
N — 1, just as no particle of N with energy above E,,,, y has survived.

Provided the lowest and the highest energies are sufficiently well separated, the
energy distribution of size N is therefore confined to a distribution between the two
approximate limits E, ¢ v+1 — Eq n+1 (lower limit) and E,,,, x (upper limit). For
particles with small heat capacities, both of these cutoffs in the energy distribution
are steep and the distribution will be approximately square. The low energy cutoff
which includes a negative term, must both be non-negative and less than the high
energy cutoff for the theory to be applicable. The non-negativity is required by the
fact that the excitation energy is zero at the ground state (recall that energies here are
excitation energies, i.e. calculated with the ground state as zero). Approximations that
produce negative excitation energies must be refined or abandoned. In sufficiently
realistic calculations, the energy will only very rarely be negative.

Particles usually contain a finite amount of thermal excitation energy, also after
decay. This residual excitation energy is known as the kinetic shift and is the reason
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energy distribution

E (eV)

Fig. 7.5 The energy distributions at 100 s of the 9-mer through the 12-mer of our generic cluster.
The ordinate is shifted with unity for each mass for display purposes. The arrows from N = 12 to
N = 11 point from different positions on the high energy edge of N = 12 to the corresponding low
energy edge at N = 11. If drawn correctly the arrows have identical length on the energy axis. The
three curves for N = 9 with ordinates shifted by 0.1 are the curves for 1, 10, and 100 ps

appearance energies, which are the lowest excitation energies of the reactant needed

for a decay on a specific time scale, are not equal to the dissociation energies.
These considerations can be formulated quantitatively by multiplying the survival

fraction in (7.3) with the complement of the survival fraction for the reactant;

P(E)E = e B (1 — e7hvnExEane)t) (7.44)

The first exponential gives the high energy cutoff we have seen before, and the last
factor the low energy cutoff. As illustrated in Fig. 7.5 for different times, the equation
can be approximated with a more or less square box between E,;, and E,,,, for
judicious choices of these energies:

P(E) = O(Epax — E)O(E — Epin), (7.45)

where O (x) is the step function which is zero for x < 0 and unity for x > 0. The
generation of the lowest temperature for particle size N — 1 from the highest tem-
perature of particle size N is also illustrated in Fig.7.5. The rate constants used to
produce the figures are the prototypical high temperature expressions also used with
N =9in Fig.7.3,

(E — E,+ (s — 3)hw/2)* ™
(E + shw/2)*"!

ky(E) =w , (7.46)

withs = 3N — 6, hw = 0.02¢eV, E, = 3eVandw = 10'°s~!. We note from Fig.7.5
that the width of the energy distribution is close to E,. This will be shown to be a
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general feature of the evaporative ensemble applied to small particles as long as the
E,’s are independent of size.

Abundances are proportional to the width of the internal energy distribution,
Iy & EN max — EN.min, provided the distribution of excitation energies is flat in the
sense that it does not vary appreciably for a given particle size between the low and
the high energy limits. An equivalent and more experimentally accessible measure is
whether or not the excitation energy density varies from one particle size to the next.
This is a well-defined question: ‘How many particles are there per eV for size N and
how many per eV for size M’. We have touched upon this question in connection with
experimental-specific corrections to the power law decay above, where the correction
was derived from a linear fit to the logarithms of abundances around a specific size.
We need to expand on the analysis of that situation to cover the effect of variations
in densities on abundances.

In the general case we can write the abundance as the integral of the energy
distribution, g(E), multiplied by the distribution in (7.44):

Enax

Iy 2/ g(E)P(E)dE %/ g(E)dE. (7.47)
0 Emnin

The abundances involve the function g(E) that includes instrumental functions, such
as molecular beam transmission coefficients and detection efficiency, functions of
the particle source parameters etc. This all sums up to a g which is very difficult
to determine directly. However, we need to eliminate it from the experimentally
measured abundances to have a chance to extract the two energies in (7.47), so g is
an integral part of the problem we need to solve.

The relation between g and abundances can perhaps be understood easier if we use
that abundances are the projection of the distribution of initial sizes and energies on
final sizes, as illustrated in Fig. 7.6. This projection is almost unique; a definite initial
N’ and E’ will be projected onto a definite E and N at some given measurement
time. The only ambiguous cases are the energies located at the boundaries of the
energy distributions of two neighboring cluster sizes, where the flip of a coin decides
if it ends up as N or N — 1. The stochastic kinetic energy releases will in principle
also give rise to a stochastic final energy, but this just amounts to a minor smearing
of the initial values of N" and E’ that contribute to the intensity at £ and N.

With the one-to-one correspondence between initial and final pairs of (E, N), we
can understand ¢ as the density of points in the (E, N) plane that are projected onto
a given final energy. In Fig. 7.6 this is proportional to the number of dots enclosed
between the two sloping lines. The mean value of g for a given size is denoted by gy
and is formally defined as

_ Jear 9(E)E

G o= LB T 7.48
w Emux - Emin ( )

The amount of particles that ends up as size N is proportional to this density times
the width of the distribution, i.e. the value of E,,, — E,;;, for the specific size, or
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Fig. 7.6 An illustration of the projection of initial distributions on the final energies and sizes.
The parameters of the decay constant are our generic ones and the measurement time is 10 ps. A
periodic variation (originating from an equally generic shell structure) is added on top of the 3 eV
average value to give the dissociation energy shown by crosses. The shell structure is observable as
the wiggles on the energy distributions, shown for each size as a line terminated with filled circles.
The two lines terminating at B and C define the region that is projected on size N = 20 from the
cloud of dots which represent the initial particle sizes and energies. The finite excitation energies
at the time of measurement in this Gedanken experiment is the kinetic shift

Iy = §N(Emax — Enin). (749)

This is not a formalistic definition. If the initial conditions (the density in the cloud
in Fig. 7.6) are smooth, which is usually the case, gy is also a smooth function of N,
and can be divided out.

The widths of the energy distributions are about an activation energy, as mentioned
earlier and shown later. If we express the E,’s as a smooth function of N, Ea, N, plus
a more rapidly varying function of size, we can find gy as

Iy = gnvEan, (7.50)

where I ~ 18 a smoothened abundance.
This connects the observable Iy to the unknown gy and we have from the two

preceding equations
Iy 1
= = ~_(Emax,N - Emin,N)- (751)
IN Ea,N

The factor Iy /Iy, which we may call the cluster’s stability factor, is by construction
independent of the details of the production process and the subsequent decay before
detection if the assumption of at least one prior evaporation is fulfilled. This is an
experimentally testable statement. The requirement for passing the test is that the
stability factor does not change when source conditions etc. are changed to give
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different mass distributions and hence different Iy’s. If the stability factors for all
relevant particle sizes are indeed invariant under these changes, they can be used to
determine the values of E,,,, — E,,;,, from the data.

We must have a prescription to determine 7y from the data. There is some freedom
in the choice of this function and some constraints. On one hand it should not vary
too rapidly with N, because then the interesting abundance variations will disappear
in the ratio Iy / Iy. On the other hand it should still vary sufficiently rapidly to remove
the slow variations of Iy associated with the envelope of the abundance distribution.
One possibility is to use an average produced with a Gaussian weight function with
a running width:

N'—N)?
2w Invexp (‘%)

N ==
(N'—N)?
EN,exp(— o )

(7.52)

where the sum runs over all masses in the spectrum and « is a suitable number. There
are alternatives to this, for example spline functions. These functions are constructed
so that they go to zero exactly at a certain point, as do their derivatives to whatever
order one prefers to prescribe. The optimal width of the smoothing region, the value
of @ in (7.52), can be determined by application of the averaging function to several
experimental spectra and varying «, starting with a high value, until, ideally, all
stability factors in all spectra agree for any given particle size.

Figure 7.7 shows an application of the procedures described above to mass spectra
of protonated water clusters, (HO)yH™. The four different abundance spectra that
correspond to different source conditions are given as counts per cluster size.

400k -
300k -
200k 1
100k -
0- . : - ; : :
20
154
1.0
051

0.0 T T T T T T T
0 20 40 60 80

2]
=
=i
=]
Q
O

structure function

Fig. 7.7 Abundances of protonated water clusters produced in an electrospray source (top frame),
and their stability function calculated with the methods given in the main text. The data are published
in K. Hansen et al., J. Chem. Phys. 131 (2009) 124303
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After iN is extracted from the experimental data, we have accounted for the
instrumental effects on the abundance distributions. The stage is almost set to solve
the job of relating the extracted structure function to the binding energies. To do so
we need to include one more ingredient, though. Decays constants are determined
by the temperatures, but the abundances are related to energies. We therefore need a
relation between the energies and the temperature. This is called the caloric curve.
We will expand the caloric curves of the particles in temperature to linear order,

Emax,N = CNTmax,N - EO,N- (753)

As we have seen before, Ey y is in general not zero because the heat capacity for a
certain particle is temperature dependent, and energy is therefore not simply propor-
tional to temperature. Together with the Arrhenius expression for the rate constant
and the leading order finite heat bath correction we have

Cy 1
Emax - E/ - ) —E 5 7.54
N a,N < G + 2> 0,N ( )
and c |
Epinn = Ej y1) (% + 5) — Eony1 — Egnt1- (7.55)

The primed activation energies are the effective values derived in Chap. 3. With the
notation here they are
E;,N = Ea,N =+ EO,N — EO’Nfl. (7.56)

They are the ones that determine the maximum temperature. For the last term in
(7.55) the unmodified value is used because it is determined by energy conservation.

The differences between these two energies involve the heat capacities and poten-
tially also the energy offsets. We will treat the situations where the heat capacities
are similar, although not necessarily identical. This should cover a fair number of
situations (not a lot of heat capacities have been measured experimentally, so this is
still a conjecture). Typically, the heat capacities of the two particles will differ by a
relative amount of order 1/N. We therefore define the difference and average of the
heat capacities

ACy = Cny1 —Cy, (7.57)

— 1
Cy= E(CN-H +Cy).

Using (7.56) on the combination of the unprimed E, x4 and the energy offsets Ey v,
Eo n41 gives the simple form for the width of the energy interval:
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1 ’ ’ ACy
Emax,N - Emin,N = E(EQ,N + Ea,N+l) 1- 2G

Cy

i

(E, n — E} yi1)- (7.58)
For identical dissociation energies, the expression contains a negative correction. In
the example shown in example in Fig. 7.5, a reduction in the width of the distributions
relative to E, can in fact be seen; The width of the distributions are all slightly less
than the E, = 3 eV used as input.

We want to use (7.58) with (7.51) iteratively to solve for the E, y’s from one end
of the experimental spectrum to the other. That procedure is equivalent to solving
a difference equation with the source term Iy /Iy. In this process, the small errors
will accumulate and cause the procedure to develop exponentially increasing or
decreasing solutions. The calculated activation energies will then be exponentially
increasing or decreasing with N.

There are different ways to avoid this unphysical situation. One is simply to
normalize the corrections away with an overall multiplicative factor. An alternative,
which is the one that will be used here, is to approximate the equation by leaving out
the offending term in (7.58), ACy /2G, which is on the order of 3/2G, or 0.05-0.10.
We will therefore use the approximate relation

Cw

G (E,y —E,ny)-  (1.59)

1
Emax,N - Emin,N ~ E(E;,N + EL;,NJrl) +
Together with (7.51) this gives the relative abundances as

Iv E,y+E [
N _ ZaN T PaN+t  ©N FaN T PaN+l (7.60)
IN 2Ea,N G Ea,N

As required this reproduces Iy /Iy = 1 when E, y.1 = E, y.Solvingfor E, \ gives

E/ 1 T E el 1
ol _ Ny ZalNHLZN ) (7.61)
Eq,n % +% Iy Eq,n G 2

This is the form of the equation that is solved iteratively. The ratio E/, \/E, , for
the highest experimental N is set to unity, and the iteration converges very rapidly
to values that do not depend on this choice.

As the numerical recipe goes, this is the end of the road. When it comes to the
interpretation of the results, it should be recalled that the activation energies found
from this expression are the ones defined by (7.56), and the values of the two energy
offsets must be substituted into the numbers to find the physical values.

Usually this is not a major correction that can be estimated from ground state
properties, but there are situations where the two offsets can be very different. One
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case is associated with a melting/freezing type phase transition, or in general any
transition involving a latent heat. Such a situation will obviously also have implica-
tions for the approximations of the heat capacity differences used. These situations
are best treated on a case by case basis.

Equation (7.60) invites several other remarks. It is obviously only valid for non-
negative values of the right hand side of the equation. This sets an upper limit to
the contrasts in dissociation energies the theory can handle. Exercise 7.3 asks you to
calculate this limit. The limit is rarely exceed in practise. The experimental signature
of a problem of this kind is a very small ratio of abundances, Iy /Iy+. Large ratios
do not pose any problem. This is fortunate because they often appear in mass spectra
of clusters with shell structure. In fact, the analysis here has been developed with
such systems in mind.

Secondly, the width of the energy distribution is close to the dissociation energy,
as mentioned earlier. But, as we have also observed previously, see (7.8), the slope
of both the high energy end and the low energy end of the distribution will decrease
when the particle size is increased, because they are both inversely proportional to
the heat capacity. At some sufficiently large heat capacity, the two sides will therefore
begin to overlap. At that point we need to reconsider the analysis critically. From
(7.8) we see that slopes merge at heat capacities around Cy = G?*/2e. Beyond this
size, the question requires a separate treatment. That will be the subject of a good
deal of the remainder of this chapter.

Thirdly, the binding energies derived from abundances can only be interpreted
relative to neighboring particle sizes. This means that only relative activation energies
can be found.

Finally, we note that a knowledge of the heat capacity is required in order to
perform the inversion from abundances. Heat capacities can be determined exper-
imentally from metastable decay fractions, and if such data are not available, one
must make a educated guess.

One can draw some important conclusions from (7.60) even before using it on
real data. First of all, one sees that abundance anomalies are related less to binding
energies than to changes in binding energies. The second term in (7.60) is the product
of changes in the E,’s and the numerical factor Cy/G. For particle sizes above
ca. 10, this factor will for most materials be higher than unity and will cause the
difference term to dominate the abundance variations variations. Another interesting
observation is that for identical relative binding energy variations at different sizes,
the abundance anomalies will be largest for the particles with the largest heat capacity.

Itis also interesting to note what does not appear in the relation (7.60). First of all,
one does not see any trace of a rate constant or a Boltzmann factor. They have been
effectively removed by integrating over the energy. Similarly, temperatures appear
only in a very hidden form.

There is very little time dependence in these abundances. Somewhat counter-
intuitively, abundance variations that are due to variations in dissociation energies
are most pronounced at short times if the E,’s are temperature independent. The end
of a sequence of decays is reached when G is very large which, given the definition
of the quantity, is at an exponentially long, practically infinite time.
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Fig.7.8 The measured internal energy distributions of fragmenting fullerenes in eV. The all-carbon
molecules called fullerenes fragment by C, loss, hence the appearance of only the even numbered
fragments of C6+0. The full line is the measured values and the dotted line the distribution after
deconvolution of the instrumental resolution. Reprinted from Chen et al., Phys. Rev. Lett. 98 (2007)
193401, http://prl.aps.org/abstract/PRL/v98/119/e193401. Copyright (2007) by the American Phys-
ical Society

No trace of the previous history of the particle appears in the equation. It is not
possible to see if the final product results from a particle that has lost three, five
or ten monomers. The reason for this is the very strong separation of time scales
between two consecutive decay constants in a decay chain. Unless there are very
good arguments for assigning a specific particle size as the unobserved precursor,
claims to that effect should be taken cum grano salis.

Figure 7.8 shows a rare example of measured internal energy distributions. The
example is from a work on Cgy fragments. The technique used was to measure
the kinetic energy of the H™ produced in a collision between a Ht with a known
kinetic energy and a relatively cold neutral Cgy. Application of energy conservation
yields the internal energy of the ionized molecule directly. The hydrogen anions
were measured in coincidence with the ions which enabled to distinguish between
the different ions in overlapping regions. The abscissa is the energy deposited in
the neutral Cg fullerene and the ordinate the ions counts. The curves therefore do
not give the energy distributions directly; the consumed energy for the formation
of the ions should be subtracted. For CZ; this amounts to the sum of the ionization
and dissociation energies of Cgo, Dgo + ¢g0. For C;FG a further Dsg needs to be sub-
tracted, etc.

For these fullerene molecules the value of G is about 30, and the heat capacities of
Cy ~ 3N — 7 =~ 140—160 is close to the limit of G? /2¢ = 160 — 170 of the validity
of the theory presented in this chapter so far, hence the strong deviations from the
box-shape distributions valid for small particle sizes. The FWHM of the Csg energy
distribution is a little below 10 eV, in reasonably agreement with the dissociation
energy of 8 eV. The steepest slopes on either side of the peak are, with the peak
intensity normalized to unity, equal to 0.2 eV~!. This also agrees very well with the
value G?/eCyE, = 0.2 eV calculated with the above numbers.
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Fig. 7.9 Relative evaporative activation energy for protonated water clusters (filled circles), calcu-
lated from the data shown in Fig. 7.7. Also the stability function in Fig. 7.7 are shown as colored lines
for the four spectra. The very strong abundance variations result from relatively small variations in
the activation energies and the effect of the derivative term in (7.60) on the abundances is clearly
seen at N = 21 and N = 28, 29. The plotted activation energies have not been corrected for the
product and reactant caloric curve energy offsets

Figure 7.9 shows the relative evaporative activation energies obtained by inversion
of (7.60) with the experimental data for protonated water clusters shown in Fig.7.7.
Four different spectra were analyzed separately. The uncertainties give the standard
deviation on the mean value from these four spectra.

7.3 Evaporation of Large Standard Particles

When (7.3) is used to calculate the survival probability for a certain particle size
at time ¢, it is implicitly assumed that ¢ is the time that has elapsed after some
experimentally well-defined excitation time. In principle it is really the time that has
elapsed since the particle was created from the decay of the precursor. These two
times are different and equating them is a good approximation only if the precursor
itself is produced practically instantaneously after the excitation. In decay chains,
defined as a sequence of decays for a specific particle starting as size No;

N« N+1<« -« Ny—1<« Ny, (7.62)
the criterion on the rate constants is that they obey the inequality
knyn(E+ Eqnin) > kn(E), n>1. (7.63)

This holds for small particles, but not for large particles.



7.3 Evaporation of Large Standard Particles 169

How large particles need to be for (7.63) to fail can be seen by expressing the rate
constant with the microcanonical temperature and, for the sake of argument, keeping
all parameters constant. A calculation of two consecutive rate constants gives, with
Cy>E,/T:

E, _ Eq
kns1(E + E,) = we” TEE) = e TE+alCy (7.64)
O o
~ weTh e nTE? = ky (E)enTE?

This is not a good approximation for the rate constant when the argument of the last
exponential is comparable to or larger than unity and should not be used in these
situations, but it is sufficient to tell us that the two rate constants will be comparable
when the heat capacity becomes so large that the argument of the exponential becomes
less than some value which we can set to unity:

2

12 CNT—t(JE)2 =Cy 2 G?, (large particle limit). (7.65)

The last equality follows from G = In(wt) = E,/T.! In connection with energy
distributions in evaporative processes, the magnitude of Cy/G? is thus the measure
for whether the particles are small or large. Using the estimate Cy = 3N and the
value G = 25 gives the size

Cy > G* = N 2 200. (7.66)

In (7.8) the slopes of the energy distributions were calculated to G* /eCy E,,. Equating
twice the reciprocal of this value to the width of the total width of the distributions
of E, gives an alternative value of the crossover heat capacity of

2

CN2%2110—120=>N240. (7.67)
This is the most realistic estimate when the issue is the shape of energy distributions,
but otherwise (7.66) is the most relevant.

The effective evaporation time is calculated with a summation of the decay times
of the previous decays in the chain, represented by the reciprocal rate constants. We
will initially write the rate constants for size independent dissociation energies with
heat capacities that are proportional to the number of atoms in the particle. Those are
our standard particles. For the rate constants in a decay chain, the consecutive rate
constants for these standard particles are

!In this section we will dispense with the primed activation energies and finite heat bath corrections
to keep the notation manageable.
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dIn(k G*
knin = ky exp <n%) = ky exp <na> . (7.68)

The approximation in this equation consists of truncating the expansion of In(k) in
N at first order. The average time, ¢,, elapsed between the excitation and the decay
of size N + 1 into size N is then calculated as the sum:

S I\ nG/C e e
t, :ZkN+l1 :kN ZC nG*/Cn :kN 1—37/0\/ (769)
n=1

n=1

The rate constants of size N particles that decay at time ¢ will be on the order of

ky ~ , (7.70)

which, combined with (7.69), gives
1 —c2/cn\ 7!
kn ~ — (1 —e N) . 71.71)

For small heat capacities this expression reduces to ky ~ 1/, as required. For large
heat capacities it becomes

_1Cy )
ky ~ rer) (large particles). (7.72)
As for small particles, no quantity of dimension energy/temperature appears in the
equation. The order of magnitude sign in (7.71) was converted into an approximate
sign in (7.72) because the rate for large clusters turns out to be fairly well determined
by (7.72), as will become clear later.

The time in (7.72) is the average time it takes before a N-mer (the term used for
the size N particle) decays when the decay chain starts with a sufficiently hot and
large initial cluster, in the absence of any intrinsic size-specific features in the rate
constants. This time will have a non-zero variance because the lifetimes of a number
of the slowest decaying precursors in the decay chain are similar. By the Central Limit
Theorem, the distribution of decay times will approach a Gaussian distribution when
Cn/G? approaches infinity. Infinity is never reached but the gross features of a
Gaussian distribution is already reached even when only a limited number of terms
contribute to the sum.

An example involving sums of exponential decays is shown in Fig.7.10, for the
sum of decay times of 1, 2, 5 and 10 identical exponential decays. The convergence is
rather good, considering the strong asymmetry of an exponential decaying function
compared to a Gaussian shape. Do note, however, that the tails of the distribution
converge significantly slower to a Gaussian than the central region. This is only a
problem when you need a precise expression for these tails which is not the case
here.
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Fig. 7.10 The distributions of sums of decay times, #;, for n = 1, 2, 5, 10 exponential decays,
>_, ;. The distribution is already reasonably close to a Gaussian distribution for five decays,
although some asymmetry is apparent. Only the central part is well approximated by a Gaussian
function; the convergence of the wings is much slower. The curves are simulated numerically with
methods explained in Chap. 9, but could equally well be calculated analytically

Equipped with this information we proceed. The variance of the sum of individual
decay times is the sum of the variances, and the variance of the decay time of a single
exponential decay with decay constant k is k2. We therefore get the variance of the
total time

0 00 ( _e—GZ/CN)

2 -2 -2 -2nG?*/C 2 -G?*/C

O =D kit = D kye O = e (1T
n=1 n=1

For large particles the standard deviation becomes

G2\
o, =1 <_2C > . (7.74)
N

This limit is reached if the number of evaporated monomers exceeds approximately
An = Cy/G?*. With Cy ~ 3N, this corresponds to a relative loss of mass of 3/ G2,
or a relative loss of excitation energy of AnE,/(E,Cn/G) &~ 1/G, which is a small
fraction, somewhere between 0.03 and 0.05. This criterion is quite easily fulfilled.
In a laser excitation experiment, for example, all they translate to is that the particles
absorb a single photon with energy hv for each Ghv/E, atoms, in addition to a
possible starting fee used to heat the clusters to the evaporation limit.

The standard deviation on the time given in (7.74) can be translated into more
experimentally accessible quantities. The number of evaporated particles in a decay



172 7 The Evaporative Ensemble

chain starting at high excitation energies is also approximately a Gaussian with the
standard deviation

G2\'"?1cy  JTy/2
—oky = (2 2) L&y _ VEN/2 775
on = 0;ky < 2CN> piyen G (7.75)

This is the standard deviation of the size distribution after time # when a size-selected
hot and large particle evaporates freely.

The energy and temperature distributions of the final products is also approxi-
mately Gaussian with the standard deviations

E,/Cn/2
op = Eqoy = 2N (7.76)
G
/C E (7.77)
or =0 = . .
T E/CN = ATy
Finally, the distribution of rate constants has the standard deviation
ak 1 /| Cy
~ —or =kG/\/2Cy = -,/ —, 7.78
Ok N o OT /V2Cn = Y2 (7.78)

where we have approximated the derivative of the rate constant with that of an
Arrhenius expression. It should be kept in mind that all these calculations of the
standard deviation assume a size independent activation energy.

7.4 Rates for Large Particles; General Case

We will now calculate the rate constants with size dependent activation energies.
We have seen that for large particles we can approximate ensemble rate constants
and temperatures for a specific size N at a given time by a single value, ky and Ty.
When averaging over the excitation energy distribution this means we can use the
approximation

(kn(E)) ~ kn((E)), (1.79)

because the width of the distribution of k’s is small compared to the mean value of
k (see (7.78)). This is an approximation which is absolutely and utterly hopeless for
small particles and should never be made for these, but which is quite reasonable for
large particles.

In general, ky is size dependent, not only because heat capacities are size depen-
dent, as discussed in the previous section, but more interestingly because also the
activation energies are. To find how ensemble average rate constants depend on acti-
vation energies, we will first present an alternative derivation of the dependence of
the decay rates on time and size for size-independent separation energies. This will
be the starting point for the calculation of the general case.
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Since the particles are large, we can approximate finite differences by derivatives
and vice versa. Then the Boltzmann factor that enters the Arrhenius rate constant,
By =exp(—E,/Ty), develops with time according to

dt 9Ty 9E dr VT2 Cy

dBy 9By Ty dE E, E, 1 [E,\*
~ =B (—ky) = —— (=2 ) Byky  (7.80)
Cy \ Ty

where we have used that % = gN s ‘L—]IV = —ky. This differential equation also holds
approximately when the monomeric unit has internal degrees of freedom, as e.g.
water, methane and SFg clusters, which carry away thermal excitation energy, in
addition to the basic consumption of the separation energy during the process.

One caveat is required here concerning the applicability of (7.80). The cluster
needs to be equilibrated, i.e. the temperature decrease after an evaporation must be
given by E,/Cy. For sufficiently large droplets this condition may not be fulfilled,
because the monomers always evaporate from the surface and cool it, and the thermal
conductance between the interior and the surface is not infinitely high. When the
finite thermal conductance plays a role, the surface is colder than the average and
evaporation is strongly suppressed. One can understand it heuristically as a reduction
in the effective heat capacity. The interior of a droplet tends to be a spectator and the
heat capacity that enters the equation is limited to a surface layer of some effective
thickness. The effect has been observed in the reduced evaporation rate of liquid
water surfaces. Temperature measurements give a measurable and even significant
reduction in surface temperature when compared to measured interior temperatures.
Exercise 7.12 discusses this question from the point of view of a spherical particle
cooled by the rates derived in this section, possessing a finite thermal conductance.

Returning to the situations where this effect can be ignored, the equation is rewrit-
ten using the scaled dimensionless time 7, defined as

t
=2 (7.81)

With In(By) = —E,/ Ty and dropping the subscripts we have

dB ) )
— = —B"(InB) (7.82)
dr

The equation is solved by an asymptotic series with the Ansatz

1 a b
B(lnB)Z( Y R ) Tt (7.83)

where 7 is the left hand side of (7.83), evaluated at t = 0. By inserting the Ansatz
in both sides of (7.82), one finds the coefficients @ = —2 and b = 6. In the relevant
limit where — In B >> 1, this can be approximated by
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11
B (In B)2

=T+1 (7.84)

The quantitative condition that the particles are initially hot derived in the previous
section, can be stated quantitatively as B(0) > B(t). As was also made clear in that
section, this strong inequality is fulfilled even when the initial temperature is only
slightly higher than the final. This means that 7/t is small and terms involving this
ratio can usually be ignored without any problems. Assuming this, (7.84) becomes

(InB)’B =1"" (7.85)
From this and the definition of t it follows immediately that

_ v (7.86)

(In B)?

This is also the expression for the evaporation rate because these two are identical for
large particles. Furthermore, it is also the same as the rate for small particles found
previously, although the origin of the power law is different in the two cases.

A solution to an equation only represents the state or dynamics of a system if it
is stable. We therefore need to examine the stability of our solution in (7.85). This
is done by calculating how small deviations from the solution develop with time.
It turns out that deviations are best parametrized in the form of a factor, H, that

divides B:
d(Z) 1dB B dH B\> B\\’
dr Hdr H?dr H H

If we we isolate the derivative of H and use the equation for the time derivative of
B we get

@ == (n())
— =—HBMI)?+B(lm(=)) »(—H+ D (7.88)
dr H

H is unity for the unperturbed solution and we are therefore interested in the behavior
of deviations from unity. To this end we write this equation as

d(H — 1)

T = —(H =), (7.89)

We can convert the differential in In 7 into a differential in N by use of the definition
of 7, the relation dN /dt = —k, and the unperturbed solution kt = Cy/B>:

(In B)?

N

dint =dt/t = —dN/kt = — dn. (7.90)
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The differential equation that determines the dynamics of deviations from the unper-
turbed solution with loss of monomers is therefore

_ 2
d(H—-1) _ (In B) (H_1)= &

dN Cn N

(H —1). (7.91)

The last equality sign defines the crossover particle size N, as
N = G? /ey, (7.92)

where ¢, is the heat capacity per monomer. The differential equation for H — 1
describes an exponentially damped function with the damping rate N,. /N . In spite of
the positive sign on the right hand side, it is damped because the value of N decreases
with time, and any perturbation of the solution in (7.85) will disappear after roughly
N/N, evaporation events.

The solution to the unperturbed equation for B and the effect of perturbations
are shown in Fig.7.11. All curves are calculated by solving the differential equation
(7.82) numerically. The main frame shows the product t B which is approximately
(In B)?. The branches are simulation trajectories started at different times with values
of B that are intentionally off relative to the asymptotic solution. The convergence
is clearly monotonic for all these cases. The inset shows the value of B on a double
logarithmic scale. The time scales are in both cases from the shortest relevant (tens
of fs) to tens of seconds.?

With the solution of (7.82) and the lesson about the stability of the solution, we
are in a position to find the effect of size dependent E,’s on the rate constants. The
solution of that problem is easiest found if we restrict ourselves to the physically
interesting cases where the variations of the E,’s are relatively small. We calculate
it by returning to (7.80) and retain the term that accounts for the variation of the
activation energies with size:

dBN 1 EuN 2 AlEuN
_— = —— : Byky — ———— By (=ky), 7.93
P Cr ( To ) Nkn To N(=kn) (7.93)

where we used the finite difference A E, y = E, y+1 — E4 n for the derivative with
respect to size. In terms of the scaled time t the equation reads:

dB ME,
d—N = —B2(In By)* + B> In(By)Cy 1]5 , (7.94)
T a

where Ty = E, n/By was used. As before, the variations of the activation energies
are most efficiently handled by introducing the dividing function Hy, with the N-
dependence shown explicitly:

2The latter time scale has recently been exceeded experimentally in cryogenic electrostatic storage
rings, and the experimentally relevant upper limit is now above 103 s. The curves can safely be
extrapolated to these values.
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Fig.7.11 The solution of the equation of motion for B, represented as Bt. The branches converging
on the asymptotic solution demonstrate the convergence of B when initialized off that solution. The
inset shows the value of B

By = B/Hy, (7.95)

where B is the solution in (7.83) to the constant E, situation. Substituting (7.95)
into (7.94) and assuming that |In B| > |In Hy| (i.e. small variations in E, y), and
[In B| > 1 (i.e. long times compared with "), yields an equation for the temporal
development of Hy:

dHN AlEaN CN
=—(Hy -1 _ 7.96
dlnt (Hy )+ E,n InB ( )
This is solved to give
Int _/

AME,n Cn
HN—1=/ T 212N SN gy, o (7.97)

T E,n InB

Since, as we have used before, dIn T = —dN (In B)?/Cy, (7.97) can be transformed
into

Nt A\Eg n I
Hy—1= [ ZZ25aN 1 pan (7.98)
T Ea,N’

With the linear expansion

(In B)?

Int" =Int — (N' = N)
Cn

(7.99)
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and ignoring the N-dependence of In B’, this yields

NCAVE, N N—N' 5 ,
Hy—1=InB — exp C (In B)” | dN (7.100)

a,N’ N
or, in the discrete version,

No—N

AE
HN=l+lnBZw
n

Ea,NJrn

Nie

v, (7.101)

—n

where the definition of N, = G2*N /Cn has been used. Ny is the initial size of the
particle. With this expression for Hy the result for ky is

|: =Y AlEa N+n NK1|1
ky=wB|1+InB Y ——“ W | (7.102)
n Ea,N +n

The result can be understood with reference to the curves shown in Fig.7.11. The
change from the unperturbed value of k = wB to ky is induced by a source term in
(7.96) proportional to —A | E,/ Ty; A change in the separation energy which occurs
upon evaporation will change the separation energy-to-temperature ratio away from
the solution given by (7.86) by this amount. A positive value of A, E, will lower
the value of Hy and increase the decay constant because In B is negative. With this
higher rate the particle will cool faster. This faster cooling acts as a negative feedback
and provides an efficient focusing mechanism for the rate constant to bring it back
to the universal attractive curve for k. Obviously an analogous reasoning holds for
negative A E,’s.

It takes, however, a finite number of evaporative cooling steps to return to the
universal curve, and that number is Cy /(In B)> = N/N,. This is also the number
of evaporated monomers required to obtain a fully developed evaporative spectrum
and, as we have seen, it is sufficient that the particles lose one or two percent of their
mass in evaporative processes to fulfill this criterion. If this is realized physically,
one can set Ny in (7.102) equal to infinity.

The expression for Hy can quite often be approximated further. When the vari-
ations of E, with N are sufficiently smooth, the first differences of separation
energies can be set constant in the summation, which then reduces to the factor
N/N, = Cy/(In B)?, or

A1E,n Cy
Hy=1+—"7"—— 7.103
v=1+ E,y InB (7.103)
and thus 1
AE,y Cy |
ky =wB |1 — . 7.104
N [+ Eun lnB] (7.104)
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It is necessary that variations in the dissociation energies do not induce too large
size-to-size changes in the associated rate constants for these results to hold. Quan-

AlEa
Tn

a change in separation energy which is less than about five percent or so for con-
secutive particles in the decay chain, depending on the precise value of G. For an
experimentally operational test of this criterion, one can use that a change in dissoci-
ation energy by Ty corresponds to a relative change of the abundance by a factore ™.
For experimental spectra where the abundances of two consecutive, large (N > N,)
particles vary by more than this factor, the rate constants calculated here would need
further development.

It is intuitively clear that the rate constants calculated in (7.102, 7.104) play an
important role in determining the variations in the particle abundances for large
particles. To find the precise role, we will first establish the relation between abun-
dances and rate constants for a single decay chain. Specializing to a single decay
chain greatly simplifies the problem if we ignore the small stochastic kinetic energy
carried away in the evaporation processes, because then all decay constants are fixed
when the initial temperature is given and the only stochastic element in a decay chain
is the time at which the evaporations occur.

Consider the simultaneous distribution of decay times in a chain starting at size
Ny and reaching size N:

titatively, we are restricted to describing cases for which ‘ < 1, equivalent to

Ny No
Py, tnyrs ..., tNo) 1_[ dlj = l_[ kje_kf’/dtj. (7.105)
j=N J=N

The ¢;’s are the times since the size j particle was produced by evaporation from the
precursor particle of size j + 1. The probability that size N decays into size N — 1 at
time ¢ is the integral of this distribution with respect to all the intermediate lifetimes,
with the restriction that these are positive and sum up to ¢:

0 No No
kN1N=/ 8 tj—t ke kitidt;. (7.106)

Thisisan Ny — N + 1 fold integral and the integral sign is a shorthand for all integrals
over the ¢;°s, which all have the limits 0 and co. We can decouple the integrals if we
express the § function as the Fourier transform of 1,

_L > —ikt
8(t) = ) e "'dk. (7.107)

T o)

After insertion of this into (7.106) and interchanging the order of integration, the
integrals over the times are easily performed:
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L™ w1y ks
knly = — 1wt ——dk. 7.108
viv=o2] e jl:,[\, G+ ik ( )

The integrand in this expression is the Fourier transform of the desired probability.
It can be calculated by the method of residues with the result (assuming all rate
constants are different)

kvIv =Y kie ™[] K -, (7.109)

which can be useful in numerical simulations.
Returning to (7.108), we can use it to find the relation between the abundances
and the rate constants. The derivative of Iy with respect to ky is

No

Iy 1 > ikt kj 1
N / I T] , —dk. (7.110)
8kN 27'[](1\/ —o0 =N kj + ik kN+1k

There are effectively Cy/G? rate constants of magnitude ky in this equation. The
product of ratios of rate constants in the integral, as in (7.108), is therefore suppressed
when k exceeds the value given by

ky
ky + ik

cv/G* 1
~—. (7.111)
e

With a leading order expansion in k, this limit is seen to be reached for the value

G2\ 12
()" oo
Cyn

which does not exceed ky by the assumption that Cy is large. We can therefore
calculate (7.110) by expanding the last factor of the integrand in k;

No 2
I 1 [ k; 1
STNZ_ZIC/ T (k—i];—];Jr---)dk (7.113)
N kN J —o0 jon KiTh N ky o ky

By comparison with (7.108) we see that the first term integrates to — I / k. Taking
the time derivative of Iy in (7.108) we see that this is identical to the integral of the
second term, apart from a factor k;,z. The third and higher terms correspond similarly
to higher order derivatives. We therefore end with

aly Iv 1 dly G2\
SN _ N PN o= : 7.114
dky ky + k,zv ot + ((CN> ( )
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where (7.112) was used for the estimate by the third and higher order terms.
When we are looking at the specific decay chain with an initial energy such that

No
t= Zk.", (7.115)
j=N

Iy will be maximal and its time derivative therefore zero. For the decay chains that
have higher (lower) initial energies, the rate constants are larger (smaller), and the
decay chains have progressed further (shorter), which makes the time derivative in
(7.114) negative (positive). Averaging over the whole distribution will therefore can-
cel the contributions from the high and low energy sides to a very good approximation.
After this averaging we therefore have for (7.110)

aly _ Iy

— " ——. 7.116
dkn ky ( )

This is solved to give
Iy o ky'. (7.117)

The relation was tested in Monte Carlo simulations (see Chap.9 for more on
that technique) with a generic species of particles, decaying with a rate constant
of Arrhenius type and a heat capacity of 3N — 7. The particle sizes were around
N =900 and had identical dissociation energies equal to unity, except for N = 925
for which the value was set to 0.975 through 1.025 in steps of 0.005 in the 11 separate
simulations performed.

Figure7.12 shows the result of these simulations. The main plot contains the
values of ky, I,\jl for all sizes and values of E, 925. The linear relation in (7.117) is
seen to hold very well. The simulations also gave data for the energy distributions
for the N = 925 cluster. They are shown in Fig.7.13.

We have now found that abundances for a given particle size in a decay chain are
related to rate constants and given a formula for calculation of the rate constants. We
need to sum decay chains over all possible initial conditions, which effectively is a
summation over energies. This is done by covering the (N, T)-plane densely with
decay chains and summing them up, just as for the small cluster calculation visualized
in Fig.7.6. After some inspection of that figure and contemplation, we realize that
the density of decay chains that terminate at size N is proportional to the separation
energy, because the slope of the curves in the (N, T')-plane has this proportionality.
Figure 7.6 represents small heat capacity clusters but this conclusion holds also for
large particles. Also the amount of the initial distribution that is projected into the final
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Fig. 7.12 Abundances and rate constants for large clusters for different values of the N = 925
dissociation energy, generated in MC simulations. The inset shows some of the abundances from

the simulations
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Fig. 7.13 Energy distributions from the same simulations as used in Fig.7.12, expressed in terms
of the temperature. The values of E, 925 are 0.975 to 1.025 in steps of 0.05, from smallest to highest
intensities. The shapes are very well fitted with Gaussian shapes. The inset shows the Full Width at
Half Maximum (FWHM) of the distributions as a function of £, 925. The variation is slow compared
to the variation of the intensities with E, 95, in spite of the apparent broadening seen in the figure
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temperature is inversely proportional to the separation energy of the initial particle

size. Hence
E a,N

a,N()

INO(

(7.118)

In experiments one usually measures the final size and rarely the initial size, in
particular if one works with broad energy and size distributions, and initial sizes will
more often than not be averaged over a broad mass range. This means that one can
substitute the value of E, y, with a mean value E,. Then (7.118) reduces to

Iy X EqN. (7.119)

7.5 Large Particle Abundances

All the ingredients are now in place to express abundances as functions of separation
energies. With the results from the previous section, (7.117, 7.119), we have:

1 H
Iy X Ey y— = E, y—X. (7.120)
New Nk

Introducing the expression for Hy and leaving out the smooth function &, (7.120)
yields:

>\ AE N
Iy o< Eqy [14+1n B Y ——“eny | (7.121)
=0 Ea,N+n

For A\E,/E, < 1 this expression can to a good approximation be rewritten as

[e%s) e
Iy Eqn+1n B Y A{Eqyine V. (7.122)
n=0

If AJE, y varies sufficiently slowly we can approximate A;E, y4+, with the
constant value A;E, y in the sum in (7.122), as already noted when discussing
the H function. Quantitatively the approximation requires that Ay E, y = E4 y+2 —
2E, n+1+ Euy < AE, n((In B)?/Cy)?. If thisis the case, the abundances become

c
Iy X Eqn + —Y AE, v. (7.123)
’ InB ’

When analyzing experimental data the constant of proportionality can be found in
complete analogy with the small particle case by dividing out a smooth abundance
distribution on the left hand side and Fa. ~ on the right hand side.

One should note that this is identical to the result for small clusters some sixty
equations ago, (7.60), at this level of approximation (G = — In B), apart from the
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average (E, y + E, y+1)/2 that appears in that equation, as opposed to the E, y
here. But it is possible to replace the E, y with the average of (7.60) under the same
assumptions as we calculated the sum in (7.121). The two equations are therefore
identical. Since the physical situation and the mathematical derivations are different
for the two cases, this is a non-trivial fact. We will not look a gift horse in the mouth
and just accept the strong suggestion that the interpolation between the two regimes
can be made with good confidence. This is supported by numerical simulations which
have corroborated that the intermediate region with N ~ N, behave exactly as the
low and high N limits.

7.6 Kinetic Energy Release Revisited

Kinetic energy release distributions depend essentially on two quantities, viz. the
capture cross section and the temperature of the product. The details of this for some
interaction potentials have been given in Chap.5. When particles evaporate freely,
the systematics of the processes described in this chapter add a constraint on the
temperature that makes it possible to extract information on the binding energies
from measured kinetic energies. First and foremost because absolute energies are
measured and this provides a much needed energy scale.

The procedure involves four steps. First a kinetic energy distribution is measured
for the hot particles. Secondly, this distribution is converted to a product tempera-
ture. The third step is to convert the product temperature to an effective emission
temperature, expressed in terms of the Gspann parameter and the binding energy.
The final step is to solve for the binding energy.

Once the measured kinetic energy release distribution has been delivered from
the lab, the analysis starts with relating the kinetic energy to the microcanonical
temperature of the product particle, 7;. As described in Chap. 5, this amounts to a
measurement or calculation of the energy dependence of the capture cross section
in the reverse process. In the absence of a barrier to attachment, the average kinetic
energies, (&), vary between T, to 2Ty, or parametrized with | < o < 2, as

e =aly. (7.124)

Any absolute binding energy determination based on kinetic energy measurements
will not be more reliable than the value of «. In sufficiently accurate experiments one
can determine not just the average kinetic energy release but the whole distribution.
For a spherical distribution it is

P(e) o o (g)ee /T4, (7.125)
as shown in Chap. 5. This will further narrow down the cross section and allow one

to extract reasonable values for 7. In principle one can use this expression to extract
the temperature from the large ¢ behavior of the kinetic energy distribution. This is
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rarely experimentally feasible, however, and one must resort to more approximate
but experimentally more robust schemes.

This can be achieved by parameterizing the cross section. A popular form due to
C.E. Klots is to use a power dependence for the pre-exponential. This is obviously a
spherical horse approximation® because capture cross sections rarely have such sim-
ple energy dependences. It will, however, be a reasonable and useful approximation
as long as one has a realistic attitude to its accuracy and, importantly, it will provide
the desired robust experimental numbers. We will therefore proceed with the cross
section

o(e) x & (7.126)

The functional form indicates that there is no reverse activation barrier for the process.
The majority of cases show no such barrier, but the experimental data allow this to
be checked (see Chap. 5 for the signature of a non-vanishing barrier). Likewise, the
potential that gives rise to the cross section is implicitly assumed to be spherical
symmetric.

With (7.126) we find the average kinetic energy as

f81+2€*8/T11d8
(6) = m =I+2)T,, (7.127)

and
/‘ 81+3675/Tdd8

2 —_—_—
() = [eltle—#/Tide

=(+3)+T;. (7.128)

The experimentally measured (¢) and (¢2) can be used to find the value of / as

(&)
(%) 1+3 3-2%p
— === — . (7.129)
2 )
() " I+2 I
With this / the temperature is easily found to
L (7.130)

Iy

This solves the second problem; How to relate the measured energies to micro-
canonical temperatures. The third task is to relate the product temperature to the
binding energy. For this purpose, one must find the relation between the product
temperature and the effective microcanonical temperature for the emission process
because the latter is given by the Gspann parameter and we know that relation.

This question has basically already been answered in Chap. 3. Recapitulating the
notation, the rate constant is represented as

3The physicist’s starting point when explaining how to breed the fastest horse in the world.
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E+E —E\'
k%a)<+—> , (7.131)
E+E,

where w is a frequency factor, E is the excitation energy, E, is the energy offset in
the caloric curve for the reactant (the zero point energy if vibrations are harmonic
oscillators), s is the average microcanonical heat capacity of product and reactant,
and E, = E, + E, — E,, where E,, is the evaporative activation energy and E, the
energy corresponding to E, but for the product particle.

The kinetic energies are sampled from the decaying particles for which k = 1/¢.
With this condition and wr = exp(G) (7.131) can be solved for the energy of the
reactant: -

a

Ereor 5

(7.132)

The product energy is E — E, and with the caloric curve for the product we have

E—-E,+E,
E_EazspTd_EpdeZ—, (7133)

Sp

where s, is the microcanonical heat capacity of the product. Inserting the expression
for E we get the product microcanonical temperature, which is also the temperature
of the measured kinetic energy distribution.

=L L (7.134)
4= s, €9/ =17 ’
or B
E, =s,T; (97 —1). (7.135)

We should check if this has the correct limit for large 5. It does. An expansion of the
exponential to second order gives E!, ~ Tys,(G/5 + G*/ 252). If we for the purpose
of this expansion ignore the difference between s, and s this reduces to

G
E; ~T,G (1 + —_) . (7136)
2s

This is the relation between activation energy and temperature in the leading order
finite heat bath approximation (see Exercise 7.8).

When applying (7.135) the reader should keep in mind, as always, the interpreta-
tion of E/, as the true activation energy plus a correction from the difference between
the offsets of the two caloric curves involved. A second reminder is that the heat
capacities are the microcanonical values, which for well behaved systems is one
(kp) less than the canonical heat capacities. Finally, because of the functional depen-
dence on G, it is important to make a good estimate of its value, in particular for
small particles.
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7.7 Metastable Decay Fractions

Metastable decay is another useful tool in molecular beam experiments involving
clusters. This section deals with the systematics of the number of particles that
undergo metastable decay in an experiment on hot particles. The word metastable
decay refers to the fact that the decay occurs some time after the creation or excitation
of the particles, and that they must therefore be stable on some finite time scale.

Experiments typically consist of a mass selection of the particles at time #; and
a measurement of the amount of particles that decay between times #; and f,, or
possibly with a later starting time, #{, with #; < #{ < 1,. The latter situation involves
a few more factors in the calculations but they should all be easy to write down after
reading this section. In the interest of simplicity we stick with the former scenario.
The ratio of the particles that have undergone a decay between #; and #, to the total
number of particles at #; is the metastable fraction, fy. It will be denoted fy, and
can by definition take values 0 < fy < 1.

Figure 7.14 gives a typical example from experiments on gold-erbium alloy clus-
ters. In the experiments the cluster are accelerated and mass selected in a hot* inter-
nal state and the metastable fraction at #, measured with a device called a reflec-
tron. This particular alloy does not have a competing dimer evaporation channel
(Xy — Xy—2 + X5) which would complicate the picture a little. For N = 17, 19,
fn > 0.5 and the intensity of the metastable peak in the mass spectrometer exceeds
the intensity of the remaining intact reactant peak intensity. The increase of the
metastable fraction with size is a consequence of the fact that the heat capacity
increases with size, as we will see below, and is very frequently observed in experi-
ments where metastable decay is measured.

If the metastable decay is thermal, which is a fairly safe bet, the metastable
fraction can be calculated with the formalism already developed to calculate the
abundance variations. For large particles this is very simple because distributions
of rate constants can be approximated with single exponentials and the decay is
therefore just exponential. We will leave it to the reader to work out the details for
these cases.

For particles smaller than N, the problem is more complicated. In addition, the
results depend critically on the presence or absence of radiative cooling. The non-
radiative situation will be treated first. The general expression for the metastable
fractions is most easily obtained by stepping back to consider the derivation of the
integral of the energy distribution that gives rise to the abundances, Iy. The energy
distribution was given in (7.44) which reads

P(t) = e—kn(E)n (1 _ e_kN+l(E+Ea,N+])tl) (7.137)

4We remind the reader that ‘hot’ does not mean above human body temperature. It means as hot or
hotter than the particles can survive in the experiments in question. Hence 1K is hot for a helium
droplet (see Chap. 12) but 2000K is cold for a fullerene molecule.
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Fig. 7.14 The metastable fraction of AuyEr" clusters that decay by evaporation of a single gold
atom in a Time-of-Flight mass spectrometer. Evaporated and non-evaporated species are separated
experimentally with a device called a reflectron in the spectrometer. The metastable fraction is
found as the ratio of evaporated to the sum of evaporated and intact clusters of the same initial
size. The line is the function calculated with (7.149) with effective heat capacities given by (3.32),
assuming harmonic oscillator values for the d.o.f.’s, but disregarding the size-to-size variations of
abundances. The data are published in N. Veldeman et al., Faraday Discussions 138 (2008) 147

where the first factor gives the upper limit on the energy distribution and the second
factor the lower energy. Mass selecting the particle at time #; makes the energy
distribution of the un-decayed particle at 7, equal to

P(ty) = e BRI Py, (7.138)
The decayed part is therefore

P(t)) — P(ty) = exp (—ky(E)t) — exp (—ky (E)1) (7.139)
— exp (—[kn (E) + ky11(E + Eqn1D)tr)
+ exp (—kn (E)ty — ky11(E + EqnDt) -

The only time that multiplies ky is #; and we will use this fact. Denote the ratio
of the two decay constants by «(E) = ky41(E + E, n+1)/kn (E), evaluated at the
energy where ky(E + E, y+1) is equal to 1/¢;. With this definition the decayed
part can be expressed as the integral

oo
AE = / [eka(E)tl — e wBn _ o—kn(E)n(+a) 4 eka(E)(tertla)] dE. (7.140)
0

This is the width of the energy distribution that has decayed at #,. It is not yet a
proper decay probability that will give you the metastable fraction because we have
not normalized it to the initial width at ¢;. Before we do that, we simplify the integral
in (7.140) by noting that the exponentials provide the cutoff energies Ey jqx (t;), for
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whichever of the times #; may be. Taking differences between these cutoff energies
cancel constants that appear in the caloric curves (see (3.6)), and gives us

AE(2,11) = CyEaw [G(0)™ = G() ™' + Ga + i)™ = G(n(1 + ) 7'
(7.141)
where G(#;) = In(wt;). Usually, one can take the Gspann parameter to be constant,
but here we must include its time variation because it is precisely this time dependence
that describes the metastable decay in these equations.
The normalization is easily found as A E (oo, 1)~ !, which gives

AE(t, 11)

fv = Ao 1) (7.142)

_ G0 -Gt + Glat e Gl ke
Gt) ' =Gl +a)!

Given the experimentally determined metastable fractions on the left hand side, we
can then solve (7.142) for &« numerically.

If the structure function is determined, it is possible to extract more informa-
tion from the data. Use the relation between the energy interval and the abundance
variations found previously:

. Iy
AE(oo, t)) = Eqn=-. (7.144)

Iy
Replacing the denominator of (7.142) with this value gives

fN{—N = ?“*N Cn (Gt =G '+ Gt +h) ' =G +a)™).
Iy Eqn
(7.145)

If the structure function is not just known but also has been inverted as described
previously in this chapter (which is obviously a must if it is known), the dimensionless
fraction E, y/ Ea, ~ 18 also known, and because also « has been calculated from the
data, we can extract the heat capacity.

This is the rigorous approach. Real life may not provide all the information you
need for this. If the structure function is not known, for example, one has to resort to
using average values, EG,N/E,LN ~ 1 and IN/fN ~ 1, and derive a trend in the heat
capacity with size, with the risks that entails. Alternatively, one can guesstimate a
heat capacity and extract ratios of dissociation energies from the relation

_ CNEan [G) ' =G + G+ ) = G+ )]
NEan + Ean1) + L (Eany — Eane1)

fn , (7.146)
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where (7.59) was used. Use of that equation reminds us that the heat capacity that
should be used in the equation is a modified value approximately equal to the average
of reactant and product heat capacities, at least for not very small particles.

Itis of interest to have a short time approximation for the full expression in (7.145).
In this connection short time means that

h < ta. (7.147)

Physically, the demand on #, corresponds to a #, where the decay has not reached
close to the lower energy edge of the initial distribution that was created at #,. This
is not necessarily a short time compared to #; and can in fact easily be orders of
magnitude longer. The approximation below is actually likely to cover a good part
of the situations encountered in practical applications. In this regime the last two
terms in the numerator in (7.142) cancel to a good approximation and the metastable
fraction becomes
G =G
WY G —6ma ey

(7.148)

In the numerator we use G(t;) = G (1) + In(#;/t;) and expand the reciprocal of this
in In(t,/t1)/ G (t1). The result is the short time metastable fraction

Iy E,n Cy ([2) ln(;_z)
— == In{=)[1- i 7.149
i =, i Gn)? (7149

We note (again) that the heat capacities determined from the data are not the
canonical values. As shown in Chap.3 with (3.2), the value extracted needs to be
converted to an equivalent number of harmonic oscillator degrees of freedom, s, with
the help of a reasonable estimate of G. For values of 5 above 20 or so the correction
is small, however.

The quality of (7.142) can be judged from the simulation in Fig.7.15 which
compare the numerical integration of the exact equation and our approximate relation
fora N = 20 particle. The rate constants for N = 20, 21 were given by the expression

(7.150)

ky = 1015571 (E — E,n+001-(3N —9) eV)3N7.

E+0.01-(BN —-6)eV

The activation energy of N = 21 is 3 eV in all cases, whereas that of the N = 20
particle was set to the values 2.7, 3, and 3.3 eV. It is a slight distortion of our standard
system to use identical powers on energy in numerator and denominator but this
makes the definition of the frequency factor simple. The fastest decay occurs not
surprisingly for the least bound 20-mer and the slowest for the strongest bound.
Equation (7.60), including the corrections on the activation energy from (3.17), was
used to calculate «.
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Fig. 7.15 Metastable decay 1.0 —
calculated with (7.142) (full Sy -
line) and numerical 0.8

integration of (7.150) (dotted
line). The dashed-dotted line

is Klots’ prediction for 0.6+
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The approximate analytical result agrees quite well with the exact numerical,
although discrepancies are seen at the longest times. These are a consequence of
treating the energy distributions as sharply defined at the lower edge, which is an
approximation made between (7.140) and (7.141). Experiments where the metastable
fraction approaches unity will be of very long duration. In these situations it is likely
that radiative cooling will interfere with the spontaneous decay and quench the decay
at some time and render the remaining fraction stable. More accurate expressions for
this limit are therefore usually of minor interest.

C. Klots has derived a complicated formula for the metastable fraction that has
been widely used by the cluster community in the interpretation of experimental
decays. For the special case where E, y = E, y4 it reduces to

L= f=In[1+ (™ = 1)1/0] jaWy, (7.151)

where, for this case,

2

Wy = ——
*IN=3N 7

[l —G/2B3N —7)+ (G/3N — 7))2/12]‘l . (7.152)
This is also shown in Fig.7.15. The curve should be compared with the middle
simulated curve. We will not go into details with the more general case of this
theory.

7.8 Radiative Cooling

At sufficiently long times, such as those experienced in ion traps or storage rings,
radiative cooling will be important. This is readily understood from a comparison of
frequency factors for photon emission on one hand and those for emission of massive
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particles on the other. The photon emission rate constant frequency factor is limited by
the dipole sum rule. The competing massive particle emission frequency factors are
several orders of magnitude higher. At high excitation energies, the energy emitted is
therefore predominantly emitted as particles, not light; under these high temperature
conditions, photon emission is reduced to an extremely marginal occurrence. At low
temperatures the picture is reversed, because the difference in activation energy for
photon and massive particle emission, 4v and E,, suppresses the latter strongly, and
for systems with E, > hv the dominant cooling channel will always be radiative
at sufficiently low temperatures. For a freely cooling ensemble of particles, where
temperature decreases monotonically with time, a cross-over therefore exists from
particle emission at short times to radiative cooling at long times.

As for unimolecular decays, size also matters for photon emission. If a particle
has a sufficiently small heat capacity, the emission of a single photon will quench
any further unimolecular decay for a long time and effectively prevent any further
of these, because the next radiative decay will occur before the next unimolecular
decay. For quenching to occur, the photon energies need to have a certain magnitude

vdlnka >

h ~Y
dE

1, (7.153)

where AV is the mean energy of the radiated photons and k,, is the unimolecular rate
constant for the competing process, which can be loss of an atom, a larger fragment
or an electron. With the Arrhenius expression for k, with activation energy E, and
the Gspann parameter G, one gets

5 (2
b _MWG

ho—L = >
T°C  E, C

1, (7.154)
for the hottest particles in the ensemble. The heat capacity C is an effective value
which is somewhere between the precursor and the product value, as discussed in
Chap. 3. For simplicity we can here use the reactant value. This gives the condition
for one-photon quenching
o
c< G2E—”. (7.155)

a

Radiative cooling is relevant only if the (reciprocal) time constant of that decay
exceeds the unimolecular ditto. For the high energy quenching photon emission, the
radiative time constant is simply the photon emission rate constant. For emission of
photons with the average energy hv, this implies the constraint

—hv/T h
Dpht > 1= E—” <14G'In (ﬂ) . (7.156)

wge BT ™ p Wy
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The equation was calculated disregarding the stimulated emission contribution,
which is usually only a minor correction for the relatively high photon energies
involved.

When photon energies are below the limit in (7.155), the relevant time constant
can be found by considering the effect of radiation on a particle with a § function
initial energy distribution, and calculation of its subsequent unimolecular decay. The
time dependence of the rate constant is calculated with an expansion of its logarithm
with respect to time. To first order in the emitted power and the time we get:

ko(E, 1) = ko(E, 0)e™™", (7.157)

where the radiative constant w is defined in terms of the radiated power P, = hvk,

as
dink,(E.0) E, G?
rl ez KB B, ik, (7.158)
a

dr T crr’ o

This describes the continuous cooling situation to leading order in the expansion
of the rate constant. This will be a poor approximation at longer times. Usually the
decay is so strongly suppressed that the error will not have serious consequences
for the interpretation of data, but for good statistics data higher order terms need
to be included. For calculations involving the cross-over time, the approximation is
more than sufficient, though. The criterion for radiative cooling to be dominant (for
single photon emission) is that the rate constant for massive particle loss, say atomic
evaporation, is less than the w = 1/t defined in (7.157). This gives

w, E, C hv
k<1 48 - e G—)—-1)<1. 7.159
TS1= o e Gze (exp( Ea> ) S ( )

Here the stimulated emission is included. It gives rise to the last term in the bracket,
which is important for small photon energies.

If we for the sake of illustration use the specific values w,;, = 10°s™!, w, = 10'°
s~!, we have the regions shown in Fig.7.16 for the time corresponding to G = 25,
i.e. t = 7 ws. Note that the figure only describes situations where the emitted photon
spectrum is effectively a § function and the emission therefore can be described as
an activated process. For the use of Fig.7.16 as a reference map, please keep in mind
that it involves several parameters, viz. time and two frequency factors. Maps for
other values of these parameters are readily calculated from the equations.

After having mapped out the regions of the different types of processes, we now
look at the effect of radiation for the unimolecular decay. This, and not the direct
detection of photons, is still the most important method for detection of thermal radi-
ation of free nanoparticles. Consider first the continuous cooling. As in the beginning
of the chapter we look at the survival probability. As the rate constants are not really
constant in the presence of radiation, we need to solve a generalized equation for the
survival probability P:
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Fig.7.16 The different regions for photon emission vs. particle heat capacity, labelled according to
the predominant type of cooling. The time corresponds to G = 25. Regions A and C are separated
by the line given by (7.156) with a ratio of frequencies of 10'°, region A and B by (7.155), and B,
C by (7.159). These boundaries change with frequency factors and the experimental time scale

dp
o = ka(E.DP, (7.160)

where E is the initial energy of the particle. This integrates to
t
P(E,t) =exp (—f k. (E, t’)dt/) . (7.161)
0
With the parametrization of the rate constant already introduced, this becomes
kq(E,O
P(E,t) =exp (—M (1 — e'”’)) . (7.162)
w

The point in the initial energy distribution where radiation quenches the unimolecular
decay is then given by the relation w = k,(E, 0). For lower energies than this dividing
point, w is larger than k,(E, 0) and the ratio approaches zero and P consequently
unity. The survival probability vs. energy at infinite time is therefore identical to the
survival probability at time 1 /w for an otherwise identical particle that does not cool
radiatively. The decay rate can then be calculated with substitution of w ™! (1 —e )
for time to give

k,(E,0)

R(t) = /OO g(E)ky(E, 0)e™"" exp (— (1- e"”)) dE.  (7.163)
0

With the substitution x = k,(E, 0) and noting, as in the derivation of (7.21), that the
logarithmic derivative of this is much slower varying than the quantity itself and can
be set constant in the calculation, the integral is easily performed and gives
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Fig. 7.17 The rate of spontaneous decay of Cg, by thermal electron emission, measured in the
electrostatic storage ring ELISA. The power law fitting the short time decay rate is given with the
red line. The vertical lines correspond to a short part of the ring that does not contain ions and
the flat pieces in between are the rates for the process Cgy — Cep + e~ . The ions are created in a
plasma source called the Nielsen source

R(t) x ﬁ. (7.164)
This reduces to a power law at short times and is approximately an exponential for
long times. Figure 7.17 shows the measured electron emission rates for Cg, which is
well described by this situation. The relatively large heat capacity makes the photon
emission a continuous cooling process, even if the average photon energy is about
one eV.

The survival rate given in (7.162) is of course also valid at very long times, where
it then gives the probability, as a function of initial energy, that the particle survives
to arbitrarily long times. When ¢ > w™! the expression reduces to

(7.165)

P(E) =exp (—M> ,

w

and we see that 1/w takes the role of some fictitious time at which the decays are
frozen, although of course the physical radiative energy loss continuous after that
time. Figure7.18 shows a comparison of two radiative cooling situations with the
calculated high energy end of the 10-mer energy distribution shown in Fig. (7.5)
for a cooling time of 100 ps and identical parameters. The two radiative spectra
are calculated numerically with Monte Carlo simulations (see Chap.9) of each 108
decay chains. The photon emission rate constants were set to the constants 1 x 107
and 2 x 10° s!, and the photon energies to 0.01 and 0.005 eV to have identical
emitted powers. The spectra were sampled at the exit time of 1 s, where practically
all clusters were either decays or quenched. As the figure shows, there is a very good
agreement between the two types of curves. The emission rate constants used to
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calculate Fig.7.18 are unrealistic for such small photon energies that must originate
from slow, vibrational transitions. If this grates the eye, all times can be rescaled
a factor 100 to produce realistic IR emission rate constants with no change in the
figures.

The case of high photon energies is simpler than the small photon energy case.
The unimolecular decay rate is, with the initial population P (0) set to one:

dp
T —k, e Gtk (7.166)

The amount of particles that have not undergone unimolecular decay at asymptoti-
cally long times is

kpn
P(E < E(t =0)) = ——, 7.167
( ( ) o+ Ko ( )
and the unimolecular decay rate is
oo
R(t) = / g(E)kge~*tkmidE. (7.168)
0

Apart from the photon emission rate constant in the argument of the exponential, this
is identical to a calculation of the radiation-free decay rate. It often happens that k ,,
varies much slower with energy than the unimolecular rate constant. In fact, as we
have discussed above, this is almost unavoidable given the smaller frequency factor
and the smaller activation energy, if any, for the photon emission. We can therefore
to a good approximation extract the photon emission rate constant from the integral,
which then gives

—kpnt

o0
R(t) ~ ekt / 9(EVk,e 1 dE o . (7.169)
0
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Fig. 7.19 The three decay channels that are active for C; . The ion is very well characterized and
all parameters relevant for the figure are known, except the electron attachment cross section to
the neutral which needs to be estimated. The high energy decay channel is the thermal electron
emission, the next lower is the recurrent fluorescence, i.e. the emission of a photon from a thermally
excited electronic state. The low energy rate is the radiation from vibrational transitions

The decay rate is a simple product of a power law and an exponential decay caused by
the quenching effect of the radiation. Notably, the time constant one extracts is equal
to the photon emission rate constant. Figure 7.19 illustrates this point for the specific
example of C; . Figure 7.20 shows the measured quenching of the unimolecular decay
measured in a storage ring after photo-excitation. The size of the system combined
with the observed very high quenching rate would make it virtually certain that the
quenching occurs during emission of a single photon, even if we did not know the
rate constants shown in Fig.7.19.

The question of whether one observes w or k,;, in a given experiment is not
always so clearcut. It may need to be answered by either by theoretical arguments or
by direct measurements of the photon energy. The two functional forms, for small
or big photon energies, are quite similar and it is practically impossible to tell them
apart from a measurement over a limited time interval. A quick and dirty test is to
compare an observed time constant with expected or typical values. IR cooling times
are usually above milliseconds, whereas emission times for electronic excitations are
much faster, at least the relatively few that have been measured at the time of writing.
The comparison is helped by the fact that w is always less than the corresponding
photon emission rate constant. A sub-ms cooling rate is very likely to be electronic
in nature, although the opposite can not be concluded.

Another way of stating the difference between the two types of cooling regimes,
i.e. whether an experiment measures k,;, or w, is that for the single photon quenching
regime, a exponentially decreasing unimolecular decay is caused by the exponentially
decreasing population of the available decaying particles, somewhat similar to the
standard exponential decay observed for decay out of a single state, whereas the
continuous cooling is exponential because the rate constant decays exponentially.
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Fig.7.20 The unimolecular decay of C; after laser excitation, measured in the Tokyo Metropolitan
University electrostatic storage ring, TMUe-ring. The curve is a fit with (7.169). Different symbols
represent measurements for different delay between creation of the ions and injection into the ring
and laser pulse, and with different photon energies. The time unit is the ion circulation time in the
ring

Note that the ensemble averaging, which originally converted a perfectly normal
exponential unimolecular decay rate constant to a power law decay, with the regret-
table loss of the information associated with the rate constants, now turns out to be an
advantage. Decays from a sufficiently narrow energy distribution will proceed expo-
nentially, irrespective of the presence of absence of radiation, and it is impossible to
reliably assign any numerical value to a radiative cooling constant from experimental
data in such a case. A power law, however, modified by an exponential, signals the
presence of radiation with an easily extractable radiation time constant.

In Sect. 7.7 radiation was implicitly ignored when the amount of metastable decay
was calculated. But radiative cooling obviously influences this number. The effect can
be calculated by integrating either of (7.164, 7.169). Here we will just be concerned
with arelatively small quenching and calculate it explicitly for the continuous cooling
case.

For this purpose, reconsider the non-radiative case. For this, the metastable decay
between the times #; and #, was calculated as the (properly normalized) energy
interval E,,,(t1) — Enax(f2) of the particle. Restricting the considerations to the
low photon energy situation, we have that in the radiative case the corresponding
times are w™! (1 —e ") and w™' (1 — e™"2). We saw in the example in Fig.7.18
that these values give a very good representation of the effective times in the problem.
With these times the metastable fraction becomes

In < Ey(t) — Enp(t2) (7.170)

1 1
E (ln(a)(l —e W) /w) B In(w(1 — e—wlz)/w)) '
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The two terms in this expression can be expanded in wt;,i = 1, 2. Under the condition
that the effect is small, an expansion to second order is sufficient. It gives us

CE,
a —
In(w/w)?

1 1 2,.2 2
fn <ln(tz/t1) = qwt =)+ w3 — 1 ) , (7.171)

where higher order terms in In(w/w) have been left out. This equation can be used
in several ways with a reflectron Time-of-Flight setup, similar to the one used for
the data in Fig.7.14. One way is to create the ensemble with a pump laser pulse
and accelerate the created ions with an adjustable delay after this laser pulse. This
procedure makes the difference #, — #; constant and, if #, > #; which is often the
case, the sum t, + t; & 1, in the last term can be considered constant:

fv < In(ty /1) — (% — 21—4UJ([2+11)) w(ty — ty). (7.172)
A plot of fy vs. the experimentally known variable In(#,/¢#) gives a line with a
negative intercept from which one finds w.

Equation (7.172) should be used only for w(z, — #;) < 1 to extract reliable values
for w from experimental data. But although the precise value of w is not reliable
determined for larger values, the fact remains that a non-zero second term on the
right hand side of the equation will signal the presence of radiative cooling.

7.9 Action Spectroscopy

Spectroscopy is one of the main tools for the elucidation of the structure of particles
and molecules. But nanoparticles produced in a beam are most often so dilute that
absorption spectroscopy is not feasible. The solution to do spectroscopy is then to
use a technique called action spectroscopy. The idea is to observe a consequence of
the photon absorption, the action, which is a photon-induced, observable decay.

To convert measured yields to cross sections, it is necessary to know the quantum
efficiency of the process, i.e. how probable it is that an absorbed photon causes the
measurable action. When laser fluences are such that only single photon absorption
occurs with any appreciable probability, a first approximation is to use the expression

I
oo — (7.173)
OF

with a wavelength independent quantum yield efficiency, ®, defined as the number
of reactions per absorbed photon. / is the measured photo-induced count or count
rate, and F is the photon flux or fluence, depending on whether a continuous wave
(CW) or a pulsed light source is used.
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There are a number of situations where a constant quantum yield is a reasonable
approximation, in particular for very small particles or molecules. It will, however,
fail when the action is a thermally induced process of an even moderately sized
particle or when photon energies are small. These are the cases considered here. The
frames (I-1V) in Fig. 7.21 illustrates the situation.

The enhanced decay caused by photon absorption is the decay of the shifted
part of the energy distribution within the temporal measurement limits set by the
experimental device. Let the photon be absorbed at time #;,; and the measurement of
the induced action take place in the time interval between #; and t,, where #;,; < t; <
1y, during which some constant fraction of the decays is recorded. We can express
the total measured yield as the integral of the action yield specified wrt. excitation
energy, photon energy and the two times #; and 7, as

@ (hv, 11, 1) =/ G(E, hv, 11, )p(E — hv)dE, (7.174)
0

where p(E — hv) is the energy distribution before photon absorption. Assuming this
is flat up to the inevitable cross-over to zero caused by the factor exp(—k#;,;), we can
set it to unity and write the distribution the distribution right after photon absorption
as

P(tias, E) = e KBV (1 — g F) + o Fe KE—Mias (7.175)
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Adding a time dependence, e ¥(£)(~1i) to this and subtracting the distribution cor-
responding to no laser pulse gives the photo-induced signal:

Pp(t E)=0F (e—k(E—hv)lm—k(E)(t—llm-) _ e—k(E)t) . (7.176)

The total action signal is found as the difference between these populations at #; and
1, integrated over all energies:

o0
Ia/(m@myJMEmmEz (7.177)
0
o0
oF / [eHE i —k(EYr—tus) _ o=KEN] 4 F —
0

o0
oF / [e_k(E_hV)tlus_k(E)(tZ_tlas) + e—k(E)lz] dE.
0

The rate constant k(E — hv) is usually much smaller than k(E), and we can capture
this by defining a back-shifted time 7y as

k(E — hv)ti,s = k(E)ty. (7.178)

With this, the signal becomes

o0
I O’F/ [e*k(E)(Tlffza.\-*fo) _ e*k(E)(fz*fza.\-*lo) + e*k(E)fz _ e*k(E)ll] dE.
0

(7.179)
Each exponential term in the integrand has the same form as we have seen before,
and can be calculated with the same approximation. We can even use the fictitious
time involving w if radiation is present. Any offset in energy in the caloric curve
cancels, and the expression for the yield becomes

1 1
In (o (1 — e~ (1~ lasHOW) /1) " In (o (1 — e~ 2 Nlas T /1p)

zmaﬂ (7.180)

_ 1 " 1 }
In(w(l—e 1) /w)  In(w(l—e2w)/w)l

There are four times in this problem, giving rise to a lot of different situations for
the different combinations of relative values of these. A discussion of all these cases
is basically the job the equations are supposed to do, and we only need to look at a
few cases to get a feeling for the results.

As before we note that each of the factors in (7.180) represents a cutoff energy.
The main features of the results will then be well represented by considering the
amount of the difference spectrum in frames (III) or (IV) in Fig.7.21 that resides
between the two cutoff energies representing #; and #,. We can therefore identify the
two times with the energies on the abscissa. The difference spectrum representing
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the excess energy distribution caused by the photon absorption is shown in frames
(III-IV) of Fig. 7.21 for the two photon energies 1.5 eV and 2.0 eV.

For the times corresponding to energies A (1) and B (1), the yield is exponentially
suppressed with energy. If observable at all, it will therefore have an exponential
dependence on the photon energy. Changing the photon energy shifts the onset of
the exponential to a different energy, as seen when comparing frame (IIT) and (IV).
The quantum yield therefore varies exponentially with photon energy.

If instead the times are represented by A and C, one will observe a signal which
varies almost linearly with photon energy, apart from a negative offset. Consequently
the quantum yield is also photon energy dependent in this case.

If the times are then both located within the enhanced region, as C and D, the
quantum yield is independent of photon energy. In this region one can therefore
identify yields with cross sections, up to a constant.

This is also the case when ¢, corresponds to C or D, and ¢, to either of E or F.

Finally, when the times refer to the energies at E and F, the signal is again expo-
nentially suppressed.

Both the lower and the upper cutoff of the difference distribution in frames (III)
and (IV) depend on the time the probe laser is fired. For fixed values of #; and 1,
a variation of the laser firing time may therefore shift the relative position of the
corresponding two energies and move the quantum yield into another regime with
the concomitant changes in the quantitative interpretation of the yields.

Exercises

7.1 Derive an approximate 1/t decay with (7.3) and a rate constant that depends
on energy as k o< E¥, where s > 1. Next, pretend that the highest rate constant for
some unidentified and unphysical reason varies not as 1/¢ but as 1/¢2, and derive the
ensemble average 1/¢ decay again.

7.2 Pretend Fig.7.5 represents experimentally measured curves. Extract all the
parameters you can from the data. Those can include Cy, G, E,, and the offset
Ey in the caloric curve E = CyT + Ey. Assume Cy = Cyy 1.

7.3 The validity of (7.60) is limited by the requirement that the abundances must
be positive. Calculate what this limit translates into for the relative difference in
activation energy of sizes N and N + 1.

7.4 Compare the reduction in the widths of the distributions in Fig.7.5 relative to
the input 3 eV dissociation energy to the values expected from (7.58).

7.5 Calculate the fluctuation of the energy content of a particle with constant heat
capacity Cy in the canonical ensemble. Compare it with the evaporative ensemble
result for particles with large heat capacities.
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7.6 Verify the estimate that says that on time scales of nano- to microseconds, a
change in temperature of 10% corresponds to an order of magnitude in decay time.

7.7 Calculate (7.19) with a saddle point expansion. You can set g(E) to a constant.

7.8 Show that (7.136) is the relation between activation energy and temperature in
the leading order finite heat bath approximation, as claimed in the text.

7.9 Use (7.19) to show that for an arbitrary distribution of decay constants, the decay
rate R(¢) is always a decreasing function of time and the curvature of R(¢) is always
positive. Show that the same holds for In(R).

7.10 The energy distributions in Fig. 7.8 gets a contribution from the source, which
sublimes the molecules with a temperature of 700-800 K. This distribution con-
tributes to the width and slopes of the curves in the figure, because the coinci-
dence technique used to measure them does not include measurements of the ini-
tial, pre-collision energy. Assume for simplicity that this distribution, as well as the
fragmentation-induced, is a Gaussian. Calculate the correction of the source energy
distribution to the width and the slopes of the experimentally observed curves.

7.11 Figure7.10 shows the time of occurrence of the last decay in decay chains
of a few different lengths, for the special case where all rate constants in the chain
are identical. The data were calculated numerically and illustrate the approach to a
normal distribution for this special situation.

It is possible to derive expressions for the curves with (7.108). With convenient
time units, the probability for decay at time ¢ for a chain of length » at time 7 is given
by

P(r):ifoo e ]_[ L. (7.181)
27 ) o i 1+ ik

The integral can be calculated by the methods of residues, as the corresponding
integral in (7.108). The result is

_ 1 n—1_—t
P(t)_(n_l)!t e (7.182)

Approximate this with a saddle point expansion and compare it with the similar
approximation of (7.181). Calculate the third moment of the exact distribution and
give a criterion for applicability of the saddle point expansion in this special case, as
a function of the distance to the mean value.

7.12 Use the macroscopic description of the thermal conductance,
P, = —AkVT (7.183)

in combination with the emitted power from the surface



7.9 Action Spectroscopy 203
P, = —kD, (7.184)

to find the order of magnitude of the temperature difference between the interior and
the surface of a freely evaporating particle. P is the energy flow through the surface
A, K is the material dependent thermal conductivity, V7T the temperature gradient,
k the decay rate and D the dissociation energy. Assuming a stationary state, i.e. that
the temperature drop in the surface due to the particle emission is compensated by
the heat conducted from the interior, find a estimate for V7. With the requirement
that the temperature gradient multiplied by the radius of the cluster is less than 7'/ G,
we want to find the largest size where the finite conductivity can be ignored. Show
first that temperature differences occur if

c
— > 4qkt. (7.185)
.

Use a value of k = 100 W/Km and an r of 1 pum to find a first estimate of the cross-
over heat capacity. Next assume a heat capacity of 3N and express a more accurate
value of the critical size as

N > (36m)3 <ﬂ> 1, (7.186)
0

where m is the mass of the monomer and p the mass density. Plug in numbers. Finally,
discuss the criterion VT < T/G.

7.13 Radiative cooling will cause changes in the interpretation of the abundance
spectra when one or more of the radiative time constants is shorter than the observa-
tion time. Use the expression for the effective decay time in (7.162) to re-derive the
small particle limit abundances in terms of dissociation energies, i.e. the radiative
equivalent of (7.61). Assume different cluster sizes can have different radiative time
constants. Estimate the magnitude of the effect when these constants differ by factors
of ten and times are standard Time-of-Flight mass spectrometric values.

7.14 For a particle that decays both radiatively and unimolecularly, consider the
large photon energy case with a § function initial energy distribution. Calculate, as
a function of time, the number of particles that have not decayed at all, that have
decayed by photon emission, and that have decayed unimolecularly. Assume that the
unimolecular decay constant changes by a factor & on photon emission.

7.15 Calculate the order of magnitude of the photon energies for which stimulated
emission should be included in (7.159).



Chapter 8
Abundance Distributions; Large Scale oo
Features

The question of size is of overwhelming importance for small particles. To define
the question we need to state precisely what we mean by the word size. It may mean
some geometric size, which is relevant for obvious reasons, and which has given the
name to the field of nanoscience (science where the studied objects are less than a
micrometer in at least one dimension); it may mean the number of monomers in a
particle, and it may mean the effective number of degrees of freedom.

We will consider the last aspect in this chapter, and disregard a number of effects
that are much more important in other connections, such as quantum size effects
where properties vary with the addition of a single monomer or a single electron to
the particle. Size distributions will be calculated based on only the coarsest features
in the size dependence of the binding energies, those that survive in the large particle
size limit and that can be measured on bulk samples; the bulk cohesive energy, the
surface tension and the electrostatic charging energy.

8.1 Liquid Drop Energies

When concerned with abundances of particles created in thermal processes, particle
stabilities are of overwhelming importance. In Chap. 7 we studied how losses shaped
the size-to-size variations of abundance spectra. Here we will look at abundances
when also growth is important and usually dominant.

We will apply the schematic but usually reasonably accurate liquid drop model for
the binding energies in the particles. The energies parametrized by this model are the
ground state energies, unless otherwise stated. For charged particles the model is also
known as the Thomson liquid drop model, and in nuclear physics as Weizsicker’s
mass formula, when the terms specific to nuclear physics are added.
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Although the name of the model contains the word ‘liquid’, its applicability is
not limited to liquids. The term refers mainly to the spherical shape of the particle.
It will not be the best description of binding energies of nanocrystals, i.e. crystalline
nanoparticles that have their lattice faces defining the surface of the particles. But
the liquid drop concept can be useful even for those when the proportions of the
nanocrystals are size independent, as they are expected to be.

The most important energy term in the liquid drop model is proportional to the
number of particles and to the bulk binding (or cohesive) energy per atom, or more
generally per monomer. A monomer is defined here as the main component of the
saturated vapor of the material, and can be an atom, a diatomic molecule or whatever.
Usually a single of these components will dominate the composition of the vapor,
although mixed composition vapors are not that rare, a case being sulphur with
several molecular species in its vapor. Acetic acid vapor for example, is composed
of dimers of the molecules, and dimers are then the monomers in the sense used in
this chapter, irrespective of whether the bulk can be described as composed of such
dimers or not. For simplicity we will use the word atom for the vapor monomers,
even for molecular vapors.

If the zero of energy is chosen as the infinitely separated monomers, the leading
order term of the ground state energy of an N atom particle as Ey = —AN, where
A is the bulk binding energy per atom. It could be argued that one should use the
substitution N — N —1 because the energy of the monomer is set to zero (a monomer
does not bind to itself) but we will not bother with this.

This simple proportionality with bulk properties obviously ignores the effects
caused by the surface. In addition to the bulk binding energy, particles also have a
surface tension. The surface tension increases the energy, and consequently reduces
the binding energy, with an amount proportional to the surface area. If drops of the
same material and different sizes have identical densities, the volumes of the particles
are proportional to N, the radii proportional to N'/3, and the surface areas therefore
proportional to N%/3. The ground state energy is then

Ey = —AN + BN?/3. (8.1)

The value of B is related to the macroscopically measurably surface tension, 7,
by equating the macroscopic surface energy calculated with v to the microscopic,
expressed with B:

BN = d4xriy = 4xriN*y = B = 4mriy. (8.2)

The conversion requires a value for ;. We can find a first and often final estimate
for this by equating the bulk reciprocal number density, p, to the volume 47rr13 /3,

1_ 4 (8.3)
p 3
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Surfaces of nanocrystals, in the sense of structures that are small pieces of regular
lattices, do not conform exactly to this simple picture. They are better described by
the so-called Wulff construction, by which the surface of a particle is constructed
from lattice planes with sizes that are determined by the individual surface tensions
of these planes. The procedure gives rise to systematic deviations from the spherical
shape, beyond those imposed by the lattice structure itself. For use in (8.1) and the
later, improved version, an effective surface tension for those particles can be defined
as the properly weighted value for the contributing surfaces. Such a value will not,
however, be directly related to the energy associated with the deformation of the
particle from its ground state configuration, as the B used in (8.1) is expected to be.

Values of B are strongly correlated with A. The values of B based on macroscopi-
cally measured surface tensions are shown in Fig. 8.1 vs. the enthalpies of evaporation
for several metallic elements and the rare gases. The surface tension depends on tem-
perature and most data points in the figure refer to the surface tension at the melting
temperature. Both the surface tension and the enthalpy of vaporization therefore
differ from the ground state properties but they usually give good estimates of the
ground state values of both A and B. From the figure it is clear that there is a strong
correlation between the values of A and B, approximately as

B =23A. (8.4)

This type of relation is understandable for systems with short range, two-
body interactions. The origin of the 2/3-rule in (8.4) can then be derived, semi-
quantitatively at least, by considering matter as a packing of atoms and cohesive
energy as a measure of the number of nearest neighbor atoms. A bulk atom, i.e. an
atom on the inside of the material, will be surrounded by a number of other atoms,
and with short range interatomic potentials we can take the binding energy of an
atom to be proportional to the number of these neighbors. For a surface atom this
number is reduced relative to bulk atoms, and to find the reduction in binding energy,
we simply need to calculate how many there are of these neighbors for an atom in
the surface vs. in the bulk.

Let’s simplify the problem and consider the atoms small cubes instead of the usual
spheres. For a surface atom, one of the six surfaces does not touch another atom and
the binding of a surface atom is therefore reduced by A /6. To find the total increase
in energy, which is equal to the reduction in binding energy, we must multiply this
energy with the number of surface atoms. This number is equal to the surface area
divided by the area of a single atom,

. 47rr12\, _ ik (7‘1N1/3)2

s = =
71'7'12 7TI"12

= 4N?/3, (8.5)
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This gives a total surface energy of

A 2
Esurf = 41\72/3 g = §N2/3A, (8.6)

in agreement with the suggestion from the experimental data.

With all the reservations one may have to this calculation, the simple argument
nevertheless shows that it is reasonable that B is proportional to A and that the
constant of proportionality is on the order of unity. Surprisingly, this simple relation
also holds reasonably well for metallic systems, where the whole concept of two-
body atom-atom interactions is deeply suspect. Also the liquids *He and “He (the
two lowest points in Fig. 8.1) follow the relation reasonable well, albeit not perfectly.

At this point we therefore feel confident that we have a expression for the total
ground state liquid drop energy, or cohesive energy of the form

Fig. 8.1 Values of the B parameter, calculated from experimentally measured surface tension
with (8.2), vs. the experimental bulk enthalpy of vaporization per atom at the boiling point at 1
atmosphere, summarily set equal to A. Values of A have been extrapolated to the boiling point for
some elements. The surface tension depends on temperature and the melting temperature values
have been used. Only elements where the vapor consists of monomers are included. The *He has a
significant temperature dependence of the enthalpy of vaporization and the highest value was used.
The inset shows the same data on a double-logarithmic scale. The lines are the relation B = 2/3 A
in both cases
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Ey = —AN + BN*, (8.7)

and we have related A and B to each other and argued that they are also related to
macroscopic and measurable quantities.

Writing the ground state energies of small particles in terms of a few macroscopic
parameters means extrapolating by something like 20 orders of magnitude. This
may seem rather bold (foolhardy, nonsensical, whatever you prefer). It is actually
not such a poor idea if judged by the few and limited size range cases where it has
been tested, although whether or not it is sufficiently accurate depends critically on
the applications. In nucleation contexts, for example, even small errors in surface
tensions give rise to exponentially large errors (see Sect. 8.10).

Experimentally determined absolute binding energies are not easy to come by for
an extended size range. As an alternative we compare the liquid drop parametrization
with a few sets of theoretical data. Rewriting (8.7) as

E
=N — _A+4+ BN, (8.8)

provides a sensitive test of that equation when the left hand side is plotted vs. N~!/3.

Figure 8.2 shows the results for sodium chloride clusters from a theoretical calcula-
tion. A fit with a simple straight line gives a reasonable value for the ratio of surface
tension to dissociation energy. The seemingly erratic size-to-size variations are due
to the special stability or instability of certain sizes. These are not included in the
liquid drop parametrization, by definition. Such types of deviations from liquid drop
energies are frequently seen for small particles and are often due to shells structure,
either of the geometric or of the electronic type, but can also, in particular for the
smallest particles, have no obvious or easily rationalized systematics associated with
them.

Even disregarding the shell structure and other terms varying around zero, the
liquid drop parametrization has its limitations. One case where this is seen clearly is
the theoretically calculated ground state energies of the toy element with atom-atom
interactions given by the Lennard-Jones potential. This is a two-body interaction
which mimics the interaction of rare gas atoms and which is discussed in more detail
in Chap. 12. The ground states and their energies of a long range of sizes of clusters
of atoms interacting with this potential, colloquially known as Lennard-Jonesium,
have been found by minimizing total energies, with no small expenditure of time and
manpower.

The energies per particle for Lennard-Jonesium is shown in Fig. 8.3. From the
deviations from a straight line it is clear that the two terms in (8.7) are not sufficient
to account quantitatively for the energies. A third term proportional to the radius
of the particle, or N'/3 with a negative coefficient is required to provide a good fit,
as seen from the curvature in the data. If one insists on a liquid drop limited to the
first two terms, this would correspond to a surface tension that decreases as the size
decreases.

Figure 8.3 also shows that the surface term has a coefficient which is bigger
than the bulk cohesive energy (the large cluster part of the curve extrapolates to
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Fig. 8.2 The cohesive energy per monomer molecule for NaCl clusters. The straight line fit gives a
value close to the predicted 2/3 of the monomer binding dissociation energy. The data are theoretical
values from ‘Clusters of alkali halide molecules’, D.O. Welch, O.W. Lazareth, G.J. Dienes, and R.D.
Hatcher, J. Chem. Phys. 68 (1978) 2159
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Fig. 8.3 The left hand side of (8.8) vs. N~!/3 for the ground state energies of clusters of atoms
interacting with the Lennard-Jones potential. The small deviations from the smooth curve are
finite size effects caused by the variations of the packing efficiency of the atoms into the cluster,
known as packing shell structure. The data are from the Cambridge Energy Landscape Database at
www-wales.ch.cam.ac.uk/CCD.html
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zero energy before reaching N~!/3 = 1), in a very un-pedagogical contradiction to
our estimate above. One reason this can happen is that the structure of the clusters
plotted is not that of the bulk and extrapolation to infinite size therefore fails, and
this is the situation here. The structures have a five-fold symmetry, icosahedral to be
specific, for certain sizes where the atoms pack into closed structures, which is an
example of packing or geometric shell structure. For the icosahedral structures, shell
closings appear for N = %K — 5K+ %K — 1, with K the (positive integer) shell
number. The first four of these are N = 1, 13, 55, 147, .. .. At other sizes, ground
state structures of the clusters are often one of these closed shell structures decorated
with an incomplete next shell.

The icosahedral structure is not compatible with bulk translational symmetry, and
the particles are therefore not small pieces of bulk material. With growing particle
sizes tension builds up on the inside, eventually reaching a limit where the crystalline
structure becomes the most stable. This means that for this type of clusters, total
energies get non-linear contributions from regions other than the surface. Then it is
no surprise that the surface tension appears larger than our 2/3 rule predicts.

We could continue the expansion of the binding energy to higher orders of N~
by adding more terms to the series, as suggested by the fit of the Lennard-Jones clus-
ters, with a procedure known as the leptodermous expansion (‘thin skin’ expansion,
obviously a definite misnomer in the case of the bulk atom effects of Lennard-
Jonesium). These higher order terms are rarely known because there are no macro-
scopic measurements of the coefficients, and for most purposes the first two terms
are sufficient to account for the smooth size dependence of the binding energy.

An exception to this, both with respect to our knowledge and to the magnitude, is
the charging energy. Addition of a charge, positive or negative, to a neutral particle
causes the energy to change with an amount which will include a term proportional to
N~'73,i.e. asize dependence which is a factor N*/3 smaller than the bulk contribution.
The coefficient of this contribution can nevertheless be large enough to justify the
inclusion of the term.

The energy depends on the location of the charge. We will consider two charge
distributions. In the first the charge, carried by an ion or an electron, is located in the
center of the spherical particle. For this charge distribution, the classical electrostatic
energy is calculated to

1 ¢° 1 1 1
E.=—- —+— |1 - = , 8.9
2 47e <Kr/+rN< K)) (8.9)

where K is the relative dielectric constant, equal to the ratio /¢, and r’ is the radius
of the central ion. The concept of the radius of an ion in a medium have limited
applicability, and it is better to extract the term with r’ and write it as an effective
charge solvation energy, E. o:

Eomgot O (L] (8.10)
¢~ Fel 2471'50 rn K ' '

1/3
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This has the added advantage that other effects can be collected into the empirical
constant E, o. Depending on the zero of energy one chooses, these effects can include
the energy gained or spent in creating the core charge. For the zero of energy used
here, E. o is the energy needed to insert the preformed charge into the center of the
particle while, hypothetically, keeping the polarization energy in the second term
zero. In general, we must expect that the effects collected into E. o will have some
size dependence unrelated to the polarization energies, if not for anything else, then
because of the increased and size dependent surface area created upon the insertion.
Equation (8.10) can be interpreted as the leading order term in an expansion in 1/ry
of the smooth part of this size dependence. We will include the term in the form of
the bulk work function, W, and let the surface-like contribution be absorbed into the
existing surface term.

The factor in front of the parenthesis in (8.9) is half the standard electrostatic
constant. It takes the value 7.2 eVA, which justifies the inclusion of the effect in
the liquid drop expression. The factor of one half appears as the charging energy for
K — 00, corresponding to a metallic sphere. This gives us directly the electrostatic
energy for the other charge distribution we will consider, which is the one where the
charge is homogeneously distributed over the surface of the particle. The energy is

2

B Eoog+ Y
¢ el 2 4megry

(8.11)

E. o can be interpreted as a surface attachment energy of quantum mechanical origin.
Both this energy and the corresponding one in (8.10) will in general depend on ¢,
and the equations are best used to represent the variations with N and not with g.

These two situations do not cover all possibilities. A centrally located charge,
in particular, is not a good description for multiply charged particles if the charge
is located on more than one atom or monomer. The electrostatic repulsion between
these mobile charges will guarantee that not both can be located in the center of
the particle, which in most cases is also not possible due to the fact that two atoms
can usually not be at the same place. It may still be energetically favourable to have
charges embedded into the interior, though. Then the problem includes some non-
trivial geometrical optimization, even for the simple liquid drop description. But if
care is exercised in the interpretation of the constants of the charging energy, one
may still use the above reasoning as a convenient numerical template.

We then finally have the expression for the liquid drop (ground state) energy:

Ey = —AN + BN?? + CN7'3 4 qw, (8.12)

where all numbers are related to macroscopic quantities according to the recipes
given above.

If this were all, life would be dull. On top of these contributions, which vary
smoothly with N, shell structure will generate terms that vary with N more or less
systematically around zero, as we have already seen in plots of theoretical data.
For metallic particles, an important contribution of this nature is the electronic shell
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energy, Egn.n v, that represents the stability variations due to the electronic shell
structure. For cold clusters, metallic or not, one may also observe a geometric shell
structure due to the packing of the atoms, which has already been mentioned above.
Another non-smooth term is the odd-even effect of metallic cluster, E,, y, which is
similar to shell energies in the sense that it oscillates around zero, albeit with a period
of only two. We will meet these in Chap. 10 on valence electrons. The full expression
for the liquid drop ground state energy of particles that show these variations is then

Ey =—AN +BN?? + CN™'3 4+ qW + Egpeutn + Epen. (8.13)

where any of the last three terms may be zero for a specific system. Common for
the shell energy and the odd-even energy is that their contribution to the total energy
is zero on the average, and for this reason we will disregard them in the rest of this
chapter.

8.2 The Partition Functions

The first goal of this chapter is to find abundances in thermal and chemical equi-
librium. This is done with the canonical partition functions because these provide
the free energies and chemical potentials we need to calculate particle numbers (see
Chap. 1). To calculate these partition functions, some schematic features must be
introduced into the description of the excitation spectra of the particles, just as the
picture of the ground state energies was painted with a broad brush. Rigorously
speaking, all degrees of freedom except the translational motion couple directly or
indirectly. We will ignore these couplings and, as in Chap. 5, write the total partition
function of a single particle as the product of the translational, vibrational, electronic
and rotational partition functions:

Ziot(N) X Zyy Zy ot Zoin Zeore "BV (8.14)

where Ey is the ground state energy. The choice of the zero of the energy as that of
the completely separated monomers is particularly convenient here, as will be clear
soon.

The translational partition function is easy to calculate because we already have
the level density of a free particle (see (2.68)). The mass of the monomer is m, and
then

1
porn(E) = ﬁv4ﬁ7r(mN)3/2E1/2, (8.15)

with the canonical partition function:

o0 aE mNT\*?
Z,(N) = pirn (E)e PEAE = V/873 ) (8.16)
0

h2
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Alternatively, we could have gone back to basics and calculated it as
1 7
Ziw(N) = —f d3xfe*@md3p. (8.17)
nJy »

The vibrational partition function depends on whether the particle is linear or not.
We will assume that it is not. Then there are 3N — 6 vibrational degrees of freedom
and, ignoring anharmonicities, we have the by now well-known vibrational partition
function

3N-6 . T \3N-6
Zup(N) = [T (1—e )" z( ) , (8.18)

i=1 Tuib

where the high temperature limit was used in the last equality sign. The quantity T;;
is defined as the geometric average of all the vibrational frequencies of the particle,
expressed in temperature units:

IN—6 1/3N—6)
Tpip = (]_[ m;l-) . (8.19)
i=1

It should be pointed out that this partition function is only a first approximation.
Anharmonicities will increase the value and if melting occurs below T, it will con-
tribute a significant factor to the right hand side of (8.18).

To calculate the rotational partition function of a particle we need to know the
shape of it. For rotational motion, the shape is summarized in the moment of inertia
tensor, defined as

Ly = Zmi ((xiz,l + xiZ’I + xiz,])(sa,b - xi,axi,b) , (8.20)

l

where the subscripts a, b can be any combination of x, y, z, the index i runs over all
masses and x; , is the a-coordinate of atom i when the center of mass is taken as origo
of the coordinate system. This tensor determines the rotational motion of the particle.
It can be brought on diagonal form by a coordinate transformation, equivalent to a
diagonalization of a 3 x 3 matrix, and these diagonal elements are the ones we need.
The particles we will deal with here will usually be spherical or close to spherical,
for which shape the moments of inertia around the three principal axis are equal,
I, = 1I,, = I, = I, making the particles what the spectroscopists call a spherical
top. The moment of inertia for a sphere with constant density is already diagonal and
the diagonal elements are equal to I = 2M R?/5. With the radius R = r;N'/3 and
total mass M = Nm this gives the N dependence

[ =2smriN°". (8.21)
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For a spherical top, the rotational energies are

hZ
Evoy = “L(L+1). 8.22
£ =57 (L+1) (8.22)

and the degeneracy of the levels are (2L + 1)2, where L is the orbital angular momen-
tum of the motion of the nuclei. The partition function is then given by

o0
Zyo(N) =Y (2L + 1)2e W LEADL (8.23)
L=0

The partition function also depends on the symmetry of the particle in a more
subtle way than just the pure geometric symmetry reflected in the moment of inertia
tensor. A spherical top is symmetric in the sense of moments of inertia, but it is a
different question whether or not the wave function representing the particle also has
spherical symmetry. If is has, the particle cannot rotate and the partition function
of such a system reduces to unity. But a completely rotationally symmetric particle
would have eliminated the granular structure of matter, which is not an easy thing
to do.

Still, even after accounting for the presence of atoms at relatively well-defined
position, there may be a residual, discrete symmetry left in the wave function. Such
a symmetry of the wave function under rotations is usually summarized in the sym-
metry number, which is an integer that takes into account the symmetry of the entire
wave function, both the electronic wave function, and the positions and vibrational
motion of the nuclei. It represents the number of identical states of the entire system
that can be reached by rotations alone. For high angular momentum states, where
L > h, one divides the unrestricted sum by the symmetry number to get the correct
partition function. We will assume the symmetry number is unity, which is the clas-
sical value, because large particles at excited states rarely have a total wave function
with enough symmetry to cause major quantum corrections. Putting it shortly, there
is a correction factor and it is equal to one!

When T > h?/21, the sum over L in (8.23) can be approximated with an inte-
gral, corresponding to the first term in the Euler-MacLaurin formula. If also the
approximation L(L + 1) &~ (L + 1/2)? is used, we have

(2IT)*?

Z,(N) = /7 = (8.24)

In analogy to the vibrational partition function, the constant in this expression is
often expressed as a temperature:

hZ
Tror = —. 8.25
(=57 (8.25)



216 8 Abundance Distributions; Large Scale Features

We see from (8.25) that the larger the particle, or more precisely the larger the value
of the moment of inertia I, the lower the rotational temperature. Spectroscopists use
the rotational constant which is defined as

kg h

B=Ty—o=—
""he T 8m2lc

(8.26)

where c is the speed of light. The unit of this is inverse length, and usually cm~!

(wavenumber, see Appendix B for the value) is used. In this unit, energy is given by
the number of wavelengths per cm for photons with that energy. Some values are
givenin Table 5.1 in this unit. If we stick with the characteristic rotational temperature

we have
T\ (8.27)
Trot ) .

Zrot(N) = ﬁ(

When the moments of inertia along the principal axes are are not identical, the
exact quantum mechanical rotational energy levels are more difficult to find. We
will not attempt that here, but instead calculate the partition function semiclassically.
From Chap. 2 the canonical partition function is semiclassically equal to

1 2
Zrot(N) = = / e B2+ L3 /21,y +L2/21:) 43 g f dL,dL,dL,, (8.28)

where the three angles 6 refer to the orientation of the particle. We have inserted the
rotational energy expressed in terms of the classical angular momenta components
Ly, Ly, L;:
L2 Ly L?
Ep = = + — + . 8.29
T2, 20, 21, (8:29)

The angular integration takes some care. It goes as follows: Mark two antipodal
positions on the particle. This defines an axis. The integral is then performed over
all 47 of the orientation of this axis, and then independently over the 27 that defines
the angular position around the axis. This gives 872. We then have

8 2
Zyor(N) = h—z / e PLLAL 2L A L2 L 4L dL,. (8.30)

The remaining integrals over the L’s decouple and can be performed to give the
resulting semiclassical rotational partition function

T3/2

Zra(N) = /7 ) (8.31)
' Trot,x Tror,y Trot,z

where the characteristic rotational temperatures are defined in analogy to the spherical
case as
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h2

E, i=x,y,z2 (8.32)

Trori =

For I, = I,, = I.; (8.32) reduces to the expression for the spherical case, as it must.

Electronic excitations are much more specific to the chemical composition of the
material than any of the other types of relevant excitations, and it is not possible to
give a single, even very schematic, realistic description valid for all materials at the
same time. We will therefore simply express that contribution in general terms as
the canonical partition function in (8.14). It is in any case usually the contribution
which is closest to unity (for the right choice of the zero of energy).

We can now put the partition functions for the separate degrees of freedom
together:

1 /2 3/2 mT 3 3 T IN=6 4 2
~ BAN—BBN?*3
Zmr(N) ~ ; <§> ( 72 ) r Vv (Tvib) N Zele

T \"° 2
EWV<T) N*Z e AN-OBNE (N £ 1), (8.33)

For future use we also write down the partition function for the monomer. If it is
not an atom, the following result needs to be multiplied by the partition function for
the internal degrees of freedom. For an atom the partition function is simply that of
translations,

mT \*
zanv(%m) =cV. (8.34)

For the reference values m = 1u and T = 293 K, the constant has the value ¢; =
9.5 - 10* m~3. The corresponding factor for the multi-mers is defined as

1 /2\*? mr T 3 (8.35)
en=—|= .
a5 12
and has, for r; =1 A and the same reference mass and temperature the value 1.8 -
103" m=3.
Before we continue with calculations of the equilibrium distributions it is worth-
while to try to understand these two factors. It is easiest to begin with the monomer

factor. The dimension of ¢ is that of a reciprocal volume. If one takes the cube root
of this volume one gets the length

h
N = —. 8.36
' N 2mmT ( )

The denominator is a typical thermal momentum and ), is therefore on the order of
the average wavelength of the monomer in its thermal motion, the so-called thermal
de Broglie wavelength. The translational partition function can thus be expressed as
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Z,=V/ /\,3. If we consider the factor for the N-mer in this light, we see that it can be
written as cy = ¢1(r1/ A)3. The reason the two factors ¢; and cy differ by only one
order of magnitude is that the thermal de Broglie wavelength of our reference atom
under the reference conditions chosen is actually not very different from the size of
an atom or a molecule. This is a result of the specific values of constants of nature,
not of any thermal effect, and theories about thermal behavior assigning a different
physical significance to this coincidence can safely be ignored.

8.3 Thermal and Chemical Equilibrium

To find out what the partition functions tell us about equilibrium abundances, con-
sider a large collection of particles of all possible sizes in equilibrium with each
other, including the gas of monomers which will also be present. We will examine
the equilibrium between the monomer vapor and the particles containing N atoms.
We can ignore the fact that other particles than those of sizes a and N are present
and consider only atoms and N-mers. With the total number of monomers in these
two types of particles denoted by n, we have n = n; + Nny, c.m.n.' The partition
function for the collection of all N-mers is (see Chap.?2)

2, = D
ny:

(8.37)

and similar for the monomer gas with N replaced by 1. In equilibrium the partitioning
of atoms between the N-mers and the free atoms is given by the product distribution

~ Zit (N Zig (D" Zit(N)™ Zyor (1) N

. (8.38)
ny! ny! ny! (n — Nny)!

P(ny)

We find the maximum of this distribution by setting the logarithmic derivative with
respect to ny to zero.

d Ziot (N)™ Zyr (1)" NN
o (Zia ™ Zior (1) o 539)
ony ny! (n— Nny)!
For the factorials we use Sterling’s approximation (see Appendix C):
In(n!) =nln(n) —n + .. (8.40)

and keep only the terms indicated. Using n; = n — Nny, a little algebra gives

Ycum manifestum notatio = with an obvious notation.
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N

ny = th(N)#(l])N. (8.41)
Turning the equation around gives
ni = Zig(1) ( " )UN . (8.42)
Ziot(N)

Introducing the partition functions from the previous section and considering a
macroscopic amount of matter, N ~ N >> 1, gives the abundance for monomers
in equilibrium with a macroscopic amount of matter. With Stirling’s approximation
we get the number of monomers for the saturated vapor

Tur\® _. TN T\
n =Zm,(1)< ;h) edA=v<%) < ;*’) e, (8.43)

Let’s digress to formulate the equilibrium condition in (8.39) in terms of the
chemical potential. For the canonical partition function, the free energy is Helmholtz’
free energy which is defined as (see Chap. 1)

_ Ztoz(N)nN — e—[iF

I’ZN!

Z. (8.44)

The chemical potential is the derivative of F with respect to the number of particles

of the species;

oF
Um = e =-—Th(Zx(M)/num), (8.45)
ny

where M can be 1 or N. If we use this with M = N together with (8.42) we have
py = =T (Ziu(N)/ny) = =T In (Zir(1)/n))" = Npuy. (8.46)
What we derived is therefore just the condition
pN = Npp. (8.47)

Recapitulating, this relation was derived by considering the most probable partition-
ing of monomers between N-mer and monomer states.

We have now calculated the number of monomers in a given volume over a bulk
piece of material. The corresponding pressure is known as the saturated vapor pres-
sure. If the monomer is in equilibrium with the bulk and the N-mer is in equilibrium
with both, we can calculate the N-mer concentration from the monomer abundances.
For this purpose we use (8.41) with (8.43) with the requirement that N is much less
than the macroscopic amount that qualifies as the bulk and which determines the
vapor pressure. The result is
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Toin \® _pnor
ny = cyVN* <Tb) e PBNY (8.48)

The factors that are left out in this approximation are

Toip \ /™ AN/N, 1/No ~—BBN/NY?
- Ny N0 (e V)1 NogmBBNINGT (8.49)

and some tiny root of the electronic partition functions. All of these approach unity
in the limit N/ N& /3 _5 0. This condition is equivalent to considering only particles
with radii much below 1 mm or so.

The distribution in (8.48) is the saturated vapor equilibrium abundances of parti-
cles of size N. The individual factors all have straightforward physical interpretations.
The factor ¢y V N* is the combined rotational and translational partition functions
of the N-mer. The factor involving the sixth power of the vibrational temperature
accounts for the decrease in the vibrational degrees of freedom that occurs when two
particles are created out of one; 3Ny — 6 — 3(Nyg — N) — 6 + 3N — 6. The specific
power of six refers to harmonic oscillator level densities for the motion of the nuclei.
The true values may be lower or higher and this will change the power from 6 to
2c¢,, where ¢, is the heat capacity per atom, but this is usually not a major change.
Finally, the exponential in (8.48) is the Boltzmann factor of the new surface area that
appears when the N-mer is created (see Exercise 8.3). Note that the bulk cohesive
energy per monomer, A, does not appear in (8.48).

An example of abundances calculated with (8.48) is shown in Fig. 8.4. The pre-
exponential N* dependence is only a weakly growing function compared with the
exponential decrease, and for N = 100, say, this term will only be a minor correction
to a distribution which is already practically unobservable. Even when the tempera-
ture is so high that the value of 5B is 2, which is usually a very high temperature, is
the product of N* and the exponential less than 10~'° for this particle size.

The above calculation is based on schematic partition functions; as mentioned both
anharmonicities in the vibrations and melting will increase the N > 1 abundances.
Also finite size effects in the binding energies will be reflected in the abundances,
and the results given here should only be considered as the trends. Nevertheless, the
result derived clearly show that abundances of large cluster are vanishing in thermal
and chemical equilibrium.

One may ask about the concentrations if the monomers are in chemical and thermal
equilibrium with N-mers but not with a bulk phase. We can easily confirm our
expectations that the N-mer concentrations are reduced in that case, compared to
the bulk saturated vapor pressure. In the absence of a bulk phase, the monomer
concentration must be less than the saturated vapor concentration. This means that
the right hand side of (8.41), rewritten as

I’l]Vq N
nN:Ztot(N)< % ) , (8.50)



8.3 Thermal and Chemical Equilibrium 221

10%
18
:O
102§’
— 10
E ]
> 10"
z -
c :
10°3
: 400 K\ 600 K \800 K ™\.1000 K 1200 K
w5
0 10 20 30 40 50 60 70

N

Fig. 8.4 Calculated abundances for clusters in equilibrium with the saturated monomer vapor
pressure. The parameters used are r; = 2.1 10%, m=23u, A=1.12eV and B = 0.718 ¢V, corre-
sponding to the values for sodium. The dimer is left out because the equation used to calculate the
concentrations, (8.48), is not valid for this species. The monomer concentration is shown with open
circles

will be reduced, as will therefore also ny. If the lower pressure is obtained by
reducing the monomer vapor pressure from the saturated pressure value, N-mers
will dissociate and enrich the monomer concentration.

This is an example of what the chemists know as le Chatelier’s Principle. In its
general form the principle says that the system will tend to counteract an externally
imposed change of its parameters. We will not calculate the concentrations as a
function of the total concentration, but just conclude that in the absence of a bulk
phase, the N-mer concentration is less than the already very small equilibrium value.

The most important lesson from this section is that particles of any reasonable
size must be produced in some other way than by chemical equilibrium. The next
sections describes the underlying statistical physics of some of those methods.

8.4 Polymerization

As afirst attempt to explain quantitatively the size distributions and the rate of creation
of particles from vapors (because they do exist, as we know), we will consider a
model for polymerization of molecules. From our perspective the main virtue of this
model is that it is exactly solvable and gives us some insight into size distributions
in situations with thermal but not chemical equilibrium.

We will look at a collection of monomers and polymers up to an arbitrarily large
size (polymers is a collective designation for X, where N > 2 and the bonds are of
chemical nature). The collection is created by placing all monomers in a long string
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and consider the distribution of sizes when every pair of neighboring monomers is
bonded to each other with some probability p. A monomer has only two neighbors,
and these never bond directly with each other. Effectively, this is therefore a one-
dimensional theory. Keeping the model simple, the value of p is assumed the same
over the whole length of the string and independent of the neighboring links.

The total number of monomers, bound to others or not, is a conserved number,

o0
no=_ Nny. (8.51)
N=1

where ny is the number of N-mers. We will take this number of monomers in the
system to be so large that we can disregard end effects which are expected to influence
the calculated probabilities with terms on the order of 1/ny.

The probability that a particular monomer belongs to a polymer of length N,
which may be one, is the sum of the probabilities that the monomer is the jth
monomer in the chain, summed over all j less than or equal to N. Each term is
of the kind (1 — p)p/~! pVN=J(1 — p) because there is one broken link followed by
Jj — 1 unbroken ones before the jth monomer, and N — j unbroken followed by one
broken link after. Hence the total probability that the monomer is part of a polymer
of length N is

N
My=) (=pPp" "' =N1-p)Pp" (8.52)
j=1

The total number, n,, of polymers of all sizes, including one, is

n; = - (8.53)

where N is the average polymer size. The average size is calculated as the probability
that a chain is N monomers long, weighted with N.

The polymer size distribution is the probability that a given chain has a certain
length. For any polymer, the first monomer has an broken link to one side, followed
by N — 1 bonds, which gives a factor of p¥~! on the probability. The terminating
link, which is broken by definition, gives a factor of 1 — p. The probability that the
chain is N monomers long is then

Py =(1—p)p L (8.54)

This is the polymer size distribution. It is different from the probability calculated
in (8.52) which is the distribution of lengths of chains to which a randomly selected
monomer belongs. Instead (8.54) gives the probability that a chain selected at random
has length N. For a given p, the size distribution decreases with size as exp(N In(p)),
corresponding to a ‘drop-off” scale of —1/ In(p).
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The average size is

oo oo
— 1
N=) NPy=Y Nl-pp"'=—0u. 8.55
Y NPy=) N(-p)p =5 (8.55)
N=I N=1
For the number of polymers we then have
n, = no(l — p). (8.56)

Thus stationary state size distributions depend on p in a simple fashion.

Time does not appear explicitly in these distributions. In a more realistic situation
where one starts with mainly or exclusively monomers, one expect p to increase
with time from the value p = 0 to some finite value. If there is no reverse reaction,
i.e. bonds don’t break, the asymptotic value will be p(t = oo) = 1. In the more
general situation, with a bond formation rate of a and a bond breaking rate of b, we
have the asymptotic value p(oco) = a/(a + b), which is easily found by equating the
bond breaking and formation rates. All the way between the initial p = 0 and the
asymptotic value, the distribution still only depends on p, but p will depend on time.
The time derivative of p is the weighted sum of the rate constants for linking, a, and
breakup, b:

dp

o= a(l — p) — bp, (8.57)

which is easily understood as the sum of rate constants of formation and breakup, a
and b, multiplied with the populations 1 — p, p and applying the proper sign on the
breakup term. We now just need to solve (8.57) to find p(#), which then will give
us the time dependence of all Py. The standard technique is to compare (8.57) with

the equation d(pg)/dt = h, which can be solved, and identify the functions g and
h. The result is that g = exp((a + b)t), h = ag, and we then integrate h to get

p() = p(O)e™ " a“ﬂ (1 —etathry, (8.58)

The problem of the time development can alternatively be formulated and solved
by specifying all the terms that contribute to the growth and decay, and sum these up.
We do it here because it is useful for comparison with more general descriptions of
aggregation. It is alittle easier to establish the equation that govern the rate of change
of the number of polymers ny instead of Py, the relative population. To convert
between the two, we have the following relation between ny, the total number of
polymers n(1 — p), and the probability Py:

ny = Pyng(l — p), (8.59)
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The equation for the rate of change of ny reads:

N-1 0

(tll—tN = 2any + ; any_;Pi —bny(N — 1) +2b ;nw. (8.60)
The first term is the rate with which ny decreases because either of the two ends
fuse with a polymer of any length. The second term is the rate with which the
corresponding fusion produces an N-mer from sizes N — i and i. The third term
represents the rate of breakup of an N-mer, which can occur at any of N — 1 places,
and the last term is the rate of increase due to the breakup processes that produce
N-mers.

Instead of solving (8.60) directly, we will turn the argument upside down and use
the known time dependence of p to show that the equation is correctly established.
With the relation between ny and Py in (8.59), we can recast the equation into one
for Py:

N-1
dPy(1 = p)
—— =~ 2Py =p)+ ) aPyiPi(l=p)

i=1

— bPy(N —1)(1 = p) +2b(1 = p) > Pyyi.  (8.61)

i=1

With the help of the solutions for Py (p) in (8.54), the terms on the right hand side
can be calculated. After a minor rearrangement of terms we get

dPy

dp
dt

= p" 2N = D1 = p) =2p] @ = p) = bp) + PV P p -

(8.62)

The last bracket in the first term is the time derivative d p/dt and we therefore get

dPy

P =p" 2 [(N — 1)1 — p) — 2] (a(1l — p) — bp). (8.63)

Calculating the left hand side directly from the solutions gives

dPy d N—1 N-2 y-17dp
v _ 9 —[(N -1 _N P 8.64
o —g-pr [( )P P P (8.64)

Inserting (8.57) for the time derivative of p shows that this is identical to the time
derivative calculated with (8.60), and consequently verifies this equation for this
specific problem.

What we did here, in summary, was to write down and solve an equation that

describes the temporal development of a simple model of polymer size distributions.
The equation solved, (8.60), is a variation of what is known as the Smoluchowski
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equation, or more correctly Smoluchowski equations, which describe the growth of
particles by aggregation.

Although the polymer growth equation possesses the very appealing feature that
it can be solved analytically, we must nevertheless establish a more realistic version
for real life aggregation. The most severe shortcoming of the polymer equation is that
it is one-dimensional whereas most systems are three-dimensional, or occasionally
two-dimensional but rarely one-dimensional.

8.5 The Smoluchowski Equation

The Smoluchowski equations which will be established in more general form in this
section is a set of ordinary, coupled and non-linear differential equations that describe
the time development of the concentrations of particles as the result of aggregation,
fusion and possibly break-up. Originally the equations were proposed without any
break-up terms, corresponding to irreversible growth, but the expression is often used
with such terms present, and this will also be the usage here.

We begin with the aggregation terms only. The rate of change of the concentration
of species N, cy is then

[N/2]

= Z e Z(l +hmavene.  (8.65)

dCN
dr

growth
The Kronecker delta in the negative sum appears because two particles of size N will
fuse and disappear when i is equal to N, as opposed to the disappearance of a single

N-mer for the processes where i # N. The upper limit of summation in the positive
sum avoids double counting. Equation (8.65) can be rewritten as (see Exercise 8.17):

The coefficients ¢; j, known as the kernels, are symmetric in the indices,

dCN

o0
e — Zai.NCNCio (8.66)

gr owth

ajj =4aj,i, (867)

and have dimensions volume per time. The first sum in (8.66) is the production of size
N particles from fusion of smaller particles, and the second is the depletion due to
growth into larger particles. The factor 1/2 compensates for double-counting in the
first sum. The equations can be formulated as continuum integro-differential equation
by treating the size as continuous (see Exercise 8.18), which is what Smoluchowski
did.
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The concentrations that enter the equations are mean values. That is a good pro-
cedure for sufficiently large systems, but for finite systems fluctuations will play a
role. That can be taken into account by formulating the equations with probabilities
as variables, and the equations are then known as the Markus-Lushinov equations.
Introducing that complication is not making an already very difficult life any easier
and we will tacitly ignore it and continue with the equations for the mean values with
the expectation that they are sufficient for our purpose.

Even without the fragmentation terms, solution of (8.66) is a formidable task that
has only been accomplished for a few different kernels. Smoluchowski provided the
solution for constant kernels, a; ; = c, for the t = 0 situation of monomers only;

-2 N—-1
t t ..
CN = <1 + 5) (2——H) s ajj = ¢, all L ]. (868)

The constant ¢ here and in the following two cases can be scaled away by a redef-
inition of the time as will be shown below with an explicit example, and we can
assume ¢ = 1. The solution of the equations in their continuous approximation has
the corresponding form, with x denoting the size,

ey = 4t 21, (8.69)

Already this solution, however schematic the physical situation it describes may be,
displays an important property, namely that of scaling. The average size is

(x) = = (8.70)

and with some loss of information about the specific solution but gain of generality,
we can write the solution as

e = (x)"2% <i> . 8.71)
(x)

In the constant kernel case, ¢ is an exponential function. In general these functions
depend on the form of the kernels. An example of scaling will be calculated in detail
later.

Another kernel for which the solution is known has the form

ai,j=1+]j. (8.72)
This is must be expected to be more realistic for the description of real particles, with
their fusion cross section which reasonably will grow with size. The solution of the

continuous equations for this kernel is

e = 2m) eIy 32 N2 (8.73)
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This solution has a diverging mean size. The problem arises at the low mass end
of the spectrum. The problem is absent in the discrete solution, which has the less
elegant form

L (N —e)N eV (=)

en =e i . (8.74)

A third exact solution has the interesting property that it gives gelation, i.e. causes
the second moment of the size distribution size to be infinite after a finite time;

(N(1)*) = 00, t — 1y < 0. (8.75)

The kernel is
aj = l], (876)

and the discrete solution is

. (Nt)NflefNI
cy=N — T (8.77)
and the continuous ,
ey = ) V2 x 212, (8.78)

It can be shown that if the initial distribution is all monomers, the gelling transition
occurs at the scaled time # = 1. In contrast, kernels that are homogeneous functions,

isj = 8704 j, (8.79)

and have v < 1 will not give rise to gelling.

After this brief overview of some mathematical results, we will specialize to
a definite physical situation suitable to describe a number of situations one can
encounter in practise. We will assume that concentrations of all species are uniform
in space at all times, although they will in general of course depend on both size and
time. The system is thus a gas composed of particles of different sizes, which is being
homogenized continuously by the molecular motion so that rates can be expressed
by position-independent concentrations. This assumption makes the probability for
two particles to fuse proportional to the product of their concentrations.

The gas may or may not include an inert thermalizing component. The simplest
equations are obtained if the thermalization with the gas is sufficiently fast compared
to the rate of particle growth. With this condition, the heat of condensation which is
added to the internal energy when two particles fuse will be dissipated and prevent
that the large particles become hotter than the small ones. We will find quantitatively
limits for this condition below for the aggregation-only case.

The a’s are related to the collision frequencies between the two particles in a
manner completely analogous to the fusion frequency we calculated in Chap.5 on
rate constants,
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ai,j = 0ijVij, (8.80)

where o is the fusion cross section of the two particles and v is the average relative
thermal speed. We will set the charge of all particles to zero. The cross section can
be expected to be geometric to a reasonable approximation if the sticking coefficient
is unity, i.e. they will fuse if they touch:

oy =mr (i 4 1) (8.81)

The relative speed is identical to the average thermal speed of a particle with the
reduced mass, j; ; = (1/im; + 1/jm;)~", because this is a two-body problem. It is
calculated with the Maxwell-Boltzmann distribution to

v = (l +J —) . (8.82)
ij wm

We therefore have for the kernels:

a2 (G 8T\ e (40
ai;=mri (i +'7) (—— =q (P40 (=) - 683
ij mwm ij
The value of the parameter ¢, defined as
8T \ /2
q=mri (—) : (8.84)
™y

depends only on the aggregating material and the temperature. It has dimension
volume per time and will be used to scale the equations.

We will assume that this calculation is also valid fori = j = 1. The value of @, ; is
important for the initial conditions where most of the gas is in monomeric form. The
collision frequency should be given fairly well by (8.83), but energy conservation
prevents dimers from being formed in collisions unless the monomers have internal
degrees of freedom that can be excited in collisions with thermal energies and absorb
the binding energy of the dimer. A third particle (monomer or cooling gas) may
remove the excess energy in three-particle collisions and allow formation of a stable
dimer, but this happens with a much lower rate than two-particle collisions. This
mechanism is usually not very efficient and the dimer production therefore tends to
act as a bottleneck for aggregation.

On the other hand, the bottleneck problem is often reduced by the presence of
small clusters created prior to the production process. Also, evaporation of dimers
or other small clusters from particles may occur and supply the gas with seeds
of sizes beyond the bottleneck. In practice, particles are formed and we will use
this as the justification to apply the simplest solution, viz. to keep the coefficients
as described for all sizes. The assumptions are important to keep in mind when
comparing theoretical predictions with experimentally measured spectra, though.
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Even if the conditions for microscopically irreversible aggregation are fulfilled,
the equations are still so complicated that they must usually be solved numerically
because the coefficients are non-trivial functions of size. But although we cannot give
the exact solutions in closed form, there are still things we can say about them. The
first statement concerns time scales. If we use our reference values r; = 1 A, T =
293 K,m; = 1u, we getthe scaling parameter g (r;, T, m;) = go = 4.6 - 1078 m3/s.
If we also use a standard initial monomer pressure of Py = 1 mbar = 100 Nm~2, cor-
responding to an ideal gas concentration of co = N/V = P/T =2.47-102m™3,
we get the typical time for the aggregation-only situation of

th = 1/6]000 = 8.8 us. (8.85)
The aggregation-only equations can be scaled by division of all concentrations by

¢ which corresponds to setting the total monomer concentration equal to unity. If we
also rescale the time to be the (dimensionless) time 7 = 7gc, the equations become

d 1 N \'?
NN (BN () cens  (886)
dr 2

or in the more general form:

ar

N—1 00
d 1
N Z S@iN=iCiCN—i — ;Cli,NCNCi~ (8.87)

i=1

8.6 Conditions for Irreversible Aggregation

The condition that the aggregation is irreversible, also microscopically, is implicit
in the treatment so far. This is not trivially fulfilled. Not only must the average size
grow with time, but it also means that all monomers caught on some particle will
stick for good and all particle-particle fusion processes is irreversible.

As an aside we note that it is not trivial either if the assumption of a spherical
shape is consistent with this condition on the aggregation and equilibration speeds,
because at low temperatures a low atomic mobility of the atoms on the surface of the
particle may effectively prevent migration into a good spherical minimum energy
candidate shape, and thereby result in shapes different from spherical, for example
fractal structures. This is a Pandora’s box question and we will keep the box closed.

We can, however, make an estimate of the temperature needed to make the aggre-
gation irreversible, and this section will treat that question. First we note that without
a cooling gas or some other cooling process, it is not possible to have irreversible
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growth at long times because as the particles grow, matter will be found in larger and
larger lumps, and these will contain the heat of condensation of the atoms released
during formation. The temperature of these particles will converge toward a value
on the order of E,/3, which is very high and will be impossible to sustain for any
reasonable period of time for individual particles. The large particles will simply
re-evaporate if not cooled by an external agent.

The main cause of shrinking of particles is loss by monomer evaporation, and
in some cases by loss of other small molecular fragments. Those situations arise if,
for example, dimers are sufficiently stable. Then their binding energy will compen-
sate the extra energy needed to eliminate two monomers at the same time from the
shrinking particle. We will formulate the calculation in terms of monomer loss. A
dimer loss, for example, is covered by the same equations if the proper energies for
that process are used and will cause no change in the results.

We write down the requirement on irreversible aggregation as the condition that
re-evaporation rates are small compared with aggregation rates,

PR« VY CN ON N> (8.88)

Wy 1€
where c5; is the concentration of the average size N, vy is the average thermal
speed of, o is the attachment cross section, wy ; is the frequency factor for loss of a
monomer from a particle of size N, and T = 1/4 is the particle temperature which
is elevated relative to the cooling gas temperature due to the heat of condensation
deposited into the particles. The parameters scale with size approximately as

S _ 2 _
F— <N1/3 + N1/3) = 4N (8.89)
vy=vv2ZN (8.90)
ey =cN (8.91)
S _ 2 _
oy =0 (N”3 + N”3) —oN", (8.92)

where w, the frequency factor for evaporation of an atom, given in Chap.5, can
be taken constant with a value of 10" to 10'®s~!, v; is the thermal speed of the
monomer and the factor /2 appears because the reduced mass of the two particles of
size N should be used, ¢ is the cross section for monomer-monomer collision, and
the quantities with other subscripts refer to the quantities pertinent for those particle
sizes. The overall concentration of atoms, c, is defined as

o0
c= qu (8.93)
k=1

i.e. counting all atoms whether free or bound in a particle.
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Inserting the estimates in (8.89) into (8.88) gives the condition

_BE \/zvlco
[ /) ’
N/ a

we

(8.94)

where a is the smallest ratio of aggregation rate to evaporation rate we are prepared to
accept for the former to be large compared to the latter. A value of a = 20 = exp(3)
is reasonable. Solving for T we get

Eq
T < (8.95)

InWN " Jvico) + In(a/~/2)

We now need to find out how the temperature of the particles change with time as
they aggregate particles and are cooled by the gas. We start with the cooling term. To
find this requires knowledge of the cooling action of the gas. We assume that a single
collision between a cooling gas particle and a particle changes the internal energy
with an amount proportional to the difference between the particle temperature 7
and the gas temperature Ty, AE.,, = a(T — T,). Collisions occur with a frequency
given by the product of the gas speed, v,, the gas concentration, ¢, and the particle-
gas molecule cross section, oy ,. This gives the cooling term

d7 (T =Ty (T —T,) s
E cool =« C, : gCeON g = _ac—vgvgcgo'l,gN , (896)

where C, is the particle heat capacity. The cooling coefficient, o, summarizes the
degree of thermalization of the outgoing gas atom to the particle temperature after
the collision. The incoming cooling gas atom carries 27, on the average and the
outgoing 27 if it is completely thermalized to the particle temperature (see Chap. 5),
and « is therefore 2 for complete thermalization. A value of 1 may be a more realistic

number but we will keep this parameter free. The value of o , has been set to O’NZB,
similar to the expression for the attachment cross section of atoms to particles of size
N, and we have ignored correction due to effective masses.

The heating rate is parametrized as the heat of fusion for two particles of size N,
AE, times their collision rate:

dT AE — —s/6
- =2 N 7, 8.97
dt lneat viea C, ( )

where the collision frequency on the right hand side of (8.94) was used. With liquid
drop binding energies and the parameters E, and B, we have the heat of fusion AE =
BN (2 — 2% ~ 0.28E,N°", where we have used the approximate empirical

relation B = 2E, /3, ignoring the difference between E, and the bulk value A.
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Adding the cooling and heating equations with these choices and calculating
numerical constants gives

dr T—T, — Eoe
W _TT o N 40390 c0Zen 7,

= 8.98
dr C, Cy ( )

For the sake of argument we will now assume that the cooling gas temperature
and density is constant, neglecting the effects of heating of the gas by the heat
of condensation and cooling by e.g. adiabatic expansion in gas expansion sources.
Then d7/dt = d(T — T,)/dt which simplifies the subsequent reasoning. To find
the gas parameters that provide sufficient cooling to exclude re-evaporation, we
require that the particle temperature remains constant and equal to the highest pos-
sible temperature consistent with our aggregation-only condition. The condition
dT/dt = 0 gives

T—1,= vico 0.39E, (8.99)

—5/6°
VgCgOl,g aN/

which must hold for all values of N.

The required cooling gas concentration is found by combining (8.95,8.99) and
solving for the ratio of concentrations,

-1

0.39E, E,
% > i T,| . (8.100)

~

¢ aN® Vo1 In (wﬁ3/2/v1ca) +1n(a/v/?2)

This expression imposes the hardest conditions on the small particles, formally
for N = 1, and we can reformulate the condition, using this size, as

S >
2
c Q. V01,

0.39E, E, B
ik [ g] (8.101)

—T,
In (w/vicoo) + In(a/~/2)

One of the important features in this result is the divergence on the required ratio of
the gas to monomer concentration when 7, approaches a temperature which is some
fraction of the binding energy. A more convenient estimate of this point is obtained
if we dispense with our safety factor In(a/+/2), set the prefactor except E, equal to
unity and rewrite (8.101) as

-1
e E,
=2 E | ——— —T, , 8.102
¢~ |:ln(w/v1ca) g:| ( )
or . T
L~ & (8.103)

¢, ~ In(w/vico)  E,

which will often suffice in practical applications.
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8.7 The Break-up Terms

If the cooling of the particles discussed in the previous section is insufficient, particles
break up. This gives rise to two more terms in the equation:

de N—1 1 00
N

— 2 i +i,i +i- 8.10
dt lbreak up lzl lN’ N ; l bN JCN ( 4)

The first term describes the loss due to breakup, summing over all the possible
channels, and the second the gain due to breakup of larger sizes. Adding these break-
up terms to the growth terms gives us the set of equations

=

e} N-1

aN—; iCiCN—i — ZaN,iCNCl Z bN iCN T ZbN-H icn+i (8.105)
i=1

172
4 a2 (N o
2( +(N l) ) (Z(N—l) CiCN—i

dCN
dr

Il
g

2

-1

i

Mg

(i1/3+N1/3)2 i+N ]/2CNC'—NZ_lle'CN+ibN i iCN+i
- lN i P 2 Ni P —+i,1 +is

where the special choice of a-kernels were inserted in the last equality. Equation
(8.105) is the generalized Smoluchowski equations for nucleation.

We can simplify the equations by restricting the decay channels to be open only
for loss of a monomer, i.e. setting by ; = by ;0; 1. This can be expected to be a good
approximation for many materials and was already used in the previous section. If
a liquid drop breaks into two particles, N — (N — n) + n, the cost in energy is the
increase in surface energy,

B(N —n)*? + Bn*? — BN?*/* ~ Bn?/. (8.106)

This energy is usually much bigger than the temperature and the decay channels
open will therefore tend to be monomer evaporation, or loss of some other small
fragments. This can happen for particularly stable dimers, as mentioned but also
when the N — n particle is particularly stable due to a strong shell structure (see
Chap. 10).

For monomer loss only the complete set of equations can be written in the sim-
plified form, using the notation by | = by

00
dCN

N-
- Z aN-iiCiCN—i — Y aniCNC — byey +bypiengr.  (8.107)

i=1
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8.8 Solution of the Aggregation Equation

With the physical conditions for an aggregation-only situation established in Sect. 8.6,
an attempt on the solution of this version of the Smoluchowski equations can be made
for the relevant kernels.

We start with the mean size, N. It is given by

_ © N 1
N — ZN;I S (8.108)
ZN:I CN D o N—1CN

because of particle number conservation. The time derivative is

o0

diN d d
P " Z U A (8.109)
dr (ZN 1CN N=1 dr

We can replace the time derivatives on the right hand side by the aggregation Smolu-
chowski equation, (8.87) to get

dﬁ , 00 N-1 1 00
E =—-N Z (Z Eai,N—iCiCN—i — Ea,’,Nchi) . (8110)

N=1 \i=1

This looks rather complicated. We must do two double sums over a function
we don’t know and which is multiplied by some coefficients that are known but
non-trivial. We first note that the two sums are actually identical because

N—-1

[o¢] oo o0
Z a; N—iCiCN—j = ZZ%‘,NC:’CN- (8.111)

N=1 i=1 N=1i=1

(See Exercise 8.17). The derivative therefore reduces to

N 20000
DI

N=1 i=1

a; NCiCN . (8.112)

N =

The key observation that will help us out is that the a’s are reasonably slowly varying
functions, at least when neither of the indices are very small. We can therefore

. . Lo —1/6 .
approximate the a; y with ag 3, which is equal to 42N / and take this factor
outside the summation signs,

dN . 1 —1/6
dr

MS

Z (8.113)

N=1
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Fig. 8.5 Numerically simulated (full line) and approximate (dotted line) mean particle sizes for
the aggregation-only Smoluchowski equations

The remaining two sums decouple and are identical and equal to 1/N because of
(8.108). We therefore have

dN —
22N (8.114)
dr

Note that this result is obtained without knowing the distribution. We solve the
equation to
6/5
— 542
N = <%—r+m> : (8.115)

To convert 7 to a physical time, use t = 47 /cov;o.

Average sizes from numerically calculated solutions of (8.87) are shown in
Fig. 8.5 together with the curve given by (8.115). The simulations were started
with monomers at 7 = 0, which fixes 7y to be 1. The double-logarithmic plot makes
it clear that the simulated mean size grows with a power slightly above unity. The
main error in (8.115) is the deviation of a multiplicative factor from unity, whereas
the power of 6/5 is reproduced reasonably well. The theoretical curve is 16% below
the numerical at large 7. This is the result of the error made in the estimate of the
constant factor on the right hand side of (8.109). An error of only 16% is surprisingly
good considering the level of approximation in the calculation.

‘We now show explicitly that the kernels used in these equations will accommodate
scaled solutions. When solutions scale, the concentrations can be written on the form

ey = _ize (1) , (8.116)
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where ¢ is some, so far unknown, function and the scaling size can be taken to be the

= . —-2 .
mean size, N, without loss of generality. The prefactor N ~ takes into account the
fact that summation of abundances weighted with the size should be independent of
N because of particle number conservation:

ad * N _(N *©
> Ney~ f —é <:) dN = / xé(x)dx = 1. (8.117)
0o N N 0

The time derivative of the scaled concentrations are

den N_. ~NN- N . N-
F = _2ﬁCN - WC/N = ﬁ (—26‘1\] — ﬁC/N> 5 (8118)

where the prime on ¢ indicates the derivative with respect to the argument. The term
in the last bracket is only a function of N/N. By the Smoluchowski equation this
derivative is also equal to

N—1 0
dCN Z 1
- = =S4 N—iCiCN—j — E a; NCNCi
dr — 2 —

1= 1=

N 0
1/2/ Cl,',N,l'C,'CN,,'dl' — CN/ Cl,"NC,'dl', (8119)
0 0

%

where sums were approximated by integrals, which is permissible if the summation
runs over a large number of terms of similar magnitude. The kernels are homogeneous
functions with exponent 1/6:

Aoinj = '%a; ;, (8.120)

which, incidentally, shows that the kernels don’t cause a gelling transition. If we
use (8.120) together with the scaling expression in (8.116) for the concentrations,
(8.119) can be written as

dew w7 -17s61
dr 2

N 00
/ Ay yxCrCy_cdx —N*”/Géyf a, ,&pdx, (8.121)
0 0

where y = N/N. The right hand side is a product of the factor N ~'7/® and a function
of N/N which we for notational simplicity will call g. Equating (8.118,8.121) gives

N
NN/ — § (ﬁ)

r(5)

(8.122)
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where the shorthand f (%) = -2¢ (%) — (%) ¢ (%) has been used. The left hand

side of this equation does not depend on N and the right hand side does not depend
on time. Hence a separation of variables has been achieved, making both sides equal
to the same constant. We have calculated this constant to be approximately 2+/2. We
therefore have

=22. (8.123)

What we have seen is that there are solutions to the aggregation-alone Smolu-
chowski equation that scale and that the mean value varies as in (8.115), when the
coefficients in the Smoluchowski equation vary as in (8.120). Note that to derive this
result, the precise functional form of the coefficients are not important, only that they
have the scaling that result in the factor «!/%. For the same reason we cannot expect
to get the constant of proportionality for the scaled solution (if all coefficients were
a factor 100 smaller, the scaling would be exactly the same but N would definitely
be much smaller for a given time).

We can, however, use the scaling properties to find a partial differential equation
for the solution. The partial derivative with respect to time is

Jen _ H N (N _]L_%/ N (8.124)
or N \N N N

where the dot and the prime indicate differentiation with respect to time and the
argument of the function, respectively. The derivative with respect to size is

|
5’@% = ﬁa’ (%) . (8.125)

Substituting the last equation into the first and using that

dN 6N
—_— = (8.126)
dr 571
gives
86‘1\/ 6 aCN 81n(cN) 6 aln(cN)
—=——12 N— —=——2 . (8127
ar 57 ( vt 8N) ~ s sUF omwn (8.127)

As seen by inspection, this equation is solved by a log-normal function which is a
function of the form
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~ 2 1 2
cy=cN exp _ﬁ (In(N) — In(Ny))” ), (8.128)
s

provided the mean size has the dependence on 7 we found previously (8.115).

The constants of integration ¢/, s and Ny are unknown at this point, but the known
time dependence of the mean size and mass conservation help to fix relations between
these quantities. Replacing summation with integration, the mass conservation reads

1=¢ / NN Zexp (—% (In(N) — ln(No))2> dn. (8.129)
0

With the substitution x = In(N/Ny)/+/2s the integral is calculated by completing
the square which gives the normalization constant as

-2
, N 1 5.

(=———=e (8.130)
N s3/27
The reciprocal of the mean size is calculated similarly;
I = R 1
—_— —_— 2
N = Z ey = c// N “exp <——2 (In(N) — 1n(1v0))2> dN = Ny 'e /2
Nel 0 2S
(8.131)

This relation says that the average size is larger than the peak value of the size
distribution by the factor exp(3s2/2) and that therefore

1 2
= e . (8.132)
s«/ﬂ

It also implies that the peak value size, Ny, varies with time as N, i.e. as 7%°. This
is of course exactly as required for a function that scales as prescribed. In particular
we have that

) (8.133)

2/l 2|
|z

which will be used below.

To find s, we calculate the time derivative of some specific concentration. The
best choice of this concentration is one not too far from the peak value because this
is representative of the bulk part of the distribution, which is where our approximate
solution is expected to be best. We will therefore use the peak size, Ny. From the
scaled expression in (8.128) we have

N__ L,
Ny = —2c/ﬁN = 42N T (8.134)

where we have made use of (8.133) and the known time dependence of N.
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This derivative can also be calculated with the (still aggregation-only) Smolu-
chowski equation. For cy, we have:

No—1

o0
cny =12 E ANy—i,iCNy—iCi — CN,y E ANo,iCi- (8.135)
i=1

i=1

In the loss term we approximate the a by the replacement i — N. With a constant
a the sum gives 1/N, making this term approximately equal to —cy,ay, /N . After
inserting the expression for cy, from the scaled solution, (8.128), the term becomes:

— N ay, 5 (8.136)

We can express a in terms of N and s alone because Ny and N are related. This gives
the loss term

— N T e P20 (8.137)
What remains to be calculated in (8.135) is the gain term which is a self-
convolution of the abundances. It is calculated with a saddle point expansion:

No—1

12 Z ANy—i,iCNy—iCi (8.138)

i=I

N
=4 [0 (7%(111 N—In No)*— =L n(No—N)—In No)z)
~ 12 "N an,—i i€\ 2s dN.
0 5
0

Nn 4 2
——4 _ 2 2 _ﬁ(N_NO/z)
% 1/2 6/2 N ANy /2, Nof2 © (In2)%/2s / aNy—i,i€ s7Ng dN
0

~ N*Z*S/ﬁzfl/aef(ln 2)2/252—3/452

where the value of ¢’ was used in the last equality.

Setting the time derivative of (8.134) and the sum of (8.137, 8.138) equal gives
the solutions s = 0.98 and s = 0, of which only the former is physically relevant.

An example of a numerically calculated distribution is shown in Fig. 8.6. The main
qualitative difference to the distributions generated by the polymerization equation,
where the coefficients on the production and loss terms are size independent, is the
strong reduction of abundances at the smallest sizes. The same distribution is shown
in a log-lin plot in Fig. 8.7, from where it is clear that it is very close to a log-normal
distribution. The numerically determined value of s at large N is 1.27, which is a little
larger than the value estimated above. The value is reached already around 7 = 30.
This gives a ratio of the two masses where the concentrations are half the maximum
values of exp(2s+/21n2) = 20, which is a very wide distribution, by any measure.
The full-width-half maximum is equal to 4.24Ny = 0.34N. The standard deviation
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Fig. 8.6 The numerically calculated aggregation-only abundance spectrum at 7 = 188. The abun-
dance spectra at 7 = 376, 549 are also plotted after the scaling described in text. They scale so well
that they coincide with the 7 = 188 curve and are not visible in the figure
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Fig. 8.7 The aggregation-only abundance spectrum at 7 = 188, but here plotted with log-lin scales.
The dotted line is a fit with a log-normal distribution

of the size distribution, which is probably the most relevant of these parameters of
the distribution from an experimental point of view is ¢ = 1.5N.

A test of the scaling of the numerically calculated distributions is made by com-
paring spectra for different times. From the scaling equation we have for the spectra
sampled at 7; and 7 that

N(n)?
ev(m) N(m)? = cn(m), (8.139)
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where

A

NN(Tz)

— 8.140
N(71) ( )

The numerical simulations indicate that scaling holds very well. Figure 8.6 shows
three curves that are scaled as prescribed above and are indistinguishable on the scale
of the figure.

8.9 Supersaturated Gases and the Critical Size

In the previous sections of this chapter we have been concerned with two extreme
cases of particle abundances, the distribution of sizes in complete thermal and chem-
ical equilibrium at one end of the scale, and irreversible aggregation at the other,
as well as the less extreme cases of microscopically reversible but macroscopically
irreversible growth described with the generalized Smoluchowski equations.

The cases that described growth all displayed a growth for all particles, akin
to the picture shown in Fig.8.7. In this and the following section we will look at
near-equilibrium situations where growth occurs, albeit slow enough to make equi-
librium considerations the starting point of the description. This leads to a growth
that is concentrated on a very small number of outliers, in what can be considered
fluctuation-based growth.

The situation is realized physically by increasing the vapor pressure of the
monomer gas above the saturated vapor pressure and is therefore a non-equilibrium
situation with respect to chemical composition, whereas thermal equilibrium is main-
tained to a good approximation. Such a vapor is called supersaturated. The supersat-
uration, s, is the relative vapor pressure above the saturated value, py, at the given

temperature:

s=2 1. (8.141)

Po

When s is positive but not too big, the whole system is in a quasi-equilibrium state
where growth and decay almost balance but where there is a small net growth with
time, concentrated on a very small number of particles. The growth process involves
a barrier in the free energy for these drops. The presence of the barrier means that
below a certain critical size, a drop will tend to evaporate back into monomers and
that above this size it will experience a net accumulation of monomers and keep
growing, rolling down the free energy hill.

This situation is an idealized description of atmospheric nucleation and the con-
cept of a critical size is of overwhelming importance in the sectors of meteorology
and climate science that deals with nucleation of water vapor and other species into
small particles that ultimately form clouds or raindrops. An understanding of the ori-
gin and consequences of the critical size is therefore essential to begin to understand
nucleation.
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We will parameterize the free energy of a drop, irrespective of size, in analogy to
the liquid drop expression for ground state energies as

Fy = Nf +4nriN*3y = Nf + BN*?3, (8.142)

where N is the number of monomers in the drop, f is the bulk free energy per
molecule in the condensed phase, 47rr12N 23 is the surface area of the drop, and y
the surface tension. The parametrization is equivalent to assuming that the surface
tension accounts for the whole difference between the bulk and the drop free energy.
Expression (8.142) gives a chemical potential of

OF,

8T
oy =Ha=T+ ?rhN—‘ﬂ. (8.143)

The molecules in the gas phase have a chemical potential which can be calculated

with the partition function
1 1% . n
Zy=— 2, (8.144)
n! Vy

where ¢ is the number of gas phase molecules, z;,, the partition function of the
internal degrees of freedom for a single free monomer, and V,, is the thermal quantum
volume. Both z;,,; and V,, depend only on the temperature, and z;,,; includes all degrees
of freedom of the molecule apart from the translational. The gas chemical potential

is then
C1 Vq
— 1o+ Tn(p/po) (8.145)

Zint

ug:T1n<

where py is a reference value of p =n/V. If we chose py to be the value for a
saturated vapor, the value of py will be f. Then

8
Ha = g = 2 YN~ =T In(p/ po). (8.146)

For p = py the drop’s chemical potential is always above that of the gas, although
the difference goes to zero for asymptotically large drops, consistent with our choice
of reference density. For p < po, the gas is undersaturated and then pg > 1, for
all sizes, i.e. drop formation is uphill all the way and does not occur, except as a
fluctuation excursion. For yg = pig, the drop is in equilibrium with the gas. Using
the ideal gas law we have ¢; = P/T, and the equilibrium pressure over a drop of
radius r is therefore

2y
P = Pgexp m s (8147)

where n = (47rr13 /3)~! is the monomer number density in the drop. This is known
as the Kelvin equation (after the person, not the unit).
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When the gas is supersaturated, p > po by definition. The chemical potential
difference is still positive for small enough N, but crosses to a negative value at the
critical size, N, determined by 11, = p14. From (8.146) we get

8
0= pa = ptg = —-riyN: "> = T In(p/ po). (8.148)
which is easily solved to give

13 _ 87 r12,y

=—_17 8.149
‘ 3 TIn(p/po) ( )

Particles with sizes below this critical size will tend to evaporate spontaneously
because the evaporation rate is slightly higher than the aggregation rate, whereas
those above will grow because the opposite inequality holds. For small values of the

supersaturation

s=2 1«1, (8.150)

Po

one can expand the logarithm to get the critical size

N1/3=8_7”12_7_2_B

X = . 8.151
¢ 3 Ts 3sT ( )

Another way to find the critical size is to consider the difference in free energies
of the gas and the drop, instead of the difference in chemical potentials. From (8.142)
and the integrated version of (8.145) we get

AF =47ryy — NTs = BN*® — NTs. (8.152)

The free energy difference peaks at N, where the barrier height is

2/3 4 B\* 1 2/3
AF, = BN?® = N.Ts = B (ﬂ) = gBNC/: (8.153)

This value enters the quasi-equilibrium distributions as the argument of an exponen-
tial:

4B3
exp(—AF,/T) =exp 57573 ) (8.154)

The free energy difference in (8.152) is illustrated in Fig. 8.8 for water which
has the value B = 0.22¢V, for T = 300K and a relative supersaturation of 10%.
Also shown is the free energy difference given as a function of the cube root of
N. The critical size has a radius of 11 nm for this supersaturation. Even at this
high supersaturation is the height of the free energy barrier still much higher than
the temperature, which is measured in a couple of tens of meV. When describing
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Fig. 8.8 The difference in free energy of an N water molecule particle and the state where all
molecules are in the gas phase. The parameters are given in the main text

atmospheric nucleation rates, the barrier height enters as the factor exp(—AF/T).
Even a relatively small error in AF, caused by an incorrect surface tension, will
cause a major error after exponentiation. Calculated nucleation rates can be off by
many orders of magnitude, and it remains a formidable challenge to describe the free
energies with the required precision.

The presence of other components than water, or whichever species is providing
the feedstock in a nucleation situation, may change the estimate of the critical size
dramatically. The mechanism behind a reduced critical size is that the saturated vapor
pressure is reduced because the condensing nucleus has a different composition.
What is a low water supersaturation for water drops may therefore be a very large
supersaturation for other species. A reduction in the critical size dramatically changes
the free energy barrier for nucleation and can potentially compensate for even a
minuscule concentration of the species.

A current development in nucleation theory focuses the attention on heterogeneous
nucleation involving very small clusters of sulfates and ammonia and, in particular,
amines which have very low water vapor pressures and reduced critical sizes, reaching
down to clusters composed of a few molecules, even at realistic supersaturation levels.
An electric charge on the droplet will have the same effect, and this has observable
consequences for atmospheric nucleation rates, although how much the effect matters
in the big picture is still a disputed question in the highly politicized field of global
warming, or climate change.
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8.10 Nucleation

Once the critical size has been introduced and the conceptual foundation for the pro-
cess of quasi-equilibrium nucleation has been laid, we can attack the problem of the
growth of particles beyond the critical size, with due attention to the caveats about
the real life applications made in the previous section. The core of what follows is
known as classical nucleation theory (CNT). It gives the rate of formation of super-
critical condensation nuclei, a topic which is immensely important for the description
of the formation of the condensed state, be it liquid or solid, from a supersaturated
vapor. It also has bearings on the melting and freezing of bulk matter, although these
processes can be somewhat more complicated to describe.
Classical nucleation theory considers the addition to and loss of monomers from
particles, i.e. the process
XN+X(—>XN+1. (8155)

As a first approximation, one may calculate the nucleation rate as the product of the
quasi-equilibrium concentrations of the critical size and the monomer addition rate.
The quasi-equilibrium concentrations are given by the free energy barrier in (8.153):

4 B
cn, =c1exp(—=AF/T) =cyexp <_E T3s2) . (8.156)

The rate of monomer addition, the a’s, are calculated assuming that the sticking
coefficient (also known as the accommodation coefficient in these types of studies)
is energy independent. Then aggregation coefficients are calculated as the thermal
equilibrium values

an—1,1 = ON—1,1UN—1,1, (8.157)

where o is the capture cross section of the N — 1-mer and the monomer, assumed
geometric,

on_11 =2 (N = D'+ 1) ~ nr2N3 (8.158)

and vy_ ; is the thermal average relative speed of the two particles. As always for
a two-body problem, this can be calculated as a one-body problem, and the result is
given in (8.82). The mass in that relation is the reduced mass, py_1 1, but this can
be set equal to the monomer mass here without loss of much precision;

8T 1/2
UN_11 (—) . (8.159)

i

The first approximation to the nucleation rate, J, is then
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8T \'/?
J = cymriN?3 <—> ciexp(—AF/T) (8.160)
™

2<ZB>2<8T)1/2 s ( 4 B )

=7 | =— — ciexpl——=—= |-

3sT ™ 27 T3s2

One may divide this by two because the process can go either way and loss of a
monomer is almost equally probable in this quasi-equilibrium scenario, but this will
turn out to the least of the corrections needed.

We immediately spot the need for one correction, which arise because the result
is calculated with an inconsistent procedure. The concentration of the critical size
is supposed to be depleted by a growth reaction for which there is no reverse reac-
tion. Once the particles have grown to a certain sized they no longer contribute to
the equilibrium. This is inconsistent with chemical equilibrium. We must therefore
expect that the concentration of the critical size is not given simply by the free energy
difference as in (8.156), and that it in fact must be smaller.

It turns out that this reduction can be calculated in the stationary state, i.e. when
the concentrations are constant, except those of the large sizes that beyond the critical
size. In this situation of lack of chemical equilibrium, all concentrations need to be
reconsidered. The more rigorous theory, known as Becker-Doring theory, also has the
addition and elimination of monomers as the starting point. It is, in fact, a variation of
the Smoluchowski equations with only monomers present in any appreciable amount.
Since both addition and break-up are predominantly by monomers, we can begin by
un-cluttering the notation by defining

ay =day,i, bN EbN’l, (8161)

The rate of the net change of concentration of particles that change size from
N — 1to N per time unit, Jy, is

de
JN = —d;v = AadN—-1C1CN—-1 — bNCN. (8162)
The rate of change of the concentration cy is the continuity equation for the flow

described by the Jy’s:

dCN
— = Jy — JIN41. 8.163
I N — Insi ( )

This sets the stage for the calculation of the nucleation rate. This is done with
a trick, based on the fact that the right hand side of (8.162) contains two terms of
opposite sign, involving the concentrations of two consecutive cluster sizes. The
strategy is to multiply the equation by a (size-dependent) constant which is chosen
so that when the terms in the sequence are added, the sum becomes a telescoping
series, which leaves us with the first and last term.

The first step is to eliminate the b’s in favor of the a’s. This is achieved with
the relations between rates in complete chemical and thermal equilibrium. Then
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all Jy’s in (8.162) are zero. If we express the decay rate in terms of equilibrium
concentrations, denoted by the superscript e, we have

Cé’ Ce
by = ay_ =1L (8.164)
N
Inserting this by, (8.162) becomes
o€l
JNzaN_lclcN_1 —daN—1 CN. (8165)

e
N

If we divide this equation by ay_c},_, cf anduse thatc; /c{ = 1 + s = Sis the vapor
pressure relative to the equilibrium value, the rate can be expressed as

J -
e (8.166)
AN-1CN 1€ CN-1 CN
Division by SV then gives
J _
AL E =L (8.167)
STay-icy_ici CN-1 N

This is the desired form for the terms in the telescoping series. In a stationary
state where Jy = J for all N, this also becomes the equation that determines the
nucleation rate. Summing (8.167) from 2 to a large size, M say, gives

-1

M1 -1 . M—1
—1 M —1
] = [Z (s"an-1ch_scf) } (1 - W) = [Z (sVan-1ci_ci) }
N=2 M N=2
(8.168)
where the term ¢,/ SY ¢4, vanishes for sufficiently large values of M because S > 1
and ¢y < Cj, (see Exercise 8.23). In the evaluation of the sum we first approximate
ay—1 with ay, and take this factor and the monomer equilibrium concentration times
the supersaturation out of the sum. Setting the summation limit to infinity gives

o]

~1
J = ay,Sc [Z (Schv)_':| . (8.169)

N=1
The reciprocal of the terms in the sum are equal to

e AR -
SN, = SNete PR = (e PAFFNING — peq=BAFy (8.170)

where AFy, is the equilibrium free energy difference and A Fy the free energy dif-
ference for the supersaturated situation.
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These terms have a minimum at the critical size (this is how it is defined). The
smallest reciprocal term gives the largest contribution. If only this terms is included
in the sum, the nucleation rate is, with ¢; = ¢{S, equal to

J & (ay,cp)cle PARY, (8.171)

This agrees with the previous estimate. We now know how to improve this, viz. by
a better approximation of the sum in (8.169). For this purpose the sum is converted
to an integral,

x 00
S (sVeq) ™ %cl"_I/ e’4FvdN, (8.172)

N=1 o
which is calculated by a saddle point expansion of the integrand using (8.152) to give
e 4 B\*?
/ ePAFNAN ~ g(ln $)~? (7> exp (6AFNC). (8.173)
—00

Inserting this into (8.169) we get the final result which is the so-called classical
nucleation rate per volume

3 T 3/2
J =ay S(ct)? InS)> (= —BAFN 8.174
ay,S(cy) 4\ﬁ(n ) (B> e ( )

The extra factor due to the summation is known as the Zeldovitch factor.

3 T\?
z:m(lnS)2 (§> . (8.175)

It is less than unity, as expected. It is essentially the population of the critical size
relative to the value one would have in the absence of nucleation, and is calculated
self-consistently in the presence of the irreversible drain on the population of this
size by the nucleation loss.

The rate can be written in a form which is useful because it allows an experimental
determination of the critical size. Inserting the free energy difference from (8.152),
evaluated at N = N, into the equation gives

J o SelNelnS/2, (8.176)

The factors left out are independent of S or varies only logarithmically. Taking the
double logarithmic derivatives, taking into account the dependence of N, on S, gives

=N, + 1. (8.177)
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This is known as the first nucleation theorem.

The theory presented here, classical nucleation theory, has been tested in great
detail due to its enormous importance in atmospheric science. Defects have been
found for realistic applications, but the theory remains a good starting point for
understanding the process of formation of condensed phase from a supersaturated
vapor.

Exercises

8.1 Show that spherical particles with a size independent density have radii that are
proportional N'/3 and surface areas proportional to N*/3. Show also, under the same
conditions, that the addition of a layer of atoms (a shell) to the surface increases the
radius by 4r; /3.

8.2 Calculate the surface tension for a 2d system with the type of calculation that
was used to arrive at the 3d result in (8.6).

8.3 Find the total ground state energy of two particles with N /2 monomers each
and compare it to a single particle with N monomers with identical bulk and surface
energy parameters. Calculate the difference and compare it with the bulk contribution,
using B =2A/3 and N = 10?*, 10'° and 103. Confirm that negative values of B
would lead to spontaneous breakup of particles.

8.4 Discuss the consequences of a surface tension B which is bigger than A, with
both A and B size-independent.

8.5 The packing of atoms into dense structures produces a shell structure where one
layer is wrapped around the previous as atoms are added. The ‘magic numbers’, i.e.
shell closings for which the structures are particularly stable are, for the special case
of the icosahedral shell structure, equal to Nx = 1, 13,55, 147, ... This series can
be expressed in closed form, as polynomium in the shell number K, which is an
integer that simply numbers the shells. Argue that the highest power of K is 3, and
find the coefficients for all the powers of K in the expression, using the series given.

8.6 Show that in the general expression for the number of monomers in a closed,
geometric shell; Ny = aK 34 bK?2 4+ ¢cK +d,withK a positive integer, the coef-
ficients @ and b must be integer multiples of /3 and /2, respectively.

8.7 The translational partition function for an ideal gas is sometimes expressed in
terms of the thermal de Broglie wavelength, which is defined as the wavelength of
a gas molecule when it has the average thermal momentum. This differs from the
wavelength used in (8.36).

(a) Find the ratio of the two.

(b) Find the average de Broglie wavelength for an ideal gas and compare with the
other two lengths.
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8.8 Show that the extremum found for (8.38) has a curvature of

P 1  N?

— = . (8.178)
dclz\, CN ci
Use the calculated values of cy and ¢; in equilibrium with bulk to show that this

curvature is negative for most sizes. What are the parameter values leading to a
positive curvature? What are the consequences of a positive curvature?

8.9 Why aren’t there any rotational degrees of freedom for a single atom? Or are
there?

8.10 Give a reason why thermal excitation energies can’t grow faster than linear
with N when the size increases. If you cannot find a reason, try instead to find an
example where it does happen.

8.11 Prove (8.53), i.e. show that the average particle size in an arbitrary collection
of particles is equal to the total number of monomers in the system, divided by the
number of particles, including particles of size one.

8.12 Show that ITy in (8.52) is correctly normalized and the probabilities therefore
sum to unity;

Z My = 1. (8.179)
N=

Then show that (8.54) is normalized.

8.13 Show that the equilibrium value of p for a collection of polymers with a bond
formation rate of a and a bond breaking rate of b is the one given in the text. Estimate
the fluctuations in the values of p as a function of the number of polymers.

8.14 In (8.55), why didn’t we use (8.52), to calculate the average size?

8.15 Show, using (8.60), that the solution in (8.54) is stable in the sense that small
deviations from the solution will tend to disappear with time.

8.16 What is the mean free path, i.e. the average distance a particle flies between
two collisions, for our standard monomers and conditions in Sect. 8.5? Compare that
to the average distance between the monomers in the gas, to the thermal de Broglie
wavelength and to the monomer radius ;.

8.17 Show that (8.111) is right. The easiest is probably to tick off the terms in an
(N, 1) diagram and show that both double sums cover all points exactly once. Next,
use the same technique to show that (8.65) and (8.66) are equivalent. Finally, show
that the aggregation-only Smoluchowski equation in (8.66) conserves the number of
monomers, y_y Ncy.

8.18 Approximate (8.66) as a set of equations in a continuous particle size variable.
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8.19 Show that(8.127)is also solved by anexponentialin N,cy = N2 exp(—N /ﬁ).
Use the Smoluchowski equation to calculate the concentration of the monomer as a
function of time and show that it differs from ¢; = N ~2exp(—1/N) when N o 7°/°.
For this calculation assume that all ¢y~ are given by the exponential expression and
make the necessary approximations of the a’s.

8.20 Find the ratio between the mean size, N, and the peak value, Ny, of the log-
normal distributions that are solutions to the aggregation-only Smoluchowski equa-
tion. Use both the value s = 0.98 and 1.27. Find also the ratio of the two half values,
i.e. the sizes for which the concentrations are half the peak concentration.

8.21 Show that (8.139) follows from (8.116).

8.22 Calculate the free energy of a water drop as a function of radius at s = 0.5%
and T = 300 K. Find the critical size and the height of the free energy barrier, AF,.
Calculate exp(—AF,/T).

8.23 In the calculation of the nucleation rate, the term cy;/ M cfy in (8.168) is pos-
tulated to vanish for large enough M. This can be shown by application of (8.166).
Use that equation recursively to find the ratios of concentrations ¢ /cf, in terms of
J and the monomer concentrations ¢, ¢f. Divide by S M and conclude.



Chapter 9
Molecular Dynamics and Monte Carlo ez
Simulations

This chapter presents the basics of the two most used simulation tools in numerical
work on both small and large systems, Molecular Dynamics (MD) and Monte Carlo
(MC) simulations.

Both MD and MC simulations require that one has a realistic Hamiltonian avail-
able. The easiest situations to handle numerically are those that only involve two-body
interactions. Occasionally, one may simplify these interactions more and truncate the
range of the potential, thus ignoring the interaction energy for particles that are far
apart. In other situations, a problem may require that e.g. excited electronic states
are included into the dynamics, or other distinctly quantal effects are considered.
Occasionally, such effects can be parametrized in terms of many-body potentials. In
any case, for both types of simulations, the results of a simulation will in general not
be better than the Hamiltonian used.

Another common feature for MC and MD is the need to establish the system on
the computer. In a purely classical simulation this amounts to assign coordinates and
possibly momenta to the atoms before a run starts. This corresponds to placing the
system in a point, s, in phase space;

s(x, p) = (X1, X2, X3, ..., X3N, P1, P2+ -+ -5 P3N)» ©.1)

for a system of N atoms at the starting time. From this initial configuration the next
one is generated by methods that represent a good deal of the art of MD and MC
simulations. For both types of simulations, the new configuration depends on the
previous one. In MD simulations a new configuration at time ¢ + dz is generated
from the one at time ¢ by propagating the system with Newton’s (or Hamilton’s)
equations of motion. In MC there is no time and a new configuration is generated
from the previous with stochastic methods in a process called an iteration. Whereas
all coordinates and momenta in MD are calculated in a timestep in MD, there is more
freedom to chose the scope of an iteration in MC, and one may prefer to update a
single, several or all degrees of freedom at the time, as reasons of efficiency dictate.
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In general MD simulations do not include quantum effects whereas MC calcula-
tions may do that. We will only be concerned with classical potentials here, possibly
augmented with tractable quantum corrections to the motion of the atoms, such as
the Feynman-Hibbs potential in Chap.2.!

A simulation program typically consists of a set of nested loops where a new
configuration is generated from the old one and the relevant quantities recorded. As
in all other programming activities, it is strongly recommended to keep the code as
simple as possible. One may easily save a significant factor on computer time by
implementing a clever algorithm, but this saving can easily be eradicated several
times over by the extra time it takes to write the code and make it work error-free.
Another advantage of a simple program is that it is easy to change when new questions
arise.

One cannot expect to be able to start a system in a representative configuration.
It is therefore necessary to let the code run a number of steps before one begins to
sample quantities for averages. How long this thermalization time should be depends
on the system, but it is advised to use a good fraction of the simulation time to
thermalize. Alternatively one may store results from different parts of the simulation
series separately so one can analyze the thermalization off-line.

In order to get some tools to estimate how well your system is thermalized, let’s
recapitulate a few statistical facts. The first is the Central Limit Theorem: If you
average sufficiently many numbers sampled from the same distribution, no matter
what that distribution is, you will end up with a Normal (or Gaussian) distribution
for the average. The mean value of the average will be the same as the mean value of
the original distribution and the standard deviation of this mean value will be the one
for the original distribution divided by «/n — 1, where n is the number of sampling
points. The n points need to be stochastically independent, which is achieved by
sampling them at phase space points sufficiently far apart. Too closely sampled
points cause the reduction to be less than /n — 1. When sampled too close in phase
space, points are said to be correlated. A time correlation function for a quantity A
in an MD simulation is defined as (with (4) = A)

c(Ar) = ((A(1) — A) (At + A1) — A)) = (A A(t + Ar)) — (A?), 9.2)

where the averaging is over time. One may of course also define correlations over
lengths or other quantities and the averaging may be over a continuous or a dis-
crete variable. One will often observe a decreasing correlation function with At,
approaching zero monotonically, possibly modified by superposed oscillations with
one or several different frequencies. In MC similar correlation functions can be
defined where time is replaced by the iteration number, although they will have a
different meaning and be more of a diagnostic tool for the programmer.

If the averages you sample drift as you continue to sample, beyond the natural
statistical fluctuations, you can be pretty certain that you have not yet sampled a

T All interatomic potentials are ultimately quantal by nature, apart from the naked Coulomb inter-
action. The question is how quantal one treats the motion, given this potential.
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sufficiently large part of phase space for the simulation to be representative. There
is only one solution to this problem: Keep simulating. Even if the averages seem to
behave, however, there is no guarantee that you actually have sampled enough. The
simulation can be trapped in a metastable minimum in the potential energy surface
from which it will escape only after some time. Metastable states appear when there is
a sufficiently high energy or free energy barrier between two local minima in the high
dimensional potential energy surface describing the system. The crossover from one
of these minima to another can take exponentially long time, and in MD simulations
where the total energy is conserved, some crossover events may not happen at all.
One partial remedy of this problem is to simulate several replicas of the system with
different initial conditions and compare the relevant physical quantities calculated
in the different runs. There is no guarantee that you solve the trapping problem this
way, but chances are that you can at least spot its presence.

9.1 Basics of Molecular Dynamics Simulations

MD simultaneous are usually used to solve the equations of motion for isolated
classical systems, i.e. to find the time development of microcanonical systems, or
to trace the motion of a system on a constant energy surface in phase space. Each
trajectory in phase space is uniquely determined by the initial conditions once the
equations of motion have been fixed, with the exception of chaotic systems for which
different trajectories will appear even from practically identical initial conditions.
During arunitis essential to check the conservation of energy and other quantities that
should be conserved, such as the total momentum and angular momentum of a free
particle. An energy which is not conserved indicates a problem with the simulation;
Somewhere in the algorithm you calculate something incorrectly.
The core of MD algorithms is the Newtonian equations of motion;
dv; 1

T —m—iV,-V()_c), 9.3)

dr;
— =7, 9.4
& i 9.4)
where v; is the velocity of particle i, and the gradient is taken with respect to the
coordinates of this particle. These equations need to be discretized and used with a
finite timestep.

As a first attempt one may try to use the approximations:

Xi(t +0t) =%;(t) + 6t v; (1), 9.5)
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and
_ _ 1—
v;(t +0t) =v;(t) — 5tn—1ViV(x(t)), (9.6)

that are valid to first order in the time step d¢ and use them to propagate the system
from time 7 to t + d¢. In principle this algorithm, together with a prescription for V/,
the initial conditions of X, v, and a computer with a compiler is all you need to do
MD simulations (see Appendix A for access to free compilers).

The specific time propagation algorithm, however, should be chosen with care,
and this is one place where sophistication in the coding pays. The reason is that expo-
nentially growing energies can appear in relatively long simulations if the algorithm
is chosen unwisely.

The phenomenon can be understood by considering a one-dimensional harmonic
oscillator. With frequency w and unit mass the equations of motion become, after an
expansion to first order in the time increment, §z,

x(t+61)\ 1ot (x(0)
(v(t + 5t)> - (—wzét 1 ) (v(t)) ©.7

After N timesteps the phase space coordinates are therefore

x(t + Not) 1 o\ [x0) AN O L (x@)

(v(t +N6t)> = (—w26t 1 ) <v(t)> =v ( 0 AQ’) v (v(t)) » 08)
where U~ is the matrix that diagonalises the matrix in (9.7) that transfers the system
from 7 tot + 0t. The X’s are the eigenvalues of this matrix, and if the modulo of just
one of them exceeds unity, the coordinates and velocities will increase unlimited with
N. This is the case here; The eigenvalues are A = 1 & iwdt, with moduli squared
IAi|> = 1 + (wdt)?. For most purposes this divergent behavior is not acceptable even
if it is second order in d¢, partly because the number of timesteps scales with 1/4z.
One must find alternatives.

The root of the problem with the simplest approach is that the time derivative was
approximated asymmetrically. This is avoided with the so-called Verlet algorithm. It
uses the configurations at both time ¢ and the time ¢ — ¢ to determine the configu-
ration at ¢ + d¢. If you expand the position of a particle to third order in +4¢ around
t and add the two equations you get

1 —
Xi(t +01) +x;(t — 61) = 2%;(t) — 62—V, V(X(1)), (9.9)
m
or, expressing the future, x; (f + 6t), in terms of the past and the present, x; (t — d¢)

and x; (1):
xi(t+0t) =2x;(t) — x;(t — 1) — 5t21ﬁ»V(7c(t)), (9.10)
m
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The appearance of §t> instead of dt is already a promising sign. The momentum is
not needed in this algorithm, but it may be useful to know for other reasons. It is
given by

x(t + 0t) — x(t — 0t)

A1
26t ©-11)

p()=m
and can only be calculated after the next step has been taken. The algorithm can
be modified to replace coordinates by momenta, and is then known under the name
‘velocity-Verlet’ algorithm. The terms left out in the Verlet algorithm are on the
order of §t* instead of §¢2 for (9.5,9.6), allowing larger timesteps which speeds up
simulations considerably.

Figure 9.1 shows a comparison of simulations using both (9.5, 9.6) and (9.10) for a
unit mass particle moving in a V = x* potential, started at x = 1 with zero velocity.
The data plotted are the calculated distances after 1000 time units. It is glaringly
obvious that the Verlet algorithm is so much better than the first order prescription
that some effort in implementing it pays of. What is not clear from the figure because
of the logarithmic abscissa, is that at the error in the simple algorithm scales linearly
with ¢ (for small values) and it scales with the square for the Verlet algorithm from
the smallest all the way to the maximum &z value of 0.2.

distance travelled @ t=1000

r simple
r Verlet
L veser®® |
1000 el
10° 107 10~ 0.01 0.1
ot

Fig. 9.1 The travel distance vs. the time steps for the simple algorithm in (9.5, 9.6) and the Verlet
prescription (9.10)
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The values of ¢ that should be used can be estimated in different ways. The
simplest is to simulate with one value of d¢, sample what you need, and then repeat
the procedure with a smaller 6¢ to see if you get the same result. This is repeated
until your averages converge. Although this may sound like brute force, it still only
doubles the computation time relative to the optimal timestep if you have a factor
of two between consecutive trial values of d¢. The idea also demonstrates a sound
principle of numerical simulations: Start crude and refine until you see no change
in the result. With an ingenious use of this procedure, one can even use such finite
resolution simulations to extrapolate values to infinite time resolution, even if they
are simulated at fairly coarse resolution. The discipline is called ‘Finite Size Scaling’
and is used in very time-demanding simulations.

Another trick to speed up simulations is to use the fact that timesteps need not
have the same length at all times. The magnitude of the terms left out of (9.10) will
in general change with time, and a simple trick is to adjust the timesteps to give the
same precision for all steps. This requires an estimate of the neglected terms and it
may or may not pay to do this calculation.

One significant drawback of MD simulations is that it is difficult to carry them
to long times. When timesteps are of sub-femtosecond magnitude, it is difficult to
reach time scales of microseconds, say, for large systems and/or realistic potential
energy surfaces that often require some amount of quantum mechanical computation
for every point reached in phase space.

9.2 Thermostats in MD Simulations

There is no explicit, externally defined temperature in MD simulations and no time in
MC simulations. Occasionally, one wants both in the same simulation, for example
when one wants to monitor how chemical reactions proceed in time and at a known
temperature. Procedures have been designed to perform the inherently microcanon-
ical MD simulations such that they mimic a canonical ensemble. Such numerical
devices are called thermostats.

One popular choice, called the Berendsen thermostat, modifies the velocities at
every timestep with a scaling factor f determined as

12
e (1 + 2 @ _ 1)) ©.12)

where the instantaneous ‘temperature’ 7 is defined as T = 2E};, /s, where s is the
effective number of degrees of freedom, i.e. the number of degrees of freedom with a
kinetic energy component, 7j is the prescribed temperature, d¢ is the timestep, and 7
is arelaxation time which is preset by the programmer. Application of this thermostat
will not give the canonical properties rigorously, and the deviations are particularly
severe for small systems.
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Another thermostat is the so-called Langevin thermostat which is implemented
with the addition of two extra terms to the force derived from the potential energy:

& VAER) 3 +W 9.13)
m—s-=-=V,V(x) —ml'— i .
dr? dt

The second term on the right hand side is a friction force with the magnitude deter-
mined by the parameter I" which has dimension of inverse time. The last term com-
pensates for the effects of the friction, which alone would cause all motion to come
to a complete standstill, by adding stochastic excitations to the kinetic energy of each
particle. The excitations are time dependent, spherically symmetric and uncorrelated
both from one particle to the next and for different times. The variance is adjusted
to give the right temperature by the prescription

(Wi(t)W () = 6; j0(t —t)6mT'T. (9.14)

The factor 6 in the last term is the value for three dimensions (each dimension
contributes a factor 2). The generation of the random numbers needed for the imple-
mentation of the method is the subject of Sect.9.6.

Finally, the Andersen thermostat should be mentioned. This is the conceptually
simplest of them all. It amounts to updating the momenta to the distributions they have
in a canonical distribution of the prescribed temperature, i.e. for each momentum
component p to pick a value at random from the distribution

P(p)dp oce P/*Tdp. (9.15)

The old momentum is simply discarded and replaced with one drawn from this
distribution. You can update all three momenta of an atom at once or separately. The
frequency of update is a free parameter in your simulation. Andersen suggests to use
an exponential distribution

f(t,) =ve ™, (9.16)

where ¢, is the time since the previous update. You can implement this distribution
by updating to a new momentum with the probability §7v and retain the current value
with the complementary values, 1 — d7v. You need to decide the value of v, however.

In an equilibrium situation, MD simulations with a good thermostat will converge
to canonical properties as simulations grow longer and averages taken over larger
parts of phase space. These averages can also be calculated with the Monte Carlo
technique described below and the two techniques must give identical results in that
limit.

Probing static thermal properties in a MD simulation at constant temperature may
seem a little redundant, in particular since the implementation of MD requires more
analytical work than the much simpler MC. One advantage is that MD in some cases
give much faster convergence because the system is moving dynamically in phase
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space. In contrast, the MC technique tend to diffuse a system in phase space, a process
which is potentially much slower.

Another, and much more important reason to use thermostated MD is that the
method can simulate situations close to thermal equilibrium but where chemical
reactions nevertheless occur, i.e. where the components in a system split up, form
new compounds or whatever dynamics that changes the macrostate of the system.
Such reactions have at least one intrinsic timescale. This means that the choice of the
equilibration time to the heat bath becomes important. Too weak coupling between
the two systems and the simulated process will effectively be microcanonical; too
short time and dynamic effects can be suppressed. The latter may mean, for example,
that a localized release of energy will be absorbed immediately into the heat bath,
whereas in the real system it can be used to overcome energy barriers before it is
dissipated. For a realistic implementation of MD thermostats it therefore important
to consider the specific system simulated and its coupling to whatever heat bath is
present in the experimental settings.

9.3 Measuring Temperature in MD Simulations

Instead of pre-setting the temperature with a thermostat, one may measure it. A
measured MD temperature in simulations without a thermostat will by necessity
be the microcanonical temperature. There are several different suggestions in the
literature on how to do this. One is to use the average kinetic energy of atoms in
classical simulations, viz.

(Ey) = %T, 9.17)

as also used above in the prescription of thermostats. We may consider an N-
atom, free, non-rotating particle in the center of momentum frame, in which case
s = 3N — 6. Equation (9.17) is usually justified by reference to equipartition (see
Chap.2) which is a very general statement about classical statistical systems. How-
ever, equipartition is derived for canonical ensembles and does not hold microcanon-
ically, so we can’t really use (9.17).

Another definition is obtained with the microcanonical temperature given in
Chap. 3, where it is associated with the logarithmic derivative of the level density.
The level density in the classical limit is calculated as

1
P(E) = = f 6(H — E) deidpi (9.18)

where H is the Hamiltonian, x;, and p; are the s coordinates and momenta. We will
consider the big class of classical Hamiltonians where the coordinates and momenta
enter in a separable way and the kinetic energy can be written as a sum over momenta
squared;
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p?

H = — +V{x:}), 9.19

Ei o, ({xi}) 9.19)

where {x;} denotes the set of all coordinates. The p;’s and x;’s may be generalized
momenta and coordinates in which case also m; generalizes. This will have no effect
on the results derived below.

The separation of the Hamiltonian into kinetic and potential energy means that
we can calculate level densities as convolutions of two independent contributions,
one from the kinetic energy, p,, and one from the potential energy, p,:

E
p(E) = fo Pp(E)pe(E — E)dEL, (9-20)

where E is the total excitation energy and E}, is the kinetic energy. The definitions of
the level densities p, and p, in (9.20) are unambiguous, apart from a multiplicative
factor, because we can redefine the p’s as

1
pi(E = E) > ~pu(E — Ep), ©21)
pp(Ek) - Cpp(Ek),
which leaves the integrand in (9.20) unchanged and therefore gives the same total

level density. If we insert the convolution (9.20) into the definition of the temperature
we get

L dIn(p(E))
T = —— 2 9.22
iE (9.22)
(E)p«(0) 1 dp.(E — Ey)
= add P - pp(Ek)udEk-
p(E) p(E) Jo dEy
Partial integration of the last term gives
1 [f dp,(E
T = _/ pe(E — B2 ED 4 9.23)
p(E) Jo dEy

provided p,(0) = 0, as will be the case when there are more than two independent
momenta in the system (see below). This condition will be fulfilled if we simulate
one or more atoms in an external potential in 3d space.

The advantage of recasting the expression as in (9.23) is that the level density of
the kinetic energy is known and simple. Given the canonical equipartition value in
(9.17) it is (see Chap.2), for s independent momenta, equal to

/2—1

pp(Ex) = aE; (9.24)
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From (9.24) it follows that the derivative in the integrand in (9.23) can be expressed

as
dpp(Ek) s =

= E 25
dE, 2E, Pp( k)- (9.25)

If we insert (9.25) into (9.23) we see that the right hand side in (9.23) is nothing
but the microcanonical ensemble average of the reciprocal of the kinetic energy,
multiplied by s/2 — 1,

) 1 Eg_2 s—211
T = (E) Z—EkPx(E — E)pp(EDAE, = - \z/) (9.26)
0

The microcanonical temperature in a MD simulation can therefore be determined by

_ 2
S —2(E)

(microcanonical). 9.27)
For free particles, the translational and angular momenta are conserved and s is
therefore reduced to 3N — 6. This number holds for simulations of a particle with
zero total angular momentum. Non-zero angular momenta require some care, because
the rotational energy, as opposed to angular momentum, is not conserved and can
be exchanged with non-rotational energy. The development of this theory is for
elsewhere.
The heat capacity is also of interest in microcanonical physics. It is defined as

oT
c'=_—. 9.28
3E (9.28)
An expression in terms of average values can be found. A calculation along the same
lines as that for T gives

(/2= ()|~
cC=(1—- — 2| . (9.29)
(5/2 = ()2

The condition of applicability here is that there are more than four independent
momenta in the system.

We will demonstrate some of these concepts with a MD simulation of a simple
but non-trivial one-dimensional system. With positions denoted by x;,i = 1,..., N,
it has the energy

N 5 N-l
E= Z g ( ((ig1 —x)? — x/z)z —b(xiy1 — xi)) . (9.30)

i=2 i=l1

)
3
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This Hamiltonian represents a chain of particles with identical mass m that interact
with the potential given by the last sum. The first particle is glued to an infinitely
heavy wall and doesn’t contribute to the dynamics, and we therefore have N — 1
particles with non-trivial dynamics. The Nth particle couples only to the N — 1’th
particle. The model is a variation of the toy model for a rubber molecule, which
is usually given in discrete form as a two-state model. The present form permits
calculations of dynamics as opposed to purely thermodynamic questions.

We can rescale the coordinates and the time to remove three of the four parameters
m, a, x' and b. Three is what we can reasonably hope for because we can only
scale with the three dimensionful quantities time, mass and length. If we scale the
coordinates withx', x; — x;/x’ = x/,and the time as 7 = t/(ax"*/m)~"/?, the scaled
energy becomes

E N dx! N 2
—= Z 12 (F) + Z (((x;+1 —x)* = 1) —alx),, — x;)) . (931
i=2

i=I

where a = b/ax’. After the scaling is accomplished we do not need the primes on
the coordinates and we will drop them in the following.

In order to understand the effect of the remaining (dimensionless) parameter « in
this expression, we first set it to zero. Then there are two minima for each term, both
with zero potential energies, viz. x;+; — x; = =1, separated by a barrier of height
1. The distances between neighboring atoms, x; | — x;, are independent and can be
optimized separately, and the potential energy minimum therefore has a degeneracy
of 2N-1,

Addition of the term with « lifts this degeneracy. A positive/negative value of a
causes the minimum energy difference to be located at the positive/negative values
of the differences. Because a non-zero « does not introduce any new coupling terms
between sets of atoms that are not already coupled, the sets x;; — x; remain inde-
pendent and we can still find this minimum for all distances separately. The minima
are two of the roots of

4 (g1 — x)> = 1) (i1 — x;) — v, (9.32)

and are located close to £1 when « is not too big. The remaining root gives the
top of the barrier which is close to zero. For o = 0.3, which is the example used in
the following, the absolute minimum is attained when x;;; — x; = x¢9 & 1.04, and
the other is at —0.96 (see Fig.9.2). The lowest energy state of the entire chain is
therefore the stretched configuration with a total length of 1.04(N — 1). At non-zero
excitation energies the chain contracts into a shorter configuration.

An MD simulation of the length vs. microcanonical temperature is shown in
Fig.9.3 for N = 100. The timesteps of the calculation were 10~ in scaled units and
the total number of timesteps per point was 2 - 107. Also shown is the temperature
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ii+1

Fig. 9.2 The contribution of each term in (9.31) to the potential energy for different values of the
asymmetry parameter «.. Both abscissa and ordinate are in units of the scaled variables
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Fig. 9.3 The length of the N = 100 atom rubber molecule vs. temperature. The open circles are
the results of a MD simulation, the filled circles those of a MC simulation. Note that the fluctuations
in the MC points are significantly higher than those of the MD points, although the statistics of the
MC simulations is high (108 iterations vs. 2 - 107 timesteps, or 20,000 time units)

dependent length calculated in an 103 iteration long MC simulation, calculated with
methods described in the section on MC calculations below.

The canonical MC and the microcanonical MD caloric curves for the model with
10 atoms is given in Fig.9.4. The heat capacity of the canonical system is seen to
be larger than for the microcanonical system. This behavior persists for even higher
temperatures than shown here. It is a finite size effect. For high energies the potential
varies approximately as x* and the canonical partition function is calculated to Z.,,, o
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Fig.9.4 The caloric curves for the rubber molecule described by (9.31) with & = 0.3 and composed
of 10 atoms. The open circles are the MD values, the filled circles the MC. The energy is the total
excitation energy

B3WN=D/4 (N — 1 is the number of degrees of freedom for an N atom chain). In
this expression, (N — 1)/2 is contributed by the kinetic energy and (N — 1)/4 from
the potential energy part. The canonical heat capacity is therefore 3(N — 1)/4 (see
Chap. 2), equal to 6.75 for our N = 10 system. The microcanonical caloric curve can
also be calculated approximately in the high energy limit. The level density for the
potential energy is p, o« EY=1/4~1 and for the kinetic energy itis p, oc EN~D/271,
The partitioning of the total energy between the kinetic and the potential part is found
to leading order from the maximum of the integrand in the convolution integral,
px(E —€)p,(e). This gives an average kinetic energy of

g =D/

Approximating the reciprocal of this peak value with the average of the reciprocal
kinetic energy, one gets
T 2 (N-1D/2-1
N—2 3(N—-1)/4-2"

(9.34)

For our N = 10 atom system this gives a heat capacity of 5.43, 20% lower than the
canonical value. The difference decreases with the size of the system. For N = 100
the difference is already very small and the caloric curves for the two different
ensembles almost coincide.

Another example of information that can be extracted from a MD simulation is the
two correlation functions shown in Fig.9.5. The main frame is the time correlation
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Fig. 9.5 The time correlation function of the kinetic energy for a chain of 100 particles with the
rubber molecule Hamiltonian given by (9.31) and the total energy of 9.9 scaled units above the
ground state. The small deviation of the long time average from zero is due to an estimated value
of (Ey) that is slightly off. The inset shows the correlation function for the particles’ kinetic energy
vs. their separation, for the same total energy. All are equal to the square of the average, showing
the absence of correlations, except the distance zero, where the value is the average of the square

function of the total kinetic energy and the inset is the correlation between the kinetic
energies of pairs of atoms, plotted as a function of the number of particles between
them. The amplitudes of these correlation functions at zero argument are the subject
of Exercise 9.8.

Whereas the correlation function in the inset is constant for all non-zero sepa-
rations, there clearly is a finite correlation in time for this system. This correlation
approaches zero in an oscillatory manner with a period equal to 0.54 or a frequency
of 27/0.54 = 11.6, as found from inspection of the figure.

To understand this period we need to examine the dynamics of the system. For
small deviations from the equilibrium position of our chain we get for the potential
energy to second order in x; .| — X;

N-1
VA Vot Y 444(xi0 — xi — x0) (9.35)
i=1
The equations of motion are
—)'C'j=2-4.44(2)€j—xj‘+1—Xj_l), 1<j<N, (936)

—).C-N=2-4.44(XN—XN_1—X()), j=N

The ground state is x; = (j — 1)xo. An excited state can be written as
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x5 = b (1) + (j — Do, 9.37)

with b; # 0 for non-zero excitation energy. For an eigenmode (normal mode), which
is harmonic in time, the value of b can be written as b; = a; sin(wt + ¢), where a;
are coefficients to be determined. Inserting this into (9.36) and cancelling the time
dependent factor gives the relations

w?aj =2-4.44Qa; —aj —a;—y), 1<j<N, (9.38)
wlay =2-4.44(ay —ay_1), j=N. (9.39)

These are linear difference equations and we can attempt a solution of the form
aj =asin(k(j — 1)), (9.40)

where a is an amplitude and k is a wave vector. Inserting this Ansatz into (9.38,
9.39) and performing some manipulations of trigonometric functions give the two
equations

w?>=4-444.(1 —cosk), 1<j <N, (9.41)
w? =2-4.44. (sin(k(N — 1)) —sin(k(N —2))), j=N. (9.42)

Elimination of w? and some more trigonometric exercise provides the set of valid
k-values by the relation
sin(kN) = sin(k(N — 1)). (9.43)

This has an infinity of solutions for k that differ by multiples of 27w. The N — 1
smallest positive solutions are

™
k=Q@2n—-1 , =12,...,N—-1 9.44
@n-Doo (9:44)

The frequencies of the normal modes are therefore

™

2N —1

w§=4-4.44-(1—cos((2n—1) )) n=1,2,...,N—1. (9.45)

The highest value, corresponding to n = N — 1, is wy_; & 5.96, and there are a
number of frequencies close to this value because the cosine in (9.45) has zero
derivative at that value of the argument.

Naively one would therefore expect that the oscillations in Fig. (9.5) would have
the period 27/5.96 = 1.05. But the period observed in Fig.9.5 is half of that, 0.54.
The reason that the correlation has a period which is a factor of two shorter than
the period of vibration that is both the shortest and the dominant in the vibrational
spectrum, can be understood by consideration of the analogous quantity for the
simpler problem of a single harmonic oscillator. Inspect the phase space of this
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system in Fig.2.4. In the trajectories the kinetic energy (and the potential energy, for
that matter) is periodic with a period which is half the period of oscillation because
— p gives the same kinetic energy as p. This gives a higher kinetic energy correlation
at time differences equal to an integer number of half oscillation periods than for any
other time differences, equivalent to a frequency in the correlation function which
is twice the oscillation frequency. Basically, the kinetic energy is the square of the
momentum, which is a periodic, sine-like function, and the square of a sine function
has twice the frequency of the function itself. The more quantitative formulation of
this argument is the subject of Exercise 9.7.

9.4 Monte Carlo Simulations

The term ‘Monte Carlo’ suggests what makes this method work; It is named after
the location of the famous casino in the small principality Monaco on the French
Riviera. Roulette is gambling on probabilities, and in spite of decades wasted by
losing gamblers on pseudo-analysis, there is no way one can predict the result of
the next roll of the ball on the basis of the previous results (on an honest device,
obviously). That is for all practical purposes completely random.?

Even if a process can be considered random in practise, this does not mean that
one cannot derive anything meaningful from it. A very early application of pseudo-
random processes, predating silicon-based computers with a couple of centuries,
was the use of match-throwing on a pattern of parallel lines to get an experimental
determination of 7. A modern version of the idea, very easily implemented on a
computer, is to generate two stochastically independent random numbers x, y in the
interval between —1 and 1. Then all points in the square —1 < x < 1, -1 <y < 1
are generated with equal probability. The probability that a point is generated inside
the circle with unit radius is the area of the circle divided by the total area, or 7 /4.
Repeating the random number generating process sufficiently many times, one gets
an estimate of the value of 7 /4 as the fraction of points inside the unit circle. Figure 9.6
shows an example of such a calculation.

Although the calculation of 7 is not the most convincing reason to learn how to run
MC simulations, it is clear from the example that even random events, if disciplined,
have the ability to provide non-trivial information.

In MC simulations of physical systems, the transfer from one configuration to the
next is stochastic. If one labels the microstates of a system, i.e. effectively the points
in phase space, with a single integer, an iteration will take the system into another
microstate, selected from a range of other states with a prescribed probability which
sum up to unity for all the possible new states. The next iteration will then take each

2This does not imply that the dynamics is completely random. A group of physics students in the US
decided to try to predict the winning numbers of roulette, based on measured trajectories of the ball
and on-line computation of the dynamics. Their story is told in Thomas A. Bass ‘“The Newtonian
Casino’ (Penguin Press Science).
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Fig. 9.6 The estimated value of 7 based on the fraction of randomly generated points that fall
inside a circle of unit radius in a 2 x 2 square. For statistics above 250,000 hits the difference to 7
is multiplied with 50, as indicated in the figure

of these microstates to one of a number of other microstates with their own prescribed
set of probabilities etc.

For a collection of simulations, the state of a system can therefore be considered
a vector, 5, of populations of the microstates, with real, non-negative elements that

sum to unity, and the transition probabilities as forming a matrix, M, with rows and
columns indexed by the initial and the final microstates. These are the characteristics
of what is called a Markov chain or Markov process. Basically, the move into the
next state is decided from the present state of the system only, with no memory of
previous history.
After a sufficient number of iterations, the state of the system is that of equilibrium,
S., for which .
5, = Ms,. (9.46)
This result is independent of the choice of the matrix elements as long as they
conform to some general requirements, of which the detailed balance is the most
important. This ensures that 5, in (9.46) exists. It only represents the true equilibrium

distributions if the dynamics of the system, as represented by M, is ergodic, i.e. every
state in the system is ultimately visited. Another way of stating the ergodicity criterion

is that precisely one eigenvalue of M is unity and all other other are less than unity.
The unit eigenvalue corresponds to the state 5,. Two or more unit eigenvalues means
that there is more than one state that fulfil the criterion in (9.46). That must mean
that there are two or more regions of phase space that do not mix, which is another
way of saying that the system is non-ergodic.
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In practice, simulations are not performed by generating the matrix M the space
is far too big to make this practical, and Markov processes are mainly a conceptual
help for us. In practice, individual trajectories through phase space are generated on
a case-by-case basis.

One way to organize this move through phase achieve which is guaranteed to give
ergodicity is to have a non-zero probability to reach any state from any other state.
This clearly does the job, but is equally clearly an unpractical protocol to implement.
Less can do it, though, and for the Markov chains we implicitly construct with the
prescriptions given below, every microstate can be reached from any other initial
state by a finite number of steps through intermediate microstates.

Note though, that although non-ergodic dynamics is absent asymptotically, it may
well be present for real simulations with their finite number of iterations. Free energy
barriers will be crossed with a probability that varies with the free energy, F, as
exp(—(F). F may be so high that the probabilities to cross them will be vanishingly
small.

The absence of history, physically manifested in the absence of a momentum
which is the pointer to the near future in the simulations, severely restricts the amount
of detail on the dynamics one can extract from these simulations. MC simulations
can, on the other hand, be used much more generally than MD simulations, and they
are routinely applied in a variety of connections that have nothing to do with the inner
structure of particles, from the calculation of integrals over assessments of particle
detector efficiencies to calculations of the fall-out from polluting smokestacks.

The basis of a MC simulation of the thermal properties of a particle or molecule
is, apart from the Hamiltonian, a random number generator. The aim is to generate
a canonical probability distribution stochastically:

P({xid, Api) [ [ dxidpr o p(E({xi}, {pit)e F D [T dxidps,  (947)

1 l

where p is the level density of the system and 3 = 1/T. If the momenta and the
coordinates do not mix in the Hamiltonian, the distribution factorizes:

77
P({xi}, pi) [ [ dxidpi o< pu(V (i) x e VD [T dxy x 77 [ [ dps,
l ’ " (9.48)
where the last factor is the product of the Gaussian distributions of all the momenta.
They can be integrated out and yield a factor that depends on 7' and m; but not on
the coordinates. Hence it can simply be ignored in the simulation. If we need the
momentum or kinetic energy distributions, we simply write them down afterwards.
This takes care of half the dimensions of phase space. The other half is the time
consuming and interesting part of the potential energy. It is explored by prescribing
how one moves from one point on the potential energy surface to the next. A simple
and generally applicable choice, obviously not unique, is to update a single coordinate
or the coordinates of a single atom at the time. At a given configuration, you pick out
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the coordinate that should potentially be changed, x; say. First you chose whether
you go left or right, x; — X; ey = X; — 0X; O X; = Xipew = X;i + 0x;. The value of
dx; is arbitrary but must be the same for both directions.® It will be shown below
how to generate random numbers of this kind.

If all these suggested updates were accepted, one would end up with a distribution
that would be completely flat over the whole phase space and that had nothing to
do with the potential energy. To get a distribution weighted with the Boltzmann
factor e =7V, it is necessary to first calculate the energy of the trial configuration,
Veo=V(xy,x2, ..., x](."), ...) (n for ‘new’) and compare it with the energy of the
initial state, V; = V (x1, x2, ..., x;i), ...) (i for ‘initial’). In equilibrium we want the
two configurations to be populated with a relative weight given by

eV
PV &« v e (9.49)
for the initial configuration, and
—BVa
P(V,) x (9.50)

e—ﬁvf + e—r‘/}Vn

for the candidate configuration. Detailed balance requires that we accept the candidate
with a probability p;_,, which is related to the probability for the inverse choice,
Pn—i» according to the rule

e—BVi eV
pianm = Pn—i m~ 9.51)
If we shave off the common factor we have
pione V= pyie V. (9.52)

This determines only the ratio of the two probabilities. We will now make the choice
that all moves to lower energy are accepted with unit probability, i.e. p;—,, = 1. If
V., — Vi < 0, the new configuration is thus accepted unconditionally. This optimizes
the efficiency of this part of the procedure: Unity is the maximum possible value.
Less would correspond to holding the hand brakes while you kept pushing the pedals
of your bicycle.

To find the probability when the candidate energy is higher than the starting con-
figuration, V,, — V; > 0, youjustsolve (9.52) for p,_,; with p;_,,, = 1. Interchanging
the subscripts i, n this gives:

e —B(Vi=Vy)
Pi—sn = pn»im =e 7 (9.53)

3Strictly speaking it does not have to be equal for the two directions, but to avoid unnecessary
complications you better adopt this policy of symmetric choice from the start.
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The decision on whether or not to move to the new configuration with the probability
given by (9.53) is made by generating a evenly distributed random number. If it is
less than e 7>~ the move is accepted. Otherwise it is rejected and one proceeds
to the next coordinate or iteration.

For averaging statistics, which this is all about, it is important to count the state in
the averages after an attempted move, irrespective of whether the attempted change
of the configuration was successful or not.

This choice of transition probabilities is called the Metropolis algorithm after the
name of the first author of the article where the method was introduced. It should
be clear from the above that the Metropolis algorithm is by no means the only one
possible, but it has done quite well since the introduction. A very good reason for
this is the generality and the simplicity of the algorithm which can be implemented
in very few lines of code.

By the nature of the procedure, a fraction of the attempted moves will be rejected.
The precise number depends on the values of the dx;s one uses. For MC simulations
of molecular systems these parameters are the single most important place to pay
attention to computer time economy of code execution. First of all, it does not pay
to make dx; too large because then most attempts will be rejected and you tend to
be frozen in whatever configuration you happen to be in. Too small a value is also a
problem, because then most attempts will be accepted but each step will be too small
to move the system much.

A suitable compromise is an acceptance rate of 50% for a move. This success rate
can be obtained by adjusting dx; with a small factor that depends on the fraction of
attempted updates that were accepted. If a successful update results in an increase of
0x; by a factor (1 4+ ), and a failure in an decrease 1/(1 + (3), after M, successful
updates out of a total number of M attempts, one has changed dx; as

Sxi(M) = 6x;(0) (1 + a)Me (1 4 B)~M—Ma) | (9.54)

If the value of dx; is equilibrated, dx; (M) ~ éx;(0) holds and for small o, 3 the
success-to-failure rate is then v/ 3, corresponding to a total success rate of o/ (a + ).

In principle, adjustment of the step size can’t be done on-line when you do the
simulation because it will violate the detailed balance condition, but often one does
it anyway, and if o, 8 < 1 it is only a slightly dirty procedure. If the modification
of dx; is not done after each step but instead based on an average of a large number
of attempted moves, the problem is also reduced.

Not all simulations are of a nature where the step size can be adjusted continuously.
When dealing with discrete systems it is often a good policy to make the attempted
moves as small as possible. This is not only an advantage when writing the code, but
it will often be essential for moving the degrees of freedom around at all. If one has, in
one jump, to overcome an activation energy which is five times the temperature, one
needs an average of e = 148 attempts before success. This is a lot but the simulation
is still feasible. Trying to move two at the same time will then require typically e'®
attempts before success, and a success rate of e "% &~ 5 . 107 is equivalent to failure.
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9.5 Microcanonical MC

MC simulations are usually canonical, because points in phase space are accepted
with the Boltzmann factor as the weight factor. MD simulations are born microcanon-
ical, although they can be made (quasi-)canonical with the thermostats mentioned.
If one is interested in microcanonical static properties, it is however possible to use
the efficiency of MC sampling. This is accomplished by replacing updates of the
potential energy involving energy exchanged with an infinitely large heat bath of
temperature 7', with exchange of energy between the potential and the kinetic ener-
gies of the particle itself. The addition of the kinetic energy as a heat bath is quite
natural in the light of the systems we are simulating, and we can even apply the
equations derived for 7 and C in MD microcanonical simulations directly to find the
microcanonical caloric curves.

The only difference between orthodox MC and microcanonical MC is the coordi-
nate update. In the Metropolis algorithm the moves are accepted unconditionally if
the potential energy decreases, as in canonical MC. A trial configuration with higher
potential energy is accepted with probability

_ _ 3N/2-1
_Pp(E=Va) (E Vn) . 9.55)

pi—m—pp(E_Vi)— E—V,

which replaces (9.53). Numbers with these probabilities can be calculated with the
methods given in the next section.

9.6 Random Number Generation

Generating random numbers is an essential part of MC. Most compilers come
equipped with a random number generator which will give you a prototype ran-
dom number, distributed evenly between zero and one, called a univariate random
number. The generator may need to be initialized by a seed number. This may be done
semi-automatically by calling a computer clock, or by manually entering a number.
Once the generator is initialized, it can be called a huge number of times to give new
random numbers. Ultimately, however, it will return to the starting point and repeat
the sequence. That is, if it is of the conventional, algorithmic type. Random number
generators based on quantum randomness in the hardware will not suffer from this
problem.

The period of a generator depends on the compiler and the random number seed,
if relevant, and can be long. And sometimes it needs to be long. A period of, for
example 10'° sounds like a lot, but it is actually possible to run codes that will return
to square one and repeat. Happily, in MC simulations of particles with their many
degrees of freedom, it is rarely a problem because the system is in a completely
different configuration after running through one period of the random number, or
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you are updating another variable than the first time around, but it is still worth
keeping in mind.

The generator is supposed to provide numbers without any correlation. Before
you use one of those black boxes, be advised to do a simple check of the mean,
standard deviation and correlation function. The correlation function for the sequence
of univariate random numbers x, x», x3, .. .,

Cj = (i jxe) — (X)7 = (xiq ) — 1/4. (9.56)

should be zero for j # 0. Another simple test is to add the values up as

sum = > "(x; — 1/2). (9.57)

i=1

Figure9.7 shows such a sum. By plotting this series, a period will appear clearly
and indicate that the generator has reached the end of its length and has restarted, a
behavior that can otherwise be a little tricky to identify for long series. The example
here shows no obvious periodicity, indicating a period exceeding 10'2. The curve is
calculated with a laptop and illustrates the tremendous computational power available
with even such small devices if your programming language is not too high level and
bogged down by too many features.

When it has been established that the standard, evenly distributed random numbers
can be trusted, one can perform a long range of simulations, based on that alone. A first
application of a univariate random number may be the generation of symmetrically
distributed values for use with the Metropolis algorithm. The question of whether one
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goes left or right in this algorithm is most easily decided by generating a univariate
random number, u, and decide for an attempted move to the right if the number
exceeds 0.5 and to the left otherwise. Alternatively, one can translate u to the interval
[—1;1] and multiply by dx;, x;, = x;; 4+ 0x;(2u — 1), and use this as an attempted
move.

There are several different methods to generate random numbers drawn from more
complicated distributions and one needs to know some of these to make use of the
full power of the MC technique. The following is a short overview of some useful
techniques.

The first we will mention is applicable to a distribution defined on a finite interval
and without divergences. Then the maximum or at least an upper limit of the distri-
bution can be found. With this knowledge, the prescription is to generate an evenly
distributed random number, u;, and shift it with the linear transformation that maps
[0;1] on the relevant interval. Generate a second number, u,, and multiply it with the
maximum of the probability distribution. If this product is less than the value for the
probability distribution at u;, P (u;), u; is accepted as coming from the distribution,
otherwise it is rejected. The idea behind the method is not very different from the
procedure used to determine the value of 7, once you think about it. It is essential for
this method to be efficient that the product of the interval length and the maximum
of the (normalized) probability distribution is not extremely large compared to one.
Otherwise one gets too many rejects. In an obvious extension of the method, it can
also be used to generate multi-dimensional variables.

This method, ‘acceptance-rejection’ as it is sometimes called, is the simplest
possible and is often a good alternative when the direct inversion described below is
not possible. One application of the method, for sin’ x on the interval x € [0; 27], is
shown in Fig. 9.9, together with examples of other methods.

The second method is much more elegant, more economical with computer power,
but unfortunately not very general. One integrates the probability distribution and
inverts it. If a random number, evenly distributed between O and 1, is used as the
argument of this inverted function, the functional value will be a number sampled
randomly from the original distribution. Formally, for the integral F (x) of the prob-
ability distribution P (x),

X
F(x) = / P(x")dx’, (9.58)

oo

the variable x generated with the univariate random number u as
x = F () (9.59)

will be distributed with the probability distribution P (x). Figure 9.8 illustrates (9.58,
9.59).

The exponential decay provides a simple case for this method. With the time
constant 7, the normalized function is 7! exp(—t/7). It integrates to
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Fig. 9.8 The logic behind the inversion of the integral of the probability density. The two univariate
random variables u and u, are used to find the two different random values x| and x,. The two
small intervals indicated have identical widths around the u’s but clearly not on their projections
on the x-axis, indicating a higher density at the places with a high slope of F, as expected

t
/ rVexp(—t//r)dt' =1 —e7'/7. (9.60)
0
Equating this to the univariate random number u and solving for ¢ gives
t =—7In(l —u) = —7In(u). (9.61)

The last equality does not imply that # = 1/2 but is a manipulation which is allowed
because 1 — u has the same distribution as u. There is no loss with this procedure;
all generated numbers are accepted.

Another important case where number can be generated without loss is the Gaus-
sian. For this, one initially generates numbers from a slightly different distribution,
P o re™"", which is the distribution of the distances of points from Origo in a two-
dimensional Gaussian distribution. It can easily be integrated and inverted. This gives
a value of r sampled from the two-dimensional distribution. It is then projected on
the x-axis, using a second random number, u,, to generate the random phase that
goes into the projection cosine. Numbers generated this way will be normally dis-
tributed with mean zero and variance one. To get a non-zero mean, (x), and a standard
deviation, o, numbers are generated and scaled as

(x) + o0+ —21In(uy) cosmuy). (9.62)

The scaling and shift obviously works with any distribution, not just a Gaussian.
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The inversion method can also be used if a distribution can be written in a scaled
form used for all parameter values, temperatures for example, and therefore only
needs to be generated once. Then the integral of the distribution can be calculated
and inverted numerically to be stored in an array.

The methods discussed above can be combined. It may be convenient to extract
one part of a distribution if it can be generated, for example, by the inversion method
and the rest of the distribution ends up in a form that can be generated more efficiently.
Then the random number generated by the first method is fed into the second method
applied to the modified distribution.

Often one encounters the need to convert a distribution of one variable into another,
because the converted distribution is easier to generate than the original. In one
dimension, the general expression for the distribution of the variable y(x) is, when
the distribution for x is given as P (x), equal to:

d
P = P[] 9.63)

a formula that holds whenever you transform distributions, not just for the purpose
of random number generation. In higher dimensions the derivative becomes a matrix
known as the Jacobian and the absolute value of the derivative is then replaced by
the absolute value of the determinant of this matrix.

Occasionally it is possible to update a degree of freedom by generating the whole
distribution for this degree of freedom directly, even if it is coupled to other degrees
of freedom. As an illustration, consider a simulation of a system with a potential
energy that can be written in the form

V= f®y+g@y% (9.64)

where f and g are some functions of all coordinates except the y we will update.
When y alone is updated, f and g can be considered constants and we can write the
distribution of y as

P(y)dy e—‘ﬁ(f.vﬁ-gyz) x e—x3g(y+£)2, (9.65)

where the constants of proportionality do not depend on y. The problem is thus
reduced to generating normally distributed numbers, which can be done very rapidly
with the procedure described in (9.62).

Finally one should mention a brute force method that is easy to apply, viz. the
random walk method. From a chosen start-value, a new value is attempted with a
symmetric distribution, for example as y, = y; + dy(2u — 1), where u is a univariate
number and Jy is optimally similar in magnitude to the width of the distribution, if
known. The trial value is then tested and accepted if f(y,) > f(y;)u, where u, is
another and uncorrelated univariate number. The method is thus of the same trial-
and-error type as the Metropolis method.
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acceptance-rejection random walk
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Fig. 9.9 Random numbers generated with the methods described in the text. The attempt statistics
is in all cases 10%. The target functions are, clockwise from top left: sin?(u), exp(—u4 / ué), a
simple exponential, and finally sin? (i) exp(—u/up) generated with the sequential direct inversion
and acceptance-rejection method. For this, first numbers # from the exponential distribution are
genzerated, These are then accepted if a new randomly generated univariate number is less than
sin” (u)

9.7 Optimization: Simulated Annealing

Simulated annealing is a method to locate local minima on complicated potential
surfaces. These potential surfaces are not necessarily models of particles but can
be anything which has a potential or more generally a cost associated with it. The
method was in fact conceived as a tool for optimizing the placement of electronic
components on a circuit board. That is an example of what is called an NP-complete
problem, which means that the number of possible solutions for the optimization
problem grows faster than any polynomial of the number of constituents. This rules
out a brute force exploration of configuration space, consisting in calculating all
possible configurations to test for cost.

Instead one uses the following recipe: Associate an energy with every configu-
ration and shift the components around with the Metropolis algorithm. Initially the
temperature in the Metropolis algorithm is set very high with the consequence that
all possible configurations are generated, mainly ones of quite poor quality, i.e. high
energy, because that’s where the electronics industry equivalent to entropy is found.
As the temperature is slowly lowered, the system tends to move around closer to
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configurations with well-defined minima, and finally, when the temperature is so
close to zero motion is effectively frozen out, the configuration can be taken seri-
ously as a candidate for the best placement of the components. The method works
surprisingly well, although one can rarely, if ever, be sure to have discovered the best
solution of a realistic problem, and for large enough numbers of components, one
most likely has not.

In case of a collection of atoms, the cost function will be the potential energy
surface, and minimizing this corresponds to finding the ground state of the lowest
energy isomer. Isomer is the name for a configuration which is stable against small
deviations from the configuration, equivalent to an atomic configuration for which
the Hessian matrix has only positive eigenvalues, and hence for which all vibrational
frequencies are real.

The procedure is illustrated in Fig.9.10, where the ground state of the rubber
molecule with the energy given by (9.31) is attempted located. The ground state
for this system is the state where x(i) = x(i — 1) + 1.036 (for a = 0.3), and the
simulation provides a demonstration of the efficiency of the algorithm. For this
particular simulation, 95 out of 99 atomic distances end up in the correct low energy
position. The initial temperature is 2, the final temperature is 107, and the decrease
was exponential, with a factor of 1 — 103 per 50,000 iterations. Snapshots of the
value of x(2) is shown in Fig.9.11. Because x (1) = 0, this also represents a sampling
at varying temperatures of the thermal distribution of positions in the potential shown
in Fig.9.2.

Another illustration is a two-dimensional model of neon absorption on a graphene
sheet. Graphene is a hexagonal, two-dimensional lattice of carbon atoms, and a neon

100
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20 ....,.~ /"'/
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Fig. 9.10 The final configuration at the end of a simulated annealing run of a rubber molecule with
99 movable atoms
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Fig. 9.11 The distance between atom 1 (fixed at x(1) = 0) and atom 2 in the rubber molecule as
a function of the MC iteration number. The data are from the same simulation as the data shown in
Fig.9.10. The position was sampled every 50,000 iterations. The temperatures are shown on top

atom can be accommodated in a potential depression in each hexagon. The difference
between the top and bottom of this potential well is 30 K, with the high energy attained
with the neon atom on top of a carbon atom, lower values when the neon is balancing
on the bonds connecting the carbon atoms and the minimum value when the atom is in
the position equally far from all the C atoms in a hexagon. In addition to interactions
with the carbon atoms, the neon atoms interact with each other via the Lennard-Jones
potential.
The total potential energy is

3 6
_ 2 _
V=c Zcos()_c~kj)—chos(f-kj)+Eo (9.66)
j=1 j=4
o 12 o 6
+ Z“g((r) (%) )
i>] ’ ’

The terms contained in the first bracket is the interaction with the substrate. The
parameters are ¢ = 1.875 K, the (dimensionless) energy offset is Ey = 9 which
makes the minimum energy for a single neon atom zero and the maximum 30 K. The
wavenumbers for the modulation of the surface potential are k; = 27 cos(2m(j —
1)/3)/s, for j < 3, and half these values for 4 < j < 6. The length parameter s
that appear in the graphene part has the value 1.42/1.298 A. This all ensures an
approximately hexagonal shape with the correct graphene lattice constant of the
substrate and the correct difference between maximum and minimum in the potential
energy landscape. The graphene-neon potential has its maxima at the midpoints of
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the C-C bonds and not at the vertices, but this is a minor error in this connection, if it
evenis an error. A feature, which is not immediately obvious from the functional form
of the potential, is that the potential energy for a single atom in one of the graphene
minima is not quadratic in the displacement from the minimum, as is usually the
case, but has a quartic dependence.

The second term in the potential energy is the Lennard-Jones (LJ) interaction,
where o = 2.9 A is the LJ length scale for neon, and £ = 36.7 K is the neon-neon
interaction energy.

The potential minima on the lattice are separated by 1.424/3 A = 2.46 A, whereas
the optimal distance between two neon atoms in the absence of a substrate is 2!/%c =
3.3 A. This difference will cause a mismatch in the optimal lattice structure for the
Lennard-Jones neon-neon interaction and that of the neon-graphene interaction. We
expect the LJ structure to dominate because the number of bonds make that binding
stronger, but it is not obvious how the resulting lattices will be oriented relative to
each other.

The problem was simulated with 50 neon atoms on a lattice 35 x 35A2, cor-
responding to 238 lattice sites of which 35 were located at the boundary. The
simulation started at a temperature 7 = 100 K, and was lowered according to the
algorithm 7,11 = T, exp(—1/(C + 10)), where C is the heat capacity measured as
((E*) — (E)?)/T?. This non-exponential cooling is designed to make the cooling
rate slower when the heat capacity is high and the system explores new configura-
tions with a higher frequency than at configurations with low heat capacities. The
kinetic energy was not simulated and a safety term of 10 is added to the heat capacity
to prevent incidences of too fast cooling rates. The statistics was 5 - 10* iterations
for each temperature, of which 10* were used for thermalization.

The initial (7' = 100 K) coordinates of the particles were chosen randomly within
the confining volume. One iteration consisted in choosing new trial coordinates
for each atom separately with the Metropolis algorithm, with the suggested new
coordinates given by x,, = x; + (2u — 1) Ax, with u a univariate variable and Ax the
maximum single step displacement. The amplitude of the trial steps, Ax was adjusted
after each attempt according to whether or not it was successful, by the factor 1.002
or 1/1.002. As discussed above, this adjustment gives an average acceptance rate
of 0.5. The value of Ax was atom-specific, with the motivation that movement of
atoms residing on the border of a cluster are much less constrained than movements
of atoms located in the interior.

Figure 9.12 shows the energy measured during the annealing run. Little happens
with the potential energy before the temperature reaches values around the barrier
height of 30 K. From 30 to 10 K, the atoms condense into a lattice structure which
is mainly determined by the LJ interaction between the atoms. A condensation from
a 2d gas into a 2d cluster is indicated by the increased heat capacity in this interval,
from values close to zero to almost 300 at the maximum. After the lattice structure
is established, the heat capacity reduces to 50, which is the value for the potential
energy contribution for 50 harmonic oscillators in two dimensions. Isolated atoms
in this particular lattice would have only half that heat capacity because of the x*
potential in the single atom minima.
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Fig. 9.12 The average energy as a function of temperature for the neon-graphene model system
with 100 neon atoms (full line). The dotted line shows the ‘best-so-far’ energy, which is a piecewise
constant function. The inset shows the heat capacity. The kinetic energy contribution is not included

Figure 9.13 shows the positions of the atoms after the annealing. The mismatch of
the graphene lattice constant and the range of the interatomic LJ potential is clearly
manifested in the different lattice constants of the neon crystal and the graphene
substrate. The neon crystal is almost circular, providing a visual demonstration of
the presence of a surface tension (the fact that low energy states are single clusters
provides another, see Chap. 8). The figure also shows the annealed structures of two
other hypothetical types of atoms with Hamiltonians identical to that of graphene
and neon, except that the length scale in the LJ potential has been adjusted to give
a smaller mismatch between the two lattices, =10%. These particles are also almost
circular but are structured with a single atom per hexagon. At larger coverages one
must expect that domains form and a lot of other interesting effects. We will leave
the subject to future work.

9.8 Optimization: Genetic Algorithms

Genetic algorithms is another optimization technique which has seen widespread
use. Like simulated annealing it is stochastic in nature. It also requires the definition
of a cost parameter which, as a cadeau to the name of the procedure, is called a
fitness parameter. This parameter is used to decide which of a swarm of replicas of
the system has the best probability of survival and procreation from one generation
to the next. Small changes are then induced, likewise randomly, from one generation
to the next in the structure of the system. In a typical application of the technique
to nanoscience, one calculates the geometric structure of a many-atom particle for a
number of particles and selects preferentially those with lowest energies.

Like for simulated annealing, optimization of particle structures is far from the
only application of the technique. It is used to generate protocols to quantum engineer
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Fig. 9.13 The positions of
the 50 neon atoms shown as
white dots at the end of an
annealing run with the
potential in (2.44) and the
procedure described in the
text (top frame). Two sets of
50 make-believe atoms with
interatomic potentials that
give a smaller mismatch to
the graphene surface are also
shown (+10% mismatch
middle frame and —10%
mismatch bottom frame)
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chemical reactions with light, for example, and to generate desirable optical prop-
erties of multilayer, 2d materials, to mention just two examples with very practical
motivations.

Variations of the basics principle exist, not surprisingly.* A first obvious modifi-
cation is to mate two systems, for example by cutting each into two and gluing two
halves together, making it all look very biological. One may speculate that if the
system is big enough, it may pay to splice three pieces etc. The risk with this and
similar procedures is that they can rapidly develop into an activity that breaks the
first rule of numerical simulations: Keep it simple.

Exercises

9.1 Estimate the terms left out in (9.5) and (9.6) to leading order in §z. Use this to
establish a criterion for the maximum size of the time step you can use in a MD
simulation with this propagation prescription.

9.2 Show that the procedure for updating momenta in the Andersen thermostat in
Sect.9.2 give a distribution of update time which is close to exponential for small
timesteps.

9.3 Verify that the distance traveled in the 1000 time units in Fig.9.1 at small ¢’s
is correct.

9.4 Itis of general interest to consider the limit of large systems in numerical calcu-
lations, because in this limit the differences between the ensembles used to calculate
thermal properties presumably becomes irrelevant, and for example canonical and
microcanonical values should become equal.

To show that this holds for the canonical and microcanonical temperatures for a
system comprised of harmonic oscillators, first show that the averages of the kinetic
energy to the powers 1 and —1 for a system of n h.o. are

1
(Ep) = EE (9.67)
(E_l) _ 2n — 2E’1
I n_2 '

Use this to express T in terms of (Ey) and show that it is

2
n—1

T =

(Ex) (microcanonical, harmonic oscillators). (9.68)

Compare this result with the canonical result.

9.5 Show that the microcanonical heat capacity in (9.29) is correct.

“4Diversity of implementations of an idea based on diversity seems like a must.
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9.6 Show that the values given in (9.44) are the wavenumbers for the problem
described.

9.7 The time correlation function of the kinetic energy of a single harmonic oscillator
takes the form, disregarding offsets and normalization:

2

(A1) / " sin®(wt) sin?(w(z + Af))dr. (9.69)
0

Show that the oscillating part of c(Af) has a period of 7/w, or half the period of the
motion.

9.8 The correlation functions in Fig.9.5 both have values for zero arguments
that can be calculated. For the particle-particle correlation, the value is (E,f),
where Ej is the kinetic energy of a single particle. The difference, for j > 0,
(Er(0)%) — (Ex(0)Er(j)) ~ 0.0049 is approximately equal to ¢, T2, where ¢, = 1/2
is the kinetic energy contribution to the heat capacity from a single particle, and T is
the microcanonical temperature of the system which is close to 0.1 at these energies.
Assume that the energy in the rubber molecule is low enough to describe the system
as harmonic oscillators. Write down the combined level density for the kinetic and
the potential energy with this assumption. Use the expression to show that the aver-
age total kinetic energy is £ /2 in this limit, where E is the total energy. Next show
that the variance of the total kinetic energy is approximately half the value found
in the canonical ensemble and compare that with the figure. Use the fact that there
are 99 independent oscillators in the system in Fig. 9.5 to facilitate the approximate
calculation of integrals. Show also that the difference of a factor of two persists to
infinitely large systems.

9.9 What happens if the Markov matrix in (9.46) would have an eigenvalue exceed-
ing unity? A negative eigenvalue?

9.10 Establish the Markov matrix for a two-state system where moves occur accord-
ing to the Metropolis algorithm. Show that it has precisely one eigenvalue equal to
unity and one numerically less than unity, provided the two states are not degenerate.
Note that states are normalized by summing their elements, not the square of their
elements, as in quantum mechanics.

9.11 Explain how one can generate random points evenly distributed on a three-
dimensional spherical shell of zero thickness.

9.12 Find C, in (9.56).

9.13 Design an algorithm to generate kinetic energies, randomly distributed accord-
ing to the Maxwell-Boltzmann distribution.

9.14 Fill in the details in the derivation of (9.62).

9.15 Write and execute a MC code to calculate the classical heat capacity of a particle
in a x* potential. Give the variance of (|x|) and (x) as a function of the number of
iterations included in the averaging.



Chapter 10 ®)
Thermal Excitation of Valence Electrons Geda

The dynamics of valence electrons is an essential part of the description of small par-
ticles, from chemical reactions, over the photo-physics of molecules to the electron
transport in nanoscale devices. And as photo-physics in particular has shown, tran-
sitions from one Born-Oppenheimer surface to another also happen in the absence
of incoming or outgoing photons. Processes called Internal Vibrational Relaxation
(IVR) convert electronic excitations to vibrational in a dissipative process, as also
discussed in some detail in Chap. 11. Time reversal requires that the inverse process
can also happen, and if it can happen, it will happen, at least for a system which
is described by statistical tools. Electronically excited states are therefore not just
gateways to dissipate energy; they are also players in equilibrium. Thermally excited
electronic states are a fact of life.

In most small molecules the energy required to excite electronically is usually a
significant fraction of and may even exceed the total excitation energy contained in
a molecule, also for particles that would otherwise be considered hot and therefore
susceptible to thermal electronic excitation. For those species the thermal population
of electronically excited states is usually of little relevance. There are examples,
however, of even very small molecules containing sufficient energy to thermally
excite states and consuming more than half the total excitation energy in the process.
The excited states will be populated for only brief periods of time, but long enough to
give observable effects, like strongly enhanced ionization cross sections by photons
below the ground state threshold of the IE, or the recurrent fluorescence mentioned in
Chap. 6. Although the excited states will be fairly thinly populated, enhanced optical
properties or reactivities of these states can make even small occupation numbers
important, as the observation of these two examples demonstrate.

For large particles the relevance of thermal electronic excitations becomes even
more obvious, in particular for metallic substances. It is worth pointing out that most
of the elements in the periodic table are metallic.

Metals are characterized by a good electrical conductivity, which is the result of
the delocalization of the valence electrons. In a simple independent particle picture,
electrons move in a mean field potential where the size of the wave function is
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determined by the volume of the positive ionic cores. When the number of atoms
in the particle and hence the size of the mean field potential increases, quantum
mechanical energy levels, both occupied and unoccupied, will decrease in energy.
One can estimate the size dependence of levels in a metallic cluster by the similarities
to a particle-in-a-box situation and consider the behavior of the levels. They vary with
size as

ro 2
E(ing}.r) = Vo~ (En,}.ro) = Vo) (%) (10.1)

where r is the particle radius, rg is an arbitrary reference size, {n,} is the set of
quantum numbers that characterize the state, and Vj, is energy at the bottom of the
potential. This size dependence also holds reasonably well for more realistic mean
field potentials with a flat bottom and smooth edges. The scaling of the electronic
levels implies that an increase in size reduces the gap between the highest occu-
pied orbital (among chemists known as the Highest Occupied Molecular Orbital, or
HOMO) and the lowest unoccupied level in the ground state (Lowest Unoccupied
Molecular Orbital, LUMO). This gap is the most important parameter that determines
the amount of thermal electronic excitation in a particle at a given temperature.

The treatment of the electronic excitations in terms of single particle excitations is
obviously not exact. Life is never that easy. Electronic states, including excitations,
involve all valence electrons and in principle even the core electrons. In practice, how-
ever, one must usually base calculations of thermal properties on excitation spectra
derived from single particle levels with the expectation that the results, although
not numerically exact, will nevertheless give enough quantitative insight into the
phenomenon studied to justify the significant simplification. The good explanatory
power of the free electron gas model for simple metals such as the alkali metals
supports this expectation.

For metals one uses the term Fermi energy, Er, to denote the highest electronic
kinetic energy in the mean field potential. An equivalent Fermi temperature is defined
as Tr = Er/kp. The Fermi energy for such a free electron gas, unsurprisingly called
a Fermi gas, is calculated with the semiclassical expression for a free particle from
Chap. 2. With a sloppy use of differentials we have

2
g(E)dE = ﬁd3xd3p = cE'?dE, (10.2)

where a factor 2 for the spin has been included. g denotes the single particle density
of states, not to be confused with the level density of the entire valence electron
system. The total number of electrons is calculated as

EF EF
N =/ g(E)dE =/ cE'?dE, (10.3)
0 0

from which we find ¢ and the density of states at the Fermi level
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3 N
g(EF) = 3 EL (10.4)
The average level spacing at the Fermi level is then
1 2F
JEn) =3 ]\f (no spin degeneracy). (10.5)
F

If the spin degeneracy is taken into account, levels become doubly degenerate and
an extra factor of 2 in the spacing appears to give

4 Ep . .
A~ TN (with spin degeneracy). (10.6)
The Fermi energy is related to the electron density in a Fermi gas. The relation is
found by noting that (10.3) can also be written as (including the factor two for spin)

3
3,43 Pr
= / / dExd’p = 8nh3 T (10.7)

with the Fermi momentum defined as

P
2m’

(10.8)

where m is the mass of the electron. The set of occupied states form what is called the
Fermi sphere in a free electron gas. The electron density, n = N/V, and the Fermi
energy are related as

2
n—= im_E3/2

23 B2
e Ep = (37°n)" . (10.9)

The number of electrons, N, is the number of atoms in the volume V times the
element’s valency, i.e. the number of electrons contributed to the Fermi gas per
atom. This density is often expressed in terms on the Wigner-Seitz radius, which is
the radius of a hypothetical sphere with the density N/V:

—r’=n " = (Zp)_l, (10.10)

where z is the valency, a positive and usually small integer, and p is the density of
atoms.'

1Occasionally, r, is used to denote the corresponding effective atomic radius, which corresponds to
setting z to one in (10.10). This is at odds with standard solid state notation and is not recommended.
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Table 10.1 Fermi energies in

. : Group 1 Group 2 Group 11 Group 13
eV as calculated in the Fermi -
gas approximation from the Li47 Be 14.4
density and valency Na3.2 Mg 7.1 Al'l1.7
K2.0 Cad.7 Cu7.0 Ga 104
Rb 1.9 Sr3.9 Ag5.5 In 8.6
Cs 1.5 Ba3.6 Au5.5 T18.1

The Fermi energies cover an order of magnitude in energy, from 1.5 eV for Cs
to 14 eV for Be (see Table 10.1). For the somewhat arbitrary choice of 3 eV for the
Fermi energy and 800K for the temperature, the ratio of A and the temperature is

A 2-35000K 30

T ANT N (10.11)
or twice that if the spin degeneracy is included. For metal clusters that are describable
with an equidistant level spacing, one must therefore expect that thermal electronic
effects become important at sizes around 30 and larger, give or take some factors of
two.

With the onset of electron thermodynamics for such relatively small sizes, it
becomes relevant with a comparison of equilibrium thermal electronic excitations
and those of the vibrational motion of the nuclei. The latter have a typical total
thermal energy of E, ~ 3NT for temperatures above the quantum energy of the
vibrations, which can be collectively represented by the Debye temperature. For a
strongly degenerate Fermi gas, i.e. one where the temperature is much less than the
Fermi energy, only electrons in a narrow energy band with a width on the order of T
are excited. They each have a typical thermal energy of ~ T'. The fraction of valence
electrons in this region is ~ T/Ey and the thermal energy is then E, ~ NT?/Ep.
Relative to the phonon thermal energy, we therefore have an electronic excitation

energy of

NT?
0 T

£ _ - (10.12)
3NT ~ 3Er

E. _

E,
which is small. Any particle at a temperature equal to the Fermi energy will disinte-
grate in a spray of atoms in less time than a typical vibrational period. The electrons
will therefore carry only a small fraction of the total excitation energy under most
circumstances.

Atlow energies the picture changes. In bulk, the heat capacities of solids vary as T3
below the Debye temperature. Bulk electronic heat capacities are approximately pro-
portional to 7' as argued above, also at low temperatures, barring the cases where the
metal becomes superconducting and the electronic heat capacity becomes very low.
The different temperature dependences of the vibrations and the electrons mean that
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the excitation energy of the electrons in the so-called normal (non-superconducting)
state will be higher than that of the phonons at sufficiently low temperatures.

The reason for this somewhat counterintuitive cross-over is the fact that the spec-
trum of the fundamental vibrations decreases rapidly at low energy, approximately as
w?, which implies a strong reduction of the effective number of vibrational degrees
of freedom at low temperature. Electrons, on the other hand, are found in a strongly
degenerate Fermi gas at temperatures below Er. Around the Fermi energy the sin-
gle particle level density is high, and there is a large number of unoccupied states
available within an energy corresponding to the temperature. It is this fact that allows
bulk electrons to be excited at even very low temperatures.

For sufficiently small particles the picture changes again, because the electronic
level spacing becomes comparable to and larger than the Debye frequency. For small
enough particles the electronic excitations will therefore be suppressed relative to
phonons, both at low and high temperatures.

Suppressed only means numerically smaller. It does not mean unimportant. As
we will see later, there are several effects associated with the electronic structure that
can, and will, be washed out at realistic temperatures, in spite of only a small amount
of thermal energy carried by the electrons. In particular, thermally excited electrons
will tend to smear out any size specific properties that depend on the electronic
ground state energies, such as odd-even effects and electronic shell structure, which
will both be treated in detail in this chapter. It is clear from previous chapters that the
presence of thermally excited electrons will also have an effect on other properties;
The electrons contribute to level densities, canonical partition functions and free
energies on an equal footing with all other degrees of freedom in equilibrium, and
any process that involves thermal properties will therefore be affected.

The combination of vibrational and electronic excitations may at times give syn-
ergistic effects. An example is thermally induced particle shape fluctuations. Such
fluctuations can be accompanied by excitations to BO surfaces where the deforma-
tion potential is different than in the ground state. And the excitation to such states
may be easier or more difficult in the deformed electronic ground state than in the
undistorted. A complete mapping of any system requires that such effects are taken
into account. This will be a fairly system-specific mapping. We will settle for the
more limited goal of describing the effects of electronic excitations in the static
approximation, where levels are given and occupation numbers calculated.

Although electrons will often be thermally excited, the temperatures one encoun-
ters are very (very!) rarely be high enough to excite all electrons, although it may be
possible to approach conditions where a significant fraction have excitation energies
on the order of eV (see Chap. 11). The Fermi energy is too large for thermal excita-
tions to probe the bottom of the Fermi sea, as the collection of electrons obeying the
Pauli principle is called (this is the origin of the water metaphor, by the way; waves
rarely reach the bottom of the sea). This means that most of the time we can calculate
the thermal properties of the system as if the number of electrons were infinite.

At the other end of the spectrum, the existence of electronic states is not switched
off when the vacuum level is reached at the ionization energy, IE, but their nature
changes dramatically. The IE, which for bulk matter is called the work function, is
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similar in magnitude to the Fermi energy. Excitation to energies above IE, which s the
basic process in thermionic emission, is therefore a strongly suppressed phenomenon,
in spite of the not infrequent observation of it in mass spectrometers. For a single, very
highly excited electron, one can use the Boltzmann factor to calculate the probability
that the electron energy is excited above an energy which corresponds to the IE as
P ~ ¢ 'B/T The reader is invited to do this calculation with typical values of IE and
T and verify that it is indeed very small. For this reason one can pretend that the
single particle level scheme extends to infinitely high energies in most processes.

10.1 Electron Number Fluctuations in the Grand
Canonical Ensemble

The first attempt to calculate thermal properties of a specific fermionic system in the
strongly degenerate regime will invariably use the grand canonical ensemble in which
the temperature, volume and chemical potential are fixed. The variable conjugate to
the chemical potential is the particle number, and we can calculate the mean particle
number in the ensemble as a sum over contributions from the single particle levels i
with energy ¢&;:

— _ 0In(Zy) 9y, ln(l +e—ﬂ(8f—u>) B 1
N = G (B = Z e (10.13)

The first equality follows from the definition of the grand canonical partition function,
and the second from the calculation of (the logarithm of) the partition function for
fermions. The terms in the last sum are simply the thermally averaged occupation
numbers of the individual states, p;;

1 e Blei—n) 1

=0-—+1- — i
pi a Zi PCi—0 1 1

(10.14)

with z; = 1 4+ e P~ Hence the total average electron number is simply a sum of
thermally averaged populations of the individual single particle levels. This allows
us to write it as an integral with the single particle density of states g(¢), a form
which will often prove convenient:

e [ 99 4o [ d 10.15
T eBe-w o1 T 9(e) f(e)de. (10.15)

Here, and elsewhere, the integral over states is acceptable, even if the spectrum is
discrete, because g(E) can always be expressed as a sum over § functions. This was
discussed in Chap. 1 and this discussion applies equally well here. The function f,
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1

f=gem

(10.16)
is called the Fermi function and is ubiquitous in solid state physics.

The drawback of the grand canonical ensemble in connection with small particles
for which the precise number of electrons is important, is precisely that it is not an
ensemble with a fixed particle number. The variance of the particle number can be
calculated either as the contribution from each level or, in analogy to the calculation

of the variance of the energy in the canonical ensemble and shown explicitly in
Chap. 2, as

2
M ow = e _ (10.17)
A(Br)?

1 1
> e (1 e 1) = nti - p.

i

This result is both in agreement with the alternative calculation (not shown), and
reasonable: At low temperatures where the population of a level is either 1 (below
the Fermi energy) or O (above the Fermi energy), the variance is zero. At very high
temperatures all states are populated very sparsely and one can approximate the
terms p;(1 — p;) ~ p;. This makes Y, p;(1 — p;) & 3", pi = N, i.e. the variance
is the sum of single particle occupation numbers and consequently equal to the mean
number of particles. The standard deviation of the particle number is thus the square
root of the number itself.

At intermediate temperatures where a few excitations from around the Fermi
level occurs, the variance and the standard deviation are already of order unity. Some
properties, like electronic shell structure, ionization energy and electron affinity,
may depend strongly on the number of electrons in the particle, and the average
over neighboring sizes implicit in the grand canonical ensemble will therefore give
misleading results in this interesting temperature range.

The standard deviation of an electron number distribution in the grand canonical
ensemble is shown in Fig. 10.1 as a function of the scaled temperature. It is calcu-
lated for a simple model with equidistant single particle level spacing, A, which we
will have occasion to use later, and which we will call a ladder spectrum. There is
(unrealistically) no degeneracy of the individual levels. The data illustrate a point
which is also relevant for more realistic situations, viz. that the number fluctuation
is significant already below T = A.

Another example which demonstrates the effect of the lack number conservation
is given in Fig. 10.2, which shows the probabilities, P (1), that precisely one electron
is excited in the 1000 electron-2000 state ladder spectrum in the canonical and the
grand canonical ensembles.
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Fig.10.1 The standard deviation of the particle number in the grand canonical ensemble for a single

particle spectrum with equidistant levels, A. The number of electrons is 1000 and the number of
states 2000, which are both practically infinite at these temperatures
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Fig. 10.2 The probability that precisely one electron is excited to a state above the chemical
potential in the ladder (equidistant) potential. The full line shows the grand canonical ensemble
values; the dotted line gives the canonical ensemble values
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The values are calculated for the canonical case as

e_ﬂA 1000

P — 1 —e *84), (10.18)
(1—e—ﬂ4)211:[1( ¢ )

For the derivation of this expression, material from Sect. 10.4 is needed. The grand
canonical curve can be calculated with results available at this point. The population
of a state in this ensemble is given by

e—BE—m)

Pk (10.19)

T 1t e b’
and the desired probability is therefore

2000

Pe= Y H(l—pj). (10.20)

10.2 Thermal Electronic Properties in the Microcanonical
Ensemble

Valence electrons arrive with an atom, and atoms will vibrate and, as discussed, will
usually have a thermal energy much larger than the thermal energy carried by elec-
tronic excitations. This is therefore the situation of a small system in equilibrium with
a bigger system which is described in Chap. 1. We can therefore use the vibrational
heat bath to find a simple expression for the contribution of electronically excited
states to the thermal properties of a particle at constant total energy. The standard
formula for the partitioning of energy between different degrees of freedom is

E
pron(E) = / p(E — &)pu(e)de ~ p(E)Zu, (10221)
0

for a system with total energy E, electronic level density p,; and vibrational level den-
sity p(E). The last approximate equality that gives the canonical partition function
of the electronic excitations is the same one that was used to calculate the influence
of electronic degrees of freedom on rate constants in Chap. 5. This result describes
to a good accuracy the electronic contribution to the total level density.
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Fig. 10.3 Dissociation energies (evaporative activation energies) for the process Au; —
Au;71+Au. Note that N here denotes the number of atoms and not the electron number. The
odd number clusters contain an even number of electrons and the D’s for these are consequently
higher than for the even numbered. Data published in K. Hansen et al., Phys. Rev. A 73 (2006)
063202

10.3 The Odd-Even Effect

One of the strongest manifestations of the size dependence of the electronic contribu-
tion to particle stability is the odd-even effect. The expression refers to the tendency
of properties of metal clusters to oscillate with period two in the number of valence
electrons. The oscillations are associated with the spin degeneracy of the electron,
and the properties affected are mainly binding and ionization energies. It was discov-
ered in abundance spectra of hot metal clusters, where the clusters with even electron
numbers have higher intensities than the odd-numbered. The phenomenon is seen
in small clusters of the alkali metals (Li, Na, K, Cs) and particularly pronounced
in the coinage metals (Cu, Ag, Au). Figure 10.3 shows the odd-even effect in the
dissociation energies of small, positively charged gold clusters.

In the simplest picture the phenomenon reflects a single particle spectrum with
equidistant levels with the standard Kramers degeneracy of two due to the electron
spin. Often there will be some level bunching in addition to the spin degeneracy that
will cause local variations in the gap, A, in the single particle spectrum.

The experimental dissociation energies for cationic gold cluster in Fig. 10.3 can
be converted to the so-called odd-even energies. We use the standard expansion of
quantities that have a size-to-size variation, consisting of a smooth liquid drop depen-
dence with size and a term that varies more or less rapidly with N (see (8.13)). The
shell structure appears to be of minor importance for gold clusters and will be ignored
in the discussion here. We will then use the equidistant level spacing and calculate
the thermal properties for this system with the spacing for doubly degenerate levels,
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(10.6). The assumptions therefore represent the ideal case of complete smearing of
levels around the Fermi energy.

If the contribution from the ionic cores is smoothly varying with size, we can find
the odd-even effect by calculating the electronic ground state energies for both odd
and even electron numbers and subtract the smooth part. With the valency z of the
material and the net charge g of the particle, the number of electronsis N = zN, — ¢,
where N, is the number of atoms. For gold we can assume that z =1 as in bulk
gold, although bulk valencies are not necessarily representative for values in small
particles. Photo-electron studies of mercury clusters, for example, show a transition
from van der Waals bound (z = 0) to metallic clusters (z > 0) at sizes of some dozen
of atoms. For gold we expect the bulk values to hold, though, mainly because of the
presence of the odd-even effect.

Let’s be alittle more precise with the meaning of the expression odd-even effect. In
the absence of the effect, the Fermi energy is a constant or a smoothly varying function
of N. The odd-even effect is defined as the variation with period 2 of the energy of
the highest occupied level (HOMO), on top of this smoothly varying Fermi level.
We can then calculate the effect in the simplified ladder level N electron systems as
follows: For the even numbered clusters N and N + 2, the HOMO energy is set to be
identical. We can choose it to be zero without any loss of generality. This is achieved
by lowering all levels, occupied and unoccupied alike, with a linear interpolation
between the two neighboring even-numbered clusters. For the HOMO energy of the
odd cluster in between these two, the HOMO level is therefore located at energy
A /2. Figure 10.4 illustrate the logic.

Defining the average of the odd and even levels as the average, we can then write
the electronic ground state energy as a smooth term, £ %» plus the staggering odd-even
contribution as

N N+1 N+2

A2
,,,,,,,,,,,,,,,,,,,, i"‘\%i A
——0— ——0—
+F
—— 0 ——0—
N
— 0 —

Fig. 10.4 The change of the populated levels with size around the Fermi energy in the simple
ladder spectrum used to determine the odd-even energy. Lines represent levels and dots electrons
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N
B0 = po _ D, (10.22)
0 =EY A .

Introducing the expression for the number of electrons, which for the cationic gold
clustersis N = N, — 1, (10.22) becomes

—1)Na—q
o _po _ D
Ey =Ey — — (10.23)
This gives rise to an electronic contribution to the dissociation energies of
0 0 _ f (=Dt~
E;n,=Ey | —Ey =Ean, + TA, (10.24)
where the smooth dissociation energy is defined as E, y, = E° No—1 — E° N,- As in

most other places it is assumed to be equal to the evaporative activation energy.
We can find A from the experimentally determined E, y,’s from the relation

1
Eqn, = 5Eanyet = Eane-1) & (=DNtA, (10.25)

when the change of the smooth term with size is ignored.

The A’s determined from the experimental data in Fig. 10.3 are shown in Fig. 10.5.
The simple Fermi gas prediction derived above is also shown multiplied by an arbi-
trary factor of two.

Equation (10.24) is the zero temperature value of the effect and the effect will only
decrease with temperature for the schematic single particle level structure we have

Fig. 10.5 The separation of single particle levels calculated with the Fermi gas approximation
(10.6) (line) and the experimental data for gold together with (10.25)
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used. The data show that the effect is in fact underestimated relative to experiment.
Several mechanisms can change the magnitude, both upward and downward. An
effect that will increase the observed gap is the tendency for levels to repel at the Fermi
energy. This can be understood with a quasi-explanation as an effect of maximizing
the binding energy. A larger gap means lower energies of the filled orbitals and
hence a tendency to a larger binding energy. The effect will make the odd-even effect
stronger than expected from our simple model. Another possible effect is that the
liquid drop energies, which implies that addition energies contain a smooth term
in addition to the electronic contribution are not really smoothly varying with size.
Indeed, small gold clusters are known to be 2-dimensional and experience a transition
to approximately spherical symmetry around the low end of the mass range measured
here. Seemingly, these effects did not have any major influence on the magnitude of
the dissociation energies in this case.

10.4 Canonical Properties of the Equidistant Spectrum

The canonical partition function can be calculated for the equidistant single particle
level system used above to model the odd-even effect. This is a model of a strongly
degenerate Fermi gas, and the system is close enough to real Fermi gasses to make
a detailed study of it worthwhile, as the data on gold in Fig. 10.5 has demonstrated.

Consider first the situation where there is no spin degeneracy. The partition func-
tion for this system can be calculated with a recurrence relation. We denote the
partition functions for N electrons in the system by Z(N), dropping the tempera-
ture dependence for ease of notation. This partition function can be written as the
sum of two contributions, Z; and Z,. One of these contribution, Z; say, is the sum
over states where the lowest single particle level is occupied, and the other, Z, is
the sum where it is unoccupied. For Z;, the sum is over configurations that contain
N — 1 electrons that are all shifted upward by A from the lowest single particle
state. Z, is therefore the N — 1 electron system with the canonical partition function
Z(N — 1), by definition, and with the Boltzmann factor e #4¥~1_ The contribution
is therefore Z, = Z(N — 1)e #4W=D_ 7, is the one where the lowest single particle
state is unoccupied and all electrons therefore shifted up by A. The term for these
configurations is therefore Z, = Z(N)e #4"_ In total we then have

Z(N) = Z(N — 1)e PAN=D 1 7(N)e P4V, (10.26)

This is rewritten
—BA(N-1)

Z(N)=Z(N — 1) (10.27)

1 —eBAN'
The exponential numerator is just the Boltzmann factor corresponding to the change

in the ground state energy on adding the last electron because the highest occupied
level in the ground state has the state energy A(N — 1). If we therefore make the
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sensible choice that the zero of energy is the ground state energy of the entire N-
electron system, the numerator becomes unity and we get

Z(N):Z(N_l)m' (10.28)
This is a very simple recurrence relation from which we calculate
X
ZN) =]] Ty (10.29)

n=1

As explained above we can, on physical grounds, let N go to infinity in this formula.
This is also clear from an inspection of (10.29) if we consider the magnitude of
exp(—nBA). Under any realistic temperatures, this is vanishingly small when n >
N. There will later be occasion to use the result with another zero of energy. The
expression then acquires a Boltzmann factor. With a ground state energy of E(N),
the partition function becomes:

o0
1
Z(N) = e PEo@ ]‘[ (10.30)

L —epna’

The partition function and quantities derived from the ladder spectrum are iden-
tical to the ones of a collection of uncoupled harmonic oscillators with quantum
energies nA, n € Z,. The thermal excitation energy of the system is

a o0 1 oo
- _eBAnyT -
E= 8ﬁ21n(1 e ham) _21—5"/34‘ (10.31)

High energy approximations for thermal energies and heat capacities will be calcu-
lated in Sect. 10.5. The heat capacity, valid for all temperatures, is given by

A 2 e—nﬂA
C, = Z (nAp) (10.32)
(1- e—”/m)
The chemical potential is calculated with the discrete version of the derivative of
In(Z) with respect to particle number.

- Z(N)
Bu=—1In <—Z(N — 1)) , (10.33)

One must use a common zero of energy when comparing systems with different
electron numbers, and it is convenient to set the single particle ground state energy
to zero in this calculation. The chemical potential is then calculated to
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or
p=AN—1)+T(l—e "), (10.35)

The leading term is constant and the last term is an exponentially small negative term
for temperatures less than a value which is on the order of the Fermi energy N A.

The almost constant value of p in this case reflects the very symmetric nature
of the ladder spectrum with respect to energy. The equation does not represent the
general case for electrons quantitatively, but other single particle spectra will show a
similar strong suppression of the temperature dependence of the chemical potential
if they are symmetric with respect to energy around the Fermi energy.

The general behavior of the chemical potentials can be understood from the Som-
merfeld expansion, which is an expansion of the thermal properties of a Fermi gas
at low temperatures, T < Tr. The expression for a property, H, of the Fermi gas
which depends on the single particle energy ¢, H (¢), is in this expansion

o ® 2 ,dH Tt 4d3H
H(e)de = H(E)de+ —T— 4+ —T
0 0 6 de

—_— + - 10.36
360 de3 e ( )

if there are no singular points in the spectrum. The chemical potential can be calcu-
lated with this expansion (see Exercise 10.4) which gives

2 dg(EF)

T
w=Ep— —T*—% (10.37)
"6 g(Ep)

where g(¢) is the single particle density of states. The second derivative is non-
positive as expected on general grounds (see Exercise 1.10. Note however, that the
system here is not included in the class treated in that problem; Paradoxically it is not
large in the sense used in the derivations in that problem, because a Taylor expansion
in temperature is not possible due to the Boltzmann factor in the last term of (10.35)).

Figure 10.6 shows the excitation energies in the canonical and the grand canoni-
cal ensembles for the single particle ladder spectrum. It demonstrates that excitation
energies are not negligible even before the temperature reaches the value correspond-
ing to the level spacing A. The inset shows the ratio of the two on a linear scale. The
heat capacity for the system shown in Fig. 10.7.

Let’s now make the problem quasi-realistic by including the double degeneracy
that represent the spin degeneracy of each single particle level. This task is made
much easier if we use the result for the non-degenerate case we have just derived.
Look at the problem as two systems of the non-degenerate type that can exchange
particles freely, only constrained by the price of the Boltzmann factor and total
particle number conservation. The partition function of the whole system, Z(N, 2),
is the product of the two partition functions, summed over all possible occupation
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Fig. 10.6 The excitation energy of the ladder spectrum in the grand canonical (full line) and
canonical (dotted line) ensemble. The inset shows the ratio of canonical to grand canonical excitation
energies vs. temperature. Temperature and energy units are both A. Note that the curve also represent
the size dependences to the extent that A scales with size as in (10.5)
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Fig. 10.7 The canonical heat capacity of the fermionic ladder spectrum with spacing A. As in
Fig. 10.6, the temperature dependence is implicitly also a size dependence through A. A few com-
binations of T, Ey and N are indicated
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numbers that conserve the total number of electrons, with the proper Boltzmann
factors as weights;

N

Z(N,2) =) Z(N — p)Z(p)
p=0

_Z[ —BEy(N-p) 1‘[ — ﬂm} |: ﬂEo(p)H } (10.38)

The ground state energies Eo(N — p) and E((p) will increase quadratically with the
number of electrons in the subsystems, N — p and p, and this makes the Boltzmann
factors that involve these energies very strongly energy dependent. The two products,
on the other hand, vary much weaker with particle number. The main contributions
to the sum are therefore the partitionings where the number of electrons in the two
subsystems are close to equal, p ~ N/2 — p ~ N /2. As before we can then extend
the products to infinity without any significant loss of precision:

0 2 N
1
Z(N,2) = <| |—1_6M> D e PEN D E), (10.39)

n=1 p=0

The sum depends on whether the system contains an even or an odd number of
electrons. The even electron numbers first. The ground state energy of the state with
the electrons partitioned as N/2 — m and N /2 + m is, relative to the absolute ground
state with m = 0:

E=A Z(Zk —1) =m?A, (10.40)
k=1

because the energy needed for the kth electron to be transferred from one column to
the other is (2k — 1) A. Including the Boltzmann factor for A /4 from (10.22) for the
odd-even energy, the total partition function for an even electron particle is therefore
equal to

o0
Z(N = even, 2) = ef4/4 (l_[ ﬁnA> Z e A, (10.41)

n=1 m=—0Q

When the analogous calculation of the ground state energy of the electron partition-
ings is made for the odd electron systems, one gets

E =m@m+ 1A. (10.42)
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Equation (10.42) reproduces the doubly degenerate ground state, as required because
m = 0 and m = —1 are degenerate. The partition function for this system is

o0 2 o0
1
Z(N = odd, 2) = e P4/ (| [ m) 3 emmpa, (10.43)
— e~ n

n=1 m=—00

At low temperatures, BA > 1, the sums that appear in (10.41, 10.43) are best cal-
culated directly by explicit summing over the few terms that are important. At high
temperatures the sum would seem like a good candidate for a calculation with the
Euler-Maclaurin formula. This turns out not to give a very accurate result. In fact,
only the first term in that formula, the integral, is non-zero to any finite order of the
expansion.

Instead we can calculate the sum with a trick. Consider the sum

oo oo
S(x) = Z e~ mimtx)BA =eﬁx2A/4 Z e—(m+x/2)2/3A EexzﬂA/AtS/(x). (10.44)

m=—00 m=—00

The two sums we are after are the special values S(0) and S(1). The sum S§’(x) is
periodic in x. This means that it can be expressed as a Fourier series. The period in
x is 2, and we have

k=00
Sy =Y qetm (10.45)

k=—00

with the coefficients c¢; determined as

1 2 , ‘
I —BA(m~+x/2)"—2mikx/2
cx = 2/0 E e dx. (10.46)

m=—0Q

We can add 2z times an integer to the argument of the exponential and write
exp(—2mikx/2) = exp(—2mik(m + x/2)). Interchanging summation and integra-
tion gives a sum that covers the real axis precisely once. This gives us

[ —BA(x/2)2=2mikx/2
a=-] e dx. (10.47)
2 ) w

The integral is calculated by completing the square and integrating the resulting

Gaussian. The result is

1/2

T 2k

ca=|— e (10.48)
BA

Introducing these coefficients into the Fourier series we get
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T 1/2 s 7r2k2
SO)=|— 1+2 TR, 10.49
(0) (;m) ( ;e ) (10.49)

and

12 00 2
NOET (ﬁ%) (1 +2Z(—1)ke—"rm) : (10.50)
k=1

The temperature appears in the numerator in the (negative) argument of the expo-
nentials in these two sums, and the calculation has therefore provided us with a high
temperature expansion of the sums.

‘We now have both a high and a low temperature expansion. With a sufficient num-
ber of terms included, these have an overlap where both are accurate. The required
number of terms for either expansion is low because of the square integers and 72
in the exponential in the sums.

The expression for the partition function for odd electron numbers becomes

n=1

2
o0
1
Z(N = odd, 2) = e 4/4T (]—[ l—m/T) x (10.51)
i e—l

(%)1/2 ed/4T (1 —2e 5 2t 4 ) AST

(24 2e724/T 4 2e704/T ... ) AZT,

and for even electron numbers:

1 —en4/T
n=1

00 2
1
Z(N = even, 2) = e2/*7 (]‘[ —) x (10.52)

72T

(1) (14267 % 4245 +.) AT
(14+2e74/T 4 2e44/T ... A>T.

The ground state energies are included explicitly in these expressions, and it is there-
fore possible to calculate the odd-even difference in free energy at finite temperatures
with no further ado. In the low temperature limit the ratio of the two partition func-
tions is:

Z(N =even,2)  ,,p 1+ 2e~4/T 4 pe=44/T

e*(chcanodd)/T — — s
Z(N = odd, 2) (242e724/T 4 2e-64/T)

(10.53)

or to next-to-leading order

A
Feven - Fodd ~ _E + Tln(2) (1054)
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Fig. 10.8 The difference in free energies of two particles with an even and an odd number of
valence electrons. The free energies are given in units of the level spacing A. The dashed line is the
low temperature approximation, (10.53) and the dotted line the high temperature approximation in
(10.56). Both the low and high temperature limit include the first two terms in the expansion of
the partition functions. The full line is based on the numerically exact summation of the partition
functions

For the high temperature limit we have

1 4+2e 5 + 20475
o~ (Fesen—Foad) /T _ oA/4T +2e :1 +2e ”: (10.55)
1 -2~ +2e 4%
and correspondingly
A 2
Feven — Fodd ® —— — 4Te_TT- (10.56)

4

The calculated difference in free energies is shown in Fig. 10.8.

10.5 High Energy Level Density of the Equidistant
Spectrum

In the previous section the odd-even effect was calculated as a function of the temper-
ature. The motivation for a calculation of canonical properties for a microcanonical
system was given in Sect. 10.2, where it was shown that the microcanonical elec-
tronic properties can be converted into canonical with an accuracy which are often
sufficient in applications. Occasionally, however, one needs also the level density.
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It is even essential when the thermodynamics involve the electrons alone, as in the
subject of Chap. 11.

We will therefore calculate the level density of the non-degenerate spectrum with
equidistant level spacing, which will continue to stand as the paradigm of a Fermi
gas. The high energy part will be calculated here and the low energy limit will be
computed later with a numerical procedure which will also be developed.

The term ‘high energy limit’ means that the level spacing is small compared with
the canonical temperature;

AST. (10.57)

We can use the general results in (3.46,3.47) that express the level density in terms
of canonical values. For this purpose we need the canonical partition function, the
thermal excitation energy, and the heat capacity. The partition function is already
known (10.29), and the other two quantities are calculated from the partition function
by the standard procedures.

The logarithm of Z is
o0
_ —BNA
In(Z) = In (11—[1 oA ;m) Z In(1—e V%), (10.58)

where the infinite number of particles indicate an infinitely deep Fermi sea. From this
point on the calculation reduces to an application of known operations and is shown
in details mainly to give an example of these procedures. The reader who does not
need this example and trusts the calculations can proceed to the result in (10.63).

With the help of the Euler-Maclaurin formula we can convert the sum in (10.58)
to an integral plus additional small terms:

o0
1
maz_/lquw%ﬂm—imeﬁﬂ (10.59)
1
1d 1 d
— —In(1—e4 ————In(1—¢4
oo N~ 70ga =) |+

We will calculate this to first order in SA. This does not account for all terms
up to this order, because the Euler-Maclaurin formula is an asymptotic expansion
and not a Taylor series. Some small zero and first order contributions will therefore
not be included. The last three terms given in (10.59) are expanded to first order in
BA to give

BA 1

—1mwAH-ﬁA+i————

. (10.60)
12 24 360

The integral in (10.59) is calculated by partial integration
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oo B o > BAxe PAY
_/] In(1—e ™) dx = —[xIn (1 —e 4] + | — e pax &F

1 (10.61)
The last integral is written as the difference, floo = fooo — fol. The first of these is
calculated by expanding the denominator in the exponential function, integrating
and resummation of the series with the result £(2)/8A, where ¢(2) = m2/6 is the
value of Riemann’s zeta function for the argument 2. The integral from zero to one is
calculated with an expansion to next-to-leading order in 8 A, which is a meaningful
expansion here because we consider the high temperature limit. Expanding also the
first term in (10.61) to the same order gives the integral

-~ /ooln(l —e ) dx = L L In(BA) —1— 1A (10.62)
, 6 BA 47 '

Adding (10.60, 10.62), the total partition function is then to this degree of approx-
imation equal to

@z =~ b Bay— 3L 1y, (10.63)
n(Z)=——+=1In ——=— — —BA. .
6BA 2 360 24

As the reward for going through this exercise we can now calculate physical
quantities. The (canonical) thermal excitation energy is

alnz)  n? 1 A =272 T A
_ - - 4= (10.64)

) == =6pa 25 2" 62 2 :

To find the level density we need to translate this expression into the relation between
the microcanonical excitation energy, E, and temperature, 1/8 (see Chap. 3):

(E(B) = E+1/B, (10.65)
which gives us
E_n2T2 3p A g [OAEL 9 (10.66)
6A 20 24 N T :
and the heat capacity
T 3 T
Co="——Z2~T 2 (10.67)
3A 2 3A

Using (10.63, 10.66, 10.67) in the expression for the level density

p = LeﬂEZ(ﬂ), (10.68)

27 C,
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Fig. 10.9 The level density of electrons in a system with equidistant single particle states in units
of the level spacing, A. The figure shows the numerically exact result from an calculation with
(10.84), of which the first few are given in Table 10.3, the approximation in (10.69), and the level
density of Bethe, (10.71). These curves all appear as a single line. The curves do not include any spin
degeneracy, as is clear from the derivation. The inset shows the error in (10.69) relative to the exact
result calculated with (10.84). Note that this is a conservative comparison. Including more terms
will give a significant improvement already from the smallest excitation energy (see Table 10.3)

we finally get
c (&)1/2
p(E) ~ £° ) (10.69)

where
T 2 —-1/2
c=— (—n3) e 3317300 — (0.14426 .. .. (10.70)

This level density is shown in Fig. 10.9 together with the exact result calculated later
in this chapter (10.84). The inset shows the relative difference between the exact
result and the one derived here. The error decreases above the energies shown. The
result of H. Bethe is also included in the plot. It is very similar to the one calculated
here;

1 (2§25)1/2
G/

In fact, this only differs from the result derived here by the factor 0.14426... x
VA8 =0.99949 . ..

If the simple estimate for A in terms of the Fermi energy and the number of
electrons in (10.5) is used, one has

(10.71)

12
p(E) ~ SelmH) (10.72)
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The use of (10.5) for the level spacing instead of the one where spin is taken into
account is warranted because we are concerned with the high energy result here, and
the total average level spacing is what counts for that limit. One should of course be
aware that the approximation is less accurate for the doubly degenerate single level
case than for the non-degenerate case calculated here.

10.6 Magnetism: The Superparamagnetic Cluster

The purely academic desire to understand magnetism in all its fascinating manifes-
tations is happily married to its technological importance, which is derived from
information technology applications in particular. The continued reduction in size
of the transistors in computers, in the form of the often-quoted Moore’s law which
states that the density of components on chips double each 18 months, is paralleled
by the increasingly dense data storage capability of the magnetism-based devices
attached to the data processing units. The decreasing size of such components makes
the research of the magnetic properties of nano-sized particles more than just interest-
ing. Although applications tend to be thought of as firmly anchored in the solid state,
with quantum computing one possible future exception, fundamental properties can
with benefit be studied in gas phase.

Magnetic fields are intimately connected with electric fields and moving charges,
as demonstrated by H.C. @rsted and M. Faraday and summarized by J.C. Maxwell in
what are now known as Maxwell’s equations. With the connection between moving
electrical charges and magnetism in mind, it is therefore not surprising that metals
with their itinerant electrons can have non-trivial magnetic properties.

The fundamental ingredients of magnetism are the magnetic moments and the
interaction between them. The magnetic moments appear classically from circulat-
ing electric currents. However, the classical orbital electron motion can not maintain
a permanent magnetic moment of any material, as shown by N.Bohr, and the mag-
netism of materials is fundamentally a quantum phenomenon.

Both orbital motion of the electrons as well as the spins of the electrons will
contribute to the magnetic moments. In principle also the nuclei will contribute,
although the amount is very small amount compared to the electrons’, because the
intrinsic magnetic moments of particles are inversely proportional to their mass.

The simplest manifestation of magnetism is probably ferromagnetism. In a ferro-
magnet, the magnetic moments align and the combined magnetic field from all the
moments combine to a macroscopically observable magnetic field, strong enough to
keep school schedules and baby pictures fixed to refrigerators.

There are other manifestations of magnetism than ferromagnetism. One is anti-
ferromagnetism, which describes situations where moments are anti-aligned so the
total moment averages out to zero. A closely related type is called ferrimagnetism,
which is the word used when moments are anti-aligned but the moments in the two
directions are of different size. This produces a net macroscopic magnetic field.
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Two other types of magnetism arise as the response of materials to an external
magnetic field. In the absence of a field, no residual magnetism of these types exists
in these materials. One is diamagnetism, which is the word for the magnetism of a
material that is repelled by an external magnetic field. The other is paramagnetism,
which denotes the state of matter attracted to an external magnetic field. For diamag-
netism, the elementary magnetic dipole moments tend to have opposite direction of
the external field, and for paramagnetic substances they tend to point in the same
direction.

Bulk ferro-, ferri- and antiferromagnetism is an example of spontaneous symmetry
breaking, at least in the first, idealized description. In the absence of any internal
structure, a macroscopic magnetization can point in any direction relative to the
(macroscopic) piece of material it is living in, but it does point in a specific direction,
and this direction is not fluctuating. This is spontaneous symmetry breaking. In
reality the breaking of the symmetry is not completely spontaneous, because there
will be directions that are preferred because of the lattice structure, for example, or
the existence of a microcrystal structure in the macroscopic piece of material. Also
the shape of the material will usually favor a certain direction of the magnetism,
even if all other effects were absent. It is pretty difficult (and not too clever) to
use a compass needle magnetized perpendicular to its long direction, because the
lowest energy state for the spontaneous magnetization is along the long axis. A
compass needle leaves you with two degenerate orientations of the magnetization.
Other symmetries of an object may produce more degeneracies. But for a compass
needle, once it is magnetized, the direction of the magnetization stays put, North is
North and not suddenly South, even if the energy of the reversed field would be the
same.

The quantitative description of ferromagnetism is a good deal more complicated
than simply placing atomic magnetic moments close together and deriving their inter-
action energy from the free atom moments. This is easy to see by a comparison of the
calculated interaction energy between two magnetic dipoles with the experimentally
measured Curie temperatures. The Curie temperature of a material is the temperature
at which a spontaneous magnetism appears or disappears when the system is cooled
or heated. To calculate the Curie temperature in the simple-minded fashion, consider
the fundamental interaction between a magnetic moment p and an external magnetic
field B. It is

E=-u-B. (10.73)

The magnitude of the magnetic dipole moment, 7z, of an atom is on the order of the
Bohr magneton, m = |m| ~ ug = 9.3 - 10724 J/T = 0.67 K/T, and the interaction
energy between two such moments with magnitudes m, m, at a distance r apart is,
with o the vacuum permeability, on the order of

mymy 5 T9KA3

~ popyr = S5 (10.74)

V ~
Mo 3
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Table 10.2 Measured Curie Element Tc (K)

temperatures of elements
Co 1394
Dy 88
Er 19
Fe 1043
Gd 292
Ho 20
Ni 627
Tb 221
Tm 32

It is difficult to put two atoms any closer than a few A, and for interatomic distances
above 1 A, say, this interaction energy will therefore be below 10 kelvin. A more
precise estimate requires the inclusion of some factors given by angular momentum
quantum numbers. Such quantum numbers are on the order of £ ~ Z!/3, where Z is
the atomic number, and will therefore not change the estimate seriously.

Based solely on this estimate of the strength of the dipole-dipole interaction,
one would expect that the magnetism will be completely washed out by thermal
fluctuations at ambient temperatures. As experience tells us, this is not the case. This is
also seen from Table 10.2, where some experimentally measured Curie temperatures
are listed, showing that magnetism will in fact survive to temperatures in excess of
1000K in a few cases, indicating a very strong coupling, high above the above naive
estimate. We will set the questions about the origin of such interactions aside and
simply use effective magnetic moments as input parameters in the following.

Let’s now consider the simplest description of the thermal properties of bulk
magnetism, which is given by mean field theory. The Hamiltonian is, in the absence
of an external magnetic field, represented by the single parameter expression

H = Z —Jsisy (10.75)
ik

where the s; are the atomic spins and the sum runs over all pairs of nearest neighbor
spins. All the electron dynamics that change the interaction from the simple values
calculated with the Bohr magneton, g, and the Landé factor g is absorbed into
the value of the effective coupling constant J, and we only retain the semiclassical
two-state description of the orientation of the magnetic moments arising from the
nature of the electron’s spin, i.e. s; = +1/2.

The mean field theory consists in replacing the pair-wise average (s;s;) with the
factorized average (s;)(s;) = (s)2. The thermal average of the orientation of a single
spin can then be calculated as the solution to the mean field equation:
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Fig. 10.10 The left (dotted
line) and the right hand side
(full lines) of (10.76) for
different temperatures; From
below 0.5, 1, 2, 10 times the
critical temperature

LHS, RHS Mean Field Equation

1 P2Is) _ o—p2dIs)
= D oB2dIls) T e PIG)

(10.76)

where d is the dimensionality of space and 2d therefore the number of nearest
neighbors in the regular lattice assumed here.

Equation (10.76) always has the solution (s) = 0, which is the solution found in
the high temperature, unmagnetized phase. In addition, for sufficiently low temper-
atures, it has a solution for some s in the interval 0 < s < 1/2, which represents
the magnetized phase. When the solution exists, the magnetized phase is the stable
one, because the free energy of this solution is lower than that of the unmagnetized
phase. It has only one of these solutions because the right hand side of (10.76), which
is essentially the hyperbolic tangent, is concave when considered a function of the
magnetization. The behavior of (10.76) is shown in Fig. 10.10.

We can then find the critical temperature, where magnetized material turns to
unmagnetized and vice versa, by equating the derivatives of the left and right hand
sides of (10.76) at (s) = 0. This gives the critical temperature

T.=4dJ. (10.77)

This is the predicted Curie temperature from mean field theory. The magnetization
given by the solution of (10.76) is shown in Fig. 10.11 as a function of the temperature.
The onset of this magnetization is not sharp. Below the Curie temperature, there is
some amount of thermal fluctuations which will reduce the magnetization from the
maximum value. This is one feature that will survive a more sophisticated treatment
of the question of bulk magnetism. It is associated with diverging correlation lengths
that obey scaling laws and that vary with the difference in temperature to the Curie
temperature to some power. The applicability of diverging lengths to small systems
is limited and we will leave that subject.
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Fig. 10.11 The magnetization as a function of temperature according to (10.76)

In addition to these more or less quantitatively understood fluctuations of indi-
vidual spins away from the direction of the total moment, adding a little fluctuation
to the magnitude of the total moment and its orientation, the total moment itself can
also have a fluctuating direction. In the bulk, this is manifested as the propagation of
waves in the polarization direction and are called spin waves. They are the so-called
Goldstone bosons that always appear when a continuous symmetry is broken.? They
have a linear dispersion relation which allows arbitrarily small excitations; Just make
them with long enough wavelengths and they will be as energetically cheap as you
like.

A spin wave in a small particle will experience no restoring force from the sur-
roundings, and it is to a macroscopic spin wave what a pendulum in free fall is to a
pendulum stationary on earth; no restoring force, no oscillatory motion. Obviously
the pendulum will have to be small and kicked around and damped by random ther-
mal motion, and not by a coherent, externally imposed excitation for the analogy to
hold.

It is therefore not surprising that the spontaneous symmetry breaking is different
for a finite system; it is simply a lot easier for a spontaneous fluctuation of the
direction of the total moment to wander off if the system is small.

This Wanderlust is can be partly inhibited by the existence of domains, which is
one of the features of bulk magnetism. In these domains the local magnetic moments
point in the same direction which, however, differs from that of other, nearby domains.
There is, fortunately, a smallest domain size. It is determined by the balance between
the surface tension related to the formation of the domain walls and the bulk term

2Well, most of time, at least. The mechanism that gives masses to particles, named after P. Higgs,
avoids this.
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associated with the electrostatic energy of a homogeneous magnetic field. The result
is that domains are created spontaneously with sizes typically between 10nm and
1 pwm, with the average size depending on the material. Smaller particle than this
will not be able to accommodate more than one domain. Consequently there are no
magnetic domain structure in nanoparticles. This simplifies matters considerably.

We will continue with disregarding not only domains, which is justified, but also
the type of structural symmetry breaking that gave rise to the domains, and consider
a nanoparticle a spherically symmetric system. Although this may appear like the
spherical horse approximation, one can expect it to be reasonably good for small
particles. If we proceed with this assumption, we will have a cluster in which the
direction of the total magnetic moment can fluctuate thermally or even quantum
mechanically. Without an external magnetic field, the direction of the magnetization
will diffuse around on the surface of a unit sphere. Effectively, the bulk broken
symmetry is restored in small particles.

This description is called the superparamagnetic model. The word paramagnetic
refers to the fact that a magnetic orientation is induced by an external magnetic field,
and that this orientation is parallel to the field, vs. the anti-parallel diamagnetism. In
this sense a magnetic nanoparticle behaves as a giant paramagnetic atom, with two
important differences. One is the magnitude of the moment, which can be consid-
erable, but which amounts to a quantitative difference. The other is the presence of
excitable internal degrees of freedom in the particle, which is a qualitative difference
from an atom. It should also be remembered that, in spite of the para-prefix, the
origin is still the intrinsic ferro- or ferri-magnetism of the particle which aligns the
magnetic moments inside the particle.

The interaction energy of the magnetic particle in an external field is therefore
described by an equation similar to (10.73) with the substitution of the correct mag-
netic moment,

E=—N(m) - B, (10.78)

where N is the number of atoms in the particle, and (i) is the average magnetic
moment of a single atom along the axis of the resulting total moment. With the angle
6 between the magnetic field and the total moment of magnitude p, the energy is

E = —NuBcos(0). (10.79)

This assumes that the moments can be treated classically without concerns for quan-
tization of the projection of the moment. For large moments this should be an accept-
able procedure.

The phase space associated with the energy in (10.79) is sin(9)d6d¢ where ¢ is the
azimuthal angle. If the particle has enough internal energy and angular momentum
to exchange both of these freely with the magnetic moment, the degree of freedom
associated with the magnetic moment in an external field can be described in the
canonical ensemble, as discussed above and in Chap. 5 in the context of unimolecular
rate constants. The canonical partition function is
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We find the average projection of the moment along the magnetic field (subscript L
for laboratory) as

10lnZz T efuB 4 e—Bub T ehB/T 4 o—uB/T
(ur) = = (

"B o B Momyemm M\ g T amm ot
(10.81)
Figure 10.12 shows the behavior of the term in the brackets of (10.81).
Experimentally, the average moment calculated in (10.81) is measured by sending
a beam of the particles through a Stern-Gerlach type of device, where a strongly
inhomogeneous magnetic field deflects the particles. The deflections are minute with
the available magnetic fields and the deflection angle is to a good approximation given
by
__Av, 0B

l
o —(ur(B, T))—, (10.82)
v 9z mv

C

where [/ is the length of the Stern-Gerlach magnet, v is the speed of the beam from
the source along the direction of the magnet, and m the mass of the particle.
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10.7 Numerical Methods

In the calculation of electronic partition functions a direct summation is only possi-
ble insofar as one knows the energies and degeneracies of the electronic spectrum.
Although this is generally not the case, there are a few cases of interest where the
spectrum is actually known. If one is concerned with a reaction like

Ay — An_an + Aan, (10.83)

and AN is 1 or 2, the electronic excitation spectrum of A oy will often be known
from spectroscopy. Then it should be included in the calculation of the product level
density, where it replaces the degeneracy factor g in (5.10, 5.12). This, at least,
solves half the problem. In other (rare) situations a direct analytical calculation is
possible because the spectrum can be realistically approximated with a sufficiently
simple model like the equidistant single particle state spectrum, where the partition
functions can be given in closed form. Truth be told, these two cases do not cover a
lot of ground.

A third approach is to make a direct numerical, quantum mechanical calculation of
the excitation spectrum, and use that as the input for a calculation of the level density.
This use of excitation spectra is restricted to situations where the quantal structure
can be reliably described with single particle states. A description of excited states
as combinations of single particle excitations is not rigorously true, but in certain
cases the single particle states give a good representation of the ground state and,
one must expect, also of excited states. This seems to be the case for pure metals,
for which the delocalized electron mean field description reproduces a number of
experimental features.

Irrespective of shortfalls of rigour we proceed by using a single particle spectrum
to generate the level density. The procedure we will suggest will solve your problems
up to fairly high particle numbers and excitation energies. The idea is similar to the
one used for calculating the partition function for the equidistant spectrum; Divide
up the level density into two parts, one counting states where a given level contains
an electron and one where it does not. The total level density is the sum of these
two parts, because they are mutually exclusive and at the same time exhaust all the
possibilities. The procedure is used recursively.

We label the levels and define a level density, called p(E, n;, N), which is a
function of the energy E, the number of electrons N, and of the number of levels,
n;, that have been included in the calculation of that specific level density. The
single particle levels are listed and numbered and the value of n; specify precisely
which levels have been included and which not. Levels with indices above n; do
not contribute to the value of p(E, n;, N), irrespective of the excitation energy. The
labelling of levels does not need to be in order of increasing energy, although for
numerical reasons it is often convenient to do so. We then have the recurrence relation:

p(E,n;,N)=p(E —¢&p,ny—1,N—1)+p(E,n; —1,N). (10.84)
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With a proper initialization, the function can be calculated numerically exactly only
for excitation energies up to the highest level provided as input. In practice the
accuracy is very good to much higher energies, though.

The calculation is initialized with the boundary condition

N—1
p(E,N,N) =34 (E - Z Ei) , (10.85)
i=0

which expresses that there is one way to fit N electrons into N levels, and with
p(E,n;,0) =1, (10.86)

The functions for N > n; are all zero because the Pauli principle forbids such states.
The procedure is illustrated in Fig. 10.13.

The level density of the equidistant spectrum calculated with this method is shown
in Fig. 10.9. Table 10.3 gives the degeneracies of the first excited states of the spec-
trum, which can be useful in calculations where the excitation energy is not suffi-
ciently high to use the high energy approximations derived in Sect. 10.5. Figure 10.14
shows another application of the method, the lowest part of the Cg electronic exci-
tation spectrum.

Canonical quantities can be calculated once the level density is known (re-read
Chap. 1 if this is not clear), but it is possible to modify the procedure in (10.84) to
calculate canonical quantities directly. It goes like this: For a given single particle
spectrum, define the canonical partition functions for N electrons distributed into

Fig. 10.13 Tllustration of the
computational flow in the
recurrence relation in
(10.84). Every dot represents
a function of energy,
specified with respect to N
and n;. The arrows indicate
the two contributions used to
calculate the target level
density at the endpoint of the
arrows. Only points where
the level density can take
non-zero values are shown
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Table 10.3 Degeneracies of

R - E/A g(1) 9(2, odd) g(2, even)
the fermionic equidistant
spectrum. E /A is the scaled 0 1 () 2 1
excitation energy, g(1) is the 1 1 (1.111) 4 4
degeneracies when all single 2 2 (1.882) 12 9
particle levels are singly 3 3 (3.038) 24 20
degenerate,. g(2, odd) is the 4 5 (4720 50 4
corresponding number for
single particle levels with a 5 7 (7.114) 92 80
degeneracy of two and an odd 6 11 (10.46) 172 147
number of electrons and 7 15 (15.07) 296 260
g(2, even) the same for an 8 2 (21.34) 510 445
even number of electrons. ’
The term in the bracket is the 9 30 (29.77) 840 744
number calculated with the 10 42 (40.98) 1372 1215
analytical method presented 11 56 (55.77) 2176 1944
in (10.69), but with all terms 12 77 (75.13) 3424 3059
shown in the preceding 13 101 (100.3) 5268 4740
derivation included
14 135 (132.7) 8040 7239
15 176 (174.3) 12072 10920
16 231(227.2) 17976 16286
17 297 (294.4) 26428 24028
18 385 (379.2) 38564 35110
19 490 (485.6) 55680 50844
20 627 (618.6) 79846 73010

the n; first single particle levels, Z(n;, N), in analogy to the definition of the level
densities above. We have the relation

Z(n,N)=Z(n, —1,N)+e P Z(n, —1,N — 1), (10.87)

that is, either the new level n; with energy &, is occupied or it is unoccupied. As
a technical remark, note that if the summation is performed horizontally in a n;, N
diagram, one reduces the storage needed and one can do with a few arrays of a size
equal to the number of levels included in the calculation.

This algorithm is completely analogous to (10.84) if the shift in the energy argu-
ment in the equation is replaced with the Boltzmann factor. It was first suggested
for the calculation of nuclear level densities where a knowledge of the excitation
spectrum is of much greater importance than for most systems containing electrons,
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Fig. 10.14 The electronic level density of Cgp, based on a Local Density Approximation (LDA)
calculation, courtesy of K. Yabana. The inset shows the same on a logarithmic scale. At the low
energies shown the curve is clearly a non-trivial function. At higher energies (not shown) the strong
fluctuations disappear and the curve resembles that of a Fermi gas

because electrons usually come with an atomic nucleus (see Chap. 11 for a short-lived
exception) which participate in low quantum energy vibrational excitations whereas
all excitation energy in nuclei is located in excitations of the nucleons. The algorithm
is occasionally rediscovered.

An equation similar to that for the partition function can be written down for the
calculation of the energy integral,

FZE/Ep(E)exp(—ﬁE)dE. (10.88)

That this integral is really equal to EZ can be seen by division by Z. To establish
the recurrence relation for this quantity, we consider the recurrence relation for the
average excitation energy, E (n;, N). The weighted contribution from the n; — 1, N
configuration is

— Zn;—1,N)
Em—1,N)———, (10.89)
Z(n, N)
and the contribution from the n; — 1, N — 1 configuration is
_ Zng—1,N —1
(E(n,—1,N =1+ en,)ue*ﬂ% (10.90)

Z(n, N)

Adding the two we therefore have
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— — Z(n;—1,N)
E(m;,N)=E@m —1,N)——— 10.91
(n;, N) (ny ) Zo ) ( )
— Z(n —1, N — e P
Em—1,N—-1)+g,
+(E o) T

This can be rearranged to express it in terms of the energy integral E Z, in a form
that may be more convenient:

EZ,N)=EZ(m — 1, N) + [EZ(nj — 1, N = 1) + &5, Z(nj — 1, N — D] e Pém.
(10.92)
The average canonical thermal energy is then

_ EZ(n;(max), N)

(E) = Z(n(max). N) (10.93)

where n;(max) is the number of levels included. From the thermal energy and the
partition function, also the entropy can be calculated.

The algorithm is very efficient if only a few temperatures need to be calculated,
which you see from the fact that the arrays have one index less than the similar
algorithm for the level densities, corresponding to one less loop in a code.

We can also find the average square of the energy, which is used to calculate heat
capacities, by defining the analogous function E2Z and replacing E with E? in the
preexponentials in (10.91). After rearranging we have

E2Z(n;, N) = E2Z(n — 1, N) + [E2Z(n; — 1, N — 1) (10.94)
+ 2(ey, —eN)EZ(n; — 1, N — 1)
+ (ew — en)*Z(n — 1, N — D)]e ™ en=o0),

The implementation of both of these algorithms requires only a few additional lines
to the code used to calculate Z.

One useful computational feature which is pays to implement should be men-
tioned. It is related to the ground state energy. This energy changes every time an
electron is added to the system. One prefers to keep the ground state energy equal to
zero to avoid over- and underflow problems in the computer, which are potentially
very severe when exponentials of numerically large numbers are involved. This is
accomplished by adjusting (10.87, 10.92) to the following:

Zn;, N)=Z(n, —1,N)+ Z(n, — 1, N — 1)e Pen—em) (10.95)
and

EZ(n;,N)=EZ@m; —1,N) + (10.96)
[EZ( — 1, N — 1) + (e, —en)Z(n; — 1, N — D) e Plem=e0),
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After we have seen that we can calculate the thermally average of the zeroth, first
and second moment of the energy in the canonical ensemble, it is clear that we can
calculate whatever moment we like. The next extension of the method is to calculate
whatever quantity associated with the state of the system, i.e. properties that can be
described by the single particle wave functions. Consider a generic quantity g. Every
single particle state has the associated value g;. It can be energy as above, the density
at some point in space or the root-mean-square extension of the wave function. The
recurrence proceeds as

GZn, N)=qZ(n; — 1, N) +[qZ(n; — 1, N — 1) + g, Z(n; — 1, N — )] e Pén.
(10.97)

10.8 Electronic Shell Structure

The picture of metal particles as containers of free, independent electrons is not
a sufficient description of levels across the whole metallic section of the periodic
table. For some elements, mainly the alkali metals, it is nevertheless a very good
starting point for a description, also when one wants to understand the effects of
thermal electronic excitations. This is true both for calculations of situations where
the equidistant spectrum is relevant and when electronic shell structure is.

Electronic shell structure is manifested experimentally in several ways. One is
sawtooth-like variations with size of the ionization energy, another is a systematic
variation of the chemical reactivity with size, and yet another are particularly high
abundances for particles with certain number of valence electrons. For the alkali
metals these high abundances coincide with the shell closings, corresponding to
the so-called ‘magic numbers’ which are 2, 8, 20, 40, 58, 92,.... The increased
abundances for clusters with these electron numbers is a direct consequence of the
increased binding energy induced by the shell structure, by the effects derived in
Chap. 7.

The origin of the shell structure, in turn, is the quantization of the motion of the
valence electrons in a spherical confining potential. There is a certain amount of
degeneracies associated with a spherical potential. As a start, one has the angular
momentum degeneracy one learns about in introductory quantum mechanics courses.
But the degeneracy is actually higher. The reasons for the higher degeneracy, which
is only approximate, can be understood with reference to semiclassical quantization.
This is another of these interesting phenomena we must sadly refer to another day. For
our purposes it is sufficient to know that shell structure is associated with a bunching
of single particle levels and that a shell can contain a large number of single particle
states. When a shell is filled all states in a bunch are occupied and an added electron
must to go into a new shell with an energy which is higher than the average HOMO
energy. This gives a higher than average binding energy of the latest electron added
to the shell, and a lower than average binding energy for the first electron to be added
to a shell.
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The picture is very similar to the odd-even effect, with the difference that shell
structure involves more than two electrons per shell. And for the same reasons that
even numbered clusters are more stable toward loss of an atom, i.e. has a higher
dissociation energy, closed shell clusters will also have a higher than average disso-
ciation energy, and vice versa for the cluster with one or a few electrons in the next
shell.

The shell structure thus causes the binding energies to vary non-monotonically
with size. The variation is summarized by the shell energy, Ej.;; n, Which is added
to the bulk and surface contributions,

Ey = —AN + BN*” + Egu v, (10.98)

as discussed in Chap. 8. By definition, Ej.;; n oscillates around zero and averages to
zero when averaging over a sufficiently wide range of sizes. An odd-even effect may
also be present. It does not appear in the calculations used as input in the example
given below, though.

The shell energy has an approximately parabolic shape between two shell closings.
This is a consequence of the general trend of a single particle energy level to decrease
when the size of the confining potential increases and the depth of the potential
remains unchanged, described in (10.1). To understand this quantitatively, make the
simplification that a shell is a single, highly degenerate level with energy E, (n). This
level decreases smoothly with the total number of atoms in the particle and this size
dependence can be linearized as a function of the electron number, #,

dE,(0)

Ey(n) ~ E4(0) + N

n, (10.99)

with dE,(0)/dN < 0. The total energy of the electrons in the shell is then the
occupation number times the energy, or

,dE,(0)

Eg o =nE;(n) ~ nE,0) +n N

(10.100)
Because the second order term is negative, the shell closings have the (locally) lowest
binding energy. This gives the shell energy (schematically) as a function composed
of a number of parabolas with negative curvature, joined at the shell closings.

This does not reflect reality entirely truthfully, because an unfilled shell will
deform away from the spherical shape and remove the degeneracy by the action
of the Jahn-Teller effect. The level splitting caused by this deformation may be sig-
nificant, and for alkali metal clusters the deformation acts to reduce the shell energy
by a factor of two, mainly affecting the mid-shell particles. We will stick with the
spherical particles here in order to illustrate the finite temperature effects.

These considerations can be made more quantitative and are borne out by cal-
culations, both with Density Functional Theory (DFT) and with the simpler type
of calculations where the Schodinger equation is solved in a mean field potential.
The result of one such calculation is shown in Fig. 10.15, together with excitation
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Fig. 10.15 The thermal properties of electronic shell structure of small and medium size sodium
clusters. The curves are, from top to bottom, a the shell energy as defined in (10.98), shifted upward
by 10eV for display purposes, b the entropy times temperature for the temperatures £ x 100K,
k=1,2,...,10, shifted upward by 3 eV, c the thermal energy at the same temperatures and d the
electronic free energy, ' = E — T'S. The free energy has its zero at the ground state of the particle
in question. The shell energy is calculated in H. Nishioka, K. Hansen and B. R. Mottelson, Phys.
Rev. B 42 (1990) 9377

energies and entropies, calculated with (10.95, 10.96) using the single particle levels
calculated with a mean field potential of the Saxon-Woods type. The potential has
the form

Vo

L +exp((r —ry)/a)’

V(r) =— (10.101)

where, in this application for sodium clusters, the parameters are Vo = 6eV, ry =
rNY3 r =225 Aanda = 0.74 A. The potential is basically a spherical box with
a soft edge that interpolates smoothly from — V) to zero over the distance a.

The top curve in Fig. 10.15 is the ground state shell energy, En.n n, With the
concatenated parabolas clearly visible. The entropy at low temperature and/or small
particle sizes is strongly correlated with the shell energy (top and next-to-top curves).
At high temperatures and/or large sizes this correlation tends to be washed out. The
correlation appears because the open shell particles, those with a number of valence
electrons between shell closings, have a degenerate or nearly degenerate highest
occupied level; there is room for N; electrons in the shell but it is only occupied
with less than N electrons. This gives rise to a non-zero entropy already at zero
temperature. If the states in a shell were completely degenerate, which is not the case
for this potential, the entropy would be given by binomial coefficients
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S=1In <NS> , (10.102)

n

which peaks at n = N /2 with the value S = N;In2. Hence the term 7S in the
free energy is largest mid-shell and almost vanishes at the shell closings at low
temperatures.

The excitation energy has a more complicated behavior. At low temperatures the
mid-shell particles are the ones where electrons can be excited thermally because
they have a spectrum composed of a number of closely spaced levels. When the tem-
perature is increased, the excitation energy of these mid-shell particles will increase
slower because the empty states in the shell are already explored and it requires a
relatively costly and therefore rare excitation of an electron to a new shell to increase
the average excitation energy. At the temperatures where electrons in mid-shell par-
ticles begin to be excited, also electrons in the closed shells will begin to get excited.
The gain in entropy is higher for closed shell particles than for mid shell particles
and the degree of excitation will therefore be higher for electrons in closed shell
particles.

At very high energies, the shell structure in the entropy is completely washed out
and only the excitation energy has any shell structure. This structure matches the
shell energy but has the opposite sign. This gives us a high temperature free energy
with a shell structure which is a mirror image of the shell energy. Because this free
energy is measured relative to the electronic ground state of the respective particles,
the use of a common zero of energy for all particles will then give an almost vanishing
shell free energy at high temperatures, as expected intuitively.

10.9 An Excursion into Bose-Einstein Statistics

The properties of strongly degenerate electron systems depend on the spin of the
electrons in a crucial way, because the spin determines the statistics the particles obey.
Bosons (particles with integer spin) will behave completely differently from fermions
because one quantum state can accommodate more than one particle, infinitely many,
in fact. We can calculate thermal properties of bosonic systems with a method very
similar to the one used for fermions, with similar reservations on the description of
the total energy in terms of single particle levels. The results are not at all directly
useful for the description of excited valence electrons, but the idea has so many
parallels with the fermionic procedure that it makes sense to present it here.

With the label n; for the number of levels included in the sum and N the number
of bosons, we calculate canonical partition functions as

N
Z(n,N)=Y_Z(n —1,N — p)e ", (10.103)
p=0
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with Z(n;, 0) = 1. As for fermions, this equation simply expresses that if a boson is
not in state ny, it will be in one of the other single particle states. The relation seems
to imply a lot more work for the computer because the summation runs over levels
and particle numbers, as for fermions, but in addition also over the partitioning of
particles in the latest added single particle state. We can eliminate one of these sums
with a rewrite of (10.103):

N
Z(n;, Ny =Z(n = 1,N)+ Y Z(m — 1, N — p)e " (10.104)
p=1
N-—1
=Zm —1LN)+ Y Zn—1,N—1— p)e P,
p=0

Comparison of the last sum in this equation with (10.103) shows us that it is equal
to Z(n;, N — 1). We therefore have the equivalent but computationally much less
demanding recurrence relation

Z(n;,N) = Z(n, — 1, N) + e P Z(n;, N — 1). (10.105)

The flow of this equation and (10.103) in an (N, n;) diagram is illustrated in
Fig. 10.16.

Fig. 10.16 Illustration of the
recurrence relation used to
calculate bosonic level 91 e e e e e e e e e e o
densities and partition
functions. The two arrows

represent the flow in the 71 e o o o o e o o o
simple relations in (10.105,

10.107). The lines 610 o o o o ¢ o o oo
originating at n; = 5 without 516 o o o o e o o o
arrows indicate the flow of Z,

computation in (10.103) 440 o o o o o o o o

o1
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A similar calculation for the level density gives

N
,o(E,n,,N):Zp(E—pam,n,—l,N—p). (10.106)
p=0

As for the partition function, terms with p > 0 on the right hand side can be summed
to a single term,

p(E,n;,N)=p(E,ng—1,N)+ p(E —&,,n, N —1). (10.107)

Just like for fermions, one can write down recurrence relations that can be used
to calculate arbitrary moments of the excitation energy, and anything else that is
contained in the single particle wave functions, as we have seen. We will only show
how to calculate the thermal energy. The relation reads

Zm —1,N — p)efpﬂgn’.

Zor N (10.108)

N
E(m, N) = Zf(nl —1,N - p)
p=0

Also this relation is similar to the fermionic relation, the difference being the sum-
mation over all possible partitioning of atoms into the most recently added state.
Use of (10.108) for E(n;, N — 1) and (10.103) for Z(n;, N — 1) again allows us to
collect terms and gives the more compact relation

Z(nl - 1, N)

E(n;, N) ZE(”l—l,N)W (10.109)
_ — Z(n;, N—-1) Z(n;, N —1)
Bew, _
e <E(”” N T Zn )

When we multiply with Z(n;, N) we get the more convenient expression:

EZn,Ny=EZn —1,N) +e P"EZ(n;, N — 1) + &, P Z(n;, N — 1).
(10.110)
Together with the calculation of Z with (10.105), this permits calculations of exci-
tation energies and entropies for the systems.

An interesting special case exists for which one can calculate the canonical parti-
tion function for bosons explicitly. That case is none other than the ladder spectrum
with the singly degenerate single particle levels ¢, = kA, k =0,1,2,...00. The
partition function can be decomposed into contributions for no bosons in the single
particle ground state, one boson in the ground state and so on, up to all N, in a
procedure that should be familiar by now. The partition function for p bosons in the
ground state is Z(N — p) exp(—(N — p)BA), which just corresponds to a shift in
energy of the Z(N — p) partition function. We therefore have
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N N
Z(N) =Y Z(N — pye V74 = Z(N)e ™4 + 3" Z(N — pye”N-nP2,
p=0 p=1
(10.111)
The last sum can be rewritten as
N N—1
Z Z(N — p)e”N-»pa — Z Z(N —1— p)e N-1-mpa, (10.112)
p=1 p=0

If we compare this with the first equality sign in (10.111) we see that this is equal to
Z(N — 1). Thus,
Z(N) = Z(N)e P4 + Z(N - 1). (10.113)

This is exactly the same recurrence relation as for fermions for the same single
particle spectrum, and because Z(1) is the same for a single fermion and a single
boson, also the solution is of course identical to the fermionic case:

N

ZN) =] (1 —e )", (10.114)

k=1

Identical partition functions for all temperatures implies identical level densities for
all energies. This seems impossible at first sight, because the population of levels is
very different in the two cases, fermions stack on top of each other and bosons collect
in the ground single particle state at low temperatures. The explanation is that the
level density is that of the excitations, counted from the ground state of the system,
whichever of the two different kinds of systems it may happen to be.

Exercises

10.1 Consider a metallic particle as a box potential with a flat bottom and a steep
edge for the sake of describing the motion of the electrons. Quantum mechanically
the electrons will penetrate the classically forbidden regions of the potential near the
edge. Calculate an estimate of the length of this penetration into this region. Use this
to estimate corrections to (10.1). Use the example values 10 eV for the depth of the
potential, 7, = 2 A, and levels half way between the bottom of the potential and the
vacuum level.

10.2 Calculate the variance of the electron number in the grand canonical ensemble
by summation of the contributions from the variances of the individual levels and
show that it is identical to the result in (10.17).

10.3 Calculate the thermal energy of a 1d gas of photons in a cavity of length L.
Compare with (10.31).
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10.4 Use the Sommerfeld expansion in (10.36) to find the leading order temperature
dependence of the chemical potential of a Fermi gas in (10.37). Hint: Calculate the
number of electrons with an integral of the density of states; next approximate the
integral with the value up to Er and a term linear in the difference Ey — p. Finally,
set the calculated change to zero and solve for .

10.5 Show that (10.40, 10.42) are right, to the accuracy stated.

10.6 Equation (10.25) gets a contribution from the variation of A with size. Show
that this correction is of second order in 1/N.

10.7 Calculate the high temperature level density of an odd or even electron number
of particles in the equal spacing spectrum described in Sect. 10.3. Use the equations
that were applied in Sect. 10.4. Compare with the results of that section, taking into
account that the two A’s differ by a factor 2. Compare your result with the exact low
energy values in Table 10.3.

10.8 Show that (10.18, 10.20) are correct. For the canonical result you sum the
probabilities of all relevant states and divide by the partition function. For the grand
canonical calculation you use the fact that the occupation of the individual states
are independent. This renders the expression for the sum of relevant states simple.
Calculate also the probability that no electron is excited in the two ensembles.

10.9 Integrate the relation
(E) « T? (10.115)

to show that the canonical partition function for the Fermi gas in the equidistant
spectrum, (10.29), is approximately exponentially increasing with temperature.

10.10 Sketch the low temperature values of the excitation energy, Helmholtz’ free
energy and the entropy of the system with the partition function in (10.29).

10.11 For independent particle motion in spherical potentials, the electrons’ energy
eigenstates are characterized by a radial and an angular momentum quantum number,
and in addition a spin and a projection of the angular momentum. Find the possible
combinations of angular momenta that form the shell closings from 8 to 20 valence
electrons, from 20 to 40, from 40 to 58 and from 58 to 92. You can assume that a
specific £ value appears only once in one shell.

10.12 (a) Calculate the relative number of excited electrons in a Fermi gas by inte-
gration of the Fermi-Dirac distribution. Assume that the chemical potential is equal
to the Fermi energy. In the first approximation you can assume that the single particle
level density is constant. Give a physical interpretation of the result.

(b) Next consider the situation where the single particle density of states is not
constant but still only varies slowly over a range of energies comparable to the tem-
perature. Show that the three-dimensional Fermi gas fulfils this criterion, and show,
without an explicit integration, that the number of excited electrons calculated in (a)
is corrected approximately with the factor go Er, where g is the density of states at
the Fermi level.
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10.13 Show that the low-temperature, non-zero solution of the mean field equation
for the electron spin magnetization in (10.76) is below the maximum value of 1/2.

10.14 Below the critical temperature, there are two solutions to the mean field equa-
tion of magnetization, one magnetized and one unmagnetized. Show that the mag-
netized state is the stable phase in this situation.

10.15 Show that (10.79) has the expected behavior in the limits of 7 — 0 and
T — oo.



Chapter 11 ®)
Hot Electron Reactions Geda

All reactions described in this book so far have been equilibrium processes, or at
least so close to equilibrium that equilibrium relations can be applied without any
significant loss of precision. But interest in thermal properties are not restricted
to situations of complete equilibrium. After all, complete equilibrium means that
nothing happens. The description of non-equilibrium states and processes adds a
layer of complications relative to the equilibrium description, complications that
often prevent a simultaneously simple and accurate description. Exceptions exist,
and for electronic degrees of freedom, non-equilibrium can give rise to the special
effects that are the subject of this chapter.

When electrons in metallic particles, defined broadly as a system where valence
electrons are quasi-free, are excited on time scales shorter than the vibrational period,
the energy may equilibrate internally within the electron system by electron-electron
collisions and reside there for some time before it is dissipated into vibrations. For
this short time, the particle is in a transient state best described as a free electron
gas of hot electrons made up of the valence electrons, coexisting with fairly cool
vibrations. In solid state physics this situation is described with the aptly named
two-temperature model.

The existence of a hot electron state is possible because the time scales for the
motion of the electrons and the vibrations are very different. The typical electronic
time scales are given by /1 Ry = 49 as (1 as = 10~'® ), and vibrational periods by
the reciprocal Debye frequency as 27 /wp, which varies with material (see Chap. 4)
but is around 10-100 fs, i.e. three orders of magnitude longer than the time scale for
electrons. The situations described in this chapter depend crucially on this separation.

The phenomenon can be studied with pump-probe experiments with femtosecond
lasers or, for free particles, by thermal electron emission in which the electron kinetic
energy is used as a thermometer. Experimentally, temperatures of a couple of tens
of thousands of kelvin have been seen in the Boltzmann distribution of electrons
emitted from such systems. Electron-phonon coupling times can be measured this
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way and one gets values on the picosecond and subpicosecond time scales, with the
precise numbers depending on the material. The values are generally a few times the
typical vibrational period.

11.1 The Initial Excitation

The idea of a transient hot electron phase of a free molecule was originally proposed
to account for the Penning ionization yields of fullerenes. Penning ionization is the
process in which a rare gas atom (Rg) in a metastable but long-lived excited state
with well defined energy collides with another molecule (M), usually in a low energy,
often thermal collision, and transfers all its electronic excitation energy to the target
molecule which then undergoes ionization:

Rg*+M — Rg+M* +¢. (11.1)

The molecules in the experiments that provoked the model were the fullerene
molecules Cgy and Cr, actors that tend to appear whenever a mass-selected, single-
atom composition molecule is desired in an experiment. The metastable state energies
of the rare gas atoms in the experiment ranged from slightly above the ionization
energies of 7.6 to 20 eV (for helium). The excited state energy of helium is enough
to both ionize and dissociate a fullerene, the latter process causing the emission of a
C, molecule if it happens, but the ions were always measured to be unfragmented.
This is one signature that will carry over to other means of excitation, as long as they
do not impart too high energies. The term ‘too high’ is in this context several times
the dissociation energy (ca. 50 eV vs. the dissociation energy of 11 eV for Cg).
Figure 11.1 shows the experimental data together with the fitted yields from the hot
electron model described in quantitative detail below.

Another mode of excitation is collisions with high speed or highly charged ions.
Fast and highly charged ions have the potential to excite the collective motion of
valence electrons known as the surface plasmon resonance in flyby encounters. The
surface plasmon is the oscillation of the valence electrons against the positively
charged ionic cores. The surface plasmon, which can be imagined as being build
by single particle-hole excitations, will dephase and decay after a few oscillations
into a collection of these electronic excitations. This is the starting point for further
electronic equilibration. In one of the many similarities between nanoscale physics
and nuclear physics, the plasmon has its nuclear analogue, called the giant dipole
resonance. It arises as the oscillation of the positively charged protons and the neutral
neutrons against each other.

Most situations relevant for this chapter involve absorption of light. The reason is
that when a particle absorbs energy from an electromagnetic wave, the energy usually
generates electronic excitations. Radiation can also be absorbed by optically active
vibrations, but usually these only carry a small fraction of the oscillator strength of the
whole molecule. Visible or UV light absorption is therefore a very efficient method
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Fig. 11.1 The measured absolute quantum yield in Penning ionization of Cgo. The identity of the
rare gas atoms, and for Ar the quantum states, carrying the specific excitation energies are indicated.
The line is a fit with the hot electron model described below. The data are published in J.M. Weber,
K. Hansen, M.-W. Ruf and H. Hotop, Chem. Phys. 239 (1998) 271

to generate electronic excitations selectively. Depending on the photon energy, one
or several photons may be needed to provide enough excitation energy to develop
fully the characteristics of the hot electron phase.

Absorption of photons during a short time interval may activate one or more of the
several alternative photo-physical reaction paths seen in molecules, such as resonant
ionization, photon absorption followed directly by internal vibrational relaxation
(IVR), which is the process whereby the electronic energy is dissipated into vibra-
tional motion, or Above Threshold Ionization (ATI), which is a direct multiphoton
ionization process seen in atoms and some molecules.

The creation of the hot electron phase is therefore not a given, and the precise
mechanism that converts e.g. a single photon to incoherent electronic energy without
causing direct ionization is still unknown at the time of writing. For a multiphoton
absorption situation it is clear that the photons must arrive within a time interval
shorter than the electron-phonon coupling time. But under some conditions photons
are absorbed and an electronically excited state with energy above the ionization
energy is in fact created in competition with the other processes mentioned.

Let’s therefore start from the point where electrons are excited and consider the
initial relaxation of the electronic excitations into a hot Fermi gas. Enough is known
about the behavior of a Fermi gas to allow some fairly reliable conclusions about
this process.
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A highly excited electron gas will experience collisions at a rate of

-1

Tye ™~ NOeVF, (11.2)
where n is the concentration, o, the electron-electron collision cross section, and
vr the Fermi velocity. For the collision cross section we can use the Thomas-Fermi

screening length, A7, calculated for a Fermi gas,

27 \° €2 3n 272 1 Ep
_ = = ce = )\2 = . 113
(ATF> €0 2EF 7 T 3 476:50 n R

With the Fermi gas relation between density and Fermi energy,

1 >
Er = gmvy = (3n°n)" -, (11.4)

the electron-electron time constant becomes

3/2
L 2V2rt 1 Ey

Tee 3 2 ﬁ . (1 15)
471'5()
For the moderately small value of 5 eV, the value is
Toe = 0.033 fs, Er =5eV. (11.6)

Another estimate of the e-e equilibration time is given by what is known as
Landau’s theory of Fermi liquids. The theory goes beyond the scope of this work,
but the bottom line for the question of relaxation time is that the theory gives a value
on the order of 5

~ 11.7
T E; (11.7)

For most elements this time is somewhat longer than the estimate in (11.5). The
difference is hardly observable, though, unless you perform a dedicated experiment
on the sub-fs time scale, and it will play little role in the situation described in the
following.

11.2 Decay of the Hot Electron Phase

The decay of the hot electron phase proceeds via the dissipative coupling to the
systems vibrational degrees of freedom, with a coupling time on the order of a
vibrational period. For a vibrational quantum energy of 0.03 eV, corresponding to
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the Debye energy of a number of crystals (see Table 4.1), this corresponds to a
coupling time of

Tep 27 ~ 140 fs. (11.8)

0.03 eV

A proxy for such time constants are measured in pump-probe (p-p) experiments
where a strong probe pulse excites the particle and the signal, typically in the form
of an ionization yield, is measured after the application of a variable delay probe
pulse. The decrease of the signal vs. the p-p delay can then be fitted with a time
constant. Some caution should be exercised in the identification of this time with
the coupling time. A straightforward identification of the two is possible when the
dynamics involves two levels; the ground state and the decaying excited state, but
this is manifestly not the case here. Keeping the caveat in mind, some measured
values are 200 fs for C¢ and several values around or slightly above 1 ps for sodium
clusters. The coupling time can be inferred from fits of other types of data, of which
some examples are shown below.

The fact that the two consecutive equilibration times are so dissimilar;

Tee
— K1, (11.9)

Tep

is the crucial inequality that allows the existence of the phase of highly thermally
(incoherently) excited electrons coexisting with an essentially cold background of
vibrations. When the excitation of the electrons is achieved by sequential absorp-
tion of multiple photons, 7, is then the limit of the width of the light pulse or,
more precisely, on the time interval during which a sufficient number of photons are
absorbed to induce the reactions specific to the hot electron phase. Pulses longer than
Tep Will also work at correspondingly higher photon fluxes, but in those cases the
hot electrons will be accompanied by warmer vibrational degrees of freedom and an
excessive amount of fragmentation.

The electron-phonon collision is the elementary step in the final equilibration of
the excitation energy. After dissipation into the vibrational motion, with the occa-
sional excitation into some electronic state or other, no further dissipation or equi-
libration will take place before the particle interacts with the environment, either
radiatively, by colliding with a gas molecule or by hitting a surface in a vacuum
chamber.

The time constants calculated for the electron-phonon coupling and the electron-
electron coupling in the previous section represent the two elementary time steps in
the relaxation. Several of these elementary steps are needed to achieve a, say, 1/e
degree of relaxation, and the time constants cited are therefore lower limits. The
precise number of these steps will be influenced by the energy transfer efficiency in
the collisions.

The time scales for the processes and phases can then be summarized schemati-
cally as in Fig. 11.2.
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time
1fs 1 ps
| | .
excitation and hot electrons, cool electrons,
e-e equilibration cold vibrations vibrations

Fig. 11.2 The separate regimes of the hot electron phenomenon, from the unspecified excitation
process to the completely equilibrated phase that prevail after a time of about one picosecond. The
time markers are illustrative only. Values for different systems will differ

The observable consequences of the hot electron phase are strongly dependent on
the degree of excitation; The observable signals of interest here are generated by the
high energy regime that exist before a significant part of the energy has leaked into
the vibrations. Reactions usually have rates that are strongly dependent on the energy.
It is therefore sufficient to describe the decrease of electronic excitation energy in
the initial stage of equilibration, and the decrease of energy with time can therefore
be approximated with an exponential, irrespective of the precise shape of the curve
at lower energies. Hence we write

~ e (11.10)

The equation does not predict correctly the ultimate fate of the energy because even
at equilibrium a small amount is still residing in the electrons. We correct (11.10) for
this by setting the rate proportional to the difference in energy from the mean value
of the equilibrium distribution, E;7:

dE, 1
=—— (E. — EY). (11.11)
dr Tep
This is easily solved to
E, = E“ + (E — E“)e /™, (11.12)

with E is the initial (total) excitation energy. When the excitation energy stored in the
electronic motion is small compared with the corresponding energy for vibrations,

EY < E;‘,ﬁ, (11.13)

which is always the case in applications, (11.11) is well approximated by (11.10) at
early times.
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An alternative parametrization of the relaxation uses the temperature;

dT, T,
et (11.14)
dr Tep.T

When the Fermi gas description is sufficiently close to the physical situation, the
description of the coupling time is essential identical to the parametrization in terms
of the energy because E, = aT?:

dE 1 dT, T,
¢ :——Ee:> ¢ = — ¢ . (1115)
dt Tep dt 2Tep

Hence the two descriptions of the dissipation are identical and the time constants
related as
Tep, T = 27—6[}' (1116)

To get an idea of the equilibration/dissipation process it is necessary to specify
the thermal properties of both the electronic and vibrational subsystems. For the
electrons we can use the Fermi gas expression (ignoring the pre-exponential factor
of energy to the power of minus one for simplicity):

pe(E) = a,e¥Ee, (11.17)

and for the vibrations the classical harmonic oscillator expression for s oscillators;
i—1
Pph =aphE;h . (11.18)

The two microcanonical temperatures are

E E
T, =2,/=%, T, =-—2", (11.19)
a s—1

and the equilibrium electronic energy is found from equating these two temperatures,

LlSlng E = Eph + Ee,
Ee == 5 +‘ E + (s ) . (11.2())
‘ \/—Cl a

For an N = 20 sodium cluster with Er = 3 eV, the average gap at the Fermi level
is A=2Er/3N = 0.1 eV, corresponding to a = 66 eV~ (see (10.72)), and the
high temperature harmonic oscillator heat capacity is s — 1 = 53. This gives E;! =
5.9-1073%eV~!E2. The equilibration between electrons and vibrations is illustrated
for this cluster in Fig. 11.3 for the initial excitation energy of 20 eV and the excitation
energies and temperatures given above. Also the entropies are shown. They are
calculate for the electrons as
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Fig. 11.3 Excitation
energies for electrons and
vibrations as a function of
time (top frame). The
electronic value is given with
the full and the vibrational
by the dashed line, here and
in the two other frames. The
asymptotic values are
indicate with horizontal
lines. Middle frame: The
temperatures corresponding
to the excitation energies.
Bottom frame: The entropies
of the two subsystems and
the total entropy
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(11.21)

where the microcanonical heat capacities and temperatures are used. The vibrational
entropy is calculated as the canonical value for an Einstein crystal with Aw = 0.01
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eV. This is the easiest way to conform to Nernst’s theorem.' In summary:

1 hw 1 —hw/T,
S, = zaTe, Spn = ST T ] sln (1 —e /7). (11.22)
P

11.3 Hot Electron Spectra

The thermal properties of the hot electron phase can be treated with the tools devel-
oped in Chap. 10, as already indicated in numerical estimates made above. One should
keep in mind that the electronic temperature exceeds usually encountered values by
an order of magnitude or more. It is possible to reach very high electronic tempera-
tures with even moderate amounts of excitation energy due to the low heat capacity
of the electronic subsystem.

One of the effects which is easiest to observe for a hot electron system is emis-
sion of thermal electrons. The process is so similar to the the thermionic emission
described in Chap.5 that one just need to plug in different parameters. The main
difference is that of the level density of the emitting system, which does not change
the fundamental equations. The change of level densities from vibrational to elec-
tronic increases the emission rates for hot electrons compared to an equilibrated
system by a very large factor for identical excitation energies, reaching picosecond
and sub-picosecond rates for even moderate excitation energies. Figure 11.4 shows
the comparison between the hot electron and the equilibrated emission rate constants
for Cé().

As for thermionic emission the kinetic energy distributions are given by the prod-
uct of the electron attachment cross section, o(¢), a phase space factor of energy, ¢,
and the product level density, p,(E — ¢):

P(E;e) xo(e)epp(E —¢). (11.23)

Given the low heat capacity and the high energies of the emitted electrons, it is not
obvious that the usual expansion of the level density to give a quasi-Boltzmann factor
is justified. It is. Exercise 11.4 asks you to show that the leading order term is indeed
sufficient in almost all cases. Hence we have

P(E; ) x o(e)ee ™. (11.24)

The attachment cross section is specific to the material/molecule and the charge state
of the particle. If we are happy with schematic values, which should actually be good
approximations at high energies, we can refer to the results in Sect.5.6.

Of particular interest for comparison with experiments are the cross sections
referring to a cationic product, whether singly or multiply charged. Given the high

INernst’s theorem: ‘The entropy at zero kelvin is zero.’
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Fig. 11.4 The Cgp electron emission rate constants for thermionic emission (dotted line) and hot
electron emission (full line), as a function of excitation energy

excitation energy of the cation and the high kinetic energy of the electron, which
provides empty states to settle in for an impinging electron in the otherwise densely
populated Fermi gas, it is not unreasonable to assume that that electrons stick to the
particle on reaching some distance from the center of mass. If so, the cross section
is given by (5.74) which, multiplied with the phase space factor ¢, gives

m&aaG+ :%*i (Z > 0). (11.25)

471'60}"0

Often the second term in the brackets dominates and one will see an effective Boltz-
mann factor in measured distributions. Figure 11.5 shows an example for Cg( excited
with a short pulse laser. Apart from some low energy features related to the finite
laser duration (see figure caption), the curves are well behaved exponentials with
slopes that decrease with increasing laser pulse energy, as expected.

A similar behavior is observed for several PAH (polycyclic aromatic hydrocarbon)
molecules. Examples of spectra for coronene are shown in Fig. 11.6.

Spectra for sodium clusters are shown in Fig. 11.7. The spectra are fitted with
both pure exponentials and with (11.25). The excitation energy is calculated from
the fitted temperatures assuming that the electrons can be described as a Fermi gas.
The time dependence of the emitting clusters is not included in the fit with (11.25),
and neither are the photon number distributions given in (11.28). This causes the
calculated dip at the high energy end of the calculated spectra.

The interpretation of the exponential slope as the reciprocal temperature of the
product is only approximate. The full expression for the kinetic energy spectra for
a given initial excitation energy requires an integration over time to account for the
spectra produced at different excitation energies:
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Counts

Fig. 11.5 Electron kinetic energy spectra for Cgg after exposure to a focused 180 fs laser pulse
of 1.55 eV photons. The curves are (from below) for the laser fluences 1.5, 2, and 3 J/cm?. The
vertical line indicates the photon energy. The spectra below this energy are heavily influenced
by one-photon ionization of the hot electron gas in a thermally assisted ionization process. The
small peaks discernible around 3 eV are the remnants of the ATI ionization one observes at shorter
pulse durations. The data were recorded with a Time-of-Flight spectrometer. They are published in
K. Hansen, K. Hoffmann and E.E.B. Campbell, J. Chem. Phys. 119 (2003) 2513

ionization yield (arb. units)
5:} 80\

electron kinetic energy (eV)

Fig. 11.6 Electron kinetic energy spectra for the coronene molecule (C4Hj7). Coronene is a flat
molecule of seven carbon rings with the outer bonds of the outer six terminated by hydrogen. The
laser fluence is, from bottom to top, 0.54,0.74, 1.0, 1.2, 1.4, 1.6, 1.8 J/em?. Integrated intensities are
not directly comparable. The data are recorded with a Velocity Map Imaging (VMI) spectrometer
and are published in M. Kjellberg, A.V. Bulgakov, M. Goto, O. Johansson, and K. Hansen, J. Chem.
Phys. 133 (2010) 074308
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Fig. 11.7 Photo-electron
spectra for sodium cluster of
the sizes indicated in the
frames. The dotted lines are
simple exponential fits, and
the full line are fits with the
detailed balance equation in
(11.25) with the image
charge included in the
calculated electron
attachment cross section.
The fitted temperatures are
between 0.52 eV for N = 16
and 0.43 eV for N = 250.
The clusters were initially
singly positively charged, as
required to perform the size
selection prior to exposure to
the laser pulse. The photon
energies were 3.1 eV, a little
above the sodium surface
plasmon resonance. The
energies given in the frames
are the excitation energies
calculated from the fitted
temperatures. The data are
published in M. Maier,

M. Schitzel, G. Wrigge,

M. Astruc Hoffmann,

P. Didier, B. von Issendorff,
Int. J. Mass Spectrom. 252
(2006) 157-165
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fe) = / ” P()dr f ” o(e)ee ! TOR(E (1)) exp (— / k(E(t’))dt’) dr.
0 0 0

(11.26)

The first three factors in the integrand give the energy-specified emission rate con-
stants from (11.24), the fourth is the weight from the instantaneous rate constant, and
the last is the surviving population. The expression is often well approximated by
using the energy E(0) because the rate constant is so strongly dependent on energy
that contributions from later times are small, but observable details will differ with
and without this integration.

The distributions in (11.26) refer to a single initial excitation energy. If a beam
is exposed to different degrees of excitation resulting in a different initial excitation
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energy, these also need to be integrated over. For excitations with laser, for example,
one needs to sum over different numbers, n, of photons absorbed. For energy inde-
pendent photon absorption cross sections, o, the distribution for a constant laser
fluence, F', will be given by the Poisson distribution,

(UpF)

P, =
n!

e ok, (11.27)
This is usually not the whole story, however. Laser fluences are not constant in space,
and as a rule one needs to integrate over space dependent fluences:

f(UpF(x)) e~ F® g5 (11.28)

The resulting expressions rapidly become rather involved with little chance of even
approximate analytical solutions and they are best solved numerically.

11.4 Ionization Yields

One of the interesting features of the hot electron phase is the possibilities it opens
for fragment-free ionization. This possibility was already realized in the Penning
ionization yields from fullerenes. It is therefore of interest to have an understanding of
the ionization efficiency. Figure 11.8 shows the total ionization yields after exposure
of Cgp molecules to a 1.55 eV photon energy, 180 fs laser pulse as a function of the
fluence.

All ions produced by the laser pulse are added up to give the points shown,
including fragment ions and multiply charged ions. For high fluences, equivalent to
high initial excitation energies, the molecules can ionize several times;

Coo = Cfy e — Cof +2¢7 — ... (11.29)

The ion yield is therefore a safer measure for the quantum yield than the electron
yield, although fission processes may still distort the curve at high laser fluences by
adding ion counts with the process

C4t — it et (11.30)

Athigh fluences fragment ions are produced. These are usually products generated
in normal unimolecular reactions during the time between the establishment of the
equilibrium, which takes a ps or so, and the time it takes to mass select the ions in
a mass spectrometer, typically about 100 ns. This vast stretch of time is sufficient to
host a number of unimolecular decays.
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Fig. 11.8 The yield of all ions produced after exposure of Cgg to a 180 fs laser pulse. The line is a
fit determined with (11.31)

The data shown in Fig. 11.8 are fitted with a curve that takes into account both
the time dependence, the photon absorption Poisson statistics, the depletion of the
molecular beam and the variation of the laser fluence over space, assuming a Gaussian
distribution. The grand total expression is

oo oo oo o) 2 —t)T _ _
h b —¢
Yobs o</ de/ drrZ/ <€+ . ) pp(nhve o )
0 r=0 =0 /0 4meg 4A pr(nhye=t/T)
(O'pFo/l’lV e_(’/"°)2>

t
x ' o0vFo/hv e 10” exp (- / k (nhueiﬂ/7> dt’) dr.
n! 0

(11.31)

The integral over € sums the different kinetic energy contributions to give the total
yield, the integral over r accounts for the spatial variation of the laser fluence, the
summation over n with the Poisson statistics gives the photon absorption statistics
for a given laser fluence, and the integral over time the yield as the initial excitation
dissipates into vibrational motion. The quantities are as follows: p,, is the electronic
level density of the product C, and p, that of the neutral reactant, hv = 1.55 eV is
the photon energy, ® = 7.6 eV is the ionization energy, Fj is the laser fluence in the
center of the beam (in units of photons per area), ry is the laser beam waist, and o,
is the photon absorption cross section, as before, and finally 7 is the energy based
coupling time. The level densities were calculated as described in Sect. 10.7 with
single particle levels provided by a Density Functional Theory (DFT) calculation.
The coupling time for the molecule is 240 fs, fitted from the Penning ionization
data. The Penning ionization data have the great advantage that the excitation energy
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is known and identical for all molecules in the beam, which removes one integral,
one sum and one parameter from (11.31), and therefore gives a safer determination
of the coupling time. The photon absorption cross section was assumed constant in
the fit of the data. After the coupling time is entered, the fit with (11.31) contains
only two parameters. One is for the photon absorption cross section which was fitted
too, =0.06 10%2, and the second an overall molecular beam intensity.

At the other extreme of the scale of accuracy and complications, one may simply
use the rate constants as a proxy for the yield and approximate the rate constants by
the simplified expression

Y ~cexp(—=®/T), (11.32)

where the temperature is approximated by the value derived from the equidistant
spectrum;

2N 2 (Ep\"?
E = Foo, = %E_TZ =>7=" (_F) (Foop)"?. (11.33)
F

Sticking with Cgp, the number of valence electrons is 240 and the Fermi energy 29.7
eV—@ =22.1 eV. Figure 11.9 shows the logarithm of the ionization yields vs. the
reciprocal square root of the laser fluence. Equations (11.32, 11.33) are likely to be
best at low pulse energies where the molecular beam depletion is less severe.
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Fig. 11.9 The fit of the Cg( ionization yields plotted according to the simple analysis in (11.32,
11.33). The slope of the line is 13.7 J'/2/cm
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The photo-absorption cross section is calculated from the fitted slope to be 0.0013
A2, a factor of five less than the value obtained with the much more elaborate pro-
cedure.

11.5 Single Photon Excitation

Somewhat surprisingly it is also possible to observe the hot electron phenomenon
in single photon ionization. The excitation process is less clear than for multiphoton
excitation, where one can imagine that sequential absorption of photons followed by
fast dissipation into electronic degrees of freedom will effectively distribute the pho-
ton energies into incoherent excitations. From that state the particle’s future destiny
is hot electron thermal electron emission or further dissipation into the vibrational
entropic wilderness. For single photon hot electron ionization a direct ionization is
added to the reaction scheme. The possible reactions for Cg are the following:

Ciy+e™ (—)  Ci+Cote

/ (hot electron ionization)
/ Co0(Eer)
Ceo + hv \
CGD(E

) — Cloter (—) Ci+Coter
\ (thermionic emission )

Cdy+e
(direct ionization)

where E,; and E,;; indicate that the excitation energy is predominantly electronic
or vibrational.

There are three processes that produce an electron. They are distinguished by
the electron energies. The direct ionization process has a fairly strong presence in
single photon ionization. But the electron energy in these processes is given by
E; = hv — Ep, where Ej, is the binding energy of the electron in the state from
which it is ionized. It is therefore possible to distinguish these electrons from the hot
electrons with their Boltzmann-like spectra with a characteristic energy of a few eV.

Also the thermionic emission spectra can be distinguished from the hot electrons,
although they also appear with a Boltzmann-like distribution, because the emission
temperatures in these processes are around 7, = 3000 — 3500 K >~ 0.3 eV for Cg.
The identification of the emission process is made easier by the fact that thermionic
electrons do not appear in the experimental spectra. This is seen from the time profile
of the produced ions measured in the Time-of-Flight mass spectrometer sitting back-
to-back with the electron spectrometer and used to measure ions and electrons in
coincidence. A thermionic emission contribution would manifestitself as a tail toward
longer times in the mass spectrum. None was observed. This is readily understood as
the effect of depletion of the beam; At excitation energies where thermionic emission
occurs on the ns time scale, the hot electron rate is so high that practically no neutral
molecules will survive.
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Fig. 11.10 Single photon
electron spectra of Cg C
measured at the synchrotron h °0_

. v=31eV
ring Elettra. The electron
spectra were recorded in
coincidence with the
produced ion. The presence
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Time-of-Flight mass
spectrometer, as indicated in
the top line of (11.5). The
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increasing photon energy and
the approximate exponential
shape of the spectrum at the
low electron energies. The
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Figure 11.10 shows the development of single photon hot electron spectra recorded
with the VMI technique with increasing photon energy.

The gradual appearance of an exponential low energy tail and the simultaneous
disappearance of the structured spectra at higher energies signals the onset of the hot
electron ionization.

Exercises

11.1 The surface plasmon resonance exhausts a large part of the valence electron
oscillator strength of the fullerenes. It peaks around 20 eV and has a width which is
comparable with the centroid energy. Find the lifetime of the resonance.

11.2 Calculate the electron-electron collision time with (11.5, 11.7) for the Fermi
energies 2 eV, 10 eV and 30 eV and compare them.
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11.3 Show with (11.22) that the entropy grows during the electron-vibration equili-
bration process, irrespective of the values of a and ¢. This result is a cornerstone of
thermodynamics, for whichever ensemble, but is not a given when calculated with
the microcanonical temperature and heat capacity.

11.4 Show, using typical values of T of 1 eV and the Fermi gas approximation with
an Ef of several eV, that the heat capacity of the electron system is large enough to
terminate the expansion of the exponential in (11.23) at the first order term for all but
the smallest particles. You can set the detection limit on the electron count to 1073
of the maximum.



Chapter 12 ®)
He Droplets i

Helium is the lightest of the rare gases. As a rare gas it is chemically inactive and is
only bound to other atoms, other helium atoms included, by weak and non-directional
forces. The potential energy of two rare gas atoms of the same type is often described
by a sum of two high powers of the reciprocal of the interatomic (internuclear, to be
exact) separation. The most common is called the Lennard-Jones potential and has
powers —12 for the repulsive part and —6 for the attractive part;

V() = 4e ((;)12— (;)6) (12.1)

The Lennard-Jones parameters for the rare gases are given in Table 12.1.

The potential is shown in Fig. 12.1. It reproduces the expected 1/r°® long distance
behavior of the interaction of two neutral particles. Such a distance dependence is
a general behaviour for neutral particles and is due to the polarizability caused by
quantum mechanical fluctuations in the electronic charge distributions. The 1/r?
term represents the strong repulsion between the atoms at short distances. The precise
value of the power is dictated more by convenience than fundamental reasons.

The equilibrium distance, ry, and the binding energy for a helium dimer in a
classical (A = 0) description of the bonding in the potential in (12.1) is

dv l
5 = 0= =210=11220. (12.2)
p

and
V(rg) = —¢. (12.3)

The main reason helium attracts special interest is that the interaction with other
helium atoms is weak. Combined with the small mass of the atom, this causes so
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Table 12.1 Lennard-Jones He Ne Ar Kr Xe

parameters of the rare gases.
The masses are rounded e (K) 10.2 36.7 120 164 231

averages over the isotopic o (A) 2.6 29 34 3.6 4.0
compositions m (u) 4 20 40 84 131

large quantum delocalization in the positions of the atoms that they are not bound
to lattice points, even in the bulk. This prevents liquid helium from crystallizing at
low temperatures, as all other elements do (at atmospheric pressure, that is. Above
24 atmospheres it does crystallize). The low temperature phase is a quantum liquid.
Precisely what type of quantum liquid is determined by the isotope. Helium has two
stable isotopes, 3He and “He, of which the first is a fermion, with a natural relative
abundance of only 1.4 - 10~°. Most interest is therefore focused on the bosonic “He,
and we will deal exclusively with that species here.

One can get a semi-quantitative understanding of the fact that helium doesn’t
crystallize, although not of the properties of the liquid, which is a much more involved
and interesting problem, by calculating the zero point energy of the vibrational motion
of the dimer with the potential in (12.1). Approximating the bottom of the potential
with a harmonic oscillator, the vibrational frequency is

, &V

5
= =62.223—, 12.4

pe dr 2 r=ro g 2 ( )
with the reduced mass . = m /2. We then have the ratio of zero point energy to dimer

binding energy
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Fig. 12.1 The potential energy of two atoms that interact with the Lennard-Jones potential
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Table 12.2 The zero point He Ne Ar Kr Xe
energy of the rare gas dimers ;
relative to the Lennard-Jones 7w 29 0.62 0.21 0.12 0.070

energy

Thw 62 h h
2 AT7.0l—. (12.5)
€ 2153 g /me o /me

Values of this ratio for all noble gases are given in Table 12.2. Clearly He stands out
with a zero point motion energy that exceeds the binding energy.

This suggests why helium doesn’t crystallize, although we should be aware of
the limitations of the calculation. It can not, for example, be inferred that the helium
dimer does not exist. It does, just about, but it has a very long bond, about 50 A,
and is bound by the minute but finite energy of 10~ eV, or 10~ K. For comparison,
the radius R of a liquid He drop composed of N atoms and with size independent
density D is

41

?R3 - N% — R =2.22AN'/? (12.6)

where m, is the mass of the atom and the density is D = 0.145 g/cm? at 0.4 K.

Small helium droplets will be described with the liquid drop model, but it is
worthwhile to keep a few facts in mind when applying this description to helium
droplets.

First, the density of the droplet is not a step function at the edge. Given the
delocalization of helium atoms in the liquid, one must expect that also the surface
densities vary over a finite length. Scattering experiments show that the atomic density
varies from 90% of the central value to 10% over a distance of 6 A of the surface.
The surface diffuseness can also be calculated theoretically with Density Functional
Theory. It is found to be 7 A, for the bulk surface and slightly larger for finite sizes,
defined in the same way as the experimental value.

Whether the value is 6 or 7 A, the number of atoms in the surface will be a
considerable fraction for even large droplets and renders the dimensions of droplets
partly a matter of definition. With the radius of ry = 2.22AN'/? from (12.6), the
ratio of the surface diffuseness to the radius is 0.68 for N = 100, 0.15 for N = 10%,
and 0.03 for N = 10°. Figure 12.2 shows the fraction of atoms in the surface layer vs.
size, for an average density of the layer of 0.5 time the bulk density and a thickness
of 6.5 A. It would be a conservative estimate to set the ratios in the figure equal to,
e.g., the relative errors in the energy of the surface modes we will calculate below,
but the numbers do tell us that the simple estimate for the quantum energy of the
excitations needs to be taken with a grain of salt.

The bosonic nature of *“He combined with the delocalization means that liquid
helium may be described as a Bose-Einstein condensate (BEC) at sufficiently low
temperatures, although it should be mentioned that this classification has been ques-
tioned. BEC or not, a phase transition occurs at 2.17 K for bulk liquid helium, called
the lambda transition after the graphical similarity between the curve depicting the
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Fig. 12.2 The fraction of surface atoms in helium droplets as a function of the number of atoms in

the droplets

Fig. 12.3 The heat capacity
of liquid helium under its
saturated vapor pressure, Cy.
The data are the
recommended values from
R.J. Donnelly and C.F.
Barenghi, J. Phys. Chem.
Ref. Data, 27 (1998)
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heat capacity vs. temperature around the transition temperature and the Greek letter.
Figure 12.3 shows measured low temperature “He heat capacities.

Below the lambda temperature the liquid has a number of interesting properties
which have been studied intensely. One is that the liquid is superfluid, i.e. moves
with no friction. This also holds for interactions with foreign objects, provided the



12.1 The Excitation Spectrum 353

relative speed of the object and the helium does not exceed a value called the Landau
critical velocity, and which is 60 m/s in the bulk. Above this relative speed, pairs of
quasi-particles called rotons are created at the interface of the liquid and a embedded
surface, costing a minimum energy of 8.7K per roton pair and thus creating an
effective friction in the motion.

For bulk helium the binding energy per atom is 0.86 meV, or 10 K. In a beam of
freely evaporating helium droplets the temperature is a small fraction of this energy.
In Chap.7 it was found to be on the order of 3—4 % for typical clusters, and the
value is similar for helium. Evaporative cooling therefore generates internal energies
corresponding to temperatures of 0.4 K and helium droplets are used experimentally
to thermalize dopant molecules to this temperature. Temperatures of 1 K and much
lower are routinely obtained in conventional cryostats for pieces of macroscopic
matter, but is an unreachable temperature for gas phase molecule and cluster beams
without the helium droplet doping technique. With the temperature well below the
lambda temperature of 2.17 K, one must expect that all but the smallest droplets
will be superfluid. And molecules have indeed been observed to rotate freely inside
helium droplets with rotational constants close to the vacuum values, which is only
possible for superfluid droplets.

Experimentally, the droplets are formed during expansion of pre-cooled He gas
with a stagnation pressure, i.e. the pressure in the source before it starts to flow,
close to the saturated vapor pressure. The method can produce droplets containing
very large numbers of He atoms. For experiments with doped droplets, the droplets
produced in the expansion are passed through a chamber where they pick up one or
more molecules or atoms. The dopant molecules collected in such pickup processes
may aggregate to form clusters. Studies, for example of spectroscopic nature, can
then be performed downstream in a molecular beam machine. The pickup chamber
may be heated to high temperatures to get a workable vapour pressure of the dopants
without destroying the droplets, because helium is almost transparent to black body
radiation at even very high temperatures.

Absorption of photons by dopants are monitored by the loss of mass in the droplet,
caused by the relaxation of the excitation energy and dissipation into the droplet which
results in He atoms boiling off. The method has a high sensitivity, because the absorp-
tion of even low energy photons will cause the loss of a large number of He atoms.
An infrared photon with an energy of 500cm™!, say, equal to 62 meV, will cause the
loss of typically 500 cm~!/0.86 meV = 72 atoms from the droplet. Cycling through
the process of photon absorption, relaxation and cooling evaporatively several times
can give a mass loss that can be measured experimentally.

12.1 The Excitation Spectrum

The calculation of the thermal properties of a helium droplet is greatly facili-
tated by the fact that the two most important contributions are separable to a
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good approximation. The effects of dopants is less known and we will consider
the pure helium droplet.

The ground state of a droplet is spherical because that shape reduces the surface
energy to the minimum. Waves (ripples) on the surface of this sphere are the lowest
energy excitations of the droplet shape. The quantized excitations are called ripplons,
and they come with an associated angular momentum, £ > 2. The spectrum starts
at angular momentum 2 because zero angular momentum is spherically symmetric
and does not represent a wave, and a putative unit angular momentum wave would
correspond to a displacement of the whole droplet and is therefore a translation.

We can estimate the energies of the ripplons with a simple calculation. The kinetic
energy of one of the ripplons is

h?k? n?e?

E :_:—’
YT 9oM T R2M

(12.7)
where k is the wave vector, M the effective mass participating in the motion, £ the
angular momentum quantum number, and R the radius of the droplet. The mass is
given by the amplitude of the wave, A, as

M = A47R*D, (12.8)
where D is the mass density of the droplet. Inserting this into (12.7) we have

n2e?

= —. 12.9
R*A8TD ( )

k

With the surface tension v, the potential energy associated with the wave is estimated
as
V =+vARL. (12.10)

The energy is then on the form, with @ and b known coefficients,
E=a/A+ DA, (12.11)

and we can find the minimum energy for a excitation with a specific angular momen-
tum by minimizing with respect to the amplitude of the wave,

dE
— =0= A= (a/b)'*. 12.12
1A = (a/b) ( )
The second derivative is positive, so this is a minimum, as desired.
With the surface tension v = 3.54 - 107* N/m and the liquid drop atomic size
r1 = 2.22 A the amplitudes of the waves become
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A= ——  —  ~038A— (12.13)

which does not look unreasonable and which gives us confidence in our guess of
how the parameters enters the expression for the energy of a ripplon. Inserting the
optimal value of A into (12.11) it becomes

12
E = he?? (ﬁ) . (12.14)

Given the somewhat cavalier treatment of the potential energy contribution, this is a
remarkably good result. A more serious calculation of the quantum energies of the
ripplons gives

E, = hwo (£(€ — 1)(£ +2))'/?, (12.15)

[
w =5 (12.16)

Each mode has a degeneracy of 2¢ + 1, caused by the angular momentum. If we use
the assumption of constant density, disregarding its shortcomings associated with the
diffuseness of the surface, the denominator in the square root is equal to 3m,N /4,
where m, is the mass of the atom and N is the number of atoms in the droplet. This
gives

with the frequency wy given by

4my (12.17)
wo = s .
0 3m,N
or
fiwy ~ 3.6 KN~V2, (12.18)

The 2¢ 4 1 degeneracy of the modes is consistent with the absence of internal
structure in the droplet. The degeneracy is counting the different possible projections
of the angular momentum vector on a space-fixed axis, as it is also known from the
quantum mechanical treatment of other spherically symmetric systems. If the orien-
tation of the droplet could be defined by an internal structure, one more degeneracy
factor of 2¢ + 1 would describe this orientation. Consistent with the absence of inner
structure in the droplet, this degeneracy is absent here, analogously to the situation
for e.g. atoms.

The only other type of excitation of importance for the thermal properties of free
droplets are phonons. As phonons in solid matter, they are the quantized sound waves
and involve atoms in the entire volume of the droplet. They arise as solutions to the
wave equation that describes compression waves in the interior of the droplet. This
description requires three coordinates per point and there are consequently three
quantum numbers associated with the quantization of this motion. The spherical
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symmetry of the droplets selects these quantum numbers to be the number of radial
nodes in the wave function, and the angular momentum quantum numbers, ¢ and
£, as for ripplons. Their dispersion relation, i.e. the relation of frequencies to wave
vectors, is

Wyt = Ckm[ (1219)

where where ¢ is the speed of sound and k is the wavenumber.! Hence phonon
quantum energies are:
€ne = hcky g (12.20)

The wavenumbers k, ¢ are determined by the boundary condition at the surface. For
a spherical particle and a free surface, the k’s are given by

ke = d, /R, (12.21)

where a;, , is the n’th root of the derivative of the spherical Bessel function, j.
Like for ripplons, it is convenient to express these energies in scaled units. We
could use the highest frequency in the spectrum, the Debye frequency, as the energy
scale. The Debye temperature for phonons in liquid “*He is ~ 20 K. Bulk helium boils
at 4 K under atmospheric pressure and we will be looking at droplets below 1 K, so
20K is a very high energy in this connection. We will therefore express phonon
energies more conveniently in units of the energy of the longest wavelength,

h .
- ﬁzv*l/3 — & N~13 = 258KN"'/3, (12.22)

€ =her/R
where the 0.40K values for the density (0.145g/cm?) and the speed of sound
(238 m/s) were used. This energy scale decreases slower than that of the ripplons
with N. Nevertheless, phonons turn out to be more important that ripplons for large
sizes, because the number of phonons are proportional to N, whereas the number of
ripplons is proportional to N?/3. We will return to a quantitative treatment of these
questions later, when more numbers are available.

Finally, for completeness we recall the existence of rotons, the third type of excita-
tions. They were already mentioned in connection with the Landau velocity. However
interesting they are, the threshold for their excitation is at rather high energy and con-
sequently they contribute little to the thermal properties of helium droplets, and they
will therefore not be considered further.

I'The term wavenumber doubles as the length of the wave vector, as here, and an energy unit.
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12.2 Ripplon Thermal Properties

He droplets are almost always observed flying freely through a molecular beam
machine. The relevant ensemble for helium droplets is therefore the microcanonical
ensemble, which means that we need to calculate the level density of the species to
describe their thermal properties. In Chap.4 different formulae were developed to
calculate level densities directly with the vibrational spectra as input. One was the
Beyer-Swinehart algorithm, and another was the inversion of the canonical partition
function. We want a closed analytical form and use the latter procedure here.

We begin with a calculation of the leading order contribution from the ripplon
excitation to provide a quick and portable result, followed by a more accurate calcu-
lation where higher order terms are included.

The calculation requires that we have the canonical partition function available.
The ripplon elementary excitations are bosons and we therefore sum over all possible
‘occupation numbers’, which in this case are excitation energies:

Emax

nZ=-) Q+in(1—e"). (12.23)
=2

To the desired precision, we can replace the sum in (12.23) by an integral from zero
to infinity, and approximate the energy eigenvalues (12.15) by &, & hwot>/?. The
integral then evaluates to

T 4/3
InZ =T (73)¢(3) 743 = 1.685 <ﬂ> , (12.24)

0

where I' is the gamma function, ( is the Riemann zeta function and the energy scale
was reintroduced in the last equality. The energy is then

g OWZ oo TP aornen 12.25

The temperature and entropy can be expressed in terms of the excitation energy and
the partition function. Use of (3.47) gives

eS

V=27 (OEJOpB)’

where S = GE + In Z is the entropy. We then get the leading order ripplon level

deIlSlty
pl (E) NO'31 7 / exp 2‘ 8 7 / . (12‘2‘)
r ~ 0 0

p(E) = (12.26)



358 12 He Droplets

This expression is sufficient for a number of purposes, but we have the tools to
calculate higher order contributions and it is worth doing to check of the limits of
validity of the approximation made in leaving out these contributions.

The first improvement in the calculation is to use the relation between the micro-
canonical energy and temperature from Chap. 3:

0lnZ

E=—=53

-7 (12.28)

where Z is the canonical partition function at the microcanonical temperature 5",
The next is to evaluate the partition function in (12.23) more accurately by using the
Euler-Maclaurin formula. We use the first three terms in the expansion:

o0
3 5 .
—InZ = / 2¢+1DIn (1 _ e—ﬂ&) de + 5 In (1 _ e—[fcz) (12.29)
2

_1ld [2¢+ DIn (1 —e )] ‘

12 de =2

The upper limit of integration of the first term has been set to infinity. The actual value
is on the order of €,,,, =~ 2w R/ \in = 2R /(2d), where X is the wavelength and
d is the interatomic distance. In the liquid drop approximation (R = N'/3d/2) one
has £, ~ 7N'3/2.In view of (12.15, 12.16) this yields a size-independent ripplon
Debye temperature of ,,,, =~ 7.1 K. Using this value to estimate the errorinln Z, we
find that the neglected terms are on the order of (3¢,,4x /4 — Tlimax/6) eXp(—BEmax)-
For T = 1K this is a relative contribution to In(Z) of less than 102/ N /3. For lower
temperatures it is even less and we can consequently set the upper limit of the integral
to infinity without any major loss of precision.

In the third step the relation between energy and angular momentum, (12.15), is
inverted to express the angular momentum as a function of the energy. This allows a
calculation of the integral in (12.29) by substitution. Finally, with the expansion of
the exponential exp(—(E,—,) in SE;—, which is an acceptable approximation for
not too small droplets, we get the result

2/3_E

InZ ~ % 4 S
n ol +3ﬂ 96

7
+3 In(2v/20). (12.30)
The numerical constants ¢; = 1.917 and ¢, = 1.685 that appear in this expression
are given by

oo

o0
o = ijszl/ ¥~ dx = ((2n/3 + DT'(2n/3 + 1). (12.31)

j=1 0
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Inserting the numerical values of ¢; and ¢, into (12.30) and reintroducing the physical
energy scale gives

T \*3 T \?? 349 7
InZ=—-0BE+S=1685— 0.639 — — — — —In(2+2T /hwy).
ne=-oEs (im) * (im) 5 ~ 3 "CV2T/Mew)

(12.32)

The first term coincides with (12.24), as it should. The other terms vary slower with
N than the leading order term and are finite-size corrections.

The resultin (12.32) is a very good approximation to the exact result. The compar-
ison with a numerical summation of the partition function for ripplons in (12.23) is
shown in Fig. 12.4. Already at temperatures where T is equal to the lowest excitation
energy E» = fiwg~/8 is the free energy well represented by the above expression. At
higher energies the agreement improves monotonically.

We proceed by finding the caloric curve, or energy-temperature relation from
(12.28) and (12.30) or (12.32) for the free energy:

" a1
(hwo)*3 — 7 (hwe)®® 3
10

= 0.407T"3N?PK=43 £ 0.181T°N3K?/3 — ?T.

E = 2247 (12.33)

If we invert this relation and rewrite it slightly as

-F (f10,)

10 100
T (ha,)

Fig. 12.4 The ripplon free energies, calculated with (12.32) (dashed line) and the summation in
(12.23) (full line) which is exact apart from setting the upper summation limit to infinity. The dotted
line is the first term of (12.32). The position of the lowest excitation energy, E», is indicated. The
data were published in K. Hansen, M.D. Johnson and V.V. Kresin, Phys. Rev. B 76 (2007) 235424
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1 3/7 10 3/7
T = (_> <E(hw0)4/3 — 0.426T°" (hwo)*? + ?T(hwo)“”) ,

2.247
(12.34)
we can calculate 7 (E) by iterating with the procedure known as successive approx-
imations of the right hand side. The result is that 7 = E*/7 (hwy)*” times a power
series in (Awy/E)?*7 which we need not write down here.
We now have all quantities that enter (12.26). Keeping the leading three terms in
the exponential, the total ripplon level density becomes

prip(E) = 0.205(Fwo)® 7 E™'*/7 exp (2.48 (E /Tiwo)*” + 0.507 (E /wo)™) ,
(12.35)
where the energy scale is still given by Awy = 3.6 KN /2,

The calculation has given us the level density for a given total energy. It is also
possible to calculate the angular momentum-specified level density. This function is
relevant because excitations come with angular momentum and angular momentum
is a conserved quantity. The calculation will therefore be done here.

The degeneracy of the ripplon energy levels, 2¢ + 1, indicates that we can not
use a classical description for this calculation, even for large quantum numbers. A
degeneracy proportional to £ gives a canonical thermal rotational energy of T in the
high temperature limit. In contrast, a classical situation would give a degeneracy
factor proportional to £2, corresponding to the rotational degeneracy of a stiff body
(see (8.30)). The canonical thermal energy of this is 37 /2 (see Chap. 2). An error in
thermal energy of 50% is indicative of a serious error in the level density. Happily,
it is possible to handle the quantum mechanical problem without any semiclassical
approximation.

To do so, we start with calculating the distribution of projections of the angular
momentum on a fixed axis. We add these projections, m,, from all the individual
degrees of freedom. The sum of thermal averages is zero:

(Mip) =) (me) =0, (12.36)
(=2

because there is no preferred direction in space and therefore all the contributions
from different angular momenta are zero.

The sum of squares is obviously not zero. It is calculated as the sum over all £’s
and all projections of that angular momentum, m,. A single of these states excited
with n quanta and consequently with energy nE, is populated with the probabil-
ity exp(—nBE;)/Z, where Z7! =1 — exp(—3E,), and the length of the angular
momentum projection is nm, where —¢ > m, > £. For a given £ this gives the ther-
mal average
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4 00
Z >z minte 0k (12.37)

—¢ n=0

2 3 2 o VE 2 .—npE
(gz +¢ +z/3)(1 ‘)Zn e,

(m?)

The sum over m% will be represented by the leading term 2¢3 /3 in the following. The
sum over n can be done with the result

) 2 3 e PE: e 2BE:
(my) = gﬁ |:1 o E, + 2(1 — e_gEf)21| . (12.38)

The last term is rewritten by expanding the denominator as

P R—To Z ZC_(”'H()BE‘ _ Z(n + 1)e—nﬁE( (12.39)
(1 —e™) n=0 k=0
to give
2 e PE = ;
i) = 36 | T 267 Y e (12.40)
—e
n=0

The total ripplon contribution to the variance is the sum of such contributions from
all ¢:

o0

MZ,) =Y (m] (12.41)

=2

&~

We can approximate the sum over £ with an integral and set the lower integra-
tion limit to zero, which is acceptable for high temperatures. With the substitution
u = BE; = Bhwot?? we get

2 40717\ [ 5/3 e o
(M,,,,>’”9(%0) /Ou 1_e_u+2e Z(n—l—l)e du. (12.42)

n=0

The first part of the integral is calculated by expanding 1/(1 —e™) in e™ and
integrating term by term, which gives I'(8/3)((8/3). The second requires some
reshuffling but is otherwise also straightforward. The final result for the integral is
I =T(8/3)[2¢(5/3) — ¢(8/3)] = 1.981... and thus

8/3 8/3 8/7
(MZ.Wi I /1=1.981... I /=O.785... £ /, (12.43)
e 9 ﬁu]o hw() hw()
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where the leading order term in the caloric curve, (12.34), was used. With
Fuwo = 3.6N~1/2 K, this can be expressed as

T 8/3
(M2 ) =5.65- 107 N3 [ —— (12.44)
; 0.4K

This is the mean of the square of the total angular momentum projection on a fixed
axis. We still need to find the distribution of this quantity, and do so by invoking the
Central Limit Theorem which says that if enough stochastic variables are added, the
sum will be normally distributed with a variance which is the sum of the variances of
the individual terms. This is exactly what we have calculated for M, and with the fact
that the average of M itself is zero, we therefore have the (normalized) distribution
of the projection of the total angular momentum:

1
NV2moy

p(E, M) = p(E) e M2 (12.45)

with 012‘,, = ”p) given in (12.43).

This distribution can be used to find the distribution of the total angular momen-
tum, J. The number of states of a given M, denoted by n (M), is the number of states
of a given angular momentum, n(J), with the projection M. For every J, there is
one projection with the value M, provided J > M.For J < M there is zero. In other

words:
o0

n(M) = Z n(J). (12.46)

J=M

Taking the difference of this relation for M and M + 1 we get

n(M)—nM+1)=> " n(J) = Y n(J)=n(J = M), (12.47)
J=M J=M+1

Replacing the difference on the left hand side with a derivative, and the number of
states, n, with the density of states, both of which are permissible procedures because
the spacing of J is unity, one gets

p(E,J) = _ap(E, M) = p(E)——= J+ 1/2 —(J+1/2)2/2<7M

12.48
oM M=J+1/2 N UM ( )

With the size dependence of the energy scale from (12.18), the calculated oy, and
by setting 7' = 0.4 K, the angular momentum distributions for different droplet sizes
are found to be,

p(0.4K, J) o« N2 (J + 1/2)exp (=88 (J + 1/2)> N~*/3). (12.49)
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Fig.12.5 The angular momentum distribution from the ripplon degrees of freedom at a temperature
of 0.4K for N = 10*. The maximum for other droplet sizes varies as N2/3

The distribution is shown in Fig. 12.5 for the droplet size N = 10*. On inspection of
(12.49) one sees that the distribution scales and has the same form for different sizes,
with a scale factor that varies as N*/3. The maximum of the distribution is reached
at J = N?3/4/88 -2 = 0.075N?%/3 for the 0.4 K distribution. For other temperatures
the values for these parameters can be found by the scaling of ¢,;, which varies with
temperature as T*/3,

12.3 Molecular Beam Temperatures

We will now estimate the previously announced temperature for droplets flying freely
through vacuum. The derivation will include only the ripplon thermal properties
because these are the most important for droplets that are not extremely big. The
droplets cool by evaporating atoms and is an example of the ensembles treated in
detail Chap. 7. Following that derivation we set k = C/tG?, where ¢ is the time since
the droplets started free flight. We know the evaporation rate constant of helium atoms
from a droplet from (5.15). With zero electronic degeneracy and a geometric cross
section it is

k(E) = m 2N T2 pn—1(E — E,) _ V/ON—I(E - E,)
! T pn(E) pn(E)

oy , (12.50)

where r; = 2.22 Aand E, = 10 K are the atomic radius and the evaporative activation
energy, respectively, and 7y is the product (daughter) temperature. With 7; = 0.4K
the pre-exponential factor is calculated to
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14

- me AN T? = 1.8 10°NY3s7. (12.51)
This is significantly smaller than corresponding factors for other elements. The dif-
ference is in part due to the small mass of the emitted particle but mostly caused by the
very low kinetic energy. The cross section, represented by N?/3, is a compensating
factor, as helium droplets are often produced very large.

The level density of the product of size N — 1 is close enough to that of droplet N
to initially ignore the difference, i.e. we set py_1(E) ~ py(E) (see Exercise 12.2),
and the ratio of level densities is then py_ 1 (E — E,)/pn(E) = pny(E — E,)/pn(E).
The leading order finite heat bath correction is E, /2C (see Chap.3). With E, = 10K
and the heat capacity from the ripplons, we get a value relative to the temperature of

E,
2CT

=53N2B3T77BKB, (12.52)

which is 45N ~2/3 = (300/N)?/3 for T = 0.4 K. This all adds up to a rate constant
of

E,
)
For precise estimates, N needs to be above 10* before the finite heat bath correction

can be ignored. Above that number the beam temperature, which is at the same time
approximately both parent and daughter temperature, is

k(E)=1.8-10°N*s texp | — (12.53)

E,
T = . 12.54
In (1.8 - 109N2/3 s*lt) ( )

The precise value depends weakly on the droplet size and on the observation time.
The droplets are neutral, their speed thermal and typical flight times after creation will
be between 100 s and 10 ms, say. Sizes are not easy to measure for neutral particles
but a good deal of effort has been devoted to this question and there are tools available
that will give mean sizes with reasonable reliability. If we limit ourself to numbers
between 10* and 108 atoms, we get for the extreme cases that 7 = 0.55 K (for 100 s,
N =10 and T = 0.35K (for 10ms, N = 10%). These numbers are a lot closer to
each other than one may have guessed, given the wide range of the parameters, but
they are not identical. The value of 0.36 K often quoted in the literature refers to
relatively large droplets measured after a relatively long time.
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12.4 Phonon Level Density

The leading-order behavior of the phonon density of states can be determined using
the expression for the Debye heat capacity of bulk phonons calculated in the chapter
on vibrational thermal properties (4.44), with some modifications. If the droplet is
superfluid when it coasts through the vacuum, which experimentally seems to be
the case, it can only support waves in the direction of their propagation. The two
perpendicular modes are not supported by a superfluid, and the low temperature
Debye heat capacity in (4.44) must therefore be divided by a factor 3:

OF _ . 20V (TN _8m 5 (TN’ _ 810 (T’ (12:55)
or — M7 s \he) T 45 he) — 45 \ &) '

where c is the speed of sound, and the energy scale, € = hicm/R from (12.22) was
used. The experimental data for bulk helium, where practically all modes are phonons,
agree very well with this equation, as shown in Fig. 12.6.

We find the energy content by integration with respect to T':

E=V fT Coun(TAT' = 20T _ 0.92N?/3 r (12.56)
- 0 bulk = 45 53 = U KS. .
1073
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o
£
=
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Fig. 12.6 The experimentally measured *He bulk heat capacity at the saturated vapor pressure
(circles) and the predicted 1/3 Debye heat capacity (line), calculated with (12.55) with the exper-
imentally measured density of 0.1451 g/cm? and the speed of sound ¢ = 238 m/s. There are no
adjustable parameters in the theoretical curve
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With the caloric curve in (12.56) we can find the entropy in terms of the excitation
energy by integration with the factor 1/7. From the general result in (12.26), the
level density is found to be

3/4
ppn(E) ~ Ae T BE™ B exp (3.409 <—> ) , (12.57)
g

where A is 0.32.

This is the first estimate of the level density, and depending on the size of the
particle it may be precise enough. Higher order contributions are mainly generated
by the deviations of the roots of the Bessel functions from an equidistant spectrum.
They occur at low quantum numbers and can therefore not be captured by the exper-
imentally measured macroscopic heat capacity, in particular considering that they
are usually not measured on macroscopic drops and the detailed behavior of Bessel
functions is irrelevant for their description.

A calculation of the thermal properties that takes this kind of systematics into
account does not seem like an easy task. Fortunately there exists an expansion of the
smoothed density of states in a finite cavity, covering the type relevant here. When
applying these corrections, which we will not derive, we get the heat capacity (per

unit volume)

2
C:Chulk'i'%sj)#%‘f‘é%%. (12.58)
As one can see from the R dependence, the corrections give rise to a surface and a
curvature term. The entropy and the caloric curve can be found by integration, as
done above. The rest of the procedure is then similar to the one used for ripplons.
We have gone through this procedure for other degrees of freedom a couple of times
and just give the result:

~3/8 E 3/4 E 172 E 1/4
pon(E) ~ Ae—exp (3400 (=)  +0908(=) +0482(= .
ES/8 € € €

(12.59)
This expression is accurate enough to warrant a comparison with the level den-
sity calculated with the Beyer-Swinehart algorithm (see Chap.4), with the roots of
the Bessel functions as input quantum energies. It must be expected that there are
corrections that are unaccounted for because the argument of the exponential is an
expansion in E 1/4 and the fourth term in (12.58), which we don’t know, will be a
constant and will therefore contribute to the pre-exponential. The calculation with
the Beyer-Swinehart algorithm gives a leading order correction which can be fitted
with the expression exp(—0.62(E /£)?). An effective value of A &~ 0.05 can be used
for phonon energies below 400 €.
Phonons also carry angular momentum, and one of the two indices of the spherical
Bessel functions gives the angular momentum (the other counts the number of nodes
in the radial motion). For the calculation of the phonon angular momentum-resolved
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density of states, which now be done, we will be satisfied with the leading order
contribution.

For the free surface boundary condition, the roots of the Bessel functions are
asymptotically (n +£/2 — 3/4)m ~ (n + £/2)7. If we use the phonon energy scale
in (12.22), the quantum energies are thus n 4 £/2. In analogy with the calculation
for ripplons, we sum the squares of projections of angular momentum as

oo oo my=t 2k2 —kBE,,
PHMI Bt (12:60)

=0 =0 my=—¢

There is one more summation here compared with the ripplon case, corresponding
to the existence of the radial nodes, consistent with the three-dimensional nature of
phonons vs. the two-dimensional nature of ripplons.

The sum over m% gives 203 /3, as before, and the sum over k is also identical to
the ripplon case. We therefore have

2> . x= e BEn: e 20En:
2\~ 3
(Mp) ~ 3 Y3 e [1 — T 2(1 - e_ﬂEM)Z} (12.61)

We perform one of the remaining two sums over constant energy surfaces, n + £/2
equal to a constant, in the n, £ plane. For the first term in (12.61), this gives an
approximate value of

2 X B s 8 e B0 g o e
N M T

n=0

(12.62)
This is calculated with the same method used for ripplons; expand the integrand in
exp(—[(n), interchange integration and summation and shuffle some limits of the
sums. The second term is calculated analogously. We get

5
(M) ~ gF(S)(ZC@) —CNT> =722 (g) , (12.63)

where the energy scale has been reintroduced. Inserting the value of &, the mean
square M is, in terms of droplet size,

T 5
(M) ~6.3-10"°N (E) , (12.64)

which, for 7 = 0.4K, is
(M>,) ~6.5- 107N, (12.65)
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Once (Mﬁh) is calculated, the distributions are derived following in all detail the

procedure for ripplons, and (12.48) can be used also for phonons, simply by replacing
oy with the phonon value.

12.5 Thermal Properties of the Combined Excitation
Spectrum

The ratio of the leading orders of the ripplon and the phonon excitation energies is

Epp I T\
EP’ = 22;5—T/ = 0.006N'/3 (E) . (12.66)
rip . - a3

(o)
For T = 0.4 K we have equal contributions when N = 4 - 108, Below this fairly large
but not outrageously oversized droplet, the excitation energy of the surface modes
(ripplons) exceed that of the bulk modes (phonons).

When the droplet size approaches the crossover size, it will have both ripplon
and phonon oscillations excited at the same time and the thermal properties will be
determined by the total level density obtained by combining the ripplon and phonon
functions. One can calculate the joint level density as the convolution,

E
Prorat(E) = / prip(E — )ppu(e)de. (12.67)
0

As it turns out, this is not trivial to do with the same precision as with which the two
input functions are known. Instead of performing the convolution, we can calculate
the thermal properties of the system at the energy partition where the distribution,
i.e. the integrand in (12.67), has its maximum. This will often be what we need in
any case. This maximum point distribution corresponds to identical temperatures in
the two subsystems (see Chap. 1) and makes microcanonical thermal properties such
as energy, entropy and heat capacity of the two subsystems additive,

T7/3 2776 T4

E=E;,+Ey;=2247— + = ___
pt B (o) T a5 B

4. (12.68)

In the limit where the phonons carry only a relatively small amount of energy, the
convoluted level density in (12.67) can be calculated approximately. The procedure
is similar to the one used to define the microcanonical temperature in Chap. 1 and
to account for excitations of degrees of freedom that only carry marginal amounts
of excitation energy, as e.g. electronic excitations. The result is that the total level
density is the product of the ripplon level density and the phonon canonical partition
function;

ptotal(E) ~ prip(E)th(T(E))v (1269)
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where T is the microcanonical temperature of the ripplons. The simplest way to
calculate the phonon partition function here is to start with the level density and
multiply with the Boltzmann factor and the pre-exponential factor as given in (3.47).
The calculation of the expression is left as an exercise to the reader.

By the same logic as used in (12.69) one can calculate the level density of the
joint system when it is the phonons that dominate the thermal properties. The result
is symmetric in the subscripts relative to (12.69);

Protal (E) % ppn(E) Zyip (T (E)). (12.70)

Also the angular momenta of the two different types of excitation add. The ratio
of the ripplon and phonon contributions to the width of the angular momentum
distributions is, to leading order,

(M2,)

~ 0.0098 (T /K)"/® N1/6. (12.71)

This ratio is small compared to unity up to very large droplet sizes. For our 0.4K
favourite example, unity is reached for a droplet size with a radius of 19 pm! For
smaller sizes than this, one can ignore the contribution from phonons to the angular
momentum.

Exercises

12.1 In a pick-up process a molecule is absorbed into a droplet in a soft collision.
One may suspect that the potential dopant will just move through the droplet because
itis superfluid and hence provides no resistance to the molecule in its motion. Explain
(quantitatively) why this is usually not the case.

12.2 Show that for ripplon level densities,

o
pn-1(E) = py(E) exp (—m) , (12.72)
3.6K
where « is on the order of unity.

12.3 Find the droplet size for which the second term in the exponential in (12.35)
is 10% and 1% of the first term for a temperature of 0.4 K. Calculate the absolute
magnitude of the correction for these two value.

12.4 Show that the distribution in (12.48) is normalized.

12.5 Complete the steps between (12.61) and (12.63)
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12.6 Calculate the joint ripplon-phonon level density both for the situation when
ripplons carry most of the excitation energy and when phonons do. Insert the scaling
factors to get an explicit expression.

12.7 Show that the smallest size for which the average thermal excitation energy at
0.4 K exceeds the lowest excitation energy is around 100 atoms. Discuss the result
in terms of the experimental desire to control the cooling of dopant molecules.

12.8 Consider the convolution of the ripplon and phonon level densities in (12.69).
The validity of the result is restricted to situations where the resulting energy in the
phonons does not change the temperature of the ripplon sector significantly, i.e. we
require .

Trip(E) ~ rip(E - Eph(Trip))- (12.73)

Otherwise energy will not be conserved to a sufficient extent.

(a) Find a criterion for the acceptable change in ripplon temperature when the phonon
energy is subtracted. Use for example that the phonon partition function should not
change more than a factor of two when calculated with the left and right hand side
of (12.73).

(b) The criterion you have established in a) translates into a limit on droplet size.
Find this size, using 7 = 0.4 K and the leading order terms in the expression for
level densities.

(c¢) Repeat the calculation with the role of ripplons and phonons reversed.



Chapter 13 ®)
Phase Transitions Check for

Melting and the inverse process of freezing are some of the best known examples of
a phase transition. It occurs when a liquid or a solid (a phase, in short), is converted
into the other by a change in pressure or temperature. The term solid phase is a
collective term that may, for a specific material, umbrella several distinctly different
structures, defined by their crystal structure and distinguished by neutron scattering,
for example, if not by more mundane means, such as color, density and similar.
A phase diagram maps all phases of a substance as function of pressure and tem-
perature. These two external parameters define the phase uniquely for bulk matter.
For a free nanoparticle, a more relevant set of parameters is the temperature and the
number of atoms in the system. Volumes and pressures are, as discussed previously,
of little interest for the properties of a free particle.

A macroscopic solid is usually an ordered phase with a periodic atomic structure,
known as a crystal. This gives long range order for the position of the atoms. Liquids
have unordered atomic structures, although with some short range order. Macroscop-
ically, the difference between a liquids and a solid is the ease with which the shape
of a piece of matter can change. Liquids fill the bottom of containers in the presence
of gravity. If in doubt, tilt the container. Characterization by shape does not even
require gravity to work. Liquids deform easily and even in zero gravity situations
will one observe waves on the surface on a droplet that deform it from the spherical
lowest energy shape. Consider the ripplons of the chapter on helium droplets. Shape
changes are so good indicators of melting that they can be used to determine melting
points of very small but still macroscopic amounts of matter very precisely. This has
been used in the past by chemists to help identify chemically pure substances.

Another difference between the liquid and solid phase is that the specific volume
is usually different for the two phases. Most often the density is lower for liquids,
but there are exceptions, of which the most well known is water.

For nanoparticles, the definition of a crystal or a liquid is less trivial than for the
bulk. What is long range order and what is short range in a particle five atoms wide?
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If one allows for modifications of the structure of the surface relative to the interior,
one will have a hard time distinguishing a crystalline structure from a glassy structure
where disorder is frozen in.

When particles become small enough they will be invisible to the naked eye,
and fluidity will become an impractical tool for phase determination. The use of
powerful microscopes is one way to push the boundary of visibility and they have
been applied extensively, in particular electron microscopes that can probe much
deeper than visible light microscopes. Useful as they are, microscopes have their
limitations, both with respect to resolution but also because their operation tend to
distort the structure of particles, in particular at the small end of the size spectrum.

Different alternative tools have been developed to study phase diagrams of very
small particles. Theoretical studies can make use of numerical simulations of the
type described in Chap. 9. Experimentally some of the cleanest methods are based on
measurements of heat capacities. Peaks in heat capacities as a function of temperature
indicate that something has happened with the collective state of the particle. If this
occurs at a temperature where one expects melting and with an expected magnitude,
this may actually be melting, or at least the finite size analogue of melting.'

A peak in the heat capacity itself is not a sufficient signature for melting because
other types of transitions that give rise to these features may occur, and one prefers to
have other parameters to study. In the experimental technique known as ion mobility
studies, the effective geometric size of a charged particle is measured by dragging
it through an inert gas with an electric field. Volume and shape changes vs. temper-
ature can be measured this way and melting identified in complete analogy to the
macroscopic technique mentioned above, provided changes are big enough.

The heat capacity peak associated with melting can be integrated over temperature
to give a heat of transition, also known as the latent heat or heat of fusion and, more
correctly, the enthalpy of fusion, AH,,. It is the difference in enthalpy of the liquid
and the solid phase, usually per unit mass or mole;

AHm = Hl - Hs‘ = (Fm + Pvm) - (Fr + P‘/S)v (131)

where P is the pressure and V the volume of the system, and the subscripts refer to
the respective phases. AH,, is an extensive and positive quantity which correlates
with the melting temperature of the material. Data for the elements are shown in
Fig.13.1, from where one sees that the melting entropy is around unity, within a
factor of two, for most elements.

A number of effects exist that will modify the simple picture of a single melt-
ing temperature. Some appear macroscopically and some only for microscopic
amounts of matter. A number of materials can be supercooled, i.e. stay liquid when
cooled below their usual freezing or melting temperatures, which is the temperature
where the liquid material normally exists in equilibrium with the solid phase. Most
materials will crystallize when they reach a critical degree of supercooling, if not
before, but never below that characteristic temperature. Exceptions are glasses, as in

10r freezing. Let’s use the term melting generically in this discussion.
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Fig. 13.1 The heat of fusion
of the elements, A H,, per
atom, vs. the melting
temperature. The line is
AH,, = T,,. The values are
scattered around this line,
indicating that the melting
entropy AH,,/T,, per atom
is on the order of unity. This
is known as Richards’ rule

T (eV)

window panes and drinking glasses, which appear solid at room temperatures but
never undergo solidification transitions from the unordered liquid state into a solid
crystalline state when cooled. The usual glasses are composed of silicates, but a
number of other materials can form this phase and are also called glasses.

The reason that a supercooled state can exist is very similar to the reasons a super-
saturated gas can exist (see Chap. 8) viz. there is a free energy barrier for the formation
of a sufficiently large nucleus or seed of the thermodynamically most stable solid
phase. As soon as the seed is present, freezing happens very rapidly. The phenomenon
has its analogue in supersaturation of solutions, for which concentrations can exceed
the equilibrium values by large factors. Precipitation of crystallized solutes can also
be induced by addition of a very small impurity. Another analogue is super-heating
of liquids beyond their boiling point, a phenomenon one can experience with clean
cups of water heated in microwave ovens.

However interesting these phenomena all are, only the ones that have any ramifi-
cations for the behavior of phase transitions of finite systems will be considered in
the following.

13.1 Surface Melting

When the temperature of a bulk solid approaches the melting point from below but
has not yet reached it, it happens for a number of materials that a thin molten layer
forms at its surface. The thickness of the layer grows as the temperature approaches
T,,, and it diverges at T,,, causing the whole volume to melt. Because small particles
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are mainly surface, this experimentally well established phenomenon suggests they
may have melting temperatures that are reduced relative to the bulk values. The
phenomenon, called premelting or surface melting, is therefore of obvious interest
for the study of nanoparticles.

It can be understood by comparing the free energies of a molten surface layer
and the alternative completely frozen surface. Just as it costs energy to create a
surface separating matter and vacuum, or vapor, the addition of a liquid-solid surface
is associated with an increase in energy of the system. This surface tension is in
general not equal to the liquid-vapor or the solid-vapor surface tension. A necessary
condition for the existence of a liquid surface layer below 7, is that the surface
tensions for the solid-liquid, liquid-vapor (or vacuum), and solid-vapor phases obey
the inequality

Vsv > Vst + Vivs (132)

c.m.n. The solid-liquid surface tension, multiplied by the surface area, is also known
as the interface energy. If the inequality in (13.2) is fulfilled, the creation of a liquid
surface layer may lower the total (free) energy, making this the stable state. But it
will not necessarily do so. The reduction in surface tension expressed in (13.2) is
accompanied by an increase in the free energy of the volume containing the liquid
layer created in the process relative to the solid phase. This increase expresses that,
in the absence of surfaces, the supercooled liquid layer is not the thermodynamic
ground state. The difference between the solid and liquid phase free energies can be
calculated from one of the Maxwell relations

(3(Fs - k)

5T >V =—(S — %), (13.3)

or, in the linearized form, which can be used because temperatures are close to 7,,,,

T, —T
Fi = Fy~ AH, = —, (13.4)

m

using Sy — S, = % + O T’"T—;T ~ ATIZ'" . The equation reproduces the facts that
the free energies of the bulk liquid phase and bulk solid phase are equal at the melting
point: Below T, the liquid phase free energy is higher than the solid’s and above the
roles are reversed, all as expected.

The free energies, entropies and the melting energy, A H,,, in the above equations
are the values per volume. Since the difference in the specific volumes of a solid
and its liquid is usually small, the difference of the PV -term in the enthalpies are
small and in applications one can to a good approximation use tabulated values for
enthalpies instead of energies, as done here.

If the thickness of the liquid layer is denoted d, the total free energy difference per
unit surface area, Af, between the situations with and without a supercooled liquid
layer is therefore
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T,.—T

Af = (Fl - Fs)d + Vst + Vv — Vso = AH, d+ AV’ (135)

m

with
AV = Vs + Yo = Vsv- (13.6)

The minimum of this expression is found for d = 0. This corresponds to the creation
of a liquid layer, rewarded with the gain in surface energy, without paying the price
associated with a volume of supercooled liquid. This is unphysical because the liquid
phase cannot be infinitely thin and the two interfaces, solid-liquid and liquid-vapor,
can therefore not get arbitrary close. As a minimum one needs a separation of the
two interfaces of one atomic diameter to have a liquid phase. The way out of this
is to introduce an interpolation between the zero and the infinite supercooled layer
thickness situation of the form

Ay — Ay g(d), (13.7)

where the function g(d = 0) = 0 and g(d — 0o) — 1. This corresponds to an inter-
face energy for the liquid phase of y;, ford = 0 and y,; 4 y;, for sufficiently large d.
The precise functional form of g is a matter of the detailed properties of the material.
We will use an exponential interpolation,

g(d) = 1 — exp(—d/¢), (13.8)

expecting that ¢ is on the order of the liquid phase atomic position correlation length.
The free energy difference then becomes

Af = AH,, (1—Tl>d+Ay(1—e—d/@). (13.9)

m

When AH,, (1 - TL) { < — Ay, the free energy difference in (13.9) has a negative
slope at small d’s and the free energy difference therefore a minimum with a negative
value for some finite value of d, as required for the formation of the liquid phase.
The minimum is located at the d given by

d=/{In —EAHm (1 - 1)

(13.10)

T

This is the thickness of the supercooled/premelted layer (recall that Ay is negative).
The numerical estimate of this length for different temperatures is left as an Exercise
13.1.
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Equation (13.10) also predicts that there is a specific temperature, T,;;, below
which the surface is completely frozen. It is found by setting the argument of the
logarithm equal to one, with the result

Ay
Toiv = T 1+MHm ) (13.11)

13.2 Melting Point Depression

A number of different types of particles have been observed to melt at lower temper-
atures than the bulk melting temperature of the material, reductions being roughly
inversely proportional to the radii of the particles. An early observation made on
supported gold clusters is shown in Fig. 13.2. The melting point depression is often
described with the Gibbs-Thomson equation in terms similar to those we have already
encountered. We will derive a slightly different size dependent melting point.

In analogy to the surface melting free energy, (13.5), we can write the difference
of the free energies of a particle with a radius r, a solid core at radius r, and a liquid
layer between r,; and r, and a completely solid particle as

T\ 4
AF = AH, ( — T—) ?n (r3 — r;) + 471)/3,}"32 + 4ny,ur2 — 471)/3,,;"2, (13.12)
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Fig. 13.2 The measured melting temperature vs. diameter for gold particles. The line is a fit to an
expression where the melting point reduction is proportional to the inverse radius of the particles.
Reprinted from Ph. Buffat and J.-P. Borel, Phys. Rev. A 13, (1976) 2287, http://pra.aps.org/abstract/
PRA/v13/i6/p2287_1. Copyright (1976) by the American Physical Society
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where r; is the radius of the solid core and r the radius of the entire particle. This
assumes that melting occurs from the surface. From (13.12) we find that the free
energy difference has a maximum for a radius given by the relation

T
AH, (1 — T_) ry = 2V, (13.13)

m

and a negative second derivative with respect to . The minimum is therefore located
at either r, = 0 or r; = r. The two values are

T\ 4m 4 By
AF(ry =0) = AH, I_T_ ?7\4_47”’ Vv — Vs),

m

AF(ry = r) = 477 (Y + Viv — Vso)- (13.14)

Provided a solid phase exists at all (which is not a trivial condition, see Chap. 12), it
will be realized at low temperatures where the first term in the expression of A F(0) is
highest and acts to suppress the liquid phase corresponding to this minimum. As the
temperature is increased, the term decreases until it reaches zero at the bulk melting
temperature. This makes Af (0) < Af (r) at T,,, which tells us that the molten particle
is the most stable for some range of temperatures below 7,,,. The precise melting point
is found by solving the equation

AF(0) = AF(r). (13.15)

It gives the radius-dependent melting point 7,,(r) determined by:

T
AH,, (1 — T(r)> r =3y, (13.16)
or 3
Vsi
T, =T, (1— . 13.17
(r) ( rAHm) ( )

One notes that the length ¢ introduced to derive the equation that describes surface
melting is absent from (13.17) because the modification of the interface energy
represented by the function g in (13.9) is not implemented here. Leaving it out does
not giverise to any unphysical limits here. Inclusion of this factor is left as an exercise.
Equation (13.17) is close to but not identical to the Gibbs-Thomson equation, which
has a factor two instead of three multiplying y;; here.

In addition to the smooth, inverse radius dependence in (13.17), small particles
composed of several tens or hundreds of atoms tend to show irregular variations
in melting temperature with size. These can often be correlated with the geometric
packing shell structure seen in for example rare gas clusters, but the correlation is
not complete and a lot remains to be understood about this matter.
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13.3 Measurements of Heat Capacities as Signatures
of Melting

One of the most successful measurements of thermal properties of small, free particles
is the measurement of the heat capacity of gas phase clusters. The idea behind the
measurement is to use a process that depends on the energy content of the particle
as an uncalibrated thermometer or, more correctly, as a calorimeter. A practical
implementation proceeds like this: Particles are send through a heat bath where they
thermalize to a known temperature, 7;,,. The temperature is known because it is
measured with a thermometer attached to a macroscopic heat bath. After exiting
the heat bath, the particles and the thermalizing gas are separated and the clusters,
that must be produced charged, are accelerated in an electric field. Acceleration
separates the clusters in space according to mass (strictly speaking their mass-to-
charge ratio, but the clusters are singly charged) and a single size is selected by
pulsed electric fields. The selected cluster is then exposed to the light of a tunable
laser, and a countable number of photons is absorbed. The resulting metastable decay
is monitored with a mass dependent deflection in the electric fields of a so-called
reflectron.

The end result is a measurement of the number of evaporated atoms from a given
cluster size with a given initial temperature, after exposure to a flux of photons with a
given energy. When photon energies are high enough to cause evaporation of several
atoms, it is easy to distinguish between clusters that have absorbed n and n + 1
photons.

If now the photon energy is changed, so will the average number of evaporated
atoms. One can therefore compensate a small increase in the temperature of the heat
bath, 87}, with a small decrease in photon energy, imparting a total of ndhv less
energy into the cluster, and end up with the same number of evaporated atoms. This
means that the final energies or temperatures after equilibration and right after photon
absorption are identical, and hence

ndhv 4 6T,,C, =0, (13.18)

from which the heat capacity, C,, at Ty, is found. Figure 13.3 shows some of the
results from a series of experiments done in Freiburg, where the method was invented.
The evaporation of one atom for sodium costs about 1 eV, so different photon numbers
are distinguishable with available photon energies.

The method outlined is not the only variation that will produce such thermal
properties. The photo-ionization can be replaced with collision-induced dissocia-
tion (CID), for example performed in equipment designed for ion mobility studies.
One advantage of that variant is that the initial temperature is somewhat better con-
trolled. A disadvantage is that the excitation energy transferred in collisions is less
well defined compared with photon energies.
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Fig. 13.3 Heat capacities of NaT39 determined as described in the text. The lower frame shows
measured heat capacities. The broad peak is associated with melting of the cluster. The middle frame
shows the canonical heat capacity calculated with bulk parameters, scaled to the N = 139. The finite
particle size smears the § function of the bulk melting transition in the canonical representation in
that frame. It is, however, still more narrow than the experimentally observed peak in the lower
frame, which is microcanonical with an underlying canonical energy distribution. The integral of
the peak, i.e. the latent heat, is reduced compared to the bulk value. The top frame shows the thermal
energy contents of the cluster in the three different situations. Reprinted from M. Schmidt et al.,
Phys. Rev. Lett. 79 (1997) 99, http://prl.aps.org/abstract/PRL/v79/i1/p99_1. Copyright (1997) by
the American Physical Society

13.4 The Lindemann Index

On the microscopic level, the solid and molten states are distinguished by the different
degrees of atomic mobility. One measure of this is the Lindemann index, §. For atom
i it is defined as
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(r7 ) = (rij)?

1
b=~ Z v , (13.19)

where r; ; is the distance between atoms i and j, and N is the number of atoms
in the system. Thus §; is the root-mean-square of the relative atomic displacement.
For statements about the collective state of a particle it should be averaged over all
atoms;

1
§ = NZ&. (13.20)

The averages in (13.19) are over a suitable time. Suitable time means less than
astronomically long (this is easy) but also not so short that the atoms have not had
the chance to move. An absolute lower limit for the sampling time is a typical
vibrational period.

The reason the Lindemann index is useful is that deviations from the mean posi-
tions for a solid are basically vibrations around equilibrium positions. The amplitudes
of these vibrations are much smaller than the mean distance between atoms and hence
8 < 1.Intheliquid state the atoms are free to move, apart from transient caging effect
of neighboring atoms. Ultimately, thermal fluctuations will produce an opening in
any cage and an atom can move in to fill the void or move out to create one and thus
move far beyond the typical vibrational displacement.

We can estimate the value of the Lindemann index for the solid by using harmonic
oscillator properties for the vibrations. The displacement from the equilibrium posi-
tion of an atom, (x2)!/2, is given by

(V) = = —mawh(x?), (13.21)

2

E T 1 ,
272

where E is the thermal energy, m is the mass of the atom, and the Debye frequency
wp has been taken as a representative frequency. This gives

T
(x2)2 = . (13.22)
maow
We estimate the bond length, r, from the number density of the bulk, p, as
4 3 -1
?r =p . (13.23)

Figure 13.4 shows the value of (x?)!/2/r for a number of elements at their respective
melting temperatures. The number 0.1 is seen to be a reasonable upper limit for the
solid state. In spite of the somewhat hand-waving argument used to obtain (13.22),
this value has turned out to be a good indicator for the phase of the system, and it is
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Fig. 13.4 The estimate of the Lindemann index for the solids at the melting point for a number of

elements, based on (13.22)
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Fig. 13.5 The Lindemann index, §, for a Lennard-Jones cluster of 55 atoms, which has a closed

geometric structure. The inter-atomic potential is given

in (13.24). The curves are calculated for

excitation energies E = 10 ¢ through 120 ¢ in steps of 10 €. Several of the high energy curves are
terminated prematurely because an atom evaporates. The transition from solid to liquid seems to

occur between E = 50 ¢ and 60 &

generally accepted that a value of § below appro
and a value above a liquid. This is known as the

ximately 0.1 indicates a solid state,
Lindemann criterion for melting.

To demonstrate how this works in simulations, Fig.13.5 shows the calculated
values of the Lindemann index in a MD simulation of a cluster composed of atoms
interacting with the spherically symmetric pairwise Lennard-Jones potential:
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< o 12 p 6
Vi =de <—) - <—> , (13.24)
V,‘yj ri,j

where i, j are labels of the atoms (see Chap. 12 for details of the potential). The
lowest excitation energies in Fig. 13.5 are safely in the solid phase and the highest
in the liquid, but a few of the intermediate excitation energies have less obvious
designations in terms of molten or frozen. One may compare with the results in
Fig.13.9.

13.5 A Simple Model of Melting

One can model the melting by constructing a level density that gives liquid-like
properties in the high energy regime and solid-like in the low energy regime. The
idea is depicted schematically in the drawing in Fig. 13.6. The solid state, the narrow
and deep well in Fig. 13.6, can be represented by a component in the level density
with an energy dependence similar to vibrations in a solid (see Chap.4).

ps(E) = a, ES7, (13.25)

where C; is the heat capacity of the solid phase. For the sake of argument we can take
the solid phase level density not just similar but identical to a harmonic vibrational

Liquid phase Liquid phase

V(x)

Solid phase

Fig. 13.6 A schematic potential energy landscape that accommodates a solid-liquid transition. The
solid state is associated with the single deep potential energy well and the liquid phase with the
manifold of high energy local minima
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level density. The factor a, then includes the vibrational quantum energies and a
factorial, as derived in Chap.4.

The liquid state can be described with a similar level density, with two changes.
One is that there is an offset in the energy. This reflects that it takes some energy,
which we will call Ey, to elevate the system to the liquid phase. The second is that
the number of accessible vibrational states is much higher in the liquid phase. This
must be present to compensate for the higher price paid by the energy offset for the
liquid state to become the dominant. What this boils down to is a liquid state that
can be described with the level density

pI(E) = O(E — Eg)aj(E — Eg)“'™! (13.26)

where a; > a, and O is the step function (see Appendix C).

In principle, melting could be caused by C; being sufficiently much larger than
C,. If we want to have only one explanation for melting, valid for all chemical
compounds, this suggestion can be ruled out. Experimentally, the liquid state heat
capacity isin general not larger than the solid state of the same material. A compilation
for the elements is shown in Fig. 13.7.

The difference between the two phases must therefore be found in the a-
coefficients. The similarity of the solid and liquid heat capacities suggest a similar
number of oscillators in the liquid phase metastable phase as in the solid, because
this is what C and C; count. If also the vibrational frequencies of the solid and of
the metastable minima of the liquid are similar, the ratio of a; and a;, has a straight-
forward interpretation as the number of metastable minima in the liquid phase. In
fact, we need not assume that the vibrational frequencies of the solid and the liquid
states are the same; If they are different, the ratio of the two coefficients is still the
exponential of the entropy difference between the solid and the liquid state,

a

R=— =¢V4, (13.27)
dg

where As is the melting entropy per atom/monomer.
We will set C; = Cy = Cj and write the level density as

p(E) = a, EC“"' + O(E — Eg)a;(E — Ep)“ . (13.28)

It is implicit in this model that the whole volume of the particle is in the same state,
liquid or solid. The relative magnitude of the two contributions to the level density
in (13.28) should be considered as the probability of observing the system in either
of the two phases at some sampling time. For a sufficiently large particle, melting
proceeds via the creation of a small region of liquid phase somewhere in the particle
(and surface melting makes the surface the most likely place), which then spreads
until all solid matter has been converted into liquid. We will not go into details with
this phase separation.
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Fig. 13.7 The correlation between the solid and liquid phase heat capacities for a number of
elements at the melting point. The line indicates identical values in the two phases. Clearly there is
no general rule that the liquid value is above the solid. The dotted circle indicates the Dulong-Petit
heat capacity

We start the analysis of (13.28) by calculating canonical properties,
o0
Z= / p(E)e PEAE = a,TT (Cy) + a;T e PET(Cy). (13.29)
0

The thermal energy is

a Eoe_ﬂEO Re PEo

E=CT+—  =CyT+ Egp———. 13.30
ol + ol + 0T RoFEs ( )

In the low temperature limit when R exp(—BEj) < 1, the thermal energy reduces
to E &~ CyT. In the high temperature limit, R exp(—BEy) > 1, (13.30) gives the
energy E ~ CoT + Ey. We can therefore identify E, with the latent enthalpy of the
transformation (ignoring the PV term). It is an extensive quantity in the sense that it
grows with the size of the system, but for small particles it is not necessarily a linear
nor even a monotonic growth.

The next question is the transition temperature. We can estimate the crossover
temperature with the relation R exp(—8,, N Ey) ~ 1, which corresponds to a thermal
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energy of E = CyT,, + Eo/2 (T}, is the melting temperature of the particle here and
below, and not the bulk melting value as used above). The melting temperature is

then
—1 Eo
B =Tw=—:. (13.31)

This should not come as a surprise. The logarithm of R is the melting entropy and
what the equation says is that AS = AE/T,,.

We can use the model to understand a general feature of the melting of small
particles, viz. that the temperature interval over which the transition occurs is finite.
Bulk matter can be assigned a single melting temperature, aptly named the melting
point, apart from the surface melting effect. This is actually only an approximation,
albeit a very good one when particle numbers are comparable to Avogadro’s constant,
and as such it gets worse the smaller the particle becomes. We can use the width of
the peak in the heat capacity as a measure of the temperature interval over which the
particle melts. The heat capacity in our model is

c 9E o <E0)2 Re—FEo (1332)
= — = () - > .
B T) (1+ Re—ﬁEo)2
which has a maximum of
ot (B (13.33)
max — “0 4 Tm . .

The width of the transition region, §7,,, is estimated by approximating the heat
capacity peak with a triangular shape and integrating to get the latent heat:

1.1 (E\
=8T,— | — | =~ AH,. (13.34)
2 T4 \T,
Using AH,, =~ E|, this gives
T2
8T, ~ 8—"—. (13.35)
AH,

If the data if Fig. 13.1 are taken to be representative, we can set AH,, ~ NT,, and
get

8
8T ~ —Tp. (13.36)
N

This relation is a little more reliable that than suggested by the ~sign. It predicts a
fairly broad transition region, e.g. 25% of the melting temperature for an N = 32
particle. If we use that the width of a melting transition must be less than the melting
temperature itself in order to identify it as a transition at all, (13.36) predicts that
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particles below N = 8 will not have a melting transition. Other estimates in the
literature give a lower limit of N = 6.

Another very interesting consequence of the model, and indeed for any realis-
tic description of melting, occurs for microcanonical systems. The conserved total
energy means that when the particle is excited into a high-lying local potential mini-
mum, the energy must be supplied by the vibrational degrees of freedom. The excita-
tion into a molten state therefore reduces the vibrational energy, including the kinetic
energy. This lowers the temperature of the particle. And because the promotion to
the molten state occurs more frequently with higher total energy, one ends in the
seemingly paradoxical situation that an increase in excitation energy causes a drop
in temperature, i.e. the heat capacity becomes negative. The paradox is only appar-
ent. Freezing processes where the temperature increases just reflect the fact that the
heat of fusion is deposited in the system itself. It has nowhere else to go in a micro-
canonical system. Reversing the process makes similar sense; a melting where the
temperature decreases simple reflects that the heat of fusion needs to be supplied
from somewhere.

Because the phenomenon appears only in the microcanonical ensemble, one may
suspect that the effect is an artifact of the definitions of 7 and C. It turns out that
negative heat capacities is a robust effect, insensitive to precise definitions of both
T and C. We can therefore demonstrate the presence of the negative heat capacity
with a calculation of the microcanonical temperature using our favourite expression
without any qualms about this choice. The relevant energies will be above Ej and to
simplify of notation the ® function can be dropped from the expression. We get:

_1 _ 9In(p(E)) E 4 R(E — Ep)©?
I _ — —
7 = 5E =(Co—1) ECGT ¥ R(E — Ey) 01" (13.37)
A few manipulations give
E—Ey E 1
= , (13.38)
— — Eo\Co—2
Co—1TC—114R(1- L)~
The reciprocal of the heat capacity is calculated to be
Co-2
aT 1 Ey E R(1-%
c'=22 - 1- =220 (cy-2) (-7 . (13.39)
oE Co—1 E E—E 1+R(1_%)CO_2

The potential for a negative value is signalled by the negative sign in the bracket in
the right hand side of this equation. The minimum of C~! is reached at an energy
given approximately by

r(1- Lo CH~1 Epin ~ Eo 13.40
_Emin ~ | = min’vm. (13.40)
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This is above Ej as required for the simplification made to avoid the x-erei of the
step function. With this energy the reciprocal heat capacity is

1
T Cy—1

c! (1 - C°4_ 2 (RVC=2 1) (1 - R—1/<C0—2>)> . (13.41)

For sufficiently large R and fixed Cy this will be negative, and hence will also C.
We can find the limiting value of R,,;, for which C is negative. It occurs at

Co—2 - ~1/(Co-
LS (R =) (1 R @) =0 a3
or
2 \9?
Rmm%(lJrﬁ) : (13.43)
==

For the numerical example of the model shown in Fig. 13.8 the first appearance of a
negative slope in the 7'(E) curve is calculated from (13.43) to occur when R reaches
the value 3.5 - 10® for Cy = 100, in good agreement with the more imprecise number
obtained from inspection of the figure, which shows the caloric curves calculated also
with Cy = 100 and several different values of R.

The values of R used for this example may seem unphysically big. They are
not. The highest value used in Fig. 13.8, R = 10'2, corresponds to the total entropy
change of In R = 27.6. If, for simplicity, we translate the heat capacity of Co = 100
to a number of atoms with the harmonic oscillator value s = 3N — 6, the melting
entropy per atom is less than 1, which should be compared to the observed bulk values

0.06
e
e
pd
0.05
L rrrreneen
T ’/ .
——R=10
,,,,,,,,, R=109
0.04 o
~R=10"
— R=10‘2
0.03 . ' .
4 6

E

Fig. 13.8 The microcanonical temperature for a model system with the level density given by
(13.28) with Cp = 100 and E( = 1. The different values of R give rise to different depths of the
back-bending of the caloric curve. For R = 108 the curve is without back-bending, but already at
R = 10° does the first very shallow minimum appear. Energy and temperature units are E
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that vary around unity (see Fig. 13.1). Hence, negative heat capacities are more the
rule than the exception.

The fact that R will be sufficiently large even for smaller systems will, everything
else equal, ensure that it will also be so for larger systems. The condition for negative
microcanonical heat capacity can be stated as

AS > In(Rpin) ~ 24/Co — 2. (13.44)

Because AS is roughly equal to N which is also an approximate value for Cy, this
inequality tells us that a back-bending caloric curve as the one shown in Fig. 13.9
occurs even more pronounced for larger particles. The phenomenon only disappears
at the sizes where phase separation appears.

An example of negative heat capacity based on a specific system is given in
Fig. 13.9, where a MD simulation of the caloric curve for the N = 55 Lennard-Jones
cluster is shown. The temperature and the heat capacity are sampled as described
in Chap. 9. The back-bending of the caloric curve is seen very clearly. Because the
temperature is the microcanonical version in the simulations (the reciprocal of the
derivative of the level density with respect to the energy), the level density can be
found by integration. In the region with negative heat capacity the logarithm of the
level density, which we recall is basically the entropy, will have a section with positive
curvature, called a convex intruder and shown in Fig. 13.10 (see also Exercise 13.7).
All other parts of the curve are concave, corresponding to positive heat capacities.
The caloric curves for neighboring cluster sizes (not shown) are very similar to that
of N =55.

Fig. 13.9 The microcanonical caloric curve for the Lennard-Jones N = 55 cluster. Each point is
sampled over 108 time steps except for a few points at the high energy end where lower statistics
was used
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Fig. 13.10 The logarithm of the level density of the N = 55 Lennard-Jones cluster around the
melting transition energy. A straight line has been subtracted to show the presence of the convex
intruder
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Fig.13.11 The microcanonical heat capacity for the Lennard-Jones cluster N = 55. The numbered
arrows give the direction of increasing energy. The dotted line is the harmonic oscillator value

The corresponding heat capacity is shown in Fig. 13.11. The divergences that
appear are seen to be located at the temperatures corresponding to the local maximum
and minimum in Fig. 13.9, as expected.
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13.6 Solid-to-Solid Phase Transitions

Any phase transitions that come associated with a latent heat is called first order
and is characterized by a heat capacity peak. Melting-freezing is an intuitively well
understood example of this. Another type of transitions is called second order and are
associated with correlation lengths that diverge at the transition temperature. Much
joy has been derived from that phenomenon, and work on solid-to-solid transitions
tend to focus on this. For nanoparticles, in which divergent lengths are excluded by
their finite size, they only appear in a very disguised form, if at all. But solid-to-solid
phase transitions may also be first order and those transitions will have a chance to
occur in nanoparticles.

One possible origin of a first order solid-to-solid phase transition is the existence
of a high energy solid modification that has softer vibrational modes than the low
energy structure. Such structural phase transitions occur in magnetic substances, for
example. The situation is illustrated in Fig. 13.12. The smaller level spacing in the
high temperature phase gives it a higher entropy which compensates for the extra
energy needed to excite it from the ground state.

There is no compelling argument why a solid-to-solid phase transition should
happen, and neither does it for all materials. But if it does, the fundamental picture is,
from the point of view of the statistical properties, a variation of the model derived for
the liquid-solid transition. Restricting ourselves to the case where the heat capacities
of the two phases are identical, the level density can be written as

p(E) = ag \E“" + O(E — Ep)as2(E — Ep)". (13.45)

ho.

X

Fig. 13.12 A schematic representation of a state diagram that can give rise to a solid-to-solid first
order phase transition. The lower ground state energy has higher vibrational frequencies, indicated
by the larger level spacing in the one dimensional harmonic oscillator, compared with the high
temperature phase. The reduced level spacing of the high temperature phase is the driving entropic
force for the transition
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Formally, the only difference from the solid-liquid level density in (13.28) is toreplace
the coefficient in front of the liquid phase contribution to the the level density by a
second solid phase coefficient. For harmonic oscillators and to next to leading order
in energy, the two coefficients are

1
agi = -~ 13.46
T (o= DI, o (140
If the geometric average of the (high energy) phase 2 phonons is less than for phase
1, the potential for a phase transition is present.

Whether or not this potential is realized depends on the relative magnitude of the
two coefficients, in complete analogy to the discussion of liquid-solid transitions.
The only difference here is that the value of R is now determined by the ratio of
vibrational frequencies, without the need to introduce an extra parameter in the form
of an empirical entropy difference. The value becomes

az

1

R

— NIn@ /@) (13.47)

where w; is the geometric average of the vibrational frequencies in phase i. This is
in fact exactly the same equation as (13.27) if the difference in entropy is assigned
to the difference in vibrational frequencies. We can use this result to calculate the
finite size particle width of the transition. Expressing the differences in frequencies
as w; = (1 + a)w,, and a value of o which is small compared to unity, one gets the
analogue of (13.36) for the width of the structural phase transition

T
6T, ~ 8§—, (13.48)
No

corresponding to a well defined melting temperature at sizes above

8 8
N~ — = . (13.49)
o —1

Sl

This will be a larger number than the 8 previously suggested for a melting-freezing
transition. The critical size where phase transitions appear can not be too small for
another reason, viz. that these transitions are related to changes in crystal struc-
tures, and a particle must contain a not too small number of atoms before these are
established.

We can also calculate the criterion for the existence of negative heat capacity with
(13.43), which is not specific to liquid-solid transitions. Assuming for simplicity also
here a small relative difference between the two sets of vibrational frequencies gives

N~ —=— = (13.50)
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This can be a significant particle size in terms of the number of atoms.

There are cases where « is not that small. A good example is tin, which comes
in two varieties (three, but the third can be ignored here), o (grey) and 8 (white)
tin below and above 13.2 °C, respectively. The low temperature allotrope has the
highest Debye temperature of the two, 232 K, consistent with the condition for a
structural phase transition. The Debye temperature of the other allotrope is 132 K,
and the enthalpy of transformation is 2.1 kJ/mol. This gives a calculated transition

temperature of
AH,

In (‘“D'“ )
wp.g

which should be compared with the measured 286 K. The agreement is not striking,
but neither is it unreasonable considering the simplifications in the modelling.

T, = = 430K, (13.51)

Exercises

13.1 The depth of a liquid, premolten surface layer can be estimated from some
approximate relations between the quantities that enter (13.10). Because most of the
quantities enter logarithmically, we can be pretty crude and still get a reasonable
estimate. The difference in surface tensions can be set equal to a typical surface
tension, Ay =~ y, and this can be related to the heat (enthalpy) of vaporization (see
Chap. 8). The heat of vaporization is roughly 20 times the melting temperature, and
the melting temperature is on the order of the heat of fusion. Finally, £ can be set
to the monomer radius, r;, for the sake of the argument. With these values, find
the thickness of the surface layer in units of the monomer radius, for 7 = 0.99 7,,,,
T =0999T, and T =0.99997T,,.

13.2 Use similar approximations as in Exercise 13.1 to find a numerical value for
the temperature at which the first molten surface appears.

13.3 Modify (13.12) with the factor that corresponds to the function ¢ in (13.9) and
find the melting point. Find the condition the surface tensions etc. must fulfill to
create a liquid layer.

13.4 Use the data in Fig. 13.2 and a tabulated value of the melting enthalpy of gold
to estimate the liquid-solid surface tension.

13.5 Make an order of magnitude estimate of the maximum value the Lindemann
index.

13.6 Estimate R and the melting entropy for the Lennard-Jones cluster N = 55 from
the simulation data shown in Fig. 13.9. Assume that when the system is at the melting
point, the system is half the time in the liquid phase and the other half in the solid
phase. Use this to calculate the variance of the energy at this temperature. Estimate
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the highest value of the heat capacity in the melting region with (1.70). Compare the
result with the number derived from (13.33).

13.7 Use the definition of the microcanonical temperature to show that the logarithm
of the level density has a negative curvature when the heat capacity is positive (is
concave) and vice versa.

13.8 In the text it is claimed that (13.47, 13.27) are identical if entropy differences
are due to the difference in vibrational frequencies alone. Show this. Hint: The use
of entropy implies that you can use canonical properties to solve the problem. Next,
give the conditions on the difference of frequencies for a phase transition to exist.



Appendix A
Additional Reading

General Statistical Physics

L. D. Landau and E. M. Lifshitz, Statistical Physics, vol. 1. This is a fundamental
textbook in statistical physics. It derives and applies the rules to real world systems,
i.e. molecules, crystals etc. Given the time it was written, it necessarily misses out
on a number of more recent developments. As the other volumes in the series, this
is not recommended as the first textbook on the subject.

D. A. McQuarrie, Statistical Physics. A general purpose textbook on the subject. It
contains a number of applications of the different ensembles.

R. C. Tolman, The Principles of Statistical Physics. A textbook from the first part of
the 20th century. It contains a thorough discussion of classical statistical physics.

D. Gross, Microcanonical Thermodynamics. A volume with a number of examples
from the author’s own work on the thermodynamics of small systems.

C. Garrod, Statistical Mechanics and Thermodynamics. Another general purpose
textbook that covers precisely what the title says at the undergraduate student level.

G. H. Wannier, Statistical Physics. Discusses both the fundamentals of statistical
physics and applications with great physical insight.

K. Huang, Statistical Mechanics. Treats thermodynamics, statistical physics and has
a special topics part. Not for the equation-shy reader.

R. K. Pathria, Statistical Mechanics. A thorough introduction to a number of subjects,
starting from scratch. A number of interesting subjects, such a the Ising model,
renormalization group theory, virial coefficients and magnetic systems that are not
covered in this work are introduced with the emphasis on the physical content.
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Classical Mechanics

H. Goldstein, Classical mechanics. A classical work in more than one sense of the
word, this volume has taught generations of students analytical mechanics.

Clusters etc.

H. Haberland, Ed., Clusters of Atoms and Molecules. A collection of chapters written
by leading experts in their fields on a wide number subjects related to the physics
and chemistry of clusters. It gives a broad overview of the status of the field in the
early 1990s, and is not focused on the statistical physics aspects.

R. L. Johnston, Atomic and Molecular Clusters. A more recent textbook which covers
a lot of ground, with all the pros and cons resulting from that philosophy.

K. D. Bonin and V. V. Kresin, Electric Dipole Polarizabilities of Atoms, Molecules
and Clusters. A small volume devoted to the theory and experiments of the leading
long range interaction between two particles of which at least one is neutral. The
only drawback is the use of Gaussian units.

H. Vehkamiki, Classical Nucleation Theory in Multicomponent Systems. Perhaps
not all you ever wanted to know about nucleation, but it certainly goes a long way,
with a strong emphasis on systems containing more than one type of molecule.
Approaches the problem from the thermodynamic side.

Fermionic Degrees of Freedom

A. J. Cole, Statistical Models for Nuclear Decay. Gives a number of results useful
for the statistical treatment of quantum systems, derived with no more fuzz than
necessary.

A. Bohr and B. R. Mottelson, Nuclear Structure. This two-volume work is a standard
reference for nuclear physics, and contains a number of results pertaining to finite
fermionic systems. The material is presented in a condensed but comprehensive
manner and is suitable for a student with a good knowledge of quantum physics.

J. M. Blatt and V. FE. Weisskopf, Theoretical Nuclear Physics. This is a classic among
textbooks on nuclear physics.

N.W. Ashcroft and N.D. Mermin; Solid state Physics. A standard textbook in its field.
The first two chapters give details about simple Fermi gasses beyond the material
presented here.
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Mathematics and Numerical Methods

M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions. A
standard reference, and for a good reason. It contains basically everything you need
to know about named mathematical functions. It is essential for anybody who uses
classical mathematical analysis. Legal copies are available for free on the internet.

I. S. Gradshteyn & I. M. Ryzhik, Table of integrals, Series, and Products. Another
standard volume. With this and the Handbook you will need no other math handbooks.

M. L. Boas, Mathematical Methods in the Physical Sciences. This is a textbook at
an introductory level. It contains a large amount of useful techniques and results,
explained in a straightforward manner.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in
(insert your preferred programming language here). A volume which will give you
the ability to calculate numerically basically anything your computing power will
allow you to calculate.

P. Stoltse, Simulations. Unfortunately out of print, but contains detailed instructions
for numerical simulations, in particular molecular dynamics simulations.

Physical Chemistry

P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics. Starts from scratch
and covers what the title promises. The reader who wants to be an expert spectro-
scopist will need to supplement it.

Internet Resources

David Wales and collaborators have compiled an extensive list of ground state con-
figurations and energies for clusters of particles interacting with different potentials.
They can be downloaded from

http://www-wales.ch.cam.ac.uk/CCD.html

Compilers for different coding languages can be downloaded for free from GNU
webpages. Originally written for the UNIX-like GNU operating system, they have
been adapted to a number of operating systems. More information at
https://gcc.gnu.org/

The NIST Digital Library of Mathematical Functions gives you the equivalent of
Handbook of Mathematical Functions, but made for the internet.
https://dlmf.nist.gov/
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Appendix B

Constants of Nature and Conversion Factors

h = ¢ = kg = 1is auseful system of units but to get in touch with macroscopic life it
is necessary to convert to physical world units. Here are some of the most important.

Constants

1u=1.660539 - 102 kg

Na = 6.02214 - 10% mol~!

kg = 1.38065 - 10723 J/K

g0 = 8.854187817... - 1012 F/m

m, = 9.10938 - 103! kg

e =1.602177-107 C

o = 47 - 1077 N/A2

h=1.054571- 1073 J s = 0.6582119 eVfs
c= 299792458 m/s = 299.792458 nm /fs

Cz =5.670- 107 Wm—2K™*

(6480K) Wm™ :(197K) eVs A
1s = 9.27401 - 1072 J/T = 0.671713 K/T

OsB 60h*

Energy Conversion

Atomic mass unit
Avogadro’s number
Boltzmann’s constant
Vacuum permittivity
Electron mass
Elementary charge
Vacuum permeability
Planck’s constant
Speed of light

Stefan-Boltzmann’s constant
Bohr magneton

lem™! = 1.43877 K = 1.239842 - 10~* eV = 1.98645 - 10723 J
l1eV =1.602176 - 107" J = 11604.5 K = 8065.544 cm™!

1 Hartree = 27.21138 eV
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Derived Constants

o =

< L _ 1/137.035999

2_ 4mey he
72 = 1439965 eVA ~ fic/137
ap= - = - —0.5291772 A
Me 4meg ¢

eZag/Hartree — 1.648777 - 10~4 C?2m?2J-!

Appendix B: Constants of Nature and Conversion Factors

Fine structure constant
Electrostatic constant

Bohr radius

Atomic unit of polarizability



Appendix C
Mathematical Help

C.1 The Euler-Maclaurin Summation Formula

In statistical physics one often encounters sums of the type

> f, (C.1)

where f(n) can be the Boltzmann factor of a certain energy determined by the
quantum number n, which is an integer. The summand may also include a degeneracy
factor that depends on n. These kinds of sums are not always possible to perform in
closed form and it is very useful to have some approximate formula to calculate them.
The Euler-Maclaurin formulas provide the answer. They generalize and formalize
the approximation

> s~ [ s, c2)

which is good for functions that vary slowly with n. One version of the equations
states that a sum from a to b = a 4+ mh in steps of & can be approximated as

2 k=g / fdx + 5 (f (@ + £ ) ©3)
k=0 .
nlop2p-t
+ Z 2p)! B, (f(zp—l)(b) — f(2p—1)(a))
p=1 !

where f@7~1 is the (2p — 1)’th derivative of f, and B,, are the Bernoulli numbers.
The order of approximation, n — 1, is the user’s choice and determines the limits one
can set on the error in the formula. The error is
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h2n m
man Z FP(a + kh + 6h), (C.4)
' k=0

where ) < 6 < 1. The first few even Bernoullinumbersare By = 1, B, = 1/6, By =
—1/30, Bg =1/42, Bg = —1/30, and Bjyp = 5/66. This gives the summation for-
mula

" 1 [ 1
> fla+kh) =~ m f fdx + S(f @)+ f ) + (C.5)
k=0 a
L (fPm - fY@) - " (FPw - @)+
12 720
with an error of ]
h m
£ (a + kh + 0h), (C.6)
30240 kXZO:

where, as above, 0 < 0 < 1. If one wants more terms, the Bernoulli numbers can be
calculated with (C.18) and the definition of the ¢ function given below. Forn > 12,
() =1+ € wheree < 3-107%

C.2  Some Frequently Occurring Integrals

Integrals that involve a Boltzmann factor and some pre-exponential factor from the
degeneracies or phase space factors keep popping up. This section gives you a listing
of some of these integrals.

o0 1 [ 4 1 1
/ xfe™ dx = —/ x5 le¥dxy = —T (&> , g>—1. (CT)
0 m Jo

m m

Special cases are:
o0
/ xPe™dx =T(p+ 1) = p! for p > —1 and integer. (C.8)
0

(This is the definition of the I" function.) For p half integer:

ep! 1/2

it (C.9)

[o.¢]
f xPedx=T(p+1) =
0

where the ‘double factorial’ (2p)!!is definedas1-3-5-...-2p.
Gaussian integrals are special cases of (C.7) with m = 2. If also ¢ is an even
integer, 2n, they can alternatively be calculated as
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a=1

o 2 a\" [ 2 a\"1
/ e dx = —— / e *dx =(—-——) V7o '?
0 o 0 a=I o 2
(C.10)

which, after substitution are identical to the integrals in (C.9), but may be a more
portable equation.
Bosonic degrees of freedom may make it necessary to calculate integrals such as:

[e¢]

/ pre Bdx =T(p+ De(p+1). (C.11)

0

¢(p) is Riemann’s ¢ function,

o0

Z(p) = Znﬂ’. (C.12)

n=1

Some special values of the ¢-function are

£(3/2) = 2.6123... (C.13)

2
r) = = 1.6449... (C.14)
t(3) = 1.2020 (C.15)

4
r(4) = ’9’—0 — 1.0823... (C.16)
£(5) = 1.0369 (C.17)

. (27.[)211

£@n) = (—1)"*

an, (n integer) (C.18)

B>, are the Bernoulli numbers.
Other integrals of the same general nature are:

/Ooxp(l e—J\)2 / )CPZ d_x—/ XVZZG (k+m)xdx
0 —

k=1 m=0
(C.19)
There are m + k terms of magnitude exp(—(k + m)x) in the double sum over k and
m, and the integral therefore becomes

P e P P
—nx - l" ] l_‘ 1 .
-/(; X a e_x)zdx—/o X nglne dx—ngln p+D)=¢pT(p+1)
(C.20)
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C.3 Stirling’s Formula and the I' Function

One often needs to calculate the factorial of a number N, definedas N!=1-2- ... -
N, e.g. when handling the indistinguishability of particles. A direct calculation is
always possible and should be considered before applying an approximation. One
may for example calculate

A In(N!) = ln(N;\z - 1(‘;\;(]_\’1_) DY _ vy, (C.21)

or the symmetric derivative

In((N + 1)) —In((N — 1)) _ In(N(N + 1))

ApIn(N!) = NtD_N =1 5 )

(C.22)

if this is necessary and possible.
In other cases it may be better to use an approximation by Stirling which reads

1 1 139 571
N—l!%e_NNN_l/Z\/Zﬂ[I—i———i— - - +}
( ) 12N~ 288N2  51840N3  2488320N4

(C.23)
The formula is asymptotic, i.e. it does not converge for finite N. In practise one
includes the terms in the bracket until they start to increase.
There is a similar formula for the logarithm:

In((N — D) ~ (N — 1/2) In(N) — N (C.24)
Lo 1
12N~ 360N3 ' 1260N5  1680N7

1
+51n(2n)+ + -

There is also an exact formula that represents N! down to rather small arguments.
It reads

6
N! =2 NV 2 exp (—N + ﬁ> , (C.25)

where 0 < 6 < 1. All that is required for N is that it is positive, and the formula is
therefore also valid for non-integer values of N. The value of 6 varies with N. If we
restrict our considerations to positive values above 1, a numerical evaluation gives
values for 6 that are very close to unity. Hence we can write

1
N!~ /27 NV 2 exp (—N + m) . (C.26)

The generalization of the factorial to non-integer arguments is the Gamma func-
tion, defined as

I'(x) = / - e 'dr. (C.27)
0
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The function obeys the relation I'(x 4+ 1) = xI"(x). For positive integer values of x
this gives I'(x + 1) = x! Some non-integer values are

r'5/2) = Zﬁ, (C.28)
rG/2) = 125, (C.29)
ra/2) =Jn, (C.30)
['(1/3) = 2.67893853.., (C31)
['(2/3) = 1.35411793.., (C.32)
T'(3/4) = 1.22541670.., (C.33)
T(1/4) = 3.62560990... (C.34)

The function has singularities at the non-positive integers, but is otherwise a well
behaved function in the entire complex plane.

C.4 The § Function and the Step Function

The § function is defined by the properties

§(x)=0,x#0 (C.35)
8(0) = oo (C.36)
/Oo S(x)dx = 1. (C.37)

It has a dimension which is the reciprocal of its argument’s. Integrals involving the
8 function act to pick out the integrand at the zero of its argument:

/ fx)8(x — xp)dx = f(xo). (C.38)

When the argument of the function is another function with distinct zeros, integrals
become

| strenas =Yl (€.39)

where f is the derivative and x; are the zeros of f.
The step function ® is a dimensionless function defined as the integral of the §
function:

x 1, x>0
O) = / S(x)dx = %, x=0 (C.40)
-0 0, x<0O
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0-9

2/3 rule, 207, 208
3N, 76

3N — 6,76

a-w

§ function, 11, 20, 86, 405
T, 268

I" function, 87, 404

¢ function, 83, 308, 357

A
A6
Above Threshold Ionization (ATI), 333, 341
Abundance distribution scaling, 241
Abundance spectra, 296
Abundances, 322
Accommodation coefficient, 245
Acetic acid, 206
Action, 198
Action spectroscopy, 198
Activated process, 56, 57, 116
Activation energy, 56, 58-60, 102, 103, 118,
148,272

apparent, 60

effective, 60, 104

electron emission, 118

He evaporation, 363

photon emission, 134
Aggregation, 223, 225, 229

irreversible, 229, 230, 241
Aggregation bottleneck, 228
Aggregation rate, 230, 231, 243
Aggregation-only, 229, 232, 234, 235

Airy functions, 51
Alkali metal cluster, 323
Alkali metals, 296, 322
Allotrope, 392
Almost never, 86
Angstrém, 6
Angular momentum, 37, 53, 99, 101, 102,
113,120
conservation of, 112, 113, 121, 255
Angular momentum and ripplon energy, 358
Angular momentum distribution, 362
He droplets, 362
Angular momentum projection distribution,
362
Anharmonicities, 85, 90
Anions, 117, 118
Antiferromagnetism, 310
Appearance energies, 160
A priori probabilities, 4, 19
Arrhenius formula, 58
Arrhenius rate constant, 104, 148, 150, 153,
164, 172, 180
Asymptotic expansion, 307
Atmospheric warming, 58
Atomic size
He, 354
Average of square, 266
Average value, 2, 4
Avogadro’s number, 6

B

Baby heat bath, 55

Barrier height, 102, 281
nucleation, 243
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Beam waist, 344 CID, 378
Bernoulli numbers, 401-403 C.Klots, 56
Beyer-Swinehart algorithm, 80, 81, 89, 90, Classical canonical partition function, 37
357, 366 Classical nucleation theory, 245
Bohr magneton, 311 Classical vs. quantum rotations, 360
Bohr’s frequency condition, 139 Climate change, 244
Boltzmann distribution, 18, 23, 127, 331 Climate science, 241
Boltzmann entropy, 21 Cluster calorimeter, 378
Boltzmann factor, 14, 18-21, 53, 104, 173, C.m.n, 218
292, 299-301, 303, 319 CNT, 245

kinetic energy, 38 Cohesive energy, 205, 208
Boltzmann’s constant, 6, 18, 27, 137 Coinage metals, 296
Bond length, 380 Coincidence measurement, 167, 347

He dimer, 351 Collision frequency, 227, 228
Born-Oppenheimer separation, 71 electrons, 334
Born-Oppenheimer surface, 71, 111 Collision-induced dissociation, 378
Bose-Einstein Condensate (BEC), 32, 351 Collisional energy transfer, 117, 231
Bose-Einstein statistics, 34 Compound nucleus, 99
Bosonic helium, 350 Compound particle, 99, 108
Bosons, 32, 33, 325 Concave function, 393
Brownian motion, 6 Condensation nuclei, 245
Bulk atom, 3, 207 Conformers, 109
Bulk binding energy, 206 Constants of nature, 399
Bulk cohesive energy, 206 Continuity equation, 246
Bulk plasmon, 142 Continuous wave, 198
Bulk properties, 93, 206 Convex intruder, 388
Bunching of levels, 322 Convolution, 13, 29, 89

Cooling coefficient, 231
Coronene, 341

C Correlation function, 254, 265, 266, 274
Cq. 144 Correlation length, 390
Ceo, 167, 320, 332 liquid, 375
Cy0, 332 Correspondence principle, 50
Caloric curve, 60, 62, 64, 67, 79, 93, 164, Coupling time
188, 201, 264, 359, 362, 388 electron-phonon, 335

back-bending, 388 Cows, 86

linear expansion, 164 Critical size, 241, 243

LJ, simulated, 387 Cross section

microcanonical, 265 atom capture, 101

model, 387 attachment, 101

ripplon, 366 Coulomb, 125
Canonical ensemble mean energy, 23 fusion, 228
Canonical partition function, 19, 20, 26 geometric, 101, 105, 119, 122, 228, 363
Central Limit Theorem, 170, 254, 362 Langevin, 122
Chaotic systems, 255 monomer-monomer collision, 230
Characteristic polynomial, 74 polarizability, 120
Charging energy, 205, 211 Crossover heat capacity, 169
Chemical equilibrium, 26, 213, 241 Crossover particle size, 175
Chemical potential, 24-26, 33, 35, 36 Cryostat, 353

droplet, 242 Crystal, 371

equilibrium, 219 monoatomic, 82, 83

gas phase, 242 Curie temperature, 311, 313

Chemical reactivity, 322 Cvitanovic, 46
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D
Daughter, 98
De Broglie, 41
De Broglie wavelength
atom, 102, 128
Debye
frequency, 83, 380
model, 18, 77, 84
particle, 81
spectrum, 82
temperature, 83
Debye temperature, 290
Decay chain, 168, 169, 172, 178
Decay channel, 104, 112, 233
Decay rate, 151
Degrees of freedom, 1, 2,9
freeze-out, 92
macroscopic system, 8
separable, 40
vibrational, 52
Density Functional Theory (DFT), 323, 344,
351
Density of excitation energy, 151
Density of States (DOS), 13, 102, 108, 288,
292, 362, 366
Density operator, 23, 24
Detailed balance, 100, 101, 116, 271
Diamagnetism, 315
Difference equation, 165, 267
Diffusion constant, 27
Diffusion equation, 27
Dimensionful, 15
Dimensionful quantities, 263
Dimer, 25, 138
Dimer evaporation, 186, 228
Dimer formation, 228
Dipole approximation, 137
Dispersion relation
light, 82
phonons, 82
Dissociation energy, 148, 298
D.of., 9, 16
Dopants, 353
Dopants in helium, 353
Dulong-Petit heat capacity, 93-95, 384

E

Effective evaporation time, 169
Effective photon cross section, 135
Er, 288

Eigenmode, 267
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Einstein A & B coefficient, 135
Einstein A-coefficient, 140
Einstein crystal, 83, 86
Einstein spectrum, 83
Electrical conductivity, 287
Electron affinity, 293
Electron density, 289
surface plasmon resonance, 141
Electronic excitations
energy scale of, 2, 71
scale of energy, 2
Electron-phonon coupling time, 331
Electrons, 31
collective motion of, 141
Electrospray ion source, 98
Electrospray source, 163
Electrostatic constant, 212
Electrostatic energy, 211, 212
metallic sphere, 212
Elettra, 347
ELISA, 154, 194
Emission temperature, 59
Energy cut-off, 150
Energy fluctuations, 64, 66
Energy integral, 320, 321
Ensemble, 4, 9
canonical, 9, 19
grand canonical, 9, 24, 292
microcanonical, 9
Enthalpy, 22, 372, 374
Enthalpy of fusion, 372
Entropy, 7, 22
Equal priori probabilities paradox, 19
Equilibration time, 107
Equilibrium, 3, 4, 11, 241, 242, 271
Equilibrium abundances, 218
Equilibrium pressure, 242
Equipartition, 40, 260, 261
Ergodic, 4
Ergodic process, 269
Euler-Maclaurin formula, 215, 304, 307,
358,401
Evaporation, 101
Evaporation rate, 231
Evaporative activation energy, 298
Evaporative ensemble, 148
Exp(3), 231
Exponential decay, 99, 171
Extensive quantity, 6
example, 372



410

F
Fermi energy, 34, 288-290
Fermi energy and chemical potential, 34
Fermi function, 293
Fermi gas, 13, 25, 288, 289, 320
Fermi gas approximation, 290
Fermi level, 289
Fermi sea, 291, 307
Fermi sphere, 289
Fermi statistics, 34
Fermi temperature, 288
Fermionic helium, 350
Fermions, 31
Ferrimagnetism, 310
Ferromagnetism, 310
Finite difference, 26, 87, 173, 175
Finite Heat Bath (FHB), 56
Finite heat bath approximation, 56, 150
Finite heat bath correction, 56, 150, 364
First nucleation theorem, 249
Fission, 98, 343
Fluctuation-based growth, 241
Fluctuations, 2-5, 8
Formation rate constant, 101, 133
Fourier series, 157, 304
Fourier transform, 178, 179
Fractal particles, 229
Franck-Condon factor, 143
Free, 76
Free electron gas, 331
Free energy, 270
Free energy barriers, 270
Free particle, 47

translational level density, 48
Freezing point, 372
Freezing temperature, 372
Frequency factor, 105
Fruit fly, 13
Fullerene, 2, 167, 186, 332
FWHM, 167, 181

G

Gas constant, 6

Gas standard conditions, 51
Gaussian distribution, 28, 170, 254
Gaussian units, 120

Gaussian wave packet, 32, 42
Gaussian weight function, 163
Gedanken calculation, 7, 38
Gedanken experiment, 14, 32
Geometric shell structure, 211
Geometric size, 101, 372

Index

Giant dipole resonance, 332
Gibbs’ entropy, 7
Gibbs free energy, 22
Gibbs’ phase rule, 8
Gibbs-Thomson equation, 376
Glass, 372
Global warming, 244
Goldstone bosons, 314
Grand canonical partition function, 24, 35
Graphene, 279
Gravitational field
level density in, 51
solution of Schrodinger equation, 50
Grey tin, 392
Group theory, 138
Gspann parameter, 149-151, 188

H
Hamiltonian, 31
ideal gas, 38
rubber molecule, 263
separable coordinates, 28
vibrations, 73
Hamilton’s equation of motion, 253
Harmonic oscillator
canonical thermal energy, 78
classical energy, 45
heat capacity, 94
high temperature heat capacity, 79
high temperature level density, 80
semiclassical, 45
He phonon
angular momentum, 366
angular momentum distribution, 368
angular momentum projection distribu-
tion, 367
caloric curve, 366
Debye temperature, 356
dispersion relation, 356
frequencies, 356
heat capacity, 365
level density, 366
spectrum, 356
wavenumber, 356
Heat bath, 17
Heat capacity, 23
metals, 40, 94
microcanonical, 54
Heat of condensation, 230
Heat of fusion, 231, 372, 373
Heisenberg indeterminacy relation, 38
Heisenberg uncertainty relations, 42
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Helium dimer, 350, 351

Helium droplet density, 351

Helmholtz’ free energy, 20

Hessian, 109

Hessian matrix, 72, 73, 279
mass weighted, 73

Higgs mechanism, 314

High energy limit, 39, 44, 307
Debye particle level density, 85
harmonic oscillators, 78

Highest temperature, 150, 159

Hilbert space, 37

H.o., 13

HOMO, 288, 297

Homogeneous functions, 227, 236

Horse, 183

Hot/cold, 186

Hydrogen bond, 109

1
Icosahedral structure, 211
Icosahedral symmetry, 211
Ideal gas, 38
momentum distribution, 29, 38
Ideal gas concentration, 229
Ideal gas law, 105, 242
Identical bosons, 32
Identical fermions, 32
Identical particles, 25
Image charge potential, 118
Impact parameter, 121
Incomplete equilibrium, 331
Independent particle picture, 287
Indistinguishability factor, 37
Indistinguishable particles, 25, 26, 31, 32
Infrared Radiation (IR), 137
Inner product, 73
Integer part, 89
Integrals
list of, 402
Intensive quantity, 6
Inter-system crossing, 143
Interface energy, 374
Internal Vibrational Relaxation (IVR), 287,
333
Ion mobility, 378
Ion trap, 147, 190
Ionization Energy (IE), 117, 118, 291, 293
odd-even effect, 296
shell structure, 322
Ionization potential, 118
Irreversible growth, 229
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Isomer, 108, 279
Isotopes, 72
Iteration, 253

J

Jacobi transformations, 73
Jacobian, 277

Jahn-Teller effect, 323

K

Kelvin equation, 242
Kernels, 225

Kinetic energy heat bath, 273
Kinetic energy release, 183
Kinetic shift, 159, 162
Klots, 184

Kramers degeneracy, 296
Kronecker delta, 34

L
Ladder spectrum, 293, 300
Lambda temperature, 353
Lambda transition, 351
Landé factor, 312
Landau critical velocity, 353
Landau Fermi liquid, 334
Laplace operator, 27
Laplace transform, 20, 64
inverse, 64
Laser fluence, 343
Laser light excitation, 156, 171, 378
Lasers, 32
Latent heat, 372, 379, 385
LDA, 320
Le Chatelier’s Principle, 221
Lennard-Jones cluster, 381, 388, 389
vibrations, 76, 77
Lennard-Jones parameters, 349
Lennard-Jones potential, 209, 280, 281, 349,
381
Lennard-Jonesium, 209
Leptodermous expansion, 211
Level bunching, 296
Level density, 10, 12
convolution, 13
dimension, 13
Lindemann criterion, 381
Lindemann index, 379, 392
Linear operator, 4
Liquid drop energy, 205, 208, 212, 213
Liquid drop model, 205
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Liquid vs. solid heat capacity, 383
LJ, 76, 281

Log-normal distribution, 240
Log-normal function, 237
Longitudinal phonon mode, 82
Lorentzian peak shape, 11
LUMO, 288

M
Macroscopic state, 7
Magic numbers, 159, 249, 322
Magnetic moments, 310
Magnetism, 311
Markov chain, 269
Markov process, 269
Markus-Lushinov equations, 226
Mass-weighted coordinates, 73
Match throwing, 268
Maxwell relations, 374
Maxwell-Boltzmann distribution, 6, 7, 29,
38, 119, 228
MC simulations, 180, 253
MD simulation, 381, 388
Mean field equation, 312
Mean field potential, 287, 288, 323, 324
Mean free path, 250
Mean value, 4
Mechanical origin, 6
Melting enthalpy, 373
Melting entropy, 373
Melting point, 372, 377, 385
Melting temperature, 372
Mercury clusters, 297
Metal clusters, 3
Metallic carbon, 142
Metallic particle, 2, 118, 141, 212, 331
Metals, 287
Metastable decay, 186, 378
Metastable fraction, 166, 186, 187
Metastable potential energy minimum, 255,
383

Meteorology, 241
Metropolis algorithm, 272, 273
Microcanonical ensemble, 10
Microcanonical MC simulations, 273
Microcanonical partition function, 10
Microcanonical temperature

definition, 54

MD simulations, 262
Microscopic reversibility, 100
Microstates, 268
Mole, 6

Index

Molecular beam, 118, 147, 148, 186, 357
Molecular Dynamics (MD), 253
time step, 256
Moment of distribution, 5
Moment of inertia, 214
sphere, 214
Moment of inertia tensor, 214
Momentum, 7
conservation of, 103, 113, 255
MD simulations, 257
phase space, 38
radial, 125
thermal, 217, 249
Momentum conservation, 113
Monomer, 2
Monomer evaporation, 233
Monomer radius, 101
Monte Carlo casino, 268
Monte Carlo simulations, 253
Monty Python, 8
Moore’s law, 310

N

Nanocanonical ensemble, 10

Nanocrystals, 206

Nanometer, 6

Nanoscience, 205

Nanotechnology, x

Negative heat capacity, 386, 388

Neon on graphene, 279

Nernst’s theorem, 339

Neutron evaporation, 103

Neutron scattering, 371

Never, 86

Newton’s equations, 255

Newton’s equations of motion, 253

Niels Bohr, 50

Nielsen source, 194

Ny, 175, 186

Nm, nanometer, 1

N-mer, 170

Non-exponential decay, 154

Normal coordinates, 75

Normal distribution, 254

Normal modes, 75, 267
vibrational, 76

Normal state, 291

NP-complete, 278

Nuclear mass formula, 205

Nucleons, 54
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(0}

Observable, 3, 6, 50
macroscopic, 2

Odd-even effect, 213, 291, 296
gold clusters, 296

Odd-even energy, 213, 296, 298

On the order of, 2

Optically active modes, 138

Orthonormality, 74

Oscillator strength, 144, 347

P
Packing shell structure, 211
PAH molecules, 340
Parent particle, 98
Particle in a box, 41, 47, 288
Particle number
fixed, 9, 25
fluctuating, 25
fluctuations, 25, 293
mean, 25, 292
permitted in state, 35
standard deviation, 293
variance, 293

Particle number conservation, 236

Partition function, 9

Pauli exclusion principle, 32, 40, 291, 318

Penning ionization, 332
Penning traps, 148
Periodic table, 287
Phase, 371
Phase diagram, 8, 371, 372
Phase separation, 383, 388
Phase space, 37, 46, 98, 253
Phase transition, 351
Phonon, 13, 33, 76

He, 355
Photon, 32, 33, 131
Photon absorption, 134
Photon wave vector, 132
Pickup process, 353
Pigs, 86
Planck radiation formula, 136
Planck’s constant, 38
Plasma ion source, 194
Plasmon, 332
Plasmon centroid, 141
Plasmon width, 141
Poisson distribution, 343
Polarizability, 120

He atoms, 349
Polarization

photons, 132
Polymer, 221
Polymer size distribution, 222
Polymerization, 221
Population of quantum states, 11

Populations single particle states, 36

Power law decay, 151, 154
photon absorption, 157

Power law level density, 41

Precursor, 97

Premelting, 373

Pressure, 7

Principal axis, 214

Principle of corresponding states, 3

Product, 100
Product particle, 58, 98
Pseudo-random process, 268

Pump-probe experiments, 331, 335

Q

Quadratic Feynman-Hibbs potential, 44

Quantum computing, 310
Quantum efficiency, 198
Quantum liquid, 350
Quasi-particles, 353

R

Radial momentum, 126
Radiation density, 134

Raising, lowering operators, 138

Random number generator, 270, 273

Random numbers
acceptance-rejection, 275, 278
direct generation, 277

integration-inversion, 275, 278

random walk, 277, 278
Rare gases, 76, 349
Rate constant, 99
atom evaporation, 103
electron emission, 118
generic, 58, 60
molecule evaporation, 112
photon emission, 136
Re-evaporation, 230
Reactant, 98, 100
Reaction coordinate, 114

413

Recurrence relation, 89, 300, 317-321, 325,

326
Recurrent fluorescence, 142
Reduced mass, 43, 75, 228
Reflectron, 186, 187
Refrigerators, 310
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Regularize, 47
Relative dielectric constant, 211
Relative fluctuations, 5
Resonance centroid, 141
Restored symmetry, 315
Reverse activation barrier, 184
Richard’s rule, 373
Riemann ¢ function, 308, 403
Ripplon, 354
angular momentum, 354
Debye temperature, 358
frequency, 355
level degeneracy, 355
level density, 360
spectrum, 355

Root-mean-square standard deviation, 5

Rotational constant, 216
Rotational energy levels
spherical top, 215
Rotational partition function, 214
Rotons, 353, 356
RRKM, 114, 116
kinetic energy release, 116, 126
rate constant, 115
Rubber molecule, 263-265, 279

S

Saddle point expansion, 65, 157

Saddle point in potential, 115

Saturated vapor, 206, 219

Saturated vapor pressure, 219, 353

Saxon-Woods potential, 324

Schrodinger, 1

Schrodinger Equation, 50, 323

Screening length, 334

Second law of thermodynamics, 100

Selection rules, 138

Self-convolution, 239

Semiclassical partition function, 38

Semiclassical quantization, 46

Semiclassical rotations, 216

Separation of variables, 237

Shape fluctuations, 291

Shell closings, 322

Shell energy, 213, 323

Shell free energy, 325

Shell structure, 162, 209, 233
electronic, 213, 291, 293, 322
geometric, 213

Shell structure; packing, 210

SI unit of polarizability, 120

Simple metals, 288

Index

Small, 6
definition, 6
Smoluchowski equation, 224, 233
Sodium plasmon resonance, 342
Solid-to-solid phase transitions, 390
Solid vs. liquid state heat capacity, 383
Solvation energy, 211
Sommerfeld expansion, 301
Sound waves, 76, 82, 355
Speed of sound, 2, 82
effective, 82
helium, 356
Spherical Bessel functions, 356, 366
Spherical horse, 315
Spherical horse approximation, 184
Spherical top, 214
Spin waves, 314
Spline function, 163
Spontaneous symmetry breaking, 311
Stability factor, 162
Stagnation pressure, 353
Standard deviation, 5, 29
energy, 172
evaporation time, 171
monomers lost, 172
particle number, 294
random number, 274
rate constants, 172
temperature, 172
Standard particles, 169
Standard Pressure and Temperature, STP, 33
Statistical mixing, 99, 107
Stefan-Boltzmann’s constant, 137
Step function, 12, 160, 383
Stern-Gerlach, 316
Sticking coefficient, 101, 105, 120, 228, 245
zinc, 105
Stimulated emission, 134
Stirling’s formula, 404
Stochastic process, 178, 253, 259
Storage ring, x, 147, 154, 190
Strongly degenerate electron system, 325
Strongly degenerate Fermi gas, 290, 291,
299
Strongly degenerate quantum system, 33, 34
Structural symmetry breaking, 315
Successive approximations, 61, 68, 360
Sulphur, 206
Sum over states, 20
Sum rule, 137
Super-heating, 373
Superconducting metals, 290
Supercooling, 372
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Superfluid, 352, 365
Superparamagnetic model, 315
Supersaturated gas, 373
Supersaturated vapor, 241
Supersaturation, 241, 243, 373
Surface area, 207, 242
Surface atom, 207
Surface diffuseness
He, 351
Surface energy, 206, 208
Surface melting, 373, 383
Surface plasmon resonance, 141, 332
classical, 141
electron density, 142
Surface ripples, 354
Surface tension, 120,205-207,242,282,374
He, 354
Surviving fraction, 152
Sveriges Riksbank, 96
Symmetry number, 215
Synchrotron ring, 347

T
Table
atomic polarizabilities, 121
constants of dimers, 113
Curie temperatures, 312
Debye temperatures, 84
degeneracies ladder spectrum, 319
Fermi energies, 290
rare gas Lennard-Jones parameters, 350
rare gas zero point energies, 351
Telescoping series, 246
Temperature, 7, 17
definition, 17
Hagedorn, 28
highest, 148, 149, 160
isokinetic, 59
lowest, 159, 160
microcanonical, 54
unit, 27
Temperature fluctuations, 17
Thermal conductivity, 203
Thermal de Broglie wavelength, 217, 249,
250
Thermal electron emission, 331
Thermal energy, 7
Thermal expansion coefficient, 85
Thermalization time
simulations, 254
Thermally assisted ionization, 341
Thermionic emission, 116, 292

415

Thermionic emission rate constant, 118
Thermodynamics, 3, 6, 18
Thermometer, 331

uncalibrated, 378
Thermostat, 258

Andersen, 259

Berendsen, 258

Langevin, 259
Thomson liquid drop model, 205
Time correlation function, 254, 266, 285
Time-of-Flight (ToF), 187, 203, 341
Time-of-Flight mass spectrometer, 98, 187
TMUe-ring, 197
Total level density

electronic contribution, 295
Trace, 24
Transforming distributions, 277
Transient hot electrons, 331
Transition state, 114
Transition state theory, 98, 114
Translational partition function, 213
Transverse phonon modes, 82
Trial step, 281
TRK sum rule, 137, 141, 144
Two-body potential, 208

quantum corrections, 42
Two-body problem, 75, 228
Two-temperature model, 331

U

U, 399

Undersaturated vapor, 242

Unimolecular decay, 97

Unimolecular reaction, 98, 148
phase space, 99

Univariate random number, 273

Update, 271

A%

Valence electrons, 137, 287, 295, 322
Valency, 289, 290, 297

Variance, 5

Variance of sum, 171

Vib-rot coupling, 111

Vibrational degrees of freedom, 214
Vibrational frequencies, 71, 72, 77
Vibrational oscillator strength, 332
Vibrational partition function, 78, 214
Vibrations, 13

VML, 341, 347

Volume of state in phase space, 38, 46



416

w
Wanderlust, 314
Water clusters, 163, 168
Wave function, 23, 71
antisymmetric, 31
electronic, 287
symmetric, 32
symmetry of, 31, 215
Wave packet, 32, 42
Wave vector, 82, 267
Wavenumber, 216, 356
energy unit, 27
Weisskopf formula, 103
Weizsicker mass formula, 205
White tin, 392

Wigner-Seitz radius, 289
Work function, 212, 291
‘Wulff construction, 207

X
X-erei, 104, 387

V4

Zeldovitch factor, 248

Zero kelvin, 1, 2

Zero mode, 74

Zeroth law of thermodynamics, 18
Zustandssumme, 9
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