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Preface

This book aims to cover a broad range of topics in extended statistical physics,
including statistical mechanics (equilibrium and non-equilibrium), soft condensed
matter, and fluid physics, for applications to biological phenomena at both cellular
and macromolecular levels. It is expected to be a graduate-level textbook, but can
also be addressed to the interested senior-level undergraduates. The book is written
also for those interested in research on biological systems or soft matter based on
physics, particularly on statistical physics.

One of the most important directions in science nowadays is physical approach
to biology. The tremendous challenges that come widely from emerging fields, such
as biotechnology, biomaterials, and biomedicine, demand quantitative, physical
explanations. A basic understanding of biological systems and phenomena also
provides a new paradigm by which current physics can advance. In this book, we
are mostly interested in biological systems at a mesoscopic or cellular level, which
ranges from nanometers to micrometers in length. Such biological systems com-
prise cells and the constituent biopolymers, membranes, and other subcellular
structures. This bio-soft condensed matter is subject to thermal fluctuations and
non-equilibrium noises, and, owing to its structural flexibility and connectivity,
manifests a variety of emergent, cooperative behaviors, the explanation of which
calls for novel developments and applications of statistical physics.

Students and researchers alike have difficulties in applying to biological prob-
lems the knowledge and methods they learned from presently available textbooks
on statistical physics. One possible reason for this is that, in biology, the systems
consist of complex, soft matter, which is usually not included in traditional physics
curricula. Typical statistical physics courses cover ideal gases (classical and
quantum) and interacting units of simple structures. In contrast, even simple bio-
logical fluids are solutions of macromolecules, the structures of which are very
complex. The goal of this book is to fill this wide gap by providing appropriate
content as well as by explaining the theoretical method that typifies good modeling,
namely, the method of coarse-grained descriptions that extract the most salient
features emerging at mesoscopic scales. This book is, of course, in no way com-
prehensive in covering all the varied and important subjects of statistical physics
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applicable to biology. I went to great effort to incorporate what I consider to be the
essential topics, which, of course, may reflect my own personal interests and lim-
itations. The major topics covered in this book include thermodynamics, equilib-
rium statistical mechanics, soft matter physics of polymers and membranes,
non-equilibrium statistical physics covering stochastic processes, transport phe-
nomena, hydrodynamics, etc. More than 100 problems are given alongside the text
rather than at the end of the chapters, because they are a part of the text and the
logical flow; these problems, some of which are quite challenging to solve, will help
readers develop a deeper understanding of the content.

A number of good textbooks have recently been written under the titles of
physical biology, biological physics, and biophysics. A number of these books give
excellent guides to biological phenomena illustrated in the quantitative language of
physics. In some of these books, biological systems and phenomena are first
described, and then analyzed quantitatively, using thermodynamics and statistical
physics. Following bio-specific topics, physics-oriented readers might struggle to
build, systematically and coherently on the basics, their own understanding of
nonspecific concepts and theoretical methods, which they may be able to apply to a
broader class of biological problems. In this book, another approach is taken that is,
nonspecific basic methods and theories with detailed derivations and then biological
examples and applications are given.

The book is based on lectures I gave to graduate students at POSTECH in a
course under the title of Biological Statistical Physics. It is my hope that by
attempting to fill this aforementioned gap, I can, at the very least, help students and
researchers appreciate and learn the immense potential of statistical physics for
biology, particularly for biological systems at mesoscopic scales.

Pohang, Korea (Republic of) Wokyung Sung
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Chapter 1
Introduction: Biological Systems
and Physical Approaches

—Open the door, open the door, the Flower,
Thunder and Storm be the only way,

the Flower, open the door!—

Seo Jung Ju

In January 1999, at the dawn of the new millennium, Time Magazine devoted the
majority of its coverage to a special issue entitled “The Future of Medicine.” The
cover story began as follows: “Ring farewell to the century of physics, the one in
which we split the atom and turned silicon into computing power. It’s time to ring
in the century of biotechnology.” Despite the tremendous importance of life science
and biotechnology nowadays as the above statements proclaim, at this stage their
knowledge appears to be largely phenomenological, and thus undeniably calls for
fundamental and quantitative understandings of the complex phenomena. It will be
timely to ring in the century of a new physical science to meet this challenge.

1.1 Bring Physics to Life, Bring Life to Physics

Biological Physics or Biophysics is a new genre of physics which has attempted to
describe and understand biology. Despite a few important achievements such as
unravelling DNA’s double-helical structure by James Watson and Francis Crick
using X-ray diffraction, biological physics, as the fundamental and quantitative

Fig. 1.1 Physics and biology.
Between them lies a mountain
called biological physics or
physical biology. On the axis
toward you is chemistry
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science of biological phenomena, has had rather a slow growth and is yet in its
infancy. There are dramatic differences between two sciences, physics and biology,
in study methods and objects. Physics, by tradition, pursues unity and universality
in underpinning principles, and quantitative descriptions for rather simple systems.
Biology, in contrast, used to deal with variety and specificity, and seek qualitative
descriptions for very complex systems. Physics and biology represent two opposite
extremes of sciences, so presence of a seemingly-insurmountable barrier between
them is not a surprise (Fig. 1.1).

From the view point of physics, biological systems have enormously complex
hierarchies of structures that range from the microscopic molecular worlds to
macroscopic living organisms. In this book, major emphasis is focused on the
mesoscopic, or cellular level, which covers nanometer to micrometer lengths, in
which cells and their constituent biopolymers, membranes, and other subcellular
structures are the main components of interest (Fig. 1.2). Cells consist of nanometer
and micrometer sized subcellular structures, which appear to be enormously
complex, yet exhibit certain orders for biological functions, the phenomenon what
we call biological self-organization. The flexible structures incessantly undergo
thermal motion, and, in close cooperation with each other and the environment,
play the symphony of life.

1.2 The Players of Living: Self-organizing Structures

Biopolymers are the most essential functional elements, which can be appropriately
called the threads of life. Among them, DNA is the most important biopolymer,
which stores hereditary information. The monomers of DNA, called nucleotides,
form two complementary chains in double helices, encoding genetic information.

Cilia 

Mitochondrion

Lysosome

Rough endoplasmic
reticulum

Golgi apparatus

Nucleus 

Cell membrane

Microtubules  

Ion channel

Fig. 1.2 A biological cell is the elementary factory of life, with self-organizing micro-nano scale
internal structures. Several key organelles are drawn
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At first glance, DNA appears to be quite complex as it winds to form chromosomes,
but it reveals a fascinating hierarchy of ordered structures. It is remarkable that
although a cell’s DNA may be as long as a few meters, it can miraculously be
packed into a nucleus that is only a few micrometers in size (Fig. 1.3).

Proteins are also important biopolymers. Proteins are chains of monomers called
amino acids, interconnected via a variety of interactions in water. The interactions
cause proteins to fold into the native structures that have the lowest energies among
a vast variety of configurations. Mother Nature accomplishes with ease the protein
folding into the native structures, in which they perform biological functions.
Understanding this mystery remains yet an important challenge in biological
physics.

Another dramatic example of self-organization occurs at a biological mem-
brane, which we may call the interface of life (Fig. 1.4). A lipid molecule (lipid),
which is the basic constituents of the membrane, is composed of a hydrophilic head
and hydrophobic tails. The lipids spontaneously self-assemble into a bilayer,
forming a barrier to permeation of ions and macromolecules, thus providing the
most basic function of a biological membrane. For certain functions of life like

Chromosome

Chromatin loops 

Nucleosomes  

DNA Double helix

Fig. 1.3 DNA folded and packed
within a nucleus in a multiscale
hierarchy from double-stranded
duplex to chromosome

Lipid molecule

Ion channel

cytosol

Fig. 1.4 A cross section of a
cell membrane with associated
ion channels and proteins
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neural transmissions and sensory activities, certain specific ions must pass through
the membrane. For this reason, Nature dictates some certain proteins to fold into the
membrane and form a nano-machine called an ion channel to regulate passage of
ions. The information of the channel structures is given gradually, but compre-
hensive physical understanding of how they work is yet to be achieved.

1.3 Basic Physical Features: Fluctuations and Soft Matter
Nature

The preceding overview has implied that the biological components self-organize
themselves to function. To perform the biological self-organization, they often
cross over the energy barriers that seem to be insurmountable in the view
point of simple physics. To this end, there are two physical characteristics that
feature in the mesoscopic biological systems introduced above. The first one is
their aqueous environments and thermal fluctuations therein. The water has
many outstanding properties among all liquids. Its heat capacity is almost higher
than any other common substance, meaning that it functions as a heat reservoir with
negligible temperature change. The most outstanding property of water is its di-
electric constant (around 80) that is much higher than those of other liquids.
Because of this, water can reduce electrostatic energy of the interaction to the level
of thermal energy. These unique properties of water originate microscopically from
hydrogen bonding between water molecules. This bonding is also a relatively weak
interaction; even though the bonding can be broken due to thermal fluctuations, it
causes long-range correlation between water molecules. As a result, the liquid water
manifests a quasi-critical state where it responds collectively and sensitively to
external stimuli.

Another physical characteristics is the structural connectivity and flexibility
the systems may have, the features that are not seen in traditional physics.
Although interactions between monomers (e.g., the covalent bonding between two
adjacent nucleotides in a DNA strand) can be as large as or larger than several
electron volts (eV), the chain as a whole displays collective motions and excitations
of energy as low as in the order of thermal energy kBT * 0.025 eV. Such a low
energy is commensurate with weak biological interactions, e.g., hydrophobic/
hydrophilic, the Van der Waals, and the screened Coulomb interactions between
two segments mediated by water. Thus, thermal agitations can easily change
conformations (shapes) of the biological components, and at the long times when
the equilibrium is reached, minimize their free energies at the temperature of the
surrounding; examples include conformational transitions such as DNA/protein
folding, lipid self-assembly, and membrane fusion. The conformation emerges as a
new, primary variable, and conformation transition becomes the central problem
for biological physics. The biological systems in mesoscale characterized by the
soft interconnectivity and weak interactions may appropriately be called the
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bio-soft condensed matter. To this matter, a thermal fluctuation with energy of
the magnitude kBT may come as a thunderstorm; it adds to the disorder in
ordinary matter but may assist biological matter to surmount the barriers for
self-organization.

The biological systems in vivo function out of equilibrium, driven by external
influences. Due to the macromolecular nature and the viscous backgrounds, the
dynamics of biological components at mesoscales is usually dissipative, slow, yet
stochastic. The biological dynamics can be modelled as generalized Brownian
motion, not only with the internal constituents fluctuating while interacting with
each other, but also with external forces that can fluctuate often far from equilib-
rium. It was found that thermal fluctuations or internal noises do not simply add to
the disorder of the system but, counter-intuitively, contribute to the coherence and
resonance to external noises. In short, the basic physical features behind bio-
logical self-organization are thought to be thermal fluctuations and non-equilibrium
stochasticity combined with soft matter flexibility and weak interactions.

1.4 About the Book

This book addresses the basic statistical physics for biological systems and phe-
nomena at the mesoscopic level ranging from nanometer to cellular scales. Because
of thermal fluctuations and stochasticity, probabilistic description is inevitable. The
statistical physics description for such biological systems requires a systematic way
of characterizing the complex features effectively in terms of relevant degrees of
freedom, what we call “coarse graining”.

The book first deals with equilibrium state of matter, starting with thermody-
namics and its foundational science, statistical mechanics. To illustrate its practical
utility we apply statistical ensemble methods to relatively simple but archetypal
systems, in particular, two-state biological systems. We then present the application
of statistical mechanics to both simple and complex fluids, the playgrounds for
biological complexes. We introduce the method of coarse-grained description for
the emerging degrees of freedom and the associated effective Hamiltonians. We
then devote several chapters to the general physical aspects of water, weak inter-
actions between the objects therein, and to reactions, transitions and self-assembly.
The lattice and Ising models are presented to deal with a number of two-state
problems such as molecular binding on substrates, and biopolymer transitions. We
then describe how the responses to a stimulus and a scattering on matter are related
with the internal fluctuations and their spatial correlations. In two chapters on poly-
mers, we adapt statistical physics to mesoscopic descriptions of flexible and semi-
flexible polymers, their conformational/entropic properties, exclusion/collapse,
confinement/stretching, and electrostatic properties, etc. The next chapter is devoted
to mesoscopic description of membranes in terms of the shapes and curvatures.
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The other part of the book is devoted to non-equilibrium phenomena. Dynamics
of biological systems is essentially the non-equilibrium process often with their soft
matter nature displayed. The basic methods include a stochastic approach in which
the mesoscopic degrees of freedom undergo the generalized Brownian motions. We
start with the Einstein-Smoluchowski–Langevin theories of Brownian motion,
which are extended within the framework of Markov process theory; the master
equation and the Fokker-Planck equation are discussed and applied to biological
problems. The thermally-induced crossing over free energy or activation barriers is
discussed using the rate theory and mean first passage time theory. The response of
a dynamic variable to time-dependent forces or fields is introduced along with
underlying time correlation function theories (Fluctuation-Dissipation Theorem).
A thermal fluctuation, when optimally tuned, will be shown to induce coherence
and resonance to a small external driving. Also, an emphasis is placed on the fluid
backgrounds, and its own hydrodynamics and transport phenomena. The dynamics
of biological soft matter such as simple polymers and membranes interacting
hydrodynamically in a viscous fluid, often anomalous due to the structural con-
nectivity, is then described.

Further Reading and References

J. Knight, Physics meets biology: Bridging the culture gap. Nature 419, 244–246 (2002)
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Chapter 2
Basic Concepts of Relevant
Thermodynamics and Thermodynamic
Variables

A macroscopic or a mesoscopic system contains many microscopic constituents,
such as atoms and molecules, with a huge number of degrees of freedom to describe
their motion. Thermodynamics1 seeks to describe properties of matter in terms
of only a few variables, arguably being the all-around, basic area of sciences
and engineering, including biology. Thermodynamics and thermodynamic vari-
ables characterize states of matter and their transitions phenomenologically without
recourse to microscopic constituents. In this chapter we summarize what we believe
to be the essentials that will serve as references throughout the book. The link
between this phenomenological description and microscopic mechanics is provided
by statistical mechanics beginning next chapter.

When a macroscopic system is brought to equilibrium, where its bulk properties
become time-independent, they can completely be described by a few variables descrip-
tive of the state, called the state variables. For example, themacroscopic properties of an
ideal gas or of an ideal solution at equilibrium can be described by the pressure or the
osmotic pressure p, volume V, and absolute temperature T; e.g., for a mole of them, the
equation of state is pV ¼ RT , where the R is the universal gas constant. The ther-
modynamic state variables are either extensive or intensive. Extensive variables are
proportional to the size of the system under consideration; intensive variables are
independent of the system size; for example, the gas’ volume V and internal energy
E are extensive, whereas the pressure p and the temperature T are intensive.

Here, we briefly summarize the universal relations beginning with the first law of
thermodynamics. By a universal relation we mean the relation independent of the
systems’ microscopic details. We introduce the basic thermodynamic potentials

1Contrary to what the nomenclature implies, thermodynamics mostly deals with the equilibrium
state of matter at macroscale, so often is also coined as thermostatics. The second law of ther-
modynamics, however, is concerned with non-equilibrium processes approaching equilibrium, the
rigorous treatment of which is treated in the area called non-equilibrium thermodynamics (S. R. de
Groot and P. Mazur “Non-equilibrium Thermodynamics”, 1984, Courier Corp.). In chemistry or
biochemstry communities, “biological thermodynamics” include the chemical kinetics and reac-
tions (e.g., Biological Thermodynamics, D. T. Haynes, 2008, Cambridge University Press.
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from which we can find the various thermodynamic variables. From the second law
of thermodynamics, we discuss nature of the processes leading to equilibrium,
which are governed by variational principles for the thermodynamic potentials
relevant to ambient thermodynamic conditions.

2.1 The First Law and Thermodynamic Variables

2.1.1 Internal Energy, Heat, and Work: The First Law
of Thermodynamics

Here we consider the changes of thermodynamic state variables controlled by quasi-
static processes, which are ideally slow so as to retain the equilibrium state. Quasi-
static processes are reversible, i.e., can be undone. First consider the net energy of
the system, called the internal energyE, which is conserved in a system that does not
exchange matter or energy with the environment, called an isolated system. Because
E is given uniquely by other state variables Yi (the independent variables),
E ¼ E Y1; Y2; . . .ð Þ, the state variable E is also a state function, with its infinitesimal
change dE being an exact differential:

dE ¼
X
i

@E
@Yi

dYi: ð2:1Þ

The first law of thermodynamics is simply the statement of energy con-
servation involving various forms of energies. It says

dE ¼�dQþ�dW ; ð2:2Þ

where �dQ and �dW are respectively the infinitesimal heat and the infinitesimal work
applied to the system by certain external agents. Equation (2.2) says that its internal
energy increases if it is heated and decreases if the work is done by it. Unlike the
internal energy, both of the heat and work cannot be solely described by the present
state variables but depend on the processes through which they are changed. As such
their infinitesimal changes denoted by �d signify inexact differentials, which depend
on the paths or histories of the processes taken. For example consider a quai-static
cyclic process of a gas undergoing an expansion (process 1 ! 2) and compression
(2 ! 1) returning to its initial state 1 under a pressure (Fig. 2.1). The cyclic change
of the work, defined by

H �dW ¼ �H
pdV , is not vanishing but given by the shaded

area. In contrast, the cyclic change of the internal energy (a state variable with its
differential being exact) denoted by

H
dE ¼ E1 � E1 is zero.

In a similar manner the cyclic change of the heat is not vanishing,
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I
�dQ 6¼ 0: ð2:3Þ

However, according to Rudolf Clausius, for any cyclic change controlled to be
reversible, I �dQ

T
¼ 0; ð2:4Þ

where T is a state variable called the temperature. From the equation an exact
differential of a state function S, called entropy, is defined as

dS ¼
�dQ
T

: ð2:5Þ

Entropy, which is the central concept in thermodynamics and in various aspects
of biological processes, will be discussed later repeatedly.

P2.1 Show that, for an ideal gas or solution of one mole for which E ¼ 3RT=2 and
pV ¼ RT are known, (2.5) for a reversible process of changing the volume and
temperature is dS ¼ 3R=2Tð ÞdT þ R=Vð ÞdV, which is indeed an exact differential.
The entropy change from V1; T1 to V2; T2 is DS ¼ 3R=2ð Þ lnðT2=T1ÞþR lnðV2=V1Þ.
Although derived for a reversible process, because S is a state variable, this
relation is independent of the thermodynamic paths taken between the initial and
final states, so that DS it is applicable to any processes (including irreversible one)
that connects the same initial and final states, 1 and 2.

2.1.2 Thermodynamic Potentials, Generalized Forces,
and Displacements

Now consider the work in detail; it can be generated by various agents such as
external forces and fields acting on the system,

Fig. 2.1 The relation between
pressure (p) and volume (V) for a
cyclic process consisting of a
reversible expansion (1 ! 2) and
a reversible contraction (2! 1) on
a gas. In this cylic process the
system does work by the amount
given by the shaded area
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�dW ¼ ldN þ
X
i

fidXi: ð2:6Þ

The first term on the right is the chemical work (involving the chemical
potential l) necessary to increase the number of particles N of the system by unity.
For a mixture of m component particles it can be generalized to

Pm
k¼1 lkdNk , where

k denotes the species. In the second term, f i is a generalized force or a field and Xi

is a thermodynamic conjugate to it, called a displacement (Table 2.1). The first
three generalized forces and displacements in the table are mechanical, while the
last two examples are electromagnetic. fi are intensive state variables, whereas Xi

are extensive state variables.
For illustration, consider a one-component system (m ¼ 1) with one generalized

force fi and the associated displacement Xi. The most familiar case is a particle
system such a gas or a colloidal solution confined within a volume by a pressure,
for which fi ¼ �p;Xi ¼ V : For a stretched chain, the tension f and the length of
extension X are such a force-displacement pair (Table 2.1).

Using the relations (2.5) and (2.6) the first law of thermodynamics (2.1) can be
written in terms of state variables S, N and Xi:

dE ¼ �dQþ�dW
¼ TdSþ ldNþ fidXi:

ð2:7Þ

Representing S as the primary variable, (2.7) can be rewritten as

dS ¼ 1
T
dE � l

T
dN � fi

T
dXi; ð2:8Þ

which expresses S as a state function of independent state variables, E, N and Xi,
S ¼ SðE;N;XiÞ. Equation (2.8) being an exact differential, the following relations
are obtained:

1
T
¼ @S

@E

� �
Xi;N

; ð2:9Þ

Table 2.1 Examples of generalized forces and the conjugate displacements

Systems Generalized forces
(intensive variables)

fi Xi Generalized displacements
(extensive variables)

Fluid Pressure �p V Volume

String Tension f X Length of extension

Surface Surface tension c A Surface area

Magnet Magnetic field �B M Magnetization along the field

Dielectrics Electric field �E P Polarization along the field
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l
T
¼ � @S

@N

� �
E;Xi

; ð2:10Þ

fi
T
¼ � @S

@Xi

� �
E;N

; ð2:11Þ

where the subscripts in the partial differentiations indicate the variables that are held
fixed. Equations (2.9)–(2.11) mean that once S is obtained as a function of inde-
pendent variables E, N, and Xi, it can generate their thermodynamic conjugates T,
l, and fi, by taking the first-order partial derivatives with respect to the independent
variables. Functions obtained by taking first-order partial derivatives over ther-
modynamic potentials will be called the first-order functions.

Equations (2.9)–(2.11) show how the basic intensive variables are related to the
entropy. Equation (2.9) is a fundamental thermodynamic relation that defines the
temperature: the ratio of an increase of the entropy with respect to the energy
increase is a positive quantity 1=T . Equation (2.10) tells us that the chemical
potential l is a measure of the change of entropy when a particle is added to the
system without an external work and change of internal energy. Equation (2.11)
defines the generalized force f i that acts in the direction to decrease the
entropy, with E;N fixed. In a gas or a solution the force is the pressure p com-
pressing the system to keep it from increasing its entropy. For a polymer string it is
the tension force f to extend it (Fig. 2.2).

A thermodynamic potential is a state variable that describes the system’s
net energy, from which all other variables can be derived. One example is the
internal energy we have considered; another one is the Helmholtz free energy
defined by F ¼ E� TS. If we consider this as the primary thermodynamic
potential, (2.7) is transformed to

dF ¼ d E � TSð Þ ¼ �SdT þ fidXi þ ldN; ð2:12Þ

which indicates that F is the state function that depends on the state variables T ;Xi

and N, i.e., F ¼ F T;Xi;Nð Þ: It can generate thermodynamic relations for the
first-order variables,

S ¼ � @F
@T

� �
Xi;N

; ð2:13Þ

Fig. 2.2 Two kinds of forces:
pressure p (force per unit area)
on the gas to keep its volume as
V; and extensional tension f on a
polymer to keep its extension as
X. The forces act in the directions
in which to decrease the entropy
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fi ¼ @F
@Xi

� �
T ;N

; ð2:14Þ

l ¼ @F
@N

� �
T ;Xi

: ð2:15Þ

The internal energy is then obtained from the Helmholtz free energy:

E ¼ Fþ TS ¼ F � T @F=@Tð ÞXi;N¼ �T2@ F=Tð Þ=@T: ð2:16Þ

For systems controlled by a displacement Xi, e.g., for a fluid confined within a
volume, or a string kept at a constant extension, the Helmholtz free energy is
the thermodynamic potential of choice. S in this representation depends on T as
well as on Xi and N, in contrast to (2.8). Since @2F= @xj@xk

� � ¼ @2F= @xk@xj
� �

, one
can also obtain the Maxwell relations for the second order variables:

@S
@Xi

¼ � @fi
@T

; ð2:17Þ

@fi
@N

¼ @l
@Xi

; ð2:18Þ

@S
@N

¼ � @l
@T

: ð2:19Þ

P2.2 Consider the enthalpy defined by H ¼ Eþ pV as a primary thermodynamic
potential and obtain the thermodynamic relations for the first and second order
variables.

P2.3 Consider that a strip of rubber is extended quasi-statically to a length X.
Show how the force of extension or the tension is expressed in terms of the free
energy. Find the Maxwell relations.

Another useful representation is the one in which the Gibb’s free energy G ¼
F � fiXi is the primary thermodynamic potential. From (2.12), its differential is
given as

dG ¼ d F � fiXið Þ
¼ �SdT � Xidfi þ ldN:

ð2:20Þ

The Gibbs free energy is the thermodynamic potential that depends on three
independent variables T; f i; andN; i.e., G ¼ G T; f i;Nð Þ: For a one-component
system, because N is the only extensive variable among the three, the extensivity of
G requires that
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G T ; fi;Nð Þ ¼ Ng T ; fið Þ; ð2:21Þ

where g T ; fið Þ is the Gibbs free energy per particle. In this representation the
first-order thermodynamic variables are derived as

S ¼ � @G
@T

� �
N; fi

ð2:22Þ

Xi ¼ � @G
@fi

� �
T ;N

ð2:23Þ

l ¼ @G
@N

� �
T ; f

¼ g T ; fið Þ: ð2:24Þ

The chemical potential is the Gibbs free energy per particle for a
one-component system, which is independent of the number of particles number,
thus

dl T; fið Þ ¼ � S
N
dT � Xi

N
dfi: ð2:25Þ

For systems controlled by the generalized force f i, the Gibbs free energy is a
convenient thermodynamic potential. Because experiments on fluids are usually
performed under constant pressures, the Gibbs free energy is often chosen as the
primary thermodynamic potential.

Lastly let us consider the grand potential as the primary thermodynamic
potential, which for a one-component system is defined by

X ¼ F � lN: ð2:26Þ

Its differential

dX ¼ �SdT þ fidXi � Ndl; ð2:27Þ

is obtained by using (2.12), so that X has the independent variables T , Xi; and l.
Consequently

S ¼ � @X
@T

� �
X;l

ð2:28Þ

fi ¼ @X
@Xi

� �
T ;l

ð2:29Þ
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N ¼ � @X
@l

� �
T ;X

: ð2:30Þ

Noting that G ¼ lN; i.e., X ¼ F � G ¼ fiXi, fi can also be obtained directly from
X as

fi ¼ X
Xi

: ð2:31Þ

P2.4 The relation X ¼ fiXi can be generalized to the case where there are mul-
titude of conjugate pairs. Consider a liquid droplet in a gas. In this case the grand
potential is given by

X ¼ �pgVg � plVl þ cA

where pg;Vg and pl;Vl are the pressures and volumes of the gas and liquid phases
respectively, c is surface tension in the interfacial area A:

2.1.3 Equations of State

One of the most important tasks of equilibrium statistical mechanics is to obtain the
thermodynamic potentials explicitly for specific systems as functions of their own
independent variables. From this procedure the first-order variables are obtained
and related to yield the equations of state.

The most well-known example is the equation of state that relates the pressure p
with the volume V of a one-mole ideal gas or an ideal solution:

pV ¼ RT : ð2:32Þ

An approximate equation of state for non-ideal fluids that includes the inter-particle
interactions is the Van der Waals equation of state

pþ a
V2

� �
V � bð Þ ¼ RT ; ð2:33Þ

where a and b are the constants that parametrize inter-particle attraction and
repulsion, respectively.

The equation of state that describes ideal paramagnets is Curie’s law,

M
B

¼ C
T

ð2:34Þ
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where B is a magnetic field along a direction, M is the magnetization induced along
the direction, and C is the Curie constant which is material-specific. Due to the
mutual interactions between the magnetic moments within it, a paramagnet
undergoes a phase transition, at a temperature called the critical temperature Tc, to
a ferromagnet, for which an approximate equation of state is

M
B

¼ C
T � Tcj j : ð2:35Þ

Another example, which is of biological importance, is the equation for the force
f necessary to extend a DNA fragment by an amount X:

f ¼ AT
1
4

1� X
L

� ��2

� 1
4
þ X

L

" #
ð2:36Þ

where L is a contour length and A is a constant.

P2.5 Calculate the Helmholtz free energy of the Van-der Waals gas. What is the
chemical potential? What is the isothermal compressibility?

P2.6 Using (2.36),

(a) Find the Helmholtz free energy F of the DNA as a function of X. At what value
of X is the free energy minimum?

(b) By how much does the entropy change when the DNA is quasi-statically
extended from X ¼ 0 to X ¼ L=2 at a fixed temperature T.

(c) If you increase the temperature slightly by DT with the extension force held
fixed as f , how would the extension X change?

2.1.4 Response Functions

The properties of a material can be learned by studying how it responds to small
external influences. The response of the system to a variation of temperature is
given by a response function called heat capacity

C ¼
�dQ
dT

¼ T
@S
@T

: ð2:37Þ

Using (2.7) and (2.16), the heat capacity of a material with fixed N measured at
fixed volume is given by
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CV ¼ T
@S
@T

� �
V
¼ @E

@T

� �
V
¼ � T

@2F
@T2

� �
V

ð2:38Þ

which means that the constant-volume heat capacity CV can be obtained from either
S or E. The fact that the CV is the second-order derivative of the thermodynamic
potential F implies that CV yields higher-level information than can be afforded by
the first-order variables. As we will reveal, CV is directly related to the intrinsic
energy fluctuations of the systems, and identifies thermally-excited microscopic
degrees of freedom that underlie.

Other response functions of interest that we will study are isothermal
compressibility

KT ¼ � 1
V

@V
@p

� �
T

ð2:39Þ

and magnetic susceptibility

vT ¼ @M
@B

� �
T
; ð2:40Þ

which are second-order thermodynamic functions related to the systems’ volume
and magnetization fluctuations, respectively (Chap. 9).

2.2 The Second Law and Thermodynamic Variational
Principles

The state variable entropy S, first introduced by Clausius in 1850, is defined by (2.5)
in terms of the heat reversibly exchanged at an absolute temperature T. However,
strictly speaking, most spontaneous processes that occur in nature are not
reversible but pass through non-equilibrium states. For example, consider a gas that
undergoes free expansion. Experience tells us that the infinitesimal change of heat in
the spontaneous, irreversible processes is less than that given by (2.5):

dQ� TdS; ð2:41Þ

where d denotes the differential indicating an irreversible change. Therefore for an
isolated system that does not exchange heat with the outside dQ ¼ 0ð Þ;

dS� 0: ð2:42Þ

This formulates a form of the second law of thermodynamics: for an isolated
system, a spontaneous process occurs in such a way that the entropy increases to
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its maximum ðdS ¼ 0Þ, which is just the equilibrium state. The entropy is iden-
tified as a measure of the system’s disorder as will be shown in next chapter. This
fundamental law sets the directions for natural phenomena to take, the time arrow,
allowing us to distinguish the future from the past. This variational form of the second
law for the entropy can be extended to the variational principles for other thermo-
dynamic potentials to have approaching equilibrium (Table 2.2), as we shall see.

It is mistakenly perceived that living organisms defy the second law because
they can organize themselves to increase the order, i.e., they live on negative
entropy, called negentropy. Whereas the entropy maximum is referred to an isolated
system at equilibrium, the living being is an open system, which can exchange
both energy and matter with its environment. For example, the entropy of a
biopolymer undergoing folding decreases, while that of the surrounding water
increases in such a way that the entropy of the whole, if isolated, increases as will
be shown below. Furthermore the living organisms in vivo usually function far
from equilibrium. The equilibrium thermodynamics is nevertheless applied to
biological systems in vitro which are either at or near the equilibrium state.

2.2.1 Approach to Equilibrium Between Two Systems

We first use the 2nd law of thermodynamics to study the approach to equilibrium
between two systems at contact and the conditions of the equilibrium. Consider an
isolated system composed of two subsystems A and B partitioned by a movable wall,
which allows the exchange of matter as well as energy (Fig. 2.3). Suppose that each
of the subsystems is at equilibrium on their own but not with respect to each other
and evolve irreversibly towards the total equilibrium through the exchanges. During
an infinitesimal process, the net entropy change of the isolated system is given by

dS ¼ dSA þ dSB

¼ @SA
@EA

þ @SB
@EA

� �
dEA þ @SA

@VA
þ @SB

@VA

� �
dVA þ @SA

@NA
þ @SB

@NA

� �
dNA;

ð2:43Þ

where dEA; dVA; dNA are respectively the changes of the internal energy, volume,
and particle number of subsystem A. Because the net energy, net volume and
net particle number are all fixed in the isolated system, these changes are equal to
�dEB;�dVB;�dNB, respectively. Then, noting @SBð Þ= @EAð Þ ¼ �ð@SBÞ= @EBð Þ;

Fig. 2.3 An isolated system
composed of two subsystems A
and B partitioned by a movable
wall. Their energies and particles
can be exchanged through the
wall
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@SBð Þ= @VAð Þ ¼ � @SBð Þ= @VBð Þ; @SBð Þ= @NAð Þ ¼ � @SBð Þ= @NBð Þ along with the
relations (2.9)–(2.11) and following the second law, the net entropy should increase
until the maximum:

dS ¼ 1
TA

� 1
TB

� �
dEA þ pA

TA
� pB
TB

� �
dVA þ lA

TA
� lB
TB

� �
dNA � 0: ð2:44Þ

Suppose for a moment that there is only an energy exchange, while both of each
volume and particle number are fixed: dVA ¼ dNA ¼ 0: Then, the inequality in
(2.44) means that TA [ TB leads to dEA\0; that is, the energy flows from A to B,
i.e., form a hotter to a colder place. The entropy maximum, dS ¼ 0; is reached when

TA ¼ TB: ð2:45Þ

The equality between the temperatures is the condition for thermal equilibrium
between the two subsystems in contact, which is named as the zeroth law of
thermodynamics. With this thermal equilibrium established, we let the partition be
movable and pA [ pB with no exchanges of the particles. Then (2.44) leads to
dVA [ 0 meaning that by the pressure difference the system A expands until the
pressures are equalized:

pA ¼ pB: ð2:46Þ

By considering an exchange of particles, one can also show that the particles flow
from the system of higher chemical potential to that of lower chemical potential,
until they reach the chemical equilibrium, where

lA ¼ lB: ð2:47Þ

Because dEA; dVA; dNA are independent of each other, each term in parentheses in
(2.44) vanishes at the equilibrium, so the above three equations, called the condition
of thermal, mechanical, and chemical equilibrium respectively, are simultaneously
satisfied at the equilibrium.

2.2.2 Variational Principles for Thermodynamic Potentials

Now suppose that a subsystem A considered above is much smaller than B, so that
the latter forms a heat bath kept at temperature T throughout (Fig. 2.4). Considering
the subsystem A as our primary system (a polymer for example) to study we drop
the subscript A. The infinitesimal change of total entropy dST of the isolated system
AþB is given by
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dST ¼ dSþ dSB

¼ dS� dQ
T

¼ dS� dE � dW
T

¼ �dFþ dWð Þ=T :
ð2:48Þ

Here dQ is the differential heat given to system A by the bath at the fixed tem-
perature T ; by the first law dQ ¼ dE � dW . Using the second law dST � 0, (2.48)
tells us that dF� dW ; i.e., dF is the minimum of the reversible work done on the
system by the bath. If the system’s displacement and number of particles are kept as
fixed, then dW ¼ fidXi þ ldN is zero, and

dF� 0: ð2:49Þ
This is a famous variational principle; stating it again: if the system at a fixed
T has fixed Xi and N but is left unconstrained, its Helmholtz free energy
decreases spontaneously to its minimum as the system approaches equilibrium.
For example a biopolymer, which keep its extension X as fixed and thus undergoes
no work, conforms itself in a way to minimize its Helmholtz free energy.

Often the systems are under a fixed generalized force fi; e.g., in a gas at
atmospheric pressure, or a polymer chain subject to a fixed tension. In this case,
�dFþ dW ¼ �d F � fiXið Þ� 0, leading to

dG� 0; ð2:50Þ
i.e., the Gibbs free energy of the system with T, kept at fixed f i but otherwise
unconstrained, decreases until it approaches the minimum, namely, the equi-
librium. The biopolymer subject to constant tension conforms itself to minimize
the Gibbs free energy. A spherical vesicle blown by a pressure can have an optimal
radius to minimize it (See 12.21).

Finally consider an open system in which the number of particles can vary but
the displacement and chemical potential l (not to mention the temperature) are
fixed. In this case, dST � 0 with (2.48) leads to

dF � dW ¼ d F � lNð Þ ¼ dX� 0; ð2:51Þ
it is the grand potential that is to be minimized. There are many situations where the
numbers of systems’ constituent units vary, e.g., phase transitions, reactions and
self-assemblies.

Fig. 2.4 The system A (e.g., a
polymer chain) in a heat bath,
which is kept at temperature T and
enclosed by an isolating wall
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Listed in Table 2.2 are the summary of the variational principles for the
thermodynamic potentials to be optimized and their independent state vari-
ables conditioned to be fixed. These variational principles can be applied to any
systems kept at a fixed temperature; the presence of the enclosing adiabatic wall in
Fig. 2.4 is immaterial because the wall can be placed at an infinite distance away
from the systems in question. As will be shown throughout this book, the varia-
tional principles will be of great importance in determining the equilibrium con-
figurations of flexible structures at a fixed temperature, as typified by biomolecule
and membrane conformations at body temperature.

Strictly speaking, these variational potentials should be distinguished from the
equilibrium thermodynamic potentials (F, G, …) dealt in Sect. 2.1, which are just
extrema of the variational ones. This is will be done whenever necessary hereafter,
by using different scripts; e.g., F for F, G for G:

Examples:
Biopolymer Folding

A biopolymer subject to thermal agitation in an aqueous solution undergoes
folding-unfolding transitions. For this case, the combined system of the polymer
and the liquid bath can be regarded as an isolated system. According to the second
law, dST ¼ dSþ dSB � 0. Let us consider the transition from an unfolded state to a
folded state at a fixed temperature. Folding means an increase of the order, which,
as will be shown next chapter, signifies dS\0, hence dSB [ 0. The entropy of the
liquid bath increases, because during the folding process the water molecules
unbind from the polymer and will enjoy a larger space to wander around, that is, a
larger entropy. Following the thermodynamic variational principle, the free energy
change of the polymer in contact with the heat bath then should satisfy
dF ¼ dE � TdS� 0; this equation leads to dE� TdS; and following dS\0 as
shown above, dE\0, which implies that E decreases due to the folding of the
polymer. In biological systems, conformation transitions such as this folding
transition are numerous at body temperature.

Table 2.2 Constrained variables and associated thermodynamic principles

Systems Thermodynamic variational principle

Isolated system with fixed N, E, Xi Entropy S ) maximum

Closed system with fixed N, T, Xi Helmholtz free energy F ) minimum

Closed system with fixed N, T, fi Gibbs free energy G ) minimum

Open systems with fixed l; T ;Xi Grand potential X ) minimum

Fig. 2.5 Polymer unfolding-
folding transition that occurs
above and below the critical
temperature Tc
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Spontaneous processes at a fixed T occur whenever the free energy of the
system decreases:

dF ¼ dE � TdS ¼ Tc � Tð ÞdS� 0; ð2:52Þ

where Tc ¼ dE=dSð ÞdF¼0 is the critical temperature. Therefore if T\Tc, the tran-
sition to the ordered phase ðdS\0Þ occurs, whereas if T [ Tc, the transition to the
disordered phase ðdS[ 0Þ occurs. These are examples of a multitude of biopolymer
conformational transitions, many more of which will be studied later.

Nucleation and Growth: A Liquid Drop in a Super-Cooled Gas

Nucleation is localized formation of a thermodynamic phase in a distinct
phase. There are numerous examples in nature; they include ice formation,
super-cooling within body fluids, self-organizing and growth process of molecular
clusters, and protein aggregates. Here we include a simple case of nucleation and
growth of a liquid drop in a super-cooled gas.

A gas super-cooled below its vaporization temperature is in a metastable state,
giving way to a more stable equilibrium phase, that is, a liquid. In the process of
condensation (phase transition of the whole system into a liquid), a droplet of liquid
spontaneously nucleates and grows in the super-cooled gas. Because the gas and
liquid are free to exchange the molecules and energy, both of chemical potential
and temperature are equal in each phase, that is, uniform throughout the entire
system. The pressure in each phase, however, cannot be same if the effects of
interface are included. Because the chemical potential as well as the temperature
and total volume are given as fixed, we choose, as the primary thermodynamic
potential, the grand potential:

X ¼ �pgVg � plVl þ cA; ð2:53Þ

where pg;Vg and pl;Vl are the pressures and volumes of the gas and liquid phases
respectively, c is surface tension in the interfacial area A: To minimize the surface
contribution cA the liquid drop should reduce its surface area to the least possible
value, and thus become spherical. The grand potential change associated with
formation of a spherical drop with the varying radius r is

L

G
Fig. 2.6 A liquid drop (L) in a
super-cooled gas (G) at a fixed
temperature. Because of the
interfacial tension c; the liquid
pressure pl should be higher
than the gas pressure pg
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DX rð Þ ¼ � 4pr3

3
Dpþ 4pr2c; ð2:54Þ

where we noted that total volume Vg þVl remains constant. With the fact that the
liquid pressure is higher, Dp ¼ pl � pg [ 0; the profile of DX rð Þ is depicted by
Fig. 2.7. The mechanical equilibrium between the surface tension and volume
pressure is reached when @X=@r ¼ 0, namely, r ¼ rc; where

rc ¼ 2c=Dp: ð2:55Þ

This is called the Young-Laplace equation.
But the above is an unstable equilibrium condition; at the critical radius rc the

grand potential is at the maximum (Fig. 2.7); to reduce DX; the droplet will either
shrink and vanish (leading to a metastable gas phase r ¼ 0) or will grow to infinity
(transforming the entire system into the liquid phase). For the nucleus to grow
beyond rc, the energy barrier of the amount

DXc ¼ 16pc3

3 Dpð Þ3 ð2:56Þ

must be overcome. Ubiquitous thermal fluctuations, however, enable the nucleus to
cross over the barrier and the metastable super-cooled gas to transform to a liquid.
This model of nucleation and growth can be applied to a host of the first phase
transitions, e.g., condensation of vapor into liquid including cloud formation, phase
separations, and crystallizations.

P2.7 As another example consider the pore growth in a membrane. For a circular
pore of radius r to form in a planar membrane, it costs a rim energy 2prk, while
losing the surface energy pr2c. Discuss how the pore growth and stability depend
on the line and surface tensions, k and c:

Fig. 2.7 The grand potential
DXðrÞ of forming a spherical
droplet of radius r in a super-
cooled gas
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Further Reading and References

Many textbooks on thermodynamics have been written. To name a few:

A.B. Pippard, Elements of Classical Thermodynamics (Cambridge University Press, 1957)
H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Paper back)

(Wiley, 1985)
E.A. Guggenheim, Thermodynamics: An Advanced Treatment For Chemists And Physicists, 8th

edn. (North Holland, 1986)
W. Greiner, L. Neise, H. Stokër, Thermodynamics and Statistical Mechanics (Springer, 1995)
D. Kondepudi, I. Prigogine, Modern Thermodynamics, From Heat Engine to Dissipative

Structures (Wiley, 1985)
D.T. Haynie, Biological Thermodynamics (Cambridge University Press, 2001)
G.G. Hammes, Thermodynamics and Kinetics for Biological Sciences (Wiley, 2000)

Many textbooks on statistical physics include chapters on thermodynamics.
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Chapter 3
Basic Methods of Equilibrium Statistical
Mechanics

In principle, the macroscopic (including thermodynamic) properties of matter
ultimately derive from the underlying microscopic structures. Because the exact
mechanics for a huge number of constituent particles is out of question, one is forced to
seek statistical methods. The fundamental idea of statistical mechanics starts from the
notion that an observed macroscopic property is the outcome of averaging over many
underlyingmicroscopic states. For a micro-canonical ensemble of an isolated system at
equilibrium, we show how the entropy is obtained from information on the microstates,
or, from the probabilities offinding the microstates. Once the entropy is given, the first
order thermodynamic variables are obtained by taking derivatives of it with respect to
their conjugate thermodynamic variables (as shown in Chap. 2). We then consider the
microstates in canonical and grand ensembles of the system, which can exchange
energy and matter with the surrounding kept at a constant temperature. From the
probability of each microstate and the primary thermodynamic potentials for the
ensembles, all the macroscopic properties are calculated. Statistical mechanics also
allows us to obtain the information on the fluctuations of observed properties about the
averages,which provides deeper understanding of the structures ofmatter. The standard
ensemble theories of equilibrium statistical mechanics will be outlined in this chapter.

In applying such methods to biological systems we face a shift of its old
paradigm (of relating the macroscopic properties to the microscopic structures).
Unlike ideal and simple interacting systems covered in typical statistical mechanics
text books, biological systems are too complex to be explained directly in terms of
the small molecules or other atoministic structures. Nevertheless, the structures and
properties can be observed on nanoscales, thanks to various single-molecule
experimental methods which are now available. Certain nanoscale subunits or
even larger units, rather than small molecules, can emerge as the basic constituents
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and properties. Throughout this chapter we demonstrate the applicability of sta-
tistical mechanics for numerous mesoscopic biological models involving these
subunits.

3.1 Boltzmann’s Entropy and Probability, Microcanonical
Ensemble Theory for Thermodynamics

3.1.1 Microstates and Entropy

A macrostate of a macroscopic system at equilibrium is described by a few
thermodynamic state variables. We consider here an isolated system with spec-
ified macrovariables, namely its internal energy E, its number of particles N, and
generalized displacement Xi such as its volume (see Table 2.1 for the definitions).
The number N is usually very large (for the system consisting of one mole of gas,
the number of molecules N is the Avogadro number NA ¼ 6:022� 1023), and is
often taken to be infinity (thermodynamic limit) in macroscopic systems. Many
different microstates underlie a given macrostate. The set of microstates under
a macrostate specified by these variables (E, N, Xi) constitutes the micro-
canonical ensemble. For illustration, consider a one-mole classical gas that is iso-
lated with its net energy E and enclosing volume V . Microscopic states of the
classical gas are specified by the positions and momenta of all N particles. There are
huge (virtually infinite) number of ways (microstates) that the particles can assume
their positions and momenta without changing the values of E; N; V of the mac-
rostate. Each of these huge number of microstates constitutes a member of the
microcanonical ensemble.

Suppose that the number of microstates (also called the multiplicity) belonging
to this ensemble is W E; N; Xið Þ. Then the central postulate of statistical mechanics
is that each microstate ℳ within this ensemble is equally probable:

P ℳf g ¼ 1
W E;N;Xið Þ : ð3:1Þ

This equal-a-priori probability is the least-biased estimate under the con-
straints of fixed total energy. This very plausible postulate is associated with another
fundamental equation that relates the macroscopic properties with the microscopic
information, the so-called Boltzmann formula for entropy:

S E;N;Xið Þ ¼ kB lnW E;N;Xið Þ: ð3:2Þ

where kB ¼ 1:38� 10�23J=K ¼ 1:38� 10�18 erg/K is the Boltzmann constant.
Equation (3.2) is the famous equation inscribed on Boltzmann’s gravestone in
Vienna, (Fig. 3.1) and is regarded as the cornerstone of statistical mechanics. It
proclaims that the entropy is a measure of disorder; S ¼ 0 at the most ordered
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state where only one microstate is accessible W ¼ 1ð Þ; the irreversible approach to
an entropy maximum is due to emergence of most numerous microstates, i.e., most
disordered state, which is attained at equilibrium. Furthermore it tells us that once
W is given in terms of the independent variables E, N and Xi, all the thermodynamic
variables can be generated by S E;N;Xið Þ using (2.9–2.11).

For an alternative, useful expression for the entropy, imagine that M (virtually
infinite) replicas exist of the system in question. Suppose that the number of replicas
that are in a microstate state i is ni. Then the number of ways to arrange n1 systems
to be in state 1 and n2 systems to be in state 2, etc. is

WM ¼ M!

n1!n2!. . .
: ð3:3Þ

Consider that the values of ni are so large that the Stirling approximation ln n! ffi
ni ln ni � ni is valid. Then, by noting that

P
i ni ¼ M;

ln WM ¼ M ln M �M �
X
i

ni ln ni � nið Þ ¼ �
X
i

ni ln
ni
M

; ð3:4Þ

and the entropy of the system is given by the total entropy of the M replicas divided
by M:

S ¼ 1
M

kB lnWM ¼ �kB
X
i

Pi lnPi ¼ �kB
X
ℳ

Pfℳg lnPfℳg; ð3:5Þ

where Pi ¼ ni=M is the probability of finding ni replicas out of M: This entropy is
expressed in terms of Pi, which can be interpreted as the probability P ℳf g for
microstate ℳ of a single replica (system). It is in the form of the information
entropy, SI ¼ �K

P
i Pi lnPi introduced by Shannon, where here with K ¼ kB. In

Fig. 3.1 The gravestone of
Ludwig Boltzmann in Vienna
where the famous formula
S ¼ kB ln W is inscribed
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the microcanonical ensemble of the system, in which P ℳf g ¼ 1=W , the entropy is
indeed given by S ¼ kB ln W : Within the information theory, the probability and
thermodynamic entropy at equilibrium are the outcomes of maximization of the
information entropy (Shannon 1948; Jaynes 1957).

P3.1 Show that the probability distribution that maximizes the entropy (3.5) under
a constraint

P
ℳ P ℳf g ¼ 1 is the microcanonical probability P ℳf g ¼ 1=W ,

(3.1). Use the method of Lagrange’s multiplier.

3.1.2 Microcanonical Ensemble: Enumeration
of Microstates and Thermodynamics

The designation of microstates depends on the level of the description chosen.
Let us consider a system composed N interacting molecules. In the most micro-
scopic level of the description, where the system is described quantum mechani-
cally involving molecules and their subunits such as atoms and electrons, the
microstates are the quantum states labeled by a simultaneously measurable set of
quantum numbers of the system, which are virtually infinite. At the classical level
of description, the microscopic states are specified by the N-particle phase space,
i.e., the momenta and coordinates of all the molecules as well as their internal
degrees of freedom. For both of these cases, enumeration of total number W of
microstates in a microcanonical ensemble would be a formidable task.

Example: Two-State Model

In many interesting situations, however, the description of the system need not be
expressed in terms of the underlying quantum states or phase space. Consider a
system that has N distinguishable subunits, each of which can be in one of two
states. A simple example is a linear array of N sites each of which is either in the
state 1 or 0 (Fig. 3.2a). Such two-state situations occur often in mesoscopic systems
that lie between microscopic and macroscopic domains. The two state model not
only allows the analytical calculation; although seemingly quite simple, it can be
applied to many different, interesting problems of biological significance. Of par-
ticular interest are biological systems that consist of nanoscale subunits, for
example (Fig. 3.2b) the specific sites in a biopolymer where proteins can bind via
selective and non-covalent interactions and (c) the base-pairs in double-stranded
DNA that can close or open.

Now, let us consider as our microcanonical system an array of N such subunits
(e.g., a biopolymer with N binding sites, or a N-base DNA), each of which has two
states with different energies. For simplicity we neglect the interaction between
subunits. Due to thermal agitations the subunits undergo incessant transitions from

28 3 Basic Methods of Equilibrium Statistical Mechanics



an energy state to the other. What is the entropy of the array and what is the
probability at which each state occurs in a subunit?

The ℳ here are chosen to be the mesoscopic states represented by a set
nif g ¼ n1; n2. . .nNð Þ where ni is the occupation number of the i-th subunit. ni is

either 0 or 1 depending on whether the subunit is unbound or bound with the energy
�0 or �1; respectively. The net energy is

E ¼
XN
i¼1

1� nið Þ�0 þ ni �1f g ¼ N0�0 þN1�1 ð3:6Þ

where N0 and N1 ¼ N � N0 are the number of subunits belong to the energy states,
�0 and �1 respectively. Because E is determined once N0 and N1 are given, W E;Nð Þ
of the total microstates in a micro-canonical ensemble that is subject to the net
energy E and total number N; is the number of ways to divide N sites into two
groups, N0 unbound sites and N1 bound sites:

W ¼ N!
N0!N1!

ð3:7Þ

Following Boltzmann, the entropy on this level of description is expressed as

S ¼ kB lnW

� kB N lnN � N � N0 lnN0 þN0 � N1 lnN1 þN1½ �

¼ �NkB
N0

N
ln
N0

N
þ N1

N
ln
N1

N

� �
;

ð3:8Þ

where the Stirling’s formula N! ffi N lnN � N is used assuming that N0; N1 and N
are large numbers. Note that in microcanical ensemble theory the primary ther-
modynamic potential S should be expressed as a function of the given independent

1 0 1 1 0 1 1 0

(a)

(b) 

(c)

Fig. 3.2 Two state problems. a Linear
lattice with each site that is either in the
state 1 or 0. Two biological examples of
two state subunits: b Sites in a biopoly-
mer (double stranded DNA for this
case) bound by a protein or not. The
binding sites are marked dark. c DNA
with base pairs in closed (slashed) and
open (looped) states
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variables N and E; expressing N0 and N1 in terms of N and E, yields N0 ¼
N�1 � Eð Þ=D� and N1 ¼ E � N�0ð Þ=D�, where D� ¼ �1 � �0 :

S E;Nð Þ ¼ �kB
N�1 � E

D�
ln
N�1 � E
ND�

þ E � N�0
D�

ln
E � N�0
ND�

� �
: ð3:9Þ

Using (2.9), the temperature is expressed as

1
T
¼ @S

@E

� �
N;Xi

¼ kB
D�

ln
N�1 � E
E � N�0

;

ð3:10Þ

from which we can express the internal energy E in terms of temperature T ,

E ¼ N �0e�b�0 þ �1e�b�1
� �
e�b�0 þ e�b�1

; ð3:11Þ

where b ¼ 1= kBTð Þ.
The probability that a subunit will be in the state n ¼ 0 is

P0 ¼ W N � 1;E � �0ð Þ
W N;Eð Þ ¼ N � 1ð Þ!

ðN0 � 1Þ!N1!

N0!N1!

N!
¼ N0

N
; ð3:12Þ

where the equal-a priori probability 1=W N;Eð Þ (3.1) of finding any one of the
subunit with �0 is multiplied by W N � 1;E � �0ð Þ; which is the number of ways
that the remaining energy can be distributed among the other N � 1 subunits.
The result (3.12) is very obvious. In a similar way, one can find

P1 ¼ N1

N
: ð3:13Þ

Substituting the expression for E (3.11) into N0 ¼ N�1 � Eð Þ=D� and N1 ¼
E � N�0ð Þ=D� yields

Pn ¼ Nn

N
¼ e�b�nP1

n¼0 e
�b�n

; n ¼ 0; 1: ð3:14Þ

This is the single-subunit Boltzmann distribution. It signifies that the higher
energy state is less probable unless excited by very high thermal energy kBT ¼ b�1:
Each probability can be rewritten explicitly as
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P0 ¼ 1
1þ e�bD�

ð3:15Þ

P1 ¼ e�bD�

1þ e�bD�
¼ 1

1þ ebD�

¼ 1� P0:

ð3:16Þ

The relative probability of finding state 1 relative to state 0 is e�bD�: If we
put the unbound and bound state energies of the subunit to be 0 and ��, respec-
tively, the probability of the bound state is given by

P1 ¼ 1
1þ e�b�

� S b�ð Þ: ð3:17Þ

S b�ð Þ; called the sigmoid function (Fig. 3.3), is typical of the transition probability
in two-level systems. When � ¼ 0;P0 ¼ P1 ¼ 1=2; i.e., the open and closed states
are equally probable. When � � kBT; P1 � 1, i.e., a site or base pair tends to be
mostly bound. If there were attraction between subunits, P1 rises more sharply at a
given temperature than the sigmoid. This cooperative binding will be studied in
detail in Chap. 8 in the context of DNA base-pair opening or denaturation.

In terms of single subunit probability (3.14), the energy (3.11) is expressed by

E ¼ N
X1
n¼0

�nPn; ð3:18Þ

meaning that the internal energy is given by the thermal average. The entropy (3.8)
is expressed as

S ¼ �NkB
X1
n¼0

Pn lnPn ð3:19Þ

Fig. 3.3 The sigmoid func-
tion S b�ð Þ: For low tempera-
ture b� � 1ð Þ, the function
rises sharply at � ¼ 0 and
become unity for large �:
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For a biopolymer with N binding sites bound by Np 	Nð Þ proteins, the entropy is

S ¼ �NkB h ln hþ 1� hð Þ ln 1� hð Þ½ � ð3:20Þ

where h ¼ Np=N is coverage of the proteins. This is the well-known entropy of
mixing two components. When only one state exists, h ¼ 1 or h ¼ 0, then the
entropy of mixing is 0. When the two states are equally probable, i.e., h ¼ 1=2, the
entropy is at the maximum.

P3.2 Show that the Helmholtz free energy is given by

F ¼ �NkBT lnðe�b�0 þ e�b�1Þ:

P3.3 Find the chemical potential of the system.
Solution: Because the primary thermodynamic potential is S E;N;Xð Þ, the chemical
potential is given by

l ¼ �T
@S
@N

� �
E;X

as a function of E and N. If we obtain it by taking a derivative on (3.20) with
respect to N, it would be wrong because the entropy is not explicitly expressed as a
function of the independent variables, E and N.

The two-state model can be applied to a host of biological transitions between
two states, such as coiled and helix states, B-DNA (right handed) and Z-DNA
(left-handed states) in addition to the examples mentioned above. The model can be
applied even to the higher levels biological phenomena such as the ion channel
gating transitions from an open to a closed state, ligand binding on receptors, and
much more.

Colloid Translocation

As another example of the two state transitions, consider translocation of colloidal
particles from one place to the other. Consider identical colloidal particles
(Fig. 3.4), initially confined within the chamber on the left, pass through a narrow
pore in the partitioning membrane toward the right chamber. Suppose that the
internal energy does not change during this translocation process.

The number of microstates with N1 particles translocated to the right is given by

W N � N1;N1ð Þ ¼ N!
N � N1ð Þ!N1!

; ð3:21Þ
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The probability with which N1 particles exist in the right chamber is given by

P N1ð Þ ¼ W N � N1;N1ð ÞPN1¼N
N1¼0 W N � N1;N1ð Þ

¼ W N � N1;N1ð Þ=2N ;
ð3:22Þ

where we use
PN1¼N

N1¼0 W N � N1;N1ð Þ ¼PN1¼N
N1¼0 N!= N � N1ð Þ!N1!ð Þ ¼ 2N :

P N1ð Þ is the binomial distribution for N1, shown by Fig. 3.5a. The average is

hN1i ¼
XN1¼N

N1¼0

N1P N1ð Þ ¼ N
2

ð3:23Þ

and the variance is

N1 � N1h ið Þ2 ¼
XN1¼N

N1¼0

N1 � N1h ið Þ2P N1ð Þ ¼ N
4
: ð3:24Þ

(a)

(b)

Fig. 3.5 a The probability
distribution P N1ð Þ of number
of particles that translocate to
the right side. b The entropy
associated with translocation
S N1ð Þ:

Fig. 3.4 Colloidal particles translocating from a chamber to another through a pore beween them

3.1 Boltzmann’s Entropy and Probability, Microcanonical Ensemble … 33



For large N; P N1ð Þ orW N � N1;N1ð Þ shows a sharp peak at N1 ¼ N=2 (Fig. 3.5a)

because root mean squared (rms) deviation or standard deviation of N1; �DN1 �
hðN1 � N1h iÞ2i1=2 ¼ N1=2=2 is much smaller than N. This means that in real situ-
ations of large N this sharply-peaked state with N1 ¼ N=2 dominates over all other
possibilities, as is observed at equilibrium. Thermodynamically this is the equi-
librium state where the entropy

S ¼ kB ln W ¼ kB N lnN � N � N1ð Þ ln N � N1ð Þ � N1 lnN1½ � ð3:25Þ

has the maximum kBN ln 2: This means that the second law of thermodynamics
forbid all the particles initially placed on the left to translocate toward the
right, even in infinitely long time.

We have demonstrated that the basic postulates of equal-a priori probability and
Boltzmann entropy lead to a clear and satisfactory construction of a statistical
mechanical method for finding statistical and thermodynamic properties. The results
derived above, the thermodynamics and probabilities, are obtained for the
micro-canonical ensemble of isolated systems, in which the total energy and total
number are regarded as fixed. Despite these constraints, these micro-canonical
ensemble theory results are equal to those for the natural situations where these
variables fluctuate, provided that the standard deviations or root mean squares of the
fluctuations are much smaller than their averages. As we will show next, thermo-
dynamic variables can be calculated more easily by considering ensembles in which
the constraints on fixed variables (E, Xi and N) are relaxed.

3.2 Canonical Ensemble Theory

Due to the constraints of fixed total energy E and total number of particles or
subunits N, the number of available microstates in a micro-canonical ensemble is
difficult to calculate for the most of nontrivial systems. In what is called a canonical
ensemble the constraint is relaxed by considering that the system in question is put
into a heat reservoir or bath (of size much larger than the system size) at a fixed
temperature, so that the macrostate is characterized by its temperature T instead
of its energy E, and by N and X in addition. The system’s energy, by exchange with
the reservoir, can take any of the accessible energy values.

3.2.1 Canonical Ensemble and the Boltzmann Distribution

What is the probability that the system in the canonical ensemble will be at a certain
microstate ℳ? To find this probability we suppose that the composite of the system
and the heat bath or reservoir Bð Þ surrounding it is an isolated system with total
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energy ET , as depicted in Figs. 2.4 and 3.6. Then the number of all the accessible
microstates in the total system is

WTðETÞ ¼
X
ℳ

W Eℳð ÞWB ET � Eℳð Þ; ð3:26Þ

where
P

ℳ signifies the summation over all accessible microstates of the system,
each having the energy Eℳ;W Eℳð Þ is its number of microstates. WB ET � Eℳð Þ is
the number of the microstates of the heat bath, given that the system has the energy
Eℳ: In the each one of the microstates counted in (3.26) is equally probable a priori
by the postulate (3.1), so that the probability that the system will be in a specific
state ℳ W Eℳð Þ ¼ 1ð Þ is

P ℳf g ¼ WB ET � Eℳð ÞP
ℳ WB ET � Eℳð Þ : ð3:27Þ

To go further, we note that

WB ET � Eℳð Þ ¼ exp
1
kB

SB ET � Eℳð Þ
� �

ð3:28Þ

and the system’s energy Eℳ is much smaller than the total energy ET or the
reservoir energy ET � Eℳ: Consequently the exponent above is expanded as

exp
1
kB

SB ET � Eℳð Þ
� �

ffi exp
1
kB

SBðETÞ � Eℳ
@

@ET
SB ETð Þ

� �� �

¼ exp
1
kB

SBðETÞ � Eℳ

T

� �� �
:

ð3:29Þ

where the relation (2.9), @SB Eð Þ=@E ¼ 1=T is used. From (3.27–3.29), we find an
important relation

Fig. 3.6 The canonical ense-
mble is the collection of many
microstates of a macrosystem
characterized by its tempera-
ture T, N and Xi. To retain
the temperature as fixed the
system is put into a contact
with a heat bath of the same
temperature
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P ℳf g ¼ e�bEℳP
ℳ e�bEℳ

; ð3:30Þ

where still b ¼ 1= kBTð Þ. This relation means that the probability of finding a
system at a temperature T to be in a microstate ℳ depends solely on the
system’s energy Eℳ and decays exponentially with it, following the so-called
Boltzmann factor . This canonical distribution is valid to the system in
equilibrium at a fixed temperature T, independently of its size. It should be noted
that the system need not be large enough to assure its statistical independence from
the thermal bath, as wrongly claimed in some textbooks. This fundamental relation
can be derived in various ways. One way is by maximizing the information entropy
under constraints, as given by the following problem.

P3.4 By maximizing the information entropy (3.5)

S ¼ �kB
P
ℳ

P ℳf g ln P ℳf g

subject to constraints
P

ℳ P ℳf g ¼ 1 and
P

ℳ EℳP ℳf g ¼ E, find that P ℳf g is
given by the canonical distribution (3.30). Use the method of Lagrange’s multiplier.

Eℳ, being a fluctuating energy that depends on the microstates or degrees of
freedom ℳ, is identified as the Hamiltonian H ℳf g. Thus, we express the prob-
ability in a more conventional form:

P ℳf g ¼ e�bH ℳf g

Z T ;N;Xið Þ : ð3:31Þ

The normalization factor

Z T;N;Xð Þ ¼
X
ℳ

e�bH ℳf g ð3:32Þ

is called the canonical partition function or partition sum. Including the
multiplicity W Eℳð Þ of states that have energy Eℳ, the partition function is also
given as

Z T ;N;Xð Þ ¼
X

Eℳ W Eℳð Þ e�bEℳ ð3:33Þ

Thus, the probability for the systems to have the energy Eℳ is proportional to
W Eℳð Þ e�bEℳ , not to the Boltzmann factor e�bEℳ , which refers to the probability
for the system to be at a microstate ℳ:
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Given the probability, various thermodynamic variables of the system can be
obtained. First the internal energy is the average energy of the system given by

E ¼ Hh i ¼
X
ℳ

H ℳf g e
�bH ℳf g

Z

¼ � @
P

ℳ e�bH ℳf g� �
Z@b

¼ � @ ln Z
@b

:

ð3:34Þ

Using the relation E ¼ �T2@ F=Tð Þ=@T (2.16), we can identify the Helmholtz free
energy

F T;N;Xð Þ ¼ �kBT ln Z: ð3:35Þ

In this way, by using the thermodynamic relations involving the derivatives with
respect to F (2.13–2.15), the partition function can generate all the thermodynamic
variables.

P3.5 Consider a simple model where DNA unbinding of the double helix is like
unzipping of a zipper; a base pair (bp) can open if all bps to its left are already open
as shown in the figure below. The DNA has N bps, each of which can be in one of two
states, an open state with the energy 0 and closed state with the energy ��: (a) Find
the partition function. (b) Find the average number of open bps when � ¼ 0:4kBT:

3.2.2 The Energy Fluctuations

The energy distribution of macroscopic systems in canonical ensemble is a
sharp Gaussian around the average energy. To show this, consider that values of
the microstate energy E are continuously distributed with density of states w Eð Þ
over a range dE, so that the partition function (3.33) can be written as

Z ¼
Z

dE w Eð Þe�bE ; ð3:36Þ

which implies that probability distribution of the energy within the range dE is
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P Eð Þ ¼ w Eð Þe�bE

Z
¼ e�bfE�TSðEÞg=Z ¼ e�bF Eð Þ=Z;

ð3:37Þ

where F Eð Þ ¼ E � TSðEÞ ¼ E � kBT ln w Eð Þ is the free energy given as a func-
tion of an energy E: Because e�bTSðEÞ increases and e�bE decreases with E, we
expect that P Eð Þ is peaked at E
; where F Eð Þ is minimum. Around the minimum,
F Eð Þ can be expanded:

F Eð Þ ffi E
 � TSðE
Þþ 1
2
T

@2S E
ð Þ
@E
2

� �
E � E
ð Þ2

¼ F E
ð Þ � 1
2TCV

E � E
ð Þ2:
ð3:38Þ

In the above, we used @2SðE
Þ=@E
2 ¼ @=@E
 1=Tð Þ ¼ �1= T2CVð Þ, along with
@SðE
Þ=@E
 ¼ 1=T and @T= @E
ð Þ ¼ 1= @E
=@Tð Þ ¼ 1=CV (2. 38).

Finally, we obtain

P Eð Þ / e�bF Eð Þ ffi exp � 1
2kBT2CV

E � E
ð Þ2
� �

; ð3:39Þ

The probability distribution for the energy E, which is allowed to exchange
with the bath at temperature T, is Gaussian with a mean E
 ¼ hEi ¼ E, and a
rms deviation

�DE ¼ h E � E
ð Þ2i1=2 ¼ T
ffiffiffiffiffiffiffiffiffiffiffi
kBCV

p
ð3:40Þ

from the mean. The energy distribution P Eð Þ is peaked at the mean E
 which
minimizes he free energy F Eð Þ to F E
ð Þ ¼ F: Because E
 and CV are extensive
quantities that increase with system size N, the relative peak width �DE= E
 scales as
N�1=2: Therefore, on a macroscopic scale, P Eð Þ is very sharp, and looks like a delta
function about the mean, P Eð Þ ¼ d E � E
ð Þ (Fig. 3.7). For this reason, when
measuring the energy E of a macroscopic system we observe negligible fluctuations
about the mean which as the outstandingly probable outcome. Because energy
fluctuation is practically absent in this case, the canonical ensemble yields the same
thermodynamics that the micro-canonical one does.

Fig. 3.7 The distribution of
the energy E in a macroscopic
system is sharply peaked
around the average energy
E
 ¼ E. Even a macroscopic
system experiences the energy
fluctuation �DE, although very
small compared with E:
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An important lesson here, however, is that, even the macroscopic variables
fluctuate, although imperceptibly. The fluctuations are consequence of the
intrinsic, universal thermal motion of microscopic constituents inherent in systems
at a non-vanishing temperature. The relative effect of the fluctuations increases as
the system size decreases, as dramatically visualized in Brownian motion.

The canonical ensemble results could differ significantly from themicro-canonical
results as the system size gets small. Therefore, when considering mesoscopic
systems of small system sizes, an appropriate type of ensembles must be chosen
carefully to meet the actual situation.

Water has a distinctively high heat capacity so that its temperatures remain
nearly constant. For biological systems bathed in an aqueous solvent, the canonical
ensemble (including the Gibbs and grand canonical ones shown next) are a most
natural choice to take.

3.2.3 Example: Two-State Model

As a simple example we revisit the two-state model of independent N subunits that
was studied earlier in a microcanonical way. The Hamiltonian is derived from (3.6),

H nif g ¼
XN
i¼1

1� nið Þ�0 þ ni�1f g ð3:41Þ

where ni; the occupation number of the i-th subunit, can be either 0 or 1. The
probability of the microstate, that is, the joint probability that all subunits are in the
state n1; n2; . . . nN simultaneously is given by

P nif g ¼ exp �bH nif g½ �
Z

¼ Z�1 exp �b
XN
i¼1

1� nið Þ�0 þ ni�1

 !
; ð3:42Þ

where

Z ¼
X
nif g

exp �bH nif g½ � ¼
X1
ni¼0

exp �b
XN
i¼1

1� nið Þ�0 þ ni�1Þ
 !

¼
YN
i¼1

X1
ni¼0

exp �b 1� nið Þ�0 þ ni�1f g

¼ e�b�0 þ e�b�1
� �N

ð3:43Þ

is the partition function. In deriving it, the two summations in the second expression
above was exchangeable. The binomial expansion of (3.43) expresses the partition
function as
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Z ¼
XN
N1¼0

N!
N0!N1!

e�b �0N0 þ �1N1ð Þ ð3:44Þ

where N0;N1 are the numbers of empty and occupied subunits respectively;
N!= N0!N1!ð Þ represents the number of microstates for the state that has net energy
�0N0 þ �1N1 (3.7).

The (3.42) implies the obvious statistical independence of subunits:

P nif g ¼ Pn1Pn2 . . .PnN ; ð3:45Þ

where

Pni ¼
e�b 1�nið Þ�0 þ ni�if gP1

n¼0 e
�b�n

; ð3:46Þ

is the probability for the subunit to be in the state ni; this is identical to (3.14).
The calculation of thermodynamic variables is straightforward. The Helmholtz

free energy is

F ¼ �kBT ln Z ¼ �NkBT lnðe�b�0 þ e�b�1Þ; ð3:47Þ

which is obtained in a more straightforward way compared with the
micro-canonical theory. From the free energy, we obtain the entropy:

S T ;Nð Þ ¼ � @F
@T

¼ NkB ln e�b�0 þ e�b�1
� �þ Nð�0e�b�0 þ �1e�b�1Þ

Tðe�b�0 þ e�b�1Þ
¼ �F

T
þ E

T

ð3:48Þ

and the internal energy

E ¼ Nð�0e�b�0 þ �1e�b�1Þ
e�b�0 þ e�b�1

; ð3:49Þ

which can be also directly derived from (3.34). All of thermodynamic quantities
derived coincide with those of the micro-canonical ensemble, which is no surprise
because we considered the thermodynamic limit of large numbers (using the
Stirling’s formula) in micro-canonical calculations.

P3.6 Referring to the problem of colloid translocation, if each particle loses
energy by E when passing through the pore to the right, at what configuration is the
probability maximum? Find the probability that N1 particles are on the right while
N2 ¼ N � N1 particles are on the left and the associated entropy.
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As the name implies, canonical ensemble theory provides the most standard
method by which the microstate probabilties and the thermal properties are eval-
uated. In later chapters, it will be used to study diverse systems ranging from small
molecular fluids to polymers and membranes, and to study a multitude of phe-
nomena such as transitions, cooperative phenomena, and self-assembly. Although
versatile, the canonical ensemble condition of fixed X and N can make analytical
calculations difficult in some situations. In the following we consider other
ensembles where one of the two variables is free to fluctuate.

3.3 The Gibbs Canonical Ensemble

Now, a system in contact with a thermal bath is subject to a generalized force
f i, which is kept at constant, so that the system’s Hamiltonian is modified to

Hg ℳf g ¼ H ℳf g � fiX i ℳf g: ð3:50Þ

Here the generalized displacement X i ℳf g; the conjugate to the force fi, is a
thermally fluctuating variable. The system is specified by the macroscopic variables
T; fi;Nð Þ and the underlying microstates constitute the so called “Gibbs canonical
ensemble”.

The microstate ℳ occurs with the canonical probability

P ℳf g ¼ e�bHg ℳf g

Zg T ; fi;Nð Þ ¼
e�bH ℳf gþ bfiX i ℳf g

Zg T; fi;Nð Þ ; ð3:51Þ

where

Zg T ; fi;Nð Þ ¼
X
ℳ

e�bH ℳf gþbfiX i ℳf g ð3:52Þ

is the Gibbs partition function. Examples are a magnet subject to a constant
magnetic field, and a polymer chain subject to a constant force which is discussed
below. The average displacement in this ensemble is given by

Xi ¼ hX i ℳf gi ¼
P

ℳ X i ℳf ge�bH ℳf gþbfiX i ℳf gP
ℳ e�bH ℳf gþ bfiX i ℳf g

¼ @Zg
b@fi

=Zg ¼ kBT
@

@fi
ln Zg T; fi;Nð Þ

ð3:53Þ

In view of the thermodynamic identity, Xi ¼ � @
@fi
G; (2.23), the Gibbs free energy is

identified as
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G T; fi;Nð Þ ¼ �kBT ln Zg T; fi;Nð Þ; ð3:54Þ

from which all the thermodynamic variables are generated as explained in Chap. 2.

Freely-Jointed Chain (FJC) for a Polymer Under a Tension

A simple model for a flexible polymer is the freely-joined chain (FJC) consisting
of N segments (each with length l) which can rotate by an arbitrary angle inde-
pendently of each other (Fig. 3.8). How much is the chain stretched on average by
an applied tension?

Due to the thermal agitation of the heat bath, in the absence of the applied
tension the freely jointed chain segments are randomly oriented, and thus the
corresponding chain Hamiltonian H does not depend on the segment orientation,
i.e., is trivial. In the presence of an applied tension f acting on an end rN , with the
other end held fixed at the origin r0, the Hamiltonian is given by

Hg ℳf g ¼ �f � rN ¼ �fX i ℳf g

¼ �f �
XN
n¼1

lun ¼ �f
XN
n¼1

l cos hn
ð3:55Þ

The microstates of the FJC here is ℳ ¼ u1; u2; . . . uNð Þ; where un is the unit
tangent vector of the n-th segment oriented with polar angle hn along the axis of the
applied tension. The partition function is

Zg T; f ;Nð Þ ¼
Z

dX1. . .

Z
dXN ebf

P
nl cos hn

¼
Z

dXn e
bfl cos hn

� �N
¼ 4p sinh bflð Þ

bfl

� �N ð3:56Þ

Here Xn, is the solid angle of the n-th segment with respect to the direction of the

force.
R
dXn ¼

R 1
�1 d cos hn

R 2p
0 dun where un is the azimuthal angle.

Using (3.53), the average value X of the end-to-end distance of the chain along
the axis, X ¼Pn l cos hn, is given by

Fig. 3.8 A freely-jointed chain
extended to a distance X under
a tension f
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X
Nl

¼ coth bflð Þ � 1
bfl

� L bflð Þ; ð3:57Þ

where L xð Þ is the Langevin’s function. Now we ask ourselves the inverse question,
what is the tension f necessary to keep the end-to-end distance as X? Because X is
given as fixed and f is a derived quantity, this problem in principle should be
tackled by the canonical ensembe theory. However it is quite complicated to impose
the constraint of fixed extension X in the analytical calculation. Because the
force-extension relation for a long chain is independent of the ensemble taken, the
(3.57) provides the solution, with interpretation f as the derived, average tension,
which is written as the inverse of the Langevin’s function

f ¼ kBT
l

L�1 X
Nl

� �
ð3:58Þ

and is depicted by Fig. 3.9.
Let us first consider the case of small force, bfl � 1, or f � kBT=l. Because

L bflð Þ ffi bfl=3, (3.57) leads to

X
Nl

ffi fl
3kBT

; ð3:59Þ

which one can alternatively put as f ffi 3kBT=Nl2ð ÞX, where f is the force
necessary to fix the chain extension as X: This is the well-known Gaussian
chain behavior (10.20) where the force is linear in the extension (the domain within
the broken ellipse in Fig. 3.9). Its temperature dependence implies that it is an
entropic force; the restoring force �f is directed towards the origin X ¼ 0 where
the entropy is the maximum.

Next we consider the opposite extreme where f � kBT=l. Because cot bflð Þ ffi 1;
hXi=Nl ffi 1� 1= bflð Þ in (3.57), from which one obtains the entropic force to keep
an extension X:

f ffi kBT
l

1� X
Nl

� ��1

: ð3:60Þ

Fig. 3.9 Tension f necessary
to keep the extension as X in a
freely-jointed chain. The ten-
sion is entirely the entropic
force
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An infinite force is required to extend the chain to its full length Nl, at which the
chain entropy is zero!

P3.7 What are the Gibbs and Helmholtz free energies for the chain extended with
the tension f and the distance X for the case f � kBT=l?
Solution: Because f ¼ @F

@X, we integrate the (3.60) over X to find the Helmholtz free
energy

F X; T ;Nð Þ ¼ �NkBT ln 1� X= Nlð Þf g;

where the irrelvant constant is omitted. On the other hand the Gibbs free energy
is G f ; T;Nð Þ ¼ F X; T;Nð Þ � fX � N �flþ kBT ln fl= kBTð Þð Þf g where F and X are
expressed as functions of f : Alternatively G is directly obtained from the partition
function expression

G f ; T ;Nð Þ ¼ �NkBT ln
ebfl � e�bfl

bfl

	 

� �NkBT ln

ebfl

bfl

	 

:

P3.8 A biopolymer is composed of N monomers, each of which can assume two
conformational states of energy �1 and �2 and coressponding segmental extension
lengths l1 and l2 respectively. Calculate the partition function. When a tension f is
applied to the both ends, what would be the extension X?

3.4 Grand Canonical Ensemble Theory

When a system is in contact with a thermal bath, its number of particles can
fluctuate naturally as its energy does. Because the system is at equilibrium with the
bath, the temperature and chemical potential of system are the same as those of the
bath. The microstates of the system compatible with this macrostate of given
temperature T, chemical potential l, and displacement X, constitute the grand
canonical ensemble (Fig. 3.10).

Fig. 3.10 The grand canonical ensemble of a system is characterized by its temperature T;
chemical potential l and displacement Xi. To retain the temperature and chemical potential as
fixed the system is put into a contact with a heat bath of the same temperature and chemical
potential
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3.4.1 Grand Canonical Distribution and Thermodynamics

The distribution of an underlying microstate ℳ of the system with the energy
H ℳf g and particle number N is derived using logic similar to that for the
canonical ensemble:

P ℳf g ¼ e�b H ℳf g�lNð Þ

ZG T; l;Xið Þ ð3:61Þ

where

ZG T; l;Xið Þ ¼
X
ℳ

e�bðHfℳg�lNfℳgÞ ¼
X1
N¼0

X
ℳ=N

e�bðHfℳg�lNÞ

¼
X1
N¼0

e�blN ZN

ð3:62Þ

is the grand canonical partition function. Here
P

ℳ=N is the summation over the
microstates of the system with N given, of which the canonical partition function is
ZN .

The average number of particles in the system is given as

N ¼ Nh i ¼
P

ℳ N ℳf ge�b H ℳf g�lN ℳf gð ÞP
ℳ e�b H ℳf g�lN ℳf gð Þ ¼ @ZG

ZG@ blð Þ ð3:63Þ

The grand canonical ensemble theory is useful for systems in which the number of
particles varies, i.e., for ‘open systems’. The fluctuation in the number of particles
in the system about the mean Nh i ¼ N is

h DNð Þ2i ¼ hN 2i � hN 2i

¼ @2ZG
ZG@ blð Þ2 �

@ZG
ZG@ blð Þ
� �2

¼ @2 ln ZG
@ blð Þ2

¼ @N
b@l

;

ð3:64Þ

where (3.63) is used. Because @N=b@l is an extensive quantity, the rms deviation
�DN ¼ h DNð Þ2i1=2 scales as N1=2. Consider that N is very large. Then, one can
show the distribution over the number of the particles is very sharp Gaussian around
N ¼ N; which dominates the partition sum:
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ZG T; l;Xið Þ ¼
X1
N¼0

eblN ZN ¼ CeblNZN ; ð3:65Þ

where C is a constant independent of N. This domination allows the grand potential
to be given by

X T; l;Xið Þ � �kBT ln ZG T; l;Xið Þ ¼ �lN þF ð3:66Þ

Starting from this thermodynamic potential, the average number, entropy, and
entropic force are generated as given earlier (2.28–2.31): S ¼ �@X=@T ; N ¼
�@X=@l; fi ¼ @X=@Xi ¼ X=Xi:

The fluctuation of particle number, given by @N=@l, (3.64), can be related to
mechanical susceptibility of the system, e.g., isothermal compressibility of the
system. To see this, we note that, Ndl ¼ �Xidfi (2.25) for an isothermal change, so

N
@l
@N

� �
T ;Xi

¼ �Xi
@fi
@N

� �
T ;Xi

: ð3:67Þ

Consider the right hand side of the above equation for the fluid systems where
Xi ¼ V and fi ¼ �p: In view of p ¼ p T ; n ¼ N=Vð Þ;V @p=@Nð ÞT ;V ¼ �V2=N @p=ð
@VÞT ;N¼1= nKTð Þ (2.39). Therefore, (3.64) leads to the relative fluctuation for the
number,

�DN� �
=N ¼ nkBTKTð Þ1=2N�1=2; ð3:68Þ

which, evidently, tells us that the isothermal compressibility KT is always positive,
and further that the relative fluctuation is negligible for a system with large N.

But for mesoscopic systems the relative fluctuation can be quite sizable. The
relation (3.68) can be applied to, for example, a membrane in equilibrium with its
lipids in a solution. If the stretching modulus Ks; (12.13), corresponding to the
inverse of the mechanical susceptibility, is quite small, then the number N of lipids
in a membrane, with its average N being not very large, can show large relative
fluctuations.

Fig. 3.11 The configurations
of ligand binding on two sites
of a protein that contribute to
the grand canonical partition
function expressed in (3.69)
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3.4.2 Ligand Binding on Proteins with Interaction

As an example to show the utility of the grand canonical ensemble theory, we
consider systems of molecules or ligands (such as O2) that can bind on two iden-
tical, but distinguishable sites in a protein (e.g., myoglobin, hemoglobin)
(Fig. 3.11). How does the average number of bound ligands depend on their
ambient concentrations? Compared with a similar problem of two-state molecular
binding treated in Sect. 3.1, there is an important difference: earlier, the system of
interest was a biopolymer with fixed N binding sites, whereas the system in
question here is the bound ligands, whose number N can vary.

In this case the grand partition function is expressed as

ZG ¼
X
N¼0

eblN ZN ¼ Z0 0; 0ð Þþ zZ1 1; 0ð Þþ zZ1 0; 1ð Þþ z2Z2 1; 1ð Þ; ð3:69Þ

where Zmþ n m; nð Þ is the canonical partition function with m and n ligands bound on
two sites, and z ¼ ebl is the fugacity of a ligand. If the energy in the bound state is
��ð\0Þ, and the interaction energy is u; Z0 0; 0ð Þ ¼ 1; Z1 1; 0ð Þ ¼ Z1 0; 1ð Þ ¼ eb�,
and Z2 1; 1ð Þ ¼ eb 2��uð Þ, so ZG is given as

ZG ¼ 1þ 2zeb� þ z2eb 2��uð Þ: ð3:70Þ

Using (3.63), the coverage per site is

h ¼ 1
2

Nh i ¼ 1
2
z
@

@z
ln ZG ¼ z eb� þ zeb 2��uð Þ� �

1þ 2zeb� þ z2eb 2��uð Þ : ð3:71Þ

If u ¼ 0 so that two sites are independent of each other, the coverage is

h ¼ zeb�

1þ zeb�
¼ 1

e�b �þlð Þ þ 1
: ð3:72Þ

To find l; consider that at equilibrium the chemical potential of the bound
particles is the same as that of the unbound particles in the bath. Because the
unbound particles form an ideal gas or solution with density n, their chemical
potential is given by

l ¼ l0 Tð Þþ kBT ln n=n0 Tð Þf g; ð3:73Þ

as will be shown in next chapter. l0 Tð Þ is the chemical potential of the gas at the
standard density n0 Tð Þ: Equating the chemical potentials, we obtain

3.4 Grand Canonical Ensemble Theory 47



h ¼ 1
1þ n0

n e
�b �þ l0ð Þ ¼

n
nþ n
 Tð Þ ; ð3:74Þ

where

n
 Tð Þ ¼ n0 Tð Þe�b �þ l0 Tð Þ½ � ð3:75Þ

is purely a temperature-dependent reference density. The Langmuir isotherm
(solid curve in Fig. 3.12) shows how the coverage increases as the background
density or concentration n increases at a temperature. n
 Tð Þ is the crossover con-
centration at which the coverage is 1/2.

If the bound particles interact, (3.71) can be written as

h ¼ n
nþ ~n
 T ; n;uð Þ : ð3:76Þ

For an attractive interaction such that e�bu [ 1, h is higher, and thus ~n
 is less than
that for the Langmuir isotherm (Fig. 3.12): because of the attraction, binding is
enhanced. On the other hand, when the interaction is repulsive, u[ 0; the binding
is reduced. These interesting effects due to the interaction are called the
cooperativity.

P3.9 Find the rms fluctuation in coverage. How are they affected by the interaction
between the binding ligands?

Fig. 3.12 Ligand binding isotherm. The coverage h increases with the ambient density n at a
given temperature. The attraction u\0ð Þ between the bound particles enhances the coverage h

over that of the Langmuir isotherm (solid curve). The repulsion u[ 0ð Þ lowers the coverage
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Chapter 4
Statistical Mechanics of Fluids
and Solutions

Biological components function often in watery environments. Biological fluids are
either water solvent or various aqueous solutions and suspensions of ions and
macromolecules, with which virtually all chapters of this book are concerned. In
this chapter we start with a review of how the canonical ensemble method of
statistical mechanics can be used to derive some basic properties of simple, classical
fluids that consist of small molecules. We derive the well-known thermodynamic
properties of non-interacting gases either in the absence or in the presence of
external forces. For dilute and non-dilute fluids, we study how the inter-particle
interactions give rise to the spatial correlations in the fluids, which affects the
thermodynamic behaviors.

These results, which are essential for a simple fluid for its own, can be extended
to aqueous solutions of colloids and macromolecules; e.g., the results of dilute
simple gas can be directly applied to dilute solutions. We outline coarse-grained
descriptions in which the solutions are treated as the fluids of solutes undergoing the
solvent-averaged effective interactions. As a particularly simple but useful variation
we shall introduce the lattice model.

4.1 Phase-Space Description of Fluids

4.1.1 N Particle Distribution Function and Partition
Function

Consider a simple fluid consisting of N identical classical particles of mass m each
with no internal degrees of freedom. The fluid is confined in a rectangular volume V
with sides Lx; Ly; Lz and kept at a temperature T . For a classical but microscopic
description, the microstate ℳ of the system is specified by a point in 6N dimen-
sional phase space C ¼ p1; r1; . . . pi; ri; . . . pN; rNð Þ� fpi; rig where pi; ri are the
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three-dimensional momentum and position vectors of the i-th particles. The particles
are in motion with the Hamiltonian

Hfpi; rig ¼ K pif gþU rif gþU rif g: ð4:1Þ

Here K pif g ¼PN
i¼1 p

2
i = 2mð Þ is net kinetic energy of the system, U rif g ¼PN

i¼1 u rið Þ is the net external potential energy, where u rið Þ is one body potential
energy of particle i. U rif g ¼Pi[ j u ri � rj

� �
; the net interaction potential energy,

which is the sum of N N � 1ð Þ=2 pairwise interaction potential energies between
particles positioned at ri and rj, u ri � rj

� � � u rij
� �

.
The canonical microstate distribution (3.31) for this system is the N particle

phase-space distribution function:

Pfpi; rig ¼ 1
N!

1
h3N

e�bHfpi;rig=ZN : ð4:2Þ

This is the joint probability distribution with which the N particles have their all
positions and momenta at p1; r1; . . . pi; ri; . . . pN; rN simultaneously. The partition
function ZN is given as the 6N-dimensional integral:

ZN ¼ 1
N!

1
h3N

Z
dC e�bH Cð Þ

¼ 1
N!

1
h3N

Z
. . .

Z
dp1dr1. . . dpNdrN e�bHfpi;rig

ð4:3Þ

Here the Planck’s constant h is introduced to enumerate the microstates in phase
space. The phase space volume for a particle in three dimension is h3 due to the
underlying quantum mechanical uncertainty principle that forbids a simultaneous
determination of the position and momentum of a particle; the 3-D N-particle phase
space volume should be divided by h3N . This kind of consideration to appropriately
count the number of states depends on the level of the description that defines the
states, and is not essential for thermodynamic changes, as we will see below. More
importantly the division factor N! is inserted to avoid overcounting states of the N
identical particles, which are indistinguishable with respect to mutual exchanges.

A close look at the integral, whose hyper-dimensionality may seem over-
whelming, allows the factorization

ZN ¼ Z0
NQN ; ð4:4Þ

where

Z0
N ¼ 1

N!
VN

h3N

Z
. . .

Z
dp1. . . dpN e�bK pif g ð4:5Þ
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is the partition function of the particles with no mutual interactions and no external
fields, and

QN ¼ 1
VN

Z
. . .

Z
dr1. . . drN e�b U rif gþU rif g½ � ð4:6Þ

is the configuration partition function that includes the effects of the potential
energies. Z0

N is readily calculated by noting the factorization:

Z0
N ¼ 1

N!
VN

h3N

Z
dpi e

�
bp2

i
2m

" #N
¼ 1

N!
VN

h3N
2mp
b

� �3N=2

; ð4:7Þ

where

Z
dp e�

bp2

2m ¼
Zþ1

�1
dpx e

�bpx
2

2m

Zþ1

�1
dpy e

�
bpy

2

2m

Zþ1

�1
dpz e

�bpz
2

2m

¼ 2mp
b

� �3=2

;

ð4:8Þ

and
R þ1
�1 dp e�

bp2

2m ¼ 2mp=bð Þ1=2: The ideal gas partition function Z0
N is then

written as

Z0
N T ;N;Vð Þ ¼ 1

N!
V

k Tð Þ3
 !N

; ð4:9Þ

where

k Tð Þ ¼ h2

2pmkBT

� �1=2

ð4:10Þ

is called the “thermal wavelength”.

4.1.2 The Maxwell-Boltzmann Distribution

From this canonical distribution and partition functions given above the statistical
and macroscopic properties of the classical fluids at a temperature can be found in a
great variety. Let us start with the famous Maxwell-Boltzmann distribution for
the particle velocity. The mean number of particles with the momentum between
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p1 and p1 þ dp1 and at the position between r1 and r1 þ dr1 is given by
f ðp1; r1Þdp1dr1; where

f ðp1; r1Þ ¼ N
Z

. . .

Z
dp2dr2. . . dpNdrN Pfpi; rig

¼ N
N!

1
h3NZN

Z
. . .

Z
dp2. . . dpN e�b

PN

i¼1
p2i =2m

Z
. . .

Z
dr2. . . drN e�b U rif gþU rif g½ �:

ð4:11Þ

Here we used (4.2), and inserted N into the numerator as the number of ways to
assign a particle with the subscript 1. Integrating over the momenta yields

f ðp1; r1Þ ¼ Pðp1Þn r1ð Þ: ð4:12Þ

where

Pðp1Þ ¼
2mp
b

� ��3=2

e�
bp1

2

2m ; ð4:13Þ

and

n r1ð Þ ¼ N
VNQN

Z
. . .

Z
dr2. . . drN e�b U rif gþU rif g½ �: ð4:14Þ

Integrating (4.12) over r1 yields

f ðp1Þ ¼ NPðp1Þ: ð4:15Þ

Therefore f ðp1Þdp1 is the number of molecules that have a momentum between p1
and p1 þ dp1; and P pð Þ is a particle’s momentum probability distribution or
probability density, from which the well-known Maxwell-Boltzmann (MB) distri-
bution of velocities can be found:

U vð Þ ¼ m�3P pð Þ ¼ 2p
mb

� �3=2

e
� bmv2

2 ¼ 2pkBT
m

� �3=2

e
� mv2

2kBT : ð4:16Þ

The prefactors ensure the normalizations
R
dp P pð Þ ¼ 1 and

R
dvU vð Þ ¼ 1:

The MB distribution is a Gaussian distribution in velocity (Fig. 4.1), and
applies universally to thermalized particles at equilibrium. Because the phase
space distribution (4.2) is factorized into a momentum-dependent part and a
position-dependent part, the MB distribution is independent of the intermolecular
interaction strength, and so may also be valid to structured molecules in a liquid
phase where their center-of-mass translational degrees of freedom are decoupled
with the internal degrees of freedom.
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Each component of the velocity is statistically independent of every other
component:

U vð Þ ¼ Ux vxð ÞUy vy
� �

Uz vzð Þ; ð4:17Þ

where

Ua vað Þ ¼ 2pkBT
m

� �1=2

e
� mv2a

2kBT : ð4:18Þ

In the MB distribution, the average velocity component is zero:

vah i ¼
Z1
�1

dvavaUaðvaÞ ¼ 0; ð4:19Þ

so is vh i. Also

v2a
� � ¼ Z1

�1
dvav

2
aUaðvaÞ ¼ kBT

m
; ð4:20Þ

so that the average kinetic energy of a particle is

1
2
m v2
� � ¼ 1

2
m v2x
� �þ v2y

D E
þ v2z
� �h i

¼ 3
2
kBT : ð4:21Þ

It means that each of the three translational degrees of freedom has energy of
kBT=2, which is a special case of the equipartition theorem stating more generally
that the energy in thermal equilibrium is shared equally among all degrees of
freedom that appear quadratically in the total energy.

Although the average velocity of a particle is zero, the average speed is not. We
note that the probability that the speed has the value between v and vþ dv is
U vð Þ4pv2dv ¼ D vð Þdv, which defines the MB speed distribution function
(Fig. 4.2).

Fig. 4.1 The Maxwell-Boltz
mann distribution function for
x-component velocity. The
most probable velocity is zero
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D vð Þ ¼ 4p
m

2pkBT

� �3=2

v2e
� mv2

2kBT : ð4:22Þ

The average speed is then calculated to be

vh i ¼
Z1
0

vD vð Þdv ¼ 8kBT
pm

� �1=2

: ð4:23Þ

The most probable speed, where the probability is the maximum given by the
condition dD vð Þ=dv ¼ 0, is

vp ¼ 2kBT
m

� �1=2

: ð4:24Þ

The peak of the speed distribution increases as the square root of temperature, and
the right skew means there an appreciable fraction of molecules have speed is much
higher than vp. The water molecules that belong to the high-speed tail of the
distribution can escape the surface of water; because of this removal of high-energy
molecules, the average speed of the remaining molecules i.e., their energy (tem-
perature) decreases. Thus evaporation of water alone is cooling process, which can
be balanced by heat transfer from the environment to retain the water temperature.
The evaporation process makes rain possible.

P4.1 What is the probability that a nitrogen gas molecule on surface of the earth
can escape the gravisphere? Assume that the temperature throughout is 300 K.

P4.2 Suppose that water molecules escape a planar surface of a liquid water if its
energy exceeds the average 3kBT=2: Calculate the cooling rate of the liquid.

Now going back to the (4.14), n rð Þ is recognized as the number density or
concentration of the molecules at position r. In the absence of all potential ener-
gies, external and interactional, it can be shown to be uniform, n rð Þ ¼ N=V ¼ n.
This also holds true for a fluid of particles that are mutually interacting with an
isotropic potential u rð Þ ¼ u rð Þ but in the absence of the external potential, where
the fluid is translationally invariant and homogeneous. Below we consider the

Fig. 4.2 The Maxwell Boltz
mann speed distribution func-
tion curve. The most probable
speed at temperature Ti is not

zero but vp ¼ 2kBTi
m

� �1=2
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alternative case, in which interaction is absent but external potentials exist to make
the fluid non-uniform.

4.2 Fluids of Non-interacting Particles

4.2.1 Thermodynamic Variables of Non-uniform Ideal
Gases

When U rif g ¼ 0; the configuration partition function (4.6) reduces to

QN ¼ qN1 ; ð4:25Þ

where

q1 ¼ 1
V

Z
dr e�bu rð Þ; ð4:26Þ

so (4.14) becomes

n rð Þ ¼ ne�bu rð Þ: ð4:27Þ

The non-uniform fluid density follows the Boltzmann distribution. For a gas under
uniform gravity directed downward along the z axis, u zð Þ ¼ mgz, we get

n zð Þ ¼ ne�bmgz ¼ ne�z=z� ; ð4:28Þ

which is none other than the barometric formula. It means that thermal agitation
allows the gas to overcome gravitational sedimentation. It is because the charac-
teristic altitude z� ¼ kBT= mgð Þ of the density decay increases with T and decreases
with m. At T ¼ 300K, z� of O2 ðm ¼ 32 g=mol ¼ 5:32� 10�26 kg=moleculeÞ is
7.95 km and the z� of H2 ðm ¼ 2 g=mol ¼ 3:32� 10�27 kg=moleculeÞ is 127 km;
this inverse relationship between z� and m means that at high altitude light gases are
more abundant than heavy gases. This prediction is not strictly valid because T and
g vary with altitude. Also we note that the barometric formula can be applied to
sedimentation of colloidal particles suspended in a solvent provided that the mass is
modified in such a way to incorporate the buoyancy and hydration.

For thermodynamic properties, the partition function (4.4) is calculated easily
using (4.9) and (4.25):

ZN ¼ 1
N!

V

k3

� �N

qN1 : ð4:29Þ

The Helmholtz free energy is obtained as:
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F T ;V ;Nð Þ ¼ �kBT ln ZN ¼ �kBTN ln Vq1=Nk
3� �þ 1

� 	 ð4:30Þ

where Stirling’s formula is used. In the absence of the external potential,

F T ;V ;Nð Þ ¼ �kBTN ln
V

Nk Tð Þ3
 !

þ 1

" #
: ð4:31Þ

If volume V is taken to be microscopically large enough to contain many molecules
but macroscopically very small so that it can be regarded as a point located at r, we
note that q1 ¼ e�bu rð Þ: Then the local free energy density in the presence of the
potential is given by

f rð Þ ¼ F
V
¼ kBTn rð Þfln n rð Þk3� �� 1gþ n rð Þu rð Þ ð4:32Þ

where n rð Þ is number density of the non-uniform fluid.
It is straightforward to obtain the first order thermodynamic variables from the free

energy. First, the pressure of the gas confined in a box of the volume V is given by

p ¼ � @F
@V

� �
T ;N

¼ NkBT
1
V

þ @

@V
ln q1

� �
ð4:33Þ

In the absence of an external force, it is reduced to the well-known ideal gas
equation of state

p ¼ NkBT
V

¼ nkBT : ð4:34Þ

If the external potential is present, the pressure, i.e., the force per unit area on the
enclosing wall, depends on its normal direction, and is therefore not isotropic.

P4.3 For the gas under a uniform gravity along the z–axis, the pressure acting on
the wall normal to z-axis is given by pz ¼ �@F= Lx Ly @Lz

� �
T ;N : Show that, unless

mgLz � kBT ; this differs from px and py, both of which are NkBT=V :

Considering an infinitesimal volume that encloses the point r, we find the local
pressure is position-dependent but isotropic:

p rð Þ ¼ n rð ÞkBT: ð4:35Þ

The entropy is given by

S N;V ; Tð Þ ¼ � @F
@T

¼ NkB ln
Vq1
Nk3

þ 5
2


 �
þ N uh i

T
; ð4:36Þ
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where

uh i ¼
R
dru rð Þe�bu rð ÞR
dre�bu rð Þ : ð4:37Þ

In the absence of the external potential, (4.36) reduces to

S N;V ; Tð Þ ¼ kBN ln
V

Nk3
þ 5

2


 �
¼ kBN ln

V
N

þ 3
2
lnT

� �
þ constant: ð4:38Þ

The local entropy in the presence of the external potential is

s rð Þ ¼ S=V ¼ kBn rð Þ � ln n rð Þk3� þ 5=2
� 	

: ð4:39Þ

In addition, the internal energy is obtained as

E ¼ Fþ TS ¼ 3
2
NkBT þN uh i: ð4:40Þ

The internal energy E is the sum of the average translational kinetic energy
3NkBT=2 and the average potential energy Nhui, and can be obtained alternatively
from the relation E ¼ �@ ln ZN=@b. Considering the enclosing volume around
the point r to be small we obtain the obvious result for local energy density (energy
per unit volume):

e rð Þ ¼ 3
2
n rð ÞkBT þ n rð Þu rð Þ: ð4:41Þ

The overall chemical potential is obtained as

l ¼ @F
@N

¼ kBT ln nk3=q1
� �

; ð4:42Þ

whereas the local chemical potential l rð Þ is

l rð Þ ¼ u rð Þþ kBTk ln n rð Þk3� 
: ð4:43Þ

The second term is the contribution from the entropy. The condition of equilibrium
within the fluid, l rð Þ ¼ constant, yields the earlier-obtained result n rð Þ ¼ ne�bu rð Þ,
where n is the density at which u ¼ 0:

The heat capacity at fixed volume is

CV ¼ @E
@T

¼ 3
2
NkB þN

@

@T
uh i; ð4:44Þ
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which indicates that each particle has three translational degrees of freedom that are
thermally excited.

4.2.2 A gas of Polyatomic Molecules-the Internal Degrees
of Freedom

A polyatomic molecule consists of two or more nuclei and many electrons. In
addition to the translational degrees of freedom of the center of the mass, the
molecule has the internal degrees of freedom, arising from rotational, vibrational
molecular motions, and electronic, other subatomic motions. At room temperature,
T � 300 K, two rotational degrees of freedom in diatomic molecule can fully be
excited, and therefore contribute kB to heat capacity per molecule. The partition
function of an ideal gas of polyatomic molecules, including the internal degrees of
the freedom, may be written as

ZN ¼ 1
N!

Vq1
k3

z i Tð Þ
� �N

; ð4:45Þ

where ziðTÞ is the partition function from the internal degrees of the freedom per
molecule. In the absence of an external potential, the chemical potential is

l ¼ @F
@N

¼ kBT ln nk3=zi Tð Þ� 	
¼ kBT ln nk3

� �þ fi Tð Þ;
ð4:46Þ

where f i ¼ �kBT ln ziðTÞð Þ is the free energy from the internal degrees of freedom

in a single molecule.
In general, chemical potential can be written as

l ¼ l0 Tð Þþ kBT ln n=n0 Tð Þf g: ð4:47Þ

Here the subscript 0 denotes a standard or reference state at which the density and
chemical potential are n0 Tð Þ and l0 Tð Þ respectively. At the standard state, the 2nd

term (concentration-dependent entropy) in (4.47) vanishes, so l0 Tð Þ is the intrinsic
free energy of a single polyatomic molecule that includes such an extreme as a long
chain polymer. For solutes, the standard density n0 Tð Þ is usually taken to be 1 mol
concentration (M), which is an Avogadro number Nað Þ per 1 L (liter).

P4.4 Consider a classical ideal gas of N diatomic molecules interacting via har-
monic potential. uðri � rjÞ ¼ kðri � rjÞ2=2: Calculate the Helmholtz free energy,
entropy, and heat capacity. What is the mean square molecule diameter

h ri � rj
� �2i1=2?
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4.3 Fluids of Interacting Particles

Now we focus on the particles that have no internal structures but have mutual
interaction U rif g ¼Pi[ j u ri � rj

� �
where the interaction potential is isotropic:

u ri � rj
� � ¼ u ri � rj

�� ��� � � u rij
� �

: Considering the Hamiltonian, Hfpi; rig ¼
K pif gþU rif g; the partition function is given by

ZN ¼ 1
N!

1
h3N

Z
. . .

Z
dp1dr1. . . dpNdrN e�b

�
RN
i¼1

p2
i

2mþRi[ ju ri�rjð Þ
	

¼ Z0
NQN ¼ 1

N!
V

k3

� �N

QN ;

ð4:48Þ

where

QN ¼ 1
VN

Z
. . .

Z
dr1. . . drN e�bRi[ ju ri�rjð Þ ð4:49Þ

is the configurational partition function of N interacting particles.

P4.5 A lot of biological problems is modelled to be one-dimensional; for an
example, protein or ion in motion along DNA. As a useful model [Möbius et al,
2013], consider Tonks gas, which is a collection of N particles in the interval
0\x\L mutually interacting pairwise through a hard core repulsion; u xð Þ ¼ 1,
for xj j\r and u xð Þ ¼ 0, for xj j[ r. Calculate the configuration partition function
QN; and the one-dimensional pressure acting at an end.

4.3.1 The Virial Expansion–Low Density Approximation

We first consider dilute fluids where the inter-particle interactions can be regarded
as a perturbation. We start by rewriting QN as

QN ¼ V�N
Z

dr1. . . drN
Y
i[ j

1þ fij
� �

; ð4:50Þ

where fij ¼ e�bu rijð Þ � 1 is a function that is appreciable only when rij is within the
range of potential, which we regard as short. For dilute gases, the value of fij is
small and serves as a perturbation in terms of which we perform expansion:
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Y
i[ j

1þ fij
� � ¼ 1þ

X
i[ j

fij þ
X
i\j

X
k\l

fij fkl þ 	 	 	 ð4:51Þ

We consider the case of a dilute gas in which the first two terms in (4.51) are
included. Then

QN � 1
VN

Z
. . .

Z
dr1. . . drN 1þ

X
i[ j

fij

 !

¼ 1þ 1
VN

Z
. . .

Z
dr1. . . drN

X
i[ j

fij

¼ 1þ N2

2V

Z
dr21 f12;

ð4:52Þ

where we note the number of interacting pairs is N N � 1ð Þ=2 � N2=2, andZ
dr1dr2dr3 . . . drN ¼

Z
dr1dr21dr3 . . . drN ¼ VN�1

Z
dr21:

This leads to the total partition function and free energy

ZN ¼ Z0
N 1þ N2

2V

Z
dr21 f12

� �
ð4:53Þ

F ¼ F0 � kBT ln 1þ N2

2V

Z
dr21 f12


 �

� F0 � kBT
N2

2V

Z
dr21fe�bu r12ð Þ � 1g

¼ F0 þ kBT
N2

V
B2;

ð4:54Þ

where the superscript 0 denotes the ideal gas part and B2 is the second virial
coefficient:

B2 ¼ � 1
2

Z
dr21fe�bu r12ð Þ � 1g

¼ �2p
Z

dr r2fe�bu rð Þ � 1g:
ð4:55Þ

The pressure is obtained by differentiating the free energy with respect to
volume:

p ¼ p0 þB2
N2

V2 kBT ð4:56Þ
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This is the second order approximation of the density or virial expansion for the
pressure:

p
kBT

¼ nþB2n
2 þB3n

3 þ 	 	 	 : ð4:57Þ

where B3 is the third virial coefficient that includes three-body pairwise interactions
involving fij fik fjk. Likewise, the free energy is expanded as below:

F ¼ F0 þ kBT
N2

V
B2 þ kBT

2
N3

V2 B3 þ 	 	 	 : ð4:58Þ

4.3.2 The Van der Waals Equation of State

We now make an approximation that is useful for non-dilute fluids and derive the
van-der Waals equation by statistical mechanical methods. The intermolecular pair
potential u rð Þ can in many cases be separated into two parts, a harsh, short-range
(hard-core) repulsion for r\r and a smooth, relatively long-range attraction for
r[ r; where r is the hard-core size or the diameter of molecules. A typical
example is the Lennard-Jones potential (Fig. 4.3).

uLJ rð Þ ¼ 4�
r
r

� ��12
� r

r

� ��6
� �

ð4:59Þ

Then the second virial coefficient (4.55) is expressed as the sum of two integrals,
each representing the hard-repulsion and soft-attraction part:

B2 ¼ 2p
Zr
0

dr r2f1� e�bu rð Þgþ
Z1
r

dr r2f1� e�bu rð Þg
2
4

3
5: ð4:60Þ

Fig. 4.3 The Lennard-Jones potential

uLJ rð Þ ¼ 4e r=rð Þ12� r=rð Þ6
h i
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In the first integral, the exponent e�bu rð Þ is negligible for r\r where the potential
sharply rises to infinity, so that the integral is evaluated as 2pr3=3 � b. For r[ r,
u rð Þ is a weak attraction effectively so that e�bu rð Þ � 1� bu rð Þ; yielding the
second integral as �a= kBTð Þ; where

a ¼ �2p
Z1
r

r2u rð Þdr: ð4:61Þ

Then, the second virial coefficient is given as

B2 ¼ b� a
kBT

¼ b 1�H
T

� �
; ð4:62Þ

where the H ¼ a= kBbð Þ is the parameter called the Boyle temperature. If T [H,
then B2 [ 0; the repulsion dominates the attraction overall, contributing positively
to the pressure and free energy. If T ¼ H, then B2 ¼ 0 and the gas behaves ideally.
For T\H and B2\0; the attraction dominates the repulsion, contributing nega-
tively to them.

Then we rewrite (4.56) as

p
kBT

¼ n 1þ bnð Þ � an2

kBT
: ð4:63Þ

Although we derived (4.63) for a dilute gas, we seek a way to extend the equation
to denser fluids. This we do by replacing 1þ bn by 1� bnð Þ�1; which yields the
same pressure at low densities but an infinite pressure as bn ¼ 2pnr3=3 approaches
to 1, characteristic of incompressible liquids. The resulting equation is the Van der
Waals’ equation of state

pþ an2 ¼ nkBT
1� bn

: ð4:64Þ

Although by no means exact, this equation is valid for dense gas and even
liquids, and is useful for explaining the gas-liquid phase transition. A more-justified
way of deriving it without invoking the low density approximation at the outset is
the mean field theory (MFT). In MFT, the interactions of all the other particles on a
particle is approximated by a one-body external potential, called a mean field,
thus reducing a many-body problem to a one-body problem. That is, a particle is
thought to feel a mean (uniform) field given by the excluded volume b and the
attraction of the strength 2a=V per pair (which is the volume average of the
attractive potential). The hard-core repulsion and soft-weak attraction are the key
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features that well characterize the liquid state and gas state respectively. The par-
tition function, (4.29), then is expressed in the form

ZN ¼ 1
N!

V � Nb

k3

� �N

expfbðN2=2Þ 2a=Vð Þg

¼ Z0
N

V � Nb
V

� �N

exp
bN2a
V

� �
:

ð4:65Þ

This equation yields all thermodynamic variables, including the Van der Waals
pressure equation. The free energy, internal energy, entropy and chemical potential
are obtained as

F ¼ F0 � NkBT ln 1� nbð Þ � N2a
V

ð4:66Þ

E ¼ E0 � N2a
V

ð4:67Þ

S ¼ S0 þNkB ln 1� nbð Þ ð4:68Þ

l ¼ l0 � kBT ln 1� nbð Þ � nb
1� nb

� �
� 2na; ð4:69Þ

respectively. Here the quantities superscripted by 0 are those of an ideal gas.

4.3.3 The Effects of Spatial Correlations: Pair Distribution
Function

Now we consider a non-dilute fluid that has arbitrary density. From (4.48), and
(4.49), the internal energy of the system is obtained:

E ¼ � @

@b
ln ZN ¼ 3

2
NkBT þ Uh i; ð4:70Þ

where the average interaction energy is
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hUi ¼ 1
VNQN

X
i[ j

Z
. . .

Z
dr1 . . . drNu ri � rj

� �
e�bRi[ j u ri�rjð Þ

¼ 1
VN

X
i[ j

ZZ
dr0 dr00 u r0 � r00ð Þ 1

QN

Z
. . .

Z
dr1 . . . drNd ri � r0ð Þd rj � r00

� �
e�bRi[ j u ri�rjð Þ

¼ N N � 1ð Þ
2V2

Z
dr0 dr00 u r0 � r00ð Þg r0 � r00ð Þ:

ð4:71Þ
Here we note

d ri � r0ð Þd rj � r00
� �� � ¼ 1

QN

Z
. . .

Z
dr1 . . . drNd ri � r0ð Þd rj � r00

� �
e�bRi[ j u ri�rjð Þ

and define

g r0 � r00ð Þ ¼ V2

N N � 1ð Þ
X
i[ j

d ri � r0ð Þd rj � r00
� �� �

¼ 1
nN

X
i[ j

d rij � r0 � r00ð Þ� �� �
:

ð4:72Þ

g r0 � r00ð Þ is called the pair distribution function, and is applicable to any one of
N N � 1ð Þ=2 pairs. This is the probability of finding a particle at a position r0 given
another particle placed at r00, relative to that for an ideal gas; it provides a measure
of the spatial correlation between a pair of particles. In the absence of an external
potential this function as well as the potential is isotropic, u rð Þ ¼ u rð Þ; g rð Þ ¼
g rð Þ; so we derive the energy equation

Uh i
N

¼N � 1
2V2

Z
dðr0 � r00Þ dr00 u r0 � r00ð Þg r0 � r00ð Þ

¼2pn
Z1
0

dr r2u rð Þg rð Þ;
ð4:73Þ

where r is the radial distance between the pair (Fig. 4.4). The average number of
particles at a distance between r and rþ dr from a particle put at an origin r ¼ 0 is

Fig. 4.4 The radial distribu-
tion function g rð Þ is given in
such a way that the average
number of particles within a
shell dr of the radius r form
the central particle is 4pr2

g rð Þndr
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dN rð Þ ¼ 4pr2g rð Þndr, so g rð Þ for this isotropic case is appropriately called the
radial distribution function.

Next we consider the pressure. In the absence of an external potential, the
pressure on the wall of the container is independent of its shape, so we will assume
it is a cube of size L. The pressure is given by

p ¼ kBT
@

@V
ln ZN ¼ kBT

@

@V
ln VNQN : ð4:74Þ

To extract V-dependence, VNQN is rewritten as

VNQN ¼ L3N
Z

. . .

Z
dr�1 . . . dr

�
N e

�b R
i[ j

u r�ijLð Þ ð4:75Þ

in terms of the dimensionless length, e.g, r�i ¼ ri=L; r�ij ¼ rij=L; where rij ¼ ri � rj
�� ��.

We take the derivative with respect to volume V ¼ L3,

p ¼ kBT
@

3L2@L
ln L3NQN ; ð4:76Þ

which, by noting,

@

@L
ln L3NQN ¼ 3N

L
� b

X
i[ j

du rij
� �
drij

rij
L

� �
; ð4:77Þ

is finally expressed as

p ¼ nkBT � 2p
3
n2
Z1
0

drr3
du rð Þ
dr

g rð Þ; ð4:78Þ

which indicates the pair distribution g rð Þ, or the radial distribution g rð Þ, plays the
central role in determining thermodynamic properties of simple fluids.

Furthermore, g rð Þ (4.72) provides the most essential knowledge on the config-
urations of the interacting particles. When the separation r becomes much larger
than the potential range, g rð Þ approaches the ideal gas limit g r ! 1ð Þ ¼ 1; which
indicates that particles are not spatially correlated. In contrast, as a result of the hard
core repulsion, g r ! 0ð Þ ¼ 0: In the low density limit of an interacting fluid, one
can envision only a two particle interaction for g rð Þ; so that g rð Þ ¼ e�bu rð Þ:
Theoretical studies of dense fluids and liquids have centered around analytical and
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computational investigations of the pair distribution function, and on developing a
variety of approximation schemes.

For the Lenard-Jones potential at a liquid density, g rð Þ shows damped oscilla-
tions around 1 (Fig. 4.5), with peaks at integer multiples of r and troughs at
half-integer multiples of r; this feature is called the short-range order. At a distance
r\r, g rð Þ is zero, because the two particles cannot overlap due to harsh
repulsion. At r ¼ rþ , a distance of close contact, g rð Þ tends to peak; this means
that two particles caged at contact is in the most probable and stable state,
because surrounding particles of high density fluid constantly hitting and
thereby the two particles do not have chance to be separated. In contrast, g rð Þ is
at a minimum at r � 1:5 r, when two particles tend to be most unstable to back-
ground agitations and least likely to stay in contact. The probability increases again
when r � 2 r; where two particles tends to be stable because they are separated by
just distance for another particle to fit between them. The oscillation in probability
persists with decaying amplitude. g rð Þ can be interpreted as the probability of
finding another particle at a distance r from one, so we may write

g rð Þ ¼ e�ueff rð Þ=kBT ð4:79Þ

where ueff rð Þ is the effective interaction potential energy between two particles.
ueff rð Þ is the reversible work needed to bring the two particles from the infinite
distance to r. In dilute gas it is just u rð Þ, the bare interaction between the two,
because the presence of a third molecule is negligible. ueff rð Þ is called the potential
of mean force, which, at liquid density, oscillates between negative and positive
values due to the influences of surrounding molecules, as explained above.

The pair distribution function is directly related (via Fourier transform) to the
structure factor of the system. This is a central topic to study for the structure of
matter in condensed phase, and can be determined experimentally using X-ray
diffraction or neutron scattering. In the Chap. 9 we will study this in detail.

1

0

3

Fig. 4.5 Radial distribution function g rð Þ of a dense Lennard-Jones fluid at pnr3 � 0:8 exhibits a
short range order
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4.4 Extension to Solutions: Coarse-Grained Descriptions

4.4.1 Solvent-Averaged Solute Particles

We have been considering a simple fluid of one–component particles moving in a
vacuum. However, in biology we consider solute particles such as ions, and
macromolecules immersed in water, which itself is a complex liquid that undergoes
anisotropic molecular interactions. We remind ourselves that at equilibrium the
momentum degrees of freedom of all the particles and molecules are usually sep-
arated and become irrelevant. Yet the statistical mechanics involves complex sit-
uations in which the configurations of all particles in mixtures (i.e., solutions),
solute as well as solvent, must be considered, including all interactions.

A simple approach to bypass this formidable task is to highlight the solute
particles while treating the solvent as the continuous background whose
degrees of freedom are averaged (Fig. 4.6). To describe this formally, we write
the total interaction energy as the sum, UV rVf gþUU rUf gþUVU rV ; rUf g. Here
UV ;UU are the interaction energies among the solvent particles and solute particles
respectively, and UVU is the interaction energy between the solvent and solute
particles with rVf g; rUf g representing the solvent and solute particle positions. The
configuration partition function is given by

Q ¼
ZZ

d rVf gd rUf g exp �b UV rVf gþUU rUf gþUVU rV ; rUf g½ �ð Þ ð4:80Þ

where d rVf g ¼ d r1v d r
2
v ; . . .; d rUf g ¼ d r1u d r

2
u . . .. Then we can write

Q ¼
Z

dfrUg exp �b UU rf g½ �ð Þ
Z

d rVf gexp �b UV rVf gþUVU rV ; rUf g½ �ð Þ

¼
Z

dfrUg exp �b Ueff rUf g� 	� �
ð4:81Þ

Fig. 4.6 Construction of a reduced description for a solution in terms of solutes’ configurational
degrees of freedom
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where

Ueff rUf g ¼ UU rUf gþDUU rUf g ð4:82Þ

with the solvent (averaged) part of the potential,

DUU rUf g ¼ �kBT ln
Z

d rVf g exp �b UV rVf gþUVU rV ; rUf g½ �ð Þ: ð4:83Þ

In this formulation, the total partition function is integrated over the solvent
degrees of freedom, with the remaining solute particles left to interact with one
another with the effective interaction Ueff rUf g (4.82), which is different from the
bare interaction UU rUf g; by DUU rUf g (4.83). This solvent averaged effective
potential, also called the potential of the mean force, is temperature-dependent. This
coarse-grained description is typical in colloid science. As a simple example, the
effective interaction between two ions of charges q1 and q2 at a distance r12 in water
is given by the Coulomb interaction u r12ð Þ ¼ q1q2= 4pewr12ð Þ, which is about 1/80
of the Coulomb interaction in vacuum, because the dielectric constant ew of water, a
temperature-dependent quantity, is about 80 times that of the vacuum.

For N identical solute particles, the starting point for the statistical description is
the partition function

ZU ¼ 1
N!vN0

Z
. . .

Z
d r1u d r

2
u . . . exp �b Ueff rUf gþU rUf g� �� 	

; ð4:84Þ

where U rUf g is an effective external potential energy of the solute. The elementary
volume v0 is introduced to count the states; it is the volume allocated per particle so
the entire volume V includes V=v0 states per particle. In the absence of the
potentials the partition function is

ZU
0 ¼ 1

N!vN0

Z
. . .

Z
d r1u d r

2
u 	 	 	 ¼ 1

N!
V
v0

� �N

; ð4:85Þ

which gives the number of ways to place N identical, non-interacting particles in
the volume V . The (4.85) differs from (4.9) in that k Tð Þ3 is replaced by v0: Because
of this replacement, the partition function yields the thermodynamic quantities of an
ideal solution that, with v0 put to be independent of temperature, exclude contri-
butions from the translational momentum degree of freedom, as shown below, by
E ¼ 0 in particular:

The Helmholtz free energy of the ideal solution:

F T;V ;Nð Þ ¼ NkBT ln
Nv0
V

� �
� 1


 �
: ð4:86Þ
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The internal energy:

E ¼ 0 ð4:87Þ

The osmotic pressure:

p ¼ NkBT
V

¼ nkBT : ð4:88Þ

The entropy:

S ¼ �NkB ln
Nv0
V

� �
� 1


 �
: ð4:89Þ

The chemical potential:

l ¼ kBT ln nv0ð Þ: ð4:90Þ

In the presence of an external potential u rð Þ per solute particle applied to the
ideal solution, the intensive local thermodynamic variables are non-uniform and are
given in terms of the solute concentration n rð Þ ¼ n0e�bu rð Þ:

The free energy density:

f rð Þ ¼ kBTn rð Þ ln n rð Þv0ð Þ � 1f gþ n rð Þu rð Þ: ð4:91Þ

The local osmotic pressure:

p rð Þ ¼ n rð ÞkBT: ð4:92Þ

The entropy density:

s rð Þ ¼ �kBn rð Þ ln n rð Þv0f g � 1½ �: ð4:93Þ

The local chemical potential:

l rð Þ ¼ u rð Þþ kBT ln n rð Þv0f g: ð4:94Þ

With provisos that the effective potentials Ueff replace the bare potentials U,
virtually all of the results obtained for interacting simple fluids are valid and use-
fully extended to interacting colloids, and more complex situations. For example,
we will use the second virial expansion to model how polymer collapse transition
depends on the solvent, in Chap. 10.
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4.4.2 Lattice model

An analytically simple but useful variation of the coarse grained description given
above is the lattice model. In the model the space continuum is discretized into
M ¼ V=v0 lattice sites (Fig. 4.7). Each lattice site can be empty or occupied by a
particle, so that this is a two-state model with each site characterized by occupation
number ni ¼ 0 or 1. This model incorporates the excluded volume effects. Once we
have M lattice sites onto which a particle can bind, we then have M � 1 sites for the
next particle, so on. The number of ways of configuring N particles in M distinct
lattice sites is M M � 1ð Þ. . . M � N � 1ð Þ: With the factor 1=N! multiplied due to
indistinguishability of N particles, the partition function is given as

ZU ¼ 1
N!

M M � 1ð Þ. . . M � N � 1ð Þ; ð4:95Þ

which is equal to

ZU ¼ M!

N! M � Nð Þ! : ð4:96Þ

This is the same as the factor which we already considered when two state model
was first introduced in chap. 3. If N � M;M!= M � Nð Þ! � MN ¼ V=v0ð ÞN and ZU
is reduced to Z0

U (4.85), the partition function of non-interacting particles.

P4.6 Show that the equation of state of the lattice gas is given as:

pV
NkBT

¼ � 1
h
ln 1� hð Þ:

where 0
 h ¼ N=M
 1. The chemical potential is given by

l ¼ kBT ln
h

1� h

� �
;

Fig. 4.7 From the solute particles moving in interactions to the lattice model, where the solute
coordinates are described by the occupation number at each lattice
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Both p and l become the infinity in the limit of h ! 1 due to the excluded volume
effects and recover p ¼ nkBT ; l ¼ kBT ln nv0ð Þ in the low concentration limit. What
is the second virial coefficient?

In addition to the excluded volume effect we can consider that a particle can bind
with an energy � � to a site. This leads to the famous Langmuir model of adsorption
in one and two-dimensional lattices, such as protein binding on DNA and ligand
binding on a surface. In this case the canonical partition function is

ZU ¼ M!

N! M � Nð Þ! e
bN�: ð4:97Þ

P4.7 Suppose that ligands (which imparts an osmotic pressure p in a solution)
binds on a polymer with a binding energy �.What is the ligand concentration on the
polymer?
(Hint: Equate l ¼ ��þ kBT ln h= 1� hð Þð Þ of a bound ligand with l ¼
kBT ln pv0=kBTð Þ of an unbound ligand in the bulk.)

Furthermore, the N adsorbed particles in general interact with one another with a
short-range interaction potential. With the binding energy � now excluded, the
model can be studied to understand condensation and aggregation of particles due
to mutual interactions in various dimensions. A rich variety of biologically inter-
esting problems of adsorption, transitions, and self-assembly, will be studied using
this lattice model in Chaps. 7 and 8.

Further Reading and References

J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, 1986)
J.L. Barrat, J.P. Hansen, Basic Concepts for Simple and Complex Liquids (Cambridge University

Press, 2003)
V.I. Kalikmanov, Statistical Mechanics of Fluids, Basic Concepts and Applications (Springer,

2001)
A.P. Hughes, U. Thiele, A.J. Archer, An introduction to inhomogeneous liquids, density functional

theory, and the wetting transition. Am. J. Phys. 82, 1119 (2014)
W. Möbius et al., Toward a unified physical model of nucleosome patterns flanking transcription

start sites Proc. Natl. Acad. Sci. U.S.A. 110(14), 5719–5724 (2013)

4.4 Extension to Solutions: Coarse-Grained Descriptions 73



Chapter 5
Coarse-Grained Description:
Mesoscopic States, Effective
Hamiltonian and Free Energy Functions

Biological components at mesoscales, such as cells, membranes, and biopolymers
are complex systems composed of many constituents of diverse kind that interact.
The challenge is to use the first principles of physics to describe the phenomena that
emerge in such systems as a result of these interactions and correlations, without
losing salient features of the phenomena. To meet this difficult challenge, we must
fundamentally shift the paradigm for physical description of complex systems,
from one of taking photos of every detail to one of drawing cartoons of rele-
vant key features. In this short chapter, we discuss a way to build coarse-grained
descriptions of the relevant physics from fine-grained descriptions of the underlying
microscopic degrees of freedom for equilibrium systems.

5.1 Mesoscopic Degrees of Freedom, Effective
Hamiltonian, and Free Energy

The macroscopic behavior of an equilibrium at a fixed temperature T is determined
formally by the Hamiltonian, through the relation (3.32) supplemented by (3.35):

e�bF ¼
X

ℳ

e�bH ℳf g; ð5:1Þ

where F is the Helmholtz free energy,
P

ℳð�Þ denotes the summation over all
microscopic degrees of freedom represented by ℳ; if ℳ is continuous, the sum-
mation signifies the integration, e.g. for a classical particle system the integration
over the phase space spanned by all the particles. For illustrative purpose we
consider a combined system (solution) of solute and solvent at T, including the
solution of polymer chains where the monomers are linearly connected solute
particles. The microscopic states are given by the phase space of all solute mole-
cules and solvent molecules, and, if required, the microscopic quantum states that
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underlie the molecules. Considering the appreciable complexity seen even in the
statistical mechanics of simple fluids (Chap. 4), an attempt to conduct the standard
scheme using the formalism, (5.1) would be very costly. Even if we could do so the
results can obscure the most salient and interesting features of the system.

We may wisely abandon the full microscopic description and choose a
coarse-grained description in terms of the relevant degrees of freedom, repre-
sented by Q, in terms of which we have

e�bF ¼
X

Q
e�bF Qf g: ð5:2Þ

The Q0s represent the degrees of freedom which are of primary interest for study. It
can be chosen depending on the scale of the description, that is, a level of coarse
graining one chooses. F Qf g is the effective Hamiltonian for the reduced vari-
ables Q. For solutions, Q can be chosen as the coordinates of the solute particle
coordinates Q ¼ rUf g; as discussed in Chap. 4 (Fig. 4.6). For this case, the
effective Hamiltonian F Qf g is the effective interaction Ueff Qf g between the
solute particles. Formally one can identify the effective Hamiltonian by noting that

X

ℳ

e�bH ℳf g ¼
X

Q

X

ℳ=Q
e�bH ℳf g ¼

X

Q
e�bF Qf g; ð5:3Þ

where
P

ℳ=Q ð�Þ is the partial sum (integration) over the microstates ℳ with the
mesostate Q fixed. From the relation (5.3) we identify

e�bF Qf g ¼
X

ℳ=Q
e�bH ℳf g: ð5:4Þ

For the solutions, the partial sum means integrating (averaging) only over solvent
degrees of freedom with the solute coordinates given as fixed.

In view of the similarity between (5.1) and (5.4), we call the effective
Hamiltonian F Qf g alternatively as the free energy function of Q. Equation (5.4)
implies that F Qf g can depend on temperature, because of the microscopic
fluctuations that underlie Q; unlike the microscopic Hamiltonian . The
probability distribution of Q is given by (See Eq. 5.4)

P Qð Þ ¼ e�bF Qf g
P

Q e�bF Qf g : ð5:5Þ

The most probable value of Q emerges where the free energy function F Qð Þ is
the minimum; this is the thermodynamic variational principle that we introduced
in Chap. 2: In an approach to equilibrium, the degrees of freedom Q, assisted by
the fluctuations, organize themselves to achieve this most probable state. As the
entropy from the thermal fluctuations become very significant in competition
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with the internal energy from the interactions, this organization are realized as a
host of thermal transitions, which we will study often in the first part of this
book.

Denoting such most probable Q as Q�, we rewrite (5.2) as

e�bF ¼
X

Q
e�bF Qf g ¼ Ce�bF Q�ð Þ; ð5:6Þ

where C is a certain constant that is characteristic of the distribution width (fluc-
tuation). Thus we find

F � FðQ�Þþ constant: ð5:7Þ

The equality F � FðQ�Þ is called a mean field approximation because it neglects
the fluctuation around the mean Q�. The validity of F depends on the sharpness of
P Qð Þ.

5.2 Phenomenological Methods of Coarse-Graining

A task of modelling biological systems thus starts with identifying the primary
degrees of freedom Q and the associated effective Hamiltonian or free energy
function FðQÞ. For a solution of many solute particles with nontrivial interactions
Ueff fQg (4.82), Q is frUg, the configurations of all the solute particles. The evalu-
ation of the free energy using (5.2) withFfQg ¼ Ueff fQg, however, is very difficult
analytically and quite costly numerically. As introduced earlier, a further simplifi-
cation of the coarse-grained description is possible by adopting the lattice model. In
the model the volume of the solution is divided into cells or sites, each of which
contains a solute particle or none. As was shown in Chap. 4, the mesoscopic state is
then represented by the occupation number in each site, Q ¼ fnigði ¼ 1; 2. . .Þ,
where ni is either 0 or 1. With the interactions between two particles in the nearest
neighborhood included as contact attraction and hard-core exclusion, the lattice
model can deal with a great variety of problems with relative simplicity.

For analysis of a long-chain polymer, we may use a lattice model in which
particles in the cells are interconnected (Fig. 5.1a). We may conduct further
coarse-graining, and regard the polymer as a semi-flexible, curved rod, called a
worm-like chain (Fig. 5.1b). Instead of a configuration of particles, Q is now a
continuous function frðsÞg, which represents the position of the chain along the
contour distance s. In this case of a semi-flexible chain there is an orientational
correlation between neighboring chain segments. If the polymer chain is very long,
it can be represented as a flexible string of beads, each of which comprises sufficient
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number of monomers such that there is no correlation between the beads; this
process gives rise to a flexible chain with a new coarse-grained continuous curve
frf ðsÞg. The relevant level of the description is often guided by measurement. An
example is the end-to-end distance of the polymer to describe its conformation
Q ¼ R (Fig. 5.1c).

While the primary degree of freedom Q, dictated by the measurement and
observation to make, can be easily identified, it is often formidable to derive
F ðQÞ from (5.4), in general. In many cases F ðQÞ can be adopted directly from
a macroscopic, phenomenological energy, or the probability of Q. Because the
end-end distance R of a long flexible chain is distributed in Gaussian, the associated
free energy F ðRÞ will be harmonic, as shown in Chap. 10.

The method of coarse-graining in terms of Q can be regarded as an art of
cartoon-drawing, which captures the salient and emergent behaviors. But it is
constrained to yield quantitative agreement with experimental measurements.

Coarse-Graining

Coarse-Graining

Coarse-Graining

(a)

(b)

(c)

Fig. 5.1 Schematic diagrams of coarse graining for the particles in a solution, a coarse-graining
into lattice model, b a polymer coarse-grained into a semi-flexible string, c a flexible polymer
coarse-grained into the linearly connected beads and to an entropic spring extended by a distance R
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Despite their complex natures, many biological phenomena can be described
effectively in terms of phenomenologically observed states that emerge beyond
the complexity of the underlying microstates. In many cases of the mesocopic
level biological systems we consider throughout this book, we will use this method.
Two-states we introduced as biological microstates in Chap. 3 exemplify such
mesoscopic states. The definition of ‘mesoscopic’ depends on the perspective.
If the perspective is macroscopic, then these ‘meso’ states are relatively
microscopic. Throughout this book, thus, either one of the notations and Q
for the state, and, correspondingly, one of and F ðQÞ for the
Hamiltonian will be adopted, depending on the perspective.
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Chapter 6
Water and Biologically-Relevant
Interactions

Water is abundant and ubiquitous in our body and on earth. Despite its critical
importance in life, and compared with the spectacular development of modern
physics, fundamental understanding of its physics is surprisingly poor. In principle
statistical mechanics is expected to explain its physical properties in a quantitative
detail, but is quite difficult to implement due to the relative complexity of water
molecules and the non-isotropic interactions among them. The statistical mechanics
study for water is rare and limited (Dill et al. 2005; Stanley et al. 2002). Instead of
the statistical mechanics we give a semi-quantitative sketch of basic thermal
properties of water and the hydrogen bonding that underlies the unique charac-
teristics of water.

We also introduce the biologically relevant interactions between objects in
water. They are hydrophilic and hydrophobic interactions, the electrostatic inter-
action among charges and dipoles, and Van der Waals interactions. In many cases,
the electrostatic interactions turn out to be weak with the strength comparable to the
thermal energy kBT and much less upon thermalization, due to the screening effects
of water’s high dielectric constant and the ion concentration. These weak inter-
actions facilitate conformational changes of biological soft matter such as
polymers and membranes at body temperature.

6.1 Thermodynamic Properties of Water

Liquid water has many properties that are distinct from other liquids. One of
water’s most well-known anomalies is that it expands when cooled, contrary to
ordinary liquids. At atmospheric pressure, when ice melts to form liquid water at
0 °C, the density increases discontinuously, and then the liquid density continues to
increase until it reaches a maximum at 4 °C (Fig. 6.1a). This behavior leads to a
well-known consequence that a lake freezes top-down from the surface, on which
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the ice floats, whereas the bottom of the lake remains at 4 °C. Children skate on the
icy surface while fishes swim over the watery bottom.

The phase diagram (Fig. 6.1b) shows how the ice, vapor, and water liquid
phases exist as functions of temperature T and pressure p. The curved solid lines
indicate coexistence of the different phases at equilibrium. They meet at the triple
point (about 0.01 °C and 0.008 atmospheric pressure (atm)), where the three phases
coexist. The coexistence line of liquid and vapor terminates at the critical point
ðT ¼ 378 K; p ¼ 218 atmÞ. Near this point the interfaces of coexisting liquid and
vapor become unstable and fluctuate widely, showing a variety of divergent
response behaviors called the critical phenomena. The critical phenomena that
occur in diverse matter have been one of central problems in modern statistical
physics, but are beyond the scope of this book.

In Fig. 6.1b each of phase-coexistence (solid) lines is given by the
Clausius-Clapeyron equation

dp
dT

¼ Ds
Dv

; ð6:1Þ
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Fig. 6.1 The phase-diagrams
of water. a The density of
water increases discontinu-
ously as it undergoes the phase
transition from solid (ice)
phase to liquid phase. In the
liquid phase the density is
maximum at 4 °C. b Pressure
in atmospheric pressure units
(atm) versus temperature in
Celsius. The solid lines repre-
sent the coexistence between
two different phases of water.
The dashed curve is the phase
coexistence between ordinary
liquids and their vapors
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where Ds ¼ sb � sa and Dv ¼ vb � va are respectively the changes in entropy ðs ¼
S=NÞ and volume ðv ¼ V=N ¼ 1=nÞ per particle, which occurs across the line
(phase boundary) between the phases a and b. The equation is derived by imposing
the chemical potential equality la = lb between two phases. In the representation
where T and p are the independent variables, the differential change in the chemical
potential is given by dlðT; pÞ ¼ �sdT þ vdp, (2.25), which is balanced along the
phase boundary: �sadT þ vadp ¼ �sbdT þ vbdp: This leads to (6.1).

Across the water-ice (liquid-solid) phase boundary, the entropy change Ds ¼
sS � sL is negative because the solid is more ordered than the liquid. But the volume
difference Dv ¼ vS � vL is peculiarly positive as mentioned earlier. Therefore, the
slope dp=dT of the coexistence line is negative, whereas for most substances it is
positive. The line also shows that, when p is increased at 1 atm and a temperature
below 0 °C, as indicated by the arrow in Fig. 6.1, the ice melts (The ice, pressurized
by skater blades, melts). This is why you can skate on ice, but on no other solids.

Lastly focus on the phase boundary between water and vapor. Because vL � vG,
and the vapor pressure is given by vG � ðkBTÞ=p, (6.1) can be written as

dp
dT

� plGL
kBT2 ; ð6:2Þ

where lGL ¼ TðsG � sLÞ is latent heat of vaporization per molecule. Assuming lGL is
nearly constant, integrating (6.2) yields the equation for the phase coexistence line

p � p0 exp � lGL
kBT

� �
¼ p0 exp � LGL

RT

� �
; ð6:3Þ

where p0 is a constant. Equation (6.3) is in quite a good agreement with the
experimental data on the vapor pressure of water for a wide range of temperature
away from the critical point. The fact that water’s heat of vaporization
ðLGL ¼ 40:7 kJ=moleÞ, and surface tension (*30 dyne/cm) as well, are distinc-
tively high means that water is a most cohesive liquid.

Liquid water is among the liquids of highest heat capacities, having the
specific heat 1cal/(g�K) at 15 °C. Perhaps the most significant of water’s
unusual properties is its dielectric constant ew=e0 ¼ 78:5, where ew is the elec-
trical permeability of water and e0 is that of vacuum. The water’s dielectric constant
is almost highest among those of all liquids; because of this, our cells live in water.
The high dielectric constant weakens the Coulomb interaction between two ions in
solution and charged residues in biopolymers and membranes, to the level of
thermal energy kBT which, at room temperature is � 1=40 eV, or
0:6 kcal=mol � 2:5 kJ=mol, or 4:1 pN � nm.
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6.2 The Interactions in Water

6.2.1 Hydrogen Bonding and Hydrophilic/Hydrophobic
Interaction

The remarkable properties of water discussed above derive from its unique
molecular structure, and to hydrogen bonding (HB) among water molecules. In a
water molecule an oxygen atom is covalent-bonded with two hydrogen atoms by
sharing electrons. But the oxygen atom has much greater affinity for electrons than
the hydrogen atoms, making the molecule polar with a high dipole moment
(Fig. 6.2a). HB is the electrostatic attraction between hydrogen containing polar
molecules in which electropositive hydrogen in one molecule is attracted to an
electronegative atom such as oxygen in another molecule nearby (Fig. 6.2b).

The HB in water has strength of a few kJ=mole, which is much weaker than
covalent or ionic bonds, but much stronger than the generic (non-HB) bonds
between small molecules. This is the reason why the heat of vaporization, boiling
point, and surface tension are relatively high in water. Furthermore, in water, HB
forms a network with large orientation fluctuations of the molecules that can be
correlated over a long range. The large fluctuations and long-range correlation hint
at water’s high response functions (susceptibilities) such as high dielectric constant
and high heat capacity, somewhat likened to the phenomena near the critical point.
HBs occur in both inorganic molecules and biopolymers like DNA and proteins.

(b)(a)Fig. 6.2 a The dipole moment
of a water molecule. bHydrogen
bonding (dashed line) between
water molecules

Fig. 6.3 The hydrophilic inter-
action. The negatively charged
polar heads of lipidmolecules in
a micelle attracts water mole-
cules
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The attractive interaction between water and other polar or charged objects is
called hydrophilic interaction. For example, charged parts of an object are
attracted to the oppositely charged parts of the water dipoles (Fig. 6.3). This is an
important reason why water is such a good solvent.

Hydrophobic interaction, in contrast, is an indirect interaction between non-
polar objects in water. The association of water molecules on nonpolar objects is
entropically unfavorable because of restriction of the water molecule orientation on
the interface. When two nonpolar objects come in contact, there is a strong gain of
entropy due to reduction of the entropically unfavorable intervening region, from
which the water molecules are released; this process eventually induces aggregation
of the nonpolar objects (Fig. 6.4). The phase separation of fat in water is a good
example of this particular interaction. The hydrophobic interactions in part enable
the folding of proteins, because it allows the protein to decrease the surface area in
contact with water. It also induces phospholipids to self-assemble into bilayer
membranes.

6.2.2 The Coulomb Interaction

The water medium affects fundamentally the interaction between two ions.
Phenomenologically the interaction between two ions of charges q1 and q2 sepa-
rated by a distance r12 is just the Coulomb interaction,

u12 ¼
q1q2

4pewr12
; ð6:4Þ

where ew is the electric permeability of water. As mentioned in Sect. 4.4, this
effective interaction is formally obtained by integrating (averaging) over all the

Fig. 6.4 Hydrophobic interaction. Two nonpolar objects, upon approaching to contact, liberate
water molecules between them into the bulk, where they have more entropy and hydrogen
bonding. Nature favors this and drives the contact, namely, hydrophobic attraction
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degrees of freedom of the water molecules surrounding the two ions, with the
distance between the two ions r12 given as fixed. The effect of the water medium,
treated as a continuum, is incorporated by ew, which depends on T.

Equation (6.4) is based on a coarse continuum picture. While it neglects the
microscopic details involving the water molecules at short distance, it often gives a
reasonable understanding when the distance r longer than the small molecule scale.
At such separation the electrostatic interaction energy can be smaller than the
thermal energy. If two elementary charges e are separated by *1 nm in a vacuum,
they would have the Coulomb energy in the order of 1 eV, but in water its high
dielectric constant ew=e0 ¼ 78:5 can reduce the Coulomb energy below the thermal
energy which is kBT � 1=40 eV at room temperature. A convenient scale to assess
dominance of the thermal energy is

lB ¼ e2

4pekBT
; ð6:5Þ

called the Bjerrum length, above which the elementary Coulomb interaction
energy is less than kBT ; in water at 25 °C it is 7.1 Å.

Consider a single ion of charge q in water. Assuming that the ion is a sphere of
radius a, the work necessary to charge the sphere from zero to q in water continuum
is

ub ¼
Zq

0

q0dq0

4pewa
¼ q2

8pewa
: ð6:6Þ

This is called the Born energy of the ion in water, and is also the energy associated
with the field of the ion itself, called the self-energy. The solvation or hydration
energy of an ion in water is the reversible work necessary to bring it from vacuum
to water,

Dus ¼
q2

8pa
1
ew

� 1
e0

� �
� � q2

8pe0a
; ð6:7Þ

which is negative, and has much larger magnitude than the Born energy. This large
negative energy means that ions can be easily solvated in water. Indeed, thanks to
high dielectric constant, water is a good solvent to ions and many biological
components that carry charges. Now we ask, can this ion in water move to the
inside a medium, say a membrane, of the electric permeability em ð�2e0Þ. The
process costs the energy change
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Dum ¼ q2

8pa
1
em

� 1
ew

� �
� q2

8paem
ð6:8Þ

because ew � em. The above is about 28kBT for a ¼ 0:5 nm, so the relative
probability that the ion can get into the membrane is K ¼ exp �bDum½ � � e�28,
which is virtually zero!

In the spirit of the coarse-grained description introduced in Chaps. 4 and 5, the
phenomenological electrostatic energies (6.6) and (6.4) can be regarded as the free
energy associated with an isolated ion and with two interacting ions in water
respectively, recast as F 1 ¼ q2=ð8pewaÞ and F 12ðrÞ ¼ q1q2=ð4pewrÞ. Recall that
the result of integrating over the underlying degrees of freedom of the associated
water molecules is incorporated into the electrical permeability ew, which is a
function of T. Because the two free energy expressions are both proportional to
T and 1=ew, the associated entropy is given by

S ¼ � @F
@T

¼ F 1
ew

@ew
@T

: ð6:9Þ

From experiment we know (Israelachvili 2000)

T
ew

@ew
@T

� �1:36 at T ¼ 25 	C; ð6:10Þ

so S � �1:36 F=T . For the Born energy, the entropy is negative, a result that can
be attributed to water molecules surrounding the charge: when an ion is placed in
water, the entropy of the solution decreases because charge–dipole interaction
causes the water to solvate around the ion and thereby to suffer a reduction of
configuration freedom compared with that without the ion. The negativity of the
entropy change holds also for the Coulomb repulsion between the two charges. This
may be attributed to an enhanced ordering of the water molecules solvated to the
charges upon their approach, within the validity of the continuum approximation.

P6.1 What is the internal energy change when two ions Na and Cl are brought to
the NaCl radius a ¼ 0:28 nm from infinity in water? For the two ions brought to
the distance a, find that the internal energy changes are negative and the entropy
changes are positive. Give physical reasons.

Virtually all interactions between molecules are electrostatic in origin. A polar
molecule has a net dipole moment due to permanent separation of charges of
opposite sign and equal magnitude. The dipole moment is defined by p ¼ qdl, where
l is the displacement vector pointing from the negative charge (�qd) to the positive
charge (qd). In a small molecule, typically qd is about elementary charge e and d is
1 Å in order of magnitude. In Fig. 6.2a, the HOH bond is bent at angle 109.5° so its
net dipole vector of an H2O is obtained as an addition of two HO dipole vectors, with
magnitude p ¼ 1:85 D ð1 D ðdebyeÞ ¼ ð1=3Þ10�29 C mÞ (Fig. 6.2a). There are a
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variety of electrostatic interactions among charges, dipoles, even induced diploes in
biological solutions. Below we estimate a various types of electrostatic interaction
energies in water. Mostly we will consider the case of interaction distance r much
longer than the Bjerrum length lB ¼ 0:7 nm where the interaction energies is much
smaller than the thermal energy; this case is both analytically tractable and also
consistent with the approximation of water as a dielectric continuum.

6.2.3 Ion-Dipole Interaction

Consider an ion of charge q and a molecule of permanent dipole moment p where
the charges qd and �qd are separated by distance l (Fig. 6.5). The energy of
electrostatic interaction between the ion and the dipole at a distance r is

uid r;Xð Þ ¼ qdq
4pew rþ l=2j j �

qdq
4pew r� l=2j j � qdl � $ q

4pewr

¼ �p � E ¼ �pE cos h;
ð6:11Þ

where E ¼ q=ð4pewr2Þ is the electric field from the ion, h is the polar angle that the
dipole vector p ¼ qdl makes with the field direction (Fig. 6.5).

The dipole is undergoing thermal fluctuations (rotation). The induced polariza-
tion along the field observed at equilibrium is the thermal average over the
orientation,

Pd ¼ p cos hh i ¼ p

R
dX cos h e�buid r;Xð ÞR

dX e�buid r;Xð Þ ¼ p

R
dX cos h ebpE cos hR

dX ebpE cos h

¼ p
@

@ bpEð Þ ln Zid ¼ p½coth bpEð Þ � 1
bpE

� 
 pL bpEð Þ;
ð6:12Þ

where dX ¼ dðcos hÞd/ is the solid angle element, Zid ¼
R
dX ebpE cos h ¼

4p sinh bpEð Þ=bpE, and LðxÞ is the Langevin’s function earlier seen in polymer
extension problem (3.57).

Now we note that bpE ¼ pq=ð4pewr2kBTÞ� llB=r2 where the lB is about 7 Å at
room temperature. If, for example, the dipole is due to a small polar molecule like a
water molecule, the charge separation length l is also a length in the order of 1 Å,
so, at a distance r over the nanoscale, bpEðrÞ � 1. We will consider this case
throughout.

Fig. 6.5 A dipole moment
p interacts with a charge q,
making a polar angle h with
the direction of the electric
field E
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Then, with LðbpEÞ � bpE=3, (6.12) is reduced to

Pd ¼ p2E
3kBT

¼ adE; ð6:13Þ

where ad ¼ p2=ð3kBTÞ is identified as the induced polarizability of a single
dipole. This indicates that the electric susceptibility of a dielectric varies as the
square of the net dipole moment. If a constituent polar molecule were independent
of each other, the electric susceptibility would be given as sum of the square of its
dipole moment. However, in liquid water, the electric permeability is much higher
than given by this estimate, because of the long-range correlation in the HB net-
work mentioned earlier.

The angle-averaged interaction energy between the dipole and ion with r fixed is

uid rð Þ ¼ uid r;Xð Þh i ¼ �pE cos hh i

¼ � pEð Þ2
3kBT

¼ � p2q2

3 4pewr2ð Þ2kBT
:

ð6:14Þ

Remarkably, uidðrÞ varies as �T�1ew�2r�4; compared with uid r;Xð Þ, (6.11),
uidðrÞ is more short-ranged, and also much weaker by the factor bpEðrÞ � 1. It
can also be estimated as uidðrÞ� ðllB=r2Þ2kBT .

What are the free energy and entropy changes that are induced when the dipole is
brought to the ion at a distance r from infinity? In the coarse-grained description in
which r is the only relevant degree of freedom, Q ¼ r, the degrees of freedom ℳ
except r are to be integrated over. The solvent degree of freedom is already incor-
porated partly via the temperature-dependent dielectric constant, so the remaining
degree of freedom is the angle X over which an integration is done to yield the free
energy:

e�bF Qð Þ ¼
X
ℳ=Q

e�bH ℳð Þ ¼
Z

dX e�buid r;Xð Þ ¼ ZidðrÞ: ð6:15Þ

Apart from the term that is independent of r, the free energy of the ion-dipole is
identified as

F idðrÞ ¼ �kBT ln ZidðrÞ ¼ �kBT ln
sinh bpEðrÞ
bpEðrÞ : ð6:16Þ

Noting that bpEðrÞ � 1,

F idðrÞ ¼ � 1
6kBT

pq
4pewr2

� �2

¼ 1
2
uidðrÞ: ð6:17Þ
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The entropy is given as

SidðrÞ ¼ � @F idðrÞ
@T

¼ F idðrÞ
T

1þ 2
T
ew

@ew
@T

� � ð6:18Þ

Using (6.10),

SidðrÞ ¼ � 1:72F idðrÞ
T

: ð6:19Þ

at 25 °C. Because F idðr ! 1Þ ¼ 0, and F idðrÞ\0, this means that as the dipole
approach the charge, the entropy increases. The first term in (6.18) is negative, due
to reduction of the rotational motion of the dipole. The second term, which is
positive, may arise because the water is released from the intervening region into
the free space in which its entropy can increase. As the dipole approaches the
charge, the net entropy thus increases SidðrÞ[ 0, within the validity of the
approximation.

6.2.4 Dipole-Dipole Interaction (Keesom Force)

When a polar molecule with dipole moment p1 approaches to another polar
molecule with dipole moment p2 (Fig. 6.6) at a distance r, the latter has a potential
energy

udd ¼ �p2 � E2; ð6:20Þ

where E2 is the electric field on dipole 2 emanating from the dipole 1. The electrical
potential from the dipole 1 obtained by

/2 ¼ �p1 � $
1

4pewr
¼ p1 � r

4pewr3
; ð6:21Þ

Fig. 6.6 The interaction between
two dipoles p1, p2, separated by
a distance r
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where the r ¼ r2 � r1 ¼ rn is the radial vector pointing to the dipole 2. We then
have

E2 ¼ �$/2 ¼ � 1
4pewr3

p1 � 3p1 � nnð Þ; ð6:22Þ

which varies as r�3. Finally, (6.20) yields the interaction energy between two
dipoles oriented with the solid angles X1 and X2:

udd r;X1;X2ð Þ ¼ � 1
4pewr3

3ðp1 � nÞðp2 � nÞ � p1 � p2½ �

¼ � p1p2
4pewr3

3 cos h1 cos h2 � cos h12½ �:
ð6:23Þ

Here h1; h2 are the polar angles that the dipoles make with the radial vector and h12
is the angle between two dipoles. This interaction energy varies as � r�3.

The angle-averaged interaction energy is

uddðrÞ ¼
R
dX1

R
dX2udd r;X1;X2ð Þe�budd r;X1;X2ð ÞR
dX1

R
dX2e�budd r;X1;X2ð Þ

¼ � @

@b
ln ZddðrÞ

ð6:24Þ

where ZddðrÞ ¼
R
dX1

R
dX2 exp �buddðr;X1;X2Þ½ �. uddðr;X1;X2Þ=ðkBTÞ� l2lB=r3 is

assumed to be much less than 1, so we have

ZddðrÞ �
Z

dX1

Z
dX2 1� budd r;X1;X2ð Þf g ð6:25Þ

and

uddðrÞ � � 2p21p
2
2

3kBT 4pewr3ð Þ2 � � T�1ew
�2 � r�6 ð6:26Þ

Compared with the interaction uddðr;X1;X2Þ;uddðrÞ is weaker and short ranged
(r�6). It is estimated as uddðrÞ� ðl2lB=r3Þ2kBT , which is smaller than ion-dipole
interaction by the factor l2=r2.

The free energy of the two dipoles at a distance r is

F ddðrÞ ¼ �kBT ln ZddðrÞ � � p21p
2
2

3kBT 4pewr3ð Þ2 ¼
1
2
uddðrÞ: ð6:27Þ

6.2 The Interactions in Water 91



Consequently,

SddðrÞ ¼ F
T

1þ 2
T
ew

@ew
@T

� �
¼ �1:72

F ddðrÞ
T

; ð6:28Þ

which indicates that, like in ion-dipole case, the entropy of the system containing
two dipoles increases as they approach each other, mostly due to the increased
disorder of the water.

P6.2 Derive the results (6.26) and (6.27) for udd r;X1;X2ð Þ
kBT

� 1.

6.2.5 Induced Dipoles and Van der Waals Attraction

Now we consider the electrostatic interaction involving nonpolar molecules. An
external field EðrÞ can induce a polarization even in a nonpolar molecule,
Pind ¼ aE, where a is the polarizability, thereby reducing the electrostatic energy.
The energy change induced by the field that polarizes the molecule is

un ¼ �
ZE

0

Pind � dE

¼ �a
ZE

0

E � dE ¼ � aE2

2
:

ð6:29Þ

This is an attractive interaction between the nonpolar molecule and the object
that emanates the electric field. For example, the potential energy between the
nonpolar molecule and an ion of charge q is given by

uin ¼ � aE2

2
¼ � a

2
q

4pewr2

� �2

; ð6:30Þ

which is comparable to (6.14) of ion-dipole attraction; both are identical if a is
replaced by that of a free dipole ad ¼ p2=ð3kBTÞ.

Consider the interaction between small nonpolar molecules 1 and 2 with their
dipole moments instantaneously induced with the polarizabilities, a1; a2. A detailed
derivation of the interaction is too complicated involving quantum fluctuations as
well as thermal fluctuations to be relevant here. To find how it depends on the
distance r between the two objects, we give a simple argument following (6.29).
The potential energy of the polarized molecule 2 due to the field E2 emanating from
molecule 1 is unn ¼ �a2 E2

2

� �
=2, where E2 is now recognized as a fluctuating field

due to an instantaneous dipole of molecule 1. In view of the fact E2 � � 1=r3

(6.22) and the symmetry with respect to exchange between 1 and 2, we have
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unn ¼ � C
r6

ð6:31Þ

where C is a constant proportional to a1a2.

P6.3 Find the attraction energy between a dipole p and an induced dipole with
polarizability a that are separated at a distance r.

Interestingly the interaction potential between two dipoles, either permanent or
induced, has the attractive tail r�6. This universal interaction ð�r�6Þ is called the
Van der Waals (vdW) attraction. The vdW force between the nonpolar atoms or
molecules is also called the London dispersion force; it is due to electrons revolving
in each atom or molecule and causing instantaneous (fluctuating) polarizations that
tend to be correlated as the two approaches. The Van der Waals attraction acts
universally on all pairs of objects, microscopic or macroscopic, even if they do
not carry charges or dipoles. This fluctuation-induced attraction is an important
component in a wide variety of phenomena such as adhesion, surface tension, and
adsorption.

Let us consider two semi-infinite media of equal number density n of small
molecules (or point sources of the interaction) separated at a distance D and find the
vdW attraction between the two media. First consider the attraction potential uðrÞ
that a molecule 1 feels at a distance h vertically away from one of the surfaces
(Fig. 6.7). Integrating the pair potential energy uðrÞ ¼ �C=r6 over the volume

element of a medium located at a distance r ¼ ðx2 þ z2Þ1=2 from the point 1 yields
the attraction

uðrÞ ¼ �2pnC
Z1

h

dz
Z1

0

xdx

ðx2 þ z2Þ3

¼ � pnC
6h3

;

ð6:32Þ

where 2pxdxdz is the volume element (ring) to be integrated over. We integrate this
potential energy over the other semi-infinite medium (to which the molecule 1
belongs) to find the vdW attraction energy per unit area between the two media:

ℎ1

Fig. 6.7 The Van der Waals
attraction between a mole-
cule 1 and a semi-infinite
medium (shaded)

6.2 The Interactions in Water 93



Uvdw ¼ � pn2C
6

Z1

D

dh
h3

¼ � H
12pD2 ; ð6:33Þ

where H ¼ pn2C is called the Hamaker constant and is typically in the order of
10�21 J * kBT for interactions between organic substances in water. The energy of
the vdW attraction between two such macroscopic blocks with surfaces separated
by 1 nm ð1 lmÞ, therefore, is about a small fraction of kBT per area 1nm2 ð1lm2Þ.

Via a similar calculation, one can show that the vdW interaction between two
homogeneous and identical spheres of radius R separated by a much shorter closest
distance D is given by

Uvdw ¼ � HR
12D

ð6:34Þ

Interestingly, the attraction is long-ranged ðD�1Þ and proportional to size of the
particle ðRÞ. For two colloidal particles of R ¼ 0:5 lm at a distance D ¼ 1 nm, the
attractive energy is in the order of 10 kBT . This strength and the long range of
attraction is effective enough to initiate aggregation or adhesion of the colloids. To
assess the ultimate colloidal stability, however, one should consider various types
of the interactions, including the repulsions.

When two atoms or monoatomic molecules merge together, a sharp,
short-ranged repulsion occurs due to the Coulomb repulsion between nuclei,
combined with the Pauli exclusion between electrons. The hybrid of the
long-ranged Van der Waal’s interaction and the short-ranged harsh repulsion is
often incorporated using the Lennard Jones model,

uLJðrÞ ¼ 4� ðr=rÞ12 � ðr=rÞ6
h i

ð4:59Þ

that we introduced earlier (4.59). This is a most popular model interaction that is
characterized by two features, short-range repulsion and long-range attraction, and
also by two parameters, hard core length r and attraction strength �; it is applicable
not only to atoms and small molecules but also to colloids and coarse-grained units
such as polymer beads.

6.3 Screened Coulomb Interactions and Electrical Double
Layers

The presence of ions in water is critical for living. While their transport through
membranes plays a key role in neuronal transmission in cell, they modulate the
electrostatic interactions between charged objects in solutions. Here we study how
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the ions in water screen the Coulomb interaction between charges and are dis-
tributed near a charged surface.

6.3.1 The Poisson-Boltzmann Equation

Understanding the behaviors of the ions thermally fluctuating under long-range
Coulomb interactions is a many-body problem, for which rigorous use of statistical
mechanics (Chap. 4) to solve it is a formidable task. Here we present a simple
approximation that can capture the main physical features for the case of dilute ionic
(electrolyte) solutions. First, the ionic solution is regarded as a continuum, so that
the electric potential / at a position r satisfies the basic equation in electrostatics,
namely, the Poisson equation

r2/ðrÞ ¼ � qeðrÞ
e

; ð6:35Þ

where qeðrÞ is the charge density and e is its electric permeability, which is nearly
that of water, e ffi ew, for the cases of dilute ionic solutions we consider throughout.
We further assume that an ion at r is subject to a one-body electric potential /ðrÞ,
that is, a mean field, which effectively includes the influence of the other ions. In
this mean field theory, for the ions each with charge q, the charge density in the
solution is given by the Boltzmann factor

qeðrÞ ¼ q1 e�bq/ðrÞ; ð6:36Þ

where q1 is the reference charge density at the point in the bulk where the potential
is zero. Equation (6.35) then becomes a nonlinear equation for /ðrÞ, called the
Poisson-Boltzmann (PB) equation

r2/ðrÞ ¼ � q1
e

e�bq/ðrÞ: ð6:37Þ

As will be shown in the next section, this equation is exactly solved in one
dimension, namely, for the potential and charge distribution at a vertical distance
from a planar charged surface/membrane.

Within a cellular environment, the presence of electrolyte, commonly called salt,
is essential. In a salt, positively-charged ions (cations) of number density nþðrÞ and
valency zþ coexist with negatively charged ions (anions) of density n�ðrÞ and
valency z� in such a way to satisfy the charge neutrality at a reference point in the
bulk:

zþ nþ1 þ z�n�1 ¼ 0: ð6:38Þ
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The PB equation then takes the form

r2/ ¼ � 1
e

zþ enþ1e�bzþ e/ rð Þ þ z�en�1e�bz�e/ rð Þ
h i

: ð6:39Þ

6.3.2 The Debye-Hückel Theory

Except for a few cases that we will treat later, PB equation cannot be solved
analytically due to the nonlinearity of the equation. Thus, we consider the cases in
which the potential is low enough that ej/j=kBT � 1 (j/j � 25 mV at room
temperature for z� ¼ 1). Using the approximation, e�bz�e/ðrÞ ffi 1� bez�/ðrÞ; and
the charge neutrality condition (6.38), we derive a linear equation for /:

r2/ ¼ j2D/; ð6:40Þ

where

j2D ¼ e2

ekBT
z2þ nþ1 þ z2�n�1
� 	

: ð6:41Þ

Equation (6.40), called the linearized Poisson-Boltzmann equation or
Debye-Hückel equation, can be solved exactly for a numerous geometrical situ-
ations. kD ¼ j�1

D is a characteristic length called the Debye length.

P6.3 What is the charge (cations and anions) distribution of a salt at a vertical
distance x from a plane with a surface charge density r?

Consider a sphere of radius R and charge Q immersed within the ionic solution.
In this spherically symmetric situation, the Debye-Hückel equation gives the
electrical potential at a radial distance r from the charged sphere:

1
r
d2

dr2
r/ðrÞ ¼ j2D/ðrÞ: ð6:42Þ

The solution for rR that satisfies the boundary condition /ðr ! 1Þ ¼ 0 is

Fig. 6.8 The background ions
centered around two ions
screen the Coulomb interac-
tion between them
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/ðrÞ ¼ /s
R
r
e�jDðr�RÞ: ð6:43Þ

The constant /s ¼ /ðRÞ is the surface potential of the charged sphere; it is deter-
mined by invoking the Gauss theorem (after integrating (6.35) over volume of the
sphere with radius R),

�u0ðRÞ4pR2 ¼ Q
e
; ð6:44Þ

from which one obtains

/s ¼
Q

4peRð1þ jDRÞ ; ð6:45Þ

and

/ðrÞ ¼ Q
4pe 1þ jDRð Þr e

�jDðr�RÞ: ð6:46Þ

For point-like ions, this equation simplifies to

/ðrÞ ¼ Q
4per

e�jDr: ð6:47Þ

Compared with the Coulomb potential, the electrical potential from the central
ion is screened appreciably beyond the Debye length kD ¼ j�1

D . For 1:1 electrolyte
(zþ ¼ 1 ¼ �z�; nþ1 ¼ n�1 ¼ n1), this can be written as

kD ¼ ekBT
2n1e2

� �1=2

¼ 1
8pn1lB

� �1=2

� 0:304C�1=2nm ðat 25 	C)

ð6:48Þ

where C ¼ n1 � L=mol is the molar concentration of the electrolyte. The screening
length kD for the 1:1 salt (e.g., NaCl) at 25 °C and a physiological concen-
tration of C ¼ 0.1 M is 0.96 nm. The screening occurs because of the presence of
the ions surrounding an ion located at the center. Equation (6.35) combined with
(6.40) leads to

qe rð Þ ¼ �ej2D/ rð Þ; ð6:49Þ

which demonstrates that the density distribution of the background ions qeðrÞj j is
proportional to /ðrÞj j, and thus to r�1e�jDðr�aÞ, if the ions are charged spheres each
with radius a. The charge within a spherical shell at r around the center ion is
dqj j ¼ 4pr2 qeðrÞj jdr� re�jDðr�aÞdr, so radial distribution has a peak at r ¼ kD.
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Thus the screening length kD is also called the thickness of the ion cloud around
each ion.

The change of chemical potential of an ion arising from its interaction with other
ions can be calculated within the Debye-Hückel theory. The chemical potential
change is simply the reversible work done in charging the ions around the central
ion

Dl ¼
Z1

0

dr 4pr2qeðrÞ/ðrÞ ¼ �ej2D

Z1

0

dr 4pr2/2ðrÞ

¼ � jDq2

8pe
: ða ! 0Þ

ð6:50Þ

The result above is called the Debye-Hückel limiting law. A noteworthy feature
here is that the contribution from the interaction is proportional to C1=2 rather than
to C that can be attained by the virial expansion. This behavior is attributed to the
long-range nature of electrostatic interaction. Equation (6.50) is valid also for a
dilute solution of finite-sized ions, where ez/ðkDÞ=ðkBTÞ � 1, or kD � lB.

P6.4 Show that the contribution of ionic interactions to pressure corresponding to
(6.50), is Dp ¼ �kBT=24kD

3. What is the contribution to entropy?

6.3.3 Charged Surface, Counterions, and Electrical Double
Layer (EDL)

When neutral polymers, membranes and colloids are dissolved in water, they can
acquire charges through ionization of polar groups on their surfaces. The ions that
are released in water are called counterions. These counterions are electrostatically
attracted to the ionized surface, while tending to move away from the surface to the
bulk of the solution to enjoy more entropy. Furthermore, the solutions generally
contain anions and cations from the added salt. The balance of the electrostatic

(a) (b)Fig. 6.9 a A planar surface
charged negatively due to coun-
terion release. b The profiles of
the electrical potential /ðxÞ and
the counterion charge density.
qeðxÞ
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attraction and the opposing effect of entropy leads to formation of an electric double
layer (EDL) on the surface, where the ions are more or less condensed.

Here we will consider an infinite charged surface located at a position x ¼ 0. We
want to find the an electrostatic potential /ðxÞ and the charge density qeðxÞ at a
vertical position x in the solution (Fig. 6.9). First consider that there are no salt but
only counterions each with charge q. The counterion charge density at any points
x in solution is given by qeðxÞ ¼ q1e�bq/ðxÞ, which can be found by solving the PB
equation

/00ðxÞ ¼ �qeðxÞ=e ¼ �q1e�bq/ðxÞ=e; ð6:51Þ

where /00ðxÞ ¼ d2/ðxÞ=dx2. Due to net charge neutrality the surface charge density
of the surface is given by

r ¼ �
Z1

0

dxqeðxÞ ¼ e
Z1

0

dx/00ðxÞ ¼ eEs; ð6:52Þ

where Es ¼ �/0ðxÞjx¼0 is the electric field at the surface. Equation (6.52) serves as
a boundary condition (BC) on the surface along with the natural BC E ¼ 0 at
x ¼ 1.

By multiplying (6.51) by /0ðxÞ we have

/0ðxÞ/00ðxÞ ¼ 1
2
½ð/0ðxÞÞ2�0 ¼ �ðq1=eÞ/0ðxÞe�bq/ðxÞ; ð6:53Þ

which is integrated to

ð/0ðxÞÞ2 ¼ 2q1kBT
eq

fe�bq/ðxÞ � e�bq/ð1Þg: ð6:54Þ

The above equation is analytically solved for /ðxÞ and then for qeðxÞ ¼ q1e�bq/ðxÞ:

/ðxÞ ¼ 2kBT
q

lnKðxþ bÞf g ð6:55Þ

qeðxÞ ¼
q

2plBðxþ bÞ2 : ð6:56Þ

where K2 ¼ 2plBq1. The potential increases logarithmically whereas the density
decays algebraically as a function of x (Fig. 6.9b). The characteristic length b of the
decay is determined from the BC (charge neutrality) (6.52) as
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b ¼ 2ekBT
q rj j ¼ q

2plB rj j : ð6:57Þ

This is called the Gouy-Chapman length, the thickness characteristic of the diffu-
sive counterion layer near the surface, within which the half of the counterions
reside.

Equation (6.54) can be expressed as

nðxÞ � n1 ¼ be
2
EðxÞ2; ð6:58Þ

which gives the ionic number density nðxÞ at any point in terms of the electric field
EðxÞ ¼ �/0ðxÞ and the reference density n1 at infinity where the electric field is
zero. Because there are no explicit interionic interactions within this mean field
theory for the dilute ionic solutions, the osmotic pressure is proportional to the
density: the difference of osmotic pressure of the ions between a point x and in bulk
is given by

DpðxÞ ¼ kBT nðxÞ � n1f g ¼ e
2

EðxÞð Þ2; ð6:59Þ

where the RHS is identified as electrostatic pressure, which is equal to the field
energy density. The ionic charge density at the surface is given by

qs ¼ q1 þ bqe
2

Es
2 ¼ q1 þ q

2ekBT
r2; ð6:60Þ

where (6.52) is used. The volume charge density surface increases parabolically
with the surface charge density r.

Now consider the case where the salt is added. Whereas the counterions are
localized only near the surface, the salt can remain in the bulk with finite number
densities for the cation and anions n�ð1Þ ¼ n1; the number and the overall effect of
the counterions is negligible compared with those of the salt ions. Considering the
case of 1:1 electrolyte the PB equation reads as /00ðxÞ ¼ ð2n1e=eÞ sinh be/ðxÞf g,
which is rewritten as

U00ðxÞ ¼ j2D sinhUðxÞ; ð6:61Þ

where UðxÞ ¼ be/ðxÞ and jD is the inverse Debye length (6.48).
By multiplying (6.61) by U0ðxÞ and integrating the result we find

U0ðxÞð Þ2¼ 2j2DðcoshU� 1Þ ¼ 4j2D sinh
U
2

� �2

; ð6:62Þ
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and obtain

/ðxÞ ¼ � 2kBT
e

ln
1þ ce�jDx

1� ce�jDx
ð6:63Þ

n�ðxÞ ¼ n1e�be/ðxÞ ¼ n1
1� ce�jDx

1� ce�jDx

� �2

ð6:64Þ

where c ¼ tanhðe/s=4kBTÞ, and /s ¼ /ðx ¼ 0Þ is the surface potential.

P6.5 Show that the surface potential /s and the surface charge density r are
related by the BC (6.52), leading to r ¼ 2ejDkBTð Þsinh ðe/sÞ=ð2kBTÞf g. For low
surface potential, r ¼ ejD/s ¼ e/s=kD, which means that the electrical double
layer behaves like a condenser of thickness kD.

Figure 6.10 shows how the potential and densities vary with the distance x. In the
weak coupling case q/=ðkBTÞ � 1; for which DH linearization is justified, the
above results are simplified. First, c � e/s=4kBT and

/ðxÞ � /se
�jDx ¼ r

ejD
e�jDx: ð6:65Þ

Compared with the counterion case where the potential diverges in the bulk, the
potential decays to zero due to the screening effect of the salt. The number density
is given by

n�ðxÞ ¼ n1 1� er
ejDkBT

e�jDx

� �
; ð6:66Þ

which shows that both of the cations and anion distributions approach exponentially
to their bulk values. The width of the electrical double layer is of the order of kD.

Equation (6.58) is valid also for the total number density n ¼ nþ þ n�. It leads
to the pressure difference in the solution and number density of ions at surface.

(a) (b)Fig. 6.10 a A negatively
charged surface and salt
ions. b The profiles of elec-
trical potential and cation
(nþ ) and anion (n�) number
distributions
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DpðxÞ ¼ kBT nðxÞ � 2n1f g ¼ e
2

EðxÞð Þ2 ð6:67Þ

ns ¼ 2n1 þ e
2kBT

Es
2 ¼ 2n1 þ 1

2ekBT
r2: ð6:68Þ

The total number density of the ions ns induced on the surface grows parabolically
with the surface electric field Es and surface charge density r. At sufficiently high
values of r enlarge to the ns (6.68) can be unphysically high so as to exceed the
close packing density. This is the limitation of PB equation which neglects the
correlation between the ions arising from their interaction and finite sizes. What is
really observed is a thin layer of the ions bound to the highly charged surface, called
Stern layer; this limits the surface charge density r to be below a critical value. In
the solution beyond the Stern layer, the PB equation theory is applicable.
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Chapter 7
Law of Chemical Forces: Transitions,
Reactions, and Self-assemblies

Physical and biological components are often in a certain phases or conformations
that can undergo physical transitions and chemical reactions. The simplest of the
reactions or transitions is

A $ B: ð7:1Þ

It denotes transition between states A and B, where the bidirectional arrow $
indicates either forward or backward direction. One class of the examples is
biopolymer conformational transition that we already discussed earlier in numerous
situations. ‘A’ and ‘B’ can also represent two phases of matter, such as gas and
liquid. Often the biochemical systems consist of many species that can react. One
simple but important chemical reaction is

2H2 þO2 $ 2H2O: ð7:2Þ

One further example is the process of self-assembly or association, in which
monomers aggregate into larger structural units, and its backward process called
dissociation:

A1 þ � � � þA1 $ An; ð7:3Þ

where An is the aggregate of n units. Here we describe basic relations and condi-
tions of the reactions and transitions at equilibrium, in particular the relations
between the concentrations of the substances involved, called the law of mass
action (LMA). LMA can be one of most basic laws for biological transitions
involving various conformational states of biopolymers and supramolecular
aggregates.
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7.1 Law of Mass Action (LMA)

7.1.1 Derivation

Here we begin with derivation of LMA using statistical mechanics. All of the
processes mentioned above can be represented by the equation

Xm
i¼1

miBi ¼ 0; ð7:4Þ

where Bi denotes the reaction or transition unit (e.g., molecule, macromolecule,
supramolecular aggregate) of the species i or the state i, and mi is its stoichiometric
coefficient. For example, (7.2) is represented by the reaction equation

�2H2 � O2 þ 2H2O ¼ 0; ð7:5Þ

where B1 ¼ H2 m1 ¼ �2; B2 ¼ O2 m2 ¼ �1; B3 ¼ H2O m3 ¼ 2 respectively. The
values of mi are negative for reactants and positive for products. The central question
here is: what is the relation between the concentrations of the units involved in the
reaction at equilibrium; how is it given by the thermodynamic state of each unit?

We consider a mixture of m reacting units, among which r are reactants and
m� r are products, at fixed temperature T and volume V . Throughout the reaction
the free energy of the mixture changes by modulating the number of each unit DNi:

DF T;V ;N1;N2; � � � ;Nmð Þ ¼
Xm
i¼1

@F
@Ni

� �
DNi: ð7:6Þ

Because @F=@Ni ¼ li (chemical potential of the unit i), and DNi / mi, the above is
proportional to the free energy change of the reaction defined by

Df ¼
Xm
i¼1

mili: ð7:7Þ

At equilibrium, the free energy is minimum, DF ¼ 0 ¼ Df , so that we have

Xm
i¼1

mili ¼ 0; ð7:8Þ

which we may call the law of chemical force balance at equilibrium.
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First, we apply this fundamental equation to the transition A $ B, or�AþB ¼ 0;
where the units A and B have mA ¼ �1; mB ¼ 1: Then

�lA þ lB ¼ 0; or lA ¼ lB ð7:9Þ

which is just the condition of chemical equilibrium that we derived earlier. One
example is the transitions between two conformational states A and B of a
biopolymer. Other examples include phase transition between liquid and gas; here
A and B represent the liquid and gas state to which an unit (molecule) belongs.
A monomer in a bound state A and unbound state B in adsorption-desorption
transition is a similar example (Fig. 7.1).

To proceed further, we assume that all units involved in the reaction or transition
form ideal gases at a fixed temperature T . The chemical potential of each species or
state then is

li ¼ li0 þ kBT ln ðni=ni0Þ; ð7:10Þ

where 0 denote the standard state values (4.47). Usually in experiments the standard
concentration ni0 for a solute is assigned to be 1 mol/L � 0.6/(nm)3. We denote the
dimensionless concentration ni=ni0 by Ci, and call it the molar or mole concen-
tration (unit symbol: M), which is defined as the number of moles per liter
ð1 molar ¼ 1 M ¼ 1 mol=LÞ.

Equation (7.7) becomes

Df ¼ Df0 þ kBT
Xm
i¼1

mi lnCi ð7:11Þ

(a) Bio-polymer conformational transition

HelixCoil 

+
−

Liquid

Gas
(b) Phase transition− +

(c) molecular binding and unbinding

− +

Fig. 7.1 Examples of two state transitions. a Coil to helix transition, b the gas to liquid transition
of water, c molecular binding-unbinding transition on surface
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where

Df0 ¼
Xm
i¼1

mili0 ð7:12Þ

is the intrinsic quantity independent of the concentrations called the standard free
energy change of the reaction. Now the condition of the chemical equilibrium,
Df ¼ 0 leads to “the law of mass action (LMA)” for equilibrium concentrations:

Ym
i

Ci
mi ¼ Cmrþ 1

rþ 1. . .C
mm
m

C m1j j
1 C m2j j

2 . . .C mrj j
r

¼ K Tð Þ: ð7:13Þ

Here

K Tð Þ ¼ exp �bDf0ð Þ ð7:14Þ

is called the equilibrium constant.
Equation (7.13) states the condition of chemical forces at equilibrium where

Df ¼ 0:The constantK Tð Þ is concentration-independent but temperature-dependent.
It is a measure of the reactivity. The rate kþC

m1j j
1 C m2j j

2 . . .C mrj j
r of the forward

reaction must be equal to k�C
mrþ 1
rþ 1. . .C

mm
m of the backward reaction so (7.13)

means that

K Tð Þ ¼ kþ =k�: ð7:15Þ

If K Tð Þ[ 1, then DF0\0 and kþ [ k�; i.e., the standard free energy decreases
and the reaction runs forward, yielding more products at the cost of the reactants. If
K Tð Þ\1, the reaction will run backward. The balance between generation of
reactants and products occurs only when K Tð Þ ¼ 1, i.e., Df0 ¼ 0 and kþ ¼ k�.

Using (7.14), further understanding of K Tð Þ is gained by considering the
following,

@ ln K Tð Þ
@ 1=Tð Þ ¼ 1

kB

@

@b
�bDf0ð Þ ¼ 1

kB

X
mi

@

@b

� �
ln zi

¼ � 1
kB

X
miei ¼ �De0=kB;

ð7:16Þ

where zi is the partition function of a single substance of the species or state i, ei is
its internal energy, and De0 is called the standard internal energy change of the
reaction. Equation (7.16) indicates that De0 is the slope of a plot of ln K Tð Þ versus
1=Tð Þ obtained experimentally (for example, Fig. 8.2). If De0 [ 0, via the reaction
heat is absorbed, and K Tð Þ rises as the temperature increases, because (7.16) can be
rewritten as @ ln K Tð Þ=@T ¼ T2De0=kB:
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7.1.2 Conformational Transitions of Biopolymers

For the conformational transition A $ B of a biopolymer, LMA tells us that

CB

CA
¼ K Tð Þ ¼ e

�Df0
kBT ð7:17Þ

where Df0 is the free energy of the conformational change of a single biopolymer,
which depends only on the temperature. This equation along with (7.16) indicates
that given the equilibrium constant by the concentration ratio, the standard internal
energy and free energy changes in a conformational transition can be obtained.

P7.1 Suppose you have data for K Tð Þ (Fig. 7.2) from a biopolymer conformational
transition from a state to another from the measurements of the concentrations in the
two states. From the curve, how can you find the entropy change at temperature T1?
(Answer) From the value K T1ð Þ itself one obtain the free energy change Df0: From
the slope of the curve at T1 one can find De0 using (7.16). Using these, the entropy
change Ds0 is obtained from Df0 ¼ De0 � T1Ds0.

One often deals with systems that do not have a fixed volume but a fixed
pressure in laboratories; for such systems, the primary thermodynamic potential is
the Gibbs free energy. For this case, the theoretical development is same, with F
replaced by Gibbs free energy G, and E replaced by enthalpy H. Thus, (7.14) and
(7.16) are replaced by

K Tð Þ ¼ e
�Dg0
kBT ð7:18Þ

and the Van ‘t Hoff equation,

@ ln K Tð Þ
@ 1=Tð Þ ¼ �Dh0=kB; ð7:19Þ

respectively, where Dh0 and Dg0 respectively are the standard enthalpy and Gibbs
free energy changes associated with the transition.

Fig. 7.2 The plot of ln K
versus 1=T . From the value
of ln K and its slope the
changes of free energy and
internal energy (enthalpy) are
deduced
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7.1.3 Some Chemical Reactions

Dissociation of Diatomic Molecules

The association of diatomic molecules from atoms in a gaseous phase and the
reverse dissociation process is given by the reaction equation

2A1 $ A2 or A2 � 2A1 ¼ 0; ð7:20Þ

for which the relation for the chemical potential is

lA2
� 2lA1

¼ 0: ð7:21Þ

The LMA (7.13) tells us that the relation between the concentrations of the
molecules CA2 and the free atoms CA1 is given by

CA2

C2
A1

¼ K Tð Þ; ð7:22Þ

where K Tð Þ, or the intrinsic free energy change Df0 ¼ l0A2
� 2l0A1

can be in prin-
ciple calculated from knowledge of the internal structures of the molecule and atom
involved.

With the knowledge of K Tð Þ we can determine each concentration above from
the given total concentration of the atoms CA, using the relations:

CA ¼ CA1 þ 2CA2 ð7:23Þ

Because we have two equations, the two unknown concentrations can be uniquely
obtained. For the concentration of the free atoms CA1 , we obtain

CA1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8KCA

p � 1
4K

ð7:24Þ

Note that, when K is very small, CA1 approaches CA, meaning that most of the
atoms remain inert or most molecules dissociate. When K is very large,
CA1 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CA=2K

p
, thus the gas is mostly diatomic.

Ionization of Water

Water has electrical conductivity, which is attributed to ionization (dissociation) of
a water molecule into hydrogen ion and hydroxyl ion to a slight extent:
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H2O $ Hþ þOH�: ð7:25Þ

Thermodynamically, the dissociation occurs when entropy is dominant over the
binding energy. Because the water liquid is far from being an ideal gas, the LMA in
the form (7.13) does not hold true; the water molar concentration CH2O should be
replaced by the activity aH2O:

CHþCOH�

aH2O
¼ K Tð Þ: ð7:26Þ

The activity aH2O assumes unity for pure water, which we choose as the standard
state. At 25 °C, K Tð Þ is measured to be 10−14, with the standard concentrations
chosen as ni0 ¼ 1mol=L for Hþ and OH�. Because the concentrations of Hþ and
OH� are very small, the water in the solution of has the activity nearly that of pure
water, we have

CHþCOH� ¼ K Tð Þ; ð7:27Þ

so that, in pure water, CHþ ¼ COH; and thus CHþ ¼ 10�7, leading to

pH � � log10 CHþ ¼ 7: ð7:28Þ

Adding an acid to water increases the concentration of Hþ relative to OH� so pH
decreases.

ATP Hydrolysis

ATP hydrolysis is a chemical reaction by which one adenosine triphosphate (ATP)
molecule reacts in water to produce an adenosine diphosphate (ADP) molecule and
an inorganic phosphate (Pi):

ATP $ ADPþ Pi: ð7:29Þ

It is an essential process by which the chemical energy stored in ATP is released to
do useful work, for example, in muscles. The equilibrium constant is given by

K Tð Þ ¼ CADPCPi

CATP
¼ e

�Df0
kBT : ð7:30Þ

The typical value of the standard free energy change is Df0 � �12kBT per
molecule. In vivo, the free energy of the hydrolysis reaction is given by the net free
energy change (7.11),
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Df Cif g ¼ Df0 þ kBT ln
CADPCPi

CATP
� �20 kBT; ð7:31Þ

where Ci here are the cellular concentrations different from the equilibrium
concentrations.

7.1.4 Protein Bindings on Substrates

Kinesin motors ðKÞ bind to microtubules ðMÞ, for which the reaction equation and
the equilibrium constant are

KþM $ KM; ð7:32Þ
CKM

CKCM
¼ K Tð Þ: ð7:33Þ

If the process of binding is accompanied by a mechanical force on the motor that
does a work by the amount Dw; to be specific if a constant force f is applied against
the binding process over a displacement l, we have

CKM

CKCM
¼ K Tð Þe�

Dw
kBT ¼ K Tð Þe�

f l
kBT ð7:34Þ

It indicates the work can shift the equilibrium so as to induce the backward reaction.
LMA provides a simple route to finding the coverages of molecules bound on

substrates. Let a protein have N binding sites to be either fully occupied (concerted
binding) or empty. For the binding of N ligands on a protein P, the reaction
equation is

P0 þNL $ PN ; ð7:35Þ

where P0 is a protein with empty binding sites, PN is a protein with all N sites
occupied, and L is a free ligand. The equilibrium condition for their respective
concentrations is given by

CN

CL
NC0

¼ K Tð Þ; ð7:36Þ

The fraction of the bound proteins then is

h ¼ CN

CN þC0

¼ CL
N

CL
N þK Tð Þ�1 ;

ð7:37Þ
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which is often referred as the Hill equation. Since concentration of the free ligands
CL is dilute enough to be proportional to the ambient pressure p they imparts on the
substrates, we have

h ¼ pN= pN þ p0
N Tð Þ� �

; ð7:38Þ

where p0 is a purely temperature-dependent quantity. The case with N ¼ 1 is the
Langmuir isotherm discussed earlier (3.74). As the integer number N increases, h
increases more steeply with p, which means the binding becomes more cooperative
(Fig. 7.3).

7.2 Self-assembly

Self-assembly is a ubiquitous process that occurs in nature on various scales, by
which objects spontaneously aggregate into more complex structures. The universe
and life may have evolved through this process. Atoms interact to form molecules.
Molecules bond to form crystals and supramolecular structures. In biology,
self-assembly is fundamental and plentiful. Monomers aggregate linearly to form
biopolymers. Two complementary single strands of DNA form a double helix.
Lipid molecules spontaneously assemble to form membranes in water.

Here we are interested in how supramolecular aggregates such as one and two-
dimensional polymers are formed from smaller molecules and are distributed in size
(Fig. 7.4). Basically, left alone, all processes at a given temperature evolve by
competition between energy and entropy to achieve the equilibrium structure in
which the free energy is minimized under certain constraints. These are passive
self-organization processes. We do not address here the active self-organization
driven by a variety of external stimuli and noises that operate far from equilibrium
as demonstrated by the growth of cytoskeletal filaments in cells.

Here we will focus on self-assembly at equilibrium. Consider the transition
between n free monomers ðA1Þ and an aggregate composed of n monomers Anð Þ,
called an n-mer,

Fig. 7.3 The fraction of bound ligands h
as a function of pressure p. N is number
of binding sites to be fully occupied or
empty. The value of p0 Tð Þ at which the
fraction is 1/2 is much smaller forN ¼ 4
than for N ¼ 1:
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nA1 $ An: ð7:39Þ

Assuming that the aggregates as well as the monomers are very dilute, the LMA
(7.13) tells us that the relation between the mole concentrations (molarities) of n-
mers Cn and the free monomers C1 is given by

Cn= Cn
1

� � ¼ e�bDfn0 ð7:40Þ

where Dfn0 (7.12) is the standard part of free energy change (from n monomers to an
n-mer) that excludes the concentration contributions. Dfn0 should be negative
increasingly with n to induce the aggregation. Our goal here is to find the distri-
butions of n-mers and their mean size nh i in terms of the total monomer
concentration,

C ¼
X
n

nCn; ð7:41Þ

which is a quantity initially controlled by experiment. The first task with which we
proceed to this end is to evaluate the Dfn0 as a function of n.

P7.2 Equation (7.40) can also be derived as follows. Consider an ideal mixture of
n-mers with the free energy (which is a variant of (4.91)):

F ¼
X
n¼1

Cn fn0 þ kBT lnCn � 1ð Þf g

The first term is the standard (free) energy and the second is the entropy associated
with the distribution of the aggregates. By minimizing the free energy by varying Cn

subject to constraint of given total monomer concentration C ¼ P
n nCn; derive

Cn ¼ Cn
1e

�bðl0n�l01Þ;

Small soluble monomers Many long filamentous polymers 

Fig. 7.4 Formation of linear aggregates from monomers
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where l0n ¼ fn0=n. The above equation is also obtained by the equilibrium condition
of chemical potentials per monomer in aggregates of various sizes, ln ¼ ln�1 ¼
� � � ¼ l1 (Israelachivili 2011) along with the ideal gas condition, nln ¼ nl0n þ
kBT lnCn.

7.2.1 Linear Aggregates

First let us consider the linear aggregates where thermal undulations are neglected,
e.g., stiff polymer chains such as short cytoskeletal filaments (Fig. 7.5). If each of
the n� 1 bonds of an n-mer has the bond energy b, we have

Dfn0 ¼ � n� 1ð Þb ð7:42Þ

relative to an unbound monomer energy. Substituting (7.42) into (7.40) yields the
concentration of n-mers

Cn ¼ C1e
bb

� �n
e�bb ¼ C1=C

�½ �nC�; ð7:43Þ

where C� ¼ e�bb. Equation (7.43) indicates that C1 can increase up to C� and no
further, otherwise Cn can be large exceeding 1 molar. At concentration C� of the
unbound monomers, called the critical aggregation concentration, large aggregates
can form, as we shall see shortly. Equation (7.43) can be rewritten as

Cn ¼ C�e�an; ð7:44Þ

where

a ¼ ln C�=C1ð Þ ð7:45Þ

is positive because C1 is less than C�. The probability of finding n-aggregates is
given by

P nð Þ ¼ CnP1
1 Cn

¼ ea � 1ð Þe�an: ð7:46Þ

an -mer

monomersFig. 7.5 The process of linear
aggregation and the associated
standard (intrinsic) free energy
change Dfn0
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P nð Þ is an exponentially decaying function of the aggregate size n, which is in a
good agreement with the distribution of the length of actin filaments in cells
(Burlacu et al. 1992). The mean aggregate size is given by

nh i ¼
X1
1

nPn ¼ � ea � 1ð Þ @

@a

X1
1

e�an ¼ 1
1� e�a

: ð7:47Þ

Cn and a are to be found in terms of the total monomer concentration C rather than
C1: We note from (7.43) that

C ¼
X1
n¼1

nCn ¼ C�y= 1� yð Þ2; ð7:48Þ

where y ¼ C1=C�, which is solved in terms of C and C�:

C1

C� ¼
2C=C� þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4C=C� þ 1
p

2C=C� : ð7:49Þ

From (7.49), we find for low concentrations, C � C�; C1 � C 1� 2C=C�ð Þ; so
that a � ln ðC�=CÞ and nh i � 1þC=C�. This indicates the aggregates are mostly
in the monomer state n ¼ 1. As C increases further, C1 is saturated to C�; whereas
the concentration of bound monomers C � C1 increases (Fig. 7.6). For high con-
centration C 	 C�, (7.49) yields

C1 � C� 1� C�

C

� �1=2
" #

ð7:50Þ

so that a � C�=Cð Þ1=2� 1 and nh i � 1=a � C=C�ð Þ1=2	 1: the distribution tends
to be broad with a large average size.

Fig. 7.6 The monomer ðC1Þ and
aggregate concentrations C � C1ð Þ
versus total concentration C: As C
increase C1 approaches C� asymp-
totically whereas C � C1 becomes
dominant
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Overall, the size distribution is the outcome of competitions between energy and
entropy to minimize the net free energy. At low concentration, C\C�, many
small aggregates tend to form in favor of large entropy. As C increases above
C�; fewer but larger aggregates tend to form to minimize the energy.

P7.3 Sketch how the internal energy and entropy change in the equilibrium mix-
ture of the aggregates as the concentration C increases.

P7.4 The distribution Cn (7.44) can also be obtained considering the process
where an n aggregate becomes an nþ 1-aggregate by adding a monomer
An þA1 ! Anþ 1 (see the figure below). The law of mass action for this association
process assures the conditions for the concentrations,

Cnþ 1=CnC1 ¼ e�bDf0

where Df0 ¼ nþ 1ð Þl0nþ 1 � nl0n þ l01
� �

is the intrinsic free energy of association,
which is b for the simple linear assembly. Then the solution of the equation
Cnþ 1=CnC1 ¼ C� where C� ¼ e�bb, is Cn ¼ C�e�an; where a ¼ ln C�=C1ð Þ:

7.2.2 Two-Dimensional Disk Formation

The general principle of the chemical force balance given by (7.40) can be extended
to the aggregates in various shapes by appropriately determining the key factor
Dfn0. Suppose that the monomers assemble to form a two dimensional disk of the n
monomers bound among nearest-neighbors at a distance d (Fig. 7.7). In this case

Dfn0 ¼ �nsbs � nrbr
¼ �nbs þ nrDbr;

ð7:51Þ

where nr is the numbers of the monomers on the rim, ns ¼ n� nr is the number of
other monomers within the disc, and br and bs are their respective bond energies per
monomer. nbs in (7.51) is the surface cohesion energy. nrDbr is the line tension (or
the energy cost for forming the rim), where Dbr ¼ bs � br > 0, because the number
of neighboring monomers (coordination number) is larger within the disk than on
the rim. The disk of radius R has the area pR2 ¼ ngd2, where g is a geometrical
factor such that gd2 is the area per monomer; if the aggregates form hexagonally
packed lattices, g ¼ 1. For large enough n the number of bound monomers on the

rim is nr ¼ 2pR=d ¼ 2 pgnð Þ1=2, so
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Dfn0 ¼ �bsnþ 2p1=2Dbr n1=2; ð7:52Þ

If Dfn0\0, i.e., for n[ nc ¼ 4pgðDbr=bsÞ2, the aggregates form in favor of less
energy. But this is balanced by the configuration entropy that tends to favor for-
mation of many small aggregates.

We now use (7.40) and (7.52) to obtain the size distribution, for n larger than nc:

Cn ¼ e�an�rn1=2 ; ð7:53Þ

where a ¼ ln C�=C1ð Þ; C� ¼ e�bbs ; and r ¼ 2bðpgÞ1=2Dbr. The distribution decays
more steeply than exponential. Unless the rim energy is smaller than thermal
energy, i.e., unless r � 1; Cn is negligibly small for all n, that is, there is no size
distribution. It is because that the large rim energy cost forbids disks to form.
Alternatively, the monomers can condense only into a single large aggregate,
whose size N then is given by

C ¼ C1 þNe�aN�rN1=2 � Ne�aN�rN1=2
: ð7:54Þ

This can be indeed realized by increasing C and also C1 above C�, so that a ¼
ln C�=C1ð Þ becomes negative. Furthermore, the growing two dimensional aggre-
gates, if they are capable of bending, may undergo shape transition into hollow
spheres or capsules as described next.

7.2.3 Hollow Sphere Formation

Two dimensional polymer hollow spheres or capsules of 10–100 nm sizes were
recently synthesized by self-assembling pumpkin-looking molecules called cucur-
biturils with linker molecules hexagonally at the periphery (Kim et al. 2010),
without aid of pre-organized structures or templates. The assemblies, driven by the
side-wise covalent bonding between monomers, grow in two dimension. They
postulated that monomers first self-assemble to circular disks, which then

Fig. 7.7 The self-assembly
of monomers into a disk
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spontaneously bend due to thermal fluctuation and grows to a capsule (a hollow
sphere) (Fig. 7.8).

In this system, two major kinds of energy compete with each other: cohesive
energy, which tends to increase the surface area and bending energy that resists the
bending. The number of monomers in the sphere is for the hexagonal assembly
n ¼ 4pR2ð Þ=d2, where R is the radius of the sphere and d is the distance between
two adjacent monomer units in the aggregate. Compared with an unbound mono-
mer, a bound monomer in the aggregate has lower energy �bs ¼ �qb=2 where b is
the bond energy per linkage and q is the number of interacting neighbors per
monomer called the coordination number. They considered an ideal case in which
every monomer in the aggregate is fully bonded (hexagonally in their case) with
neighboring monomers, i.e., q = 6. The surface cohesive energy is then given by
nbs ¼ 3b 4pR2ð Þ=d2 ¼ 12pbR2=d2. In addition, an energy 8p,s is required to form
the sphere, where ,s is the curvature modulus for sphere (12.20). The total energy
change for forming the sphere then is

Dfn0 ¼ �nbs þ 8p,s: ð7:55Þ

which falls below zero for the n larger than the critical values nc ¼ 8p,s=bs. The
cohesive energy gain dominates over the bending energy cost, driving a hollow

sphere of a radius larger than the critical value Rc ¼ d 2,s=bsð Þ1=2 to form.
Although the energy dictates a small number of large hollow spheres to form as

mentioned above, the entropy favors a large number of small spheres. To determine
the optimal equilibrium size distribution of the spheres, we use (7.40) to find the
concentration of n-spheres ðn [ ncÞ:

Cn ¼ C1
neb �nbs þ 8p,sð Þ ¼ C1=C

�½ �ne�8pb,s ; ð7:56Þ

Let us consider the case in which C is much larger than the critical concentration
C� ¼ e�bbs which C1 approaches asymptotically. The total monomer concentration
is given by

C ¼
X1
nc

nCn

¼ ncync�1 � nc � 1ð Þync
1� yð Þ2 e�8pb,s � 1

1� yð Þ2 e
�8pb,s ;

ð7:57Þ

Fig. 7.8 Proposed mechanism of the polymer nanocapsule formation. Adapted with permission
from Kim et al. (2007, 2010) conveyed through Copyright Clearance Center, Inc.
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where y ¼ C1=C� � 1. Equation (7.57) yields

C1

C� � 1� Ce�8pb,s
� ��1=2

h i
; ð7:58Þ

which indeed is close to 1 because 8p,s 	 kBT: From (7.56) we have

Cn ¼ e�an�8pb,s ; ð7:59Þ

where

a ¼ ln C�=C1ð Þ � Ce�8pb,s
� ��1=2

: ð7:60Þ

The distribution of the aggregate size is exponentially decaying, with the average
size n � 1=a � Ce�8pb,s

� �1=2
that grows like C1=2:

To find the radius distribution P Rð Þ of the spheres rather than the concentration
Cn, we note that they are related by P Rð Þ / Cndn=dR, from which we obtain

P Rð Þ ¼ 2aRe�aR2
: ð7:61Þ

where we note n ¼ 4pR2=d2, and a ¼ 4p=d2ð ÞðCe�8pb,sÞ�1=2. In contrast to PðnÞ,
the radius distribution function P Rð Þ is in the form of a weighted Gaussian with the
average

Rh i ¼
Z1
0

dRRP Rð Þ ¼ 1
4
dC1=4 exp

2p,s
kBT


C1=4: ð7:62Þ

Equation (7.62) predicts that the average radius increases as C1=4 and depends
strongly on the curvature modulus ,s, which can be modulated by solvents. This
result is qualitatively in good agreement with the experimental results Fig. 7.10
(Kim et al. 2010).

Fig. 7.9 The process of hollow
sphere formation from mono-
mers and associated standard free
energy change Dfn0
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Chapter 8
The Lattice and Ising Models

As introduced in Chap. 4, the lattice model is a highly coarse-grained model of
statistical mechanics for particle systems, with built-in excluded-volume interac-
tion. The model can address the structural and thermodynamic properties on length
scales much larger than molecular size. To incorporate the configurational degrees
of freedom of many-particle systems, the system is decomposed into identical cells
over which the particles are distributed. With the short-range interaction between
the adjacent particles included, this seemingly simple model can be usefully
extended to a variety of problems such as gas-to liquid transitions, molecular
binding on substrates, and mixing and phase separation of binary mixtures. For the
particles that are mutually interacting in two and three dimensions, we will intro-
duce the mean field approximations. The lattice model is isomorphic to the Ising
model that describes magnetism and paramagnet-to-ferromagnetic transitions. We
study the exact solution for the Ising model in one dimension, which is applied to a
host of biopolymer properties and the two-state transitions.

Fig. 8.1 Lattice model. The
substrate or volume is decom
posed into many cells, each
of which either occupies a
particle or not
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8.1 Adsorption and Aggregation of Molecules

Adsorption is a process by which molecules bind to a surface from the bulk.
Molecular adsorption onto a finite number of binding sites is ubiquitous in nature,
and is of particular interest in biology (e.g., ligand binding on receptors, protein
binding on DNA). The molecules that adsorb are called adsorbates and the surface
is called the adsorbent or substrate. We are interested in finding the adsorption
isotherm that relates the fraction of adsorbed molecules to the ambient pres-
sure arising from unabsorbed particles at a given temperature. Considering the
single-layer adsorption, we will first study the Langmuir isotherm of the adsorbed
molecules that are non-interacting and immobile, then investigate the effects of
inter-particle interaction.

8.1.1 The Canonical Ensemble Method

We consider that each of M distinguishable sites can bind a molecule. Our system
is N �Mð Þ identical particles adsorbed (the adsorbate) with no mutual interactions,
in the heat bath at temperature T. Our purpose here is to find the thermal behaviors
of the adsorbed particles, the coverage in particular as a function of temperature and
ambient pressure of the background.

Given M and N, the system’s canonical partition function is given by

Z N;M; Tð Þ ¼ M!

M � Nð Þ!N! z
N ; ð8:1Þ

where M!= M � Nð Þ!N!f g is the number of ways to distribute N particles among
M sites: it is the configurational partition function. z is the partition function of a
single adsorbed particle; if only the adsorption on the surface with the energy �� is
included, z ¼ eb�:We can incorporate also the particle’s internal degrees of freedom
by considering that � is a temperature-dependent effective binding energy. Using the
Stirling’s approximation, the Helmholtz free energy of the adsorbate is

F N;M; Tð Þ ¼ �kBT ln Z N;M; Tð Þ

¼ �N�� kBT M ln
M

M � N
þN ln

M � N
N

� �
;

ð8:2Þ

the second term of which is the mixing entropy contribution, rewritten as

�TS ¼ kBTM h ln hþ 1� hð Þ ln 1� hð Þf g; ð8:3Þ

where h ¼ N=M is the coverage.
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The chemical potential then is given by

l ¼ @F
@N

¼ ��þ kBT ln
M
N

� 1
� �

¼ ��þ kBT ln h= 1� hð Þ½ �:
ð8:4Þ

Now, note that the system is at equilibrium with the background, which is a
dilute gas or solution of unbound particles. The background chemical potential,

l ¼ l0 Tð Þþ kBT ln n=n0 Tð Þf g ¼ kBT ln z; ð8:5Þ

thus, is equal to (8.4). n is the density of the unbound particles and z is its fugacity,
which are related to the unbound particle pressure by p ¼ nkBT ¼ a z.
A temperature-dependent constant a Tð Þ ¼ n0 Tð ÞkBTe�bl0 Tð Þ is available from the
data at the reference state subscripted by ‘0’. Using the chemical potential (8.5), we
rewrite the coverage in (8.4) as

h ¼ 1
e�b �þlð Þ þ 1

¼ zeb�

1þ zeb�
¼ p

pþ p0 Tð Þ ; ð8:6Þ

where p0 Tð Þ ¼ a Tð Þe�b� is a quantity that is a function of temperature only. This
type of coverage behavior, depicted by Figs. (3.8) and (7.3), called the Langmuir
adsorption isotherm, has been studied earlier. As the pressure increases indefinitely
the coverage approaches unity asymptotically. The pressure at which coverage is
1/2 is p0 Tð Þ, which depends on the adsorption energy and on the internal degrees of
freedom of the adsorbed particles.

The contribution of the adsorbed particles to surface tension is identified as

c ¼ @F
@A

¼ @F
a@M

¼ kBT
a

ln 1� hð Þ
ð8:7Þ

where A ¼ Ma is the surface area. The surface tension acts on the surface in the
direction opposite to surface (two-dimensional) pressure, which is the force per
unit area to keep the surface from expanding. In the limit of a very small
coverage h � 1; the surface pressure is

�c � kBT
a

h ¼ NkBT
A

; ð8:8Þ

which is a two-dimensional version of the ideal gas law. As h approaches unity, the
pressure diverges to infinity due to the excluded-volume effect.
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8.1.2 The Grand Canonical Ensemble Method

The adsorbate is in reality an open system that can exchange not only its energy but
also the adsorbed particles with the background (Fig. 8.2). One may naturally
consider the grand canonical ensemble theory in which the chemical potential is
given instead of the adsorbed particle number, which can fluctuate. For a pedagogical
reason, we redo the calculation of the earlier section using this theory. The grand can
nonical partition function of the adsorbate is

ZG l;M; Tð Þ ¼
XM
N¼0

ebN lZ N ;M; Tð Þ

¼
XM
N¼0

M!

M �Nð Þ!N !
ebN �þlð Þ;

ð8:9Þ

where N is the number of the adsorbed particles. Equation (8.9) is just the binomial
expansion of

Z l;M; Tð Þ ¼ 1þ eb �þlð Þ
� �M

: ð8:10Þ

This could also have been obtained using the Hamiltonian H ¼ �PM
i¼1 �ni where

ni is either 1 (the site is occupied) or 0 (the site is empty):

ZG l;M; Tð Þ ¼
X
ℳ

e�b H�lNð Þ ¼
X1
ni¼0

exp b
XM
i¼1

ð�þ lÞni
 !

¼
YM
i¼1

X1
ni¼0

eb �þlð Þni ¼ 1þ eb �þ lð Þ
� �M

:

ð8:11Þ

Fig. 8.2 The number of adsorbed
particles N fluctuate in an chem-
ical equilibrium with the back-
ground of unbound particles
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The natural logarithm of the grand partition function yields its primary ther-
modynamic potential, that is, the grand potential:

X l;M; Tð Þ ¼ �kBT ln ZG l;M; Tð Þ
¼ �MkBT ln 1þ eb �þlð Þ

� �
:

ð8:12Þ

The average number of the adsorbed particles is

N ¼ kBT
@

@l
ln ZG l;M; Tð Þ

¼ � @X
@l

¼ M
e�b �þ lð Þ þ 1

;

ð8:13Þ

from which we obtain the expression for the coverage:

h ¼ N
M

¼ 1
e�b �þ lð Þ þ 1

:

This result is same as that obtained from the canonical theory (8.6) but does not
suffer from the approximate nature of the Stirling’s formula; this result is valid for
the nearly-occupied ðN � MÞ as well as nearly-empty ðN� 1Þ situations.

P8.1 Find DN
N and state the condition where this is indeed negligible.

All of the other quantities, e.g., the chemical potential, the entropy, and the
surface tension can be shown easily to be the same as given in the canonical theory
of the earlier section. The grand potential can directly be obtained as

X ¼ MkBT ln 1� hð Þ
¼ cA;

ð8:14Þ

where the second equality follows from (2.31).

8.1.3 Effects of the Interactions

We now include the attraction between the neighboring adsorbed particles. Using
occupation number representation, the Hamiltonian is

H ¼ �
XM
i¼1

�ni � 1
2

X
ijh i

bninj; ð8:15Þ
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were ijh i denotes every pair of particles that mutually attract, and b is the strength of
the bond energy. The model can be mapped into the Ising model for ferromag-
netism with non-vanishing magnetic field as shown next. For the one-dimensional
problem, the exact solution is well known, and will be studied next. For the present
problem, which is two-dimensional, the exact solution is not available in general, so
an approximation is sought.

To study the effect of the interaction within the canonical ensemble theory, we
introduce the Bragg-Williams approximation, according to which the internal
energy is first approximated by

E ¼ Hh i � �
XM
i¼1

�h� 1
2

X
ijh i

bh2

¼ �M �hþ 1
2
qbh2

� �
;

ð8:16Þ

where q is the coordination number. For the two dimensional cubic lattice
(Fig. 8.1), q ¼ 4: The approximation may be naturally called the mean field
approximation (MFA) in that the fluctuating variable ni is replaced by its mean
h ¼ nih i ¼ N=M. Using the mixing entropy given by (8.3),

S ¼ �kBM h ln hþ 1� hð Þ ln 1� hð Þf g;

the free energy is given by

F h;M; Tð Þ ¼ E � TS

¼ M ��h� 1
2
qbh2 þ kBT h ln hþ 1� hð Þ ln 1� hð Þf g

� 	
;

ð8:17Þ

from which we can obtain the chemical potential

l ¼
@F N

M;M; T
� �
@N

¼ @F h;M; Tð Þ
M@h

¼ ��� qbhþ kBT ln h= 1� hð Þð Þ; ð8:18Þ

leading to the coverage

h ¼ 1
eb ���qbh�lð Þ þ 1f g : ð8:19Þ

In the absence of the bond energy b, (8.18) and (8.19) are identical to (8.4) and
(8.6). The solution of (8.19) for the coverage h in terms of T can be obtained
numerically or using a graphical method.

Because an adsorbed particle is in chemical equilibrium with an unbound
particle in the background, the fugacity z � ebl of the absorbent is set to be
identical to that of the ambient gas of unbound particles, which is a�1p (p =
ambient pressure). Then (8.19) becomes
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h ¼ p
pþ p0 T ; hð Þ ; ð8:20Þ

where

p0 T ; hð Þ ¼ a exp½�b �þ qbhð Þ� ð8:21Þ

is reduced by the factor e�bqbh from that in the Langmuir isotherm (the case with
b ¼ 0Þ, and thus the adsorption is enhanced due to the mutual interaction, as will be
further detailed below.

Figure 8.3 depicts the coverage h as a function of p for various values of qbb. As
qbb increases, the adsorption isotherm deviates significantly from the Langmuir
isotherm ðqbb ¼ 0Þ: Considering for an example the case with b� ¼ 1; the coverage
rises dramatically as qbb increases (Fig. 8.3). This is the cooperate effect of the
attractive interaction on the adsorption, which we studied earlier in ligand binding
(Chap. 3).

Above a certain critical value of qbb, the curve develops a wiggle (dashed line).
This indicates the presences of a thermodynamically unstable region in which
@h=@p\0; i.e., the coverage decreases as ambient pressure increases. This phe-
nomenon is an artifact of the mean field approximation that we used. What is
observed in experiment is the vertical line that bisects the wiggle; it occurs at
qbb ¼ 4:8 in the theory, as shown in Fig. 8.3. Along the line the adsorbate
undergoes abrupt phase transition from a dispersed phase with h1 to a con-
densed phase with h2 at a constant pressure.

8.1.4 Transition Between Dispersed and Condensed Phases

Now we consider the detail of the critical condition for the transition by focusing on
the case with � ¼ 0: For qbb above the critical value the h� p curve yet develops a
wiggle. The critical point is the inflection point where dp=dh ¼ 0 ¼ p 1=h 1� hð Þ�ð
qbbÞ; d2p=dh2 ¼ 0 ¼ p 2h� 1ð Þ= h 1� hð Þ½ �2, i.e., via (8.20) and (8.21)

Fig. 8.3 The adsorption isotherm
of particles with bond strength
b and coordination number q, for
the surface binding energy � ¼ kBT :
h is the coverage and p is the
ambient pressure
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h ¼ 1=2; and qbb ¼ 4; leading to p ¼ ae�2: ð8:22Þ

At T lower than the critical temperature Tc ¼ qb= 4kBð Þ, (or for an attraction
strength qb higher than qbc ¼ 4kBTÞ, and simultaneously at an ambient pressure
lower than pc ¼ ae�2, the condensation to an aggregate occurs with a discontinuous
jump in the coverage h:

P8.2 If the molecules adsorb on surface with the binding energy �; how much is the
coverage affected? Consider that the b has a strength of the covalent bonding and
h is nearly 1.

The vertical isotherm in the h� p diagram is obtained by a semi-empirical
scheme called the Maxwell construction as in the c� h phase diagram given below.
The surface tension c is obtained by

c ¼ @F N=M;M; Tð Þ
a@M

¼ f h; Tð Þ
a

þM
@f h; Tð Þ
a@h

@h
@M

¼ 1
a

f h; Tð Þ � lhf g

¼ kBT
a

ln 1� hð Þþ q
2a

bh2;

ð8:23Þ

where f h; Tð Þ ¼ F h;M; Tð Þ=M ¼ �qbh2=2þ kBT h ln hþ 1� hð Þ ln 1� hð Þf g is
the Helmholtz free energy per site and the relation h ¼ N=M should be noted in
taking the derivative with respect to M.

The value �c is the surface pressure, which should not be confused with the
three-dimensional ambient pressure p. The value of �c is depicted as a function of
h at a given temperature (Fig. 8.4). For small bond strength qb, �c increases
monotonically with h as it does in the absence of the interaction. As the bond
strength increases above the critical value qb ¼ 4kBT already mentioned, the
pressure decreases with h due to attraction. As h increases further to approach unity,
the surface pressure �c rises sharply due to the excluded-volume effect.
Consequently there is a portion (dashed line) where �@c=@h is negative. Since h
decreases as the pressure ð�cÞ rises, this is the thermodynamically unstable
portion. This trend is an artifact of the MFA as mentioned earlier. To remedy this, a
straight line is constructed from a point 1 corresponding to the disperse phase to the
point 2 corresponding to the condensed phase.

The straight line is determined as follows. Along the curve at a fixed temperature
T, dl ¼ �adc=h, (see (2.25) with A=N ¼ a=h; f ¼ c), which, upon integration from
point 1 to 2, becomes l 2ð Þ � l 1ð Þ that is zero for the phase equilibrium. Because the
integral sweeps an area along the c� h curve, the straight line should be chosen to
bisect the wiggle into two equal areas ðA1 ¼ A2Þ; this is theMaxwell construction
of explaining the gas-liquid phase transition from the van der Waals equation of
state, which stems from the same mean-field theory. Along the straight line (i.e., at
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constant pressure), the condensed (liquid) phase ðc2; h2Þ coexists with the dispersed
(gas) phase ðc1; h1Þ in a phase-separated state.

The critical condition of the transition is given by the inflection point at which
dc=dh ¼ � 1� hð Þ�1 þ qbh=a ¼ 0 and d2c= dh2


 � ¼ � 1� hð Þ�2 þ qb=a ¼ 0: These
lead to just the conditions (8.22), h ¼ 1=2 and qbb ¼ 4. When qb > kBT=4 with
T fixed, (or when T\Tc ¼ qb= 4kBð Þ with b fixed), and when �c is lower than the
critical pressure �cc ¼ qb= 4a ln 2� 1=2ð Þf g, the condensation can occur leading to
the aggregates of much higher coverage.

P8.3 What is the value of constant pressure p that represents the vertical line in
Fig. 8.3?

The theoretical results given here can also be applied to adsorption and con-
densation phenomena in one and three dimensions. The MFA, which is better in
higher dimension, can be quite poor in one dimension, where no phase transition
occurs at a finite temperature, contrary to the MFA prediction.

8.2 Binary Mixtures

8.2.1 Mixing and Phase Separation

The lattice model can be adapted to binary mixtures of liquids, colloids, polymers,
as well as lipid mixtures in membranes and non-membrane-bound liquid drops
within cells (Anthony et al. 2014). We consider an incompressible mixture in
which every cell is occupied by a particle of either species A or species B, so that
the total number of molecules N ¼ NA þNB ¼ M is fixed. The occupation number
ni is 0 when the cell i is occupied by a particle of species A and is 1 when it is
occupied by a particle of species B. Only particles in the nearest neighborhood
interact, with bond energies bAA; bBB; bAB ¼ bBA, for A� A, B� B; and A� B pairs
respectively. The Hamiltonian can be written as

Fig. 8.4 The two dimen-
sional pressure �c versus
coverage h for various bond
strength b, with surface bind-
ing energy � ¼ 0: The
straight isotherm is the dis-
persed a and condensed
phase b coexistence line
drawn by the Maxwell con-
struction of the equal areas
ðA1 ¼ A2Þ
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H ¼ � 1
2

X
ijh i
½bAA 1� nið Þ 1� nj


 �þ bBBninj þ bAB 1� nið Þnj þ bABni 1� nj

 ��;

ð8:24Þ

where the sum is over all qN=2 nearest neighbor pairs, and q is the coordination
number. Then the Hamiltonian can be rewritten as

H ¼ 1
2

X
ijh i

b 1� nið Þnj þ
X
i

hni þC; ð8:25Þ

where b ¼ bAA þ bBB � 2bAB, h ¼ qðbAA � bBBÞ=2 chosen to be negative, and C is
the (trivial) constant energy that the mixture would have if the particles were
identical.

We use the mean field approximation as in the earlier section. Replacing ni in the
Hamiltonian by the relative coverage of species B

h ¼
PM

i ni
� 

N
¼ NB

N
; ð8:26Þ

the internal energy then is approximated as

E ¼ N
1
2
qb 1� hð Þhþ hh

� 	
: ð8:27Þ

Adding to this the contribution from the mixing entropy yields the Helmholtz free
energy

F ¼ E � TS

¼ N
qb
2
h 1� hð Þþ hhþ kBT h ln hþ 1� hð Þ ln 1� hð Þf g

� 	
:

ð8:28Þ

(a) (b)

Fig. 8.5 a Random mixing and b phase separation of particles in a completely-filled lattice
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The entropy alone will favor mixing into one homogeneous phase, because
the contribution �TS of entropy to the free energy is negative. If b is negative so
that the internal energy is also negative, the free energy is negative for all T and the
entire composition range. This means that the system is stable as a homogeneous
mixture and, for the symmetric mixture where bAA ¼ bBB, has the minimum at
h ¼ 1=2 (Fig. 8.6a) indicative of complete miscibility.

If b is positive, the energy which now can be positive, compete with the mixing
entropy. For bqb below a critical value, which is bqb ¼ 4 in a symmetric mixture
(show this), the entropy dominates the energy to retain a single minimum in the free
energy landscape. At a large value of bqb above the critical value, the repulsion
becomes so dominant that the free energy landscape exhibits two minima at h ¼ h1
and h ¼ h2 (Fig. 8.6b). The curve (dashed line) between these two minima are
concave, signaling that the homogeneous phase mixture is unstable with respect to
formation of A-rich phase with h ¼ h1 and B-rich phase with h ¼ h2: For a mixture
of given qb, such two-phase separation occurs for T\Tc ¼ qJ= 4kBð Þ; that is, by
quenching the system below the critical temperature Tc:

The condition of the two separate phases at equilibrium is set by the equality of
the chemical potential of each species, lA h1ð Þ ¼ lA h2ð Þ, lB h1ð Þ ¼ lB h2ð Þ: Then
the tangent @F=N@h ¼ l (called the relative chemical potential), which, by noting
NA þNB ¼ N, is equal to @F NA;NBð Þ=@NB ¼ lB � lA, should be the same at h1
and h2, namely, the curve has a common tangent line (Fig. 8.6b), whose slope is
zero for a symmetric mixture ðlB ¼ lAÞ. The common tangent line, which indicates
the lower free energy than the concave curve, represents the true free energy for
h1\h\h2; the free energy now is given linearly in h,

(a) (b)

/
/

0 11 2

/

/
0 1

Fig. 8.6 a The entropy (S/N) and free energy (F/N) per particle versus the coverage h of the B
particles, for the case b\0, b the same for b[ 0. In this case the free energy landscape has two
minima interconnected by a straight line that describes the phase-separation
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F ¼ Nl h1ð ÞhþFA ¼ Nl h1ð Þ h� 1ð ÞþFB

¼ ðFB � FAÞhþFA;
ð8:29Þ

where FA and FB are the free energies of single components A and B, respectively.
Evidently (8.29) is the lever rule in which the two phases coexist in a
phase-separated state for h1\h\h2 (Fig. 8.6b).

P8.4 Explain why oil and water do not mix unless one component is dilute.

P8.5 Find the critical conditions for qb and h to form the phase separation for an
asymmetric mixture h 6¼ 0ð Þ at a constant temperature T.

For h\h1 or h[ h2, we have the relative chemical potential,

l ¼ @F
N@h

¼ 1
2
qb 1� 2hð Þþ hhþ kBT ln

h
1� h

� �
;

from which one obtains

h ¼ 1
1þ exp �b l� hhþ qb h� 1=2ð Þf g½ � : ð8:30Þ

For the symmetric ðh ¼ 0; l ¼ 0Þ and immiscible ðb[ 0Þ cases in which com-
ponent B is very dilute, h � 1, we have

h ¼ e�qb= 2kBTð Þ: ð8:31Þ

This is the equilibrium constant for exchanging a A molecule and a B molecule both
of which are in their pure media.

8.2.2 Interfaces and Interfacial Surface Tensions

In the case where the repulsive energy between two different species predominates
over the entropy of mixing, two phases well separate forming domain boundaries or
interfaces as shown in Fig. 8.5b. If there are n molecules of species A and B each at
the two dimensional interface, NA � n and NB � n molecules are within the three
dimensional bulk phases of A and B. The interfacial surface tension, which is the
free energy derivative with respect to the change of the surface area, is given as
follows. Since each phase are ordered, their entropies are zero, while the internal
energy is
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E ¼ � q
2

NA � nð ÞbAA þ NB � nð ÞbBBf g � n
q� 1
2

bAA þ bBBð Þþ bAB

� �
; ð8:32Þ

where the first term is from the bulk and the second from the interface.
The surface tension is given by

c ¼ @F
@A

� �
¼ @E

a@n

¼ 1
a

bAA þ bBBð Þ=2� bABf g ¼ b
2a

;

ð8:33Þ

where A ¼ na is the total area of the interface and a is the area per site. The surface
tension, which is positive for this case, describes the energy of transferring a
molecule from the two bulk media into the interface. For the surface of a pure media
composed of A molecules in contact with the vacuum or a gas, one may apply
(8.33) to find the surface tension; with bBB ¼ 0 ¼ bAB, it yields

c ¼ bAA= 2að Þ: ð8:34Þ

These results can be adapted to line tension of a domain in two dimensions, with
a interpreted as the size of a molecule.

8.3 1-D Ising Model and Applications

The Ising model is a remarkably simple model to describe phase transitions and
cooperative phenomena, and has numerous applications. The one-dimensional Ising
model, in particular, represents one of few exactly solvable models in statistical
mechanics. Its partition function not only provides the exact thermodynamic and
correlational behaviors in magnets but also is applicable to a multitude of linear
chains in which each unit has two internal states. For this reason, we study the exact
solution of the Ising model in detail.

8.3.1 Exact Solution of 1-D Ising Model

Consider a linear chain with N spins, where each site i can assume two possible
states ri ¼ þ 1;�1 for the spin up and down (Fig. 8.7). A particular configuration
or microstate of the lattice is specified by the set of variables fr1;r2. . . rNg for all
lattice sites.
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The Hamiltonian is

H ¼ �J
XN
i¼1

ririþ 1 � h
XN
i¼1

ri: ð8:35Þ

where J is the nearest neighbor coupling constant and h is proportional to an
external magnetic field. With the correspondence ri ¼ 2ni � 1 where ni ¼ 1 and 0
for spin up and down, and J ¼ b=4; the Ising model is isomorphic to the lattice
model (8.15). Consider that N is large enough to neglect the end effects so that we
are free to use the periodic boundary condition, r1 ¼ rNþ 1: The Hamiltonian is
rewritten as

H ¼
XN
i¼1

Hi;iþ 1; ð8:36Þ

where

Hi;iþ 1 ¼ �Jririþ 1 � h
2
ðri þ riþ 1Þ: ð8:37Þ

Then the partition function is given by

Z ¼
X
r1¼	1

e�bH1;2 . . .
X

rN¼	1

e�bHN;Nþ 1

¼
X
ri¼	1f g

r1 Pj jr2h i r2 Pj jr3h i. . . rN�1 Pj jrNh i rN Pj jrNþ 1h i; ð8:38Þ

where

P ¼ eb Jþ hð Þ e�bJ

e�bJ eb J�hð Þ

� �
ð8:39Þ

is a transfer matrix. The partition function is then written as

Z ¼
X
r1¼	1

hr1 PN
�� ��r1i ¼ Tr PN : ð8:40Þ

⋯Fig. 8.7 The ising model in
one-dimension N spins are
subject to a magnetic field
proportional to h

134 8 The Lattice and Ising Models



The traced ðTrÞ quantities are invariant under a transformation of the basis; in
the basis P is diagonal (8.40) can be expressed in terms of the two eigenvalues k	
of P with kþ [ k�:

Z ¼ kNþ þ kN�

¼ kNþ 1þ k�
kþ

� �N
 !

� kNþ ;
ð8:41Þ

where the last can be an excellent approximation provided that N is very large.
The eigenvalues are obtained by the secular determinant P� kIj j ¼ 0:

k	 ¼ ebJ cosh bh	 sinh2 bhþ e�4bJ
 �1=2n o
: ð8:42Þ

The free energy then is

F ¼ �kBT ln Z

¼ �NkBT ln ebJ cosh bhþ sinh2 bhþ e�4bJ
 �1=2n oh i
:

ð8:43Þ

The average magnetization per site is proportional to

m ¼ r ¼ � @F
N@h

¼ sinh bh

sinh2 bhþ e�4bJ

 �1=2 ; ð8:44Þ

In the absence of an external field h ¼ 0ð Þ, m = 0, i.e., spontaneous magnetization
does not occur at any finite temperature, i.e., no ferromagnetic phase transition
occurs in one dimensional spin systems. The reason is that the entropy associated
with randomizing the spins dominates over the internal energy associated with
aligning the spins at any temperature. This domination occurs because the number
of nearest neighbors is too small to enable formation of a sufficient number of
attractive pairs in one dimension. However, in higher dimensions, the number of
nearest neighbor attractions is large enough to induce ferromagnetic transition. As
temperature approaches zero, sinh bh 
 e�2bJ ;F ¼ �NJ, and m = ±1; this result
suggests that ferromagnetic transition to perfectly aligned spins occurs only at
T ¼ 0. At a finite temperature, this perfect alignment occurs only when h is very
high.

Let us turn our attention to the correlation function

C nð Þ ¼ r1rnþ 1h i � r1h i rnþ 1h i: ð8:45Þ

8.2 Binary Mixtures 135



When h ¼ 0 this equation can be written as

C nð Þ ¼ r1rnþ 1h i
¼ 1

ZN Jð Þ
X
ri¼	1f g

ðr1r2Þðr2r3Þ � � � ðrnrnþ 1Þ exp bJiririþ 1ð Þ

¼ 1
ZN Jð Þbn

@nZN J1 � � � Jnþ 1ð Þ
@J1 � � � @Jnþ 1

� 	
Ji¼J

;

ð8:46Þ

where

ZN J1 � � � Jnþ 1ð Þ ¼
X
ri¼	1f g

exp bJiririþ 1ð Þ ¼ 2N cosh bJ1 � � � cosh bJN : ð8:47Þ

One can derive

C nð Þ ¼ tanh bJð Þn

¼ e�n=n;
ð8:48Þ

where n is the correlation length given by

n ¼ �½ ln tanh bJð Þ��1: ð8:49Þ

Because tanh bJ\1, the correlation length is positive. As T approaches zero the
correlation length diverges like

n ¼ 1
2
ebJ : ð8:50Þ

If J 
 kBT , the orientations of the spins are correlated over a long distance.

8.3.2 DNA Melting and Bubbles

The 1-D Ising model can be applied to various problems of linear biopolymers
composed of interacting subunits each with two states. One primary example is the
problem of molecular binding on polymer which we discussed in an earlier section.
As other prominent examples we consider two similar problems of biopolymer
conformational transitions: local and global melting of double stranded DNA
(Fig. 8.8a), and the helix-to-coil transition (Fig. 8.8b).

Two single strands of a DNA molecule are bound into a double-helix structure
by hydrogen-bonding and stacking interactions along complementary base-pairs
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(bp). The thermal excitation can induce global denaturation or melting, namely,
complete separation into the two single stranded DNA, above the melting tem-
perature ðTmÞ of about 350 K. This arises from competition between entropically
favorable single-strand (ss) state and energetically favorable double-strand
(ds) state. For a process to occur spontaneously the associated free energy change
DF ¼ DE � TDS should be negative. For T [ Tm, the denaturation proceeds as the
entropy gain TDS[ 0 dominates over the energy change DE[ 0; to render a
decrease of the free energy. However, when T\Tm, ds state is retained because for
the binding process the energy change DE\0 dominates over the entropy decrease
TDS\0.

Even below the melting temperature, due to ubiquitous thermal fluctuation, a
local opening of the duplex structure, called a bubble, can occur (Fig. 8.9), as a
precursor to melting. But the bubbles in an unconstrained dsDNA occur rarely at
body temperature T ffi 310


K because it costs the energy much higher than kBT

to initiate a base pair (bp) opening. Real DNA has heterogeneous sequences with
A-T and G-C bp bounded by two and three hydrogen bonds respectively, so the
bubble formation is more likely to occur in an A-T rich region.

We can adopt the Ising model to study the conditions of local and global
denaturation in sequence-homogeneous DNA. Symbols ri ¼ þ 1;�1 represent the
bound and unbound bp states respectively (Fig. 8.9). To get some idea of the
energy parameters involved, consider a bubble domain consisting of l open bps that
starts from a junction at site i ¼ k and terminates at i ¼ kþ lþ 1 (Fig. 8.9).
Because ririþ 1 are −1 at i ¼ k and i ¼ kþ l, and those for the other nearest
neighbors are 1, the energy required to form a bubble of size l from a completely
closed duplex is

Fig. 8.8 a A double stran-
ded DNA fragment can dena-
ture (melt) into two single
stranded DNA fragments
above a melting temperature
Tm, b a single biopolymer
helix can transform to a coil
above Tm

Fig. 8.9 A schematic figure
of the unbound base pairs
nucleated into a bubble of the
size l
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El ¼ 4Jþ l 2hð Þ for l� 1: ð8:51Þ

Here 2h is identified as the bp binding energy per pair, and 4J is the energy to initiate
the bubble opening. The values of the parameters reflect the thermal undulations of
the chain that are not incorporated by the two state variables and therefore depend on
temperature. We take J� 3kBT; h� 0:2kBT; at T ¼ 310


K which we will consider

from now on (Palmeri et al. 2008).
The average number of open base pairs is obtained as

No ¼ 1
2

XN
i¼1

1� rih ið Þ ¼ 1
2
N 1� rh ið Þ; ð8:52Þ

where the latter equality holds for a homogeneously-sequenced DNA, the case
which we will consider. Using the result for rh i above we find the fraction of open
bps:

ho ¼ No

N
¼ 1

2
1� sinh bh

sinh2 bhþ e�4bJ

 �1=2

" #

� e�4bJ= 4 sinh2 bh

 �

;

ð8:53Þ

where in the second line we use the approximation sinh2 bh 
 e�4bJ at T ¼ 310K.
Equation (8.53) shows that ho sensitively depends on J. For the values of the
parameters mentioned above, we have

ho � 4� 10�4; ð8:54Þ

which is very small, meaning that the duplex structure is quite stable under physi-
ological conditions. This stability is due to the relatively large value of the bubble
initiation energy 4J, which originates from stiff stacking interaction. If J were to be
zero, ho would approach the simple result for the non-interacting two state model
(3.15)

ho ¼ 1= 1þ e2bh

 �� 1=2: ð8:55Þ

This means that the double strand stability is disrupted in the absence of the
stacking interaction.

The average number of the bubbles Nb is given by

Nb ¼ 1
2

XN
i¼1

1� ririþ 1h ið Þ; ð8:56Þ
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because ririþ 1 ¼ �1 at the junctions between bound and unbound bps. By noting

XN
i¼1

ririþ 1h i ¼ @

b@J
ln Z; ð8:57Þ

we can obtain

Nb ¼
Ne�4bJ sinh2 bhþ e�4bJ


 ��1=2

cosh bhþ sinh2 bhþ e�4bJ

 �1=2 : ð8:58Þ

Under physiological conditions, the fraction of the bubble domains is

hb ¼ Nb=N � e�b 4Jþ hð Þ= sinh bh: ð8:59Þ

This is also a very small quantity, so only for a DNA fragment longer than N �
sinh bh=e�b 4Jþ hð Þ, the average number of bubbles is appreciable. If J ¼ 0; then
(8.58) yields

hb ¼ 1

2 cosh2 bh
: ð8:60Þ

P8.6 Calculate the bp correlation function for dsDNA at body temperature
T ¼ 310


K. Find the correlation length.

P8.7 Show that the probability of forming a single bubble of size n in a homo-
geneous DNA is much higher than that of forming two separate bubbles of the same
total size, say, sizes n − m and m for each.

8.3.3 Zipper Model for DNA Melting and Helix-to Coil
Transitions

Because the bubble initiation energy 4J is much larger than the base pairing energy
2h in dsDNA, an open bp, once formed, persists to grow rather than multiple
open bps emerge separately. This is the cooperative effect arising from the chain
connectivity. Therefore, for short DNAs, open bps tend to exist only within a
bubble domain (Lee and Sung 2012). This single-domain model, called the
Zipper model, provides a more direct way to calculate the average size of the
bubble and to assess the transition to global denaturation, because we consider the
bubble size l instead of fr1;r2 � � � rNg, as the relevant degree of freedom. Using the
effective Hamiltonian of the bubble, El ¼ 4Jþ l 2hð Þ (8.51), the partition function is
given by
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Z ¼ 1þ
XN�2

l¼1

wle
�bEl ; ð8:61Þ

where the first term ‘1’ represents the case in which bubbles are absent (Fig. 8.10).
The multiplicity wl is the number of ways to place the bubble of size l within N � 2
sites:

wl ¼ N � 1� l: ð8:62Þ

Introducing parameters s ¼ e�2bh; and t ¼ e�4bJ , one can find the partition
function:

Z ¼ 1þ
XN�2

l¼1

N � 1� lð Þtsl ¼ 1þ ts

s� 1ð Þ2 sN�1 � N � 1ð ÞsþN � 2
� �

: ð8:63Þ

The fraction of the open bps in a chain is given as

ho ¼ hli
N � 2

¼
PN�2

l¼1 l N � 1� lð Þtsl
N � 2ð ÞZ ¼ s

N � 2ð ÞZ
@Z
@s

¼ ts s� 1ð Þ�3 N � 2ð ÞsN � NsN�1 þNs� N � 2ð Þ½ �
N � 2ð Þ 1þ ts s� 1ð Þ�2 sN�1 � N � 1ð ÞsþN � 2½ �

n o ð8:64Þ

The Zipper model can be applied to a variety of two-state transitions in
biopolymers when the transition factor s and the initiation factor t are available. In
addition to DNA melting, helix-coil transition, which may be also called
helix-melting, is a famous example. The a-helix is the most common secondary
structure found in globular proteins, where the polypeptide is twisted by hydrogen
bonds between the residues. As temperature increases, a helical structure undergoes
a transition into a random coil conformation, akin to DNA melting. The confor-
mational state of chain is described by two states for each residue, either helical
state or coiled state. The free energy change associated with the helix melting is 2h,
while the energy cost to initiate a coiled residue from a helical one is 4J.

Figure 8.11a depicts how ho; the fraction of the open bp or coiled residues,
calculated from (8.64), varies with s for values of the parameter t. If t ¼ 1; there is
no nearest-neighbor coupling ðJ ¼ 0Þ; so ho increases slowly with s following ho ¼
s= sþ 1ð Þ as in (3.15). If t � 1, ho is negligibly small for s < 1, but rises abruptly to

Fig. 8.10 Diagrammatic rep-
resentation of the partition
function forDNAdenaturation
with bubbles of size l
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1/2 and eventually to 1 as s approaches 1. The figure is indistinguishable from that
obtained using the exact Ising model result, the first equation in (8.53), attesting the
validity of the single domain approximation. The sharp melting transition for
very small t is due to cooperative effect of the interaction with the strength
J� kBT; but is not a phase transition, which only occurs at T ¼ 0 in
one-dimensional systems, as shown by the 1D Ising model. The inflection point
s ¼ 1, ho ¼ 1=2 is the melting point.

In order to find the melting curve ho directly as a function of T, we must consider
the physical nature of h explicitly, its temperature dependence in particular. To do so,
we exploit the fact that 2h is the free energy (Helmholtz or Gibbs) of breaking a bp or
a helix, written as 2h ¼ De0 � TDs0: The quantity has two contributions: an ener-
getic (or enthalpic) one De0; and an entropy gain Ds0 that are associated with the
unbinding of a double strand or a helix into two single-stranded chains or a coiled
residue; the latter are relatively flexible, so have more entropies. At the melting point,
h ¼ 0; so 2h ¼ De0 1� T=Tmð Þ where Tm ¼ De0=Ds0 is the melting temperature.
With this input, we calculate (8.64) and construct the ho � T melting curve as
Fig. 8.11b.

Furthermore, one can find

d ln s
dT

¼ � d b De0 � TDs0ð Þf g
dT

¼ De0
kBT2 ; ð8:65Þ

which is identical to (7.16) or (7.19) with equilibrium constant s ¼ e�2bh for the
melting transition. Equation (8.65) applied at the melting point yields

De0 ¼ kBT2
m

ds
dho

dho
dT

� �
T¼Tm;s¼1

: ð8:66Þ

Equation (8.66) tells us that the internal energy (or enthalpy) change of melting can
be obtained from the slopes of the curves dho=ds and dho=dT at the melting point,
s ¼ 1 ðT ¼ TmÞ and ho ¼ 1=2:

(a) (b)

Fig. 8.11 The melting curves, the fraction of the melt regions ho versus s ¼ e�2bh and ho versus
T for various values of t ¼ e�4bJ :

8.2 Binary Mixtures 141



Further Reading and References

K.A. Dill, S. Bromberg, Molecular Driving Forces, 2nd edn. (Garland Science, 2011)
M. Plischke, B. Bergersen, Equilibrium Statistical Physics, 3rd edn. (2006)
A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley, 1997)
A.A. Hyman, C.A. Weber, F. Jülicher, Liquid-liquid phase separation in biology. Annu. Rev. Cell

Dev. Biol. 30, 39–58 (2014)
J. Palmeri, M. Manghi, N. Destainville, Thermal denaturation of fluctuating DNA driven by

bending entropy. Phys. Rev. Lett. 99, 088103 (2007); J. Palmeri, M. Manghi, N. Destainville,
Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble
nucleation. Phys. Rev. E 77, 011913 (2008)

O. Lee, W. Sung, Enhanced bubble formation in looped short double-stranded DNA. Phys. Rev. E
85, 021902 (2012)

142 8 The Lattice and Ising Models



Chapter 9
Responses, Fluctuations, Correlations
and Scatterings

The way how matter responds to an external stimulus can reflect a certain important
aspect of its internal properties. In this chapter we introduce the static linear
response theory that relates the response function of the matter with the underlying
fluctuation and correlation of the variable conjugate to the stimulus. Also we
directly relate the correlation of density fluctuation to the configurational organi-
zation (structure factor) that is probed by scattering of quanta and radiations onto
the matter, giving some prevalent examples. These relations are important to
unravelling the structural order and correlation in condensed and complex materials
on various length scales.

9.1 Linear Responses and Fluctuations:
Fluctuation-Response Theorem

The response or susceptibility functions are quantitative means of expressing the
relationships between the cause and effect. Typical examples are electrical and
magnetic susceptibilities, which describe the polarizations induced respectively by
applied electrical and magnetic fields. Also, we already have seen an important
thermodynamic response function, the heat capacity, which describes the amount of
heat needed to increase the temperature of the system CV ; the heat capacity of a
system at a temperature T is proportional to the mean square fluctuation or variance
of the energy (3.40), rewritten as,

DEð Þ2
D E

¼ �kBT
@ Eh i
@T

¼ kBT
2CV :

This is a remarkable formula which shows that the responses (e.g., heat capacity)
is directly related to the fluctuations inherent in the system. The rms fluctuation
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of the energy h DEð Þ2i1=2 is negligible compared the average value Eh i in normal
macroscopic systems, but may become significant in small systems. Anomalously,
at the critical point, at which the system is infinitely susceptible to an external
stimulus, the rms fluctuations diverge to infinity. Here we study the relation
between the fluctuations and responses with generality, which we call the
fluctuation-response theorem.

Consider that a system with the Hamiltonian H0 Mf g is surrounded by a
background of temperature T and perturbed by a certain external field or force fi.
The total Hamiltonian is H ¼ H0 þH0 where the perturbation term is

H0 ¼ �fiX i: ð9:1Þ

The X i is the microscopic displacement that is conjugate to fi; its average X ih i is
the macroscopic displacement Xi introduced in Chap. 2 (Table 2.1).

The average of a variable X j over a canonical distribution of the perturbed
system is

X j
� � ¼ P

M X je�bH Mf gP
M e�bH Mf g

�
P

M X je�bH0 1þ bfiX ið ÞP
M e�bH0 1þ bfiX ið Þ :

ð9:2Þ

Here we consider that fi is small enough to allow the linear approximation ebfiX i �
1þ bfiX i: In terms of the average in the absence of the perturbation,
� � �h i0 ¼

P
M � � � e�bH0=

P
M e�bH0 , (9.2) can be rewritten to the linear order in the

fi:

X j
� � � X j

� �
0 þ bfihX jX ii0

1þ bfihX ii0
� X j

� �
0 þ bfi X jX i

� �
0� X j

� �
0 X ih i0

� �
¼ X j

� �
0 þ bfi DX jDX i

� �
0

ð9:3Þ

where DX i ¼ X i � X ih i0 and DX j ¼ X j � X j
� �

0 are the fluctuations about the
means X ih i0 and X j

� �
0 respectively.

Defining the average change DXj ¼ DX j
� � ¼ X j

� �� X j
� �

0 caused by fi, (9.3)
can be rewritten as

DX jDX i
� �

0¼ kBT
@

@fi
DXj: ð9:4Þ
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If i ¼ j, then

DX2
i

� �
0 ¼ kBT

@

@fi
DXi; ð9:5Þ

which states that the intrinsic fluctuation of a system’s variable can be obtained
by its average response to a perturbation of the field or force that is its
conjugate.

For example, for Xi ¼ M (magnetization) and Xi ¼ P (polarization), which are
conjugate to the magnetic (H) and electric (E) fields (Table 2.1), (9.5) yields

DMð Þ2
D E

0
¼ kBT

@

@H
DM ¼ kBTvM ð9:6Þ

DPð Þ2
D E

0
¼ kBT

@

@E
DP ¼ kBTvP; ð9:7Þ

where vM and vP are magnetic susceptibility and electrical susceptibility respec-
tively. If X i ¼ V (solution volume), X i ¼ X (chain extension), then

DVð Þ2
D E

0
¼ �kBT

@

@p
DV ¼ kBTVKT ð9:8Þ

DXð Þ2
D E

0
¼ kBT

@

@f
DX ¼ kBTLks; ð9:9Þ

where KT and ks are isothermal compressibility and stretch modulus. These sus-
ceptibilities or response functions are directly related to the internal fluctuations of
the associated variables in the absence of the fields or forces.

P9.1 We shall learn later in Chap. 11 the Marko-Siggia model where the force–
extension f � Xð Þ relation of a DNA fragment of the persistent and contour lengths
lp and L is

f ¼ kBT
4lp

1� X
L

� ��2

�1þ 4X
L

" #
:

Find the extension fluctuation h DXð Þ2i0 of the chain extended by a force f0:

Another important example is the fluctuation of particle number N ,

DNð Þ2
D E

0
¼ kBT

@

@l
DN; ð9:10Þ
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which is related to the response to chemical work H0 ¼ lN done on the system.
This equation is identical to (3.64); from @l=@Nð ÞT ;N ¼ V=N2KT (3.67), (2.39), we

have h DNð Þ2i0 ¼ kBTnNKT :
Equation (9.4) relates the average response of a certain variable X j with its

correlation with another variable X i conjugate to the external stimulus fi. For
example for a linear charged object like a DNA fragment, the correlation between
extension and polarization is given by

DXDPh i0 ¼ kBT
@

@f
DP; ð9:11Þ

which can be nonzero if the polarization P can change because of the applied
tension f. Because DXDPh i0¼ DPDXh i0, (9.11) can also be given by

DPDXh i0 ¼ kBT
@

@E
DX; ð9:12Þ

which cannot vanish if the system’s length changes (response) to an applied electric
field (stimulus).

P9.2 How is the correlation hDN 1DN 2i0 expressed in a two component mixture?

Now consider a system that is subject to a multitude of stimuli fl each with a
conjugate response variable xl, which thereby induces the perturbation

H0 ¼ �Rlflxl: ð9:13Þ

We follow the procedure in (9.3) to obtain

xmh i �
P

M xme�bH0 1þ bRlflxl
� 	

P
M e�bH0 1þ bRlflxl

� 	
� hxmi0 þ bRlflhDxmDxli0;

ð9:14Þ

which leads to

Dxm ¼ xmh i � xmh i0 ¼ bRlflhDxmDxli0
¼ Rlvmlfl;

ð9:15Þ

where

vml ¼ @

@fl
Dxm ¼ kBThDxmDxli0 ð9:16Þ

is the associated response function given in terms of the correlation function
hDxlDxmi0 in the absence of the external stimulus.
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Of our interest is the case in which x and its conjugate f are continuously varying
over space so that the perturbing Hamiltonian is a functional:

H0 ¼ �
Z

dr0f r0ð Þx r0ð Þ: ð9:17Þ

Then,

DxðrÞ ¼
Z

dr0v r; r0ð Þf r0ð Þ; ð9:18Þ

with the response function given in terms of the correlation function

v r; r0ð Þ ¼ @

df r0ð ÞDxðrÞ ¼ kBThDxðrÞDx r0ð Þi0; ð9:19Þ

where @=df r0ð Þ is a functional derivative which is continuum generalization of
@=@fl:

A typical example is the perturbation caused by a locally varying external
potential u acting on an N-particle system:

H0 ¼
XN
a¼1

u rað Þ ¼
Z

dr u rð Þn rð Þ; ð9:20Þ

where n rð Þ is microscopic local number density:

n rð Þ ¼
XN
a¼1

d r� rað Þ: ð9:21Þ

The average density change induced at r due to the external potential fields
applied at another position r0 is

DnðrÞ ¼ �
Z

dr0vn r; r0ð Þu r0ð Þ; ð9:22Þ

where the response function is

vn r; r0ð Þ ¼ kBTCn r; r0ð Þ; ð9:23Þ

and Cn r; r0ð Þ is the correlation function of local density fluctuations at two
different positions r and r0 in the absence of the external potential:
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Cn r; r0ð Þ ¼ hDn rð ÞDn r0ð Þi0; ð9:24Þ

where

Dn rð Þ ¼ n rð Þ � n; ð9:25Þ

and n ¼ hn rð Þi0 is the unperturbed, equilibrium density. The fluctuation of total
number, N ¼ R

drnðrÞ; is given by

h DNð Þ2i0 ¼
ZZ

drdr0hDn rð ÞDn r0ð Þi0: ð9:26Þ

To illustrate the relations among local density correlation, fluctuation of the total
number of particles, and the associated susceptibility, consider a fluid near the
critical point of the gas-to-liquid phase transition with the correlation function:

Cn r; r0ð Þ � r� r0j j� d�2þ gð Þexp � r� r0j j
n

� �
: ð9:27Þ

Here d is the space dimensionality, n is the correlation length that grows like
T � Tcj j�m near Tc, g and m are positive numbers called critical exponents. Integration
over the positions r and r0 (9.27) yields

h DNð Þ2i0 �
ZZ

drdr0 r� r0j j� d�2þ gð Þexp � r� r0j j
n

� �

�V
Z

ds sd�1s� d�2þ gð Þ exp �s=nð Þ

�Vn2�g
Z

dx x1�g exp �xð Þ

 �

;

ð9:28Þ

where
RR

drdr0 ¼ RR
drdðr0 � rÞ ¼ V

R
dðr0 � rÞ; and the quantity in the bracket,

expressed in term of a dimensionless variable x ¼ r� r0j j=n; is also dimensionless.
Equation (9.28) tells us that as the system approaches the critical point, the number
fluctuation h DNð Þ2i0 and the related susceptibility (the compressibility KT ) diverge
to infinity as n2�g � T � Tcj j�c; where c ¼ m 2� gð Þ:

If an applied field is sharply localized to a point r0, uðrÞ ¼ Ud r� r0ð Þ; leading to

DnðrÞ ¼ �vn r� r0ð ÞU ¼ �bU DnðrÞDn r0ð Þh i0; ð9:29Þ

i.e., the local density perturbation induced at r is a measure of the density corre-
lation propagated to the position from the source of disturbance at r0.

The linear response relations can be applied to a wider variety of variables than
are listed in Table 2.1. As a biological example let us consider a planar membrane.
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The membrane charge density can fluctuate due to the thermal motion of the
charged lipid molecules and the background ions that can adsorb on the membrane.
We perform a thought experiment in which a small potential Vm is applied to a
small area a at a point x0 on the membrane. The perturbing Hamiltonian is

H0 ¼ r x0ð ÞaVm; ð9:30Þ

where r is the surface charge density. Applying (9.3), the change of the average
charge densities at x around x0 is

Dhr xð Þi ¼ �baVm Dr xð ÞDr x0ð Þh i0; ð9:31Þ

that is, by measuring the average surface density at a point x, one can get the
information about the charge correlation function.

9.2 Scatterings, Fluctuations, and Structures of Matter

Projecting a beam of radiation on matter is another way to perturb it so that its
properties can be probed. The response of the matter is shown in the intensity of
the scattered radiation into a certain angle, the measurement of which pro-
vides information on microscopic structure of the matter. One primary type is
x-ray scattering or diffraction, in which incident photons with angular frequency
x, wave vector k, and energy � ¼ �hx ¼ �hck ¼ hc=k scatter electrons in the matter.
The typical x ray with energy �� 104 eV and wavelength k ¼ 2p=k� 0:1 nm can
resolve the atoministic structure of the matter and the density fluctuations of the
constituent particles.

A type which could be more relevant for biological applications is light scat-
tering in solutions, which probes the length scales of 100 nm–10 lm. For the light
to scatter, the particles should have the indices of diffraction distinct from that of the
background fluid. What matters fundamentally is the density fluctuations of
otherwise homogeneous medium.

Another type is neutron scattering; a neutron of mass mn has energy � ¼
�h2k2= 2mnð Þ ¼ h2= 2mnk

2� 	
so a thermal neutron with the energy � kBT at room

temperature can probe the atomistic structure at resolution k� 0:1 nm: The incident
neutrons have spins that can interact with the spins of the nuclei so as to probe the
density fluctuations of the atoms as can other radiation sources.

The radiation can probe not only the structures of matter on various scales but
also a variety of the collective motions that arise from the interactions between
particles. The energies of low-lying collective excitations are in the order of or less
than thermal energy kBT; which is much lower than the x-ray energy. Thus the
x-ray scatters the matter quasi-elastically and measures its static structure. In
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contrast, the thermal neutron undergoes inelastic scattering and is useful to probe
the dynamics of such excitations.

9.2.1 Scattering and Structure Factor

Consider that a plane wave or a beam of quanta that has wave vector k impinges a
systems composed of particles. The particles scatter the wave, and the intensity of
the scattered wave, which is spherical, is then measured at a detector located at a
distance R away as a function of the scattering angle h (Fig. 9.1). If the scattering is
elastic (k0 ¼ k) the angle h is related to the scattered wave vector k0 by the relation

q ¼ 2k sin
h
2

ð9:32Þ

where q is the magnitude of q ¼ k� k0.
The amplitude of the radiation scattered by a particle positioned at ra has the

phase shift k0 � kð Þ � ra ¼ �q � ra relative to the incident wave at the particle, so
that the scattering amplitude from the particle is

A ¼ f ðhÞ
R

e�iq�ra : ð9:33Þ

If the beam is scattered by N particles, the total amplitude is

A ¼ f ðhÞ
R

XN
a¼1

e�iq�ra ð9:34Þ

The measured intensity I of the scattered beam at the detector is hjAj2i, where � � �h i
is the thermal average or time average, so

I ¼ f hð Þj j
R

� �2

NSðqÞ; ð9:35Þ

Fig. 9.1 Typical elastic scat-
tering experiment. k and k0

are incident and scattered
wave vectors, q ¼ k� k0,
and h is the scattering polar
angle
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where

SðqÞ ¼ N�1
XN
a¼1

XN
a0¼1

e�iq� ra�ra0ð Þ
* +

: ð9:36Þ

f hð Þj j2 is the form factor descriptive of the particle’s internal structure, which is not
relevant here. What is important is the structure factor S qð Þ, which describes the
configurational organization of the particles. The above relations mean that S qð Þ
can be determined by intensity of the radiation of wavelength k scattered into a
solid-angle element dX around the scattering angle h; which, for elastic scattering,
is related to q by (9.32). The length scale that can be probed is given by
� q�1 � k= sin h=2ð Þ: The structures of matter in macromolecular scales larger
than k are usually probed by X-ray and neutron scattering at small q (i.e.,
small angle hÞ.

9.2.2 Structure Factor and Density Fluctuation/Correlation

Introducing the Fourier transform of the microscopic number density (9.21)

n qð Þ ¼
Z

dre�iq�r XN
a¼1

d r� rað Þ ¼
XN
a¼1

e�iq�ra ; ð9:37Þ

the structure factor (9.36) is expressed as

SðqÞ ¼ N�1 n qð Þj j2
D E

¼ N�1 Dn qð Þj j2
D E

; q 6¼ 0 ð9:38Þ

where DnðqÞ ¼ nðqÞ � nðqÞh i. The second equality holds for uniform systems in
which hnðrÞi ¼ n is constant, so nðqÞh i ¼ n

R
dre�iq�r ¼ 2pð Þ3ndðqÞ is zero unless

q ¼ 0. q ¼ 0 is the case of forward scattering, which will not be considered.
Equation (9.38) means that the static structure factor is a measure of the

density fluctuation in Fourier space. Equation (9.38) can also be written as

SðqÞ ¼ N�1
ZZ

dr dr0e�iq� r�r
0ð Þ DnðrÞDn r0ð Þh i

¼ N�1
ZZ

dr dr0e�iq� r�r
0ð ÞCn r; r0ð Þ

ð9:39Þ

where Cn r; r0ð Þ ¼ DnðrÞDn r0ð Þh i is the density correlation function (9.24). Uniform
systems such as fluids have a number of spatial symmetries to consider for the
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correlation function. The spatial homogeneity allows the systems to have the trans-
lational invariance:

Cn r; r0ð Þ ¼ Cn r� r0ð Þ; ð9:40Þ

and correspondingly

SðqÞ ¼ n�1
Z

dr e�iq�rCnðrÞ; ð9:41Þ

meaning that the structure factor is a Fourier transform of the density corre-
lation. Due to the isotropy, the uniform fluids have also rotational symmetry
Cn r� r0ð Þ ¼ Cn r� r0j jð Þ; SðqÞ ¼ SðqÞ:

9.2.3 Structure Factor and Pair Correlation Function

Another meaningful representation of the structure factor is obtained directly from
(9.36), which can be rewritten as

SðqÞ ¼ N�1
Z

dr e�iq�r XN
a¼1

XN
a0¼1

d r� ra þ ra0ð Þ
* +

ð9:42Þ

¼ 1þ n
Z

dr e�iq�rgðrÞ ð9:43Þ

¼ 1þ n
Z

dr e�iq�r g rð Þ � 1ð Þ; q 6¼ 0 ð9:44Þ

where the ‘1’ comes from the (N) contributions from a ¼ a0 in the sum, and the
second term is from the rest, involving

ngðrÞ ¼ N�1
XN
a

XN�1

a0 6¼a

d r� ra þ ra0ð Þ
* +

; ð9:45Þ

where gðrÞ is the pair distribution function (4.72). Equation (9.44) follows because
we are not considering q ¼ 0:

Integrating (9.45) yields

n
Z

dr gðrÞ ¼ N�1 N N � 1ð Þh i

¼ N�1 DNh i2 þN � 1;
ð9:46Þ
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The average is taken over the grand canonical ensemble where the particle number
in the double sum in (9.45) is taken to be a fluctuating value N ; because gðrÞ is
independent of the ensemble chosen. Using (9.46) along with (3.68), (9.44) in the
limit q ! 0 can be written as

1þ n
Z

dr gðrÞ � 1ð Þ ¼ kBTnKT ¼ S q ! 0ð Þ; ð9:47Þ

which is called the compressibility relation. It relates the structure factor with its
compressibility, which can be directly read off from the scattering data: S q ! 0ð Þ.

The configurational organization of the particles in the matter is best visualized
by the pair distribution function. Positioning an arbitrary particle, called a central
particle, say, a0, at the origin of a reference coordinate, and noting that the system is
composed of N such particles, (9.45) is recast as

ngðrÞ ¼
XN�1

a¼1

d r� rað Þ
* +

; ð9:48Þ

which is the density of the N � 1 particles at r given (conditional upon the presence
of) the central particle.

For an ideal gas in which the particles do not interact, hPN�1
a¼1 d r� rað Þi ¼ n;

irrespective of the particle at origin. Then,

gðrÞ ¼ gðrÞ ¼ 1; ð9:49Þ

and, using (9.44),

SðqÞ ¼ SðqÞ ¼ 1; for q 6¼ 0 ð9:50Þ

meaning that the system has no structure. Now consider a crystalline solid in which
the particles are placed periodically with a spacing called the lattice constant a. At
T ¼ 0, thermal vibration (fluctuation) is absent, so

gðrÞ ¼ n�1
XN�1

a¼1

d r� rað Þ ð9:51Þ

SðqÞ ¼ N�1
XN
a¼1

e�iq�ra

�����
�����
2

: ð9:52Þ
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For a 1-D crystal with lattice constant a, the static structure is calculated as

SðqÞ ¼ N�1 1� e�iqNa

1� e�iqa

����
����
2

¼ N�1 sin Nqa=2ð Þ
sin qa=2ð Þ

� �2

; ð9:53Þ

which shows Bragg peaks at q ¼ 2np=a that sharpen as N increases (Fig. 9.2). For
a real 3-D crystal at a finite temperature in which the particles undergo thermal
oscillation, the sharp peaks either in gðrÞ or SðqÞ are broadened. At a temperature
lower than the crystal’s melting temperature these long-range order and structure
are not disrupted.

P9.3 As a model of a rod-like protein, consider a chain of finite N particles that are
connected linearly and harmonically. Calculate the static structure factor. Assume
that the particles are undergoing one-dimensional harmonic motion independently.
From S q ! 0ð Þ find the stretch modulus.

If a spherical virus (Fig. 9.3a) of submicron size is viewed as a condensed
collection of particles (scatterers) rather than as a single composite particle, its form
factor is the structural factor. Neglecting its icosahedral structure the virus can be
approximated as a sphere with a uniform density n and radius R. Then we note

Fig. 9.2 The pair distribution function gðxÞ and the structure factor SðqÞ in one dimensional solid
at T ¼ 0 with lattice constant a. There are delta-function like peaks not only in the position space
but also in the Fourier (reciprocal) space

(b)(a)

Fig. 9.3 a Three dimensional reconstruction of rotavirus [J. B. Pesavento et al. Prasad, Copyright
(2001) National Academy of Sciences, U.S.A] and b the structure factor of a uniform sphere
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nðqÞ ¼
XN
a¼1

e�iq�ra ¼ n
ZR
0

r2dr2p
Z1

�1

d cos h e�iq�r cos h

¼ 4pn
ZR
0

drr2
sin qr
qr

¼ 3Nj1 qRð Þ
qRð Þ ;

ð9:54Þ

where j1ðxÞ ¼ sin x� x cos xð Þ=x2 is the first-order spherical Bessel function. The
structure factor (9.38) is

SðqÞ ¼ N
3j1 qRð Þ
qR

 �2

; ð9:55Þ

(Figure 9.3). The radius can be estimated by the position q � 4:5R�1 of the first

minimum of SðqÞ or the data for small q, SðqÞ � N 1� 2 qRð Þ2=5
n o2

=16. For a
spherical shell of radius R and thickness d � R (like a vesicle), the factor can be
easily calculated to be

SðqÞ ¼ N
sin qRð Þ
qR

 �2

; ð9:56Þ

which is quite distinct from (9.55). Whether the virus is hollow sphere like a vesicle
or is filled with complex structure including DNA can be discerned by the scattering
experiment using appropriate radiation source.

What will happen when a solid melts to a liquid? In Chap. 4, we already
described the pair correlation and radial distribution functions and the short range
order characteristic of liquids. Here we show the radial distribution function along

Fig. 9.4 A sketch of the radial distribution function gðrÞ and the structure factor SðqÞ for a simple
and colloid liquid. The short-range order with a periodicity of particle diameter r is observed both
in real (r) and Fourier space (q). The small value of S q ! 0ð Þ represents the compressibility of the
liquid
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with the structure factor. Interestingly, the curve SðqÞ looks apparently similar to
gðrÞ as it does for the cases of ideal gas and solid. The small value of S q ! 0ð Þ
(Fig. 9.4) indicates that the liquid is nearly incompressible.

9.2.4 Fractal Structures

Near the critical point of gas-to-liquid phase transition, CnðrÞ (9.27) showed long
range correlation. At the critical point, where the correlation length n diverges,
CnðrÞ� r�a; where a ¼ d � 2þ g; and d is space dimension. Using (9.41)

SðqÞ�
Z

ddr e�iq�rr�a ¼ q�dþ a
Z

ddðqrÞ e�iq�rðqrÞ�a � q�dþ a: ð9:57Þ

The power laws both in the correlation and the structure implies an absence of any
characteristic length scales, i.e., the structure looks the same at any magnification.
This scale-invariant self-similar structure is called fractal.

Fractals are ubiquitous in nature (in the systems at thermodynamic critical points
as well as in complex systems, e.g., polymers, snowflakes, colloidal aggregates,
coastlines), and also can be artificially designed. Application of the concept of
fractal nature may be valuable when measuring the properties of irregular
biological structures, such as living organs (Fig. 9.5b). Consider a fractal of size
R that contains N particles or units. The structure of a random fractal is charac-
terized by the fractal dimension, which is defined by the way in which N changes
with R. For ordinary compact structures in 3D, N� R=lð Þ3; where l is inter-particle
distance. For isotropic fractals,

N � R=lð ÞDf ; ð9:58Þ

Fig. 9.5 a Examples of frac-
tal structures (Digital image
kindly supplied by Zachary
Abel), and b human lung
(Weibel 2009)
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where Df , called the fractal dimension, is less than 3 and can also be a non-integer
number. For example, Df of an ideal polymer chain is 2, as shown below. The
fractal dimension is related to the radial distribution gðrÞ and its Fourier transform
SðqÞ as following. Consider the number NðrÞ of particles within a radius
r (l � r � R) from a central particle deep within the fractal. By the definition of
radial distribution function, the number of particles within a shell of thickness dr
located at distance r (Fig. 4.4) is

dNðrÞ� gðrÞrd�1dr: ð9:59Þ

This, along with NðrÞ� ðr=lÞDf ; leads to gðrÞ� r=lð Þ�dþDf , so (9.43) yields

SðqÞ� qlð Þ�Df � q�Df ; ð9:60Þ

for the region of moderate q ðR�1 � q � l�1Þ, in which scale-invariance is
expected. The fractal dimension Df can be read from the power law decay of the
structure factor (9.57) tells us Df ¼ d � a ¼ 2� g for a fluid at the critical point.
The scattering for very small q, on the other hand, senses the large lengths beyond
the finite size of the system R, on which the structure factor depends. A flexible
chain studied below serves as another example and allows an analytical under-
standing of the features mentioned above.

9.2.5 Structure Factor of a Flexible Polymer Chain

The polymer structure can be probed by scattering experiments, such as small angle
x-ray scattering (SAXS) and small angle neutron scattering (SANS). The scatter-
ing intensity for a single chain is proportional to the structure factor SðqÞ ¼
N�1hPN

n;m e�iq�rnmi (9.36), where N is the number of beads that compose the
polymer, and rnm ¼ rn � rm is the distance between the nth and mth beads.
Averaging over the orientations of the vector rnm yields

e�iq�rnm� � ¼ 1
4p

Z2p
0

du
Z1

�1

d cos h e�i cos hq rnmj j� � ¼ sin q rnmj jð Þ
q rnmj j

� �
: ð9:61Þ

For small q, or small scattering angle h (q ¼ 2k sin h=2ð Þ, Fig. 9.1),
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SðqÞ ¼ N�1
XN
n;m

sin q rnmj jð Þ
q rnmj j

� �

� N�1
XN
n;m

1� 1
6
q2 rnmj j2

� �
¼ N 1� 1

3
q2R2

G

� � ð9:62Þ

where the radius of gyration RG defined by

R2
G ¼ 1

2N2

XN
n;m

rn � rmð Þ2
D E

¼ 1
N

XN
n¼1

rn � Rcmð Þ2
D E

ð9:63Þ

represents the chain size R and Rcm is the center of mass position. Therefore, from
the data of small q or small angle scattering, one can get information about the
radius of gyration.

For a chain in which rnm is distributed in Gaussian,

SðqÞ ¼ N�1
XN
n;m

e�iq�rnmh i ¼ N�1
XN
n;m

exp � 1
2 h q � rnmð Þ2i

� �

¼ N�1
XN
n;m

exp � 1
6 q

2 r2nm
� �� 	

:

ð9:64Þ

Considering that, in the Gaussian chain, rnm2
� � ¼ l2 n� mj j (10.4), R2

G ¼ l2N=6;
where l is the segmental length, the structure factor can be calculated as

SðqÞ ¼ N�1
ZN
0

dn
ZN
0

dm exp � 1
6
q2l2 n� mj j

� �
¼ ND q2R2

G

� 	
; ð9:65Þ

Fig. 9.6 Structure factor SðqÞ
of a Gaussian chain. From the
data of low q, the radius of
gyration RG can be deter-
mined. For the relatively high
q, SðqÞ� q�Df , where Df ¼ 2
is the fractal dimension
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where

DðxÞ ¼ 2
x2

e�x � 1þ xð Þ; ð9:66Þ

called the Debye function. SðqÞ decreases as qRG increases (Fig. 9.6); the scat-
tering can determine the RG at small q regimes and probe the scaling law at
high q regimes.

If qR is large,

SðqÞ ! 2N
q2R2

G
� 1

ql

� ��Df

ð9:67Þ

with Df ¼ 2. This fractal dimension of the ideal chain is also obtained from (9.58)
with R�RG �N1=2l. In general, as we have discussed, SðqÞ can probe the
self-similar structures; for a real polymer chain where R�Nm (10.105), for large
q SðqÞ� q�Df with Df ¼ 1=v.

Equation (9.64) can be approximated by the form S qð Þ � N= 1þ q2R2
G=2

� 	
within 15% error over the whole range of q. Its inverse Fourier transform yields

gðrÞ � 1 ¼ RG

r
exp �21=2

r
RG

� �
; ð9:68Þ

which looks similar to that for a fluid near critical point with the correlation length
2�1=2RG that can be very large for a long chain.

Further Reading and References

P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University
Press, 2006)

D. Andelman, Soft Condensed Matter Physics in Molecular and Cell Biology, ed. by W.C.K. Poon
(Taylor and Francis, 2006)

I.G. Serdyuk, N.R. Zaccai, J. Zaccal, Methods in Molecular Biophysics (Cambridge University
Press, 2007)

B.J. Berne, R. Percora, Dynamic Light Scattering (Wiley-Interscience Publications, 1976)
S. Havlin, S.V. Buldyrev, A.L. Goldberger, R.N. Mantegna, S.M. Ossadnik, C.-K. Peng, M.

Simon, H.E. Stanley, Fractals in biology and medicine chaos. Solitons Frorrals 6, 171–201
(1995)

R.A. Crowther, Procedures for three-dimensional reconstruction of spherical viruses by Fourier
synthesis from electron micrographs. Philos. Trans. Roy. Soc. Lond. B. 261, 221–230 (1971)

E.R. Weibel, What makes a good lung? Swiss Med. Wkly. 139(27–28) (2009)
J.B. Pesavento, J.A. Lawton, M.K. Estes, B.V.V. Prasad, The reversible condensation and

expansion of the rotavirus genome. PNAS 98(4), 1381–1386 (2001)

9.2 Scatterings, Fluctuations, and Structures of Matter 159



Chapter 10
Mesoscopic Models of Polymers:
Flexible Chains

A polymer is a compound macromolecule consisting of many repeating structural
units (monomers). It is created through an assembly process called polymerization
or polycondensation. Many materials in our environment are made of polymers;
these include plastics, rubbers, woods, and papers. In particular biopolymers such
as nucleic acids and proteins are primary constituents of our bodies, playing key
functional roles in living.

In this and next chapters, we study linear polymers’ some basic physical
properties that emerge on mesoscopic length scales beyond the details of the
monomer structure. The microscopic details are of course essential, in particular to
chemists and biologists, but are not relevant to universal physical features that
emerge in long chain polymers. One such feature is chain flexibility, which yields
many novel features that have not been studied in earlier chapters. Here we study
such aspects considering a single polymer.

In contrast to synthetic polymers such as polyethylene (Fig. 10.1a), a typical
biopolymer is an enormously complex macromolecule formed by linking many
monomers, which themselves are not simple, as a protein formed of amino acids and

(a)

Chromosome 

DNA double helix

(b)

Fig. 10.1 a Polyethylene molecule (CH2 � CH2 � CH2 � � � �), b a double stranded DNA viewed
on different length scales. Courtesy National Human Genome Research Institute
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DNA formed of nucleotides. Figure 10.1b sketches a fascinating hierarchy of double
stranded DNA’s structures folded over multi-scales from double helices to chromo-
somes. On the atoministic scale, the energy involved in the bonding is mostly covalent,
which is in the order of eV or higher. Even though there are any monomeric internal
degrees of freedom such as rotational and vibrational ones that can be thermally
excited, the chain is locally very stiff. But, when viewed over long-length scales, the
chain interconnectivity gives rise to chain flexibility and susceptibility to thermal
fluctuations (Fig. 10.1b). This chain flexibility, coupled with the weak interactions
therein (Chap. 6) in aqueous environments may enable the biopolymers to
undergo the essential conformational transitions at body temperature.

For a linear polymer one can define the length lp, called the persistence length,
above which the chain looks curved and flexible. The chain fragment shorter than
lp may look nearly straight and rigid. The persistence length of a simple synthetic
polymer, polyethylene, Fig. 10.1a, where rotational motion is the major flexibility
mechanism, is about 0.4 nm. For biopolymers like polypetides or ds DNA thermal
vibration is the flexibility mechanism. The single stranded (ss) DNA is a flexible
chain with lp � 1 nm compared with ds DNA in which the persistence length is
about 50 nm. Below we start with the simplest case, that is, the highly flexible chain
that emerges when coarse–grained over a long length scale.

10.1 Random Walk Model for a Flexible Chain

We consider a flexible polymer that has the contour length much longer than its
persistence length, e.g., a 1l long ss DNA fragment. We introduce the ideal chain
model, in which the chain conformation is made by a random walk. In this model, a
chain consists of a large number ðNÞ of freely-jointed links each with length l that
we studied in Chap. 3 (Fig. 10.2). This segmental length l, called the Kuhn length,
is not necessarily the molecular bond length, but is introduced to represent the
length over which the link orientation is uncorrelated, namely,

Fig. 10.2 Randomwalkmodel
for polymer conformations with
the end-to-end distance R and
segmental displacement (link
vector) li
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li � lj
� � ¼ l2dij; ð10:1Þ

where li is the ith link vector. � � �h i denotes the average over equilibrium ensemble
of the chains of N links, and dij is the Kronecker delta function, which is 1 if i ¼ j,
and 0 otherwise.

Let us characterize the conformational state of the chain by its end-to-end dis-
tance (EED) vector,

R ¼
XN
i¼1

li: ð10:2Þ

Taking the ensemble averages, we have

hRi ¼ 0 ð10:3Þ

and

R2� � ¼ Nl2 � R2
0: ð10:4Þ

The root-mean-squared (rms) EED for the ideal chain

R0 � R2� �1=2¼ N1=2l ð10:5Þ

is a measure of the natural size of the chain.
Although seemingly very simple, (10.5) signifies quite a number of important

features that characterize long chains. First the power 1/2 in N1=2 is a universal
exponent that is independent of molecular details, i.e., is valid whether the polymer
is ssDNA or polyethylene. Second, R0 is very small compared with the full length
in the model, L ¼ Nl; we have R0=L ¼ N�1=2 � 1, which implies that a long chain
is coiled at equilibrium so as to be highly flexible to extension.

The distribution of the EED vector R can be obtained by invoking the Central
Limit Theorem (CLT) [see for example Reif (1965)]. As explained in the box
shortly, CLT states that, in the ensemble of the random walks, each of which
consists of infinitely many ðNÞ steps with the length l in statistically independent
or uncorrelated directions, the end-to end distance R is distributed in
Gaussian,

P Rð Þ ¼ 3
2p DR2h i
� �3=2

exp � 3R2

2 DR2h i
� �

; ð10:6Þ

with variance,
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DR2� � ¼ R� Rh ið Þ2
D E

¼ R2
� �� Rh i2 ¼ Nl2

ð10:7Þ

in a manner independent of the details of the steps. The chain that satisfies above
properties are called an ideal chain or a Gaussian chain.

P10.1 The radius of gyration RG in a Gaussian chain of N Kuhn lengths is defined
by

R2
G ¼

PN
i¼1 ri � Rcmð Þ2

D E
N

;

where ri is the position vector of the ith vertex and Rcm is the center of mass of the
chain. Show that RG

2 ¼ Nl2=6:

10.1.1 Central Limit Theorem (CLT)-Extended

Because its applicability of a broad spectrum of natural phenomena, below
we give a derivation of the CLT. For generality, consider that the step or link
lengths (jlij) in the random walk are not all same. The EED probability
density P R;Nð Þ is obtained by summation (integration) over all the N link
vectors (l1;l2 . . . lN) under the condition that R ¼ l1 þ l2 � � � þ lN is given as
fixed, as implemented by a delta function below:

P R;Nð Þ ¼
Z

dl1

Z
dl2. . .

Z
dlN d l1 þ l2 � � � þ lN � Rð ÞPN l1; l2; . . . lNð Þ:

ð10:8Þ

Here PN l1; l2; . . . lNð Þ is the joint probability distribution of all links. We
consider that every link distribution is independent of each other,

PN l1; l2; . . . lNð Þ ¼ p1 l1ð Þ. . . pN lNð Þ ð10:9Þ

Equation (10.8) is evaluated by inserting the above relation and

d l1 þ l2 � � � þ lN � Rð Þ ¼ ð2pÞ�3
Z

dk eik� l1 þ l2��� þ lN�Rð Þ; ð10:10Þ

into the integral, which now can be expressed as

P R;Nð Þ ¼ 2pð Þ�3
Z

dk e�ik�Rfp1 kð Þ. . . pN kð Þg; ð10:11Þ
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where

pn kð Þ ¼
Z

dln pn lnð Þeik�ln ¼ eik�ln
� � ð10:12Þ

is a Fourier transform, known as the characteristic function of pn lð Þ:
In the integral above, eik�ln is a function that, for large k, oscillates rapidly

and gives a diminishing contribution to pn kð Þ. For a large N, fp1 kð Þ. . .pN kð Þg
decreases very rapidly to zero as k increases. Therefore, the function
lnfp1 kð Þ. . . pN kð Þg, which varies more smoothly than fp1 kð Þ. . .pN kð Þg; can
nicely be approximated by its expansion to the second order in k,

lnfp1 kð Þ. . . pN kð Þg ffi
XN
n¼1

ln 1þ ik � lnh i � 1
2

k � lnh ið Þ2
� �

ffi
XN
n¼1

i lnh i � k� 1
6

Dln
2� �
k2

� �
;

ð10:13Þ

so that fp1 kð Þ. . . pN kð Þg ffi exp N i lh i � k� 1
6 Dl2
� �

k2
� 	
 �

; and

p kð Þ ¼ exp i lh i � k� 1
6

Dl2
� �

k2
� �� �

; ð10:14Þ

where the average and variance lnh i, Dl2n
� �

are taken over the single bond
distribution pn lð Þ and lh i ¼PN

n¼1 lnh i=N, Dl2
� � ¼PN

n¼1 Dl2n
� �

=N. In general,
lnh i 6¼ 0; i.e., the random walk can be biased. Inserting (10.14) into (10.11)
and performing a Fourier transformation therein just yields the Gaussian
probability distribution of R,

P R;Nð Þ ¼ 3
2p DR2h i
� �3=2

exp � 3 R� Rh ið Þ2
2 DR2h i

" #
ð10:15Þ

with the non-vanishing mean and variance:

Rh i ¼ N lh i ¼
XN
n¼1

lnh i ð10:16Þ

DR2� � ¼ N Dl2
� � ¼XN

n¼1

Dl2n
� �

: ð10:17Þ
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The Gaussian distribution (10.15) is more general than previous one (10.6) in
that the individual steps can have different sizes ( lij j 6¼ lj

�� ��) and can be biased
lih i 6¼ 0. No matter what the individual step distribution pn lnð Þ may be,
provided that it is statistically independent, the general Gaussian dis-
tribution is valid for large N; and exact in N ! 1 limit. This very
important result is the statement of CLT.

This universality does not only concern the ideal long chain polymer
properties; it also accounts for numerous phenomena in nature that involve
large numbers. For example a measurement error can be regarded to be an
accumulation of many statistically independent errors, so their distribution is
Gaussian. Consider the variables (e.g., E, V , N) of macroscopic or mesoscopic
systems. The deviations of the variables about their averages can be con-
structed to be the sum of many small quantities that are statistically inde-
pendent. So the deviations are also distributed in Gaussian. For example, the
Gaussian distribution of these macroscopic properties about their means
could be obtained earlier (e.g., for energy (3.39)) using the ensemble theory.

10.1.2 The Entropic Chain

In light of the coarse-grained description described in Chap. 5, the relevant degree
of freedom for the chain is Q ¼ R, and its distribution is P Qð Þ / e�bF Qð Þ (5.5).
Then, the (10.6) allows us to identify the chain’s effective Hamiltonian or the free
energy function associated with R as

F Rð Þ ¼ 3kBT
2Nl2

R2; ð10:18Þ

apart from a term � kBT lnN; which is independent of R so is irrelevant. By virtue
of the thermodynamic relations introduced in Chap. 2, the associated entropy
function is

S Rð Þ ¼ � @F Rð Þ
@T

¼ � 3kB
2Nl2

R2: ð10:19Þ

This demonstrates that as the chain is extended (R increases) the entropy decreases.
When R ¼ 0, the free energy is minimum, and the entropy is maximum; it is
because the number of chain (random walk) configurations is maximal. Although
(10.18) reasonably describes the entropy change associated with the extension, it
neglects other contributions that are irrelevant to R. To keep the EED of the chain at
R, a force
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f Rð Þ ¼ @F Rð Þ
@R

¼ KeR; ð10:20Þ

must be applied along the direction in which the entropy decreases. Here

Ke ¼ 3kBT
Nl2

; ð10:21Þ

called the entropic spring constant (Fig. 10.3), increases with temperature but
decreases with contour length. This remarkable behavior of chain entropy and
flexibility is indeed the emergent behaviors of a long chain. This behavior was
derived earlier using the freely-jointed chain model in Chap. 3.

The description in terms of the effective Hamiltonian or the free energy function
F Qf g has further conceptual and practical advantages. Consider that the chain
carries positive charges Q at both ends in water. What is the entropy associated with
an extension of the chain ends? We can easily accept that the free energy (10.18) is
changed to

F Rð Þ ¼ 3kBT
2Nl2

R2 þ Q2

4pew Rj j ; ð10:22Þ

by assuming the charges do not induce polarization in the polymer. This yields the
probability density for the EED R, P Rð Þ � e�bF Rð Þ: Also the entropy of the chain
given R is given by

S Rð Þ ¼ � @F Rð Þ
@T

¼ � 3kB
2Nl2

R2 þ Q2

4pew2 Rj j
@ew
@T

� �
: ð10:23Þ

The second term on the right denotes the contribution of the charges, which depends
on the solvent through the temperature dependence of its dielectric constant ew; via
(6.10), the contribution is �1:36Q2= 4pew Rj jTð Þ at T ¼ 25 �C for waterly solvents.
As explained earlier, this implies that, as Rj j decreases, the entropy does decrease due

Fig. 10.3 A long flexible chain
of N uncorrelated beads behaves
elastically as if its two ends are
connected by an spring of the
(entropic) spring constant Ke ¼
3kBT=Nl2
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enhanced alignment of the water molecules solvated to the charges. This highly
nontrivial result, albeit quite approximate, is obtained by our methodology of the free
energy or effective Hamiltonian function F Rð Þ: The evaluation of chain statistics
under the Coulomb interaction or other microscopic approaches would be not be easy
to accommodate the entropy contribution from the charges and the solvent back-
ground in any approximate ways.

P10.2 What is the most probable magnitude R of the EED in the above problem?
To answer this question we should note the probability density P Rð Þ of the scalar R
is proportional to R2e�bF Rð Þ: Making a second order expansion for P Rð Þ about R,
find the mean and variance of R:

If the initial position of the polymer is r0, (10.6) can be rewritten as

G0 r; r0;Nð Þ ¼ 2pNl2=3
� 	�3=2

exp � 3 r� r0ð Þ2
2Nl2

" #
: ð10:24Þ

The G0 r; r0;Nð Þ is the polymer Greens function that describes the probability
density of finding the end point at r with its initial point located at r0; in a free
space. As can be verified by direct substitution, P r;Nð Þ ¼ G0 r; r0;Nð Þ satisfies the
diffusion-type equation in free space,

@

@N
P r;Nð Þ ¼ 1

6
l2r2P r;Nð Þ: ð10:25Þ

TheG0 r; r0;Nð Þ is also termed as the fundamental solution to the differential equation
(10.25), in that it satisfies the initial condition G0 r; r0;N ¼ 0ð Þ ¼ d r� r0ð Þ.
The diffusion equation is a special case of the Edwards equation for the random walk
in the presence of an external influence, which will be derived next. If the initial
position is not known for certainty but distributed by a PDF P r0; 0ð Þ; the PDF for the
chain end (N th vertex) to be at r can be obtained by

P r;Nð Þ ¼
Z

dr0G0 r; r0;Nð ÞP r0; 0ð Þ: ð10:26Þ

This means the solution of (10.25) that meets the appropriate boundary conditions
can be constructed by a linear superposition of different fundamental solutions,
thanks to linearity of the equation.

Example: A Chain Anchored on Surface

Consider an ideal N-segment chain that is anchored at one end to a point on a
surface (on (y; z) plane). The interaction between a segment and surface is assumed
to be only a steric one, namely, segments cannot cross the surface (Fig. 10.4). What
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are the free energy F rð Þ and the applied force f rð Þ that are necessary to keep the
other end at the position r ¼ x; y; zð Þ from the anchorage?

The presence of the impenetrable wall imposes a boundary condition (BC) on
the polymer distribution function: P r; nð Þ ¼ 0, for any n; 0\n	N. To meet the BC
we construct the solution by superposing two free-space fundamental solutions to
(10.25) with a point source at r0 ¼ �; 0; 0ð Þ and its mirror image at
�r0 ¼ ��; 0; 0ð Þ, in a way akin to the image solution method in electrostatics, with
� taken to be infinitesimally small:

P r; nð Þ ¼ 2pnl2=3
� 	�3=2

exp � 3 r� r0ð Þ2
2nl2

" #
� 2pnl2=3
� 	�3=2

exp � 3 rþ r0ð Þ2
2nl2

" #
:

ð10:27Þ

Taking the limit � ! 0; we have

P r; nð Þ ¼ 2pnl2=3
� 	�3=26x�

nl2
exp � 3r2

2nl2

� �
: ð10:28Þ

Then, the free energy of the chain with the end kept at r is

F rð Þ ¼ �kBT lnP r;Nð Þ
¼ 3kBT

2Nl2
r2 � kBT ln x

ð10:29Þ

apart from a constant independent of the position. The force that the chain end
experiences is

�f rð Þ ¼ � @F rð Þ
@r

¼ � 3kBT
Nl2

rþ kBT
x2

x; ð10:30Þ

which is indeed proportional to T due to the entropic nature of chain. On the right
hand side, the first term is the entropic restoring force opposite to the applied force
discussed before, while the latter is the entropic repulsive force due to the presence
of the wall; remarkably this noncentral repulsive force tends to be infinity as x
approaches 0.

Fig. 10.4 A polymer chain
anchored on surface (with
� ! 0) is extended by a force
f to the distance r
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The Free Energy of Polymer Translocation

Consider a flexible polymer of N-segments during translocation through a narrow
pore in a membrane with n segments on the tran-side and N � n on the cis-side as
shown in then Fig. 10.5a. What is the free energy F n;Nð Þ required to maintain the
chain in this configuration, namely, the free energy of the translocation?

Focusing the chain on the trans side, we consider that n is its primary degree of
freedom; integrating over all accessible configurations given n yields the chain free
energy F nð Þ:

e�bF nð Þ ¼
X
r

e�bF r=nð Þ ¼
Z

x[ 0

dr P r; nð Þ; ð10:31Þ

where P r; nð Þ is given by (10.28) and the integration is performed over the position
in the half space where x[ 0. The integration yields

Z1
o

dx 2pnl2=3
� 	�1=2 6x�

nl2
exp � 3x2

2nl2

� �
� n�1=2

Z1
0

d~x~x e�3~x2=2 � n�1=2; ð10:32Þ

where ~x ¼ nl2ð Þ�1=2
x is a dimensionless coordinate. Consequently, the free energy

given by (10.31) is

F nð Þ ¼ 1
2
kBT ln n ð10:33Þ

apart from a irrelevant constant. Considering the chain in the cis side is anchored
also at the origin, its free energy is obtained similarly as

(a) (b)

Fig. 10.5 a A polymer configuration under translocation through a pore and b the associate free
energy as a function of translocated segment number n. The chain initially at the initial state n ¼ 1
can cross over the free energy barrier to arrive at the final state n ¼ N, that is, it can translocate
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F N � nð Þ ¼ 1
2
kBT ln N � nð Þ: ð10:34Þ

Thus we can find the free energy of the whole chain in translocation:

F n;Nð Þ ¼ F nð ÞþF N � nð Þ ¼ 1
2
kBT ln n N � nð Þ; ð10:35Þ

apart from the irrelevant term independent of n (Sung and Park 1996). The free
energy is depicted as a function of n in Fig. 10.5b. It is in a sharp contrast to that
colloidal particle translocation in Sect. 3.1; at n ¼ N=2 the chain’s free energy is
maximum, and the entropy S n;Nð Þ ¼ �@F n;Nð Þ=@T ¼ �F n;Nð Þ=T is minimum.
This difference is due to chain connectivity; if the colloidal particles were to be
linearly interconnected to form a polymer, the free energy function would become
drastically different. The free energy barrier of the height kBT ln N=2ð Þ � kBT;
which the initial state n ¼ 1 faces for translocation, can be overcome by thermal
agitation, leading to eventual translocation of the entire chain to the right. In
contrast, unconnected particles cannot translocate to the right entirely.

P10.3 What is force necessary to extend the chain to initiate the translocation at
the pore as shown below. Assume that the chain in the trans side is tightly extended.

10.2 A Flexible Chain Under External Fields
and Confinements

In many situations a polymer is subject to external forces, confinements, and
intra-chain interactions. An important problem is to find the chain conformations
and thermodynamic behaviors under such conditions. Due to the chain connectivity
a polymer under such constraints manifests many interesting entropic behaviors that
are not seen in ordinary particle systems.

We consider an approximation in which each segment can be treated as if it is
under an effective external potential, called the self-consistent field, similar to the
mean field in the Debye-Hückel theory. A central object to find first is the polymer
Green’s function, G r; r0;Nð Þ; which is the probability density of finding the chain
end at the distance r given the initial segment position at r0. We consider the N-step
random walk with each step influenced by an effective external potential energy u.
Given the probability G rN�1; r0;N � 1ð Þ for the N� 1 th step to be at rN�1, it can
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jump to r at the N th step with the probability density p r� rN�1ð Þ, satisfying the
recurrence relation,

G r; r0;Nð Þ ¼
Z

drN�1 e
�bu rð Þp r� rN�1ð ÞG rN�1; r0;N � 1ð Þ; ð10:36Þ

where the u rð Þ is the effective potential energy at r.

10.2.1 Polymer Green’s Function and Edwards’ Equation

There are two ways of solving (10.36). The first is to convert the equation into a
differential equation called the Edwards equation (Edwards 1965). The other is to
iterate the equation to represent the Green’s function as a path integral. To derive
the differential equation, we consider the case where G varies slowly over unit step
distance l, and so is expanded to the second order in l:

G r; r0;Nð Þ ffi e�bu rð Þ
Z

dl p lð Þ 1þ l � rþ 1
2

l � rð Þ2
� �

G r; r0;N � 1ð Þ

¼ e�bu rð Þ 1þ lh i � rþ 1
2

l � rð Þ2
� �

G r; r0;N � 1ð Þ:
ð10:37Þ

Over a segment p lð Þ is isotropic, lh i ¼ 0; and l � rð Þ2
D E

¼Pa;b lalb
� �rarb ¼

l2=3ð ÞPa;b dabrarb ¼ l2r2=3; and (10.37) can be written as

G r; r0;Nð Þ ffi e�bu rð Þ 1þ 1
6
l2r2

� �
G r; r0;N � 1ð Þ: ð10:38Þ

Rewriting it as

ln
G r; r0;Nð Þ

G r; r0;N � 1ð Þ
� �

ffi ln
e�bu rð Þ 1þ 1

6 l
2r2


 �
G r; r0;N � 1ð Þ

G r; r0;N � 1ð Þ

" #
ð10:39Þ

and considering G r; r0;Nð Þ ffi G r; r0;N � 1ð Þþ @G r; r0;N � 1ð Þ=@N: While keep-
ing the leading orders, we obtain a partial differential equation,

� @

@N
G r; r0;Nð Þ ¼ LEG r; r0;Nð Þ; ð10:40Þ

where
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LE ¼ � l2

6
r2 þ bu rð Þ: ð10:41Þ

Note that, unlike treatments in some monographs [e.g., Doi and Edwards (1988)],
bu rð Þ is not necessarily much smaller than unity in magnitude. Equation (10.40),
called the Edwards equation, is similar in structure to the Schrödinger equation,
from which several well-known methods to find the solution can be borrowed.
When bu rð Þ ¼ 0, the Edwards equation is reduced to the diffusion equation (10.25).

The Green’s function solution of the Edwards equation (10.40), with the initial
condition G r; r0; 0ð Þ ¼ d r� r0ð Þ; is formally written as

G r; r0;Nð Þ ¼ e�NLEG r; r0; 0ð Þ ¼ e�NLEd r� r0ð Þ: ð10:42Þ

Suppose that the wn and �n are respectively the n-th eigenfunction and eigenvalue of
the operator LE;

LEwn rð Þ ¼ �nwn rð Þ; ð10:43Þ

where wn rð Þ are real functions that form a complete, orthonormal basis:

dnm ¼
Z

drwn rð Þwm rð Þ; ð10:44Þ

d r� r0ð Þ ¼
X1
n¼0

wn rð Þwn r0ð Þ: ð10:45Þ

Using this eigen-basis, the solution (10.42) is expanded as

G r; r0;Nð Þ ¼
X1
n¼0

e�N�nwn rð Þwn r0ð Þ ð10:46Þ

10.2.2 The Formulation of Path-Integral and Effective
Hamiltonian of a Chain

An alternative to the eigenfunction expansion for the polymer Green’s function is
the path integral representation. An iteration of (10.36) generates
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G r; r0;Nð Þ ¼
Z

drN�1 e
�bu rð Þp r� rN�1ð ÞZ

drN�2 e
�bu rN�1ð Þp rN�1 � rN�2ð ÞG rN�2; r0;N � 2ð Þ

¼
Z

drN�1 e
�bu rð Þp r� rN�1ð Þ

Z
drN�2 e

�bu rN�1ð ÞpðrN�1 � rN�2Þ

. . .

Z
dr0 e�bu r1ð Þp r1 � r0ð ÞG r0; r0; 0ð Þ;

ð10:47Þ

which, with G r0; r0; 0ð Þ ¼ d r0 � r0ð Þ; can be written as

G r; r0;Nð Þ ¼
Z

dr1. . .
Z

drN�1e
�b u r0ð Þ þ u r1ð Þþ u r2ð Þ��� þ u rN�1ð Þþ u rð Þf g

p r1 � r0ð Þp r2 � r1ð Þp r3 � r2ð Þ. . . p rN�1 � rN�2ð Þp r� rN�1ð Þ:
ð10:48Þ

The segmental orientation distribution function is

p rn � rn�1ð Þ ¼ 3
2pl2

� �3=2

exp � 3ðrn � rn�1Þ2
2l2

" #
ð10:49Þ

as can be obtained from the Fourier transform of p kð Þ ¼ exp �l2k2=6
� 	

(10.14).
Substituting this into (10.49) yields

G r; r0;Nð Þ ¼ 3
2pl2

� �3 N�1ð Þ
2
ZrN¼r

r0¼r0

. . .

Z
dr1. . .drN�1

exp �
XN
n¼1

3
2

rn � rn�1ð Þ2
l2

þ bu rnð Þ
( )" #

;

ð10:50Þ

where the integration is performed over all positions of vertices rn between the
initial and final points that are fixed at r0 and r as indicated.

By associating the exponent in (10.50) with exp �bF rnf g½ 
; the effective
Hamiltonian of the chain at the segmental level is identified as

F rnf g ¼
XN
n¼1

3kBT
2l2

rn � rn�1ð Þ2 þ u rnð Þ
� �

; ð10:51Þ

which implies that the each vertex is interconnected by an “entropic spring” of the
constant 3kBTð Þ=l2. Henceforth, the flexible polymer chain is regarded as a linear
array of the Nþ 1ð Þ beads interconnected by N entropic springs, which bears the
name, the bead-spring model. In the continuum limit of a long chain in which the
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link length l is infinitesimally small in such a way that Nl2 is finite, (10.51) is
written as the functional integral

F rnf g ¼
ZN
0

dn
3kBT
2l2

@rn
@n

� �2

þ u rnð Þ
" #

: ð10:52Þ

With this, (10.50) is written as

G r r0;Nð Þ ¼
ZrN¼r

r0¼r0

Dfrng exp �bF rnf g½ 
; ð10:53Þ

where the integration is made over all continuous paths connecting the initial and
final positions r and r0 (Fig. 10.6) and D rnf g is the path differential element.
This path integral formulation of polymer conformation is closely similar to
Feynman’s formulation of a quantum particle propagator [a Green’s function of the
Schrödinger equation (Feynman and Hibbs 1965)],

G r; r0; tð Þ ¼
Z

D r tð Þf g exp i
�h
S tð Þ

� �
; ð10:54Þ

where

S tð Þ ¼
Z t

0

dt
1
2
m

dr
dt

� �2

�V rð Þ
" #

ð10:55Þ

is the classical action of a particle with mass m moving under a potential V rð Þ. In
the classical limit where �h ! 0; the path in which the action S tð Þ is minimum is the
governing the Newton’s equation of motion: md2r=dt2 ¼ �@V rð Þ=@r. In a similar

Fig. 10.6 Polymer path integral: G rr0;Nð Þ is the sum (integral) of exp �bF rnf g½ 
 over all the
paths connecting two points r; r0 in the presence of external potential or constraints. The thick
curve represents the dominant (classical) path, in which the path probability is maximum
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manner in the limit where the thermal fluctuation kBT is negligible, the dominant
polymer configuration would be the trajectory given by the equation
3=2l2ð Þd2r=dn2 ¼ @u rð Þ=@r. The similarity suggests that the classical chain tra-
jectory looks identical to that of a quasi-particle of a mass 3kBT=l2 moving under a
potential energy �u rnð Þ running in time from n ¼ 0 to n ¼ N.

10.2.3 The Chain Free Energy and Segmental Distribution

Once we find the polymer Green’s function, we can obtain the free energy function
F r; r0ð Þ with its initial and final positions as the relevant degrees of freedom Q ¼
r; r0ð Þ via the relation

e�bF r;r0ð Þ / G r; r0;Nð Þ: ð10:56Þ

The integration of (10.50) over r, r0 yields the partition function of the chain,

ZN /
Z

dr
Z

dr0G r; r0;Nð Þ; ð10:57Þ

from which thermodynamic free energy FðNÞ ¼ �kBT ln ZN is obtained. The
proportionality in (10.57) will often be replaced by equality, without incurring any
distinction in conformational and thermodynamic properties.

Because the G r; r0;Nð Þ is the probability density of the chain end located at the
position r given the initial point at r0, the probability density of the end to be at r
regardless the location of the initial point is given by

} rð Þ ¼
Z

dr0G r; r0;Nð Þ=
Z

dr
Z

dr0G r; r0;Nð Þ ð10:58Þ

Now we make an approximation that is useful for a long chain, using the
eigen-functions of the Edwards equation. For the case that the potential allows
discrete bound states, the eigen-function expansion (10.46) for a long chain
(large N) is dominated by the ground state labeled as n ¼ 0,

G r; r0;Nð Þ � e�N�0w0 rð Þw0 r0ð Þ: ð10:59Þ

This feature is owing to the reality of all the variables involved in the expansion,
which is not possible for the corresponding Schrödinger equation. Then, the
probability density for the end segment to be at r is
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} rð Þ � w0 rð Þ=
Z

dr w0 rð Þ; ð10:60Þ

while the free energy of the chain then is

FðNÞ ¼ �kBT ln ZN � NkBT�0; ð10:61Þ

apart from the term independent of N.

The Green’s function also provides segmental information. Using the recurrence
relation

G r; r0;Nð Þ ¼
Z

drn G r; rn;N � nð ÞG rn; r0; nð Þ; ð10:62Þ

the average of a segmental variable A rnð Þ located within the chain is given by

Ah i ¼
R
drdrndr0G r; rn;N � nð ÞA rnð ÞG rn; r0; nð ÞR

drdr0G r; r0;Nð Þ : ð10:63Þ

Then, the average of the monomer concentration at r00;
PN

n¼0 dðrn � r00Þ, is

c r00ð Þ ¼
PN

n¼0

R
drdr0G r; r00;N � nð ÞG r00; r0; nð ÞR

drdr0G r; r0;Nð Þ ð10:64Þ

The ground state dominance approximation (10.59) also allows the evaluation of
the monomer concentration in a very long chain as

c rð Þ � Nw0 rð Þ2 ð10:65Þ

Similarly, for the quantities that depend on rn and rm, B rn; rmð Þ,

Fig. 10.7 A flexible chain.
r0 and r are the positions of
polymer ends, rn being that of
the bead n. r00 is any position
in the solution
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Bh i ¼
R
drdrndrmdr0G r; rn;N � nð ÞB rn; rmð ÞG rn; rm; n� mð ÞG rm; r0;mð ÞR

drdr0G r; r0;Nð Þ ð10:66Þ

P10.4 Using the ground state dominance, show that the mean square distance
h rm � rnð Þ2i between two beads separated by m� nð Þ � 1 is given by

h rm � rnð Þ2i �
Z

drndrmw0 rnð Þ2w0 rmð Þ2 rm � rnð Þ2;

which is a constant independent of n and m: Calculate this for the chain confined
within a sphere of radius R (Hahnfeldt et al. (1993). This is relevant to the distance
between two loci within a chromosome.

10.2.4 The Effect of Confinemening a Flexible Chain

Suppose a free chain is brought within a box (Fig 10.8). Below we study the free
energy of the confinement and the pressure of the chain on the walls following
Doi and Edwards (1986).

The presence of the impenetrable wall is expressed by an infinite potential,
u rð Þ ¼ 1, which can be implemented by the boundary condition G r; r0;Nð Þ ¼ 0
for r and r0 on the wall, for the diffusion equation within the box:

@

@N
G r; r0;Nð Þ ¼ l2

6
r2G r; r0;Nð Þ: ð10:67Þ

First note that the Green’s function is separable into the Cartesian components,

G r; r0;Nð Þ ¼ gx x; x0;Nð Þgy y; y0;Nð Þgz z; z0;Nð Þ: ð10:68Þ

(a) (b)

Fig. 10.8 A flexible polymer chain within a box a R0 � Lz, b R0 � Lx
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Each component, for example, the x component satisfies

@

@N
gx x; x0;Nð Þ ¼ l2

6
@2

@x2
gx x; x0;Nð Þ; ð10:69Þ

for which the Green’s function solution is

gx x; x0;Nð Þ ¼
X1
nx¼1

e�N�xwnx xð Þwnx x0ð Þ: ð10:70Þ

The eigenfunctions and eigenvalues are

wnx xð Þ ¼ 2
Lx

� �1=2

sin
nxpx
Lx

ð10:71Þ

and

�nx ¼
l2n2xp

2

6Lx
ð10:72Þ

respectively, where nx is the positive integers 1; 2; 3; . . ..
The partition function then is Z ¼ ZxZyZz, where

Zx ¼
ZLx
0

dx
ZLx
0

dx0gx x; x0;Nð Þ

¼ 8
p2

Lx
X

nx¼1;3;5...

1
n2x

exp � p2Nl2

6L2x
n2x

� �
;

ð10:73Þ

and likewise for Zy and Zz with Lx replaced by Ly and Lz respectively.
Consider the case in which the size of the chain R0 ¼ N1=2l is much smaller than

the smallest of Lx; Ly; Lz (Fig 10.8). Then

Zx ffi 8
p2

Lx
X

nx¼1;3;5...

1
n2x

¼ Lx ð10:74Þ

and thus

Z ¼ LxLyLz ¼ V : ð10:75Þ
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Understandably the true partition function should be a dimensionless quantity
Z ¼ V=v0; we repeatedly ignored the elementary volume v0, as it is irrelevant to the
properties of our interest. Equation (10.75) leads to

F ¼ �kBT ln Z ¼ �kBT ln V ð10:76Þ

and

p ¼ � @

@V
F ¼ kBT

V
: ð10:77Þ

The pressure is just 1=N times that of an ideal solution of N particles! This is
the strongest effect of the chain connectivity; the chain is linearly bound hand in
hand, so the center of mass position is the only translational degree of freedom free
to move.

Consider the opposite limit where R0 is larger than the largest of Lx; Ly; Lz. The
ground state nx ¼ 1 dominates the sum in (10.73),

Zx ffi 8
p2

Lx exp � pR2
0

6L2x

� �
; ð10:78Þ

so that the total partition function is

Z ¼ 8
p2

� �3

V exp � pR2
0

6
1
L2x

þ 1
L2y

þ 1
L2z

 !( )
; ð10:79Þ

leading to the free energy and the pressure on the wall normal to x axis (Fig. 10.9):

F ¼ �kBT ln Z ¼ kBT
pR2

0

6
1
L2x

þ 1
L2y

þ 1
L2z

 !
ð10:80Þ

px ¼ � 1
LyLz

@

@Lx
F ¼ pR2

0

3L2x

kBT
V

: ð10:81Þ

Now the pressure is much higher than kBT=V but much smaller than NkBT=V . px
also differs from py and pz, meaning that the polymer senses the anisotropy of the
confining space unlike a simple fluids in the absence of an external fields. For
example, when one side Lz is much smaller than the others, i.e., when the chain is

Fig. 10.9 A flexible poly-
mer confined in a thin slab
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confined within a thin slab, then the free energy and pressure associated with the
confinement are

F ¼ kBT
pR2

0

6
1
L2z

¼ p2

6
kBT

R0

Lz

� �2

ð10:82Þ

pz ¼ pR2
0

3L2z

kBT
V

¼ NkBT
V

p2

3
l2

L2z

� �
; ð10:83Þ

Because Lx and Ly are much larger than Lz; pz is much higher than px or py:

P10.5 Consider a flexible chain of a Kuhn length l = 1 nm and contour length
L = 1 m confined within a thin and long tube of diameter D = 20 nm. Using the
Edwards’ equation find the free energy needed to confine all the chain within the
tube. What is the segmental distribution c(r)? Plot it.

Many biological and biotechnological situations involve polymer translocation
through narrow constrictions or pores. Consider a flexible polymer within a narrow
pore of diameter D (Fig. 10.10). The free energy required to confine the chain
fragment of length L ¼ Nl into the pore is

DF ¼ akBT
Ll
D2 ; ð10:84Þ

where a ¼ 0:96 as the solution of P10.5. The probability of the partitioning is

K ¼ e
� DF
kBT ¼ e�a Ll

D2 ¼ e�aN l
D

� 	2
; ð10:85Þ

which is exceedingly small if the pore diameter is much smaller than the radius of
gyration.

Fig. 10.10 A flexible poly-
mer translocating through a
narrow cylindrical pore

10.2 A Flexible Chain Under External Fields and Confinements 181



10.2.5 Polymer Binding–Unbinding
(Adsorption-Desorption) Transitions

A polymer chain can bind to an attracting surface but, because of the free energy
cost that the confinement incurs, it can also unbind from the surface. To study the
polymer binding–unbinding transition quantitatively, consider the surface is (y; z)
plane and the interaction between a polymer bead and surface given by the
hard-square well potential, which is a simplest model characterized by potential
depth U0 and range a as depicted in the Fig. 10.11:

u xð Þ ¼
1; x ¼ 0
U0; 0\x\a
0; x[ a

8<
: ð10:86Þ

where x is the coordinate of the chain end vertical to the surface. Neglecting the
lateral coordinates y and z, along which the chain end distribution is Gaussian, it
suffice to consider the one-dimensional Edwards equation,

� @

@N
G x; x0;Nð Þ ¼ � l2

6
@2

@x2
þ bu xð Þ

� �
G x; x0;Nð Þ: ð10:87Þ

The solution and its ground state dominance approximation is given as

G x; x0;Nð Þ ¼
X
n¼0

e�N�nwn xð Þwn x0ð Þ

� e�N�0w0 xð Þw0 x0ð Þ:
ð10:88Þ

(a)
(b)

Fig. 10.11 a The adsorption and desorption transition of a flexible polymer, b The polymer wave
function w0ðxÞ, in an adsorbed state, under the square well potential uðxÞ per monomer
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The ground state eigenfunction w0 xð Þ and eigenvalue �0 satisfy

� l2

6
@2

@x2
þ bu xð Þ

� �
w0 xð Þ ¼ �0w0 xð Þ ð10:89Þ

w0 xð Þ that satisfies the BC (w0 x ¼ 0ð Þ ¼ 0;w0 x ! 1ð Þ ¼ 0) are given by

w0 xð Þ ¼ A sin kx x a
Be�jx x\a


ð10:90Þ

where

k ¼ 6
l2

bU0 � �0j jð Þ
 �1=2

; ð10:91Þ

and

j ¼ 6
l2

�0j j
 �1=2

: ð10:92Þ

A bound state (adsorption) begins to exist with �0 approaching zero from neg-
ative, if ka[ p=2 (Fig. 10.11b), which, can be written as

6
l2
bU0

� �1=2

a[
p
2

ð10:93Þ

or

T\
24a2U0

p2l2kB
� TC; ð10:94Þ

Here Tc is the critical temperature of adsorption-desorption transition, below which
polymer is adsorbed.

To see the nature of the transition in detail, we analyze the polymer free energy
per segment in the bound state, which is given by �0 in units of kBT using (10.61):

F
N

¼ �0kBT ¼ �
Za
0

dxU0w
2
0 þ kBT

Z1
0

dx w0 �l2
d2w0

6dx2

� �
w0 ð10:95Þ
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The first term in the right hand side represents the energy loss per segment E=N
associated with binding. The second term is the entropy cost, �TS=N; which is
necessary to confine the chain near the surface. For T \Tc, the energy (E\0) wins
over the entropy (S\0) to make the free energy negative. But as T increases to Tc
and beyond, the bound state ceases to exist with the polymer wave function w0 xð Þ
delocalized away from the surface. The entropy gain tends to dominate the binding
energy and so that polymer desorbs from the surface. The phenomenon of polymer
adsorption-desorption is genuinely a consequence of chain flexibility. If the
polymer were a rigid rod, it would remain adsorbed to an attractive surface irre-
spective of the temperature increases.

P10.6 Calculate the average and variance of a monomer position in a weakly
adsorbed polymer in terms of Tc � T, which is small. The polymer adsorption
thickness is the inverse of the average vertical position, which can be regarded as
the order parameter of the adsorption–desorption transition.

In numerous situations, the attractive range a is very small, so that the Edwards
equation cannot be applied to the region 0\x\a, over which the potential can vary
rapidly (Fig. 10.12). Nevertheless the equation is applicable to the force-free region
x[ a, where

w0 xð Þ ¼ Be�jx: ð10:96Þ

In this case the adsorption energy is

�0 ¼ � l2

6
j2; ð10:97Þ

where dD ¼ j�1 is called the de Gennes’ (adsorption) thickness.

P10.7 As a simple model for small polymer globule, consider the chain under a
spherical point well u rð Þ ¼ ad rð Þ a\0ð Þ. Find the polymer segmental distribution
c rð Þ (Grosberg and Khokhlov 1994).

Fig. 10.12 Thechain-enddis-
tribution w0ðxÞ of a polymer
adsorbed by a contact attrac-
tion with the short range a
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10.3 Effects of Segmental Interactions

10.3.1 Polymer Exclusion and Condensation

The ideal chain model assumes that polymer segments can overlap, but due to the
space they occupy, the real chain cannot cross itself, and thus cannot be modelled
by a random walk but by a “self-avoiding walk”. This excluded volume effect
allows the polymer coil to swell. But if this repulsive interaction is dominated by
the attractive interaction between the segments, the coiled polymer undergoes a
collapse transition into a condensed state called a polymer globule. Here we
characterize the EED for various conformational states and study the conditions of
the transitions between them.

As a measure of the overall conformation of the polymer, which is modulated by
solvent, we study how the equilibrium end-to-end length R depends on N. To this
end we seek a chain’s free energy function of R with N fixed. First consider an ideal
chain, where there are no inter-bead interactions other than incorporated in the
chain connectivity. The probability distribution function (PDF) D R;Nð Þ that the
ideal chain’s end is within dR is the EED PDF P R;Nð Þ times the volume element
dV taken to be spherical shell of radius R and thickness dR:

D R;Nð ÞdR ¼ P R;Nð ÞdV

¼ 3
2pNl2

� �3=2

exp � 3R2

2Nl2

� �
4pR2dR:

ð10:98Þ

The free energy F 0 Rð Þ of the ideal chain associated with R is then given by,

F 0 Rð Þ ¼ �kBT ln D R;Nð Þ

¼ kBT
3

2Nl2
R2 � 2 lnR

� �
;

ð10:99Þ

apart from the part independent of R. Note that F 0 Rð Þ is different from F Rð Þ;
(10.18), because here we are dealing with the degree of freedom, Q ¼ R, not with
Q ¼ R: The most probable (free-energy minimizing) value of R is given by

Rp ¼ 2
3

� �1=2

R0 � N1=2; ð10:100Þ

which is on par with R0 ¼ N1=2l as well as the free chain radius of gyration

RG ¼ 1=6ð Þ1=2R0:
How can we incorporate the inter-bead interactions in the free energy F as a

function of the end-to-end distance R? First note that, in view of V � R3 � N3=2;

the concentration of the beads N=V for an ideal chain varies as �N�1=2, which is
very low for large N. Thus, to include the inter-bead interaction in our free energy
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function, we adopt the virial expansion for the macroscopic free energy of a dilute
gas (4.58). In our approach here, however, V � R3 is not a fixed parameter as in
the virial expansion but a fluctuating variable, while N is fixed. To study the
departure from the ideality, it suffices to include the segmental interaction in the
lowest order, F int Rð Þ ¼ kBTN2B2 Tð Þ=V (4.54). B2 is the second virial coefficient to
include two-bead interactions, B2 Tð Þ ¼ 1=2

R
dr 1� exp �bu rð Þf g½ 
 (4.55). u rð Þ is

the inter-bead potential of mean force affected by the surrounding solvent.
Assuming that it consists of hard core repulsion and soft attraction, B2 Tð Þ ¼
b� a=kBT ¼ b 1�H=Tð Þ (4.62), where the parameter H ¼ a=kBb is called the
theta (H) temperature. When T ¼ H, we have B2 ¼ 0, called the theta condition or
the theta solvent condition; to this order the effect of the repulsion cancels that of
attraction and the chain becomes ideal.

If H\T , B2 [ 0. The inter-bead repulsion dominates over the attraction, so a
polymer segment prefers to be in contact with the solvent molecules rather than
with the other segments. This is the so-called situation with a good solvent. In the
absence of an attractive interaction, B2 Tð Þ is given by the excluded volume per
monomer b ¼ 2pr3=3 where r is the contact diameter for two beads.

The total free energy F Rð Þ in three dimension is the sum of the two contribu-
tions F 0 Rð Þ and F int Rð Þ;

F Rð Þ
kBT

� � ln Rþ R2

Nl2
þ N2

R3 B2: ð10:101Þ

In the above the exact numerical prefactor in each term is irrelevant and so omitted
for the scaling analysis that we discuss below. F int Rð Þ � B2N2=R3 decreases as R
increases with a given N, i.e., the excluded volume tends to swell the chain, while
elastic energy F 0 Rð Þ tends to shrink it. At equilibrium the chain conforms to a way
that minimizes the free energy by varying R:

@

@R
F Rð Þ ¼ 0; ð10:102Þ

which leads to

� 1
R
þ R

Nl2
� N2

R4 B2 ¼ 0; ð10:103Þ

for which we examine each term for large N. 1=R is expected to be negligible, so
the other two terms in the equation above yield the optimal radius

RF � N3=5 B2l
2� 	1=5

: ð10:104Þ
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Indeed the scaling behavior (10.104) is correct for long chains, as one can check by
inserting this into (10.103). Generalizing this argument to an arbitrary dimension d,
we have

RF � Nv; ð10:105Þ
where

v ¼ 3
dþ 2

: ð10:106Þ

P10.8 Verify (10.106).

v is a universal exponent, called the Flory exponent; it is independent of the details
of the molecules that constitute the chain. In one and two dimensions we have the
exponents v ¼ 1 and v ¼ 3=4, which are exact, whereas the exponent in three
dimension v ¼ 3=5 is very close to the exact value v ¼ 0:588. The exponent v
larger than the ideal value 1=2 means that at equilibrium the chain swells beyond
the idealty (Fig. 10.13a).

If H[ T; we have B2\0; the attraction dominates over the repulsion, which is
the situation with a poor solvent. The minimum of free energy (10.101) is attained
at R ¼ 0; implying that the chain tends to collapse to a point. But in reality, the
chain will collapse to a compact structure. Because it will be a more condensed
state, the free energy model should include the three-bead interaction term in (4.58)
with the third order virial coefficient B3 which is positive (using the van der Waals
equation of state for example, B3 ¼ b2):

F Rð Þ
kBT

� � ln Rþ R2

Nl2
þ N2

R3 B2 þ N3

2R6 B3: ð10:107Þ

Fig. 10.13 Flexible polymer conformations and radii of gyration RG a swollen state for T[H,
or in a good solvent, due to the excluded volume effect, b ideal chain in H solvent, c collapsed
state for T\H, or in a poor solvent, due to intere-bead attration
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Considering only the last two terms, which are dominant when N is large as well as
R is much smaller than R0 ¼ N1=2l, we have the free energy minimum at

Rc � N
B3

B2j j
� �1=3

� N1=3; ð10:108Þ

signifying an onset to transition into a compact configuration, called a globule, in
which each monomer packs into the volume, V � N (Fig. 10.13c). The
coil-to-globule transitions of chain conformations following the temperature change
or the solvent changes are summarized in Fig. 10.13.

The information on polymer structures, particularly the radii of gyration and
its scaling laws, can be obtained by scattering experiments, such as small angle
x-ray scattering (SAXS) and small angle neutron scattering (SANS). As studied in
Chap. 9, the data of very small q or small angle scattering can provide information
about the radius of gyration, which is related to the structure factor, S qð Þ �
N 1� q2R2

G=3
� 	

(9.62). In contrast, at a high value q, S qð Þ probes the polymer
structures within the bulk, which are self-similar; in the chain that satisfies
RG � Nv, for large q, S qð Þ � q�Df with the fractal dimension Df ¼ 1=v ; Df ¼ 2
for ideal chain, Df ¼ 5=3, for self-avoiding chain, and Df ¼ 3 for the chain col-
lapsed into a globule.

10.3.2 DNA Condensation in Solution
in the Presence of Other Molecules

Suppose that a DNA fragment of N segments is immersed into a solution that is
crowded with macromolecular solutes such as proteins (Fig. 10.14). What confor-
mation will the fragment take? Following the argument of Sneppen and Zocchi
(2005), we present a scenario that shows the DNA can collapse rather than be swollen
or extended, due to excluded volume interaction between the DNA and solute.

(a) (b)

Fig. 10.14 a A DNA molecule with proteins excluded in the shaded area, b a collapsed DNA
with the proteins depleted
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For simplicity we consider NU mutually non-interacting solute molecules each
with radius rU in a volume V . The partition function for the solute in the absence of
the DNA is (4.85):

ZU
0 ¼ 1

NU !
V=v0ð ÞNU : ð10:109Þ

Consider that a DNA fragment has N segments each with length l. We assume that
the solute and DNA do not interact except via the steric effect of the excluded
volume d ¼ p rDNA þ rUð Þ2l, per DNA segment, where rDNA is cross-sectional
radius. When the DNA chain does not coil but is extended, the volume available to
the solutes is reduced by this interaction as V ! V � Nd.

Now assume that the DNA collapses to a globule of radius R. With the solute
depleted within the globule, the volume available to the solute in the solution
increases. The fraction of such forbidden contacts between the solute and DNA in
the globule is * Nd=R3ð Þ, so the volume available to the solute particles becomes

V 0 ¼ V � Ndþ Ndð Þ2
R3 : ð10:110Þ

Consequently, the free energy change of the solutes during transition to the col-
lapsed state for the DNA is

DFU ¼ �NUkBT ln
��

V � Ndþ Ndð Þ2
R3

�
= V � Ndð Þ	

ffi �kBT
Ndð Þ2
R3 nU ;

ð10:111Þ

where nU ¼ NU=V is the concentration of solutes and Nd=V � 1 as well as
Ndð Þ2=VR3 � 1 are to be noted.
In addition, the free energy of the DNA increases upon collapse, due to excluded

volume interaction among the segments, by the amount

Fig. 10.15 DNA in phage
extruded into a cell where
DNA can collapse assisted
by proteins
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DFDNA ffi kBT
N2

R3 B2: ð10:112Þ

The net free energy change of the DNA and solutes is

DF ¼ DFU þDFDNA

ffi kBT
N2

R3 B2eff ;
ð10:113Þ

where B2eff ¼ b� d2nU is the effective virial coefficient of the DNA. B2eff can be
negative, even when the solvent is good to the DNA (B2 ¼ b � pr2DNAl is positive).
It means that, DNA can condense to a globule as argued in the earlier section, depe-
nding on the concentration of the solute. In E. coli, where nU � 2� 10�3= nmð Þ3;
FDNA ’ 1 nm; rU ’ 2 nm; and l ’ 120 nm, the ratio DFU=DFDNA � � d2nU=b can
be as large as −60 (Sneppen and Zocchi (2005)). For example, DNA from a phage
can be injected into a bacterial cell that is crowded by proteins at a concentration of
20–30% (Fig. 10.15). This condensation is due to the overriding entropy gain
caused by the excluded volume that is depleted when the phage DNA collapses
into a globule upon injection (Fig. 10.15). Another possible example is the collapse
of biopolymers induced by protein binding, e.g., chaperon molecule binding on
protein chains. In this case the binding rather than depletion may enhance the
collapse transitions.

P10.9 If the excluded volume effect among the solute is included, how is the above
result affected in the solution crowded by the solute?

(b)

(a)Fig. 10.16 a Nuclear blast
expansion as time progresses
and b the scaling relation
between radius and time of
the fire ball (Taylor (1950)
by permission of the Royal
Society)
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Fig. 10.17 Scaling laws for
thickness H of animals and
trees with the sizes L

10.4 Scaling Theory

Scaling theory is essentially a dimensional analysis, which is useful to gain
insight into the complex nature of the physical behaviors that satisfy certain
power laws, as in critical phenomena and polymers. For phenomena for
which analytical theories and formulae are not available, scaling theory often
provides an essence of the underlying physics.

Example: The First Nuclear Bomb Explosion

G. I. Taylor, a famous British theoretical physicist, was asked to find the yield
(energy release) of the US’ first nuclear bomb. He noted that the energy
would produce a very strong shock wave that expands approximately
spherically (Fig. 10.16a), and that the radius at time t would scale with the
unknown energy release E and the mass density of the undisturbed air q
(Taylor 1950):

r ¼ r E; q; tð Þ
/ Eaqbtc

ð10:114Þ

Using dimensional analysis with E½ 
 ¼ ML2=T2, q½ 
 ¼ M=L3; one can easily
obtain

r� E
q
t2

� �1=5

: ð10:115Þ

Analysis of a movie of the test explosion (Fig. 10.16a), confirmed that the
power law r � t2=5 is indeed exact. Using r ¼ 100m at t ¼ 0:016 s after the
explosion, and q ¼ 1:1 kg/m3 at the altitude of the explosion, E ¼ 4� 1013 J,
which is about 10 kilotons of TNT within the factor of order 1.
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On the other hand, the nuclear fallout diffuses in the manner

r tð Þ� Dtð Þ1=2 � t1=2 ð10:116Þ

where D is the diffusion constant of the fallout through the air. The time
derivatives of (10.115) and (10.116), _rE tð Þ � t�3=5 and _rD tð Þ � t�1=2

respectively, reveal that the shock wave propagation is much faster than the
fallout diffusion at short time.

Sizes and Speeds of Living Objects

How do the bone thickness H of animals scale with their sizes L? With the
assumption that mass density is about the same for all animals, the weights W
scale as

W � L3g; ð10:117Þ

where g is the gravitational constant. If the bone’s maximum force per area to
support the weight p � W=H2 is also the same, a simple substitution yields
the cross section of the bone (Fig. 10.17)

H � L3=2g1=2: ð10:118Þ

This simple scaling law is quite correct within mammals and vascular plants.
It means that larger animals tend to be flatter (e.g. elephant and whale) and
large trees tend to be thicker. It also implies that the story of Gulliver is
wrong; at Brobdingnag the giants should be much stockier than Gulliver! The
largest sea animal (whale) is larger than the largest land animal (elephant).
Why?

Happy creatures they are, under no stress, the elephants like to move with
the natural frequencies,

x � g
L

� �1=2
� L�1=2: ð10:119Þ

This leads to the motion speed

v � Lx � L1=2: ð10:120Þ

The mosquitoes on the elephants are slower than elephants, when v is mea-
sured in m � s�1 but move much more quickly than elephants when speed is
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measured in body lengths per second.

Polymer—An Entropic Animal

Without recourse to theoretical apparatus of polymer physics, one can esti-
mate the free energy of confining a long flexible polymer within a thin tube of
diameter D (de Gennes 1979). A flexible polymer is a thermally fluctuating
structure with the energy scale kBT , so considering the two length scales R0

and D of the system, we have

F � kBT
R0

D

� �m

: ð10:121Þ

Since under strong confinement F � N and R0 � N1=2, we identify m ¼ 2
and

F � kBT
R0

D

� �2

� D�2: ð10:122Þ

This is comparable to the correct result, F ¼ 0:96 kBT R0=Dð Þ2, which can be
obtained by solving the Edward’s equation. The relation F � D�2 indicates
how the free energy to confine the chain within the tube increases as the tube
narrows.

A real, self-avoiding chain confined in a thin tube would have a different
scaling behavior. From the relation F � N, and using R0 � Nm (Fig. 10.18),

F � kBT
R0

D

� �m

� N � D�5=3; ð10:123Þ

where m ¼ m�1 ¼ 5=3 in three dimensions. The tube length occupied by the
polymer is scaled as

Rk � R0
R0

D

� �n

; ð10:124Þ

Fig. 10.18 Polymers con-
fined within a narrow cylinder
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which should go like �N: This relationship leads to

n ¼ m�1 � 1 ¼ 5=3� 1 ¼ 2=3; ð10:125Þ

so (10.124) can be written as Rk � N 1=Dð Þ2=3 � D�2=3:

Monomer concentration scales as

c� N
D2Rk

� Dm�1�3 � D�4=3

: ð10:126Þ

For ideal chain, in contrast, m ¼ 1=2 and c�D�1:
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Chapter 11
Mesoscopic Models of Polymers:
Semi-flexible Chains and Polyelectrolytes

Most biopolymers are semi-flexible: they can bend and undulate. Mechanically they
are characterized by finite values of their persistence lengths lp, the scales below
which the chains can be regarded as straight (Fig. 11.1). For example, the persis-
tence length of double-stranded DNA is about 50 nm, while that of actin filament is
about 20 lm. For the length scale much longer than the persistence length, the
chain appears to be flexible, to which the models presented earlier can be applied.
This chapter covers basic mesoscopic conformations, their fluctuations, and elastic
behaviors of semi-flexible chains and polyelectrolytes that are either free or subject
to external forces and constraints.

11.1 Worm-like Chain Model

We start with construction of the effective Hamiltonian for a free semi-flexible
chain. As mentioned earlier, the effective Hamiltonian can be taken from the
macroscopic, phenomenological energy, which, for a semi-flexible chain, is the
energy required to bend an elastic string with a locally varying curvature:

Fig. 11.1 Mesoscopic conformations of polymer chains with different persistence lengths lp. L is
the contour length
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F ¼ j
2

ZL
0

ds C sð Þ2¼ j
2

ZL
0

ds
@u sð Þ
@s

� �2

: ð11:1Þ

Here j is an elastic constant called bending modulus (or bending rigidity) and the
L is the contour length, and C sð Þ is the curvature at an arc length s (Fig. 11.2). The
curvature is given by C sð Þ ¼ 1=R sð Þ ¼ @u sð Þ=@sj j, where R sð Þ is the local radius of
curvature, u sð Þ is the unit tangent vector given by u sð Þ ¼ @r sð Þ=@s, where r sð Þ is
the position vector to the arc position. By considering the local curvature to ther-
mally fluctuate, the energy (11.1) can gain the status of an effective Hamiltonian, or
a free energy function. We may say that the Hamiltonian brings the macroscopic
bending energy to life with the local curvatures therein thermally fluctuating. This
model is called the worm-like chain (WLC). In the absence of an external
potential on each segment, it stands in contrast with the flexible chain Hamiltonian
(10.52),

F ¼ ke
2

ZL
0

ds
@r sð Þ
@s

� �2

¼ ke
2

ZL
0

ds u sð Þð Þ2; ð11:2Þ

which represents stretching energy with the entropic stretch modulus ke ¼ 3kBT=l2:
We can gain insights into segmental fluctuations and correlations by discretizing

the WLC to an array of N basic links each with length a (Fig. 11.2); by considering
s ¼ na, where n is an integer, (11.1) can be rewritten in terms of the link tangent
vectors un:

Fig. 11.2 Worm-like chain. r sð Þ and u sð Þ are the three dimensional position vector and two
dimensional orientation (unit tangent vector) at the one-dimensional arc position s. The chain in
the brocken ellipse is magnified into an array of unit length a jointed with a relative angle hn
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F unf g ¼ j
2a

XN�1

n¼1

unþ 1 � unð Þ2; ð11:3Þ

which can be cast as

F ¼ j
2a

XN�1

n¼1

2� 2unþ 1 � unð Þ

¼ j
a

XN�1

n¼1

1� cos hnð Þ;
ð11:4Þ

where hn is the angle which nþ 1th link makes with nth link (Fig. 11.2). Viewed
over a length scale much longer than a; the chain looks continuous; in the con-
tinuum limit, a ! 0; hn ! 0 with h2n=a kept as finite, (11.4), and thus (11.1), is
represented by:

F hnf g ¼ j
2a

XN�1

n¼1

h2n: ð11:5Þ

The hn for all n are the rotational degrees of freedom that span 2 dimension. Each
n contributes to the energy via the equipartition theorem, jhh2ni= 2að Þ ¼ 2 1=2ð ÞkBT ,
so we have

hn
2� � ¼ 2akBT

j
: ð11:6Þ

Now we focus on the nearest neighbor tangent correlation:

unþ 1 � unh i ¼ cos hnh i
ffi 1� 1

2
h2n
� �

¼ 1� a
lp
;

ð11:7Þ

where

lp ¼ j
kBT

ð11:8Þ

is defined as the persistence length. Extending the result to the correlation over a
finite arc length s ¼ ma (where the continuum limit of large m and small a is
considered), we find
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u sð Þ � u 0ð Þh i ¼ lim
m!1 1� s

mlp

� �m

¼ e�s=lp ð11:9Þ

Now it is clear that the persistence length lp is the correlation length of segmental
orientation. Essentially the WLC is the jointed chain with correlation (compare
this with the freely-jointed chain). Over an arc length s much longer than the
persistence length, the orientation is not correlated. In contrast, within the length
shorter than the persistence length, the chain can be viewed as straight and stiff.

Then, the end-to-end distance (EED) vector R is obtained as

R ¼ r Lð Þ � r 0ð Þ ¼
ZL
0

ds u sð Þ; ð11:10Þ

leading to the mean squared EED:

R2� � ¼ Z
L

0

ds
ZL
0

ds0 u sð Þ � u s0ð Þh i ¼
ZL
0

ds
ZL
0

ds0e� s�s0j j=lp

¼ 2
ZL
0

ds e�s=lp

Zs
0

ds0es
0=lp ¼ 2lp L� lp 1� e�L=lp

� �h i
:

ð11:11Þ

In the above, the integration is done for the case s[ s0; the result of which is
doubled because the integral is invariant with respect to exchange s $ s0.

The mean square EED is depicted by Fig. 11.3. It shows that for a long chain or
short persistence length, in which lp � L;

R2� � � 2lpL ¼ lL; ð11:12Þ

which is the behavior of an ideal chain, (10.4), with the persistence length half of
the Kuhn length, lp ¼ l=2: On the other hand, for the short chain or long persistence
length, lp � L, we find

Fig. 11.3 The mean-squared
end-to end distance hR2i of a
semi-flexible chain as a func-
tion of L=lp
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R2� � � L2; ð11:13Þ

which is evidently the behavior of a rigid rod. The crossover between two different
regions is seen at the length L� lp (Fig. 11.3).

P11.1 Two double-stranded DNA fragments of N=2 bp length are jointed via
a bubble of several nð Þ bp size in between. What is the effective persistence length and
ms EED of the entire chain? How does it depend on the length N? Consider that the
bubble is composed of two single stranded DNA each with the persistence length lps
of *1 nm. (Hint: For example, the orientation correlation between two segments
composed of a ds and a ss bp is u 0ð Þu 2að Þh i ¼ 1� 2a=lp ¼ 1� a=lpd

� 	
1� a=lps
� 	

(11.7). Then, the effective persistence length is lp ¼ 2 lpdlps
� 	

lpd þ lps
� 	�1’ 2lps:

The structure factor of the semi-flexible chain for small q is S qð Þ ¼
N 1� q2R2

G=3
� 	�1

; (9.62), with the radius of gyration given by

R2
G ¼ 1

2N2

XN
n;m

rn � rmð Þ2
D E

¼ 1
2L2

ZL
0

ds
ZL
0

ds0 r sð Þ � r s0ð Þð Þ2
D E

¼ 1
3
Llp � l2p þ

lp
L

� �2

R2� �
;

ð11:14Þ

where we used (11.11) and

ðr sð Þ � r s0ð Þ2
D E

¼ 2lp s� s0j j � lp 1� e� s�s0j j=lp
� �h i

: ð11:15Þ

Equation (11.14) has two limiting forms:

R2
G � 1

3
Llp; lp � L; ð11:16Þ

R2
G � 1

12
L2; lp � L: ð11:17Þ

The scattering at a high momentum transfer q probes a short length scale con-
formation of a chain, RG �Na; following (9.58), (9.60), the structure factor is

S qð Þ� q�1 ð11:18Þ

Figure 11.4 shows the dependence of the S qð Þ on q that is obtained from small
angle neuron scattering experiment. It manifests q�1=v and q�1 regimes, the with the
crossover value q	 indicative of the persistence length lp � q	�1, which marks the
transition from a flexible to a rigid chain.
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11.2 Fluctuations in Nearly Straight Semiflexible Chains
and the Force-Extension Relation

11.2.1 Nearly Straight Semiflexible Chains

In this section we shall study how a nearly-straight (rod-like) semiflexible chain
thermally fluctuates. Such situations include a chain fragment that is shorter than
the chain’s persistence length, or a chain of an arbitrary length that is stretched by a
strong tension (Fig. 11.5), for which we seek the force-extension relation. Unlike
the freely-jointed chain model for the flexible polymer situations (Chap. 3), the
WLC calculation shown below is quite involved.

Fig. 11.4 The static structure factor S qð Þ of a chain is characterized by two lengths, the radius of
gyration RG for low q and the persistence length lp for large q. The crossover from the flexible
chain [either Gaussian m ¼ 1=2ð Þ or self-avoiding m ¼ 0:588ð Þ] to the rigid chain is marked by the
regime q� 1=lp

(a) (b)

Fig. 11.5 Biological semi-flexible chains under constraints and external forces, a DNA
constrained by histone proteins, b cytoskeleton on cell surface
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We express the segmental position at an arc length s of the nearly-straight chain
as

r sð Þ ¼ h sð Þþ x sð Þx̂ ð11:19Þ

where x̂ is the unit vector along the tension, and h sð Þ is the transverse undulation
vector of small magnitude that varies slowly over the distance: @h=@sj j � 1
(Fig. 11.6). A derivative of (11.19) with respect to s is the unit tangent vector u sð Þ;
so we have 1 ¼ @h=@sð Þ2 þ @x sð Þ=@sð Þ2 or

@x sð Þ
@s

¼ 1� @h
@s

� �2
 !1=2

� 1� 1
2

@h
@s

� �2

: ð11:20Þ

The extension of the chain along the force then is

X ¼
ZL
0

ds
@x sð Þ
@s

¼ L� 1
2

ZL
0

ds
@h
@s

� �2

; ð11:21Þ

of which the average is

X ¼ L� 1
2

ZL
0

ds
@h
@s

� �
 �2

: ð11:22Þ

11.2.2 The Force-Extension Relation

We want to find the transverse and longitudinal fluctuations of the chain and the
relation between X and the applied tension f if present. To this end we need to first
find h @h=@sð Þ2i from the effective Hamiltonian, which, for the general case with the
f ; reads

Fig. 11.6 A stretched semi-flexible chain. h sð Þ and u sð Þ are two dimensional undulation and
orientation vectors at an arc length s positioned at x sð Þ along the x axis or the direction of the
tension f
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F ¼ 1
2
j
ZL
0

@2r sð Þ
@s2

� �2

ds� fX

� 1
2

ZL
0

j
@2h
@s2

� �2

þ f
@h
@s

� �2
" #

ds;

ð11:23Þ

the latter being in the “Gaussian level approximation” to correctly retain the second
order in h.

Because the functional form in real space, (11.23) is cumbersome to analyze, we
introduce the Fourier transform:

h qð Þ ¼
ZL
0

ds e�iqs h sð Þ ð11:24Þ

h sð Þ ¼ 1
L

X
q

eiqs h qð Þ: ð11:25Þ

We adopt the conventional periodic boundary condition; h sð Þ ¼ h sþ Lð Þ; which
allow q to take N discrete values

qn ¼ 2np
L

; n ¼ 
1;
2. . .;
N=2; ð11:26Þ

where N ¼ L=a with a being the microscopic length. For a very long chain
(N � 1Þ, the choice of the boundary condition does not affect its bulk properties.
However, for short chains, where the effects of the ends may not be negligible, one
has to use the appropriate boundary condition that meets the actual situations.

Substituting (11.25) into (11.23), with the identity

1
L

ZL
0

ds e�i q�q0ð Þs ¼ dqq0 ð11:27Þ

we have the effective Hamiltonan in the Fourier space,

F h qð Þf g ¼ 1
2L

X
q

jq4 þ fq2
� 	

h qð Þj j2; ð11:28Þ

This is in a tractable form; due to the equipartition of energy for each mode, h qð Þ;
which is two dimensional, we have
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1
2L

jq4 þ fq2
� 	

h qð Þj j2
D E

¼ 2
1
2

� �
kBT ; ð11:29Þ

leading to

h qð Þj j2
D E

¼ 2kBTL
jq4 þ fq2

ð11:30Þ

For any integrable function of s, say u sð Þ; we can prove the identity (Parseval’s
theorem):

ZL
0

dsu sð Þ2 ¼ 1
L

X
q

u qð Þj j2: ð11:31Þ

Thus from (11.22) we can evaluate the fluctuation of the transverse component of u;
u? sð Þ ¼ @h=@s [whose Fourier transform is iqh qð Þ]:

u?2� � ¼ 1
L

ZL
0

ds u? sð Þ2
D E

¼ 2 1� X
L

� �

¼ 1
L2
X
q

q2 h qð Þj j2
D E ð11:32Þ

Because the size of each state in q space is 2p=L, for sufficiently long chains we can
replace the discrete sum by the integral provided that the integrand is regular,

X
q

� � � ! L
2p

Z1
�1

dq � � � ð11:33Þ

so that (11.30), (11.32) leads to

u?2� � ¼ 1
2p

Z1
�1

dq
2kBT
jq2 þ f

¼ kBT fjð Þ�1=2 ¼ kBT
flp

� ��1=2

;

ð11:34Þ

where we used lp ¼ j= kBTð Þ. It shows that u2?
� �

is indeed small for the extensional
force larger than kBT=lp in consistency with our approximation of the
nearly-straight conformation. Combining (11.32) and (11.34) yields
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f ¼ kBT
4lp

1� X
L

� ��2

: ð11:35Þ

This can also be interpreted as the average force f necessary to extend the chain to a
distance X: Like those derived from Gaussian chain model or freely-jointed chain
(FJC) model, the force is proportional to kBT due to entropic nature of the chain; the
force required to extend the chain to its contour length L diverges to infinity, since
the chain dislikes to have the minimum entropy, the behavior already observed in
the FJC. For a small value of X, however, this force on the highly stretched WLC
cannot recover the flexible chain result f ¼ 3kBTX= Llð Þ ¼ 3kBTX= 2Llp

� 	
(3.59),

(10.20), because we assumed small thermal undulations. A formula to interpolate
the highly stretched and flexible chain limits was devised by adding the last two
terms below:

f ¼ kBT
lp

1
4

1� X
L

� ��2

þ X
L
� 1
4

" #
ð11:36Þ

As shown by Marko and Siggia (1995) and Bustamante et al. (1994) this formula is
in an excellent agreement with the force-extension experiment on a long DNA,
provided that its persistence length is lp � 50 nm.

P11.2 Two ends of a double-stranded DNA of the contour length L = 20 nm and
persistence length lp � 50 nm are attached to those of a single stranded DNA of the
same contour length, as shown in the Figure. Will the fully stretched configuration
shown in this figure (a) be possible? If not, why and what would be the shape at the
equilibrium? Suppose that the equilibrium conformation would be in D shape
where dsDNA has the shape of circular arc, while ssDNA is highly stretched, as
shown in figure (b). What is the equilibrium end to end distance X? Calculate the X,

Fig. 11.7 The relative extension X/L
versus force f for L ¼ 32.8 lm. The
solid line represents the theoretical
results of Marko & Siggia, which fits
well the experimental data. The dashed
line represents the freely—jointed
chain model. (Adapted with permis-
sion from Marko and Siggia (1995).
Copyright 1995, American Chemical
Society)
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using WLC for the dsDNA, and for the ssDNA, each with the persistence length of
50 and 1 nm respectively.

(a) (b)

If the contour length of the DNA is 200 nm, what will happen? Will the dsDNA still
bend? How much?

P11.3 Find the correlation function u sð Þ � u 0ð Þh i for a stretched WLC by the
tension f .

11.2.3 The Intrinsic Height Undulations, Correlations,
and Length Fluctuations of Short Chain Fragments

Now consider a tension-free chain fragment that is shorter than the persistence
length to warrant the approximation of small undulation. From (11.30) with f ¼ 0:

h qð Þj j2
D E

¼ 2kBTL
jq4

: ð11:37Þ

The transverse fluctuation defined by

h2
� � ¼ 1

L

ZL
0

ds h sð Þ2
D E

ð11:38Þ

is obtained as

h2
� � ¼ 1

L2
X
q

h qð Þj j2
D E

¼ 2kBT
Lj

X
q

1
q4

¼ 4
Llp

L
2p

� �4

fN 4ð Þ � L3

4 � 90lp ð11:39Þ

where the numerical factor fN 4ð Þ ¼PN
1 1=n4ð Þ converges to f1 4ð Þ ¼ p4=90 for

N[ 10: The rms transverse fluctuation grows as L3=2. However, for a short chain
in which L=lp\1; the chain undulation is very small, even if the chain is free. For
short dsDNA fragment of L ¼ 20 nm; lp ¼ 50 nm; h2

� �1=2
is only at sub- nanometer

scale. For an actin filament of the length L ¼ 10 lm; lp ¼ 20 lm, h2
� �1=2

is about at
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nanometer scale. When a short chain or filament is bent, the thermal undulation is
also expected to be negligible. This result will be utilized in next section.

P11.4 Find the u?2
� �

and for a short, tension-free chain.

P11.5 For a chain with the both ends fixed, how would the above results be
changed for a short chain? Show that the undulation fluctuation varies along the
axis of extension as

h sð Þ2
D E

¼ 2
3
L3

lp

s
L

� �2
1� s

L

� �h i2

The result was used to investigate the motion of a bead attached to a single
microtubule in network (Caspi et al. 1998). When averaged over the arc length, it is
h2
� � ¼ L3= 90lp

� 	
; which is four times larger than (11.39). Also it was shown that,

when the both ends are fixed and stretched by a force f

h sð Þ2
D E

¼ 2
LkBT
f

s
L

� �
1� s

L

� �h i

(Baba et al. 2012). This is in a good agreement with the experiment a single DNA
fragment stretched by dual trap optical tweezers.

Now we study the correlation function of the height undulations (transverse
fluctuations) at two positions Ch s; s0ð Þ; via direct Fourier transform (11.25) and
(11.37), it is given by

Ch s; s0ð Þ ¼ h sð Þ � h s0ð Þh i ¼ 1
L2
X
q

X
q0

eiq s�s0ð Þe�iðq0�qÞs0 h qð Þ � h	 q0ð Þh i

Assuming the translational invariance, Ch s; s0ð Þ ¼ Ch s� s0ð Þ, one can show that

Ch s� s0ð Þ ¼ 1
L2
X
q

eiq s�s0ð Þ h qð Þj j2
D E

¼ 2kBT
jL

X
q

1
q4

eiq s�s0ð Þ

¼ 4kBT
jL

XqN=2
q1

q�4 cos q s� s0ð Þ½ � � 4kBT
jL

XqN=2
q1

q�4

( )
cos q1 s� s0ð Þ½ �

¼ h2
� �

cos q1 s� s0ð Þ½ � ¼ L3

4 � 90lp cos
2p s� s0ð Þ

L

� 
;

ð11:40Þ

Here q1 and qN=2 are the lowest and highest wave-number cutoffs respectively, and
we have used (11.39) and made a single mode ðq1Þ approximation owing to the
rapidly decaying function q�4. Equation (11.40) means that the correlation is
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long-ranged over the entire chain. Related to this, we find the mean-squared dis-
placement (MSD):

h sð Þ � h 0ð Þð Þ2
D E

¼ 2 h2
� �� h sð Þ � h 0ð Þh i� �

¼ 4kBT
jL

XqN=2
q1

q�4 1� cos qsf g

¼ 2kBT
pj

ZqN=2
q1

dq q�4 1� cos qsf g:

ð11:41Þ

Consider s � a: While cos qs is nearly 1 for small q, it rapidly oscillates around 0
between q� s�1 and q ¼ qN=2 yielding little contribution to the integral, so the
MSD is approximated as:

h sð Þ � h 0ð Þð Þ2
D E

� 2kBT
pj

ZqN=2
a=s

dq q�4

¼ 2kBT
3pj

s
a

� �3
� s3=lp;

ð11:42Þ

where a * 1. This scaling behavior appears to be similar to (11.39); the MSD of
WLC shows strong persistence in contrast to that of an ideal chain, which is � slp:

Following the transverse fluctuation, the length of the extension X also fluctuate
around the average hXi ¼ X. A straightforward way to derive this longitudinal
fluctuation is to use the linear response theory, (9.9), rewritten as

DXð Þ2
D E

¼ kBT
@X
@f

: ð11:43Þ

For the fluctuation of the length streched by a high force one may simply use
(11.35) to obtain

DXð Þ2
D E

¼ L
4

kBT=fð Þ3=2lp�1=2; ð11:44Þ

which indicates how the length does fluctuate even under such high force for a long
chain. For the case where the force is not so high, (11.43) becomes via (11.32) and
(11.30):

DXð Þ2
D E

¼ kBTð Þ2
X
q

1

jq2 þ fð Þ2 : ð11:45Þ
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This is calculated for f ¼ 0:

DXð Þ2
D E

¼ kBTð Þ2
j2

X
q

1
q4

¼ 2
l2p

L
2p

� �4

fN 4ð Þ ¼ 1
8 � 90

L4

lp2
: ð11:46Þ

The rms longitudinal fluctuation grows with L2 as the chain gets long. Interestingly,
however, the ratio DX 2

� �
= h2
� �

is L= 2lp
� 	

; if the chain is stiff and short such that
L\2lp; the longitudinal fluctuation is less than the transverse fluctuation.

11.2.4 The Equilibrium Shapes of Stiff Chains Under
a Force

The above discussions are mostly concerned with the fluctuations. Lastly let us look
at the mean configuration of the chain under a force. For the chain under the
stretching at the ends, the equilibrium shape is obtained by the condition of the
minimum free energy functional (11.23),

dF=dh sð Þ ¼ 0: ð11:47Þ

dF=dh sð Þ is functional derivative obtained by noting that the change dF caused by
a differential change dh in h is written as

dF ¼
ZL
0

j
@2h
@s2

� �
� @2dh

@s2

� �
þ f

@h
@s

� �
� @dh

@s

� �� 
ds: ð11:48Þ

Upon integration by parts, the above becomes

dF ¼
ZL
0

jf @4h
@s4

� �
� dh� f

@2h
@s2

� �
� dh

� 
ds ð11:49Þ

Thus,

dF=dh sð Þ ¼ j
@4h
@s4

� �
� f

@2h
@s2

� �
¼ 0: ð11:50Þ

Taking only a single component of h; we have

208 11 Mesoscopic Models of Polymers: Semi-flexible Chains …



j
@2g
@s2

� �
¼ fg; ð11:51Þ

where g ¼ @2hð Þ= @s2ð Þ. By integration one finds

g ¼ A sinh½ f =jð Þ1=2s� þB cosh f =jð Þ1=2s
h i

ð11:52Þ

h sð Þ ¼ a sinh½ f =jð Þ1=2s� þ b cosh f =jð Þ1=2s
h i

þ csþ d: ð11:53Þ

Using the BCs at both ends the constants a; b; c; d are determined.
We can include the situation where at the ends the elastic rod is compressed

longitudinally rather than stretched. For this case the above analysis is still valid if
the force f is replaced by �f ; we have

hðsÞ ¼ a sin ðf =jÞ1=2s
h i

þ b cos ðf =jÞ1=2s
h i

þ csþ d: ð11:54Þ

Considering the ends are pinned we use the BC, h s ¼ 0ð Þ ¼ h s ¼ Lð Þ ¼ 0 and
@2h=@s2ð Þ s ¼ 0ð Þ ¼ @2h=@s2ð Þ s ¼ Lð Þ ¼ 0: We have the trivial solution h ¼ 0; or

h sð Þ ¼ a sin½ f =jð Þ1=2s� ð11:55Þ

with a undetermined but under the condition,

f =jð Þ1=2L ¼ np; ð11:56Þ

where n is an integer. h sð Þ has different modal shapes (eigen-modes) depending
upon n. Thus, if the compressional force increases to the critical value corre-
sponding to n ¼ 1

f ¼ j p=Lð Þ2; ð11:57Þ

a sudden buckling occurs from the straight shape. This is called the Euler buckling
instability in beam theory. Because the critical force is inversely proportional to the
square of the length, relatively long chains may not be able to sustain the com-
pression without buckling. The buckling instability may limit the lengths of the
microtubules that polymerize in cells.

11.3 Polyelectrolytes

Polyelectrolytes (PE) are the polymers that carry ionizable groups, which disso-
ciate in an aqueous solution endowing the polymers with charges. Many biological
molecules are such charged polymers. For instance, polypeptides, actin filaments,
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RNA and DNA molecules are polyelectrolytes. The electrostatic interactions
between charges among the PEs and ionic backgrounds fundamentally affect
their conformations.

11.3.1 Manning Condensation

The cations in the solution, due to their electrostatic attraction with PE segmental
charges (which are regarded as negative here), can adsorb on the PE contour. The
cations can also desorb to the bulk for entropic gain. The cation adsorption or
condensation, called the Manning condensation, occurs due to the attraction
that wins the entropy over in minimizing the free energy of the combined
system of the PE and adsorbed cations (Manning 1969; Oosawa 1971).

Below we study how the condensation occurs for an infinitely long and thin but
rigid PE that has charge −e per segment of length b, i.e., the line charge density of
the absolute magnitude k ¼ e=b in a dilute 1:1 salt solution (Fig. 11.8). There are
two kinds of cations. One is the counterions dissociated from the polyelectrolyte,
and the other is cations of the salt. Because the counterions are much less than the
salt ions, the charge neutrality within the background liquid is not violated. Assume
that the N cations of valency z indeed condensate onto the PE per segment b and
the segmental charge e is renormalized to eeff ¼ e 1� zNð Þ: The optimal value for
N will be determined by the competition of energy and entropy. Because the PE is
infinitely long (total segment number M ! 1Þ, the energy of electrostatic repul-
sion between the renormalized charges in the PE using the Debye-Hükel approx-
imation is

E ¼
XM
i¼1

XM
j¼iþ 1

e2 1� zNð Þ2
4peb

1
i� jj j e

�jDb i�jj j

¼ Me2 1� zNð Þ2
4peb

X1
k¼1

1
k
e�jDbk;

ð11:58Þ

which can be summed to:

(a) (b)Fig. 11.8 a A negatively
charged polyelectrolyte adsor-
bed by z-valent cations in 1:1
salt, b the effective linear
charge density keff on the poly-
electrolyte versus its bare lin-
ear charge density k: The k	 is
the critical bare density above
which the Manning conden-
sation occurs
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E ¼ �Me2 1� zNð Þ2
4peb

ln 1� e�jDb
� 	

: ð11:59Þ

The energy change due to condensation is

DE ¼ �
Me2 1� zNð Þ2�1

n o
4peb

lnðjDbÞ; ð11:60Þ

because we will consider the low ionic concentration in which jDb ¼ b=kD � 1:
During the condensation the entropy changes due to transfer of N cations from

the bulk region where the cation concentration is n1 to a condensed PE segment
where the concentration is nc ¼ N =v. v is a certain volume allowed for a condensed
cation on the PE segment that can be determined self-consistently later. Using (4.89),
the condensation of the N cations induces a reduction of entropy:

TDS ¼ MN kBT ln
n1
nc

� �
¼ �MN kBT ln

N
vn1

� �
ð11:61Þ

Then the net free energy change associated with condensation is

DF ¼ DE � TDS

¼ MkBT � lB
b

1� zNð Þ2�1
n o

lnðjDbÞþN ln
N
vn1

�  ð11:62Þ

where lB ¼ e2= 4pekBTð Þ is the Bjerrum length. The condition of the free energy
minimum @DF=@N ¼ 0 is

2zlB
b

1� zNð Þ ln jDbð Þþ ln
N
vn1

þ 1 ¼ 0; ð11:63Þ

which, with jD ¼ An1=21 (6.48), is rewritten as

2zlB
b

1� zNð Þ ln Abð Þþ zlB
b

1� zNð Þ ln n1 þ ln
N
v

� �
þ 1 ¼ ln n1: ð11:64Þ

Since � ln n1 diverges to infinity as n1 tends to be zero, the above equality is
satisfied only when zlB=bð Þ 1� zNð Þ ln n1 ¼ ln n1: It leads to the critical condition
for condensation

1� zN ¼ b
zlB

; ð11:65Þ
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It signifies that at equilibrium the segmental charge and charge density on
the PE respectively are renormalized from the bare value e and k ¼ e=b to
smaller values:

eeff ¼ e 1� zNð Þ ¼ eb
zlB

ð11:66Þ

keff ¼ eeff
b

¼ e
zlB

� k	: ð11:67Þ

Of particular note is that the renormalized density (11.67) is independent of the bulk
concentration of the cations and the properties of the PE. The condition for the
condensation N [ 0 is satisfied by b\zlB, that is, k[ k	: It can be easily met in
double-stranded DNA, a highly charged PE with b ¼ 0:34 nm=2 ¼ 0:17 nm, which
is about a fourth of lB in water at 25 °C.

The effective (renormalized) line charge density of the PE is given by Fig. 11.8b.
If a PE is negatively charged with the absolute magnitude kð\k	Þ, the cations tend
to be in the bulk away from the PE because their entropy gain dominates over their
electrostatic attraction to the contour. The linear charge density is not affected by
the cations. If the PE’s density is sufficiently high, k[ k	; the surrounding cations,
dominated by the attraction, tend to condense to the contour, reducing the absolute
magnitude of effective charge density keff to k	. For dsDNA, average number of the
cations adsorbed per segment b is N ¼ 1� b=zlBð Þ=z � 3=4 for z ¼ 1; reducing
the negative charge density to one-fourth of the bare density. Equation (11.67)
means that the cation’s multivalency ðz 2Þ enhances the condensation. Strictly
speaking the above results are derived only for the ideal case of infinitely thin PE
and infinitely dilute concentration of salt, but are fortuitously valid up to
n1 � 0:1mM.

P11.6 Find the expression for v. What is the free energy change DF at the critical
condition?

11.3.2 The Charge Effect on Chain Persistence Length

The electrostatic interactions between charges within a polyelectrolyte are screened
by counterions and also by an added salt in the solution. If the concentration of ions
in the solution is low, the interaction is weakly screened and the charged polymer
tends to stretch to reduce the electrostatic repulsion therein. As the concentration
becomes higher, the screening also gets stronger and the chain is less stretched and
more coiled, assisted by the entropic driving toward a more disordered chain
conformation. Furthermore, the counterion condensation tends to neutralize the PE,
making it less stiff.

The effect of the charges on the polymer flexibility or rigidity is described by the
persistence length change. The enhancement of the persistence length due to the PE

212 11 Mesoscopic Models of Polymers: Semi-flexible Chains …



charges can be evaluated by supposing that the PE of length L ¼ Mb is slightly and
uniformly bent to a circular arc of radius R ¼ L=h as shown by Fig. 11.9. Were the
chain uncharged, the mechanical bending energy (11.1) is given by

F0 ¼ 1
2
kBTl

0
p
L
R2 ¼

1
2
kBTl

0
p
h2

L
; ð11:68Þ

where l0p is the neutral part of the net persistence length we will evaluate.
Consider that the bent polymer is uniformly charged with linear charge density

keff in an ionic solution with the inverse Debye screening length jD: The
Debye-Hückel theory gives the electrostatic bending energy (the electrostatic
energy change due to the bending):

Fe ¼
XN
i¼1

XN
j¼iþ 1

eeff 2

4pe
e�jD ri�rjj j
ri � rj
�� �� � e�jD si�sjj j

si � sj
�� ��

 !
; ð11:69Þ

where ri � rj
�� �� and si � sj

�� �� are the straight and arc distances between two points
i and j respectively (Fig. 11.9). Noting that ri � rj

�� �� ¼ 2R sin hij=2
� 	 ¼ 2L=hð Þ

sin si � sj
�� ��h=2L� 	

, we expand ð� � �) in the summation to the leading order in small
curvature h=L:

� � �ð Þ � h2

24L2
e�jD si�sjj j si � sj

�� �� 1þ jD si � sj
�� ��� 	

; ð11:70Þ

which is substituted into (11.69) to yield

Fe ¼ e2eff
4pE

h2

24L2
XM
i¼1

XM
j¼iþ 1

e�jD si�sjj j si � sj
�� �� 1þ jD si � sj

�� ��� 	

� 1
4pE

h2L
24L2

ZL
0

ds keff
2e�jDss 1þ jDsð Þ;

ð11:71Þ

where we approximated that L is much longer than kD ¼ j�1
D and used the logic

behind evaluating (11.58). Then

Fe � keff
2

4pe
h2kD

2

8L
ð11:72Þ

Fig. 11.9 An elastic filament of
length L bent with small curvature
h=L
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This Fe contributes to the total free energy of bending:

F ¼ F0 þFe ¼ 1
2
kBTl0p

h2

L
þ k2eff k

2
D

32pe
h2

L
¼ 1

2
kBTlp

h2

L
; ð11:73Þ

where the net persistence length is defined by

lp ¼ l0p þ lep; ð11:74Þ

where

lep ¼
1
4
lB keff kD=e
� 	2 ð11:75Þ

is the Odijk-Skolnick-Fixman (OSF) expression for the electrostatic persistence
length (Odijk 1977; Skolnick and Fixman 1977). Note that for 1:1 salt kD ¼
ekBT=2n0e2ð Þ1=2. Equation (11.75) then tells us how lep increases with the poly-

electrolyte charge density ðk2eff Þ but decreases with salt concentration (*n�1
1 Þ.

On a DNA, as the result of the Manning condensation, keff ¼ e=zlB, yielding

lep ¼
1
4
lB kD=zlBð Þ2: ð11:76Þ

Depicted in Fig. 11.10 is the dependence of DNA persistence length on mono-
valent salt concentration. The equation lp ¼ l0p þ lep ¼ l0p þ k2D= 4lBð Þ (solid curve) is
in an excellent agreement with the persistence length measured by pulling on single
DNA molecules using optical tweezers. The persistence length approaches to bare
(neutral) value l0p � 50 nm as the salt concentration or ionic strength increases above

Fig. 11.10 The net persis-
tence length lp ¼ l0p þ lep vs
ionic (salt) concentration.
Points are: □, inextensible
WLC; ○, strong stretching
limit; ▵, extensible WLC.
Line calculated from (11.76)
with l0p ¼ 50nm (Baumann C
G et al. PNAS, 94: 6185–
6190. Copyright (1997)
National Academy of
Sciences, U.S.A.)
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0.1 M so as to fully screen the Coulomb repulsion between segments; it increases
rapidly toward OSF value as the concentration decreases below 10mM.

11.3.3 The Effect of Charge-Density Fluctuations
on Stiffness

In the above consideration, we assumed the uniformity of the effective charge
density of PE. This assumption is not true in general, particularly if multivalent
cations are present. Compared with monovalent cations, they tend to more strongly
condense on the PE backbone, making the charge density different as well as
non-uniform. For example, when divalent cations such as Ca ions adsorb on neg-
atively charged segments of DNA, the effective charge on such a segment becomes
þ e, while that on an unabsorbed segment remains as �e. This temporary posi-
tioning of unlike-charges, if they are nearby, can induce the intra-DNA attraction
leading to DNA collapse (Bloomfield 1997). DNA fragments in the presence of
trivalent cations condense primarily into dense toroidal or spheroidal structures
(Hud and Downing 2001) (Fig. 11.11a). The attraction between two DNA frag-
ments leads to adhesion and packing within a nucleus (Ha and Liu 1997; Garcia
et al. 2006). The charge-density fluctuation-induced attraction between
like-charges has been one of topical issues in bio-soft matter research.

In order to quantify the phenomena, we add the line charge density fluctuation
Dk sð Þ to keff , and replace k2eff by keff þDk sð Þ� �

keff þDk 0ð Þ� �� �
within the inte-

gral (11.71):

Fe ¼ 1
4pe

h2

24L

ZL
0

ds k2eff þ Dk sð ÞDk 0ð Þh i
h i

e�jDss 1þ jDsð Þ ð11:77Þ

where we note Dkh i ¼ 0.
According to a theoretical model that treats the charges on the PE as a one-

dimensional gas interacting electrostatically, the correlation function Dk sð ÞDk 0ð Þh i

Toroidal packing of DNA

(a) (b)Fig. 11.11 a DNA collapsed
into a torodial shape (Nicholas
V. Hud and Kenneth H.
Downing, (2001), Copyright
(2001) National Academy of
Sciences, U.S.A.), b a poly-
electrolyte that bends due to
the charge density fluctuations
induced by multi-valent
cations
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for a straight DNA shows an oscillatory decay with the amplitude that increases
with the valency as shown in Fig. 11.12 (Kim and Sung 2008). As discussed in the
linear response theory (Chap. 9), the charge density correlation function is pro-
portional to the average charge density change induced at s in response to a charge
placed at s ¼ 0. Thus, the oscillation is attributable to successive coordination of
charges in alternating signs in response to this central charge (marked by an arrow
in Fig. 11.12); it is originated from competition between electrostatic attraction and
hard-core repulsion. Overall, the contribution of this oscillation to the integral is
negative, so that the fluctuation contribution reduces the free energy (11.77) below
the OSF result (11.72), leading to a reduction of the persistence length. In a straight
conformation of polymer, the two electrostatic contributions were found to nearly
cancel so that the net persistence length is about the neutral value l0p, for any
multivalent cations in physiological salt concentrations. In a highly bent confor-
mation, however, the fluctuation-induced reduction can be very large, dominating
the mean field enhancement, to yield a quite small persistence length (Kim and
Sung 2011).
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Chapter 12
Membranes and Elastic Surfaces

An essential component of a cell is a biological membrane or bio-membrane; it
forms and modulates an interface of the cell and cell’s various internal com-
partments called organelles, acting as a selectively permeable barrier between
them. Bio-membranes consist mostly of phospholipid (lipid) bilayers and the
associated proteins. The bilayer is about 5 nm thick, being self-assembled from
lipid molecules each with a hydrophilic head and hydrophobic tails. The lipids in a
fluid membrane can move laterally within the bilayer, organizing themselves to
adopt the phase or the shape at equilibrium, corresponding to free energy minimum.
There are two kinds of membrane proteins that perform a variety of cellular
functions: integral proteins (such as ion channel), all or part of which span the
bilayer, and peripheral proteins, which lie outside the core of the bilayer (see
Fig. 12.1).

Fig. 12.1 A cell membrane and its constituents such as phospholipid molecules and
membrane-bound proteins including ion channels. A phospholipid molecule is composed of a
hydrophilic head and hydrophobic tails
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In this chapter we study the thermo-mechanical aspects of the membrane, with a
particular focus on its mesoscopic fluctuations and conformations at equilibrium,
and shape transitions. Although they are in reality very complex and heterogeneous,
in this introduction, we will consider the protein-free homogeneous membranes or
membrane fragments that are amenable to statistical physics analysis.

12.1 Membrane Self-assembly and Phase Transition

The membrane is composed of many species of lipids, proteins, and cholesterols,
depending upon its functions. The lipid, which is the major component, has a polar
head group connected with hydrophobic chain(s). When dispersed in an aqueous
solution, depending on their concentrations, the lipid molecules assemble to form
monolayers called the micelles, and bilayers in the forms of vesicles and planar
membranes. Figure 12.2 depicts the various forms of the aggregates.

12.1.1 Self-assembly to Vesicles

Of particular interest are the bilayer membranes. The lipid chains line up side by
side, with their tails clustered together within the bilayer due to their hydrophobic
interactions, and with their heads interfacing with water due to hydrophilic
attractions. Such amphiphilic interactions among lipid heads and tails are much
weaker than the direct-attraction or covalent bond that drives formation of two
dimensional structures studied in Chap. 7. Despite this difference and complex
molecular architectures of the lipids, the general statistical thermodynamic theory
put forward in Chap. 7 can nevertheless be applied to basic understanding of
vesicle self-assembly. As we learned in Sect. 7.2, which we briefly recapitulate
below, the game rule of the self-assembly is to minimize the free energy, culmi-
nating in establishment of the chemical potential balance, ln ¼ l1, between a
lipid bound in aggregates of n lipids (n-mers) and a lipid unbound in solution.

Closed bilayer membranes (vesicles) tend to form more easily than planar
membranes, when the bending energy cost of forming a closed membrane can be

monolayer 
micelle

(a)

bilayer
vesicle

(b) (c)

planar membrane bilayer

Fig. 12.2 Lipids self-assembled to a micelle (with single-tailed lipids) (a), a vesicle (b) and a
planar membrane (c)
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less than the energy cost of having the edges interfaced with the water. Let us
assume that this condition is met. Subject to the rule ln ¼ l1, the chemical potential
ln of a lipid bound in a vesicle composed of n lipids (n: aggregation number) is
given by,

nln ¼ nl0n þ kBT lnCn; ð12:1Þ

where the first term on the RHS indicates energy or enthalpy (called the standard
part of the free energy) contribution and the second term is the entropy of such
vesicles, which are assumed to be dilute. Cn is the molar concentration of the
vesicles. The change of the energy upon assembly from n free lipid monomers to a
vesicle is

nðl0n � l01Þ ¼ �nbs þ 8p,s ð12:2Þ

where �bs, the cohesion energy, or the energy change per lipid upon aggregation, is
negative and assumed to be independent of n. The second term on the RHS is the
energy necessary to curve a planar membrane to a spherical vesicle, F c ¼ 8p,s,
where ,s is the curvature modulus of the bilayer (12.20).

The combination of the two (12.1), (12.2), along with ln ¼ l1 ¼ l01 þ kBT lnC1,
yields the concentration of the vesicles (7.56):

Cn ¼ ðC1=C
�Þne�8pb,s ; ð12:3Þ

where C� ¼ e�bbs is the critical concentration of lipids above which the aggregation
is appreciable. Suppose that all the lipids are either dispersed as monomers ðn ¼ 1Þ
or aggregated into the vesicles. The total lipid concentration is obtained as

C ¼
X1
n

nCn � 1� C1

C�

� ��2

e�8pb,s ; ð12:4Þ

from which we find

C1 � C� 1� Ce8pb,s
� ��1=2

h i
ð12:5Þ

and

Cn � exp � n

Ce8pb,sð Þ1=2
� 8pb,s

( )
: ð12:6Þ

The density of the probability that the vesicle has a radius R satisfies
PðRÞ / Cndn=dR. Assuming that each layer has equal number ðn=2Þ of lipids with
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diameter d, n=2 ¼ 4pR2= gd2ð Þ, where g is a geometrical factor in the order of unity,
the probability density is

PðRÞ ¼ 2vRe�vR2 ð12:7Þ

where v ¼ 8p= gd2 Ce8pb,s
� �1=2� �

. The average radius is

Rh i ¼ 1
2
ðp=vÞ1=2 ¼ 1

4
ðgp=2Þ1=2dC1=4 exp

2p,s
kBT

� �
�C1=4 ð12:8Þ

The distribution and the average of the vesicle sizes are similar to those of the
surface-attraction induced self-assembly to hollow spheres (Sect. 7.2.3); these
results are independent of the effective bond energy bs per monomer within the
membranes, but sensitively depend on the curvature modulus ,s.

12.1.2 Phase and Shape Transitions

Another thermal phenomenon in membranes to mention is the transitions between
the liquid and solid phases. When the temperature is lowered below the melting
temperature Tmð Þ the liquid or fluid membrane undergoes a phase transition into a
solid membrane (Fig. 12.3). Among condensed phases, the liquid phase is of
pronounced relevance to biology. Due to the fluidity the proteins embedded in a
membrane can attain mobility. For example, a refrigerated banana becomes dark,
because its cells are dead; the membranes have undergone a phase transition from a
liquid phase to a solid phase, in which proteins are immobilized.

In the later sections we will focus on liquid phase bilayer membranes and study
the phenomena that occur on mesoscopic length scales much larger than a lipid
molecule. We study the free energies associated with a shape, and its changes, and
the local undulations due to the underlying thermal collective motions of lipid
molecules. A dramatic example of the shape transitions is the fusion in which two
cells or vesicles transform into one with an intermediate state, and the reverse
process called cell fission (Fig. 12.4); they are critical processes in egg fertilization,
signal transduction, and cell division.

(a) Liquid phase ( > ) > )(b) Crystal phase (Fig. 12.3 Membrane bilay-
ers in liquid phase (a) and
crystal phase (b)
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12.2 Mesoscopic Model for Elastic Energies and Shapes

12.2.1 Elastic Deformation Energy

Over a length scale longer than the lipid length, a membrane can be regarded as a
quasi-two-dimensional continuous surface immersed in the three dimensional
solution. The low dimensionality and flexibility of the membrane endow it with a
variety of shapes and shape transitions. To study the membrane shape and its
fluctuation on a mesoscopic length scale, we consider an effective Hamiltonian of
the membrane, which is coarse-grained beyond the molecular details, couched by
the macroscopic phenomenology; the elastic energy of deformation is given by

F ¼ F S þFB þFG: ð12:9Þ

First, F S is the interface energy associated with keeping the surface area A:

F S ¼
Z

dA c; ð12:10Þ

where c is surface tension defined by

c ¼ @F S

@A
: ð12:11Þ

In a fluid membrane where the area is not constrained but varies to minimize the
free energy, the surface tension is zero. This condition is valid for a free planar
membrane, but not for vesicles under mechanical constraints. In real cell mem-
branes the surface tension is far from being zero because of complex macro-
molecular networks associated with the surfaces.

When the membrane is stretched by an external means to increase the initial,
unstressed surface area A0 to A, the surface energy to the harmonic (2nd) order in
deformation is given by

F S ¼ 1
2
Ks

A� A0ð Þ2
A0

; ð12:12Þ

Fission

Fusion

Fig. 12.4 Membrane shape
changes, fission and fusion
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where Ks is an elastic constant called the stretch modulus. Equation (12.11) yields
the overall surface tension,

c ¼ Ks
A� A0

A0
; ð12:13Þ

which is the Hooke’s law for membrane stretching: the tension c is proportional to
the strain A� A0ð Þ=A0 with the stretching modulus Ks being the constant of pro-
portionality. The measured value of Ks is typically a few Joule=m2, or
50�70 kBT=nm2. For unstressed fluid membranes the surface tension is vanishingly
small.

The second and third terms in (12.9) are due to curvature formation (Helfrich
1973). In particular, the second term is the bending energy given by mean
curvature

FB ¼ 1
2

Z
dA , C1 þC2 � 2C0ð Þ2; ð12:14Þ

where C1 and C2 are two principal curvatures at a point on the surface.
Equation (12.14) is the two dimensional generalization of the curvature energy for
the semi-flexible chain we studied in the foregoing chapter. , is an elastic constant
of the membrane called the mean curvature modulus or the bending rigidity.
Because the lipid bilayers are molecularly thin, , is quite small, typically about
10� 100 kBT for vesicles. C0 is the spontaneous curvature the membrane would
attain in the absence of a stress. The presence of the non-vanishing spontaneous
curvature is due to asymmetry of the bilayer structures and environments.

The two principal curvatures are defined as follows. Suppose a point O of
membrane is intersected by its tangent plane T (Fig. 12.5a). Let x ¼ x1; x2ð Þ be two
dimensional coordinates to specify the position P of a membrane element on this
plane, with the point O taken to be the origin. For small distance xj j from the origin,
the height of the membrane point P relative to the tangent plane is given by

hðxÞ ¼ 1
2
Rij Cijxixj; ð12:15Þ

ℎ( 1, 2) 2
1

1 = 11 > 0, 2 = 12 < 0
12 12

(a) (b)
Fig. 12.5 a A tangent sur-
face T to a membrane surface
point O. A position of a
membrane point P is speci-
fied by x1; x2; h x1; x2ð Þð Þ, b a
surface with two curvatures
of opposite signs at a saddle
point
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where Cij ¼ @2hðxÞ=@xi@xj is an element of a symmetric 2 � 2 curvature tensor
C. The C has two real eigenvalues, C1 and C2, and the associated orthonormal
eigenvectors e1 and e2, so

hðxÞ ¼ 1
2
C1 x � e1ð Þ2 þ 1

2
C2 x � e2ð Þ2: ð12:16Þ

The R1 ¼ C�1
1 ; R2 ¼ C�1

2 are the principal radii of the curvature, which can be
either positive or negative. For example in Fig. 12.5b, along a principal axis e1 the
surface is bent away with positive radius of curvature R1, whereas, along the other
principal axis it is bent toward the membrane with a negative radius of curvature R2.
The bending energy, which is a scalar quantity independent of the coordinate
representations, is constructed from an invariant of the tensor, Tr C ¼ C1 þC2, as
(12.14), up to the harmonic order in the bending deformation.

The last term in (12.9) is the Gaussian curvature energy:

FG ¼ ,G

Z
dA C1C2; ð12:17Þ

where ,G is the associated modulus. The energy is constructed from another scalar
invariant of the tensor, det C ¼ C1C2 ¼ 1= R1R2ð Þ. For closed surfaces the
Gauss-Bonnet theorem (Frankel 2012) states thatI

dA
1

R1R2
¼ 4pð1� gÞ; ð12:18Þ

where g is a topological invariant called genus number, which is equal to the
number of handles of the surface. A sphere has the genus g ¼ 0, while a torus has
g ¼ 1, as do the surfaces of a donut and a coffee mug with a handle (Fig. 12.6b).
Equation (12.18) means that, whatever the shapes, the closed surfaces with an
identical genus number have the same Gaussian curvature energy. In the processes
that do not change the topology (genus number) e.g., shown by Figure 12.6b, the
Gaussian energy can be ignored.

As examples, consider that a rectangular membrane is rapped into a cylinder of
the radius r an length L with two sides closed. In the cylinder one principal

(a) (b) (c)

= 0
= 1

= 3

Fig. 12.6 Various shapes for
closed surfaces characterized
by different genus numbers
g. The shape transformation
b causes no change in the
Gaussian curvature energy,
because the topology (the
genus number g = 1) is the
same
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curvature is nonvanishing, C1 ¼ 1=r, while the other one is zero, and the sponta-
noeus curvature C0 is 0. The bending energy cost is

FB ¼ ,
2

Z
dAð1=rÞ2 ¼ ,

2
L2prð1=rÞ2 ¼ p,L

r
: ð12:19Þ

On the other hand, the curvature energy to form a vesicle of radius R is

FC ¼ ,
2
4pR2 R�1 þR�1� �2 þ ,G4pR2R�2 ¼ 8p,þ 4p,G ¼ 8p,s; ð12:20Þ

where ,s ¼ ,þ ,G=2 is curvature modulus for a sphere. The curvature energies
(12.19) and (12.20) are scale-invariant. This implies that this size-independent
energy, dominated by the size-dependent cohesion energy, can favor a large vesicle
formation. A dramatic consequence of the curvature energy can be seen at a vesicle
where C0 ¼ 0; at a saddle point where C1 þC2 ¼ 0, the local bending energy vanish
and the local Gaussian curvature energy becomes negative, leading to initiation of a
fission, as indicated by Fig. 12.4.

P12.1 Calculate the curvature energy of a fluid membrane of torus shape with the
major radius R and the minor radius r. Given the surface as fixed, what is the
optimal R/r that minimizes the energy?

P12.2 Consider a long flexible polymer weakly adsorbed on a surface of a planar
membrane of the bending rigidity ,, with an adsorption thickness dD. The adsorbed
part of the membrane attains a spontaneous curvature. Evaluate the direction and
radius of the curvature.

12.2.2 Shapes of Vesicles

With the local undulations of membranes neglected, namely, in the mean field
approximation, the shapes of vesicles are determined by minimizing the free energy
as functions of the shape variables, subject to physical constraints. As an example
consider a spherical vesicle blown to the radius R by the pressure difference
between inside and outside the vesicle, Dp ¼ pi � po (Fig. 12.7). This is the case
corresponding to the Gibb’s ensemble (Sect. 3.3), in which the pressure (difference)
is fixed, whereas the volume does fluctuate. In this case the Gibbs free energy

(a)
(b)

Fig. 12.7 a A vesicle blown
by the pressure difference Dp ¼
pi � po, b the pressure-blown
vesicles tweezed by a force
f to form a tether
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G ¼ F S þFC þ po � pið ÞV ¼ 1
2
Ks

A� A0ð Þ2
A0

þ 8p,s � VDp ð12:21Þ

is minimized for the equilibrium shape. The condition @G=@R ¼ 0 with A ¼
4pR2; V ¼ 4pR3ð Þ=3 yields

Ks
A� A0ð Þ
A0

8pR ¼ 4pR2Dp; ð12:22Þ

which along with (12.13) leads to the Young-Laplace equation, R ¼ 2c=Dp. This is
identical in form to (2.55), which we derived for the radius of a liquid drop in a gas.
It should be noted, however, that, unlike (2.55), the equation here refers to a stable
equilibrium for the shape of the vesicle, whose surface tension varies with the area
increase, c ¼ Ks A� A0ð Þ=A0.

Now we suppose that the pressure-blown vesicle is further subject to stretching
force f and form a cylindrical tether ended by a hemispherical cap (Fig. 12.7b). This
occurs in the situations ranging from micropipette manipulation on artificial vesi-
cles to the formation of tubular structures induced by atomic force microscopy and
optical tweezers. It is also relevant to biological processes involving membrane
shape changes such as fusion, exocytosis, endocytosis, and cell division. Given the
basic elastic constants, i.e., the stretching and bending moduli, Ks; , of the mem-
brane, what are the tether size and the induced surface tension?

Subject to the pressure difference between inside and outside the vesicle as well
as the force on the tether, the net Gibbs free energy is

G ¼ F S þFC � DpV � fL: ð12:23Þ

While the stretching energy F S retains the form Ks A� A0ð Þ2= 2A0ð Þ with A0 being
the unstressed area, the curvature energy FC has the contributions not only from the
spherical part but also from the hemispherical end cap and the cylinder:

FC ¼ 8p,s þ 4p,s þ p,L
r

: ð12:24Þ

Noting that A ¼ 4pR2 þ 2prL; V ¼ 4pR3ð Þ=3þ pr2L, with an assumption that
tether radius r is much smaller than the tether length L and the vesicle radius R, we
find the conditions for minimum G are given by the three equations below:

@G
@R

¼ 0 ¼ 8pcR� 4pR2Dp; ð12:25Þ

@G
@r

¼ 0 ¼ � p,L
r2

þ 2pcL� 2prLDp; ð12:26Þ
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@G
@L

¼ 0 ¼ p,
r

þ 2pcr � pr2Dp� f : ð12:27Þ

The first equation yields Dp ¼ 2c=R, whose contributions to the second and third
equations are negligibly in the order of r=R compared with other terms. Solving
(12.26) for r gives

r ¼ ,
2c

� �1=2

; ð12:28Þ

which is substituted into (12.27) to yield:

c ¼ 1
2,

f
2p

� �2

: ð12:29Þ

With the bending rigidity , given as very small, the equations reveals that the
induced surface tension c can become very large for strong stretching. Substituting
(12.29) back into (12.28) yields

r ¼ 2p,=f ; ð12:30Þ

which means that the radius of the tether can be very small if a strong force acts
on a flexible membrane with small ,. Using the measured forces for pulling the
tethers from endoplasmic reticulum and Golgi apparatus, which are on the order of
10 pN, and , � 20 kBT , (12.29) and (12.30) give rough estimates of the tension and
radius, c � 0:015 pN=nm and r � 50 nm, which are close to experimental obser-
vations (Phillips et al. 2009).

P12.3 Express the optimal value of L as a function of f, R and given elastic
constants, assuming the deformation occurs mostly via tether formation. If L is very
long, what factors are responsible?
The solution: from c ¼ Ks2prL= 4pR2ð Þ and using the above results,

L ¼ ðR=,Þ2ðf =2pÞ3=Ks:

12.3 Effects of Thermal Undulations

12.3.1 The Effective Hamiltonian of Planar Elastic Surface
and Membranes

It has been well known to physiologists for more than hundred years that red blood
cells flicker, indicative of shape fluctuations or undulations. The origin is the
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thermal collective motion of lipid molecules. To quantify the fluctuations and their
correlations, we consider a planar membrane, where a position of the membrane is
specified by r ¼ x; hðxÞð Þ where x ¼ ðx; yÞ is a two dimensional position on the
reference flat surface and hðxÞ is the height of undulation (Fig. 12.8). In this section
we evaluate hh2i; hhðxÞ � hð0Þi; h hðxÞ � hð0Þð Þ2i, and nðxÞ � n(0)h i, where nðxÞ is
a normal vector outward from the surface at x. To this end, we begin with con-
structing the effective Hamiltonian in terms of the height undulation field hðxÞ.

Consider a stress-free, square membrane, which projects on the area A0 ¼ L2

(Fig. 12.8). The element of the undulating surface at r is constructed by a cross
product of the two surface tangent vectors along x and y axis, ux ¼ @r=@x ¼
1; 0; @h=@xð Þ and uy ¼ @r=@y ¼ 0; 1; @h=@yð Þ:

dA ¼ ux � uy
�� ��dxdy ¼ 1þ @h

@x

� �2

þ @h
@y

� �2
" #

dxdy

Due to the thermal fluctuations, the area increases to

A ¼
ZL

0

dx
ZL

0

dy 1þ @h
@x

� �2

þ @h
@y

� �2
" #1=2

¼ A0 þDA:

ð12:31Þ

where

DA � 1
2

ZL
0

dx
ZL
0

dy
@h
@x

� �2

þ @h
@y

� �2
" #

¼ 1
2

Z
d2x $xhðxÞð Þ2 ð12:32Þ

is the area increase evaluated to the harmonic order in h, where $x is the two
dimensional gradient. For an elastic surface with a uniform surface tension c and no
bending rigidity, the surface free energy (12.10) of deformation is

F S ¼ c DA ¼ c
2

Z
d2x $xhðxÞð Þ2: ð12:33Þ

Fig. 12.8 The undulations hðx; yÞ in a planar membrane that projects to the area L� L
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On the other hand, for fluid membranes in which c ¼ 0, we have the bending
energy

FB ¼ ,
2

Z
dA C1 þC2ð Þ2

� ,
2

ZL

0

dx
ZL
0

dy
@2h
@x2

þ @2h
@y2

	 
2
¼ ,

2

Z
d2x $2

xhðxÞ
� �2

;

ð12:34Þ

which is correct to the harmonic order (See Boal 2002). A cell membrane usually
has a non-vanishing surface tension, so that the free energy is

F hðxÞf g ¼ 1
2

Z
d2x c $xhðxÞð Þ2 þ , $2

xhðxÞ
� �2h i

; ð12:35Þ

which is expressed in terms of thermally fluctuating undulation field hðxÞ.
Following our basic method of coarse-graining, F hðxÞf g is the effective
Hamiltonian given by

e�bF hðxÞf g ¼
X

M=hðxÞ
e�bH Mf g ð12:36Þ

where the summation is performed over all microscopic degrees of freedom M,
given the undulation field hðxÞ. Consequently F hðxÞf g contains the
temperature-dependent and entropic contributions that originate from the underly-
ing molecular motions. The thermodynamic free energy F of the membrane then is
given by the functional integral over the field hðxÞf g:

e�bF ¼
Z

D h(x)f ge�bF hðxÞf g: ð12:37Þ

12.3.2 Surface Undulation Fluctuation and Correlation

To facilitate calculating the averages of the quantities associated with undulation,
we deal with the Fourier transform for h:

hðqÞ ¼
Z

d2x e�iq�xhðxÞ ð12:38Þ

and
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hðxÞ ¼ 1
L2

X
q

eiq�xhðqÞ: ð12:39Þ

We use the periodic BC, so that q ¼ ðqx; qyÞ with each component respectively
taking N values, qn ¼ 2pn=L; n ¼ �1;�2. . .;�N=2, where N ¼ L=a; a is a
microscopic length which is in the order of the diameter of the lipid molecule.

The mean square of the undulation amplitude is defined as

h2
� � 	 1

L2

Z
d2x h2ðxÞ� �

¼ 1
L6

Z
d2x

X
q

X
q0

hðqÞh� q0ð Þh iei q�q0ð Þ�x

¼ 1
L4

X
q

h qð Þj j2
D E

;

ð12:40Þ

where we used

1
L2

Z
ei q�q0ð Þ�xd2x ¼ dqq0 : ð12:41Þ

The undulation correlation function is now expressed as

Ch x; x0ð Þ ¼ hðxÞh x0ð Þh i ¼ 1
L4

X
q

X
q0

eiq�x�iq0 �x0 hðqÞh� q0ð Þh i: ð12:42Þ

Assuming the translational invariance, Ch x; x0ð Þ ¼ Ch x� x0j jð Þ, we can show

hðqÞh� q0ð Þh i ¼
ZZ

d2x d2x0 h xð Þh x0ð Þh ie�iq�xþ iq0 �x0

¼
Z

d2 x� x0ð ÞCh x� x0j jð Þe�iq� x�x0ð Þ
Z

d2x0eiðq
0�qÞ�x0

¼ hðqÞj j2
D E

dqq0 ;

ð12:43Þ

where we used (12.41) and defined

hðqÞj j2
D E

¼ L2
Z

d2 x� x0ð ÞCh x� x0j jð Þe�iq� x�x0ð Þ: ð12:44Þ

hðqÞj j2
D E

, called the height undulation spectrum, is the Fourier transform of the
undulation correlation. Using (12.43), we find (12.42) is reduced to
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hðxÞh x0ð Þh i ¼ 1
L4

X
q

eiq� x�x0ð Þ hðqÞj j2
D E

: ð12:45Þ

AlsoZ
d2x rn

xhðxÞ
� �2 ¼ 1

L4
X
q

X
q0

qq0ð ÞnhðqÞh� q0ð Þ
Z

ei q�q0ð Þ�xd2x

¼ 1
L2

X
q

q2n hðqÞj j2;
ð12:46Þ

which we can use for n ¼ 1 to calculate the increase of the average surface area
(12.32)

DA ¼ DAh i ¼ 1
2L2

X
q

q2 hðqÞj j2
D E

: ð12:47Þ

Evidently, the undulation spectrum
�
hðqÞj j2� is central to evaluation of the

height fluctuation and the related properties in the real space. To study these
properties, using the relation (12.46) we represent the effective Hamiltonian (12.35)
in the Fourier space as

F ¼ 1
2L2

X
q

ðcq2 þ ,q4Þ hðqÞj j2; ð12:48Þ

This allows us to use the equipartition theorem per mode q,

1
2L2

cq2 þ ,q4
� �

hðqÞj j2
D E

¼ 1
2
kBT ð12:49Þ

yielding an important equation

hðqÞj j2
D E

¼ kBTL2

cq2 þ ,q4
: ð12:50Þ

The mean square of the undulation amplitude (12.40) is given by

h2
� � ¼ 1

L2
X
q

kBT
cq2 þ ,q4

; ð12:51Þ

which is in general difficult to evaluate in an analytical form for a square membrane.
Thus, we replace it by a circular disk of the same area without changing the
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physical properties. Using
P

q ¼ ðL=2pÞ2 R dq 2pq the above sum is approximated
by the integral,

h2
� � � kBT

2p

ZqM
qm

dq
q

cq2 þ ,q4
; ð12:52Þ

where

qm � p=L and qM � p=a ð12:53Þ

are the lower and upper cutoffs of q that are allowed. Then, the (12.52) is integrated
to:

h2
� � � kBT

4pc
ln

cqm�2 þ ,
cqM�2 þ ,

� �
; ð12:54Þ

which shows how a large surface tension suppresses the undulation. If ca2 
 ,,
(12.52) is reduced to

h2
� �� kBT

2pc
ln

aL
a

� �
; ð12:55Þ

where a is a numerical factor. The above relation is comparable to an exact
numerical calculation of the sum (12.51) that is possible for the case of , ¼ 0:

h2
� � ¼ kBT

cL2
L
2p

� �2

4
XN=2
nx¼1

XN=2
ny¼1

1
nx2 þ ny2

� 0:16
kBT
c

ln
0:33L
a

� �
ð12:56Þ

For a fluid membrane with negligible surface tension, cL2 � ,, (12.54) is
reduced to

h2
� �� kBT

4p3,
L2: ð12:57Þ

An exact numerical evaluation of the sum for this case yields

h2
� � ¼ kBT

,L2
L
2p

� �4

4
XN=2
nx¼1

XN=2
ny¼1

1

n2x þ n2y
� �2 � 1:9� 10�3 kBT

,
L2 ð12:58Þ

The L2 scaling behavior above signifies the self-similiarity: as the fluid
membrane size is doubled, so is the rms fluctuation h2

� �1=2
(Fig. 12.9).
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Because 1:9� 10�3 kBTð Þ=, is exceedingly less than unity, h2
� �1=2

of a
micron-sized fluid membrane is of sub-nanoscale, and is further reduced by the
presence of the surface tension.

Can a scaling argument confirm this result? Since the h2
� �

should be an outcome
of thermal fluctuation it should be proportional to the thermal energy kBT balanced
by the bending rigidity j, and should depend on L. The dimensional analysis gives

h2
� �� kBT

,
L2 ð12:59Þ

The surface area increase (12.47) due to the thermal undulation is similarly
given by

DA ¼ 1
2

X
q

q2
kBT

cq2 þ ,q4
� kBTL2

4p

ZqM
qm

dq
q3

cq2 þ ,q4

¼ kBTL2

8p,
ln

c=,þ qM2

c=,þ qm2

� � ð12:60Þ

DA=A0 is vanishingly small for very stiff membranes in which , 
 kBT , or
ca2 
 ,. (12.60) shows that the thermally-induced area increase is suppressed
by a large bending rigidity and surface tension.

When the surface tension is very small cL2 � ,ð Þ we have

DA � kBTL2

4p,
ln

aL
a

� �
: ð12:61Þ

P12.4 Find the area fluctuation A2� �� Ah i2 for a fluid membrane. (Hint: develop

and use the linear response theory DA2� � ¼ �kBT @DA
@c

� �
c¼0

).

For the opposite case in which the bending rigidity is zero, (12.60) yields

Fig. 12.9 When the membrane
size is doubled, the rms fluctu-

ation h2
� �1=2 is also doubled in

a fluid membrane
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DA ¼ kBT
2c

X
q

1 ¼ kBTL2

2ca2
; ð12:62Þ

where we noted that the total number of the modes is L2=a2.
The surface area can also increase if a high tension is applied; a membrane

stretches to increase the area beyond (12.60) following (12.13):

DA
A0

¼ kBT
8p,

ln
c=,þ qM2

c=,þ qm2

� �
þ c

Ks
: ð12:63Þ

This relation can be applied to determine the bending and stretch moduli, , and Ks,
of a membrane using a vesicle stretched by a micropipette (Evans and Needham
1987).

Finally the undulation correlation (12.42) is given by

hðxÞh x0ð Þh i ¼ 1

ð2pÞ2L2
Z

d2q eiq� x�x0ð Þh hðqÞj j2i

¼ 1
2pL2

ZqM
qm

dq qh hðqÞj j2iJ0 q x� x0j jð Þ;
ð12:64Þ

where

J0ðqqÞ ¼ 1
2p

Z2p
0

dh e�iqq cos h ð12:65Þ

is the zeroth order Bessel function and q ¼ x� x0j j. Since J0ðxÞ is decreasing with
x and h hðqÞj j2i ¼ kBTL2= cq2 þ ,q4ð Þ takes the maximum at the lowest q, that is,
qm, (12.62) can be roughly approximated by

hðqÞhð0Þh i � h2
� �

J0 qmqð Þ: ð12:66Þ

Since qm � p=L; J0 qmqð Þ remains to be non-vanishing until it decays to zero at
q� L, so (12.64) means that the undulation is correlated over the entire area of
the membrane. According to the linear response theory in Chap. 9, the correlation
is can be seen as the bud of the membrane formed by a small force f acting at the
origin; the bud height at q is proportional to the correlation function, i.e., it is
bf hh2iJ0 qmqð Þ (Fig. 12.10).

A more detailed analysis is given to a related quantity probed by scattering: the
relative height undulation at a separation q, which is
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hðqÞ � hð0Þð Þ2
D E

¼ 2 hh i2� hðqÞhð0Þð Þh i
h i

¼ 2
1

2pL2

Z
dq q hðqÞj j2

D E
1� J0ðqqÞ½ �

¼ 2
kBT
2p

ZqM
qm

dq
q

cq2 þ ,q4
1� J0ðqqÞ½ �:

ð12:67Þ

We consider q 
 a; J0ðqqÞ rapidly oscillates around 0 between q� q�1 and
q ¼ qM , giving little contribution to the integral, so

hðqÞ � hð0Þð Þ2
D E

¼ 2
kBT
2p

ZqM
a0=q

dq
q

cq2 þ ,q4

� kBT
2pc

ln
cq2=a02 þ ,
cqM�2 þ ,

� �
;

ð12:68Þ

where a0 is a constant of order unity. For fluid membranes in which c is negligibly
small,

hðqÞ � hð0Þð Þ2
D E

� kBTq2

2p,
� q2; ð12:69Þ

which shows a self-similar behavior. On the other hand, for an elastic surface in
which , ¼ 0,

hðqÞ � hð0Þð Þ2
D E

� kBT
pc

ln a00
q
a

� �
ð12:70Þ

where a00 is another numerical constant.
Related to the height undulation is the fluctuation of the unit vector normal to the

surface, nðxÞ. The n(x) at r ¼ x; y; hðx; yÞð Þ is constructed by a cross product of the
two surface tangent vectors along x and y axis, ux ¼ @r=@x ¼ 1; 0; @h=@xð Þ and
uy ¼ 0; 1; @h=@yð Þ:

Fig. 12.10 The shape of a
membrane tweezed by a small
force f on the middle is pro-
portional to J0 qmqð Þ approxi-
mately, where qm � p=L
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nðxÞ ¼ ðux � uyÞ= ux � uy
�� �� ¼ ẑ� $xhðxÞ½ � 1þ $xhðxÞð Þ2

h i�1=2
; ð12:71Þ

which, for small curvatures, is

nðxÞ � ẑ 1� 1
2

$xhðxÞð Þ2
	 


� $xhðxÞ: ð12:72Þ

The orientation correlation function (Fig. 12.11) is

Cn x� x0j jð Þ ¼ nðxÞ � n x0ð Þh i
� 1þ rxhðxÞ � rx0h x0ð Þh i � 1

2
rxhðxÞð Þ2 þ rx0h x0ð Þð Þ2

D E

¼ 1� 1
2pL2

ZqM
qm

dq q3 hðqÞj j2
D E

1� J0 q x� x0j jð Þ½ �;
ð12:73Þ

where we used (12.39) and (12.43). Consider a distance q ¼ x� x0j j 
 a in a fluid
membrane. Following the procedure used in deriving (12.67),

CnðqÞ � 1� kBT
2p,

ln
a00q
a

� �
: ð12:74Þ

The persistence length LP of the fluid membrane, over which the orientation
correlation vanishes, Cn LPð Þ ¼ 0, is estimated to be

LP � a exp
2p,
kBT

� �
: ð12:75Þ

This is a macroscopic length very much larger than a unless , � kBT . Over any
distance q in the membrane, CnðqÞ � 1; from (12.74),

CnðqÞ � exp � ln
a00q
a

� �kBT=ð2p,Þ
( )

� a
q

� �kBT
2p,

; ð12:76Þ

which, for the fluid membrane with kBT=2p, � 1 decays very slowly in a power
law indicative of an unusual long-range correlation. The height undulation and
the decay of the correlation may not be appreciable unless the membrane is very

Fig. 12.11 The two orienta-
tion (normal) vectors sepa-
rated by a distance q are
strongly correlated
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large. Nevertheless the emergence of intrinsic thermal fluctuations even in small
membranes give rise to dramatic features essential to the living state, as exemplified
below.

P12.5 Consider an elastic surface with , ¼ 0. Find the orientation correlation
function CnðqÞ.
P12.6 A fluid membrane attached to a substrate is described by an effective
Hamiltonian

F hðxÞf g ¼ 1
2

Z
d2x , $2

xhðxÞ
� �2 þx2hðxÞ2

h i

Find h2
� �

; hðqÞ � hð0Þð Þ2
D E

, and nðqÞ � n(0)h i. Discuss how they are affected by
the confinement factor x. Calculate the Helmhotz free energy F of the chain (hint:
Z ¼ e�bF ¼ P

hðqÞ exp � b
2L2

P
q ðx2q2 þ ,q4Þ hðqÞj j2

h i
¼ P

hðqÞ exp � b
2L2

P
q ðx2q2 þ

h
,q4Þ hðqÞj j2� ¼ Q

q 2pL2= b x2q2 þ ,q4ð Þ �� �1=2
).

12.3.3 Helfrich Interaction and Unbinding Transitions

When two membranes are brought to close proximity, less space is allowed for
thermal undulations to play in between, resulting in a reduction of entropy. This
induces a repulsion called the Helfrich interaction. We use a scaling argument as
below to determine the interaction as a function of the inter-membrane distance
D. First, noting that the interaction is induced by thermal fluctuation and involves
two length scales, h2

� �1=2
and D, we must have

Uh � kBT
h2
� �
D2

	 
p
; ð12:77Þ

which should scale as � L2. Using h2
� �� kBTð ÞL2=,, one finds p ¼ 1, and

Uh � kBT
h2
� �
D2 � kBTð Þ2L2

,D2 : ð12:78Þ

The equation interestingly shows that the repulsion is proportional to the factors
D�2 and kBTð Þ2. Its exact expression is Uf ¼ 3 kBTð Þ2L2= p2,D2ð Þ (Helfrich 1978).
In addition, two membranes experience another fluctuation-induced interaction, that
is, the van der Waals attraction, Utdw ¼ �H= 12pD2ð Þ per unit area (6.33).

If the membranes are not charged, the total free energy change is
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F ¼ 3 kBTð Þ2
p2,

� H
12p

( )
L2

D2 : ð12:79Þ

The membranes of the bending rigidity , bind if F is negative, i.e.,

T\Tc ¼ 1
6 kB

pH,ð Þ1=2: ð12:80Þ

At a fixed temperature, say, the body temperature Tb ¼ 310K, the binding also
occurs if

,[ ,c ¼ 6 kBTbð Þ2
pH

� 10 kBTb ð12:81Þ

where Hamaker constant H� kBTb is considered. This provides a reason why older
blood cells with higher , (less flexibility) tend to aggregate among themselves and
adhere to vessel wall more frequently. If T [ Tc, or ,\,c, the membranes unbind.
This implies that the thermal fluctuation-induced undulation, although very
small in magnitude (12.58), can be an essential feature for cell stability.
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Chapter 13
Brownian Motions

In previous chapters we were mostly concerned with the equilibrium state of matter.
Although the equilibrium statistical physics is relevant to studying the biological
structures and conformations at body temperature, the living processes operate out
of equilibrium. For non-equilibrium phenomena, historically there are two pillars of
statistical physics. One is the kinetic theory of Boltzmann and Maxwell, a
ground-breaking work in non-equilibrium statistical mechanics that described the
transport properties of gases on the basis of molecular motions. The other one is the
Brownian motion theory developed by Einstein, Smoluchowski and Langevin,
and others, which initiated stochastic descriptions of fluctuations in matter. If for-
mulated on the basis of microscopic dynamics, these two approaches converge.
Here we start with the stochastic approach to matter, because of our primary interest
in mesoscopic level surpassing atominstic details. In this chapter and later ones we
discuss the Brownian motion and extend the idea to describe the stochastic
dynamics of biological systems and even other complex systems, for which the
microscopic Hamiltonian cannot be defined.

In 1827, botanist Robert Brown, looking through a microscope, found that
particles in pollen grains were undergoing random and incessant motion in water.
He attributed this to the very nature of living, embodied in the old philosophy of
vitalism. However, this motion, called the Brownian motion, was subsequently
observed in the grains of inorganic substances. This was a great curiosity at the
time, but was suspected to be an outcome of the basic constituents of matter that are
susceptible to thermal agitation. In 1905, Albert Einstein published a paper that
explained how the Brownian particles stochastically move surrounded by water
molecules. This explanation of Brownian motion served as a confirmation that
molecules and atoms actually exist, and was further verified experimentally by Jean
Perrin in 1908 (Fig. 13.1).

In this chapter the Brownian motion (or diffusion equation) theories of Einstein
and Smoluchowski are given with a number of biological applications. More
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general theory via the Langevin equation is then given to describe the stochastic
behaviors of the Brownian motion that differ in characteristic time scales.

13.1 Brownian Motion/Diffusion Equation Theory

13.1.1 Diffusion, Smoluchowski Equation, and Einstein
Relations

Understanding that the Brownian motion is an incessant continuation of random
jumps, Einstein derived the equation for the probability density Pðr; tÞ of a
Brownian particle to be found at a position r and time t,

@Pðr; tÞ
@t

¼ Dr2Pðr; tÞ: ð13:1Þ

Here the D is the diffusivity or the diffusion constant given by

D ¼ hl2i
6s

: ð13:2Þ

s is the jump time, which is chosen to be macroscopically small but microscopically
large enough that the motions after the time are mutually independent. In the time
interval s the particle is displaced by a distance l that is statistically distributed with

Fig. 13.1 The Brownian motion
is depicted in the cover page of
“Atoms” (Ox Bow Press, 1923)
authored by Jean Perrin, whose
experiments onBrownianmotion
laid a foundation on atomicity of
matter
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the mean-square hl2i. The derivation of the above equations will be given in next
chapter within the frame of master equation.

Equation (13.1) written for the number density or concentration of such
Brownian particles nðr; tÞ ¼ NPðr; tÞ,

@nðr; tÞ
@t

¼ Dr2nðr; tÞ ð13:3Þ

is the well-known equation called the diffusion equation with the D same as that in
(13.1) if the concentration is low enough to neglect interactions between the
Brownian particles.

The diffusion equation is one of the hydrodynamic equations derived from
conservation laws and constitutive relations below and in Chap. 19. The total
number of the particles N being conserved, the number density, satisfies the con-
tinuity equation

@n
@t

þ$ � Jn ¼ 0; ð13:4Þ

where Jn is the number flux vector: Jnz is average number of particles that cross a
unit area in the xy plane per unit time. Phenomenologically the flux is given by

Jn ¼ �D$n; ð13:5Þ

which is the Fick’s law stating that the particles flow from the region of higher
concentration to that of lower concentration. Substituting (13.5) into (13.4) yields
the diffusion equation

@n
@t

¼ $ � D$n: ð13:6Þ

It takes the form (13.3) for constant diffusivity, which is the case of our interest.
The solution to (13.1), given the particle’s initial position at r0, is termed as the

fundamental solution. In free space, it is given by

P r; tjr0ð Þ ¼ 1

ð4pDtÞ3=2
exp �ðr� r0Þ2

4Dt

" #
: ð13:7Þ

From this equation the mean square of the displacement (MSD) rðtÞ � r0 at time t is

�DrðtÞ2 � rðtÞ � r0ð Þ2
D E

¼
Z

drðr� r0Þ2Pðr; tjr0Þ ¼ 6Dt; ð13:8Þ
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Or, �Dr� t1=2. Equations (13.7) and (13.8) are universal relations that the Brownian
particle has in the long times, as a consequence of the central limit theorem (CLT),
which we introduced to discuss the random walk in Chap. 10. In the long times,
these relations are held independently of the microscopic details, i.e., whether the
diffusing particle is a large colloidal particle or a small molecule. The diffusion
constant can be obtained by measuring the mean-square fluctuation by

D ¼
�DrðtÞ2
6t

¼
�DxðtÞ2
2t

; ð13:9Þ

where �DxðtÞ2 is the mean square fluctuation of the displacement along the x-
direction. This agrees with (13.2) via �DrðtÞ2 ¼ hl2it=s.

The general solution for concentration or probability density, given arbitrary
initial conditions, can be written as,

Pðr; tÞ ¼
Z

dr0 Pðr; tjr0ÞPðr0; 0Þ ð13:10Þ

n r; tð Þ ¼
Z

dr0 Pðr; tjr0Þnðr0; 0Þ ð13:11Þ

P13.1 Initially a certain cells are localized in the region x[ 0 within a thin tube of
very long length. Find the concentration profile nðx; tÞ at a later time.

Now suppose there is an external force on each particle derivable from a potential,
FðrÞ ¼ �rUðrÞ. Then the diffusion equation is generalized to

@n
@t

¼ D$ � $þ b$Uð Þnf g: ð13:12Þ

This is called the Smoluchowski Equation.
In order to derive the equation, we note that the drift velocity V, which is the

average velocity of a Brownian particle, is governed by the well-known phe-
nomenological equation,

M
dV
dt

¼ �fVþFðrÞ; ð13:13Þ

where M, f are the mass and the friction coefficient of the particle. Let us first
consider the case with F ¼ 0. Given the initial velocity V0, the average velocity at
a later time t is given by

VðtÞ ¼ e�t=spV0 ð13:14Þ
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where

sp � M=f ð13:15Þ

is momentum or velocity relaxation time. For t � sp, V decays to zero, meaning
that the initial velocity is forgotten. For a particle of molecular mass and friction,
sp � 1 ps. In many of the biological phenomena of our interest the friction coeffi-
cient is high enough that the relevant time scale of description is much longer than
sp. Consequently the inertia effect (the LHS of (13.13)) is negligible, even in the
presence of the force, so that the frictional force balances with the external force,

V ¼ 1
f
FðrÞ: ð13:16Þ

The particle current or flux, namely, the average number of particles flowing per
unit time across unit area, is then given by

Jn ¼ �D$nþ nV; ð13:17Þ

where the first term �D$n is the diffusive current that drives the particles towards
the less concentrated region, while nV is the convective (drift) current that follows
the driving force FðrÞ. At equilibrium, the two terms must balance, so

Jn ¼ �D$nþ n
f

�$Uð Þ ¼ 0: ð13:18Þ

As is dictated by equilibrium statistical mechanics, nðrÞ / e�bUðrÞ. This is
substituted into the equation above to yield

D ¼ kBT
f

; ð13:19Þ

a remarkable relation between the fluctuation (D) and dissipation ðfÞ, which is
called the Einstein relation. Then the current is rewritten as

JnðrÞ ¼ �D $nðrÞð Þþ b $UðrÞð ÞnðrÞ; ð13:20Þ

which can further be expressed in a convenient form for later uses:

JnðrÞ ¼ �De�bUðrÞ$ebUðrÞnðrÞ: ð13:21Þ

Substituting (13.20) into the continuity (13.4) yields the Smoluchowski Equation
(13.12), which is valid for the times longer than sp. The equation can be exactly
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solved for special cases of the forces such as the linear force or for many situations
in steady state. This will be discussed later in depth.

Using the Stokes formula f ¼ 6pgR for a spherical particle of a radius R in a
fluid of viscosity g, which is obtained by hydrodynamics (19.78), one further
obtains

D ¼ kBT
6pgR

; ð13:22Þ

called as the Stokes-Einstein relation. Applying this to (13.9) yields,

�DrðtÞ� �2 ¼ kBT
pgR

t: ð13:23Þ

This is an important relation from which Perrin estimated the Boltzmann constant
kB and the radius R of a molecule suspended in water. Historically this served as a
verification of molecules and atoms, which had remained obscure by that time.

Often the diffusion can be accompanied by other processes. If particles are
undergoing convection with a constant drift velocity V along x-axis the
Smoluchowski equation can be written as

@n
@t

þV � $n ¼ D$2n:

If, in addition, the diffusing particles are absorbed by the solution constituents with
rate a, the diffusion equation is modified to

@n
@t

þV � $n ¼ D$2n� an; ð13:24Þ

Let us solve for the fundamental solution of the above equation subject to the
initial condition nðr; 0Þ ¼ n0dðrÞ. First we Fourier transform the equation (using
nðr; tÞ ¼ ð2pÞ�3 R dq eiq�rnðq; tÞ to have

@

@t
nðq; tÞ ¼ �Vx � iqx � Dq2 � a

� �
nðq; tÞ: ð13:25Þ

Using the initial condition n q; t ¼ 0ð Þ ¼ R
dre�iq�rnðr; 0Þ ¼ n0, (13.25) is integrate

to

nðq; tÞ ¼ n0e
�t Vx�iqx þDq2�að Þ; ð13:26Þ

246 13 Brownian Motions



whose inverse Fourier transform is

nðr; tÞ ¼ ð2pÞ�3n0e
�at

Z
dqxe

iqxx�t iqxVx þDqx
2ð Þ
ZZ

dqydqye
i qyyþ qzzð Þ�tD qy

2 þ qz
2ð Þ

¼ n0e�at

4pDtð Þ3=2
exp � x� Vxtð Þ2

4Dt

" #
exp �ðy2 þ z2Þ

4Dt

� �
:

ð13:27Þ

The distribution retains the Gaussian form with its center following the convection
but decays exponentially in time due to reaction. This reduces to (13.7) when V ¼ 0
and a ¼ 0.

P13.2 A pollutant is uniformly distributed with a uniform surface density r on a
surface of sphere of radius R and then is freely released into the surrounding air
with the diffusivity D at a time t = 0. Find the concentration profile of the diffusing
pollutant. How would the profile be changed when the wind flows constantly to the
west with a velocity u?

13.2 Diffusive Transport in Cells

The diffusion or the Smoluchowski equation is nearly as fundamental in stochastic
dynamics as the Schrödinger equation is in quantum mechanics. It can be applied to
a variety of material, environmental, and biological problems. The most ubiquitous
mode of transport in the world of cells is diffusion. Driven by their concentration
gradients and external forces, the objects ranging from molecules to cells undergo
diffusive motion, which looks locally stochastic due to thermal fluctuations. In this
section we study several relatively simple but prototype biological examples.

13.2.1 Cell Capture

One particularly interesting problem is reaction or capture of certain molecules on
specific sites in cells. There are plentiful examples in biology such as ligand
(signaling molecules) binding on receptors, and metabolites (such as oxygen and
sucrose molecules) uptake by cells. The aqueous solution is regarded as a bath so
large that the bulk concentration of the molecules is not affected by the local
binding on the cells. At what rate can these molecules be delivered to a cell if the
transport is controlled by the diffusion?

As a simple model, consider a spherical cell of radius R immersed in an
unbounded solution at a steady state in which the concentration of the molecules
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infinitely away from the cell is maintained to be a constant, n1 (Fig. 13.2a). For the
time being, suppose that the entire surface of the cell absorbs the molecules
whenever they arrive on the surface. In a steady state of our interest, @n=@t ¼ 0 and
the distribution of the molecules is spherically symmetric, n ¼ nðrÞ, so the diffusion
equation is reduced to

Dr2n ¼ D
1
r2

@

@r
r2

@

@r
n

� �
¼ 0; ð13:28Þ

The equation is satisfied by r2 @
@r n ¼ A, which is further integrated to yield

nðrÞ ¼ �A
r
þB: ð13:29Þ

The two constants A and B are determined by the two boundary conditions (BC).
While the BC at r ¼ 1 is n ¼ n1, the BC at the cell surface r ¼ R is nðRÞ ¼ 0,
the so-called adsorbing BC: once the molecules bind on the cell they disappear. The
solution that meets the BCs can be written as

nðrÞ ¼ n1 1� R
r

� �
: ð13:30Þ

As the molecules approach the absorbing boundary, their concentration
decreases until they vanish on surface. The flux of the molecules on the surface,
using the Fick’s law (13.5), is given by

JnðRÞ ¼ �D
@

@r
njr¼R¼ �Dn1=R: ð13:31Þ

Integrating the inward current JnðRÞ over the entire surface, we obtain the total
number of molecules impinging on the surface per unit time, called the diffusion
current,

(a) (b) 
 

Fig. 13.2 a Cell capture model: whenever diffusing molecules arrive at a sphere, they are
absorbed. b Molecules from a semi-infinite space are absorbed on a disk which is located on a
nonadsorbing surface
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Is ¼ jJnðRÞ4pR2j ¼ 4pRDn1: ð13:32Þ

The diffusion current Is to an absorbing sphere is proportional to the concentration
n1 as well as the diffusion constant D as one can easily expect. However, the
proportionality to the radius R is not obvious. It is in fact due to the zigzag Brownian
motion of the incident molecules; if the molecules were to collide with the sphere in
a ballistic way the current would be proportional to the cross section pR2. The
binding (association) rate constant or the inverse diffusion resistance ðRsÞ is

ks ¼ Is
n1

¼ 4pDR � 1=Rs; ð13:33Þ

characteristic of the diffusion-limited reaction in fluid phases.
The diffusion current with the proportionality to R can have an important

implication for the sizes of cells that nature selects. The amount of the energy that a
cell needs per unit time for its survival, say, the metabolic need, is proportional to
its volume. Suppose that this need is met by the metabolic intake (diffusion current):

4pDRn1 � 4pR3a
3

; ð13:34Þ

where a is the metabolic rate constant. Then, the upper limit of the cell size is given
by

RM ¼ 3Dn1
a

� �1=2

�D1=2n1=21 : ð13:35Þ

This simple argument shows that the larger the diffusion constant and the con-
centration, the bigger the cell can be, following the power law. Because the
diffusion constant of a molecule is � 104 times that in water, an aerial organism
could be a one hundred times larger than its aquatic cousins (Denny 1993).

P13.3 Calculate how the diffusion current would be changed if there is a Coulomb
attraction UðrÞ ¼ �ZkBTlB=r between the cell and a ligand located at r.

Sol. The steady state condition in spherical coordinate

r � JnðrÞ ¼ 1
r2

@

@r
r2JnðrÞ
� � ¼ 0

leads to 4pr2JnðrÞ ¼ 4pR2JnðRÞ ¼ I, or 4pr2De�bUðrÞ @
@r e

bUðrÞnðrÞ ¼ I (13.20),
which is integrated to
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I ¼ 4pDn1=

Z1
R

drr�2ebU rð Þ ¼ 4pDRn1x= 1� e�xð Þ

where x ¼ ZlB=R. If x � 1, I ! 4pDZlBn1, the current will be much enhanced.

In the above, we considered the sphere as the cell’s shape. Now consider a
disk-shaped cell or receptor of radius a on the otherwise reflecting surface of a
semi-infinite medium in which the molecules are distributed (Fig. 13.2b). One may
calculate the diffusion current of the molecules whose concentration is kept as n1
infinitely away, following the procedure given above in cylindrical coordinate. The
procedure is quite complicated (Wiegel 1991), but the result turns out to be simple:

Id ¼ 4Dan1 ð13:36Þ

The expression (13.36) is similar to (13.32) for the diffusive current to a sphere,
sharing the same scaling behavior (linearity to the diffusion constant, cell size, and
the concentration). The linear relation between the current and n1 is analogous to
the Ohm’s law between the electrical current and the potential difference, stemming
from similarity between steady state diffusion equation and Dr2n ¼ 0 and
Laplace’s equation for the electrostatic potential r2/ ¼ 0; given the potential
difference n1 the resistance is Rs ¼ ð4pDRÞ�1 for the sphere and Rd ¼ ð4DaÞ�1 for
the disk mentioned above.

Now we consider as a model for chemoreception, a situation where the
M absorbing disks, each of radius a, are distributed over the surface of an otherwise
reflecting sphere. The radius of the sphere is much larger than that of the disk,
R � a, and the disks are separated by a distance much larger than a (Fig. 13.3a).
Given the concentration of ligands n1 infinitely away, how does the rate of the
capture depend on M? Having to deal with the BCs over many disks, solving the
diffusion equation for the problem appears to be hopelessly complicated.
Fortunately, we can find the current by appealing to the electrostatic analogy
mentioned above: over the insulating surface of the sphere, there are M conducting

(a) 

…
 

(b) Fig. 13.3 a Line of diffusive
flux around a sphere with
absorbing disks. b The effec-
tive net resistance (redrawn
from Berg 1983)
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disks each with diffusion resistance Rd , connected together to form a single con-
ductor (Berg and Purcell 1977; Berg 1983). Following this reference, we study the
effective resistance Rc of this composite below.

Figure 13.3a is a schematic figure for the lines of flux around the surface of a
sphere. At a radial distance r larger than Rþ d, where d is roughly the distance
between two absorbing disks, the flux is radial, but for smaller r converges on the
absorbing disks. We can construct the effective circuit for the flow: on the surface of
the sphere there are M resistors connected parallel without interaction among each
other so that total resistance there is Rd=M, which is connected in series to the outer
resistance, which is seen to be that of the absorbing sphere of the radius Rþ d.
Thus, considering d 	 R, the composite resistance is

Rc ¼ 4pD Rþ dð Þ½ 
�1 þ Rd

M
� 4pDRð Þ�1 þ 4MDað Þ�1¼ Rs 1þ pR=Ma½ 
:

ð13:37Þ

The above shows that the resistance is larger than that of an adsorbing sphere by
the factor pR=Ma. Thus, the diffusion current is smaller by the same factor:

I
Is
¼ 1

1þ pR=Ma
ð13:38Þ

This result agrees with that obtained from more detailed calculations (Berg and
Purcell 1977). Figure 13.4a shows the current as a function of M. When M is quite
small in such a way that pR=Ma � 1, I � ðIsMaÞ=pR ¼ 4MDan1 as can be
expected for non-interacting disks behaving independently. But, as M increases
further, the current no longer increases with M linearly because of the interference
between the disks. If M is large such that pR=Ma 	 1, the current saturates to the
limit I ¼ Is ¼ 4pRDn1 of a completely absorbing sphere as it should be.

12
(b) 

(a) 

Fig. 13.4 a The diffusion current versus number of disks. Diffusion current becomes the half of
the maximum value even with a very small fraction of the absorbing surface. b Receptors
(absorbing disks) distributed on a non-absorbing surface of a sphere. A ligand undergoes many
zig-zag motions in a solution until it is adsorbed on a disk
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It is amazing how fast this saturation limit ðIsÞ is achieved as M increases.
The number of the disks that have to exist in order to attain half of the saturation
limit is M ¼ pR=a; using R ¼ 10 lm and a ¼ 10 nm, gives M � 3140. With this
value of M, only a minute fraction of the surface area, Mpa2= 4pR2ð Þ ¼
pa=4R � 8� 10�4, is occupied by the receptors. This signifies a remarkable
efficiency of chemoreception. This is again due to the zigzag motion of the
impinging molecules: the molecules that are reflected from the non-absorbing area
may come back due to the Brownian motion until they are absorbed on the
receptors (Fig. 13.4b).

13.2.2 Ionic Diffusion Through Membrane

Ionic transport through cell membranes is a critical process occurring
ubiquitously in cells, for our every thought, perception, and movement. It costs
the energy much higher than thermal energy for an ion to cross the membranes
(6.8), making the lipid-bilayer highly impermeable. A structure of membrane
proteins called the ion channel provides a conduction pathway for specific ions to
transverse the membranes. Although the structures of ion channel are so complex
(Doyle et al. 1998), for simplicity, we regard the transport of an ion as one
dimensional diffusion process of crossing the free energy barriers caused by the
structures and interactions (Lee and Sung 2002).

We are interested in the ionic distribution and current at a steady state in the
channel across a membrane in the presence of a potential as well as an imbalance of
the ionic concentrations on both sides of the membrane. Suppose that ions undergo
the Brownian motion along one-dimension (x-axis) subject to a potential UðxÞ
(Fig. 13.5). Its one-dimensional density n(x) at steady state is described by

@

@x
JðxÞ ¼ 0; ð13:39Þ

Fig. 13.5 A sketch of ionic trans-
port through a channel in a mem-
brane, between extracellular and
intracellular sides
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where the flux (13.20) and (13.21) is

JðxÞ ¼ �D
@

@x
þ b

@

@x
UðxÞ

� �
nðxÞ

¼ �De�bUðxÞ @
@x

ebUðxÞnðxÞ
ð13:40Þ

Equation (13.39) assures us that the JðxÞ is uniform throughout, that is, a con-
stant J. Rewriting (13.40) as JebUðxÞ ¼ �D@=@xebUðxÞnðxÞ, which is integrated
from the outer boundary xo to an arbitrary position x in the channel, we have

J
Zx

xo

dx0ebU x0ð Þ ¼ D ebU xoð Þn xoð Þ � ebUðxÞnðxÞ
h i

: ð13:41Þ

Choosing the position x to be the inner boundary xi, the steady state current is found
to be

J ¼ D
ebU xoð Þn xoð Þ � ebU xið Þn xið ÞR xi

xo
dx0ebU x0ð Þ ð13:42Þ

If the channel is a simple non-selective pore that allows only the entry (passive
channel), we impose the boundary conditions

n xoð Þ ¼ coA ð13:43Þ

n xið Þ ¼ ciA ð13:44Þ

where A is the cross sectional area of the channel assumed to be uniform, the co and
ci are the three dimensional (bulk) concentrations of the ions at the outer and inner
boundaries (extracellular and intracellular concentrations). We rewrite (13.42) as

J ¼ DA ebU xoð Þco � ebU xið Þci
� 	

=

Zxi
xo

dx0ebU x0ð Þ: ð13:45Þ

At equilibrium, J ¼ 0, where we have

co=ci ¼ eb U xið Þ�U xoð Þf g ¼ e�bDU ; ð13:46Þ

where DU ¼ UðxoÞ � UðxiÞ is the potential difference across the membrane.

13.2 Diffusive Transport in Cells 253



Consequently we have the potential difference

DU ¼ kBT ln
ci
c0

� �
; ð13:47Þ

which is called the Nernst potential. It tells us that the imbalance of the ionic
concentration in the bathing solution at equilibrium generates a membrane poten-
tial, also called the rest potential. This means that an ion-selective membrane acts as
a battery. For a typical mammalian cell at body temperature (37 °C), the extra-
cellular and intracellular concentrations of sodium (Na+) ions are 145 and 15 mM
so that the rest potential for Na+ is 61 mV.

On the other hand, (13.41) yields the density distribution of ions at a position
inside the channel:

nðxÞ ¼ n xoð Þe�bfUðxÞ�UðxoÞg � J
D
e�bU xoð Þ

Zx

xo

dx0ebU x0ð Þ ð13:48Þ

At equilibrium state where J ¼ 0; nðxÞ ¼ n xoð Þe�bfUðxÞ�UðxoÞg as it ought to be. In
the steady state, the ion population is depleted along the direction of the current J.

UðxÞ is the effective potential experienced by an ion in the channel, which is
caused by the externally imposed transmembrane potential, and the ion’s interaction
with the channel structure, etc. Usually the cytoplasm is charged negative relative to
the outside, imparting linearly decaying electrical potential. The more critical part
of the potential comes from the ion channels, whose complex structures are under
intense research (Doyle et al. 1998). Because the UðxÞ is an effective interaction the
one-dimensional ion undergoes with entropic changes, it is a free energy function,
previously notated by FðxÞ.

Let us consider a channel that can accommodate a single ion at most, called the
singly-occupied ion channel. The boundary conditions for this channel are replaced
by

nðxoÞ ¼ coAPe; and nðxiÞ ¼ ciAPe; ð13:49Þ

where Pe is the probability that the channel is empty:

Pe ¼ 1�
Zxi
xo

dx nðxÞ ð13:50Þ

If the channel is occupied by an ion,
R xi
xo
dx nðxÞ ¼ 1, and Pe ¼ 0; n xoð Þ ¼ n xið Þ ¼ 0,

so that J ¼ 0 (13.42). In general we can find that the current and concentration are
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equally reduced by the factor Pe : J ¼ PeJ0 and nðxÞ ¼ Pen0ðxÞ, where J0; n0ðxÞ are
the current and density calculated from the passive channel, (13.45) and (13.48).
From (13.50), Pe then is calculated to be

Pe ¼ 1=f1þ
Zxi
xo

dx n0ðxÞg ð13:51Þ

13.2.3 A Trapped Brownian Particle

Hitherto in this section we were considering mostly the steady state diffusive
motion of Brownian particles. Below we study the time-dependent motion of a
Brownian particle in one dimension confined within a trap of length L. Whenever
the particle arrives on the boundary x ¼ 0 or L, it is absorbed. If it is initially
released at x ¼ x0, what is the probability density with which it is found at a
position x within the trap at a later time? What is the average time in which it will
reside within the trap? You might imagine a drunken bug within a trap.

The diffusion equation for the probability density is written as

@P x; tð Þ
@t

¼ �LP x; tð Þ; ð13:52Þ

where L ¼ �D@2= @x2ð Þ is a linear operator. The solution is formally written as

P x; tjx0ð Þ ¼ e�LtP x0; 0ð Þ ¼ e�Ltd x� x0ð Þ: ð13:53Þ

Consider a set of eigenfunctions wn and eigenvalues kn:

Lwn ¼ knwn; ð13:54Þ

Using the completeness of the eigenfunctions, d x� x0ð Þ ¼ P
n wnðxÞwn x0ð Þ,

(13.53) becomes

P x; tjx0ð Þ ¼
X
n

e�kntwnðxÞwn x0ð Þ: ð13:55Þ

Subject to the boundary conditions at x ¼ 0 and L where wn ¼ 0, they are

wnðxÞ ¼
2
L

� �1=2

sin
np
L
x; kn ¼ np

L

� 	2
D: ð13:56Þ
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Then,

P x; tjx0ð Þ ¼
X1
n¼1

2
L

� �
e�

np
Lð Þ2Dt sin np

L
x sin

np
L
x0: ð13:57Þ

The probability density decays in time characterized by the diffusion time L2=D,
but, curious enough, oscillates sinusoidally with the position.

For the time t � L2=D, the contribution from the lowest eigenfunction domi-
nates in the sum:

P x; tjx0ð Þ � 2
L

� �
e�

p
Lð Þ2Dt sin p

L
x sin

p
L
x0: ð13:58Þ

The probability that it survives at long times t � L2=D is

}ðtÞ ¼
ZL

0

dx P x; tjx0ð Þ � 4
p
e�

p
Lð Þ2Dtsin p

L
x0: ð13:59Þ

Finally, the mean lifetime of the bug is

s ¼
Z1
0

dt t � d
dt}ðtÞ

� � ¼
Z1
0

dt }ðtÞ ¼
Z1
0

dt
ZL

0

dx P x; tjx0ð Þ; ð13:60Þ

where we note the probability that the bug survives during dt is �d}ðtÞ=dt. Using
the eigenfunction expansion (13.57),

s ¼
X1

n¼odd

4L2

n3p3D
sin

np
L
x0; ð13:61Þ

which, for x0 ¼ L=2, is

s ¼ 4L2

p3D
1� 1

33
þ 1

53
� � � �

� �
¼ L2

8D
: ð13:62Þ

It is insightful to draw an analogy between this problem and a flexible polymer
confined within a box we studied in Chap. 10. As one can show the solution (13.57)
in the limit L ! 1 approaches

P x; tjx0ð Þ ¼ 1

4pDtð Þ1=2
exp � x� x0ð Þ2

4Dt

( )
� exp � xþ x0ð Þ2

4Dt

( )" #
: ð13:63Þ
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This is none other than the image method solution that we would have if only a
single wall or a boundary is present at x ¼ 0. The corresponding problem of a
polymer anchored on a wall was studied (10.27).

P13.4 Suppose that a neural transmitter emitted from an axon terminal at x ¼ 0
diffuses with the diffusion constant D, and drifting with constant velocity V in one
dimension. When it arrives at x ¼ L, the position of a receptor of a neighboring
neuronal cell, it is absorbed. Considering one-dimensional diffusion model, find the
probability of finding the transmitter remaining unabsorbed at a time t. Assume the
boundary condition Jðx ¼ 0Þ ¼ J0.

13.3 Brownian Motion/Langevin Equation Theory

The diffusion theory of Einstein and Smoluchowski we have discussed above is
only applicable to long-time Brownian motion. This is evidenced by the mean
square displacements of a free Brownian particle determined by scattering exper-
iments and computer simulations as given by Fig. 13.6. Noticeably, for a time
longer than the momentum relaxation time sp, �Dr2ðtÞ ¼ 6Dt, as in the diffusion
theory, but for a time shorter than that, �Dr2ðtÞ� t2. It means there are some degrees
of freedom that are missed in accounting for the short time motion. The gap is filled
by the Langevin equation, which is another pillar of the Brownian motion theory.

13.3.1 The Velocity Langevin Equation

The Langevin equation is simply obtained by replacing the drift velocity V of a
Brownian particle in the macroscopic deterministic equation (13.13) by a
fluctuating velocity v, and adding to the right hand side a fluctuation term
f RðtÞ called the random force. Considering 1� D motion for simplicity, the
Langevin equation is written as:

M
dv
dt

¼ �f vþFðxÞþ fRðtÞ ð13:64Þ

∆Fig. 13.6 The mean square
displacement �Dr2 of a Brow-
nian particle in afluid. In short
times it is proportional to t2

but at long times shows diffu-
sive behavior �Dr2 � t
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The fluctuating force fRðtÞ is due to the collisions of surrounding fluid molecules
with the Brownian particle that are not incorporated in the frictional force �fv:
Since the Brownian particle is much heavier than a fluid molecule, the random
force f RðtÞ is supposed to vary irregularly and rapidly on the timescale of the
velocity. fRðtÞ can be constructed as a sum of many contributions from surrounding
fluid molecules at different times, each of which is not correlated with other on the
timescale. Then the Central Limit Theorem (Chap. 10) tells us that the random
force is distributed in Gaussian prescribed solely by the first two moments. The first
one is the average, which, due to the randomness, vanishes:

fRðtÞh i ¼ 0: ð13:65Þ

The second moment is expressed as

fRðtÞfRðt0Þh i ¼ 2Hd t � t0ð Þ: ð13:66Þ

The averages are taken over the equilibrium ensemble. On the time scale of the
velocity, random force fluctuates very rapidly and does not correlate with itself at
different times. This delta-function-correlated random force is called the white
noise, because the Fourier transform of (13.66), which is called the power spectrum
of the random force, is independent of the frequency. This Gaussian and white
noise is called thermal noise; the constantH is the strength of the noise, which will
be shown to be fkBT shortly. The Langevin equation (13.64) with this non-analytic
noise term is an example of the stochastic differential equation.

Let us first consider the case with F ¼ 0, and study the fluctuation and corre-
lation of the velocity. This velocity Langevin equation is formally solved as

vðtÞ ¼ e�t=sp v0 þ 1
M

Z t

0

ds e� t�sð Þ=sp fRðsÞ; ð13:67Þ

where v0 is the initial velocity and sp � M=f is its correlation time.
Equation (13.67) can be obtained by Laplace transforming ðv z½ 
 ¼ R1

0 dt e�ztvðtÞÞ
the Langevin equation, which then becomes

M zv½z
 � v0;

 � ¼ �fv½z
 þ fR½z
 ð13:68Þ

Fig. 13.7 Time series fRðtÞ of
a random force, which varies
very rapidly and erratically
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or

v½z
 ¼ 1
zMþ f

Mv0 þ fR½z
ð Þ; ð13:69Þ

whose inverse Laplace transform is just (13.67). Averaging all the terms over the
ensemble subject to the initial velocity v0 yields

vðtÞh iv0¼ e�t=spv0: ð13:70Þ

At a time longer than sp the information on the initial velocity (inertia effect) is lost.

P13.5 Above we noted that the random force at a time t is not correlated with the
velocity at an earlier time t0, fRðtÞvðt0Þh iv0¼ 0. However, the velocity at a later time
is affected by the random force at the earlier time. Calculate vðtÞfRðt0Þh iv0 .

Now, we determine the noise strength H and the equilibrium time correlation
function of the velocities at two times t and t0 defined by

CV ðt; t0Þ ¼ vðtÞvðt0Þh i; ð13:71Þ

where the average now is taken over the equilibrium ensemble. This is evaluated as

CVðt; t0Þ ¼ v20
� 

e�ðtþ t0Þ=sp

þ 1
M2

Z t

0

ds
Zt0
0

ds0e� tþ t0�s�s0ð Þð Þ=sp fRðsÞfRðs0Þh i
ð13:72Þ

where fRðtÞv0h i ¼ 0 is used. Performing the integration yields

CV ðt; t0Þ ¼ hv20i e�ðtþ t0Þ=sp þ Hsp
M2 e� t�t0j j=sp � e�ðtþ t0Þ=sp

� 	
ð13:73Þ

and (13.66) is used.
We note that the equipartition relation

CVðt; tÞ ¼ v2ðtÞ�  ¼ v20
�  ¼ kBT

M
ð13:74Þ

should persist at any time, including t ¼ 0 and 1, due to incessancy of the
Brownian motion. Thus the noise-strength should have the magnitude

H ¼ M2s�1
p

kBT
M

¼ kBTf 1� Dð Þ:

H ¼ M2s�1
p

3kBT
M

¼ 3kBTf 3� Dð Þ:
ð13:75Þ
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With this, the (13.73) is given by

CVðt � t0Þ ¼ kBT
M

e� t�t0j j=sp ; ð13:76Þ

which depends only on the time difference t � t0, an important property of equi-
librium time correlation functions, called stationarity. The velocity correlation
function decays exponentially in just the same way as the average velocity (13.70).
The relation (13.66) with the H given by (13.75) is one of the fluctuation and
dissipation theorem. It signifies the detailed balance between the random noise
fRðtÞ and the dissipative force �fv to retain the thermal equilibrium in the long time;
if the strength of this thermal and equilibrium noise takes other values than
given by (13.75), the system will not attain the stationarity and will not arrive
at the equilibrium state in the long time.

13.3.2 The Velocity and Position Distribution Functions

Since the velocity vðtÞ is related to the Gaussian variable fRðsÞ linearly (13.67), it is
also distributed in Gaussian. The velocity distribution function at a time t given its
initial value v0 is thus specified by the mean e�t=spv0 and the variance
h vðtÞ � e�t=spv0
� �2i:
P v; tjv0ð Þ ¼ 1

2ph vðtÞ � e�t=spv0
� �2i

" #1=2

exp � v� e�t=spv0
� �2

2h vðtÞ � e�t=spv0
� �2i

" #
: ð13:77Þ

The variance is obtained as

vðtÞ � e�t=spv0
� 	2

� �
¼

Z t

0

ds
Z t

0

ds0e� 2t�s�s0ð Þ=sp fRðsÞfRðs0Þh i

¼ kBT
M

1� e�2t=sp
� 	

;

ð13:78Þ

where the relation (13.66) is used. The distribution then is explicitly given as

P v; tjv0ð Þ ¼ M

2pkBT 1� e�2t=sp
� �

" #1=2

exp � M v� e�t=spv0
� �2

2kBT 1� e�2t=sp
� �

" #
ð13:79Þ

The distribution has correct limiting behaviors for times t 	 sp and t � sp:
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P v; tjv0ð Þ ! d v� v0ð Þ t 	 sp
� � ð13:80Þ

P v; t v0jð Þ ! U vð Þ ¼ 2pkBT
M

� ��1=2

exp � Mv2

2kBT

� �
; t � sp

� � ð13:81Þ

where the latter is just the Maxwell-Boltzmann distribution, representative of the
equilibrium state to which the velocity reaches at the times long after sp.

Finally, let us return to the displacement of the Brownian particle. Given its
initial position x0 (irrespective of the initial velocity), what is the probability density
of the position at a later time? Because the displacement is linearly related to the
velocity, xðtÞ � x0 ¼

R t
0 ds vðsÞ, this is also distributed in Gaussian, given by the

mean xðtÞh i ¼ x0 and the mean square of the displacement:

xðtÞ � x0ð Þ2
D E

¼
Z t

0

ds
Z t

0

ds0 vðsÞvðs0Þh i

¼ kBT
M

Z t

0

ds
Z t

0

ds0e� s�s0j j=tp

¼ 2
kBT
M

Z t

0

ds e�s=tp

Zs

0

ds0es
0=tp

¼ 2kBTsp
M

t � sp 1� e�t=tp
� 	h i

¼ 2D t � tp 1� e�t=tp
� 	h i

;

ð13:82Þ

where we used (13.76) and the Einstein relation D ¼ kBT=f. Equation (13.82)
agrees with the curve in Fig. 13.6. It is easy to check that for a long time t � sp,
h xðtÞ � x0ð Þ2i ¼ 2Dt, which is the result of free diffusion. On the other hand, for a
short time t 	 sp, expanding the exponential to the second order in t=sp,

xðtÞ � x0ð Þ2
D E

¼ kBT
M

� �
t2: ð13:83Þ

This means that for the short time before the Brownian particle experiences collision
with the background molecules, it moves ballistically with the initial velocity which
has the equilibrium distribution. The position distribution for all time is given by

P x; tjx0ð Þ ¼ 4pD tþ e�t=sp � 1
� 	

sp
n oh i�1=2

exp � x� x0ð Þ2
4D tþ e�t=sp � 1

� �
sp


 �
" #

:

ð13:84Þ
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This shows how the position distribution approaches to that of free diffusion, (13.7),
as time elapses.

It is useful to observe the close similarity between Brownian particle trajectory
and polymer chain configuration. Equation (13.82) is similar to the mean square
end to end distance of the semiflexible chain (11.11) if one-to-one correspondences
between r(t) versus r(s), v(t) versus u(s), and sp versus lp are noted. Assuming they
are Gaussian, the probabilities for the end to end distance and the orientation of a
semi-flexible chain can respectively be given by (13.84) and (13.79).

13.3.3 A Brownian Motion Subject to a Harmonic Force

It is a challenge to analytically solve the Langevin equation with the external force
in an arbitrary form. As a solvable important example, let us consider the
one-dimensional case with F ¼ �kx, and find DðtÞ ¼ hxðtÞ2i as a function of time.
The Langevin equation is written as

Mx00 þ fx0 þ kx ¼ fRðtÞ: ð13:85Þ

We multiply the above equation by x, and then average both sides. Noting that
D0 ¼ 2hxx0i, D00 ¼ 2hx02iþ 2hxx00i ¼ ð2kBTÞ=Mþ 2hxx00i, we derive a differential
equation for DðtÞ:

1
2
D00 þ 1

2
s�1
p D0 þx2D ¼ kBT

M
; ð13:86Þ

where x2 ¼ k=M.

P13.6 Derive (13.86). Why hfRðtÞxðtÞi ¼ 0?

In a long time, the system approaches to the equilibrium, and thus (13.86)
reduces to D ¼ kBT=ðMx2Þ ¼ kBT=k, which can also be derived from the
equipartition of energy for the displacement khx2i=2 ¼ kBT=2. Defining
d ¼ D� kBT=k, (13.86) becomes homogeneous,

1
2
d00 þ 1

2
s�1
p d0 þx2d ¼ 0: ð13:87Þ

This is identical to the equation for a damped harmonic oscillator. Assuming the
solution of the form d� e�kt, we find that, by substituting it in the equation above,
there are two such k’s:
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k ¼ 1
2sp

1 1� 8x2s2p

� 	1=2
� �

: ð13:88Þ

The solution that satisfies the initial conditions, D ¼ 0;D0 ¼ 0 at t ¼ 0, is

DðtÞ ¼ kBT
k

1� kþ e�k�t � k�e�kþ t

kþ � k�

� �
: ð13:89Þ

For the (‘overdamped’) case where both of k are real, Fig. 13.8 above depicts
DðtÞ. DðtÞ� t2 for short times and approaches asymptotically the equilibrium value
kBT=k in the long time. Equation (13.86) illuminates the crossovers from short to
long time behaviors and the associated transition from velocity to position
degree of freedom for relevant dynamics. In a short time, t 	 sp, (13.89) indeed
recovers (13.83). Dominated by the first (inertia) term in (13.86), the particle moves
as if it is free of collision (2nd term) and of the harmonic force (3rd term). As time
exceeds sp, the inertia gives into collision with background and to thermal agitation,
and it undergoes a Brownian motion, yet is little affected by the harmonic force. In a
time much longer than s�1

p x�2 ¼ f=k, the viscoelastic relaxation time, the particle
feels bound to the harmonic potential well, dominated by the last term in LHS of
(13.86). In the underdamped case when the harmonic frequency is high such that
x2s2p [ 1=8; k are complex and thus the intermediate time behavior of DðtÞ is
oscillatory rather than monotonous.

xðtÞ is linearly related with fRðtÞ, so it is also Gaussian, with the distribution:

Pðx; tÞ ¼ 1

2pDðtÞð Þ1=2
exp � x2

2DðtÞ
� �

; ð13:90Þ

In the limit t ! 1 it approaches

Fig. 13.8 Temporal changes
in the mean-squared displac-
ement DðtÞ of an under-
damped Brownian harmonic
oscillator

13.3 Brownian Motion/Langevin Equation Theory 263



PðxÞ ¼ 2pkBT
k

� ��1=2

exp � kx2

2kBT

� �
; ð13:91Þ

which is none other than the equilibrium position distribution of a harmonic
oscillator.

There are numerous situations where this damped harmonic Brownian motion is
realized. Consider a closed circuit where an inductor, a resistor and a capacitor are
connected in series. We learned from the first year undergraduate physics course
that, with no external voltage, the current in the circuits decays to zero. However,
there are persistent thermal fluctuations caused by, for example, electron collisions
with the atoms in solid conductors. The equation of motion for the charge Q stored
at the capacitor is given by

LQ00 þRQ0 þQ=C ¼ VJðtÞ; ð13:92Þ

where L, R and C are the inductance, resistance, and capacitance respectively. By
analogy with the Brownian particle motion, on RHS there is the random voltage
VJðtÞ, called the Johnson noise, characterized by hVJðtÞi ¼ 0 and

VJðtÞVJðt0Þh i ¼ 2RkBTdðt � t0Þ: ð13:93Þ

Alternatively, we have an expression

R ¼ 1
kBT

Z1
0

dt VJðtÞVJð0Þh i: ð13:94Þ

The above relations are recast to a form amenable to experiment as below.
Introducing the time-Fourier transform and the inverse

VJðxÞ ¼
Z1
�1

dt eixtVJðtÞ: ð13:95Þ

VJðtÞ ¼ 1
2p

Z1
�1

dx e�ixtVJðxÞ; ð13:96Þ

we have
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VJðxÞV�
J x0ð Þ�  ¼ Z1

�1
dt

Z1
�1

dt0 eiðxt�x0t0Þ VJðtÞVJðt0Þh i

¼
Z1
�1

dt ei x�x0ð Þt
Z1
�1

dðt0 � tÞe�ix0ðt0�tÞ2RkBTdðt � t0Þ

¼ 4pRkBTdðx� x0Þ:

ð13:97Þ

Then VJ that is integrated over a narrow frequency band Dx around x,

VDðxÞ ¼
ZxþDx

x

dx1 VJðx1Þ ð13:98Þ

has the spectral density:

h VDðxÞj j2i ¼ 4pRkBT
ZxþDx

x

dx1

ZxþDx

x

dx2dðx1 � x2Þ

¼ 4pRkBTDx;

ð13:99Þ

where (13.97) is used. This relation is the Johnson-Nyquist theorem, stating that
the spectral density of the Johnson noise across a resistor is proportional to the
resistance and temperature, which is in excellent agreement with the experiment.
It provides an estimate of the limiting of the signal-to-noise ratio in any mea-
surements. The relative strength of the voltage noise compared with a macroscopic
voltage V is � kBTDx=I2Rð Þ1=2, which tends to be imperceptibly small as the
system size become macroscopic. But in mesoscopic situations, like the voltages
across membranes, the Johnson noise may not be negligible. In analogy with the
translational Brownian motion, we have the equipartition of the energy,

Q2
� 
2C

¼ 1
2
L I2
�  ¼ kBT

2
; ð13:100Þ

and, following the relation V ¼ Q=C, the fluctuation of the voltage across the
capacitor,

V2�  ¼ kBT
C

: ð13:101Þ
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P13.7 Calculate the power spectrum of the voltage SVðxÞ (defined by

SV ðxÞ ¼
R1

�1
dt eixt VðtÞVð0Þh i) in RC circuits and compare it with the strength of

the Jonson noise 2RkBT .

Another relevant example of the harmonic Brownian motion is an elastic rod of
average length L. With the naked eye, the length of a macroscopic rod appears to be
fixed, but in fact does fluctuate! You may write down the for the length X deviated
from the average as

X 00 þ cX 0 þ lX ¼ fRðtÞ; ð13:102Þ

where fRðtÞ is a Gaussian and white noise that is related to the c, via
fRðtÞfRðt0Þh i ¼ 2ckBTdðt � t0Þ, l is the elastic constant proportional to the Young’s
modulus. The relative strength of the length fluctuation is given by
hX2i1=2

.
L�ðkBT=lL2Þ1=2, which is negligibly small on macroscale; as the length

gets shorter, the relative fluctuation increases as typed in stretched biopolymers on
nanoscale.

13.3.4 The Overdamped Langevin Equation

In many situations we deal with the behavior of a Brownian motion at times
much longer than the velocity relaxation time sp, where velocity or inertia of the
particle becomes irrelevant. Excellent examples are colloids and macromolecules,
where sp can be much smaller than the relevant time scale of the motions and
conformational changes. In these cases the underdamped Langevin equation (13.64)
is reduced to the overdamped Langevin equation

f
dx
dt

¼ FðxÞþ fRðtÞ ð13:103Þ

where x may represent a position or certain conformational coordinate of interest,
fRðtÞ is the Gaussian white noise given earlier. As will be shown later, this is the
equation of motion equivalent to the Smoluchowski equation for the probability
discussed earlier.

In the absence of an external force, (13.103) becomes

f
dx
dt

¼ fRðtÞ: ð13:104Þ

This Langevin equation is equivalent to the diffusion equation. The stochastic
dynamics of xðtÞ is called the Wiener process. By integrating the equation above,
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xðtÞ ¼ 1
f

Z t

0

fRðt0Þdt0 þ x0; ð13:105Þ

one can confirm hxðtÞi ¼ x0 and

x tð Þ � x0ð Þ2
D E

¼ 1

f2

Z t

0

dt0
Z t

0

dt00 fRðt0ÞfRðt00Þh i ¼ 2Dt; ð13:106Þ

which is the Einstein displacement formula in one dimension.
Consider the harmonic force FðxÞ ¼ �kx. The overdamped Langevin equation

fdx=dt ¼ �kxþ fRðtÞ ð13:107Þ

looks identical in form to the velocity Langevin equation Mdv=dt ¼ �fvþ fRðtÞ we
studied; these two cases are called the Ornstein-Uhlenbeck process. By replacing v
by x and the associated parameters the result (13.79) can be easily adopted to yield:

P x; tjx0ð Þ ¼ k
2p 1� e�2t=sð Þ

� �1=2
exp � k x� e�t=sx0

� �2
2 1� e�2t=sð Þ

" #
; ð13:108Þ

where s ¼ f=k is the relaxation time.

P13.8 Suppose that the end-to-end distance (EED) motion of a flexible polymer is
given by the Langevin equation: f _R ¼ �KsRþ f RðtÞ. Calculate the correlation
function RðtÞ � Rð0Þh i. If the chain is extended by a force F0sinxt, what is the
probability density that the EED will be R at a time t? Discuss the result both for
the case x � Ks=f and x 	 Ks=f.
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Chapter 14
Stochastic Processes, Markov Chains
and Master Equations

The last chapter dealt with several basic aspects of stochastic processes through
Brownian motion, which represents the oldest and the best known physical example
of the Markov processes. In this chapter, we study general concepts and theoretical
frameworks of Markov processes that can extend the ideas of the foregoing chapter
to a variety of physical and nonphysical phenomena. The stochastic variables,
denoted by q tð Þ below, are not limited to the position and velocity of a Brownian
particle as in the last chapter; they can represent the dynamical states of more
complex systems such as mesoscopic conformational states of a biological mole-
cule. For a biological complex, the Markov processes of utmost concern are
mesoscopic degrees of freedom Q tð Þ that evolve under the associated effective
Hamiltonian or free energy function F Qf g (Chap. 5).

In this chapter and next we study the general mathematical framework of the
stochastic processes without recourse to the microscopic dynamics, while giving
basic introductions of joint probabilities and time correlation functions. Two par-
ticularly well-known and useful equations for the Markov processes, the master
equation and the Fokker-Planck equations are derived and solved for a wide class of
examples. Their relevance and applications are discussed.

14.1 Markov Processes

14.1.1 Probability Distribution Functions (PDF)

A stochastic process means a dynamic variable, say, q tð Þ, that changes prob-
abilistically in time. Suppose that q tð Þ has the values q1; q2; q3. . . at times
t1; t2; t3. . . (Fig. 14.1). The joint (n-time, n-point) probability distribution function
(PDF), denoted by P qn; tn; qn�1; tn�1; . . .; q1; t1ð Þ; is the probability density that the
process will have the trajectory q1; q2; q3. . .qn in a sequence of n times,
t1\t2\. . .\tn (Fig. 14.1). Such joint PDFs were already seen when we dealt with
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Fig. 14.1 The trajectory of a stochastic process q tð Þ in time

fluid particles (4.2), although there different indices indicate different particles. The
joint distribution has the reduction property:

P qn�1; tn�1; . . .; q1; t1ð Þ ¼
Z

dqn P qn; tn; qn�1; tn�1; . . .; q1; t1ð Þ; ð14:1Þ

which can be extended down to the one-point PDF:

P q1; t1ð Þ ¼
Z

dq2 P q2; t2; q1; t1ð Þ

¼
Z

dqndqn�1. . .dq2 P qn; tn; qn�1; tn�1; . . .; q1; t1ð Þ:
ð14:2Þ

Evidently, as we step down to lower point PDF, we erase the information afforded
by the higher point PDF.

P qn;tnjqn�1;tn�1; . . .; q1;t1
� �

is the conditional probability distribution that the
process will assume qn at the time tn, given the values q1; q2; . . .qn�1 at the earlier
times t1; t2; . . .tn�1. For this we have the relation

P qn;tnjqn�1;tn�1; . . .; q1;t1
� � ¼ Pðqn;tn; qn�1;tn�1; . . .; q1;t1Þ

Pðqn�1;tn�1; . . .; q1;t1Þ ; ð14:3Þ

which is the well-known Bayes’ rule. For the case of n ¼ 2,

P q2;t2jq1;t1
� � ¼ P q2;t2; q1;t1

� �
=P q1;t1

� �
; ð14:4Þ

where P q1;t1
� �

and P q2;t2jq1;t1
� �

are the PDFs (one-time PDF and the two-time
transition PDF) we already saw in the last chapter.

14.1.2 Stationarity, Time Correlation, and the
Wiener-Khinchin Theorem

The moments of the PDF are defined as before but are given as functions of different
times, e.g., q tð Þh i; . . .; q tnð Þ. . .qðt2Þq t1ð Þh i: Of particular interest is the two-time
autocorrelation function (or covariance)
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Cðt2; t1Þ ¼ qðt2Þq t1ð Þh i
¼

Z
dq2dq1 q2q1 P q2;t2; q1;t1

� �
:

ð14:5Þ

If the PDFs are invariant with respect to a shift by an arbitrary time s:

P qn; tn þ s; qn�1; tn�1 þ s; . . .; q1; t1 þ sð Þ
¼ P qn; tn; qn�1; tn�1; . . .; q1; t1ð Þ ð14:6Þ

for all n, the stochastic process is called stationary. That is, a stationary process
does not depend on the origin of time. For n ¼ 1, P q; tð Þ ¼ P qð Þ, and the mean
q tð Þh i is a constant characteristic of the stationary states such as equilibrium states
or steady states. For n ¼ 2; P q2; t2; q1; t1ð Þ ¼ P q2; t2 � t1; q1; 0ð Þ; and conse-
quently, the correlation function depends only on the time difference: Cðt2; t1Þ ¼
Cðt2 � t1Þ: The stationarity is temporal analogue of the spatial homogeneity or the
translational invariance which we saw earlier for systems at equilibrium. In the
Brownian motion in free space and in the absence of an external force, the velocity
(the Ornstein-Uhlenbeck process) is stationary while the position (the Wiener
process) is nonstationary.

Using P q2; t2; q1; t1ð Þ ¼ P q2; t2 � t1; q1; 0ð Þ for (14.4), the stationary state cor-
relation function (14.5) is given by

Cðt2 � t1Þ ¼
ZZ

dq2dq1 q2q1P q2;t2 � t1jq1;0
� �

P q1ð Þ

¼
Z

dq1q1 P q1ð Þ
Z

dq1q2 P q2;t2 � t1jq1;0
� �

:

ð14:7Þ

Here, over the ensemble compatible with the initial condition withð
probabilityP q2;t2 � t1jq1;0

� �Þ we take the first average of q2 tð Þ, which is then
multiplied by q1 0ð Þ and further averaged over the stationary distribution P q1ð Þ. For
example, let us consider the velocity t tð Þ of a Brownian particle prepared with the
initial value t0: The first average is

R
dttP t; tjt0ð Þ ¼ t tð Þh it0¼ e�t=spt0 (13.70),

which then is multiplied by t0 and averaged over the Maxwell-Boltzmann distri-
bution U t0ð Þ to yield the correlation function C tð Þ ¼ R

dt0t0U t0ð Þe�t=spt0 ¼
ðkBT=MÞe�t=sp (13.76).

A stationary process q tð Þ thus satisfies C tð Þ ¼ q tð Þq 0ð Þh i ¼ q 0ð Þq �tð Þh i ¼
C �tð Þ; so C tð Þ is an even function of time. The time correlation should decay to
zero for an infinitely long time: limt!1 C tð Þ ¼ 0: The characteristic time for the
decay is called the relaxation time: for the exponentially decaying correlation
function (e.g., the velocity autocorrelation function (13.76))
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C tð Þ ¼ C 0ð Þe� tj j=s ð14:8Þ
the correlation time is s: For the case of multicomponent stationary processes, e.g.,
qA tð Þ and qB tð Þ; for which the correlation function is

CAB tð Þ ¼ qA tð ÞqB 0ð Þh i; ð14:9Þ
we have the relation

CAB tð Þ ¼ CBA �tð Þ: ð14:10Þ

The averages, usually denoted by � � �h i; are taken over the ensemble of simi-
larly prepared systems distributed by the PDF. For example, the end-to end dis-
tance (EED) X of a biopolymer fragment is measured. One takes the average of the
EED over a large number (an ensemble) of the similar fragments, which are inde-
pendent of each other but are prepared subject to a common condition. Alternatively
one may also take the average only for one fragment EED over a long time T,

X ¼ 1
T

� � ZT=2
�T=2

dt X tð Þ: ð14:11Þ

If the result of this time average is equal to that of the ensemble average,
X ¼ Xh i, the system is called ergodic. The practical importance of the ergodicity
is obvious. Because of the time translational invariance, stationary processes can
support such ergodicity.

Consider the Fourier mode of this stationary process,

q xð Þ ¼
Z1
�1

dt eixtq tð Þ: ð14:12Þ

Then,

q xð Þq� x0ð Þh i ¼
Z1
�1

dt
Z1
�1

dt0ei xt�x0t0ð Þ q tð Þq t0ð Þh i

¼
Z1
�1

dt ei x�x0ð Þt
Z1
�1

d t0 � tð Þeix0 t�t
0ð ÞC t � t0ð Þ

¼ 2pd x� x0ð ÞS xð Þ;

ð14:13Þ

where

S xð Þ ¼
Z1
�1

dt e�ixtC tð Þ; ð14:14Þ
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and the inverse

C tð Þ ¼ 1
2p

Z1
�1

dx eixtS xð Þ ¼ 1
2p

Z1
�1

dx e�ixtS xð Þ ð14:15Þ

are the Fourier transforms between the time correlation function C tð Þ; and the S xð Þ
called the power spectrum or spectral density of q tð Þ: The equality (14.14) holds
because C tð Þ ¼ C �tð Þ; which also leads to S xð Þ ¼ S �xð Þ ¼ 2Re S xð Þf g.
Furthermore as shown below S xð Þ is positive.

How can one evaluate the power spectrum the q tð Þ by experiment? We consider
that the q tð Þ is sampled over a long time T and approximates (14.12) by

qT xð Þ ¼
ZT=2

�T=2

dt eixtq tð Þ: ð14:16Þ

Due to the stationarity, on the other hand, we have

q sð Þq 0ð Þh i ¼ 1
T

ZT=2
�T=2

dt q tþ sð Þq tð Þh i

¼ 1
2p

� �2 Z1
�1

dx
Z1
�1

dx0 qT xð ÞqT � x0ð Þh ieixs 1
T

ZT=2
�T=2

dt ei x�x0ð Þt

¼ 1
2pT

Z1
�1

dx eixs qT xð Þj j2
D E

;

ð14:17Þ

where we used lim
T!1

R T=2
�T=2 dt e

i x�x0ð Þt ¼ 2pd x� x0ð Þ.
Comparison of the (14.15) with (14.17) yields

S xð Þ ¼ lim
T!1

1
T

qT xð Þj j2
D E

; ð14:18Þ

the so-called the Wiener-Khinchin theorem. It states that, for a stationary
process, the Fourier transform S xð Þ of its time correlation C tð Þ measures the
intensity of fluctuations of the Fourier mode qT xð Þ taken over a long time T. It
is the temporal analogue of (9.38), which says that, for translationally invariant
matter, the structure factor S qð Þ is the Fourier transform of the spatial density
correlation and its spectral density at the wave vector. We note that, if the ergodicity
is further assumed, the ensemble averaging � � �h i on RHS of (14.17) can be undone,
leading to S xð Þ ¼ limT!1 qT xð Þj j2=T .
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14.1.3 Markov Processes and the Chapman-Kolmogorov
Equation

The Markov process is such a process that satisfies

P qn;tnjqn�1;tn�1; . . .; q2;t2; q1;t1
� � ¼ P qn;tnjqn�1;tn�1

� �
: ð14:19Þ

This means that the Markov process depends on its value only in the immediate
past, but not on the values at the earlier time: it has a momentary memory. For
example, the three-time PDF Pðq3;t3; q2;t2; q1;t1Þ; after the combined use of the
above Markov definition and Bayes rule, satisfies

Pðq3;t3; q2;t2; q1;t1Þ ¼Bayes Pðq3;t3jq2;t2; q1;t1ÞP q2;t2; q1;t1
� �

¼Markov
P q3;t3jq2;t2
� �

P q2;t2; q1;t1
� �

¼Bayes P q3;t3jq2;t2
� �

P q2;t2jq1;t1
� �

P q1;t1
� �

;

ð14:20Þ

which can be generalized to

Pðqn; tn; qn�1; tn�1; . . .; q1;t1Þ
¼ P qn;tnjqn�1;tn�1; . . .; q2;t2; q1;t1

� �
Pðqn�1;tn�1; . . .; q2;t2; q1;t1Þ

¼ Pðqn; tnjqn�1; tn�1ÞPðqn�1;tn�1jqn�2;tn�2; . . .; q1;t1ÞP qn�2;tn�2; . . .q1;t1
� �

¼ Pðqn; tnjqn�1; tn�1ÞP qn�1; tn�1jqn�2; tn�2ð Þ. . .P q2; t2jq1; t1ð ÞP q1; t1ð Þ:
ð14:21Þ

A Markov process is a chain of elementary Markov processes (called Markov
chain) described entirely in terms of the one point PDF P q; tð Þ; and the two-time
conditional PDF P qtjq0t0ð Þ also called a transition probability. The transition time
ti � ti�1 should be chosen to be sufficiently long microscopically to assure the
Markov property.

In the ideal case where the all the events qi i ¼ 1. . .nð Þ are statistically inde-
pendent of each other, the joint PDF is factorized into the product of single time
PDF:

P qn; tn; qn�1; tn�1; . . .; q1; t1ð Þ ¼ P qn; tnÞP qn�1; tn�1ð Þ. . .Pðq1; t1ð Þ; ð14:22Þ

Then the conditional probability, (14.3) can be written as

P qn;tnjqn�1;tn�1; . . .; q1;t1
� � ¼ Pðqn;tnÞ for any n� 2: ð14:23Þ

This process, called a completely random process, is a trivial case of the Markov
processes.
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How the transition probability is governed in any general Markovian processes
is seen by (14.20) integrated over q2: the LHS becomes P q3;t3; q1;t1

� �
, which is

equal to Pðq3;t3jq1t1ÞP q1t1ð Þ; so that (14.20) is reduced to

P q3t3jq1t1ð Þ ¼
Z

dq2P q3t3jq2t2ð ÞP q2t2jq1t1ð Þ: ð14:24Þ

This relation and the identity

P q3t3ð Þ ¼
Z

dq1P q3t3jq1t1ð ÞP q1t1ð Þ ð14:25Þ

are called the Chapman-Kolmogorov equation (CKE). The physical meaning of
(14.24) is clear if one associates the processes of jump marked by the arrows as the
transition probabilities (Fig. 14.1), the examples of which we already have studied
in polymer path integral in Chap. 10 and the Brownian motion in the foregoing
chapter.

A well-known example of the Markov processes is the Brownian motion of a
particle whose mass is much heavier than that of a background fluid molecule. In
the absence of an external force, its velocity change during a small time increment
Dt would depend upon only its velocity at the immediate past as described by the
discrete version of the Langevin equation

v tþDtð Þ � v tð Þ ¼ 1
M

�v tð ÞDtþFR tð Þf g; ð14:26Þ

where FR tð Þ is the random force integrated over Dt: In this case the velocity is a
Markov process, q tð Þ ¼ v tð Þ, called the Ornstein-Uhlenbeck process. The transition
probability (13.79), rewritten in the form,

P q; tjq0; t0ð Þ ¼ 1
2p 1� c2ð Þ exp � q� cq0ð Þ2

2 1� c2ð Þ

" #
ð14:27Þ

with c ¼ e� t�t0j j=sp ; indeed satisfies the CKE (14.24).
The times-series of the Brownian particle positions measured over the time much

longer than the velocity relaxation time sp; is also Markovian, q tð Þ ¼ x tð Þ. On this
coarse-gained time scale, the velocity is no longer a relevant degree of freedom as
we saw in the last chapter. One can verify that the transition probably (13.7).

P qtjq0t0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD t � t0ð Þp exp � q� q0ð Þ2

4D t � t0ð Þ

" #
ð14:28Þ

satisfies the CKE. But the position probed over the time scale shorter than sp would
be non-Markovian since it depends on the earlier position through the velocity that
has not relaxed.
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P14.1 Show that the transition probability (13.84) does not satisfy the CKE,
meaning that x tð Þ is non-Markovian.

In the presence of an external force that depends on the position, it is clear that
the velocity at a time is not Markovian, as it depends on the position which is the
time integral of the velocity over earlier times. For simplicity, consider the
Langevin equation for harmonic Brownian motion (13.85). The position x is also
non-Markovian variable since it will depend on the earlier velocities and thus also
on the earlier positions. If, however, the Langevin equation is written as the two
coupled equations for x and t;

dx
dt

¼ v; ð14:29Þ

dt
dt

¼ �fv� kxþ fRð Þ=M; ð14:30Þ

or, as

dq
dt

¼ K � qþ f R; ð14:31Þ

where q tð Þ ¼ x tð Þ; v tð Þð ÞT ; f R ¼ 0; fRð ÞT are the two-component variables, and

K ¼ 0 1
�k=M �f=M

� �
; ð14:32Þ

then, the q tð Þ chosen this way is Markovian, because the instantaneous (or the
immediately past) value of q determines its evolution.

Whether a process is Markovian or not depends on the time scale and the
choice of variable(s) for the description. The microscopic dynamics of a particle
system in phase space Cð Þ is deterministic and Markovian. As a simple case, the
microscopic equation for a Brownian particle is the Newton’s equation of motion
under the forces acted by N fluid particles, which themselves also move following
the Newton’s equation. The particle motion here, as it is given by the instantaneous
positions and velocities of N þ 1 particles, is deterministic and Markovian, but is an
analytically non-tractable many body problem. One naturally asks whether an
effective Markov approximation can be constructed for the degrees of freedom of
the Brownian particle. The Markovian motion of the Brownian particles over the
long enough times we described in the last chapter serves as such an example.

In general, the many-body dynamics contracted or projected into a few degrees
of freedom is naturally a non-Markovian process, described by a generalized
Langevin equation involving a memory friction term. A fundamental but practical
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problem in the dynamics of complex systems is how the effective Markov processes
are constructed in a mesoscopic, coarse-grained level; this would be a constant
concern in modeling biological dynamics.

14.2 Master Equations

14.2.1 Derivation

The master equation is essentially the CKE expressed as a differential equation of
the first-order in time for the PDF of a Markov stochastic variable. To convert the
integral (14.24) to a differential equation, the transition probability is expanded in a
short time Dt to the first order:

P q3; t2 þDtjq2; t2ð Þ
¼ d q3 � q2ð Þ 1� a q2ð ÞDt½ � þDtW q3jq2ð ÞþO Dtð Þ2

� �
:

ð14:33Þ

W q3jq2ð Þ is the rate of transition from q2 to q3 and a q2ð Þ ¼ R
W q3jq2ð Þdq3: We

also used limt0!t P q0; t
0 jq; t� � ¼ d q� q0ð Þ and R

dq0P q0; t0jq; tð Þ ¼ 1:
Substitution of (14.33) to CKE (14.24) along with the limiting procedure Dt ! 0

brings the master equation written for the transition probability P q; tjq0ð Þ �
P q; tjq0;t0 ¼ 0
� �

:

@

@t
P q; tjq0ð Þ ¼

Z
dq0 W qjq0ð ÞP q0; tjq0ð Þ �W q0jqð ÞP q; tjq0ð Þf g: ð14:34Þ

The first term represents gain of the probability at q at t due to the transition into
q and the second term represents the loss due to the transition out of q. The same
equation is satisfied by P q; tð Þ:

@

@t
P q; tð Þ ¼

Z
dq0 W qjq0ð ÞP q0; tð Þ �W q0jqð ÞP q; tð Þf g: ð14:35Þ

The master equation represents the appropriate stochastic description if gain
from and loss to neighboring states are specified.

If the Markov process is not continuous but assumes discrete values n, the
master equation takes the form,

@

@t
P n; tjn0ð Þ ¼

X
n0

Wnn0P n0; tjn0ð Þ �Wn0nP n; tjn0ð Þ½ �: ð14:36Þ
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and

@

@t
P n; tð Þ ¼

X
n0

Wnn0P n0; tjn0ÞP n0; tð Þð Þ �Wn0nP n; tð Þ½ �; ð14:37Þ

which we will use more often hereafter.

14.2.2 Example: Dichotomic Processes

One of the mathematically simplest master equations is for a Markov process called
the dichotomic process, or telegraphic process. This process can assume two
values and switches from one to the other with certain rates. As mentioned earlier,
such two state situations abound in cell biology and chemical reactions. For
example, an ion channel in a membrane opens and closes in a random fashion; a
biopolymer undergoes transitions between two conformational states (Fig. 14.2).
Denoting two states by n ¼ 0; 1; the master equation for the probability reads

@

@t
P 0; tð Þ ¼ a1P 1; tð Þ � a0P 0; tð Þ ð14:38Þ

@

@t
P 1; tð Þ ¼ a0P 0; tð Þ � a1P 1; tð Þ; ð14:39Þ

where a0 and a1 respectively are the transition rates from the state 0 to the state 1
and vice versa.

The equations can be solved easily for the fundamental solutions, P 1; tjn0ð Þ and
P 0; tjn0ð Þ subject to the initial condition, P n; 0jn0ð Þ ¼ dnn0 . First, from the con-
servation of total probability, P 0; tð ÞþP 1; tð Þ ¼ 1, one can derive

P 0; tjn0ð Þ ¼ a1
a0 þ a1

þ d0n0 �
a1

a0 þ a1

� �
e�ða0 þ a1Þt ð14:40Þ

P 1; tjn0ð Þ ¼ a0
a0 þ a1

þ d1n0 �
a0

a0 þ a1

� �
e�ða0 þ a1Þt: ð14:41Þ

By taking the limit t ! 1 in the two equations above (or by solving (14.38) and
(14.39) with @P 0; tð Þ=@t ¼ 0 ¼ @P 1; tð Þ=@t), the stationary solutions are attained:

Fig. 14.2 Time-seies of RNA hairpin extension (z) showing transition between a folded state and
an unfolded state (Kim et al. PNAS 2012)
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Ps 0ð Þ ¼ a1
a0 þ a1

; Ps 1ð Þ ¼ a0
a0 þ a1

: ð14:42Þ

The k th (k ¼ 1; 2. . .Þ moment at the stationary state is:

nk
	 


s¼
X
n¼0;1

nkPs nð Þ ¼ Ps 1ð Þ ¼ a0
a0 þ a1

ð14:43Þ

so that the variance is

Dnh i2s¼ n2
	 


s� nh i2s¼ a0a1= a0 þ a1ð Þ2: ð14:44Þ

If a0 ¼ a1, hDni2s amounts to 1/4.
We find the time correlation at the stationary state [the discrete version of

(14.7)]:

hn tð Þn 0ð Þis ¼
X
n¼0;1

X
n0¼0;1

n n0P n; tjn0ð ÞPs n0ð Þ ¼ P 1; tj1ð ÞPs 1ð Þ

¼ a0
a0 þ a1

þ a1
a0 þ a1

e�ða0 þ a1Þt
� �

a0
a0 þ a1

¼ hni2s þhDni2s e�ða0 þ a1Þt

ð14:45Þ

or

hDn tð ÞDn 0ð Þis ¼ Dnh i2s e�t=s: ð14:46Þ

Here, s ¼ 1=ða0 þ a1Þ is the correlation time of the dichotomic process. We can
write this as s�1 ¼ s�1

0 þ s�1
1 where s0 ¼ a�1

0 and s1 ¼ a�1
1 . Although quite simple,

the dichotomic process nðtÞ can serve as a workable model for a non-equilibrium
noise that, added to thermal (equilibrium) noise, drive the system away from
equilibrium (as will be exemplified in Chap. 18). The dichotomic noise is a colored
noise in the sense that its power spectrum is frequency-dependent. By Fourier
transform, the power spectrum is given by

S xð Þ ¼ Dnh i2s
Z1
�1

dt eixte� tj j=s ¼ 2 Dnh i2sRe
Z1
0

dt eixte�t=s

8<
:

9=
;

¼ 2 Dnh i2s s= 1þx2s2
� �

;

ð14:47Þ

which is in the type of the so-called Lorentzian.

14.2 Master Equations 279



P14.2 Suppose that the current through a single ion channel is a dichotomic
process undergoing close-open transitions with the rare a0 and a1 respectively.
Only in an open state the ions can transport through a membrane with a current j.
Find the total charge transported at a time t across the channel, which was initially
closed.
Sol) The charge transported is given by

Q tð Þ ¼ j
Z t

dt n tð Þh i ¼ j
Z t

dt P 1; tj0ð Þ ¼ jss�1
0

Z t

dt
�
1� e�t=s

�
¼ Ps 1ð Þj t � s

�
1� e�t=s

�n o
:

14.2.3 Detailed Balance

At stationary states (equilibrium or steady state), when @
@t P tð Þ ¼ 0; in (14.35) and

(14.37), the PDF becomes Ps qð Þ or Ps nð Þ that is satisfied by

Z
dq0 W qjq0ð ÞPs q

0ð Þ �W q0jqð ÞPs qð Þ½ � ¼ 0 ð14:48Þ
X
n0

Wnn0Ps n
0ð Þ �Wn0nPs nð Þ½ � ¼ 0: ð14:49Þ

The stronger condition for the stationary state is the detailed balance of the gain
and the loss between two states:

W qjq0ð ÞPs q
0ð Þ ¼ W q0jqð ÞPs qð Þ ð14:50Þ

Wnn0Ps n
0ð Þ ¼ Wn0nPs nð Þ: ð14:51Þ

For the dichotomic process (14.51) reads as a0 Ps 0ð Þ ¼ a1Ps 1ð Þ, which is satisfied
by (14.42).

It is worth mentioning that the atomic transition described by the Schrödinger
equation is also Markovian. For example, n and n0 can represent quantum states,
between which the rate of transition under a time dependent perturbing Hamiltonian
H0 is given by the Fermi’s golden rule:

Wnn0 ¼ 2p
�h

n H0j jn0h ij j2w En0ð Þ; ð14:52Þ
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where w En0ð Þ is the density of states with the energy En0 . One interesting example of
the detailed balance is shown in the transition between two atomic states induced by
radiation at thermal equilibrium (Fig. 14.3). In 1917, much earlier than the devel-
opment of the relevant quantum theory, using this idea Einstein found that the
spontaneous emission of radiation of a frequency from an atom occurs with a rate
which, is related to the rate of stimulated emission as below.

Einstein assumed that the rate of emission process due to transition from the
energy level n to n0ð\nÞ is given by

Wn0n ¼ AþBn0nq vð Þ: ð14:53Þ

Here, the first term is the rate of spontaneous emission, which is a constant and the
second is the rate of the emission induced by the radiation at a frequency m ¼
En � En0ð Þ=h with energy density q mð Þ. On the other hand there is absorption of the
radiation from n0 to nð[ n0Þ with the rate:

Wnn0 ¼ Bnn0q mð Þ: ð14:54Þ

We now use the detailed balance (14.51) between the two transitions, along with
the Boltzmann distribution for the energy state of the atom, Peq

n / wne�bEn , where
wn is multiplicity or degeneracy. Noting that Bnn0wn0 ¼ Bn0nwn, one can find

q mð Þ ¼ A=B
ebhm � 1

; ð14:55Þ

where B ¼ Bn0n. The formula (14.55) is just the celebrated Planck formula for the
energy density of thermal radiation, with A=B given by

A
B
¼ 8phv3

c3
: ð14:56Þ

In fact, the Einstein coefficients A and B for the spontaneous and induced emissions
are intrinsic properties of atoms, so the relation (14.56) holds true whether the
system is in thermal equilibrium or not.

Fig. 14.3 The transition between two atomic states n and n′ in the presence of thermal radiation.
A is the rate of spontaneous emission of radiation, Bnn0 and Bn0n represent transitions induced by the
absorption and emission of photons
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14.2.4 One-Step Master Equations

One important example of Markov processes is one step processes that involve the
transitions between only two adjacent states (Fig. 14.4). Here we consider discrete
states, with the n indicating unbounded integers. Generalization of the results to
continuum cases is straightforward. The master equation (14.37) (with simplifica-
tion of the notation, @P n; tð Þ=@t � _Pn tð Þ) is given by

_Pn tð Þ ¼ Wnnþ 1Pnþ 1 tð ÞþWnn�1Pn�1 tð Þ �Wnþ 1nPn tð Þ �Wn�1nPn tð Þ
¼ rnþ 1Pnþ 1 þ gn�1Pn�1 � gn þ rnð ÞPn:

ð14:57Þ

Here rn ¼ Wn�1;n and gn ¼ Wnþ 1;n are respectively the rates, i.e., the probabilities
per unit time, for jump processes n ! n� 1 (reduction) and n ! nþ 1 (genera-
tion). The one-step processes abound in nature; physical processes such as the
adsorption and emission of quanta we exemplified, surface growth, adsorption and
desorption of molecules on substrates, and nonphysical processes such as birth and
death of individuals, growth of population, etc.

Random Walk

The cases in which the reduction and generation rates rn, gn are constants are
analytically solvable. One of the simplest is the case when rn ¼ gn ¼ k, for which
the master equation reads

_Pn ¼ k Pnþ 1 þPn�1 � 2Pnð Þ: ð14:58Þ

This equation, upon integration over a (short) jump time s ¼ 2kð Þ�1; transforms to
a difference equation

Pn tþ sð Þ ¼ 1
2
Pnþ 1 tð Þþ 1

2
Pn�1 tð Þ; ð14:59Þ

which describes the one dimensional random walk. Given the initial condition
Pn t ¼ 0ð Þ ¼ dn0; iteration of the above relation by N times, leads to

n
Fig. 14.4 One step Markov process in which the number n changes by unity with generation rate
gn and reduction rate rn
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Pn Nsð Þ ¼ 1
2

� �N

N!
N � n
2

� �
!

Nþ n
2

� �
!

 ��1

; ð14:60Þ

which is the well-known binomial distribution.
In the limit N ! 1 and n ! 1 with t ¼ Ns and x ¼ nl fixed as finite, where

l is the length of unit step, (14.60) becomes

P x; tð Þ ¼ 4pDtð Þ�1=2exp � x2

4Dt

 �
; ð14:61Þ

and D ¼ l2=2s is the diffusion constant. Alternatively, the solution (14.61) can be
directly obtained from the continuum limit of (14.58), the diffusion equation,
_Pn ¼ k @P2

n

� �
=@n2:

Poisson Process

The Poisson process is a particular case of the one-step processes (14.57), in which
rn ¼ 0; gn ¼ k; the number n increases by unity randomly with an average rate k
(Fig. 14.5). Such simple processes abound in enormous variety, ranging from
photons’ arrival at a retina to customers’ visit at a shop. It is governed by the master
equation

_Pn ¼ k Pn�1 � Pnð Þ: ð14:62Þ

In order to solve it, we introduce the generating function,

G s; tð Þ ¼ snh i ¼
X
n¼0

snPn tð Þ; ð14:63Þ

in terms of which (14.62) is written as

_G s; tð Þ ¼
X
n

sn _Pn tð Þ ¼
X
n

snk Pn�1 � Pnð Þ

¼ ks
X
n

sn�1Pn�1 tð Þ � k
X
n

snPn tð Þ

¼ k s� 1ð ÞG k; tð Þ;

ð14:64Þ

where we used the BC P�1 tð Þ ¼ 0: Using the initial condition Pn 0ð Þ ¼ dn0, or
G s; 0ð Þ ¼ 1 yields

G s; tð Þ ¼ exp kt s� 1ð Þf g; ð14:65Þ

which is expanded in powers of s and compared with (14.63), to give the PDF:
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Pn tð Þ ¼ e�kt ktð Þn
n!

: ð14:66Þ

This is called the Poisson distribution. Using the generating function one can
easily obtain

n tð Þh i ¼
X1
n¼0

nPn tð Þ ¼ @

@s
G s; tð Þjs¼1¼ kt ð14:67Þ

and

n tð Þ n tð Þ � 1ð Þh i ¼ @2G s; tð Þ
@s2

����
s¼1

¼ ktð Þ2; ð14:68Þ

from which the variance is given by

�Dn2 tð Þ ¼ n2 tð Þ	 
� n tð Þh i2¼ kt; ð14:69Þ

The interesting fact that the variance equals the mean can be a characteristic test for
the distribution to be a Poissonian.

The Poisson distribution of n given its average hni is thus expressed as

Pn ¼ e�hni

n!
hnin: ð14:70Þ

Figure 14.6 depicts the Poisson distribution with varying nh i ¼ kt: As time goes on
the probability distribution diffuses around the peak that also grows with time.
The probability of n ¼ 0 is simply P0 ¼ e�hni ¼ e�kt:

n
Fig. 14.5 Poisson process is a one step process in which the number only increases by unity

〈 〉 〈 〉 〈 〉
Fig. 14.6 Poisson distribution for various values of hni ¼ kt:
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The Poisson distribution is applied to rare events. For instance, when the light
falls on the retina of an eye, only a few of rhodopsin proteins in photoreceptor cells
can absorb the photons; the absorption of each photon is a rare event with a very
small probability, say, p. The probability that n photons out of N incoming photons
will be absorbed is the binomial distribution,

Pn ¼ N!
N � nð Þ!n! p

n 1� pð ÞN�n: ð14:71Þ

Considering that n � N, and p � 1; one can show that Pn reduces to the
Poissonian, (14.70).

P14.3 Verify the above statement.

The Poisson process can be used to model a wide variety of rare random events,
e.g., the sampling of bacteria in a given volume, the populations of plants and
animals in a restricted space, the number of victims of specific diseases, the number
of words misspelled in a text, etc.

P14.4 Use the Poisson process to model the number of car accidents at an
intersection. Given that the average accident rate is 1 per day, (a) what is the
probability that no accidents occur in an hour? (b) What is the probability that two
or more accidents occur in two hours?

Linear One-Step Master Equation

The transition rates rn; gn can be linear functions of n in a multitude of natural
processes. For example, decays and reactions, birth-death processes (in population
and cell dynamics) can be modeled by rn ¼ cn; gn ¼ bnþ k where c; b, and k are
the death, birth, and migration rates respectively. More broad classes of the linear
processes are chemical and biological reactions that can be very complex involving
many species of reactants and products. Pn tð Þ for these linear cases is solvable using
the generating function method.

Often it suffices to study several moments of Pn tð Þ: As the simplest case, we first
consider the decay process of certain molecules, in which gn ¼ 0 and rn ¼ cn: The
master equation then is

_Pn tð Þ ¼ c nþ 1ð ÞPnþ 1 tð Þ � cnPn tð Þ: ð14:72Þ

We consider the average number of the molecules, that is, the first moment hn tð Þi ¼P1
n¼0 nPn tð Þ; which is governed by
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X1
n¼0

n _Pn ¼ c
X1
n¼0

n nþ 1ð ÞPnþ 1 � c
X1
n¼0

n2Pn

¼ c
X1
n¼0

n� 1ð ÞnPn � c
X1
n¼0

n2Pn

¼ �c
X1
n¼0

nPn

ð14:73Þ

so that we recover the phenomenological equation

d nh i
dt

¼ �c nh i ð14:74Þ

with the solution

n tð Þh i ¼ n0 e�ct; ð14:75Þ

where n0 is the initial number.

P14.5 Find �Dn tð Þ ¼ n2 tð Þ	 
� n tð Þh i2
n o1=2

. What is its maximum and at what

time does it reach the maximum?

Reactions

Consider a simple reaction where a certain collection of cells with a number n is
annihilated with a rate cn and is created at a constant rate k: The phenomenological
equation for the number is obtained:

dhn tð Þi
dt

¼ �c n tð Þh iþ k; ð14:76Þ

the solution of which is

hn tð Þi ¼ ðn0 � n1Þe�ct þ n1; ð14:77Þ

where n1 ¼ k=c is the number of the cells at t ¼ 1; and n0 is the initial number.
To understand the fluctuation phenomenon that underlies this deterministic law

we study the corresponding master equation (rn ¼ cn; gn ¼ k)

@

@t
Pn tð Þ ¼ c nþ 1ð ÞPnþ 1 þ kPn�1 � cnþ kð ÞPn: ð14:78Þ
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Unlike the free diffusion and the Poisson process, for this case, the stationary
solution exists, when c nþ 1ð ÞPnþ 1 þ kPn�1 � cnþ kð ÞPn ¼ 0; or

nþ 1ð ÞPnþ 1 � n1Pn ¼ nPn � n1Pn�1: ð14:79Þ

Since both sides of the above equation must hold for all n, they must be equal to a
same constant, which can be shown to be zero to satisfy normalizability,P1

n¼0 Pn ¼ 1: Therefore, by iterations,

Pn ¼ n1
n

Pn�1 ¼ n21
n n� 1ð ÞPn�2 � � � ¼ nn1

n!
P0; ð14:80Þ

where P0 ¼ e�n1 from the normalization. The stationary solution (14.80) is then
identified as the Poisson distribution with the stationary mean n1;

Pn ¼ e�n1 n1n

n!
: ð14:81Þ

The equations for the moments at time t are obtained by multiplying nl (l ¼
integer) on both sides of (14.78) and summing up over n. For l ¼ 1; we recover the
phenomenological (14.76). For l ¼ 2,

d
dt

n tð Þ n tð Þ � 1f gh i ¼ 2k n tð Þh i � c n tð Þ n tð Þ � 1f gh i; ð14:82Þ

[Gardiner (1985)]. Via the Laplace transform we integrate the above equation for
n tð Þ n tð Þ � 1f gh i as

n tð Þ n tð Þ � 1f gh i ¼ 2k
Z t

0

ds e�c t�sð Þ n sð Þh iþ e�ctn0 n0 � 1f g ð14:83Þ

and use (14.76) to find the variance:

�Dn tð Þ� �2 ¼ ðn0e�ct þ n1Þ 1� e�ctð Þ: ð14:84Þ

The fluctuation �Dn tð Þ approaches n1=21 in the long time and is not entirely neg-
ligible compared with n1 unless this is very large. Figure 14.7 shows a simulation
of the stochastic dynamics of n tð Þ as a function of time, which indeed confirms the
analytical features studied above—steady growth of cell population with fluctua-
tions, depending on the number of the cells, which approaches the Poission
distribution.
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To solve for Pn tð Þ we consider the generating function

G s; tð Þ ¼
X
n¼0

snPn tð Þ ð14:85Þ

so that

@G s; tð Þ
@t

¼ k s� 1ð ÞG s; tð Þ � c s� 1ð Þ @G s; tð Þ
@s

: ð14:86Þ

The solution to the equation given the initial condition Pn 0ð Þ ¼ dnn0 is (Gardiner
1985)

G s; tð Þ ¼ exp
k
c

s� 1ð Þ 1� e�ctð Þ
 �

1þ s� 1ð Þe�ct½ �n0 : ð14:87Þ

This can be expanded in power of s to give Pn tð Þ; which has a complicated
expression. The stationary state for a long time can be read off (by taking t !
1 limitÞ from (14.87) as

G s;1ð Þ ¼ exp
k
c

s� 1ð Þ
 �

; ð14:88Þ

which tells us that the stationary solution Pn 1ð Þ is the Poisson distribution with the
mean nh i ¼ k=c ¼ n1: The first and second order derivatives of generating func-
tion with respect to s readily generate the first moment and variance, which we have
seen above.

Fig. 14.7 Stochastic trajectories that underlie the phenomenological reaction equation n tð Þh i ¼
1� e�ctð Þn1 (14.77 with n0 ¼ 0; solid smooth line). In a long time, n approaches the stationary
value n1, which is distributed in Poissonian. The fluctuations around the phenomenological law
are larger for smaller n1. (Courtesy of J. Sung’s lab, ChungAng University)
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P14.6 The bubbles, the locally melted domain in ds DNA, occur in the AT region of
N base-pairs. The number of bubbles with n base-pairs, bn, is governed by a master
equation _bn ¼ kþ bn�1 � kþ þ k�ð Þbn þ k�bnþ 1: What are the meaning of kþ and
k�? Solve the master equation and find the total number of the bubbles as a
function of time, given an initial condition bn 0ð Þ ¼ ae�b�n, where � is the base
pairing energy, and the boundary conditions are b0 tð Þ ¼ bN tð Þ ¼ 0 [Altan-Bonnet
and Libchaber (2003)].
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Chapter 15
Theory of Markov Processes
and the Fokker-Planck Equations

15.1 Fokker-Planck Equation (FPE)

The Fokker Planck equation (FPE), a special type of master equation, is a partial
differential equation for time evolution of the PDF that describes Markov processes.
A FPE is obtained from a Markov process when the two lowest moments of the
jump characteristic of the drift and the fluctuation are given. The diffusion
equation and the Smoluchowski equation for Brownian motion we studied fall into
this category.

15.1.1 Derivation

The FPE of a certain Markov process q is in the form

@P q; tð Þ
@t

¼ � @

@q
a1 qð Þþ @2

@q2
a2 qð Þ

� �
P q; tð Þ: ð15:1Þ

To derive it with defining formulae for a1 qð Þ and a2 qð Þ; we consider the CKE
(14.25) for the process of jumping from q� Dq at time t to q at time tþDt :

P q; tþDtð Þ ¼
Z

d Dqð ÞPðq; tþDtjq� Dq; tÞP q� Dq; tð Þ

¼
Z

d Dqð ÞPðqþDq � Dq; tþDtjq � Dq; tÞP q � Dq; t
� �

:

ð15:2Þ
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The jump steps Dt; Dq are large enough microscopically to assure the Markovian
approximation, yet small in the phenomenological scale of interest, so we expand
the LHS in Dt and the integrand in �Dq [underlined in (15.2)]:

P q; tð ÞþDt
@

@t
P q; tð Þ

¼
Z

d Dqð Þ
X1
l¼0

1
l!

�Dqð Þl @
l

@ql
fPðqþDq; tþDtjq; tÞP q; tð Þg:

ð15:3Þ

Since
R
d Dqf gPðqþDq; tþDtjq; tÞ ¼ 1, the first leading terms in LHS and RHS

cancel each other, leading to a partial differential equation

@

@t
P q; tð Þ ¼

X1
l¼1

�1ð Þl
l!

@l

@ql
½al qð ÞP q; tð Þ�; ð15:4Þ

where

al qð Þ ¼ 1
Dt

Z
dDq Dqð ÞlPðqþDq; tþDtjq; tÞ

¼ 1
Dt

hDqliq
ð15:5Þ

with Dt taken to be infinitesimally small. Equation (15.4) is called the
Kramers-Moyal expansion. hDqliq is the l th order moment of the jump Dq from the
given state q at time t.

Of our outmost interest is the FPE (15.1) that incorporates only two leading
orders in the expansion; the first and second moments of the jump a1 qð Þ ¼
Dqh iq=Dt; and a2 qð Þ ¼ h Dqð Þ2iq=Dt: The FPE’s particular merit is that these
moments can be drawn from phenomenology or experimental data, as follows.

The equation can be extended to the multidimensional or multicomponent cases,
q ¼ qif g ¼ q1; q2; q3; . . .ð Þ:

@P qif g; tð Þ
@t

¼ �
X
k

@

@qk
hDqki qif g

Dt
þ 1

2

X
k

X
l

@2

@qk@ql
DqkDql
� �

qif g

" #
P qi
� 	

; t

 �

:

ð15:6Þ

In this case hDqki qif g and hDqkDqli qif g are the moments and correlation with qif g
given. For illustration two-variable Brownian motion is worked out explicitly
below.
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15.1.2 The FPE for Brownian Motion

We show below how the FPE is obtained by the first and second moments a1 qð Þ
and a2 qð Þ, from the Langevin equations. The primary example is the Brownian
motion, where q is x, the one dimensional position of the Brownian particle. In the
presence of an external force F xð Þ; the overdamped Langevin equation reads

f _x ¼ F xð Þþ fR tð Þ ð15:7Þ

which is integrated over the time Dt:

Dx ¼ F xð Þ
f

Dtþ 1
f

ZtþDt

t

fR t0ð Þdt0: ð15:8Þ

Since fR tð Þh i ¼ 0; Dxh ix¼ F xð ÞDt=f, we have

Dxh ix
Dt

¼ F xð Þ
f

¼ a1 xð Þ; ð15:9Þ

and

Dx2
� �

x

Dt
¼ F xð ÞDtð Þ2

f2Dt
þ 1

f2Dt

ZtþDt

t

ZtþDt

t

fR t0ð ÞfR t00ð Þh idt0dt00

¼ O Dtð Þþ 1

f2Dt

ZtþDt

t

ZtþDt

t

2fkBTdðt0 � t00Þdt0dt00;
ð15:10Þ

where the first term, being in the first order in Dt, is negligible, and the second,
upon integration, with the Einstein relation D ¼ kBT=f; yields

Dx2
� �

x

Dt
¼ 2D ¼ a2 xð Þ: ð15:11Þ

Substituting a1 and a2 into (15.1)

@P x; tð Þ
@t

¼ � @

@x
F xð Þ
f

P x; tð Þþ @2

@x2
DP x; tð Þ

¼ D
@

@x
b
@U xð Þ
@x

þ @

@x

� 
P x; tð Þ;

ð15:12Þ

Then the FPE that results is just the Smoluchowski equation we studied.
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Now let us study the case of two-component variable, q ¼ q1; q2ð Þ ¼ x; vð Þ;
whose Markovian equations of motion are

M
dv
dt

¼ �fvþF xð Þþ fR tð Þ;
dx
dt

¼ v:

Integrating the above equations over Dt and one finds that the first and second order
moments with x; v given simultaneously are

Dvh ix;v
Dt

¼ � f
M

vþ F xð Þ
M

; ð15:13Þ

Dxh ix;v
Dt

¼ v; ð15:14Þ

Dx2
� �

x;v

Dt
¼ v2Dt�O Dtð Þ; ð15:15Þ

DxDvh ix;v
Dt

¼ � f
M

vþF xð Þ
� �

vDt�O Dtð Þ; ð15:16Þ

Dv2
� �

x;v

Dt
¼ 2fkBT

M
ð15:17Þ

Neglecting the terms of the linear order in Dt; O Dtð Þ; in the above, and substituting
the results into (15.6) with two variables q1 ¼ x; q2 ¼ v yields the FPE:

@P x; v; tð Þ
@t

þ v
@P
@x

þ F xð Þ
M

@P
@v

¼ f
M

@

@v
vPþ kBT

M
@2P
@v2

� �
; ð15:18Þ

which is expressed in three dimension:

@P r; v; tð Þ
@t

þ v � rPþ F rð Þ
M

� rvP ¼ f
M

rv � vþ kBT
M

r2
v

� �
P: ð15:19Þ

This equation, first derived by Kramers, describes the evolution of the Brownian
particle in its phase space.

P15.1 Consider a two-variable Markov process written as the coupled Langevin
equations:
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C1
dx1
dt

¼ �k x1 � x2ð Þ � @U x1ð Þ
@x1

þ n1 tð Þ

C2
dx2
dt

¼ �k x2 � x1ð Þþ n2 tð Þ;

where ni tð Þ are Gaussian and white noises satisfying

ni tð Þnj 0ð Þ� � ¼ 2CikBTd tð Þdij:

Construct the corresponding Fokker-Planck equation for P x1; x2; tð Þ. Find its sta-
tionary solution, Psðx2; x1Þ; and associated probability densities, Ps x1ð Þ;Ps x2=x1ð Þ:

15.2 The Langevin and Fokker-Planck Equations
from Phenomenology and Effective Hamiltonian

The examples shown above demonstrate how one can construct the FPE for
Brownian particle motion from the two lowest order moments of jump given by the
Langevin equation. Then we pose a question: how can one construct the Langevin/
Fokker-Planck dynamics from phenomenology and data, and the associated effec-
tive Hamiltonian or free energy?

Suppose that we have information of a certain stochastic variable q tð Þ; from
which a model Langevin equation is constricted as

_q ¼ U qð ÞþR q; tð Þ; ð15:20Þ

where R q; tð Þ is an underlying noise that, first of all, satisfies R q; tð Þh i ¼ 0: It also
varies much faster than q tð Þ. We may approximate it as a white and Gaussian noise
with the strength D qð Þ:

R q; tð ÞR q; t0ð Þh i ¼ 2D qð Þd t � t0ð Þ: ð15:21Þ

From the Langevin equatuion for q tð Þ (15.20) with this noise, the two moments of
the jump during the time Dt are given as

Dqh iq=Dt ¼ U qð Þ; ð15:22Þ

Dqð Þ2
D E

q
=Dt ¼ 2D qð Þ: ð15:23Þ
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For a Brownian particle with q ¼ x, U qð Þ is the drift velocity, D qð Þ is the diffu-
sivity. U qð Þ and D qð Þ respectively characterize the external driving and the
internal fluctuations, which can be derived from the phenomenology and data.
Substituting these formulae into (15.1) yields the FPE:

@P q; tð Þ
@t

¼ � @

@q
U qð Þþ @2

@q2
D qð Þ

� �
P q; tð Þ: ð15:24Þ

The FPE can be recast as a continuity equation,

@P q; tð Þ
@t

þ @J q; tð Þ
@q

¼ 0; ð15:25Þ

where

J q; tð Þ ¼ U qð ÞP q; tð Þ � @

@q
D qð ÞP q; tð Þ½ � ð15:26Þ

is the probability current. When J is uniform, @J q; tð Þ=@q ¼ 0; the system attains a
stationary state: equilibrium state if J is zero and steady state if it is nonzero
constant. The equilibrium distribution, if it exists, is obtained by integrating (15.26)
with J ¼ 0 as

P qð Þ / D�1 qð Þ exp
Zq

dq0
U q0ð Þ
D q0ð Þ

2
4

3
5: ð15:27Þ

Thus, by finding this distribution by experimental data, one may also identify the
drift U qð Þ and noise strength D qð Þ. By putting the distribution to be of the
Boltzmann type P qð Þ� exp �U qð Þ½ �; U qð Þ is identified as

U qð Þ ¼ ln D qð Þ �
Zq

dq0
U q0ð Þ
D q0ð Þ ð15:28Þ

apart from a certain constant. U qð Þ corresponds to the dimensionless free energy of
the stochastic process.

From now on we consider the case where D qð Þ is a constant D so that

� @U qð Þ
@q

¼ U qð Þ
D : ð15:29Þ

This means that the drift is driven by the gradient of a potential or free energy. For a
Brownian particle with q ¼ x, the Fokker-Planck equation is the Smoluchowski
equation with the potential U xð Þ ¼ kBTU qð Þ and diffusivity D ¼ D. For the
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stochastic dynamics for a degree of freedom Q, representative of a certain meso-
scopic state in a complex systems, e.g., conformation of biopolymers, U Qð Þ ¼
bF Qð Þ where F Qð Þ is the free energy function or effective Hamiltonian associated
with the Q, which was discussed in Chap. 5. The Langevin equation for this case
can be written as,

_Q ¼ �bD @

@Q
F Qð ÞþR Q; tð Þ ð15:30Þ

or

f _Q ¼ � @

@Q
F Qð Þþ fR Q; tð Þ; ð15:31Þ

where f ¼ kBT=D is the effective friction coefficient, and fR Q; tð Þ ¼ fR Q; tð Þ ¼
R Q; tð Þ=bD, is a Gaussian and white noise satisfying

fR Q; tð ÞfR Q; t0ð Þh i ¼ 2kBTfd t � t0ð Þ: ð15:32Þ

P15.2 In nature there are a number of events with the distributions following
power-laws. Examples are distributions of income (Paretos law) and certain cell
sizes, the percentage of authors publishing n papers (Lotka’s law), and the fre-
quency of the appearance of English words (Zipf’s law). As a model of the power
law distributions, consider a stochastic differential equation

d
dt
n tð Þ ¼ �cn tð Þþ n tð Þn tð Þ;

where n tð Þ is a white and Gaussian noise of strength D :

n tð Þn 0ð Þh i ¼ 2Dd t � t0ð Þ:

Construct the FPE and find the stationary solution in which J = 0.

15.2.1 FPE from One-Step Master Equation

The master equation even with linear one step coefficients rn and gn are not easy to
solve analytically as we have seen; furthermore they are in general nonlinear in many
situations. For the case in which rn and gn vary slowlywith n, so they can be expanded
in n to the second order, we convert the master equation to a FPE. This is a great
advantage because of the analytical facility of FPE, which will be further studied in
next chapter. Treating n as continuous, the master equation (14.78), is rewritten as,
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@

@t
P n; tð Þ ¼ r nþ 1ð ÞP nþ 1; tð Þþ g n� 1ð ÞP n� 1; tð Þ

� g nð Þþ r nð Þð ÞP n; tð Þ:
ð15:33Þ

Expanding the function f n� 1ð Þ as f nð Þ � f 0 nð Þþ 1
2 f

00 nð Þ the above can be written
as a FPE:

@

@t
P n; tð Þ ¼ � @

@n
g nð Þ � r nð Þ½ �P n; tð Þ

þ 1
2

@

@n2
g nð Þþ r nð Þ½ �P n; tð Þ:

ð15:34Þ

The stationary solution Ps nð Þ satisfies � g� rð ÞPs ¼ @ gþ rð ÞPsð Þ=2@n, which
can be integrated to

Ps nð Þ ¼ Ce�U nð Þ; ð15:35Þ

where

U nð Þ ¼ ln g nð Þþ r nð Þf g � 2
Zn

dn0
g n0ð Þ � r n0ð Þ
g n0ð Þ þ r n0ð Þ : ð15:36Þ

U nð Þ can be called the free energy of the process. The phenomenological equation
associated with the FPE is

d nh i
dt

¼ � r nð Þh iþ g nð Þh i: ð15:37Þ

Interesting enough, the process is an overdamped dynamics under a driving force
and a fluctuation given by g nð Þ � r nð Þ; g nð Þþ r nð Þ; respectively.

The stationary value of ns is determined by the relation

r nsð Þ ¼ g nsð Þ: ð15:38Þ

For a small fluctuation x around the stationary value, x ¼ n� ns; (15.34) reads:

@

@t
P x; tð Þ ¼ r0 nsð Þ � g0 nsð Þ @

@x
xP x; tð Þþ 1

2

� �
g nsð Þþ r nsð Þ

� �
@

@x2
P x; tð Þ: ð15:39Þ

Provided that r0 nsð Þ � g0 nsð Þ[ 0, this is FPE for an overdamped harmonic
Brownian motion (Ornstein-Uhlenbeck process) around a stationary state, whose
solution was given in the last chapter.
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P15.3 What is the Langevin equation corresponding to (15.39). Explicitly find the

solution and �Dn tð Þ
 �2
:

15.3 Solutions of Fokker-Planck Equations, Transition
Probabilities and Correlation Functions

The Fokker Planck equation (FPE) is most appropriate for stochastic description for
a Markov process q tð Þ; if the first and second moments U qð Þ and D qð Þ of the unit
jump can be identified. As we saw, the FPE can be solved exactly for the case of
linear systems, where the drift is U qð Þ ¼ aqþ b and the noise strength is constant,
D qð Þ ¼ D. Because of its wide applicability, in this chapter we deal with the
analytical methods of solving the FPE for more general cases of the drift, focusing
on the eigenfunction expansion method, and use the method to find the transition
probability and time correlation functions of the process. This section is quite
mathematical and formal; for impatient readers, most of the subsections except the
last one can be skipped.

15.3.1 Operators Associated with FPE

The Fokker-Planck Equation (FPE) is written as for the PDF P q; tð Þ

@P q; tð Þ
@t

¼ LFPP q; tð Þ ¼ � @

@q
J q; tð Þ; ð15:40Þ

where

LFP � � @

@q
U qð Þþ @2

@q2
D qð Þ ð15:41Þ

and

J q; tð Þ ¼ U qð ÞP q; tð Þ � @

@q
D qð ÞP q; tð Þ ð15:42Þ

are the Fokker-Planck operator and the probability current respectively. The sta-
tionary solution in which J ¼ 0 is Peq qð Þ� exp �U qð Þ½ �. U qð Þ is given by (15.28),
from which, we can derive
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U qð Þ ¼ eU
@

@q
D qð Þe�U
� 	

; ð15:43Þ

leading to the alternative expressions of J and LFP in terms of U:

J q; tð Þ ¼ �D qð Þe�U qð Þ @

@q
eU qð ÞP q; tð Þ; ð15:44Þ

LFP ¼ @

@q
D qð Þe�U qð Þ @

@q
eU qð Þ: ð15:45Þ

P15.4 Derive (15.44) and (15.45).

The backward FP operator LFP
y is defined as below:Z

p1 qð ÞLFP qð Þp2 qð Þdq ¼
Z

LFP
yp1

� �
p2dq ð15:46Þ

for two square-integrable functions p1 qð Þ and p2 qð Þ. Then by integrating by parts,
one can show:

LFP
y ¼ eU

@

@q
D qð Þe�U @

@q
¼ U qð Þ @

@q
þD qð Þ @2

@q2
: ð15:47Þ

The operator LFP is not Hermitian (self-adjoint) due to the inequality in the relation
below: Z

p1 qð ÞLFPp2 qð Þdq ¼
Z

LFP
yp1

� �
p2dq 6¼

Z
p2LFPp1dq: ð15:48Þ

As can be proved, the operator Ls � eU=2LFPe�U=2, however, is a Hermitian, and is
expressed as.

Ls ¼ eU qð Þ=2 @

@q
D qð Þe�U qð Þ @

@q
eU qð Þ=2: ð15:49Þ

15.3.2 Eigenfunction Method

One can mathematically transform the FPE with D qð Þ to that with constant D
(Risken 1989). Hereafter in this section we consider the case of constant D without
loss of generality. The FP operator and current are then written as
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LFP � � @

@q
U qð ÞþD @2

@q2
¼ D @

@q
e�U @

@q
eU; ð15:50Þ

J q; tð Þ ¼ U qð ÞP q; tð Þ � D @P q; tð Þ
@q

¼ �De�U qð Þ @

@q
eU qð ÞP q; tð Þ; ð15:51Þ

where U qð Þ ¼ �D@U qð Þ=@q.
The Hermitian operator Ls (15.49) can be expressed as

Ls ¼ DeU=2
@

@q
e�U @

@q
eU=2 ¼ D @2

@q2
� Vs qð Þ ð15:52Þ

with

Vs qð Þ ¼ D 1
4

@U
@q

� 2

� 1
2
@2U
@q2

" #
¼ DeU=2

@2

@q2
e�U=2: ð15:53Þ

A new function

W q; tð Þ ¼ eU=2P q; tð Þ ð15:54Þ

is shown to satisfy

@W
@t

¼ LsW: ð15:55Þ

We note that �Ls looks like the Hamiltonian with a ‘potential’Vs qð Þ in the
Schrödinger equation. In finding the solution of FPE, thus, we can exploit a variety
of the familiar methods of solving the Schrödinger equation.

Let wn be eigenfunctions of the �Ls with the eigenvalues kn,

Lswn ¼ �knwn ð15:56Þ

that form a complete, orthonormal basis. In order to explicitly express the eigen-
functions, we express Ls in an alternative form:

Ls ¼ �Daya; ð15:57Þ

where

a ¼ e�U=2 @

@q
eU=2 ð15:58Þ
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ay ¼ �eU=2
@

@q
e�U=2 ð15:59Þ

are adjoints of each other. Using these operators, we can see that the eigenvalue of
Ls is given by

kn ¼ �
Z

wnLswndq ¼ D
Z

wna
yawndq ¼ D

Z
awnð Þ2dq: ð15:60Þ

The last equality above tells us that the kn can never be negative.
Now from the relation

Lswn ¼ eU=2LFPe
�U=2wn ¼ �knwn; ð15:61Þ

the eigenfunctions un of the FP operator can be identified as

LFPun ¼ �knun; ð15:62Þ

where

un ¼ e�U=2wn ð15:63Þ

has the eigenvalue �kn. The eigenfunction coressponding to stationary solution of
the FPE, LFPun ¼ _un ¼ 0 is that of the ground state

u0 ¼ e�U=2w0 ¼ A1=2e�U; ð15:64Þ

with zero eigenvalue, k0 ¼ 0; where A1=2 is a normalization constant. It follows that

w0 qð Þ ¼ A1=2e�U=2: ð15:65Þ

The above result is also obtained from (15.60).

aw0 qð Þ ¼ e�U=2 @

@q
eU=2w0 qð Þ ¼ 0; ð15:66Þ

The solution of the FPE with U can be readily given from its equivalent
Schrödinger-like equation with Vs, for which the methods of the exact and
approximate solutions are well established. Equation (15.64), rewritten as

U qð Þ ¼ �2 ln w0 qð Þþ ln A ð15:67Þ

suggests that once the w0 qð Þ is prescribed for the Schrödinger-like equation one can
model U qð Þ, with which the FPE is to be solved. For illustration, consider an
infinite square-well potential Fig. 15.1 (a),
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Vs qð Þ ¼ �V0 for 0\q\L;

¼ 1 otherwise:
ð15:68Þ

The eigenfunctions and eigenvalues of the Schrödinger-like equation Lswn ¼
� D@2ð Þ=@q2 þVs qð Þ� 	

wn ¼ knwn are

wn qð Þ ¼ 2=Lð Þ1=2sinf nþ 1ð Þpq=Lg ð15:69Þ

and

kn ¼ D nþ 1ð Þp=Lð Þ2�V0 ¼ Dn nþ 2ð Þp=Lð Þ2 ð15:70Þ

respectively. V0 ¼ D p=Lð Þ2 is determined to render the eigenvalue k0 ¼ 0:
Equation (15.67) leads to the FP potential

U qð Þ ¼ �2 ln sinðpq=LÞ ð15:71Þ

apart from a constant. This nonharmonic potential, depicted by Fig. 15.1b, provides
an exactly solvable monostable, nonlinear (force) model for the FPE. The
eigen-functions and eigenvalues of the FP operator then are

un qð Þ ¼ e�U=2wn ¼ 2=Lð Þ1=2sinðpq=LÞ sin nþ 1ð Þpq=Lf g: ð15:72Þ

The ground state eigen-function

u0 qð Þ ¼ 2=Lð Þ1=2sin2 pq=Lð Þ ð15:73Þ

yields the stationary distribution Peq qð Þ� e�U qð Þ �w2
0 qð Þ that the Brownian particle

will attain in the potential U qð Þ (Fig. 15.1b).
In Chap. 10, we already have encountered the Schrödinger-like equation, called

the Edwards equation, for the spatial distribution of the terminal (Nth) segment in a
flexible polymer. The analogy described above tells us that as the N elapses, the

Fig. 15.1 a The infinite
square-well potential Vs qð Þ
for the Schrödinger problem.
The dashed line indicates its
ground state, zero eigen-
value. b The corresponding
potential U qð Þ for the FP
problem
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segment of a long polymer-chain confined within an infinite square-well is dis-
tributed as if it is a Brownian particle running in time N under U qð Þ.
P15.5 Find the eigenfunctions and eigenvalues of FPE for n ¼ 0 and 1 for a
Brownian paricle harmonically bound with U ¼ 1

2Xq
2:

15.3.3 The Transition Probability

The key information of the Markov process lies in the transition probabilty, which
is the fundamental solution to FPE with P q; 0jq0ð Þ ¼ d q� q0ð Þ. It is obtained by
integrating the Eq. (15.40):

P q; tjq0ð Þ ¼ etLFPP q; 0jq0ð Þ ¼ etLFPd q� q0ð Þ: ð15:74Þ

With the delta-function expanded in eigenfunctions of LFP, we have:

d q� q0ð Þ ¼
X
n

wn qð Þwn q0ð Þ

¼ exp
1
2

U qð ÞþU q0ð Þf g
� �X

n

un qð Þun q0ð Þ

¼ eU qð ÞX
n

un qð Þun q0ð Þ

¼ eU q0ð ÞX
n

un qð Þun q0ð Þ;

ð15:75Þ

where the relation (15.63) is used. Then (15.74) is expressed as

P q; tjq0ð Þ ¼ eU q0ð ÞX
n

etLFP qð Þun qð Þun q0ð Þ ¼ eU q0ð ÞX
n

e�kntun qð Þun q0ð Þ

¼ exp
1
2

U q0ð Þ � U qð Þf g
� �X

n

e�kntwn qð Þwn q0ð Þ

¼
X
n

w0 qð Þwn qð Þwn q0ð Þ
w0 q0ð Þ e

�knt:

ð15:76Þ

Equation (15.76) evidently shows that as time goes on, all the excited states (n� 1)
that encompass the initial states decay, giving way to the ground state with zero
eigenvalue, which survives to bring the system eventually to the equilibrium sate:

304 15 Theory of Markov Processes and the Fokker-Planck Equations



P q; tjq0ð Þ ! w2
0 qð Þ ¼ Ae�U qð Þ ¼ Peq qð Þ: ð15:77Þ

If the stationary state does not exist, the ground state would have a nonzero
eigenvalue, the probability will decay to zero in a long time. Whether the state
remains to be stationary or not depends on the BC imposed in addition to the natural
BC allowed by U qð Þ. This will be discussed later.

15.3.4 Time-Correlation Function

We study the stationary time correlation function formally defined by (14.7)
rewritten as

hq tð Þq 0ð Þis ¼
Z

dq
Z

dq0 qq0 P qtjq0ð ÞPs q0ð Þ; ð15:78Þ

where Ps qð Þ is the stationary state distribution, which, for equilibrium, is
Peq qð Þ ¼ w0 qð Þ2. Substituting this and (15.76) to the above, we find that

q tð Þq 0ð Þh ieq ¼
X
n¼0

e�knt
Z

dqqw0 qð Þwn qð Þ
� �2

¼
X
n¼0

e�knt 0 qj jnh i2;
ð15:79Þ

where we introduced the bracket notation, m qj jnh i � R dqwm qð Þqwn qð Þ. In order to
appreciate the meaning of above, we first consider the short and long time limits:

(i) t ! 0

hq 0ð Þq 0ð Þieq ¼
X
n

h0 qj jnihn qj j0i

¼ h0 q2
�� ��0i ¼ hq2ieq;

ð15:80Þ

where the completeness of the eigen-basis
P
n
ni nhj j ¼ 1 is used.

(ii) t ! 1

q 1ð Þq 0ð Þh ieq¼ 0 qj j0h i2¼ qh i2eq: ð15:81Þ
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Then, the time correlation function is finally expressed as

Dq tð ÞDq 0ð Þh ieq ¼ q tð Þq 0ð Þh ieq� qh i2eq
¼
X
n¼1

e�knt 0 qj jnh i2

¼ e�k1t 0 qj j1h i2 þ e�k2t 0 qj j2h i2 þ � � � ;

ð15:82Þ

which shows how the correlation decays to zero from the maximum (static) value at
t ¼ 0.

P15.6 Calculate the correlation function (15.79) including first two terms above
For U ¼ 1

2Xq
2. Compare this in a long time with the exact result shown earlier.

15.3.5 The Boundary Conditions

Because the FPE is a second order partial differential equation, its solutions requires
two boundary conditions (BC). In most of cases, there are two types, absorbing BC,
PðqA; tÞ ¼ 0 and reflecting BC, J qR; tð Þ ¼ 0. At the absorbing boundary q ¼ qA the
probability is annihilated, whereas at the reflecting boundary q ¼ qR the probability
is conserved.

For an example of the foregoing formulation along with boundary conditions,
consider a B motion in a semi-harmonic potential U ¼ 1

2 kx
2 with an infinite wall at

x ¼ 0 (Fig. 15.2a). The FPE is

@P x; tð Þ
@t

¼ LFPP x; tð Þ

¼ D @

@x
b
@U
@x

þ @

@x

� 
P x; tð Þ

¼ D @

@x
bkxþ @

@x

� 
P x; tð Þ:

ð15:83Þ

Fig. 15.2 a The potential
U xð Þ for a FP problem.
b The potential Vs xð Þ for the
related Schrödinger problem
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The associated Schrödinger-type equation is

@

@t
W x; tð Þ ¼ LsW x; tð Þ ¼ �D @

@x2
þVs xð Þ

� �
W x; tð Þ ð15:84Þ

with

Vs xð Þ ¼ D 1
4

@ bUð Þ
@x

� 2

� 1
2
@2bU
@x2

" #

¼ D 1
4
b2k2x2 � 1

2
bk

� �

¼ c
c
4D x2 � 1

2

� �
;

ð15:85Þ

where c ¼ Dbk. The transformed potential Vs is also harmonic (Fig. 15.2b), so that
the eigenfunctions of the Schrödinger-type equation are identified as

w0 nð Þ ¼ c
2pD
� �1=4

e�n2=2 ð15:86Þ

wn nð Þ ¼ c
2pD
� �1=4 1ffiffiffiffiffiffiffiffiffi

2nn!
p Hn nð Þe�n2=2; ð15:87Þ

where Hn nð Þ is the Hermite polynomial with argument n ¼ c=2Dð Þ1=2q.
Now we note the presence of reflecting BC at x ¼ 1; J ¼ � bkxþ @=@xð Þ

P x; tð Þ ¼ � bkxþ @=@xð Þexp �bU xð Þ=2ð ÞW x; tð Þ ¼ 0; which is given by the sys-
tem. The other BC is the imposed one at x ¼ 0: If the imposed BC is reflecting one,
@ P x; tð Þ=@x or @W x; tð Þ=@x are zero at x ¼ 0, so that only even integers n (sym-
metric eigenfunctions) including n ¼ 0 are included in the transition probability and
time correlation. In the long times n ¼ 0 state with zero eigenvalue persists giving
stationary distribution Peq xð Þ ¼ w0 xð Þ2: If the absorbing boundary condition,

P x; tð Þ ¼ 0 or W x; tð Þ ¼ ebkx
2=4P x; tð Þ ¼ 0 at x ¼ 0 is adopted, only odd integers n

(antisymmetric eigenfunction) are allowed, so the probability that the B particle
survives in the well decays zero at long times.

P15.7 Find the transition probability P qtjq0ð Þ of a Brownian particle moving
under the semi-harmonic potential above.

15.3.6 The Symmetric Double Well Model

The Kramers-type, symmetric and bistable model (Fig. 15.3) for U qð Þ in the FP
operator (15.45) is a typical model to describe two-state transitions represented by
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two minima and an activation barrier between them, as will be studied closely in
next chapter. Induced by a noise, the dynamical state q tð Þ can hop from one well to
the other. We will consider the case of a constant D qð Þ ¼ D: The correlation
function Dq tð ÞDq 0ð Þh i; (15.82), is dominated by the eigenstate u1 qð Þ with the
smallest nonzeo eigenvalue k1 of the FP operator. In the following, we evaluate the
eigenvalue and then the correlation function.

The eigenvalue equation

LFPu1 ¼ D @

@q
e�U @

@q
eUu1 ¼ �k1u1 ð15:88Þ

is equal to �@J=@q, where J, the current associated with the state u1, is obtained as

J qð Þ ¼ �De�U qð Þ @

@q
eU qð Þu1 qð Þ ¼

Zq
�1

dq0k1u1 q0ð Þ; ð15:89Þ

using the reflecting BC J �1ð Þ ¼ 0. Rearranging the above as

@

@q
eU qð Þu1 qð Þ ¼ � k1

D eU qð Þ
Z q

�1
dq0u1 q0ð Þ; ð15:90Þ

which is further integrated from �1 to q to give

u1 qð Þ ¼ e�U qð Þ eU �1ð Þu1 �1ð Þ
h

� k1
D
Z q

�1
dq00eU q00ð Þ

Z q00

�1
dq0u1 q0ð Þ

i
:

ð15:91Þ

We consider the case with k1=D 	 1, which is consistent with the case of a high
activation barrier we will study. Thus we can use the zeroth order approximation to
(15.91)

u1 qð Þ� e�U qð ÞeU �1ð Þu1 �1ð Þ ð15:92Þ

Fig. 15.3 Doublewell poten-
tial for the FP problem. The qm
and qM are the values of q
where the potential is at min-
imum Umð Þ and maximum
Umð Þ. The barrier height DU
is much larger than 1
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to find its first order approximation by substituting it into the second term in
(15.91):

u1 qð Þ 
 e�U qð ÞeU �1ð Þu1 �1ð Þ 1� k1
D
Z q

�1
dq00eU q00ð Þ

Z q00

�1
dq0e�U q0ð Þ

" #
: ð15:93Þ

Due to the symmetry of the potential, the first excited state u1 qð Þ is an odd function
of q : u1 q ¼ 0ð Þ ¼ 0: Henceforth we have

k1 
 D
Z 0

�1
dq00eU q00ð Þ

Z q00

�1
dq0e�U q0ð Þ

" #�1

: ð15:94Þ

Both of the eigenfunction and eigenvalue are expressed by the integrals above,
which in general are hard to calculate in useful analytical forms. For the barrier
height DU ¼ UM � Um much larger than unity, one can evaluate the integrals in
(15.94) analytically, by expanding each integrand about its peak, which is very
sharp: for the left integrand, by expanding U about its central maximum point
ð0;UMÞ, U q00ð Þ ¼ UM � X2

Mq
002=2þ � � � ; and for the right integrand about the left

minimum point ð�qm;UmÞ, U q0ð Þ ¼ Um þX2
m q0 þ qmð Þ2=2þ � � � : For the right

integral we can make an approximation,

Z q00

�1
dq0e�U q0ð Þ ffi

Z q00

�1
dq0 exp �Um½ � exp � 1

2
X2

m q0 þ qmð Þ2
� �

ffi exp �Um½ �
Z 1

�1
dq exp � 1

2
X2

mq
2

� �
¼ exp �Um½ � 2p

X2
m

 !1=2

:

ð15:95Þ

The left integral then is

Z 0

�1
dq00eU q00ð Þ ffi

Z 0

�1
dq00 exp UM½ � exp � 1

2
X2

Mq
002

� �

¼ 1
2
exp UM½ � 2p

X2
M

 !1=2 ð15:96Þ

Then (15.94) yields the eigenvalue

k1 
 D
p
XMXme

�DU; ð15:97Þ
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which is consistent with our initial assumption of small k1=D. We shall see in next
chapter that k1 is twice the mean rate of the dynamical state crossing over the
barrier. For a Brownian particle subject to a friction f and energy barrier DU; we
have

k1 
 1
pf

xmxM e�
DU
kBT ð15:98Þ

where xm; xM are the curvature parameters of the potential at the minimum and
maximum, x2

m ¼ U00 xmð Þ; x2
M ¼ U00 xMð Þ.

The time correlation function (15.82) is then given by

Dq tð ÞDq 0ð Þh i 
 h1 qj j0i2e�k1t: ð15:99Þ

As one may check, the next eigenstate u2 is widely separated from u1 with its
eigenvalue k2 � k1 
 0; so its contribution to the correlation function is negligible
over the correlation time k�1

1 ; which is the longest time scale. A better alternative to
the above approximation is

Dq tð ÞDq 0ð Þh i 
 Dqð Þ2
D E

e�k1t; ð15:100Þ

which is exact at t ¼ 0. The above expression, typical of two state transitions, is
similar to the correlation function of the dichotomic process (14.46), but here the
information on the relaxation time is given by the activation barrier (15.97).

P15.8 For the bistable potential in FPE shown in the figure below, calculate k1 by
solving the corresponding Schrödinger equation. Use the variational method.
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Chapter 16
The Mean-First Passage Times
and Barrier Crossing Rates

16.1 First Passage Time and Applications

The first passage time (FPT) is the duration that a stochastic variable takes to
approach a given threshold for the first time: for example, the duration for a
random walker shown in Fig. 16.1a to reach the cliff for the first time. The first
passage time problem is important in an enormous variety of situations, to name a
few, transport, reaction and targeting processes. In particular, it is of paramount
importance in chemistry and biology where the rates of chemical reactions or
conformational transitions are basic.

(a) (b)

Fig. 16.1 a Random walk in the region X between a reflecting qRð Þ and a absorbing ðqAÞ
boundary, b a noise-induced escape of a dynamical state from the region X. q0 is the initial state
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16.1.1 The Distribution and Mean of Passage Time

Suppose that a certain stochastic variable q, given its initial value q0; evolves in
time, governed by the equation, @Pðq; tjq0Þ=@t ¼ L qð ÞP q; tjq0ð Þ where L is the
evolution operator for the probability. We consider that whenever a stochastic
trajectory q tð Þ crosses the threshold qA, it is removed, which is implemented by
imposing an absorbing BC, PðqA;; tÞ ¼ 0. To find the mean first passage time
(MFPT), we first seek the probability that the random walker survives at a time t, in
a region X bounded by the absorbing boundary qA:

} t; q0ð Þ ¼
Z
X

dq P q; tjq0ð Þ: ð16:1Þ

Note that � @} t; q0ð Þ=@tf gdt ¼ } t; q0ð Þ � } tþ dt; q0ð Þ is the probability that the
random walker survives during dt (the probability of the initial point q0 that has not
escaped the region before the time t but has escaped during the time interval dt).
Consequently

W t; q0ð Þ ¼ � d
dt
} t; q0ð Þ ð16:2Þ

is the FPT distribution or density. Then the MFPT of the process given the
initial value q0 is

s q0ð Þ ¼
Z1

0

dt t � d} t; q0ð Þ
dt

� �
¼

Z1

0

} t; q0ð Þdt; ð16:3Þ

where an integration is performed by parts assuming } t; q0ð Þ tends to be zero faster
than t�1 as t goes to infinity. Such fast decay can be attained due to the absorbing
BC PðqA;; tÞ ¼ 0 on a boundary of the region X. Then, (16.3) is given by:

s q0ð Þ ¼
Z1

0

dt
Z
X

dq P q; tjq0ð Þ: ð16:4Þ

P16.1 Consider that a ligand diffuses in a half space x[ 0 until it is absorbed on
the y; zð Þ plane located at x ¼ 0: Find the lifetime distribution of the ligand initially
positioned at x0:

P16.2 Find the distribution and mean of the transition time from state 0 to 1 in the
dichotomic process given by (14.38), (14.39).
(Sol) By considering the absorbing boundary at n ¼ 1;P 1; tð Þ ¼ 0, (14.38) be-
comes @P 0; tð Þ=@t ¼ �a0P 0; tð Þ; the solution of which with the initial condition
P 0; 0ð Þ ¼ 1 is P 0; tj0ð Þ ¼ e�a0t, which is } t; 0ð Þ, the mean survival probability.
The FPT distribution is � d} t; 0ð Þð Þ=dt ¼ a0e�a0t and MFPT is s 0ð Þ ¼ R1

0 }

t; 0ð Þdt ¼ a�1
0 ¼ s0. Because the transition occurs instantaneously the MFT is the

mean residence time in the state 0.
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In case the transition probability P q; tjq0ð Þ is not obtainable, we can have more
direct access to MFPT. We first rewrite (16.4) as

s q0ð Þ ¼
Z1

0

dt
Z
X

dq etL qð Þd q� q0ð Þ; ð16:5Þ

On both sides of the above, we apply the operator Lþ, the adjoint of L; and
perform transposition and integration in the RHS:

Lþ q0ð Þs q0ð Þ ¼
Z1

0

dt
Z
X

dq etL qð ÞLþ q0ð Þd q� q0ð Þ

¼
Z1

0

dt
Z
X

dq L qð ÞetL qð Þd q� q0ð Þ ¼
Z1

0

dt
Z
X

dq
@P qt; q0ð Þ

@t

¼
Z
X

dq P q;1jq0ð Þ � d q� q0ð Þ½ �

ð16:6Þ

Because P q;1jq0ð Þ ¼ 0, the above equation leads to a differential equation for
the MFPT s q0ð Þ:

Lþ q0ð Þs q0ð Þ ¼ �1: ð16:7Þ

The above formula tells us that theMFPT is given directly from the knowledge of the
operator Lþ. This can be applied to any Markov processes with an absorbing
boundary, including the cases with the discrete master equations for which Lþ are
appropriately given (Reichl 2016). Below we will treat the Fokker-Planck dynamics
with the evolution operator, L ¼ LFP with its adjoint Lþ

FP, so that (16.7) is written as
either

eU q0ð Þ @

@q0
D q0ð Þe�U q0ð Þ @

@q0
s q0ð Þ ¼ �1 ð16:8Þ

or

U q0ð Þ @

@q0
þD q0ð Þ @2

@q20

� �
s q0ð Þ ¼ �1: ð16:9Þ

In solving the second order differential equation as above, we need two kinds of
boundary conditions for s qð Þ: One is the absorbing BC where s qAð Þ ¼ 0, as well as
P qAð Þ ¼ 0: the random walker (Fig. 16.1a) on the cliff (q ¼ qA) falls down
immediately. The other is the reflecting BC @s qð Þ=@q ¼ 0; at a reflecting wall
q ¼ qR where the MFPT is maximal: the walker on reflecting wall has the longest
time to reach the cliff.
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The simplest example is one-dimensional diffusion with a constant D without
drift U ¼ 0ð Þ; bounded by an absorbing wall qA ¼ L and a reflecting wall at qR ¼ 0.
(16.9) is reduced to

D @2

@q2
s qð Þ ¼ �1; ð16:10Þ

which is integrated subject to the two BCs:

D @s qð Þ
@q

¼ �
Zq

0

dq0 ¼ �q ð16:11Þ

s qð Þ ¼ � 1
D
Zq

L

dq00q00 ¼ 1
2D L2 � q2

� �
: ð16:12Þ

The random walker, initially at q ¼ 0 and L=2 respectively, falls to the cliff located
at q ¼ L during the time L2=2D and 3L2=8D respectively in average. If two
absorbing BC at q ¼ 0; q ¼ L are present, we have

s qð Þ ¼ � 1
2D q q� Lð Þ ð16:13Þ

and s L=2ð Þ ¼ L2= 8Dð Þ: This is exactly same as what we previously obtained from
eigenfunction expansion solution of the diffusion equation with two absorbing BC,
(13.62). Replacing the reflecting boundary by an absorbing boundary reduces the
life time by the factor of 3.

Let us study the case with a non-vanishing potential with an absorbing and a
reflecting BC by solving the equation:

eU
@

@q
D qð Þe�U @

@q
s q0ð Þ ¼ �1: ð16:14Þ

By integrating the above, we obtain

D qð Þe�U @

@q
s qð Þ ¼ �

Zq

qR

dq0e�U q0ð Þ; ð16:15Þ

where we used the reflecting BC, @s qð Þ=@qjq¼qR ¼ 0: Another integration with the
absorbing BC s qAð Þ ¼ 0 gives

s qð Þ ¼
ZqA
q

dq00
1

D q00ð Þ e
U q00ð Þ

Zq00

qR

dq0e�U q0ð Þ ð16:16Þ
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As a simplest example, let us consider the case in which the random walker
moves under a constant drift U and a constant noise-strength D; so that U qð Þ ¼
�Uq=D (15.29). How long does it take the walker to transverse from q ¼ 0 to
q ¼ L? By considering qR ¼ 0 and qA ¼ L; (16.16) can readily be integrated:

s 0ð Þ ¼ 1
D
ZL

0

dq00 e�Uq00=D
Zq00

0

dq0 eUq
0=D

¼ L
U 1þ D

UL e�
UL
D � 1

� 	� �
:

ð16:17Þ

When the noise effect is insignificant such that UL=D � 1; we recover s ¼ L=U: If
the force is weak or noise effect is strong so that UL=D � 1, we obtain the result
for the free diffusion s ¼ L2=2D. Consider that an ion crosses a membrane of the
thickness L under a constant force F. Noting the correspondence D ¼ D (diffu-
sivity), U ¼ DF= kBTð Þ ¼ F=f (drift velocity), the mean crossing time is given by

s ¼ L
D
kBT
F

1þ kBT
FL

e�
FL
kBT � 1

� 	� �
ð16:18Þ

P16.3 In the last chapter, we considered a stochastic differential equation

d
dt
n tð Þ ¼ �cn tð Þþ n tð Þn tð Þ;

where n tð Þ is a white and Gaussian noise of strength D:

n tð Þn 0ð Þh i ¼ 2Dd t � t0ð Þ:

Find the mean first passage time for the n to grow from n¼ 1 to N and to the average
value at the stationary state.

P16.4 A double strand DNA is duplex of two single stranded DNA bonded by a
binding energy � ¼ 0:3 kBT per base pair (bp) at a room temperature. A tension of
f ¼ 10 pN is applied vertically on two single strands at an end to unbind them, with
the other end held permanently bound. From the time it takes to completely sep-
arate DNA of 100 bp¼ 34 nm length, find the time that two ss to freely reassemble
to ds. (Hint: use the freely jointed chain model for the ss fully stretched by the force
and ss coiled force-free. The dynamical variable is the number of bp unbound by
the force. The force to tear the ds per bp is 0:3 kBT=0:34 nm.)
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16.1.2 Example: Polymer Translocation

A polymer translocating through a membrane can be considered as a diffusion
crossing over the free energy barrier affected by transmembrane biases and chain
conformations (Fig. 16.2a). For a flexible chain we describe a theoretical work of
Sung and Park (1996). The relevant degree of freedom that describes the translo-
cation dynamics is Q ¼ n; the number of segments translocated to the trans side
(Fig. 16.2). As we studied in Chap. 10, the free energy function for ideal chain
associated with n is entirely given by the entropy, F nð Þ ¼ 1

2 kBT ln n N � nð Þ½ �
(10.35) (Fig. 16.2b), where N is total segment number. We consider the translo-
cation dynamics over time longer than the chain relaxation time, where the chain is
in a quasi-equilibrium state. The Langevin equation for the n is given by

f nð Þ _nl ¼ � @

l@n
F nð Þþ fR n; tð Þ; ð16:19Þ

where f nð Þ is the friction coefficient of the translocating chain, l is the segmental
length and fR n; tð Þ is the thermal noise. The FPE for the PDF P n; tð Þ can be con-
structed as

@P n; tð Þ
@t

¼ LFPP n; tð Þ; ð16:20Þ

where

LFP ¼ @

l@n
D nð Þe�bF nð Þ @

l@n
ebF nð Þ ð16:21Þ

with D nð Þ ¼ kBT=f nð Þ, the diffusivity of the translocating chain.

Fig. 16.2 a A flexible polymer translocation through a thin membrane from the cis-side to the
trans-side, b the free energy with the n segments translocated on trans-side. (N ¼ 1026, A:
bDl ¼ 10=N, B: bDl ¼ 0, C: bDl ¼ �10=N) Reprinted from Sung and Park (1996). Copyright
(1996) by the American Physical Society
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The mean time for the translocation is MFPT (16.16), with choice of the
reflecting BC at n ¼ 0 and the absorbing BC at n ¼ N: At these values of n the free
energy F nð Þ shows singularity, a feature we should avoid; we do this by adopting
the reflecting BC at n ¼ 1 and at n ¼ N � 1; which is valid for a long chain.
The MFPT is

s ¼ l2
ZN�1

0

1
D nð Þ dn ebF nð Þ

Zn

1

dn0e�bF n0ð Þ; ð16:22Þ

which, for constant diffusivity D nð Þ ¼ D; is

s ¼ l2

D

ZN�1

0

dn
Zn

1

dn0
n N � nð Þ
n0 N � n0ð Þ

� �1=2

¼ p2

8
L2

2D
¼ p2

8
s0;

ð16:23Þ

where L ¼ Nl is total contour length. The entropy caused by polymer fluctuation
retards the translocation by the factor p2=8 compared with s0 ¼ L2=2D that a rigid
rod would have in translocation.

In fact, within cells the translocating chain is driven by a variety of biases caused
by the transmembrane potential, and other environmental changes. If we include
this effect via a chemical potential change Dl per translocating segment, the free
energy of translocation is changed to

F nð Þ ¼ 1
2
kBT ln n N � nð Þ½ � þ nDl;

or

F nð Þ= kBTð Þ ¼ ln x 1� xð Þ½ � þ xl�; ð16:24Þ

where x ¼ n=N; and l� ¼ NDl= kBTð Þ are the dimensionless variables. The MFPT
is calculated as a function of l�, and is expressed for two limiting cases:

s
s0

¼ 2 �l�ð Þ�1 for l� � �1;

¼ 2l��2el
�

for l� � 1:
ð16:25Þ

A modulation of l� by one, which corresponds to a very small chemical potential
bias Dl ¼ kBTð Þ=N for a long chain, can change appreciably the free energy
landscape (Fig. 16.2b). Consequently a minute fluctuation of the chemical potential
bias changes the translocation dramatically (16.25)! This remarkable cooperative
behavior is an emergent behavior of the chain arising from chain connectivity.
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16.2 The Kramers Escape Problem

The Kramers escape problem is to find the MFPT of a dynamical state q to cross or
escape a region by surmounting a certain barrier. A typical ‘potential’ or a free
energy function, to which the dynamical state is subject, is bi-stable, as shown in
Figs. 16.1b and 15.3. This problem is of direct relevance to multitude of dynamic
transitions between two states. One particular problem is the rate of diffusion
limited chemical reaction where q is the reactions coordinate.

We calculate the mean time in which a dynamical state (e.g., a Brownian particle
position) initially at q0 existing somewhere in a well crosses over the barrier and
arrive at a target in other well. To this end, an absorbing boundary is placed at the
target point qA somewhere after the barrier top (Fig. 16.1b), and the reflecting BC at
q ¼ �1. From (16.16)

s q0ð Þ ¼ D�1
ZqA
q0

dq00eU q00ð Þ
Zq00

�1
dq0e�U q0ð Þ: ð16:26Þ

We consider that the dimensionless barrier DU ¼ UM � Um is much higher than
unity (Fig. 15.3), and evaluate each integrand by quadratic expansion about the
sharp maximum, as in (15.95), (15.96). The q00 that dominates first integrand is near
zero (the barrier top) but can be replaced by positive infinity for the second integral,
while q0 and qA are negative and positive respectively taken to be �1 and 1,
yielding the approximation for (16.26) as

sK ¼ 1
D

2p
XMXm

eDU ¼ 2
k1

; ð16:27Þ

where k1 is the first nonvanishing eigenvalue of the FP operator for the bistable
potential, (15.97). This mean crossing or escaping time is called the Kramers time.
For the case of a Brownian particle crossing over a potential energy barrier DU
much higher than kBT , the Kramers time is

sK ¼ 2pf
xMxm

eDU=kBT ; ð16:28Þ

where xM ;xm are the curvature parameters of the U xð Þ, ffiffiffiffiffiffiffiffiffiffiffiffi
U00 xð Þp

at the maximum
and minimum of the potential.
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16.2.1 Rate Theory: Flux-Over Population Method

Finding the MPFT being often problematic in some cases, much easier and more
direct way is to find crossing rate via the flux over population method. As shown by
Reimann et al. (1999), the rate calculated this way is equal to the inverse of the
Kramers time. In this method, we visualize a steady state where particles are
constantly injected into the region at the reflecting boundary with a uniform current
J and are annihilated at the absorbing boundary. The rate of crossing the barrier is
obtained by

R ¼ J
}s

; ð16:29Þ

where }s is the probability of the particle residing within the region:

}s ¼
Z
X

dq P qð Þ: ð16:30Þ

We revisit the simplest problem of one–dimensional free diffusion between a
reflecting wall at x ¼ 0, and an absorbing wall at x ¼ L. Although the real situation
may be unsteady, to use the flux-over-population method, we imagine as if that
particles are constantly injected at x ¼ 0 to induce a steady current J: The solution
of D@2P=@x2 ¼ 0, is P ¼ axþ b yielding J ¼ �D@P=@x ¼ �Da. The solution
subject to the absorbing BC at x ¼ L is P xð Þ ¼ �J x� Lð Þ=D. Because

pre-transitional probability is }s ¼
R L
0 dx P xð Þ ¼ JL2ð Þ=2D, the rate is J=}s ¼

2D=L2, which is the inverse of the MFPT, s0 ¼ L2=2D.
For the case with a potential, we start with the equation for a constant flux,

(15.44)

J ¼ �D qð Þe�U @

@q
eUP
� �

;

which is integrated to:

J
Zq

qA

dq0eU q0ð Þ=D q0ð Þ ¼ � eU qð ÞP qð Þ � eU qAð ÞP qAð Þ
h i

: ð16:31Þ

Since P qAð Þ is zero, we find

P qð Þ=J ¼ �e�U qð Þ
Zq

qA

dq0eU q0ð Þ=D q0ð Þ; ð16:32Þ

which is integrated over the region X:
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}s

J
¼

ZqA
qR¼�1

e�U qð Þdq
ZqA
q

dq0eU q0ð Þ =D q0ð Þ: ð16:33Þ

We consider a constant D and the bistable potential with a high barrier in the
integrands (Figs. 15.3 and 16.1b). Because the value of q that dominates the first
integrand is �qm, a point where the potential is minimum, using the same logic as
before, (16.33) is found to be equal to the Kramers time, which is the inverse of the
Kramers rate:

RK ¼ J
}s

¼ D
2p

XMXme
�DU: ð16:34Þ

For a Brownian particle subject to a friction f and potential energy barrier DU;

RK ¼ xmxM

2pf
e�DU= kBTð Þ: ð16:35Þ

The proportionality of the rate to the Boltzmann factor exp �DU= kBTð Þ½ � is
called the Arrhenius law. DU is called the activation energy. For a dynamical
state Q tð Þ evolving under a bistable free energy landscape F Qð Þ; the Kramers rate
is given by (16.35) with DU replaced by DF , the free energy barrier that can
depend on temperature, making the rate be non-Arrhenius. The Kramers rate
problem for a variety of the reaction coordinates Q is widely applicable to transi-
tions and reactions between two states, some of which we discussed earlier.

16.2.2 The Kramers Problem for Polymer

The dynamics of polymer crossing barriers is a basic problem in soft matter; it is
also important in various biological applications such as polymer transport across
membranes and within channels, DNA gel electrophoresis, etc. We consider that
each segment of the polymer is subject to a piece-wise harmonic potential U xð Þ
(Fig. 16.3) such that the distance between well bottom and barrier top is larger than
the polymer’s radius of gyration. How can the Kramers rate (16.35) for a Brownian
particle be extended to the linear chain of N beads each with the same friction
coefficient c?

First suppose that a flexible polymer crosses the barrier in globular conforma-
tion. For the globule, we can adopt the single particle rate (16.35) with rescaling
U xð Þ ! NU xð Þ and thus xm ! N1=2xm, xM ! N1=2xM , as well as c ! Nc
neglecting the hydrodynamic interactions between the beads, and find the crossing
rate:
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R0 ¼ xmxM

2pc
e�bNDU : ð16:36Þ

Compared with the single bead case, the prefactor xmxMð Þ=2pc remains unchan-
ged whereas the activation energy is multiplied by N times: the crossing rate of the
polymer in globular state is vanishingly small.

Now consider that the polymer in crossing the barrier is unfolded into a flexible
chain. With the reaction coordinate chosen to be the center of mass (CM) of the
chain, X, we then expect the rate to be modified to

R ¼ xmxM

2pc
e�bDF ¼ xmxM

2pc
e�bðNDUþDF0Þ: ð16:37Þ

Here DF ¼ NDUþDF0 is the free energy barrier for the chain to surmount,
DF0 ¼ FM � Fm, where FM ;Fm are the polymer conformational free energies
with its CM fixed at the barrier top and well bottom, respectively. The free energy
barrier DF is much less than NDU; due to the polymer flexibility, as will be shown
below. Equation (16.37) was derived on the basis of multidimensional barrier
crossing theory applied to N beads interconnected by harmonic springs (Park and
Sung 1999). The detailed derivation and expressions for FM and Fm are quite
involved, so here we present simple scaling theory arguments for long chains.

With the center of mass positioned at the well bottom, the flexible chain
experiences confinement within the harmonic well, costing the conformational free
energy, which is the sum of harmonic energy and the confinement-induced entropic
contribution (10.122):

Fm � 1
2
Nx2

mn
2 þ RG

n

� �2

kBT: ð16:38Þ

(a)

(b)

Fig. 16.3 The Kramer’s prob-
lem of crossing over a piece-
wise harmonic potential a the
case where the polymer is in
the globular state. b the case is
polymer is unfolded into a
flexible linear chain
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Here n is a length of the chain confined within the well n2 ¼ PN
n¼1 x2n

� �
=N; where

xn is the position of nth bead from measured from the well bottom, and RG �N1=2l

is the radius of gyration in free space. When n� kBTl2=x2
m

� �1=4
; the free energy

function (16.38) takes the minimum

Fm �NxmlðkBTÞ1=2; ð16:39Þ

which increases with xm as well as with N:
When crossing the barrier top, the chain, if it is very long, can stretch rather than

coil, because by stretching the chain can reduce the energy dramatically as shown
below. This phenomenon is a kind of the coil-stretch transitions which usually are
hydrodynamically induced (De Gennes 1974). The conformational free energy FM

then is given by

FM � � 1
2
Nx2

Mn
2: ð16:40Þ

Because the chain is stretched n�Nl; we have FM ��N3x2
Ml

2; for long chain
(large N) threading over a narrow barrier (large xMÞ, the free energy is drastically
reduced.

The net free energy barrier is given by

DF ¼ N DU � dxmlðkBTÞ1=2
n o

� aN3x2
Ml

2; ð16:41Þ

where a and d are numerical factors. It tells us that the confinement within the well
bottom and stretching at the barrier top reduce the free energy barrier far below
NDU. Consequently, (16.37) means that the crossing rate of a flexible chain can be
much higher than that of a globule, R0, due to chain flexibility that allows such
conformational adaptability to an external force. The stretched conformation in
particular can enhance the rate as the chain gets longer than a critical value.

The free energy F Xð Þ of the chain with CM positioned at X, which also
piece-wise harmonic, can be emulated by the entropy of a particle within channel of
undulating cross section A Xð Þ in accordance with the relation

F Xð Þ ¼ �kBT ln A Xð Þ=A0½ �; ð16:42Þ

or A Xð Þ ¼ A0 exp �F Xð Þ=kBT½ �; where A0 is the cross section at the point where
F Xð Þ ¼ 0. Indeed the counterintuitive phenomenon predicted by (16.41) was
observed in DNA fragments that flow through fabricated micro and nano-sized
channels (Han et al. 1999); longer fragments were found to escape faster, by
stretching, the narrow constriction corresponding to the free energy barrier
top. Furthermore, the idea in this connection can leads to a novel means of
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separating a long DNA fragment from short fragments using the channel shown as
Fig. 16.4. The long DNA will escape the well of battling confinement, preferring to
pass through a narrow constriction and advance to uncontested entropy space.
A short chain cannot.
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Fig. 16.4 The flexible poly-
mers are confined within a
well. Only the long chains
can cross the narrow con-
striction toward to the open
space of high entropy
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Chapter 17
Dynamic Linear Responses and Time
Correlation Functions

Although seemingly stationary, matter in equilibrium spontaneously fluctuates due
to microscopic degrees of freedom thermally excited therein. Even the macroscopic
properties, for example, the length of a rod or the polarization of a dielectric
fluctuate, although imperceptibly; on a finer time scales the time series of these
properties looks stochastic, with the variances reflecting the intrinsic response of the
matter to a small external influence, as we studied in Chap. 9. Although apparently
random, the time-series signals at different times are correlated at a close look. In
this chapter we will find that the time correlation is directly related to the
response of the system to a time-dependent perturbation, namely, the
fluctuation-dissipation theorem. In particular, how the time correlation decays is
same as how the non-equilibrium state relaxes after removal of the perturbation.
From the knowledge of the time correlations, a variety of the associated dynamic
response functions and transport coefficients can be obtained.

(a) (b)

Fig. 17.1 a An RNA hairpin under a stretching force provided by an optical tweezer, b the time
series of end-to-end distance of the RNA hairpin for various stretching forces (Republished from
Stephenson et al. (2014), PCCP; permission conveyed through Copyright Clearance Center, Inc.)
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In earlier chapters, we learned that these fluctuations become relatively larger
for smaller systems as manifested in the Brownian motion. As an example for
nanometer-sized systems, an RNA hairpin extended by an optical tweezer (Fig. 17.1)
depicts temporal fluctuation (time-series signal) in extension of the RNA depending
on the stretching force. A fundamental question is: what can we learn from the
signal and its temporal correlation, for a small system in particular? What does a
signal pattern imply with regards to the living nature of the biopolymers if it is
in active state?

17.1 Time-Dependent Linear Response Theory

17.1.1 Macroscopic Consideration

In Chap. 9, we studied the static linear response theory, in which the change of a
systems’ variable DXi caused by a small static force or field fi conjugate to the
variable is given by its fluctuation h DX ið Þ2i0. For example, the change in average
extension of an elastic rod DX in response to a small applied tension f is given by
DX ¼ vs f ; where a constant vs is the static response function given by the fluc-
tuation of the microscopic extension X at equilibrium in the absence of the force,
vs ¼ b h DXð Þ2i0. The response function here is called stretch modulus.

Here we generalize the theory for the time-dependent situations questioning:
how will the elastic rod extend dynamically in response to a small force acting on
the system f tð Þ; which has an arbitrary time dependence? A naïve generalization
may suggest DX tð Þ ¼ v f tð Þ; or DX tð Þ ¼ v tð Þ f tð Þ; either of which is wrong!
Considering the linearity with respect to f tð Þ; we can deduce that the true relation is

DX tð Þ ¼
Z t

�1
v t; t0ð Þf t0ð Þdt0: ð17:1Þ

v t; t0ð Þ is a time-dependent dynamic response function which is an intrinsic
property of the system at the unperturbed state. Because the property is invariant
with respect to time-translation, v only depends on the difference t � t0 connecting
the response DX tð Þ and the cause f t0ð Þ : v t; t0ð Þ ¼ v t � t0ð Þ: Equation (17.1) signi-
fies that system’s response to the force in general is delayed. Only in the limit
v t � t0ð Þ ! vsd t � t0ð Þ; the response is instantaneous, DX tð Þ ¼ vs f tð Þ: Second,
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v t � t0ð Þ is non-vanishing only when t[ t0; dictated by the principle of causality
that the effect follows the cause. Thus (17.1) can be replaced by

DX tð Þ ¼
Z 1

�1
v t � t0ð Þf t0ð Þdt0: ð17:2Þ

The linear response DX tð Þ to an oscillatory force f t0ð Þ ¼ a cosXt0 ¼ Re ae�iXt0
� �

reads

DX tð Þ ¼
Z t

�1
dt0v t � t0ð ÞRe ae�iXt0

h i

¼ Re
Z t

�1
dt0v t � t0ð ÞaeiX t�t0ð Þe�iXt

2
4

3
5

¼ Re
Z1
0

dsv sð ÞaeiXse�iXt

2
4

3
5 ¼ Re v Xð Þe�iXt

� �
;

ð17:3Þ

where

v Xð Þ ¼
Z1
0

dt eiXtv tð Þ ¼
Z1
�1

dt eiXtv tð Þ; ð17:4Þ

is a time-Fourier transform of v tð Þ, which vanishes for t \ 0:
Writing v Xð Þ ¼ v0 Xð Þþ iv00 Xð Þ and e�iXt ¼ cos Xtð Þ � i sin Xtð Þ; the response is

obtained as

DX tð Þ ¼ afv0 Xð Þ cos Xtð Þþ v00 Xð Þ sin Xtð Þg
¼ v Xð Þj ja cos Xt � /ð Þ ð17:5Þ

with the response amplitude

v Xð Þj j ¼ v0 Xð Þ2 þ v00 Xð Þ2
h i1=2

ð17:6Þ

and the phase delay

/ ¼ tan�1 v00=v0ð Þ ð17:7Þ

with respect to the input force. Remarkably the response generally is not in phase
with the driving force. While the real part of v Xð Þ; v0 Xð Þ represents the response in
phase, the imaginary part, v00 Xð Þ represents the response out of phase (by p=2Þ with
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respect to the driving force; this is due to the dissipation inherent in the elastic rod,
as we shall see shortly. The convolution integral (17.2) means that the response
function and the applied force are related through their Fourier transforms:

DX xð Þ ¼ v xð Þf xð Þ: ð17:8Þ

To show that v00 is a measure of the energy dissipation as mentioned, we con-
sider the rate of work done on the system by the oscillatory force f tð Þ ¼ a cos Xtð Þ:

_W ¼ f tð Þ d
dt
DX tð Þ

¼ a cos Xt � aXf�v0 Xð Þ sin Xtð Þþ v00 Xð Þ cos Xtð Þg:
ð17:9Þ

where we used (17.5). The rate of work done averaged over a period of oscillation
TX ¼ 2p=X is

�_W ¼ 1
TX

Z TX

0
dt _W ¼ 1

2
a2Xv00 Xð Þ: ð17:10Þ

The above relation means that, unless the driving frequency X is vanishing, the
work done on the system is absorbed (dissipated) to the system as heat, by the
amount proportional to v00 Xð Þ. It is to be contrasted with undamped systems on
which the work done by an oscillatory force over a cycle is zero.

P17.1 For an elastic rod under an oscillatory force, whose length is governed by
the equation, X 00 þ cX 0 þ lX ¼ A cosXt; calculate the power amplification factor
v Xð Þj j2; the phase delay / of the response to the oscillating force, and the energy
dissipation incurred per cycle.

The dynamic response function v tð Þ is an intrinsic material property, which will
be revealed by a small f tð Þ; regardless the way how it is applied. Thus we consider
as a simple case a stepwise unloading: f tð Þ ¼ f for t\0; f tð Þ ¼ 0 for t[ 0
(Fig. 17.2), that is, an equilibrium state is maintained under a constant force from

(a) (b)

0
phase space

Fig. 17.2 a A step-wise unloading of a constant force f on the system at t ¼ 0: b following this
unloading, the phase space state of the many body system evolves from C 0ð Þ to C tð Þ
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the distant past until t ¼ 0; after which a non-equilibrium situation is caused by
turning it off. Following (17.2), the change in the length of a rod X in response to
the tension f tð Þ is:

DX tð Þ ¼ f
Z0

�1
v t � t0ð Þdt0 ¼ �f

Z t

1
v sð Þds; ð17:11Þ

from which, one can obtain

v tð Þ ¼ � 1
f
d
dt
DX tð Þ: ð17:12Þ

Once DX tð Þ is obtained, e.g., measured experimentally, the response function
v tð Þ is determined following the equation above; if, after the force f is unloaded, the
extension is observed to decays as following,

DX tð Þ ¼ Cfe�t=s; ð17:13Þ

the response function is obtained as v tð Þ ¼ ðC=sÞe�t=s; yielding the extension
(17.1)

DX tð Þ ¼ C
s

Z t

�1
dt0e� t�t0ð Þ=sf t0ð Þ: ð17:14Þ

The above equation is now valid for any arbitrary form of the time-dependent force
f tð Þ: If a constant force is applied up to the time t, the above is reduced to the static
relation DX tð Þ ¼ Cf so that C is identified as the inverse of the stretch modulus.
Under an impulse applied at t ¼ 0; that is, if f t0ð Þ ¼ Fd t0ð Þ; we have
DX tð Þ ¼ CF=sð Þ expð�t=sÞ.
P17.2 Find how the extension depends on an oscillatory loading for this rod.

17.1.2 Statistical Mechanics of Dynamic Response Function

Now let us obtain v tð Þ using statistical mechanics based on the microscopic view,
for a stepwise unloading of fi; which is not limited to the tension but can include a
variety of forces and fields. Conjugate to fi is the system variable X i; whose
average can not only be the macroscopic displacement Xi introduced in (Table 2.1)
but also be mesoscopic variables, e.g., the displacement of a Brownian particle.

We consider that from the distant past our system, viewed as a classical
many-body system, is brought to an equilibrium state under a constant force fi until
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t ¼ 0; after which the force is turned off. At t ¼ 0 (initially), the system’s
Hamiltonian is

H C 0ð Þð Þ ¼ H0 C 0ð Þð Þ � fiX i C 0ð Þð Þ; ð17:15Þ

where C 0ð Þ is the systems’ many-particle phase space point descriptive of the initial
state and evolves to C tð Þ at a later time t (Fig. 17.2b). The macroscopic displace-
ment Xj tð Þ at t is the average of the corresponding microscopic variable of the
system X j tð Þ ¼ X j C tð Þð Þ over all microstates initially prepared with the distribution
e�bH C 0ð Þð Þ=

P
ℳ

e�bH C 0ð Þð Þ:

Xj tð Þ ¼ X j tð Þ
� � ¼

R
dC 0ð Þ X j C tð Þð Þe�bH C 0ð Þð Þ� �R

dC 0ð Þe�bH C 0ð Þð Þ : ð17:16Þ

Because H0 ¼ �fiX i is a perturbation, e�bH C 0ð Þð Þ � e�bH0 1þ bfiX ið0ð ÞÞ; and

X j tð Þ
� � �

R
dC 0ð Þ X j C tð Þð Þe�bH0 1þ bfiX ið0

� 		� �R
dC 0ð Þe�bH0 1þ bfiX ið0

� 		 :

¼ X j tð Þ
� �

0 þ bfi X j tð ÞX i 0ð Þ� �
0

1þ bfi X i 0ð Þh i0

ð17:17Þ

where � � �h i0 is the average over the equilibrium ensemble in the absence of the
force with the distribution e�bH0=

R
dC 0ð Þe�bH0 C 0ð Þð Þ: Because, for time t[ 0; the

perturbation is turned off and the time evolution is generated by H0, X j tð Þ
� �

0 �
X j C tð Þð Þ� �

0 is equal to X j 0ð Þ� �
0 � X j

� �
0, which is time-independent. If we retain

in (17.17) the term linear in fi; which is small, we arrive at an important result:

DXj tð Þ � X j tð Þ
� �� X j

� �
0

¼ bfi DX j tð ÞDX i 0ð Þ� �
0¼ bfiCji tð Þ:

ð17:18Þ

This is the dynamic generalization of its static counterpart, (9.3).
For quantum systems, where the two terms on RHS of (17.15) do not generally

commute; exp �bHð Þ ¼ exp �bH0ð Þþ ðfi=bÞ
R b
0 dkekH0X i 0ð Þe�kH; and following

a similar procedure, the time correlation function Cji tð Þ is replaced by the Kubo’s
canonical correlation Cc

ji tð Þ (Kubo et al.)

Cc
ji tð Þ ¼

1
b

Zb

0

dk ekH0DX i 0ð Þe�kH0DX j tð Þ
� �

0: ð17:19Þ
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We shall be interested in the systems where the quantum coherence is negligible. In
most of mesoscopic biological systems such effect is usually expected to be absent.

Equation (17.18) is also applicable to a coarse grained-level description such as
FP dynamics (15.24) involving a relevant dynamical variable q tð Þ: If the system
approaches a stationary state with a distribution e�U qð Þ under a noise of constant
strength D, the release of small drift U at t ¼ 0 gives rise to the response

Dq tð Þh i ¼ ðU=DÞ Dq tð ÞDq 0ð Þh i0: ð17:20Þ

Returning to (17.18) for the case i ¼ j; we have

DXi tð Þ ¼ bf DX i tð ÞDX i 0ð Þh i0¼ bfCi tð Þ ð17:21Þ

This relation proves the famous Onsager’s regression theorem, which says “The
regression of microscopic thermal fluctuations at equilibrium follows the
macroscopic law of relaxation of small non-equilibrium disturbances” (Onsager
1931). The idea is illustrated by the Fig. 17.3, in which the solid line depicts how a
variable, e.g., the length of a rod, X tð Þ; first extended by a small force and then
released, subsequently decays (regresses) in time. The average of the decay (marked
by the dashed line) at a time t,DX tð Þ � DX tð Þh i; is proportional to the stationary time
correlation function of the length in the absence of the force over the time interval t,
which is measured after a long time when the system reached the equilibrium (dotted
line). If an experiment yields the average decay asDX tð Þ� e�t=s; then we can find the
correlation function DX tð ÞDX 0ð Þh i0 ¼ h DXð Þ2i0e�t=s: This Onsager theorem is an
immensely powerful relation with wide applications; it tells us that once we know the
phenomenological law of relaxation of a certain variable we can infer the time
correlation of its intrinsic fluctuation.

Fig. 17.3 The (fluctuating) length X tð Þ of a rod, first extended by a small force and then released,
decays in time. In the time-dependence, the average decay follows that of the length
time-correlation function DX tð ÞDX 0ð Þh i0 measured at the stationary states reached after a long
time, in the absence of the force. The correlation function for an ergodic system is equal to the time
average 1

T

R T
0 dt0DX t0ð ÞDX t0 þ tð Þ taken over a long time T at the stationary state
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17.1.3 Fluctuation-Dissipation Theorem

Combining (17.21) with (17.12), we find the dynamic response function is given by
the relation

vi tð Þ ¼ �b
d
dt
Ci tð Þ; ð17:22Þ

called the fluctuation-dissipation theorem (FDT), which is valid independently of
the form of the external force f i tð Þ: The relation has its generalized form,

vji tð Þ ¼ �b
d
dt
Cji tð Þ: ð17:23Þ

FDT contrasts with the static linear response theory result, vji ¼ bhDX jDX ii0 (9.4):
while from the correlation of a time series signal at equal time one measures the static
susceptibility of the system, from the correlation at different time one can find
systems’ dissipative dynamic response to a time-dependent small disturbance. It
is worth mentioning that for nonphysical complex systems with the primary variable
qj and the noise strength D other than temperature, (17.22) is replaced by

vji tð Þ ¼ �D�1 d
dt

Dqj tð ÞDqi 0ð Þ� �
0: ð17:24Þ

The linear response relation can be written as

DXj tð Þ ¼
Z t

�1
vji t � t0ð Þf t0ð Þdt0 ¼

Z1
�1

vji t � t0ð Þfi t0ð Þdt0; ð17:25Þ

where the causality, vji t � t0ð Þ ¼ 0 for t � t0\0; is noted. The Fourier transform is

DXj xð Þ ¼ vji xð Þfi xð Þ; ð17:26Þ

where

vji xð Þ ¼
Z1
�1

dt eixtvji tð Þ ¼
Z1
0

dt eixtvji tð Þ: ð17:27Þ

Let focus on the case j ¼ i: From a Fourier transform of (17.22), the imaginary part
of vi xð Þ; v00i xð Þ; can be found as
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v00i xð Þ ¼ �b
Z1
0

dt sin xtð Þ d
dt
Ci tð Þ

¼ bx
Z1
0

dt cos xtð ÞCi tð Þ;
ð17:28Þ

where the integration is done by parts with the time boundary condition,
sin xtð ÞCi tð Þ ¼ 0 at t ¼ 0 and1. Using the symmetry Ci �tð Þ ¼ Ci tð Þ; the equation
is rewritten as

v00i xð Þ ¼ bx
2

Z1
�1

dt eixtCi tð Þ

¼ bx
2

Si xð Þ;
ð17:29Þ

which is the Fourier transformed version of FDT. Si xð Þ is the power spectrum of
DX i tð Þ in the absence of the perturbation that can be given by the
Wiener-Khinchine theorem (14.18), rewritten as

Si xð Þ ¼ lim
T!1

1
T

DX i xð Þj j2
D E

0
; ð17:30Þ

Along with this, the relation (17.29), indeed tells us that, the v00i xð Þ; a measures of
the systems’ energy dissipation and the phase-delay with respect to the force fi xð Þ;
as shown by (17.10) and (17.7), are positive. v00i xð Þ is directly related with the
power spectrum that is a measure of the system’s intrinsic fluctuations.

The biological and glassy systems are observed out of equilibrium, due to
chemical activity and very slow relaxation respectively. Thus, for the fluctuations at
a quasi-stationary states or a steady state in such systems, FDT is violated.
Nevertheless, assuming such a state is distributed by the canonical distribution with
an effective temperature Teff that can be different from that of the environment T, we
can rewrite (17.29) as

kBTeff ¼ x
2
Si xð Þ=v00i xð Þ: ð17:31Þ

If the steady state is maintained by an active mechanism that consumes the energy,
the Teff is smaller than T. By measuring the power spectrum and the dynamic
response of hair bundle cells to an oscillating force, Martin et al. (2001) showed
how the effective temperature of the systems depart from the ambient one
depending on the frequency.
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17.2 Applications of the Fluctuation–Dissipation Theorem

The FDT relates the systems’ dynamic responses with the underlying fluctuations,
and further allows the response functions and the transport coefficients to be
calculated in terms of the associated time correlation functions. Here we give a
several examples.

17.2.1 Dielectric Response

We consider a system consisting of permanent dipole moments, e.g., water, subject
to an electric field E tð Þ. The perturbing Hamiltonian is given by

H0 ¼ �E tð Þ �P ¼ �E tð ÞP ð17:32Þ

where P ¼ PN
i¼1 pi; pi being a dipole moment of a molecule i;P is total diopole

moment along the direction of the field. The polarization defined by P tð Þ ¼ P tð Þh i
under the field satisfies the linear response relation

P tð Þ ¼
Z t

�1
dt0vP t � t0ð ÞE t0ð Þ ¼

Z1
�1

dt0vP t � t0ð ÞE t0ð Þ ð17:33Þ

and its Fourier transform

P xð Þ ¼ vP xð ÞE xð Þ; ð17:34Þ

where

vP tð Þ ¼ �b
d
dt

DP tð ÞDP 0ð Þh i0 ð17:35Þ

vP xð Þ ¼
Z1
0

dt eixtvP tð Þ: ð17:36Þ

are respectively the dielectric dynamic response functions in real and Fourier
spaces.

As an example, we adopt the Debye model, according to which the dipole
correlation function decays with a single relaxation time s:
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DP tð ÞDP 0ð Þh i0 ¼ ðDPÞ2
D E

0
e�t=s

¼ kBTvP e�t=s
ð17:37Þ

where vP is static electric susceptibility (9.7) that can be identified as vP x ! 0ð Þ;
from (17.36) and (17.35). From (17.35), we obtain the dielectric response function

vP tð Þ ¼ kBTvPs
�1 e�t=s ð17:38Þ

and the frequency dependent electric subsceptibility

vP xð Þ ¼ vP= 1� ixsð Þ: ð17:39Þ

Because the frequency-dependent elecric permeability is given by

e xð Þ ¼ e0 þ vP xð Þ ¼ e0 xð Þþ ie00 xð Þ; ð17:40Þ

we have its real and imaginary parts:

e0 xð Þ ¼ e0 þ vP= 1þ xsð Þ2
h i

ð17:41Þ

e00 xð Þ ¼ vPxs= 1þ xsð Þ2
h i

; ð17:42Þ

the frequency dependencies of which are shown in the Fig. 17.4. Here e0 x ! 0ð Þ
represents the static electric permeability, e ¼ e0 þ vP:

On the other hand, as x increases to infinity, e0 approaches to e0; meaning that
the dipoles respond to the high-frequency elecric-field oscillation as if it is in
vacuum. The e00 xð Þ; representative of the system’s energy dissipation into heat, is
vanishing in both the high and low frequency limits but becomes the maximum at a
frequency comparable to s�1; a kind of resonance between external driving and
internal relaxation. This explains the physics behind the microwave heating.

Fig. 17.4 The dielectric res-
ponses (real ðe0Þ and imagi-
nary (e00) parts of the dielectric
permeability) are character-
ized by the relaxation time s
of each dipole
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17.2.2 Electrical Conduction

Consider N mobile particles in a volume V each with a charge e under a weak
electric field E tð Þ along z-direction. The field induces an electrical current. The
perturbing Hamiltonian is same as (17.32) where P is the total dipole moment
induced along the z-axis, now expressed as P ¼ PN

i¼1 ezi:
The microscopic expression for electrical current is

J tð Þ ¼ 1
V

XN
i¼1

e
d
dt
zi ¼ 1

V
d
dt
P: ð17:43Þ

From (17.25) the current is given by

J tð Þ ¼ J tð Þh i ¼
Z t

�1
dt0vJ t � t0ð ÞE t0ð Þ ¼

Z1
�1

dt0vJ t � t0ð ÞE t0ð Þ; ð17:44Þ

Considering the correspondence: J tð Þ ¼ X i tð Þ and P ¼ X j; (17.18) and (17.22)
tell us that the response function is

vJ tð Þ ¼ � b
V
d
dt

d
dt
DP tð ÞDP 0ð Þ


 �
0
¼ � b

V
d
dt

d
dt
DP tð Þ

� 
t¼0

DP �tð Þ

 �

0

¼ b
V

d
dt
DP tð Þ

� 
t¼0

d
dt
DP tð Þ


 �
0

¼ bV J tð ÞJ 0ð Þh i0:

ð17:45Þ

where the time-translational invariance X j tð ÞX i 0ð Þ� �
0 ¼ X i 0ð ÞX j �tð Þ� �

0 is used.
The Fourier transform of (17.44) is

J xð Þ ¼ r xð ÞE xð Þ; ð17:46Þ

where

r xð Þ ¼
Z1
�1

dt eixtvJ tð Þ ¼
Z1
0

dt eixtvJ tð Þ

¼ bV
Z1
0

dt eixt J tð ÞJ 0ð Þh i0

ð17:47Þ

is the frequency-dependent conductivity. It should be noted that the causality
condition vJ tð Þ ¼ 0 for t\0 is used in (17.44) and (17.47). Equation (17.47) is
called the Kubo formula for the electrical conductivity.
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Suppose that the electrical field is turned on to a constant magnitude stepwise at
t ¼ 0 as shown in the Fig. 17.5. Then, (17.44) yields the steady state current
reached at t ! 1 as

J ¼ lim
t!1

Z t

0

dt0vJ t � t0ð Þ
2
4

3
5E

¼
Z1
0

dt vJ tð ÞE

¼ r x ! 0ð ÞE:

ð17:48Þ

Hence the steady state conductivity is given by

r ¼ r x ! 0ð Þ ¼ bV
Z1
0

dt J tð ÞJ 0ð Þh i0: ð17:49Þ

For an example let us consider N particles of charge e (electrons in crystal
lattices, ions or colloids in fluids), which are dilute enough to neglect the mutual
interactions. Also suppose that the current correlation function decays with a
relaxation time s;

J tð ÞJ 0ð Þh i0¼
N
V2

�
v2
�
0 e�t=s ¼ NkBT

V2M
e�t=s: ð17:50Þ

For Brownian particles with s ¼ sp (13.15) leads to:

r ¼ ne2s
M

; ð17:51Þ

where n ¼ N=V : This is the well-known Drude formula for electrical conductivity.
There are many elementary ways to derive this equation, but the linear response
theory provides a systematic means to improve and generalize it.

With the correlation function (17.50) the frequency-dependent conductivity is
obtained as

Fig. 17.5 Astep-wise switch-
ing of a constant electric field at
t = 0
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r xð Þ ¼ ne2s
M 1� ixsð Þ ¼

r
1� ixsð Þ : ð17:52Þ

The real part of r xð Þ is

r0 xð Þ ¼ r= 1þ xsð Þ2
� �

ð17:53Þ

which represents the conductor’s in-phase response to an oscillating elecric field.
As the frequency increases it decreases due to the failure of the charges to respond
in the dissipative media. Also the magnitude of the frequency dependent conduc-
tivity decreases following:

r xð Þj j ¼ r

1þ xsð Þ2
� �1=2

ð17:54Þ

P17.3 Consider a stepwise force (constant for t[ 0; and 0 otherwise) is applied to
a particle in a fluid. Develop the linear response theory and derive that the dif-
fusivity is given by the integral of the autocorrelation function of the particle’s
velocity:

D ¼
Z1
0

dt v tð Þv 0ð Þh i0

This is the fundamental Green-Kubo relation for self-diffusion.

17.2.3 FDT Under Spatially Continuous External Fields

We can generalize FDT to a case with multiple pairs of external forces and their
conjugate system variables:

H0 tð Þ ¼ �
X
i

X i fi tð Þ ð17:55Þ

for which we have the response

DXj tð Þ ¼
X
i

Z t

�1
dt0vji t � t0ð Þ fi t0ð Þ; ð17:56Þ
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where vji tð Þ is given by (17.23). A similar situation occurs by a spatially varying
force or field f r; tð Þ coupled to the density x rð Þ of the property X ; which gives rise
to the perturbing Hamiltonian

H0 ¼ �
Z

dr x rð Þ f r; tð Þ: ð17:57Þ

The average change at a later time t of x rð Þ which is the conjugate to the field is

Dx r; tð Þ ¼
Z t

�1
dt0

Z
dr0 v r� r0; t � t0ð Þ f r0; t0ð Þ; ð17:58Þ

involving the response function:

v r� r0; t � t0ð Þ ¼ �b
d
dt

hDx r; tð ÞDx r0; t0ð Þi 0: ð17:59Þ

The spatial Fourier transforms of above two equations are

Dx q; tð Þ ¼
Z t

�1
dt0v q; t � t0ð Þ f q; t0ð Þ ¼

Z1
�1

dt0v q; t � t0ð Þ f q; t0ð Þ; ð17:60Þ

and

v q; tð Þ ¼
Z

dr e�iq�rv r; tð Þ: ð17:61Þ

Upon a further Fourier transform in time,

Dx q;xð Þ ¼ v q;xð Þ f q;xð Þ ð17:62Þ

where

v q;xð Þ ¼
Z1
�1

dt
Z

dr e�i q�r�xtð Þv r; tð Þ

¼
Z1
0

dt
Z

dr e�i q�r�xtð Þv r; tð Þ;
ð17:63Þ

which defines the Fourier transform of the dynamic response function. Familiar
examples for the X � f conjugate pairs are local polarization density-electric field
and local magnetization density-magnetic field.
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P17.5 Discuss a Gedanken experiment to learn how the charge density correla-
tion hDr r; tð ÞDr r0; 0ð Þi 0 in a membrane can be determined.

P17.6 How can the undulation time correlation hhðr; tÞhðr0; 0Þi0 in a stretched
DNA and a planar membrane be obtained?

17.2.4 Density Fluctuations and Dynamic Structure Factor

An important example of the FDT in a continuous system concerns the density
fluctuations. Driven by an external potential field on each particle, u r; tð Þ, which
varies spatially and temporally, the system has the perturbed Hamiltonian

H0 ¼
Z

n rð Þu r; tð Þdr; ð17:64Þ

where n rð Þ ¼ PN
a¼1 d r� rað Þ is the microscopic number density. The potential

applied at a position and time, r0; t0; disturbs the density distribution at other point
and time r; t by

Dn r; tð Þ ¼ �
Z t

�1
dt0

Z
dr0vn r� r0; t � t0ð Þu r0; t0ð Þ; ð17:65Þ

which is expressed in the Fourier space:

Dn q;xð Þ ¼ �vn q;xð Þu q;xð Þ; ð17:66Þ

where the associated dynamic response function and susceptibility are:

vn r� r0; t � t0ð Þ ¼ �b
d
dt

hDn r; tð ÞDn r0; t0ð Þi 0 ð17:67Þ

vn q;xð Þ ¼
Z1
0

dt
Z

dr e�i q�r�xtð Þvn r; tð Þ: ð17:68Þ

Like (17.29), the imaginary part of vn q;xð Þ is

v00n q;xð Þ ¼ bx
2

Cn q;xð Þ; ð17:69Þ
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where

Cn q;xð Þ ¼
Z1
�1

dt
Z

dr e�i q�r�xtð ÞCn r; tð Þ ð17:70Þ

is the Fourier transform of the density spatiotemporal correlation function

Cn r� r0; tð Þ ¼ hDn r; tð ÞDn r0;ð Þi 0; ð17:71Þ

in the absence of the external field. Equation (17.69) means that the intrinsic
density fluctuation at a Fourier mode q;x is directly related to the energy dissi-
pation induced by an oscillating external field at the mode. Equation (17.70) is
rewritten as

Cn q;xð Þ ¼
Z1
�1

dt eixtCn q; tð Þ ð17:72Þ

where

Cn q; tð Þ ¼ hDn q; tð ÞDn �q; 0ð Þi0

¼
XN
a¼1

XN
a0¼1

e�iq� ra tð Þ�ra0 0ð Þ½ �
* +

0

:
ð17:73Þ

Furthermore the density fluctuation is related to the dynamic structure factor S q;xð Þ
by

S q;xð Þ ¼ 1
2pN

Z1
�1

dt eixtCn q; tð Þ

¼ 1
2pN

Cn q;xð Þ:
ð17:74Þ

The dynamic structure factor S q;xð Þ is obtainable from the inelastic scattering
experiments where q;x are momentum and energy transferred to the matter by an
incident radiation or a stream of quanta. It also probes the energy absorption in the
system when driven by an oscillation at the wave vector q and frequency x (17.69).
Thus, a certain mode of the dispersion relation x ¼ xc qð Þ that makes a peak in
S q;xð Þ signifies a collective mode of excitation in the system (Fig. 17.6). The
dynamic structure factor is related to the static structure factor S qð Þ; (9.36), or
S qð Þ ¼ C q; 0ð Þ=N; by
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Z1
�1

dx S q;xð Þ ¼ S qð Þ ð17:75Þ

S q;xð Þ also contains the information on the transport properties of the systems
at various length and time scales. To study diffusivity, we note that the correlation
of density fluctuations at equilibrium is governed by the diffusion equation via the
Onsager’ regression theorem: from the Fourier transform of the diffusion equation
in space, @n q; tð Þ=@t ¼ �Dq2n q; tð Þ; we can write

@

@t
Cn q; tð Þ ¼ �Dq2Cn q; tð Þ; ð17:76Þ

which is integrated to

Cn q; tð Þ ¼ e� tj jDq2Cn q; 0ð Þ: ð17:77Þ

Using the relation (17.74) we find

S q;xð Þ ¼ 1
2pN

Z1
�1

dt eixt e�Dq2 tj jCn q; t ¼ 0ð Þ

¼ 1
p

Dq2

x2 þ Dq2ð Þ2 S qð Þ;
ð17:78Þ

S q;xð Þ has a Lorenzian peak at the collective (hydrodynamic density) mode at
xc qð Þ ¼ 0 with the dispersion C qð Þ ¼ Dq2. For an infinitely dilute concentration of
the particles, S qð Þ ¼ 1; and Cn q; tð Þ and the associated D are called the Van-Hove

Fig. 17.6 A peak frequency xc qð Þ of a certain dynamic structure factor S q;xð Þ signifies a
collective mode, whereas the peak breadth C qð Þ is a measure of dissipation associated with the
mode. In self-diffusion, such a mode is density mode with xc qð Þ ¼ 0 and C qð Þ ¼ Dq2 (17.78)
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correlation function and self-diffusion constant. The diffusion constant can be
extracted from the dynamic structure factor determined by inelastic scattering
measurement using (17.78) rewritten as the relation

D ¼ lim
x!0

lim
q!0

x2

q2
pS q;xð Þ: ð17:79Þ

The two limits of small q and x means the large length and the long time scales
over which the hydrodynamic transport coefficients, the self-diffusivity in this case,
are defined.

Over small length and shorter time scales one can define the wavenumber and
frequency-dependent diffusivity D q;xð Þ that extends the ordinary self-diffusion
constant to microscopic scales; (17.78) can be rewritten as

S q;xð Þ ¼ 1
p

D q;xð Þq2
x2 þ D q;xð Þq2½ �2 : ð17:80Þ

From this formula, one can set up the generalized diffusion equation involving a
diffusivity which is nonlocal in space and non-Markovian in time; first, the number
density flux is generalized to

J x; tð Þ ¼ �
Z1
�1

dt0
Z

dr0D r� r0; t � t0ð Þrr0n r0; t0ð Þ: ð17:81Þ

And then from the continuity equation @
@t n r; tð Þ ¼ �r � J r; tð Þ; we obtain the

diffusion equation in a general form

@

@t
n r; tð Þ ¼

Z1
�1

dt0
Z

dr0rr � D r� r0; t � t0ð Þrr0n r0; t0ð Þ: ð17:82Þ

For concentrated particles, or systems with complex internal structures with
nontrivial S qð Þ such as a polymer, one may still use (17.78). The concentration-
dependent hydrodynamic diffusivity D, called the collective diffusivity, and its
generalization D q;xð Þ; can be obtained from the scattering data via

S q;xð Þ ¼ 1
p

D q;xð Þq2
x2 þ D q;xð Þq2½ �2 S qð Þ: ð17:83Þ
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Chapter 18
Noise-Induced Resonances: Stochastic
Resonance, Resonant Activation,
and Stochastic Ratchets

Our world is replete with noises. In common sense a noise is a nuisance that blocks
coherence; you feel annoyed with ambient sound noises when listening to music. In
this chapter we will study a counter-intuitive phenomenon, called stochastic
resonance (SR), where a periodicallymodulated perturbation or signal too weak
to be detected can be enhanced by adding the random noise to a nonlinear
system (Fig. 18.1). The noise with an optimal strength can be instrumental rather
than harmful in driving synchrony and resonance. There exists another noise-induced
phenomenon, the resonant activation (RA), where the rate of the noise-induced
transition is maximized by a modulation of an external signal at an optimal rate.

Biological systems in cellular level live on a variety of noises, the ambient
temperature in particular. Due to their flexibility manifested on mesoscopic scale,
some biological complexes may utilize the ambient noises for their biological
transitions and functions. As we have seen in Chap. 16, thermal fluctuations in such
soft-condensed matter facilitate the barrier crossing seemingly difficult to surmount,
typically assisted by conformational transitions. Added to this phenomenon, the SR
and RA can provide essential physical mechanisms for inducing coherence and
order in noisy and dissipative environments out of equilibrium.

Fig. 18.1 A cartoon describing the phenomenon of stochastic resonance. A weak signal can be
enhanced in a dissipative media by an ambient noise at the optimal strength
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18.1 Stochastic Resonance

18.1.1 Theory

There are many review articles on SR; to name one, (Gammaitoni et al. 1998). As a
generic example of the dynamics that shows SR, consider a Markov process q tð Þ of
crossing over a barrier is governed by the Langevin equation,

_q ¼ U qð ÞþR tð Þ: ð18:1Þ

Here R tð Þ is the Gaussian and white noise that satisfies R tð ÞR t0ð Þh i ¼ 2Dd t � t0ð Þ;
U qð Þ ¼ �D@U qð Þ=@q (15.29) is the driving force under a double well potential
U qð Þ. A concrete example of q is the position of a Brownian particle thermally
hopping in a double-well potential U qð Þ ¼ kBTU qð Þ; satisfying the Langevin
equation, f _q ¼ �@U qð Þ=@qþ fR tð Þ, where fR tð ÞfR t0ð Þh i ¼ 2fkBTd tð Þ, f ¼ kBT=D is
the friction coefficient of the particle.

Let us consider the case of high barrier DU � 1, or DU � kBT for the Brownian
particle. As we studied earlier, the mean time to cross the barrier is the Kramers
time sK ¼ 2peDU= DXMXmð Þ where the XM ;Xm are the curvatures of the potential,
U00 qð Þ; at the barrier top and the well bottom (Chap. 16). The dynamical state or
Brownian particle infrequently and randomly crosses the barrier, with the stochastic
trajectory schematically shown in Fig. 18.2a.

To emphasize the role of the noise we make all variables be dimensionless with
U qð Þ ¼ q� q3 so that U qð Þ ¼ D �q2=2þ q4=4ð Þ: Then,

sK Dð Þ ¼
ffiffiffi
2

p
p exp

1
4D

� �
: ð18:2Þ

(a)

(b)

Fig. 18.2 Schematic trajectories of
a Brownian particle hopping under a
double well potential: a For the case
without an external force the hop-
ping is random, b but the hopping
becomes coherent to the oscillating
force when the SR condition is met
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The sK depends strongly on the noise strength D; for a Brownian particle with
f ¼ 1, the noise is the thermal noise of strength D ¼ kBT ; whose variation will
affect the sK in a very nonlinear way.

Now suppose that the state or particle is driven by an oscillating force f tð Þ ¼
a cosXt; with the amplitude a which is too small to roll the particle from a well to
the other:

_q ¼ q� q3 þ a cosXtþR tð Þ: ð18:3Þ

If the noise strength D is vanishingly small, the particle hops very rarely and mostly
remains in the wells, independently of the oscillation force. If, on the other hand,
the noise strength is very high, it will cross the barrier very frequently and ran-
domly, little influenced by the oscillation force. In both limits, the particle is in-
coherent to the external driving. However, with the noise tuned to such an optimal
strength DR that the periods of thermal jumps matches with that of the oscillation,
i.e.,

2sk DRð Þ ¼ 2p
X

; ð18:4Þ

we can expect that there will be the maximum coherence, that is, the maximal
cooperation between the noise and external driving for the barrier crossing.
This noise-assisted phenomenon is called as stochastic resonance (SR). The optimal
strength of the noise is given by

DR ¼ 1= 4 ln
1ffiffiffi
2

p
X

� �� �
: ð18:5Þ

Figure 18.2b schematically depicts the hopping and its trajectory coherent to the
external oscillation at this optimal condition.

The idea of SR was first introduced by Benzi et al. (1982) to account for the
periodic occurrence of ice age. The data of the continental ice volume variation over
106 years shows that the glaciation sequence has an average periodicity of about
105 years. On the other hand, it is known that there is a very small change in
eccentricity of the earth orbital that has about the same periodicity. An intriguing
question is how this small orbital perturbation can cause such a global climate
change. Benzi and others modeled the global climate as the stochastic variable q tð Þ
that varies under a double well potential with the two minima representing the ice
and normal ages. The effect caused by the earth orbital eccentricity is given by a
small periodic force. Then what is the noise? On the long time over the period,
daily weather fluctuations can be treated as a random noise. If the noise strength
is tuned to an optimal value (by whom?), the hopping between the ice age to
normal age, otherwise random, can be made synchronous to the orbital modu-
lation, according to the argument of Benzi and others.
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Because the external driving is a perturbation, we can quantify the response of
the system following the linear response theory we studied in Chap. 17. Due to the
perturbation in the Hamiltonian

H0 ¼ �q f tð Þ ¼ �qacos Xtð Þ ð18:6Þ

the average deviation of q tð Þ from the mean, which otherwise is zero in this bistable
potential, emerges as

Dq tð Þh i ¼
Z t

0

dt0vq t � t0ð Þ f t0ð Þ ¼ a
Z t

0

dt0 vq t � t0ð Þ cos Xt0ð Þ: ð18:7Þ

The dynamic response function vq tð Þ is given by the fluctuation-dissipation
theorem (FDT) (17.24):

vq tð Þ ¼ � 1
D

d
dt

Dq tð ÞDq 0ð Þh i0 ð18:8Þ

in terms of the time correlation function in the absence of the driving. The time
correlation function is given by (15.100),

Dq tð ÞDq 0ð Þh i0 � Dq2
� �

0 e�k1t � Dq2
� �

0 e�2t=sK ð18:9Þ

Here k1 � 2=sK � ffiffiffiffiffiffiffiffi
2=p

p	 

exp �1=4D½ � (15.97) is the lowest nonvanishing

eigenvalue of the FP operator corresponding to the Langevin equation (18.1) in the
absence of the external force. The approximation (15.100) is valid over the long
time to cross the high barrier, and is exact at t ¼ 0:

Using the (18.8), (18.9), and FDT (17.24) we can calculate the frequency-
dependent response function as

vq Xð Þ ¼
Z1

0

dt eiXtvq tð Þ ¼ 2 Dq2
� �

0

sKD

Z1

0

dt eiXte�2t=sK

¼ Dq2
� �

0

D

1þ iXsK=2

1þ XsK=2ð Þ2 :
ð18:10Þ

In terms of this, the displacement is given as

Dq tð Þh i ¼ vq Xð Þ�� ��a cos Xt � /ð Þ; ð18:11Þ

where vq Xð Þ�� �� ¼ hDq2i0=½Df1þ XsK=2ð Þ2g1=2� is the absolute amplitude of the

response. vq Xð Þ�� �� depends on X as well as D in a nontrivial way. For a small D; the

amplitude goes like vq Xð Þ�� ��� 1= DsKð Þ�D�1 exp �1=4D½ �; which tends to vanish
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in the D ! 0 limit. In the limit of a large D; vq Xð Þ�� ���D�1 ! 0: For a finite level

of the D where sK �X�1; which is consistent with the condition (18.4), vq Xð Þ�� �� can
be the maximum. Figure 18.3 shows how the power amplification defined by

P ¼ vq Xð Þ�� ��2¼ Dq2
� �2

0

D2 1þ XsK
2

� 2n o ð18:12Þ

peaks at an optimal value of the noise strength for various values of X.

The power amplification vq Xð Þ�� ��2 is one of the most common quantifier of
SR. Not only it is a direct measure of the coherent response, it is also related with
q0s power spectrum Sf xð Þ ¼ R1

�1 dt eixt q tð Þq 0ð Þh i in the presence of the external
force. Experimentally Sf xð Þ has a predominant peak at x ¼ X; as the signature of
the bona-fide resonance, and the secondary peak at x ¼ 3X; which is generated by
the system nonlinearity (Fig. 18.4). Analytically, because the force is a perturba-
tion, q tð Þ is can be separated into noisy background and periodic components so
that the power spectrum is given by (Jung and Hänggi 1989)

Fig. 18.3 The power amplification

factor P ¼ vq Xð Þ�� ��2 has a stochastic
resonance peak at an optimal value
of the noise-strength D. The peak
position and height depend on the
frequency X

Fig. 18.4 The power spec-
trum Sf xð Þ of the process in
the presence of an oscillatory
force with the frequency X
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Sf xð Þ � 1
2
pa2 vq Xð Þ�� ��2 d x� Xð Þþ d xþXð Þf gþ S xð Þ: ð18:13Þ

vq Xð Þ�� ��2 is proportional to the height of the primary delta peak at x ¼ X; which is
superimposed on the force-free power spectrum of the noisy background
S xð Þ: S xð Þ; the Fourier transform of (18.9), decays with the frequency as a
Lorentzian, S xð Þ ¼ hDq2i0sK=½1þ xsK=2ð Þ2�:

Another signature of SR is the signal-to-noise-ratio (SNR) defined and given by

SNR ¼ lim
Dx!0

ZXþDx

X�Dx

dx Sf xð Þ=S Xð Þ

¼ pa2 Dq2
� �

0RK Dð Þ=f2D2g
ð18:14Þ

where RK ¼ s�1
K is the Kramers rate. The SNR also exhibits a peak at an optimal

noise strength; it is adopted as another measure of SR in some experiments
(Wiesenfeld and Moss 1995).

The SR can be applied to detect the weak signals in a noisy environment in a
wide variety of the situations in nature and technologies, such as signal processing,
nonlinear optics, solid state devices, including biological systems such as sensory
neurons, depending on the nature of the noises. In particular in the biological
systems on mesoscales are susceptible to the ubiquitous thermal fluctuations, which
can use the SR to modulate biological conformational transitions, as exemplified
below.

P18.1 A dynamical state of a biopolymer undergoes transition between two states
1 and 2, with rates given by R1!2 ¼ Ce�Df12=kBT and R2!1 ¼ Ce�Df21=kBT , where Dfij
is the free energy barrier for the transitions. Suppose that Df12 ¼ De� TDs;Df21 ¼
De where De[ 0 and Ds is the internal energy and entropy changes that are
independent of temperature T. Apply a weak oscillating force of the frequency x
that couples with the reaction coordinate. If the force induces a stochastic reso-
nance, what is the optimal value for the noise strength kBT? How does it depend on
the entropy changes Ds?

18.1.2 Biological Examples

Ion Channel

An ion channel is a protein nano-machine that regulates the ionic transport through
a membrane, thus plays a fundamental role in transmitting electric signals in nerve
cells. A channel can open and close in response to an external stimuli; the
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voltage-gated ion channel undergoes conformational transitions between a closed
state and open state depending on the membrane potential (Fig. 18.5a).

The dynamics of ion channel transitions and the associated transmembrane ion
transport is an enormously complicated problem requiring multiscale descriptions.
In a most coarse-grained description of voltage-gated channels, the single, relevant
degree of freedom q tð Þ can be chosen as the position of the gating charge, repre-
sentive of positively charged helices within the channel, which is believed to be the
major component of voltage sensor. An increase of membrane potential makes this
gating charge move toward the extracellular side, triggering a conformational
transition to the open, conductive state. In this coarse-grained picture, the gating
charge can be considered to be a Brownian particle hopping between two confor-
mational states.

In the presence of a noisy macromolecular and fluid environment, the
center-of-mass position q of the gating charge is subject to its complex free energy
landscape, with the free energy parameters such as activation barrier sensitively
depending on temperature. For a guinea pig ileal muscle channel for which data on
the parameters as well as the rates are available, a double well free energy model for
the two state transitions was constructed (Parc et al. 2009). An important feature
here is that the transition rates are not Arrhenius-like because of the
temperature-dependent activation barrier. With a weak, oscillating voltage added to
a constant potential across the membrane, a simulation of the gating charge dis-
placement showed its power spectrum Sf xð Þ indeed manifested the SR peak at the
driving frequency x ¼ X. The peak height Sf Xð Þ is maximum at an optimal noise
strength, which is found to be just the body temperature TSR ¼ 320K of the guinea
pig (Fig. 18.5b)! The ion channel, owing to the flexible structures, opens and
closes in a maximum coherence with the oscillating membrane potential at the
body temperature. This suggests that the body temperature is not accidental
but, possibly, an outcome of nature’s selection to make it a good noise essential
for living.

Fig. 18.5 a A schematic picture of a voltage-gated ion channel. With a membrane potential
applied the gating charge (positively charged helix) shifts to the extra-cellular side inducing the
channel to open. b The peak in the power spectrum Sf Xð Þ for the gating charge flow emerges
around 320 K in a guinea pig ileal muscle channel. Adapted from Parc et al. (2009)
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Biopolymers Under Tension

RNA molecules are biopolymers that carry and relocate hereditary information of
vital importance. The RNA folds into unique three dimensional conformation called
tertiary structure, by sequential binding of an essential secondary structure, named
as RNA hairpin.

The single-molecule experiments showed how the RNA hairpins subject to a
stretching force provided by optical tweezers undergo conformational changes from
folded to unfolded states (Fig. 18.6). A Brownian dynamic simulation of the
folding-unfolding trajectories of a model 22-nucleotide P5GA RNA hairpin under a
constant force f indicates that the free energy as a function of the extension z is
bistable (Fig. 18.6b). The mean folding and unfolding times are the Kramers times

Fig. 18.6 a P5GA RNA hairpin under a stretching force exerted by an optical tweezer. b A
Brownian dynamic simulation on a model 22-nucleotide P5GA RNA hairpin shows that,
depending on the force f ; the free energy of the extension is bistable with two conformational
states, a folded state at the extension zF ; and a unfolded state at zU and the transition state (barrier
top) at zTS: c The time trajectories of the extension under a time dependent tension f þ df cosXt
with f ¼ 17 pN; df ¼ 1:4 pN from a Brownian dynamic simulation. The transition from the
unfolded state to the folded state synchronizes to the periodic driving of the resonant period
10.2 ms, while it is incoherent to the oscillations with smaller and higher periods. Adapted from
Kim et al. (2012)
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for crossing the free energy barrier from right to left and vice versa, which for the
case f ¼ 17 pN are sF fð Þ ¼ 10.3 ms and sU fð Þ ¼ 0:5 ms, respectively.

With a small oscillatory force df cosXt with df ¼ 1:4 pN plus the constant force
f ¼ 17 pN applied on each segment of the RNA hairpin, the SR of the folding-
unfolding dynamics was studied (Kim et al. 2012). The simulations show that
although the probability of being in the folded state at a large force such as f ¼ 17 pN
is as low as � 5%, folding transitions occur in coherence to the oscillation if its
period TX � 2p=X is tuned to be the optimal value ’ 10.2 ms (Fig. 18.5c).
Remarkably this TX is approximately the sum of the mean folding and unfolding
transition times in the absence of oscillatory driving,

TX ¼ sF fð Þþ sU fð Þ � 10:8 ms; ð18:15Þ

which is the matching SR condition for asymmetric bi-stable potential that gener-
alizes (18.4).

Added to the thermal fluctuation, there are plenty of athermal, nonequi-
librium noises in vivo biological systems. The phenomenon of SR means that
biopolymers can filter their intrinsic resonance frequencies from the spectrum
of external signals and non-equilibrium fluctuations. The particular frequency
mode out of the nonequilibrium noises, although weak, may synchronize (SR) the
transition dynamics of biopolymers, which can be important to biological functions.

The linear response theory allows us to determine the change of the extension of
a polymer in response to an additional time-dependent force from time correlation
of the extension. If it decays exponentially with a single relaxation time s,

DX tð ÞDX 0ð Þh i0 ¼ DXð Þ2
D E

0
e�t=s; ð18:16Þ

we then have

P ¼ v Xð Þj j2 ¼
DXð Þ2

D E
0

kBTð Þ2
1

1þ sXð Þ2 : ð18:17Þ

Indeed the power amplification P is maximum at an optimal temperature TSR if s in
this model has a certain temperature dependence. It was shown that the extension of
a stretched worm-like chain in water can show such behavior (Kim and Sung 2012).

18.2 Resonant Activation (RA) and Stochastic Ratchet

The free energy function to which a dynamical state is subject may fluctuate and be
modulated in time, away from equilibrium in biological environments, due to
reactivity and external noises. The mean first passage time (MFPT) required to
cross over the fluctuating barrier may exhibit a minimum when the
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characteristic time of the fluctuation is optimized. This is another kind of
noise-induced resonance phenomenon called the resonant activation we will sudy
here.

18.2.1 Model

As a simple analytical model, Doering and Gadoua (1992) considered the
piece-wise linear potential V qð Þ; which flips randomly between two configurations
Vþ qð Þ and V� qð Þ with maxima Eþ and E� respectively (Fig. 18.7) as a dichotomic
process. If the flipping rates between two potential are c, the master equation for
P� tð Þ; the probability that the state to be at the potential V� at time t is

@

@t
Pþ tð Þ ¼ �cPþ tð Þþ cP� tð Þ ð18:18Þ

@

@t
P� tð Þ ¼ �cP� tð Þþ cPþ tð Þ ð18:19Þ

which is similar to the (14.38), (14.39) we studied. The densities of the joint
probability P� q; tð Þ that the dynamical state assumes q and each configuration V�
satisfies the coupled Fokker-Planck equations:

Fig. 18.7 A fluctuating poten-
tial V� qð Þ for the problem. The
barrier height of the triangular
potential fluctuates between
Eþ and E� at rate c:

Fig. 18.8 The mean-first pas-
sage time s versus the flipping
rate c of the dichotomic noise.
Adapted from Doering and
Gadoua (1992) with permis-
sion. Copyright (1992) by the
American Physical Society
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@

@t
Pþ q; tð Þ ¼ �cþLþ½ �Pþ q; tð Þþ cP� q; tð Þ ð18:20Þ

@

@t
P� q; tð Þ ¼ cPþ q; tð Þþ �cþL�½ �P� q; tð Þ; ð18:21Þ

where L� ¼ @=@q �U� þD@=@qf g is the FP operator with U� ¼ �E�=L, the
constant drift toward each configuration.

We consider the first passage problem, where the state variable, initially at q ¼ 0
(the bottom of the left well, Fig. 18.7) crosses over the fluctuating barrier. The
initial condition is P� q; 0ð Þ ¼ d qð Þ=2 while we assign the absorbing boundary
conditions at the barrier top, P� q ¼ L; tð Þ ¼ 0; as well as the reflecting one ðU� �
D@=@qÞP� q ¼ 0; tð Þ ¼ 0 on the left wall. From (16.4), the MFPT is given by

s ¼
Z1

0

dt
ZL

0

dqfPþ q; tð ÞþP� q; tð Þg: ð18:22Þ

For the case where the barrier height fluctuates between Eþ and E� (with the
choice of Eþ ¼ �E� ¼ EÞ; an analytical but complicated expression for s were
obtained resulting in Fig. 18.8 (Doering and Gaduoa 2002). To highlight physics
that underlies the result, we summarize two limiting situations. For c 	 D=L2; that
is, for the barrier flipping much slower than the diffusion over the length time L; the
MFPT approaches the average of the MFPTs for each potential configurations:

s ¼ 1
2

s Eð Þþ s �Eð Þf g ð18:23Þ

where

s Eð Þ ¼ L2

E
D
E

eE=D � 1
	 


� 1
� �

ð18:24Þ

is MFPT for traversing the length L under the potential Vþ qð Þ (that is, under a
constant backward bias U ¼ �E=L, (16.17)). Due to the exponential factor s Eð Þ
dominates the average (18.23) and is much longer than that in the absence of the
flipping potential, that is, the free diffusion time, s 0ð Þ ¼ L2=2D. In the other limit
when the flipping is much faster than the diffusion, c � D=L2ð Þ; the q feels the
average potential �E ¼ Eþ þE�ð Þ=2, which is zero, so that

s ¼ L2

�E
D
�E

e
�E=D � 1

	 

� 1

� �
¼ s 0ð Þ; ð18:25Þ
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the time for free diffusion. At intermediate flipping rates, however, the MFPT is less
than either of these two limits, taking a minimum sR at an optimal rates which is
comparable to the inverse of the diffusion time in the absence of the flipping
potential (Fig. 18.8). This optimal condition much resembles the matching condi-
tion of SR.

Example: Rigid Polymer Translocation Under a Fluctuating Environment

A simple variant of the above analysis can be applied to biological problems. The
cellular environments fluctuate ceaselessly not only thermally but also by a non
equilibrium means, e.g., via the chemical reactions and external noises. We con-
sider the translocation of a stiff chain (such as a double stranded DNA fragment
shorter than its persistence length (50 nm) of N segments each of length
l (Fig. 18.9a). Because of the chain stiffness, the translocation is not affected by the
chain entropy but by the chemical potential difference Dl per segment across the
membrane. As a simple model of the thermal noise added to Dl; we consider the

(a) (b)

(c)

Fig. 18.9 a A rigid polymer translocating through a pore in a membrane, which is depicted as
crossing the barrier of b the fluctuating free energy F nð Þ: c Resonant (minimal) translocation time
sR in units of s0 � L2= 2Dð Þ versus chemical potential fluctuation amplitude aj j= kBT=Nð Þ.
ð Dlh i= kBT=Nð Þ ¼ 10 (A), ð Dlh i= kBT=Nð Þ ¼ 0 (B). For large fluctuation amplitude, sR is
determined mainly by aj j= kBT=Nð Þ. Small nonequilibrium noise enhance translocation rate.
Republished from Park and Sung (1998); permission conveyed through Copyright Clearance
Center, Inc.
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dichotomic process a tð Þ that flips between two levels, �a with a rate c (Fig. 18.9b).
Then, the stochastic equation for n tð Þ, the number of segments in the trans-side is

fl _n ¼ � @

l@n
F nð Þþ fR n; tð Þ ¼ � Dlþ a tð Þf g=lþ fR n; tð Þ ð18:26Þ

where fR n; tð Þ is the usual thermal noise, and F nð Þ ¼ Dlþ a tð Þf gn is the fluctu-
ating free energy shown Fig. 18.8b.

The FPE for P� n; tð Þ that the chain is in the state �a with the number of
translocated segment n satisfies (18.20) and (18.21) with the operator
L� ¼ @=l@n �U � þD@=l@nf g. Here U� ¼ �bD Dl� að Þ=l and D ¼ kBT=f are
respectively the drift velocity and the diffusivity of the chain. With an adsorbing BC
at n ¼ N and a reflecting BC at n ¼ 0 as well as the initial condition,
P� n; 0ð Þ ¼ d nð Þ=2, the MFPT, namely, translocation time was obtained as a
function of the flipping rate c and amplitude a (Park and Sung 1998). It is shown
that the MFPT indeed exhibit its minimum sR at the optimal flipping rate c�D=L2.

In Fig. 18.9c, the resultant minimum translocation time sR is depicted as a
function of the amplitude a of the dichotomic noise for given values of Dl. First
consider Dl ¼ 0, the case of no bias. The dichotomic noise can reduce the
translocation time to one-tenth of the free diffusion time s0 ¼ L2=2D, if a exceeds
100 kBT=N, which is a small fraction of kBT=N for a long chain. More surprising
is that even for the case of the backward bias the translocation time can be
reduced below the free diffusion time for large N.

Fig. 18.10 Resonant activation (RA) in folding and unfolding transition of an RNA hairpin under
the small oscillating tension dfcosXt added to the constant tension f. The folding and unfolding
times sF ; sU become minima when the periods of the oscillation X are optimal. Adapted from Kim
et al. (2012)

18.2 Resonant Activation (RA) and Stochastic Ratchet 359



Stretched RNA Hairpin

An oscillatory tension added on the stretched RNA hairpin can also modulate the
free energy of extension (Fig. 18.6b). Figure 18.10 shows that at optimal periods of
oscillation both the folding and unfolding times can be be minima, which deepens
as the amplitude of the oscillation increase. The optimal periods are comparable to
the period of oscillation within the wells of the free energy landscape (Fig. 18.6b),
so are much shorter than that required for the SR (18.15).

18.3 Stochastic Ratchets

The possibility of extracting an usable work from fluctuations has been a
long-standing problem of immense interest. In the presence of the (equilibrium)
thermal fluctuations alone which satisfies the FDT, fR tð ÞfR t0ð Þh i ¼ 2f kBTd tð Þ; a
Brownian particle approaches to the equilibrium, and thus does not perform net
motion in an unbiased potential. The directed motion, however, can occur in
locally asymmetric potential called ‘ratchet’ subject to athermal noises that
drives the system out of equilibrium (Astumian and Hänggi 2002). Furthermore,
the resonant activation under the fluctuating potentials can be utilized to enhance
the directed motion in an optimal way.

We consider the one-dimensional overdamped Brownian motion under the
ratchet potential U xð Þ; which is a periodic, but locally piece-wise linear and
asymmetric (Fig. 18.11). A dichotomic noise switches the potential between U xð Þ
and zero with the rate c. Then the joint probability in the flashing potential is given
by the FPE, (18.20) and (18.21) with the drift is given by U þ ¼ bDU0 xð Þ and
U� ¼ 0.

Fig. 18.11 The ratchet potential that flips between 0 to U xð Þ. Due to the asymmetry, the flipping
noise drives the Brownian particle to move right
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The net current of the Brownian particle is

J x; tð Þ ¼ �D bU0 xð ÞPþ x; tð Þþ @

@x
Pþ x; tð ÞþP� x; tð Þf g

� �
: ð18:27Þ

In the absence of the flipping, despite the asymmetry of the ratchet potential, the
J becomes zero in the stationary state, at which the probability density approaches
P xð Þ ¼ Pþ xð Þ� e�bU xð Þ. The question is: does the flipping induce a net current? If
it does, in what direction?

If the flipping is very slow, the net current is zero, because it is the average of the
current generated in each configuration. For the fast flipping, it, resulting from the
average potential, is also zero. But at an optimal flipping time that is comparable to
the diffusion time, the net current can be induced. This can be explained as follows.
In the presence of the ratchet potential, the particle will likely to be at a potential
minimum. When the potential is turned off the particle begins to freely diffuse.
After the potential is switched on again, it will have more chance to be near the next
well located at the right hand side, than to be near the well at the left (Fig. 18.11).
This way being repeated, the particle tends to move to the right systematically. Also
it was shown that the flipping noise can drive the particle on the ratchet
potential to move uphill against constant applied force (Astumian and Bier
1994).

This means that the system is capable of extracting energy from the fluc-
tuations to use for work. The idea of this noise-assisted phenomenon has been
applied to biomolecular motors, such as protein motors along microtubules, where
the fluctuation is brought about by the chemical reactions involved. In this way, the
stochastic ratchet idea explains how the molecular motors are capable of converting
chemical energy into mechanical motion and force.
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Chapter 19
Transport Phenomena and Fluid
Dynamics

Most systems in nature are dynamic, that is, change in time. In non-equilibrium
processes there are flows (transports) of mass, momentum and energy, from
one place to the other. If a system is near equilibrium the transports occur in such
ways that the distributions of the mass, momentum, and energy, which are
non-uniform and time dependent, are relaxed to the equilibrium, where there are no
flows. One example is the diffusion of particles from a crowded region to a less one.
The equilibrium state represents a stationary state. The other stationary state is the
non-equilibrium, steady state where there are constant flows driven by external
means. For example, a rod whose ends are maintained at two different temperatures
is in a steady state with a constant heat flow from a high temperature end to a lower
one. The temperature gradient in the rod is the driving force for the heat flow.

Biological complexes are bathed in aqueous environments. Over the scales much
longer than the mean free length between collisions of the solvent molecules, the
solvents can be treated as continuous fluids. The complex fluids such as solutions of
biopolymers and cells probed over a certain long length scale can also be treated as
continua. For these cases the hydrodynamic description of transport in terms of
densities of fluids’ conserved quantities—the mass, momentum, and energy—
is very useful. The governing dynamics for these hydrodynamic variables, which is
also called hydrodynamics or fluid mechanics, is widely applicable to the problems,
not only in basic sciences but also in engineering disciplines. For biological
organisms in particular, fluid motion is something with which they must contend: a
factor to which their design reflects adaptation (Vogel 1984). In this chapter we
study basic principles and apply them to some important fluid flows which allow
analytical treatments.
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19.1 Hydrodynamic Transport Equations

Total mass, momentum, and energy of an isolated fluid system are conserved. The
densities of such conserved quantities are called hydrodynamic variables or
hydrodynamic fields, collectively denoted by h r; tð Þ The temporal change of a
conserved quantity within a fixed volume V ,

R
V dV h r; tð Þ; is given by

d
dt

Z
dVh r; tð Þ ¼ �

Z
A

dA � Jh r; tð Þ; ð19:1Þ

where the right hand side is the total amount of the quantity that flows per unit time
across the surface A enclosing the volume V, as shown in Fig. 19.1. Here Jh is the
flow per unit area (flux) at a point r and a time t. Note that dA is the surface area
element vector in the outward normal direction so that the negative sign in (19.1)
indicates that the outflow across the area decreases the quantity in the volume. By
the divergence theorem we haveZ

A

dA � Jh r; tð Þ ¼
Z
V
dV r � Jh r; tð Þ: ð19:2Þ

Because (19.2) must be satisfied for an arbitrary small volume V , the combination
of (19.1) and (19.2) yields

@

@t
h r; tð Þþr � Jh r; tð Þ ¼ 0; ð19:3Þ

which is the continuity equation for the hydrodynamic density h r; tð Þ for all points
in the fluid. Here Jh is the associated current (flux) at a point r and at a time t. In the
Fourier space (19.3) is transformed to

@

@t
h q; tð Þþ iq � Jh q; tð Þ ¼ 0; ð19:4Þ

where h q; tð Þ ¼ R dr e�iq�rh r; tð Þ. Equation (19.4) assures that @hðq; tÞ=@t ffi 0 for
the description over a large wavelength (small q); that the hydrodynamic fields vary
slowly over long length scales and thus remain relevant variables of the fluids for
mesoscopic descriptions.

( , )
Fig. 19.1 The hydrodynamic
quantities flow ðJhÞ through a
surface A of a fixed volume V
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19.1.1 Mass Transport and the Diffusion Equation

When the h is mass density denoted by q; it satisfies the continuity equation,

@q r; tð Þ
@t

þr � Jq r; tð Þ ¼ 0 ð19:5Þ

Jq r; tð Þ ¼ q r; tð Þu r; tð Þ is the mass density flux, where u r; tð Þ is the local fluid
velocity. We can rewrite (19.5) as

Dq
Dt

¼ �qr � u; ð19:6Þ

where

Dq
Dt

¼ lim
Dt!0

q rþDr; tþDtð Þ=Dt � @q
@t

þ u � rq ð19:7Þ

is the convective time derivative (taken at a fluid point r tð Þ that flows with the
velocity u). Equation (19.6) tells us that, if

r � u ¼ 0; ð19:8Þ

then, Dq=Dt ¼ 0, that is, the fluid density is constant throughout the flow. It
follows that for incompressible flow the continuity equation is equivalent to (19.8).

Now consider that the fluid is a mixture of species k with no chemical reaction.
Because the mass of each species is conserved, the equation

@qk r; tð Þ
@t

þr � qk r; tð Þuk r; tð Þ ¼ 0 ð19:9Þ

is satisfied. Furthermore (19.5) should hold for the mixture mass density

q r; tð Þ ¼
X
k

qk r; tð Þ ð19:10Þ

and the mixture velocity

u r; tð Þ ¼
P

k qk r; tð Þuk r; tð Þ
q r; tð Þ : ð19:11Þ

Defining the mass density flux for each species as

Jqk r; tð Þ ¼ qk r; tð Þ uk r; tð Þ � u r; tð Þ½ �; ð19:12Þ

19.1 Hydrodynamic Transport Equations 365



we have the equation

@qk r; tð Þ
@t

¼ �r � Jqk r; tð Þ � r � fqk r; tð Þu r; tð Þg; ð19:13Þ

or

Dqk
Dt

¼ @

@t
þ u � r

� �
qk ¼ �r � Jqk � qkr � u: ð19:14Þ

Suppose that there is no convection (the fluid as a whole is stationary, u ¼ 0).
The flux of each species is proportional to the gradient of the species density; the
particles flow from the region of higher concentration to that of lower concentra-
tion, as stated by the so-called Fick’s law:

Jqk r; tð Þ ¼ �Dkrqk r; tð Þ; ð19:15Þ

where Dk is the diffusion coefficient of the species k. The linear relation above,
called as the constitutive relation of diffusion, is substituted into (19.13) to yield the
diffusion equation

@qk r; tð Þ
@t

¼ Dkr2qk r; tð Þ: ð19:16Þ

In Chap. 14, we studied the various aspects and applications of the diffusion of
Brownian particles with and without an external force or a flow. The Brownian
particles constitute the first species of a binary mixture with the second species
representing the background, the host fluid. For an infinitely dilute concentration of
Brownian particles the u in (19.11) is solely given by the background fluid. For an
incompressible flow, (19.14) yields

Dqk r; tð Þ
Dt

¼ Dkr2qk r; tð Þ; ð19:17Þ

which depicts the particle diffusion relative to convection.

19.1.2 Momentum Transport and the Navier-Stokes
Equation

Another hydrodynamic density of interest is the momentum density of fluid, qu. It
is a vector quantity, which is the same as Jq; the flux of the scalar mass density. In
the presence of an external force, the momentum within a fixed volume V changes
following the equation
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d
dt

Z
V

dVqu ¼ �
Z
A

dA � Jqu þ
Z
V

dV f ; ð19:18Þ

where the Jqu r; tð Þ is the momentum density flux tensor and f r; tð Þ is the external
force density, i.e., the local force acting on unit fluid volume. The i-th compo-
nent of the above equation reads:

d
dt

Z
V

dVqui ¼ �
X
j

Z
A

dAj Jqu
� �

ji þ
Z
V

dV fi ð19:19Þ

The first term on the right-hand side (RHS) represents the i-th component
momentum flow across the surface A enclosing the volume; the tensor element
Jqu
� �

ji denotes the i-th component momentum transferred per unit time and per unit

area along the j axis. The equation for the local momentum density then is

@

@t
quð Þþr � Jqu ¼ f : ð19:20Þ

One part of Jqu
� �

ji is the convective momentum flux quið Þuj. Another is given by

pressure p acting isotropically on the fluid, contributing to the RHS of (19.19):

�
Z
A

dA p

0
@

1
A

i

¼ �
Z
A

dAi p ¼ �
X
j

Z
A

dAj pdij: ð19:21Þ

These two contributions constitute the momentum flux tensor of an inviscid or
ideal fluid:

Jqu ¼ quuþ pI; ð19:22Þ

where I is the unit tensor with the element dij. Substituting the above equation into
(19.18), and using the divergence theorem, we obtain

@

@t
quð Þþr � quu ¼ �rpþ f : ð19:23Þ

Via (19.5), (19.23) can be transformed to a more familiar form:

q
Du
Dt

� q
@

@t
þ u � r

� �
u ¼ �rpþ f ; ð19:24Þ
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Equation (19.24) is an extension of the Newton’s equation of motion to an ideal
fluid under convection: the LHS is the acceleration of the fluid element in con-
vection, which is driven by the pressure and the external force (RHS).

P19.1 Show that the pressure of a stationary ideal gas satisfying p0 ¼ qkBT=m at x
under a uniform gravity g along the x-axis is given by

p xð Þ ¼ p0 exp �mgx= kBTð Þð Þ:

P19.2 Show that in a stationary flow of inviscid fluid under gravity along x axis,
the quantity qu2=2þ pþ qgx is constant (Bernoulli’s law). As the consequence of
the law, the pressure of the fluid acting on a narrower constriction through which it
flows is smaller (the figure below). If we apply this result to a blood flow, flow speed
can be so high in the narrow constriction that the artery may collapse causing a
transient blockage of the flow.

But real fluids are viscous. The equation of motion for such fluids is called the
Navier-Stokes equation, (19.33, 19.34), the derivation of which is given below. In a
real fluid, there is another mechanism of momentum transport due to the viscosity.
For illustration, consider a steady shear flow along z-axis,

u ¼ uz xð Þẑ ð19:25Þ

where uz increases with x (Fig. 19.2). Imagine a plane defined by x ¼ x0 in the
fluid. Due to the shear, phenomenologically, the fluid above the plane exerts a force
on the fluid below the plane to the positive z direction. That is, in a shear flow the
momentum flows from the fluid region of higher velocity to that of the lower
velocity. For small values of the shear, the force acting on the area dAx of the plane
is given by

( )0
Fig. 19.2 The fluid x[ x0ð Þ with a
higher velocity exerts a force in the
positive z direction on the fluid
x\x0ð Þ with a lower velocity
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dFz ¼ g
@uz
@x

dAx; ð19:26Þ

where the proportionality constant g is a transport coefficient of the fluid called
shear viscosity, or simply viscosity. In view of the relation (19.19) this force can be
written in terms of the momentum flux ðJquÞzx over the surface element directed
outward from the fluid below, dFz ¼ �ðJquÞzxdAx, which, upon comparison with
(19.26), leads to

Jqu
� �

xz¼ �g
@uz
@x

: ð19:27Þ

This is called the Newton’s law of viscous flow.
In general the momentum flux is expressed as

Jqu ¼ quuþ r: ð19:28Þ

r is pressure tensor or stress tensor in the fluid; it consists of the isotropic pressure
term pI and a deviatoric term r0 due to the velocity gradient, taken to be usually a
second order symmetric tensor (Landau and Lifshitz 1975; Batchelor 2000):

rij ¼ pdij þ r0ij ¼ pdij � 2g _cij � gBr � udij: ð19:29Þ

Here

_cij ¼ _c½ �ij¼
1
2

@ui
@rj

þ @uj
@ri

� �
� 1
3
r � udij ð19:30Þ

is the traceless part that pertains to pure shear without changing the volume of a
fluid element. In the simple shear flow geometry considered above (Fig. 19.2), the
second term of the last equality in (19.29) is reduced to �2g _cij ¼ �g@uz =@x,
which is the force on the fluid per unit area resisting the shear. The last term is the
force per unit area resisting volumetric change induced by the flow, involving the
bulk viscosity gB.

Substitution of (19.28) into (19.20) yields

@

@t
quð Þþr � quu ¼ �r � rþ f ð19:31Þ

or a more familiar form:
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q
Du
Dt

� q
@

@t
þ u � r

� �
u ¼ �r � rþ f ð19:32Þ

where (19.5) is used. This is the Newton’s equation of motion for a viscous fluid per
unit volume.

Wewill consider the situations where the external force is absent, unless otherwise
specified. The stress force on the flowing fluid per unit volume is �r � r. Thus the
force acting on a particle following the flow is � RV dV r � r ¼ � H dA � r ¼
� H dA n � r, where V and A are the volume and surface area of the particle.

P19.3 What is the buoyance force on a spherical particle of a mass M and radius R
which undergoes sedimentation under a gravity g?

Equation (19.32) is written explicitly as

q
@

@t
þ u � r

� �
u ¼ �rpþ gr2uþ gB þ

1
3
g

� �
rr � u; ð19:33Þ

For many practical purposes, we will be interested in incompressible flows where
r � u ¼ 0, which simplifies the above equation to the form called the Navier-Stokes
equation:

q
@

@t
þ u � r

� �
u ¼ �rpþ gr2u: ð19:34Þ

The (19.33) and (19.34) are to be solved subject to boundary conditions for various
flow situations in the next section.

19.1.3 Energy Transport and the Heat Conduction

Finally we consider the hydrodynamic description of the energy transport. In the
absence of an external force, the energy density can be written as e ¼ qu2=2þ e;
where e is the internal energy density. The net energy of the fluid within a volume
V varies in time:

d
dt

Z
V

dV e r; tð Þ ¼ �
Z
A

dA � u e�
Z
A

dA � r � u�
Z
A

dA � Jq: ð19:35Þ

The first term on the RHS is energy flow by mass convection. The second term is
the rate of work done on the fluid by the stress acting on the surface (recall that
�dA � r is the force on an area dA). The last term is the energy flow by heat
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conduction, where Jq is the heat flux vector. The spatiotemporal change of energy
density e r; tð Þ satisfies

@e r; tð Þ=@tþr � Je r; tð Þ ¼ 0; ð19:36Þ

where Je is the energy density flux given by

Je ¼ euþ r � uþ Jq: ð19:37Þ

Without derivation we show that the energy density equation is transformed to
the equation for the local temperature T r; tð Þ:

qcp
@

@t
þ u � r

� �
T ¼ �r � Jq � r0 � ru: ð19:38Þ

Here cp r; tð Þ is the local heat capacity per unit mass at a constant pressure. The first
term on RHS is the heat flow that will be discussed below. The second terms is the
viscous energy dissipation on the flowing fluid; �r0 � ru ¼ 2g _c � _cþ gB r � uð Þ2 is
positive, giving rise to a temperature increase.

P19.4 Find the energy dissipation per volume for a steady state elongational flow
of water, u ¼ _e ẑz� 1

2 xx̂� 1
2 yŷ

� �
. Write down the equation for the temperature

distribution.

The constitutive relation for the heat flux is the Fourier law,

Jq ¼ �jTrT ð19:39Þ

descriptive of heat flows from a hot place to a cold one. The transport coefficient jT
is called the heat conductivity. Considering a simple case in which there is no
convection, (19.38) becomes remarkably simple:

qcp
@T
@t

¼ jTr2T: ð19:40Þ

This equation can be rewritten as

@T
@t

¼ DTr2T; ð19:41Þ

where DT ¼ jT= qcp
� �

is called the thermal diffusion constant. The equation can be
analytically solved for the temperature distribution given the initial and boundary
conditions.

P19.5 Consider the propagation of a temperature wave to the ground (the semi-
infinite medium ðx[ 0Þ driven by its surface x ¼ 0ð Þ temperature kept as
T x ¼ 0ð Þ ¼ T0cosxt: Find that the temperature distribution in the ground is given
by T x; tð Þ ¼ T0 expð�x=dÞcos xt � x=dð Þ where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DT=x
p

. With the thermal
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diffusivity of the ground in the order of 102m2s�1; what is the value of d for the
annual variation of the temperature x ¼ 2p=year?

19.1.4 Boltzmann Equation Explains Transport Equations
and Time-Irreversibility

Solutions to the transport equations above can be used to describe a variety of
hydrodynamic phenomena such as diffusion, laminar flow, and heat transport.
Fundamentally, these macroscopic transport equations are derived from a micro-
scopic kinetic equations, e.g., the Boltzmann equation for the case of dilute gas. The
Boltzmann equation is an equation for evolution of the probability density of a
particle at velocity v and position r; which reads

@f rv; tð Þ
@t

þ v � rf rv; tð Þ ¼ J ffð Þ: ð19:42Þ

Here J ffð Þ denotes the so-called collision integral that describes the temporal
change of the probability density caused by two-particle collisions. The hydrody-
namic densities, which are proportional to the velocity moments of f rv; tð Þ; e.g.,
qu ¼ m

R
dvvf rv; tð Þ; are shown to satisfy the continuity equations. It took a long

time before Chapmann and Enskog formulated the Boltzmann equation’s particular
solutions to derive the hydrodynamic transport equations along with the transport
coefficients therein in terms of molecular parameters and collision mechanics of two
interacting particles. The derivations of Boltzmann equation and the transport
phenomena of gases therefrom mark an important page in history of
non-equilibrium statistical mechanics.

One important feature of the transport phenomena is the time irreversibility.
Consider that the particles initially confined in a volume freely diffuse to a region of
lower particle density. The process is irreversible; in the lifetime of universe, the
particle will never get back into the initial volume, by the second law of thermo-
dynamics. The irreversibility can be seen from the diffusion equation for the den-
sity, @n r; tð Þ=@t ¼ Dr2n r; tð Þ; which is not invariant with respect to the time
reversal operation, t ! �t; but becomes �@n r;�tð Þ=@t ¼ Dr2n r;�tð Þ: Because
of the impossibility of this equation, the time reversed motion is not natural. There
is only one direction, time arrow, from the past to the future. But look at the more
fundamental, microscopic equation of the motion for the constituent particles, that
is, the Newton’s equation, mdvi=dt ¼ F rj

� �
for all particles labeled as i. This

equation is invariant with respect to time reversal upon which vi ! �vi: Indeed a
“time-backward” trajectory cannot be distinguished from a “time-forward” trajec-
tory; the particles move just as well “backwards” as they do “forwards”. This is
fundamentally at odds with the natural phenomena we observe macroscopically!
The problem is called the time irreversibility paradox.

Using (19.42), Boltzmann showed that the entropy defined by
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S tð Þ ¼ �kB

ZZ
drdv f ln f ; ð19:43Þ

can only increase to the maximum at equilibrium, where function f becomes the
Maxwell-Boltzmann distribution. This irreversibility is due to the coarse-grained
description of the fluids in terms of one-particle PDF f and to an important assump-
tion, called the ansatz of molecular chaos, that the two molecules about to collide are
statistically independent. Immediately after the collision, however, the twomolecules
are dynamically correlated (in positions and velocities). In this way the time arrow is
introduced. The coarse-grained description using the Boltzmann equation and the
ansatz of molecular chaos imbedded therein are indeed valid for low density gas
transport phenomena; after many collisions with other molecules, these two mole-
cules will no longer be correlatedwhen they are about to recollide. This explanation of
the time irreversibility paradox caused a lot of controversies historically and in larger
and fundamental scopes yet remains a debated issue (Lebowitz 1993).

We will not dwell on the kinetic theory further, however, because we are more
concerned with simple liquids and complex fluids described on the scales much
longer than the microscopic time and length between molecular collisions. For most
of the situations we are dealing with, the continuum hydrodynamic description with
given transport coefficients is most practical.

19.2 Dynamics of Viscous Flow

Here we focus on the momentum flow of a viscous fluid, which comprises the most
of the area of fluid dynamics. Fluid dynamics covers enormous variety of flow
problems, ranging from the global weather predictions to microscale flows within
human body. Due to the nonlinear term u � ru; the equation of the fluid velocity u,
even the Navier-Stokes equation (19.34) for an incompressible flow, in general, is
notoriously difficult to solve analytically. Below we start with a number of exactly
solvable cases, which are nontrivial and relevant.

19.2.1 A Simple Shear and Planar Flow

Consider a fluid between two large plates, each with an area A, separated by a
distance D. The upper plate is in steady motion at a constant velocity V, while the
other is at rest (Fig. 19.3). The fluid undergoes a shear flow (called the Couette

( )
Fig. 19.3 The Couette flow
bounded by a stationary surface
at x ¼ 0 and moving plate at
x ¼ D
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flow) along z-axis on a y; zð Þ plane, u ¼ uz xð Þẑ, causing the stress rxz ¼ �g@uz=@x:
The above relations reduce (19.33) to a remarkably simple form

q
@

@t
uz x; tð Þ ¼ � @p

@z
þ g

@2uz
@x2

: ð19:44Þ

Furthermore, in the Couette flow situation, the pressure is uniform along
z-direction, so

q
@uz
@t

¼ g
@2uz
@x2

: ð19:45Þ

The velocity uz satisfies the diffusion equation, akin to the equation which we
already studied for the mass and heat diffusions.

P19.6 Consider an unbounded fluid above a plane at x ¼ 0 that moves in the z-
direction with a time dependent velocity V tð Þ ¼ V0 cosxt: Show that the fluid
velocity for x[ 0 is given by

uz tð Þ ¼ V0 cos xt � xq
2g

� �1=2

x

( )
exp � xq

2g

� �1=2

x

( )
:

In a steady state (19.45) is

g
@2uz
@x2

¼ 0: ð19:46Þ

This equation is to be solved subject to two BC, usually the no slip BC, according
to which the fluid velocity on a surface is same as that of the surface: uz ¼ V at
x ¼ D and uz ¼ 0 at x ¼ 0. Thus we find the solution

uz ¼ V
D
x; ð19:47Þ

which shows that the fluid velocity is sheared at a uniform rate V=D along the z-
direction.

The force that the fluid acts on the upper plate is given by

�
Z

dA � r ¼ � �Axð Þrxzẑ ¼ � A
D
gV ẑ ¼ �Fzẑ: ð19:48Þ

It should be noted that the area vector is outward from the plate, A ¼ �Axx̂. This
force is in the opposite direction to the velocity V and to the force Fz (19.26)
applied by the plate to keep it moving with the velocity. On the other hand, the
force by the fluid at the bottom is
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�
Z

dA � r ¼ �Axrxzẑ ¼ A
D
gV ẑ: ð19:49Þ

Pressure-driven planar flow

Suppose that a steady flow between two stationary plates positioned at x ¼ 0 and
x ¼ D is driven by a constant pressure gradient (the pressure difference Dp ¼
p1 � p2 over a long length L: �@p=@z ¼ p1 � p2ð Þ=L ¼ Dp=L (Fig. 19.4). From
(19.44) we have

g
@2uz
@x2

¼ �Dp
L

: ð19:50Þ

With use of the BC uz ¼ 0 on the surfaces, an integration of the above equation
yields the velocity profile

uz ¼ � 1
2g

Dp
L

x x� Dð Þ: ð19:51Þ

The total viscous force on the two plates by the fluid is given by

�
Z

r � dA ¼ g
@uz
@x x¼Dj �Að Þþ @uz

@x x¼0j A

	 

ẑ

¼ Dp
L

DAẑ ¼ aDp ẑ;

ð19:52Þ

where a ¼ DA=L is the cross section. The above equation represents the pressure
force by the fluid; this is opposite in direction to the viscous force acting on the fluid.

19.2.2 The Poiseuille Flow

The flow of the fluid within a narrow cylindrical channel (tube) of radius R
(Fig. 19.5) is driven by a pressure gradient @p=@z ¼ �Dp=L along the z axis.
Equation (19.33) for the steady state in cylindrical r; zð Þ coordinate is given by

g
r
@

@r
r
@uz rð Þ
@r

� �
¼ �Dp

L
: ð19:53Þ

1 2
Fig. 19.4 A pressure-driven
p1 [ p2ð Þ flow between two
stationary plates
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Multiplying the above by r and integrating it over r, we have the equation

@uz rð Þ
@r

¼ � Dp
2gL

rþ c
r

� �
; ð19:54Þ

where the constant c vanishs to assure a finite value for @uz rð Þ=@r at r ¼ 0. We note
that the equation for the shear stress is

rzr ¼ �g@uz rð Þ=@r ¼ Dpr= 2Lð Þ; ð19:55Þ

Integrating (19.54) subject to the no-slip BC, uz r ¼ Rð Þ ¼ 0, leads to the parabolic
velocity profile

uz rð Þ ¼ � Dp
4gL

r2 � R2� �
: ð19:56Þ

Using this, one can obtain the volume flow per unit time (volumetric flow rate)
per length along the flow:

Q ¼
ZR
0

dr2pruz rð Þ ¼ pDp
8gL

R4; ð19:57Þ

This is the famous formula called the Hagen-Poiseuille’s law. It shows the dom-
inant influence ðR4 dependence) of vessel radius on flow and therefore serves as
an important concept to understand how physiological changes in blood vessel
radius affect blood pressure and flow. The formula is the basis of capillary
viscometer, which measures the effective viscosity g by measuring the volume flow.

Finally the viscous force that the fluid acts on the surface is

�
Z

r � dA ¼ 2pRLrzr ẑ ¼ pR2Dp ẑ ; ð19:58Þ

which is equal to the pressure force.

P19.7 Consider a steady state fluid flow through a cylindrical channel of radius R
driven by a pressure gradient over a length L, p1 � p2ð Þ=L: The boundary con-
dition on the wall is given in such a way that the wall stress is balanced by a

== 01 2Fig. 19.5 A pressure-driven
p1 [ p2ð Þ; steady state flow
through a circular channel
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frictional force, �rzr ¼ fsu (the Navier BC). Find the fluid velocity u as a function
of radial distance r. Calculate the volumetric flow rate in terms of the surface
friction parameter fs:

Blood Flow Through a Vessel: The Fahraeus–Lindqvist Effect

Blood is a suspension of mostly red blood cells (RBC) in a fluid called the plasma.
RBC constitute 40–45% volume of a normal human blood, while the plasma,
consisting mostly of water, has the viscosity of about 1.2 centi-Poise (cP) at 37 °C
(1 P ¼ 1 g/cm � s). Assuming the blood suspension to be a homogeneous fluid, the
Poiseuille’s law can be applied to define its effective viscosity, called the apparent
viscosity. The apparent viscosity g of the blood in the tube with a diameter of about
500 lm or larger is then measured to be 3–4 cP. As the diameter becomes smaller
than 300 m, the apparent viscosity does not remain a constant, but decreases
down until about 10 m (Fig. 19.6)! This counter-intuitive phenomenon is known
as the Fahraeus–Lindqvist (FL) effect (1931) (Fig. 19.7).

Related to this effect, it is known that the blood flowing through a narrow vessel
tends to separate into two regions; the RBC tend to be concentrated toward the tube
axis while the plasma tends to stay near the tube wall. As an attempt to explain the
FL effect quantitatively, consider a simple, two-fluid model: the cell-rich fluid
region constitutes the inner cylinder of radius a ¼ R� dð Þ and viscosity gC [ gPð Þ,
while the plasma is in concentric rim of outer radius of R and has the viscosity gP.

From (19.54), the shear stress within the two regions,

�gC
@uz rð Þ
@r

¼ Dp
2L

r; for 0\r\a; ð19:59Þ

/

2 ( )
= 1.8

Fig. 19.6 The Fahreus-Linquivist
effect. The relative viscosityg=gP of
the blood suspension (with RBC
volume fraction 0.45) (solid line)
decreases with diameter 2R. The
dotted line indicates the two-fluid
model result with d ¼ 1:8 lm.
Adapted from Sugihara-Seki and
Fu (2005); permission conveyed
through Copyright Clearance
Center, Inc.
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�gP
@uz rð Þ
@r

¼ Dp
2L

rþ c
r

� �
; for a\r\R; ð19:60Þ

are equal to each other at r ¼ a: This continuity leads to c ¼ 0. Integrating the
equations with the no slip BC uz Rð Þ ¼ 0, we have

uz rð Þ ¼ � Dp
4gcL

r2 þA
� �

; for 0\r\a; ð19:61Þ

uz rð Þ ¼ � Dp
4gPL

r2 � R2� �
; for a\r\R; ð19:62Þ

which are also to be matched at r ¼ a, giving

uz rð Þ ¼ �Dp
4L

r2 � a2

gC
þ a2 � R2

gP

� �
ð19:63Þ

for 0\r\a: The volumetric flow rate is

Q ¼ �Dp
4L

2p
Z a

0
drr

r2 � a2

gC
þ a2 � R2

gP

� �
þ 2p

Z R

a
drr

r2 � R2
� �

gP

	 


¼ pDp
8gCL

a4 þ 2
gC
gP

a2 R2 � a2
� �	 


þ pDP
8gPL

R2 � a2
� �2

¼ pDp
8gCL

R4 aþ k4 1� að Þ� � ¼ QC F k; að Þ

ð19:64Þ

where

QC ¼ pDp
8gCL

R4; a ¼ gC
gP

; k ¼ a
R
; F k; að Þ ¼ aþ k4 1� að Þ: ð19:65Þ

==0Fig. 19.7 Two-fluid model for
blood flow within a narrow ves-
sel. The core region is populated
mostly by the red blood cells,
while the rim region is filled with
the plasma
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(19.64) is set to be pDPR4=8gL, which allows us to identify the apparent
viscosity:

g ¼ gC
F k; að Þ ¼ gC 1þ gC

gP
� 1

� �
1� 1� d

R

� �4
 !" #�1

; ð19:66Þ

where d ¼ R� a ¼ R 1� kð Þ is the cell-free layer thickness. It is shown that, by
putting d to be 1.8 lm independently of R, and gC ¼ 3:2 cP, the apparent viscosity
g is less than gC and decreases with R in a reasonable agreement with experiment
(Sugihara-Seki and Fu 2005), (Fig. 19.6). For R � d; F k; að Þ � 1þ 4d gC=ð
gP � 1Þ=R, so that

g � gC 1� 4
d
R

gC
gP

� 1
� �	 


; ð19:67Þ

On the other hand the energy dissipation per length is given by

_E ¼ 2p
Za
0

drrgC
@uz rð Þ
@r

� �2

þ 2p
ZR
a

drrgP
@uz rð Þ
@r

� �2

¼ p
8

Dp
L

� �2 a4

gC
þ R4 � a4

gP

 �
:

ð19:68Þ

P19.8 Imagine that the blood flows through a tube whose diameter decreases
steadily and infinitesimally along the flow. Suppose that the volumetric flow within
the cell-rich region remains constant along the flow. Using the two-fluid model find
whether an optimal thickness d for the cell-free region can make the energy dis-
sipation minimum _E in the blood flow.

19.2.3 The Low Reynolds Number Approximation
and the Stokes Flow

In the Navier-Stokes equation, there are two competing terms, the nonlinear inertia
term qu � ru and the viscous dissipation term gr2u. The ratio of the inertia term to
the viscous term is called the Reynolds number: Re ¼ qu � ruj j= gr2u

�� �� � qUR=g,
where U and R are characteristic velocity and characteristic length of the flow. If Re
is above a certain critical value so that the nonlinear inertia term is important, the
flow tends to be unpredictable, called turbulent. The turbulence is important in
many practical problems such as large scale weather predictions and airplane
designs, but its fundamental understanding has remained a long standing problem in
physics.
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If the Re is lower than 1 so that the viscous term dominates over the nonlinear
term, the flow tends to be laminar. The laminar flow is mathematically more
tractable. Furthermore for the flows of biological organisms or complexes (of small
RÞ in overdamping and viscous fluids (of high gÞ, the laminar or low Reynolds
number flows will be relevant. For example a bacterium of 1 lm diameter that
swims in water with a velocity of 2 lm per second has the Re � 10�5. In this case
the Navier-Stokes equation is simplified to equations for flow velocity

r � u ¼ 0 ð19:69Þ

and

q
@

@t
u ¼ �r � r ¼ �rpþ gr2u; ð19:70Þ

In the steady state the above becomes the Stokes equation

r � r ¼ rp� gr2u ¼ 0; ð19:71Þ

which we study below.
We consider the problem of Stokes flow caused by a moving sphere in an

otherwise quiescent fluid. The velocity V of the sphere is small enough to assure
low Reynolds number flow (Fig. 19.8). We will calculate the velocity profile of the
fluid at a radial position r around the sphere of radius R, and then obtain the force
on the sphere. First, applying a divergence on (19.71) and using the incompress-
ibility condition, r � u ¼ 0, we have the Laplace equation

r2p ¼ 0: ð19:72Þ

The disturbances should be expressed to be linear in their source, i.e., the
velocity V; the solution of p rð Þ that satisfies the Laplace equation is (similar to the
electrical potential due to the dipole V),

Fig. 19.8 The streamline (ve-
locity) of the Stokes flow
around a moving sphere with
a velocity V
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p rð Þ ¼ p0 þCV � r 1
r

� �
¼ p0 � C

V � n
r2

; ð19:73Þ

where p0 is the static pressure of the unperturbed fluid, and n is unit radial vector:
r ¼ rn. The fluid velocity at r linear in V can be constructed in terms of these two
vectors as

u rð Þ ¼ f rð ÞVþ g rð Þ n � Vð Þn: ð19:74Þ

The constant C and the radial functions, f rð Þ; g rð Þ; are to be obtained by substi-
tuting the equations into (19.71) and r � u ¼ 0. After a quite lengthy calculation
(Landau and Lifshitz 1975) the solutions compatible with no slip BC at r ¼ R and
another BC u ¼ 0 as r ! 1 are

C ¼ �3gR=2 ð19:75Þ

f rð Þ ¼ 3
4

R
r

� �
þ 1

4
R
r

� �3

ð19:76Þ

g rð Þ ¼ 3
4

R
r

� �
� R

r

� �3
( )

: ð19:77Þ

Using the solutions above we can calculate the force that the fluid acts on the
sphere (called the hydrodynamic friction or drag):

F ¼ �
Z

dA � r ¼ �
Z

dA n � r
¼ �6pgRV;

ð19:78Þ

where we identify the translational (Stokes) friction coefficient

f ¼ 6pgR: ð19:79Þ

Remarkably this is proportional to the radius R, rather than R2 that can be expected
from binary collisions of molecules. Microscopically (19.79) is due to repeated,
correlated collisions of fluid molecules on the sphere; a similar mechanism was
already noted in the result (13.32).

Similarly, one can calculate the frictional torque that acts tangentially on a
sphere rotating with an angular velocity X:
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T ¼ �
Z

dARn	 n � rð Þ ¼ �fRX; ð19:80Þ

where

fR ¼ 8pgR3 ð19:81Þ

is the rotational friction coefficient.
Suppose that a particle is placed in the fluid having a velocity field u0 rð Þ ini-

tially, then the force and torque on the sphere moving with the velocity V are given
by the Faxen’s law:

F ¼ �6pgR V � u0½ �0
� �þ pgR3 r2u0

� �
0; ð19:82Þ

T ¼ �8pgR3 X� 1
2
r	 u0½ �0

	 

; ð19:83Þ

where the subscripts 0 after the brackets […] denote the evaluation at the center of
the sphere (Happel and Brenner 1991).

P19.9 Evaluate the force and torque on a sphere moving with a velocity V in an
elongational flow u0 ¼ _e zẑ� 1

2 xx̂� 1
2 yŷ

� �
:

19.2.4 Generalized Boundary Conditions

The no-slip boundary condition that a fluid meets on a solid surface is one of the
central tenets of the macroscopic hydrodynamics. Due, however, to the break-
down of continuum description near the surface, this boundary condition can
be incorrect depending on the interface properties.

The generalized boundary condition is a way to incorporate the interface effects
within the hydrodynamic description. The condition is obtained by considering a
thin microscopic boundary layer of thickness a near the surface; within the layer the
momentum flux of the fluid onto the surface is evaluated microscopically, and
beyond the boundary the flux is identified as the hydrodynamic stress. By virtue of

( )
: Microscopic
boundary layer

Fig. 19.9 Within the micro-
scopic boundary layer, hydrody-
namic description using no-slip
boundary condition breaks down.
In general, slippage of fluid
velocity on the surface occurs
with a finite slip length ls:
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its continuity across the boundary, these two expressions of momentum flux are
matched on the boundary x ¼ a: in a simple shear flow (Fig. 19.9), the microscopic
frictional force of the fluid moving with velocity uz on surface is equalized to the
hydrodynamic wall stress at x ¼ a, which reads

fsuz ¼ �rxz

¼ g
@uz
@x

:
ð19:84Þ

This is called the Navier boundary condition. The length defined by

ls ¼ uz=
@uz
@x

����
����
x¼a

¼ g=fs ð19:85Þ

is the slip length, which is given geometrically by extrapolating the slope @uz=@x at
x ¼ a below the z ¼ 0 plane. As depicted in Fig. 19.9, this is a measure of the
slippage of the flow on the surface.

The simple relation (19.85) has two important consequences: if the surface
friction coefficient fs is so high that the slip length vanishes, no slip BC applies. This
justifies the no-slip BC for usual cases of simple-fluid flow over rough surfaces.

If, on the other hand, the flowing liquid’s viscosity g is very high or fs is
comparatively small, then the liquid slips on the surface. These two results are
highly reasonable and experimentally confirmed. As an example of the latter, a melt
of entangled long chain polymers of the contour length L, whose viscosity is very
high, scaling as g
 L3:4; indeed shows a macroscopically large slippage even
though the flow is linear (de Gennes 1971; Sung 1995). It is an open problem to
find appropriate BCs for biological surfaces, which are elastic and thermally fluc-
tuating; to find the surface friction in terms of elastic properties of the surface and
interaction between the fluid and the surface.

P19.10 For translational motion of a small macromolecule in a liquid, one may
use the Navier BC that reads

fsut ¼ � n � rð Þt;

with the subscript t denoting the tangential component, and

uð Þn ¼ Vð Þn;

which is kinematic condition for the fluid velocity in the direction normal to the
surface if the particle moves with velocity V: Calculate the friction coefficient of the
translating sphere of radius R and show that it approaches the result f ¼ 4pgR of
complete slip when fs is zero. (Answer: f ¼ 6pgR fsRþ 2gð Þ= fsRþ 3gð Þ)
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If we consider the cases with small disturbances (perturbations) about the
equilibrium, the nonlinear hydrodynamic equation can be linearized so as to be
readily solvable analytically even in the cases of time-dependent and compressible
flows. Upon linearization, u � ru ¼ 0; the steady state equation for the fluid
velocity is the same as the incompressible, infinitely low Re or Stokes flow case we
studied above.

19.2.5 Electro-osmosis

The electro-osmosis is an electrically driven flow of an ionic liquid relative to a
charged surface. The ions attracted near the surface undergo migration towards the
oppositely charged electrode, dragging the viscous, charge-neutral solvent with
them. The electro-osmosis has been used in a variety of applications such as
dewatering of soils and porous media, and, is relevant to transport in cells because
of their ubiquitous electrical environments.

To explain such electro-kinetic effects that couple the charge degree of freedom
to the fluid motion, we consider a steady state flow over a stationary, planar charged
surface, driven not by a pressure but by an uniform external electric field Eext

(Fig. 19.10a):

gr2u ¼ �f rð Þ ¼ �qe rð ÞEext; ð19:86Þ

where qe rð Þ is the charge density in the solution. Via the Poisson equation the
charge density is given by the electric potential / rð Þ so that

gr2u ¼ eEextr2/ rð Þ ð19:87Þ

In the Couette flow geometry (Fig. 19.3), this equation reads

g
d2uz xð Þ
dx2

¼ eEext
d2/ xð Þ
dx2

; ð19:88Þ

which is integrated to

g
duz xð Þ
dx

¼ eEext
d/ xð Þ
dx

ð19:89Þ

where we used the BC, duz xð Þ=dx ¼ 0 as well as d/ xð Þ=dx ¼ 0 at x ¼ 1. Further
integration yields

uz xð Þ ¼ eEext

g
/ xð Þ � /sf g ¼ eEext

g
/ xð ÞþU; ð19:90Þ
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which, on the surface, meets the BC, / ¼ /s (the surface potential) and uz ¼ 0 to
yield the equation

U ¼ � eEext/s

g
: ð19:91Þ

This formula, called the Helmholtz-Smoluchowski relation, denotes the asymptotic
velocity that the fluid would have at the bulk, u x ! 1ð Þ; in the usual situations
where / x ! 1ð Þ vanishes. The formula means that the external electric field, via
interaction with the ions in the electrical double layer (EDL), induces a flow U
of the bulk fluid, which is a neutral solvent or an electrolyte solution. If the surface
charge or the surface potential is negative, the positively charged ions in the EDL
will drag the solution towards the direction of the external electric field with the
velocity (19.90) as sketched in Fig. 19.10a. According to the Debye-Hückel theory,
/ xð Þ ¼ /s exp �x=kDð Þ; which is appreciable for x smaller than the Debye length
kD: At physiological conditions where kD is only in the order of nanometers, the
fluid velocity (19.90) abruptly drops to zero, that is, appears to slip at the edge of
the EDL. This analysis is also applicable to flow through channels.

If a constant pressure gradient is additionally present in the fluid, we will have

gr2u ¼ rpþ eEextr2/: ð19:92Þ

For the case of a cylindrical channel of radius R with a pressure drop Dp over length
L (19.56) along the flow, one can show that the velocity at the radial position
r ¼ R� x from the central axis is

u rð Þ ¼ eEext

g
/ R� rð Þ � /sf g � Dp

4gL
r2 � R2� �

: ð19:93Þ

The flow induced by the electro-osmosis can compete with the flow induced by the
pressure gradient depending on the sign of /s or the direction offield. Figure 19.10b

(a) (b)

Fig. 19.10 a The flow of an ionic fluid over a charged surface. A charge-neutral ionic fluid
(including water) is drifted by the external electric field. b The ionic fluid driven by the electric
field and pressure within a charged circular channel
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depicts the case where /s is positive, and the field and pressure drop are in the same
direction. With the EDL contribution neglected, the volumetric flow induced by the
field is �pR2eEext/s=g: On the other hand the rate of the pressure-driven flow
through the channel is proportional to R4; as we have studied. This suggests that for
small R the flow rate by the electro-osmosis can dominate the flow rate by the
pressure. It implies the electro-osmosis can be very effective in pumping water out of
the porous media with a small average size of pores.

P19.11 An electrolyte solution flows through a cylindrical channel of the surface
potential /s driven by the pressure gradient. Show that the electrical current of the
solution with the Debye length much shorter than the radius is given by

I ¼ peDpR2/s

gL
:

This formula can be used to determine the surface potential /s from the measured
values of the current.

19.2.6 Electrophoresis of Charged Particles

Electrophoresis is the migration of charged particles in fluid, driven by an
external electric field. These particles can be micro-organisms, cells, colloids, and
biopolymers. Electrophoresis is used widely for analysis and separation of these
charged objects in biomedical technology and environmental research. Also the
measurement of the electrophoretic velocity gives information on the electric
double layers surrounding the particles.

Consider first a charged but non-conducting sphere of charge Q and radius R in a
neutral fluid. Driven by a uniform external electric field Eext the sphere moves with
a steady velocity V (Fig. 19.11), which is given by the balance between electrical
force QEext and the frictional force 6pgRV :

(a) (b)

Fig. 19.11 Electrophoresis is the motion of charge sphere in an ionic fluid driven by an external
electric field. a the case where R=kD � 1; b R=kD � 1
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V ¼ QEext

6pgR
: ð19:94Þ

This simple formula tells how the charge particles can be separated by their charges
and sizes. In terms of the surface potential, /s ¼ Q= 4peRð Þ, which usually is
measured rather than Q, the electrophoretic velocity is given by

V ¼ 2/se
3g

Eext: ð19:95Þ

We consider that the particle is in an ionic solution. For the simplifying situation
R=kD � 1; the case with low ionic concentrations or small particles, we can use the
Debye-Hückel theory, /s ¼ Q= 4peR 1þR=kDð Þf g (6.45), to extend the above
result.

Now consider the ionic solution where R=kD is not negligible (Fig. 19.11b).
Difficulties lie in calculating the effects of the background ions that will influence
the local fields and interact with the particle. Here we give a simple derivation for
the limiting situation in which R=kD � 1: Because the particle is very large for a
given kD, its surface can be viewed locally as planar. Furthermore, the electric field
is parallel to the surface of the sphere because the sphere is non-conducting
(n � Je ¼ 0, where Je ¼ reEext and re is the electrical conductivity). The situation is
similar to the electro-osmosis along the planar charged surface we studied; here the
surface is moving with the velocity V driven by the field. Thus, we adapt (19.90) in
the form

uz rð Þ ¼ eEext

g
/ rð Þ ð19:96Þ

so as to meet the BC that both uz and / rð Þ vanish when r; the radial position from
the center of the sphere, goes to infinity. On the surface r ¼ R; / ¼ /s and uz ¼ V
(no-slip BC) should be met, so we have

V ¼ /se
g

Eext: ð19:97Þ

This result is independent of the particle’s shape provided that kD is much
shorter than the characteristic dimension of the particle. Noting that /s for this case
of R=kD � 1 is QkD= 4peR2ð Þ according to DH theory (6.45), the electrophoretic
velocity can be expressed as

V ¼ kD
4pR2g

QEext ð19:98Þ
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Compared with (19.94) for the particle of the same R and Q, (19.98) is smaller by
the factor 3kD= 2Rð Þ, meaning that the ionic cloud within the EDL retards the
electrophoresis.

19.2.7 Hydrodynamic Interaction

A force applied at a point in a fluid will disturb the flow field around it. Suppose
that there is an object in the fluid. The force acting on a point on the surface of the
object creates a disturbance on any points in the fluid, including the other points on
the surface. This effect of the fluid medium is called the hydrodynamic interaction,
which we derive below for the case of steady Stokes’ flow.

In the presence of a force density f rð Þ; the Stokes equation becomes

rp ¼ gr2uþ f rð Þ: ð19:99Þ

To relate u rð Þ with f r0ð Þ, we take the Fourier transform on the above equation to
obtain the equation:

ikp kð Þ ¼ �gk2u kð Þþ f kð Þ: ð19:100Þ

A scalar product of the equation above with ik leads to

p kð Þ ¼ � ik
k2

� f kð Þ; ð19:101Þ

where we used ik � u kð Þ ¼ 0; the Fourier transform of r � u rð Þ ¼ 0. Substituting
(19.101) back to the (19.100) produces

u kð Þ ¼ 1
gk2

1� kk
k2

� �
� f kð Þ: ð19:102Þ

It remains an exercise to inverse-Fourier transform the above and derive the
equation:

u rð Þ ¼
Z

dr0 O r� r0ð Þ � f r0ð Þ; ð19:103Þ

where

O rð Þ ¼ 1
8pgr

Iþ rr
r2

� �
ð19:104Þ
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is the so-called Oseen tensor descriptive of the hydrodynamic interaction operating
over long-range 
 1=rð Þ. On the other hand an inverse transform of (19.101) gives
the pressure disturbance:

p rð Þ � p0 ¼
Z

dr0 P r� r0ð Þ � f r0ð Þ; ð19:105Þ

where

P rð Þ ¼ r
4pr3

: ð19:106Þ

Consider that there is a point force F0 at r0 ¼ 0; f r0ð Þ ¼ F0d r0ð Þ. It gives rise to
a velocity disturbance at an otherwise quiescent point r :

u rð Þ ¼ 1
8pgr

F0 þ r̂ r̂ � F0ð Þ½ �; ð19:107Þ

which is not in radial direction (Fig. 19.12). If a point-like particle is located at r; it
will experience a force proportional to its velocity which is equal to the above
equation. This indicates the hydrodynamic interaction between the two fluid points.
If you swim near the bottom of a swimming pool, you feel a repulsive force which
tends to push you upward. This is the hydrodynamic interaction between your body
and the bottom wall. In a polymer chain within a fluid, a motion of one segment
will interact with that of another, giving rise to a distinctive collective behavior,
which we will study in the next chapter.

The pressure is also perturbed by the point source (19.105):

p rð Þ ¼ p0 þ 1
4pr2

r̂ � F0ð Þ: ð19:108Þ

With substitution of the dragging force F0 ¼ 6pgRV, with R being very small one
can confirm that (19.108) and (19.107) agree with those of Stokes flow, (19.73) and
(19.74).

0
Fig. 19.12 The fluid veloci-
ties (thick arrows) at a dis-
tance r from the origin on
which the force F0 acts
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P19.12 Suppose that a small sphere of a charge Q translates in an electrolyte of
the Debye length kD. Assuming the Debye-H€uckel theory, calculate the effect of the
charge on the fluid velocity. Hint:

ue rð Þ ¼
Z

dr0O r� r0ð Þ � qe r0ð ÞE r0ð Þ ¼
Z

dr0O r� r0ð Þ � ej2D/ r0ð Þrr0/ r0ð Þ
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Chapter 20
Dynamics of Polymers and Membranes
in Fluids

The dynamics of biological soft-condensed matter (bio-soft matter), such as
biopolymers membranes and cells, has at mesoscale several features which are not
seen in ordinary matter consisting of particles. One is the soft matter structural
connectivity; although the strengths of its atoministic interactions are in the order of
eV or higher, interconnected as a whole it can undergo collective motions with the
energies in the order of or less than thermal energy. Despite the short-range
interconnectivity (among near neighbors), the bio-soft matter at room temper-
ature can be correlated over long distances as we have studied in Chaps. 10–12.
Also we studied in Chaps. 16 and 18 that it can move cooperatively in thermally
fluctuating backgrounds and susceptibly in response to external fields. The biological
complexes live usually in viscous, aqueous environments; the background fluids
impart dissipation, but mediate hydrodynamic interactions (HI) between segments in
the complexes. In contrast to the structural connectivity, HI is long ranged,
adding the unique cooperativity to dynamical behaviors.

In this chapter we study the interplay of the structural connectivity and hydro-
dynamic interaction in soft matter dynamics. The basic method for the dynamics is
a stochastic approach in which each internal constituent (mesoscopic subunit)
undergoes Brownian motions while interacting with one another and with the fluid
environment. As standard models that allow analytical understandings, we consider
flexible chains, then semi-flexible nearly-straight polymers, and planar membranes.
The nonspecific physical features that are obtained from the relatively simple
systems can give valuable insights into the dynamics of more complex biological
soft matter under flows and constraints.
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In Chap. 5, we discussed the coarse-grained description of complex systems’
static properties in terms of the relevant degrees of freedom Q. The effective
Hamiltonian or the free energy F ðQÞ associated with Q describes its equilib-
rium distribution PðQÞ� exp �bF ðQÞ½ �. In later chapters we studied the
Markovian dynamics for a number of systems including polymers in several situ-
ations. The Markovian equation of motion for Q is the Langevin equation,

f _Q ¼ � @FðQÞ
@Q

þ nðtÞ; ð20:1Þ

where nðtÞ, representative of microscopic degrees of freedom that underlies Q, is the
Gaussian and white noise that satisfies nðtÞnð0Þh i ¼ 2DdðtÞ, with the noise strength
given as D ¼ fkBT . This thermal noise is essential in driving the system, under the
system force �@FðQÞ=@Q in balance with the damping force f _Q; to reach the
stationary state PðQÞ� e�bFðQÞ in the long times. The next task is to solve and/or
simulate the Langevin equation or its equivalent Fokker-Planck equation for
evaluating the dynamic averages and correlations.

20.1 Dynamics of Flexible Polymers

In this chapter we first consider the dynamics of flexible polymer chains (e.g., a
single-stranded DNA fragment) in a viscous fluid. At the highest level of
coarse-graining, Q is adopted as R, the end-to-end distance (EED) of the chain. The
equilibrium probability density of the EED, if the chain consists of many
(N) statistically independent segments of length l, is given as a Gaussian distribution
by the virtue of the central limit theorem as we studied earlier in Chap. 10:

PðRÞ� e�3R2=2 R2h i ð20:2Þ

with the variance of R given by

Rh i2¼ Nl2: ð20:3Þ

Consequently, we obtain FðRÞ ¼ KeR2=2 where Ke ¼ 3kBT= Nl2ð Þ � ke=N. FðRÞ
takes the minimum at R ¼ 0, meaning that the coiled conformation is the equi-
librium state.

The Langevin equation (20.1) for Q ¼ R is

f _R ¼ �KeRþ nðtÞ; ð20:4Þ

where f is the effective friction coefficient of the whole chain. From the equation,
we can obtain the EED time correlation function

392 20 Dynamics of Polymers and Membranes in Fluids



RðtÞ � Rð0Þh i ¼ R2� �
e�t=s ¼ Nl2e�t=s: ð20:5Þ

The correlation or relaxation time s is given by

s ¼ f
Ke

¼ Nl2f
3kBT

: ð20:6Þ

If we neglect the hydrodynamic interactions between the chain segments, the
friction coefficient is given by f�Nc, where c is the friction coefficient per segment.
Then the correlation time scales as �N2, which expresses how the chain relaxes
slowly as the contour length L ¼ Nl increases. If the hydrodynamic interactions are
included, the friction coefficient of the polymer coil can be regarded as that of a

cohesive sphere of radius *R0 ¼ R2
� �1=2 �N in a fluid of viscosity g: f� gR0 �

N1=2. This yields s�N3=2; suggesting that the cooperativity induced by the hydro-
dynamic interactions enhances the diffusivityD ¼ kBT=f as well as the relaxation by
the factor N1=2. Along with R2

� � ¼ Nl2, the simple model captures this scaling
behaviors that emerge in long chains independently of microscopic details.

20.1.1 The Rouse Model

Now consider the description of a free flexible chain at segment level based on the
bead-spring (the Gaussian chain) model, where the free energy is given by (10.51)
with the vanishing potential ðu ¼ 0Þ.

F rnf g ¼ 1
2

XN
n¼1

ke rn � rn�1ð Þ2; ð20:7Þ

where each bead positioned at rn ðn ¼ 1; 2; . . .;Nþ 1Þ is linearly interconnected by
a spring of the spring constant, ke ¼ 3kBT=l2 (Fig. 20.1). We extend the general
equation (20.1) to the set of bead coordinates, Q ¼ rnf g to obtain

c_rn ¼ � @F rnf g
@rn

þ nnðtÞ; ð20:8Þ

or

c_rn ¼ �ke rn � rnþ 1 þ rn � rn�1ð Þþ nnðtÞ: ð20:9Þ

This is called the Rouse model: the beads are interconnected harmonically and
dissipate with the friction coefficient c per each but with no mutual hydrodynamic
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interaction; each bead undergoes the Brownian motion under a Gaussian and white
noise that allows the system to arrive at equilibrium,

nnaðtÞh i ¼ 0; ð20:10Þ

nnaðtÞnmbðt0Þ
� � ¼ 2ckBTdnmdabd t � t0ð Þ; ð20:11Þ

where a; b label the Cartesian components.
We now solve (20.9) for a number of dynamical properties such as the time

correlation of EED, dynamics of a segment probed by its mean square displace-
ment, and dynamic structure of the polymer, etc. As was done before for a long
chain, n is taken to be continuous so that (20.9) is rewritten as

c
@rðn; tÞ

@t
¼ �ke � @rðnþ 1; tÞ

@n
þ @rðn; tÞ

@n

� �
þ nnðtÞ

¼ ke
@2r n; tð Þ
@n2

þ nnðtÞ;
ð20:12Þ

so that we have

@r s; tð Þ
@t

¼ 3kBT
c

@2r s; tð Þ
@s2

þ n s; tð Þ
c

; 0� s� L; ð20:13Þ

na s; tð Þnb s0; t0ð Þ� � ¼ 2ckBTld s� s0ð Þdabd t � t0ð Þ; ð20:14Þ

in terms of the one dimensional position along the contour of the chain, s ¼ nl. The
boundary conditions at the two ends are obtained as follows. For both ends, the
equations of motion are

c_r1 ¼ �ke r1 � r2ð Þþ n1ðtÞ ð20:15Þ

c_rNþ 1 ¼ �ke rNþ 1 � rNð Þþ nNþ 1ðtÞ: ð20:16Þ

= 1 − 1
+ 1

= + 1
Fig. 20.1 The Rouse model for
flexible polymer dynamics: the
N + 1 beads are interconnected
via the N springs ðkeÞ and are
damped in a fluid with a friction
c per bead
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These equations satisfy the general form (20.9), if there are two hypothetical beads
r0 and rNþ 2 defined as r0 ¼ r1, and rNþ 2 ¼ rN þ 1. These relations lead to the
boundary conditions for (20.13) at both ends:

@rðs; tÞ
@s

¼ 0: ð20:17Þ

In solving (20.13) or the equations for N þ 1 coupled damped oscillators (20.9),
it is desirable to find the normal modes, each capable of independent motion. In
mechanics, the linearly coupled harmonic oscillators give rise to the normal modes,
called the sound modes, which can propagate. Similarly, for the polymer we have
the normal modes, called the Rouse modes. Unlike the usual sound modes the
Rouse modes are overdamped, but support certain collective dynamic features of
the linear chains, which we will study below. We introduce the normal modes

rqðtÞ ¼
ZL
0

ds cosðqsÞ rðs; tÞ ð20:18Þ

with q taking N þ 1 discrete values, qn ¼ np=L; ðn ¼ 0; 1; 2. . .NÞ: A chain seg-
ment position is represented as

r s; tð Þ ¼ rcðtÞþ 2
X
q[ 0

rqðtÞ cosðqsÞ; ð20:19Þ

which satisfies the end boundary conditions (20.17). Here rcðtÞ represents the q ¼ 0
mode

rcðtÞ ¼ rq¼0ðtÞ ¼ 1
L

ZL
0

ds rðs; tÞ; ð20:20Þ

which is the center of mass (CM) position of the chain. We have the similar
expressions for the random forces following transformation

nqðtÞ ¼
1
L

ZL
0

ds cosðqsÞn s; tð Þ ð20:21Þ

where nqðtÞ then satisfies

nqaðtÞnq0bðt0Þ
� � ¼ 2fqkBTdqq0dabd t � t0ð Þ; ð20:22Þ

Substitution of the above expressions into (20.13) yields the equations for the
center of mass and the N Rouse modes
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Nc
d
dt
rcðtÞ ¼ ncðtÞ; ð20:23Þ

fq
d
dt
rqðtÞ ¼ �kqrqðtÞþ nqðtÞ; ð20:24Þ

where

kq ¼ 6kBTLq2=l; ð20:25Þ

fq ¼ 2Nc; for q ¼ np=L; ðn ¼ 1; 2. . .NÞ: ð20:26Þ

Equation (20.23) tells us that the center of mass undergoes a free diffusion with a
diffusivity Dc related by the total friction Nc via

Dc ¼ kBT=ðNcÞ: ð20:27Þ

The N independent equations (20.24) of Brownian harmonic oscillators (Rouse
modes) belong to Ornstein-Uhlenbeck processes, whose time correlation function is

rqaðtÞrq0bð0Þ
� � ¼ kBTdqq0dab

kq
e�t=sq ð20:28Þ

where

sq ¼ fq=kq ¼ c= 3kBTq2
� �

: ð20:29Þ

The dynamic correlation of the Rouse mode decays with the relaxation time sq
which is longer for a larger wave-length (smaller q) undulation.

In terms of the Rouse modes the EED vector is given by

RðtÞ ¼ r L; tð Þ � r 0; tð Þ
¼ 2

X
q[ 0

rqðtÞðcosðqLÞ � 1Þ ¼ �4
X
q0

rq0 ðtÞ; ð20:30Þ

where the last sum is over all the modes q0 ¼ ðp=LÞ n0 with n0 being odd integers.
The time-correlation function of the EED, using (20.28), is

RðtÞ � Rð0Þh i ¼ 16
X
q0

rq0 ðtÞ � rq0 ð0Þ
� �

¼ 16
X
q0

3kBT
kq0

e�t=sðq0Þ ¼ Nl2
X

n0¼odd

8
n0 2p2

e�n0 2t=sR :
ð20:31Þ

Here sR is the slowest relaxation time corresponding to the largest wave-length
(smallest q; q1 ¼ p=L), called the Rouse time:

396 20 Dynamics of Polymers and Membranes in Fluids



sR ¼ sq1 ¼
cL2

3p2kBT
: ð20:32Þ

At t ¼ 0, (20.31) becomes R2
� � ¼ Nl2 via

P
n0¼odd 1=n

02 ¼ p2=8: Because of the
term 1=n0 2 in the summation in (20.31), the first Rouse mode ðn0 ¼ 1 or q0 ¼ p=LÞ
dominates the sum, yielding an approximation that is constrained to be exact at t ¼ 0 :

RðtÞ � Rð0Þh i � Nl2
X

n0¼odd

8
n0 2p2

( )
e�t=sR ¼ R2� �

e�t=sR : ð20:33Þ

The Rouse time sR is proportional to L2, as the combined result of high viscosity
ðfq1 �LÞ and high elasticity ðkq1 �L�1Þ for a long chain. We may rewrite
sR �NcR2

0= kBTð Þ�R2
0=Dc; the Rouse time is the rotational relaxation time of the

chain or is about the duration for the chain CM to diffuse over the EED distance.
The length scaling behaviors of this Rousemodel for the diffusion constant and the

relaxation time, Dc �N�1 and sR �N2; do not agree with experimental results; for
dilute polymer solutions at theta ðHÞ conditions in which the chain is ideal,
Dc �N�1=2, and s�N3=2. The disagreement is originated from the neglect of
hydrodynamic interaction (HI), with which we will deal next. Nevertheless the Rouse
model is valid for the concentrated polymer solutions and melts where the HI is
sufficiently screened.

Often the polymer is immersed in a flowing solvent. For this case the Langevin
equation (20.13) should be replaced by

@r s; tð Þ
@t

¼ u0 s; tð Þþ 3kBT
c

@2r s; tð Þ
@s2

þ n s; tð Þ
c

ð20:34Þ

where the first term on RHS is the flow velocity that the fluid would have at the arc
position s in the absence of the polymer, while the second is the perturbation on the
velocity caused by the chain force on the segment at s.

P20.1 A flexible polymer is anchored on planar surface at one end is subject to a
Couette flow with a shear rate _c, as shown in the figure below. Study the confor-
mation of the chain in a steady state by finding (i) the mean square of EED R2

� �
,

where the average is taken over the steady state. (ii) Find rðs; tÞh i.
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20.1.2 The Zimm Model

The Rouse model assumes that the solvent is independent of polymer motion; in
reality the solvent is perturbed by the motion of the segments, which in turn affects
frictional forces on them. Thus (20.8) must be replaced by

c _rn � unð Þ ¼ � @F rnf g
@rn

þ nnðtÞ; ð20:35Þ

where un is velocity that the solvent has at the bead n as a result of polymer motion.
Notice that the un is caused by the hydrodynamic interaction from the other beads;
using the Stokes equation for a steady fluid, we have

un ¼
X
m6¼n

Knm � � @F rmf g
@rm

þ nmðtÞ
� 	

: ð20:36Þ

Here Knm for n 6¼ m represents the Oseen tensor (19.104):

Knm ¼ Onm rnmð Þ ¼ 1
8pg rnmj j Iþbrnmbrnmð Þ ð20:37Þ

where rnm ¼ rn � rm ¼ rnmj jbrnm. Consequently (20.35) can be written as

_rn ¼
XNþ 1

m¼1

Knm � � @F rmf g
@rm

þ nmðtÞ
� 	

ð20:38Þ

if we include the self-term

Knm ¼ I
c
dnm; ð20:39Þ

for n, which alone leads to the Rouse model. This self-term for a bead I=c is far less
than the mobility it would receive from the neighboring beads via the hydrody-
namic interactions, which are 1=r long-ranged. Thus, we may neglect the self-term
hereafter and study the Zimm model that includes the hydrodynamic interaction.

In the continuum limit we have the equation

@

@t
r s; tð Þ ¼

Z
ds0K rðsÞ � rðs0Þð Þ � � dF

drðs0Þ þ n s0; tð Þ
� 	

; ð20:40Þ

and, using the bead-spring model,
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@

@t
r s; tð Þ ¼

Z
ds0 K rðsÞ � rðs0Þf g½ � � 3kBT

@2r s0; tð Þ
@s0 2

þ n s0; tð Þ
� 	

: ð20:41Þ

The above equation shows that the dynamics of a chain segment is complicated,
due to its hydrodynamic coupling to all of the other segments in a nonlinear way.
To linearize and solve the equation, Zimm introduced the pre-averaging approxi-
mation for K rðsÞ � rðs0Þð Þ to replace it by

K rðsÞ � r s0ð Þð Þh i ¼ 1
8pg rss0j j Iþbrss0brss0ð Þ

 �

: ð20:42Þ

where rss0 ¼ rðsÞ � rðs0Þ and brss0 is its unit vector. The averaging is done over the
Gaussian distribution for the EED, rss0 , which is isotropic over the orientation, brss0 ,
so that

K rðsÞ � r s0ð Þð Þh i ¼ 1
8pg rss0j j

 �

Iþ brss0brss0h ið Þ

¼ 1
8pg rss0j j

 �

Iþ 1
3
I

� �
¼ 1

6pg
1
rss0j j


 �
I ¼ KZ s� s0ð ÞI:

ð20:43Þ

where

KZ s� s0ð Þ ¼ 1
pg

1
6p s� s0j jl
� �1=2

: ð20:44Þ

+ 1
+1, −1

+ 1
+1, −1

Fig. 20.2 The Zimm model: a
bead-spring model with hydro-
dynamic interaction between
beads
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P20.2 Prove the above relations.

Intuitively we can expect that the preaveraging approximation is quite reasonable
for a coiled chain conformation that is random enough to be indistinguishable from
the average conformation.

Via the approximation (20.44), (20.41) becomes linear in r:

@

@t
r s; tð Þ ¼

Z
ds0KZ s� s0ð Þ 3kBT

@2r s0; tð Þ
@s0 2

þ n s0; tð Þ
� 	

ð20:45Þ

To analyze the equation, we consider the cosine transform (20.18), which is written
as

@

@t
rqðtÞ ¼

X
q0

KZq;q0 �kq0rq0 ðtÞþ nq0 ðtÞ
� 

; ð20:46Þ

where

KZq;q0 ¼ 1
L2

ZL
0

ds
ZL
0

ds0 cosðqsÞ cos q0s0ð ÞKZ s� s0ð Þ ð20:47Þ

for all modes q; q0 ¼ np=L; n ¼ 0. . .Nð Þ: A calculation (see Doi and Edwards 1988)
shows that KZq;q0 is nearly diagonal:

KZq;q0 � KZðqÞdq;q0 : ð20:48Þ

Then the equation for the center of mass is

@

@t
rcðtÞ ¼ KZðq ¼ 0ÞncðtÞ ð20:49Þ

where

KZ q ¼ 0ð Þ ¼ 1
L2

ZL
0

ds
ZL
0

ds0KZ s� s0ð Þ ¼ 8
3g

1
6p3Ll

� �1=2

ð20:50Þ

is the translational mobility of the whole chain. This indicate the CM diffusion
constant is

Dc ¼ 8kBT
3g

1
6p3Ll

� �1=2

¼ 8
3p1=2

kBT
6pgRg

�N�1=2; ð20:51Þ
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where the radius of gyration Rg ¼ ð1=6Þ1=2N1=2l is comparable to the hydrody-
namic radius of the chain 3p1=2Rg=8.

The dynamics of N Rouse normal modes, rq q ¼ p=L; 2p=L; . . .Np=L ¼ p=lð Þ;
then follows the N independent equations:

@

@t
rqðtÞ ¼ KZðqÞ �kqrqðtÞþ nqðtÞ

� 
; ð20:52Þ

where KZðqÞ is approximated by

KZðqÞ � 1

2pð3qlÞ1=2gL
ð20:53Þ

(Doi and Edwards 1988). From (20.52), we find

rqðtÞ � rqð0Þ
� � ¼ 3kBT

kq
e�t=sðqÞ; ð20:54Þ

with the relaxation time given by

sq ¼ 1=ðKZðqÞkqÞ ¼ sZðqL=pÞ�3=2 ¼ sZn
�3=2: ð20:55Þ

where we used kq ¼ 6kBTLq2ð Þ=l (20.25). The sZ is the longest relaxation time

sZ ¼ sq1 ¼
gðN1=2lÞ3
ð3pÞ1=2kBT

� gR3
g

kBT
�N3=2: ð20:56Þ

These scaling behaviors of the CM diffusion and the relaxation time are in
agreement with experiments for the flexible chain under theta conditions.
A hand-waving argument for the behavior is given as follows. The coil of the
hydrodynamically interacting segments can be regarded as a cohesive sphere
of the hydrodynamic radius �Rg moving in a fluid of the viscosity g; it has the
friction coefficient � gRg �N1=2 �D�1

c , and the rotational friction coefficient
� gR3

g. Thus sZ is the rotational relaxation time, or, rewritten as sZ �R2
0=Dc �N3=2,

is about the time for the sphere to diffuse over the distance R0. Comparing with the
Rouse model results, one may say that the hydrodynamic interaction (cooperativity)
speeds up the chain dynamics. All of the scaling behaviors with and without
hydrodynamic interaction are identical to the corresponding results from the more
coarse-grained description (20.6) introduced at the outset in this section.
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P20.3 Use the scaling argument above to show that the CM diffusion constant and
EED relaxation time for the chain in good solvents with Rg �Nv are given by

Dc �N�v and sZ �N3v

P20.4 Write down the equation of motion for a flexible chain with an end pulled by
a force. Discuss how the chain conforms to this force.

P20.5 Consider a dimer or dumbel model, in which two beads are coupled by a
spring and hydrodynamic interaction. Write down the equation of motion in a
simple shear flow for a Brownian dynamic simulation.

Segmental Dynamics

Now turn our attention to local dynamics of the chain. We consider the mean
squared displacement (MSD) of a segment at s, D

2
r s; tð Þ ¼ hðr s; tð Þ � r s; 0ð Þ2i.

Using (20.19), and noting that the correlations between different modes vanish, we
have

D
2
r s; tð Þ ¼ r0ðtÞ � r0ð0Þf gþ 2

X
q[ 0

rqðtÞ � rqð0Þ
� 

cosðqsÞ
" #2* +

¼ 6Dctþ 24
X
q[ 0

kBT
kq

cos2ðqsÞ 1� e�t=sq
� �

:

ð20:57Þ

The first term is the global, long-time CM diffusion contribution; the second is the
local contribution from the Rouse modes. We are interested in the average over s

D
2
r ðtÞ ¼

1
L

ZL
0

dsD
2
r s; tð Þ; ð20:58Þ

which then is written as

D
2
r ðtÞ ¼ 6Dctþ 12

X
q

kBT
kq

1� e�t=sq
� �

: ð20:59Þ

In a time much shorter than the shortest relaxation time sqN � gl3= kBTð Þ we, by
putting e�t=sq � 1� t=sq, have
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D
2
r ðtÞ ¼ 6Dctþ 12kBTt

X
q

1
kqsq

¼ 6t Dc þ 2kBT
X
q

KzðqÞ
" #

¼ 6Dt;

ð20:60Þ

where we note

2kBT
X
q

KzðqÞ ¼ kBT

pð3lÞ1=2gL
L
p

� �1=2XN
n¼1

n�1=2

ffi kBT

pð3lÞ1=2gL
L
p

� �1=2ZN
1

dn n�1=2

ffi 2ð3pÞ�1=2kBT=pgl 
 Dc:

ð20:61Þ

Equation (20.61) means that a segment moves with diffusivity D� kBT=gl, which
is much larger than CM diffusivity Dc (20.51). The diffusivity D is what one can
expect for the free diffusion of a single monomer of the size � l in the fluid. Each
monomer moves as if it is not connected by neighbors.

The second term of (20.59) can be replaced by the integral:

12
X
q

kBT
kq

1� e�t=sq
� �

ffi 2Ll
p2

ZN
1

dn
1
n2

1� exp �n3=2t=sZ
� �h i

¼ 2Ll
p2

t
sZ

� �2=3 ZN3=2t=sZ

t=sZ

dx x�2=3e�x;

ð20:62Þ

where x ¼ n3=2t=sZ ; and the integration is done by part. If we consider the time
window, t=sZ � 1, N3=2t=sZ 
 1, that is, sZ=N3=2 � t � sZ or gl3= kBTð Þ � t �
gR3

0= kBTð Þ; the integral becomes definite:

2Ll
p2

t
sZ

� �2=3Z1
0

dx x�2=3e�x ¼ 2Ll
p2

C 1=3ð Þ t
sZ

� �2=3

; ð20:63Þ

where C 1=3ð Þ ¼ R10 dx x�2=3e�x ¼ 2:68: Equation (20.63) dominates over Dct, so
(20.60) becomes

D
2
r ðtÞ ¼ 0:54Nl2

t
sZ

� �2=3

�N0 t2=3: ð20:64Þ
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Therefore, in the intermediate times, two anomalous behaviors emerge: the
MSD is independent of N, while it shows a subdiffusive behavior D

2
r ðtÞ� ta with

a ¼ 2=3; which is less than 1 expected for normal diffusion. Both of these two
features are the signature of connectivity and caging of the chain that a segment
strongly experiences before the chain relaxes to equilibrium.

At a long time t 
 sZ , the exponential term in (20.59) decays to zero, yielding,
by virtue of

P
n¼1 n

�2 ¼ p2=6;

D
2
r ðtÞ ¼ 6DctþNl2=3 � 6Dct; ð20:65Þ

that is, the segment freely diffuses together with the whole chain, escaping from its
local cage. Figure 20.3 depicts how the MSD grows in time, over three distinctive
regions

20.2 Dynamics of a Semiflexible Chain

Many biopolymers are semi-flexible and, within cells, are confined under various
kinds of forces or constraints. In Chap. 11, we studied the conformation of such
semi-flexible polymers modelled by worm-like chains (WLC). Now we consider
the dynamical aspect of the chain and ask important questions: how does the chain
relax; how does the chain dynamically respond to a time-dependent tension
f pulling along the longitudinal direction? We consider a nearly-straight chain
that can look like a rod yet remain flexible so as to have thermal undulations. Such a
situation occurs when its contour length L is shorter than the persistent length or a
longer chain is stretched nearly to the full contour length by the tension. We
represent the position vector of a segment at an arc length s in a cylindrical
coordinates r s; tð Þ ¼ h s; tð Þ; x s; tð Þð Þ; where h s; tð Þ is the two-dimensional trans-
verse undulation, while x s; tð Þ is the arc position projected along the longitudinal
direction (Fig. 20.4).

∆2( )
(log scale) 

(log scale)

~ ~ 2/3
~2

2

Fig. 20.3 The growth of the
mean squared displacement
of a segment on various time
windows
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20.2.1 Transverse Dynamics

The effective Hamiltonian can also be expressed as F ¼ �R dskðsÞ � hðsÞ, where
the transverse force induced on the segment s is obtained by (11.50):

kðsÞ ¼ � dF
dhðsÞ ¼ f

@2h
@s2

� �
� j

@4h
@s4

� �
: ð20:66Þ

Via the hydrodynamic interaction, this force at a segment s0 affects the fluid velocity
at another segment at s (Fig. 20.4), which is same as the average undulation
velocity therein, @h s; tð Þ=@t; by the boundary condition. Thus we have

@h s; tð Þ
@t

¼
Z

ds0K s� s0ð Þ � k s0; tð Þþ nhðtÞ: ð20:67Þ

where nhðtÞ is the appropriate Gaussian white noise. For a nearly straight chain, we
restrict the above equation to be linear in h, and the Oseen tensor K s� s0ð Þ can be
simplified to:

K s� s0ð Þ ¼ 1
8pg s� s0j j Iþ bxbxð Þ: ð20:68Þ

Because k is vertical to bx, (20.67) is expressed as

@h s; tð Þ
@t

¼ � 1
8pg

Z
ds0

1
s� s0j j

dF
dh s0; tð Þ þ nhðtÞ

¼ 1
8pg

Z
ds0

1
s� s0j j f

@2h
@s0 2

� �
� j

@4h
@s0 4

� �� 	
þ nhðtÞ:

ð20:69Þ

To facilitate solving for hðs; tÞ we apply the one-dimensional Fourier transform

( ) Λ( , ′ )′( )
Fig. 20.4 A nearly straight semi-
flexible chain either with a stretch-
ing force f. Two segment at s and
s′ with the undulations hðsÞ and
h s0ð Þ transmit hydrodynamic int-
eraction K s; s0ð Þ
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h q; tð Þ ¼
ZL
0

ds e�iq�sh s; tð Þ ð20:70Þ

and obtain the equation of motion:

@h q; tð Þ
@t

¼ �KhðqÞ fq2 þ jq4
� 

h q; tð Þþ nh q; tð Þ
¼ �sTðqÞ�1h q; tð Þþ nh q; tð Þ;

ð20:71Þ

where

sTðqÞ ¼ 1
jq4 þ fq2ð ÞKhðqÞ : ð20:72Þ

In the above

KhðqÞ ¼ 1
8pg

ZL
�L

du
e�iqu

uj j ¼ 1
8pg

ZL
a

du
e�iqu

u
�
Z�a

�L

du
e�iqu

u

8<:
9=;

¼ 1
4pg

ZL
a

du
cos qu
u

;

ð20:73Þ

where a is the smallest of the separations uj j ¼ s� s0j j between two segments at
s and s0; a naturally is in the order of the monomer size. Because L 
 a, the above
integral is approximated as

KhðqÞ � 1
4pg

Z1
0

du
cos qu

u2 þ a2ð Þ1=2
¼ 1

4pg
K0ðqaÞ

� 1
4pg

ln
1
qa

� �
; for qa � 1;

ð20:74Þ

where K0ðxÞ is the zeroth order modified Bessel function of the second kind.
Now consider the case with f ¼ 0: Because the chain is treated as nearly straight,

we are dealing with a semi-flexible rod-like chain with the persistence length longer
than L, such as a relatively short actin filament fragment. From (20.71), we find the
correlation function:

h q; tð Þ � h �q; 0ð Þh i ¼ hðqÞj j2
D E

e�t=sT ðqÞ ¼ 2kBTL
jq4

e�t=sT ðqÞ; ð20:75Þ
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where we used the result of (11.30). sTðqÞ is the relaxation time for transverse
undulation:

sTðqÞ ¼ 1
jq4KhðqÞ : ð20:76Þ

Using the inverse Fourier transform hðsÞ ¼ 1=Lð ÞPq e
iqsh qð Þ; and the extension of

the relation (11.40), (20.75) yields

h s; tð Þ � h s0; 0ð Þh i ¼ 2kBT
jL

X
q

1
q4

eiq s�s0ð Þ�t=sT ðqÞ ð20:77Þ

where q takes N discrete values qn ¼ 2pn=L; ðn ¼ �1;�2. . .;�N=2Þ to implement
the periodic boundary condition (Chap. 11). Because of the term q�4 in the sum, we
recognize that the sum is dominated by the smallest of q, q1 ¼ 2p=L, allowing an
approximation:

h s; tð Þ � h s0; 0ð Þh i � 4kBT
jL

XqN=2
q1

1
q4

" #
cos q1 s� s0ð Þ½ �e�t=sT q1ð Þ

¼ h2
� �

cos q1 s� s0ð Þ½ �e�t=sT q1ð Þ;

ð20:78Þ

where h2
� � ¼ ð2kBT=jLÞ

P
q�4 ¼ L3= 4 � 90lp

� �
(11.39). sT q1ð Þ is the primary

transverse relaxation time associated with the longest-wave-length mode
q1 ¼ 2p=L:

sT q1ð Þ ¼ gL4

4p3j ln
L

2pa

� � ; ð20:79Þ

where we used (20.74) and (20.76). Equation (20.78) indicates an unusual
dependence on the length, sT � L4=lnðL=2paÞ, meaning that the correlation (20.78)
is not only long-ranged over the entire chain but also decays very slowly in time as
the chain becomes longer. It should be also noted that an increase of the chain
rigidity j reduces the transverse fluctuation as well as speeds up the transvers
relaxation dynamics.

P20.6 Suppose a small transverse impulse k is applied at the middle of the chain,
s ¼ L=2, and then released. What is the average shape �h s; tð Þ of the chain after
wards?

Although the above analysis describes the overall slow decay dynamics of a
semi-flexible chain, depending on the time windows we observe the different
temporal behaviors of the segmental displacement. We first consider the
auto-correlation,
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h s; tð Þ � h s; 0ð Þh i ¼ 2kBT
jL

X
q

1
q4

e�t=sT ðqÞ ð20:80Þ

and the mean square displacement

D
2
hðtÞ ¼ h s; tð Þ � h s; 0ð Þ½ �h 2i ð20:81Þ

of the points on the chain. Using (20.80) it can be expressed as

D
2
hðtÞ ¼ 2 h2

� �� h s; tð Þ � h s; 0ð Þð Þh i� �
¼ 4kBT

jL

X
q

1
q4

1� e�t=sT ðqÞ
n o

:
ð20:82Þ

For short times t � sT qN=2
� �� ga4=j; we can put e�t=sT ðqÞ � 1� t=sTðqÞ, so that

we have

D
2
hðtÞ �

4kBTt
L

X
q

KhðqÞ � kBTt
p2g

ZqN=2
q1

dqK0ðqaÞ ¼ akBTt
p2ga

ð20:83Þ

where (20.74, 20.76) are used and a ¼ R p2pa=L dx K0ðxÞ is a numerical factor in the
order of unity. Equation (20.83) means that, at a time too short for a segment to
escape the cage made by the neighboring segments, it undergoes a free diffusion
with the hydrodynamic friction � ga: In long times, t 
 sT q1ð Þ in which

e�t=sT q1ð Þ � 1, the second term in the sum (20.82) vanishes, leading to D
2
hðtÞ !

2hh2i; which means that the segment is caged within the polymer chain.
To study the dynamics in the intermediate times, we express the sum (20.82) by

the integral:

D
2
hðtÞ ¼

4kBT
pj

ZqN=2
q1

dq
1
q4

1� e�jq4KhðqÞt
n o

ð20:84Þ

At intermediate times, sT qN=2
� �� t � sT q1ð Þ, (20.84) becomes the definite

integral:

D
2
hðtÞ ¼

4kBT
pj

Z1
0

dq
1
q4

1� e�jq4KhðqÞt
n o

: ð20:85Þ

Even with the approximation (20.74) for the hydrodynamic interaction term KhðqÞ,
the above integral is difficult to evaluate analytically. Because the integral will be
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dominated by the contribution from the smallest q region we make an approxi-
mation for (20.74):

KhðqÞ � Kh q1ð Þ ¼ 1
4pg

ln
L

2pa

� �
: ð20:86Þ

Kh q1ð Þ is same as the inverse of hydrodynamic friction per unit length of a rigid rod
of length L moving in the transverse direction, so here the HI is effectively
incorporated by this approximation.

P20.7 Show from (20.69) that for a rigid rod under a uniform transverse force the
frictional coefficient is approximately K�1

h q1ð ÞL. With the friction per segment
K�1

h q1ð Þ the Langevin equation

K�1
h q1ð Þ @h s; tð Þ

@t
¼ �j

@4h
@s0 4

� �
þ nhðtÞ

yields the primary transverse relaxation time that agrees with (20.79) (MacKintosh
2006).

Then (20.85) can be evaluated:

D
2
hðtÞ ¼

4kBT
pj

Z1
0

dq
1
q4

1� e�jq4Kh q1ð Þt
n o

¼ 16kBTjKh q1ð Þt
3pj

Z1
0

dq e�jq4Kh q1ð Þt
ð20:87Þ

where the first integration is done by part to yield the second. It is further calculated:

D
2
hðtÞ ¼

4kBT
3pj

jKh q1ð Þtf g3=4
Z1
0

dxx�3=4e�x

¼ 4kBT
3pj

j ln L=2pað Þt
4pg

� 	3=4

C 1=4ð Þ� kBT
j1=4g3=4

t3=4;

ð20:88Þ

where x ¼ jKh q1ð Þq4t, C 1=4ð Þ ¼ R10 dx x�3=4e�x ¼ 3:62: The above shows a very
complex anomalous, sub-diffusive behavior in distinction to the one we saw in
flexible polymers. A similar result was also obtained by Granek (1997) and the key
t3=4 scaling behavior was observed in an experiment (Caspi et al. 2000).
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Of particular importance is the dynamic structure factor (Farge and Maggs 1993)

S q; tð Þ ¼ 1
N

XN
n¼1

XN
m¼1

e�iq hnðtÞ�hmð0Þj j
* +

�
Z

ds exp � q2

2
h s; tð Þ � h 0; 0ð Þ½ �2

D E� 	
;

ð20:89Þ

where the summation made over all the scattering molecules in the chain, is
replaced by the integral over the contour and the Gaussian nature of segmental
undulation, (9.64), is used. The sub-diffusive behavior (20.88) gives rise to the

stretched exponential for the dynamic structure factor S q; tð Þ� exp½� Cqt
� �3=4�

with a relaxation rate Cq � kBTð Þ=jð Þ1=3 kBTð Þ= gq8=3
� �

: This was observed in
dynamic light scattering experiments (Schmidt et al. (1989) and, in real space, by
optical video-microscopy (Piekenbrock and Sackmann 1992).

20.2.2 Chain Longitudinal Dynamics and Response
to a Small Oscillatory Tension

Now we turn our attention to dynamics of the longitudinal length XðtÞ by starting
with its equilibrium time correlation function DXðtÞDXð0Þh i0. To this end, it is
more straightforward to use the linear response theory in which the time correlation
is directly related by the response DXðtÞh i to a small time-dependent tension as was
done for the static case in Chap. 11. We consider that the time-dependent tension,
df ðtÞ, is applied at an chain end additionally beginning from t ¼ 0.

The mean equilibrium end-to-end distance, X ¼ Xh i was given by (11.32) in
terms of the transverse undulation. The corresponding quantity at a time t, XðtÞh i, is
given by

XðtÞh i
L

¼ 1� 1
2L2

X
q

q2 h q; tð Þ � h �q; tð Þh i: ð20:90Þ

Solving the Langevin equation (20.71) for h q; tð Þ with f ¼ f0 þ df ðtÞ to the linear
order in df ðtÞ, we can obtain

h q; tð Þ � h �q; tð Þh i ¼ h q; tð Þ � h �q; tð Þh i0 �
Z t

0

dt0m q; t � t0ð Þdf t0ð Þ; ð20:91Þ

where
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m q; t � t0ð Þ ¼ 4kBTLKhðqÞ
jq2 þ f0ð Þ e�

t�t0
sLðqÞ: ð20:92Þ

Here we define the longitudinal relaxation time by

sLðqÞ ¼ sTðqÞ
2

¼ 1
2

jq4 þ f0q
2� �
KhðqÞ: ð20:93Þ

. . .h i0 denotes the average over the initial ensemble at equilibrium in the absence of
df ðtÞ; from (11.30), h q; tð Þ � h �q; tð Þh i0 ¼ 2kBTL= jq4 þ f0q2ð Þ:

The evaluation of the relation (20.90) for the constant force f ¼ f0 yielded the

equilibrium force-extension relation (11.35), Xh i0=L ¼ 1� kBT 4jf0ð Þ�1=2. In
terms of df ðtÞ, we can find its effect using (20.90):

DXðtÞh i � XðtÞh i � Xh i0

¼
Z t

0

dt0v t � t0ð Þdf t0ð Þ; ð20:94Þ

where

v t � t0ð Þ ¼ 1
2L2

X
q

q2m q; t � t0ð Þ

¼ 1
2L2

X
q

q2
4kBTLKhðqÞ
jq2 þ f0ð Þ e�

t�t0
sLðqÞ

ð20:95Þ

Equation (20.94) represents the chain extension change in linear response to
time-dependent tension of general forms in a viscous fluid under hydrodynamic
interaction (HI). These equations were used in relaxation dynamics of the chain
extension under a time-dependent drag exerted by a large bead connected with a
chain to an anchor (Raviv et al. 2004) and also in viscoelastic dynamics under
oscillatory force without HI (Hiraiwa and Ohta 2009).

We note that (20.94) can come from the fluctuation-dissipation theorem
(FDT) (Chap. 17), according to which the dynamic response function v t � t0ð Þ is
given by

vðtÞ ¼ � 1
kBT

d
dt

DXðtÞDXð0Þh i0 ð20:96Þ

Integrating the above relation with (20.95) in time, we obtain the time correlation
function
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DXðtÞDXð0Þh i0 ¼ �kBT
Z t

0

dt0v t � t0ð Þ þ DXð Þ2
D E

0

¼ kBTð Þ2
X
q

1

jq2 þ f0ð Þ2 e
�t=sLðqÞ

ð20:97Þ

which at t ¼ 0 is reduced to equilibrium fluctuation, (11.45),

DXð Þ2
D E

0
¼ kBTð Þ2

X
q

1

jq2 þ f0ð Þ2: ð20:98Þ

Now we analyze the time correlation in detail for short semi-flexible chains in
the absence of constant force f0 ¼ 0. In this case one can readily calculate:

DXðtÞDXð0Þh i0 ¼
kBTð Þ2
j2

X
q

1
q4

e�t=sLðqÞ

� DXð Þ2
D E

0
e�t=sL q1ð Þ ¼ DXð Þ2

D E
0
e�2t=sT q1ð Þ;

ð20:99Þ

where h DXð Þ2i ¼ kBT=jð Þ2Pq q
�4 ¼ L4= 8 � 90ð Þl2p as given by (11.46). The

approximation in (20.99) is again caused by the term 1=q4 in the sum, which is
dominated by the contribution from longest wave length mode. Like the transvers
relaxation the longitudinal relaxation becomes also very slow as the chain
length increase, but with the relaxation time halved.

P20.8 One might think that there is a strong correlation between the longitudinal
and transverse fluctuation because the contour length L is fixed. Find the corre-
lation functions, hðtÞDXð0Þh i0 and hðtÞDXðtÞh i, where h(t) is the undulation
magnitude averaged over the length.

Now we look at the longitudinal MSD,

D
2
XðtÞ ¼ XðtÞ � Xð0Þ½ �2

D E
0
¼ DXðtÞ � DXð0Þ½ �2
D E

0

¼ 2 DXð Þ2
D E

0
� DXðtÞDXð0Þh i0

h i
;

ð20:100Þ

which can be expressed as

D
2
XðtÞ ¼

2 kBTð Þ2
j2

X
q

1
q4

1� e�t=sLðqÞ
h i

: ð20:101Þ

We note that the sum over q is the same as that in (20.82) with the relaxation time
halved, meaning that longitudinal fluctuation dynamics (the short-time free
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diffusion, the intermediate-time anomalous diffusion and the terminal caging) is
correspondingly similar to the longitudinal one.

Now how would the chain respond to the small periodic force? The response
function (20.95) has the integral difficult to evaluate in a single form. We consider
the single relaxation time approximation for the correlation function (20.99), and
use the FDT (20.96) to determine the response function as

vðtÞ � h DXj j2i
kBT

1
sL q1ð Þ e

� t
sL

q1ð Þ
; ð20:102Þ

where the primary longitudinal relaxation time is

sL q1ð Þ ¼ 1
2
sT q1ð Þ ¼ gL4

8p3j ln L=2pað Þ ¼
kBTgL4

8p3lp ln L=2pað Þ : ð20:103Þ

Let us consider that the chain is stretched periodically in time:

df ðtÞ ¼ fmsinðXtÞ: ð20:104Þ

As we learned in Chap. 17, the average chain length also oscillates in time but with
a phase delay u:

DXðtÞh i ¼ vðXÞj jfm sin ðXt � uÞ: ð20:105Þ

The measure of the coherence is given by the power amplification factor

P ¼ vðXÞj j2¼ h DXj j2i0
kBT

 !2
1

1þ XsL q1ð Þf g2 : ð20:106Þ

With all the chain contour length, the persistence length, and the viscosity fixed as
constants independent of temperature, the power amplification factor P decreases
with temperature.

We can extend the analysis to the case where the chain is pre-stretched by the
force f0. Because h hðqÞj j2i ¼ 2kBTL= jq4 þ f0q2ð Þ, the predominance of the longest
wave-length mode is less than that without the force, in which h hðqÞj j2i ¼
2kBTL= jq4ð Þ; nevertheless, the longest wave-length mode would give a good
estimate, as a numerical computation showed. In this case of f0 6¼ 0; the power
amplification factor (20.106) shows a maximum at an optimal noise–strength,
namely, the stochastic resonance (SR); in addition it showed a maximum at an
optimal chain length (Kim and Sung 2012). As linearly interconnected systems they
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are, polymers show unusual cooperative dynamics in response to external stimuli.
The SR for such systems in overdamping fluids is of entropic nature, which
shows the maximal coherence to an oscillatory force, not only at optimal
noise-strengths, but also at the optimal chain lengths and chain flexibility. This
entropic SR suggests important possibilities for controlling the dynamics of single
biopolymer transitions utilizing their flexibility.

20.3 Dynamics of Membrane Undulation

In Chap. 12, we dealt with equilibrium, conformational behaviors of membranes
including the undulation correlation. In the study of the dynamical aspect, such as
the undulation time-correlation, we should note that the surface is hydrodynam-
ically coupled with the background fluid (Fig. 20.5). In a neutral fluid, the
density of an external force f ðrÞ is localized on the undulating surface:

f ðrÞ ¼ dðz� hðxÞÞσðrÞ � dðzÞbzrðxÞ; ð20:107Þ

where we assume the undulation height, hðxÞ; is very small. The σðxÞ ¼ bzrðxÞ is
the surface force density normal to the two dimensional plane, x ¼ x; yð Þ: From the
effective Hamiltonian of the planar membrane with surface tension c and bending
rigidity ,, (12.35), the surface force density can be derived as

rðxÞ ¼ � dF
dhðxÞ ¼ cr2

xhðxÞ � ,r4
xhðxÞ; ð20:108Þ

which is two dimensional analogue of (20.66). Note the difference between the
undulation-induced surface force rðxÞ and the surface tension c:

For impermeable membranes, we have the surface boundary condition that
@h x; tð Þ=@t is equal to the fluid velocity along the normal direction,

( , )σ( ′ , ) ′
Λ( , ′ )

Fig. 20.5 A planar membrane
in a fluid: The force r x0ð Þ
acting on a point x0 of the
membrane imparts the hydro-
dynamic interaction K x� x0ð Þ
onto another point x, whereby
the undulation is perturbed
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un x; tð Þ ¼ ẑ � u x; z ¼ 0; tð Þ, which is in turn coupled to the surface force via
hydrodynamic interaction:

@h x; tð Þ
@t

¼ un x; tð Þ

¼
Z

d2x0 bz � 1
8pg x� x0j j Iþ x� x0ð Þ x� x0ð Þ

x� x0j j2
 !

� bz0rðx0Þ
¼
Z

d2x0 K x� x0ð Þrðx0Þ;

ð20:109Þ

where

K x� x0ð Þ ¼ 1
8pg x� x0j j : ð20:110Þ

Consequently, we have a closed, linear stochastic equation of motion

@h x; tð Þ
@t

¼
Z

d2x0K x� x0ð Þr x0ð Þ þ nh x; tð Þ

¼ 1
8pg

Z
d2x0

1
x� x0j j cr2

x0h x0ð Þ � ,r4
x0hðx0Þ

� þ nh x; tð Þ;
ð20:111Þ

where we add the Gaussian and white noise nh x; tð Þ to endow otherwise deter-
ministic equation with the thermal fluctuation. With this noise the equation assures
the proper approach to equilibrium.

The equation, being an integro-differential equation involving the two dimen-
sional Laplacian and higher order gradients, appears to be formidable to solve. To
evaluate time correlation function h x; tð Þh x0; 0ð Þh i and the related functions, it is
convenient to deal with the Fourier-transform of the Eq. (20.111). First we note

rðqÞ ¼ � cq2 þ ,q4
� �

hðqÞ: ð20:112Þ

On the other hand, the Fourier transform of the hydrodynamic interaction is

Z
d2x e�iq�x 1

8pg xj j ¼
Z1
0

d xj j xj j 1
8pg xj j

Z2p
0

du e�iq xj jcosu

¼ 2p
8pg

Z1
0

d xj jJ0 q xj jð Þ ¼ 1
4gq

;

ð20:113Þ

where J0ðyÞ ¼ 1=2pð Þ R 2p0 du e�iy cosu and
R1
0 dy J0ðyÞ ¼ 1 are used. With the

above, (20.111) is transformed to a readily solvable equation in the Fourier space!:
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@h q; tð Þ
@t

¼ � ,q4 þ cq2ð Þ
4gq

h q; tð Þþ nh q; tð Þ ð20:114Þ

or

@h q; tð Þ
@t

¼ � 1
smðqÞ h q; tð Þþ nh q; tð Þ: ð20:115Þ

The relaxation time

smðqÞ ¼ 4g
,q3 þ cq

ð20:116Þ

is the wave-number dependent. Hereafter we will only consider the case of the fluid
membranes (surface tension c ¼ 0Þ; smðqÞ ¼ 4g= ,q3ð Þ: The q�3-dependence is
owing to the hydrodynamic interaction, combined with the structural characteristics
of fluid membranes, i.e., the long-range spatial correlation we noted in Chap. 12.

From (20.115), the undulation time correlation is obtained:

h q; tð Þh �q; 0ð Þh i ¼ hðqÞj j2
D E

e�t=smðqÞ ¼ kBTL2

,q4
exp �,q3t=4g
� � ð20:117Þ

Following (12.64), the undulation correlation in real space and time is given by

h x; tð Þh x0; 0ð Þh i ¼ kBT

,L2
X
q

1
q4

exp iq � x� x0ð Þ � jq3t=4g
� �

¼ 1
2p

kBT
,

ZqM
qm

dq q
1
q4

J0 q x� x0j jð Þexp �,q3t=4g
� �

� h2J0 qm x� x0j jð Þ exp � ,
4g

q3mt

� �
:

ð20:118Þ

where qm � p=L and qM � p=a; a being in the order of diameter of a lipid molecule.
As discussed before, the sum in the above, rapidly decreasing with q, is dominated
(approximated) by the contribution from the smallest wave-number mode
qm � p=L: This approximation is qualitatively in good agreement with the numer-
ical calculations. Equation (20.118) means that the correlation is not only
long-ranged over the entire membrane but also decays with the relaxation time
� gL3=,, which can be very long for a large membrane.

We now consider the MSD, D
2
hðtÞ ¼ h h x; tð Þ � h x; 0ð Þð Þ2i of a point at x on

surface. Using the first equality of (20.117) it can be expressed as
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D
2
hðtÞ ¼ 2 hh i2� h x; tð Þh x; 0ð Þð Þh i

h i
¼ 2kBT

,L2
X
q

1
q4 1� e�t=smðqÞ� �

¼ kBT
p,

ZqM
qm

dq q�3 1� e�,q3t=4g
h i

:

ð20:119Þ

At short times when t=sm qMð Þ ¼ ,qM3t=4g � 1, or t � ga3=,; we can put
e�t=smðqÞ � 1� t=smðqÞ, leading to

D
2
hðtÞ ¼

kBTt
4pg

ZqM
qm

dq� kBTt
4ga

: ð20:120Þ

This indicates that the short time dynamics of undulation is none other than the free
diffusion of each lipids with an effective hydrodynamic radius in the order of a.

The integral (20.119) can be expressed in the form

D
2
hðtÞ ¼

kBT
3p,

,t
4g

� �2=3 Zt=sm qMð Þ

t=sm qmð Þ

dx x�5=3 1� e�x½ �; ð20:121Þ

where x ¼ t=smðqÞ ¼ ,q3t=4g. At intermediate times, sm qMð ÞÞ � t � sm qmð Þ or
ga3=, � t � gL3=,, the integral becomes definite:

D
2
hðtÞ ¼

kBT
3p,

,t
4g

� �2=3Z1
0

dx x�5=3 1� e�x½ �; ð20:122Þ

which, by integration by part, becomes

D
2
hðtÞ ¼

kBT
2p,

,t
4g

� �2=3Z1
0

dx x�2=3e�x ¼ kBT
2p,

,t
4g

� �2=3

C 5=3ð Þ: ð20:123Þ

The mean-square undulation

D
2
hðtÞ ¼ 0:45

kBT
p,

,t
4g

� �2=3

� kBTt= g
,t
g

� �1=3
( )

: ð20:124Þ

grows in time with the power 2=3, which is less than 1. One may say that in this
anomalous dynamics of sub-diffusion, the hydrodynamic radius grows in time
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aðtÞ� ,t=gð Þ1=3. For a neutral membrane, the above result is confirmed experi-
mentally (Kimura et al. 1999).

At long times, ,q3mt=4g 
 1; or t 
 gL3=,, the membrane’s undulation corre-
lation in the integral in (20.119) vanishes, leading to

D
2
hðtÞ ! 2 h2

� � ð20:125Þ

This means that the sub-diffusive behavior of the height displacement paves the
way to caging of all the lipids within a membrane. The temporal behavior of
DhðtÞ is plotted in Fig. 20.6, where the crossovers to different power law regimes
occurs at characteristic times, s1 ¼ ga3=, and s2;¼ gL3=,.

P20.9 Find the temporal behaviors of D
2
hðtÞ of an elastic surface in which j ¼ 0:

We first have hh q; tð Þh �q; 0ð Þi ¼ hðqÞj j2
D E

e�t=smðqÞ ¼ kBT
cq2 exp � cqt

4g

� �
, from which

h x; tð Þh x; 0ð Þh i ¼ 1
2p

ZqM
qm

dq
kBT
cq

exp � cqt
4g

� �

20.4 A Unified View

The diverse results for dynamics of polymer chains and fluid membranes under no
tension studied in this chapter are summarized below. The dynamics of a single
Brownian particle is generalized to that of a local segment in soft matter, e.g.,
polymers and membranes, which are the network structures in one and two
dimensions d ¼ 1; 2ð Þ. Two distinctive features emerge: short range structural
connectivity within the system and long-range hydrodynamic interaction via

∆2( )
(log scale)

(log scale)

~
~ 2/3 ~ 02〈ℎ2〉

2

1 2

Fig. 20.6 The growth dynam-
ics of membrane undulation in
various temporal stages
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the fluid environment. Presented below is a unifying picture of their effects on the
relaxation times and the segmental dynamics.

We denote the displacement Q x; tð Þ of a segment at x: to be specific, the three
and two dimensional displacements, r s; tð Þ; and h s; tð Þ; at one dimensional arc
position s for polymers, and the transverse displacement h x; tð Þ at the two
dimensional position x for a planar fluid membrane (Table 20.1). A segmental
displacement evolves following the Langevin equation written as

@Q x; tð Þ
@t

¼ �
Z

dx0K x� x0ð Þ � dF
dQ x0; tð Þþ nQ x; tð Þ: ð20:126Þ

where, in addition to the thermal noise, nQ; the two aforementioned physical fea-
tures are apparent: the hydrodynamic interaction K, and network force on the
segment �dF=dQ: In the Fourier space, the Langevin equation is written as

@Q q; tð Þ
@t

¼ �KðqÞ dF
dQ q; tð Þ þ nQ q; tð Þ

¼ �KðqÞKðqÞQ q; tð Þþ nQ q; tð Þ:
ð20:127Þ

The KðqÞ is the ‘generalized spring constant’ that features in the effective
Hamiltonian written in the Fourier space as F ¼ 1=2ð ÞPq KðqÞ QðqÞj j2:

Table 20.1 The dynamics of soft matter systems

Systems Flexible polymers
(d = 1)

Nearly straight semiflexible
polymers (d =1, f = 0)

Planar fluid
membranes
(d = 2,
c ¼ 0)

Rouse
model

Zimm
model

Segmental displacement
QðxÞ
QðqÞ

rðsÞ
rq

rðsÞ
rq

hðsÞ
hðqÞ

hðxÞ
hðqÞ

Generalized spring constant
KðqÞ� qa kq � keq2 kq � keq2 jq4 ,q4

Hydrodynamic interaction
KðqÞ� q�b 1=c 1= gq1=2

� �
KðqÞ � K q1ð Þ� lnðL=2paÞ=g 1=gq

Primary relaxation time
s1 � La�b � L2 � L3=2 � L4= ln L=2pað Þ � L3

Mean-squared displacement

D
2
QðtÞ� t1� d�bð Þ= a�bð Þ � t1=2 � t2=3 � t3=4 � t2=3

20.4 A Unified View 419



The equipartition of each q mode to the energy yields h QðqÞj j2i� kBTð Þ=KðqÞ.
Equation (20.127) can be rewritten in the form

@Q q; tð Þ
@t

¼ �sðqÞ�1Q q; tð Þþ nQ q; tð Þ; ð20:128Þ

where

sðqÞ ¼ 1= KðqÞKðqÞ½ � ð20:129Þ

is the characteristic time of the q undulation mode. We consider the case of
polymers and membranes under no tensions, where both KðqÞ and KðqÞ obey
power laws (Table 20.1),

KðqÞ� qa; KðqÞ� q�b: ð20:130Þ

The a is positive and b is either positive with HI or zero with no HI (Table 20.1), so
that

sðqÞ� qb�a: ð20:131Þ

Because the most dominant mode in the spectrum h QðqÞj j2i� 1=KðqÞ� q�a is due
from the smallest q or the longest wave length mode, q1 � L�1; the primary
relaxation time goes like

s1 ¼ s q1ð Þ� La�b: ð20:132Þ

This relation indicates the roles of the HI and the network interconnectivity in
making the dynamics slow as the system size L is enlarged. For a flexible chain
under no HI (the Rouse model), a ¼ 2; b ¼ 0, and we have s1 � L2. For the Zimm
model, a ¼ 2 and b ¼ 1=2, we have s1 � L3=2. For a planar membrane, a ¼ 4,
b ¼ 1; so that s1 � L3. If a is larger, the chain connectivity is longer-ranged, so the
relaxation time becomes longer. The longer-ranged HI (larger b) gives rise to the
stronger dynamic cooperativity that results in the faster relaxation.

The mean square displacement of a segment is expressed as

D
2
QðtÞ ¼ Q x; tð Þ � Q x; 0ð Þð Þ2

D E
¼ 2 Q2 xð Þ� �� Q x; tð ÞQ x; 0ð Þð Þh i� �

� kBT
X
q

1
KðqÞ 1� e�t=sðqÞ� �

:
ð20:133Þ

Consider the intermediate time much longer than the smallest relaxation time but
much shorter than the longest relaxation time (the primary relaxation time s1). Then
(20.133) can be represented by the integral:
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� kBT
Z1
0

dq
qd�1

KðqÞ 1� e�t=sðqÞ
h i

�
Z1
0

dq qd�1�a 1� e�t=sðqÞ
h i

; ð20:134Þ

where d is the dimensionality of the system. Integrating the last above by part yields

D
2
QðtÞ� t

Z1
0

dq qd�b�1e�t=sðqÞ � t1�ðd�bÞ=ða�bÞ
Z1
0

dx xd�b�1e�x

� t1� d�bð Þ= a�bð Þ:

ð20:135Þ

The above power law, which indeed agrees with those we obtained for each
cases (Table 20.1), shows how the chain connectivity and hydrodynamic interac-
tion interplay in the anomalous diffusions in soft matter; (20.135) expresses how
a smaller b (weaker HI) and a higher a (longer ranged connectivity) promote
the stronger sub-diffusive behaviors.
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Chapter 21
Epilogue

…For one Chrysanthemum to bloom
the Thunder so must have cried again

within the dark cloud ….
Seo Jung-Ju

“Surmounting the Insurmountable”

A cell is a playground for various extraordinary events what we may call biological
self-organizations. The basic components, say, biopolymers,membranes, ion-channels,
and even their aqueous environments have very complex structures and yet show
unusual cooperative behaviors, which go beyond the scope of traditional physics. It is
grossly hopeless to solve microscopic equations of motion for the enormous number of
atoms and molecules that constitute the biological matter, and even to treat them
collectively using the traditional statistical mechanics. The standard analytical methods
of statistical mechanics have been implementedmostly for simple systems such as ideal
gases and magnets, and simple interacting units. How can we cope with the biological
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Fig. 21.1 A free energy function F Qf g of a coarse-grained variableQ, e.g., a collective variable
descriptive of conformation of a polymer. In this case, a conformational transition occurs from a
higher free energy state Q1 to a lower sate Q2; by crossing over the barrier in between

complexity and address the self-organizations in the language of physics without losing
the quantitative explanations and predictions? This has been our primary quest.
Following is a brief and partial overviewof the statistical physics basis that has been laid
out in this book.

For biological matter we expanded and even revised the basic premises and
methods of standard statistical physics and related areas. The first one is concept of
the microstates of a system that entered in the Boltzmann’s entropy formula. The
microstates need not necessarily be quantum states as often claimed wrongly; for
even simple biological matter, it would be impossible and hopeless to enumerate all
the quantum states underlying the system! We began with a proclamation that
designation of the microstates should depend on the level of a description chosen.

As an example, consider a mesoscopic level conformations of a linear
biopolymer such as a DNA fragment, or a protein molecule in a solution at tem-
perature T. The relevant “microstates” are the fewer degrees of freedom Q that
emerge beyond atoministic degrees of freedom. For a biopolymer, as examples of
Q, we chose a collective coordinate (such as the end-to-end distance) and local
coordinates (such as the two state variables for subunits describing the binding).

Then we proceeded to construct, in terms of Q; the coarse-grained, effective
Hamiltonian, F Qf g; from which the probability distribution of the state Q as well
as the biopolymer’s equilibrium properties could be obtained. On the other hand,
the effective Hamiltonian F Qf g can be viewed as the Q’s free energy function
that depends on temperature, due to the microscopic fluctuations underlying Q. In
an approach to equilibrium, the degrees of freedom Q; assisted by the fluctuations,
organize themselves so as to minimize the free energy function at the equilibrium
state �Q. The free energy necessarily has two components, the internal energy from
the interactions between the subunits, and the entropy from the fluctuations which
become very significant due to soft matter flexibility. Via competition between
these two components, this self-organization are realized as a host of thermal
transitions, e.g., binding-unbinding transitions, biopolymer folding, collapses and
denaturation, etc. This methodology was extended to other systems as diverse as
fluids, self-assembling structures, as well as biological soft matter. These equilib-
rium phenomena and properties were covered in Part I.

For the coarse-grained dynamics of the relevant degrees of freedom Q; a natural
choice is the Markovian stochastic equations, e.g., the Langevin-like equations with
noises (thermal fluctuation as a special case) or the equivalent Fokker-Planck/
master equations. We then studied how a thermal fluctuation drives a diffusion,
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transition and activates crossing the free energy barrier that may exist. The bio-
logical dynamics at mesoscale, due to the overdamping solution background, is
dissipative, and slow. However, we saw a most striking phenomenon that, the
noise, when tuned at an optimal strength, can induce the maximal coherence and
resonance of the transitions and barrier crossing dynamics of the system, to an
external time-dependent signal albeit very week. The dissipative fluid background
in cell is not merely a passive medium but an active structure that signals a
non-equilibrium noise therein to resonate with the system’s transition dynamics.
This phenomenon of stochastic resonance and related resonant activation can be
nonspecific physical paradigms pointing to the critical role of the thermal fluctua-
tions and external noises: these often-neglected degrees of freedom, which may not
be seen phenomenologically, play such magic! (Part II).

After all, two eminent features boost these kinds of unique interplay between the
systems and the backgrounds. One is the background water’s many outstandingly
high susceptibilities, in particular, the high dielectric constant that facilitates various
transitions of the system by reducing the electrostatic interaction energies therein to
the level of thermal energy or below. If the systems are the soft matter such as
polymers and membranes, another key feature is their structural connectivity and
flexibility, which gives rise to cooperativity and low energy excitations. In parallel
with the weak interactions mentioned above, under the fluctuating aqueous envi-
ronments, the biological soft matter can undergo whatever transitions and surmount
the seemingly unsurmountable barriers at body temperature. The thermal noises
may come as random thunderstorms to the soft matter, but, at optimal conditions,
may lend a helping hand with accomplishing the biological self-organizations!

As a way to bypass the virtually impossible task of deriving mesoscopic
descriptions for a biological complex from underlying microscopics, the
well-known classical phenomenology can fortuitously be used with an input of the
fluctuations. For example, the effective Hamiltonian of a DNA fragment is the
classical elastic energy of bending with the curvature promoted to be fluctuating
degrees of freedom (Chap. 11). Another example is the Langevin equation, which is
obtained by adding noises to macroscopic equations of motion (Chaps. 13 and 15).
If we allow their charge densities to fluctuate and correlate, two objects with equal
net charges can attract, rather than repel, to minimize the free energy (Coulomb
interaction). This explains how the charge fluctuations induce DNA collapse
(Chap. 11) and membrane adhesion. Classical phenomenology such as elasticity,
mechanics, electricity, and hydrodynamics can thereby be revived to adapt to some
biological phenomena by endowing the variables with stochasticity. It is akin to
how the quantum fluctuation phenomena can be realized by replacing classical
variables by operators.
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Additional Topics

Throughout this book we have studied the selected themes of statistical mechanics,
soft-matter physics, and related areas that I believe to form a coherent basis for
applications to a variety of biological phenomena mostly on mesoscales. It is rather
a kind of extended statistical physics book than of biological physics or biophysics
book. As such, there can be many important biophysics topics that were not
addressed, particularly on molecular scales and system levels. Also, the theoretical
methods and biological examples that are covered may be relatively simple. To
cope with the higher complexity, the basic physical premises need to be further
revised and expanded (for example the concepts of spatial homogeneity and tem-
poral stationarity may not be valid for crowded cell environments). I hope this
project will nevertheless give an example of the first step toward the challenging
and time-consuming endeavor to build up paradigms of a new fusion science by
surmounting barriers between biological and physical sciences.

Within biological statistical physics there are a number of topics that I initially
intended to cover: non-Markovian and anomalous dynamics, molecular motors, and
the applications of stochastic thermodynamics and fluctuation theorem in their
infancy. To date, the present version is the best I could try with limited time. To
incorporate these topics with coherence and harmony in the future edition remains a
challenge.
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Actin filaments, 209
Activation barrier, 308, 353
Active mechanism, 335
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Binomial distribution, 33, 283, 285
Binomial expansion, 39
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Coverage, 32, 47, 122, 125
Critical aggregation concentration, 113
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Equations of state, 14
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Equilibrium sate, 304
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Flexible polymer chains, 392
Flipping, 361
Flory exponent, 187
Flows, 380
Fluctuating barrier, 357
Fluctuating degrees of freedom, 425
Fluctuation, 46, 220
Fluctuation-Dissipation Theorem (FDT), 260,

334, 411
Fluctuation-induced attraction, 93
Fluctuation-induced interaction, 238
Fluctuation theorem, 426
Fluid mechanics, 363
Fluid membrane, 223
Flux, 245
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Fokker-Planck, 424
Fokker-Planck dynamics, 295, 315
Fokker Planck Equation (FPE), 291, 356
Fokker-Planck operator, 299
Folding and unfolding times, 360
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Folding-unfolding transitions, 20
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FP operator, 300
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Fractal, 156
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Free diffusion, 408
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Free energy change of the reaction, 104
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Free energy function, 76, 166, 318
Free energy landscape, 131
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Free energy of translocation, 319
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Freely-jointed chan model, 167
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Frequency-dependent diffusivity, 345
Frequency-dependent elecric permeability, 337
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337
Frequency-dependent response function, 350
Frictional force, 258
Friction coefficient, 244
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Gas-to-liquid phase transition, 128, 148
Gating charge, 353
Gauss-Bonnet theorem, 225
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Gaussian chain, 43, 164
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Gaussian distribution, 165
Gaussian level approximation, 202
Generalized boundary condition, 382
Generalized diffusion equation, 345
Generalized force, 10
Generalized Langevin equation, 276
Generalized spring constant, 419
Generating function, 283, 284, 288
Genus number, 225
Gibb’s ensemble, 226
Gibbs free energy, 12, 19, 41, 226
Gibbs partition function, 41
Glassy systems, 335
Globular conformation, 322
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Good noise, 353
Good solvent, 186
Gouy-Chapman length, 100
Grand canonical ensemble, 44, 124, 153
Grand canonical partition function, 45
Grand partition function, 47
Grand potential, 13, 19, 21, 46, 125
Green-Kubo relation for self-diffusion, 340
Ground state dominance approximation, 182
Growth process, 21

H
Hagen-Poiseuille’s law, 376
Hair bundle cells, 335
Hamaker constant, 94, 239
Hamiltonian, 36, 39, 134, 144
Harmonic order, 229
Heat, 8
Heat capacity, 15, 59, 83
Heat conductivity, 371
Heat of vaporization, 83
Heat reservoir or bath, 34
Height undulations, 205
Helfrich interaction, 238
Helix-coil transition, 140
Helmholtz free energy, 11, 12, 19, 37, 40, 57,

75, 130
Helmholtz-Smoluchowski relation, 385
Hermitian operator, 301
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Hydrodynamic description, 363
Hydrodynamic equations, 243
Hydrodynamic friction, 381
Hydrodynamic Interaction (HI), 388, 391, 401,
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Hydrodynamic radius, 401
Hydrodynamics, 363
Hydrodynamic variables, 364
Hydrogen bonding, 4, 84
Hydrophilic attractions, 220
Hydrophilic head, 3, 219
Hydrophilic interaction, 85
Hydrophobic chain, 220
Hydrophobic interaction, 85, 220
Hydrophobic tail, 3, 219

I
Ice age, 349
Ideal chain, 159, 162, 164
Ideal gas, 58
Ideal gas partition function, 53
Ideal solution, 70
Identical particles, 52
Image method solution, 257
Image solution method, 169
Incoherent, 349
Incompressible flow, 365, 366, 370
Incompressible mixture, 129
Induced polarizability, 89
Inelastic scattering, 150, 343
Inexact differentials, 8
Inflection point, 127, 141
Information theory, 28
Initiation energy, 139
Inorganic phosphate (Pi), 109
In-phase response, 340
Intensive variables, 7
Interacting particles, 61
Interface energy, 223
Interfaces, 132
Interfacial area, 21
Internal degrees of freedom, 60
Internal energy, 8, 12, 59
In vitro, 17
In vivo, 5
Ion channel, 4, 252, 278, 352
Ion-dipole interaction, 88
Ionic transport, 252
Irreversible processes, 16
Ising model, 126, 133
Isolated system, 8, 16, 26
Isothermal compressibility, 16, 46, 145

J
Johnson noise, 264
Johnson-Nyquist theorem, 265
Joint probability, 39, 356

K
Keesom force, 90
Kinesin motors, 110
Kramers escape problem, 320
Kramers-Moyal expansion, 292
Kramers problem for polymer, 322
Kramers rate, 322
Kramers time, 320, 348
Kubo formula, 338
Kuhn length, 162, 198

L
Low Reynolds number, 380
Langevin’s function, 43, 88
Langevin equation, 257, 392
Langmuir isotherm, 48, 111
Laplace transform, 287
Lattice model, 72, 77, 121, 134
Law of Mass Action (LMA), 106
Lenard-Jones potential, 68
Length fluctuations, 205
Length of extension, 10
Lennard-Jones potential, 63
Level of the description, 28
Lever rule, 132
Light scattering, 149
Linear aggregates, 113
Linearized Poisson-Boltzmann equation, 96
Linear response theory, 207, 235, 350, 410
Line charge density, 210
Line tension, 115, 133
Lipid, 3, 219
Liquid droplet, 14
Local entropy, 59
Local osmotic pressure, 71
Local pressure, 58
Local radius of curvature, 196
London dispersion force, 93
Longitudinal dynamics, 410
Longitudinal fluctuation, 207, 208
Long-range spatial correlation, 416
Lorentzian, 279
Lotka’s law, 297

M
Macroscopic properties, 25
Macroscopic system, 7, 26
Macrostate, 26
Magnetic susceptibility, 16, 145
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Magnetization, 10, 15, 145
Marko-Siggia model, 145
Manning condensation, 210
Markov chain, 274
Markov process, 6, 269, 274, 348
Master equation, 277
Maxwell-Boltzmann (MB) distribution, 54,

261
Maxwell-Boltzmann (MB) speed distribution,

55
Maxwell construction, 128
Maxwell relations, 12
Mean curvature modulus, 224
Mean field, 64, 95
Mean Field Approximation (MFA), 126, 130,

226
Mean field theory, 95
Mean first passage, 313, 357
Mean Squared Displacement (MSD), 402
Mean squared EED, 198
Mean square fluctuation, 143
Mechanical equilibrium, 22
Melting, 137
Melting point, 141
Membrane, 2, 3, 219
Memory friction, 276
Mesoscopic length scales, 161
Mesoscopic states, 29
Metabolites, 247
Metastable state, 21
Micelles, 220
Microcanonical ensemble, 26, 28
Micropipette, 227
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