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Disinterested love for all living creatures,
the most noble attribute of man.

Charles Darwin



Preface

The idea to write this book originated during the Conference on Complex Systems
held in Amsterdam on September 2016, where the first satellite on evolutionary
game theory was proposed and obtained the attention of several participants, thanks
also to two great Keynote speakers: Yamir Moreno and Francisco C. Santos. The
evolutionary game theory represents a vibrant and growing research field. So far,
many interesting books have been written on this topic or have introduced at least
in part its main elements. So, the reader might wonder why a further book on
this topic should attract the attention. Well, actually, aside from providing a brief
introduction to the main concepts, the aim of this book is to frame evolutionary
game theory in the context of the science of complexity providing, at the same
time, an overview on some computational strategies for dealing with the related
models. As discussed in the following chapters, nowadays the science of complexity
deals with different topics, which can be viewed as a very big basket including a
number of challenging topics, spanning from biology to social science. Here, the
evolutionary game theory constitutes a valuable framework for representing and
studying different complex phenomena. In addition, as mentioned, the second goal
is to highlight the connections with statistical physics issues, e.g., the phenomenon
of phase transitions, and to show how to use its tools, combined with other
computational methods, for studying the dynamics of evolutionary game theory
models. Accordingly, we hope to stimulate the interest of readers with some relevant
contributions to this field, as scientific papers and other books, found in the list of
references. Unfortunately, due to the limited space, we have not been able to include
all the valuable references. The structure of the book reflects the need to condensate
relevant issues, exposing them in a clear and simple way. Therefore, we decided
to begin with a simple introductory chapter, followed by a second one focusing
on some statistical physics methods. Moreover, the second chapter illustrates some
computational methods for generating and analyzing complex networks, being a
“tool” of great interest also in this area. Then, Chaps. 3 and 4 illustrate practical
cases, i.e., the structure of two famous games (Chap. 3), the prisoner’s dilemma and
the public goods game, and two applications (Chap. 4), one framed in the context
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viii Preface

of social dynamics and the other in that of combinatorial optimization. Finally, a
conclusive chapter summarizes some important concepts exposed in the previous
chapters and provides a short overview on further developments. To conclude, we
hope that students and researchers will find the book useful for starting their journey
in this exciting field.
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Chapter 1
Introduction

In the last years, we are witnessing the emergence of a new scientific field, i.e., the
Science of Complexity. Actually, due to its ubiquitness among different scientific
communities, e.g., physicists, biologists, sociologists, and so on, this modern field
is benefiting from a positive increasing trend. Here, a first interesting point is
trying to define the meaning of the term “complexity.” In fact, if on the one hand
its ubiquitness is positive for its spreading and development, on the other hand
it might generate a bit of confusion. Notably, talking to scientists belonging to
different areas, the word complexity can lead to receive various definitions, even
when asking to people belonging to the same area (e.g., physicists). As result, in
few words, answering the question “what is a complex system?” might lead to
different possibilities. While that is not in principle a big problem, it is important
to be aware about, in particular, when one is interested in starting to investigate
the related topics. For instance, if we are talking about Quantum Mechanics, we
can have different visions (see interpretations) but, in this case, we are all referring
to systems whose evolution can be described by the Schröedinger equation, using
operators and vectors in the Hilbert space, and so on and so forth. Instead, in the case
of complex systems, one might think about social networks, cognitive processes,
biological information, spin glasses, and many more topics that can be described by
the following various approaches. Now the good news is that, beyond the differences
among the involved fields, with some efforts interdisciplinary collaborations are
becoming very fruitful. Given this brief premise, it is worth to clarify what we
mean here when referring to a complex system. In particular, we are indicating a
system composed by a huge amount of simple elements, interacting in some way,
whose global behavior cannot be directly referred to the local one. As result, this
definition, inspired by a thermodynamic overview of systems, suggests that our
aim is to develop an opportune Statistical Physics approach for linking the local
behavior of a system with the global one, resulting from its interactions. Following
such “philosophy,” the goal of the book is to provide a brief introduction to the
Evolutionary Game Theory, i.e., a vibrant field that is attracting the interest of an

© The Editor(s) (if applicable) and The Author(s) 2018
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2 1 Introduction

increasing amount of scientists, spanning from Physics to Computer Science and
from Mathematics to Theoretical Biology. The main idea is to offer an overview
of Evolutionary Game Theory showing, at the same time, both its “complex” side
and how to deal with it from a computational point of view. In doing so, the reader
might learn the general concepts, and be ready in few time to implement her/his
own early models. Obviously, readers interested in further details can find a number
of very good books and articles (only a very short list of them is reported among
references in the following chapters). Furthermore, for the sake of completeness, we
provide four practical use cases related to models of Evolutionary Games, related to
different scenarios and motivations, and strongly linked with the statistical physics
approach to complex systems we develop in what follows. In addition, it is important
to remind that also from the point of view of statistical physics and computational
methods, we are able to offer only a very limited view, hoping to attract the interest
of readers and to make them able to appreciate how to use it in practical problems.

1.1 General Background

Evolutionary Game Theory (hereinafter EGT) represents the attempt to study the
dynamics of a population, combining the principles of Game Theory with those
of the Darwinian theory of evolution. At the first glance, these two fields have
very few things in common. In very few words, Game Theory can be referred as
an approach/framework aimed at finding the optimal strategy in a “competition,”
as well as the way for finding a kind of equilibrium among the competitors.
Instead, the Darwinian Theory deals with the evolution of life, considering both its
competitive aspect and the idea of “transmission and optimization of information.”
However, as later discussed, a closer look to these theories shows different points of
connection. It is worth to remind that the early developments of the Game Theory,
resulting from the works of John von Neumann and Oskar Morgenstern, were
mainly focused on the modeling of the human behavior, with a clear reference to
economic contexts. Later on, this area of Mathematics was strongly influenced by
the Nobel laureate John Nash who introduced, among his relevant contributions to
science, the so-called Nash equilibrium. The latter can be viewed as a particular
state of a game, involving a number of “rational” agents that have to take an
action without prior communications. On the other hand, the Darwinian theory
of evolution, that constitutes one of the most important breakthroughs in Biology
and more in general in science, after more than a century still constitutes a living
theory, although yet debated in particular outside academia. His father, Charles
Darwin, proposed it after a challenging journey around the world, which gave the
opportunity to perform direct observations on a wild and unexplored Nature. So,
after this experience, the young scientist envisioned a general theory for explaining
natural evolution of life. As result, this fascinating combination of Game Theory and
Darwinian Theory constitutes a powerful framework for modeling several scenarios,
spanning from social systems to biological phenomena, and representing specific
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mechanisms (e.g., reproduction, imitation), interaction patterns, and behaviors.
Therefore, a number of “complex phenomena” can be characterized by EGT models.
Then, in full agreement with the conclusions reported in the famous Anderson’s
work “More is different,” this modern and interdisciplinary area can be actually
classified as one of the components of the field of complexity. For instance,
emergent behaviors that can be referred as a kind of phase transition can be observed
studying an agent population whose local interactions are simple, e.g., based on
a game like the Prisoner’s Dilemma. Notably, from a state of disorder one can
observe an evolution toward an ordered equilibrium, and the latter can be even
opposite to the expected one (i.e., the Nash equilibrium). The last observation
deserves particular attention, since one may experience some confusion. Notably,
while the mathematical framework of Game Theory has very solid roots and deep
basis, direct observations on the real world suggest that the Nash equilibrium is not
always respected. For example, cooperation is a common phenomenon and takes
different forms also in Nature, like mutualism. Here, one of the goals of EGT is
to find out the motivations, and the mechanisms, that can lead to the phenomena
we observe and that cannot be predicted using only the Game Theory. At the same
time, also the Darwinian Theory takes profit by its combination with Game Theory.
For instance, the altruistic behaviors detected among animals cannot be explained
referring only to the Darwin’s Theory. So, in this case as well as in others, the
contribution of the Game Theory allows to cover this important lack. A fundamental
key point of EGT is given by the adaptive behavior introduced in the dynamics of
a population. Notably, this behavior is driven by a “rational mindset,” obtained by
implementing agents that take actions for optimizing their own gain. The latter,
usually defined as “payoff”, in EGT is equivalent to the concept of “fitness.” This
correspondence (i.e., payoff-fitness) is quite important since it represents one of the
most relevant connections between the Game Theory and the Darwinian Theory,
where the best individual is not the strongest but the fittest one or, in general,
that who better adapts herself/himself to new environments. Thus, the equivalence
payoff-fitness has a deep meaning that allows to use the “rationality” of Game
Theory and the “evolutionary mechanisms” of the Darwinian Theory. In particular,
as discussed later with more detail, “rationality” and “evolutionary mechanisms”
are implemented in the process defined “strategy revision phase.” The latter allows
agents to revise their strategy, e.g., imitating their neighbors, and to support the
replication of successful strategies. Accordingly, this process is fundamental for the
actual evolution of a population and allows to introduce different mechanisms that
can influence the way the system moves toward an equilibrium. Finally, even if EGT
models can be based on different kinds of games, in this book we refer to the two-
strategy games, i.e., games characterized by only two strategies. Even if this choice
can be perceived as too limiting for modeling real scenarios, in our view it offers two
main advantages. First, it allows to introduce in a very easy way the field of EGT;
second, it facilitates the connection with models well-known in Statistical Physics.
We can now go on with the next sections of this chapter, reporting some important
concepts useful for proceeding through the presentation of more interesting models
(i.e., Chap. 3).
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1.2 Few Notes on Game Theory

In this section, we briefly summarize some relevant concepts we need from Game
Theory for the purposes of this book. In particular, we present the Nash equilibrium
and structure of two-strategy games, referring in particular to the Prisoner’s
Dilemma and Public Goods Game. This choice is motivated by the fact that the
cases shown in Chap. 3 are related to these two games.

1.2.1 Nash Equilibrium

Developed by John Forbes Nash Jr., the Nash equilibrium constitutes a milestone
in Game Theory. For the sake of simplicity, let us consider two agents playing a
generic game that are not allowed to communicate before to take an action (i.e., a
move). Here, the Nash equilibrium represents the particular situation where neither
of them has something to gain from being the only one to change strategy. The lack
of opportunities in doing prior agreements, i.e., preliminary communications, has
deep consequences. First of all, if both agents want to increase their gain, some form
of “blind coordination” is required, which in turn entails that reaching the maximum
gain might need to take a very risky strategy. In the next section, introducing real
games like the Prisoner’s Dilemma, the “risky” side of some strategies will become
more clear. Beyond its general description, the Nash equilibrium has obviously a
formal mathematical definition. Let us consider a game described by a set S of
strategy profiles and a payoff function f , i.e., .S; f /. This game might involve n
players, so that each one adopts a strategy. Here, a strategy profile S is defined as
S D S1 � S2 � : : : � Sn, and the payoff function computes that gain for a specific
x 2 S as f .x/ D . f1.x/; f2.x/; : : : ; fn.x//. Then, a set of strategies x� 2 S is a Nash
equilibrium if 8i; xi 2 Si W fi.x�

i ; x��i/ � fi.xi; x��i/. Summarizing, reaching the Nash
equilibrium can be viewed as a tradeoff, which ensures the potentiality of a good
payoff while reducing possible risks. For this reason, if we consider a population
whose agents interact according to a dilemma game, the expected equilibrium
should correspond to the Nash equilibrium, i.e., all agents take the most convenient
strategy, following a selfish behavior. However, in doing so, our population, as a
whole, risks to be unable to produce a common wellness. The latter, in this context,
has a very general meaning, as for instance might refer to people paying taxes for
receiving public services or to people who vaccinate themselves for avoiding viral
spreading, and so on. Now, beyond the need to identify strategies for the common
wellness, a challenging point in EGT is the understanding of the mechanisms that
lead toward non-expected equilibria, in particular because, often, the real world
shows the emergence of equilibria different from the Nash equilibrium.
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1.2.2 Two-Strategy Games

In this section, we describe two simple two-strategy games, i.e., the Prisoner’s
Dilemma and the Public Goods Game (also defined as n-person Prisoner’s
Dilemma). In both games, the agents can behave (i.e., act) as “Cooperators” (C) or
as “Defectors” (D). Accordingly, the set of strategies is † D fC; Dg.

1.2.2.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma (PD hereinafter) is one of the most famous games who
shows why rational approaches might lead people to avoid cooperation. Its general
dynamics can be told using different stories; however, here, we report the classical
one who gave the name to this game, i.e., the story of two criminals captured by
police, and undergone to a questioning. Notably, after being captured, our criminals
are separated to avoid potential agreements. In addition, in order to ensure at least
one guilty, they are offered a bargain: each criminal has two options, i.e., betray
(i.e., to defect) or remaining silent (i.e., to cooperate). Thus, despite what that the
common sense might suggest, in this case being a cooperator indicates to collaborate
with the “partner,” not with the police. So, if the two criminals cooperate, they
are sentenced to 1 year in prison, while if both betray the conviction is 2 years
in prison. Instead, in the third case, i.e., one betrays and the other remains silent,
the cooperator is sentenced to 5 years in prison, whereas the defector is set free.
Recalling that they cannot communicate before to take an action (i.e., remaining
silent or betray), it appears quite clear the motivation that leads our criminals to
defect. The Nash equilibrium of this game is “defection,” entailing criminals will
spend 2 years in prison. At the same time, if both cooperate they can save 1 year, so
that the highest “common” benefit can be achieved only by a coordinate action of
cooperation, although very risky. Anyway, beyond this story or similar ones, the PD
can be characterized by the following payoff matrix:

�C D

C 1 S
D T 0

�
(1.1)

with T representing the Temptation, i.e., the payoff an agent gains defecting when
the other cooperates, and S representing the Sucker’s payoff, i.e., the gain achieved
by a cooperator when its opponent defects. In principle, the general structure of the
payoff matrix (3.1) can be adapted also for describing other games (e.g., the Hawk-
Dove game). Notably, on varying the range of T and S, one can refer to different
scenarios. In our case, i.e., in the PD, the values of T and S are 1 � T � 2 and
�1 � S � 0. Accordingly, we can draw the T�S plane and analyze the outcomes of
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the game from point to point, among the possible combinations .T; S/. For instance,
low values of T entail defectors receive a small payoff when they meet cooperators,
while high value of S entail cooperators have small losses when meet defectors.

1.2.2.2 The Public Goods Game

The Public Goods Game (PGG hereinafter) considers a set of individuals that have
to secretly decide if to contribute to the wellness of their own community by offering
a token. Like for the PD, cooperators are those that aim to the “common” wellness,
while defectors are those that follow a selfish behavior. In addition, being the
choice “secret,” prior communications are avoided also in this game. The token,
or coin, provided by cooperators represents a very general form of contribution.
For instance, in an economical context, a coin can be a kind of tax; in online
platforms can be the sharing of knowledge (e.g., in forums, blogs, etc.). Thus,
the contribution actually refers to an effort made by an individual for improving
the services of her/his society. Then, the total amount of coins is enhanced by
a numerical parameter, named synergy factor, that promotes collaborative efforts,
and its final value is equally divided among all individuals, no matter their action.
Therefore, defectors, i.e., those whose contribution is null (or smaller than the
average value), can be considered as free riders. At the same time, since both
defectors and cooperators receive an equal fraction of the total pot (i.e., the enhanced
summation of coins), the most rational (and convenient) strategy is defection. In
addition, the latter constitutes the Nash equilibrium of the PGG. According to the
described dynamics, and in a more formal way, we can defined the payoff received
by cooperators (i.e., �c) and by defectors (i.e., �d):

8̂̂
<
ˆ̂:

�c D r
Nc

G
� c

�d D r
Nc

G

(1.2)

where Nc indicates the number of cooperators among the G agents involved in
the game, r indicates the synergy factor, and c represents the agents’ contribution.
Without loss of generality, usually c is set to 1. It is worth to highlight that the value
of G strongly depends on agent topology, i.e., the way they interact. For instance,
when they are arranged in a square lattice, G is equal to 5. This last point will be
clarified in the next chapters, where some practical cases are presented. Finally, we
deem interesting to emphasize that like for the PD, the “common wellness” requires
a “blind” coordinate effort, otherwise following the Nash equilibrium we cannot
observe the improvement of a society (no matter of what the contribution and the
payoff represent).
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1.3 Evolutionary Game Theory

After the very brief introduction to some concepts of Game Theory (the reader
interested in knowing more is invited to consult the references, as well as to read
one the many books on this field), we can start to move toward the modeling of
evolutionary games. First of all, we want to pay attention to the understanding of
mechanisms that lead to cooperation in dilemma games, with particular emphasis
for those dilemmas whose Nash equilibrium is defection. The underlying motivation
is born from observations on the real world where, fortunately, we can find clear
examples of cooperation. In addition, now we move from the local level before dis-
cussed, i.e., the dynamics of a single game, to the global level of an agent population.
Notably, here, agent interactions take the form of a game, and, being the system
adaptive, we can study the evolution of strategies over time. This approach allows
to obtain a thermodynamic view of our population and, at the same time, to study
the local mechanisms that lead toward a particular equilibrium (or steady state),
i.e., a particular distribution of strategies. As result, being particularly interested in
defection-based games (i.e., games whose Nash equilibrium is defection), we pay a
special attention for those mechanisms/conditions that allow to reach a state of full
cooperation. At this point, one might begin to understand why Statistical Physics
can constitute the optimal framework for analyzing the dynamics of EGT models.
Notably, as we will see later, agent populations playing evolutionary games show
critical behaviors, e.g., order-disorder phase transitions (well known in Statistical
Physics). For this reason, Chap. 2 is devoted to summarize some mathematical
methods and tools for studying these phenomena, as the Ising model. Giving a
quick look to the literature, we can find several works focused on the connections
between EGT and Physics, as the early works of Hauert and Szabo, or the more
recent works of Perc, Szolnoki, and their colleagues. Actually, even considering
the classical Game Theory, we can find physicists interested in defining a link
with Physics, as shown in some works of Galam. As before mentioned, an agent
population whose interactions are based on simple games like the PD constitutes
an adaptive system. Due to its relevance, this point deserves attention. Notably,
being adaptive means that some forms of adaptation/evolution can be detected in
the system. In our case, the evolution refers to the strategies adopted by the agents
and, in most agent based models, the mechanism responsible for this evolution is a
process usually defined “strategy revision phase.” The latter allows agents to change
their strategy according to a particular rule, where usually “rationality” constitutes
the main ingredient. In addition, further approaches can be used for modeling
the dynamics of evolutionary games. For instance, without considering physical
agents, a famous class of analytical methods is the “replicator dynamics.” The latter,
proposed by Taylor and Jonker, uses differential equations. This approach, better
discussed in Chap. 2, is based on the following conditions: given a strategy i, used
with a frequency xi (in a population), the frequency rate reads

Pxi D xi. fi � �/ (1.3)
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with fi expected payoff associated to the strategy i and � average payoff. It is
worth to remark the correspondence, before introduced, between the payoff (Game
Theory) and the fitness (Darwinian Theory). When considering agent populations,
a further relevant aspect in EGT is given by the geometrical space, since the
latter is directly related to the interaction topology. For instance, we can consider
continuous spaces, where agents randomly move and play with their neighbors,
and discrete spaces that usually are represented as graphs. Since agents interact
with their neighbors, the way on “how to compute” neighbors in the two kinds of
spaces constitutes one of the main practical differences between them. Usually, in
continuous spaces, agents are provided with an interaction radius, so that all the
others that are inside the related circles are considered as their neighbors. Instead,
in the discrete case, the definition of neighbor is more natural, as we have to
select all the directly connected agents (i.e., the nearest neighbor according to the
graph structure). Now, it is worth to remind some of the recent advances in graph
theory, resulting in the modern field of Complex Networks. Given the relevance
of this topic, both for the Science of Complexity and for EGT, Chap. 2 describes
some computational methods for dealing with them. So, according to the historical
developments of graph theory and to the wide utilization of regular structures in
Statistical Physics, early results of EGT on discrete spaces have been reached
considering agents arranged on regular lattices (e.g., square lattices, rings, etc.).
Later on, more complex structures, as scale-free networks, have been adopted. It is
worth to recall that, when we study games whose agents interact with neighbors in
some spatial array, EGT models are defined as “spatial games,” and such condition
has deep consequences in the dynamics of a population. For instance, a spatial
structure (e.g., a network) implies agents interact with the same opponents many
times. This occurrence as highlighted by Martin A. Nowak, one of the fathers of
EGT, can strongly facilitate the emergence of cooperative behaviors, thanks to the
effect defined “network reciprocity.” Accordingly, in the case of the PGG, Matjaz
Perc and Attila Szolnoki computed the critical threshold of the synergy factor
for achieving cooperation. In particular, they found the minimum value of this
numerical parameter to ensure the survival (and even the success) of cooperators,
when agents are arranged on regular square lattices. Later on, other games and more
complex topologies have been investigated. Just to cite few, Yamir Moreno and
colleagues showed that heterogeneous networks do not promote cooperation when
humans play the PD. Francisco Santos and colleagues studied the evolution of coop-
eration in heterogeneous structured populations, demonstrating that the cooperation
increases as the heterogeneity, of the network structure, increases. Again, Yamir
Moreno and colleagues found that as the network increases, the level of cooperation
is weaker than that obtained in a static network. Actually, the list of results in
EGT, achieved on complex networks, is much longer than that we are providing
here. However, we deem fundamental recall that Francisco C. Santos and Jorge
M. Pacheco found that scale-free networks support the emergence of cooperation
and many other interesting results related to spatial and complex structures. Finally,
we remind further works developed by implementing interdependent networks and
multiplex networks, being the latter the one of the current frontiers in the modern
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network science. Again, it is quite difficult to summarize in few lines all the relevant
contributions achieved in this field, in the recent years, even only considering
those that used complex networks. For this reason, the reader is strongly invited to
consult the references (at the end of each chapter) and other useful resources online.
Before concluding this part, it is important to emphasize the practical implications
related to the utilization of graph structures. In particular, moving toward regular
and random structures, the analytical tractability of evolutionary games is easily
lost. Therefore, as described in Chap. 2, the investigations must be performed by
means of numerical simulations (i.e., by using Monte Carlo methods). Then, once
an investigation is performed on a particular structure, before concluding that some
result can be related to the adopted topology, it is important to evaluate if the same
can be achieved in a more regular topology. Actually, comparing results achieved in
different network topologies is a task often required also in other problems where
networks are adopted (e.g., opinion dynamics). Finally, as later discussed, on using
networked populations one need to reproduce (or to approximate) when possible the
thermodynamic limit, in order to avoid finite size effects.

1.3.1 Strategy Revision Phase

Let us now go back to the process before introducing the evolution of an agent
population, i.e., the “strategy revision phase.” The latter can be implemented
according to different methods, usually related to the analysis of the payoff of
the involved agent. In addition, further methods can consider different behaviors,
as conformity (see Chap. 4), and pure imitation (see Chap. 3). In general, methods
based on the payoff analysis can be divided in the following categories:

• Comparison
• Self-evaluation
• Imitation

The first one, i.e., the payoff comparison, is often implemented as a stochastic rule
by a Fermi-like function. The latter allows to compute the probability an agent y
takes the strategy of an agent x and reads

W.sy  sx/ D
�

1C exp

�
�y � �x

Ky

���1

(1.4)

where �x and �y correspond to the payoffs of two agents, and sx and sy indicate
their strategy. Ky > 0 is an agent-dependent parameter whose role will be described
in the Chap. 3. The Fermi-like function actually is adopted in a wide number of
contexts and applications. A fast inspection to its shape—see Fig. 1.1 clarifies
why it can be efficiently used for implementing stochastic and rational processes.
Notably, its “stochastic” behavior comes from the opportunity to use it as a weighted
distribution, where even inconvenient choices can be performed (e.g., imitating
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Fig. 1.1 Fermi-like function used for implementing the strategy revision phase. The x axis
represents the payoff of the y-th agent, i.e., the one that has to decide whether to imitate the
x-th agent, whose payoff has been set to �x D 10:0. As reported in the legend, each curve refers to
a different temperature

a poorer agent, even if with a very low probability), while its “rationality” is
represented by the temperature K (or Ky if referred to a specific agent). The second
part of Chap. 3 focuses on a complete analysis on the role of the temperature
(indicated also as “noise”) in the PGG. Then, the second category in the list, i.e.,
self-evaluation methods, entails agents decide to change their strategy whether the
current payoff is smaller than the previous one. This approach can be viewed as
a kind of evaluation on the own performance and entails that agents have some
memory (we recall that usually the agent payoff is reset after each iteration).
Last, methods based on imitative mechanisms (considering the payoff as reference)
usually lead agents to imitate a richer opponent in their neighborhood. However, it
is also possible (as shown in the application presented in the Chap. 4) to provide
agents with behaviors not related to the payoff (e.g., conformity).

1.3.2 Cooperation: Motivations and Mechanisms

Cooperation is one of the most interesting phenomena in nature and in societies.
Cooperation leads to forms of organization and to the growth of a system. However,
at least according to the Game Theory, often is a target very difficult to be reached.
Beyond the underlying motivations, and the potential risks, results coming from
cooperation require joint efforts. For this reason, cooperation can be viewed as an
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emergent phenomenon, where an increasing amount of agents becomes cooperator.
Martin A. Nowak wrote a very important work, in the field, highlighting and
explaining the famous five rules of cooperation, related to the concept of natural
selection: kin selection, direct reciprocity, indirect reciprocity, network reciprocity,
and group selection. Here, we just limit to mention and to briefly summarize each
rule. The kin selection is a principle based on the similarity between the donor and
the recipient of an altruistic act. For instance, in case of a parental relation between
two individuals, it is very likely to observe cooperation. The direct reciprocity
results from the observation that when a game involves many times always the
same individuals, cooperation can actually become a promising option. The indirect
reciprocity is a mechanism that explains why individuals act as donors, even if
they know that the one receiving the benefit is not (will not be) in the condition
to exchange the favor. Notably, especially in the human society, we can observe
forms of cooperation related to indirect reciprocity, mainly because the donor has
the opportunity to gain the respect of other individuals (that, obviously, must see the
action). Accordingly, this action might allow to achieve, indirectly, some benefits.
The network reciprocity is similar to the direct reciprocity and can be observed
in spatially structured populations, where the individuals interact always with the
same neighbors. This mechanism is then responsible for the emergence of clusters
of cooperators. Then, the group selection indicates forms of cooperation observed
within community of people, i.e., among individuals belonging to the same group.
Notably, in this case, groups of cooperators can obtain more benefits than groups of
defectors. Finally, further mechanisms responsible for the emergence of cooperation
have been described in complex networks, in continuous spaces (e.g., random
motion, also discussed in the Chap. 3) and in many other conditions.
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Chapter 2
Modeling Complex Systems

Statistical Physics deals with a number of topics of absolute relevance in Physics,
as phase transitions. Notably, it aims to connect the macroscopic behavior of a
system with the local mechanisms of its constituents, e.g., one aims to connect the
thermodynamic view of a gas with its mechanical laws (i.e., the kinetic theory).
As a result, this approach becomes strongly valuable when dealing with complex
systems, also in those cases where the subject of investigation is a nonphysical
system, like a social network or a socioeconomic system. Modern Network Theory
represents one of the most successful frameworks for dealing with this kind of
topics, and its link with Statistical Physics has deep roots uncovered in the early
works of A.L. Barabasi, M. Newman, Y. Moreno, S. Boccaletti, A. Arenas, R.
Albert, G. Caldarelli, A. Barrat, V. Latora, D. Krioukov, G. Bianconi and many
other scientists, now forming the growing community of complex systems (i.e.,
the Complex Systems Society). Therefore, the scope of this chapter is to provide
a very brief presentation of some mathematical and physical method for dealing
with Evolutionary Games, focusing both on the mathematical description and on
the computational strategies for implementing models and studying their behavior.
The reader interested in further details is invited to consult the huge amount of
texts on the specific topic (a brief list of reference can be found at the end of the
chapter). Here, the material is organized as follows: we start with models related
to population dynamics, then we move to a general discussion of phase transitions,
introducing the Ising model, the Curie-Weiss model, and the Mean-field approach.
Eventually, a section on complex networks ends the chapter.
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2.1 Population Dynamics

Population dynamics is an area that sinks its roots in the field of Mathematical
Biology, adopted for representing processes like population growth, competitions,
aging, and so on and so forth. Beyond the classical models introduced by Malthus,
Lotka–Volterra, Verhulst, Ginzburg, and many more who contributed to the early
developments of this field, EGT constitutes a further framework for studying the
behavior and the dynamics of a population. Here, we present some basic concepts
that can be adopted for defining new models both in the area of EGT and in contexts
that might benefit from this mathematical approach (e.g., social dynamics). Let us
begin with a simple continuous growth, considering a population composed of N
individuals living in a system without competitors:

dN

dt
D rN (2.1)

with r defined as growth rate, or Malthusian parameter. From a mathematical
point of view, computing the analytical solution of Eq. (2.1) is quite simple. In
particular, we have N.t/ D N0ert, with N0 initial condition, indicating the population
size at t D 0. As we can observe, Eq. (2.1) does not take under consideration
further aspects that can be found in ecological contexts, e.g., processes/mechanisms
that can reduce the growth of a population. For instance, we can be interested
in analyzing the behavior of a system with two competing populations/species.
Obviously, in order to model this occurrence, we have to know the rules underlying
the interactions between individuals of the two species. One of the first proposals
for representing these scenarios is the Lotka-Volterra model, also named predator-
prey model. Notably, it aims to describe the dynamics of interactions between two
species, i.e., predators (say A) and preys (say B). The mathematical definition of this
model reads

8̂̂
<
ˆ̂:

dA

dt
D ˛AB � ˇA

dB

dt
D �A � ıAB

(2.2)

with ˛ and � representing internal processes within the single species (e.g., growth)
and ˇ and ı parameters that quantify the interactions between the two species. The
values of these parameters can be modified for considering different scenarios.

2.1.1 Replicator Dynamics

In the classical cases above mentioned, individuals may belong only to one species,
e.g., a predator cannot become a prey. In doing so, a competition process can
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lead to the extinction of a species, i.e., to the complete removal of its individuals,
without to affect the amount of individuals belonging to the winning species (whose
value might depend on other parameters, like the growth factor, etc.). Instead, in
EGT, individuals might change their group of belonging, and the total size of the
population is conserved over time. Actually, as we will see, in EGT we do not focus
on the agents from a physical point of view (e.g., growth mechanisms), but on their
strategies that constitute the parameter of the system that varies over time. Here,
the benefits (or gains) deriving from interactions can be interpreted as fitness. So,
again, what that reproduces/extincts in these dynamics are not the individuals but
their strategies. The equivalence payoff-fitness, and the relation between the payoff
of an individual and its strategy (and those of its neighbors), allows to introduce an
analytical description of the system. For instance, in two-strategy games, i.e., with
individuals that can adopt the strategy C and the strategy D, we can write

8̂
<̂
ˆ̂:

dC

dt
D C.�C � �/

dD

dt
D D.�D � �/

(2.3)

with � D C�C C D�D, and C C D D 1. The solution of this system can lead
to different equilibria, as the extinction of a strategy, as well as the coexistence
of both. This approach leads to the so-called replicator dynamics, which considers
a population with n strategies, and a n � n-matrix, named “payoff matrix,” with
elements aij representing the gain individuals receive according to their actions
(i.e., strategies). The general differential equation, i.e., the replicator equation is
defined as

dxi

dt
D xi.�i � �/ (2.4)

with i going from 1 to n, xi representing the density of the i-th strategy in the
population, �i payoff (or fitness) of the i-th strategy computed as �i D Pn

jD1 aijxj,
and � average payoff equal to � D P

i �ixi. The Eq. (2.4) shows a deterministic
dynamics, and, as reported in several previous studies, the behavior of the system
strongly depends on the value of n, i.e., the number of strategies. Notably, in the
most simple case with n D 2, we can observe the prevalence of one strategy, their
coexistence, and bistable behaviors. While for n > 2, different behaviors can be
observed as limit cycles and chaos.

2.2 The Ising Model

Phase transitions are critical collective phenomena constituting one of the most
important topics of Physics. Despite their underlying complexity, a number of
models, for describing their dynamics, has been proposed. Among them, the Ising
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Fig. 2.1 A simple square lattice, i.e. with dimension D D 2

model covers a special relevance, being at the same time both simple, powerful,
and, in addition, useful for investigating also the behavior of nonphysical systems
(e.g., see the area named Sociophysics). The Ising model considers a lattice of
dimension D composed of N cells (see Fig. 2.1), each one provided with a spin
� D ˙1. Since a cell may, in general, represent different kinds of objects (e.g.,
atoms, neurons, etc.), this simple model can be adopted in a wide variety of contexts.
Accordingly, the variable � takes a meaning whose value depends on the related
scenario, e.g., a magnetic moment, an opinion, an agent state, and so on. Here, it is
worth to emphasize that the restricted range of � , i.e.,˙1 in the majority of cases, is
reflected in the descriptive power of the model. However, a number of problems can
be successfully faced by using this very simple modelization. Then, in the defined
lattice, a pair of cells (e.g., .i; j/) forms a bond J, which represents their interaction.
The whole set of bonds can be denoted as B, and for each element of the set, we
have an energy of value �J�i�j. In doing so, the interaction energy is equal to �J
for �i D �j and to J in the opposite case. If J is positive, the case �i D �j has
an energy smaller than the case �i D ��j, so the former is more stable. Positive
interactions (i.e., J > 0) are defined as “ferromagnetic,” while negative interactions
as “antiferromagnetic.” In addition, some sites of the lattice can have an own energy
of value �h�i (here h may represent an external field). So, the Hamiltonian of the
Ising model reads

H D �J
X

.ij/2B

�i�j � h
NX

iD1

�i (2.5)

Once defined the Hamiltonian function, it is possible to compute the expected
value of a physical quantity, of the system under consideration, by using the
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Gibbs-Boltzmann distribution. For instance, it is interesting to compute the average
spin configuration † at a given temperature T . To this end, we compute the
distribution

P.†/ D e�ˇH.†/

Z
(2.6)

with Z representing the partition function, and ˇ D 1
kbT , i.e., inverse of the product

between the Boltzmann constant kb and the system temperature T . As for the
partition function Z, its role is normalizing the distribution (i.e., Eq. (2.6)) and, in
general, takes the following form

Z D
X

i

e�ˇH.†i/ (2.7)

with the summation extended to all possible spin configurations. It is important
to emphasize that, unfortunately, the explicit definition of Z is not always trivial.
Like previously mentioned, when spins � have values different from ˙1, other
models can be considered (e.g., the XY model). Among the quantities that can be
measured in the Ising model, the parameter called magnetization is often particularly
useful, allowing to have a high level overview on the system. In particular, the
magnetization is defined as

m D 1

N
h

NX
iD1

�ii (2.8)

In the thermodynamic limit, i.e., for N ! 1, this parameter (i.e., m) measures the
order of a system. Notably, the magnetization vanishes when the amount of positive
spins is equal to that of negative ones, i.e., full disorder, and it is maximized when
all spins are aligned in the same direction. It is then interesting to evaluate how the
temperature affects the state of order of a system. Notably, at low temperatures (i.e.,
for ˇ � 1), Eq. (2.6) suggests that low-energy configurations have a probability
higher than high-energy configurations. Moreover, in absence of external fields (i.e.,
for h D 0), low-energy states of the Ising model have all spins pointing in the
same direction, so that the magnetization m has a (absolute) value close to 1. Now,
increasing the temperature T , spin configurations with various energies emerge with
equal probabilities. Accordingly, the macroscopic state of the Ising model becomes
disordered, and its magnetization goes to zero. Therefore, it is possible to identify a
relation between m and T and, most importantly, a critical temperature Tc. The latter
entails that for T < Tc the magnetization is greater than zero, while for T > Tc the
magnetization reduces until its value goes to zero. The phenomenon here briefly
described is known as “order-disorder phase transition,” and it has a deep relevance
both in Physics and in the related applications to complex systems. Eventually, we
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remind that spin configurations achieved at T < Tc correspond to a ferromagnetic
phase, while those achieved at T > Tc correspond to a paramagnetic phase.

2.2.1 Mean Field

In principle, the Gibbs-Boltzmann distribution defined in Eq. (2.6) indicates that it
is possible to compute the expected value of any physical quantity. However, due
to the huge amount of sums over 2N terms in the partition function (i.e., Eq. (2.7)),
sometimes this task is actually almost impossible (in a limited amount of time).
Thus, in such cases, the utilization of opportune methods of approximation becomes
mandatory, like, for instance, the mean-field approach now described. In few words,
the mean-field approach neglects fluctuations of variables around their mean values.
Notably, we assume m D

P
ih�ii
N D P

ih�ii, and the deviation ı�i D �i � m, in
addition the second-order term with respect to the fluctuation ı�i is assumed to be
small enough to be neglected. Accordingly, the Hamiltonian can be rewritten as

H D �J
X

.ij/2B

.mC ı�i/.mC ı�j/ � h
NX

iD1

�i

� �Jm2NB � Jm
X

.ij/2B

.ı�i C ı�j/ � h
NX

iD1

�i

(2.9)

with NB number of elements in the set B. Here ı�i and ı�j, which refer to the extrema
of each bond, are summed up z times, with z number of bonds starting from a site.
In doing so, the Hamiltonian can be finally reduced to the following form:

H D NBJm2 � . JmzC h/

NX
iD1

�i (2.10)

Becoming much more easy for analytical calculations.

2.2.2 Curie-Weiss Model

An important aspect of the Ising model is given by its dimension D. Notably,
for D D 1, the Ising model has no phase transitions at finite temperature. For
D D 2, according to the Onsager’s solution, there is a phase transition (at a
finite temperature). Then, in higher dimensions, although a phase transition can be
observed, the definition of an analytical solution still constitutes an open problem.
In particular, for D D 3, the problem has been solved only by a numerical approach,
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while for D > 3 a solution is still required. Here, we briefly present a toy model that
allows to describe the behavior of ferromagnetic transitions at infinite dimension,
i.e., the Curie-Weiss (CW hereinafter) model. Remarkably the latter, despite being
a toy model, has been proven to have a great relevance both in statistical mechanics
and in information theory. The infinite dimension of the system entails that, in the
CW model, each spin is connected with all the others. Accordingly, its Hamiltonian
reads

H.�1; : : : �n/ D � 1

N

X
.i<j/

�i�j � h
NX

iD1

�i (2.11)

As result, using the jargon of graph theory, the CW model defines a complete
graph of N nodes and N.N � 1/=2 links. Then, using the magnetization m
before introduced, and without considering the contribution of external fields, the
Hamiltonian of this model takes following form

H.�1; : : : �n/ D �N

2
m2 C O.1/ (2.12)

As above reported, for computing the expected values of physical quantities of
systems like those we are considering, we need to compute the partition function
of the system that in this case is equal to

Z D
X
f�ig

e�ˇH.�1;:::;�N / (2.13)

with H defined in Eq. (2.11). Now, further calculations are required for solving
the equation, as for instance, for computing the summation over the spin variables
appearing in Eq. (2.13). However, without to show the whole mathematical deriva-
tion, we only report the final equation of state of the CW model

m D tanh.ˇJmC ˇh/ (2.14)

2.2.3 Landau Theory of Phase Transitions

The approaches here presented for studying the phenomenology of phase transi-
tions by analytical methods allow to compute the partition function of a system.
Therefore, at least in principle, a number of quantities can be computed according
to Eq. (2.6). For a reason that will be soon explained, it is now worth to introduce an
important thermodynamic potential, named “free energy,” that allows to study the
state of equilibrium of a system. In particular, the so-called Helmholtz free energy
is defined as F D U � TS, with U internal energy, T temperature, and S entropy.
So, since the second law of thermodynamics states that a system evolves toward
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the state that maximizes its entropy, this law can be re-paraphrased stating that the
state of equilibrium of a system corresponds to one that minimizes its free energy
F. Now, we can motivate why we moved from the brief remark on the role of the
partition function to the introduction of the free energy. Notably, a very important
relation links the two quantities

� kbT ln Z D U � TS (2.15)

As a result, we have Z D e�ˇF. Here, the mean-field theory allows to obtain an
approximated phase diagram of the system. However, when the latter is close to the
critical point (e.g., the critical temperature), its behavior can be analyzed by using
the formulation introduced by Landau, named “Landau theory of phase transitions.”
The underlying assumption of this theory is that a system close to the critical point
has a small order parameter (i.e., m), which leads to the expression of the free energy
as the following summation of power series:

F.TIm/ D f .TI 0/C 1

2
a.T/m2 C 1

4Š
b.T/m4 C : : : (2.16)

with a.T/ and b.T/ coefficients that can be computed analytically. For instance,
Fig. 2.2 shows the free energy of the CW model (with h D 0). In particular, for
T > Tc there is only one minimum of free energy (m D 0), corresponding to the state

Fig. 2.2 Free energy in functions of the order parameter m, in absence of an external field
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defined “paramagnetic phase.” Instead, for T < Tc there are two possible minima
of free energy, and the symmetry m ! �m is spontaneously broken (phenomenon
known as “symmetry breaking”).

2.2.4 Numerical Simulations

After introducing the Ising model, and some methods of approximation for studying
special cases (e.g., D � 4), we can move toward a quick presentation of
computational methods for performing the related numerical simulations. This part
is of particular interest for achieving a preliminary idea on how to implement
numerical simulations using networked agents, i.e., agents arranged in graphs, no
matter if regular (as in the case of the Ising model) or random (as in the case
of Complex Networks below discussed). In general, if we want to investigate the
properties of a system using, for example, the formalism of the canonical ensemble,
we have to deal with a system described by the macrostate .N; V; T/ (i.e., number
of particles, volume, and temperature). Given a microstate � , a generic observable
can be indicated as O.�/, and its average value at equilibrium is

hO.�/i D 1

Z

X
�

e�ˇH.�/ (2.17)

thus, without the knowledge of the partition function Z, we cannot compute the
average value of our observable O.�/. A further example, previously mentioned,
is given by the Ising model, where numerical simulations become mandatory for
studying its behavior for D � 3. So, in order to overcome this limit, we can
adopt Monte Carlo (MC hereinafter) methods for computing the value of the
quantities we are interested in. The underlying idea of MC methods is to generate
subset configurations (from the whole phase space), with a weight given by the
Boltzmann statistics, that are representative for the entire ensemble. So, generating,
for example, M configurations, we can have an estimate of the observable computing
its average value, i.e.,

hO.�/i D 1

M

MX
iD1

Oi.�/ (2.18)

Therefore, we are able to compute the average value of a physical quantity avoiding
to deal with the partition function Z of the system (as in Eq. (2.17)). Now, before to
proceed, it is worth to remind that the analytical solutions of a system (e.g., the Ising
model) usually are computed considering the thermodynamic limit (i.e., N ! 1).
So, from a computational point of view, the first problem is how to approximate
such limit/condition. In the case of the Ising model, a viable solution is given by
the implementation of lattices which size is sufficiently big, removing the finite
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Fig. 2.3 Generating a 2D lattice with continuous boundary conditions, i.e. a toroid as shown on
the right. The three red sites are connected by a dotted bond, showing how to generate the resulting
toroid, i.e. the site x is connected to the site y and to the site z. As result, x has four bonds

size effect using a simple trick, i.e., generating lattices with continuous boundary
conditions. Actually, under this condition, a bidimensional lattice takes the form of
a toroid. In particular, this transformation can be easily performed by connecting
the sites at the edges of the lattice. For instance, Fig. 2.3 shows an example focusing
on the site named x, that is, connected to the sites y and z, increasing its amount of
bonds up to four. Going back to the problem of performing a numerical simulation of
the Ising model, we can implement different algorithms. Here, we refer to one of the
most famous, i.e., the Metropolis algorithm. We remind that our aim is measuring
the value of parameters like the magnetization at equilibrium. As we know from
theory, at low temperatures we expect a ferromagnetic phase, i.e., a system close
to the order, while at high temperatures a paramagnetic phase, i.e., a disordered
system. The Metropolis algorithm is very simple, and its steps are:

1. Randomly select a site i and compute the local �E associated to its spin flip
2. IF (�E � 0): accept the flip;

ELSE: accept the flip with probability e
��E
kbT

repeated until an equilibrium state is reached. The �E indicates a local difference in
energy, i.e., computed considering only the selected site and its nearest neighbors.

2.3 Complex Networks: A Very Short Overview

Nowadays, Complex Networks represent a vibrant and independent research field
that attracted the attention of scientists coming from different areas. The underlying
reason is that many natural and man-made complex systems, as biological neural
networks, social networks, and infrastructural networks, have a nontrivial topology
that strongly influences the dynamics among the related agents (i.e., users of
social networks, neurons of neural networks, and so on). An increasing amount of
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investigations is demonstrating the relevance of the interaction structure in a wide
amount of systems, and, even in the case of EGT, complex networks allow to obtain
very interesting results. For instance, as recalled in Chap. 1, Santos and Pacheco
showed the role of heterogeneity in the emergence of cooperation, modeling their
system with scale-free networks. The latter, as well as others famous models, often
is used as toy model both in EGT and in many other contexts as social dynamics,
ecological networks, etc. Thus, in this section, we provide a very short overview
on the main network properties, and on three different models that can be used for
generating a complex network with a known topology. Readers interested in this
topic are warmly encouraged to read the wide literature on complex networks. So,
first of all, modern network theory has its basis in the classical theory of graphs.
In particular, a preliminary definition of complex network can be “a graph with
a nontrivial topology.” In general, a graph is a mathematical object that allows
to represent relations among a collection of items, named nodes. More formally,
a graph G is defined as G D .N; E/, with N set of nodes/vertices and E set of
edges/links (or bonds). Nodes can be described by a label and represent the elements
of a system, e.g., users of a social network, websites of the WEB, and so on.
In turn, the edges represent the connections among nodes, and map relations as
friendship, physical links, etc. A graph can be “directed” or “undirected,” i.e., the
relation can be symmetrical (e.g., friendship) or not (e.g., a one way road), and can
be “weighted” or “unweighted.” The former allows to introduce some coarseness
in the relations, e.g., in a transportation network the weights might refer to the
actual geographical distance between two locations. The information related to the
connections in a network is saved in a N � N matrix, with N number of nodes,
defined “adjacency matrix.” Numerical analysis on the adjacency matrix allow to
investigate the properties of a network. For instance, the adjacency matrix A of an
unweighted graph can have the following form:

aij D
(

1 if eij is defined

0 if eij is not defined
(2.19)

On the other hand, in the case of weighted networks, the inner values of the
adjacency matrix are real. Among the properties of a complex network, the
degree distribution is one of the most relevant. Notably, this “centrality measure”
constitutes a kind of signature for classifying the nature of a network (e.g., scale-
free), where the term “degree” means amount of connections (i.e., edges) of a
node. So, indicating with k the degree of nodes, the distribution P.k/ of a network
represents the probability to randomly select a node with a degree equal to k, i.e., a
node with k connections. A second network property is called clustering coefficient,
and it allows to know if nodes of a network tend to cluster together. Actually,
this phenomenon is common in many real networks as social networks, where it
is possible to identify circles of friends, or acquaintances in which every person
knows all the others. For the sake of clarity, considering a social network, if the user
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a is connected to the user b, and the latter is connected to the user c, there is a high
probability that a be connected to c. The clustering coefficient can be computed as

C D 3 � Tn

Tp
(2.20)

with Tn number of triangles in a network, and Tp number of connected triples of
nodes. A connected triple is a single node with links running to an unordered pair
of others. This coefficient has a range that spans the interval 0 � C � 1. A further
mathematical definition of the clustering coefficient reads

Ci D Tni

Tpi
(2.21)

with Tni number of triangles connected to node i, and Tpi number of triples centered
on node i. The main difference between the two definitions is that the second one is
local, so that to obtain a global value one has to compute the following parameter

C D 1

n

X
i

Ci (2.22)

In doing so, one measures the density of triangles in a network, no matter if the
structure is directed or undirected. Readers familiar with literature in Sociology
might find the same parameter defined as “network density.” Another measure is the
betweenness centrality that quantifies the centrality of a node (or of an edge) in a
network. Notably, this parameter refers to the number of geodetics from all nodes
to all others that pass through a given node and can be computed as

Bi D
X

x¤i¤y

�xy.i/

�xy
(2.23)

with �xy total number of geodesics from the x-th node to the y-th node, �xy.i/ total
number of geodesics from x-th node to y-th node passing through the i-th node. A
similar approach can be implemented also for computing the centrality of an edge,
i.e., considering the relevance of a particular edge in a network. Finally, we recall the
parameter named assortativity that allows to evaluate if nodes of a network tend to
attach to other nodes that are (not) similar. This property actually affects the whole
structure of a network, e.g., social networks can be divided into communities of
users speaking the same language or having same hobbies. Often indicated as r, the
assortativity reads

r D
P

i eii �Pi aibi

1 �Pi aibi
(2.24)
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with eij fraction of edges in a network that connects a node of type i to one of type
j, ai DP

j eij and bj DP
i eij. A network is assortative when r is positive, while, if

negative, is defined disassortative. It is worth to remind that the similarity can refer
to different features, i.e., not only to the amount of links. Eventually, before to show
the algorithms to implement some toy models, we remind that complex networks
often show a community structure, i.e., nodes appear to be strongly connected,
forming well-defined groups. Often, finding communities is not trivial, and this task
requires the implementation of the so-called community detection algorithms.

2.3.1 Network Structures

Here, we briefly provide the algorithms for implementing three famous models
of complex networks: classical random networks, scale-free networks, and small-
world networks.

2.3.1.1 Classical Random Networks

One of the early works on random networks has been developed by Paul Erdös
and Alfred Renyi. Their model, usually called E-R model/graph, considers a graph
with N nodes and a probability p to generate each edge. Accordingly, an E-R graph
contains about p � N.N�1/

2
edges, and it has a binomial degree distribution

P.k/ D
 

N � 1

k

!
pk.1 � p/n�1�k (2.25)

for N ! inf and np D const, the degree distribution converges to a Poissonian
distribution

P.k/ � e�pn � . pn/k

kŠ
(2.26)

To generate this kind of networks, one can implement the following simple
algorithm:

1. Define the number of N of nodes and the probability p for each edge
2. Draw each potential-link with probability p

Figure 2.4 illustrates the P.k/ for an E-R graph with N D 25; 000 and p D 4 � 10�4.
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Fig. 2.4 P.k/ (in loglog scale) of an E-R graph with N D 25; 000 and p D 4 � 10�4

2.3.1.2 Scale-Free Networks

Scale-free networks are characterized by the presence of few nodes (called hubs)
that have many connections (i.e., a high degree), while the majority of nodes has a
low degree. Therefore, these networks constitute a classical example of heteroge-
neous networks. The related degree distribution follows a power-law function

P.k/ � c � k�� (2.27)

with c normalizing constant and � scaling parameter of the distribution. A famous
model for generating scale-free networks is the Barabasi-Albert model (BA model
hereinafter) that considers two parameters: N nodes and m minimum number of
edges drawn for each node. The BA model can be summarized as follows:

1. Define N number of nodes and m minimum number of edges drawn for each
node

2. Add a new node and link it with other m pre-existing nodes. Pre-existing nodes
are selected according to the following equation:

….ki/ D kiP
j kj

(2.28)

with ….ki/ probability that the new node generates a link with the i-th node
(having a ki degree).

Figure 2.5 illustrates the P.k/ for a scale-free network with N D 25; 000 and m D 5.
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Fig. 2.5 P.k/ (in loglog scale) of a scale-free network with N D 25; 000 and m D 5

2.3.1.3 Small-World Networks

A small-world network is characterized by the fact that every node can be reached
from any other in a small number of hops. More formally, small-world networks
have a distance L, between two randomly chosen nodes, equal to L / ln N. Two
main properties allow to evaluate if a network has a small-world structure, i.e., a
shortest average path length and a relatively high clustering coefficient. In particular,
the clustering coefficient of a small-world network is higher than that of its related
E-R graph, i.e., the classical random network generated with the same set of nodes.
Watts and Strogatz developed a very famous algorithm, i.e., the Watts-Strogatz
model (WS hereinafter), for implementing small-world networks:

1. Define a regular ring lattice with N nodes, each connected to k neighbors (k=2 on
each side)

2. For every node i take every edge .i; j/ with i � j and rewire it with probability
ˇ. Rewiring is done by replacing the edge .i; j/ with .i; k/ with k chosen with
uniform probability from all nodes avoiding loop and edge duplication

The WS model shows an interesting behavior studying the effect of the rewiring
probability ˇ. In particular, we can start with a regular (ring) lattice setting ˇ D 0,
and we can obtain a completely disordered network by increasing the value of ˇ

up to 1. So, at intermediate values of ˇ, the WS model generates networks that
consist of a mixture of random and regular connections, providing the network with
the small-world structure. This behavior is illustrated in Fig. 2.6. To conclude, the
reader can use these algorithms for generating structured populations, whose agents
play an evolutionary game. In doing so, it is possible to compare the outcomes on
varying the underlying topology.
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Fig. 2.6 Small-world networks generated by the WS model. From left to right: network generated
with ˇ D 0, ˇ D 0:5 and ˇ D 1
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Chapter 3
Evolutionary Games I: Statistical Physics

This chapter aims to illustrate some Statistical Physics approaches to EGT. In
particular, the first part presents a model for studying the emergence of cooperation,
in the Prisoner’s Dilemma, mapping agents to particles of a gas, then using the
kinetic theory of gases. The second part analyzes the dynamics of the Public Goods
Game by varying the parameter named ‘Temperature’ (known also as “Noise”)
appearing in the equation adopted for performing the Strategy Revision Phase.
Notably, results show how to link this game with the Voter Model. The reader
interested in further details can find a brief list of manuscript at the end of the
chapter. In particular, the content of this chapter is based on the first two manuscripts
cited at the end of the conclusions.

3.1 Phase Transitions in the Prisoner’s Dilemma

Now, we introduce an analytical model for studying the evolution toward
equilibrium in spatial games, with “memory-aware” agents, i.e., agents that accumu-
late their payoff over time. In particular, we focus our attention on the PD, since as
previously mentioned it constitutes an emblematic example of a game whose Nash
equilibrium is defection. Previous investigations showed that, under opportune
conditions, in this game, it is possible to reach an equilibrium of cooperation.
In particular, it has been proved that some mechanisms, as random motion, can
support an agent population to become cooperative. In the proposed model, we
map agents to particles of a gas so that their motion can be related to the system
temperature. In doing so, we can identify a relation between the temperature and
the final equilibrium of our population, explaining how it is possible to break the
classical Nash equilibrium in this game. It is worth to emphasize that the underlying
condition, adopted in this investigation, is that agents are able to increase their
payoff over time (thus named “memory-aware” agents). Remarkably, this condition
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represents the major difference with most of the evolutionary game models studied
by computational approaches. On the other hand, considering “memory-aware”
agents makes the problem more tractable from an analytical perspective. Finally,
we introduce a formalism for studying order-disorder phase transitions in these
dynamics. We remind that beyond trying to understand why the random motion
supports cooperation (in this game), an important goal of this investigation is to
strengthen the link between EGT and statistical physics (see also Chap. 1).

3.1.1 Model

Here, we are interested in studying the prisoner’s dilemma by an analytical
approach, for the reasons above mentioned. Before introducing our model, let us
remind the general form of a payoff matrix:

�C D

C R S
D T P

�
(3.1)

where the set of strategies is † D fC; Dg: C stands for Cooperation and D for
Defection. In the matrix (3.1), R is the gain achieved by two interacting cooperators,
T represents the Temptation, i.e., the payoff that an agent receives whether it defects
while its opponent cooperates, S the Sucker’s payoff, i.e., the gain received by a
cooperator while the opponent defects, eventually P the payoff of two interacting
defectors. In the case of the PD, we can set the matrix elements of (3.1) to the
following values: R D 1, 0 � S � �1, 1 � T � 2, and P D 0. As stated before,
during the evolution of the system, agents can change their strategy from C to D, and
vice versa, following an updating rule, as, for instance, the one named “imitation of
the best,” where they imitate the strategy of their richest (i.e., fittest) neighbor.

3.1.1.1 Mean Field Approach

Let us consider a mixed population composed of N agents, with an initial uniform
starting distribution of strategies (i.e., cooperation and defection). As condition
all agents can interact together so that, at each time step, the payoff gained by
cooperators and defectors can be computed as follows:

(
�c D .�c � N � 1/C .�d � N/S

�d D .�c � N/T
(3.2)

with �c C �d D 1, �c density of cooperators and �d density of defectors. We recall
that, in the PD, defection is the dominant strategy, and, even setting S D 0 and
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T D 1, it corresponds to the final equilibrium because �d is always greater than �c.
We recall that usually these investigations are performed by using “memoryless”
agents (i.e., agents unable to accumulate a payoff over time) whose interactions are
defined only with their neighbors and focusing only on one agent (and its opponents)
at a time. These conditions strongly influence the dynamics of the population. For
instance, if at each time step we randomly select one agent, which interacts only
with its neighbors, in principle it may occur that a series of random selections picks
consecutively a number of close cooperators; therefore, in this case, we can observe
the emergence of very rich cooperators, able to prevail on defectors, even without
introducing mechanisms like motion. In addition, when P D 0, a homogeneous
population of defectors does not increase its overall payoff. Instead, according to the
matrix (3.1), a cooperative population continuously increases its payoff over time.

Now, we consider a population divided, by a wall, into two groups: a group Ga

composed of cooperators and a mixed group Gb (i.e., composed of cooperators
and defectors). Agents interact only with members of the same group, then the
group Ga never changes, and, accordingly, it strongly increases its payoff over
time. The opposite occurs in the group Gb, as it converges to an ordered phase of
defection, limiting its final payoff once cooperators disappear. In this scenario, we
can introduce a strategy to modify the equilibria of the two groups. In particular,
we can turn to cooperation, the equilibrium of Gb, and to defection that of Ga. In
the first case, we have to wait a while, and to move one or few cooperators to Gb,
so that defectors increase their payoff, but during the revision phase, they become
cooperators, since the newcomers are richer than them. In the second case, if we
move, after few time steps, a small group of defectors from Gb to Ga, the latter
converges to a final defection phase. These preliminary and theoretical observations
let emerge an important property of the “memory-aware” PD: considering the
two different groups, cooperators may succeed when act after a long time and
individually. Instead, defectors can prevail by a fast group action. Notably, rich
cooperators have to move individually; otherwise many of them risk to feed
defectors, i.e., to increase too much their payoff, so avoiding that they change
strategy. The opposite holds for defectors that, acting in group, may strongly reduce
the payoff of a community of cooperators (for S < 0).

3.1.1.2 Mapping Agents to Gas Particles

We hypothesize that the PD, with moving agents, can be successfully studied by
the framework of the kinetic theory of gases. Therefore, the idea is mapping agents
to particles of a gas. In doing so, the average speed of particles can be computed

as hvi D
q

3Tskb
mp

, with Ts system temperature, kb Boltzmann constant, and mp

particle mass. Particles are divided into two groups by a permeable wall. Thus,
the latter can be crossed but, at the same time, avoids interactions among particles
staying in the opposite sides (i.e., belonging to different groups). In doing so, we can
provide a dual description of our system: one in the “physical” domain of particles
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and the other in the “information” domain of agents. Notably, for analyzing the
system in the “information” domain, strategies are mapped to spins. Summarizing,
we map agents to gas particles in order to represent their “physical” property (i.e.,
random motion), and we map the strategies used by agents to spins for representing
their “information” property (i.e., the strategy). These two mappings can be viewed
as two different layers for studying how the agent population evolves over time.
Although the physical property (i.e., the motion) affects the agent strategy (i.e.,
its spin), the equilibrium can be reached in both layers/domains independently.
This last observation is quite important, since we are interested in evaluating only
the final equilibrium reached in the “information” domain. Then, as stated before,
agents interact only with those belonging to the same group, and the evolution of
the mixed group Gb can be described by the following equations:

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂̂
:̂

d�b
c.t/

dt
D pb

c.t/ � �b
c.t/ � �b

d.t/ � pb
d.t/ � �b

d.t/ � �b
c.t/

d�b
d.t/

dt
D pb

d.t/ � �b
d.t/ � �b

c.t/ � pb
c.t/ � �b

c.t/ � �b
d.t/

�b
c.t/C �b

d.t/ D 1

(3.3)

with pb
c.t/ probability that cooperators prevail on defectors (at time t) and pb

d.t/
probability that defectors prevail on cooperators (at time t). These probabilities are
computed according to the payoffs obtained, at each time step, by cooperators and
defectors:

8̂
<
:̂

pb
c.t/ D �b

c .t/

�b
c .t/C �b

d .t/

pb
d.t/ D 1 � pb

c.t/

(3.4)

System (3.3) can be analytically solved provided that, at each time step, values of
pb

c.t/ and pb
d.t/ be updated. Accordingly, the density of cooperators reads

�b
c.t/ D �b

c.0/

�b
c.0/ � Œ.�b

c.0/ � 1/ � e � t
Nb 	

(3.5)

with �b
c.0/ initial density of cooperators in Gb, � D pb

d.t/� pb
c.t/, and Nb number of

agents in Gb. We recall that setting Ts D 0, not allowed in a thermodynamic system,
corresponds to a motionless case, leading to the Nash equilibrium in Gb. Instead,
for Ts > 0, we can find more interesting scenarios. Now we suppose that, at time
t D 0, particles of Ga are much closer to the wall than those of Gb (later we shall
relax this constraint); for instance, let us consider a particle of Ga that, during its
random path, follows a trajectory of length d (in the n-dimensional physical space)
toward the wall. Assuming that this particle is moving with a speed equal to hvi, we
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can compute the instant of crossing tc D d
hvi , i.e., the instant when it moves from

Ga to Gb. Thus, on varying the temperature Ts, we can vary tc.
Looking at the two groups, we observe that each cooperator in Ga gains

�a
c D .�a

c � Na � 1/ � t (3.6)

while cooperators in Gb, according to the Nash equilibrium, rapidly decrease over
time. Focusing on the variation of the payoff, of the last cooperator survived in Gb,
we have

�b
c D

tX
iD0

Œ.�b
c � Nb � 1/C .�b

d � Nb/S	i (3.7)

moreover, �b
c ! 0 as �b

c ! 0. At t D tc, a new cooperator reaches Gb, with a payoff
computed with Eq. (3.6).

3.1.2 Results

The analytical solution (3.5) allows to analyze the evolution of the system and to
evaluate how initial conditions affect the outcomes of the proposed model. It is
worth observing that, if �a

c .tc/ is “enough big,” the new cooperator may modify the
equilibrium of Gb, turning defectors to cooperators. Notably, the payoff considered
to compute pb

c , after tc, corresponds to �a
c .tc/, as the newcomer is the richest

cooperator in Gb. Furthermore, we note that �a
c .tc/ depends on Na; hence, we

analyze the evolution of the system on varying the parameter 
 D Na

Nb , i.e., the
ratio between particles in the two groups. Finally, for numerical convenience, we
set kb D 1 � 10�8, mp D 1, and d D 1.

Figure 3.1 shows the evolution of Gb, for 
 D 1 on varying Ts and, depicted
in the inner insets, the variation of system magnetization over time (always inside
Gb). As discussed before, in the physical domain of particles, heating the system
entails to increase the average speed of particles. Thus, under the assumption that
two agents play together if they remain in the same group for a long enough time, we
hypothesize that there exists a maximum allowed speed for observing interactions
in the form of game (i.e., if the speed is higher than this limit, agents are not able
to play the game). This hypothesis requires a critical temperature Tc, above which
no “effective” interactions, in the “information” domain, are possible. As shown
in plot (f) of Fig. 3.1, for temperatures in the range 0 < Ts < Tmax, the system
converges to a cooperation phase (i.e., M D C1), for Tmax < Ts < Tc, the system
follows the Nash equilibrium (i.e., M D �1), and for T > Tc, a disordered phase
emerges at equilibrium. Thus, results of this model suggest that it is always possible
to compute a range of temperatures to obtain an equilibrium of full cooperation—
see Fig. 3.2. Furthermore, we study the variation of Tmax on varying 
 (see Fig. 3.3)
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Fig. 3.1 From (a) to (e): Evolution of the group Gb, with N D 100 and 
 D 1, on varying the
temperature: (a) Ts D 0. (b) Ts D 0:1. (c) Ts D 9. (d) Ts D 15. (e) Ts D 50. Insets show the
system magnetization over time. The instant t D tc can be detected in plots (c–e) as a discontinuity
of the two lines (i.e., red and black). (f) Final magnetization M, of Gb, for different temperatures
(Tc indicates the “critical temperature”)

Fig. 3.2 Maximum values of temperature Ts that allow the group Gb to converge toward
cooperation. Red values correspond to results computed with 
 D 0:5, while blue values to those
computed with 
 D 1. Circles are placed in the TS diagram indicating values of T and S, of the
payoff matrix, used for each case. Even for high values of T , and small values of S, it is possible
to achieve cooperation
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Fig. 3.3 Maximum value of system temperature that allows to achieve cooperation at equilibrium
versus 
 (i.e., the ratio between particles in the two groups). Different colors identify different
trends, fitted by power-law functions. After the final green plateau, temperatures are too high to
play the PD

showing that, even for low 
, it is possible to obtain a time tc that allows the system to
become cooperative. Eventually, we investigate the relation between the maximum
value of Ts that allows a population to become cooperative and its size N (i.e., the
amount of agents). As shown in Fig. 3.4, the maximum Ts scales with N following
a power-law function characterized by a scaling parameter � � 2. The value of
� has been computed by considering values of Ts shown in Fig. 3.2 for the case

 D 2. Finally, it is worth to highlight that all analytical results let emerge a link
between the system temperature and its final equilibrium. Recalling that we are not
considering the equilibrium of the gas, i.e., it does not thermalize in the proposed
model, we emphasize that the equilibrium is considered only in the “information
domain.”

3.1.3 Order-Disorder Phase Transitions in the Agent
Population

As discussed before, in the “information domain,” we can study the system by
mapping strategies to spins. In addition, we can map the difference between winning
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Fig. 3.4 Maximum value of Ts to achieve full cooperation at equilibrium in function of N, i.e., the
size of the population. The fitting function (dotted line) is a power-law characterized by a scaling
parameter equal to 2

probabilities, of cooperators and defectors, to an external magnetic field: h D
pb

c � pb
d. In doing so, by the Landau theory, we can analytically identify an order-

disorder phase transition. Notably, we analyze the free energy F of the spin system
on varying the control parameter m (corresponding to the magnetization M)

F.m/ D �hm˙ m2

2
C m4

4
(3.8)

where the sign of the second term depends on the temperature, i.e., positive for Ts >

Tc and negative for Ts < Tc; we remind that Tc represents the temperature beyond
which it is not possible to play the PD due to the high particle speed (according
to our assumption). For the sake of clarity, we want to emphasize that the free
energy is introduced in order to evaluate the nature of the final equilibrium achieved
by the system. In particular, looking for the minima of F allows to investigate if
our population reaches the Nash equilibrium, or different configurations (e.g., full
cooperation). Figure 3.5 shows a pictorial representation of the phase transitions that
can occur in our system, on varying Ts and the external field h. Then, the constraints
related to the average speed of particles, and to the distance between each group
and the permeable wall, can be in principle relaxed, as we can imagine to extend
this description to a wider system with several groups, where agents are uniformly
distributed in the whole space. Now, it is worth to highlight that our results are
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Fig. 3.5 Order-disorder phase transitions in the population. For Ts < Tc, the population is in
a ferromagnetic phase: (a) Applying an external negative field, the system converges to the Nash
equilibrium, corresponding to m D �1 (as � D �1 represents defection); (b) Applying an external
positive field, the population converges to cooperation (� D C1), corresponding to m D C1. (c)
For temperatures higher than Tc, a disordered paramagnetic phase emerges

completely in agreement with those achieved by authors who studied the role of
motion in the PD and in addition are able to explain why clusters of cooperators
emerge in these conditions. At the same time, we remind that, in this model, agents
are “memory-aware,” while usually investigations consider agents that reset their
payoff at each step.

3.2 The Role of the Temperature in the Spatial Public Goods
Game

In this section, we aim to analyze the role of the temperature in the spatial PGG.
Before to proceed, it is important to remind the reader that, in this section, the
terms “temperature” and “noise” refer to the same concept. As discussed in Chap. 1,
the dynamics of this game are affected by a number of parameters and processes,
namely, the topology of interactions among the agents, the synergy factor, and the
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strategy revision phase. We remind that the latter is a process that allows agents
to change their strategy. Notably, rational agents tend to imitate richer neighbors,
in order to increase the probability to maximize their payoff. By implementing
a stochastic revision process, it is possible to control the level of noise in the
system, so that even irrational updates may be observed. In particular, we study
the effect of noise on the macroscopic behavior of a finite structured population.
We consider both the case of a homogeneous population, where the noise in the
system is controlled by tuning a parameter representing the level of stochasticity in
the strategy revision phase, and a heterogeneous population composed of a variable
proportion of rational and irrational agents. In both cases numerical investigations
show that the PGG has a very rich behavior, which strongly depends on the amount
of noise in the system and on the value of the synergy factor. In doing so, we aim
to provide a description of the PGG by the lens of statistical physics, focusing in
particular on the impact of noise in the population dynamics. Saying that rational
agents are those that tend to imitate their richer neighbors, we can state that irrational
agents are those that randomly change their strategy. In the case of a homogeneous
population, the intensity of noise in the system is controlled by tuning the level of
stochasticity of all agents during the SRP, by means of a global parameter (indicated
by K) that represents the noise/temperature. Instead, in the case of a heterogeneous
population, the noise is controlled by tuning the density of irrational agents in the
population. Results indicate that tuning the level of noise to interpolate between
configurations where agents fully utilize payoff information (low noise) to those
where they behave at random (high noise) strongly affects the macroscopic behavior
of a population.

3.2.1 Model

In the case of well-mixed populations of infinite size, the behavior of the system
can be predicted as a function of the synergy factor r by studying the related Nash
equilibria. In particular, when agents play in groups of G players, two different
absorbing states appear separated at a critical point rwm D G. The population falls
into full defection for r < rwm and into full cooperation for r > rwm. Conversely,
when agents are arranged in the nodes of a network, surprisingly some cooperators
can survive for values of r lower than rwm. This effect, discussed in Chap. 1, is
known as network reciprocity. At the same time, the network structure allows a
limited number of defectors to survive also beyond r D rwm. We refer to the
two critical values of r at which cooperators first appear and defectors eventually
disappear from the population, respectively, as rc1 and rc2. It is worth mentioning
that most investigations in EGT are performed by numerical simulations, and
an analytical definition of the critical thresholds (i.e., rc1 and rc2) identified in
networked topologies is missing. As a result, when studying EGT models by
arranging agents in different spaces, the values of critical thresholds are achieved
by Monte Carlo simulations (see Chap. 2). In a networked population, depending
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on the values of r and on how agents are allowed to update their strategy, it is
possible to observe different regimes: two ordered equilibrium absorbing phases,
where only one strategy survives (either cooperation or defection), and an active but
macroscopically stable disordered phase corresponding to the coexistence between
the two species/strategies.

3.2.1.1 The Noise and the General Setup of the Model

As reported in Chap. 1, a crucial parameter appearing in Eq. (1.4) is Ky, which
plays the role of noise and then parametrizes the uncertainty in adopting a strategy.
Notably, a low noise entails agents to strongly consider the difference in payoff
�p D �y � �x when deciding their next strategy, whereas increasing the noise
the payoff difference plays a more marginal role. In the case of a homogeneous
population, K is equal for all individuals, such that by tuning the value of this global
variable, we are able to control the level of noise in the system. In the limit of
K D 0, the y-th agent will imitate the strategy of the x-th agent with probability
W D 1 if �x > �y, and W D 0 otherwise. Conversely, in the limit K ! 1,
the SRP becomes a coin flip, and the imitation occurs with probability W D 1=2

no matter the value of the synergy factor. In the latter case, the behavior of the
PGG is analogous to that of a classical voter model where imitation between a
pair of selected agents takes place with probability W D 1=2. We highlight that
the aim of this analysis is to confirm computationally results reported in previous
works, and to evaluate the relation between r and K, in order to provide a complete
description of the PGG, from the microscopic dynamics to the global behavior of
the population (i.e., following the Statistical Physics philosophy in the studying of
a physical system). According to previous investigations, setting K D 0:5 is often
considered a good choice to describe a rational population with a moderate level
of noise and where only a limited number of irrational updates may occur. In the
case of bidimensional lattices with periodic boundary conditions—see Fig. 3.6—
since each agent has four neighbors, group interactions involve G D 5 players at
a time (see Chap. 2). It has been shown in previous investigations that for such K,
the values of rc1, at which cooperators emerge, and rc2, where defectors completely
disappear from the population, are, respectively, equal to 3:75 and 5:5. Instead, a
coexistence between cooperators and defectors occurs for intermediate values of
r between the two thresholds (i.e., rc1 and rc2). Conversely, in the corresponding
PGG on well-mixed populations, where games are organized in groups of the same
size G D 5, the full defection and full cooperation regimes are separated at the
critical point rwm D 5. It is also possible to consider the case of heterogenous
populations where agents are characterized by different values K. In such scenario,
the simplest setup is the one where only two different sets of agents exist: one
endowed with K1 and one with K2 > K1. Recalling that a higher value of K
implies lower rationality in the SRP, by varying the density f of one species, with
0 � f � 1, it is possible to control the level of noise in the system and to study the
outcomes of the model in different conditions. For instance, setting K1 D 0:5 and
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Fig. 3.6 Pictorial representation of the PGG on the considered topology. Agents are arranged in
bidimensional square lattice with continuous boundary conditions, forming a toroid as shown in
(a). Each agent belongs to five groups of size G D 5: one where he is the central player, in red, and
four as a peripheral node, in black (b). At each time step, two agents x and y are randomly selected,
and they play the PGG with all the players in their groups for all groups of belonging. In (c), we
show the group where x and y are central: the green nodes are neighbors of node x, and this group
has an orange shadow, while neighbors of agent y are cyan and this group has a violet shadow. The
dotted lines in the area between x and y indicate the intersection between the groups formed by x
and y. Notably, y belongs to the group formed by x and vice versa. In (d) we show for both x and y
one of the possible groups where they are peripheral

K2 D 1, we can evaluate the influence of a density f of rational agents in driving
the population toward a particular state. This is particularly useful to analyze the
behavior of a population whose agents have a different sensibility to their payoff,
and, from a social point of view, it allows to study the influence of rationality in
driving the population toward an equilibrium. As shown in related works from
the Sociophysics literature, random imitation is not the only relevant nonrational
behavior able to impact the way in which agents choose their next strategy. Just
to cite a few, investigations driven on simple principles such as social conformity
or nonconformity, extremism, stubbornness, or multiplexity showed how simple
changes in the microscopic dynamics of the agents can significantly affect the
social dynamics of a given population. Eventually, we note that in a heterogeneous
population it could be interesting to consider more complicated cases where agents
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are characterized by a broad distribution of values of K and can possibly change
their degree of rationality, for instance, by thermalization-like processes (i.e., when
two agents play, they modify their degree of rationality taking the average value of
their current K). Since in the PGG, the strategy of the x-th agent can be described
by a binary spin variable sx D ˙1, and being interested only in the nature of the
final equilibrium (i.e., paramagnetic or ferromagnetic), we can consider the absolute
value of the magnetization jMj (see Chap. 2). In addition, we can derive the density
� of cooperators in the population as follows:

� D M C 1

2
(3.9)

so that we can identify the two (ordered, i.e., jMj D 1) absorbing states correspond-
ing to � D 1 (i.e., full cooperation) and � D 0 (i.e., full defection). At last, another
interesting order parameter useful to detect fluctuations in the system’s behavior is
the standard deviation of the fraction of cooperator �.�/ obtained over the different
runs. In the following section, we describe the macroscopic state of the system by
reporting the average value of �, �.�/, jMj, and T averaged over 100 simulations
for all the considered configurations.

3.2.2 Results

We performed several numerical simulations of the PGG, for different values of the
synergy factor r and the noise (measured either in terms of K or density of irrational
agents 1 � f ), in a population of N D 104 agents distributed on a bidimensional
lattice with periodic boundary conditions.

Homogeneous Populations Here we show results for the homogeneous case,
where the level of noise in the system is controlled by the global variable K used
in the SRP. We first analyze the strategy distribution diagram, which reports the
average density of cooperators h�i as a function of r and K—Fig. 3.7. We observe
that the PGG has a very rich behavior. For instance, plot (a) of Fig. 3.7 shows
five different regions (below described) of interest when studying the density of
cooperators at equilibrium. Notably, low values of K (i.e., K < 10) let emerge three
phases as a function of r in the considered range (i.e., from 3:4 to 6:0): two ordered
phases (i.e., full defection and full cooperation) for low and high values of r and
a mixed phase (i.e., coexistence) for intermediate values of r. Therefore, at a first
glance, an order-disorder phase transition of a second kind emerges crossing the
region labeled .1/ in the first strategy distribution diagram (i.e., (a) of Fig. 3.7). For
higher values of K, next to K D 10, the active phase vanishes and the population
always reaches an ordered phase. A more abrupt phase transition between the two
ordered phases, separating region .2A/ (full defection) and .2B/ (full cooperation),
appears, resembling analytical results obtained for the well-mixed approximation,
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Fig. 3.7 Strategy distribution diagram showing the average density of cooperators h�i at the
steady state (a), time to reach the absorbing state T (b) and standard deviation of the density
of cooperators h�i at the steady state (c) as a function of the synergy factor r and the rationality
K. Different regions are highlighted. In region (1) the system is stuck in a metastable active phase,
macroscopically at the equilibrium, with coexistence of cooperators and defectors due to network
reciprocity (the simulations have been stopped after T D 106 updates per agent). In region (2) the
system always reaches the absorbing state predicted by the well-mixed population approximation,
i.e., full defection for r < rwm D 5 and full cooperation for r > rwm. In region (3) both steady
states become accessible with different probability, as in a biased voter model. Results are averaged
over 100 simulation runs

even if fluctuations are possible near the critical point r D 5. For greater values of K,
the region of r around r D 5 such that both ordered states are attainable increases.
In such range of values, the system behaves as a biased voter model, where the
absorbing states of cooperation (defection) is favored for r > 5 (r < 5). In the
limit K ! 1, the behavior of the system approaches that of a classical unbiased
voter model, no matter the value of the adopted synergy factor. Plots (b) and (c) of
Fig. 3.7 confirm the main differences among the five regions of plot (a). The former
shows that the population does not reach an ordered phase for intermediate values
of r around r D 5 and low K, and the simulation is only stopped once the average
number of updates is equal to the considered maximum number T D 106 with the
system macroscopically at the steady state. Conversely, for different parameters the
population reaches an absorbing state (i.e., full defection or cooperation) relatively
quickly. Instead, plot (c) shows that the variance reaches a maximum value (as
expected), �.�/ D 1=2, when the PGG behaves like a voter model, while smaller
non-null values are also obtained for the active phase, due to the existence of
fluctuations. In order to obtain a deeper characterization of the phase transitions
occurring in the PGG, we study the average absolute value of the magnetization
jMj, as a function of the synergy factor for different K values. As shown in plot
(a) of Fig. 3.8, only for values of K < 10, there are values of the synergy factors r
such that hjMji ¤ 1, since at K 	 10 a more abrupt phase transition between full
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Fig. 3.8 In the top panels we focus on the transition from the active phase toward the ordered
phase. In (a) we show the average absolute value of the magnetization hjMji as a function of the
synergy factor r for different K. As the temperature K increases, the range of r giving rise to an
active phase shrinks around r D rwm D 5 up to a critical value beyond which network reciprocity
disappears. The scaling as a function of K of the two extreme points of the active range, rc1 and
rc2, as well as the value of r0 for which jMj D 0, are shown in (b). In the bottom panels we
show the average density of cooperators h�i (c) and the standard deviation �.�/ for selected values
of K (d). For the three smallest temperatures the system crosses region (1), marked by a second
order transition in h�i and small values of � . For K D 50, on each single run the system always
reaches one of the two absorbing states. h�i is equal to 0 (1) for low (high) values of r, but takes
intermediate values around r D 5. The transition is quite steep and �.�/ D 0 unless around r D 5.
For higher values of K, for even a greater range of values of r around r D 5 both full defection or
cooperation are achievable, 0 < h�i < 1 and � > 0. In such regime the system behaves as a biased
voter model under the external field r � rwm. As K increases, the behavior of an unbiased voter
model, no matter the value of r, is approached. Results are averaged over 100 simulation runs

defection and full cooperation emerges, resembling the first-order first transition
predicted analytically in the case of well-mixed population of infinite size. Then,
we note that for all K values in the range Œ0 � K � 10	, it is possible to find
a synergy factor r such that jM.r/j D 0. Notably, as K increases, the difference
between the two critical thresholds rc1 and rc2 goes to zero as both converge quickly
toward rwm D 5, eventually hitting such value at K 	 10—see plot (b) of Fig. 3.8.
Furthermore, we can also observe that the value of r0, for which cooperators and
defectors coexist in equal number in the active phase, is always smaller than rwm—
see plot (b) of Fig. 3.8. Here, we remark that r0 separates the active phase in two
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Fig. 3.9 (a) Strategy distribution diagram showing the average density of cooperators h�i as a
function of the synergy factor r and the fraction of rational agents in the population f , i.e., those
provided with K1 D 0:5. (b) Critical thresholds rc1, rc2 of synergy factors, and the value r0 for
which cooperators and defectors coexist in equal number as function of the fraction f of rational
agents. Results are averaged over 100 simulation runs

regions, where either defectors (1A) or cooperators (1B) are predominant. Finally,
both plots (c) and (d) of Fig. 3.8 clearly confirm the previous investigations. For
instance, for K D 10; 000 the density of cooperators becomes almost flat as in a
Voter model (see plot (c) of Fig. 3.8).

Heterogeneous Populations We now report the analysis related to the second
case. Notably, now we have a heterogenous population, where a density of agents
f (0 � f � 1) with K1 D 0:5 is inserted, spatially at random, in a population
of irrational individuals which perform coin flips to decide their strategy. In this
configuration, the level of noise is controlled by the variable f , and the lower
its value, the higher the stochasticity in the population. As shown in Fig. 3.9, the
strategy distribution diagram obtained as a function of the different values of noise
is qualitatively comparable to the previously considered case. As f goes to 1, the
PGG turns its behavior to the expected one for a population composed of only
rational individuals (i.e., rc1 D 3:75 and rc2 D 5:5). The outcomes shown in
Fig. 3.9 suggest that for values as small as f � 3%, the PGG shows an active phase
(i.e., the network reciprocity still holds). Thus, very few rational agents are able to
provide the population an overall rational behavior at equilibrium. See plot (b) of
Fig. 3.9 to observe the scaling for the critical values of the synergy factor: rc1 (at
which cooperators first appear), rc2 (at which defectors disappears), and r0 (where
cooperators and defectors coexist in equal amount). Finally, considering both the
homogenous and heterogenous cases here presented, it is important to highlight that
these analyses do not study the evolution of a population over time, but focus only
on the final equilibria.
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3.2.3 Conclusion

To conclude, in this chapter we analyzed two different evolutionary games, i.e.,
the PD and the PGG, trying to understand the relation between their physical
parameters/behaviors and the emergence of cooperation. In relation to the first
part, we provided an analytical description of the PD by using the framework of
Statistical Physics, studying the particular case of agents provided with memory
(defined “memory-aware” agents). This condition entails that their payoff is not
reset at each time step, so that in principle, they can increase their gain over time
without limits. In particular, the proposed model is based on the kinetic theory of
gases, showing how motion may lead a population toward an equilibrium far from
the expected one (i.e., the Nash equilibrium). Being the final equilibrium dependent
on the system temperature, it is possible to identify a range of temperatures that
triggers cooperation for all values of the payoff matrix. In addition, it has been
highlighted an interesting relation between the maximum temperature that fosters
cooperation and the size of the system. Furthermore, the dynamics of the resulting
model have been also described in terms of order-disorder phase transitions,
showing a direct application of the Landau theory of phase transitions to EGT. In
relation to the second part of the chapter, the proposed model provides a detailed
study of the role of noise in the PGG, always by the lens of Statistical Physics.
Notably, this investigation allows to define a clear relation between the noise
introduced in the microscopic individual behavior and the macroscopic properties of
a population. To achieve this goal, one starts from the theoretical considerations on
the behavior of the population playing this game, then considering a richer scenario
and controlling the noise in two different cases: a homogeneous population (i.e.,
with all agents having the same degree of rationality) and a heterogeneous one,
where more degrees of rationality are considered. The phase diagram resulting
from numerical simulations shows the influence of the synergy factor r and of
the noise on the macroscopic behavior of the population. From the analysis of
the heterogenous population case, we can note that even a very small density f
of rational agents, f 	 3%, allows to observe a network “reciprocity effect.” In
such sense, beyond the physical interpretation of these results, it is important to
highlight that, from the perspective of EGT and from that of Sociophysics, the PGG
is a system that “correctly works” even in the presence of few rational players.
Here, saying that the system “correctly works” means that the equilibrium predicted
for a given r, by the analysis of the Nash equilibria of the system in the well-
mixed approximation, is achieved. To conclude, both investigations clearly highlight
the potential of Statistical Physics in analyzing the dynamics of EGT, finding also
connections between different models as the PGG and the Voter model.
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Chapter 4
Evolutionary Games II: Applications

This chapter presents a couple of applications of EGT, one devised for investigating
the role of conformity in the PGG and the other for solving combinatorial
optimization problems. The former is of interest both for EGT and for the modern
area of Social Dynamics (or Sociophysics), where the influence of conformist (and
nonconformist) behaviors has been widely investigated, e.g., in processes of opinion
dynamics. The second application, beyond to propose a new heuristic for solving
the Traveling Salesman Problem, aims to stimulate new ideas in the field of EGT. In
particular, considering the dynamics of the model here presented, one can see how
the transitions toward ordered states can be exploited for devising different kinds
of algorithms based on the utilization of “rational agents." The reader interested
in further details can find a brief list of manuscripts at the end of the chapter. In
particular, the content of this chapter is based on the first two manuscripts cited at
the end of the conclusions.

4.1 The Role of Conformity in the Public Goods Game

In this section, we propose an investigation on the dynamics of the spatial PGG
considering a population composed of “rational" agents and “conformist" agents.
Notably, in the PGG, agents can be defined as fitness-driven agents when modify
their strategy according to payoff-based rules. At the same time, representing
strategies in terms of spins allows to investigate the role of conformity (as well
as other characters) during the process of “strategy revision phase." In particular,
some agents can be driven by conformity (i.e., conformity-driven), while others are
susceptible to their payoff (i.e., fitness-driven). Notably, as discussed in Chap. 1,
the fitness is mapped to the agents’ payoff, so that richer agents are those most
imitated by fitness-driven agents, while conformity-driven agents tend to imitate the
strategy assumed by the majority of their neighbors. Numerical simulations aim to
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identify the nature of the final equilibrium, reached by the population, on varying
the amount of conformity-driven agents. Results show that conformist behaviors
generally foster ordered cooperative phases but, in special conditions, may also lead
to bistable phenomena. In physical terms, conformity-driven agents correspond to
agents susceptible to the influence of a local field, i.e., that generated by their nearest
neighbors. Notably, a field results from a number of spins, corresponding to the
strategy of the selected agents. As discussed before, although the PGG exhibits
a theoretically predicted Nash equilibrium of defection, several investigations
identified a number of ingredients to support cooperation, spanning from awarding
mechanisms to optimal game settings. For instance, the synergy factor (usually
indicated as r), adopted to compute the agents’ payoff, can be opportunely tuned
in order to support cooperation on different topologies. This result is very important
as it entails that if the payoff of cooperators reaches, or overtakes, a minimum value,
all agents turn their strategy to cooperation. As below, the minimum threshold of the
synergy factor depends on the topology of the population (i.e., the way agents are
arranged). Therefore, adding a social influence in the PGG implies to deal with
two degrees of freedom: the synergy factor r (whose individual effect is known on
some topologies like regular square lattices) and the density of conformist agents
�c. The proposed model is studied by means of numerical simulations performed
by arranging agents that play a spatial PGG on a bidimensional regular lattice with
periodic boundary conditions.

4.1.1 Model

We remind that the PGG considers a population of N agents that can adopt two
different strategies: cooperation and defection; so, at each time step, cooperators
provide a unitary contribution to a common pool, whereas defectors do the opposite,
i.e., not contribute. After all the agents have made a decision and accumulated
their corresponding payoff, they undergo a round of strategy revision phase. In
doing so, the population evolves until it reaches a final equilibrium (or steady
state). From a Statistical Physics perspective, we can identify two different phases
(or equilibria): a paramagnetic equilibrium in which we observe the coexistence
of cooperators and defectors, and a ferromagnetic equilibrium, implying that
one species prevails. In this model, we aim to investigate the outcomes of the
PGG in heterogeneous populations, i.e., composed of fitness-driven agents (FDAs)
and conformity-driven agents (CDAs). As result our population is composed of
N D Nf C Nc agents, with Nf is the number of FDAs and Nc that of CDAs. Thus,
we can introduce �f D Nf =N and �c D Nc=N to identify the density of FDAs
and CDAs, respectively. For the sake of clarity, we use the convention in which
upper indices refer to the strategy (i.e., cooperation and defection) while lower
indices to the agent’s nature (i.e., conformity-driven and fitness-driven). Both FDAs
and CDAs change strategy by a stochastic rule. In particular, we implement a
Fermi rule (see Chap. 1) to compute the transition probability between two different
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strategies for FDAs. CDAs adopt a simple majority voting (see, for instance, the
works of S. Galam reported in references) rule to decide their next strategy: an
agent computes the transition probability according to the density of neighbors
having the strategy of majority. In doing so, FDAs act rationally, while CDAs
follow a social behavior (i.e., conformism). Following the prescription of previous
investigations, we arrange agents in a bidimensional regular lattice of degree 4 with
periodic boundary conditions. Summarizing, our population evolves according to
the following steps:

1. At t D 0, set an equal number of cooperators and defectors and the density of
conformists �c 2 Œ0; 1	.

2. Select randomly one agent x, and select randomly one of its neighbors y.
3. Each selected agent plays the PGG with all its five communities and then

computes its payoff.
4. Agent y performs the strategy revision phase according to its nature.
5. Repeat from .2/ until an ordered phase is reached, or up to a limited number of

time steps elapsed.

We remark that the neighborhood for each agent has always four agents. Therefore,
one agent plays in five different groups at a time, all composed of five members.
Finally, we remind that agents may change strategy, i.e., from cooperation to
defection (and vice versa), but they cannot change their nature (i.e., fitness-driven
and conformity-driven). Although in real social systems individuals might change
also their behavior (e.g., from CDA to FDA), in this work we aim to analyze the
relation between the density of CDAs and the outcomes of the PGG. Therefore, we
need to assume agents keep constant their behavior.

4.1.2 Results

We investigate the behavior of the proposed model for different values of �c, from
0 to 1, and of r. The latter assumes values in the range Œ3; 6	 since, in this topology,
the two thresholds for different equilibria rm and rM are known (see Chap. 3). The
threshold rm indicates that lower values of r lead the population toward a phase
of full defection at equilibrium. For intermediate values of r, i.e., rm � r � rM ,
the population reaches a disordered phase, i.e., a mixed phase characterized by
the coexistence of both species at equilibrium; eventually, for values of r > rM ,
cooperators succeed. In order to investigate the proposed model, we perform
numerical simulations with populations of different size, from N D 102 to N D 104.
The first analysis is related to the distribution of strategies, at equilibrium, on
varying the synergy factor r and the density of conformists �c-see Fig. 4.1. It is
worth noting that the disordered phase becomes narrower as �c increases. Notably,
we observe that rm and rM are strongly affected by �c. At a first glance, conformism
fosters cooperation, as rM strongly reduces while increasing �c. On the other hand,
for �c D 1 a bistable behavior is expected as agents change strategy without
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Fig. 4.1 Cooperation diagram on varying �c in a population with N D 104. (a) �c in range 2
Œ0:0; 1:0	. (b) �c in range 2 Œ0:9; 1:0	. Red corresponds to areas of cooperation, while blue to those
of defection. Results are averaged over 50 simulation runs and have been computed using 11 � 11

parameter values

considering the payoff. In particular, the minimal threshold of synergy factor to
avoid cooperators disappear reduces to values smaller than r D 3:75 when �c is
greater than 0:85. Moreover, considering the higher threshold rM (i.e., that to obtain
full cooperation for �c D 0:0), we observe that even with low density of conformist
agents, rM decreases, up to reach a value slightly smaller than 4:0. In the range
�c 2 Œ0:9; 1:0	, a closer look allows to note a richer behavior of the model-see
plot (b) of Fig. 4.1. We notice that defectors succeed only for values of r smaller
than 3:6, while cooperators succeed for values of r greater than 3:78. As result, the
mixed phase is obtained only in a narrow range between the two listed values (i.e.,
3:6 � r � 3:78). For values of �c � 0:97, a bistable behavior can be observed:
sometimes cooperators succeed, while other times fail (i.e., defectors succeed).
Thus, since our results are computed as average values of different simulation runs,
the colors represented in both plots of Fig. 4.1 in some cases reflect the probability
to find the final population in a given status starting with those initial conditions
(i.e., r and �c).

In order to characterize the transition at fixed �c, since we observe qualitatively
different phases, we tentatively try to identify the transition lines by studying the
behavior of the variance as a function of r, which plays the role of inverse “temper-
ature." Here, the variance �M is referred to the magnetization of the system, which
we identify as our order parameter (as discussed in Chap. 2). Hence, the variance
�M is computed numerically but can be easily identified as the susceptibility of the
order parameter �,

�M D 1

Z

ZX
iD1

.Mi � hMi/2 
 � (4.1)
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Fig. 4.2 Variance (�M) of the order parameter M as a function of the synergy factor r, for different
configurations: (a) N D 104. (b) �c D 0:0. (c) �c D 0:3. (d) �c D 0:6. Since we adopted a
logarithmic scale for the y-axis, we highlight that all values equal to 10�5 correspond to 0

with Z number of simulations performed under the same conditions (i.e., fixed r and
�c) and hMi average magnetization (computed under the same conditions). Plot (a)
of Fig. 4.2 shows the variance �M for different values of �c: 0; 0:3; 0:6; and0:9, as
a function of the synergy factor r. As expected, we found that for �c D 0:0 the
variance is maximum at rm � 3:75. Plots (b-d) of Fig. 4.2 illustrate how these curves
scale as we increase the number of agents for �c D 0:0, �c D 0:3 and �c D 0:6,
respectively. We observe that in the case �c D 0:6, the limit N ! 1 is critical,
i.e., we find that there seems to exist a rcrit for which limN!1 �N 
 � 	 .r �
rcrit/

�˛ for some exponent ˛ > 0. Then, in order to characterize the bistable behavior
shown in Fig. 4.1, we study the probability for the system of being in the defecting
or in the cooperating phase at the end of the simulation, as a function of r (see
Fig. 4.3) and of �c (see Fig. 4.4). In Fig. 4.3 the two dotted lines refer to the winning
probabilities of defectors (i.e., blue) and of cooperators (i.e., red). Therefore, for
�c D 0:0, the two curves are zero in the intermediate range of r, i.e., 3:75 � r � rM ,
as none is expected to completely succeed. Remarkably, increasing �c we found a
decreasing paramagnetic range of r, disappearing for values �c � 0:8. As shown in
plots (b) and (c) of Fig. 4.3, at least one curve is always greater than zero. Although
we are dealing with success probabilities, it is worth noting that the summation



56 4 Evolutionary Games II: Applications

Fig. 4.3 Probability to succeed as a function of the synergy factor r, in a population with N D 104,
for the two species: cooperators, i.e., red dotted line (diamonds Þ), and defectors, i.e., blue dotted
line (circles ı). (a) �c D 0:0. (b) �c D 0:9. (c) �c D 0:99

Fig. 4.4 Probability to succeed as a function of the density of conformists �c, in a population with
N D 104, for the two species: cooperators, i.e., red dotted line (diamonds Þ), and defectors, i.e.,
blue dotted line (circles ı). (a) r D 3:75. (b) r D 4:0. (c) r D 5:25

of values taken by the two curves has to be �1, thus even zero as it means that
none succeeds once the disordered phase is reached. Moreover, Fig. 4.3 allows to
observe the emergence of a bistable behavior, e.g., for �c D 0:9 at r D 3:75 we have
both curves having the same Pw, i.e., about 50% of cases defectors prevail, while in
the remaining cases, cooperators succeed. Figure 4.4 aims to characterize the same
bistable behavior on varying �c and keeping fixed r. Plot (a) of Fig. 4.4 refers to
r D 3:75, and it lets emerge an interesting result: in the range 0:2 � �c � 0:7

defectors prevail. This indicates that in this region conformism promotes defection,
being 0 the expected value of Pw for both species. Moreover, the bistable behavior
emerges as �c � 0:8. Plot (b) of Fig. 4.4 refers to r D 4:0 and shows that the
upper bound of the paramagnetic phase (i.e., rM) is reduced to 4:0 as �c � 0:8.
Then, a bistable behavior emerges for �c � 0:92. Eventually, in plot (c) of Fig. 4.4
referred to r D 5:25, we see that even for lower values of �c cooperators succeed,
and the bistable behavior emerges for �c � 0:93. In the light of these results, we
can state that when r is close to the lower bound of the paramagnetic phase, i.e., rm,
conformism supports defection until the emergence of a bistable behavior. While,
for higher values of r, conformism supports cooperation, and only for high values
of �c the system becomes bistable.
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rM
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ρ* ρc
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Fig. 4.5 For rm < r < rM and �c < ��, we observe a phase where defection and cooperation
coexist, represented in the dashed white line, where the variance is continuous. For �c > ��, the
transition from defection to cooperation is sharper at rc. This picture gives the idea of the existence
of a triple point at r D rm, �c D �� where three different behaviors coexist

Finally, we construct an approximate phase diagram of our system-see Fig. 4.5.
In the top part, we have the domination of cooperation (i.e., red) and in the
lower one that of defection (i.e., blue). Along the line separating the two parts
above identified (at fixed r), we find an important point indicated as �� below
described. In an area of the left diagram between defection and cooperation, for
�c < �� and rm < r < rM.�c/, defectors and cooperators coexist, with the preva-
lence of the former. In this region, it is possible to change the parameters to
reach smoothly the cooperation region. For �c > �� we have the coexistence of
cooperation and defection on the transition line r D rm, due to the fact that rM

approaches rm as an increasing function of �c. The point in which rM D rm is a
triple point.

4.1.3 Conclusion

Summarizing, the proposed model shows the behavior of the spatial PGG in
presence of conformist agents, i.e., agents susceptible to local fields generated by
their nearest neighbors. Accordingly, the population is composed of conformity-
driven agents and fitness-driven agents. In both cases, CDAs and FDAs update their
strategy by considering only their neighborhood. It is worth to remind that previous
studies reported that social influences strongly affect evolutionary games, and in
the presented model, some results are similar to those achieved by other authors.
However, other results here presented further extend previous findings. Now, we
can highlight the prominent role of conformism in the spatial PGG: it seems that
this social influence may lead the population toward different phases and behaviors,
as full cooperation and bistable equilibria. In particular, conformism promotes the
population to reach an ordered phase, even when a disordered one is expected.
For intermediate densities of conformists (e.g., 0:5), the final equilibrium is that
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closer to that one would expect considering only FDAs, at a given r. Therefore,
our investigations suggest that conformism drives the system toward ordered states,
with a prevalence for cooperative equilibria. To conclude, we found that the spatial
PGG under social influences has a very rich behavior, characterized by different
final states.

4.2 Solving Optimization Problems by the Public Goods
Game

In this section, we introduce a method based on the PGG for solving optimization
tasks. Beyond to propose a new heuristic for combinatorial optimization problems,
this investigation aims to highlight the potentiality of EGT beyond its current
horizons. In the last years, many evolutionary algorithms have been proposed for
solving optimization problems, as, for instance, genetic algorithms and ant colonies
heuristics. Remarkably, optimization problems have been widely investigated also
within the realm of Statistical Physics, where Theoretical Physics and Information
Theory meet forming a powerful framework for studying complex systems. For
instance, a Statistical Physics mindset approach in combinatorial optimization
problems emerges when the set of feasible solutions, of a problem like the Traveling
Salesman Problem (TSP hereinafter), is represented in terms of an energetic
landscape. In doing so, the searching of a solution corresponds to the searching of
a minimum of free energy, in a landscape whose global minimum, i.e., the deepest
valley, corresponds to the optimal solution of the problem. As before discussed,
several models as the CW and spin glasses have an energy that can be studied by
the Landau formulation of phase transitions. These models are successfully adopted
for facing different issues as opinion dynamics, information retrieval, optimization
tasks, and learning processes. Using the metaphor of the energy, heuristics like
genetic algorithms and swarm logics implement strategies as genetic recombination,
mutation, and collective motions, for surfing the energetic landscape with the aim to
reach one of the deepest valleys in short time interval. Therefore, parameters as the
mutation rate used in genetic algorithms can be compared to physical parameters
as the system temperature. In the proposed model, we adopt a mechanism based on
partial imitation: when an agent interacts with another one having a higher fitness,
the former imitates a part of the latter’s solution. For example, in the TSP, the weaker
agent imitates only a part of the path traveled by a stronger opponent. In doing so,
agents are able to generate solutions over time, with the aim to achieve the optimal
one. In physical terms, a partial imitation can be interpreted as a slow cooling
process of a spin particle system, where the slowness comes from an imitative
dynamics that is only “partial" (i.e., only few entries of a solution array are imitated).
The presented model considers an agent population, whose interactions are based
on the PGG. As we know from EGT (see Chap. 1), the outcomes of the PGG are
affected by a parameter defined synergy factor r, used for supporting cooperators.
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Here, as shown below, this parameter (i.e., r) has a marginal interest, however what
is relevant for our investigation is that an ordered phase (i.e., the prevalence of
a species in the population) can be reached by an opportune tuning of its value.
Usually, in EGT models, a species indicates a set of agents with the same strategy,
e.g., cooperation, whereas in the proposed model a species corresponds to a set
of agents having the same solution of a TSP. In general, ordered phases entail all
agents have the same state (or strategy in EGT), i.e., in physical terms all spins are
aligned in the same direction. We remind that the system magnetization allows to
measure the state of order of a system, and its value equals to ˙1 in the ordered
cases. Dealing with neural networks, and in general with spin glasses, it is possible
to introduce a gauge for the magnetization so that its value goes to ˙1 when the
spin alignments (i.e., agent states) follow particular patterns. For instance, in the
case of the TSP, a pattern can be a specific sequence of cities. The mentioned gauge
is defined Mattis magnetization, and it reads Mm D 1

n

P
i 
isi with 
i value in the

i-th position of the pattern and si value of the spin in the same position of a signal
S of length n. As we can observe, when spins are perfectly aligned with a pattern 
,
the Mattis magnetization is 1. Here, we introduce a similar approach. In particular,
each agent is provided with a random solution of the TSP (i.e., an array of cities
representing a possible solution), and the order is reached when all agents hold the
same solution. Therefore, in our case, the value of Mm is computed assigning the
value of C1 when a city has the same position both in the pattern of reference (i.e.,
the known optimal solution of a TSP problem), and in the solution array computed
by an agent, otherwise the value is �1. It is worth to recall that the utilization of the
Mattis magnetization, as measure for the performance of our model, can be adopted
only when the optimal solution of a TSP is known in advance. Since our agents
interact by the PGG, the modification of their solution occurs during the phase of
the game defined as “strategy revision phase" (previously described) that in our
case is renamed “solution revision phase." Furthermore, our agents use their fitness
as currency of the game, so that their payoff depends on the quality of their solution
and on those of their opponents. Then, numerical simulations allow to evaluate the
quality of this method, considering the TSP as reference (i.e., a famous NP-hard
problem). Results show that the PGG can be successfully adopted for developing
new heuristics, opening the way to investigations that cross the current fences of
EGT.

4.2.1 Model

Before introducing the proposed model, we recall the basic dynamics of the
PGG. The latter considers a population with N agents and two possible strategies:
cooperation and defection. Cooperators contribute to a common pool with a coin
(usually of unitary value), while defectors contribute nothing or, as in our case,
provide a partial contribution (i.e., a coin whose value is lower than that of coins



60 4 Evolutionary Games II: Applications

provided by cooperators). Then, the total amount of coins is enhanced by a synergy
factor r (whose value is greater than 1), and the resulting value is equally divided
among all agents (no matter their strategy). As the definition of the payoff suggests,
defection is more convenient than cooperation, and it also represents the Nash
equilibrium of this game (see Chap. 1). The role of the synergy factor r is promoting
cooperation, and, as demonstrated in previous investigations, its value may strongly
affect the evolution of a population. As previously mentioned, the evolution of a
population results from the process defined as “strategy revision phase." Notably,
after each iteration, an agent has the opportunity to change its strategy by imitating
that of a richer opponent (considering the gained payoff). In the proposed model,
we consider a well-mixed population (in Appendix 2 the model is briefly analyzed
on structured populations), so that agents may freely interact with their opponents.
Moreover, agents are provided with a random solution of a TSP (i.e., an array of
cities). Notably, each solution is evaluated by a fitness � computed as follows:

� D Z � 1

D
(4.2)

with Z number of cities and D, total distance of a path. In doing so, its range is
� 2 Œ0; 1	. At each time step, one agent is randomly selected (say the xth) and plays
the PGG with four (randomly chosen) opponents, forming a group with G D 5

agents. Now, every agent of the group contributes with its fitness; then, as in the PGG
before summarized, the total summation of contributions is enhanced by a synergy
factor r and eventually equally distributed among all agents of the group. It is worth
noting that, in the proposed model, all agents always contribute. However, some
agents provide a contribution higher/smaller than that of others. Therefore, “below-
average contributors" (i.e., those having a low-quality solution) can be considered
as defectors. According to this setting, the payoff reduces to one equation:

�x D r

P5
iD1 �i

G
� �x (4.3)

with �x indicating the payoff of the xth agent, and �x its fitness (i.e., that
corresponding to its solution). Finally, the “solution revision phase" is based on
the following process: the randomly selected agent computes the probability …s to
modify each entry of its solution by imitating that of its best opponent (if exists):

…s D 1

1C e
�x��x

K

(4.4)

As in the PGG, K represents the uncertainty in imitating an opponent (i.e., plays
the role of temperature/noise-see Chap. 3). Hence, setting K D 0:5 we implement a
rational approach. In doing so, the x-th agent imitates with probability …s each entry
of the solution of its best opponent, if the latter has a greater or, at least, equal fitness
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(otherwise the x-th agent does not revise its solution). Summarizing, given a TSP,
we define a population whose agents at the beginning receive a random solution
of the problem. Then, local interactions, based on the PGG, allow the population
to converge toward a shared solution. From a local point of view, at each time
step, a randomly selected agent (say x) plays the PGG with four (randomly chosen)
opponents and computes its payoff (i.e., by Eq. (4.3)). So, according to its fitness �x

and to the gained payoff �x, the x-th agent computes the probability …s to imitate the
solution of its best opponent (say y, if exists). In particular, if �y � �x, the x-th agent
revises its solution, i.e., it imitates each entry of the solution of the y-th agent with
probability …s (i.e., each entry is modified according to …s). The whole process is
repeated until the population reaches an ordered phase (i.e., all agent share the same
solution), or up to a limited number of time steps elapsed. It is worth observing
that as …s goes to 1, the imitation process tends to become full (not partial) as
each entry can be imitated, provided that the best agent has a greater (or an equal)
fitness. Eventually, we remark that when an agent performs a “partial imitation," to
modifying, for instance, one city along its path, the same city is never visited twice.
In order to clarify this point, we provide a simple example. Let us consider an agent
having the following solution: (Paris, New York, London, Miami, Rome, Madrid)
that has to put in the third cell (now containing London) the city of Rome. Since
currently Rome is in the fifth cell, the algorithm swaps the values for the third and
fifth cells so that, after the whole process, the resulting array is (Paris, New York,
Rome, Miami, London, Madrid). Thus, repetitions are completely avoided, and all
solutions generated according to the proposed heuristic are suitable solutions.

4.2.2 Results

Numerical simulations have been performed considering a number of cities up to
Z D 50 for defining the TSP. Agents know the starting city and the landing one, so,
since each city can be visited only once, the number of feasible solutions is .Z�2/Š.
Moreover, without loss of generality, we consider that the distance between two
close cities is always equal to one-see Fig. 4.6. Eventually, we set the synergy factor
to r D 2. We remind that in the present work we are not interested in studying
phenomena as the evolution of cooperation, but we aim to evaluate if agents are
able to converge toward an ordered phase, characterized by the existence of only
one shared solution of a TSP problem. Thus, the choice of setting r D 2 reflects
this requirements, i.e., to use a value that in the PGG leads to an ordered phase (i.e.,
full defection in the specific case). As illustrated in Fig. 4.7, the ergodicity of the
process always allows agents to converge to one common solution. Moreover, we
are able to verify the quality of solutions both considering the related fitness and the
Mattis magnetization (see the inset of Fig. 4.7). In particular, the latter can be used
when the solution of a problem is known in advance, as in our case. An important
relation to be considered is the one defined between the final average fitness and the
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Fig. 4.6 General setting of
the TSP considering Z D 6

cities forming a complete
graph. Each node represents a
city, and some distances are
reported in blue, close to the
related link. Then, the best
solution is shown. Green
nodes represent the starting
and the landing ones
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Fig. 4.7 Number of solutions over time in a population of N D 900 agents while solving a
TSP with 10 cities (blue dotted line) and 20 cities (red line). The inset shows the related Mattis
magnetization for the two cases (both successful). Results are averaged over different simulation
runs

size of the population N, studied on varying the amount of cities Z-see plot (a) of
Fig. 4.8. Moreover, as shown in plot (b) of Fig. 4.8, it is worth noting that also good
suboptimal solutions may be computed using a number of agents N smaller than
that required to compute the optimal one. As expected, increasing Z the average
value of � reduces (keeping fixed the number of agents N). On the other hand, as
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Fig. 4.8 (a) Average fitness of final solution in function of N (i.e., the number of agents), for
different values of Z (i.e., the number of cities). (b) Average fitness of the final solution on varying
the number of cities, for different agents N. Results are averaged over different simulation runs
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Fig. 4.9 Minimum number of agents to compute the optimal solution of a TSP on varying the
number of cities Z. Results are averaged over different simulation runs

shown in Fig. 4.9, it is worth highlighting that it is possible to find an opportune
N for each considered Z in order to achieve the highest fitness (i.e., � D 1). We
deem relevant to note that the number of agents to compute the best solution, i.e.,
N.� D 1/, is much smaller than the number of feasible solutions for each problem;
therefore our method can be considered a viable heuristic for facing combinatorial
optimization problems. Eventually, we focused on the number of time steps to let
the population converge, considering in particular the successful cases, i.e., those
leading to the optimal solution-see Fig. 4.10. As expected, wide search spaces (e.g.,
Z D 50) require more time steps to let the population converge to the same final (and
optimal) solution. Moreover, increasing N the number of time steps T increases
accordingly for the same problem (i.e., keeping fixed Z). These results are in full
agreement with converging processes that can be observed in generic agent-based
models, e.g., increasing the size of a population the number of time steps, required
to let agents converge toward the same state, increases.

4.2.3 Conclusion

In this work we show that evolutionary games as the PGG can be, in principle,
applied also for solving combinatorial optimization problems. In particular, the
order–disorder phase transition occurring in a population interacting by the PGG
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Fig. 4.10 Number time steps required for converging to the final (optimal) state on varying Z, for
different population sizes N. Results are averaged over different simulation runs

can be adopted for letting the population converge toward a common solution
of a given problem. Notably, the solution plays the same role of the strategy in
the classical PGG, and the order is reached by implementing a mechanism of
“partial imitation" (see references for further details). The latter allows agents with
a weak solution to partially imitate stronger (i.e., richer) opponents. From a physical
perspective, this mechanism corresponds to a slow cooling process that triggers the
emergence of solutions over time, whereas the ergodicity of the process allows
the population to reach an absorbing state of full order. In doing so, an ordered
phase entails all agents share the same solution. Under the hypothesis that an
evolutionary dynamics driven by the payoff, i.e., rational, may constitute the base for
solving difficult problems as the TSP, we performed several numerical simulations
by considering a well-mixed population. Although we implemented a simplified
version of the TSP, with a limited number of cities, it is worth highlighting that
results indicate that the proposed model allows to compute the optimal solution in
all considered search spaces. Moreover, even using a reduced number of agents,
it is possible to compute a good suboptimal solution. Furthermore, we note that
even introducing spatial constraints in the TSP definition, the algorithm is able
to face the problem, once the driveability of the graph is known (as shown in
Fig. 4.6). Therefore, in the light of the achieved outcomes, we deem relevant to
further investigate the potential of evolutionary games in optimization problems,
then enlarging the domain of applications of EGT. However, it is important to
emphasize that in order to really appreciate the quality of the proposed model as
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algorithm for solving the TSP, further investigations are required, in particular, those
for comparing the performances with other heuristics, as genetic algorithms (see
Appendix 1). On the other hand, we remark that our results indicate a clear relation
between the size of a population and the complexity of the faced problem. This last
observation constitutes a first, even if theoretical, advantage of the proposed method
with respect to others because, as far as we know, similar relations are not available
for other strategies. Now, from the point of view of EGT, there are two important
observations. First, the synergy factor has a marginal role in the proposed model. We
recall that, for the aims of our work, we are interested in allowing the population
to converge toward an ordered state. On studying the PGG, the synergy factor is
fundamental because, as before mentioned, some values may lead a population
toward a steady state of coexistence between cooperators and defectors. Therefore,
since here we have to avoid similar outcomes, in principle, every value of the
synergy factor that supports a generic state of full order can be adopted. At the same
time, we think that the synergy factor should not be too high, otherwise it might
generate problems when computing transition probabilities during the “solution
revision phase." In particular, as indicated in Eq. (4.4), the fitness and the payoff
are compared when evaluating whether one agent has to change its strategy. Thus,
we suggest to use small values, like the one we adopted (i.e., r D 2). The second
observation is related to the identification of defectors. Notably, here we refer to
the PGG, i.e., a simple game with two strategies: cooperation and defection. In
the classical version, cooperators contribute with a coin, while defectors do not
contribute. However, we remind that when the amount of contributions is not set
to a specific value (e.g., a coin of unitary value), those agents that contribute with
a below-average contribution can be considered as defectors. To conclude, the
proposed heuristic shows that cooperative dynamics, leading from disordered to
ordered states, may constitute the basic mechanism for implementing optimization
algorithms.

Appendix 1

Here, we report results of a comparative analysis between the proposed method and
two heuristics: a genetic algorithm (GA hereinafter) and a strategy based on social
imitation (SI hereinafter). Notably, although GAs have been proposed several years
ago, they currently constitute one of more interesting methods in optimization. In
addition, comparing the outcomes of the proposed model with those achieved by the
SI method allows to evaluate the influence of the game dynamics (i.e., of the PGG).
Before showing a comparative table, we briefly summarize how the GA has been
implemented:

1. Define a population with N genes, assign each one a random solution for the
considered TSP, and define a maximum number of iterations I.
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2. While the best fitness in the population is smaller than 1, or the number of
iterations is smaller than I:

– Compute the fitness � of each gene (i.e., the goodness of its solution)
– Select the best half of the population according to fitness
– Generate two new solutions for each couple of genes, defined among the set

computed at the previous step
– Apply the random mutation, to each gene, with probability pm;

We set to 0:1 the probability pm (i.e., the random mutation) and to 30k the
maximum number of iterations I. In addition, we emphasize that the crossover
operator has been defined by cutting each gene parent (i.e., solution) in two different
points so generating an offspring by using the central part of one parent and the
side parts of the other parent. In the case this process does not generate viable
solutions (e.g., in the presence of repetitions), the duplicates are removed for adding
the missing cities. In addition, we briefly describe the SI method: given a TSP,
start with a population composed of agents having a random solution (i.e., an
array of cities). At each time step, randomly select two agents: the agent having
the lower fitness imitates one entry of the solution of the other selected agent.
Then, repeat this process until the population converges toward a shared solution
(or a maximum number of time steps elapses). Further details are described in the
Javarone’s paper (see the reference related to the Partial Imitation mechanism for
optimization problems). Table 4.1 shows the number of agents (or genes for the
GA) for computing the optimal solution on varying the number of cities, the average
number of time steps required to complete a simulation (computed on 20 different
attempts) and, when smaller than 1, the average fitness.

According to these results, we observe that the proposed method requires the
highest number of agents to solve a TSP. However, if compared to the SI algorithm,
the proposed approach is much more faster (see the average number of time
steps hTi). Instead, the GA requires a smaller amount of agents than PGG, and

Table 4.1 Performance comparison, on varying the number of cities (Z), between the proposed
method (PGG) and two heuristics: GA and SI

Z PGG SI GA

10 N D 100 j hTi D 1K N D 60 j hTi D 8K N D 100 j hTi D 27

20 N D 900 j hTi D 29K N D 270 j hTi D 500K N D 100 j hTi D 1:3k

30 N D 4900 j hTi D 500K N D 700 j hTi D 5:5M N D 100 j hTi D 13:2k

40 N D 10; 000 j hTi D 3M N D 1200 j hTi D 40M N D 200 j hTi D 23k j h�i D 0:76

50 N D 22; 500 j hTi D 21M N D 1600 j hTi D 360M N D 200 j hTi D 28:5k j h�i D 0:61

N indicates the minimum number of agents (genes for GA) used to solve the problem, and hTi
indicates the average number of time steps required. The average fitness h�i is indicated only
when smaller than 1, although the best value computed considering all attempts is 1 (i.e., the
optimal solution has not been always computed)
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it is also faster. At the same time, it is important to observe that the GA has
a synchronous dynamics (while our method is asynchronous), i.e., during the
same time step, all agents are involved for generating offsprings and updating
their solution (according to the random mutation mechanism). Therefore, further
analyses are required for a complete time comparison. Nevertheless we found that,
considering 20 different simulation runs, the average fitness of the best solution
(found in the gene population) is smaller than 1 when Z � 40. Hence, the GA must
be run several times for each task, saving the best solution. To conclude, according
to this analysis, we report that a GA constitutes the best choice for solving simple
problems (i.e., with few cities) or for computing a good suboptimal solution in a
short time. On the other hand, when the number of cities increases, the proposed
method allows to reach a higher fitness in a smaller number of attempts than that
required by a GA.

Appendix 2

Here, we present a brief analysis of the proposed model performed by using a
structured population, i.e., agents arranged on a network. Notably, we consid-
ered regular square lattices (with periodic boundary conditions), and small-world
networks implemented according to the Watts-Strogatz model. In particular, small-
world networks have been defined starting with a two-dimensional ring with
eight neighbors per node, and then rewiring with probability ˇ each edge at
random. Thus, using values of ˇ higher than 0, we obtained small-world networks.
Figure 4.11 shows results of the comparative analysis. For each type of network,
we considered different realizations. So, we observe that the amount of agents to
solve a TSP increases using structured populations, in particular in small-world
networks. Therefore, the most convenient choice for solving a TSP remains the well-
mixed population. Now, we discuss a possible explanation of this result. Notably,
small-world networks contain few nodes with a number of connections (i.e., degree)
higher than the average value. These nodes are usually defined hubs. On one hand,
their role is fundamental in spreading processes, since they make them faster than
those implemented by using regular topologies. On the other hand, when hubs are
provided with a solution having a fitness higher than that of their neighbors, they
may constitute a limit during the definition of new solutions. Notably, in this case
all neighbors tend to imitate the solution of hubs thus, given a TSP with defined
conditions (e.g., number of cities), small-world networks require a number of agents
higher than that required in regular networks for solving the same problem. In
few words, hubs are able to affect the solution of too many opponents, reducing
the innovative potential of the whole population. Eventually, our observation is
corroborated by comparing results obtained in small-world networks generated with
different ˇ. In particular, increasing ˇ the number of hubs increases, and networks
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Fig. 4.11 Minimum number of agents to compute the optimal solution of a TSP on varying the
number of cities Z. As indicated in the legend, the (dotted) black line refers to results obtained in
the well-mixed population. The (continuous) green line refers to the regular square lattice, with
periodic boundary conditions. The (dotted) red line refers to small-word networks achieved with
ˇ D 0:1, and the blue (continuous) line to those obtained in small-world networks achieved with
ˇ D 0:5. Results are averaged over different simulation runs

generated with ˇ D 0:5 resulted less convenient than those generated with ˇ D 0:1.
To conclude, in the light of results, we deem that topologies containing hubs may
reduce the computational power and the innovative potential of an agent population.
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Chapter 5
Conclusions

This last part of the book is devoted to summarize the most important concepts
exposed in the previous chapters, and to offer a quick overview on some future
perspectives in EGT that, hopefully, will stimulate the curiosity of the reader for
this vibrant research field.

5.1 Summary

Nowadays, the area of Complex systems offers a number of exciting problems
and questions, most of them strongly interdisciplinary. Here, the framework of
EGT constitutes a new tool for facing very interesting challenges. So, first of
all, one should keep in mind what actually is EGT, i.e., as described in the
general background (see Chap. 1) an “alchemic combination" of two relevant fields:
Game Theory and Evolutionary Theory. It is important to be aware about that
in order to achieve a full comprehension of the related results, and to envision
further developments. However, as suggested by the second application presented
in Chap. 4, the applications of EGT can go beyond the natural scopes of this
field. Second, EGT can be an efficient tool for studying and representing complex
systems and their dynamics. At the same time, one should remember that some
kind of complexity can be found in EGT models, since they show nonlinear and
collective phenomena. For this reason, the Statistical Physics approach for studying
the evolution of a population can be the right tool for connecting the macroscopic
behavior of a population, with its local mechanisms (e.g., game dynamics, topology,
etc.). Accordingly, Chap. 2 presented a number of mathematical strategies for
dealing with these problems. Among them, we find the Ising model, a milestone of
Statistical Physics. Actually, although it is not used for modeling EGT, the approach
for studying games like the spatial PGG (see Chap. 3) is similar to that adopted for
studying the dynamics of the Ising model. Tracing a route from the Ising model
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to the dynamics of a spatial game (on a square lattice) can be quite helpful for
looking at the evolution of strategies as a phase transition. Notably, in systems
composed of simple spins, one can only implement an updating rule that depends
on the “local energy," while in the case of agents, despite their strategy can be
codified as a spin, the updating rules can be a bit more complicated. Obviously,
the utilization of agents provided with particular behaviors strongly reduces the
analytical tractability of these models (so we need to adopt Monte Carlo methods).
Then, models presented in Chaps. 3 and 4 highlight the nature of Cooperation as an
emergent phenomenon, whose relevance can be observed in a number of contexts.
For this reason, uncovering the mechanisms that lead a population to adopt/select
this strategy (i.e., cooperation) is a really prominent issue. Moreover, from this
point of view, the emergence of cooperation is clearly an issue that can be framed
in the modern Science of Complexity. Finally, we wish to further emphasize that
evolutionary games can be adopted for studying topics beyond the fences of EGT,
as reported in the chapter of applications (i.e., Chap. 4).

5.2 Perspectives

In this concluding section, we provide a short analysis of potential developments
of EGT, in particular considering some recent results. To this end, we look at five
different areas: social dynamics, economic systems, ecology, biology, and complex
networks. Notably, while the latter is currently adopted in the other mentioned
areas, as a modeling tool, recent results suggest that a lot of attention must be
still paid to the relation between the topology and the emergence of cooperation.
For this reason, we think be appropriate to consider networks as an independent
topic for EGT models. Considering social dynamics, further results on EGT can be
obtained modeling human behaviors in order to understand the relation between the
emergence of cooperation and specific characters. Actually, this approach follows
the trend of Sociophysics, where behaviors are codified into physical variables,
and then the dynamics of a population are studied. Here, another topic of interest
can be the studying of the emergence of social norms, as well as that of the
emergence of new societal structures (both among humans and animals). Notably,
in these cases, some evolutionary mechanisms can be easily recognized. In the
context of economy, recent results indicate in increasing interest for the so-called
experimental economics, i.e., the area that aims to apply experimental methods
for studying economic problems. Here, experiments usually involve groups of
individuals that are asked to perform simple tasks/games, so that results can be
analyzed under the lens of EGT. In addition, it is worth to remind that this area
sometimes overlaps with the previous one, i.e., social dynamics, so that we might
refer to socioeconomic systems, where the human behavior has a prominent role.
Ecology is a very big scientific field, framed in the area of complex systems due
to its focus on the nontrivial interactions among organisms/individuals and their
environment. Accordingly, a number of evolutionary phenomena can be observed
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in these systems, and EGT constitutes a powerful tool for modeling the related
dynamics. In particular, self-organization and other adaptive behaviors are of strong
interest, as well as those problems related to the climate governance. Actually, as
we know, the latter represents one of the major challenges in the human societies.
Therefore, all the studies that bring a valid contribution to this topic (i.e., climate
governance), as those achieved by EGT, can be strongly valuable, not only from
a scientific point of view. In the field of biology, numerous results suggest that
EGT can be an effective and promising tool for uncovering the complex dynamics
underlying several biological phenomena. Just to cite few, recent achievements can
be found in theoretical biology, cancer evolution, cellular mechanisms, bacterial
dynamics, dynamics of ant colonies, and so on. Therefore, although the nature of
dilemma games might appear suitable only for modeling human behaviors, these
dynamics can actually help to represent also further scenarios, where “rationality"
can be replaced by other terms. To conclude, we deem worth to indicate two
interesting and recent results at the edge between network theory and EGT. One
related to the understanding of the “topological frustration" in the dynamics of
the evolutionary games, where the authors found that the level of cooperation
constitutes a direct indicator of the level of topological frustration. The other result
is related to the implementation of EGT models on multilayer and on multiplex
networks. In particular, authors of this second investigation focused on the PGG
implemented on multiplex networks. Their results show that cooperation emerges
only when a significant overlap of edges is combined with at least one layer able
to support some cooperation by a sufficiently high synergy factor. Otherwise, the
evolution of cooperation in this kind of networks is given by the bounds of the
classical network reciprocity (see Chap. 3). It is worth to emphasize that multiplex
networks constitute an advanced topic in the network theory; therefore, it is not so
surprising that by their application exciting developments can be achieved, both
in EGT and in many other fields. Finally, beyond the topic(s) one decides to
investigate in EGT, we are strongly confident that the Statistical Physics approach,
here described by simple examples, be the most promising and appropriate way for
achieving interesting results and obtaining new insights.
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