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Supervisor’s Foreword

With an ever-improved understanding and control of elementary building blocks of
matter, such as molecules, atoms, and photons, we are today in the position to think
anew about the microscopic backbone of the functionality of natural as well as of
man-made materials. From the fascinating, highly reliable orchestration of a mul-
titude of degrees of freedom in macromolecular biology, over energy and charge
transport mechanisms in photovoltaic devices, to controlled many-particle transport
phenomena in cold matter quantum optics or photonic circuitry, and even in
quantum computing architectures which do merit this name, we are confronted with
the challenging need for novel theoretical approaches able to integrate non-trivial
quantum interference phenomena with typical features of complex systems, such as
broadly distributed energy, length, and time scales, on the single- and many-particle
levels. To fully understand and, ultimately, control observed and/or desired func-
tional properties, potentially aided by quantum interference, we need a suitable
blending of—coarse grained—deterministic with robust statistical ingredients,
which allows to ponder and exploit the interplay between coherence and statistics.
Quite naturally, though in many ways anti-intuitive for a highly reductionist
quantum optical perspective, robust, functionally relevant quantum coherence
effects must then manifest on the level of statistics rather than of single, deter-
ministically induced events.

Mattia Walschaers’ first book provides a comprehensive introduction to the
diverse aspects of such a modern quantum theory of complex systems, in the
specific, though very versatile setting of quantum transport on finite networks.
Combining statistical tools from random matrix, open system, as well as
many-particle quantum theories with symmetry considerations, the author demon-
strates how robust and efficient statistical quantifiers can be identified, to certify and
also to control distinctive features of single- and many-particle transports on—
possibly constrained—random networks. The largely analytical theory is applied to
diverse scenarios of cutting-edge research—from the potential role of quantum
coherence in photosynthetic functional units, over many-particle interferences in
photonic quantum computing platforms, to fermionic many-particle currents across
multiple connected potential landscapes—what nicely demonstrates the remarkable



vi Supervisor’s Foreword

adaptability of the here elaborated theoretical framework. The author’s plenty
original contributions are embedded into a very pedagogical text which collects all
necessary ingredients for a thorough justification of the various results and appli-
cations, offers some additional thematic excursions for a second reading, and is
complemented by a carefully assembled bibliography spanning from the mathe-
matical foundations to experimental implementations. This makes this volume an
up-to-date and inspiring reference for experienced researchers specialising on the
characterisation and control of complex quantum systems, as well as for freshmen
who wish to familiarise with the essential building blocks of the theory.

Freiburg, Germany Prof. Andreas Buchleitner
April 2018



Abstract

We focus on the impact of quantum interference phenomena on transport processes
in complex systems. In dynamical problems, complexity typically manifests via the
combination of a rapidly growing number of paths which connect initial and final
states. We introduce the language of graphs and networks as a useful framework to
discuss such scenarios, and explore the rich phenomenology of transport phe-
nomena as induced by quantum interference on such topologies. We ultimately
strive to exploit these phenomena to render transport faster and more efficient.

Specifically, we study quantum transport of a single excitation though a disor-
dered network. This means that we consider many realisations of the same type of
network (in terms of the number of nodes and of the organisation of bonds), which
differ by the specific (random) details of the hardwiring. Generically, in completely
disordered network structures, a multitude of pathways interfere in an uncontrolled
way, which leads to strong fluctuations of transport timescales and efficiencies.
However, there are biomolecular networks in photosynthesis that are claimed to
transfer energy in a fast and efficient way by exploiting quantum coherence. To
understand the functioning of such a transfer mechanism, we explore possible
design principles which allow us to use disorder effects to our advantage.

We uncover centrosymmetry and the presence of a dominant doublet of energy
eigenstates as important constraints to be imposed upon the disorder. With these
implemented, it is possible to statistically control the transport properties, such that
a fine-tuning of specific coarse-grained parameters suffices to characterise the
probability distribution of transfer times. We extend these concepts to a scattering
scenario and investigate the importance of a finite coupling to leads/scattering
channels. We show that, in this case, suitable control of averaged the spectral
properties of the (random) ensemble of scattering systems allows to reach a regime
of optimal transfer from the input to the output channel. Finally, we present some
evidence that these design principles may be of relevance in the Fenna—Matthews—
Olson light-harvesting complex.

However, complexity does not solely arise due to topological disorder in
single-particle Hamiltonians. In the second part of this work, we add an extra layer
of complexity by adding particles to the system. Even in the absence of interactions
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viii Abstract

between these particles, a novel, rich phenomenology arises due to the indistin-
guishability of particles. Indistinguishability forces us to coherently add up
many-particle pathways, which implies that, in addition to classical combinatorics,
many-particle interference effects kick in. This leads to a hitherto largely unknown
phenomenology, which we strive to understand. More specifically, we find statis-
tical signatures of such interferences, which can be handled both theoretically and
experimentally. Effectively, this leads to a proposal for a practical certification of
boson sampling. On a more fundamental level, these signatures imply that fermions
and bosons have fundamentally different dynamical properties, which mathemati-
cally follow from the algebraic structures that describe the particles.

We finally present first steps to combine single- and many-particle interference
effects in the context of open quantum systems, where particles can be injected
from, and scattered into open scattering channels. Here we typically see currents of
particles flowing through the system, and our goal is to understand the properties of
such particle flows. We, again, study systems where the particles are not interacting
with each other and show that, in this case, for both, bosons and fermions, one can
derive universal bounds for the current. We find that these bounds are remarkably
different for fermions and bosons. We prove that here, too, centrosymmetry is a
suitable design principle to force fermionic particle currents to saturate their upper
bound, thus achieving efficient quantum transport.



Preface

Besides the study of quantum transport in complex systems, a second goal of this
thesis is to build a bridge between the physical models, designed to describe
experiments, and more abstract mathematical physics.

Throughout this work, several techniques and perspectives from mathematical
physics are applied to concrete experimental problems, such as the certification of
many-particle interference in Chap. 8. An understanding of mathematical structures
and equivalences can exceed the purpose of mere elegance and is here shown to be
of great use to propose both concrete measurement setups and relevant methods for
the analysis of experimental data.

On the other hand, we strive to unravel the intricate language of algebraic
quantum mechanics (Bratteli and Robinson 1987, 1997; Petz 1990) and translate it
into the digestible standard jargon of quantum mechanics (Ballentine 2014;
Basdevant and Dalibard 2002). Therefore, Chaps. 2 and 7 provide an essential
dictionary of the basics of mathematical quantum physics. They outline several
of the reasons why seemingly abstract mathematical structures are useful and even
required to describe certain aspects of quantum physics. In particular when dealing
with many-particle problems, we extensively use ideas, techniques, and formula-
tions which originate from the algebraic approach to quantum statistical mechanics.

Because the work contained in this dissertation covers topics which are of
relevance for several communities, extended background sections have been
included, which are identified by the section title set in italic font and garnished
with an asterisk. In the beginning of these sections, a short italic text explains the
content and indicates specifically relevant elements which are used throughout the
remainder of the text.

ix



X Preface

Among these background sections, there are some which can be read together to
expand on specific topics of mathematical physics which are relevant in our present
context:

e The operational approach to quantum mechanics: Sects. 1.2.2, 2.1, 2.2.2, 2.5,
and 8.4.1.

e Quantisation: Sects. 2.2 and 7.7.
Coherent States and Weyl Systems: Sects. 7.6.2, 7.6.3, 7.7.2, and 8.3.2.
Quasi-free States: Sects. 7.6.5, 7.7, 8.6, and 9.6.3.

Paris, France Dr. Mattia Walschaers

References

L.E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific Publishing
Company Pte Limited, Singapore, 2014)

O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1 (Springer,
Berlin, 1987)

O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics Equilibrium
States. Models in Quantum Statistical Mechanics (Springer, Berlin, 1997)

J.-L. Basdevant, J. Dalibard, Quantum Mechanics (Springer, Berlin, 2002)

D. Petz, An invitation to the algebra of canonical comutation relations, in Leuven Notes in
Mathematical and Theoretical Physics Series A2 (Leuven University Press, Leuven, 1990)



Publications

The following publications are based on this dissertation:

e M. Walschaers, J. Fernandez-de-Cossio Diaz, R. Mulet, A. Buchleitner,
Optimally designed quantum transport across disordered networks. Phys. Rev.
Lett. 111, 180601 (2013).

e M. Walschaers, R. Mulet, T. Wellens, A. Buchleitner, Statistical theory of
designed quantum transport across disordered networks. Phys. Rev. E 91,
042137 (2015).

e M. Walschaers, F. Schlawin, T. Wellens, A. Buchleitner, Quantum transport on
disordered and noisy networks: an interplay of structural complexity and
uncertainty. Annu. Rev. Condens. Matter Phys. 7, 223-48 (2016).

e M. Walschaers, J. Kuipers, J.-D. Urbina, K. Mayer, M. C. Tichy, K. Richter, A.
Buchleitner, Statistical benchmark for boson sampling. New J. Phys. 18, 032001
(2016).

e M. Walschaers, J. Kuipers, A. Buchleitner, From many-particle interference to
correlation spectroscopy. Phys. Rev. A 94(R), 020104 (2016).

e M. Walschaers, A. Buchleitner, M. Fannes, On optimal currents of indistin-
guishable particles. New J. Phys. 19, 023025 (2017).

e M. Walschaers, R. Mulet, A. Buchleitner, Scattering theory of efficient quantum
transport across finite networks. J. Phys. B: At. Mol. Opt. Phys. 50, 224003
(2017).

xi



Acknowledgements

To ultimately get to the point of completing this Ph.D. thesis was a hard task, a real
endeavour. I realise it would not have been possible without a very important group
of people: my teachers. I am truly grateful to each and every one of them, but I feel
that some deserve explicit mention:

In de eerste plaats is er Marc Beddegenoodts, mijn gepassioneerde leerkracht
Jfysica. Zonder zijn motiverende lessen had ik de opleiding natuurkunde wellicht
niet eens overwogen. Daarenboven zou ik graag mijn leerkracht wiskunde, llona
Hawrijk, bedanken om mij heel expliciet in mijn keuze voor fysica te steunen.

During my university studies, I enjoyed—and endured—many teachers, ranging
from eccentric to superb. However, I cannot think of any teacher who influenced me
more than my own master and Ph.D. supervisor, Mark Fannes. If I were to pinpoint
one aspect in which Mark excels, it must be his gift to explain the most complicated
things in a clear and simple way. Mark, I would like to thank you for your
never-ending patience, for all the physics and mathematics you taught me, and,
above all, for making me see the beauty quantum mechanics.

When I started looking for a Ph.D. position, I wrote Prof. Dr. Buchleitner, who
immediately insisted I should call him Andreas. He was one of the few people who
did not merely focus on grades and gave me the chance to come to Freiburg and
prove myself. His belief in me and his support have pushed me further than I could
have ever imagined. In addition, I enjoyed our—sometimes intense—discussions
about politics, culture, art, and life in general. Andreas, thank you for the inspiration
and motivation, for helping me see the bigger picture, for believing in me, and most
of all for helping me believe in myself.

We, scientists, are passionate people, but even passionate people need to eat, pay
their rent, and make the occasional trip to a conference on the other side of the
planet. There is, after all, no free lunch (unless it is included in the conference fee).
I therefore would like to thank the Studienstiftung des deutschen Volkes for their
trust and financial support.

It is enjoyable to do interesting science for several years, but my collaborators
certainly made it a more colourful experience. Thank you Juan-Diego, Jack,

Xiii



Xiv Acknowledgements

Klaus R, Klaus M, Malte, Cossio, Thomas, Tobias, Slava, and Frank for the many
interesting discussions and for the beautiful work we did together. Additionally, I
am very grateful to Roberto Mulet for all the good times and for all the good
science. During our work, we encountered many barriers and Roberto taught me
that sometimes you just have to use a brute-force approach and break through them.
I also thank Roberto for his wise advice on private matters: e.g. “Go home and
organise your life.” or “You have to find a girlfriend.”

Highlights of normal working days are often interesting coffee room discussions:
Hans, Eliran, Tarek, Kristof, Ruben, Frederik, Bert, Simi, Winny, Slava, Chahan,
Juliane, Manuel, Jochen, Frank, Stefan, Angelika, Fabian, Sebastian, professors
of the ITF, and many others; it was a great pleasure to uncover some of the
mysteries in physics and in life together with you.

Moreover, I want to explicitly express my gratitude to the people who “run the
shop”: the great secretaries and the IT guys who are always there to save the day.
Anneleen, Gislinde, Susanne, Filip, Gerald, and Stef, thank you for all the help!

I am very grateful to Kristof and Margot (and Jargoth), Slava, Andreas, Tarek
and Laura, Michael and Berdien, and Filip and Christine for their hospitality in
welcoming me in their homes during some of my scientific trips.

When one makes a four-year-long journey, there are bound to be some bumps
along the road. These bumps sometimes cause you to fall flat on your face, luckily,
in my case, there were people to help me get back on my feet. I am unbelievably
grateful to Chahan, Juliane, Jochen, Slava, Dania, Kathi, Micha€l D, Berdien,
Michaél M, Christophe, and Thomas for undergoing my signature-style whining.
You guys have always been there for me when I needed you most. I could not have
wished for any better friends.

Special thanks to Maria, for showing me that not all things in life need to be
serious. Also thanks to Maria for making me realise that some things in life do need
to be serious.

Daan, Nicki, Leslie, Tjardo, Bieke, en Marc, bij jullie kon ik altijd terecht om
even aan alle drukte te ontsnappen. Jullie hebben voor mij het begrip familie nieuw
gedefinieerd, wat mij betreft was dat een upgrade. Bedankt voor alle gezelligheid.

Liefste zusje, jou zou ik graag bedanken om me regelmatig met mijn voetjes op
de grond te zetten, er zijn weinig dingen geweldiger dan samen met u onnozel doen.

Moemoe, van jou heb ik de laatste jaren geleerd dat het belangrijk is om altijd
een doel voor ogen te houden, hoe banaal het ook moge zijn. Bedankt voor de vele
levenswijsheden en de ontelbare verhalen over “de goeien ouwen tijd”.

Sommige dingen zijn te ingewikkeld om in woorden te gieten. Sara, laat ons het
simpel houden, je weet immers wat ik wil zeggen. Bedankt voor alles.

De laatsten zullen de eersten zijn, lieve mama en papa. Op jullie kan ik altijd
rekenen voor wat dan ook. Jullie hebben er nooit voor teruggedeinsd om mij te
zeggen wat ik moest horen in plaats van wat ik wilde horen. Ik ben jullie oneindig
dankbaar voor alle steun, liefde, en vriendschap—en voor de poen om mijn studies
te betalen, niet onbelangrijk.



Contents

Part I General Introduction

1

Perspectives and Outline . . . . .............................
1.1 Frontiers of Quantum Interference . . .....................
1.2 Quantum Measurements . ... .............. ... ... ... ...
1.2.1 Complex Quantum Systems and Statistics . ...........
1.2.2 Measurements and Interpretations . . . ...............
1.3 Outhine. . ......... ...
References . .. ... . . .
Essentials of Quantum Theory ............................
2.1 Quantum Mechanics as a Probabilistic Theory* ... ... ... .. ..
2.2 Quantisation™ . . ... ... ...
2.2.1 Old and New Quantum Theory*...................
2.2.2  Quantum Algebra and Quantum Probability*. .. .......
2.3 Observables and States . .. .............. . ... ...
2.3.1 Observables. ... ...,
232 SHAES . .o
2.3.3 The Probabilistic Interpretation . . . .................
2.4 Dynamics of Quantum Systems . . .. .....................
2.4.1 The Heisenberg Picture . ........................
2.4.2 The Schrodinger Picture . . .. .....................
2.5 Quantum Interference . ............. ... ... . ... .......
2.5.1 From Waves to Wave Functions . . . ................
2.5.2 Projections and Quantum Probability ...............
2.6 Scattering Systems . . ........... ... oo
2.7 Concluding Remarks. . ........... ... .. ... .. .......
References . .. ... ... .. . . ...

XV



XVi

Contents

Complex Quantum Systems and Random Matrix Theory. .. ... .. 51
3.1 Complex Systems . . ................ .. 51
3.1.1 Heuristics .. ... ... 51
3.1.2 Complexity and Information Theory* ............... 52
3.1.3 Complexity of Quantum Dynamical Systems. ......... 53

3.2 Complex Networks . . . ... i 54
3.3 Aspects of Random Matrix Theory ...................... 58

3.3.1 From Atoms and Orbits to Random Matrix Theory* . ... 58
3.3.2 The Gaussian Ensembles of Random Matrix Theory .... 60

3.3.3 Statistical Properties of GOE Eigenvalues . ........... 64
3.3.4 Statistical Properties of GOE Eigenvectors ........... 70
34 Concluding Remarks. . .......... ... .. ... .. ... .. .. 71
References . .. ... . . 72

Part II Single-Particle Quantum Transport

4

Efficient Transport in Closed Systems. . .. ................... 77
4.1 Introduction . ............ ... . ... 77
4.2 Measuring Transfer Efficiency . . ........ ... ... ... ... .. 81
4.3 Influence of Network Structures. . . ...................... 83
4.3.1 Regular Networks . ............ . ... ... ......... 83
432 Random Networks . . ........................... 89
44 Design Principles .. ........... ... L 92
4.4.1 CentroSymmetry . ... ... ... euuinneeunnnnen.. 92
442 The Dominant Doublet. . . ... .................... 99
4.5 Statistical Control . . .. ... ... ... .. ... ... ... 106
4.5.1 Statistics of the Dominant Doublet . ... ............. 106
4.5.2 Statistics of the Transfer Time . ................... 114
4.5.3 Scaling Properties . ...............c. ... 122
454 NUMETICS. . . o vttt e e e e e e e e 127
4.6 Summary and Outlook . ....... ... ... ... ... ... ... ... 137
References . . .. ... ... . . . . ... 140
Scattering Approach to Efficient Transport . ... .............. 145
5.1 Introduction ... ........ ... . ... ... 145
5.2 Transfer Probability and Dwell Time . . . .................. 146
5.3 The Two Level System™ . .. ........................... 149
53.1 TheModel * .. .. .. . 149
5.3.2 The Symmetric Case® .. ........................ 150
5.4 Designing the System . . ... ... ... . 154
5.5 Statistical Treatment . . . ... .......... ... ... ... ....... 159
5.5.1 The Indirect Treatment. . .. ...................... 159
5.5.2 The Direct Treatment . . . ... ..................... 162

5.5.3 Numerical Results .. ........ ... .. ... .. ... ...... 164



Contents xvii

5.6 Summary and Outlook ................. ... ... ... .. ... 167
References . .. ... ... .. . .. ... 168
Quantum Effects in Biological Systems . . ... ........... ... .. 171
6.1 From Schrodinger to “Quantum Biology” ................. 171
6.2 Photosynthesis: Disorder Versus Noise ................... 175
6.3 Design Principles in Photosynthesis . . .. .................. 179
6.4 Outlook . ...... ... . ... 187
References . .. ... ... ... . . 190

Part III Many-Particle Quantum Transport

7

Describing Many-Particle Quantum Systems . ................ 199
7.1 Introduction ......... ... ... i i 199
7.2 Postulates for Bosons and Fermions. . ... ................. 201
7.2.1 The Two-Particle System . ... .................... 201
7.2.2 The N-Particle System . . . ....................... 204
7.2.3 Permanents and (Slater) Determinants . . . ............ 207
7.3 Fock Space ....... .. .. 208
7.3.1 Constructing Fock Space . ....................... 208
7.3.2 Structuring Fock Space . ........................ 211
7.3.3 Exponential Vectors. . .......................... 215
7.4 Commutation Relations . . .. ............ .. ... ... ... .... 216
7.5 Second Quantisation . . ............ ... ... .. 218
7.6 Many-Particle Quantum States. . . ............ ... ... . . ... 222
7.6.1 Number States . . ... ... .. 223
7.6.2 Bosonic Coherent States™. .. ..................... 227
7.6.3 Bosonic Squeezed States® .. ..................... 231
7.6.4 Representing Bosonic States® . . ................... 235
7.6.5 Thermal States for Non-interacting Particles .......... 239
7.7 Abstract Algebraic Description . ........................ 241
7.7.1 The CAR Algebra . ............................ 242
7.7.2 The CCR Algebra* . ........................... 249
7.8 Concluding Remarks. .. ......... ... . ... ... ...... 258
References .. ... ... . . . 259
Many-Particle Interference . . .. ........................... 265
8.1 Introduction . .............. ..., 265
8.2 Dynamics of Non-interacting Particles . .. ................. 267
8.2.1 Unitary Dynamics ... .......................... 268
8.2.2 Beamsplitters™ . .. ... ... ... 271
8.3 Many-Particle Interference: The Wave Function Approach . . . .. 276
8.3.1 From Single-Particle to Many-Particle Interference . . ... 276

8.3.2 Many-Boson Interference . . ... ................... 278



XViii Contents

8.3.3 Many-Fermion Interference ...................... 283
8.3.4 Distinguishability and the Hong-Ou-Mandel Effect .. ... 286
8.3.5 Boson Sampling . ......... ... ... ... 294
8.4 Many-Particle Interference: The Measurement Approach. . . . ... 298
8.4.1 Many-body Measurement™® . ... ................... 299
8.4.2 Many-Body Correlations . ....................... 305
8.5 Certification of Boson Sampling . ....................... 318
8.5.1 Bunching and Simulated Bosons. . .. ............... 320
8.5.2 Correlations meet Random Matrix Theory............ 323
8.5.3 Partial Distinguishability and Correlation
SPeCtrosCopy . . . . oot 345
8.6 Summary and Outlook . .............................. 363
References . .. ... ... . . . . ... 366
9  Currents of Indistinguishable Particles . . ... ................. 375
9.1 Open System Dynamics for Many-body Systems . ........... 375
9.2 Dissipation and Absorption . . . .......... ... ... 378
9.3 Dynamics of Single-Particle Observables . ... .............. 381
9.3.1 Solving the Dynamics .......................... 381
9.3.2 The Non-Equilibrium Steady State ................. 382
9.3.3 Normal States . . ... .....c..uuuuunnnnnnnn.. .. 383
934 CUuIrents . . ... ... ...t 384
9.4 The Maximal Current . .. .......... ... ... ............ 387
9.5 Symmetry Enhanced Current. . ......................... 393
9.6 Dephasing Enhanced Current. . . ... ..................... 398
9.6.1 Modelling Dephasing . . ......................... 399
9.6.2 Numerical Results . . ............. ... ... ...... 403
9.6.3 Quasi-Free and Dephasing Maps*. ... .............. 406
9.7 Bosonic Systems . ............ ... 407
9.8 Summary and Outlook ................ ... ... ... ... ... 414
References . . . ... . . 416

Part IV  General Conclusions and Prospects

10 Conclusions and Outlook . ............................... 423

References . .. ... ... . . . .. 429
Appendix A: Basic Definitions of Mathematical Algebras . ........... 433
Appendix B: Averaging over Random Unitary Matrices............. 439
Appendix C: Higher-Order Many-Particle Interference. . . ... ........ 445
Appendix D: Fermionic Correlation Functions. . . .. ......... ... ... 447

Glossary. . . ... ... 449



Symbols

The complex conjugate of z € C

The (single-particle) Hilbert space

The bounded operators on (single-particle) Hilbert space—defined
p- 30

The adjoint of A € B(H)

The bosonic Fock space, constructed on H—defined p. 209

The fermionic Fock space, constructed on H—defined p. 209

The bounded operators on Fock space

The vacuum state vector, describing the system without particles,
Q € '’/ (H)—defined p. 209

The creation operator, creating a particle with single-particle state
vector ¥ € H in (bosonic or fermionic) Fock space—defined p. 210
The annihilation operator, annihilating a particle with
single-particle state vector iy € H for (bosonic or fermionic) Fock
space—defined p. 216

The Weyl (or displacement) operator, creating a coherent state in
I'’(H), characterised by a vector « € H (which need not be
normalised)—defined p. 217

The second quantisation of A € B(H), an additive embedding (7.87)
of operator A in B(I'*/ (H))—defined p. 218

The exponential element of A € B(H), a multiplicative embedding
(7.106-7.107) of operator A in B(I'*/ (H))—defined p. 222

The exponential vector constructed from € H,

exp(y) € T (H)—defined p. 215

The abstract C*-algebra generated by the canonical anticommuta-
tion relations—defined p. 242

The abstract C*-algebra generated by the Weyl elements on a
symplectic space (S, g)—defined p. 250
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Symbols

An abstract generator of the CAR algebra on 'H, with

Y € H—defined p. 242

An abstract quadrature or field in the representation 7 of C*-algebra
on H, with y € H—defined p. 251

An abstract Weyl element in A(S, o) on S, with f € S—defined
p- 250

An abstract x-operation on an element x € A of a *x-algebra—
defined on p. 435

The norm of any normed space

A state (an expectation value) on a Hilbert space (which may also be
a Fock space)—defined p. 33

A state (an expectation value) on a C*-algebra—defined p. 243
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Perspectives and Outline e

To measure what is measurable and to try to render measurable
what is not so as yet

Galileo Galilei, as quoted by Hermann Weyl (Weyl 1949)

1.1 Frontiers of Quantum Interference

To Galileo and his contemporaries, pioneers on the matter of experimentation, mea-
surement was the cornerstone of natural science. Centuries later, measurement would
also drive the development of quantum mechanics. The formalism of quantum theory,
though highly counter-intuitive, was ultimately accepted by the scientific community
based on its ability to both describe and predict measurable phenomena. It were the
experiments in the early twentieth century, which gradually explored a wide range
of phenomena that challenged classical physics and paved the road for the “quantum
revolution”.

Among these experiments were those describing the photoelectric- (Einstein
1905; Lenard 1902) and Compton (Compton 1923) effects, which imply that light
behaves as a particle. However, the development of Maxwell’s theory of electro-
magnetism and the pioneering experiment by Young (Young 1804) had conclusively
established the wave nature of light, thus causing a paradox. This paradox is famously
solved by the wave-particle duality in quantum mechanics, which, as de Broglie
conjectured, is valid for all matter (de Broglie 1924). Again, this theoretical result
survived due the extensive amount of experimental validation (Gerlich et al. 2011;
Hornberger et al. 2012; Jonsson 1961; Marton 1952; Tonomura 2005) (see also
Fig.1.1).

The wave-particle duality is one of the oldest cornerstones of quantum mechan-
ics, later to be replaced by the more general notion of complementarity (Bohr 1935).
The wave-like dynamics directly implies the applicability of the superposition prin-
ciple, which in a dynamical system leads to interference phenomena, e.g. Young’s
experiment. Such quantum mechanical interference phenomena lie at the heart of
this dissertation.
© Springer International Publishing AG, part of Springer Nature 2018 3
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Fig. 1.1 Sketch (left) of an experimental way to implement an electron interference experiment,
equipped with a sensitive detector with single-electron resolution. With this setup, one can see
how, gradually, an interference pattern forms (right). Numbers of electrons are 10 a, 200 b, 6000 c,
40,000 d, and 140,000 e. Figures taken from (Tonomura 2005)

On the microscopic level, quantum mechanics predicts that even a single particle
(e.g. photon, electron, exciton, atom, et cetera) can experience these interference
effects when it passes through a Young interferometer. In a simplified description of
this setup, there are two pathways for the particle to progress to the detector. Each
pathway corresponds to passing through a specific slit. Classical logic would dictate
that an individual particle goes through one of the two slits, and therefore a repeated
experiment with millions of particles should result in two spots on the detector,' one
spot for each slit. However, when the particles have a well-characterised momentum,?
the millions of particles collide with the detection screen in a very different way:
Interference fringes arise, as is shown in the experimental results of Fig. 1.1.

These interference fringes show regions with many particles and regions with very
few particles. When we compare this phenomenology to the classical expectation,

'In Young’s double slit the detector is usually a screen that detects the position at which the particles
hit it.
2The particles must be described by a plane wave in position space (at least up to good approxima-
tion).
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we find regions where quantum mechanics enhances the probability for a particle to
arrive there, whereas there are other regions where quantum mechanics suppresses
the presence of particles. This observation implies that quantum interference has an
influence on transport properties, an idea which lies at the basis of quantum transport
theory (Dittrich 1998; Rammer 1998).

In simple terms, the field of quantum transport deals with transport of physical
quantities, e.g. charge, energy, particles, from one state to another. In principle,
the transport can occur either in real space—as is the case for the double slit—,
in momentum space, or simply in state space. In a context of open systems, one
considers transport from one channel® to another. Such a framework is well-suited
for connections to mesoscopic physics and thermodynamics. The field of quantum
transport is rather rich in the specific phenomena it considers, and also in tools it
applies. In the open system setting we can isolate two large sets of formalisms,
both of which will be encountered throughout this dissertation: approaches which
use propagators, on the one side (see Chaps.5 and 8), and dynamical maps, on the
other side (see Chap.9). Although these approaches differ from the technical point
of view, ultimately they all study the impact of quantum interference, coherence, and
decoherence on transport phenomena.

In quantum transport theory, the setting is usually more complicated than the
paradigmatic double slit interferometer. In the field of mesoscopic physics, for exam-
ple, one often studies systems which classically manifest chaotic dynamics (or chaotic
scattering) (Brouwer 1997; Imry 2009). Upon quantisation, quantum interference
effects become intractable, but provably lead to universal statistical features (Bohigas
etal. 1984, 1993; Jalabert et al. 1994). Also, when studying scattering in disordered
media, one is confronted with a multitude of interfering pathways which are typically
studied via diagrammatic techniques (Vollhardt and Wo6lfle 1980). It can be shown
that in such disordered media the influence of interference can even leave signatures
upon averaging over disorder realisations (Wolf and Maret 1985).

Building on these earlier insights and partially expanding them, the central themes
of the present work are single- and many-particle interference phenomena in differ-
ent scenarios of quantum transport on network-like structures. Even though we often
treat systems that are finite—they allow an effective description in terms of a finite
dimensional Hilbert space—, increasing the size quickly prevents us from fully con-
trolling them. This leads us into a regime where an exact, analytical treatment is
unfeasible, while continuum approximations* are not yet applicable.

Even though this regime is not straightforwardly analytically tractable, it is
highly relevant both for natural and engineered systems. Specifically its relevance to
(bio)molecular physics, e.g. in the recent debates on quantum effects in photosynthe-
sis (see Chap. 6), is a main motivation for our present work. Molecular complexes are

3We will show in Chap.9 that for many-particle systems there is a natural connection between a
“channel” in mesoscopic physics and a “reservoir”—or “bath”, or “environment”—in the theory
of open quantum systems. Moreover, we note that these channels should not be confused with the
single-particle unitary channels in Chap. 8.

4Techniques which are often used in for example statistical mechanics to simplify computations.
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often set in a harsh environment, where fluctuations and molecular reconfigurations
are ubiquitous. The number of basic building blocks that make up such networks of
molecules can vary strongly (Blankenship 2002), and transfer processes can depend
on the system’s size (Boon and Barton 2002; Hall et al. 1996; Jortner et al. 1998;
Klotsa et al. 2005; Schuster 2000). The transport of charge (Beratan and Skourtis
1998) and energy (i.e. excitons Amerongen et al. (2000)) is fundamental for a large
variety of biological processes, ranging from photosynthesis (Scholes et al. 2011),
over respiration (Walker 1992), to DNA repair mechanisms (Boon et al. 2003) and
more.

In the context of quantum engineering, similar problems are encountered when
one tries to scale up the system size while maintaining the possible “quantum advan-
tages”. Thinks, for example, of the universal quantum computer, where one realises
that the full control of hundreds of qubits’ is an unreachable goal. This implies that
disorder effects and network structures are highly relevant for the construction of a
robust quantum computer (Bunyk et al. 2014; Lanting et al. 2014).

However, our present work is not merely intended as a toolbox to study exist-
ing systems and treat expected problems in “quantum technologies”. We strive to
uncover the potential of quantum interference in complex networks, by proactively
constructing design principles. Since Anderson (Anderson 1958) it is known that in
infinitely large systems,® disorder has a disastrous effect on quantum transport, due to
localisation effects (Abrahams et al. 1979; Albada and Lagendijk 1985; Bergmann
1984; Billy et al. 2008; Casati et al. 1990; Hu et al. 2008; Kramer and MacKin-
non 1993; Modugno 2010; Roati et al. 2008; Schelle et al. 2009; Vollhardt and
Wolfle 1980; Wolf and Maret 1985). When these effects are studied using diagram-
matic techniques, which literally consider different pathways that can interfere, one
observes that they are a consequence of destructive quantum interference. However,
these studies of localisation effects focus on systems in the thermodynamic limit,
whereas—as mentioned above—we consider systems which are finite. Moreover, we
strive to use the richness in network topologies and energy scales to our advantage,
i.e. to enhance the transfer of particles.

With recent developments of quantum metamaterials (Barends et al. 2013, 2014;
Macha et al. 2014; Rakhmanov et al. 2008), multimode quantum optics (Armstrong
et al. 2012), integrated photonic circuits (Carolan et al. 2015; Metcalf et al. 2013),
and ultra-cold atoms (Ahlbrecht et al. 2012; Genske et al. 2013; Reetz-Lamour et al.
2008), very clean testing grounds for transport models are becoming available. This
may soon lead to experimental probes and tests of several phenomena which are
described in this dissertation.

The scenario depicted in sketch (b) of Fig. 1.2 indicates an additional source
of complexity: multiple particles which jointly pass the interferometer. When this
happens, many-particle effects come into play, i.e. we see a difference between
bosons and fermions. In the case where two bosons or two fermions are sent through

3 A qubit is the quantum analog of a bit (Nielsen and Chuang 2010). In a more physical context, it
can be thought of as a system with two distinct energy levels.

5This implies that the length scales of the system are much larger than a typical localisation length.
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Fig. 1.2 a Sketch, inspired by the first chapter in Feynman et al. (1964), of the paradigmatic double
slit setup. b Possible extension of Feynman’s scenario to more complex many-particle interference
devices: Increasing the number of identical particles that pass the slit system simultaneously, and
increasing the number of interfering path alternatives by increasing the number of slits per grating,
and by inserting several grating patterns of enormous complexity (see main text)

two slits, the observed phenomenology is well-understood in terms of Hong-Ou-
Mandel interference (Hong et al. 1987) and Pauli’s exclusion principle (Pauli 1925,
1940), respectively. However, when we consider a complex network of slits and a
larger number of particles, the interference pattern rapidly acquires a much more
complicated structure.

Recently, the topic of boson sampling (Aaronson and Arkhipov 2013) attracted
interest from both quantum information and quantum optics communities (Ben-
tivegna et al. 2015; Broome et al. 2013; Crespi et al. 2013; Gogolin et al. 2013;
Spagnolo et al. 2014; Spring et al. 2013; Tillmann et al. 2013). In the language of
quantum transport theory, one may translate the boson sampling results of Aaronson
and Arkhipov (2013) as a mathematical proof that it is hard to completely understand
the fine structure of the interference pattern which arises when many particles travel
through a complex network of slits at the same time. Because the boson sampling
setup in many respects resembles a complex system, this result is also in line with
physical intuition.
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Initially we argued that one may send particle after particle through the double
slit, to ultimately accumulate a pattern of interference fringes when all the dots
on the screen are shown. The boson sampling result proves that even simulating
the sampling of such dots—for n particles, n dots will simultaneously appear—
on the detector screen of the interferometer is computationally hard. From a pure
physics point of view, this implies that it is not only hard to analytically obtain
and understand the full structure of the many-particle interference pattern, it is even
unfeasible to simulate it using Monte Carlo techniques of standard computational
physics (Landau and Binder 2009). Therefore, in Chap. 8 we will devise methods
which reliably characterise the statistical fingerprints of many-particle interference
in such complex many-particle interference patterns. With the development of such
statistical benchmarks, we provide tools for future investigations on whether many-
particle interference can be used as a resource to enhance quantum transport, in
analogy to our single-particle design principles. We provide the first steps in this
direction by studying currents of indistinguishable particles in the non-equilibrium
steady state in Chap.9.

1.2 Quantum Measurements

1.2.1 Complex Quantum Systems and Statistics

When we measure quantum systems, there is no escape from their fundamental
probabilistic properties. Any measurement which is done in quantum mechanics
requires statistical treatment of the measurement data. This probabilistic nature is
implied by the very existence of i, which implies that there is a minimal uncertainty in
any physical system. Ergo, in contrast to its classical counterpart, quantum mechanics
does not allow the description of a single point in phase space. We are always forced to
consider a given amount of fluctuations in quantum mechanics, and, therefore, must
always resort to probability theory. However, when we describe a generic quantum
system in a generic state, even the usual probabilistic description on phase space,
which is commonplace in classical statistical mechanics, is inappropriate. A phase
space representation of a quantum state is in general not a well-defined probability
distribution, as we discuss in Sect.7.6.4. This is the reason for the development of a
whole field in mathematical physics, baptised quantum probability theory (Holevo
2001; Maassen 2010). We present a more formal introduction to the probabilistic
and algebraic structure of quantum physics in Chap. 2.

Because we study complex systems, we are confronted with an additional layer
of uncertainty: The the intricate structure of the system which we describe. As men-
tioned in the previous section, the complex nature of the system forbids full control of
all parameters, which leads to a lack of knowledge that needs to be accounted for. To
overcome these problems, we employ a framework that was originally advocated by
Bohr (Bohr 1936) and Wigner (Wigner 1955, 1958), and base our study on the char-
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acterisation of statistical features of ensembles of such complex systems. Chap.3
provides an introduction to these techniques in the context of complex quantum
systems.

The use of probability theory to understand, characterise and control systems is a
recurring theme throughout all chapters in this dissertation. Both, the probabilistic
nature of quantum mechanics in our analysis of quantum interference phenomena, as
well as the statistical properties of complex systems, offer a rich variety of statistical
signatures, which we study by analysing moments, correlations functions, and full
probability distributions.

In Chaps. 4 and 5, we base a mechanism of efficient and fast transport of excitations
through complex systems on the appropriate design and control of the probability
distribution of the transfer times. This sets a new paradigm of quantum control and
quantum transport: We do not require optimal control of a large set of parameters,
but rather manage to describe an enhancement of transport in terms of ensemble
averaged properties. The ensemble is designed such that a (statistically) controllable
fraction of realisations exhibit a speed-up of excitation transfer times.

The statistical signatures obtained via those design principles for statistical control
can also be used in a reverse fashion: When one analyses transport phenomena
in complex systems, the statistical properties of the transfer times sampled for an
ensemble of systems may offer insight in the specific transport mechanism. The
possibility to conduct such analyses is gradually moving into reach (Hildner et al.
2013; Kriiger et al. 2012). In a very similar fashion, many-particle systems offer
us the possibility to study spatial correlations’ between different particles, and the
statistics of such correlations is a vital tool for the understanding of many-particle
interference in complex systems, as pointed out in Chap. 8.

1.2.2 Measurements and Interpretations

This section briefly discusses the interpretation of measurements, a conceptual
“problem” in quantum mechanics. Although this Dissertation does not contribute
to this debate, the operational approach to quantum mechanics (Kraus 1983b) has
inspired several of our results, most notably those described in Sects. 8.4 and 8.5.

There are few scientific theories that are as thoroughly tested and verified as
quantum mechanics. However successful the formalism of quantum mechanics may
be, there has been extensive debate about its interpretation. Although there are many
aspects of quantum mechanics that defy the common sense of classical mechanics,
the interpretation of the measurement process is certainly the most contested issue
of all.

This discussion is often centred around the so-called measurement problem. The
alleged problem arises due to the probabilistic nature of measurement results in quan-
tum mechanics. As discussed in Sect. 1.1, the early quantum theory was confronted

70r, more generally, correlations between different degrees of freedom.
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with the duality between particles and waves, which was initially startling. The first
experiments (Compton 1923; Lenard 1902) established that the behaviour of a quan-
tum system is intricately connected to the measurements performed on it. Again, the
double slit sets a paradigmatic example: When only the intensity distribution on the
final detection screen is observed, we obtain the previously discussed interference
fringes. However, when in addition a device is in place to register through which slit
a particle passes, the interference pattern on the final screen vanishes to make place
for two spots—as would be dictated by classical physics. Ergo, the measurement
setup can dramatically affect the measurement result.

Von Neumann introduced the concept of projective measurements to account for
this effect (von Neumann 1932a). His mathematical model selects a set of possible
measurement outcomes O = {0y, ..., 0,}, such that outcomes o; is observed with
probability p;. The operator theory which is used to describe these probabilities
naturally associates a specific quantum state (see Chap.2 for a formal definition)
to each measurement outcome.® It is postulated that immediately after measuring
a given outcome o/, a repetition of the same measurement deterministically leads
to the same result. It is commonly said that therefore the quantum state changes
in a discontinuous way because of the measurement.” This measurement procedure
and its intrinsically probabilistic nature have been subject of discussion for many
decades, and lie at the heart of most interpretations of quantum mechanics.

Throughout the twentieth century, the dominant interpretation of quantum mechan-
ics was the Copenhagen interpretation. This interpretation refers to a collection of
ideas that were formulated mainly by Bohr, Heisenberg, and Born during the early
developments of quantum mechanics: The correspondence principle (Bohr 1913,
1920; Ehrenfest 1927), the uncertainty relation (Heisenberg 1927; Kennard 1927,
Robertson 1929; Weyl 1928), the statistical interpretation of the wave function (Born
1926), and the complementarity principle (Bohr 1935)—a more general formulation
of the particle-wave duality. Although the actual stance of Bohr and Heisenberg with
respect to several elements of what is now considered the Copenhagen interpretation
is still subject of debate,'® the collapse of the wave function upon measurement is
presently considered a fundamental part of the framework.

Many prominent scientists and philosophers, e.g. Einstein et al. (1935), Popper
(1967), have been troubled by both the probabilistic nature of quantum mechan-
ics and by the proposed collapse of the wave function. Therefore, several alterna-
tive interpretations have been introduced. Einstein always assumed that the proba-
bilistic nature of quantum mechanics merely indicated that the theory was incom-
plete and that some relevant variables remained hidden (Einstein et al. 1935). Bell’s
theorem (Bell 1964) and the development of entanglement theory (Horodecki et al.
2009), together with decades of experimental work (Aspect 1976; Aspect et al. 1982;

81n principle there can be several quantum states that lead to the same outcome for the measurement
of an observable.

%It is often said to “collapse”.
10An overview is provided in Katsumori (2011).
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Freedman and Clauser 1972; Hensen et al. 2015) have excluded such local hidden
variable theories.

Additional mathematical and conceptual attempts have been made to circum-
vent the fundamentally probabilistic nature of quantum measurement. One of the
more well-known alternative formulations of quantum mechanics was provided by
Bohm (1952a,b), and has the benefit to avoid the collapse of the wave function.
On a mathematical level, the theory is considerably less practical than the standard
formulation of quantum mechanics, which is based on functional analysis and oper-
ator algebra. On the conceptual level, one of the more “popular” interpretations of
quantum mechanics is that based on Everett’s “relative state formulation” (Everett
1957), which was later reformulated by DeWitt (1970) as the “many-worlds inter-
pretation”. The starting point of the interpretation is the assumption that not only the
system which is measured, but also the measurement apparatus is quantum mechan-
ical. Although it has been argued that a collapse model is a reasonable consequence
of a quantum mechanical measurement apparatus in combination with decoherence
(Schlosshauer 2005), the most radical formulation of the many-worlds interpretation
avoids the probabilistic nature of measurement by assuming a multitude of different
universes, one for each possible measurement outcome. An common criticism for the
many-worlds interpretation is that the solution to the alleged measurement problem
is conceptually just as radical as the idea of quantum state collapse.

Allinterpretations of quantum mechanics reproduce the same physical phenomena
and therefore this dissertation can be read starting from each of these different points
of view. The author, however, would like to emphasise one particular interpretation
which in many ways served as an inspiration for this work. This interpretation is
traced back to works by Ludwig (1964, 1967, 1968), Kraus (1983b) and Davies and
Lewis (1970), and is often called “the operational approach”. Although there are
considerable similarities to the Copenhagen interpretation in terms of an underlying
probability theory, the status of measurement is considerably different.

The operational approach originated from attempts to formalise physical theories
by introducing an axiomatic system to construct them (Ludwig 1964, 1967, 1968;
Mackey 1963). However, it is mainly the heuristic derivation of these fundamental
principles which is of interest in the debate of interpretations. Kraus steps away from
the more mathematical reasoning and provides a very digestible introduction to this
approach to quantum theory (Kraus 1983b). Essentially, the operational approach
is built to describe mathematical models of physical experiments. The probabilis-
tic nature of quantum mechanics is an experimental observation that goes into the
initial heuristics, rather than a consequence of the theory. Moreover, the quantum
state is generally considered to be a summary of the initial preparation procedure of
the experiment. Measurement is treated as a connection between microscopic and
macroscopic systems. The starting point of the operational approach is not the micro-
scopic world of the systems, but the macroscopic world in which the measurement
instruments are described. The “objective reality” is associated with the measure-
ment apparatus rather than with the quantum system itself.!' This is one of the most

''This does not imply that the measurement apparatus is completely described by classical physics.
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distinctive features of the operational interpretation and clearly separates it from the
Copenhagen interpretation: The operational treatment considers quantum mechanics
as a theory of the measurement of physical systems, i.e. a theory of how the detectors
“click”. In the operational approach, one may even refuse to extrapolate the theory to
a non-laboratory setting.'? The “realist” approaches interpret the theory on the level
of the system, and consider measurement as an invasive action within this reality. In
such interpretational frameworks, the theory is valid independent of the setting and
quantum states are real physical objects.

In the operational language, the statistical nature of quantum theory and quantum
measurement is central. The collapses of quantum states are no longer problem-
atic when one formulates everything in terms of probability theory and statistical
methods. Kraus explains that, indeed, a measurement can be interpreted as an oper-
ation on the system (Kraus 1983a), but this operation is a mere consequence of a
post-selection procedure which is conditioned on a given measurement outcome.
The measurement problem is therefore only a problem when one refuses to accept
fundamentally probabilistic theories as complete descriptions of nature.

Throughout this thesis, we follow the treatment of quantum mechanics as a fun-
damentally probabilistic theory. It is our goal, starting from Chap. 2, to both make
the connection between probability theory and the formalism of operator algebras
plausible, based on Davies and Lewis (1970), Holevo (2001), Maassen (2010),
Kraus (1983b). Moreover, the acceptance of the intrinsically probabilistic nature
of measurement is sufficient to describe many of the fundamental features of quan-
tum physics. This philosophy beautifully connects to our central methodology as
described in Sect. 1.2.1: To exploit the statistical features of quantum mechanics to
the fullest, in order to gain a deeper understanding of physical phenomena. Most
profoundly, this reasoning is fundamental for the results obtained in Chap. 8.

1.3 Outline

This dissertation is divided in four parts: The first part seeks to provide a general
introduction into the context of the presented work, we introduce the theme an situate
it in the broader context of quantum transport theory. Furthermore, we discuss the
mathematical framework upon which this dissertation is built and describe the oper-
ational perspective in which the author prefers to situate the work.'? In the second
part, we focus on single-particle transport processes in complex quantum systems,
to understand the ways in which we can exploit quantum coherence to enhance

12A concrete example: one may insist that quantum mechanics only manifests itself upon repeated
measurement, e.g. a single dot on the detection screen in Fig. 1.1 is insufficient to discuss any
quantum phenomena, quantum effects only become apparent when we accumulate point as shown
in Fig.1.1. Hence, the “operationalist” may decide not to apply her theory outside of a context
where statistics can be accumulated.

13The work of course allows any interpretation of quantum mechanics, but several results are
specifically inspired by operational reasoning.
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energy transfer. The third part treats many-particle phenomena, most notably those
which are dynamical in nature. We emphasise the role of indistinguishability in the
manifestation of intricate interference phenomena and we also provide new insights
in particle currents which emerge in the non-equilibrium steady states of complex
systems. Finally, the last part of the dissertation summarises the main results and
provides an outlook in which open questions are addressed.

In concreto, the first part is structured in three chapters. Chapter 1 sets the stage
for the specific contributions presented in this dissertation. We describe how this
work studies quantum interference phenomena in the context of quantum transport
in complex systems. Additionally, we strive to never loose sight of what is actually
measurable and therefore we provide a brief introduction to quantum measurement
and what we consider to be a vital element in it: Its probabilistic nature.

Chapter 2 sketches a more technical introduction to quantum mechanical systems
and more notably to the dynamics thereof. The theory is introduced in a rather oper-
ational fashion; we start out from phenomenological considerations that require the
quantum mechanical formalism. From the (of course greatly simplified) experimen-
tal setting, we build up the theory and explain the equivalence of several descriptions
by determining the mathematical objects which are (in principle) accessible in exper-
iments. Our goal is to introduce a deep and abstract mathematical framework from
the perspective of physics, explaining the meaning and need for these mathematical
structures.

Subsequently, in Chap 3, we enlarge the provided toolbox to the more specific
setting of this dissertation: complex quantum system. At first we focus on attempts to
formally define what a complex system is. Because these systems require specialised
tools that allow us to deal with statistical properties and disorder, we introduce the
mathematical framework of Random Matrix Theory in the second part of the chapter.

Part II considers a single-particle problem where a quantum of energy is given
the task to travel rapidly and efficiently through such a complex system. This part
is inspired by the debate on quantum effects in biological systems and is—again—
divided in three chapters, the first of which represents the lion’s share. Chapter4
deals with the quest to design complex quantum systems such that they can transfer
energy from one specific initial state to another specific target state. The aim is to
provide minimalistic design principles, which allow a considerable amount of addi-
tional disorder, for these network-like structures. The main workhorse of this section
is random matrix theory implemented on the level of Hamiltonians, which are addi-
tionally constrained according to these design principles. We develop a mechanism
where centrosymmetry of the Hamiltonian and a dominant doublet of eigenstates
manage to exploit the statistical properties of the disorder. This leads us towards a
mechanism of statistical control, where we shape statistical transfer properties of the
full ensemble, which by construction are robust against statistical fluctuations.

Chapter 5 changes the setting to a scattering problem, in which the excitation must
enter and leave. In order to describe the transport, we need to consider additional
parameters, which are mainly related to the coupling between the system and the
channels. We show that there are no significant problems when we implement the
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design principles from Chap.4 in this setting, and we manage to derive several
analytical results by using the scattering matrix formalism.

To conclude this part of the dissertation, we take a closer look at quantum effects
in biology in Chap. 6. This chapter strives to situate the whole discussion on what is
by some called “quantum biology” and provides a range of critical remarks about the
field. We specifically zoom in on the debate about quantum effects in photosynthesis
and present indications that the model of the previous two chapters may be relevant
in this context. There are, however, several issues that oppose the direct applicability
of our model and these are extensively discussed. The field still presents many open
questions, several of which are discussed in detail. We ultimately identify those
issues that provide the biggest and most important challenges for the future in order
to “render measurable what is not so as yet.”.

In Part III we focus on systems which contain many identical, potentially indis-
tinguishable particles. To begin with, Chap.7 introduces the formal mathematical
description of many-particle systems. It offers no new results, but should be seen
as a compendium of relevant mathematical tools from functional analysis and oper-
ator algebra. We connect these mathematical methods to concepts from solid-state
physics and quantum optics. Much of this chapter is based on books and lecture notes
(Alicki and Fannes 2001; Bratteli and Robinson 1997; Verbeure 2011), which we
present in a digestible way by focussing on the direct physical relevance.

Chapter 8 uses several of the presented concepts and techniques from Chap.7 to
study many-particle interference, which arises as a mere consequence of the indis-
tinguishability of particles. We first present many known result from this field using
the mathematical physics toolbox. We later shift to a measurement-based paradigm
which not only provides technical advantages, but also brings the discussion closer
to experimental setups. In this framework we can use the techniques of mathemati-
cal quantum statistical mechanics, combined with random matrix theory in order to
study relevant statistical properties of boson sampling.

In Chap. 9, we consider systems where the number of particles is not conserved,
but particles can freely move in and out of the system. This chapter mainly focusses
on fermions, for which we derive an expression for the particle current and study the
behaviour thereof in the long-time limit, where it reaches a non-equilibrium steady
state. In this stationary state, we prove the existence of a universal upper bound for the
current, which can be reached by carefully engineering the system. We explain how
yet again centrosymmetry appears to be an important design principle to reach the
optimal current regime. Additionally, we show how dephasing noise can significantly
enhance the current in the system, but the dephasing model also imposes interesting
open questions. The chapter is concluded with analogous results for bosons, where
the upper bound for the current can be replaced by a lower bound. Yet again, we
see that minor changes in algebraic structure can lead to enormous differences in
physical phenomenology.

Ultimately Part IV (and the there contained Chap. 10) wraps up the conclusions
from the different chapters, situating these results in the broad context of the quantum
theory of complex systems, and takes a look in the direction of future research.
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Chapter 2 ®)
Essentials of Quantum Theory oo

There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here, it will
instantly disappear and be replaced by something even more
bizarre and inexplicable. There is another theory which states
that this has already happened

Douglas Adams in (Adams 1995)

The goal of this section is to refresh the physical concepts underlying quantum
physics and specifically quantum dynamical system. For more details, the reader
is referred to several excellent books and lecture notes, on which this chapter is
loosely based (Alicki 1987; Alicki and Fannes 2001; Benatti et al. 2010; Bratteli and
Robinson 1987, 1997; Holevo 2001; Peres 1995).

2.1 Quantum Mechanics as a Probabilistic Theory*

We present an introduction to the operational approach of quantum mechanics. This
introduction is heuristic and focusses on quantum mechanics as a fundamentally
probabilistic theory.

From classical physics, we know a dynamical system as a system where the
observables change in time. This evolution is typically governed by basic physical
laws. For example, think of position x(¢) and linear momentum p(#), the dynamics
of which is determined by the canonical Hamiltonian equations of motion

© Springer International Publishing AG, part of Springer Nature 2018 21
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Here we introduce the classical Hamiltonian H, which serves as a generator for the
dynamics. Note that a well-defined position and momentum are assumed to exist at
each point in time. In quantum mechanics, however, this assumption is invalid as a
consequence of the uncertainty relation.

Performing a measurement in physics typically leads to a dataset of measurement
outcomes. Assuming that the experimenter lives in an idealised classical world, where
his devices can work as precisely as he wants, he should obtain the same value over
and over again upon repeating the same experiment. However, lived he in a quantum
world, he would be confronted with an intrinsic notion of statistics in his data. If
we assume that he measures some observable O, he would acquire a whole set of
possible outcomes oy, ..., oyx € R. Moreover, with enough statistics, he would see
that some outcomes are more probable than others, allowing him to construct couples
of the form (p;, 0;), where p; is the relative frequency with which o; is measured.
From the underlying theory, the set of possible outcomes could be continuous, such
that instead of p; one rather describes du (o), a probability density on the set of
possible outcomes.

Quantities which are of particular interest are the statistical moments of such a
distribution, e.g. the expectation value, the variance, et cetera. These can be obtained
from standard statistics as

(0" = / dp(o) o" (theoretical) (2.3)
OCR
N

(0" = v Z 0;" (experimental estimate after N measurements). (2.4)
j=1

The important aspect of such quantities is that they are both experimentally and theo-
retically accessible. The demand that du(o) be a probability distribution straightfor-
wardly implies that (1) = 1, where 1 is the observable that under any measurement
returns “1” as measurement outcome. Although this seems completely obvious, it
has has important consequences on the level of dynamics, since it imposes additional
constraints (see Sect.2.4). Another statistical fact is that (0%*) > 0.

Letus now divert our attention to dynamics in such a statistical theory. In principle,
all we need is a set O C R of all possible outcomes on top of which we define a
probability distribution.! The quantities in such a theory which can be observed are
(O") (), implying that measuring the observable at time #; can lead to a different
statistics than measuring at #,. We assume that the set O 2 of all possible measurement

'In quantum mechanics, measurement outcomes are always assumed to be real numbers.

2Upon doing measurements, the experimenter samples measurement outcomes from the set ©.
This implies that O can be estimated by {oy, ..., 0}, ...}. When measuring for example spin, the
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outcomes for a given observable O is fixed, however the probability density may
vanish for some possible outcomes (at some points in time). That leaves us with the
idea that the dynamics is actually described by a time dependence in the probability
distribution, dy, (o). We must require our theory to be probabilistic at all times ¢,
which implies that dy, (o) is a probability distribution for all times #, and therefore
(1)(#) = 1 for any time 7.

By pure reasoning, we obtain that a dynamical quantum system is essentially
described by mapping probability distributions on other probability distributions.
Arguably this would hold for any statistical theory, and from this argumentation it is
not completely clear where “quantum” pops up. In Sect. 2.2, we will consider specific
properties of quantum probability theory, but first we must introduce the idea of a
fundamentally probabilistic theory in contrast to a theory which is probabilistic due
to a lack of knowledge of the experimental preparation procedure. To build such
intuition, we elaborate on the elements which determine the probability measure
dy, (0) which describes the measurement outcomes.

Let us start from a dynamical setup and consider the initial probability distribution
duo(o). We assume that at least this distribution is under some degree of control.
Now, one may ask how such a probability distribution is physically determined. The
most obvious dependency is that on the measured observable, O, e.g. we expect
a different probability distribution when measuring angular momentum than when
measuring the position. A comparison of the set of measurement outcomes for angular
momentum O; with that for position O, clarifies this point, because O # Ox.
However, even if we measure the same observable multiple times, it is not hard
to imagine that we can still prepare the system in a different initial state. When
measuring position, one may, for example, prepare the system in a distribution with
expectation value (x) = xi, but just as well in one with (x) = x,. This can only mean
that the distributions are different, although the abstract observable is the same. This
freedom can be captured by the abstract concept of “state” ¢.

In short, we have reasoned that the distribution dyuy(0) depends both on what
we are measuring (the observable) and on how we prepare the system (the state).
There is, however, more. We assume that one is able to prepare the system in two
possible states ¢ and 1, which lead to two probability distributions d,ug (o) and

dpg (0), respectively. Therefore, one will also be able to, alternatively, flip a coin
each time one prepares the initial state and repeats the experiment. If the coins gives
heads, one prepares the system in ¢, otherwise one prepares 1. If we assume that
the preparation and the measurement are done by different people, the experimenter
who does the measurement will not have the information on whether the coin flip
was heads or tails; he generally just sees a set of measurement outcomes on which

spectrum is discrete and one may hope to recover the full set © upon measurement. However, when
for example linear momentum is measured, the set of possible measurement outcomes is in general
continuous.

3Notice that we do not even define a set in which ¢ is contained. At this stage of our heuristic
treatment, it is not yet described by a functional on an algebra of observables, nor a vector in a
Hilbert space. At this stage, it is just an abstract way of summarising the preparation procedure in
an experiment.
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he can do statistics. More generally, we wish to allow for this type of uncertainty in
the state that was prepared. This leads to the idea that

Pheadsdify (0) + (1 = Preaas)dpl (0) = dul® =7 (0), (2.5)

which can be generalised to the idea that convex combinations (Gudder 1973; Rock-
afellar 1997) of these physical probability measures, related to different states, lead
to a new physical probability measure given by a new state. Alternatively one can
also say that the space of all states is a convex set. More specifically, we can thus
decompose every state p in a convex combination of states. When the only con-
vex decomposition of a state is the state itself, it is said to be an extreme point, or in
physics language a “pure state”. To understand the terminology, we stress that opera-
tions which generate convex combinations, like flipping a coin, are always associated
with classical randomness. The degree of uncertainty which is introduced into the
state by such operation is governed by classical probability theory. A pure state, one
which cannot be decomposed, has no coin flipping or other classical randomness in
it, and all uncertainty is therefore purely of quantum mechanical origin. Notice that
in classical mechanics these pure states would always be delta functions.

In summary, we have seen that a statistical physical theory is determined by a set of
possible measurement outcomes (O C R, which depends on the specific observable),
equipped with a probability distribution. Additionally, there is also the freedom in
preparation of the initial state of the system, which again influences the probability
distribution for the possible measurement outcomes. Convex combinations of states
lead to new states and therefore also convex combinations of physical probability
measures lead to new physical probability measures. Finally, we deduced that dynam-
ics should take place on the level of such distributions in the sense that the dynamics
should map the physical probability distributions on new physical probability dis-
tributions. However, our complete discussion was based on the measurement of a
single observable and, as it turns out, genuine quantum effect only become apparent
in the relations between different observables.

2.2 Quantisation*

Quantum mechanics is fundamentally different from classical probability theory. This
difference becomes explicitly clear as a consequence of quantisation.
Canonical quantisation lies at the basis of the algebraic approach to quantum
mechanics and it as such also stimulated the development of quantum logic and
quantum probability theory. Since these fields set the context in which the here pre-
sented research was done, we provide a short overview.

In the previous section, we introduced quantum mechanics as a fundamentally
probabilistic theory and we heuristically derived several of its properties. However,
the above discussion does not highlight those features of the theory which are specific
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to quantum theory. Indeed, quantum theory is more than a theory which is funda-
mentally probabilistic, it also requires a new framework of probability theory, which
is exactly what is studied by the field of quantum probability theory. At its founda-
tion, this can be seen as a probability theory formulated using the quantum logic of
Birkhoff and von Neumann (1936). In this section, we highlight those aspects which
give quantum mechanics its counter-intuitive nature. To do so, we first provide a
brief overview of its historical development.

2.2.1 Old and New Quantum Theory*

One of the most fundamental structures in classical mechanics is phase space, which

describes the coordinates (xi, ..., xy) and their associated generalised momenta
(p1, - - ., py)inone huge space constructed by points of the form (x, x, ..., xy, pi,
P2, .-, PN) = (X, p). Centuries of developing classical mechanics ultimately led

to a mathematical description of phase space in terms of canonical (or symplectic)
structures, on which the Hamiltonian dynamics describes a symplectic flow (Arnold
1989). The standard study of classical mechanics is based on the description of points
in phase space and their orbits.

In the early twentieth century, such descriptions were confronted with both exper-
imental and theoretical problems (see e.g. Sect.1.1), which ultimately led to the
development of quantum mechanics. Just as the introduction of the speed of light ¢
as fundamental constant led to a new type of mechanics at high energies, quantum
mechanics imposed constraints on low-energy physics. The introduction of Planck’s
constant 2 was initially just a computational trick, but quickly became a fundamen-
tal part of physics. The old quantum theory, which was formalised by Bohr (1913)
and Sommerfeld (1916) to describe the hydrogen atom, focusses strongly on putting
limits upon the allowed orbits in phase space. Fundamentally, the theory postu-
lated that volume elements in phase space (thus describing an action) could not be
made arbitrarily small, but had a minimum size, given exactly by /4. This led to the
Bohr-Sommerfeld quantisation rule for every i € {1, ..., N}

f pidx,- =n; /’l, with n; € IN. (26)
H(x,p)=E

The condition is clearly related to the symplectic structure, because it connects coor-
dinates to their associated generalised momenta. The quantity H (x, p) describes
the Hamiltonian of the system, which is known from classical mechanics. Since
H (x, p) = E characterises an orbit in phase space, the quantisation condition (2.6)
can be read as a prescription for the allowed orbits and thus the allowed energies
of the system. In other words, the only allowed energies are those which lead to
orbits with an action given by an integer multiple of the fundamental quantum of
action /. Notice that this quantisation procedure does not require a specific statistical
interpretation, it merely constrains the allowed orbits in phase space.
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This first quantisation method was very successful in describing the hydrogen
atom and predicting the position of spectral emission and absorption lines. However,
the formalism had its limitation, the most profound of which was the lack of a descrip-
tion for the process of the absorption and emission of electromagnetic radiation. This
specifically made it impossible to theoretically predict the intensity of the observed
spectral lines. Nevertheless, Kramers managed to heuristically describe a “law of dis-
persion” for the theory of atomic spectra (Kramers 1924). Kramers’ idea to introduce
a transition matrix to describe the transitions between energy levels later became the
basis for Heisenberg’s formulation of matrix mechanics (Heisenberg 1925). This
new perspective turned quantum theory into a fundamentally probabilistic theory.
Jordan and Born (1925) realised that Heisenberg’s matrix mechanics required a for-
mulation of “position” Q and “momentum” P in terms of matrices and they derived
the quantum condition (“Quantenbedingung”)

PO —-0QP= L]l. 2.7)
27i
With this formulation they provide an explicit connection between the canonical
phase space structure and Heisenberg’s matrix mechanics. This identity is the foun-
dation of the mathematical structure of the quantum mechanics we know today, with
its basics described in Born et al. (1926).

Independently of Born and Jordan, also Dirac formulated Eq. (2.7) (Dirac 1925).
Although Dirac’s work is very similar to that of Born and Jordan (1925), the pro-
vided perspective is slightly different: Born and Jordan start from the framework of
matrices, whereas Dirac provides a more algebraic perspective. Dirac realised that
the fundamental insight of Heisenberg was not the exact formulation in terms of
matrices, but rather the introduction of a new type of non-commutative algebra.

Furthermore, Dirac realised that this different type of algebra explicitly used infor-
mation which was already hidden in the structure of classical mechanics. Literally,
he states

In a recent paper Heisenberg puts forward a new theory, which suggests that it is not the
equations of classical mechanics that are in any way at fault, but that the mathematical
operations by which physical results are deduced from them require modification. All the
information supplied by the classical theory can thus be made use of in the new theory.

Paul Dirac in (Dirac 1925)

Dirac’s starting point in developing these new mathematical operations was the struc-
ture of phase space and more notably the relation between observables determined
by the Poisson bracket. In classical mechanics, observables are functions on the
phase space. The Poisson bracket {., .} p (Arnold 1989) relates two such observables
O, (x, p) and O,(x, p) according to the following procedure

. 90100, 80,00,
{01, 02} p :Z 3% Bp " Bx B (2.8)
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The Poisson bracket describes how observables are related to each other with respect
to the canonical form that lies upon the phase space. The most profound example of
such a relation is given by {x;, p;}p = d;;, a relation which at least seems similar
to (2.7). Dirac realised that Heisenberg’s formulation of quantum theory as matrix
mechanics could be generalised in a more abstract way via the demand that

O1-0,— 0,-0, =ih{0y, O2}p. (2.9)

On the lefthand side we depict the quantised versions of the observables O; and
0O,. The “-” defines the modified mathematical operation that Dirac refers to. With
(2.9), Dirac provides the mechanism for constructing the algebra that describes quan-
tum mechanics and at the same time respects the classical phase space’s structure.
This process of canonical quantisation lies at the basis of the later development of
algebraic quantum mechanics by von Neumann and the construction of quantum
probability theory.

We finally note that, indeed, (2.9) leads to §; p; — p;q; = ihd;;, which lies at
the basis of the algebra of canonical commutation relations (CCR), and will dis-
cussed extensively in Sect.7.7.2. It ultimately turns out that this algebra describes
bosonic systems and therefore it is possible to provide phase space interpretations
for many-boson systems. These mathematical structures will reappear in Part III of
this dissertation.

2.2.2 Quantum Algebra and Quantum Probability*

The heuristics of Sect.2.1 made it feasible to interpret quantum mechanics as a
probabilistic theory, based on the observation that the measurement outcomes show
specific statistical features. Still, the phenomena that lead to the development of
quantum mechanics require more than mere probability theory; they also impose a
need for “quantisation”. The first decades of theoretical research on quantum the-
ory were largely dominated by the search for a correct quantisation postulate and
Dirac’s procedure, as expressed in (2.9), became one of the most widely spread
quantisation protocols. Although there have been other notable proposals, such as
Feynman’s path integrals (Feynman 1948) and Moyal’s quantisation by means of
phase space deformation (Moyal 1949), it is Dirac’s work that inspired von Neu-
mann to develop the framework of quantum probability theory (von Neumann 1932a),
based on the functional analysis of Hilbert spaces. Later this work would develop
further into more abstract algebraic formulations, which occur throughout several
chapters of this dissertation, mainly in Part ITI. In Sect. 2.3 we provide an introduction
to the foundations of the algebraic quantum theory that is generated starting from the
algebraic reasoning that led Dirac to Eq. (2.9). However, before we enter the technical
realm of spectral theory and operator algebras, let us discuss the very fundamental
probabilistic consequences of the quantisation procedure (2.9).
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Quantum mechanical experiments, ranging from Stern—Gerlach (1922a, b) to
electron beam interferometry (Marton 1952), empirically confront us with an intrinsic
notion of probability theory. This observation led us to the operational introduction of
Sect.2.1. However, in Sect.2.2.1, we saw that quantum physics ultimately requires
a new type of non-commutative algebra, which is not contained within classical
probability. Von Neumann realised that Dirac’s idea, pushed to the extreme, imposed
a completely new type of logic and a new type of probability theory (Birkhoff and
von Neumann 1936; von Neumann 1932a).

From the discussion in Sect. 2.2.1, we clearly see that the new algebraic properties
and the new theory, induced by the existence of A, only become apparent when
multiple observables are considered. In other words, when we measure a single
observable we recover classical probability theory, but once several observables are
jointly investigated we require quantum probability, which is a consequence of non-
commutative algebra. The earliest example where quantum probability manifests
itself is provided by Heisenberg’s (preparation) uncertainty relation (Heisenberg
1927; Kennard 1927; Robertson 1929; Weyl 1928)

h
AxAp 2 > (2.10)

with Ax and Ap the standard deviations of position and momentum, respectively.
The presented standard deviations are not related to the measurement process, but
rather to the statistics determined by the state, i.e. the preparation procedure (for a
detailed discussion, see Holevo (2001)). In a purely probabilistic language, we see
that the finite / forbids us to prepare the statistics of the position with influencing the
statistics of the momentum. Recently there has been research on determining similar
uncertainty relations on the “joint measurement” of quantum observables (Busch
et al. 2013; Kraus 1987; Martens and Muynck 1990; Ozawa 2003).

The derivation of (2.10) can be generalised to other observables O; and O,
(Robertson 1929), where we find that

AOIAO; > - [{[O1, O2])], (2.11)

N =

where[A, B] = AB — B A isthe commutator. However, this relation has the unpleas-
ant feature that the lower bound on the standard deviations is state dependent. It can
nevertheless be noted that these quantities are narrowly related to Bohr’s comple-
mentarity principle (Bohr 1935).

Other manifestations specific to quantum probability are quantum correlations,
which are able to violate Bell’s inequalities (Bell 1964). These inequalities are derived
for classical probability theory, and set constraints on the correlation between two
classical observables. It has only very recently been shown experimentally, in a
loophole-free way (Hensen et al. 2015; Giustina et al. 2015; Shalm et al. 2015), that
these bounds are broken by quantum systems, in accordance with the prediction of
quantum probability theory (Holevo 2001; Maassen 2010).
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In the remainder of this chapter, we elaborate on the mathematical structure of
quantum systems and of their dynamics. Because we always work in the limit where
quantum effects are relevant, we choose to work in natural units, where 7 is the unit
of action, i.e. h = 1.

2.3 Observables and States

In this section, we present the formalism of quantum mechanics, which historically
evolved from the new type of algebra that results from (2.7, 2.9). The development
of this framework led to the mathematics of operator algebras (Birkhoff and von
Neumann 1936; von Neumann 1932a), which later was interpreted (Holevo 2001;
Ludwig 1983; Mackey 1963) in a framework comparable to Kolmogorov’s treatment
of classical probability theory. It is our goal here to gradually build up the algebra
required to describe non-relativitic quantum mechanics in a general form. We start
from linear algebra with matrices, which can be thought of as Heisenberg’s ini-
tial matrix mechanics, and ultimately proceed to the theory of abstract C*-algebras
(Bratteli and Robinson 1987, 1997; Evans and Kawahigashi 1998; Sakai 1998).
Again, this section is loosely based on Holevo (2001).

2.3.1 Observables

As a starting point, we consider observables as modelled by matrices with com-
plex entries. This is common practice in finite dimensional quantum mechanics and
examples are ubiquitous. Even though an observable can be described by a matrix
O, a priori these matrices are of course not measurable in experiments, because
measurement outcomes are just real numbers. Matrices are interesting because their
eigenvalues can be associated with measurement outcomes in a natural way. The
central idea is that these eigenvalues are exactly the quantities which are accessible
in a measurement and therefore physics implies they must be real. This leads us to
demand that O = O. Now we can use the eigenvalue decomposition to write

0k =>"olP, (2.12)

and P; a projector (meaning that P?> = P;) on the eigenspace associated to the
eigenvalue (and thus potential measurement outcome) o;. An interesting aspect of
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projectors is that their eigenvalues are either 0 or 1 and, therefore, we find that, for
any normalised vector v, (v, P;v) € [0, 1]. Hence, we find that, for any v,

va Zo, (v, P;v) and ZvPv )y = 1. (2.13)

This clearly suggests a nice notion of moments for the distribution of measurement
outcomes, and a clear notion of probabilities. One can say that the P; are a natural
way to associate matrices with probabilities. However, one should realise that this
framework is very limited as concerns the type of systems that it can describe.

Let us generalise the concept of matrices and vector spaces to that of Hilbert
spaces and operators that act on them. This allows us to also capture systems where
the dimensions are infinite and where we may even have to consider spectra (the
generalisation to the set of eigenvalues) which are continuous. The demand for such
an operator O to be an observable is only that its spectrum o(0O) C R,* a straight-
forward way of saying that, again, we want physical measurement outcomes to be
real numbers.

The set of all self-adjoint operators on the Hilbert space H is usually somewhat
hard to handle and therefore we tend to focus on the set of bounded operators B(H).
An operator X on H is said to be bounded if there exists a A € R, such that for all
peH

Xl < Mol (2.14)

Bounded operators have many nice properties; if we assume that A, B € B(H), we
find that

A+ B e B(H), (2.15)
AB € B(H), (2.16)
A" € B(H), (2.17)
1 € B(H). (2.18)

These properties together imply that these operators form an algebra
(see Appendix A). If we now also include the fact that they are closed under the
norm topology (Conway 1997), we can call B(H) a C*-algebra (see Sect. A.4 of
Appendix A). One may even say that this type of operator algebra lies at the histori-
cal basis of C*-algebras.

In this algebra of bounded operators, we find elements with the property O™ = 0.
Such operators are now again the observables. However, we must emphasise that they
themselves do not form a *x-algebra. The notion of bounded operators is natural, in
the sense of keeping quantities (for example energy) finite, but obviously one may

4Notice that the spectrum o(0Q) of the linear operator O on H takes over the role of the set of
possible measurement outcomes, which was referred to as O in Sect.2.1.
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find many physically relevant objects (such as position and momentum operators)
that are unbounded.

The self-adjoint operators in 3(H) have one very beautiful property, which lies at
the core of the mathematical fields of spectral analysis and of the study of operator
algebras: One can construct a spectral decomposition for them, this result is called
the spectral theorem (Conway 1997). In general, this theorem tells us that we can
correctly define a projector-valued measure E(do), which is a spectral measure on
0(0) C R, such that for any analytic function f : 0(0O) — R, we find that

f(0) = f(0)E(do). (2.19)

a(0)

In addition, such a spectral measure is a resolution of the identity
/ E(do) =1. (2.20)
a(0)

This implies that this is a generalisation of the eigen-decomposition on finite dimen-
sional spaces. Notice that demanding that these E(do) are “projector-valued” really
means that they behave as projectors and therefore also manifest a sense of orthog-
onality.

To make these statements more rigorous, one must begin by considering the set
of interest, X, and equip it with a measure. This set is denoted by (X, 90%) and is a
measurable space. Here 901 is a so-called Borel o-algebra on X .°> To define a spectral
measure, we also require a Hilbert space H, such that we can construct a mapping
E : 9 — B(H). Note that it connects the elements of the Borel o-algebra 9t to
bounded operators on the Hilbert space.

To obtain a well-defined projector-valued spectral measure, E must fulfil several
properties:

e E(A) is aprojector for all A € 9.

e E(¥)=0and E(X) = 1.

° E(A] N Az) = E(A])E(Az) for all Ay, Ay € .

e E is o- additive: for all disjoint sequences (A,),en € 91 and all ¢ € H on has

EU,A) ¢ =) E(A)9. .21

3To define a Borel -algebra on X (Billingsley 2012; Doob 1994; Pedersen 1989), we must start
by defining the power set which is commonly denoted 2X. The elements of a power set are sets
themselves, more specifically 2% is the set of all subsets of X. A Borel o-algebra 9 C 2% is a
subset of this power set, with the following properties:

e X eM.
e When A C X e 9, also X \ A € M.
e When Ay,...A, € M, also | J7_; A; € M, for any n € No.
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Just as in other branches of analysis, we can use measure theory to connect these
measures to the concept of integrals. Therefore we now can make sense of
fx f(x)E(dx). A useful fact to do so is that for all ¢, € H, Eyy: M — C:
A +— (¢, E(A)1) defines a complex measure on (X, 991). To connect these results
to what we did earlier, we can now consider X = ¢(0O) and therefore we recover
E(do) as spectral measure.

These notions of operator theory are interesting, but one can think of more general
constructions that lead to well-defined probability measures. Notably, one can con-
struct positive operator-valued measures, which form a (non-orthogonal) resolution
of the identity. This essentially means that in the above definition of the spectral
measure, we drop the demand that our measure be formed by projectors. In the finite
dimensional case, this is what one often finds in textbooks as POVM'’s (Benatti et al.
2010), but one can also generalise this concept to the generic Hilbert space. Such
objects can be used to construct a type of generalised observables (Holevo 2001).

A particularly interesting result is that one can actually orthogonalise any such
resolutions of the identity, although one must typically embed the system in a larger
Hilbert space in order to do so. In other words, a positive operator-valued measure
originates from a projector valued-measure on a larger space, and therefore such
generalised observables can be connected to standard observables in a larger Hilbert
space.

A final level of abstraction which can be added is to forget about the Hilbert
space all together and focus on the basic properties of the algebra of observables.
Typically this algebra is a C*-algebra®: The fact that it is an algebra essentially
means that it is closed under operations that act as addition and multiplication. The
demand that it is a x-algebra reflects that we can additionally define a “-operation”,
which fundamentally has the same properties as the adjoint operation on B(H). A
C*-algebra also sets demands on the topology, more specifically, the algebra should
be closed under the norm topology.” This means that, if the algebra A contains
a sequence x, € A, that any limit x reached by making |x, — x|| small, should
also be contained in the algebra .A. An additional—and crucial—requirement is the
so-called C*-property, which demands that | x*x|| = ||x||?, and this gives us a notion
of a positivity, which is fundamental for describing quantum systems in a probabilistic
framework. Although this generalisation to C*-algebras appears overly abstract, it
is the required language to formulate the theory of many-body quantum physics, as
we will see in Part I11.

Remarkably, we can also generalise the machinery of the spectral decomposition
to these more general C*-algebras. However, abstract algebras are usually not the
most pleasant mathematical structures to use for doing computations. Luckily, there
is a beautiful theoretical framework that allows us to represent any such abstract
algebra as a sub-algebra of B(H), for a suitably chosen H. The price we pay is that

6We briefly note that this need not be the case. For example, in quantum statistical mechanics one
also considers von Neumann algebras (Bratteli and Robinson 1987, 1997).

7See also Appendix A.


https://doi.org/10.1007/978-3-319-93151-7

2.3 Observables and States 33

this H is not uniquely determined, but depends on the other fundamental ingredient
of quantum theory: the quantum state.

2.3.2 States

At the moment, we lack something to connect the observables, elements of some
C*-algebra A, to actual numbers. These objects are called functionals (Bratteli and
Robinson 1987; Conway 1997),3

(o : A—C, (2.22)

which have the additional properties that

L)y =1, (2.23)
(x*x)y > Oforallx € A. (2.24)
With these properties, we can interpret the functionals as objects that map observables
onto their expectation values. Even though the mathematics is elegant, it again is
rather unpractical for the purpose of calculations. Therefore, we will introduce the
“GNS” construction (Gelfand and Neumark 1943; Segal 1947), a way of associating
states and elements of the algebra to a Hilbert space H, and the bounded operators
thereon. The Kkey idea is that the duo (A, (.)4) naturally gives rise to the GNS triplet
(Hg, 4, mp). Hy is the Hilbert space and Q, € H. Finally, 7y : A — B(H) is a
representation of the C*-algebra (see Appendix A). These objects fulfil the following
properties:

Te(x*) = mp(x)', x € A, (2.25)
() = (Qg, T (x)Qy), (2.26)
my(A)Q, is dense in Hy, 2.27)

implying that any state on a given algebra naturally determines a Hilbert space, in
a way that connects the state to a vector in that Hilbert space. From this vector, we
can then generate the rest of the Hilbert space by acting on it with elements of the
algebra, such that Q2 is a cyclic vector (see Appendix A). We must stress, however,
that this Hilbert space H,; depends on the specific state of the system.

We now consider the case where the C*-algebra is given by B(H) for some Hilbert
space ‘H and discuss the structure of states on such an algebra. To do so, we must
introduce another space of interesting operators on H: the trace-class operators

8In Part III we change notation for functionals on abstract C*-algebras to “w” to stress contrast
between abstract algebras and algebras of the form B(H) for a specific Hilbert space.
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T (H). This is the space of operators on H, for which the trace is well-defined, in the
sense that for X € 7 (H) we obtain that tr(X) < co. Now it actually turns out that
B(H) is isomorphic to the dual space of T (H). Without going into too much of the
functional analysis, we conclude that generally not every state (.), can be associated
to an element of 7 (). Still, there is a given set of states where it is possible, these
are called normal states. Such normal states have the beautiful property that for all
B € B(H),

(B), =tr(pB), p € T(H) if and only if (.), is normal 598

with p > 0 and trp = 1. (2:28)
This trace-class operator used to describe the state is of course the well-known density
operator. From this brief discussion one should remember that in all generality the
common belief that any state is representable by a density matrix, is actually false.’
Density operators which are of rank one describe the pure states, and can be associated
with state vectors (elements of H).

Notice that only the pure states are captured by the GNS construction. If one were
to provide a non-pure normal state (.), on the algebra B(H), the GNS construction
would actually give rise to another Hilbert space KC,, such that {(.),, can be associated
with a state vector 2, € K,. This means that, in this case, the GNS construction
actually leads to a purification of a mixed state.

Furthermore, we may consider H of the GNS triplet of a state (.)4 as the Hilbert
space on which a different state (.), can be represented by a density operator p €
T (Hy). In such asituation, (.) , is said to be normal with respect to the representation
of (.)¢- This formulation will reoccur in Sect.9.3.3.

2.3.3 The Probabilistic Interpretation

Now that we have some formal understanding of states on algebras of observables,
we can make the connection to probability theory. A fundamental class of objects
in quantum probability theory is given by the moments of an observable: (O*),. In
the most general case, where O € A, we can of course use the GNS construction to
write that

(0%, = (@, 7(0) ). (2.29)

Since we know that the GNS construction naturally provides us with a Hilbert space
‘H and w(0) € B(H), we can use the spectral theorem and write

m(0) = / o E(do), (2.30)
a(m(0))

9However in finite dimensional systems, it clearly holds.


https://doi.org/10.1007/978-3-319-93151-7_9

2.3 Observables and States 35

and therefore we straightforwardly obtain that
(0%, :/ " (®, E(do)®) . (2.31)
a(m(0))

It can be shown that (®, E(do)®) indeed forms of good measure on o(7(0)) (Con-
way 1997). Thus this gives us a generally applicable way of connecting statistical
theory to the theory of operator algebras. It moreover leads to a very general formu-
lation of quantum theory.

When we take one step down on the ladder of abstraction, consider that O € B(H),
and assume that the states are normal, we obtain

(0%, = tr(p O%) (2.32)

(0%, = / o*tr(p E(do)). (2.33)
a(0)

This, indeed, provides a clean generalisation of the finite dimensional case.

2.4 Dynamics of Quantum Systems

Now that we have provided the mathematical structure of quantum theory, by iden-
tifying observables with elements of a C*-algebra, and states with the functionals
thereupon, we can start to consider dynamics. In order to do so, there are two logical
approaches; either we propagate the states, or we propagate the observables.'? The
former is known as the Schrodinger picture, the latter as the Heisenberg picture.

Whichever picture we employ, the key issue is that the physics which is described
must always be the same. This means that the probability distribution remains a
well-defined probability distribution for all times and for any observable which we
measure. A different way of formulating this requirement is to demand that moments
are mapped into moments of a new probability distribution. These demands sum-
marise to

(X*X)y(r) 2 0 forall X € Aand all states (.), (2.34)
(L)s() = L. (2.35)

The former demand is called positivity, the latter normalisation. Here we did not
consider the time dependence in any specific picture, but one can make things more
specific by for example deciding to focus on the Heisenberg picture.

10Note, however, that hybrid descriptions such as the interaction picture are also possible and can
in some cases be fruitful.
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2.4.1 The Heisenberg Picture

In the Heisenberg picture, we consider a single fixed state (.), which remains
unchanged over time. The dynamics is hence described by means of an automor-
phism

Ayt A= A, (2.36)

where 7y denotes the starting point of the dynamics and 7 is the final time. As we see,
elements of the C*-algebra of observables are mapped onto other elements of the
same algebra. Requirements (2.34) and (2.35) now need to be expressed by conditions
on A;,, which leads to

A, (X*X)]| >0 forall X € A  (positive map), (2.37)
Ary(1) =1  (unital map), (2.38)

for any possible 7y and ¢. These are the most straightforward demands on the dynam-
ics, arising by simply demanding that our theory remains a well-defined statistical
theory throughout time. Another natural demand is that

[lintl Ay (X) =X, (2.39)
—1Io

Now one can make additional assumptions on the dynamics, for example by demand-
ing that it be continuous in the norm topology that lies upon the algebra A, which
makes the dynamics “smooth”. Typically, however, there is a wide range of other
constraints which are imposed to make the dynamics tractable.

It is common to assume that the dynamics is not only positive (as demanded by
2.37), buteven completely positive. The problem with positive, unital maps as the ones
defined here above, is that they are in general no longer well-defined positive maps
upon a trivial embedding in a larger system. Such embeddings can have very different
origins, an important one being the inclusion of internal degrees of freedom. This is
important because the majority of actual systems which are described by quantum
mechanics are effective models, where we ignore several degrees of freedom. If
the dynamics is not completely positive, the model cannot be well-defined, since
these additional internal degrees of freedom oppose the existence of a probabilistic
interpretation of the theory.

Formally, we embed a map A, ,, on A in a larger space A ® M, (where M, are
the n x n complex matrices) by simply defining A, ; ® [, as

Aty @10 ®L,) = Ay (0)®1L, and (A, QL)AL O®M)=1Q M.
(2.40)
For the dynamics to be physically sensible, we demand that just extending the space
by including an “ancilla” does keep the probabilistic structure of our theory intact.
In other words, we demand that A, ;, ® [,, be a positive map for all n. Such maps are
called completely positive maps (CP maps).
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Considering algebras of the type B(H), a CP map always allows a Kraus repre-
sentation (Kraus 1971), given in the following way: Choose O € B(H) and consider
a unital CP map A, . In that case, Kraus showed that, for all # and #, there exists a
set of operators V;., ,, € B(H) such that

Ay (0) =D Vi OViy g (2.41)
Therefore, when the state is normal, we can write
(0),(1) = tr(p Ay, (0)) = tr (p D Vi ow,,,o) : (2.42)

An importantl additional condition, which boils down to demanding normalisation,
is that )_, Vi?r,mVi;r,ro = 1. This result is actually a special case of Stinespring’s
characterisation of CP maps of C*-algebras (Stinespring 1955).

An additional assumption which is regularly encountered is called divisibility,
meaning that the dynamics can be arbitrarily stopped at any point and thereafter may

just be continued again. Mathematically, this reads
Aty = N0, foralls e [t,1] (2.43)

and of course, it must hold for all possible choices for 7 and #. An important conse-
quence of this choice is that

. AH—&,I - ld
lim ———

d . At_‘_f’to — At,t()
= 1m —-- =
e—0 €

) oAy =Lro A, (2.44)

thereby defining the generator £, of the dynamical map.

One can again go one step further and demand that the dynamics is a one-
parameter semi-group, which essentially implies that our divisible map of (2.43)
is independent of the starting time #(, and only depends on the elapsed time ¢ — fy. In
other words, we can set 7y = 0 without any loss of generality. A simple calculation

now shows that

d A LoA (2.45)
—A;:=LoA,. .

dt t t

Thus, the dynamics is determined by a specific, time-independent, generator.

A famous result by Lindblad (1976) states that A, forms a one-parameter semi-
group of completely positive maps on B(H) if and only if the generator can be written
as

1
L(X)=i[H, X]+ ZL}XL,- — 5{LjL,-, X}, forall X € B(H). (2.46)
J
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The conditions on L ; are surprisingly general, demanding only that L; € B(H) and
>, LiL; € B(H).

A more general result for any C*-algebra A is also provided by Lindblad (1976),
and will be used throughout Chap. 9. It states that A, is completely positive if

LX)=W(X)+ KX+ XK*, forall X € A, (2:47)

whenever K € Aand W : A — A aCP map. Notice that we can, in principle, always
use the GNS construction to cast the dynamics in the form (2.46), given a specific
state of the system.

Similar results were independently obtained by Gorini et al. (1976), but they
limited themselves to the case where the algebra of observables is B(H) and H is
finite dimensional. In this case, the proof is rather easy to obtain via Choi’s criterion
for complete positivity (Choi 1972).

One can now make an even stronger demand on the dynamics, namely that it is
a one-parameter group. This means that the dynamics is also reversible and that for
any map A,, there is also a map A_,, such that A_; o A, = id. Using representation
theory for groups, it follows that A, := U/, is a unitary map. Limiting ourselves to
B(H), this means that

X(t) :==U(X)=U'XU, forall X € B(H), (2.48)
Ulu, =00 =1, (2.49)
which is actually the Kraus representation of the map. It also is straightforward to

deduce the Heisenberg equation of motion (assuming no explicit time dependence of
X)) by using for example Stone’s theorem (Stone 1930, 1932; von Neumann 1932b),

ng(z) = i[H, X(®)]. (2.50)

One can now understand this as a special case of the Lindblad generator for B(H).
Equivalently, we also obtain that

U, =e 8, (2.51)

Of course, in the Schrodinger picture, this will lead us to Schrédinger’s and von
Neumann’s equations, which are generating the dynamics studied in Chap. 4.

2.4.2 The Schriodinger Picture

In the Schrodinger picture, the dynamics is assumed to happen on the level of the
quantum states, rather than of the observables. This implies that the Schrédinger


https://doi.org/10.1007/978-3-319-93151-7_9
https://doi.org/10.1007/978-3-319-93151-7_4

2.4 Dynamics of Quantum Systems 39

picture is actually the (pre)dual picture of the Heisenberg picture. Here we will
briefly explain this duality, starting from a system described by observables on a
fixed Hilbert space H, such that the algebra is given by B(H). If we assume that the
initial state is normal and determined by a density operator p € 7 (H), we can write
the evolution of the moments as

(0%, (t) = tr(p A, ,,(O%)) (Heisenberg) (2.52)
=: tr(A;',O(p)Ok) (Schrodinger), (2.53)

where we already use the 2assumption that the dynamics is continuous. In the
Schrddinger picture this continuity must be with respect to the so-called ultraweak
topology,'! a technicality that serves to make sure that the state remains normal and
can therefore be represented by a density operator at each moment in time.

Let us consider some typical dynamics, such as the simple unitary case. If the
dynamics is unitary and given by a map U/, and we can determine (2.53) as

(0%, (t) = tr(pU (0%)) = r(pU,; O*U,) = (U, pU; O%), (2.54)
then the dynamics on the density matrices is given by
U (p) := U, pU, . (2.55)

It can be shown von Neumann (1932a,b) that this dynamics is generated by von
Neumann’s equation

0
5,00 = =ilH. p(D)]. (2.56)

Of course, the most fundamental property of unitary dynamics is that it does not
change the pureness of the state. Most notably, state vectors (the vectors in Hilbert
space that can be associated with pure states) are mapped onto other state vectors.
This means, in familiar notation, that one may write

(0% 4(t) = (v, U OFU) = (1), OFp (1)), (2.57)

where the equation of motion for v (¢) € H is probably one of the most famous
equations in physics,

gu}(;) = —iH(). (2.58)

Notice that this is all equivalent to considering the density matrix approach for

p = 1) {Pl.

"'The ultraweak or weak* topology is defined on the space X*, which is the dual space of a Banach
space X. First consider the seminorm p, : X* — C with py(¢) = |¢(x)]|. The topology generated
by these seminorms is the ultraweak topology (Conway 1997).
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It is straightforward to generalise the result for unitary dynamics to a general
dynamics that forms a completely positive map. We already mentioned that such
maps allow for a Kraus representation for the operator algebra B(H). When we
translate this type of dynamics into the Schrodinger picture, and, again, assume
normal states, we can simply use the properties of the trace to obtain

tr (pz vjt_toovi;,,,o> =tr (Z VistaoPViy o 0) ) (2.59)

and therefore we identify

AL =Y Vistaoh Vi (2.60)

Usually, for dynamical systems, such a Kraus representation is not given in any
natural way. Just as in the unitary case, it is more convenient to consider the problem
on the level of generators. For general CP maps, the structure of the generators is
not known. On the other hand, we can again additionally assume a one-parameter
semigroup, and for this class Lindblad provided us with a general expression for the
dynamics of the density operators (Lindblad 1976). It can be shown that the generator
of the predual Lindblad dynamics is given by

’ . 1
L'(p) = —ilH, p]+EZ([Lj,pLj]+[Ljp, L1). 2.61)

J

where the L; are the same Lindblad operators as those found in the Heisenberg
picture. Notice that, in general, £'(1) # 0, but that tr(£’(p)) = 0. This nicely shows
that a unital map in the Heisenberg picture translates to a trace-preserving map in
the Schrodinger picture.

Letus now conclude this section by giving some formal remarks on the Schrédinger
picture for more general C*-algebras. If we consider an algebra .4 and a dynamics
Ay ¢ A— A, then we can again write that, for any X € A,

(X)g(1) = (Ar1y (X))o = ()¢ © Ar sy (X)), (2.62)

where the last step is just a formal rewriting. We take an observable from the algebra,
we first propagate it in time, and then we map it on its expectation value. Given
that A, is a well-defined Heisenberg dynamics, it is not difficult to see that the
combined object (.)4 o A; 4, has all the properties of a well-defined state. Therefore,
we can define a new state, for any ¢ and #,:

(Do = ()¢ 0 Np gy (2.63)
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Thereby we thus describe the dynamics on the level of states. Formally we can define
the dynamical map in the Schrédinger picture as

A;,to((-)gb) = ()0 Ao (2.64)

We will see in Chap. 9 that even this formal version of the Schrodinger picture has
its benefits when we discuss non-equilibrium steady states.

Although a lot of formalism was introduced above, general semigroup dynamics
will only be explicitly considered in Chap. 9, and most of this dissertation will focus
on unitary dynamics. Hence, in Sect. 2.6, we introduce an additional formalism to
describe dynamics on asymptotic time scales, in the context of scattering theory.
First, however, we focus on a particular consequence of the unitary dynamics: The
appearance of quantum interference effects, which are a key element of most of this
work.

2.5 Quantum Interference

Among the most striking properties of quantum mechanics we find the particle-
wave duality, through which we discover wave-like phenomena in the dynamics of
quantum systems. The most well-known of these effects—and the central theme
of this dissertation—is quantum interference. This phenomenon is intuitive when
one studies quantum wave functions in the Schrodinger picture, however, the more
abstract view in terms of quantum probability is rarely spelled out. Here, we elaborate
on the meaning of quantum interference in general quantum models.

2.5.1 From Waves to Wave Functions

The notion of interference is much older than quantum physics, see e.g. Young
(1804), and was originally developed as a characteristic property of waves. When
waves are superposed, their phases play an important role in the superposition. The
wave which results from such superposition generically has a different amplitude
than its constituents. In Young’s experiment (Young 1804), these amplitudes are
enhanced in some directions and strongly suppressed in other directions, building
the famous interference fringes.

In quantum mechanics, this terminology was adopted to describe continuous-
variable system, e.g. a particle propagating in a potential landscape. In these setups,
pure quantum states can be represented as complex valued functions (x), defined
on position space (generally R*). This description was ultimately formalised by
Schrodinger (1926). To connect these wave functions, which are formally denoted
Y € L2(R?) and describe a single particle, to experimental measurements such as
those shown in Fig. 1.1, we require Born’s rule (Born 1926). Applied to this specific
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continuous-variable setting, this rule tells us that [¢)(x)|? describes the probability to
find the particle at a given position x. Hence, repeating an experiment many times,
measuring the position of the particle, results in a histogram which approximates
)P

A very coarse-grained and effective way of describing the paradigmatic double
slit experiment uses two wave functions v, and 1;, which describe the wave func-
tion propagating through the upper and the lower slit, respectively (see Fig.1.2).
To describe the detection on the final screen, we must superpose these two wave
functions which leads to

1
V2
where we add the normalisation to make sure that |1 ||> = 1, otherwise we cannot

interpret the resulting wave function as a probability distribution. The probability to
find the particle at position x is now given by

Yrota1 (¥) = —= (thu (x) + 1 (x)), (2.65)

1 1 -
|Yiota (¥)* = 3 |9 () + 3 11 (x)* + Re (4 ()1 (x)). (2.66)

Here we clearly see the incoherent mixture of the probability distribution given by
the wave functions related to the upper and lower slits in the first two terms, and the
additional contribution Re (7,/}14 ()Y (x)), which is due to the interference between
the two waves.

Even though the experiments are typically performed by sending many particles
through the double slit interferometer, it remains a single particle description. This
implies that the particles can be distinguished from one another during the whole
experiment and any effects due to indistinguishability of identical particles can safely
be ignored. Chapter 8 is fully devoted to the regime where such instances of indis-
tinguishability cannot be ignored.

Although this discussion focussed on interference in position space, the final result
(2.66) can be generalised to a more abstract framework.

2.5.2 Projections and Quantum Probability

The phenomenon of quantum interference takes a slightly different shape in more
abstract quantum probability theory. In this section, we provide a generalisation of
(2.66) to such a more general framework.

Let us start by recalling Sect.2.3.3, where we discussed the connection between
states and observables on the one side and projectors and probability distributions
on the other side. If we consider a general Hilbert space H, we can consider the
couples (a, P,), where a € R is a possible measurement outcome and P, € B(H)
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is a projector, i.e. Pa2 = P,. If we prepare the system in a given state (.), we may

denote the probability of measuring a as
pla) = (Pa). (2.67)

Now, we can also define a quantum equivalent of joint probability, using Kraus’s
notion of selective channels (Kraus 1983a),'?

p(band a) = (P, P, Pp), (2.69)

where we first measure b and then a. To this expression to quantum interference, let
us select a set of measurement outcomes {b;}, such that

Z Py, = 1. (2.70)
J

Notice that, in classical probability theory, we find

Z p(b; and a) = p(a). (2.71)

bj

However, in quantum probability theory, this is no longer valid

D (Py, PuPy)) # (Pa). (2.72)

J

This is a direct consequence of the fact that in general [P,, Py] # 0 (which in
turn follows from the fact that quantum observables generally do not commute).
What we do find is that

(P) = <Z P} Pa> = (Py,PuPy) + ) (Py,[Py, Pul). (2.73)
J

j b

The first term on the right hand side of (2.73) clearly corresponds to the first two terms
in (2.66), which denote the incoherent mixture of probabilities. The latter becomes
apparent from (2.69), where p(b and a) is obtained from a sequential measurement
of b and then a. The last term in (2.73) generalises the quantum interference.

12Notice that this allows us to reformulate “collapse of the wave function” as a conditional proba-

bility:

pbanda) _ (PpPaPp)
pb) (Py)

Indeed, this may be seen as the probability to get a measurement outcome a, given that we previously

“collapsed” the wave function on measurement outcome b.

pla | b) = (2.68)
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Example 2.5.1 We explicitly connect (2.73) to (2.66), by choosing a general initial
wave function vy € £2(R?), the set of projectors {P, } = {P,, P;}, which project
on the upper and lower slits, respectively. Therefore, we can set \%1/1” = P,y and
% ¥ = Prify. Ultimately, we measure the position on the measurement screen, which
implies the choice P, = |x) (x| (which projects onto a single point on the screen).
Inserting this choices in (2.73) leads to

—_

1
-5
WO + 5 P + (Gl + TrED W) + 1) = 3 [P = 3 o)

pe) = 2 a0 + % O + (= (a0 + B (x) - % Yu G ~ % ol

N = N = N

|
[ ()% + 3 [ () 1? + Re (¢ () (x)).
(2.74)

Hence we have shown that quantum interference can be cast in a much more
general framework of general Hilbert spaces, and it can be shown (Holevo 2001) that
an additional abstraction to the language of C*-algebras is possible.

2.6 Scattering Systems

In this section, we consider a more specific type of unitary dynamics, namely scat-
tering. We assume that the states which we consider are given by state vectors.
Therefore, the demand that the probabilistic structure of our theory be conserved
under dynamics automatically leads to unitary dynamics. In scattering theory, we
uphold this constraint, but we typically are not interested in the details at each time ¢,
but rather in the asymptotic behaviour (+ — =£00). This is also the framework which
is considered in Chap. 5 and to some extent in Chap. 8 (see specifically Sect. 8.2.2).

In general, a scattering system is open in the sense that the dynamics cannot be
confined to any finite volume in configuration space. Scattering only makes sense
when we are dealing with systems that are continuous (or a continuum coupled to a
set of discrete levels). Around 1960, the works of Fano (1961) and Feshbach (1958,
1962, 1967) cast the theory in a form with is still widely used today.

Surprisingly, it is rather difficult to find a straightforward, general approach to
scattering theory and therefore this brief introduction is based on the more extended
introduction in a diploma thesis (Zimmermann 2011) which, in turn, was based on a
composition of different parts of Cohen-Tannoudji et al. (1998).

Our goal is to find a universal description of the scattering matrix. As this is essen-
tially a representation of unitary dynamics, it must depend on the unitary evolution
operator that is obtained from Schrédinger’s equation. We assume the Hamiltonian
that generates the dynamics to be time-independent and givenby H = Hy+ V. V
acts locally in space, which leads to the assumption that after asymptotically long time
the system is just evolving with dynamics determined by Hj. Ultimately, we want
the scattering matrix to tell us how eigenvectors |¢;) = |c; E) and ](bf) = |c’; E’)
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of Hy, where ¢, ¢’ label the “channel”, are connected by the dynamics. We define the
scattering matrix S via

(6] S167) = Jim exp (i%(Ei - E,-)) (oslU (% —%) 6. @75

where one can motivate the additional phase factor via the interaction picture, as we
are actually interested in lim,_, _, |¢;); and lim;_, oo |¢ f> ; and how they are mapped
on each other by the unitary dynamics. In the end, this avoids convergence problems
in the limit # — <00 due to the evolution of the phase generated by Hy."?

In order to calculate S we thus have to calculate U (t /2, —t /2) in a convenient way,
such that we can later on take the limit # — oo. This is usually done by considering
the resolvent G, which is related to U via

efiz(zfto)
Ut, ) = / 2,—G(z), (2.76)
Cy T

and one readily obtains G(z) = (z — H)~!. We can now also define Go(z) = (z —
Hy)~!, and we then obtain that

G(2) = Go(2) + Go(21)VG(2), (2.77)
G(z) = Go(z) + G(2)VGo(2), (2.78)

what can be used to obtain
G(2) =Go(z) + Go(2)VGo(2) + Go(2) VGV Gy(z), (2.79)

and one can go on like that, constructing a perturbation series. However, one can also
approach the problem in a different fashion. We start by

Si.f N (6| V+VG@V )
— E; (z—E)(z—Ey)

(67| G2 19) = - , (2.80)

and after some calculus one obtains
(64| S1s) = 61y — 2mi(ps| V + VG(E; +in)V ;) 6(E; — Ef),  (2.81)

where the additional i7n appears in order to avoid divergences, and we assume that
n — 0, which implies that it is much smaller than all other relevant energy scales.
One directly sees that the result is reasonable, in the sense that S — 1 when V — 0.

An explicit calculation of <d)f} V 4+ VG(E; +in)V |¢;)isoften tedious and there-
fore one tends to fall back on perturbative techniques. However, when Hy and V have
some particular structures, there are some strong methods that can be used. One of

130ne may think of a reference frame moving along with Hy.
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such instances is the one where we have a continuum and a set of bounded states in
the system, which leads to an unperturbed Hamiltonian of the form

Hy = Z/dEE le; E) (c; El+ ) Ep|b) (bl and V = Y (Ve p(E) |c; E) (b| + h.c).
c b b,E,c
(2.82)
a technique introduced by Feshbach (1958, 1962, 1967) now uses projectors of the
form P =), |b) (b| and Q = 1 — P, to rewrite the scattering matrix in a form

(67| S1gi) ~ 6.5 — 2mi (¢ W*E W i), (2.83)

— H, —irWWH

where W = QV P, encrypting the couplings between the channels and the bounded
system. The scattering matrix described in (2.83) will be the main work horse of
Chap. 5.

2.7 Concluding Remarks

Throughout this chapter we recollected the foundations of dynamical quantum sys-
tems, which makes it the backbone of our study of quantum transport theory. The
illustrated techniques will be applied extensively throughout the subsequent chap-
ters. In Chap. 4, the mathematical tool of choice to describe the dynamics is the
Schrodinger equation (2.58), which is suited for the context of single-particle trans-
port on finite networks. When we couple these networks to external channels in
Chap. 5, we extensively use the scattering formalism of (2.83).

When we describe dynamical many-particle systems in Chap. 8, we explore both
the Schrodinger picture (2.58) and the Heisenberg picture (2.48). In Sect. 8 we present
the Heisenberg picture as the more natural framework to describe the study of correla-
tion functions, which we later use extensively for the certification of boson sampling
in Sect. 8.5. Continuing in the many-particle setting, we explore particle currents in
open, many-particle quantum systems throughout Chap. 9, extensively using Lind-
blad’s equations (2.46) and (2.47).

However, before we can present our results on quantum transport phenomena in
complex systems, we must introduce the notion of complex systems in more detail
in Chap. 3. Indeed, the stochastic nature of the Hamiltonians and Lindbladians in
complex systems significantly influence the phenomenology of the dynamics. More
specifically, throughout the thesis, Hamiltonians are often represented using network
structures (as introduced in Sect. 3.2) or random matrix theory (see Sect. 3.3).
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Chapter 3
Complex Quantum Systems and Random | ¢«
Matrix Theory

What... what are these words? Explain! Explain!
Dalek in “Doctor Who” (Hurran 2013)

3.1 Complex Systems

3.1.1 Heuristics

Complex systems are ubiquitous in a wide variety of scientific disciplines. The termi-
nology is profoundly present in fields ranging from social sciences (Sawyer 2005),
over economics (Arthur 1999) and neuroscience (Hopfield 1982), to engineering
(Ottino 2004), biology (Odum and Barrett 2005) and physics (Richter and Rost
2004). Given the multitude of different themes considered in these different fields, it
is legitimate to wonder whether there are general properties that unify the “complex
systems” of these different disciplines. In other words, what is a complex system?

Exactly this question has been addressed in many fields, often leading to different
answers. Let us begin by listing several concepts which are commonly related to
complex system:

e Nonlinear dynamics, typically connected to chaos and bifurcation theory (Atlee
Jackson 1991; Nicolis and Gaspard 1994; Richter and Rost 2004).

Patterns and manifestation of hierarchical structures (Albert and Barabasi 2002).
Irreversibility and out-of-equilibibrium behaviour (Prigogine 1987).

Emergent phenomena and self-organisation (Ottino 2004).

Error tolerance (Albert and Barabasi 2002)

There is a wide consensus in literature, see e.g. Albert and Barabasi (2002), Prigogine
(1987), that systems which are efficiently described in terms of Newtonian physics,
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ideal gas models or chemical reactions are “simple”. Also on the level of system
topologies, there is a general consensus that lattices and other “simple graphs” (Biggs
1993; Bollobas (1998a) cannot be considered complex. On the other hand, a more
debatable topic is whether a fully random or fully chaotic system (Schuster 1989)
can be considered a complex system.

The problem of both randomness as chaos lies in their behaviour which is strictly
intractable and unpredictable, but allows statistical treatments with universal prop-
erties describable by few parameters. It is clear that fully chaotic systems do not
display the patterns and hierarchical structures which are often associated with com-
plex systems. In this sense, a complex system is usually said to be a mixture of both
chaotic and regular behaviour (Richter and Rost 2004).

A long standing debate in theoretical physics and mathematics considers the
question whether one can go beyond such heuristic descriptions of complex systems.
This has led to several attempts to find a quantitative measure of complexity.

3.1.2 Complexity and Information Theory*

We present a brief overview and criticism to the use of information theoretical tools
to characterise complex systems.

Not long after Shannon formulated his mathematical theory of information
(Shannon 1948), it became clear that there is a fundamental connection between
information and statistical physics, which is by now standard textbook knowledge
(Kardar 2007). This connection is naturally forged via mathematical probability the-
ory. Because physical complex systems are situated within the statistical mechanics
framework (Prigogine 1987), various attempts have been undertaken to quantify the
complexity of a system, using techniques of information theory.

Usually these attempts treat the system as a string of data, from which the infor-
mation content is analysed. In such an approach, the system is represented as a
source of information and the string of data can be interpreted as a series of mea-
surement outcomes. Several methods which where developed throughout the early
days of information theory can serve as a first attempt for measuring complexity: The
Shannon (joint) entropy (Shannon 1948) and Kolmogorov’s algorithmic complexity
(Kolmogorov 1983).

The methods which use Shannon’s techniques from Shannon (1948) describe
the compressibility of the data, in the sense that one characterises the simplest signal
which is required to encode the string of data and transmit it. In a similar way, it can be
viewed as the minimal amount of memory required to store the data. Kolmogorov’s
method counts the minimal amount of code required to write an algorithm that
exactly reproduces the data. Both methods quantify a highly regular set of data
(e.g. a sequence of zeroes) with a very low complexity. However, they also appoint
a high complexity to a fully random set of data, because they strive to characterise
the exact string of data, rather than its statistical properties. Indeed, there is no easy
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algorithm to reproduce a long string of random numbers, but one can easily produce
a second string which manifests the same statistical properties.

A proposed method to go beyond such mere reproduction is based on finding pat-
terns in the data. One such scheme uses so-called epsilon-machines (Crutchfield and
Young 1989; Shalizi and Crutchfield 2001), i.e. Markov processes that are inferred
from the data and can predict future data (i.e. future measurement outcomes) after
analysing a string of sufficient length.! One of the most profound problems is that
the epsilon-machine approach assumes that the stochastic processes which generate
the string of data are stationary. In a physics language, this implies that the method
cannot be used to treat dynamical quantum systems or out-of-equilibrium physics.
This renders it impossible to make the connection to nonlinear, emergent, and non-
equilibrium phenomena—phenomena which were all commonly related to complex
systems (recall Sect.3.1.1).

A second problem lies exactly in the connection between a system and a string
of data. The framework highly depends on what exactly is measured to create such
a string of data. When one uses this method to characterise the complexity of the
system, one may obtain different “complexities” for the measurement of different
observables. Therefore, it is inaccurate to refer to the complexity of the system, since
one actually characterises the complexity of the measurement process for a given
observable in the system. In this sense, epsilon-machines and the methods driven
by information theory and data analysis are arguably most relevant in the study of
metrology, e.g. in the problem of parameter estimation.

3.1.3 Complexity of Quantum Dynamical Systems

We propose a different perspective to describe complex systems, which focusses
more on the system itself. Indeed, it is only natural that the properties of the system
are used to classify it. Because this dissertation focusses on dynamical properties of
quantum systems, we start from that specific framework. By virtue of Chap.2, we
define a dynamical quantum system in terms of ((.), A, A,) (Alicki and Fannes 2001;
Verbeure 2011): An algebra of observables A with both a state (.) and a dynamical
map A, defined upon it. We now explore whether the heuristics of complex systems
can be connected to this specific context.

In this dissertation, both open and closed systems are considered. However, when
we refer to a complex system, we consider it independent of the environment in which
it is embedded and therefore the complexity should already be present in a closed
system setup. When the system is closed, it implies that the dynamics is reversible
and that {A, | # € R} is a one-parameter group. In addition to the dynamical system
((.), A, A,), we obtain the GNS construction (7r, H, Q) (see Sect.2.3.2).

ISince patterns can occur over long ranges of data, it is difficult to practically estimate the required
measurement time. In the literature, one often assumes that the available string of data is infinitely
long (Crutchfield and Young 1989).
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When the state (.), which is the foundation of the description, is a stationary state
for the dynamics, which means that

(A(0)) =(0), YO e A, (3.1)

we can always find a self-adjoint operator / in the Hilbert space H (Alicki and Fannes
2001; Verbeure 2011), for which

7(A(0)) = ™ r(0)e ™ with hQ = 0. (3.2)

We must note that in general this Hamiltonian % is a linear operator on H, but it
is typically not contained in 7(A) and it cannot even be approximated by repre-
sented elements of the algebra .4. This implies that every closed dynamical system
((.), A, A,) in a stationary state leads to a natural notion of a Hamiltonian. This
Hamiltonian representation of the dynamics on the Hilbert space H is generically
state dependent. A fundamental consequence of this result is that any definition a
complex dynamical quantum system must depend on this Hamiltonian 7.

Of course, for dynamical quantum systems which are closed, bounded, and contain
one or few particles, we can often avoid the complicated language of C*-algebras.
These systems allow for an effective description in terms of a unique Hilbert space H
and the reversible dynamics is naturally described by a unique Hamiltonian on that
space. However, in the context of quantum statistical mechanics, which we touch
upon in Sect. 7.7 and Chap. 9, this uniqueness is no longer guaranteed.

The properties of the Hamiltonian 4 are crucial for the description of the system:
Its spectral properties determine the relevant time scales of the coherent dynamics.
Therefore, if we “define” what a complex dynamical quantum system is, it is naturally
to do so based on properties of the spectrum of the Hamiltonian /. Because time scales
are directly related to spectral properties, these complex systems also have specific
signatures in the relevant time scales that govern their quantum dynamics.

Spectral theory leads us to a natural connection with several well-studied types of
systems, such as billiards and—most notably—graphs (Chung 1997). It is spectral
graph theory which provides a natural connection to a specific type of complex
systems, namely those which can be represented by network structures. In order
to describe complex quantum systems, we start by studying the spectral theory of
complex networks.

3.2 Complex Networks

Complex networks (Albert and Barabasi 2002) are almost as widely studied as com-
plex systems themselves. Popular examples of complex networks include Facebook
and the internet (Hooyberghs 2013), but also power grids and road networks. Closer
to statistical quantum physics is the fact that complex networks can even be connected
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Fig. 3.1 Random Erdos and
Rényi graph (see text) with
20 nodes and 75 edges.
Edges and nodes are
indicated. Generated using
Graph toolbox in
Mathematica 10

to Bose-Einstein condensation (Bianconi and Barabasi 2001). The underlying math-
ematical toolbox which is generally used to describe complex networks is graph
theory (Albert and Barabdsi 2002; Biggs 1993; Chung 1997).

A graphis described by aset { P, E}, where P = {py, ... py}are nodesand E is a
set of edges which connect the different nodes—see Fig. 3.1 for an example. Graphs
can be directed (such that an edge can be thought of as an arrow which goes from
one node to another) and they can be weighted (implying that each edge is given a
specific weight). We focus on graphs without such extra features, such that we have
a set of nodes which are either connected or not. A final quantity of interest is the
degree k; of node p;: The degree of a node denotes the number of edges that are
connected to it. A graph is called a simple graph when there are no loops (i.e. nodes
are not connected to themselves), nor double edges (i.e. there can be at most one
edge between any two nodes).

Graphs are connected to linear algebra and spectral theory in a natural way, via
the adjacency and Laplacian matrices. The adjacency (or connectivity) matrix A (see
Fig.3.2 for an example) is an N x N matrix, given that we consider N nodes, with

A;; = #number of edges between p; and p;. (3.3)

The Laplacian matrix L is givenby L = D — A (see Fig. 3.2 for an example), where
A is the adjacency matrix and D is a diagonal matrix, where the jth diagonal element
is the degree k;. This implies that Z;V:l Lij = YN, Li =0. It can be shown that
L is a positive semi-definite matrix and that its smallest eigenvalue is always zero.
When this smallest eigenvalue is degenerate, there are several connected components
in the system (Chung 1997).

The field of spectral graph theory focusses on the study of the eigenvalues of both
adjacency and Laplacian matrices. Until the late 1950’s, graph theory mainly studied
systems which were highly regular (e.g. lattices, lines, circles, fully-connected, et
cetera), but this changed when Erdos and Rényi developed the theory of random
graphs (Bollobas 1998b; Erdos and Rényi 1961) (see Figs. 3.1 and 3.2 for examples).
Their model fixes the number of modes N and the number of edges » and samples
a simple graph that fulfils these constraints. The distribution is uniform in the sense
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that every such graph with N nodes and n edges is equally probable. A closely related
way of generating the random graphs is the binomial method, here edges are sampled
according to a fixed probability c. Due to the law of large numbers both methods are
equivalent when n = ¢N with N — oo and ¢ constant.

Although these random graphs are conceptually relevant in the study of complex
networks, they can themselves hardly be considered complex systems because they
can be characterised by a single quantity, the average degree (k) = c¢N. Barabdsi and
Albert argue that the networks behind realistic complex systems are not completely
random, but also manifest some degree of structure (Albert and Barabasi 2002). The
quest for descriptions of such complex networks has led to the development of small
world- and scale-fee networks.? It has been argues that in particular the latter type
of networks are ubiquitous in real-world complex systems (Barabdsi 2009), even
though this idea is still subject to debate (Clauset et al. 2009; Broido and Clauset
2018).

A scale-free network is commonly “grown” using the Barabasi-Albert algorithm
(Barabdsi and Albert 1999), which starts from a small random network and adds
additional nodes. Whenever a node is added, it connects to node p; with proba-
bility k;/ ) j kj. This implies that nodes with a high connectivity have a higher
probability of being connected to. In this type of networks, one generically forms
“hubs”, i.e. nodes with very high connectivity. A small-world network focusses on
limiting the distance / between pairs of nodes such that/ ~ log N. In graph theory,
the resulting graphs are described by the Watts—Strogatz model (Watts and Strogatz
1998).

Our goal is to find specific criteria for complexity of a system based on spectral
properties and we explained that there is a clear connection between the theory of
graphs and spectral theory. Moreover, complex networks are naturally connected to
random graphs, thus we must investigate the spectral properties of random graphs.
Since the graphs under consideration are random, the adjacency matrices describing
them are also random objects. This makes a natural connection to Random Matrix
Theory (RMT) and it was even shown that the spectral density of the random graphs
described by Erdos and Rényi is given by Wigner’s semicircular distribution (Fiiredi
and Komlés 1981). However, the adjacency matrix of a graph grown by the Barabasi-
Albert algorithm does not manifest such spectral statistics. It was shown that for
graphs related to scale-free networks, the adjacency matrix typically manifests a
power-law distribution in the normalised density of states (Chung et al. 2003). These
spectral properties are direct manifestations of the degrees, which can vary greatly
between nodes and one can even say that such a power-law distribution is a mani-
festation of hierarchy within the topology of the system.

To ultimately connect the theory of the topological structures as they appear in
graph and network theory to quantum mechanics and Hamiltonians, we must make
the transition from random graphs to RMT. Inspired by the spectral properties that

20ne may also consider other types of complex networks, but these are the most well-known
examples.
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became apparent in graph theory, we propose to use the manifestation of power-law
behaviour in the Hamiltonian’s spectral density as a hallmark for complex dynamical
quantum system.

3.3 Aspects of Random Matrix Theory

3.3.1 From Atoms and Orbits to Random Matrix Theory*

Random matrix theory was introduced with the specific purpose of studying statistical
properties of disordered and/or complex systems. It does not necessarily attempt
to provide a complete microscopic picture of the investigated system. This Section
introduces the historical context in which this framework was developed and applied.

The physicist’s first reflex to tackle a problem is usually to break it down into
its fundamental building blocks and use them as ingredients for the solution. In
mechanics, this typically implies finding all relevant degrees of freedom, writing
down the equations of motion for each one of them and solving a system of equations.
Such methods work fine, as long as the degrees of freedom are not too many and the
equations of motion can be integrated. Essentially the latter boils down to finding as
many constants of motion as degrees of freedom. Of course, by now it is well-known,
also from our previous discussion on complex systems, that often we cannot resort
to such straightforward methods.

Letting go of such well-controlled, deterministic, solution methods historically
proves to be hard. Remarkable in the context of their time were the ideas, pioneered
by Maxwell, Boltzmann and Gibbs, that the laws of thermodynamics are governed
by the probability theory of an enormous underlying number of degrees of free-
dom (Boltzmann 1878; Gibbs 1878; Maxwell 1867). The idea that the underlying
microscopic degrees of freedom are so abundant that statistics obtains near exact
predictive power, was thoroughly shocking at the time. It was only when Einstein
presented undeniable evidence via his work on Brownian motion (Einstein 1905)
that the broad community embraced the ideas of statistical physics.

A similar story occurred during the early developments of quantum mechanics,
when Bohr quantised the hydrogen atom (Bohr 1913). Bohr’s atomic theory, based
on the model by Rutherford, was enormously successful in explaining several mys-
teries underlying the field at that time, most notably the spectral lines of hydrogen.
However, as can be read in Heisenberg (1975), several of Bohr’s colleagues had their
doubts about the completeness of the model. Einstein pointed out that the Bohr—
Sommerfeld quantisation only works for integrable systems (Einstein 1917) and
also Pauli explicitly made mention of such problems (Pauli 1922). These problems
were soon forgotten as Heisenberg, together with Born and Jordan, introduced a
much more general form of quantum mechanics (Heisenberg 1925; Born and Jordan
1925; Born et al. 1926), soon after which Dirac introduced the canonical quantisation
method (Dirac 1925).
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Even though somewhat forgotten, it was a fact that early quantum mechanics
did not provide many possibilities in case of classically chaotic systems. It was at
some point even believed that such systems could not be quantised. However, a
new milestone came when Gutzwiller proved that in any system, knowledge of the
periodic orbits is sufficient for quantisation (Gutzwiller 1967, 1969, 1970, 1971),
and similar results were obtained in Balian and Bloch (1970, 1971, 1972, 1974).
His work revitalised the field studying the transition between classical and quantum
mechanics, known as (now, modern) semiclassics, and contributed to the birth of
quantum chaos.? Even though Gutzwiller’s trace formula is highly successful, it is
not always practical in usage: Not only is it far from trivial to actually find all the
periodic orbits (due to their exponential proliferation), there are also more intricate
mathematical problems of convergence (Eckhardt and Aurell 1989; Miller 1975;
Voros 1988).

A complementary approach, much in the spirit of what the founding fathers of
statistical mechanics did, is to drop the urge to exactly calculate everything and to
focus on an alternative, stochastic treatment of the such systems. By means of such
method, Bohigas, Giannoni and Schmit (Bohigas et al. 1984) managed to formulate a
conjecture for universality in the fluctuations of the eigenvalues of “chaotic” quantum
systems, connecting quantum chaos to random matrix theory (RMT). Recently, new
developments have attempted to formally prove such connection (Miiller et al. 2004).

The study of RMT in physics dates back to nuclear physics, another branch that
grew out of quantum theory. In the thirties, decades after the first quantum endeavours
in atomic physics, many physicists started digging deeper and explored the nucleus
itself. It was again Bohr who proposed a very interesting model with his compound
nucleus (Bohr 1936). Somehow it seems that Bohr realised that the generic nucleus
lacks the necessary features to allow for a simple description, since he explicitly
points towards our lack of knowledge of the exact structure inside of the nucleus.
It was Wigner who later suggested not to strive for knowledge, but rather use a
statistical model to describe our lack of microscopic control (Wigner 1955).

Many excellent textbooks have been written about this topic, from very accessible
introductions which mainly focus on applications in quantum chaos (Haake 2010;
Stockmann 2007), to very extended technical works (Mehta 2004; Akemann et al.
2011). In the remainder of this section, we will base ourselves on these textbooks,
and review some of the most fundamental results in RMT.

We start by focussing on Wigner’s idea, which originated from his studies in
nuclear physics (Lane et al. 1955), where they realised that even when the compound
structure of the nucleus is exploited, some statistics is required to solve the problem.
This triggered Wigner to explore the potential of RMT in this system (Wigner 1955).
He starts his introduction with an important statement:

The present problem arose from the consideration of the properties of the wave functions

of quantum mechanical systems which are assumed to be so complicated that statistical

considerations can be applied to them. [...] Actually, the model which underlies the present
calculations shows only a limited similarity to the model which is believed to be correct.

3For an more complete introduction to the genesis of quantum chaos, see (Gutzwiller 2007).
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Nevertheless, the calculation which follows may have some independent interest; it certainly
provided the encouragement for a detailed investigation of the model which may reproduce
some features of the actual behavior of atomic nuclei.

Eugene P. Wigner (Wigner 1955)

In this work, Wigner works in a basis in which all the symmetries in the system have
been exploited, meaning that the Hamiltonian is block diagonal. He now focusses on
one of such blocks and decides not to attempt to describe its exact structure, but rather
some statistical features it manifests. In the quote he clearly states the assumption that
the system is so complicated that statistical considerations are required. Additionally,
and very importantly, he stresses that the random matrix model is not supposed to
reproduce the Hamiltonian, but rather it should reproduce some essential features.
Not much later, Wigner realised that his ideas applied to a much broader set of
matrices (Wigner 1958).

3.3.2 The Gaussian Ensembles of Random Matrix Theory

Following Wigner’s logic of replacing the Hamiltonian (or at least the blocks in their
block-diagonal representation) by a stochastic object, we start by taking into account
the most fundamental property of the Hamiltonian H: Itis a Hermitian matrix, which
implies that H ¥ = H or, in other words,

H; €R, and H;; = Hy;, (3.4)

thus already limiting the maximal number of independent components. The Hermi-
tian structure of the matrix is preserved under unitary transformations, since indeed

(U'HU) = (UTHU) = UTH'U = U'HU. (3.5)

The classical (or Gaussian) ensembles of random matrix theory are defined by the
type of transformations that keep their basic structure intact. One may after all say
that UTHU is just the Hamiltonian H, viewed in a different basis, meaning that at
least from a physics perspective they are one and the same object. With this intuition
in mind, we demand that the probability density for sampling H and UTHU is the
same for all unitary matrices U. Introducing the notation P for a probability density,
we may therefore write that

P(H) = P(U'HU). (3.6)

This will ultimately lead us to the Gaussian Unitary Ensemble (GUE), which owes
its name exactly to identity (3.6).
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We started our excursion into RMT by assuming that we treated a block in the
block diagonal representation of the Hamiltonian in such a way that symmetries
where already exploited. These are, however, only those symmetries that allow for a
unitary representation, meaning that, on the Hilbert space H, angles, and thus inner
products (¢, 1) of wave functions, are left invariant. It was reasoned by, again, Wigner
(Ballentine 2014; Wigner 1931; Bargmann 1964) that the relevant quantity to be
preserved in quantum mechanics is rather |(¢, ©)|, which also allows for antiunitary
operations to represent symmetries. These symmetries are not yet exploited by going
to a block diagonal structure and need to be dealt with differently. Here we will focus
on the most prominent member of this class of symmetries: time-reversal.

We define a time-reversal operator T on a Hilbert space H as an operator with the
properties

(T, TY) = (Y, 9) = (¢, ), for p,p e H (3.7
T’ =al with |a*>=1. (3.8)

The first of these guarantees consistency with Schrodinger’s equation. The second
demand accounts for the fact that we do not allow a measurable effect of a double
time-reversal. This is verified by the observation that, for any observable A € B(H),
any moment ('I/J, Akw> (for all k € N and thus the full measurement statistics) remains
unchanged under 72.

Interestingly, time-reversal operations are far from unique. More specifically, we
can take any time-reversal operator 7 and any unitary operation U and define a new
time reversal operation 7’ = UT . Haake (2010) argues that any T can be written in a
so-called standard form 7 = U K, where K acts on any operator Aas KAK ! = A.*
This operator K is conjugate linear, giving it the properties (for i, ¢ € H)

K*=1, (3.9)
(Ko, K¢y = (¥, ¢) , (3.10)
(0, K¥¢) = (¢, Kv) = (K>, K$) = (1), K ) . 3.11)

With these properties and (3.8), one can now show that
al =T?=UKUK =UU, (3.12)

where it should be stressed that U is now the complex conjugate and not the conjugate
transpose. Rewriting the identity gives®

UU=al=aUU" = U=aU'=a(U) = U=0TU, (313

4The notation A represents the component-wise complex conjugate, rather than the complex trans-
pose. Notice also that K% = 1 implies that KAK = A.

S5The last step is obtained by a very short “iterative expansion”.
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which can only be true if & = =1 and therefore, (3.8) implies that
T? = 41. (3.14)

In other words, the defining properties (3.7, 3.8) directly lead to stronger constraints
on T, which are ultimately contained in (3.14). This implies physically that a double
reversal either returns the original state vector, or it adds a minus sign.

A system is called time reversal invariant if there exists a time reversal operator
T, with properties (3.7, 3.8), which leaves the Hamiltonian invariant, i.e. the Hamil-
tonian commutes with 7. However, we know that every time reversal operator has
the property (3.14). The behaviour upon double time reversal (whether (3.14) leads
to the “41” or “—1”) depends on the system Hamiltonian. This gives three natural
classes of Hamiltonians H with respect to the time reversal operation:

e Those where [H, T] =0 and T? = 1, these lead to the Gaussian Orthogonal
Ensemble (GOE).

e Those where [H, T] = 0 and 7% = —1, these lead to the Gaussian Symplectic
Ensemble (GSE).°

e Those where [H, T'] # 0, these lead to the Gaussian Unitary Ensemble (GUE).

As one may expect, each of these ensembles have different statistical properties.
As most of the RMT applications in Part II explicitly use the GOE, we from now

on focus mainly on its properties. Its first important property is T ~' HT = H, which
implies that for a basis where T |e;) = l¢;) and (e;, e;) = 05,

H,‘j = (e,-, H€j> = (T@[, THej) = <€i, TH€j> = <€,‘, HT€j> = H_,J (315)

Since this implies that there is a basis in which H is not diagonal, but still contains
only real elements, it is typically assumed that the GOE is essentially built from real
symmetric matrices, rather than hermitian ones. As this is a fundamental, but non-
unitary, symmetry of our system, the statistics should express this fact. The group
that leaves this property intact is SO(N), the N x N (N being the dimension of
the Hilbert space H on which the Hamiltonian H acts) orthogonal matrices. The
key property of these matrices is that O'O = OO’ = 1 and they form the natural
symmetry group of the GOE, which is expressed by the demand that the probability
density to sample a matrix H from this ensemble is the same as that to sample O H O*
for all O € SO(N). In other words,

P(H)= P(O'HO), (3.16)

where P is the probability density on the GOE.

This ensemble will not be considered in our subsequent work and thus we refer the reader to
(Mehta 2004) for further details.
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At the foundation of the GOE lies the identity (3.16), but how exactly should one
interpret such probabilities on the set of matrices? A priori, one can think of P as a
function which connects these real matrices in the GOE to a number,

P : RVN = [0, 00). (3.17)

This function must fulfil the additional constraint (3.16) and can therefore be
expressed as (Mehta 2004)

P(H) = fltr(H), tr(H?), ..., tr(HY)] (3.18)

Now notice that each matrix in the ensemble is characterised by a set of N(N + 1)/2
different components H;;, Hj», ... Hyn € R. These elements completely determine
H, allowing the interpretation

P(H)= P(H,..., HyN). (3.19)

This leads to the interpretation of the probability to sample a given matrix as a joint
probability distribution on its components. In completely the same way we can define
Hj,, ... Hy, asthe components of O' H O, which allows us to understand Eq. (3.16)
as

P(Hyy,...,Hyy) = P(H{,..., Hyy). (3.20)

This notation now leads us to another constraint which is imposed on the GOE: The
different components are all uncorrelated. Consequently,

P(Hyy,...,Hyny) = P(H|1)P(Hp) ..., P(Hyy). (3.21)

The only way to fulfil both constraints (3.18) and (3.21) is by giving P the following
form (Stockmann 2007)

P(Hyy, ..., Hyy) = cexp[—btr(H) — atr(H?)], (3.22)
and without loss of generality we can set b = 0, since this boils down to just shifting

the overall average energy. The constant ¢ can also be further specified by demanding
that

/P(H)dH =/P(Hll,...,HNN)dH“...,dHNN =1, (3.23)

and a quick calculation of some Gaussian integrals (Mehta 2004) tells us that

N(N—=1)/2
(3" (2) 6.24)

s ™
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One can Verify7 that, with this normalisation taken into account, we obtain

E(H;*) = = (1 + 6" (3.25)

1+ j

4
The choice of v is a priori arbitrary and is often motivated by physical or mathematical
demands. For example, one may want the spectral radius to be independent of the
matrix dimension N, or one may want the completely opposite situation, where the
mean level spacing A is independent of N.

Generically stated, it naturally follows from the invariance under orthogonal
transformations and the statistical independence of matrix components that the com-
ponents of the Hamiltonian are distributed by a normal distribution

H;j ~ Normal(O, 1+ (5ij)v2), (3.26)

where v is the only free parameter left to determine. Now that we fully know what
GOE matrices are and how they can be sampled, it is time to review some useful
properties.

3.3.3 Statistical Properties of GOE Eigenvalues

Wigner’s original motivation to introduce random Hamiltonians was motivated by
the study of nuclear spectra. Such spectroscopic data are dictated by the energy levels
and by the energy eigenvectors of the system.® From this perspective, one can clearly
conclude that the statistical properties of the eigenvalues (and eigenvectors) of the
random Hamiltonians are the goal of such studies.

Joint Probability Distribution*

Probabilistic properties of eigenvalue distributions are naturally within reach. Assum-
ing that H isareal N x N matrix with H' = H, there exists an orthogonal matrix O
such that H = O' DO, where D is a diagonal matrix and the entries on its diagonal
are the eigenvalues of H. By virtue of the first fundamental property (3.16) of the
GOE the probability density for sampling any random GOE Hamiltonian H is the
same as that for sampling the specific set of eigenvalues. In other words, the set of
N eigenvalues fully determines the GOE matrix, implying that, somehow,

P(Hyy,...,Hyy)dH,,...dHyy < P(E,, ..., ENy)dE,...dEy. (3.27)

7Staning from Eq. (3.22), with b = 0, we first note that trH? = Zl—,j H;j Hj;. Because we consider
the GOE H;j = Hj;, thus we find that ttH? =Y, H;;> + 23, ; Hi;*. Inserting this in (3.22)
leads to P(Hi1, ..., Hyn) = c[; exp (— aHii*) ;. j exp ( — 2aH;;?). The results (3.25) and
(3.26) follow immediately from straightforward integration.

8This dependence appears via factors | (1);, ¢)|?, where ¢ is the state vector of the system and 7; is
an eigenvector of the Hamiltonian.
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There is, however, a profound difference between the two expressions, which
lies in the number of variables, N(N + 1)/2 on the lefthand side, and N on
the right.” Therefore, quite some care is required when we derive the quantity
P(Ey,...,Ex)dE,...dEy.

When one begins to derive P(Ey, ..., Ey) from P(Hy, ..., Hyy), one must
correctly take the different dimensions of the function P’s domains into account. To
do so, one first realises that E, ..., Ey cannot be the only parameters in play, and
thus introduces L = N(N + 1)/2 — N additional parameters pj, ..., pr. Now, one
may state that

P(H]l9""HNN) ~ P(Elv"-vEN;plvu-rpL)' (328)

To turn this into an equality, the coordinate transformation mediated by O must be
correctly taken into account by means of a Jacobian J,

P(Hlls ceey HNN) = det(J)P(Elv ey ENa P1, ~'-9pL)1 (329)
where J is a matrix given by

aI_Imn
OEOp;’

Jmn,kl = (330)

Since we want to obtain the probability density function for the eigenvalues, we
integrate out all the additional parameters, which formally means that

P(El,...,EN)=/det]P(El,...,EN;pl,...,pL)dpl...dpL. (3.31)

After evaluation of det J in (Mehta 2004), it follows:

N
1
Paor(Er. .. En) = Coorexp | = 55 3 Ei| [T 1B = Eul. (3:32)
k=1

m<n

The constant prefactor Cgog depends on the chosen ensemble and on the Hilbert
space dimension N, and is obtained by integrating over the relevant symmetry group
SO(N) (Mehta 2004; Stockmann 2007). Before giving an explicit expression, we
divert the attention to one of the most fundamental properties of these random matrix
ensembles: The appearance of [[,,_, |E, — E,| in the joint probability distribution
(3.32) of eigenvalues. This quantity reads zero whenever two eigenvalues coincide
and, therefore, these matrices never show degeneracies. This really drives the eigen-

values away from each other. On the other hand, the factor exp [ -5 P Ek]
makes sure that no eigenvalues dwell too far away from the central value (here set

9This does imply that the notation using the same “P” is somewhat unfortunate, since we are really
talking about different functions. Still, to avoid notational overhead, we stick to the P wherever a
probability density is treated.
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to zero). In other words, the eigenvalues are confined to some finite region because
of the Gaussian, but there is also a strong eigenvalue repulsion present.

By similar calculations one finds the following results for the other two ensembles
(Mehta 2004; Stockmann 2007)

N
1

Pave(Er. .. En) = Coupexp| = — Y E|[[IE.—Eal?  (333)

k=1 m<n

N

2 4

Pase(En. .. En) = Caseexp| = = Y Ee] [1E. = Enl. (334
1

k= m<n

Note that the level repulsion in the GUE is stronger than that in the GOE, and the
GSE has again stronger repulsion than the GUE. There is a type of systematics in
these results and we can summarise them as

N
Py(Ey, ..., Ex) = Csexp [ _ % 3 Ek] [11E - E.l". (3.35)
k=1

m<n

The parameter 3 = 1, 2,4 now serves to identify the different ensembles. § = 1
results in the GOE, 8 = 2 gives the GUE and (3 = 4 reproduces the GSE result.
These values nicely characterise the strength of the level repulsion and we can thus
see these typical level repulsion strengths as a defining property of the ensemble.
Using 3, we can now also write down a general result for the Cg,

N
CL,,’ = (Zﬂ)N/zﬁ_N/2_e‘3N(N_l)/4[F(] + 5/2)]—1\’ Hr(l +ﬁ]/2), (336)

j=1
where I' is the Gamma function as defined in Abramowitz and Stegan (1965).

Hence, we have explained the fundamental steps in the derivations of the joint
probability density function for the eigenvalues of a GOE and presented the analo-
gous results for the GUE and GSE. However, often one is not really interested in the
full joint probability distribution and, specially for higher dimensions N, these distri-
butions are far from practical to handle. Because they characterise the probability to
sample a complete spectrum of the system we cannot use (3.35) to infer information
about the ensemble in which the system is contained if we only have a single system
at our disposal.!” However, we should not forget that RMT is in essence a type of
multivariate analysis and when we have an energy spectrum at our disposal, we can
extract coarse grained information from it, which can be used to infer information
about the RMT ensemble in which the system may be contained. This implies asking
questions of the type “What is the probability to find an energy eigenvalue at energy

10This would be similar to sampling the value 0.12345 for a stochastic quantity and trying to use
that value to identify the probability distribution from which that value was sampled.
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E?” or “What is the probability, upon ordering the energy eigenvalues in increasing
order, of finding a spacing s between a level and its nearest neighbour?”’. The answer
to the former question is given by the density of states, whereas the latter query is
answered via the nearest-level spacing distribution. RMT allows us to analytically
compute these averages over the ensemble. However, we can numerically obtain
estimates for these distributions from a single energy spectrum.'! We now briefly
describe these coarse grained probability distributions in the context of Gaussian
ensembles.

Density of States

A first quantity of potential interest is a global one, the density of states (DOS).
The DOS does not provide us with information on the set of eigenvalues, but rather
describes the behaviour of one typical eigenvalue. It is most commonly defined as

N
D(E)=) 0(E—E) (3.37)

i=1

and therefore is closely related to the counting function which counts all the energy
levels from the ground state up to a certain level e:

N
N(e) = Z O(c — E;), (3.38)

i=1

where 6 is the Heaviside step function. It is easy to verify that

d
—N(o)

. = D(E). (3.39)

e=E

The density of states is for example of vital importance in solid-state physics, where
it is often used to treat continuous spectra rather than the discrete ones we encounter
here. In the context of RMT, where statistics is central, it is more logical to deal with
the quantity

1
p(E) = ND(E)’ (3.40)

which has the property

1 N
/p(E)dE =~ ;/5(5 — E)dE =1, (3.41)

1Note that this is exactly what is done in (Bohigas et al. 1984), where one considers the local
properties the spectra of three different systems to acquire the data presented in this publication’s
Fig.3.1. Another example is (Walschaers 2011), where the density of states of a single, large
(5000 x 5000) random matrix is sufficient to accurately estimate the Marchenko-Pastur statistics
(Marcenko and Pastur 1967).
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Notice, however, that, due to (3.37), the definition of p(E) treats Eq, ... Ey as
known quantities, which contrasts the logic of RMT, where these are supposed to
be stochastic quantities. Thus the most natural quantity to treat in the framework of
RMT is actually (p(E)), which is the normalised density of states, averaged over
the RMT ensemble. This quantity allows an interpretation as the probability density
functions for a single eigenvalue

(p(E)) = / Pooe(E1, ..., EN)AE, ... dEy, (3.42)

where we integrate over all but one variable of the joint probability density.

The calculation of (p(E)) can be done in many different ways: An appealing and
accessible method relies on the calculation of moments m;\' (for the gth moment).
These moments are formally defined by

m) :/Eq(p(E))dE (3.43)

and with little effort, involving only the property that f[R 0(x — xg) f(x)dx = f(xo),
we find that

m;V = %(tr(H”)). (3.44)

The central idea to the moment method is that the full set of moments uniquely
defines the distribution (3.42).'? This method is extensively applied in Stockmann
(2007) for the GOE, and in Walschaers (2011) for the Wishart ensemble (Mar¢enko
and Pastur 1967; Wishart 1928).

Another, related, method relies on calculating resolvents, which makes sense
because one can prove that

1

E]l—H—ie)’

This method, too, is treated in Stockmann (2007), where the combination of this
method and the moment method provides the final explicit expression for (p(E)).
The problem with methods exploiting moments is that they usually require an
expression for all the moments, which can be hard to obtain (Walschaers 2011).
Therefore, one often resorts to different methods, a very powerful one being the
replica trick and its mathematically more satisfying brother: the supersymmetry
method. Since these methods require quite some technical skills in complex analy-
sis and Grassman calculus, we restrict ourselves to providing some references. An
extensive and accessible paper on the replica trick is found in Edwards and Jones

12Even though the moments contain all the information about the probability distribution, that does
not imply that it is straightforward to find an explicit expression for the probability density function
based on the moments.
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(1976), but this method later received a lot of criticism, mainly due to its lack of
mathematical rigour. It was even pointed out that it may provide false results (Ver-
baarschot and Zirnbauer 1985). A way to circumvent the criticism and fix the method
is to introduce anticommuting variables and apply methods known from supersym-
metry. These methods are treated in Chap. 10 of Haake (2010) and in Chaps. 7 and 8
of Akemann et al. (2011).

Whichever method is applied, in the limit N — oo one will always recover
Wigner’s celebrated result for the Gaussian ensembles: the semicircle law. When
the variance v of (3.26) is chosen such that v = £/+/N, where ¢ is a constant which
is independent of N, the semicircle law is elegantly written as

L1—E if —26<E<2¢

(p(E)) = {f e (3.46)

lim

N—oo otherwise.

This result implies that £ is naturally interpreted as half the spectral radius (Con-
way 1997). Although this result as such is interesting and powerful, one will rarely
encounter such a global density of states in a real physical system. When we recall
Wigner’s original motivation, we also realise that RMT is not necessarily intended
to investage such global behaviour; it is often the case that global spectral proper-
ties of real physical systems are not well captured by RMT models. The statistical
properties of spectra on which RMT is, however, typically triumphant are the local
spectral properties.

Nearest-Level Spacing*

Of all local spectral properties, the nearest-level spacing is arguably the most sig-
nificant of all. To calculate this quantity, one orders the levels by increasing energy
and calculates the distance between two subsequent levels: s = |E;+; — E;|. Itis an
intriguing endeavour to extract the statistics P(s): The first proposal was again for-
mulated by Wigner and became known as the Wigner surmise, obtained by exactly
collocating P(s) for a 2 x 2 random matrix, sampled from one of the Gaussian
ensembles:
o2

7% €Xp [— %] ., GOE
3252 exp [_%] . GUE

T2 A2

P(s/A) = (3.47)

where A is the mean level-spacing, such that the distribution is centred around
s/A = 1. Striking about the Wigner surmise is its elegance and the insight which it
provides. Surprisingly, the result is also a very good estimate for the spacing distribu-
tionsof N x N Gaussian matrices. These distributions were derived exactly by Mehta
and Des Cloizeaux (1972), but the final expressions are highly non-transparent and
therefore one often resorts to the Wigner surmise for practical purposes. We specif-
ically also make mention of the GUE result, since comparing both allows us to see
that, as s/A — 0, P(s/A) scales as
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P(s/A) ~ % (GOE), (3.48)

s\ 2
P(s/A) ~ <K) (GUE), (3.49)

thus nicely showing again the level repulsion, already discussed with (3.32), and,
more specifically, a different scaling of level repulsion for different ensembles.

3.3.4 Statistical Properties of GOE Eigenvectors

Another type of statistics which is important in our work is the statistics of eigenvec-
tors. The eigenvectors can be obtain via H = O’ DO, as columns of the orthogonal
transformation O. When we combine this with the fundamental symmetry (3.16)
for the GOE, it can directly be understood that in principle the eigenvectors are
distributed in a uniform way: Because P(O'D0O) = P(D) for all O € SO(N) by
virtue of (3.16), any column of any O € SO(N) is equally likely to be sampled
(Haake and Zyczkowski 1990).

The probability distribution to get a given eigenvector boils down to the joint
probability distribution for a set of eigenvector components cy, . . ., cy. Given that all
eigenvectors are equally probable, we find that (Haake 2010; Haake and Zyczkowski

1990)
N
N
Pgoe(ci, ..., cn) = N2 (3) 1) <1 — ZC?) s (3.50)
i=1

where the choice for the GOE is important since we can therefore assume that the
vectors are real. This implies that this distribution is nothing more than the uniform
distribution on the unit sphere of RY. Often our interest does not lie in the full
distribution, but rather in the statistical properties of a single vector component,
i.e. the probability distribution of y = c%. Again, we obtain this via (Haake and
Zyczkowski 1990; Haake 2010)

N
N
Pgog(y) = N2 (3) /dcl co.deyd(y — c]2)5 (1 — §c3>

_ 1 T2 d- y)N=3/2
T UATIN —D21 S

(3.51)

What is not explicitly found in literature, but follows directly (Walschaers et al. 2015)
from rewriting this equation, is that this is actually a special type of Beta distribution
(Gupta 2011):
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1 T(N2) (1= yp)N2
VA TN — 1)/2] vy (3.52)

1 1
_ 2-101 _ yyN/2-1/2-1
BaN2—12)° 47V ’

Pcoe(y) =

where B(1/2, N/2 — 1/2) is the beta function (Abramowitz and Stegan 1965) with
parameters 1/2 and N /2 — 1/2. This implies that y’s statistics is governed by a Beta
distribution (Gupta 2011) with parameters 1/2 and (N — 1)/2, in other words

1 N-1
y~ Beta 5, T . (353)

Although this result does not provide much new practical information compared to
Eq.(3.51), it does provide a somewhat broader statistical context.

Let us conclude with a useful approximation to (3.51, 3.52) in the thermodynamic
limit N — oo. With the substitution = Ny, and subsequent evaluation of the limit
N — o0, one finds (Haake 2010) that

1
Poor(n) = ﬁﬂ/z, (3.54)

which is commonly known as the Porter-Thomas distribution (Porter and Thomas
1956), and is usually preferred as an approximation over the exact Eq.(3.51).

3.4 Concluding Remarks

Now that we reviewed the heuristic properties of complex systems as they are often
presented throughout a wide range of fields of research, and studied the specific case
of dynamical quantum systems in Sect. 3.1.3, we can combine the results of Chaps. 2
and 3 in our study of quantum transport problems. In Chaps.4 and 5 we extensively
use the results of Sect.3.3. Specifically the GOE matrices (3.26) and associated
semicircle distribution (3.46) are crucial in Sects. 4.5 and 5.5. Furthermore, the GUE
ensemble (3.6) is used throughout Chap. 9 for most numerical examples.

In Sect. 8.5, we combine the complexity which arises when we insert many par-
ticles in the system, with topological disorder which is there represented by random
unitary channels defined in (8.5). The treatment of random unitary operators will
given by the circular ensembles of RMT, a framework which is complementary to
the Gaussian ensembles discussed in Sect.3.3. We leave the introduction of these
RMT techniques for Appendix B.

In the following chapter we present results on single-particle transport through
complex network structures, introduce design principles which constrain the disorder
in these systems, and thereby achieve near optimal excitation transfer. This model
heavily relies on RMT, and was specifically inspired by the physical intuition which
underlies the mechanism of chaos assisted tunnelling (Tomsovic and Ullmo 1994).
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Part 11
Single-Particle Quantum Transport



Chapter 4 ®
Efficient Transport in Closed Systems oo

Chaos isn’t a pit. Chaos is a ladder
Lord Petyr Baelish, played by Aidan Gillen in “Game of
Thrones” (Sakharov 2013)

4.1 Introduction

In Sect. 1.1, we introduced the field of quantum transport theory and more specifically
discussed the influence of quantum interference effects on transport phenomena. The
present chapter, based on Walschaers et al. (2013, 2015), presents the first results of
this dissertation, which fit into that framework.

In Chap. 1, we noted that there are several possible ways to generalise quantum
interference beyond the paradigmatic double slit experiment, i.e. a two-pathway
setup, as indicated in Fig. 1.2. This sketches the perspective of the dissertation: We
can induce more intricate inference effects by

e introducing additional, disordered pathways which may all interfere,
e simultaneous injection of several indistinguishable particles,
e addition of an environment.

In this chapter, we focus solely on the first point, which in general implies that we
enter the realm of complex systems. Indeed, Panel (a) of Fig. 4.1, shows a sketch
which depicts a multi-slit experiment as a complex network. We study the potential
of such a disordered network of interference pathways to achieve fast and efficient
excitation transfer. In particular, we consider the network as closed quantum system
and investigate the single excitation quantum evolution on such structure.

Closed systems are systems where energy and particles are conserved and when
they are bounded, the related Hamiltonian gives rise to a discrete spectrum. A closed
system must be governed by unitary dynamics, described by a time-independent
Hamiltonian H (see Sects.2.4 and 3.1.3). Note that, in this formulation, a scattering
system is also considered a closed (unbounded) system, in contrast to the term “open
system” as used in mesoscopic physics (Gaspard 2014; Rotter 2009). However, when
© Springer International Publishing AG, part of Springer Nature 2018 77
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slits detection screen
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Fig. 4.1 Many-slit extension of Young’s setup (a) and chlorophyll molecules of the FMO photo-
synthetic complex (b). Both systems can be related to a network structure of interferring pathways,
as indicated in green. These networks can be understood as representations of the systems’ Hamil-
tonians. Panel b was taken from Sarovar et al. (2010), the network was drawn on top

one projects the scattering dynamics to a subsystem of finite volume, one will also
observe dissipative effects, which brings both terminologies closer together. The
extension of the model for efficient transport, deduced in this chapter, to such a
scattering formalism is left for Chap. 5. In Chap.9, we then connect this scattering
approach to the many-particle framework, where we deal with open systems in the
context of dynamical semigroups. This will lead us to conclude in Sect. 9.1 that the
“open systems” in mesoscopic physics (Gaspard 2014; Imry 2009; Rotter 2009) can
be related to the “open systems” in quantum statistical mechanics and quantum optics
(Alicki 1987; Breuer and Petruccione 2007; Loudon 2000).
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Our predominant motivation to investigate such a setup is shown in Panel (b)
of Fig. 4.1 and is connected to the discussion on “quantum biology” in Chap. 6:
Throughout the past decade, evidence has piled up that in light harvesting complexes
quantum interference effects survive on time scales which are similar to the typical
energy transfer time.! This energy transport is mediated via quasi-particles, known
as excitons, which naturally appear in semi-conductor physics (Kittel 2005): When
valence and conduction band are sufficiently close to allow for interaction between
electrons and the holes they leave behind, the electron-hole pair travels as one quasi-
particle, an exciton. In molecular systems, there is a similar construct, although we
must now consider discrete molecular orbitals rather than bands (Amerongen et al.
2000; Bardeen 2014). In photosynthesis, such molecular excitons are created upon
photo-excitation of a chlorophyll molecule, and dipole-dipole interaction between
such molecules allows the exciton to travel from one chlorophyll molecule to the
other. Because the system is of a quantum mechanical nature, this transport process
is governed by Schrodinger’s equation and quantum interference arises between
different pathways through the complex.

Situations as sketched in Fig. 4.1 can be modelled in an abstract and quite general
fashion with the help of Random Matrix Theory (RMT), introduced in Chap.3.
Therefore, we assume that the system Hamiltonian can effectively be described by
means of a matrix-like structure, which implies that there is a natural basis of single-
particle state vectors {|e;), |ez), ...}, such that the Hamiltonian is given by

H:ZHij |€i) <€j|. (41)
iJ

Figure4.2 shows how we can represent such Hamiltonians by network structures
(remember Sect.3.2), where the nodes represent the state vectors |e;) and the edges
depict the couplings H;; between [e;) and |e_,-) (Scholak 2011). The fact that we
are dealing with a Hamiltonian tells us that H;; = H ;‘i, and when we assume time-
reversal invariance (as discussed in Sect.3.3.2), we find that H;; = H;.

In the typical literature on this topic, the state vectors |e;) are given a specific
meaning: They form the fundamental building blocks of a more complicated struc-
ture, and are here referred to as sites. These sites may themselves exhibit internal
degrees of freedom, but these are initially considered unimportant for the description
of the problem. As an example, one may imagine that the state vectors represent elec-
tronic excitations which are localised on (bacterio)chlorophyll molecules (Scholak
et al. 2010, 2011a) or (Rydberg) atoms (Scholak et al. 2014), but also on different
minima of an a-periodic lattice, such that |e;) are given by the Wannier functions
(Wannier 1937). In this sense, the network structure gets and additional interpretation
as it explicitly represents a spatial structure.

! Although there is literature on several of such light harvesting complexes, the clearest results were
obtained for the FMO complex, e.g. in Engel et al. (2007). It is, however, not obvious that these
results can be extrapolated to all types of light harvesting complexes, as we discuss in Chap. 6.
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Complex Network Benchmark Network

jin) jin)

w

lout) lout)

Fig. 4.2 Complex networks represent dynamical quantum systems by associating state vectors |e j)
with their nodes and coupling strengths H;; with their edges, thus justifying the model (4.1). Input
and output sites are identified, respectively, as initial condition and target of the transport process.
The aim is to make transport on complex networks (left) faster and more efficient (see Sect.4.2)
than on the associated benchmark system (right), where all sites but input and output are stripped
away

This “geometric” treatment of the problem is useful, since it allows us to directly
visualise topological effects and symmetries. On the other hand, it can also be deceiv-
ing, because some symmetries are not apparent from the spatial structure of the natu-
ral constituents and will remain hidden in such visualisation (Zech 2013; Zech et al.
2013, 2014).

In a quantum transport setting, one usually is interested in the transport of the pop-
ulation of one state vector |¢);) € H to another state vector |z/)f) € H. The probability
for this transport to occur at time ¢ is given by

—i 2
Pies s (1) = |{op, e )| 4.2)
A useful way to look at this problem is by using the spectral decomposition H =

> Ej|nj){n;|, where E; are the energy levels of H, with |n;) their respective
eigenvectors. We use this identity to rewrite

pic () =Y e (Wrmi) (nj. )| - 4.3)
J
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This expression indicates that in order to have transport from [);) to ‘1/Jf>, there must
be at least one eigenvector for which <1/)f, 77]-) (77]" ¢i> # 0.

These results can be made less abstract by assuming that we want to transport
energy from one fundamental building block (site) to another. If we choose for
example |e;) as initial and |e,) as final state (i.e. some exciton initially localised at
site 1, and to be delivered at site n), we obtain

pa®) =Y e en, mj) (n) e1)| - (4.4)

J

By varying n, we can use this expression to study how energy spreads over the
different sites of the system. From the contributions (e, 7;)(n;, e1) it can be seen
that the localisation properties of the eigenvectors over these different constituents
are crucial in determining how the initial excitation spatially spreads out over the
network.

4.2 Measuring Transfer Efficiency

Before we can identify design principles to optimise the transport efficiency on the
above random networks, we need a precise definition of our figure of merit, i.e. we
need to give a quantifier of transport efficiency and speed.

The concept of efficiency is actually not unproblematic to define, since it goes
hand in hand with the functionality of the system. When we think about devices, a
simple example is found in the field of photovoltaics, where one often deals with
the quantum efficiency (Nelson 2003). In the present context, the name may cause
confusion, because it does not deal with a coherent quantum processes, rather the
“quantum” refers to a fundamental quantum of light, being a photon (much as for
photodetectors). Specifically, the quantum efficiency is defined by

__ #outgoing electrons

QE (4.5)

" #incoming photons

This definition is much more subtle than one expects at first glance, since it is not
a priori clear where one should measure these outgoing electrons. Therefore, it is
common practice in the photovoltaics community to both talk about internal and
external quantum efficiency, where the internal efficiency refers to the number of
successful charge separations and the external one only considers the amount of
electrons that ultimately contribute to a measurable current (i.e. all types of losses
occurring within the device are also taken into account by the external QE).

The example of quantum efficiency will not only be important later-on when we
discuss quantum effects in photosynthesis, it is also a good example to indicate a
fundamental point related to efficiency: Efficiency is always defined with respect to a
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given functionality. To come up with a definition of any type of efficiency, one must
first have a good understanding of the exact functionality which the efficiency is to
describe. It is for example quite clear that to the consumer, the external quantum
efficiency of solar panels is the relevant quantity, whereas the constructor of the
semi-conductor material requires the internal quantum efficiency.

We focus on quantum transport devices, and thus need a transfer efficiency that
quantifies how well the system performs its task of delivering the excitation to a
specific output site. Since we deal with quantum mechanics, we must formulate
the problem in terms of measurements and probabilities. Therefore we assume that
there is some form of detector connected to the output site, which should detect
the excitation with a high probability. Of course, from (4.4) it can be seen that this
probability, pou(?), depends on time and, therefore, the time component must also
enter the definition of efficiency. The way to include time is not completely obvious,
because there are two competing notions of what is efficient: On the one side, one
may deem it most important that there exists a point in time where poy (¢) is close to
one. On the other side, one may consider it more important that the time-average of
Pout(?) 1s high, implying that the excitation spends a lot of time on the output site.

Another aspect in our required notion of efficiency is that we are interested in
fast transfer of the excitation, thus requiring some form of benchmark time scale Tp.
With the introduction of such a benchmark comes the possibility to formulate two
potential definitions of efficiency (Scholak 2011). We refer to the first one as the
localisation efficiency:

Py =  max Jpout(t)- (4.6)

The alternative can be denoted as the occupation efficiency:

1 [Ts

Py = —
Tp Jo

Pout(?) dr. 4.7

Most results in this thesis have been obtained by using a benchmark time 7 deter-
mined by the direct coupling between the input and output sites. We compare a
system with an intermediate, complex network of sites to a systems consisting only
of input and output, as shown in Fig. 4.2. It is straightforward to treat the benchmark
system, since we must only consider the Hamiltonian

H, = n,in in,out . 48
0 <Hout,in Houl,out) “8)

We assume that there is time-reversal symmetry which implies that Hiy out = Hout.in»
and a quick calculation teaches us that for Hy

1

4 _"_ (HinAi;-l._Houzl,Out)z
in,out

2
. 2
poul(t) — ’1 _ e_lt\/(Hin.in_Houl.oul)2+4Hin‘0u( . (4'9)
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It then follows that ]

5
(Hin.in - 0ul.oul)2
2
4Hin,oul

Pouc(?) < (4.10)

where the equability is obtained for

Ty = T , 4.11)

\/(Hin,in - I_Iout,oul)2 + 4I_Iin,out2

which we define as our benchmark time. The philosophy of this choice is that we
wish to outperform the isolated input — output system by the addition of extra sites
or by strongly coupling to additional degrees of freedom (Bohigas et al. 1993).

Whenever, by virtue of (4.10), Hinin 7 Hout.out» the excitation cannot localise in
the output site with probability 1. This is fundamentally impossible because uni-
tary dynamics, generated by a time-independent Hamiltonian, conserves energy, in
the sense that, for any state vector |¢(?)), (¢(¢), Ho(t)) = (¢(0), H@(0)). Unitary,
reversible dynamics only allows us to reach states with the same energy expectation
value as the initial state. For this reason, we choose to consider only systems where
Hinin = Hout.ont := E and we refer to Hip out = Houin := V. With these choices, the
final benchmark time scale reads

Tp = ——. 4.12)

4.3 Influence of Network Structures

In the previous sections we set the stage to investigate transport of a single excitation
throughout a generic, network-like system. Of course, the actual structures of the
networks are of crucial importance for the resulting transport properties. In general,
there are several numerical results known for a quite wide range of network types,
often in the context of (continuous-time) quantum walks (Miilken and Blumen 2011).
We note, however, that this community strongly focusses attention to the graph-like
topological structures of the networks—-which means that sites all talk to each other
in the same way or not at all—rather than on disorder in the coupling strengths. In
the following sections, we briefly discuss some specific types of networks in order
to emphasise how structure influences transport.

4.3.1 Regular Networks

Regular networks come in very different forms, what they have in common is that
we know all couplings between the different nodes exactly. This allows the explicit
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construction of the Hamiltonian H, which can than be diagonalised, at least given that
the system is not too large. To gain deeper understanding, we focus on analytically
solvable types of networks, characterised by a high degree of symmetry. In such
structures we can find clear connections between spatial and spectral properties of
the networks, and understand how these properties influence the transport.

A very common and fundamental structure in the literature on quantum transport
is the chain of finite length N (Ashcroft and Mermin 1976; Haken 1976; Kittel 2005;
Kittel and Fong 1987). In its most fundamental form, a chain is a 1D network of
nodes that are connected to their nearest neighbours, and the adjacency matrix A
(Biggs 1993) for the graph can be written as

N

A=) le)es

ij=1
li—jl=1

) (4.13)

such that the bulk sites have two nearest neighbours, and the first and last site are
only connected to a single neighbour. To convert this matrix to a Hamiltonian, one
can simply multiply it with an overall energy scale v, such that

H = vA. (4.14)
It is easy to see that H is represented in the site basis as a specifically structured

type of tridiagonal Toeplitz matrices (Barnett 1990), and therefore the structure of
the eigenvalues {E;} and eigenvectors {|;)} of H is well-known:

E; =2vcos (L), (4.15)
: N+1

- .
(e ;) =/ sin (27 . (4.16)
: N+1 "\ NF1

Most remarkable is the structure of the eigenvectors, where we do not only see an

oscillatory behaviour over the sites, given by sin (%) but also an overall factors
NLH. Since the sine factor is contained within [—1, 1], normalisation implies that

none of the eigenvectors localise on a limited number of sites. To understand the
dynamics in such as system we must calculate po, (). Let us assume that we transport
an excitation from one side of the chain to the other,

pout®) = [fex. =¥ er )| @.17)

e 1% (e, mj) (0. en) len. i) (k. e1) (4.18)
1

I
M=
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N : j N7 km kN7
Z ~UWk gin J sin J sin sin
(N+l) N +1 N+1 N+1 N +1

Jk=
(4.19)

where wy; = Ey — E;. As such, this expression does not allow further simplification,
implying that it is difficult to obtain a straightforward understanding of Py for this
system. However, it is interesting to consider Py, although in this case there is no
obvious benchmark time scale, since (4.13), (4.14) directly imply that {e);, He;) = O.
For that reason, we rather choose to consider the asymptotic case where

T
Py = Jim /O Po (1)1 4.20)
4
T (NI )ZZ{ <N+1>} 2D
4N

The scaling with N is rather pessimistic and indicates that long chains are actually
unfit for efficient excitation transfer as quantified by Py. However, there might
be specific moments in time where pq,(¢) is high. Rather than going into an in
depth study, in Fig. 4.3 we simply show the behaviour of p..(¢) as generated by
Mathematica. Figure 4.3 clearly shows how the excitation quickly leaves the
initial site and travels to the other side of the chain. We initially see alternating peaks
at input and output site, and we can interpret this as a wave packet travelling back and
forth several of times. Since the peaks decrease, it is also clear that the wave packet is
becoming ever more delocalised. Ultimately this systematic behaviour breaks up and
p(t) is dominated by fluctuations, as can be seen on the righthand side of Fig. 4.3.

05 05

0.4} |

p(®)

02}

0.1} |

0.0 A MNW

0 20 40 60 80 100 0 . 10 100 1000 104 10°
t (units of 1/v) t (units of 1/v)

Fig. 4.3 pin(7) (dashed) and poy(7) (solid) as obtained for a chain Hamiltonian (4.13), (4.14) of
N = 50 sites. The lefthand image focusses on the short time dynamics, whereas the righthand side
shows a logarithmic depiction stretching towards the long time scales
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Looking at the maximal occupations of the output site, we observe relatively high
peaks (~0.4), at least compared to the value for Py . On the other hand, even when
monitoring long time scales, the excitation never fully localises on the output site as
we may have hoped. In conclusion we can say that the chain does manage to transfer
the excitation to the output site with a non-vanishing probability, but to achieve our
goal of fast and efficient transfer this system is suboptimal.

Before we proceed to random networks, we treat yet another system, a chain bent
to a circle. Remarkable for the circle is its extreme symmetry, especially because it is
a completely translationally invariant structure. The Hamiltonian of such a circular
network is very similar to that of a chain-like network, with the exception that we
also connect the first and the last site, which implies that

N
A=ler) (en| + lex) (il + Y lei)(es] (4.23)
e
H =vA, 4.24)

where v again sets a typical energy scale. In this case, the Hamiltonian is translation
invariant and therefore can be treated using discrete Fourier transformations (Davis
1979; Reed and Simon 1975). The resulting eigenvalues and eigenvectors are given
by

E =2 2T 425
(o). oo

1 i .
(ek, T]j) = W k=DG-D, (4.26)

VN

We can again see that the eigenstates are fully delocalised over the whole network,
but have a very different structure than those of the chain: The chain, having fixed
boundary conditions, leads to a form of standing waves (4.16), whereas the cir-
cular system, with periodic boundary conditions, produces running waves. A more
profound difference between both structures is hidden in the seemingly simple eigen-
values E;; the circular network gives rise to a multitude of two-fold degeneracies,
since Ey = En_i+2. The calculation of p, () according to (4.4) results in?

[N/2—-11
Pa() =Y len, m) ks en)l> +2 Y Re(ler, m) (i, en) (en, IN—142) (MN—142, €1)
k 1
+ Y ler ) (m.en) (e k) (i ex) e 1R
kel w1 £0
4.27)

2We introduce the standard mathematics notation [.] for rounding up and |.| for rounding down.
For example [1.171 =2and [1.9] =1
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The second term on the right hand side of (4.27) arises solely because of the degen-
eracies, which imply wy y_x+2 = 0. Substituting this with the actual expression for
the eigenvalues and eigenvectors, we obtain

1 “ij 2
pn(t) = —+ — cos (—(n— 1)(N—2[+2))>
N N? P N

2 2
+ 3 cos <wk,,t _ ﬁ”(n — Dk — 1))) .

k>1,wi 70

(4.28)

For this quantity, too, it is hard to get solid analytical insight in the maxima of p, (¢).
On the other hand, we can again compute Py for infinite time scales. We now obtain

1 2 er] o
Py =—+— Y cos (—(n — )N =20 + 2))) . (4.29)
NN L N

Something special happens for even N either whenn = 1 or whenn = N/2 4 1;in
both cases we find that cos (2 (n — 1)(N — 2/ + 2))) = 1. In other words, here we

obtain that
P li ! fT (1) 2 1 ! (4.30)
= lim — = — — — ). .
=T P TN N

On the other hand, for all other values of n we rewrite

[N/2] )
I8
Z cos <—(n — 1)(N =21 +2)> =
N
=2
. [N/2] . 1
1 2mi A
3 (exp (—W(n — 1)(N + 2)) ; <exp (7@ — 1))) (4.31)
i & 4ri :
+exp <T(n —1)(N + 2)) ; (exp (—T(n - 1)))
Now we use that Y /_,a' = 11':1 , to ultimately find forn # 1 and n # L%J + 1t

[N/2] -
> cos <F(n—1)(N—21+2)>
=2
2rn—D (| Y| =1 rin—1 | N
:(2(—1)>(< ([4] ))m(w):-l
N N N

and thus that
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Fig. 4.4 p;i,(¢) (dashed) and poy (7) (solid) as obtained for a circle Hamiltonian (4.23), (4.24) with
N = 98 sites, with the output site chosen to be the one with label n = 50. The lefthand image
focusses on the short time dynamics, whereas the righthand side shows the long-time dynamics on
a logarithmic time scale

1 2
%“=ﬁ<1_ﬁ>' (4.33)

Moreover, it can be seen that for large values of N,

ifn=1orn=N/2+]1,

Py ~
else.

(4.34)

2| =]

Just as for the the chain, we see that Py decreases with increasing N. However, we
observe an interesting interference effect, which is purely related to symmetry: One
may interpret a circular system as two pathways connecting the input and output site.
It now becomes clear that whenever these pathways have the same length, there is a
constructive interference which enhances the time averaged occupation probability
in the output site by a factor two. We notice that this process seems similar to coherent
backscattering (Wolf and Maret 1985).3 However, the coherent enhancement now
happens in the forward direction because the exploited symmetry is not time reversal,
but a spatial symmetry that matches the length of the two pathways from site 1 to
N/2+1.

A numerical assessment of p, (), as depicted in Fig. 4.4, is specifically interest-
ing to compare with the chain (see Fig. 4.3). We choose N = 98 sites, to be able to
interpret this as an input and output site connected by two chains rather than one. The
figure clearly shows that the dynamics is initially very similar for chain and circle, in
the sense that the first peak in poy (#) shoots up at exactly the same point in time for
both structures. On the other hand, there are also clear differences, most profoundly
in the height of these localisation peaks. We note that the dynamics on the circle
is governed by fluctuations much earlier than on the chain. One can connect this to

3The factor two enhancement, as compared to the typical 1/N, obtained for n = 1 is more closely
related to coherent backscattering, since it is a manifestation of weak localisation.
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the fact that the initial excitation splits into two wave packets, each moving along a
different pathway.

The study of these two highly structured systems pinpoints several structural
properties that are vital for quantum transport:

e Interference
e Symmetries
e Structure of the eigenstates

4.3.2 Random Networks

Although the highly symmetric and controlled structures in the previous discussion
express many interesting features, they also have a problem: In reality, they are
almost impossible to recreate, since ultimately one would have to control too many
parameters. Realistic systems always manifest some degree of disorder and, for that
reason, we now study the completely opposite limit of a completely random system,
in the hope to gain additional insight.

Rather than focussing on a network structure, determined by an adjacency matrix,
we just assume that all sites are coupled to one another and that each coupling is
randomly sampled from a probability distribution. As a matter of fact, the relevant
Hamiltonians were already discussed in detail in Sect.3.3. We consider systems
which are invariant under time-reversal and therefore yield GOE statistics. Assuming
that the Hamiltonian is sampled in a site basis {ey, ..., ey}, we fix input and output
sites as those that are coupled weakest in absolute value. In other words, in and
out are those sites for which ]H,«_,- , with i # j, is minimal. We can now define
V = min;4; \Hij , such that

™

T = —.
BE= oy

(4.35)

As both the eigenvectors and eigenvalues of H are stochastic objects, the only way
to obtain significant insight in the transport properties is by doing statistics. Although
the statistical origin forbids exact control of individual systems, its statistics as such
is characterised by a surprisingly small amount of relevant parameters due to our
choice of the GOE. We sample the couplings such that

2
H;j ~ Normal (0, 1+ 6ij)ﬁ) , (4.36)

which implies that the full statistics can be determined from &, which is half the
radius of Wigner’s semi-circle, and from N, the size of the system. This specific
choice of variance makes sure that the width of the normalised density of states
is independent of N at leading order.* Although this is an interesting description,

4One retrieves the semicircle, but should incorporate finite size corrections for small N.
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where the Hamiltonian of the systems remains bounded in the limit N — oo, the
typical time scales in the system are determined by the mean-level spacing between
consecutive energy levels, which is not independent of the system size. This also
implies that the typical time scales of the dynamics depend on N.

Abrief glance at p (¢) for several random realisations of the Hamiltonian in Fig. 4.5
shows us that there is a similarity in the sense that each pattern is extremely unstruc-
tured to the eye. On the other hand, we do see that there is also diversity; the height
of the peak in p(¢) or the typical time scales tend to differ. One profound feature,

p(t)
p(®)

0.0! S0 TP 1 . .....‘.nx.L'u.. \,;uklkh‘Lln,h.‘.LJ.m
0.0 0.5 1.0 15 20
t/Tp
1.0
0.8}
0.6]

p(®)
p(t)

p(®)
p(t)

10
t/Tp t/Tp

Fig. 4.5 pin(¢) (black, dashed) and poy(?) (gray, solid) as obtained for three (from top to bottom)
randomly sampled GOE Hamiltonians with N = 20 sites and root-mean-squared (RMS) coupling
between the sites 4/ Hj = &/+/N, with & = 2. The output sites are chosen to be those with weakest

direct coupling in absolute value to the input site. The lefthand image focusses on the short time
dynamics, whereas the righthand side shows the population dynamics on a logarithmic time scale
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Fig. 4.6 Localisation efficiencies Py and occupation efficiencies Py as defined by (4.6), (4.7),
respectively, for 500 realisations (grey dots) of random GOE Hamiltonians with RMS coupling
&/~/N between the sites, where £ = 2, and N = 20 sites. The average value of Py and Py over
all the realisations are represented by the white dot (indicated by an arrow)

noted in comparison to the regular networks, is the absence of a structured phase in
the dynamics; the fluctuation-dominated regime commences immediately.

Although these randomly selected samples provide some intuitive insights in the
dynamics, we cannot draw actual conclusions from it. A more appropriate way would
be to do actual statistics. Here we will limit ourselves mainly to numerical results,
obtained by generating many random Hamiltonians. The resulting data for Py and
Py are depicted in Fig. 4.6. Interestingly, there is clearly a correlation between both
quantities, but, on the other hand, from the 500 realisations of H considered, there
are none that manifest remarkably good transport. The central point (marked by the
arrow) has the mean values of Py and Py as coordinates and therefore indicates that
random networks typically perform poorly.

On the matter of transfer efficiency the structured, regular networks of the last
section generally perform slightly better than the random networks considered here.
On the other hand, the random networks require far less control and are therefore
also more reasonable candidates for realistic transfer devices. However, these random
networks are not designed to perform a specific task, thus their poor performance is
no surprise. The random networks are simply too simplistic and too generic to live up
to the task. In the following section, we explore potential design principles that allow
for as much disorder as possible, but still force the system to manifest near-optimal
excitation transfer from input to output site.
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4.4 Design Principles

For systems to manifest near optimal excitation transfer between two preselected
sites, it appears important that the system is correctly designed, as was concluded
in the previous section. In order for a system to be realistic, one must also allow
for some degree of disorder. Therefore our goal is to develop minimalistic design
principles that allow for efficient and robust transfer of the excitations in the system.
The simplest well-designed system to accomplish such task was already treated
in Sect.4.2: The two-level system. In our context, these systems are described by

E V
Hy = (v E+A>. (4.37)

The necessary and sufficient condition to achieve Py = 1 is A = 0, i.e. the input
and output site are in resonance. Indeed, a straightforward calculation shows that
Pout(t) = 1fort = Ty = w/2V. One can therefore say that this resonance condition
is a design principle. However, our goal is to achieve near-optimal transfer of the
excitation in a larger and more disordered system, on a faster time scale. Therefore,
we strive to generalise this design principle.

4.4.1 Centrosymmetry

Obviously, we can simply consider the random networks given by GOE Hamiltoni-
ans, and impose the condition that Hj, i, = Hout,ou- Figure 4.7 shows us that such
a naive implementation of the design principle is insufficient to achieve the desired
transport properties, at most does it slightly enhance the probability to find good
realisations when compared to Fig. 4.6, where input and output energies could also
differ.

A second glimpse at Hy (4.37) shows us that the matrix as such is highly sym-
metric and when the regular networks of Sect. 4.3 were studied, it became apparent
that symmetries can have profound influence on the dynamics. The most obvious
symmetry present in the two-site network (essentially an effective model for the
double-well potential), is a reflection symmetry.

Such reflection symmetries have been studied rather extensively in the literature
on “perfect state transfer” (Christandl et al. 2004, 2005; Kay 2006). In these works
one typically optimises a quantity which in our notation would read

f @) = |{out, p(1))|, (4.38)

where |¢(1)) is the state vector of the system at time . Perfect state transfer implies
the existence of a time #y € (0, co) such that f(#) = 1. It now follows from the
Schrodinger equation (2.58), and f(#y) = 1, that
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Fig. 4.7 Localisation efficiencies Py and occupation efficiencies Py as defined by (4.6), (4.7),
respectively, for 500 realisations (grey dots) of random GOE Hamiltonians, where Hin in = Hout,out
was imposed as design principle. Parameters were chosen to be £ =2 and N = 20. The average
value of Py and Py over all the realisations is represented by the white dot (indicated by an arrow)

lp(t0)) = e |in) = '’ Jout), (4.39)

for some phase 6. As stressed in Christandl et al. (2005), the condition of reflection
symmetry, which ultimately states that the network looks exactly the same from the
perspective of the input site and the output site, implies that the dynamics must be
periodic to allow for perfect state transfer.’ Indeed, the symmetry implies that

e P20H |in) = 710 H % |out) = €% |in) , (4.40)

where the last equality holds because the system (and thus its Hamiltonian) looks
identical when going from output to input compared to going vice versa.® This
directly leads to

—i200H

|{in, e7"**"in)| = 1 (4.41)

and therefore the period of the state transfer is 2¢y. Since it must hold that

> njin)e 0% |n;) = €27 " (n;, in) ;). (4.42)
;

J

5The quantum recurrence theorem (Bocchieri and Loinger 1957) implies that for any state vector
1) € ‘H, any one-parameter group {U; | t € R} and any € > 0O, there is a time 7y > O such that
1@ — Uy 1) | < e. However, note that this does not imply periodicity.

6Using the exchange operator which is later defined in (4.46), we can make this reasoning more rigor-
ous by noting that e 710 ¢ |out) = e~0H ¢i0 J |in) = Je0H il |in) = ¢%0)|out) =

[H,J]= (4.39) (4.47)
€219 |in).
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for any possible choice of input state, one must impose conditions on the eigenvalues
and finds
2E ity — 20 = 2k;m (4.43)

where k; is an integer. Such equation is obtained for every index j, allowing to
eliminate ¢ from the set of equations, which results in

(Ei — Ep)ty = ki —kj). (4.44)
The last step consists of eliminating 7y from the equations, which sets the condition

Ei - E] . . . ./
———€Q, foralli#j and i’ #j'. (4.45)
E.—Ej

In summary, any network-like system with a reflection symmetry and spectral proper-
ties fulfilling constraint (4.45) manifests perfect state transfer for some time scale .

Notice however, that the result does not make any mention of what this time
scale 7 is. The works (Christandl et al. 2004, 2005; Kay 2006) typically focus on
several more specific systems for which these time scales can be calculated, but in
principle speed is not a primary goal. Moreover, one can immediately see that the
condition (4.45) is extremely restrictive, in the sense that it does not only demand
perfect control over the symmetry in the system, but it also requires fine-tuning of
all level spacings.

Although these results are crucial landmarks on the road towards fast and efficient
excitation transfer, they require too much control. Moreover, the demand that there
is good transfer from any input state to its symmetric counterpart is much stronger
than our demand to achieve transport between two well-chosen sites.

Nevertheless, numerical studies conducted in Freiburg (Zech 2013; Zech et al.
2014) have clearly shown that also in random networks, where the constituents cou-
ple via dipole-dipole coupling, one can clearly see a correlation between the tendency
towards centrosymmetry (Cantoni and Butler 1976) (a form of reflection symmetry,
explicitly visible in the Hamiltonian structure) and fast and efficient excitation trans-
fer.

Motivated by these results, we also impose centrosymmetry as a first design
principle for our systems. Formally, this implies that the Hamiltonians which describe
the networks under consideration, commute with the exchange operator J,

[H,J] =0, with  J;; = d; n—j+1 (represented in the site basis). (4.46)
This demand significantly influences the structure of the Hamiltonians, since it
imposes that H; ; = Hiy_j11 = Hy_i41; = Hy_iy1 ny—j+1;- However, inspired by
the literature (Christandl et al. 2004, 2005; Kay 2006), we also demand that this

symmetry connects the input site to the output site, which implies

J lin) = |out) . (4.47)
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This symmetry constraint on the input and output state vector implies that the choice
of input site automatically fixes the output site. More specifically, for any choice
lin) = |e;), it must hold that |out) = |ey_;+1). The input and output site must there-
fore be selected respecting this constraint. Additionally, we require them to be the
sites which couple weakest and therefore consider

V =min [H; y_j41] (4.48)

defining the input site as the one for which the minimum is achieved.

Note that centrosymmetry implies that H;, in = Hou,our and thus centrosymmetry
is compatible with the constraint imposed by the conservation of energy. Considering
the structure of the Hamiltonian, centrosymmetry is a reasonably strong demand.
Still, it allows for a considerable amount of disorder in the system.

To genuinely understand the way in which the presence of centrosymmetry influ-
ences the system, we again have to consider its impact on poy(#). To reach such
an understanding, we first dig deeper into the implications of this symmetry on the
Hamiltonian. In what follows, we consider an even number of sites N in the network,
which simplifies notation considerably.

The only constraints resting upon H are that it is a real, symmetric and cen-
trosymmetric matrix. To understand how the centrosymmetry affects the dynamics,
the spectral properties of the Hamiltonian can be studied. All influence of the cen-
trosymmetry on the Hamiltonian is contained within the demand that [H, J] = 0.
Whenever two operators commute, one can find a mutual set of eigenvectors, but one
must take degeneracies into account. The structure of J is remarkably simple and
therefore we can easily derive its eigenvalues. There are only two possible eigenval-
ues: +1 and —1,7 which is obvious because J is a representation of the group Z, and
therefore J? = 1. Because we limit ourselves to even N, we find that both eigenvalues
have multiplicity N /2, implying that the N dimensional Hilbert space H, in which
the problem is described, falls apart into two N /2-dimensional eigen-subspaces of
J,H" and H™.

Let us start by providing a very simple recipe for the construction of H™ and H ™.
When we choose any vector |¢) € H, we can simply construct two states

1
|¢%) == 5 (o) £ J19)). (4.49)

When we now apply J to these states, we directly obtain that

Jl¢%) = % (1) £ |9) = =+ |¢*). (4.50)

TWhich fixes a state’s parity.
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Therefore, we obtain that

H* =span{|¢*) | ¢ € H}, 4.51)
H™ =span{|¢™)| ¢ € H}. (4.52)

A specific consequence of |in) = J |out) is that this demand naturally defines two
states

|4) = % (Jin) % Jout)), (4.53)

where, clearly, |£) € H*.
We divert attention to the spectral properties of the Hamiltonian, as dictated by
[H, J] = 0, and write that

JH |¢*) = HI |¢*) = +£H |¢*), (4.54)
thus H preserves the blocked structure of the Hilbert space H in the sense that
V) e HY = H|¢y) e HE. (4.55)

This property implies that in the basis where the decomposition H = H* @& H ™ is
explicit, hence in any possible eigenbasis representation of J, the Hamiltonian H

has a block-diagonal structure
Ht 0
H = ( 0 H)’ (4.56)

suchthat H™ € B(H')and H~ € B(H ™), implying they are both N /2 x N /2 matri-
ces. This also has consequences for the spectral properties of the system: The structure
is transferred to the eigenvectors such that any eigenvector }77 j) of H is an eigenvector
of J and therefore

J|nj)==£1n;). (4.57)

An interesting corollary of this property and (4.47) is that
(in, ;) (n;, out) = (in, 1) {Jn;, in) = £ |{;, in)|*. (4.58)

With this result, and explicitly denoting E Ji and ‘nji> as the eigenvalues and associated

eigenvectors of the Hamiltonian blocks H +_ we can write

N/2 N/2 2

pou®) = [ 305 [ in) [ = 305 [ )] (4.59)
j=1

Jj=1
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It is possible to alternatively use (4.53) and (4.57) to obtain <17;F, :|:> = 0, and rewrite

that
2

1 N2 X , N2 )
pout) = 7 |3 |t )| = e (o) @60
j=1 j=1

such that the first term is fully determined by the H* block and the second term
fully by the H~ block in (4.56). The most profound influence of the centrosymmetry
is that it directly implies that one should only focus on a single component of each

eigenvector, rather than the product of two of them. Indeed, considering |<77 s in>|2
rather than a generic overlap (in, 1;) (n;, out) is a huge simplification. Nevertheless,
a glance at Egs. (4.59) and (4.60) makes clear that these are still long coherent sums
of many oscillating terms, which are generically hard to handle.

Our study of centrosymmetry up to now neglected the fact that H is assumed
to be a random GOE Hamiltonian, controlled by some additional constraints. The
most natural way to impose this randomness under the centrosymmetry constraint
(4.46) is by immediate use of the eigenbasis of J together with the demand that
H™ and H~ be each GOE matrices.® This implies that centrosymmetry also offers a
huge technical advantage, in the sense that both terms in Eq. (4.60) are statistically
independent.

It is natural to wonder how centrosymmetry influences Py and Py, which is
shown in Fig. 4.8. It can be seen that the realisations are spread over a wide range of
Py and Py values, and still clearly show a correlation between the two quantities. We
observe that even on average there is a clear enhancement in the transfer efficiency
measures compared to the fully random networks. More specifically, comparison to
Figs. 4.6 and 4.7 suggests an average enhancement of roughly a factor two.

From weak localisation, we know that even in weakly disordered systems there
is an enhancement of the return probability to the initial state which survives the
disorder average (Akkermans 2011). The effect of the centrosymmetry, as stressed
in the previous paragraphs, is exactly to connect transfer from in to out to the return
probability to the initial input state. This relation is made explicit by Eq. (4.58). Even
though there is a parallel between pj, (¢) and poy (?), the presence of the minus sign
for half of the terms in Eq. (4.59) imposes a difference. Nevertheless, going to the
other extreme regime of asymptotically long time scales, we may calculate

8This is equivalent to sampling the Hamiltonian in the site basis, with

Normal(O,%) if i=j, or i=N—j+1,
H;ij ~ e (4.61)
Normal (0, W) else,

while CXpliCiﬂy ﬁXil’lg H,'j = HiN7j+l = HN,,'+|J' = HN,,'+1 N—j+1j-
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Fig. 4.8 Localisation efficiencies Py and occupation efficiencies Py as defined by (4.6), (4.7),
respectively, for 500 realisations (grey dots) of random GOE Hamiltonians with centrosymmetry
(4.46) imposed on them. RMS coupling &/ /N between the intermediate sites, with £ =2, and
N = 20 sites. The average values of Py and Py over all the realisations is again represented by the
white dot (indicated by an arrow). A clear enhancement compared to Figs. 4.6 and 4.7 is evident

1T T .
Tll_)moo ?/0 dt pou(t) = ]Z:; |(out, n;) (n;, m>|2 (4.62)
a 4
=2 I(n.in)] (4.63)
=
.17
= Tlgr;o?/(; dt pin(2). (4.64)

This unambiguously shows that centrosymmetry makes sure that the input and output
site occupation are the same, when fluctuations in time are averaged out and the
considered time scales are sufficiently long. This statement is in general false in the
absence of centrosymmetry. Using that the ensemble is a GOE, one can even evaluate
the disorder average occupation using the results in Haake and Zyczkowski (1990)

1 T
lim — / dr pom(t)> - (4.65)
<T%°° T Jo realisations 2+N

This also implies an interesting interpretation of Z;'V:I |<n B in)‘4 in (4.63), which
is closely related to the inverse participation ratio (Haake 2010): The inverse of
Zj-vzl ‘(n_,«, in)|4 counts how many eigenvectors are on average contributing to the
transport. On average (see (4.65)) it is clear that even in the centrosymmetric case,
there are still at least N /3 eigenvectors that actively contribute to the transport.
They can typically give rise to large fluctuations, both on shorter and longer time
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scales, which may be beneficial for transport. On the other hand, they forbid us from
controlling Py in a satisfactory way.

In summary, the centrosymmetry is certainly a beneficial ingredient to enforce
fast and efficient transfer, but on its own it is insufficient. Therefore we must include
a second design principle as final constituent of our theory.

4.4.2 The Dominant Doublet

As emphasised in previous sections, the long-time dynamics is typically dominated
by the structure of the eigenvectors of the Hamiltonian. On shorter time scales,
interference effects which are driven by the structure of the energy eigenvalues can
have profound effects. However, we have seen that these are extremely hard to control.
In the works of Christandl et al. (2004, 2005), Kay (2006), one requires a perfect
tuning of all level spacings, which in disordered systems is unrealistic and certainly
not a robust solution. From Egs. (4.59) and (4.60) it becomes apparent that there are
still a total of N terms that need to be considered. Even though the centrosymmetry
drastically influences the structure of the eigenvectors of the Hamiltonian, a stronger
demand is required to achieve near-optimal excitation transfer.

Inspiration for this additional design principle can be obtained from many fronts, a
profound one being optimised realisations. In earlier work (Manzano 2013; Scholak
2011; Scholak et al. 2010, 2011a,b,c, 2014; Zech 2013; Zech et al. 2013, 2014)
there was extensive study of networks of coupled dipoles, which were randomly
positioned and oriented. The quantum dynamics that manifests in such a system is
governed by a Hamiltonian of the form

N N
H=EY le) e+ Vijle)(e], (4.66)
i=1

i#]

where i and j label dipoles, which now form the sites of our network. The actual
dipolar behaviour is encrypted in V; ;, which are dependent on both the positions
and orientations of the dipoles. The exact expression for this coupling is given by

I G-a; 38 —7)a; - G — 7))

Vij=1=—= —
7 — 7113 7 — 75112

, 4.67)

where 7; is the position of the ith dipole and ¢; is its dipole moment. The strategy of
Scholak et al. (2010, 2011a,b,c), Scholak (2011) consists in placing the input and
output site on the north- and south pole of a sphere, respectively, with the additional
dipoles placed randomly inside that sphere. These initial random configurations are
then used as seeds in a genetic algorithm to optimise the positions and orientations
to obtain Py ~ 1 (using a benchmark time 7 = 0.17/2|V|). One hardly learns
anything significant from the spatial structures of such systems, the true interest lies
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Fig. 4.9 Population dynamics of a near-to-optimal network conformation of coupled dipoles, from
Scholak et al. (2011a). Mainly input (dashed) and output (solid) sites are populated during the
dynamics, contrary to the bulk sites (thin, grey), which exhibit weak populations never larger than
approximately 30%. Exactly this feature lies at the fundament of the dominant doublet design
principle

in the structure of the dynamics of the excitations, as can be seen in Fig. 4.9, which
is taken from Scholak et al. (2011a).

Note the analogy with optimal (quantum) control theory (Krotov 1993; Shapiro
and Brumer 2003; Wiseman and Milburn 2010), where one drives systems with
carefully optimised pulse shapes to perform a given task. One typically does not gain
any insight from studying the pulse shape alone (Kuprov 2013); it is only when one
studies it’s influence on the system, that the properties of the pulse shape become
clear (Kuprov 2013). In our context, it is also only from combining the dynamics
of excitations with the optimised Hamiltonians, that we can ultimately identity the
final, useful design principle.

Studying Fig. 4.9, we observe the tendency towards centrosymmetry, which,
together with the condition of near-perfect state transfer, induces a symmetry on
the time axis.” More striking, however, is that the excitation mainly dwells on the
input and output sites and only weakly spreads over the intermediate (bulk) sites.
This behaviour is to be expected from a system which is essentially a two-level sys-
tem.'9 The fact, however, that we observe both, a much higher speed of transport,
and a small, though appreciable population of the intermediate sites, does imply that

9This symmetric behaviour on the time axis is quantified by |(e;, e*”Hin)|2 = |(e;, e Jzin)}2 =
|<J e, e*"’Hout)|2 ~ |<J e, e*"(’+’°)Hin)|2, where we explicitly use that there is a time
fo for which e~0H |in) ~ et |out). Moreover, an additional symmetry around fy/2 is
implied, which follows from |(out, e*”Hin>|2 ~ <e*i’0Hin, e*”Hin>|2 = ‘(e*"(’of’)Hin, in)‘2 =
‘(in, e—i(tg—t)Hin)‘z = [(in, efi(toft)Hin)!z.

100y, rather, the paradigmatic double-well potential.
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the system is not merely a two-level system, but rather one which is considerably
perturbed by coupling to additional degrees of freedom.

Using a mathematical line of argument, the perturbed two-level system implies
that the relevant transfer probability p..(f), as given by Eq. (4.59) or (4.60), is
dominated by a small number of terms. Furthermore, there must be two dominating
energy eigenvectors |n*) and |1~) which are baptised the dominant doublet. If we
consider the isolated two-level system, i.e. do zeroth order perturbation theory, we
obtain a system where |in) and |out) are interacting with one another, whereas the
bulk of intermediate sites only couple to each other and not with the input and output
sites. The relevant transport in the pure two-level system was already discussed in
Sect. 4.2 and we know that |4) and |—) are exactly these relevant energy eigenvectors,
with E + V and E — V as respectively associated energy levels.

When we proceed to higher orders in perturbation theory, and assume the system
is perturbed such that Eq. (4.60) is dominated by two terms, we obtain the demand
that there be actual eigenvectors of the system, i.e. the dominant doublet }ni>, which
obey the condition

|, £)* ~ 1. (4.68)

The energy levels associated with |ni) are denoted E*. From the assumption that
such dominant eigenstates exist, we can estimate the dynamics by simply ignoring
all other contributions in Eq. (4.60), and find

1 - o
Pou (1) ~ Z’|(17+,+)|2e—”‘9 B ’ . (4.69)

Both, the time scales, governed by the energy eigenvalues E*, and the weights
|(ni, :t) 2, are strictly different from those described earlier for the two-level system
(4.9). However, from Eq. (4.68) it is clear that the weights cannot vary strongly. This
constraint can be formalised in various manners: One may demand that

it £) > a~1, (4.70)

for all realisations of the random system, under the assumption that « is controlled.
Because here we have an additional constraint imposed on spectral properties, which
can only be verified after construction of the Hamiltonian, we refer to Eq. (4.70) as
the post-selected dominant doublet. Alternatively, one can design the Hamiltonian
appropriately, such that

(|(77i7 :l:>|2)realisations =o' ~1, “4.71)

which, for obvious reasons, carries the name averaged dominant doublet.

Both Eqs. (4.70) and (4.71) are variations of the dominant doublet design principle
and one can clearly feel that the essential physics is the same. However, the strong
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requirement imposed by Eq. (4.70) offers the benefit that we can formally construct
a lower bound for Py by exploiting the accurate estimate (4.69),

200 — 1 = 2 2a-1
a max |1 — e MET—ED|T 22 max <1 — cos (I(E_ — E+))>.
4 1€[0,Tp) 2 t€[0,Tp)
4.72)

Impressively, this bound must hold for all realisations and therefore we can find a
condition for near-optimal excitation transfer. Indeed, whenever

Py >

™

t* = —— < Tp, 4.73
g < 4.73)

Equation (4.72) automatically implies that
Py 22a—-1~1. (4.74)

More generally, we can refer to t* as the first passage time'': The dynamics in
a perturbed two-level system will be quasi-periodic (exactly the feature which we
used to arrive at the dominant doublet design principle), and the period at which the
dominant oscillatory behaviour is observed is given by t*. Therefore, the excitation
strongly localises on the output site for all time which are integer multiples of ¢*,
hence the first of this series of localisations is #* itself.

With the alternative dominant doublet design principle as specified by Eq. (4.71),
one may use a rather handwaving argumentation, replacing |<77i, :I:)’2 by its expec-
tation value over all realisations, which is usually called an annealed approximation
(Derrida and Pomeau 1986; Seung et al. 1992), to state that one expects

2 o 2 o/z
1 —e ™EED" = Z_ max (1 —cos (1(E~ — E+))>.
2 te[0,Tp)

(4.75)
Since also a’? ~ 1, the same logic as for the design principle Eq. (4.70) holds. How-
ever, as concerns their statistical treatment, the two options (4.70) and (4.71) differ
strongly. If one can replace ](ni, :I:) | g by their expectation values, the statistical treat-
ment (see Sect. 4.5) is by far the easiest. From an engineering perspective, one might
also argue that controlling properties (4.71) of the ensemble of random Hamiltonians
is potentially more feasible than imposing a hard constraint (4.70) on eigenvector
properties.

«
Py ~ — max
tel0,Tp)

The dominant doublet assumptions formulated in Eqs. (4.70) and (4.71) also
allow us to gain insight in Pp, since the constraint essentially allows for a serious
simplification of the expression (4.60) for po (¢). Indeed, we find that

"'Throughout the remainder of this chapter, the terms “first passage time” and “transfer time” are
therefore used interchangeably.
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200 — 1
2

2
Pout(t) &~ %(1 —cos (t(E~ — E+))> (averaged doublet), 4.77)

Pout(t) = (1 — cos (t (E~ — E+))) (post-selected doublet), (4.76)

which can now be used to calculate Py . After integration we obtain that

20 — 1 . — +
Py > > 1— smc(TB(E —E )) (post-selected doublet), (4.78)
0/2
Py ~ - (1 — sinc(Tp(E~ — E+))) (averaged doublet). 4.79)
The relevant parameter in this case is given by Tg (E~ — E). Using graphical meth-

ods in combination with Newton-Raphson (Hildebrand 1987), we obtain the estimate
that Py reaches it’s maximal value (= 0.608617) for Tg(E~ — E™) ~ 4.49341.
Therefore, choosing Tp = w/2V, optimal transfer, with respect to the efficiency
measure Py, is achieved when

|E~ — E™| ~ 2.86059V. (4.80)

Notice that the coupling between the input and output site V (4.48) is a stochas-
tic quantity, and, as we will show in Eq. (4.130), this implies a dependence on
the number of sites N and on the spectral radius. However, if one controls V, the
condition for an optimal occupation efficiency Py is fixed. For |E - —E +| > 2V
the value for Py saturates around 0.5, which is also obtained for the isolated
input—output system, i.e. the system with all intermediate sites removed. Because
|E= — E*|/2V = Tp/t*, this result actually implies that a high localisation effi-
ciency Py, due to a short first-passage time t*, automatically implies an occupation
efficiency close to that of the two-level system. Because the focus of this chapter is fast
and efficient transport, we from now on pursue the objective Py ~ 1 and t* < Tp,
as it will automatically guarantee a high (though not optimal) occupation efficiency
Py ~0.5.

To gain insight in the dominant doublet and its structure, we can use perturbation
theory on both the energy levels and eigenvectors. In order to do so, it is convenient
to start from the structure of Eq. (4.56). Since we showed that |+) € H*, we can
explicitly write out the rows and columns related to these vectors:

E+V (V|
|V+) Hs-;b

e—v | (4.81)

V) H,

sub

H =
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where |Vi> describes how |£) are coupled to the bulk sites, which in turn have their
internal interactions grasped by Hsiub. Standard application of perturbation theory
leads to

7 & )
= [(E )~ Rt (4.82)
i=1 i

* and e their associated eigenvalues. The
two components “+” and “—" can be treated fully independently, as a consequence
of centrosymmetry. This result will later be exploited to understand the dominant
doublet constraint in a statistical framework.

First, however, we can further exploit the perturbative approach, to gain an explicit
understanding of the time scales t* = 7/ ]E ~ — E™|. Indeed, according to the per-
turbative logic, the relevant eigenvalues are the eigenvalues of the two-level system
up to an energy shift s, induced by the coupling to the additional sites. These energy
shifts are given by

where |1/)i ) are the elgenvectors of H:

1= wf)l” )I2
Z ETV o (4.83)
such that
E*~ E+V +s*. (4.84)

Therefore, the time scale of the energy transfer can be expressed in terms of the
resulting relative energy shift As = s~ — s, and we find

e (4.85)
2V + As|

To understand the transfer time scales boils down to an understanding of the energy
shifts As. A crucial observation in both, Egs. (4.82) and (4.83), is that the energy
level structure of the complex constituted by the intermediate sites (as represented
by o b) can strongly affect these perturbations: When one of the bulk energy levels
ei dwells too closely in the vicinity of E &£ V, the perturbative corrections described
by (4.83) seem to blow up. This is a manifestation of the general notion of avoided
crossings, and although such crossings can have a drastic effect they never cause
divergences. The solution lies in degenerate perturbation theory: In non-degenerate
perturbation theory, one assumes that eigenvectors are uniquely defined, which in
case of degeneracies is no longer the case. When a degeneracy manifests, and hence
a symmetry is present in the system, one must consider eigenspaces rather than
eigenvectors. The perturbation breaks this symmetry and selects a natural set of
eigenvectors, but this effect as such is non-perturbative. It can be incorporated in a
more general form of perturbation theory, where one fixes the correct eigenvectors
in a non-perturbative way and uses them as basis for a perturbative treatment. The
relevant adjustment is given by
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N/2—1 L 42 —1/2
IR _ V= o)
L= & )"~ 3 ; 1 1+4(EiV—e,.i)2 : (4.86)
N/2—1 L 2 —-1/2
L1 ool V= 47|
st =3 ;(Ejzv e |1 1+4(Ej:V—eii)2 (4.87)

To exploit the dominant doublet to the fullest, one strives to make (4.87) as large as
possible, while (4.86) remains small. This is an intricate task, but it can be accom-
plished, as can for example be seen in the theory of Chaos Assisted Tunnelling (CAT)
(Dembowski et al. 2000; Leyvraz and Ullmo 1996; Steck et al. 2001; Tomsovic and
Ullmo 1994; Zakrzewski et al. 1998).

Finally, we show that the constraint of a dominant doublet in either form (4.70),
(4.71) does strongly enhance the efficiency of the quantum transport as compared
to both random and merely centrosymmetric networks. By construction we expect
that Py > 2a — 1 for many realisations. Again studying the numerically realised
random networks in Fig. 4.10, with dominant doublet and centrosymmetry design
principles imposed upon them, we find a pleasingly high density of realisations where
Pu > 2a — 1 (for Fig. 4.10 this implies Py > 0.9).

In the following section, we introduce analytical and numerical results to gain a
deeper understanding of the transport properties arising from the dominant doublet
structure. We present the statistical constraints implied by the different dominant
doublet requirements. Furthermore, we derive the statistics of transfer time scales,
from which, ultimately, Fig. 4.10 can be—to some extent—quantitatively understood.

0.6 0.6
0.5 0.5 —Z
0.4 0.4

= x

& 0.3 & 03
0.2 0.2
0.1 0.1
0.0 0.0

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
P Pu

Fig. 4.10 Localisation efficiencies Py and occupation efficiencies Py as defined by (4.6), (4.7),
respectively, for 500 realisations (grey dots) of random GOE Hamiltonians with centrosymmetry
(4.46) and the dominant doublet constraint (4.68) imposed on them. The left panel shows the
dominant doublet realisations as obtained from post-selection (as proposed in Eq. (4.70)), whereas
the right panel depicts realisations where the doublet is engineered by controlling |Vi) and &
separately, to realise a dominant doublet structure on average (following Eq. (4.71)). The RMS
coupling £/+/N between the intermediate sites, is fixed by £ = 2, for N = 8 sites, and the new
dominant doublet constraints are set to o = 0.95 (left) and o/ = 0.95 (right). The average value of
‘Pu and Py over all the realisations is again represented by the white dot that is indicated by an
arrow (which shows a clear enhancement compared to Figs. 4.6, 4.7 and 4.8)
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4.5 Statistical Control

Imposing the design principles of the previous section comes with a shift in paradigm:
The construction of efficient devices is often seen as a deterministic process, where
a lot of control is involved. We now focus on a very different approach, where we
control the statistics of an ensemble of systems (or devices). In this section, we study
the statistical implications of the design principles derived above, and explain how
they affect transport time scales and efficiencies.

We first treat the statistical properties of the dominant doublet (4.70), (4.71) in
Sect.4.5.1. This design principle controls the statistics of the energy eigenvectors in
the Hamiltonians and does so in a very different way for the averaged than for the
post-selected doublet. The difference already appears directly in the construction of
the Hamiltonian, which in the former case is assumed to be controlled in the form
(4.81), such that the statistics of |Vi> is governed by a distribution independent from
HZ,.In contrast, the post-selected doublet is a criterion on the Hamiltonian structure
(4.56), where we impose a spectral condition on H*, making |Vi) and Hi » far from
independent of each other.

The influence of the different dominant doublet construction methods reaches
beyond statistical properties of the dominant doublet itself: it also impacts the statis-
tics of other transport properties (such as, e.g., the transfer time ¢* and the efficiency
Pr). In Sect.4.5.2, where we discuss the transfer time scales, we find an important
difference in statistics between both types of doublets. We analytically derive the
probability distribution of transfer time scales and we show that the weights of the
distributions’ tails are very different for the different doublet constructions. The tail
relates to realisations which are extraordinarily fast and therefore such change in
weight is highly relevant (for our purpose as described in Chap. 1 and in Sect.4.1
above). These effects are studied more closely in Sect.4.5.3, where we study the
scaling of the density of efficient realisations based on the tail of the transfer time
distribution.

This long discussion on statistical control is finalised in Sect.4.5.4 by studying
numerical realisations of random matrix ensembles, to verify the validity of all the
results which were derived before. Due to all approximations that were made, this
numerical verification is a crucial final step.

4.5.1 Statistics of the Dominant Doublet

Averaged Dominant Doublet

Let us start by investigating the statistics that is hidden in Eq. (4.71), which ultimately
is the most straightforward one of the two dominant doublet constraints. It is clear
from the very definition that an average over all realisations is required. It follows
directly from Eq. (4.86) that
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) R 1 N/2-1 ’(Vi,wiiﬂz 1/2
<|(:I:’ :I:H )l‘eahsa‘uons ~ 1 2( IZI: 1 |:1 + 4(E Ly — 6?:)2 )reahsatlonm
(4.88)
which implies that we include the possibility of (near-) degeneracies in the spectrum
of H;b with the energies E &= V. With this expression, one can perform a straight-
forward averaging. Crucial is that these eigenvalues are by construction behaving
according to GOE statistics, because Hsiu ,» are independently controlled. The statis-

tical independence of V* allows us to independently perform an integration over its
components, the statistics of which are Gaussian:

2
<Vi, 1/)%) ~ Normal (0, #) . (4.89)

x is here introduced to control the variance of the coupling between input (or output)
site and the bulk sites, as an independent parameter. Therefore, the average over
realisations in Eq. (4.88) must contain an integral over this distribution. Moreover,
one must also consider the influence of the energy levels of HZ,, which are again
governed by GOE statistics. One way to deal with these is introduced by Bohigas
etal. (1993) and explicitly takes the two-point correlations between eigenvalues into

account, resulting in

L= (& ) eea ~ ] /dvdee’g 1 le]
- > realisations ~ T — —
227 JR m

(4.90)

2 X
—9 | = X 4.91)
T(N/2—1)) A

where we introduced A, the mean level spacing of the energy levels of Hsiu , in the
vicinity of E £ V. If we assume that £ £ V lies in the centre of the spectrum, we
may estimate that A is the mean level spacing around 0.

Because we numerically generate the Hamiltonians by controlling the root-mean-
squared (RMS) value of the interaction between intermediate sites & (4.61), it is
desirable to express this result in terms of £ rather than A. Therefore, one may use
an approximation for the mean level spacing, given the density of states (p(E)) and
the dimension 7eyes Of Hsiu b

! b (4.92)

A= .
Nievels (P(E = 0)) Nlevels

In the present case, we consider Hib and therefore, by (4.81), njevers = N/2 — 1,
such that
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- 2 3/2 N
o = <|<:|:’ j:)|2)realisations ~1— <;> ‘/ E -1 % (4.93)

This estimate becomes more accurate as N grows larger, since is was derived in the
limit N — oo (Bohigas et al. 1993).
From Eq. (4.93) we deduce that control

e of the total system size N

e of the typical interaction strength y/+/N of coupling between the input/output site
and the bulk system

e of the typical interaction strength &/ /N between the sites in the bulk system

allows us to tune the dominant doublet condition.'? These control knobs have been
employed to generate the data which underlie the right panel of Fig. 4.10.

Post-selected Dominant Doublet

The second possible dominant doublet constraint (4.70) is more subtle and was exten-
sively discussed in Walschaers et al. (2015). The main source of difficulties is that
we post-select the dominant doublets which fulfil condition (4.70) on the eigenvec-
tors of H*, and therefore one cannot treat Hjb and |Vi) in (4.81) as independent
statistical objects. In the following paragraphs, we strive to derive a relation between
a, & and N, the coarse grained parameters which we can reasonably control, and
[VE]|, a parameter which we extract from numerical simulations. The derivation is
somewhat subtle and certainly rather unorthodox.

First, we consider the implications of post-selection on Eq. (4.86). The sole
demand which derives from the dominant doublet condition is cast upon the complete
sum on the right hand side of Eq. (4.86), and implies that one should treat

= i)
(E£V —eF)?

as one statistical quantity. This quantity must be sufficiently small in order to satisfy
the dominant doublet condition. This implies, on the one hand, that very small values

of ‘(Vi, 1pl.i)|2 alsoallow (E £V — eijt)2 to be small, as long as the ratio between the

two terms satisfies the dozminant doublet condition. On the other hand, realisations
of H* where |(Vi, wli>| is large can still fulfil the dominant doublet constraint,
provided thatalso (E = V — eij[)2 is sufficiently large. Since matters are complicated

by the sum over the index i, it appears reasonable to require that

D:=min|E+V —¢] (4.94)

12We do notice that finite size effects slightly alter the prediction of Eq. (4.93), resulting for example
in an actual o’ ~ 0.93, obtained by numerics, instead of the analytically predicted o/ = 0.95 both
for N =20, { =2 and x = 0.0656234.
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A
Fig.4.11 Density of states of H:ru »» Where A probes possible values of the energy levels, for N = 10
sites, RMS coupling between intermediate sites £/+/N, with € = 2, and fixed E + V = 1 (arrow),
to highlight the effect of a dominant doublet in the vicinity of this energy level. In contrast to the

Wigner semicircle (dashed line, see Eq. (3.46)), valid for the GOE ensemble with N — oo, the
density of states exhibits a cusp at A = E + V. This figure is taken from Walschaers et al. (2015)

be sufficiently large. Notice that the post-selection procedure thereby imposes addi-
tional constraints on the eigenvalue statistics for the resulting post-selected Hviub.
There is no reason to assume that the normal Wigner-Dyson statistics is still obeyed
by these matrices. Indeed, Fig. 4.11 shows a seriously scarred distribution with a
cusp exactly at the value £ £ V.

A crucial corollary of the cusp in the density of states is that one can no longer use
(4.92) to relate the level spacing A, in the vicinity of E £ V/, to the quantities £ and
N, since the derivation of (4.92) explicitly relied on Wigner’s semicircle distribution
(3.46). To study the relation between &, o, N and ||V*||?, we therefore assume
two limiting regimes, which both occur in the post-selected ensemble, to obtain an
estimate for Ajoe.?

The first limiting case is the one where all eigenvalues of Hsiu , Temain sufficiently
far away from E £ V and therefore contribute roughly equally to the sum Eq. (4.86).
This also implies that we can assume that all eigenvalues are far from degeneracy
with E £ V and therefore we can safely use Eq. (4.82). Now we need to make a series
of assumptions in order to proceed: First of all, based on numerics, we assume that
the distribution of the statistical objects ‘(:T:, :|:>|2 is, in the post-selected ensemble,
strongly peaked around «, leading to the estimate that

[l 1—a

((E Fv_ 6%)2 )realisations ~ N/2 — 1

(4.95)

3Due to the subtlety of the argument, the phrasing is delicate, hence the wording here is similar to
that of Walschaers et al. (2015).
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To evaluate the average on the left hand side, we assume that the statistics of eijE is
governed by the Wigner-semicircle. This can be done since the eigenvalues are, by
definition of this limiting case, far away from E £ V and therefore do not feel its
repulsion. On the level of the couplings, we assume, loosely based on the central
limit theorem, that the statistics of v = <Vi, wli) is Gaussian, where the variance

IVI2/(N/2 — 1) is the very parameter which is to be determined. This allows to
calculate

2
| Vi wi | N/2 -1 (N2-1)?
<<’—l>i Realisations ~ | ———=— dve 27 |U|2

(E£V —¢)? 2| V|12

/ € (4.96)
* e CCELV_ep 482

R
S mE(N/2- 1)

which can be inserted into expression (4.95) to obtain

l—an 2|2
T

This is of course a rough estimate at first sight, given all the assumptions that were
made. Notice for example that we also integrate over the whole spectral range for
the intermediate energy level, from —2¢ to 2£, which implies to ignore the cusp in
Fig. 4.11.

To verify the above assumptions, one can numerically generate random Hamilto-
nians and actually perform the post-selection procedure, with the purpose to extract
the relation between &, o and ||V||2, to ultimately verify the proposed relation in
Eq. (4.97) with the approximation

(4.97)

oz
ar1—cE (4.98)

&’

where C is a fit parameter. We scan « from 0.99 to 0.8, for fixed { =2 and N =
14. For each value of o we extract ||V||2 from the numerics. Inspecting data with
a €[0.94,0.99], ¢ =20, and N = 10, suggests that indeed there is no significant
dependence on N, as is expected from Eq. (4.97). Figure 4.12 suggests a linear
dependence as in (4.98). However, since the ansatz (4.98) results from perturbation
theory, it appears reasonable to add a term quadratic in ||V]|2/£? for a &~ 0.8. We
therefore fit the data to the form

N —\ 2
2 2
am_c”zz” —b(”?' ) : (4.99)
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Fig. 4.12 Dependence of « on ||V||2/£2, for different network realisations. In order to extract the
constant C in (4.98), (4.99), a fit is performed. The dependence as conjectured by Eq. (4.97) for
a ~ 1, where C = 2/, is given by the solid line. This figure is taken from Walschaers et al. (2015)

Table 4.1 Estimated parameters C and b for Eq. (4.99) and their respective standard errors. The
fit was obtained with the Fit routine in Mathematica 10

Estimate Standard error
C 0.636789 0.00218418
b 0.111501 0.00933118

and obtain the results shown in Table 4.1.
Since, however, the dominant doublet is obtained in the regime where o ~ 1, the

— 2
term ~ (||V||2 /52) should become negligible, such that we numerically estimate
Eq. (4.97) as

IVII2

I — a~0.636(£0.002) Iz (4.100)

Indeed, this implies that the analytical prediction C = 2/7 falls nicely within the
error margin and that Eq. (4.97) holds.

Remarkably, via (4.71), expression (4.93), which was derived from the alternative
method for imposing the dominant doublet, leads to a very different outcome than
Eq. (4.97). Thus, although the dynamical quantities poy (), Py and Py (see (4.6),
(4.7)) seemed very similar for both possible definitions of the dominant doublet, they
lead to very different statistics.

The difference between (4.93) and (4.97) arises because the averaged ensem-
ble does not allow for correlations between the statistical quantities \(Vi, wii)|2 and
(E£V — eii)z. This implies that a cusp such as shown in Fig. 4.11 cannot be formed
in an ensemble where the dominant doublet is imposed by an averaging condition
(4.71). The presence such a cusp implies the possibility of separating local statis-
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tics in the vicinity of E & V from global effects such as the density of states far
away from E + V. It is exactly there, when (E £V — el.i)2 — 0, that constraints
upon the parameter y, which governs the coupling between input/output and the
intermediate sites, arise in the averaged dominant doublet ensemble. Because, in
addition, |(V*, wiﬂ]z and (E £+ V — ¢F)? are independently controlled throughout
the averaged doublet ensemble, these constraints are felt everywhere. They are at the
origin of the difference (4.93) and (4.97). For realisations with (E &= V — el.jt)2 — 0
similar problems would arise in the post-selected ensemble, but because the post-
selection does not make any assumptions on the specific statistics of the spectrum
of the intermediate sites {eii}, these constraints can be avoided by locally adjusting
the mean-level spacing. In other words, the post-selected ensemble gives the system
the freedom to effectively push energy levels away from E + V, as we discuss in the
second limiting case. It is this effective repulsion between levels in the bulk and the
energies E & V that allows assumption (4.95), which is key to obtaining the exact
expression (4.97).

The second limiting case focusses on understanding the cusp in Fig. 4.11 by assum-
ing that one deals with the completely opposite regime. We consider the situation
where one single eigenvalue eijE approaches as closely as possible to £ =V, in a
way such that the contributions of the additional eigenvalues can safely be neglected.
Therefore, we are interested in the quantity D.y;,, which is the minimal value that the

quantity D (4.94) can have within the ensemble. To study the statistics of a single

term in (4.86)
[l }/

ETV e (4.101)

T=1—[1+4

assumptions must again be made.'* In our present case we also assume that v =
<Vi, z/;f) is governed by Gaussian statistics, though we make no assumptions at all
on D, and just leave it as a parameter. Rather than averaging, as was done in the first
limiting case above, we consider de probability distribution of 7, given by

Pp(7) —N/_Z_lfd s (oL <1+4v2>1/2
T) = ve ? T— = - -y .
P 2w IVIE Jr 2 D?

(4.102)
We use probability distributions because the dominant doublet of Eq. (4.70) is a hard
constraint, implying that we fulfil the inequality with probability one in the post-
selected ensemble. Due to 1 — a & 0, it is necessary that also 7 ~ 0, allowing us
to only consider the leading order scaling behaviour in the limit where 7 — 0. This
leads to

DN =2
Pp(r) ~

4/ TV

14We warn the reader that throughout the text 7 is used as a stochastic quantity, which may make
definition (4.101) somewhat misleading.

(4.103)
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which can now be used to impose the hard dominant doublet constraint (4.70):

(I—a)
Prob(r <1—a) = / dr Pp(r) = 1. (4.104)
0

This identity defines an equation which can be solved to obtain the smallest possible
value for D, denoted D,:

~ 217V
T Va—aWN2-1)

(4.105)

min

This concludes our study on the statistical implications of the dominant doublet
conditions.

To summarise, we investigated two possible methods of imposing the dominant
doublet condition, one based on a disorder average (4.71), the other one on post-
selection (4.70). We concluded that both choices have a pronounced effect on the
statistics of ‘(:T:, :I:) 2, but that these effects are very different. For the averaged
dominant doublet, the effect is expressed by Eq. (4.93), whereas the result for the
post-selection procedure is summarised by Eq. (4.97). The scaling behaviour with

respect to the parameters £, N and x (or 4/ ||V||?) is remarkably different in both
cases.

Moreover, we pointed out that the post-selected ensemble has a scarred density
of states, with a cusp around E £ V, as shown in Fig. 4.11. We have shown that
this cusp results from a type of level repulsion, which is caused by the unperturbed
levels of HZ, interacting with the level E + V. We found that the dominant doublet
constraint leads to a typical, minimally allowed distance D, between eijE andE +V
as given by Eq. (4.105). This effect is of crucial importance in the derivation of the
statistics of transfer time scales.

In conclusion, the more straightforward way of constructing the averaged domi-
nant doublet by manually controlling the ratio between energy scales x /£ is effective.
However, introducing the dominant doublet via random sampling and post-selecting
the realisations where (4.70) is fulfilled teaches us that there are more ingenious ways
to reach the doublet structure. The altered density of states in Fig. 4.11 indicates a
highly non-trivial energy level statistics for the intermediate sites, characterised by
Hsiw This serves as a clear example that there can be more non-trivial ways of
introducing a dominant doublet structure than merely via an overall separation of
energy scales. Moreover, in the following section we explain that these post-selected
dominant doublet structures lead to different statistics of transfer times as compared
to the averaged dominant doublet.



114 4 Efficient Transport in Closed Systems

4.5.2 Statistics of the Transfer Time

As we learned in the previous section, imposing the dominant doublet constraint on
the level of eigenvectors puts constraints on the statistics of the random Hamilto-
nian ensembles by governing the statistics of the different building blocks of (4.81).
However, once these constraints are in place, all the pieces are set for achieving
near-optimal excitation transfer. Again, we start by considering the averaged domi-
nant doublet condition as given by (4.71) since this case was already studied in the
literature of CAT (Leyvraz and Ullmo 1996; Tomsovic and Ullmo 1994; Zakrzewski
et al. 1998). The definition of the transfer time scale, given by Eq. (4.85), tells us that
the relevant statistical objects to consider are the dominant doublet level shifts As.

The Cauchy Distribution for 75 /¢*

We start by highlighting the key ideas of the derivation conducted by Leyvraz and
Ullmo (1996), assuming E = V = 0. The authors start from the assumption that s*
can be faithfully approximated by Eq. (4.83), after which they rescale variables to

EAN/2 -1 +
x= % and E =9, (4.106)
X

and thus it remains to calculate

N/2—1

1
P(x):/é(x— Z E) P(E[,...,EN/Z_l)dE|...dEN/2_1. (4107)

i=1 !

An exact calculation of the distribution for GOE statistics is unfeasible, therefore they
choose to rather focus on two regimes which are easier to handle: the case where all
the E; are uncorrelated, such that P factorises, or the case where the eigenvalues are
maximally correlated. The first case is treated by assuming that E; is governed by a
Poisson distribution pg and this leads to

1
P(x) = / Hd)’ipo(yi)5 (x “NATT Zy,) , (4.108)

where again a change in variable was conducted, using y; = [(N/2 — DE;] . Ttis
then argued in Leyvraz and Ullmo (1996) that the Fourier transform of P (x) is given
by

N/2—1
P = tim (1— 4 — el (4.109)
N—o0 N/2 -1
from which is directly follows that
P(x) = (4.110)

x2 472
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Notice here that this result is only valid for N — oo, whereas we will use it as an
estimate for system sizes which are much smaller.

The opposite regime of maximally correlated eigenvalues assumes that these are
all equally spaced, leading to the following expression as an estimate for Eq. (4.107):

1/2 ol -1
Plx) = Eo(x— 4111
) /_1/2d 5<x n;ooHE)’ @.111)

which after some calculations also results in

Px)y=——.
W=
The authors reason that, since these two extremes lead to the same result, the GOE
result, which is somewhere in between, must also lead to the same statistics. Ulti-
mately they thus reach the result that

1 o
P(s) = — = Cauchy(si %)
+2 + _ Ey\2 0> ’
7T(O' ) +(S 250) (4112)
withaizwx—, soi=0,
(N/2-1A

a distribution which is well-known as the Cauchy (or Lorentzian) distribution, in this
case with parameters sgt and o*. A much more advanced method, using supersym-
metry methods, was used in Ergiin and Fyodorov (2003) in order to exactly calculate
the distribution. They obtain the result both in a more rigorous and a more general
way. The biggest advantage of these methods, which we will not discuss in detail, is
that they allow for an additional consideration of general E &+ V. The result is again
the Cauchy distribution, but with soi =+V % The main difference with respect to
our present study is that in Ergiin and Fyodorov (2003) V is still assumed to be fixed,
rather than a stochastic variable.

Note that the probability distribution (4.112) describes the fluctuations in domi-
nant doublet energy levels throughout the ensemble. If we assume that the disorder
is generated by configuration changes in the network, which occur on time scales
much longer than the transfer time, we can also interpret (4.112) as the distribution of
the energy fluctuations generated by these configurational changes over time. In the
philosophy of Chap. 3 this is clearly a complex system, since we observe a power-law
distribution in the spectrum.

The next step in the derivation of the transfer time distribution for our centrosym-
metric ensemble is to find the distribution for As = st — s~. Thisis a straightforward
task, due to the nice properties of the Cauchy distribution: The Cauchy distribution
is a stable distribution (Fama and Roll 1968), meaning that for two independent
variables A, B which are distributed according to
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A ~ Cauchy(ap, 0,) and B ~ Cauchy(by, ),

we find that

A+4+cB+d~ Cauchy(ao +cby+d,o, + |c|ab), foranyc,d € R.

(4.113)
Because of the centrosymmetry s and s~ are statistically independent, each described
by a distribution (4.112). Thus, (4.113) leads us to

P(As) = 1 o
VT T+ (As —s0)?
X2
6_2’
X2
m—"
(N/2— DA

with s = sa' -5, =V 4.114)

and o=ct 40 =2

Diverting attention to Eq. (4.85), we can now apply (4.113) to obtain that

Tp

A
=15~ Cauchy (1- 22 ). (4.115)

W2V

The distribution of the absolute value | — ZA—‘i thus reads:

As
Pl|l——
2V

)=t (v et
T\ +A+x+x)? P+ 1 +x—x)?2)
2

X

262’

1 X2

T V(N/2-DA’

with xop =

and vy

(4.116)
There is, howeyver, still the issue of V, which for the above needs to be considered a
fixed quantity, and we now devote some words to tackling this matter.

Statistics of the Direct Input—-Output Coupling*

This discussion on the approximation for the average coupling between the input and
the output site is rather technical. The essential result which is used in the remainder
of the text is contained in Eq. (4.130).

We define V to be the coupling between the input and output site, and these sites
are assumed to be those that couple the weakest (in absolute value), as given by
(4.48). Therefore, we must assume that V itself is also a stochastic quantity. Since
it is the minimum absolute value of a set of N/2 — 1 normally distributed variables,
we must go through a minor derivation to uncover its statistics, which in principle is
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a type of extreme value statistics. We first start by elucidating the general method to
treat such problems.

Method 1 Let Xy, ..., X, be a sample of n independent, identically distributed
stochastic variables, and denote m = minge1,. ) Xi. We are now interested in the
probability density P(m). To obtain this function, we consider the cumulative dis-
tribution function (CDF) of m, F,,(x) = Prob(m < x). Since m is the minimum, we

have that

F,(x) = Prob(m < x)=1— HProb(Xk > x)

k=1
1 “4.117)
=1- 1_[(1 — Prob(X; < x))
k=1
=1-(0=Fx)"
where F(x) := Prob(X; < x) isthe CDF of Xy. Because X1, ..., X, are identically

distributed, they all lead to the same CDF. What we explicitly show in (4.117), by the
very definition of the sample minimum, is that m does not follow the same statistics
as X1, ..., Xu. The probability density P(m) can be obtained as

dFp(x)

Pm==—03

, (4.118)

X=m

_4 1 — F(x))"
_E( X))

X=m
which is seen to strongly depend on the sample size n.

Here we must consider X; = |Hk,N—k+l | and Hy y_+1 ~ Normal (0, ZNiz), what
implies that | Hy y—¢1] is a half-normal distribution,'” therefore the CDF is given
by Leone et al. (1961)

X ‘/W|Hi,N—i+]| :
F _ 2 [“am ()
|Hin 1| (%) = 7 |Hen—is1] €

N 4.119)
=erf< x)’

28

where erf (x) denotes the error function (Abramowitz and Stegan 1965). By virtue of
thisresultandn = N/2in (4.117) and (4.118), we obtain that the probability density
of V is given by

e_ZTVZZNW2 (erfc (%)) B
2/ ’

P(V) = (4.120)

15Given that a stochastic variable X is normally distributed, the distribution of | X| is called a half-
normal (if E(X) = 0) or folded normal distribution (Leone et al. 1961). The terminology refers to
the fact that the negative part of the probability distribution is literally folded to the positive side.
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Fig. 4.13 Probability 101

distribution P (V) of the

direct input to output 8l N=10
coupling V, in an N-site N=20
random network, for variable 6l N=50

N =10, N =20 and

N = 50. The parameter
describing the RMS coupling
strength between the
intermediate sites was set to 2r
& = 2. Clearly, the
distribution is strongly ot ]
peaked near its mean value : ‘ : : ‘ :
(V) (see (4.130)) 0 1 2 3 4 5

P(V)
N

with erfc(x) = 1 — erf(x), the complementary error function (Abramowitz and Ste-
gan 1965).

Although the probability distribution is now obtained and we can in principle
average P(Tp/t,) as given in Eq. (4.116), by integrating over the measure P(V)dV,
such an integration is extremely cumbersome due to the presence of the (comple-
mentary) error function.'® Therefore, we make an annealed approximation (Derrida
and Pomeau 1986; Seung et al. 1992): When averaging a function f of a stochastic
variable V, one approximates (/' (V)) ~ f({V)). This assumption is usually valid in
the regime where the probability distribution of V is strongly peaked near its mean (at
least in comparison to the other relevant variables). Figure 4.13 shows that, indeed,
the distribution is strongly peaked around its mean value (V'), which we now set out
to calculate.

We start from Eq. (4.120), since by definition

(V) :/deP(V)v
0

2 N 4.121
o N (ate (422) D
= dv V.
J S
With the change of variable
NV
V' = L (4.122)
28
the right hand side of (4.121) turns into
26N [ ’ N
2N / dv'e ™" (erfc (V') ' v, (4.123)
v Jo

16 All our attempts resulted in page-long expressions which were neither useful nor insightful.
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Assuming that we are in the regime of large N, as we did to obtain (4.112), we have
N/2 — 1= N/2. We now apply Laplace’s method (Laplace 1986), and thus need to
define a function f such that

f T avie "V (erfe (V1))

0

o=

ly= /OO dV'exp (Nf(V)). (4.124)
0

It is straightforward!” to check that

Vi ool 1
fFOV)=——+ (5 - N) log (erfe (V")) +  log V' (4.125)
is a suitable choice. In order to apply Laplace’s method, we need to find that V; for

which f is extremal, hence f'(Vy) = 0. We straightforwardly calculate the derivative
of (4.125) and find

"V = 1 _2_V,_<1_£>—
! NV N N ) merfc(V')’

what only allows for an implicit expression for V. We can however get an explicit
result by the following approximation: Since the maximum of f(V’) is achieved for

_yn

(4.126)

Vo < 1, we can expand e=V” and erfc(V’) around V' ~ 0, and obtain a tractable
approximation for f(V’), leading to

A e A L AP 127
Jrerfe(V)  Jm(1 =2V +2VE 4. U7 '

Even though this is a rough approximation, the corrections due to higher orders are
negligible for large N. Numerical evaluation of (4.121) shows that, even for N = 10,
the exact results are very well approximated by (4.127).

With the low order approximation (4.127), f'(Vy) = 0 is satisfied for

VNI¥8r—N J& 2
Voo ——m——~ — |1+ — ),
4T N

N
and Laplace’s method now tells us that

o0 2
av’ Nf(V)) meVfVo [ =2 4.129
fo exp (NFVO) ~ 50 (4129

"We  use the property that x =¢°8%,  which implies that f(V') =

+ log (e*V’2 (erfc (V’))%_1 V’).

(4.128)
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resulting in
2m€

eNJN2—1

Transfer Times for the Averaged Dominant Doublet

(V) ~ (4.130)

With the results of the previous sections, all the pieces are collected to obtain the
probability distribution for the transfer times across centrosymmetric, finite, random
networks with the averaged dominant doublet. Turning back to Eq. (4.116), we can
now substitute V — (V) as dictated by the annealed approximation. Moreover, we
already know an expression (4.92) for A in terms of £ and N: We assume, as is
supported by numerical data, that the mean level-spacing in the bulk of the semicircle
is similar everywhere. Therefore, we estimate A, which is the mean level-spacing in
the vicinity of E £ V, by the mean level-spacing around energy E = 0. This result
can be applied for the averaged doublet without any problems. With these previously
obtained results (4.92), (4.116), and (4.130) we find the final distribution

—— =X = - + )
1 T\ + A +x0+x)2 424+ (14 x9—x)2

2
ith ==, 4.131
with x 26 ( )
eNJNJ/2 =12
and vy = Tf—z

The parameter y seems to scale strongly with the system size v ~ N3/2, which is
inherited from our above expression (4.130) for the average coupling (V).

Although expression (4.131) is formally correct, it does hide part of the story; we
still have to take the dominant doublet condition (4.71) into account: Upon designing
a system, we can control the localisation efficiency Py by requiring an ensemble
averaged dominant doublet (4.71), the strength o of which depends on the specific
value of Py in (4.75) which we wish to achieve. By virtue of (4.93), the required
doublet strength o, and thus the desired transport properties, constrains the allowed
values for N, ¢ and x by imposing an N-dependence on the ratio /£ of typical
coupling strengths.'® More specifically, Eq. (4.93) allows to rewrite

2 N2
~ M‘ (4.132)
16
Hence, constraints on the transfer efficiency translate to a “different” scaling
behaviour of v with the number of sites N, i.e. v ~ N 1/2 The reason for the dis-
crepancy compared to (4.131) is that the scaling v ~ N3/* is only valid when we
assume that the ratio x /€ is independent of N . However, such independence implies,

18Where y/+/N is the typical (RMS) coupling between the input/output and the intermediate sites,
and £/+/N denotes the typical (RMS) coupling strength between the intermediate sites.
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through (4.93), that /, and therefore the lower bound on Py, decrease with N up to
the point where the dominant doublet breaks down.

In summary, the relevant scaling of the weight y of the tail of the Cauchy distribu-
tion with the number N of sites is determined by the desired (localisation) efficiency
of the transfer process. The resulting, actual scaling with the system size is y ~ N1/2,

As for a Cauchy distribution, the weight in the heavy, algebraic tail is determined
by this parameter . We can see that in larger systems, the tail is expected to grow
fatter. We may interpret x = T/t* as the speedup of excitation transfer by adding the
intermediate sites. When the distribution becomes broader, there are more realisations
strongly enhancing the transfer. On the other hand, the direct coupling between input
and output sites, and thus the direct tunnelling, strongly decreases when the system
size is increased as seen from (V') (4.130). Therefore the indirect (or chaos-assisted)
tunnelling will get the upper hand."”

Transfer Times for the Post-selected Dominant Doublet

As already discussed in Sect. 4.5.1, the post-selected dominant doublet is more subtle,
but all the required pieces of the puzzle are already on the table. Most fundamental
is the behaviour shown in Fig. 4.11, which implies that we can no longer simply use
the GOE assumption for A, the mean-level spacing in the vicinity of E & V. This
is a fundamental consequence of the post-selection procedure, which leads to the
repulsion grasped by Eq. (4.105), and this repulsion is responsible for the locally
altered mean-level spacing.

To correctly estimate the value of A, we need to consider one additional subtle
aspect: A is the mean-level spacing between the levels of Hsiub in the vicinity of
E + V. The result for Dy, in Eq. (4.105), however, describes the distance from one
such energy level to the value E £ V, as given by Eq. (4.94). Focussing on the cusp
in Fig. 4.11, this roughly implies that an energy level can approach this closely, both
from the left and from the right. Hence, we reach the rough estimate that

A 2 2Dpin. (4.133)

In order to express this result in terms of &, the parameter governing the RMS coupling
between the intermediate sites, we can combine the constraints imposed by both
limiting cases (4.97) and (4.105). Since both cases occur in the same post-selected
ensemble, both constraints imposed by them have to be fulfilled. This leads us to the

final result that
2mwé

A~ NI (4.134)

19This is also consistent with the physical idea behind the CAT mechanism: The coupling to a second
chaotic (hence modelled by the GOE Bohigas et al. 1993) degree of freedom (here the randomly
interacting intermediate sites, where the randomness comes from conformational changes in the
macromolecular arrangement, in particular mimicking vibrational background degrees of freedom)
enhances the tunnelling rate in a donor-acceptor system with vanishing direct coupling (Tomsovic
and Ullmo 1994).
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For the ultimate distribution of T /t*, this implies

p Tp 1 Y g
— =X = — + )
t* T\ +{+x+x)? 2+ (1+x —x)?

VI[2
with xp = ”25! s (4.135)
g o IVIPNe
1= 4me2

We write “|V[|2” to stress that this quantity is not controlled, but obtained from
numerics, since the controllable parameters are the number N of sites, the RMS
coupling £/+/N between the intermediate sites, and the dominant doublet strength
a (4.70).

For the post-selected doublet we thus find that v ~ N, which is in contrast to
(4.132) as derived for the averaged doublet. The doublet strength « (4.70) can be
explicitly taken into account by virtue of (4.97) to obtain

N(l —
NES #80‘) (4.136)

which eliminates the need for the numerical extraction of W We still find a
scaling v ~ N for a given « (and hence for a given desired localisation efficiency
Py ), which is a manifestation of the fact that the doublet strength o controls || V|2 /&2
independently of N (as shown in Fig. 4.12). Equations (4.135), (4.136) imply that
the tail for the post-selected doublet ensemble grows heavier with N than the tail of
the averaged doublet, which is governed by Eq. (4.132). In the following section, we
will further explore this scaling behaviour.

4.5.3 Scaling Properties

Although we now understand the statistics of the time scales for different dominant
doublet ensembles, we still lack thorough insight in the statistics of the localisation
efficiency Py . Because this efficiency requires a maximisation over a time interval
(recall Sect.4.4.2), it is completely unfeasible to obtain its distribution in either of
the different dominant doublet ensembles. On the other hand, we show in this section
that one can obtain implicit information about the localisation efficiency via the time
scale statistics.

Scaling for the Post-Selected Dominant Doublet

As was already remarked by Eq. (4.73), whenever the transfer time t* < Tpg,
we can be sure that Py > 2a — 1. Therefore, in order to acquire information
on the density of realisations that manifest efficient transfer, we must evaluate
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Fig. 4.14 Probability 1.0
Pout (t) to find the excitation

at the output site, for a single 0.8
realisation of the system
Hamiltonian (4.81). The
value 2« — 1 is indicated by
a dashed line. Even though
the transfer time ¢t = 1.037p
for this realisation, the 0.2
efficiency condition

73[.] > 20 — 1, (4.74), is 0.0
fulfilled. This figure was

taken from Walschaers et al. 0.0 02 0.4 ?'6 08 1.0 1.2
(2015) UTg
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P(Tg/t* > 1). However, this is a lower bound for the density of realisations for
which Py > 2a — 1: Whenever t* < Tp we can be sure that the the condition on
the efficiency holds, but the opposite statement is not true. It is possible to find real-
isations where Py > 2 — 1 and still #* > Tp. This is typically the case when the
maximum of pyy(¢), obtained at ¢*, is somewhat larger than 2« — 1. In this case,
Pout () may already cross 2a — 1 before T, although the maximum is only reached
at t* > Tp. One such realisation is shown in Fig. 4.14.

To comprehend the scaling behaviour (when increasing the system size N) of
the density of realisations with Py > 2 — 1, we can use our above result for the
probability density P(Tg/t*), since

Ty o0 Tg
P(Py>20~1)>P(—2>1 =f P (=2 =x). (4.137)
1

t*

The calculation of this quantity is straightforward and leads to interesting insights.
Specifically, different types of questions will lead to different choices of modelling
on which we can now shed light. The matter of scaling automatically relates to ques-
tions such as: Is there an optimal system size? Are there trade-offs between different
parameters? These questions are particularly relevant in the biological context of
Chap. 6, where evolution can optimise structures which offer an advantage, i.e. more
efficient light harvesting in photosynthetic organisms.?’ We focus our attention on
the scaling with the system size N. In the previous section we already indicated that,
due to the many relations between different parameters, among which the system
size, the apparent scaling properties can sometimes be misleading. One point of
interest is that (V') depends strongly on the system size N. This is of course the case
by construction, but one can equally well ask what happens when we fix a specific
direct coupling V* and try to enhance the transport.

20Whether more efficient light harvesting is (or has ever been) evolutionarily beneficial (and to what
extent) remains an open question. There is a chance that the answer to this question depends on the
organism and even on its ecosystem.
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Assuming that V is a stochastic variable chosen as described in Sect.4.5.2, we can
use the result from Eq. (4.135) and insert it into Eq. (4.137), to obtain

1 4me? V|2
PPy >2a—1)>21— —arctan | ——— [ 1 — 5 . (4.138)
™ IVI[2Ne 28

As we are interested in the scaling behaviour of the density of efficient (quantified by
the condition Py > 2a — 1) realisations in our ensemble, we can study this quantity
in the limit where the number of sites N grows large (and the dominant doublet
strength « is kept constant) to obtain:

Tp 4¢*

8
PP >2a—l)>P<—>l>%1—_—=l——. (4.139)
" t* IVI2Ne meN (1 — )

These larger systems sizes lead to a larger density of efficient realisations. This
tempting conclusion should however be nuanced, since we consider 7 /t* in a setup
where both Ty and t* are stochastic variables. The correct statement is therefore
that large system sizes lead to a situation where fast tunnelling, mediated by the
intermediate sites (the mechanism described by CAT Tomsovic and Ullmo 1994) is
typically dominant over direct tunnelling. This implies a broad distribution with a
very fat tail. However, this does not imply that necessarily t* becomes very small,
since we know from Sect.4.5.2 that also V typically decreases rapidly for increasing
N. In other words, the reason that Tg/#* becomes large is not just that the transfer
time ¢* is typically short, but just as much that the reference time scale Tz becomes
very large. In this sense one can say that the scaling behaviour is mainly due to the
vanishing of the direct tunnelling from in to out, rather than the positive impact of
the system size on the CAT-like process. To verify this argument, we must explicitly
consider the scaling of the density of efficient realisations in the ensemble for fixed
V=V

Assuming that V = V* is kept fixed we thus expect a very different scaling

behaviour with N, which can be derived from Eq. (4.116), with V = V*. We find
that, indeed, the scaling is given by

T 1 2V*¢ /N2 =1 2
P(PH>206—1)>P<—E>1):1—7arctan 57«//7 I—HVH2
! 4 e 26

(4.140)

To study this expression, we again focus on the large N regime, which now results
in
Ts ) 1 Vi I d-mf
Pl—>l)|lr - —mMmM = - —————| (4.141)
( r* 2 qV*J2N 2 2V*J/2N

This is clearly very different from the N-dependence obtained above, when V was
considered a stochastic variable, chosen to be the weakest coupling in the system,
respecting the in-out symmetry (4.47). In this case, V* remains fixed and therefore we
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find statistics of Tp/t* which really reflects the behaviour of ¢*, since T = w/2V*
is completely independent of N. Noteworthy is that, whenever dominant doublet
strength « and the parameter governing the typical coupling between intermediate
sites £ remain constant, an increase of N reduces the density of efficient realisations.
In the limit N — o0, only ~50% of the realisations are efficient. This implies that a
choice of V*, £ and o imposes an optimal system size N, encrypted in Eq. (4.140).
A simple analysis shows that the optimal number of constituents in such a system is
small (N°P' = 4).2! However, in this regime simulations show deviations from our
analytic prediction; remember that the Cauchy distribution was in principle obtained
for N — oo.

Note that Eq. (4.141) does not only depend on the dominant doublet strength «,
but also explicitly on £, which determines the RMS coupling between intermediate
sites. We see that large values of £/ V* have a positive effect on the density of
enhanced realisations. This implicitly tells us that the intermediate sites must be
strongly coupled to each other the get efficient transfer. Notice that whenever ¢ is
large, ||V||2 will become larger too, since both quantities are bound to satisfy the
constraint (4.97). Thus this result must be interpreted as follows:

For a given direct coupling between input and output, stronger couplings among intermediate
sites and stronger couplings between bulk sites and the input/output lead to a higher density
of efficient realisations.

Scaling for the Averaged Dominant Doublet

As shown in Eq. (4.75), no lower bound can be derived for Py as in the above case of
the post-selected doublet. However, Eq. (4.75) also indicates that when T /t* > 1,
we find that Py ~ o/. Even though this statement should rather be interpreted as
Py contained in a small interval around /%, we can still use Tg /t* and its probability
distribution P(Tg/t*) as an estimator for efficient excitation transfer.

V a stochastic variable allows to straightforwardly compute

T o0 T
P(t—f>1)=/ de(t—f:x>. (4.142)
1

When using (4.131), we find

Tp 1 2mg? ( X2
PPy~a)>2P(=2>1)~1-—arctan | ———m—x-——(1-25) ).
(Pr 7~ o) (t* g > T <e4/_N/2— TN 2 262

(4.143)
A series expansion for large N yields the dominant scaling behaviour:
T 24/2¢2 16
PPy~aH=P(2>1 vy 2V -
r* eN3/2)2 eV/Nm3(1l — o)?
(4.144)

21Dye to the centrosymmetry we only consider even numbers of sites N. Moreover, N = 2 implies
there are no intermediate sites and thus we obtain the benchmark system.
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which s different from that obtained in (4.139), although it has similar characteristics.
Also in this case the density of efficient realisations increases for growing N. The
reasons are the same as for the post-selected doublet treated above, but the scaling
with ~ 1/4/N results from a different scaling of the spectral shift statistics which
determines #* (as seen upon comparison of (4.132) with (4.136)).

When V = V* is kept fixed we can again evaluate (4.142) as an estimate for the
density of efficient realisation, i.e. those with Py > o', Straightforward integration
using Eq. (4.116) in combination with (4.92) and (4.93) leads to

~ o2 1 v* 2\3 (N w3 (1 — )2
PPy~ « )>l—warctan(€(l_a/)2<w> (2_1)(1_81\]—2 .

(4.145)
The limiting behaviour of this estimate for P(Py ~ 0/2) as N — oo can be found
via a series expansion:

T, 1 (1 —a)2m?
PPy ~a*) > P <t—B > 1) ~ 5+%. (4.146)

This implies, again, a behaviour which is qualitatively similar to the post-selected
doublet ensemble, in the sense that increasing N has a negative impact on the density
of efficient realisations. Indeed, we see that in the limit N — oo, P (Tg/t* > 1) —
1/2. On the other hand, we here notice the scaling ~ 1/N, i.e. a more drastic depen-
dence on N as compared to (4.141).

Summary and Discussion

Ultimately we must conclude that both types (4.70) and (4.71) of dominant doublets
lead to results which are intuitively similar, although the detailed scaling behaviour
of the density of efficient realisations as N grows is very different. Indeed, we obtain
that this density, which we always infer from P (Tg/t* > 1), is governed by the
following scaling with the system size N: Assuming that V is stochastic we find*?

T, 1
p (t_f > 1) ~1- cte— (post-selected doublet), (4.147)
p (TB 1) 1 —cte ! (averaged doublet) (4.148)
DB 1)~ 1= cte— v ublet). .
a N £

whereas for the fixed input—output coupling V = V*, we obtain

T 1 1

P (t_f > 1) ~5 + cte\/—ﬁ (post-selected doublet), (4.149)
Tp 1 1

P ry >1)~ 3 + Cteﬁ (averaged doublet). (4.150)

22Note that we use “cte” to indicate an unspecified constant.



4.5 Statistical Control 127

Remember that our goal is to statistically control fast and efficient quantum trans-
port in the centrosymmetric networks we study. Since expressions (4.147)—(4.150)
all function as estimates for the density of efficient realisations in an ensemble
of centrosymmetric networks, subject to specific constraints, this goal translates
to P (Tg/t* > 1) = 1. Even though, in this sense, we always observe a positive
influence of the system size for stochastic V, and always observe a negative impact
of growing network size with fixed V = V*, we can now clearly conclude that the
post-selected doublet is the better design principle: When N — oo, the density of
efficient realisations in ensembles with a post-selected doublet increases faster for
stochastic V (comparing (4.147) and (4.148)), and it decreases slower when V = V*
is kept fixed (comparing (4.149) and (4.150)).

We close this discussion with a more physical interpretation for the different types
of scaling which we derived: Where V is a stochastic variable, scaling with N boils
down to considering a system with increasing number of constituents in a way such
that the density remains constant and thus the volume changes. In the case where
V = V*isfixed, we keep the volume of the system constant, but add additional sites,
thus increasing the density. Thus, there is also a clear physical difference between
the two types of assumptions on V, which immediately helps us understand why
there is such a grave difference between the scaling properties in both regimes: For a
given density of sites in the system, increasing the volume—and hence the distance
between input and output sites—leads to a larger fraction of the transport being
mediated through the intermediate sites. In the opposite regime, where the volume
of the system—and therefore also the distance between input and output sites—is
constant, it is favourable to have very low density of sites to guarantee a high density
of realisations where the transport is mediated by the intermediate sites. The latter
result may seem counter-intuitive, but it relates to the fact that we need to make
(4.86) sufficiently small to fulfil the dominant doublet condition, and (4.87) as large
as possible to achieve enhancement in transfer time. Ultimately, these are competing
demands. Specifically when V = V* (and therefore also the benchmark time T) is
fixed, large densities of sites make it harder to fulfil both demands (as we ultimately
rigorously showed in this section).?

4.5.4 Numerics

In this section, we present numerical material to validate the model developed above,
as well as the quantitative predictions which we derived from it. Although our above
results were obtained analytically, they are subject to many approximations and one
of the main questions is whether the RMT results, which are in principle derived for
the thermodynamic limit N — oo, hold in situations where N ~ 10.%* Of course,

23Note that large densities of sites translate in many contributing energy levels in the perturbative
series.

24Relevant network sizes in photosynthesis are of the order N ~ 10 (Blankenship 2002).
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the fact that the CAT mechanism as described in Sect.4.5 essentially depends on
local spectral properties, such as on the mean-level spacing A at a specific point in
the spectrum (the vicinity of E + V), does suggest that the system size is ultimately
not of great importance, at least not at leading order.

Additionally, several of the derivations in Sect.4.5.1 were slightly unorthodox
and the results obtained from them must be numerically verified.

Structure of the Simulations

At the core of the numerical calculations lies the ensemble of random matrices as
described by the GOE, with different design principles imposed. To construct such
matrices, a set of independent components of the matrix is sampled according to the

basic rule (3.26) H;; ~ Normal (0, %), with H;; = Hj;.
In case we demand centrosymmetry, this rule is extended to (4.61):

Normal(o,%) if i=j or i=N—j+1
Hij ~ )
Normal (0, %) else, (4.61)
while expllcltly ﬁXil’lg H,'j = H,'N,jJr] = HN7i+1j = HN7i+1N7j+l-
For the averaged dominant doublet, there is again an additional rule (assuming
that for simplicity |in) = |ey)):

Normal(O,%) if i=j, or i=N—j+1,
Hij ~ { Normal (0, %) if i=1andj#1, 4.151)

Normal (0, %) else,
while again maklng sure that Hij = Hl' N—j+1 = HN—i+lj = HN—H—I N—j+l1- The
structures of these different possible choices of sampled Hamiltonians are visualised
in Fig. 4.15, to get an accurate idea of which components are sampled independently.
The triangular structures in Fig. 4.15 can subsequently be mirrored along the relevant
symmetry axes to acquire a matrix with the correct symmetry properties.

The post-selected dominant doublet cannot be grasped as easily as the averaged
dominant doublet. More specifically, it generates a type of correlations within the
centro-symmetric triangle. As the name suggests, we cannot generate these struc-
tures, but we have to post-select them after sampling centrosymmetric matrices. This
post-selection procedure is straightforward, but highly inefficient: Each realisation
of a centrosymmetric H must be diagonalised and its eigenvectors |7;) checked for
the presence of a dominant doublet. We do this by constructing |+) and |—) as pre-
scribed by Eq. (4.53), and subsequently calculate | (7;, +) | and |(n;, —)|?. In the case
of a dominant doublet, we must find an eigenvector |77+) for |4) and another one,
‘77‘), for |—), such that both these overlaps are larger than «.. The larger we make the
system size N or the doublet strength «, the more unlikely to find such a match. As
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Fig.4.15 The structures of the random Hamiltonians subject to different constraints. A highlighted
area indicates a set of independent, identically distributed random variables. On the leftmost panel,
the structure of the unconstrained GOE is shown, where half of the elements are sampled from a
normal distribution. In the middle, the structure for a centrosymmetric Hamiltonian is shown, which
is clearly different from the right panel, showing the structure for the averaged dominant doublet,
where the separated rectangle indicates that the components in this area are governed by different
statistics (also given by a Gaussian distribution, but with a different variance). The other compo-
nents of the matrix are obtained from imposing symmetry and—if applicable—centrosymmetry
conditions

the method to identify the dominant doublet already provides us with |77i> , We can
also straightforwardly obtain E=.

Once the correct sampling procedure of Hamiltonians is implemented, we cal-
culate pqy(t), with the help of the spectral decomposition of the Hamiltonian and
Eq. (4.4). Because poy (¢) is formally defined as a function of 7, we can calculate Py
by means of a maximisation algorithm,> and P is obtained via numerical integra-
tion. This may provide us with statistics of the efficiencies, but it does not allow us
to directly study the statistics of the transfer times.

The latter can be understood in various ways: The most direct route to obtain them
is by extraction from the maximisation algorithm, where we assume that ¢* is also
the time ¢ at which pgy (f = t') = Pg. One issue is that such a procedure will not
allow to acquire information on transfer times which are slower than Tg. Therefore ¢’
is actually obtained by propagation of the excitation over a longer time, here 1.7 Tp.
Therefore, it is more precise to identify ¢ with the time for which poy (t = t') = P},
where P}, is the efficiency obtained for times ¢ € [0, 1.7 Tg).

For the dominant doublet systems, an alternative method, closer to the analytical
derivation, is to extract the statistics directly from the spectral properties of the
system. We noted above that our method of finding the dominant doublet states also
allows us to obtain E*, and, therefore, we can directly extract T /t* as described in
Eq. (4.73). Of course, following the analytical derivation, the transfer time estimate
¢’ appears to be equivalent to estimates obtained from E*. As explained in the next
section, and indicated in Fig. 4.17, this intuition is false.

Numerical Result for Transfer Time Scales

We now compare the analytical predictions for the different types of dominant dou-
blets, as described in Sect.4.5.2, to numerical simulations.

2We here employ either the algorithm which was also used in Scholak et al. (2011a), Scholak
(2011) or the NMaximize routine in Mathematica.
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Fig. 4.16 Probability density of the transfer times Tp/t* for the post-selected dominant doublet,
as predicted by Eq. (4.135) (thick solid line), together with the numerical estimate obtained from ¢
(thin solid line, see main text) or from E* (thin dashed line), according to Eq. (4.73). The results
are for doublet strength o = 0.95, RMS coupling £/+/N between intermediate sites characterised
by & = 2 and network size N = 8. This figure was taken from Walschaers et al. (2015)

Let us start by considering whether the #', for which poy (t = t') = P}, is really
the correct estimate for ¢*. For the post-selected dominant doublet, we show both
numerical results in Fig. 4.16, together with the analytics of Eq. (4.135). We observe
that there is no perfect agreement between analytics and numerics, but we clearly
see from the inset that the distribution of time scales as obtained from E=, using
Eq. (4.73), is closer to the analytical predictions than the results obtained from ¢'.
More specifically, it seems that the ¢ method systematically overestimates realisa-
tions with T /t* ~ 1 and underestimates the weight of the tail, which is formed by
realisations where T /t* > 1.

It is essential that we now understand whether such a mismatch implies that there
is a flaw in our analytics, or whether this simply implies that ¢’ is not a good estimate
for the first passage time. It turns out that the latter is the correct conclusion. This
can be seen when we zoom in on a randomly sampled realisation where Eq. (4.73)
gives a very different estimate than ¢’, as for example is the case in Fig. 4.17. We
notice that the dominant oscillatory behaviour is the one which is expected from a
dominant doublet structure. The garnish by oscillations of much higher frequency is
generated by the coupling to the intermediate sites. Their influence is indeed small,
and therefore their explicit contribution was ignored in our analytical calculations
above. Nevertheless, these high frequency oscillations do imply that the dynamics is
not exactly periodic, but rather quasi-periodic. Although the theoretical prediction
for the first passage time #* indeed points towards the first maximum of the dominant
oscillation, as clearly pointed out in Fig. 4.17, the actual maximum within the relevant
time window [0, 1.7 Tp) may be shifted to a later point in time. Indeed, we see that
here ¢’ predicts that the maximum is reached after Tg. Although, by all reasonable
quantifiers, this is a very efficient realisation, it is not recognised as such by the
quantity ¢'. Exactly this potential recurrence of the desired population localisation at
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Fig. 4.17 Output site population probability pou(f) for a single realisation of the Hamiltonian
(4.81). Spectral estimate (4.73) for the first-passage time t* is compared to ¢’, for which poy (t =
t) = 73}1 obtained over [0, 1.7 Tp) (see main text p. 129). There are multiple strong population
recurrences at the output site within [0, Tk ). High frequency oscillations show that the dynamics is
quasi periodic rather than periodic. This figure was taken from Walschaers et al. (2015)

the output site, within the time window on which P}, is defined, leads ¢’ to strongly
misjudge the actual first passage time t*, especially when #* is very small and thus
when Tg/t* > 1. Therefore, we conclude that the spectral estimate, which uses
E* and Eq. (4.73), is the most accurate numerical method to extract the transfer
time distribution. Indeed, the spectral estimate also produces the agreement with the
numerically exact result.

Although it is hard to generate systems with dominant doublet via post-selection,
this procedure is feasible up to system sizes N = 14, given several thousands of
CPU hours (on an Octa-core Intel Xeon processors E5-2670 (Sandy Bridge) archi-
tecture”®) worth of sampling. Due to the difficult sampling, it is hard to verify whether
the good agreement, as presented in Fig. 4.16, between theoretical prediction of in
Eq. (4.135) and numerics, holds for larger systems. In Fig. 4.18 we scan over the
system sizes which are within reach and show that, indeed, theory and simulations
match well, independently of N. The failure to correctly capture the tail, when using
¢’ as an estimate for t*, is observed for all four choices of N. We already see a con-
siderable difference between the different system sizes when considering the peak of
the curve around 7 = #*. A well pronounced decrease thereof while increasing N
is a consequence of the linear scaling of v, as given in Eq. (4.135), with the system
size.

Once we have established the good agreement between our theory, Eq. (4.135),
and the numerical results for 75 /¢*, on the basis of the spectral estimate for * as given
by Eq. (4.73), we can move on to study the averaged dominant doublet. We note that

26Clock speed of 2.6 GHz, 8x256 KB of level 2 cache and 20 MB level 3 cache. All demanding
computations, i.e. those that cannot be done on a normal laptop, were done on the bwGRiD.
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Fig. 4.18 Histograms of the simulated inverse transfer times Tg/t* (thin solid lines) across fully
connected random networks of variable size N, and of }E t—E” } /2V (dashed lines), together with
the theoretical distribution (4.135) (thick solid line). The parameters £ = 2, characterising the RMS
coupling &/+/N between intermediate sites and dominant doublet strength v = 0.95 are kept fixed
for all realisations. The variance of the coupling between input/output site and the intermediate sites

is given by || V||2/N, where, for each value of N, ||V||2 ~ 0.31 is extracted from the simulations
(which is to be expected from (4.97)). The numerical simulations only consider a time window
[0, 1.7 Tg). Therefore the minimum value of the inverse transfer time is given by Tg/1* = (1 L
The inset stresses the agreement between the theoretically predicted algebraic tail (thick solid line)
and the |[E™ — E~| /2V histogram (dashed line). The histogram for T /¢* (thin solid line) slightly
deviates from the other two curves because the quasi-periodicity of the dynamics suppresses the
tail of the distribution (see text and Fig. 4.17). This figure was taken from Walschaers et al. (2015)

here we generate systems using Eq. (4.151), where x is chosen such that Eq. (4.93)
should lead to o = 0.95. This predicted value for ' is typically not the value which
is extracted from numerics; we usually obtain (miny |(n*, i)|2)reansations ~ 0.92.
Although this difference seems small, inserting itin Eq. (4.132) leads to a significantly
different result. In what follows, we choose to insert the numerically obtained o,
rather than the theoretically predicted one in Eq. (4.132), to get the analytical curves
given by Eq. (4.131).

To begin with, Egs. (4.132) and (4.136) predict not only different scaling laws
with N, but also a different weight of the tail of the distribution. Most notably, the
post-selected dominant doublet ensemble is expected to produce considerably more
realisations with enhanced transport than the averaged dominant doublet ensemble.
This prediction is indeed verified conclusively by Fig. 4.19, where we consider
rather small systems with N = 8. The difference is expected to become only more
pronounced for increasing N. The histogram in Fig. 4.19 is cut off at 75 /t* = 5 since
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Fig. 4.19 Histograms (dashed) and their theoretical predictions (solid) for the statistics of Tp/1*.
The averaged dominant doublet ensemble (darker grey) is compared to the post-selected ensemble
(lighter grey) for a system size of N = 8. The other control parameters are the RMS interaction
between intermediate sites £/ VN, with £ = 2, and the dominant doublet strengths o« = 0.95 (post-
selected) and o’ = 0.95 (averaged). The analytical curve, Eq. (4.131), (4.132), for the averaged

dominant doublet ensemble is obtained by inserting (minz |(n*, :I:)|2)mhsmonS ~ 0.92 rather than
the control parameter o itself

there is not enough statistics to go beyond; as commonly the case for a power-law
distribution, the accumulation of statistics in the tails is a challenging task.

Finally, the averaged dominant doublet does provide the possibility to probe larger
system sizes, results of which are shown in Fig. 4.20. Although there are 30 sites
more in the one system than in the other, the statistics is remarkably similar. This
turns out to be a consequence of Eq. (4.132) which predicts a scaling v ~ +/N, and
this behaviour is nicely visualised by Fig. 4.20. Even for N = 50, the weight of the
tail for the averaged dominant doublet ensemble is still smaller than that of the tail of
the post-selected dominant doublet ensemble in Fig. 4.19, which is obtained for only
N = 8 sites. This again strengthens the conclusion that the post-selected dominant
doublet ensemble is far superior to the averaged dominant doublet ensemble: For
network ensembles with a post-selected dominant doublet structure the density of
realisations where the transport is enhanced, i.e. where T /t* > 1, is significantly
higher than in networks with an averaged dominant doublet. This statement even
holds true when the networks with the averaged dominant doublet structure contain
five times more sites.

Numerical Results for the Efficiencies

Even though we have presented simulation results that indicate very satisfactory
agreement between analytical derivations of transfer times statistics and their numer-
ical counterparts, the main goal of this chapter is to understand efficient transport;
therefore a study of efficiency statistics is required. We note that Figs. 4.6, 4.7, 4.8
and 4.10 were already produced using the simulation techniques described earlier in



134 4 Efficient Transport in Closed Systems

10
n ]
% 0.100} ]
=
o
0.010} ]
0.001f ]
0.1 05 1 5 10
Talt

Fig. 4.20 Histograms (dashed) and their theoretical predictions (solid lines) for the statistics of
Tg/t*. Different system sizes, N = 20 (darker grey) and N = 50 (lighter grey), are compared for
the averaged dominant doublet ensemble. The analytical curve for the averaged dominant doublet

ensemble, Eq. (4.131), (4.132), is obtained by inserting (minz |(n*, :|:>|2)realismmns ~ 0.92 rather
than the control parameter ¢ itself

this section. Such scatterplots are, however, not very enlightening when one wishes
to understand the density of realisations, for which histograms are more feasible. We
choose to focus our attention on Ppy.

At first instance, we compare the efficiency distribution of the plain random GOE
ensemble to ensembles with design principles built in: GOE with centrosymmetry,
and centrosymmetric GOE with post-selection of the dominant doublet. Figure 4.21
shows the dramatic impact of imposing these design principles. We notice, first
of all, that the centrosymmetry is indeed beneficial for excitation transfer, since it
broadens the distribution and pushes it towards higher efficiencies. On the other hand,
the centrosymmetry alone clearly is insufficient, as was also noted in Sect.4.4. It
becomes impressively clear in Fig. 4.21 that, as was predicted in Sects. 4.4 and 4.5.3,
the presence of a dominant doublet pushes and concentrates the entire distribution to
the range of high efficiencies where Py > 2o — 1. We notice that this effect is seen
for all numerically tractable system sizes N in Fig. 4.21. Although the distributions
without dominant doublet are subject to scaling effects, the results with dominant
doublet remain remarkably similar.

In addition, it is natural to wonder whether there is a detectable difference between
the dominant doublet as obtained from post-selection and the averaged dominant dou-
blet. Such a comparison is made in Fig. 4.22 and leads to a surprisingly counterintu-
itive result: Although we have clearly verified that, on the matter of time scales, the
dominant doublet as obtained by post-selection is superior to the averaged dominant
doublet, for the latter the distribution of transfer efficiencies is peaked more strongly
around Py ~ 1. A potential explanation is that the time scale statistics only allows
conclusions such as the ones presented in Sect.4.5.3, which are, as was stressed by
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Fig. 4.21 Distribution of the transfer efficiency Pp, Eq. (4.6), for variable network sizes N and
three Hamiltonian ensembles: GOE, GOE with centrosymmetry, and GOE with centrosymmetry and
post-selected dominant doublet. The transfer efficiency Py = 2a — 1 is indicated by the arrow. The
control parameters in (4.61), (4.70) are set to £ = 2, thus characterising the RMS coupling strength
between the intermediate sites £/+/N, and dominant doublet strength o = 0.95. This figure was
taken from Walschaers et al. (2015)

Fig. 4.14, only lower bounds on the density of realisations with Py > 2a — 1. Or,
more plastically, the time scale statistics provides us only with a lower bound on the
integral of the distribution between the point indicated by the arrow in Fig. 4.21 and
the maximal value of Pp. Neither of both distributions in Fig. 4.22 is in violation
with these results. The reason for this unexpectedly strong peak in the efficiency
distribution of the averaged doublet remains unclear, but we do observe that there
seems to be a trade-of between the density of extremely fast realisations and the den-
sity of extremely efficient realisations. A similar result is also found in the scattering
approach to similar systems in Sect. 5.4.

A final test that remains to be conducted is an explicit study of the scaling
behaviour of the density of efficient realisations for increasing N, as derived in
Sect.4.5.3. Focussing on the post-selected dominant doublet, we can easily obtain
an estimate for the density of efficient realisations: One simply counts the number
of realisations with Py > 2a — 1. Figure 4.23 shows clearly that, indeed, the pre-
diction of Sect.4.5.3, based on time scale statistics, provides a lower bound to the
actual density of efficient realisations. Therefore, we acquired some analytical, pre-
dictive power for the efficiency statistics, deduced from the time scale statistics. We
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Fig. 4.22 Distribution of the transfer efficiency Py, Eq. (4.6), for two Hamiltonian ensembles:
the averaged dominant doublet ensemble (darker grey) and the post-selected dominant doublet
ensemble (lighter grey). The control parameters in (4.61), (4.70), (4.71) are the dominant doublet
strengths o = 0.95, o/ = 0.95, the system size N = 8 and the energy scale £ = 2, which together
determine the RMS coupling £/+/N between intermediate sites
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Fig. 4.23 Density P(Py > 2a — 1) of efficient network realisations, as a function of the network
size N, for three different ensembles (GOE, GOE with centrosymmetry, GOE with centrosym-
metry and post-selected dominant doublet). The theoretical curve for P(Tg/t* > 1) (solid line),
Eq. (4.138), defines a lower bound to the dominant doublet ensemble, as expected (see text). The
GOE curveis cutoffat N = 12, since it takes too long to sample a sufficient amount of data for larger
values of N. The control parameters in (4.61), (4.70) are the dominant doublet strength o« = 0.95
and energy scale ¢ = 2, which determines the RMS coupling &/ VN between intermediate sites.
This figure was taken from Walschaers et al. (2015)

also depict the rather dramatic scaling of this density for the ensembles lacking the
dominant doublet all together: The GOE and the GOE with centrosymmetry imposed
on it. This figure clearly shows the enormous advantage provided by the dominant
doublet constraint, and concludes our set of numerical checks.
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4.6 Summary and Outlook

In this chapter we treated quantum transport in closed finite systems with constraints,
which were modelled by adopting network terminology. Our main goal throughout
this chapter was to transfer a single excitation from an input site to an output site (a
setting which chemists would refer to as donor and acceptor May and Kiihn 2000).
We aim for the process to be both fast, compared to a relevant benchmark time
scale, and efficient, in the sense that the excitation is transferred with high probabil-
ity to the output site. By studying highly symmetric, analytically solvable network
structures, we explored the fundamental role played by symmetry. However, such
well-controlled, perfectly engineered systems are not the systems we are ultimately
interested in, since they lack any sense of robustness and do not manifest any dis-
order —which any realistic system would do. Hence we diverted attention to random
networks, using random matrix theory.

It quickly becomes clear that fully random networks, as modelled by the Gaussian
orthogonal ensemble, perform sub-optimally. Although the transport times can be
made fast, we completely lack the efficiency which we strive for, as shown in Figs. 4.6
and 4.21. To exploit the robustness of random systems and some of the engineering
advantages of regular networks, we introduced the concept of design principles:
Preferentially minimalistic and coarse grained constraints imposed upon the systems
under consideration to enhance their ability to transfer excitations from a given input
site to a given output site. This leads us really into the realm of complex systems,
since these structures are on the intersection between order and chaos, neither regular,
nor fully disordered.

The first design principle which we introduced was centrosymmery, a type of
reflection symmetry which is manifested on the structure of the Hamiltonian. Cru-
cial is that this symmetry also connects the input and output state vectors to one
another. It seems that this system leads to an effect which is very similar to coherent
backscattering (Wolf and Maret 1985), but which occurs in forward direction, see
(4.64). The exact reason for the positive influence of the centrosymmetry is not fully
known, although it is clear from Fig. 4.21 that it is a beneficial design principle.

Potentially the centrosymmetry mainly serves to facilitate?’ the manifestation of
the next design principle: the presence of a dominant doublet. The key idea of this
requirement is that the transport is dominated by two eigenstates, but that these are
effectively assisted by the presence of the other energy levels, i.e. those describing the
energetics of the intermediate sites. We introduced two different ways of imposing
this constraint on the system, post-selection and a separation of energy scales. The
former method generates the post-selected dominant doublet ensemble, whereas the
latter can only impose a constraint on the average over all realisations, hence it is
baptised the averaged dominant doublet ensemble. The idea of the dominant doublet
is based on the theory of chaos assisted tunnelling, where one implicitly considers the

2TThere is a much higher density of dominant doublet realisations in the centrosymmetric GOE
than in the standard GOE.
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averaged dominant doublet ensemble (Dembowski et al. 2000; Leyvraz and Ullmo
1996; Steck et al. 2001; Tomsovic 1998; Tomsovic and Ullmo 1994; Zakrzewski
et al. 1998).

Once the network structures are designed, we arrive at the central philosophy of
our work, which relies on letting go the notion of deterministic enhancement of the
transport. Rather than perfectly controlling—or engineering—systems, we introduce
a mechanism based on statistical control. Instead of manipulating the expectation
value of a physical observable, we control its statistical fluctuations. We elaborated
extensively on the analytically obtained statistics of the transfer times for both dom-
inant doublet ensembles, contained in Eq. (4.131) for the averaged ensemble, and
in Eq. (4.135) for the post-selected ensemble. The obtained distribution is a Cauchy
(or Lorenzian) distribution, its parameters depend on the doublet strength o (4.70)
or o' (4.71), or can equivalently be controlled by the density of states for the bulk
sites and the average coupling between the bulk and the input/output site. Crucial is
that this distribution has an algebraic tail—which thus does not decay exponentially.
This implies that realisations which are much faster than the benchmark time scales
are abundant.

Moreover, in Sect.4.5.3 we carefully study the scaling of the density of these
efficient realisations with the system size, where we conclude that increasing the
system size such that the density is kept constant leads to a stronger enhancement
by the proposed mechanism. When the system size is increased such that also the
density of sites increases, and thus the total volume of the system remains constant,
we tend to find a negative influence on excitation transfer. Remarkably, there is a
clear difference between the averaged and the post-selected ensemble: The latter
exhibits a clearly heavier tail, which also shows a different scaling with the system
size. The post-selected dominant doublet ensemble therefore give rise to a much
higher density of very fast realisations.

We verified all these findings by comparison to numerics, which was extensively
analysed. Analytically we only have indirect predictions for the statistics of the effi-
ciencies themselves, but we manage to extract their histograms from numerics. This
provides a striking proof, see Fig. 4.21, that the introduction of the dominant doublet
design principle has a dramatic impact on the efficiency distribution. A surprising
result is shown in Fig. 4.22, where it becomes clear that the averaged dominant
doublet ensemble leads to higher efficiencies than the post-selected ensemble. This
difference falls outside of what can be explained by the presented analytical results,
but it suggests a trade-off between efficiency and speed-up of the excitation transfer.

The results presented in this chapter were mainly built on previous works on quan-
tum transport in disordered systems (Scholak 2011; Scholak et al. 2010, 2011a,b,c;
Zech 2013; Zech et al. 2013, 2014), and on results from the field of quantum chaos,
more specifically chaos assisted tunnelling (Dembowski et al. 2000; Leyvraz and
Ullmo 1996; Steck et al. 2001; Tomsovic and Ullmo 1994; Zakrzewski et al. 1998).
Even though this is a rather extensive legacy to serve as a foundation, this work is in
many ways rather minimalistic; one might consider our model as the simplest mech-
anism which consists of an active backbone structure and a rather passive assisting
structure. In chaos assisted tunnelling, one would coin these two parts the regu-
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lar islands and the chaotic sea. However, our abstract statistical model allows for
applications outside of the realm of standard quantum chaology.

The idea of backbone structures carrying the excitation (or, in chemistry and in
AMO?® terminology, “population”), while additional constituents drastically impact
the spectral properties of the system, without actually hosting the excitation at any
relevant point in time, pops up in several recent works. However, one often encounters
network structures which have more complicated backbone structures (Mostarda
et al. 2013) than our dominant doublet, which with its two sites can be considered
as the most simplistic model of its kind. We suspect that these structures describe
a natural extension of our statistical model, much in the same way as resonance
assisted tunnelling extends the framework of chaos assisted tunnelling (Brodier et al.
2002).

Although both crucial and powerful, the dominant doublet is a somewhat straight-
forward design principle to impose, in the sense that its presence clearly leads to a
well understood enhancement of transport. Far less clear is why centrosymmetry (or
even only the tendency to centrosymmetry Zech 2013, Zech et al. 2013, 2014) is
beneficial for the transfer efficiency. What makes it more intriguing is that such a sym-
metry is encountered so often in various contexts of enhanced transport, going from
driven quantum walks (Hamilton et al. 2014), over embedded ensembles (Ortega
etal. 2015),” to currents in the non-equilibrium steady state as discussed in Chap. 9
of this dissertation. A possible line of thought to explain the fruitfulness of such built-
in reflection symmetries in the context of excitation transfer, is to make a connection
to time reversal. Currently, a very exciting field of research in wave dynamics (both
linear and non-linear) rests upon the idea that time reversal can be used for focussing
(Chabchoub and Fink 2014; Frazier et al. 2013; Lerosey et al. 2007). Essentially the
phenomenon which is observed in the centrosymmetric networks is exactly such a
focussing effect, and, although there is clearly no equivalence in the mathematical
sense, the underlying physical intuition behind the focussing by means of “spatial
reflection” may be very similar to the essence of focussing exploiting “temporal
reflection”.

A final, but important prospect lies in the concept of statistical control and dis-
order enhanced transport. As will become clear in Chap. 6, we mainly develop this
mechanism for its potential relevance to describe quantum effects in biology. Never-
theless, the notion of a complex network of connected quantum states, on which an
excitation roams around, is from a structural point of view one of the most generic
settings which one can describe in quantum transport theory. One way or the other,
the language and model exploited here can be adjusted to facilitate almost any type
of system.® In principle, one might therefore suggest that our modelling could also
find applications in quantum computing. Given the extremely clean and controlled
setting in which quantum information theory is usually treated, this may sound coun-

28Common acronym to denote the community studying atomic, molecular, and optical physics.
29This provides a natural connection to the random matrix theory of many-particle systems.

30Whether the proposed mechanism can also be implemented in such systems is of course a very
different question.
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terintuitive. However, a complex systems approach will be inevitable when quantum
information processors or quantum communication networks are scaled up. Disorder-
and noise induced effects are ubiquitous in large systems, hence their understanding
is indispensable.

Although quantum transport and quantum information seem two extremes, the
former tending more towards condensed matter physics or physical chemistry, the
latter affiliated to mathematics and informatics, they actually are intertwined at some
points. Quantum-walk based algorithms make the connection explicit (Childs 2009;
Farhi and Gutmann 1998; Hein and Tanner 2010; Roland and Cerf 2005). Tools
such as random matrix theory have already been imported in this field (Roland
and Cerf 2005), however much of the knowledge present in the disorder physics
community has not yet been incorporated in quantum computing. As developments
currently progress, driven by machines such as the D-Wave two (Bunyk et al. 2014;
Lanting et al. 2014), one must learn how to deal with unavoidable disorder effects.
A confirmation of this suspicion was recently provided by the numerical prediction
of power-law statistics for the time-to-solution in quantum annealing algorithms
(Steiger et al. 2015). The results presented in this chapter indicate that disorder is
not guaranteed to have a negative impact, and can even be exploited and controlled
by a suitable design of the system.

Throughout this chapter we have not considered the influence of inserting and
extracting the excitation. Given our motivation to describe quantum transport in
photosynthetic light harvesting complexes, this issue is, nevertheless, highly relevant.
In the next chapter, we introduce coupling to external channels and implement the
design principles of the present chapter into a context of scattering theory. Via the
presented design principle, we can also achieve enhanced excitation transfer in the
scattering framework. However, there is also a significant interplay between the
system and the the external channels, as will be discussed extensively.
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Chapter 5 ®
Scattering Approach to Efficient ez
Transport

A common mistake that people make when trying to design
something completely foolproof is to underestimate the ingenuity
of complete fools.

Douglas Adams in (1993)

5.1 Introduction

In Chap.4 we extensively discussed how one can efficiently map a given initial
state to a given final state—these states are referred to as “input” and “output” or
“donor” and ““acceptor’—on a fast time scale. We did not consider the matter of
the excitation entering or leaving the system and therefore could explicitly consider
the system closed: Neither particles, nor energy, not even entropy were allowed to
enter or leave the system. In this chapter, we study one potential approach to let the
external world talk to the systems of Chap. 4.

The approach chosen is the one from Sect. 2.6, a choice which allows us to still
treat the problem in a single-particle setting. In this setup, we consider the system,
described by a Hilbert space CV (given that we consider the single-excitation space
on N sites), and attach scattering leads to it. A scattering lead is generally described
by a space of the form £2(R?),! and attaching a set of scattering channels to the
system thus leads to a description of the form £%(R?) @ C", although the continuum
can in principle have a substructure by appointing a separate Hilbert space to each
channel H,. C £%(R?), such that we can describe Hipr = CV b, H..

'We choose £2(R?) because we generally consider wave propagation in three spatial dimensions.
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Fig. 5.1 Sketch of a wave packet which travels inside a continuum at the lefthand side, collides
with the scattering system, which contains two bound states. The bound states which constitute the
system under consideration are coupled to one another in a double well potential, characterised by
and effective direct coupling V. The couplings between the bound states of the internal system and
the continuum of states in the scattering channels is described by I and T/

Physically this means that we consider a set of bound states, which form our
system, and are coupled to a continuum. This leads us to the setting of nuclear and
atomic physics as studied by Fano (1961), Feshbach (1958, 1962, 1967). The central
idea it that a freely roaming wave packet hits the system from one of the connected
channels, subsequently creates an excitation within the system, which may decay
again into one of the channels. A sketch of such a setup, by means of a potential
landscape is shown in Fig. 5.1: For simplicity, we show a double well system in a 1D
setting (similar to Celardo and Kaplan 2009). The continuum stretching out at, both,
the far left and the far right can be interpreted as two different scattering channels, a
setting which allows us to treat the scattering process in terms of transmission and
reflection coefficients.

Figure 5.1 nicely indicates the different parameters which play a role in the prob-
lem: The internal system’s level structure—which here requires us to diagonalise the
effective two level system Hamiltonian generated by the double-well potential—,
the coupling of the external channels’ continuum of states to the internal system, and
the energy of the incoming wave packet (in case of broadband wave packets, this
would be an energy distribution) (Hunn 2013; Hunn et al. 2013). Specially the latter
two parameters are new in this scattering setting and therefore we specifically study
their impact on the transfer.

5.2 Transfer Probability and Dwell Time

As described in Sect. 2.6, we model such scattering problems in the scattering matrix
formalism, which is well-established and can be applied to an enormously wide range
of problem settings. As much of our modelling in Chap.4 was inspired by results
from the quantum chaos community, we continue our endeavour and exploit the same
toolbox.



5.2 Transfer Probability and Dwell Time 147

A broad subfield of quantum chaos considers these open systems in a
framework called quantum chaotic scattering (Gaspard 2014). We formulate the
scattering matrix setup as defined in Brouwer et al. (1997), Celardo and Kaplan
(2009), Haake et al. (1992), Lewenkopf and Weidenmiiller (1991), Sebaetal. (1996),
Stockmann et al. (2002):

n 1
S(E)=1-2niW'——W, 5.1
— Lleff

which was already obtained in Eq. (2.83). The scattering matrix thus depends on the
energy of the incoming wave, E, and its dimensions must correspond to the number
of channels, n.. The matrix H is an operator on the Hilbert space of the closed
system, describing the bound states in a resonance framework. This implies that Heg
is non-hermitian (Rotter 2009). As is standard in this form of scattering theory, Heg
is obtained from a Fano—Feschbach projection (Fano 1961; Feshbach 1958, 1962,
1967) and reads

He == H —itWW?, (5.2)

The operator H is the Hamiltonian describing the bound states and throughout this
chapter it is treated as an N x N matrix, reflecting the existence of N single-particle
bound states. Notice that we ignore the Lamb shift (Cohen-Tannoudji et al. 1998).
As was mentioned briefly in Sect. 2.6, the operator W is also obtained from a pro-
jection procedure which describes how the coupling Hamiltonian defined on Hqa
is projected down to couple the scattering channels to the internal system. In princi-
ple, W itself can be energy dependent, although we will here assume it to lack such
dependency.? This implies that W is an n, x N matrix, with N the dimension of the
internal system (the number of bound states) and n. the number of external channels.
Notice that this is indeed consistent with the fact that S(F) is an n. x n. matrix and
(E — Her)~! an N x N matrix. For further simplicity, we define a new operator
W.=.m W, which eliminates the necessity to drag around 7 factors throughout all
calculations.

In Sect.2.6, we described that by its very definition (2.75), the scattering matrix
describes the asymptotic mapping of an initial wave packet |¢;) onto a final wave
packet | (b.f-) via <¢,- , S(E )(bf). Here we approximate that initial and final wave packets
are close to plane wave fronts, which implies that their spread in energy can safely
be ignored.3 ‘We assume that there is no additional structure in the channels, and thus
the basis of plane waves can be described by a set of wave functions |c, E), where ¢
is the channel index and E the energy of the inserted plane wave, which implies that
we effectively treat the scattering channels as one dimensional leads. Therefore, one

2This assumption implies that, within the range of relevant energies, all incoming plane waves
interact with the system in the same way. This approximation is common, both in light-matter inter-
actions (Cohen-Tannoudji et al. 1998) and in mesoscopic physics (Lewenkopf and Weidenmiiller
1991).

3If this were not the case, one would have to integrate over the relevant energy range, which would
make the explanation more technical and less transparent.
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may describe the probability for having transfer from a given channel ¢ to another
channel ¢’ at a given energy E by

Pese(E) = |See (B (5.3)

Wave functions of the form |c, E) can only be transferred to wave functions of the
form |c’, E ), implying that for the dynamics in the full Hilbert space H,y,;, we have
energy conservation. Equation (5.3) defines the transfer probability and therefore is
the main workhorse of this chapter.

Making the connection to Chap.4, one can interpret Eq.(5.3) as the “open sys-
tem”, or scattering equivalent of the efficiency treated in Sect.4.2. However, Chap. 4
focussed strongly on fast transfer and therefore on transfer time scales. Hence, it
is natural to wonder whether there is a similar notion available in the open sys-
tem setting. This issue is not as straightforward as for the closed systems, since by
its very definition p._~(E) is an asymptotic quantity. Nevertheless, a considerable
amount of work has been done on defining the delay time or dwell time (Berkolaiko
and Kuipers 2010; Brouwer et al. 1997; Kuipers and Sieber 2008; Seba et al. 1996;
Smith 1960). As we specifically are interested in the time it takes an incoming wave
front at energy E to transfer from channel ¢ to channel ¢’, the suitable quantity is
Brouwer et al. (1997), Smith (1960)

_ 4
Tese(E) =1Im {SC,C’(E) dE Sc,c’(E)} . 54

In Smith (1960), it is explained, using wave packet dynamics arguments, that
Te—c (E) can be interpreted as the time it takes for the scattering peak in the
¢ — ¢’ channel to appear. As read in Brouwer et al. (1997), one can also con-
nect the dwell time to a phase shift in the AC signal,* when considering con-
ductance in chaotic cavities. More generally, it can be stated that the dwell time
investigates the phase shifts that are introduced in the plane wave as a consequence
of the scattering process. Because these dwell times fluctuate in chaotic systems
(Lewenkopf and Weidenmiiller 1991), they are of particular interest in relation to
conductance fluctuations (Jalabert et al. 1994).

Another relevant time scale is the resonance lifetime (Gaspard 2014), which is
extracted from the eigenvalues of H.g. Because H.g is non-hermitian, its eigenvalues
are generically given by & = E; —iI;/2. As we will see in the following sections,
these resonances &; contain information on the position of the resonance peak, i.e. E;,
and on its width, i.e. I';. As shown in Gaspard (2014), these widths are closely related
to decay rates and therefore 1/I"; describes the resonance lifetime. This quantity is

“4Condensed-matter physics commonly studies scattering problems in the sense of currents, leaving
open the option to probe a mesoscopic cavity either with alternating current (AC) or direct current
(DCO). It is argued that, although DC signals only depend on scattering amplitudes, AC signals are
sensitive to phase factors (Brouwer et al. 1997). The transfer of an AC signal through a scattering
cavity hence introduces a phase shift, which is what we here refer to as the dwell time.
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both conveniently easy to handle and insightful, but it has the disadvantage that it
only serves to probe the resonance energies E;.

As long as we are in a regime where different resonances are not overlapping,
ie.I',I'; < |E; — Ej| for all i and j, we can safely conclude that the dwell time
and the lifetime are narrowly related (see (5.17) and (5.29)). However, once the
resonances overlap, one can no longer make this association (see e.g. Lyuboshitz
1977). We here employ the dwell time as an estimate for the time it takes the excitation
to be transferred from the input to the output channel, building on Smith (1960),
although it must be stressed that this interpretation is only valid when we consider
plane waves with well-defined energy.

Having defined both the transfer efficiency p._. . (E) and the dwell time 7., - (E),
we can discuss fast and efficient excitation transfer in these open systems. To start
this discussion, we present basic calculations for the two-level system of Fig.5.1.
They can be considered textbook knowledge, but serve as a benchmark system to
gauge the performance of the disordered systems we will deal with subsequently.

5.3 The Two Level System*

This section reviews textbook knowledge on scattering of two-level systems, which
is extensively used throughout the remainder of this chapter.

5.3.1 The Model*

The closed two-level system was already discussed in Sects.4.2 and 4.4, where we
showed that the main structure of the Hamiltonian is given by

_(E.V
H_<V E2>. (5.5)

We assume that this is the Hamiltonian in the site basis and that the system is time
reversal invariant, implying that the matrix” components are real. In the philosophy
of Chap.4, where we referred to these two sites as “input” and “output”, it is only
logical to attach the external channels to the states localised on these sites, ergo

W =/T'/2 |in) (c1, E| +/T"/2 |out) {(c2, E|. (5.6)

To visualise this setup, let us point out that this is exactly the scenario sketched in
Fig.5.1. With this choice of system-channel interaction, the effective non-hermitian

Hamiltonian reads .
Ei—i%s \%
H. = 2 ). T
e ( v Ez_i%) (5.7)
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From here it can be directly calculated’ that

y
Sees(E) = —iNTT : .68
v (B) = (E—E +iL) (E—E,+i%) - V2 (.8

By (5.3), this leads to a transfer efficiency (now omitting the channel indices, since
there are only two channels under consideration)

rrv?

((E— EN(E — Ey) — V2 — ") 4 (L(E— Ey)) + S(E - En)
(5.9)

po(E) =

The dwell time already reduces to a rather complicated expression

QE = By - B2) (5(E - B + S(E — )
((E = EN(E — E2) — V2 = LI 4 (L(E — Ep) + S(E - Ep)’
(E=EnE-E-v2=IF) (5+5)

(B — EN(E — Eo) = V2 = LL)* + (5(E - E») + 5(E - E))’
(5.10)
To gain a better understanding for the behaviour of this system one therefore needs
to understand the role of five different parameters: I', I/, Ey, E; and V.

T0(E) =

5.3.2 The Symmetric Case*

To disentangle the problem, we treat a much simpler situation by setting £’ = E| =
E; and " = I'". Although this seems like a technicality to allow for more transparent
manipulations, it nicely connects to the results of Chap.4, since it renders Hes in
Eq. (5.7) centrosymmetric. We thus obtain the simpler results

2v/72
Po(E) = v 5 , (5.11)
(E-Ep2-v2-5) 412E - By
and
((E _EV Vg F{) r
To(E) = (5.12)

(B—Ey—v2- %2)2 FTAE-EY

5The result follows directly from diagonalising E1 — Hegr and using its spectral decomposition in
(5.1).
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po(E) accordingly exhibits well-known resonance profiles as shown in Figs. 5.2 and

5.3, ubiquitous in many branches of physics. To interpret such images, we find the
extremal points of po(E). The calculation is straightforward and leads us to the

resonance energies
I \2
E=E+V 1—<—) , (5.13)
2V

E=F, (5.14)
where
r\2
E+VvV |1—(— =1, 5.15
Do <2V) (5.15)
@&y = () —! (5.16)
Po —\v | a2 2° :
+ (37)
whereas
E+v /1—-|— 5.17
70 V! V (5.17)
(E") = ! F (5.18)
Y 2V (L)Z ' '
2V
J T r)2V=1'/60 r/2V—2/3
g 075 1
S 05 i
0.25 1
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Fig. 5.2 Resonance profiles for the transport from input to output channel across the two level
system (5.7), with both levels’ on-site energy E’ = 0. The structure of the transfer probability
profiles is controlled by the ratio of the internal coupling V and of the external coupling I'. Here,
this ratio is changed from panel to panel by altering V', while keeping I' = 1 constant
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Fig. 5.3 Resonance profiles for the transport from input to output channel in a two level system
(5.7), where both levels have on-site energy E’ = 0. The structure of the transfer probability profile
is determined by the ratio of the internal coupling V to the external coupling I'. This ratio is changed
from panel to panel by altering I, while keeping V = 2 constant

Whenever 2V > T the three energies are well-defined, energies (5.13) indicate the
maxima in the resonance profiles of Figs. 5.2 and 5.3, whereas energy (5.14) is alocal
minimum. Studying po(E), we even find a remarkably strong result in Eq.(5.15):
Whenever the time scale of the internal coherent dynamics (controlled by V) is faster
than the incoherent rate I" /2 which connects system and channels, ergo 2V > T, the
transmission probability is 100%. On the other hand, slow coherent dynamics, which
implies 2V < I' and thus that energies (5.13) are no longer well-resolved, yields a
different behaviour. In this case, Figs.5.2 and 5.3 show a transition from a regime
with two scattering resonances to a situation where both peaks merge into one. Under
such circumstances, the previous minimum at £ = E’ (5.14) takes over as the local
maximum. Importantly, we now see that the maximal transfer probability, Eq. (5.16),
depends on I'/2V and decreases as 2V < I'. A naive explanation for this effect is
that an excitation which enters the system at the input site, via the attached channel,
immediately decays into that same channel before it can be be transferred to the
output site.

The dwell times impose more subtleties that need to be taken into account. The
transfer probability at the resonant energies only depends on the ratio I'/2V, not on
both parameters independently —this is different for the dwell times. For 2V > T,
the dwell time, for systems probed at resonance energies (5.13), is simply given by
2/T,i.e. by the inverse of the width of the resonance peaks in Figs. 5.2 and 5.3. Even
on resonance, the coupling to the channels is the dominant parameter that determines
the transport time scale. No clever design, through an effective modification of V can
make the transfer faster, only a direct change of I" can serve this goal. Moreover, we
see that, in the regime of merging resonances 2V < I', where the maximal transfer
efficiency is reached at E = E’, the time scales are only slowed down, to ultimately
reach the limit4/T" as 2V < T.
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These results imply that, for excitation transfer on resonance, an optimum is
reached at2V = I'. That s, for a given coherent input-output coupling V, Iy = 2V
sets the strongest possible channel coupling which still guarantees 100% transfer
efficiency. This I also sets the fastest possible transfer timeat g = 2/ oy = 1/ V.

On he other hand, for a given I, one should strive to make 2V > I". Once this
objective is reached, both the transfer probability and the dwell time are optimal, at
least when the system is probed on resonance.

Having a closer look at the energies (5.13) for which these resonance peaks
are obtained in the regime where 2V > I', we notice that they are exactly the
closed system energy levels E’ + V (see (4.8)), with the additional correction factor
V1 — (T'/2V)?. This correction factor can safely be forgotten whenever 2V > T';
then the two resonance peaks are completely isolated and are just located on the
eigenstates of the closed system. However, when the system and the channels couple
strongly and the resonances start to overlap, as seen in Figs. 5.2 and 5.3, the energy at
which the maximal transfer is reached, is shifted closer to E’, until 2V = I" and the
two peaks merge. In this case, the information about the internal system eigenstates
is completely washed out by the dominating coupling to the channels.

Of course, one may probe the system at different energies than at resonance.
Although we noticed that the maximum transfer probability py, see (5.15), (5.16),
only depends on I'/2V, as observed in Figs.5.2 and 5.3, the overall profile of the
transfer probability as a function of the incoming energy E strongly depends both
on I" and V separately. Specifically, it becomes clear that increasing I" increases the
width of the resonances, whereas increasing V changes their relative distance on the
energy axis. In this sense, one can consider I'/2V as a comparison between the width
and relative distance of the peaks, thus quantifying overlap.

Taking Figs. 5.4 and 5.5 into the picture, where we know that even at the resonant
energy the dwell time is governed mainly by I', we see a similar effect of widening
for increasing I', and change in relative distance for changing V. However, looking
at the dwell times when probing at off-resonant energies, we see that the dwell time
typically decreases. On the other hand, Figs. 5.2 and 5.3 indicate that at these energies
also the transfer efficiency goes down. In other words, there is always a trade-off
observed between speed and efficiency in the transfer through this two-level system.

In summary, as long as I'/2V is smaller than one we find energies for which
po is 100%. On the other hand, it is beneficial to make I' as large as possible,
because it dominantly determines the time that an excitation spends in the system.
The straightforward way of getting very fast and efficient transfer from the input to
the output channel is therefore to increase both I and V ina way such thatI"'/2V = 1.
However, increasing the direct coupling V between input and output states can for
many reasons be physically unfeasible, e.g. if the coupling is distance dependent,
such as for molecules with dipole-dipole coupling, since this amounts to putting
these molecules ever closer together. Therefore, one may wonder whether we can
increase the transfer probability in the regime where I' >> 2V, by adding additional
complexity to the system.
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Fig. 5.4 Dwell time profiles derived from (5.12), for the transport from the input to the output
channel in a two level system (5.7), where both levels have on-site energy E’ = 0. The structure
of the transfer probability profile is governed by the ratio of the internal coupling V to the external
coupling I'. This ratio is varied from panel to panel by altering V, while keeping I' = 1 constant
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Fig. 5.5 Dwell time profiles derived from (5.12), for the transport from the input to the output
channel in a two level system (5.7), where both levels have on-site energy E’ = 0. The structure
of the transfer probability profile is governed by the ratio of the internal coupling V to the external
coupling I'. This ratio is varied over the different panels by altering I', while keeping V = 2 constant

5.4 Designing the System

We now extend the system described in Sect.5.3.2 by adding extra sites, in a way
which is analogous to the model described in Sect. 4.4. This implies that we extend
the system Hamiltonian to the one represented in Eq. (4.81), and the additional sites
translate to more bound states in the scattering picture. Moreover, it is possible to
include more external channels; however, we choose to keep the picture of a single
input and output site intact. This implies that we have one input channel, attached to
one site |in) from which quanta of energy are inserted into the system, and one output
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channel, attached to |out), to which these energy quanta should be transmitted. This
leads to an effective, non-Hermitian Hamiltonian in the site basis,

E/—igvl...vn Vv

U1 Uy

Hegr = : Hin : , (5.19)
Uy U1
\% vn...le’—i%

where Hj, is now a centrosymmetric matrix describing the couplings between the
newly added intermediate sites. As we strive to generalise the model of Sect.5.3.2,
we choose I' = I'/, which turns Hcg into a non-Hermitian centrosymmetric matrix.

One may wonder whether the addition of multiple sites potentially changes the
transfer probability and dwell time. A wide variety of complicated phenomena can
occur when we simply sample H.g using the recipe of (4.61), hence not imposing
the dominant doublet condition, for a fixed value of I'. Figure 5.6 shows a typical
resonance profile thus generated, which exhibits diverse phenomena: We observe a
minority of line shapes which are typical for asymmetric resonances (e.g. at E &~ 1.5),
and several symmetric resonances. The widths of the resonances tend to vary strongly
and also the heights of the peaks fluctuate. However, we must emphasise that we
do find many resonance peaks that go all the way up to p = 1. These phenomena
remind strongly of the typical fluctuations (generally grouped under the term “Eric-
sson fluctuations”) which are known as hallmarks of quantum chaotic scattering
(Gaspard 2014; Jalabert et al. 1994; Lyuboshitz 1977; Madrofiero and Buchleitner
2005; Stockmann 2007).
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Fig. 5.6 Resonance profile for a randomly sampled effective Hamiltonian Hegr as defined in (5.19),
using the prescription (4.61) to sample the bound system Hamiltonian, implying that v; follows the
same statistics as (Hint) jx. We set { = 1 and I' = 5 in (5.19), (5.40), whereas E' =0 and V = 1,
such that the additional random couplings are really seen as fluctuations around these values. The
system contains a total of N = 8 sites
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Shifting the focus to the dwell time profiles® as shown in Fig. 5.7 several features
are observed: At first we see that the narrowest resonance peaks in Fig. 5.6 indeed
are associated with very long dwell times, which implies that, even though transfer
is highly efficient, the time scales at which it occurs are extremely long. In addition,
there is the remarkable feature that the dwell time becomes negative at a given
point. This is clearly a consequence of the dwell time actually being based on phase
information, rather than it really being a pure time scale. In this case, the interpretation
in Smith (1960), based on wave packet dynamics, does not provide the correct image
and the dwell time becomes a more subtle quantity.

Although the features seen in Figs. 5.6 and 5.7 are clearly both useful and inter-
esting, they lack an understandable and robust structure. It is possible to achieve
transfer with high probability, but it is highly unfeasible to control these structures
to achieve efficient excitation transfer. Indeed, we already emphasised that once
many resonances overlap, systems are characterised by fluctuations (Gaspard 2014;
Madroiiero and Buchleitner 2005). Moreover (Lyuboshitz 1977) argues that transfer
time scales are slowed down in systems with many overlapping resonances. Thus, in
a next step we impose the dominant doublet (4.68) as a design principle to generate
an ensemble of statistically controllable and well-understood system conformations.

As extensively discussed in Chap.4, the dominant doublet can be implemented
in several non-equivalent ways. Here we do not impose any specific choice, but
simply focus on perturbation theory on an abstract level. At the root of our analysis
is the centrosymmetric matrix Heg (5.19), which can again be cast in the symmetry
eigenbasis
E'+V—iy (VY

+ +
|V > [—]suh By l% <V—| . (520)
Vo) H,

sub

Hep =

Qbtained for the same random realisation of Hegt with centrosymmetry constraint as in Fig. 5.6.
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Under the assumption that a dominant doublet exists, one imposes the constraint
. 2 . .
that there are two eigenvectors |77+) and |77’> such that |(ni, :t)| = 1 — e with again

|£) = (|lin) £ |out))/ /2. This gives rise to perturbative results for the eigenvalues
of H.g, much as known for the Hermitian case:

(Ve )

r
Ei%E’j:V—i§+si, where sizz |’iV—ei' (5.21)

Using the dominant doublet constraint combined with Eq.(5.21), we can determine
the scattering matrix element that maps the input to the output channel:

(out, +) (4, in) (out, —) (—
E—-€&F E—&-

Sin—>0ul(E) =—ill ( . 1n>> + O(E) (522)

_ '£< ! ! ) 0 (523)
=T \E_er T Eg_g ) TE@ ‘

From this result, we can now use (5.21) and compute the modulus squared of S to
find, according to (5.23), the estimate

@V + As)?
(B =Vas =B+ B) ((E+V+st—E2+ 5

p(E) ~ . (5.24)

where we defined the average shift As = s™ — s~. Calculation of 7(E) according to
(5.4) does not lead to a particularly transparent result, which we nevertheless state
for completeness:

4T (T2 +4E7 +4E' (s~ +5* = 2E) )
T(E) ~

(r2 F4(E +5 — VfE)2> (F2+4(E/+s++V7E)2)
(5.25)
8T (<25~ (V+ B) #5724 2(V (57 + V) = sTE + E2) +577)

(I’2+4(E/+s*foE)2) (F2+4(E/+s++V7E)2)

Just as for the two-level system, we can now focus on the energies which define the
maximum of the resonance peaks and therefore imply the highest transfer probabil-
ities.

The calculation of the energies which maximise the transfer probability p is
straightforward and leads to the result

2
E=btse(v+2) o (1) (5.26)
2 2V + As

E=E +5, (5.27)




158 5 Scattering Approach to Efficient Transport

where we defined s := (st + 57)/2 as the average shift of the resonance energy. The
result is similar to that obtained in Egs. (5.15) and (5.16), only did we now correct
for the shift of energy levels induced by the coupling of the input and output sites to
the sites in the bulk.

To assess the transmission properties, we need to compare the coupling I to
the channels to the actual dominant doublet level splitting |2V + As|. As long as
I' < |2V + As|, we obtain two maxima in the resonance profile, located at the ener-
gies given by (5.26). Moreover, we see that as I' < |2V + As|, the resonances are
approximately located at E¥ = E £ V + s*. Indeed, as one may have expected, the
resonance profile is largely dominated by the actual dominant doublet energy levels
such as discussed in Chap. 4. The quantity I'/(2V + As) compares the typical width
of the two dominant resonance peaks to the distance between them, which is, to good
approximation, the distance between the closed system’s dominant doublet energy
levels. However, as I' > |2V + As|, the peaks merge as in the case of the two-level
system studied in Sect. 5.3, and the new maximum is located at E = E’ +5.

At these resonant energies, the transfer efficiency can be directly obtained as

2 2V + As)?

pP(E'+5)~ — ,
V2 2 2 2
(T2 + 2V + As)?) (5.28)
1
p (E +54+ E\/(2v + As)? — r2> ~ 1,
and the dwell time reads
(E' +73) il
T s) ~
2+ 2V + As)?’
T2V As) (5.29)

1
T (E +5+ z\/(2V + As)? — r2> ~

3| N

At first, we can conclude from these results that, whenever I' < |2V + As|, there
is an energy, given by Eq.(5.26), at which we can probe the system with 100%
transfer probability. On the other hand, once I > |2V 4 As| the two resonance peaks
merge, the maximal transfer probability is achieved at E = E’ + 5, and the transfer
probability gradually decreases as the ratio between I" and |2V + As| increases. The
phenomenology is exactly the same as in Figs. 5.2 and 5.3, although the additional
As term can be detrimental, as it can make the difference between optimal- and
(strongly) reduced transfer probability. We also observe that the dwell times 7 are
still mainly governed by the parameter I', and, therefore, one strives to have I' as
large as possible. Making sure that one remains in the regime where |2V + As| > T,
this guarantees the possibility of both efficient (height transfer probability) and fast
(short dwell time) transfer. Again, we notice that when the two peaks merge, not
only does the transfer probability decline, also the dwell time increases.

The entire derivation presented above shows that the results for the dominant
doublet system are comparable to the results for the two-level system, apart from the
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spectral shifts, here expressed via As and s. This is very similar to the discussion
in Chap.4, where we described the dynamics of the dominant doublet as that of a
two-level system. However, we did see in Chap.4 that there were high frequency
modes superimposed on the dominating oscillations stemming from the doublet.
Much in the same manner, our present derivation ignores additional resonance peaks
at other energies, which are present in the spectrum. Just from the perturbative
results, it becomes clear that these other resonance peaks must be very narrow: The
imaginary part of the complex eigenvalues of H.s determines the widths of the
resonance peaks, and for those eigenvalues that are not part of the dominant doublet,
these imaginary parts only appear in the higher orders of the perturbative expansion
(5.21).7 This implies that, in general, these states are extremely hard to probe and
very long-lived once they are populated. On the other hand, if the real part on these
intermediate eigenvalues comes close to one of the dominant doublet levels, there
can be pronounced interference effects in the resonance profile. These effects are
related to higher order terms in (5.21) and are therefore not contained within the
theory as it is presented here, moreover numerical simulations suggest that one only
very rarely encounters such realisations of the ensemble.®

5.5 Statistical Treatment

The model as described above treats a generic realisation of our scattering problem.
However, we wish to ultimately treat these systems as an ensemble, in analogy to
Chap. 4. Therefore, we are not merely interested in the possibility to enhance the
transfer probability by the inclusion of As, but also in the relative volume of such
enhancing realisations within a random sample of appropriately designed Hamilto-
nians (as introduced in the previous section). In order to assess this question, we
must rely on a statistical treatment, for which we use results of Sect.4.5.

5.5.1 The Indirect Treatment

From the results of Sect. 5.4, recall that the key parameter which governs the max-
imal transfer probability is I'/ |2V + As|. Although this is not a direct statisti-
cal assessment of the maximal transfer probability pn.x, we know that whenever
I' < |2V 4+ As|, we anyway obtain ppn.x & 1. Therefore, understanding the prob-
ability to find realisations with I' < |2V + As| directly implies understanding the
density of efficient realisations.

7See for example the perturbative treatment described in Fyodorov and Savin (2012).

8These events are not excluded from our numerical simulations and they clearly have no significant
influence on the results in Sect.5.5.3.
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The structure of Heg is given by Eq. (5.20), which is equivalent to the structure
of the Hamiltonian (4.81), amended by the —iI"/2 terms which originate from the
coupling to the channels. However, the bulk states are in lowest order perturbation
theory not affected by the channels, and therefore we found expression (5.21), where
we clearly see that s* are exactly the same as those of (4.83). Given that the same
mathematical equations have the same solutions, even though they arise in a different
physical context, we can use the statistics of As as given in Eq.(4.114).

Much of Sect.4.5 was devoted to the difference between two distinct recipes for
the realisation of dominant doublets and to determining in each case the parameters
5o and o of the Cauchy distribution. In the present chapter, we work with these two
parameters but not necessarily fix them explicitly. Therefore, the results which we
will obtain can be applied to both methods to handle the dominant doublet.

We start out with a slight reformulation of the problem, and introduce rescaled
variables T" := I'/2V and A§ := As/2V. With these quantities, the condition for
optimal transfer probability is reformulated as I" < |1 + A§|. We can also consider
the new distribution

As ~ Cauchy(sy, 7), (5.30)

where we introduce the rescaled parameters 5 := s9/2V and & := ¢ /2V . The advan-
tage of these rescaled quantities is not merely that we eliminate one parameter from
the equations, but also that the remaining parameters are all dimensionless.

The goal of this section is to derive the density of realisations for which near-
perfect transfer probability is achieved, which is given by

Prob(I" < |1 + A§]) = Prob(A§ > I — 1) 4+ Prob(A§ < —1 —1T) (5.31)
I'—1
=1- / ~ dAS P(AS) (5.32)
r—
1( ( —1—0> <f+1+§o>)
=1 — — [ arctan — + arctan | ——— R
Y ag o
(5.33)

and clearly shows the sensitive interplay between 1:, & and, to a lesser extent, 5o.°
Figure 5.8 plots this density as a function of T, for different values of &, with 5,
set to zero. The transition from efficient transfer to no transfer at all (ergo complete
reflection into the input channel) is clearly visible for the three values of &, but it
smoothens as ¢ increases. Moreover, we see that the transition point also shifts to
larger values of [". When we focus on & < 1, we observe that there is a strong
tendency to reproduce the results of the two level system dealt with in Sect.5.3,
thus the sharp transition at I' & 1. Statistics acquire a more important role once
o ~ 1, where we observe that even as > 1, there is still a considerable density of

9This parameter is typically much smaller than one, due to the dominant doublet condition (4.68).
This is clearly seen in (4.93), (4.131), (4.97) and (4.135).
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Fig. 5.8 Density (5.33) of efficient realisations, as a function of rescaled coupling to the channels
' = I'/2V, for different values of the width of the distribution of energy shifts, relative to the input-
output coupling, ¢ = ¢/2V. The parameter 59 = so/2V is set to zero. In the light of the dominant
doublet condition (4.68), (4.93), (4.131), (4.97), and (4.135) this is most reasonable

realisations which manifest near-optimal transfer through the system. On the other
hand, there is a downside: For <1 , we find anon-zero density of realisations where
the additional (bulk) sites have a negative impact on the transfer. This, however, can
be counteracted by an increase of & >> 1, such that the transition from high density of
efficient realisations to a low density only occurs at I" >> 1. In this case, the bulk sites
can almost deterministically provide optimal transfer in the regime where " ~ 1.

The interest to shift the transition zone in Fig.5.8 to larger values of T lies in
the fact that I' determines the dwell times (and lifetimes, for separated resonance
peaks). Therefore, I' >> 1 represents a system where the direct transfer in the two-
level system is very fast, but also very unlikely, due to the merging resonance peaks.
The additional bulk sites push these peaks apart by statistically shifting their res-
onance energies, whereas the transfer time scale remains essentially controlled by
I". Therefore, the addition of bulk sites allows us to generate an ensemble where a
considerable subset is able to mediate efficient energy transfer on much faster time
scales. The prize to pay is that we abandon the deterministic approach, and, instead,
elaborate a statistical theory. Consequently, also the resonance energies will fluctuate
for different elements of the ensemble.

Although this approach provides us with a strong method to estimate the density
of realisations where the two resonance peaks of the dominant doublet levels are
not completely overlapping and hence where transfer probabilities of approximately
100% can be expected, it does not provide any information about the transfer prob-
abilities themselves once the resonances merge. Therefore, it is desirable to have a
direct statistical treatment of pyax, as a complementary tool to understand the transfer
characteristics.
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5.5.2 The Direct Treatment

A statistical analysis on pp,x directly is unfeasible for various reasons: This maximal
transfer efficiency is achieved at the in general distinct resonance energies (5.26) and
(5.27), and changes from a constant value in a given parameter region, to being a
function of I', V and As in another. To deal with this inconvenience, one may attempt
to circumvent the problem by probing the system slightly off-resonance.

For this idea to be successful, we require an energy which is well defined for all
values of I'/ |1 + A5|, and at all times induces a transfer probability close to the
actual maximum. Such quantity can be found by considering exactly the energies
(5.26) and (5.27): In the discussion following (5.26) we noted that, in the limit
where '/ |1 + A§| <« 1, the resonance peaksarelocatedat E ~ E’ £ V 4 s*. When
['/ |1+ A5| > 1, these energies are a bit off-resonant, but still they may serve as
an estimate for pn.x. More specifically, we find upon explicit evaluation of (5.24),
(5.25) for p(E' £V 4+ s%) and 7(E’ £ V + s%) (the result is the same for “+” and
“—"") that

1+ A5)?
P(E £V 45t~ UTAD (5.34)
(1+ A5)2+T12/4
) e 2 I'2/4
FE+V+sH~= (14 SrhSm— (5.35)
r (1 + A5)? + [2/4

for convenience already expressed in the rescaled variables I" and A§. One may
argue, moreover, that the use of these energies is, rather than a technicality also
a natural strategy, since the choice above exactly coincides with the actual energy
levels of the closed system, ignoring the coupling to the external channels. Again,
we see that also here the parameter which governs the dwell time is '—notice that
this is not the rescaled variable. Because I" is not influenced by the fluctuations in
the ensemble, we cannot hope to severely influence the time scales in the statistical
approach, therefore we focus on the statistics of the transfer probability p.

We consider p as a stochastic variable, to obtain its probability density function
by using that it is a function of another stochastic variable As of which we know the
probability distribution from Egs. (4.114) and (5.30). Exploiting the statistics of As,
we can obtain the probability distribution of p as

(5.36)

Co)\2
P(p):/dAsP(As)5 (p— A+ As) )
R

(14 As)24+T2/4

To evaluate this expression, we use that, for the Dirac-delta function
(Wolfram Research 2001),
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S(fay =)

j=1

o0(x —x;)

_ 5.37
e 37

where f(x;) = 0and f'(x;) # 0. Inserting this identity in Eq. (5.36), we ultimately
find

o o

P(p) =

r
+
ny/p = P2 | 5o (1+50-5 %)2 2+ (1+50+ 5 [ ’
(5.38)
Note that the condition f’(x;) # 0 is violated exactly on the edges of the interval
[0, 1] on which the distribution is defined. This implies that the resulting distribu-
tion (5.38) is strictly speaking only valid for p € [e, 1 — €]. These divergences are
an artefact which is inherited from the power-law statistics that governs AS.

The behaviour of Eq.(5.38) for different values of I is given in Fig.5.9, for
¢ = 10. Comparing to the isolated two-level system as given by the white curve,
we observe that the transition form highly efficient transfer to the region with low
transition probability is shifted towards larger values of I, in agreement with our
above discussion of Fig.5.8. Additionally, the probability density smears out in this
transition region, implying that all values of p occur with comparable probability.

Even though this result provides us with a direct quantification of the statistics
of transfer probabilities throughout the ensemble, it still heavily relies on some
assumptions: At first, we ignored higher order terms of the perturbative expansion
(5.21) in the derivation of the scattering matrix elements Siy— out(E), see (5.23). In
addition, we neglected interference effects caused by other resonance peaks possibly
lingering close to the resonances associated with the dominant doublet. In order to
verify that the assumptions we made are reliable, we compare our results to numerical
simulations.

Fig. 5.9 Probability density
P(p) of the transfer
efficiency (as logarithmically
scaled density plot), as given
by Eq.(5.38), as a function
of T, for & = 10. The
parameter §g is set to zero.
The white curve indicates
po(E’ + V), the transfer
probability (5.11) for the
two-level system (5.7)
without intermediate sites
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5.5.3 Numerical Results

In our numerical simulations, we explicitly evaluate

Pinsout(E) = |Sinsou (E)I? (5.39)

for the probing energy E = E' + V + s, see (5.34). To do so, we generate the
non-Hermitian Hamiltonians Hg randomly in the site-basis, as given by (5.19), and
we choose to work in the averaged dominant doublet ensemble (recall our definition
(4.71) and the statistics (4.93), (4.131) in Chap. 4).'° For a system with n intermediate
sites, the statistics of the Hamiltonian’s entries is given by

2
(Hiny)i,j ~ Normal (O, (1+ 5,~,‘,~)%) , (5.40)
Y2
v; ~ Normal (O, —) , 541
N
52
E’ ~ Normal (O, 2ﬁ) . (5.42)

Therefore, the parameters which are directly controlled while performing the sim-
ulations are N, &, x, V, and I". Notice that these are the relevant parameters of the
theoretical model, therefore we have the freedom to probe all the regimes and verify
the statistics. Furthermore, we make sure that the root mean square (RMS) coupling
£/~/N among the bulk sites, and the RMS coupling x/~/N between the input/output
and the bulk, are chosen in such a way that

(|(:|:’ :T:>|2>realisations ~ 1

according to Eq. (4.93).

The data are obtained by choosing different values for I' which are adopted
to logarithmic scaling of the data represented in Figs.5.10 and 5.11 (for practical
purposes we chose I';;; = 1.2T7;). For each value of I, we sample 10,000 ran-
dom Hamiltonians Heg, calculate the shift s by explicit diagonalisation, and thus
obtain py,_ou(E’ + V + sT). To finally generate Fig. 5.10, we insert the numerically
obtained data points in the extrapolation method SmoothKernelDistribution
of Mathematica.

Figure 5.10 shows that there is good qualitative agreement between the analyt-
ically predicted probability density (5.38) and the numerically extracted one. The
parameters to generate the different numerical results where also varied'': The results
where & = 0.1 and & = 1 where obtained for N = 8, whereas those for & = 10 where

19%When doing numerics we are bound to make and explicit choice on which dominant doublet
ensemble is used.

"'This way we make sure that we are not accidentally probing any special parameter regime.



5.5 Statistical Treatment 165

1.0

Analytical
0.8 results

0.6}

results

SH

~ Analytical ' Numerical
results K] results

0 ,,,,,
Numerical

results
0.6+ A

results 0.8

0.4¢

0.2}

0.0_2

-1 0 1 2 3

log;, T logyo I

Fig. 5.10 Probability density P (p) of transfer efficiencies (as logarithmically scaled density plot),
as given by Eq.(5.38) (left) and as variable I". Different values for & are shown in different rows:
& = 0.1 (top), & = 1 (middle) and & = 10 (bottom). The white curve indicates po(E’ + V), the
transfer probability (5.11) for the two-level system (5.7) without intermediate sites
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Fig. 5.11 Probability distribution as predicted theoretically by Eq.(5.38) (solid lines), and as
obtained (histograms, dashed lines) from numerical simulations. The width of the shift distribution,
relative to the coupling between input and output sites, was chosen as 6 = 1 (left) and o = 10
(right). In each panel, results are shown for three different values of the rescaled coupling strength
[totheleads: T =0.1, =1and [ =10

generated with N = 10. Moreover the parameter ¢ is changed such that the & = 0.1
numerical run was conducted with £ = 20, ¢ = 1 with £ =50 and ¢ = 10 with
& = 150. The dominant doublet demand (4.93), where we set o' = 0.95, with the
given values for & and &, fix all other parameters in the RMT ensembles and therefore
completely determine the theoretical model. The qualitative agreement between the
analytical and numerical results prevails for all these different choices of parameters,
which as such confirms the theoretical prediction that & and T" are ultimately the only
parameters that matter. The parameter ¢ sets a general energy scale, determining the
typical (as in RMS) coupling between two intermediate sites as &/+/N. This over-
all energy scale turns out to be of no importance, because the relevant physics is
contained in ratios of coupling strengths (i.e. & and I').

Observing Fig.5.10, there is an obvious shift of the transition zone from highly
probable optimal transfer, to rather poor transfer probabilities. This transition zone
initially coincides with the white curve indicating the result without intermediate
sites, and it gradually shifts to larger values of I with increasing &, indicating a
transition from transport dominated by the direct coupling V to transport dominated
by intermediate sites as controlled by the width o of the shift distribution.

Strikingly, the values I" at which this transition zone is located do agree quan-
titatively in the analytical and numerical treatment. The main difference between
analytical and numerical results is that the latter exhibit all the features of the ana-
lytical result, though slightly smeared out and broadened. This can either be due
to a lack of statistics, or to some oversimplification of the theory. To discriminate
between these two possibilities, we consider several slices of the plots of Fig.5.10,
for different values of I", mainly probing the interesting transition zone. Sampling
100,000 realisations for each choice of f‘, we compare the actual histograms to the
analytical prediction (5.38) of the probability density in Fig.5.11. The agreement
for each value of I" and & is clear, at least on the semi-log scale. This implies that,
indeed, our analytical model is very successful in reproducing the correct statistics,
and that the smeared out features in the numerical results of Fig.5.10 result from a
lack of statistics.
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5.6 Summary and Outlook

We started out by showing that for a two-level system, which consists of an input
and an output site, each attached to a different external channel, has its maximal
transmission properties determined by the ratio I' between I" and 2V—with I the
coupling between input/output channel and input/output site, and V the direct coher-
ent coupling between these two sites. The breakdown of efficient transfer occurs
when I" > 1, which implies that the two scattering resonance peaks are broader than
their relative separation, causing them to strongly interact.

This destructive interaction can be fought by introducing additional disordered
sites into the system, following the recipe of Sects.4.4 and 5.4. These design prin-
ciples impose a spectral shift between the dominant doublet’s energy levels. When
this shift is strong enough, it pushes apart the resonance peaks such that their mutual
separation is greater than their width. The success of this protocol is determined by
the statistics of the spectral shifts As, which follow a Cauchy distribution as shown
in Egs. (4.114) and (5.30).

In order to characterise the statistical properties of the transfer probability pin— out
we imposed both a direct and an indirect treatment in Sect.5.5. The conclusions
in both approaches are the same: The main parameters which govern the transport
are T and 6 = o/2V . If we want any beneficial effect from the additional sites, we
musthave ¢ > 1, implying that the indirect transfer mediated by intermediate sites is
dominant over the transfer dominated by the direct coupling between input and output
states. However, when I > & > 1, there is only a very small probability to enhance
the transfer probability. Nevertheless the main downside of the intermediate sites
occurs when T is slightly smaller than one and & ~ 1. In this range of parameters,
one has a considerable probability to push the peaks closer together and actually make
the transfer worse than it initially was. Ergo, mainly in the regime where I >> 1 we
can make a huge difference by engineering a system such that & >> 1, specially by
making & > T". Notice that even though & is a parameter which controls the statistics,
it can actually lead to near-deterministic optimal transfer probability when tailored
properly.

With or without intermediate states, the transfer dwell time 7, oy, €Stimating
the time needed for the excitation to be transferred from one channel to the other, is
dominated by the parameter I" (not I). Therefore, it is useful to strive for a setting
where the systems interact as strongly as possible with the external channels. Since
physical constraints may limit us from designing systems such that V is sufficiently
large to lead to fast and efficient transfer in a simple double-well setup, one can
couple additional degrees of freedom such that & be sufficiently large to push the
peaks sufficiently far apart. One may also argue that a system relying on a single
direct coupling between two sites in a double-well type system lacks robustness.
Indeed, if there is an error in manufacturing which decreases V, transport would
break down, whereas the statistical nature of the ensemble with intermediate sites
provides a statistical sense of robustness.
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The use of such a statistical model comes at a price; although we can exploit
the mechanism to obtain an ensemble where a large subset manifests near perfect
transfer from the input to the output channel, we are confronted with the statistical
distribution of the resonance energies. The statistical shifts in the resonance peaks
can lead to a variety of different energies at which the peaks are localised, which
induces an effect which in the spectroscopy community is known as inhomogeneous
broadening (Mandel and Wolf 1995; Mukamel 2009). It is a direct consequence of
the disordered nature of the systems under consideration; in principle the Cauchy
distribution (4.114) can again be used to understand this effect.

Now that we completed this discussion on fast and efficient single-particle quan-
tum transport in complex systems, we are in the perfect position to study its potential
concrete applications. As already mentioned in Sect. 4.1, our central motivation is
that of transport processes in biological systems. In the following chapter we there-
fore investigate how the design principles of Chap.4 and this chapter can be applied
to the context of energy transfer in photosynthetic organisms.

References

D. Adams, Mostly Harmless (Pan in association with Heinemann, London, 1993)

G. Berkolaiko, J. Kuipers, Moments of the Wigner delay times. J. Phys. A Math. Theor. 43, 035101
(2010)

P.W. Brouwer, K.M. Frahm, C.W.J. Beenakker, Quantum mechanical time-delay matrix in Chaotic
scattering. Phys. Rev. Lett. 78, 4737—4740 (1997)

G.L. Celardo, L. Kaplan, Superradiance transition in one-dimensional nanostructures: an effective
non-Hermitian Hamiltonian formalism. Phys. Rev. B 79, 155108 (2009)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes
and Applications (Wiley, New York, 1998)

U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866—
1878 (1961)

H. Feshbach, Unified theory of nuclear reactions. Ann. Phys. 5, 357-390 (1958)

H. Feshbach, A unified theory of nuclear reactions. II. Ann. Phys. 19, 287-313 (1962)

H. Feshbach, The unified theory of nuclear reactions: III. Overlapping resonances. Ann. Phys. 43,
410-420 (1967)

Y.V. Fyodorov, D.V. Savin, Statistics of resonance width shifts as a signature of Eigenfunction
nonorthogonality. Phys. Rev. Lett. 108, 184101 (2012)

P. Gaspard, Quantum chaotic scattering. Scholarpedia 9, 9806 (2014)

F. Haake, F. Izrailev, N. Lehmann, D. Saher, H.-J. Sommers, Statistics of complex levels of random
matrices for decaying systems. Z. Phys. B Condens. Matter 88, 359-370 (1992)

S. Hunn, Microscopic theory of decaying many-particle systems. Ph.D. thesis, Albert-Ludwigs-
Universitét Freiburg, Freiburg, 2013

S. Hunn, K. Zimmermann, M. Hiller, A. Buchleitner, Tunneling decay of two interacting bosons in
an asymmetric double-well potential: a spectral approach. Phys. Rev. A 87, 043626 (2013)

R.A. Jalabert, J.-L. Pichard, C.W.J. Beenakker, Universal quantum signatures of Chaos in ballistic
transport. EPL 27, 255 (1994)

J. Kuipers, M. Sieber, Semiclassical relation between open trajectories and periodic orbits for the
Wigner time delay. Phys. Rev. E 77, 046219 (2008)

C.H. Lewenkopf, H.A. Weidenmiiller, Stochastic versus semiclassical approach to quantum chaotic
scattering. Ann. Phys. 212, 53-83 (1991)



References 169

V.L. Lyuboshitz, On collision duration in the presence of strong overlapping resonance levels. Phys.
Lett. B 72, 41-44 (1977)

J. Madroiiero, A. Buchleitner, Ericson fluctuations in an open deterministic quantum system: theory
meets experiment. Phys. Rev. Lett. 95, 263601 (2005)

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cam-
bridge, 1995)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy. Oxford Series in Optical and Imaging
Sciences, vol. 6 (Oxford University Press, New York, 2009)

I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys.
A Math. Theor. 42, 153001 (2009)

P. Seba, K. Zyczkowski, J. Zakrzewski, Statistical properties of random scattering matrices. Phys.
Rev. E 54, 2438-2446 (1996)

FE.T. Smith, Lifetime matrix in collision theory. Phys. Rev. 119, 2098-2098 (1960)

H.-J. Stockmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 2007)

H.-J. Stéckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, I. Rotter, Effective Hamiltonian for a
microwave billiard with attached waveguide. Phys. Rev. E 65, 066211 (2002)

1. Wolfram Research, Dirac delta function: Identities (formula 14.03.17.0001) (2001)



Chapter 6 ®)
Quantum Effects in Biological Systems oo

One of the profoundest enigmas of nature is the contrast of dead

and living matter
Hermann Weyl (1949)

6.1 From Schrodinger to “Quantum Biology”

Life, a manifestly non-equilibrium process that cleverly defies thermodynamics by
reproduction, is often simply too difficult to be described with the mathematical
precision an generality that we, physicists, consider the ultimate goal of our field.
Nevertheless, the tremendous efforts done by life scientists, ranging from ecology
(Debecker et al. 2015), over evolution (Geerts et al. 2015), to system biology (Koll-
mann et al. 2005) are remarkably successful in applying statistical tools (Pugesek
2009; Zuur 2009) to disentangle the mysteries presented by the topics they study. The
emergence of the field of biophysics taught us that biology and physics can be com-
bined and find a common basis exactly via these statistical descriptions, which are
reconcilable with statistical mechanics.! Moreover, on the molecular level, devel-
opments in physics have lead to a wide range of spectroscopic techniques which
were crucial for many discoveries in biology (Deisenhofer et al. 1985; Franklin and
Gosling 1953; Schluenzen et al. 2000; Watson and Crick 1953; Wilkins et al. 1953).
It is the goal of this chapter and this text to point out that physicists have many
reasons to be excited about biology, although differences in jargon and methodology
also impose barriers that need to be overcome.

Biophysics was arguably born at the end of the 19th century, with fundamen-
tal work on statistics and the rise of statistical mechanics. In this period, notable

"Here we also consider stochastic processes, such as those underlying rate equations (Marcus and
Sutin 1985) as part of the field of statistical mechanics.

© Springer International Publishing AG, part of Springer Nature 2018 171
M. Walschaers, Statistical Benchmarks for Quantum Transport in Complex
Systems, Springer Theses, https://doi.org/10.1007/978-3-319-93151-7_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93151-7_6&domain=pdf

172 6 Quantum Effects in Biological Systems

physicists such as Helmholtz delivered contributions to physiology (Helmholtz and
Southall 1910; Helmholtz 1850) and the statisticians Pearson and Fisher constructed
the mathematical foundations of the theory of evolution (Fisher 1930; Pearson 1894).
The field later received an enormous boost when Schrodinger, then already celebrated
as one of the founders of quantum mechanics, turned his attention to biology with his
“What is life” (Schrodinger 1944). This work had considerable impact, for example
by providing a molecular basis for genetics. Although the concept of “genes” was dis-
cussed much earlier by Muller (1922), who called them “ultra-microscopic particles”,
it can be argued that Schrodinger was among the first to realise that large, complex
molecules could be the carriers of genetic information. It must be noted, however,
that Schrodinger himself was inspired by earlier work (Timoféeff-Ressovsky et al.
1935) which already concluded that genes needed to have a complicated structure.

The impact of “What is life?” was increased when in the same year the first
experimental indications for the existence of DNA (Avery et al. 1944) were pub-
lished. Moreover, Schrodinger’s description provided by far the most detailed pro-
posal for a molecular structure of genes, which he proposed to be an “aperiodic
crystal”. Metaphorically, he states that this structure could be interpreted as a code
that encrypts all genetic information. Therefore, it may be said that Schrédinger
effectively predicted the existence of DNA before its experimental discovery. The
genuine scientific value of Schrodinger’s book and the originality of the arguments
therein is still topic of debate.” It was, however, clearly an important inspiration
for molecular biologists at the time: both Watson (1969) and Crick (1988) explic-
itly acknowledge being influenced by “What is life?” and Wilkins even explicitly
acknowledged Schrédinger’s work in his Nobel lecture (Wilkins 1962).> Moreover,
the work also had an impact in the field of medicine (Nordling 1953).

Even though Schrodinger inspired the discovery of DNA and discussed the impor-
tance of mutations thereof (Schrodinger 1944), the role of quantum mechanics in this
discussion is today considered “trivial”: The molecular level of biology is governed
by chemistry—and chemistry, on its turn, is fundamentally governed by quantum
physics. The extent to which quantum effects are now identified in biology, was
probably beyond the imagination of 1944’s Erwin Schrodinger.*

It has taken the scientific community decades to push non-trivial quantum mechan-
ics beyond the realm of extremely tedious proof of principle experiments. Until the
early 21st century, the increasing insights in the effects of decoherence suggested that
quantum effects can only manifest themselves in systems that are strongly shielded
from their environment (i.e. extremely low temperature, high vacuum, et cetera).
Hence, quantum mechanics would be practically irrelevant in biophysics, mainly due
to high temperatures and an enormous number of environmental degrees of freedom.

2 An overview of opinions can be found in Dronamraju (1999).

3Watson and Crick even wrote an explicit letter to thank Schridinger for inspiring them. The Royal
Irish Academy recently uploaded a copy of the letter on Twitter (RIAdawson 2014).
“Nevertheless, Schrodinger did also consider (Schrédinger 1944) more intricate quantum effects.
It is even proposed that quantum uncertainty may be a solution to unify a human body governed by
the laws of nature with the notion of free-will. However, this is currently still considered (Davies
2004) closer to science fiction than to scientific fact.
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Nevertheless, such decoherence effects need time to destroy all the coherences in the
system, below such decoherence time scale, quantum mechanics can manifest itself.
Given such time scales in widely open systems, it is clear that the only biological
processes that can be influenced are ultrafast, i.e. sub-picosecond time scale. Poten-
tial candidate-processes are often found in the realm of charge and energy transfer.
A modest influence of quantum structures was already present in the earliest theoret-
ical descriptions for such processes, provided by Marcus and Forster (Forster 1948;
Marcus and Sutin 1985; Marcus 1993; May and Kiihn 2000). However, these quan-
tum mechanical effects are only important to determine rates that enter rate equations
and can therefore be considered “trivial”. The idea that quantum mechanics may be
more important came gradually, for example by studies of charge transfer in proteins
and DNA (Skourtis and Mukamel 1995). Another such example is photosynthesis,
where quantum phenomena such as excitons, delocalised over several chlorophyll
molecules (Pullerits et al. 1996), and even super-radiance (Monshouwer et al. 1997)
have been considered since the nineties. The theoretical models to describe energy
transfer processes in these systems have gradually evolved from rate equations to
Redfield theory (Redfield 1965), taking quantum effects explicitly into account.
Although Redfield theory is reasonably successful, it still describes a model where
essentially classical transport is dominant because of decoherence.’ Significant new
insight was obtained with the introduction of 2D electronic spectroscopy (Fuller
and Ogilvie 2015; Hamm and Zanni 2011; Mukamel 2000, 2009), which one may
interpret as an extension of pump-probe spectroscopy (Stolow et al. 2004) or a trans-
lation of multidimensional NMR techniques (Aue et al. 1976) to the optical domain.
Using these techniques, a new perspective was proposed by pioneering work such as
Brixner et al. (2005), Collini et al. (2010), Engel et al. (2007), when it was suggested
that the transport of energy in photosynthesis actually exploits quantum coherence
in a very non-trivial way. Earlier evidence in this direction had already been obtained
using other experimental techniques (Chachisvilis et al. 1997). The authors of these
works suggest that the energy transfer is governed by quantum coherence that per-
sists up to almost a picosecond (Collini et al. 2010; Engel et al. 2007) and carries the
excitons across a network of (bacterio) chlorophylls. Even though these claims have
been refined and tempered down considerably ever since, these results attracted much
attention from quantum physics communities (Alicki and Miklaszewski 2012; Aubry
2014; Hoyer et al. 2010; Jesenko and Znidarié 2012, 2013; Manzano 2013; Mohseni
et al. 2008; Plenio and Huelga 2008; Scholak et al. 2010, 2011a; Walschaers et al.
2013; Zech et al. 2013, 2014; Zech 2013). Contemporary discussions on accurate
models of energy transfer in photosynthesis are situated at two fronts: On the one
side, there are the models which are remarkably successful at reproducing experi-
mental data, but lack predictive power (Ishizaki and Tanimura 2005; Kreisbeck and
Kramer 2012). On the other side, there are more simplified “toy” models that try to

SRedfield’s model describes transport in terms of a quantum master equation (Breuer and Petruc-
cione 2007). Generically, systems described by these equations undergo decoherence, such that on
sufficiently long time scales (which depend on the decay rates in the system) the dynamics converge
to those described by classical rate equations.
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single out underlying mechanisms and use them to make predictions. A real match
between these two sides of the medal is still lacking. We will extensively come back
to this point later in this chapter.

The discovery of non-trivial quantum effects in photosynthesis increased debate
about quantum effects in the broader field of biology. A particularly cute proposal
was that the European Robin’s avian compass exploit entanglement to generate an
extremely sensitive quantum sensor for the earth magnetic field (Gauger et al. 2011;
Katsoprinakis et al. 2010; Ritz et al. 2000; Wiltschko and Wiltschko 1972). Other
effects, such as quantum effects in ion channels (Vaziri and Plenio 2010) and even in
the brain (Hameroff and Penrose 1996), have attracted attention, although they remain
highly speculative. It must be stressed that even though aesthetically appealing, most
of these models lack experimental verification.

Excited quantum physicists like to put all these different topics under one label:
“quantum biology”, as to represent the dawn of a new era in biology. Butis there really
such a thing as “quantum biology”? First, let us put some emphasis on connotation:
Phrasing a term as “quantum biology” puts it in a list next to “quantum mechanics”,
“quantum electrodynamics”, “quantum information”, “quantum chaos”, et cetera.
Although these different fields are very diverse, rich, and interdisciplinary, they have
one fundamental thing in common: There is a universal theory that lies at their
basis. This underlines the very core of the physicist’s way of thinking, the search for
universality in nature. Presenting the term “quantum biology” insinuates the existence
of a universal quantum backbone of biology. This is at least far beyond what can
currently be substantiated by actual (experimental) evidence—while science is still
to be considered evidence-based by its very methodology.

Even though universal rules are also found in life sciences, they have a very differ-
ent status as the universal laws of physics. One of the main quests of biology is exactly
to understand the deviations from these rules, i.e. biodiversity. These deviations are
generally understood in terms of evolutionary pathways, which are governed by a
complicated interplay between all the steps on the hierarchical ladder which ranges
from the molecular to the ecological level. In this sense, “quantum biology” currently
undermines the very load of that term, since it neglects these foundations of biology.®

It is a fact that quantum mechanics is an available tool for life to exploit just as
any other law of physics is. Given that the cut between quantum physics and classical
physics is most probably a human construct, it is reasonable to assume that nature
does not care to think about whether something is quantum or classical. In this sense,
if quantum mechanics would offer an evolutionary advantage to an organism, it may
very well be exploited. After all, in all abstraction living organisms are simply solving
an evolutionary optimisation problem. However, this is again where problems with
the physicist’s perspective kick in: Given that everything from molecules up to the
ecosystem constitute this optimisation problem, it is almost impossible to know what

SAn interesting question is whether the non-trivial quantum effects, which were observed up to
now, are a manifestation of a general universal rule or rather a deviation thereof. At present, there
is insufficient material to answer that question.
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is actually being optimised.” For example, if we consider quantum effects in photo-
synthesis, we—physicists—may assume that fast and efficient transfer is “optimal”.
However, it can be beneficial for some organisms to be inefficient in transporting
energy, such that a lot of heat is generated, providing them with an ecological advan-
tage (Herbert et al. 2007). This emphasises the far-reaching consequences of the
hierarchical structure of functionality and of diversity in biology.

The fact that nature and life confront us with so much diversity, should be seen
as a warning to remain cautious when modelling any biological system. When one
considers the enormous difference between different light harvesting complexes,
such as LHII, LHCII, and the FMO® complex (Blankenship 2002), one cannot simply
conclude that they are similar. It may well be that, although they share common
origins from the evolutionary point of view, they have evolved to optimise very
different fitness functions (Orr 2009), and potentially use very different physics to
do so. This is by no means an argument against quantum effects in photosynthesis
(or biology as a whole for that matter), but a warning that one should not jump to
conclusions.

In the following sections, we present in some more detail the efforts that were
specifically undertaken to develop quantum mechanical transport models which may
be applicable in a photosynthesis context. The key resources at hand are disorder and
noise. We first provide an overview of how they may be exploited and subsequently
we explain how the design principles, developed in the previous chapters, can find
applications in the photosynthetic realm.

6.2 Photosynthesis: Disorder Versus Noise

Letus now focus on the problem of quantum effects in photosynthesis and specifically
on the quest for simple models to underpin the physical mechanisms that govern the
energy transport in such systems. Here, one usually does not worry about the ways
in which long-lived quantum coherence in maintained; one assumes that it is simply
there and studies its influence on the transport. By merely looking at a system such
as the FMO complex (Blankenship 2002), one directly sees that these systems are
far away from the clean, periodic structures that we know from idealised solid-state
models, or from the highly controlled, engineered set-ups in quantum optics. One
can therefore say that these systems are disordered, but since they occur in biology
with a serious degree of reproducibility, there is also a degree of design. Because

7In biological jargon one may state that the “fitness function” (Orr 2009) is unknown. In optimisation
problems, one strives to find parameters for which a function is maximal/minimal (or reaches
sufficiently high/low values). Understanding the behaviour such problems is, however, difficult
without any knowledge of the function which is optimised.

8The green sulphur bacteria, in which this complex is found, are only occurring in sludge in ponds.
From a purely biological and ecological point of view, this system is therefore of quite marginal
importance. From a molecular perspective, it is by far one of the easiest photosynthetic complexes
to handle, hence its popularity in photosynthesis research.
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we consider biological processes, we work at approximately room temperatures and
hence a serious amount of noise should be present, after all there obviously is a
huge environment (e.g. proteins) around to generate a bath into which energy can
be dissipated. If the excitation were to stay in the system long enough, these effects
would certainly lead to dynamics that can be described by rate equations. The noise
acts on many time scales, some of them as long as micro- or milliseconds (Kriiger
etal. 2012), time scales much longer than those at which the energy transfer processes
occur. Therefore, these slow configurational fluctuations can also be interpreted as
different disorder realisations.

These two fundamental effects, disorder and noise, lead to two opposing views on
the possible mechanisms of the energy transfer in photosynthetic complexes. Both
proposed paradigms start from the assumption that the transport in these systems is
fast (sub-picosecond time scales) and efficient. The latter is usually quantified via the
quantum efficiency (4.5), which is claimed to be around 95% (Blankenship 2002).
These claims can be traced back to Chain and Arnon (1977), Wraight and Clayton
(1974), and by modern standards one may challenge whether these are really direct
measurements of the relevant quantum efficiency.’ Nevertheless, the starting point
of all models is that the excitations which enter the systems reach their destinations,
the photosynthetic reaction centre, with very high probability.

The first line of thought can be summarised by the term noise assisted transfer,
which is inspired (Plenio and Huelga 2008) by stochastic resonance (Gammaitoni
et al. 1998; Huelga and Plenio 2007; Wellens et al. 2004). The starting premise
of these models is that ultimately disorder is bad for quantum transport (one often
refers to Anderson localisation Anderson 1958), but because the negative effects arise
from destructive interference, they can be counteracted by decoherence (Bliimel et al.
1991; d’ Arcy et al. 2004; Steck et al. 2000). The first models with import this principle
to the photosynthesis context (Mohseni et al. 2008; Plenio and Huelga 2008) refer to a
regime between coherent and incoherent transport, where the energy transfer appears
to be optimal. It was initially claimed that these models provided good agreement
to experimental results, but given the large amount of free parameters, this is hardly
surprising. It is, however, reasonable to question several of the initial assumptions.

First of all, one often starts running the model from the so-called Hamiltonian
of the system (Adolphs et al. 2007; Moix et al. 2011; Schmidt am Busch et al.
2011). This Hamiltonian describes the inter-site couplings and on-site energies by
combining a multitude of spectroscopic data with structure data, quantum chemistry
and a serious amount of fitting. However, since spectroscopy data always result from
experiments on an ensemble of molecular complexes, we cannot claim to have the
Hamiltonian of the system. What is observed, is an ensemble averaged Hamiltonian. It
is very dangerous to do quantum dynamics calculations with such an object, because
obviously

IEdiS(efilH) #efitﬂ‘:di,(l‘]) (61)

9During a talk at the Freiburg Institute for Advanced Studies in Summer 2015, this 95% figure was
challenged by Richard Cogdell, who reported that new, currently still unpublished, measurements
suggests efficiencies that are roughly 20% lower.
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and thus the dynamics is not self averaging. This implies that, under the assumption
that there is disorder in a quantum transport setting, we should rather consider the
fluctuations in transfer properties, which result from the variations in H over different
disorder realisations. One can even show that quantum dynamical maps, obtained
for ensemble averaged dynamics, are on their own no longer unitary, but can be
described by a non-Markovian master equation (Gneiting et al. 2016; Kropf et al.
2016).

A second point of criticism targets the very assumption that disorder is necessarily
disadvantageous in quantum transport. We showed explicitly by formulating a full-
fledged theory in Chaps.4 and 5 that the right design can actually exploit disorder
to achieve good, even near-optimal excitation transfer, but also earlier, largely com-
putational work (Scholak 2011; Scholak et al. 2010, 2011a,b,c, 2014) has proven
that, in finite size systems, the belief that disorder is always destructive is wrong.
Due to the finite size of the system, it is possible to find realisations which lead
to good transport, even when randomly sampling spatially disordered dipole-dipole
networks.'? It was moreover shown that these realisations are reasonably abundant.
This line of argumentation immediately leads to the second paradigm.

The competing point of view, in contrast to the noise-assisted philosophy, is that
quantum interference, even in disordered systems, serves as a resource for good trans-
port (Alicki and Miklaszewski 2012; Manzano 2013; Mostarda et al. 2013; Scholak
etal. 2010, 2011a). The fundamental underlying idea of this disorder assisted trans-
port is the concept of design principles. The naive point of view is that, due to the
finite size of the system, searching long and hard enough (and nature had hundreds
of millions of years to do so), one can always find configurations that foster con-
structive interference. Ultimately this simply boils down to matching an enormous
amount of phases, but as long as this amount is finite, it can be done. That the
system seems disordered to our eye, may simply imply that such realisations are
highly non-trivial (Scholak 2011; Scholak et al. 2011b, c). However, these systems
are extremely sensitive to very small perturbations and as much as nature might be
able to design systems, an unrealistic amount of control would be required to secure
the functionality. In a later stage the research on design principles shifted from the
idea of specially designed controlled structures to design principles which allow for
statistical control, such as we presented in Chaps.4 and 5. By construction, these
models allow for disorder to be present and they even exploit spectral fluctuations as
aresource for enhanced transport. Needless to say, such approach is more appropriate
for applications in biology than its highly fine-tuned predecessor due to its intrinsic
robustness. We further elaborate on this idea in the next section.

Although we, as strong proponents of this particular view, see more merit in the
design principle approach than in the noise-assisted approach, we must be mindful
of its limitations. Beautiful as the idea of incorporating disorder rather than fight-

10This line of reasoning was originally imported from condensed matter theory, where it is known
that fluctuations have a dominant role in quantum transport. A profound example is that of conduc-
tance fluctuations in mesoscopic systems (Jalabert et al. 1994), but also the “Anderson regime” leads
to strong fluctuation in finite size systems (Kramer and MacKinnon 1993). This phenomenology
lies at the heart of the present approach.
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ing it may seem, there are problems to find experimental smoking guns. Models
which propose control of statistics are generically difficult to check, since statis-
tical information is nontrivially available in experiments. Nevertheless, advances
in single-molecule experiments (Hildner et al. 2013) indicate a wide spread in the
observed energy transfer time scales, which is consistent with the results of Chap. 4.
However, the statistics in these experiments is insufficient for a quantitative compar-
ison. Additionally, an issue of models which exploit random matrix theory is that
they are built to reproduce statistical features of spectra. They are not intended to
model the microscopic structure of the system, which is a serious paradigmatic shift
compared to the common approaches in physical chemistry (May and Kiihn 2000).

In the meantime, most of these simple models have grown considerably in com-
plexity, as it was realised that they were not correctly capturing the relevant physics
in the system. It is fair to conclude that ultimately the two views have strongly
converged throughout the course of time. The noise-assisted picture evolved from
structured environments (Rey et al. 2013), over non-markovian effects (Ishizaki and
Fleming 2009; Sarovar et al. 2010) to vibration-assisted transfer (Christensson et al.
2012). The latter has gained a lot of traction since it considers some vibrational (and
thus environmental) degrees of freedom, but ultimately treats them in an essentially
coherent fashion (actually “dressing” the exciting spectrum).

The role of vibrations was also recently recognised in coherent models, since they
require a resonance between on-site energies to obtain near-optimal transfer. The level
structures of light-harvesting systems, however, do not show such resonances and
therefore the energy difference must somehow be bridged. Recent work (Brugger
2015) showed that a treatment of some vibrational degrees of freedom in Floquet
framework (Shirley 1965) actually can overcome this energy gap in an effective
way. This approach also requires a fine interplay between electronic and vibrational
degrees of freedom and is hence in philosophy very close to the vibration-assisted
framework.

As a final remark, we note that the idea of vibrationally assisted transfer was
recently challenged (Fujihashi et al. 2015). The authors claim that, even though the
vibrational effects strongly influence the spectroscopy, the small Franck—Condon
factors would diminish these effects in energy transport.

There is one philosophical difference between noise-assisted and the disorder-
assisted paradigms, which will remain hard to reconcile. In the one framework, dis-
order is really assumed to be the overall enemy and the weapon to attack it is noise,
whereas the other framework sees noise as the enemy and fights it through disorder
enhanced transport (to make transport much faster than decoherence time scales).
On the other hand, given our previous discussion on the importance of diversity in
biology and the rich variety of time scales treated in Chap.4, it is not unreasonable
that both effects actually play a role. Indeed, it was already pointed out that realisa-
tions with poor coherent transport properties do benefit from noise, whereas those
with good coherent properties see a disadvantage (Scholak et al. 2011a). However,
specifically the good realisations also show a degree of robustness against noise
(Fernandez de Cossio Diaz 2013), which implies that actually in one ensemble, there
are several realisations which exploit coherent quantum transport. Others, where the
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disorder does not have a positive effect, get enhanced by noise. In terms of Fig.4.16,
this implies that noise-assisted transfer affects the lefthand side of the distribution,
shifting it to faster time scales, whereas the righthand side of the distribution is
left untouched. Such scenario is feasible, but clearly requires further study to reach
conclusions.

6.3 Design Principles in Photosynthesis

The model presented in Chaps.4 and 5 was explicitly inspired by the discovery of
quantum effects in photosynthesis (and also by excitation transport in cold Rydberg
gasses Scholak et al. 2014). In this section, we elaborate on the indications that these
design principles may already be implemented by nature. Moreover, we also stress
some of the problem with which our model is confronted and how these can be
overcome. We focus our attention on the well-known FMO complex (Blankenship
2002).

As stressed in the previous section, it is currently difficult to obtain statistics of
transfer time scales or transfer efficiencies. Although we have beautiful theoretical
frameworks, which lead to analytical results such as Eq.(4.135), relevant experi-
mental data for comparison are currently lacking. To explain what really happens
in nature, we are strongly limited by those data which are experimentally available:
A wide range of spectroscopic results (all ensemble experiments, hence leading to
ensemble averaged information), structure data (obtain by crystallising the com-
plexes and doing X-ray spectroscopy, thus providing “pictures” of the complexes
taken under conditions distinct from their natural habitat). In addition, we can also
employ a wide range of data analysis tools.

Combinations of structure and spectroscopy data lead to what is often called “the
Hamiltonian of the system”. We know that, due to the many noise processes that act
on slow time scales, there are effectively many disorder realisations. In principle one
can go quite far in simulating these effects via molecular dynamics (Humphrey et al.
1996; Leach 2001; Striimpfer et al. 2012), but computational overhead would be
enormous. The underlying idea is that vibrational degrees of freedom in the bacteri-
ochlorophylls,'! proteins, and all other surrounding molecules can act quite strongly
on the bacteriochlorophyll molecules’ electronic degrees of freedom, changing for
example the orientation of their dipole moments and on-site energies. These effects
lead to variations in the Hamiltonians of the in situ light harvesting complexes where
the energy transport is actually taking place. Furthermore, the variations in Hamil-
tonians can lead to strong fluctuations in transport time scales and efficiencies.

1I'The photosynthetic pigments in phototrophic bacteria are called bacteriochlorophylls and are
narrowly related to the chlorophylls that appear in plants, algae, and cyanobacteria. They typically
have different light absorption profiles than chlorophylls (see for example Fig. 6.2 in Scholes et al.
2012).
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We start by studying the ensemble averaged Hamiltonian that is obtained in the
literature'? (Schmidt am Busch et al. 2011)

505. 375 75 1.7 45 =97 -114 15
37.,5 310. =979 -58 6.7 —12.1 =103 5.5
75 =979 230. 173 2. 11.5 48 30.1

| 17 =58 73 180 —64.9 —17.4 —64.4 —588|
Hic=1 45 67 2. —649 405. 89. —64 —15 |™ > (6.2)
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—11.4 —-10.3 48 —644 —6.4 31.7 270. 4.7
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where the first row and column relate to the input and the last row and column to
the output site, respectively. In order to compare the results to efficiencies provided
in the literature, we need to gauge the dynamics against a suitable benchmark time
scale. Due to the high temperatures, fast decoherence times are expected and we set

0.17h

B |2(H1n)1,8| 3.5ps, (6.3)
to make sure that the transfer occurs on time scales where there can still be coherent
phenomena.

First of all, we notice that the choice of |e;) as input and |eg) as output state vectors
(see (4.1)) leads to very poor transport properties; we find an efficiency (as defined by
(4.6)) of Py ~ 1073, Conjecturing that the reason for this low efficiency is the energy
mismatch between input and output site, we can simplify the model by ignoring the
on-site energies —after all, these energies are a consequence of the local coupling
of the site-network to environmental degrees of freedom. This implies that simply
considering the bacteriochlorophyll molecules’ positions and orientations leads to
the Hamiltonian H,?t, which is essentially H);, but with zeroes on the diagonal. Now
we have a model where all the couplings are exactly what is obtained in literature,
but where resonant, coherent transport is possible. With this Hamiltonian, we find
a significant increase in efficiency, up to Py = 0.12, which is much better than for
the Hamiltonian with on-site energies, but still far bellow any enhanced efficiencies
as described in the literature.

We can take disorder effects into account on several levels, ranging from the
simplest possible white noise model, to far more realistic models where we deal with
anetwork of dipoles and permute their positions and orientations. Both methods have
been implemented (Scholak 2011; Zech 2013) and were fruitful tools to learn about
the potential of disorder, e.g. the results in Zech (2013), Zech et al. (2014) directly
influenced our choice in Chap. 4 of centrosymmetry as a design principle. However,
the dominant doublet provides a new design principle that was not discussed earlier
and thus we probe its relevance in quantum transport in complex systems, based

n Hy). Our first approach is a white noise model, where we consider a family of

12In spectroscopy literature, it is common to express energies in wave numbers, cm ™!, the conversion
to ST units is given by lem™! = 1.98630 x 10723J.
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Hamiltonians H, generated such that

ij

Z,.j - (()Hl?l) + 8, E~Normal(0,)), i#j 64)

There are no correlations between the fluctuations in the different elements of the
generated Hamiltonians, and the parameter A indicates the typical strength of the
disorder. For all of these Hamiltonians, we can now run the dynamics and obtain the
value Py.

Apart from the efficiency, we also evaluate whether the systems have a tendency to
be centrosymmetric and to form a dominant doublet, and we need to design measures
for these properties. The measure for centrosymmetry was already described in Zech
(2013), Zech et al. (2014); it reads

c:=min|H — JH ||, (6.5)

where we consider the Hilbert-Schmidt norm ||A|| = ~/trATA (Reed and Simon
1980). J denotes the symmetry matrix J;; = 6; y—j+1 and we minimise over any
possible labelling of the intermediate sites, indicated by S. Notice that the range of
this measure inconveniently depends on H.'?

The dominant doublet strength is more straightforward to measure, since it can
practically be quantified by |(:T:, :I:)|2. Notice, however, that it is not a priori clear
which eigenvectors are the candidate dominant doublet vectors and therefore we must
maximise over all possible choices. This implies that we consider max; [(7;, &) 12,
with 7; the eigenvectors of H, which gives us a value for the overlap with |4) and
with |—). We want both of these overlaps to be large, therefore we consider the
minimum of both, this leads us to the final measure

o 1= minmax | (1, £) I, (6.7)

where 7; are the eigenvectors of H. Contrary to €, the range of the measure « is
independent of H.

In Fig.6.1, we see how this uncorrelated disorder model impacts the transport
properties. The density maps show that even this simplistic way of modelling disorder
can increase the transfer efficiency. However, very few realisations pass Py = 0.5.
We acquire an insight in the manifestation of design principles: There is a correlation

13Using the triangle inequality, we could have defined the measure as

, . ||H—JHJ||’
=1 _ 6.6
‘ ST 2] ©0)

which has the more intuitive properties that ¢ = 1 implies a highly centrosymmetric system and
€ = 0 implies the system is far from centrosymmetric. This insight however only came after the
simulations had already been conducted, with the measure .
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Fig. 6.1 Density maps of the transport efficiency Py against the centrosymmetry measure € (left),
Eq. (6.5), and against the dominant doublet measure « (right), Eq. (6.7), when sampled over a white
noise distribution around the literature Hamiltonian, according to (6.4). The colour code depicts
the density of realisations, normalised to the actual probability density function. The middle of the
white circle indicates the position of Hl(i)t (see text). The strength of the fluctuations was chosen
A=35cm™!

between Py and «, although it is not strongly pronounced for these low efficien-
cies. In a more statistical jargon, we can quantify this using the Pearson correlation
coefficient (Edwards 1976; Pearson 1895),'* which is

E(aPy) — E(@)E(Ph)
= = 0.621341.
' (E(@?) — E(@)?)(E(Py?) — E(Py)?)

Contrary to what is expected from Zech et al. (2014), we do not see a correlation
between Py and €. A plausible explanation for this discrepancy is that our small per-
turbations (i.e. the parameter in (6.4) is chosen A = 5cm™') completely ignore the
physical dipole-dipole structure of Zech et al. (2014). This structure is particularly
relevant because it induces correlations between between the entries of the Hamilto-
nian upon changing the spatial structure of the network of dipoles. These correlations
are completely overlooked by our white noise model, although they may be related
to the positive impact of centrosymmetry. In addition, several studies on disorder
enhanced transport also used genetic optimisation algorithms to specifically gener-
ate efficient realisations (Scholak 2011; Zech 2013), which creates a family of highly
efficient systems by probing disorder realisations in a more directed way. Indeed,
the white noise model does not strive for efficient transport, hence the resulting effi-
ciencies remain low. It is possible that the correlation between centrosymmetry e and
efficiency Py only manifests itself for sufficiently high efficiencies.

To implement a more extended protocol that probes the potential of disorder, we
collaborated with the complex systems group in Havana (Fernandez de Cossio Diaz
2013; Walschaers et al. 2013), to develop a genetic algorithm that optimises the
FMO structure in a realistic way. The algorithm is seeded with the spatial coordi-
nates of the FMO complex’ bacteriochlorophyll molecules (Table 6.1), together with

14This coefficient measures how close the data points are to forming a line. If they would form a
perfect line, we find r = 1, when they form a “round cloud” we find r = 0.
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Table 6.1 Spatial coordinates of the BChla molecules of the FMO (in Angstroms), extracted from
file 3ENL.pdbl1 in the Protein Data Bank (Tronrud et al. 2009). Table taken from Walschaers et al.

(2013)

Site X y Z

1 26.51 2.597 —11.349
2 15.607 —1.517 —17.246
3 3.389 —13.614 —13.851
4 6.678 —20.848 —6.036
5 19.378 —18.571 —1.076
6 21.834 —-7.175 0.634
7 10.274 —8.207 —5.544
8 21.766 13.748 —7.718

Table 6.2 Normalized dipole components of the BChla molecules of the FMO complex, extracted
from file 3ENI.pdb1 in the Protein Data Bank (Tronrud et al. 2009). Table taken from Walschaers

etal. (2013)
Site Sy Sy S.
1 0.741006 0.560602 0.369644
2 0.857141 —0.503776 0.107329
3 0.197121 —0.95741 0.210971
4 0.760508 0.593481 0.263453
5 0.736925 —0.655762 —0.164065
6 0.135017 0.879218 —0.456887
7 0.495115 0.708341 0.503105
8 0.553292 0.138385 —0.821412
the associated eight dipole moments cz-, i=1,...,8 (Table6.2). These data deter-

mine the off-diagonal elements of the Hamiltonian H via dipole-dipole interaction
(Schmidt am Busch et al. 2011). When we label the dipoles we follow the standard
notation (Tronrud et al. 2009). The genetic algorithm works as follows:

1.

Each one of the intermediate (i = 1, 2,4, 5, 6, 7) sites’ dipole moments’ Pri-
entations is subject to 100 random perturbations, to generate new dipoles d;°%
from the old ones d?, according to the following procedure:
Bi = C-l)iO]d + Viﬁi (68)
d™ = b;/|b;| . 6.9)

Here r; is a random Gaussian variable with zero mean and standard deviation o
(initially set to o = 0.005), and #; is a randomly oriented unit vector generated
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with the GSL (GNU Scientific Library Galassi 2009) routine gsl_ran_dir_3d,
with the additional condition 1;,- >0.1.

2. These new dipole configurations define 100 new Hamiltonians H and, corre-
spondingly, 100 new, different values of the quantum transfer efficiency P, from
input site 8 to output site 3.

3. That configuration which mediates the largest efficiency defines the new set of
dipole moments d;. .

4. We repeat steps 1-3 above, with the new d;, and reduce o to o/k, in the kth
iteration.

5. The algorithm stops when Py > 0.99, or when k = 100.'

When seeded with the experimental FMO data, the algorithm generates efficient
configurations very rapidly, typically convergence is reached in less than 20 iterations.

The results of this algorithm are shown in Fig. 6.2, this time in a scatter plot. The
blue points indicate the family of optimised realisations that result from optimising
the FMO complex’s structure data for efficient transport and therefore high values
of Py. At first these results imply that it is possible to reach very high efficiencies
using disorder in a realistic fashion, by simply changing the dipole orientations.
Moreover, we note that these blue points are clearly situated in a region where the
Hamiltonians are more centrosymmetric and where a dominant doublet structure
is present. Additionally, the fast convergence indicates that these realisations are
reasonably easy to find.

Itis natural to wonder whether these properties are typical for any dipolar network,
or whether there is something special about the FMO data. When the algorithm is
seeded with a random dipole configuration, there is no tendency to converge rapidly
to high efficiencies. In this case, the algorithm regularly saturates at low values of
‘Pu, as seen from the wide spread of Py outcomes in Fig. 6.2 (crosses). Although we
observe a wide spread in the efficiencies which are reached, there is still a correlation
between Py and «. This time, we also observe a correlation between Py and €: there
are several possible reasons why this correlation appears in this simulation and not
in the one with the simpler disorder model (see Fig.6.1 above): First, we observe
that the FMO Hamiltonian H}) is more centrosymmetric than the majority of random
Hamiltonians that manifest similar efficiencies. A reasonable conjecture is that the
centrosymmetry facilitates the presence of a dominant doublet, and this relation
between dominant doublet and centrosymmetry may simply be more pronounced in
networks of coupled dipoles. However, in Chap. 9, we will see that centrosymmetry
is also beneficial for quantum transport in absence of a dominant doublet. Even
though that result may be due to a completely different underlying mechanism, it
does suggest that the centrosymmetry does more than facilitating the presence of a
dominant doublet.

If anything, the data in Fig.6.2 explicitly show that the optimisation algorithm
works extraordinarily well for the FMO literature data. The FMO structure is unam-
biguously easier to optimise than a random structure (even when the dipoles are

I5There is no deep reason for choosing these specific conditions.
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Fig. 6.2 Scatter plots of transfer efficiency Py versus centrosymmetry e (left) and dominant doublet
strength « (right). Evolutionary optimisation as achieved by a genetic algorithm is indicated by the
small filled circles, upon seeding of the algorithm with the documented FMO structure (large filled
circles) as listed in Tables6.1 and 6.2. A benchmark ensemble generated by the algorithm when
seeded with randomised dipole orientations is shown as reference (crosses). Figures use the data
from Walschaers et al. (2013)

placed at the same positions and only the orientations are randomised). All these
data and the fast convergence combined suggest that the optimal structure is actu-
ally not very different from the FMO structure as known in literature. To check this
conjecture, we compare the orientations of the dipoles in the published structure,
shown here in Table 6.2, to the dipole orientations of the optimised structures. The
results of such comparison are shown in Fig.6.3, where the centre of each circle
indicates the original solid angle of the dipole moment. The density map indicates
how the dipole moment of each of these specific bacteriochlorophyll molecules is
altered in the various members of the optimised family of realisations. We observe
that all but one dipole remain almost in the same orientation, the deviations with
respect to the original structure are below 7%. The one exception is the dipole of the
bacteriochlorophyll molecule which in the standard literature labelling is referred to
as bacteriochlorophyll 4, with deviations of up to roughly 20% with respect to the
original structure.

We cannot exclude that the striking similarity between the literature data and
these highly efficient realisations is a coincidence, but it is remarkable to say the
least. Moreover, it is surprising that only the orientation of one dipole moment must
be changed to obtain these realisations with highly efficient transport properties. One
may speculate that these data indicate a molecular switching mechanism, built into
this one molecule, or that even the literature data for this one molecule are mistaken.
These questions arise by analysing quantum transport properties, but most likely
quantum physics will not provide the final answer. We can only hope that these data
motivate molecular physicists, physical chemists and biochemists and provide them
with directions for future experimental research.

In this setting, where on-site energies are ignored, there are clear indications
that the design principles from the previous chapters can be used to generate effi-
cient quantum transport. More remarkably, we show that the structure of the FMO’s
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Fig. 6.3 Linearly scaled probability density of the genetically optimised FMO dipole orientations
(dark colours indicating high densities), in spherical coordinates (¢, 8) (in radians). Dipoles 1, 2,
4,5, 6, 7 are listed from left to right and top to bottom, and the experimental dipole orientation
extracted from Table 6.2 defines the origin of each plot. Dipoles 8 (input) and 3 (output) are not
shown since we keep their orientations fixed during optimisation. Figure taken from Walschaers
et al. (2013)
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dipole-dipole networks seems to facilitate these mechanisms. Nevertheless, when
we introduce the diagonal elements to the Hamiltonian, the analysis presented above
breaks down and we cannot even reach high values of Py anymore, mainly due to
the mismatch in input and output energy levels. The beautiful structure of the system
in absence of onsite energies, however, made us wonder whether nature may have
exploited a trick to help overcome these energy gradients to still be able to exploit
these design principles. We believe that this trick consists in using vibrations of the
right frequency to shift the energy level into resonance (Brugger 2015). These are,
however, prospects for future work, which brings us to the many other open problems
in this type of research and the outlook on potential solutions.

6.4 Outlook

In the previous sections, we extensively discussed the ongoing efforts to describe
photosynthesis in the context of quantum transport theory, exploiting the quantum
coherence as observed in sophisticated experiments. Although we focussed on the
knowledge gained throughout the past years, both in our own line of research and in
the broader field, there are still many open problems that have not yet been mentioned.
Here, we list several of these problems; for a much more detailed overview we refer
to Scholes et al. (2017).

A first problem lies in the initial and final states. Whenever a quantum transport
model is described, there must be a state in which the system is initialised and
an ultimate target state that is to be reached. Many open problems revolve around
the fact that it is not really understood what these states are. It is understood that
everything starts with a photon and ends with a charge separation process, but all
steps in between, and the multiple interfaces between them are being debated.

A first discussion relates to the light-matter interaction, where it is unclear what
exactly the states are that are typically being populated by the incoming light. It is
often argued that due to the limited spatial resolution,'¢ the light does not resolve
single chlorophylls, but sees the whole complex. This implies that the light field inter-
acts with the eigenstates of the Hamiltonian and thus initially generates a delocalised
exciton (Monshouwer et al. 1997).!7 This is in strong contrast with the model we
presented here, where the initial exciton is localised on a single chlorophyll molecule.
However, assuming that eigenstates of the Hamiltonian are populated, which are by
definition stationary states, one could never obtain coherent transport. One solution
is that there are additional, coherently coupled, degrees of freedom with no dipole
moment, such that they do not couple with the light field but still affect the transport.

16The resolution of such optical experiments is diffraction-limited (Aeschlimann et al. 2011), hence
the resolution is several hundreds of nanometers (a back-of-the-envelope calculations puts the
estimate at ~350 nm).

1"New results, however, indicate that collective coupling of dipoles to the photon bath can play a
significant role in complexes consisting out of several molecules. This slightly distorts the idea of
the light field interacting with the eigenstates of the Hamiltonian (Shatokhin et al. 2016).
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In addition, excitations are not only travelling within a single light harvesting
complex, but typically are transferred from one to the other before they eventually
reach the reaction centre. Furthermore, light harvesting complexes are often arranged
in some superstructure, and there is evidence that this (variable) superstructure has
functional relevance (Zimmermann 2015). When we thus focus on quantum transport
within a single light harvesting complex, we can wonder whether there is a difference
between the initial state which described a particle that came from another light har-
vesting system, or one that was created by interaction with the light field. Moreover,
we do not know how these different complexes couple to each other and whether
we should describe these couplings in a coherent way or not. In a sense, the FMO
complex, which we so eagerly studied, is an exception to the general picture: It is
understood that in the actual organism, the excitons that travel through the FMO are
always being transmitted via an antenna complex, the chlorosome, which actually
takes care of all light-matter interaction (Moix et al. 2011). The chlorosome as such
is not particularly well understood and neither it its actual interaction with the FMO
complex. The latter only has one task: transmitting excitons from the antenna to the
reaction centre. Because this is a very different role than played by most other light
harvesting complexes, e.g. LHCII and LHII, which function both as antenna com-
plexes and exciton transfer channels, it is not implausible were the FMO to function
in a somewhat different way. This means that it is possible that the design principles
for the FMO complexes are different from those of most other complexes.

Furthermore, there is an ongoing debate on differences arising from interaction
with different types of light (Brumer and Shapiro 2012). It is argued that the light
used in photon-echo experiments, being coherent light, is highly different from actual
solar light, which is thermal. Therefore, it is argued that the understanding gained
from nonlinear spectroscopy experiments cannot simply be extrapolated to living
organisms. The main line of argument is that coherent light is able to generate quan-
tum coherence in a system, whereas thermal light is not. Naively or at least formally,
this is of course the case, which is simply a consequence of descriptions using mas-
ter equations, but on the other hand, this line of argumentation is overly simplified.
The discussion on coherent transport starts after the absorption of a photon, which
implies some temporal resolution (to start after the absorption of a photon, we must
know when a photon is absorbed). Such temporal resolution does not exist in a mas-
ter equation approach (see also Chap.9), which implies an additional, classical type
of uncertainty; a classical randomness over which one must average. Master equa-
tion approaches do much more averaging than actually is desirable to describe these
models for photosynthesis. This averaging over classical randomness in the time at
which the exciton is created is a source of additional decoherence. In this sense, it is
obvious that such models are not reproducing as much coherence. On the other hand,
as long as we pump the system in different channels than those where we extract
the energy, our discussion in Chap.9 clearly shows that generically a current will
flow through the system. Such a current is associated with coherence, as explained in
Sect.9.3.4. Therefore, no matter how one chooses to treat the problem, the argument
that we cannot have coherence because we drive the system with incoherent light is
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simply wrong—certainly so for coherence on transient time scales, but even for the
non-equilibrium steady state (Shatokhin et al. 2016).

This leads us to the debate on the final state. Many models incorporate a sink
(Alicki and Miklaszewski 2012; Manzano 2013; Mohseni et al. 2008; Plenio and
Huelga 2008; Scholak et al. 2011a), such that a single excitation is coupled out via
an incoherent channel, typically attached to one site. The ultimate goal is to get the
system in the state where it is empty. In our model, we simply strive to localise all the
energy at one point in the system, which we identify with the output state, however
one may argue that it is more important to have high average population in this output
site. It is, on the other hand, unclear whether any of these “sink-models” makes much
sense, there may for example be a coherent coupling between the reaction centre and
the complex.

It is arguably the case that one should try to present models where one carries
out all steps from the photon absorption from the light field until the ultimate step of
charge separation. Such models are, however, currently out of reach.

This brings us to the biggest open problem of all. The whole debate on quantum
effects in photosynthesis and even the whole hype around “quantum biology” was
sparked by the discovery of quantum coherence in the signal obtained from photon-
echo experiments. However there is no direct indication that these effects are at all
relevant for the biological functionality of light harvesting complexes. For all we
know, they might simply be artefacts, although that seems improbable, since the
observed coherences do last longer than they can be reasonably expected to, on the
basis of general considerations of quantum open system theory (Collini et al. 2010;
Engel et al. 2007). This indicates that a protection mechanism might be in place, and
if that would be the case, it most probably implies that the coherences are used in
one way or the other.'® To make these statements more accurate, there is need for
an experimental smoking gun of coherent transport. The large quest for the future of
this type of research is clearly the identification of forms of manipulation of the sys-
tem that allow us to unambiguously determine whether transport is coherent or not.
One can here think of another purely coherent effect in disordered systems, coherent
backscattering: It is know that when additional non-linear effects are included in the
system, the coherence is destroyed and the effect vanishes (Muskens et al. 2012).
We require a similar operation for light harvesting complexes, which unambiguously
destroys coherence in the system but has negligible effects beyond that. If the exci-
tation transfer dies with the coherence, one can be sure that coherence is really of
importance.

Even if one understands that coherence is important for transport, it is still not
clear in what way exactly it influences the final quantum efficiency. This is probably
the holy grail of quantum transport models for photosynthesis: the development of
a model that actually predicts quantum efficiencies and shows how the coherence
properties influence it. For example, it may be that all quantum effects only serve
to set a given rate for the transport, as suggested by Jesenko and Znidari¢ (2013). It
may be that there is a function for quantum coherence that has to make sure that a

18Notice that there is a lot of speculation in this sentence.
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non-zero rate can exist. Such a scenario would reserve a profound role for quantum
physics, but still the dynamics would be classical. Of course, the hope is that quantum
effects are important to generate a full-blown quantum transport mechanism. For the
time being, we can only guess for the final outcome, but advances are being made
(Roden et al. 2016). However, there is also a growing stream of scepticism regarding
the role of quantum effects in photosynthesis (Wilkins and Dattani 2015; Duan et al.
2017).

In closing this chapter on quantum effects in Biology, we also conclude Part II
of this dissertation, which dealt with single-particle quantum transport in complex
systems. In the systems studied throughout this part the complexity appeared via
the topological structure of the Hamiltonian. In Part III of this dissertation we will
elaborate on a second way to significantly increase the complexity of the system:
the introduction of many particles. Systems with many particles require a significant
amount of additional formalism to describe all the relevant phenomenology. There-
fore Chap. 7 is fully devoted to introducing the many-particle description of bosonic
and fermionic states, and observables. In Chap. 8, we focus more specifically on the
dynamics of a fixed number of non-interacting particles. In concreto, we will study
a new type of many-particle interference which appears due to indistinguishability.
Finally, in Chap. 9, we open the system such that particles can be exchanged by envi-
ronments. We specifically study the currents which arise in these systems when they
are far from equilibrium and we show that also here, centrosymmetry in the system
Hamiltonian can profoundly impact the particle current.
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Chapter 7 ®)
Describing Many-Particle Quantum i
Systems

More is different
Philip W. Anderson in (1972)

This chapter is mainly based on the lectures presented by Mark Fannes at the COST
Physics School on “New trends in many-particle quantum transport” of February
2015. These lecture notes were, in turn, based on several rather technical textbooks
(Alicki and Fannes 2001; Benatti et al. 2010; Bratteli and Robinson 1987, 1997,
Davidson 1996; Derezinski 2006; Evans and Kawahigashi 1998; Petz 1990) and
we refer the interested reader to these works for more mathematical background on
the results presented here. Our goal is to bring these results from the mathemati-
cal quantum physics community closer to the current mainstream quantum physics
research.

7.1 Introduction

In Part IT of this dissertation all attention was focused on the potential effects of
quantum interference phenomena on the transport of a single particle (an exciton,
a photon, an electron, et cetera), ignoring all possible complications which arise
when another particle is encountered. Multiple particles can indeed give rise to an
interesting zoology of possibilities: Most familiarly two particles—such as two neg-
atively charged electrons—can interact with one another. However, many particles
may behave strangely merely due to their mutual indistinguishability which, in quan-
tum mechanics, leads to effects such as Bose-Einstein condensation (Anderson et al.
1995; Bose 1924; Davis et al. 1995; Einstein 2005; Verbeure 2011), superfluidity
(Kapitza 1938; Landau 1941; London 1938) or the Hong-Ou-Mandel dip (Hong
etal. 1987). Indeed, even mere indistinguishability without any need for actual inter-
action is sufficient to enforce Anderson’s statement “more is different” (Anderson
1972). The main goal of this part of the dissertation is to investigate the additional
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interference phenomena which arise in many-particle systems solely due to indis-
tinguishability. These effects are dynamical in nature and become rather intriguing
(and computationally intractable) once we turn to complex systems as for example
described by random evolution.

Before we address the open questions related to the physics of many-particle
interference, we require a whole additional framework to deal with many-body sys-
tems. Several elements of this mathematical structure have already been introduced
in Chap. 2, where we briefly mention the description of quantum mechanics in terms
of algebras of observables. It turns out that many-particle systems are particularly
suited for a description in terms of the Heisenberg picture imposed on C*-algebras.
In this chapter, we will gradually build up the theory towards such a description and
pinpoint its need.

At the time when much of this mathematical framework was developed, many-
body quantum physics was still mainly an object of the imagination. Even though
the condensed-matter (Bardeen et al. 1957; Mott 1949) and mesoscopic physics
(Fulton and Dolan 1987; Laughlin 1983) communities have long been aware of the
importance of many-particle effects, the controllable parameters in these fields of
study are usually limited. Since the 1980’s there has been an enormous amount of
experimental progress regarding controllability, mainly due to the birth of ultra-cold
atom physics (Ashkin et al. 1986; Chu et al. 1986; Dalibard and Cohen-Tannoudji
1985, 1989; Lett et al. 1988; Phillips and Metcalf 1982), which became enormously
successful thanks to optical lattices (Andrews et al. 1997; Bloch 2005; Bloch et al.
2008; Goldman and Dalibard 2014; Hemmerich and Hinsch 1993; Karski et al.
2009; Mandel et al. 2003; Paredes et al. 2004). On the other hand, also the field of
photonics flourished, providing us with optical tools to explore many-particle physics
(Armstrong et al. 2012; Metcalf et al. 2013; Mosley et al. 2008; Peruzzo et al. 2010;
Ra et al. 2013a,b; Sansoni et al. 2012; Tichy et al. 2010, 2011).

The baseline for the underlying physics is that nature does not tend to be very
creative at its foundations, given that all matter is built from a few fundamental
building blocks, contained in the standard model (Cheng and Li 1984; Griffiths
2004). This leads us to the concept of identical particles: particles which have all the
same internal degrees of freedom, e.g. two left-handed electrons can be considered
identical, whereas a left-handed electron and a left-handed positron can be told apart
via their electrical charge. Notice, however, that identical does not necessarily imply
indistinguishable; when the two left-handed electrons are placed in different corners
of the universe, that information on position—an external degree of freedom—can
be used to distinguish them. The concept of indistinguishability only comes into
play when the particles meet each other in a way that intertwines their external
degrees of freedom: When for example two photons jointly enter a beamsplitter, it
is impossible to relate a single incoming photon to a single outgoing photon. To
observe the effect of the beamsplitter, we must perform measurements. Therefore
we must stress that not only the action of the beamsplitter, but also the choice of the
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measurement apparatus' is an important factor when discussing indistinguishability
(Tichy et al. 2013). A detailed discussion on these issues can be found in Sect. 8.3.4.

In this dissertation, we will not deal with any subtleties or specific details of
the standard model and the particles described there, rather we focus on a more
abstract and broadly applicable understanding of quantum mechanical particles in a
non-relativistic framework. It turns out that such quantum particles really come in
two fundamentally different kinds: bosons and fermions. In quantum field theory,
one can formally relate (Pauli 1940, 1950; Schwinger 1951) these particle species
to the particles’ integer or half-integer spin, respectively, but when focussing on
physical features, there are other hallmarks to describe these particle types: Many
identical bosons can occupy the same single-particle quantum state and thus form a
Bose-Einstein Condensate (BEC), whereas fermions must all occupy different single-
particle quantum states. Interestingly, in the following chapter, we show that there
is much more phenomenology hidden in both sectors of particles, which becomes
apparent in a dynamical setup.

Finally it must be noted that these models are applicable to many forms of matter,
both fundamental and composite. Indeed, one may study many-boson systems using
photons, which are fundamental particles, but it is also possible to use, for exam-
ple, atoms. Although atoms are composite particles, made up from fermions, this
substructure is often unresolved in experiments. The ultra-cold atoms community
has managed to show time over time again that atoms with an integer atomic spin
really do behave as bosons in experimental settings (Anderson et al. 1995; Andrews
et al. 1997; Bloch 2005; Bloch et al. 2008; Davis et al. 1995; Hinsel et al. 2001).
Therefore, the mathematical framework developed in this chapter does serve as an
effective model for such systems.

7.2 Postulates for Bosons and Fermions

7.2.1 The Two-Particle System

To introduce the mathematical formalism required to model systems of identical
particles it is useful to return to the basic foundations of quantum mechanics as a
probabilistic theory, as described in Chap. 2. There, we identified the actual physically
relevant objects in the theory as the moments of the probability distribution for the
observable(s) of interest. This brings us to the quantity (O"),; as starting point of the
discussion. Let us start from a system of two particles, where each particle has its own
degrees of freedom. For a single particle, these degrees of freedom are well-described
by using a Hilbert space H. Remember that the observables were contained in the

'In a mathematical phrasing, one may think of the observable which describes the measurement.
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algebra of bounded operators B(H) on this Hilbert space,” whereas the quantum
states are the normalised, positive functionals defined on this algebra. Introducing
an additional, identical particle into the system, in principle implies doubling all the
degrees of freedom,* which in quantum mechanics is described via a tensor product
structure of the Hilbert space:

Hiota = H® H. (7.1)

However, this description is flawed by a problem engraved deeply within the nature
of these identical particles. When we assume that one particle’s quantum state is
accurately described by a wave function ¢; € H and the other by a wave function
1, € 'H we naively describe the total wave function of the systemas ¢y ® ¥, € Hiotal-
The problem of this description is that both particles are identical and therefore,
interchanging the label of the particles must leave the physics completely intact.
On the other hand, in general ¥} ® ¥, # ¥, & ;. This implies that (7.1) is not the
correct structure to describe such identical particles. However, we can use (7.1) to
construct such a structure, by additionally imposing that there be no effect measurable
upon permutation of the particles.

The first required ingredient is the act of permuting particles, which can be done
by defining the action of the permutation group S, (Dixon and Mortimer 1996).
A way of describing the permutation of particles on the level of the Hilbert space
‘H ® H is by construction of the operation U, which acts as

U1 ® ¥ := 1 @ 1. (7.2)
Therefore, any vector ¥ € H ® H which describes a two-particle state must fulfil
UV = ew. (7.3)

This allows us to formally connect the structure of the two-particle space to the
representation theory of the permutation group S,, by associating the state vectors W
with eigenvectors of the group representations.* Given that permuting the particles
twice leads to the identity operation, the only two possible eigenvalues are given by
phases § = 0 and # = 7. This excludes anyon formalisms as natural candidates for
many-particle system descriptions and leaves us which the choices

UV =1V, (7.4)

2For single-particle systems there typically is no need to proceed to more abstract algebras of
observables, since there usually the GNS construction (see Sect.2.3.2) does lead to a unique Hilbert
space.

3Classically this would be connected to an increase of the dimensions of phase-space.

“4Because the group S, contains only two elements, one of which is the identity, it is sufficient to
focus on the action of U.
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implying that the full Hilbert space of two-particle state vectors is given by either

HO? = (¥ | UV =W}, or (7.5)
HO? = (¥ | UV = —V}, (7.6)

respectively the subspaces of vectors which are symmetric or antisymmetric under
permutations of particles. It is now specifically useful to introduce the vectors

s o), 1= \i@wl ® s + s @ ), .7)

|15 ), = %wl ® U — 12 ® ), (7.8)
to directly obtain

HE? = span{|yn; o) | 1. o € H), (7.9)

HE? = span{|v; 1), | 1. ¥ € H). (7.10)

Both of these Hilbert space constructions are physically realised. Although they
fulfil the same basic condition to lead to invariant physics under permutations of
the particles, they are fundamentally different. Indeed, the wave functions |i; ),
are normalisable, whereas |1); 1)), = 0. The former set of particles, described by
the symmetric wave functions, represent bosons, whereas the antisymmetric ones
describe fermions.

As discussed in Sect.2.3.1, we can now use the Hilbert space structures H? and
'H?z to define the bosonic and fermionic observables, respectively. Moreover, when
we choose any observable O = O, we can consider the permutation of particles as
a unitary operation in the Heisenberg picture (see Chap.?2) and find

0w U'OoU. (7.11)

From the structure of the Hilbert spaces of identical particles (7.5), (7.6) it is now
clear that the permutation of particles acts on moments (O7) as

(09 - (UT0U) = (09), g €N, (7.12)

and thus leaves the physics invariant.

In a more formal mathematical setting, we can discuss the actions of the group
S, on ‘H ® H using representation theory as contained in (Fulton 1997; Hamermesh
1989). From the Schur-Weyl duality (Hamermesh 1989; Weyl 1928) between the
group S, and the general linear group G L (k) (Hamermesh 1989; Weyl 1928),> where
k is the dimension of H, we obtain

5In the next section, the Schur-Weyl duality is more generally formulated in Eq. (7.22).
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HO®H=HE @ HE?, (7.13)

where we used that the irreducible representations of S, are one-dimensional. A
simple calculation, for dim ‘H = k, indicates that

k k+1
dim H®* = (2> and dimH§’2=< er ) (7.14)

This implies that the two-fermion space H,, and the two-boson space H; are sufficient
to reproduce the full tensor product H®?.

Given that physical reality seems to force particles to either adopt bosonic or
fermionic properties, one cannot describe a system of two identical particles as H®2,
but rather one is restricted to dwell in either H,, (for fermions) or H, (for bosons).

7.2.2 The N-Particle System

Generalising the above results to n-particle systems seems straightforward by using
group theory methods based on Young diagrams (Fulton 1997; Walschaers 2011).
These objects characterise the irreducible representations of the group S,. Young
diagrams are related to partitions of n, in the sense that they are composed of several
rows which represent the terms in the partition. The length of each row represents
the value of the specific term in the partition. Usually the diagrams are built such
that the length of the rows does not increase from top to bottom. As an illustration,
we consider the partition n = 9 = 5 + 3 4 1, which would lead to a Young frame

L (7.15)
This structure is connected to permutations by filling it up with labels
1]2]3]4]5]
6178
19] (7.16)

This is typically called a Young tableau, which allows us to define two important
classes of permutations:

R(u) = {o € S, | o permutes entries of the rows of tableau y into the same rows}, (7.17)

C(u) = {o € S, | o permutes entries of the columns of tableau y into the same columns}.

(7.18)
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In our example (7.16), this implies that ¢ € R(u) permutes the elements in each
set {1,2,3,4,5}, {6,7, 8} and {9}, without mixing the elements of these different
sets. On the other hand, 0 € C(u) permutes the elements of the sets {1, 6, 9}, {2, 7},
{3, 8}, {4} and {5}, without intermixing the sets. The irreducible representations can
be constructed via what is called a Young symmetriser, c,,, which is defined by

cui= Y sign()go Y (7.19)

oeC(p) TER(1)

In other words, one symmetrises over all rows and antisymmetrises over all columns.
These results are all formalised and proven in (Fulton 1997). For the narrative, the
important result is that each of these Young symmetrisers, which represent the action
of the group S,,, is uniquely defined by one Young frame .

Considering a system of n particles, each described by a single particle wave
function v, € H, embedded in total Hilbert space H®" in principle provides a wide
range of possibilities. Let us start by defining a general action of the group S, as

UM @ @+ @Yy = Yry @ Yr) @ - @ Yy (7.20)

When we now assume that n-particle states are connected to the irreducible repre-
sentations of S, we can for example construct 3-particle objects of the form

x| ]
9] =xQURP+UV®YRI—0RUVIX—VR IR X (7.21)

Itis easily understood that one can generalise this construction method to any number
of particles n and any young diagram g. This procedure again provides a method to
break H®" up in various sub-structures, leading to the Schur-Weyl duality

H®" = P H,.. (7.22)
n

where each p represents a different Young diagram for S,. Were we to follow this
line of reasoning, any amount of particles n would lead to new types of particles,
which might behave differently under permutations. After all, each Young diagram
would present a different set of rules for interchanging particles. More intriguingly,
single-particle states could be multiply occupied by putting them in the same row
of (7.21), however, different columns could never contain the same single-particle
states. This would ultimately lead to very peculiar physical phenomena. For example,
in (7.21), the particles described by wave functions y and v behave as bosons with
respect to one another. However, the particles described by wave functions x and ¢
act as fermions under permutation. This indicates that the particle statistics described
by general Young symmetrisers would mix fermionic and bosonic behaviour. These
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phenomena are not observed in real physical systems and therefore the Pauli principle
postulates that they do not exist.

Indeed, several of these mathematical structures do not seem to apply to the
physical reality we expect from n-particle systems. The reason can again be found
by considering the actual quantities (O") which are accessible by measurement. We
demand that this quantity should remain invariant under permutations of particles,
because the particles are identical. This implies that

(0" = (U(r™)0"U(r)), forallw € S,. (7.23)

When we, again, consider the special, though elementary, case where (.) is determined
by a wave function ¥ € H®", we must fulfil

U(mW = e, (7.24)

where the phase 6,; can depend on the specific permutation which is being considered.
The only consistent options are given by ¢!’ = 1 for all 7, or by €'’ = sign(r).
It is certainly not a coincidence that these two options relate to either the fully
symmetrised wave functions or to the fully antisymmetrised ones, which relate to
Young diagrams of the form

[T ] and @ (7.25)

respectively. This has profound consequences for the structure of the physical theory:
For two particles, we deduced that the bosons and fermions together constituted the
full space H®2. Even though we find that Eq. (7.22) must hold, it turns out that for
a system of identical particles, only two of these many subspaces H,, actually make
physical sense. These are exactly the ones given by the Young diagrams as given by
the shapes in (7.25). Hence, the system is either fermionic or bosonic, described by
the respective Hilbert spaces

Hf’" = (U e H®" | U(r)¥ = sign(n)¥, forall 7 € S,}, (7.26)
HE (= (W e H®" | U(m)¥ =V, forall 7€ S,}. (7.27)

We see that for dim H = k,

k k4n—1
dim H&" =< ) and  dim H&" =< o ) (7.28)

n n

which clearly does not add up to dim H®" = k".
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7.2.3 Permanents and (Slater) Determinants

Only the two most extreme Young diagrams—and therefore only the spaces H"
and H®"—are relevant for n-particle systems. One may wonder whether there is a
more straightforward and consistent way to define the fundamental wave functions
that make up these spaces. Although in principle we may always use the actions
of the relevant Young symmetrisers c,, for u either the single-column (fermions)
and single-row (bosons) Young diagram, the framework of representation theory is
overly intricate to deal with systems where we only require full symmetrisation or
full antisymmetrisation. Therefore, with a set of vectors ¢y, ..., 1, € H, we define

1
VLAY A Aty = Y Sign(@inn) ® ey @ - @ Yry, (7.29)

TES,

1
ﬁ Z Yrt) @ Yr2) @ - & Yy (7.30)

twes,

¢1®¢2®--~®7/)n =

These vectors are indeed a total set © in H?ﬂ, but their inner-products are non-trivial.

It should be noted that the fermionic vectors (7.29) are often referred to as Slater
determinants. It can be shown that

(DI AGL A NP, Y1 Ao A= Apy,) = det <[(¢i, ¢_/)]) (7.31)
<¢1®¢z®-~-®¢n,w1®wz®m®wn>=perm<[(¢i,w,-)]>, (7.32)

with perm the permanent of the matrix. The permanent of an n X n matrix A is
defined as
perm A= Z A[ﬂ—(l)Azﬂ—(z) e A,”T(n), (733)

TEeS,

which may seem very similar to the determinant and therefore rather innocent. How-
ever, permanents are not invariant under unitary transformations of the matrix, typi-
cally making them extremely hard to compute. The reason is that det A is determined
only by the eigenvalues of A, whereas perm A also depends on the chosen basis. In
the language of complexity theory (Moore and Mertens 2011) this implies that the
complexity of a standard algorithm for the evaluation of a determinant is O(n?),
whereas a permanent belongs to complexity class #P (Moore and Mertens 2011).
Ultimately this means that one can prove that permanents are much harder to com-
pute than determinants, a problem which propagates to the physics of many-boson
interference. The physical implications of (7.31) and (7.32) are core elements of our

6 A total set in the context of topological vector spaces is a set, the linear span of which is dense in
the full topological vector space. In a Hilbert space this becomes equivalent to stating that the only
vector orthogonal to all the vectors in the set is the zero-vector.
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work on many-particle interference as described in Chap. 8, where we briefly come
back to the computational problems which arise in bosonic systems (see Sects. 8.3.5
and 8.5).

These results imply that only in the case where the normalised 1, ..., ¥, € H
are all orthogonal to one another the vectors (7.29), (7.30) are normalised. Therefore,
in order to describe wave functions, we must not only use (7.29), (7.30), but also
introduce a normalisation factor.

For completeness, we mention that the products © and A can be extended in a
natural way to

AHE X HE™ — HE™™ (s ) > U A (7.34)
O HE" x HE™ — HE™™ 2 (s ) > Y © Y (7.35)

such that

(Q;Z)l/\"'/\wn)/\(rl,[}n-&-l/\"'/\er-m)21/}1/\"'/\wn/\wn-ﬁ-l/\"'/\er—ma
(7.36)

(V1O On) O (Y1 O O Vpym) =11 O ...y O Pus1 O -+ O Y.
(7.37)

This shows that in essence, bosons and fermions are in many ways remarkably similar
in structure. On the other hand, in the following chapters, we will show that the
difference between symmetrisation and antisymmetrisation can make a considerable
difference in physical phenomenology.

7.3 Fock Space

7.3.1 Constructing Fock Space

In the constructions above, one fundamental assumption was made: The number of
particles was assumed to be known and fixed. However, in many physical contexts,
this may not be the case; systems can be made of unstable particles or be connected
to reservoirs with which they exchange particles. Depending whether in a dynam-
ical, non-equilibrium setting or rather describing equilibrium states, one resorts to
different types of modelling these systems, e.g. using the grand canonical ensemble
(Bratteli and Robinson 1997; Kardar 2007), response theory (Martin 2004), master
equations (Breuer and Petruccione 2007), et cetera. No matter which models are
used, one requires a setting in which the particle number can fluctuate. In this section
we present the construction of Fock space, which is a first step on the route towards
arigorous description of many-boson and many-fermion systems. It must be empha-
sised that the Fock space is not the end of the story. As a matter of fact, there is
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typically no such thing as a uniquely defined Fock space for a full-blown many-body
system.

In several ways, building Fock space is similar to playing with Lego. We have
a set of fundamental building blocks at our disposal and we use them to build up a
larger construct. Many of these fundamental building blocks have been introduced
in Sect. 7.2, since there we presented the structure for an n-particle system. We want
to consider a space in which the number of particles can fluctuate, which means
that the Hilbert space must be equipped to describe from a single up to hundreds of
particles, and even the empty system. This implies that HSE’/'; for all possible values
of n must be contained within the joint structure. This can be done by gluing these
blocks together using direct sums, thus defining Fock spaces

r'Hy=CoHoH*o..., (7.38)
") =CoHoH ... (7.39)

We refer to the different terms in the direct sum as sectors. The first sector, denoted
C, describes the empty system. Although the fermionic Fock space (7.38) and the
bosonic Fock space (7.39) look very similar, there is already a huge difference
between both whenever H is finite dimensional: Whenever a fermionic system is
built on top of a finite dimensional single-particle Hilbert space, it can house at most
as many particles as the dimension of . This implies that the series of direct sums
in (7.38) is finite when we deal with a finite dimensional 7. However, due to the
symmetric properties of bosonic wave functions, there is no limit to the number of
bosons that can be accommodated in a single system, as several of them can be
represented by the same single-particle wave functions. However, there typically are
also physical constraints to be taken into account.

The most fundamental object in this Fock space is the vacuum vector €2, which
represents the empty system. This vector is, both in fermionic and in bosonic Fock
space, given by

Q=100006.... (7.40)

Of course, a general vector W in such a Fock space can straightforwardly be written
down as
=90 @y op?Pe... with " e HZ. (7.41)

It is important to demand that’

1> = ™| < oo (7.42)

because we want these vectors to be normalisable. We can now interpret 1) as the
n-particle component of the general wave function W.

"The norm structure is straightforwardly inherited from the norm that lies on the single-particle
Hilbert space H.
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A useful and consistent way to build vectors such as W from the vacuum state
is by using creation operators a'(¢), where ¢ € H. These operators connect the
n-particle sectors to (n + 1)-particle spaces. For a fermionic system, the action of a
creation operator on the vector W as defined in (7.41) is given by

ad'(PV =0 (w%) @ (¢ A ¢“>> ® ((,25 A w@) ..., (7.43)

such that a' (¢) literally takes a single-particle wave function ¢ € H and adds it to the
system.? For example the two-particle component 1> of W gets an additional particle
with wave function ¢ glued to it, which turns it into a three-particle component
o A of the new vector a’ (¢)W.

The action of a bosonic creation operator is identical, except for the fact that it
attaches the new single-particle wave functions using “®”. This slight change can
nevertheless lead to serious problems, since

lp © ™| < Vn+T1glI™]| (7.44)

is the best possible bound. Thus, when we deal with a bosonic system, we may write

ad(P)V =00 (w“”qs) ® (¢ © w<“> ® (¢® 1/1(2)> ®..., (7.45)
but this only results in a well-defined and normalisable wave function if
oo
> nllp ™ < oo (7.46)
n=0

The additional factor n typically puts strong restrictions on the allowed states and
points towards a rather fundamental problem of bosonic creation operators: They are
unbounded.

Given these creation operators a'(¢), together with the specific Hilbert space H
and the vacuum €2, we now have all the tools at hand to consistently populate Fock
space. Indeed, many-particle wave functions can simply be generated by letting
creation operators act on the vacuum. Be mindful, though, these wave functions are
typically not normalised. One may simply realise that we can construct an n-particle
state in Fock space by applying creation operators to the vacuum, since

8Note that the component 1/ on the zero-particle sector of W is simply a complex number,
describing the component of the wave function that does not contain any particle. Upon acting with
the creation operator, a particle is created, hence there is no longer any fraction of the wave function
that contains no particle, and the zero-particle component of W acquires one particle with wave
function ¢.
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aT(wl)a*(wz)...a*(wn)Q=0®-~-®0@(mAw2A~-~/\wn>@0@...

(7.47)
Clearly this approach can be extended to more intricate constructions of wave func-
tions which live on multiple particle sectors.
Another useful tool in Fock space is the number operator N, which quite literally
counts the number of particles. It acts on a vector W, as given by (7.41), as

o0
N =009V @20? @3yV ..., with Y n?[p™|> <oco. (7.48)
n=0

Thus each component of each particle sector is multiplied by its respective number
of particles.

7.3.2 Structuring Fock Space

A seemingly innocent, though fundamental aspect of Fock spaces is that they natu-
rally inherit structures engraved in the single-particle Hilbert spaces on which they
are constructed. Specifically, direct sum structures in the single-particle Hilbert space
can be expressed by tensor product structures of Fock spaces. This is represented by
the natural isomorphism U,

U:T/"(H, & Hy) = TP (Hy) @ T1/P(H,). (7.49)

Actually, the unitary operator U has additional structure and can be seen as a block-
diagonal, following the direct sum structure of Fock space

U= @ U,, (7.50)

where U, acts on the n-particle sector. Since we break up the Fock space in the tensor
product structure (7.49), each particle of the n-particle sector has the possibility to
live in either one of the two constituents of the tensor product. Therefore, in order to
accommodate all possibilities, we find a binomial formula for Hilbert spaces

®n n
U, : <H1 ® Hz) — PHE e I, (7.51)
als k=0

these different unitaries act explicitly on bosons as
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U1 @ 2) =1 © i

va( @ v 0@ o) =(wiomel)e(nentosn)e(iowon)

(7.52)
while for fermions the result is slightly different

Ui(1 ®¢2) = 41 @92

vs(r 0 A G o) = (Wi nene1)e(nen-nen)o(1owrm)

(7.53)
It is useful to pinpoint the special case where we consider the two-particle vector
(¥ & 0) ® (0 & ¢) for which we find

L0008 ¢) =9 ¢. (7.54)

This implies that, although the two bosons are identical, they can effectively be
described by a tensor product state and are therefore distinguishable.” A natural
example is that of two free bosons, which are spatially separated, e.g. the one is on
Venus, the other on Mars. The particles’ wave functions are contained in the Hilbert
space of square integrable functions in 3D Euclidean space £%(R?). We can describe
this space as £2(R*) = £?(Avenus) ® L2(R> \ Avenus), Where Avenus can be seen as
aninterval in 3D space that only contains Venus. This direct sum structure now allows
us to ultimately describe the system with the state Yvenus ® ¥mMars, 1-€. although the
particles are identical, they can clearly be distinguished because they are on different
planets. We extensively come back to this point when discussing distinguishability
in Sect. 8.3.4.

To globally describe the action of U, we can use the knowledge that creation
operators and the vacuum state are sufficient to populate the Fock spaces. The action
of U on these objects is thus the only relevant ingredient which is required. It holds
that

UQp =01 ® Q2s, (7.55)

Ua" (W @)U =a" (W) @ 1+ 1 ®a'(y,) for bosons, (7.56)
Ud" () ® 1)U = a'(1h) @ 1+ (—1)Y @ a’(y») for fermions,  (7.57)

where Qi is the vacuum of Hilbert space I'(H; @ H,) and the operator (—1)V
imposes a minus sign for those states which have an odd number of particles (Jordan
and Wigner 1928). As these results may seem a little abstract, we emphasise what
they imply for some more concrete examples of systems: At the bottom line of

90ne can employ exactly the same argument for distinguishable, though identical, fermions.
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the above structures is the fact that we can either structure our Fock space using
layers of different particle numbers, or factors of different modes.'® Typically, the
considered modes represent the basic structure of H: When we focus on any type of
finite dimensional system, H = C*. Of course, we can break up C* in many direct
sum structures, as many as there are partitions of k to be precise. However, the most
fundamental building block is simply C, and thus we can represent any k-dimensional
Hilbert space as H = 691;21 C. This, on its turn, implies that we can derive

®k
e/ (H) = (r‘?W@)) if H is k-dimensional. (7.58)

This result has a fundamental consequence when it comes to interpretations. It implies
that there are essentially two equivalent ways to describe a many-particle system:
either we take the particle perspective and describe which modes contribute to each
particle’s state, or we start from the mode perspective and describe how many particles
occupy each mode. The fundamental building blocks of the system in the mode
perspective are given by I'”//(C). Let us take a closer look at these structures.

Bosons and Harmonic Oscillators
In the case of bosons, I'’(C) is given, according to (7.39), by

rre)y=coeCoC®o...

(7.59)
=CaCaCa...

which is still an infinite dimensional system. Because C is a one dimensional space,
there is only one unique creation operator a'. It can now be shown that

r’€) = £X(R), (7.60)

the space of square integrable functions. To do so, we first construct the operators P
and Q on L£*(R):

0
@P)(x) =x9(x) and  (PY)(x) = —i ﬁ/}(x) (7.61)

for all ¢ € L£2(R) and all x € R. Note that in order to construct an isomorphism
u :T?(C) — L2(R), we simply need to find a consistent image for Q and a'. These
are given by

10We will use the term modes to describe the degrees of freedom which are seen by each individual
particle in the system. In other words, the single-particle Hilbert space H can be seen as the structure
that describes the quantum mechanics for these modes.
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1 _x2/2
u)(x) = me (7.62)
ua'u=! = %(Q —iP). (7.63)

With [Q, P] =i from (7.61), we know that these operators are the well-known and
fundamental position and momentum operators for £2(R). The mapping u directly
establishes the connection between the bosonic creation operator and the creation
operator for excitations of the harmonic oscillator. In other words, I'%/f (H) can be
interpreted as a chain of harmonic oscillators.

Note that this equivalence lies at the heart of the early algebraic approach to
quantum mechanics (von Neumann 1931), which showed the equivalence between
Schrddinger’s wave mechanics and Heisenberg’s matrix mechanics.

Fermions and Spin Systems

For fermions the structure of I'/ (C) is considerably simpler
r‘©y=cec=c (7.64)

This is logical, given that a single fermionic mode can contain at most one particle
and can therefore be treated similarly to a two-level system. The isomorphism

u:T/(C) — ¢ (7.65)
is straightforwardly given by
u2 = <(l)> , (7.66)
01
f,-1
ua'u= = (0 O)’ (7.67)

The latter is nothing else than o™, which allows us to directly make a connection to
the Pauli matrices and thereby interpret the single fermionic mode as a spin.

However, there is a serious subtlety when we embed this into a larger structure as
set forth by Eq. (7.57). Considering

a = aT((:Q:é]o) 1 (f@o)) (7.68)

we have to take into account the (—]l)ﬁ described in Eq. (7.57) when implementing
the isomorphism. For C? this operator is described by

(-7 = <(1) _01> =0 (7.69)
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and this now leads to the Jordan—Wigner transformation
UajU'=0"® - ®0°®0"®1® - ®1, (7.70)

where the o+ = ua’u~" is positioned as the ith factor in the tensor product.

The Jordan—Wigner transformation allows to connect a system of multiple
fermionic modes to a quantum spin chain. This may seem like a rather artificial
and unpractical identity due to the o components, however the mapping has its mer-
its: Most remarkable and surprising is probably that one can use fermionic systems
and the Jordan—Wigner isomorphism to study the 2D Ising model (Araki and Evans
1983; Bratteli and Robinson 1997), clearly highlighting the use of these identities.

7.3.3 Exponential Vectors

In our list of useful tools for calculation, we ultimately devote the last fraction of this
section on Fock space structures to a particularly useful type of objects: the so-called
exponential vectors. These objects are particularly useful for bosons: An exponential
vector in '’ (H) is constructed using a single-particle wave function v € H, and is
given by

1
exp(1)) :=1®¢€Bﬁ¢®¢®... (7.71)
It can directly be seen that
exp()) = exp(a’ () Q. (7.72)

Given the typical normalisation issues which were addressed for bosonic systems, it
is useful to note that the exponential vectors are normalisable. Moreover, they form
a linearly independent set and their linear combinations are dense in I'’(). They
also offer computational advantages such as

1 1
N V2!

1 1
=1+<¢,w>+5<¢>,w>2+§<¢>,w>3+..‘
— (o)

<exp(¢>,exp(w)>=<1@¢@( ¢®¢)@...,1@w@( ¢®¢)@...>

(7.73)

In the context of Fock space structures, the isomorphism (7.49) acts in a very natural
way
Uexp(¥1 @ 12) = exp(¥1) @ exp(t)) (7.74)

Due to all these nice properties, one may wonder whether it is not more natural to
describe bosonic systems with such vectors rather than the standard symmetric wave
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functions. It turns out that this intuition is correct, this does provide technical advan-
tages. The exponential vectors also prove to be fundamental tools in the interpretation
of bosonic coherent states. We extensively come back to this point in the following
sections. First, however, we plunge deeper in the structure of creation operators and
their antagonists, the annihilation operators.

7.4 Commutation Relations

It is no coincidence that the creation operator is indicated with a “{”, as it is, indeed,
the adjoint of another type of operator, denoted by a(v), the annihilation operator.
As suggested by its destructive name, the annihilation operator destroys particles.
This action is, however, slightly more subtle to define than the creation of a particle.
After all, it is straightforward to destroy a particle with wave function v, € H from
the two fermion wave function ¥; A v, (at least assuming (¢, 1) = 0), but how
would one annihilate a particle with wave function ¢ € H from the very same two-
fermion wave function? Ultimately, we can compute the action of a(¢) from (7.43),
which results in the mapping'!

n+1
VLAY A Atgr > D (DI G ) or A A A A A
j=1
(7.75)
For fermions it is not surprising that sign-bookkeeping is required, but their bosonic
counterpart saves us from such cumber and we obtain the mapping

n+1

PO O Ot > Y (. 0) Y1 O Oy Ojgr -+ O Yy
=1
! (7.76)
Thus we defined the operator a(¢) for ¢ € H and have the possibility to make
transitions from » particle space to (n — 1)-particle space. For completeness, let us
also mention that a(¢)2 = 0 for any ¢ € H.

Having constructed both creation and annihilation operators, we now explore
their mutual relation, which is notoriously captured by the commutation relations
for bosons and the anticommutation relations for fermions. By using for example
any n-particle wave function, it can be directly verified that for bosons

Equation (7.43) can be thought of as a block diagonal representation. Therefore, we can
restrict ourselves to considering a'(f) : H™ — H®+D. We can now consider ¥ € H™ and
® e HMD, with W=ty A---A1h, and & =Py A+ A ¢ypq, and compute (aT(f)lIJ, CD) =
ZWGS”H <f, <I57r(1))<1/11, ¢W(2)>...<wn, ¢7r(n+1))~ The adjoint is now defined by demanding that
(aT(f)\IJ, CD) = (W, a(f)P) for all ¥ € H™ and & € H"*+D. Because the Slater determinants
form a total set, we can define the annihilation operator by means of its action on such vectors. The
result (7.75) follows from the evaluation of the inner products.
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[a'(1),a’ ()] =0 and [a(y1),a’ ()] = (1, 1), (7.77)

whereas for fermions

{a" (@), a" ()} =0 and {a@1),a’ ()} = (1, ). (7.78)

Itis appealing to note at this stage that these operators act similarly to the ladder oper-
ators which are know from the theory of angular momentum in quantum mechanics
(Basdevant and Dalibard 2002). Formally, angular momentum degrees of freedom
can be related to the rotation group and its representations (Hamermesh 1989). Fock
space can be constructed in a very analogous way (Bratteli and Robinson 1997).

A final crucial property of the creations and annihilation operators is their
behaviour with respect to the linear combinations of single-particle wave functions.
From the definitions of these operators, we see that they are C-linear, which implies
that for all 11,1, € Hand o € C

a'(ay +1b) = aa’ () +a’ (1), (7.79)
alopy + 1) = aa(r) +a(). (7.80)

This property will, for example, be quite fundamental to obtain the results of Sect. 7.5.

Although we have constructed the creations and annihilation operators in a con-
sistent way, the results for bosons are not completely satisfactory, since the creation
and annihilation operators are unbounded, which follows directly from (7.46), and
therefore hard to control. To overcome this inconvenience, it is common to work with
another class, known as Weyl operators. These unitary—thus bounded—operators
can be used to avoid technical difficulties. They also satisfy a bounded version of the
bosonic (canonical) commutation relations. Let us start by defining them in terms of
the bosonic creation and annihilation operators:

W) :=exp(a' (@) —a@)), ¢ eH. (7.81)

There are several different names and conventions for these operators, depending on
the field that uses them. We choose to follow (Alicki 2010), which is most fit for
quantum optics applications (Grynberg et al. 2010; Mandel and Wolf 1995; Schleich
2001; Scully and Zubairy 1997). One can prove the following properties

W(0) = 1, (7.82)
W) = W(=1), (7.83)
W ()W (1) = exp (iIm (b1, 12)) W(thy + 1), (7.84)
W@)a(®) W' () = a(p) — (¢, 1), (7.85)
W@)a (W @) =a'(¢) — (¥, ¢) . (7.86)

For the last three properties, one uses the Baker-Campbell-Hausdorff formula (Alicki
2010).
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7.5 Second Quantisation

Now that the creation and annihilation operators are defined and their fundamental
structure is known, we explain how they can be used to construct more intricate
objects. We already know they can be used to construct wave functions on Fock
space, but they serve other purposes when combined: They form observables on
Fock space.

Up to now, we focussed attention on the structure of Fock space and on the
wave functions defined on it. On the level of observables, we only introduced the
number operator N. To broaden the discussion to general, though tractable classes
of observables, we start with what are called single-particle observables. These
observables are in principle generated by an observable O € B(H) on the single-
particle Hilbert space. Since our system contains multiple particles, it does not make
sense to let the operator act on only one of them, after all, this would single out a
special particle which goes against them being identical. Intuitively, we may again
consider the physical quantity (O™); 5., where O™ is the observable defined on
HEP, generated by O € B(H), and conclude that intuitively

als’

(O 2, = (0)1 +(0)2 + -+ (O). (7.87)
This kind of observables is additive, as expected, for example, for a Hamiltonian
(energy) without interactions. In other words, an n-particle observable, with an n-
particle state acting on it, is broken up in a sum of single-particle observables with
single-particle states acting on them. One can obtain such a structure by defining

O a5

oMW = (0®1®”“ +10®1" 2 +... 41! ®0> ; (7.88)

H®n

als

such that essentially each particle in Hf’/’; is appointed its own copy of O. These

objects are often referred to as single-particle observables, since their action on the
many-particle spaces is essentially a trivial extension of their action on a single
particle. On the other hand, even though they seem like somewhat trivial objects,
they are quite fundamental in the theory of many-particle systems.
The generalisation to the full Fock space is completely straightforward and is
given by
r'"o0) =000V 0% ... (7.89)

However, there is a much more appealing way to write this object, which often
proves useful in calculations, using creation and annihilation operators. At first let us
consider {e;}, a (potentially infinite) basis of the single-particle space H. The action
of O € B(H) on any wave function i) € H is given by
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Oy = Z(ei, Ocj)ej. V) ei. (7.90)

iJj
This identity can be used to calculate

ODy Ahy A Aty
=(OVD) APIA - Athy +PLA(OY) Ao Athy + .
+ YL APa A A(OYy) (7.91)

= <Z(ei, Oej)af(ei)a(e_,-)>1/}1 Ay A Ay

iJj

As this procedure can be carried out for all particle numbers n and all wave functions
1, we conclude that

r/(0) =Y (ei. Ocj)a’ (e)a(e;). (7.92)

iJj

Because a random basis {e;} is used, one can in principle choose any basis to carry
out this construction. However, usually physics provides a natural basis to treat the
problem; if not, mathematics encourages us to use the basis of eigenvectors of O.
Of course, a fully analogous calculation is possible for bosons.

These representations of single-particle observables in Fock space have several
useful and interesting properties, which one can derive using Eq. (7.92):

[T*1(0), a’ ()] = a’(0v), (7.93)
[[*7(0), a()] = —a(0"y), (7.94)
[T°/7(0), T/ (M) =T/ (10, M]). (7.95)

For this dissertation, these properties are specifically useful when considering dynam-
ics and equations of motion.

Example 7.5.1 Since we claimed that the single-particle operators can be quite fun-
damental, let us give a concrete example of one very fundamental observable which
is actually a single-particle operator: The number operator. It sounds slightly ironi-
cal that the operator that counts the number of particles is actually contained in the
class of single-particle operators, but when one considers its structure, it is actually
logical. Remember that we defined in (7.48):

NV =00y o20? @3V @ ....
This definition allows for the very straightforward expression that

N=001021031a®..., (7.96)
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which directly implies that, actually,
N =T/’ ). (7.97)

Therefore, it is also logical that we can choose any basis {e;} of the single-particle
space H and express

N = ZaT(ej)a(ej), (7.98)
J

which is clearly related to the number operators which we know for the harmonic
oscillator.

These insights allow for a natural definition and interpretation of other types of
“counting operators”: One may consider Ps € B(H) such that P? = Py, and, hence,
is a projector on a subspace which we label S. By considering

ig = TP (Pg) (7.99)

we construct an operator which counts exactly how many particles are occupying
wave functions contained in S. Specifically interesting is the case where P = 1)) (¢],
which leads to

Ay =T/ ([9) (W)). (7.100)

After our discussion about the structure of Fock space in Sect. 7.3.2, we know that one
can typically partition H = P j C such that each term in the direct sum corresponds
to a different mode. Now, we can use operators of the form 71, as the number operators
constructed on the kth factor of ) ; I'//*(C), to count the number of particles in each
mode.

In complete analogy to the single-particle observables, one can also define n-
particle observables, which act on each possible combination of n particles. For all
sectors with fewer than n particles, the operator simply returns zero,'? but one clearly
sees that for larger particle numbers some combinatorics is required. We will not go
into detail here, but simply introduce the two-particle case to sketch the idea.

Let us assume that A € B(Hf?/zs), thus turning it into a two-particle observable.
We can again embed this observable in an n-particle space Hf}’/’; (with n > 2) by the
following construction'?:

QM .— Z (A{il,iz} ® (k¢{® }1))

{i1,in}

(7.101)

H@n

als

2Thus, if an m-particle observable acts on an n-wave function, the result will be zero whenever
n<m.

13A word on notation: Whenever we consider an operator A, acting on some Hilbert space H, we
denote A | the restriction of A on the subspace I C H. Such a restriction simply limits the
domain of the operator to the smaller subspace.



7.5 Second Quantisation 221

Notationally, this may look a little complicated, but it represents the idea that one
sums over each combination of two particles and lets A act on the two-particle space
spanned by these two particles. We now define the two-particle observable on the
full Fock space as

r’’f(A)y=0000A% A% @ ..., (7.102)

where A® = A.
As a rather aesthetic alternative we may also write

. 1 .
r(A) = 3 Z (ei nej, Aex Ne)a'(ea’(ej)aler)ale)  for fermions,
ik
(7.103)

1 .
r’) = 3 Z (e,- Qej,Ae © e;)aT(ei)a' (ej)a(er)a(e;)  for bosons,
i j.k,l
(7.104)

where {e;} forms as basis of the single-particle Hilbert space H. These identities are
computed in a similar way as we did for the single-particle case in Eq. (7.92), but
we do not present the details here. It is, however, important to show that, indeed, the
action of I'//?(A) on a single particle wave functions leads to a zero contribution:
Let us consider ) € H, represented in Fock space by ¥ = a' (1)), and I'//?(A) act
on it:

1 . .
I'’(Aw = 3 Z (ei nej, Aex Ne)a'(ep)a(ep)aleale)a’ W)Q
ij.k,l

= % S leines Ae ne) aT(e»a*(e,-)a(ek)( fer, 1) - aw)a(ez))sz
ijkl
=0.
(7.105)
The last step simply follows from the fact that we end up with an annihilation operator
acting on the vacuum.

The procedure described here indicates that any type of observable can be
expressed in terms of creation and annihilation operators, which makes these opera-
tors much more fundamental than the wave functions in the Fock space. One requires
nothing but a vacuum vector €2 and a set of creation and annihilation operators that
obey the right commutation (or anticommutation relations) to do physics. Ultimately
these creation and annihilation operators are the foundation of many-particle quan-
tum physics, which is extensively discussed in Sect.7.7.

The transition from n-particle observables on the n-particle space to the full Fock
space, as described in this section, is often referred to as second quantisation because
it exactly quantises everything in terms of creation and annihilation operators.
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There is one additional—and very useful—object that remains to be considered:
the exponential element (Dierckx et al. 2008). Just as the second quantisation method
described above, the exponential element represents a single-particle observable as
a bounded operator on Fock space. However, it does so in a fundamentally different
way, since it acts multiplicatively. The formal definition of the exponential element
is given by

EO) =180 0AN000AN0ON0D... for fermions, (7.106)
EO)=10000006000006... for bosons. (7.107)

These exponential elements have many useful properties as will be shown in
Sect. 8.2.!* The most important of these properties are listed here, for A, B € B(H)

E(1y) = L), (7.108)
EAT = E(A)T, (7.109)
E(ATA) >0, (7.110)
E(A)E(B) = E(AB), (7.111)
E(A® B) X E(A)® E(B), (7.112)
E(A)a’(¢) = a' (AP)E(A), (7.113)
a(¢)E(A) = E(A)a(A'9), (7.114)
E(e?) = '™, (7.115)

Notice that the very last property connects the mapping I' in a very fundamental
way to E. The exponential elements are especially useful for calculations involving
dynamics.

7.6 Many-Particle Quantum States

In the previous sections, we built the structure of n-particle spaces and of the “all-
inclusive”!> Fock space. Furthermore, we discussed the structure of some of the most
natural types of observables in such systems. What up to now did not receive much
attention, are the quantum states living on Fock space. In Sect. 2.3.2 we have seen that
states are the positive, normalised functionals defined on the algebra of observables.
Here we introduce several well-known classes of states, which one might for example
encounter in quantum optics or statistical mechanics.

14 Alternatively, see Dierckx et al. (2008) for applications in quantum information theory.

151n the next section, however, we sill see that Fock space is not as all-inclusive as it is often
presented.
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7.6.1 Number States

The first class of states under consideration is already quite known from the previous
sections, as they where implicitly considered in much of the construction of Fock
space. The number states are those which represent a fixed number of particles.
Prominent members of this class of states are those of the form

U ~at @) ...a" (). (7.116)

Logically, for bosons it may be that <1/)i, P j) = 1, whereas for fermions this would
be impossible and simply result in the zero vector. Notice that we wrote “~”, which
is because the wave function is not yet normalised. Normalisation can either be
obtained from Egs. (7.31) and (7.32) or from direct computation via creation and
annihilation operators. We go into some details of this calculation, since it is crucial
for what follows. The quantity to calculate is given by

(e @n...afwme.di@n...af @) = (2 .awn .. a@nat @y ..al@ng).
(7.117)
Let us start by going through the calculation for fermions. At the root lies the identity

a@pa’ @) = (¥;, ¢;) — a’ W)a@;) (7.118)

which describes two possible scenarios: Either the creation and annihilation operators
vanish and lead to a factor <¢ s Vi ), or they just switch places. We turn to the monomial

a@y) ...a@a’ (@) ...a" @),

with which we play a game: we try to move all the annihilation operators on the
right hand- and all the creation operators on the left hand side. However, since the
monomial acts on the vacuum, once an annihilation operator makes it to the right,
the associated term gets killed. This means that ultimately only the factors <1/) s 1/1,~>
in (7.118) remain. A constructive way to generate the result starts with

a@na'@)...a' @)=Y (=D () [[af o, (7.119)
J k#j

As a next step, one considers

a@a@na’ @) ...’ @)@ =Y (=1 (1, ¥;)a@n) [[a' @R
Jj k#j

= Y DR g, vp) [] af@woe,
J1#j2 k¢{ji.j2}
(7.120)
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and it is obvious that one can continue this way. Each step reduces the length of the
monomial

a@y)...a@a’ @) ...a" @)

by one creation and one annihilation operator, and ultimately we sum over all possible
ways of pairing a creation operator with an annihilation operator. The final result can
be summarised as

(@, a@n)..a@a’@n)...a" @)R) = 3 sien(m (1, n) V2, Ye) - (Y, )

TES,

= det([{¢yi, ¥;))).
(7.121)
It is interesting to note that actually this object can be related to the so-called Gram
matrix (Bhatia 2007; Horn and Johnson 2010; Walschaers 2011) G for the n-tuple
of wave functions {11, ..., 1, }, which is defined by

G = [{ior. ;)1 (7.122)

Using the Gram matrix, we write the wave function (7.116)

v =

1 .
ma*(w...awﬂ)sz, (7.123)

which in turn can now be used to generate a number state (.)y which acts on an
observable £, by means of

1 .
(0) = == {a' @D ...’ @R, D' @) ...a' Q). (7.124)

This concludes the calculation for the fermionic case.
For bosons, we can almost repeat the above computation, with the difference that,
instead of (7.118),

a@pa’ W) = (¥, )+ a" W)a@)). (7.125)

This leads to the slightly different result that

a@na’@)...a’ @)=Y (v, ;) [ [d" w0, (7.126)

J k#j

from which we conclude that the signs which were obtained for fermions in (7.119)
can be neglected for bosons. Conducting an analogous step-wise calculation leads
to the final result
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(@ a@n) .. .awnat@y)...a' @) = 3 (W1 ve) W, r@)- - (ns Ve

TES,

= perm G,
(7.127)
where we now consider the permanent of the Gram matrix G. The number state (.)y
which acts on an observable O is now given by

(O)

= e G (@) ...a" @R, Da' () ...a" ()R (7.128)

We can quite easily see that the normalisation factors strongly depend on the
orthogonality properties of the Gram matrix G for the set of single-particle wave
functions {1, ..., %¥,}. The first extreme case which one can consider is the one
where (1#,-, 7/fj> = 6; ; and thus G = 1. We then obtain that det G = perm G = 1,
omitting the need for the normalisation factor. The other extreme is the case where
<1p,-, P j) = 1, in other words, where all particles are occupying the same wave func-
tion. In this case, we find that det G = 0, which is just again a manifestation of the
fact that this situation cannot occur for fermions. However, for bosons these states
are physically admissible and we find that perm G = n!. There are some additional
possibilities for bosons, such as wave functions of the form

[ .
U=—2afe)".. . a )", (7.129)
Jdet G : '

where (e;, e;) = 0; ;. In this case, G has the form

G =Pl (7.130)
k=1

where we define [, as a ¢ x g matrix, filled with ones. It is now a reasonably simple
exercise to see that
perm G = qi!q2! . .. q,!, (7.131)

which gives us the normalisation constant. For a generic set of non-orthogonal single-
particle wave functions, the normalisation factor for bosons would be extremely hard
to calculate.

Now that we have explicitly studied the properties and normalisation of the state
vectors (7.116), we can construct the full class of number states. The state vectors
of form (7.116) describe a state with n particles, and they form a total set for the
number states. However, linear combinations of several vectors of the form (7.116)
can in general not be cast in a form given by a monomial of creation operators acting
on the vacuum. In other words, when choosing v, ..., ¥,, ¢1, ..., ¢, € H, there
typically exists no x1, ... X, € H such that
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Ma' (@) . .at @) + Aaa’ (@) . .a’ (@) =a" () - at (),

with A1, A» € C and |\;|* + |\2]|* = 1. Nevertheless, these superpositions of differ-
ent number states are still number states, which becomes apparent when connect the
above discussion to the number operator.

Number states can be defined as eigenvectors W € I'(H) of the number operator:

NV = nW. (7.132)

When we now express the number operator N in terms of creation and annihilation
operators, we can calculate for fermionic states W as in (7.123) that

A 1
W= o > al(epatea’ @) ...at (@h)R
J
1 - .
— -1 k+1 : T, i Q
MZ;( Y e, vi)a (e,)l];!a W)
1 n
= _Z(—l)"“(Z(a,,wk)aT(e,))]"[a*(w,)sz
det G / 7 (7.133)
1 n
— -1 k+1 _F T Q
M;( Yta (wk)lga )
1 - .
— _1k+1 _lk*IT T I‘IQ
M;( Y =D a (@) .’ (W)
1 .
:nmd(wl)...a'(%m:nw.

It now becomes clear that » is a highly degenerate eigenvalue of N and that therefore
the vectors described by the Slater determinants (7.123) span a whole subspace
related of eigenvectors associated to . All these eigenvectors describe a fixed amount
of particles n and therefore must all be considered number states.

The computation (7.133) can be conducted in a very similar way for bosons:

N 1 ‘
N = —— 3 "a'(epatep)a’@y)...a' @)
Jperm G r

I T
W;;@’d’k)a (ef)ll;!a W)
1

_ T ¥
——Wk;a W) ...a @R
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1 .
=n Wawl) cd () =nw.

(7.134)

In the bosonic case, there are no signs picked up when the order of creations operators
is changed, thus making the computation somewhat easier.

Finally, we note that Chap. 8§ is completely devoted to the dynamical properties
of the number states discussed throughout this section.

7.6.2 Bosonic Coherent States*

Bosonic coherent states are in a sense the most classical states, as we explain in
this section. This dissertation focusses on those effects which are genuinely quantum
mechanical in nature and therefore coherent states are of limited interest. They are,
however, fundamental in quantum optics and also appear naturally in algebraic
quantum field theory. Hence, they are included here for completeness of this overview
on many-particle theory.

There are many ways to motivate the use of coherent states and we touch upon
several of them in this section, but we start out from a very fundamental notion of
quantum mechanics: Heisenberg’s uncertainty relation, which we already encoun-
tered in Sect.2.2.2. We showed earlier in Sect.7.3.2 that a bosonic mode can be
interpreted as a harmonic oscillator, which implies a natural notion (7.61) of posi-
tion and momentum. Throughout the previous sections, we defined the annihilation
operator, which allows for a more general definition of “position” and*“momentum”.
The operators P ()) and Q(v) are typical for the bosonic Fock space and are called
quadratures, they are defined as

%(a*(w)w(w)) and  P(¥) :=%(a*<w>—a<w>). (7.135)

One may immediately note the relations P (i) = Q(iv)), but more crucial is the
commutation relation

Q) =

[Q(W1), P(¥o)] =iRe (Y1, 4n),  with¢)y, ¢ € H, (7.136)
where we note that for any normalised single-particle wave function ¢ € H, one

obtains [Q(v)), P(¥)] = i, as familiar from the harmonic oscillator. When we define
the standard deviation of the measurement of the observable A in a given state by

A(A) = /(A2) — (A)2, (7.137)
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one can prove the famous uncertainty relation (Heisenberg 1927; Kennard 1927;
Robertson 1929; Weyl 1928) for the quadratures (recall also Sect.2.2.2):

AQWNA(P(Y) = 5. (7.138)

N =

This inequality is particularly useful since the right hand side is state-independent
and thus gives us a universal bound on the intrinsic statistical uncertainty associated
with an arbitrary initial state.

The study on coherent states starts from the question how to saturate this inequality
(Schrodinger 1926a); which quantum states lead to A(Q(¥))A(P(W)) = 1/27 A
starting point is to define an operator

a@) + (¥, Q) a' (), with¢ e H, (7.139)

the properties of which depend on (. For example, one may use the bosonic commu-
tation relation to show that, for any normalised W € I’ (H),

@) + @, O a’ @) — VW2 = [’ (@) + (¢ ¥y a@) — N[+ ()12 = DI,
(7.140)

an identity which indicates that for [((, )| > 1, we cannot find any eigenvalues of
a() + (1, ¢) a’(1)). On the other hand it turns out that every complex number is an
eigenvalue of

a@) + (1, ¢)a' @), with {(,¥)] < 1. (7.141)

One may bring up that it is not appealing to have the 1)-dependence in this condition.
The Cauchy-Schwarz inequality can be used to obtain the stronger condition that
ICIl < 1, but this is more restrictive. Let us start by assuming the existence of an
« € ‘H, such that

(@) + (. O a" W) ) Wac = (. ) Ve, with [Wocl =1.  (7.142)

A direct calculation shows that

(1, ) — {a, ) (¥, Q)
L= 1, OF

A rather involved calculation furthermore leads to

1=, = (¢ 9)
2 1— |, O

(Wac,a@) Vo) = . (7.143)

A+ @ A+ v)

1
2 1=, QP
(7.144)

Multiplying these quantities, we clearly find that A?(Q(¢)))A%(P(¢))) = 1/4, and
that therefore any eigenvectors of the operators of (7.141) can be used to construct
states that saturate the uncertainty relation.

AT QW) = and A*(P(y)) =
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In the mathematical physics community, one typically denotes all states of the
form W, ¢ as coherent states. In the quantum optics community, one tends to follow
the notion of coherence as defined by Glauber (1963a), which is obtained for { = 0.
In this case, we find

a()Wo = (Y, ) Vg, (7.145)

such that | .
A Q@) = 5 and A*(P@)) = > (7.146)

which implies that, indeed

AQWNA(P)) = % (7.147)
However, this definition is slightly stronger: not only does it saturate the uncer-
tainty relations, it does so in a completely symmetric way. A Glauber coherent
state (Glauber 1963a; Schrodinger 1926a) thus gives us the minimal simultaneous
uncertainty in both Q and P, and thus A(Q(¥)) = A(P (¥)). If the goal is to sim-
ply minimise the uncertainty in for example Q, one may use (7.144) and choose ¢
appropriately, this allows us to lower the uncertainty on Q, at the price of a higher
uncertainty on P. Such states are referred to as squeezed states and are extensively
discussed in Sect. 7.6.3. This effect lies at the basis of the field of quantum metrology.

We claim that there is another appealing way to generate these Glauber coherent
states, which is very similar to generating number states. Remember that it was shown
that a number state can simply be generated by acting with a creation operator on
the vacuum state. There is a similar class of operators that generates coherent states
when acting on the vacuum. We even already introduced these operators earlier in
this chapter under the name Weyl operators (Alicki 2010; de Almeida 1998). These
operators yield the very interesting property that

W(a) = exp(—iv2P()) (7.148)
In the quantum optics community, it is rather common to refer to these operators as
the displacement operators. This naming is logical from properties (7.85), (7.86),
and even more so when pushed one step further to obtain
W (=) Q)W () = Q) + vV2Re (i, a). (7.149)
Let us start by assuming that, indeed,

Y, = W) (7.150)

and check the validity of this claim. This is a rather straightforward procedure,
because we must only verify that
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a()V¥, = a(@)W(a)2
= W(a)W(—a)a()W ()2
= W(@a(@W)Q+ (¥, a) W)
= (¢, a) ¥,

(7.151)

to recover Eq. (7.145). One can even go one step further by considering the exponen-
tial vectors (7.71) of Sect.7.3.3. By using the Baker-Campbell-Hausdorff equality
(Baker 1905; Campbell 1897; Hausdorff 1906), we find that
U, = W(@)Q =-exp(a'(a) —a(@)Q
= ¢ 12 exp(a’ () exp(—a(a)
= 712 expat ()@

_ 2
— pllal?/2

(7.152)

exp(a)

and therefore W,, is nothing more than an exponential vector, normalised by a Gaus-
sian. This remarkable wave function has the property that it remains unchanged
when a particle is annihilated from it. Notice, moreover, that a € H should not be
normalised.

Properties of the particle counting statistics can be read of from this definition,
such as

(Ap)a = (Wa, @' (D)a@) W) = (1), ) (7.153)

and also

(A)o = (0, a) . (7.154)
One may also consider the expectation value for the total number of particles, by
considering the number operator N, for which we find

(Mo = lic)a= D |le. )" = llall?, (7.155)
J

J

and in an analogous fashion, we obtain that
(N?)o = o (7.156)

These properties are intimately related to those of classical electromagnetic waves.
In order to get the full probability distribution P (n), which describes the probability
for finding n particles when the particle number is measured, we can define P,, the
projector on the n-particle space H". This object is defined by the action on a vector
W e I'’(H) as

PV = in(O) @ w(l) o w(z) @ ...

(7.157)
=0®--- 900V ®0d...
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To obtain P (n) we compute

eIl el o
P(n) = (Y, P,Y,) = (@®", a®") = ————, (7.158)

n! n!

which can slightly be rephrased as

gy

e
Py = ",
n:

(7.159)
to represent a Poisson distribution.

A final interesting property of the wave functions which represent coherent states
is that they can be used as a “basis” of Fock space. We already stressed that the
linear combinations of exponential vectors are dense in the bosonic Fock space, thus
the coherent state wave functions clearly inherit this property. A useful fact in for
example semiclassical treatments of many-boson systems (Engl et al. 2014) or in
many branches of quantum optics (Grynberg et al. 2010; Mandel and Wolf 1995;
Schleich 2001; Scully and Zubairy 1997) is that the projectors on the vectors W,, form
anonorthogonal resolution of the identity. Formally this implies that we can use them
to construct a positive operator-valued measure and use the spectral theorem.'® It is
more common to deal with this kind of objects in single mode systems, which implies
that H = C and therefore o € C. Here one usually encounters the notation (Alicki
2010; Grynberg et al. 2010; Mandel and Wolf 1995; Schleich 2001)

l/dza [w,) (W, | = 1. (7.160)

™

These operators can now also be used in the context of spectral decompositions, which
leads for example to the Glauber-Sudarshan representation (Glauber 1963a,b; Mehta
1967; Mehta and Sudarshan 1965; Sudarshan 1963) of density matrices.

7.6.3 Bosonic Squeezed States*

Due to their important role in quantum optics and natural appearance in algebraic
quantum field theory, squeezed states are included for completeness of this overview
on many-particle theory.

161 Sect.2.3.1, we introduced the spectral theorem with the explicit demand that the spectral
measure is projector-valued. This demand is, however, not strictly necessary and can be dropped
to find a more general form of the spectral theorem. This constructions, in relation to quantum
probability theory, are discussed in Holevo (2001) and can be connected to Naimark’s (= Neu-
mark mod transcription) dilation theorem (Neumark 1943; Stinespring 1955) which characterises
positive-operator valued measures.
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When discussing the coherent states, we discovered that there is a wide set of
states which all saturate the uncertainty relations, as given by Eq. (7.144). These
states are all related to the wave functions W, ¢, where the Glauber coherent states
were those given by ¢ = 0. Now we study a class of states for which ¢ # 0, the
squeezed states.

It turns out that the parametrisation in terms of ¢ may formally be intuitive, in
practice it is nevertheless inconvenient. A more practical way of discussing squeezing
starts out (Alicki 2010; Mandel and Wolf 1995) from an operator S(z), with z € C,
which squeezes a single mode '’

1/ 2 +2
S(z) = exp 2 (za —za ) . (7.161)
Using that
A —A 1
a‘* Be =B+[A,B]+5[A,[A,B]]+... (7.162)
one derives that ‘
S(z)’aS(z) = (coshr)a — (¢’ sinh r)at, (7.163)

where we rewrote z = re’. We can define two natural classes of states (Alicki
2010; Mandel and Wolf 1995)'3: the squeezed coherent states V. ,, and the coherent
squeezed states V,, ., which are given by

U, ,=S@OW(@ and Y, = W()S()R. (7.164)
These wave functions are intrinsically different, for example
(Voo aW, ) =a, (7.165)

whereas ,
(\IJZ,Q, a\IlZ,a> = acoshr — @e' sinh r (7.166)

Even though the result for coherent squeezed states seems identical to that of Glauber
coherent states, there is a subtle difference in the quadratures:

A?Q = % ((coshr)* + (sinh 7)* — 2 cos(6) cosh(r) sinh(r)) (7.167)

1

A?P = = ((coshr)? + (sinhr)? + 2 cos(6) cosh(r) sinh(r)) . (7.168)

N |

THence, we consider single-particle Hilbert space H = C.
18Note that Mandel and Wolf (1995) uses different names for these states.
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This resultis independent of a and it therefore follows that there is a serious difference
between the squeezed vacuum W , and the actual standard vacuum 2 = ¥ . One
might now focus on the special case where § = 0, such that

1 1
A*Q = 5e—2' and A’P = Eezr. (7.169)

Here we clearly see that a strong decrease in uncertainty on the Q quadrature operator
comes at the price of a proportionally increased uncertainty on the P observable.
With or without 6, we ultimately find

1
AQAP=. (7.170)

Similarly, we can consider the squeezed coherent states W, ,, in the context of the
uncertainty relation. To do so, we start by noting that

((coshr)a + (¢ sinh r)a")W. , = S(z)aSz) ' SE)W(@)Q = aS)W()RQ,
(7.171)
which allows us to conclude that

<a + (¢ tanh r)aT)\pz,a = v, .. (7.172)

coshr

This is exactly the expression which previously defined a general coherent state in
(7.142). We see that the parameter'® ¢ is given by ¢ = ¢/’ tanh r, and that indeed
|C] < 1. We use Eq. (7.144) to obtain

1 (1 =¢"tanhr)(1 — e tanh r)

A? = 7.173
Q@) 3 T (b2 ( )

1 (1+ ¢ tanhr)(1 + e~ tanh
APy = LA e wnhnd +e T tanhr) (7.174)

2 1 — (tanhr)?
This implies that, for § = 0, we again find
2 1 —2r 2 1 2r

A’Q = 3¢ and A’P = ot (7.175)

which allows us to conclude that even though the states are in principle different,
both the coherent squeezed states and the squeezed coherent states from (7.164) give
rise to the same uncertainties on the quadratures.

To implement squeezing in a more general Hilbert space is not so straightforward.
We can of course define (, ¢ € H and ||7/|| = 1, and introduce squeezing in mode 1)
as

1%1n this case, we are just dealing with a parameter ¢ € C, since we only consider a single-mode
space.
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1
SCw) =exp 3 (¥ a@) = W, O a'@)’). (7.176)

which is a trivial embedding of the single-mode discussion in a multi-mode language
and exactly reproduces all the results, as long as a(v), P () and Q () are considered.
The action on generic operators a(¢) is somewhat involved and unpractical. One thus
concludes that there is need for a different generalisation.

The advantage of unitary operations, such as S(z), is that we can relate them to a
Hamiltonian and therefore a physical setup. However, this does not mean that it has
direct mathematical advantages. Indeed, it was much more fundamental to have an
operation B, which carries out the mapping

B.(a(®)) = (coshr)a(y)) — e (sinhr)a’ (1), (7.177)
B.(a’(¥))) = (coshr)a’ (1)) — e " (sinh r)a(y)). (7.178)

This operation describes exactly how the squeezing operators act on the creation
and annihilation operators of the bosonic field and, although their definition seems
handwaving, these operations are a simple case of a much more fundamental class
of operations: the Bogoliubov transformation (Bratteli and Robinson 1997). These
transformations are essentially defined as operations that mix creation and annihila-
tion operators, without increasing the order. We crucially demand that B, (a (1/))) and
B, (a’f (w)) can themselves be interpreted as new creation and annihilation operators
such that

[Bz(a(w)),ﬁz(aT(z/}))]:]l and [931(61(1/))),31((1(1/}))}:0, (7.179)

A direct calculation shows that this is indeed the case for the transformations (7.177),
(7.178). Considering this to be the fundamental squeezing operation allows a wide
range of extensions; one can define By v, with U, V € B(H), as

Byv(a@)) = aUp) +at (VIy), (7.180)

Buv(a' @) =a"UY) +a(VIy). (7.181)

A subtle point pops up here, since we have to include a complex structure, i.e. the
operator J : H — H.?° This operator is subtle because it is conjugate linear, defined
by the properties (for v, ¢ € H) (Petz 1990)

=1, (7.182)
(Jo, Jh) = (4, ¢), (7.183)
(1, JT ) = (¢, J) = (I, T ) = (1, T §) . (7.184)

20We already introduced this type of operator in Chap. 3 to describe time-reversal.
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Ultimately, the transformations (7.180), (7.181), together with the fact that

[Bu,v(a(iﬁ)), BU,V(GT@W)} =1 and [3u,v(a(w))v Bu,v(a(w)):| =0,

(7.185)
lead to the additional conditions that

U'v-viv=1 ad U'V4+ViU=0. (7.186)

Whenever these conditions are fulfilled, we have defined a reasonable operation.
To define the full class of states we formally write

W, () = W(=a). W(a), (7.187)

which allows us to define a generalised form of squeezed coherent and coherent
squeezed states. Remember that the state is a functional that maps observables to
numbers and, therefore, we can define a state (.)y v o by simply considering

(uva = {aoBuyvoWa)() (7.188)

and notice that By y o W, # W, o By.v, such that we may also define the class of
states where one first displaces and only squeezes afterwards.

Once one mixes different modes (Braunstein 2005; De Valcarcel et al. 2006), the
uncertainties on the quadratures become much more subtle (Roslund et al. 2014).
Because this would become a very long and technical discussion once we go into
calculating these uncertainties, such endeavour is omitted here.

We note that the treatment presented here is strongly mathematically inspired,
its realm of physical applications is situated at the boarder between quantum optics
(Grynberg et al. 2010), quantum chaos (de Almeida 1998), condensed-matter physics
(Orzel et al. 2001), and theoretical chemistry (Miller 2002). Even though these are
simple constructs from a mathematical physics perspective, the potential applications
of such states in communication, computation, et cetera is still being uncovered
(Armstrong et al. 2012; Cai et al. 2017; Chen et al. 2014; Ferrini et al. 2013; Gerke
et al. 2015; Roslund et al. 2014; Su et al. 2012; Yoshikawa et al. 2016).

7.6.4 Representing Bosonic States*

We discuss several techniques for representing bosonic states. These techniques are
not explicitly used throughout the remainder of the dissertation. Nevertheless, they
are included due to their relevance for many-particle physics. Furthermore, they
provide an important connection to the field of quantum chaos.

In many situations, there is the natural urge to come up with a suitable represen-
tation of quantum states in terms of the probability distributions they characterise.
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Of course, probability distributions depend on the variables which are measured
and therefore we always require some form of operator for which the distribution is
defined. However, to make the connection to classical physics, one ultimately wants
to represent quantum states as probability distribution on phase space (Moyal 1949;
Schleich 2001).2! With the quadrature and coherent wave functions as discussed in
the previous chapters, we have an ideal toolbox at hand to discuss such representation.

We start by considering some straightforward representations for normal states;
remember that these are the functionals on the algebra of observables, which can be
characterised by a density operator p. These formulations allow a generalisation to
the more abstract algebraic language of Sect.7.7 (Fannes and Verbeure 1975), such
that the representations can be extended to bosonic quantum field theories.

Husimi Representation*

The Husimi representation®” (Husimi 1940) is by far the easiest representation to
comprehend as we can simply define the relevant Husimi function as

O(a) i= — (2, W(=a) pW()Q), (7.189)

—
s

where we write Q to indicate that we consider a function, Q :H — [0, 1/m), rather
than an operator. We must assume that the single-particle Hilbert space (or mode
space in quantum optics language) H is finite dimensional, as n in the definition is
given by n = dim 'H.

We make the connection to phase space by the identifications

g = (2, W(—a) Q) W(a)R2) = v2Re (¢, a), (7.190)

Py = (2, W(—a) P¥)) W(@)Q) = vV2Im (), a) . (7.191)

Since we consider a finite dimensional modes space, which implies that H = C", we
can consider a basis {e;} with j € {ey, ..., e,} to construct

q; = v2Re (ej. ), (7.192)

pj =+/2Im (ej. o). (7.193)

We can now parameterise « as

1 . .
R — C": (q1, P1s -+ Gns Pn) > E(ql — 0Pty qu —ipa),  (7.194)

which allows us to interpret the Husimi function as a quasi-probability distribution
on phase space.

21This also is a common topic in single-particle systems (Bohigas et al. 1993; de Almeida 1998;
Heller 1984; Leboeuf and Saraceno 1990).

22 Also known as Q representation or Glauber Q representation.
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A useful property of the Husimi function, next to its positivity, is the fact that it
is a normalised function

/dza O(a) =1, (7.195)

hence the interpretation as quasi-probability distribution.
Glauber-Sudarshan P-Representation*

This representation is based on the idea (Glauber 1963a,b; Mehta 1967; Mehta and
Sudarshan 1965; Sudarshan 1963) that we can define a (non-orthogonal (Holevo
2001)) resolution of the identity using projectors on coherent states P,.>> The idea
is to consider density matrices p, which are diagonal in this over-complete basis of
coherent wave functions, such that, for a single-mode system (i.e. H = C), one may
write

p= /da [W,) (W, P(a), (7.197)

as a type of spectral decomposition. This now implies that P (c), which is a function
on phase space using a suitable parametrisation of «, determines the state.

The function P () can be interpreted as a quasi-probability distribution, in the
sense that it can be used to capture the statistics contained within the density matrix
p. Nevertheless, it is not a genuine probability distribution, since it can become
negative. Therefore, one can conclude that any normal state’* can be seen a linear
combination rather than a convex combination of coherent states.

Bosonic states which cannot be written as a convex combination of coherent states
are commonly referred to as non-classical. To intuitively understand this idea, it is
useful to remember that the coherent states are the most classical pure states that can
be constructed (remember Sect. 7.6.2). Convex combinations represent a mixture of
distributions as we know from classical probability theory and thus this definition of
non-classicality seems sensible.

The P-representation is elegant and useful from a theoretical point of view, but it
has particular difficulties in connecting it to (quantum optics) experiments. There is
no specific experimentally accessible observable related to the representation, and the
possible singularities in P (cr) make it notoriously hard to reconstruct the functions
based on experimental measurements. There are ways to work around these problems

23To extend this notion to a framework of many degrees of freedom, some effort is required to
actually define this projector. The ultimate result (Fannes and Verbeure 1975; Petz 1990) for a
single-particle Hilbert space H of dimension d is given by

1
Py :=7/ (Wa, W(=9)Wa) W(p)de. (7.196)
™ JH

This result can also be extended to innfinite-dimensional single-particle spaces (Fannes and Verbeure
1975).

24Remember that in Chap.2 we introduced the normal states as those states which allow for a
density matrix representation. More specifically, we would here refer to a normal state with respect
to the Fock representation (see Sect.7.7.2).
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(Kiesel and Vogel 2010), but the most common solution is to consider a different
representation: the Wigner function.

Wigner-Weyl Representation™

In the perspective of this dissertation, which strongly builds on algebraic structures
and probability theory, it is natural to start the discussion on the Wigner—Wey] repre-
sentation from the quantum characteristic function. This object is appealing from a
mathematical point of view because it allows us to connect our quantum mechanical
structure directly to an object which is well-know in probability theory. In general, a
characteristic function is defined for a stochastic variable X, living on a probability

space, a525

o(t) = F (e—f’f‘) . (7.198)

The quantum characteristic function is a straightforward generalisation to quantum
probability theory, which one may think of as simply replacing the expectation value
with a quantum state and the stochastic variable with a suitable quantum mechanical
observable.

We use the Weyl operators and/or quadratures, (7.81), (7.135), respectively, to
define the quantum characteristic function as

x(a) := (exp(i Q(a))) = <W <—%a>>, (7.199)

which can be done for any possible state (.).?¢ In classical probability theory, knowl-
edge of the characteristic function implies knowledge of the full probability distribu-
tion, as the two are related via Fourier transformation. For the quantum characteristic
function, we can also define a function via Fourier transformation, although then it
is a quasi-probability distribution, baptised the Wigner function W (/3). This function
is given by

/ d”a (e @D, (7.200)

which, just as the P-representation, may become negative. There is a lot a work done
(Banaszek and Wodkiewicz 1998, 1999; Corney and Olsen 2015; Park et al. 2015;
Walschaers et al. 2017) on Wigner functions and specifically on interpreting this
negativity. It turns out that states with a non-positive Wigner function are impos-
sible to reproduce by any classical process and hence the negativity of the Wigner
function can be considered an indication of “quantumness”. Wigner functions which
are positive are therefore sometimes considered classical states. There is a theorem
classifying the possible classical pure states by Hudson, Soto and Claverie (Hudson
1974; Soto and Claverie 1983), proving that the only possible non-negative Wigner

25E denotes the expectation value.

20The Q and W in equation (7.199) denote operators on Fock space and should not be confused
with the Husimi function Q and Wigner function W.
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functions for those states are (multivariate) Gaussians, the states for which they
are achieved are therefore also called Gaussian states. There have been attempts
(Mandilara et al. 2009) to extend or amend the theorem for mixed states, however
up to present not much is known about the properties of the Wigner functions of such
mixed states.

By calculating the characteristic function for a Glauber coherent state via (7.84),
one finds

() = <‘I’ w (‘%ﬁa) ‘1’> = eIl /iR ), (7.201)

from which we find that also the Wigner function is a Gaussian. It is a completely
symmetric Gaussian distribution, with the same standard deviation in all directions. A
slightly more involved calculation shows that the squeezed states which we discussed
earlier are also Gaussian states, but with standard deviations which are stretched in
one direction and squeezed in the other.

Number states do not fall into the class of Gaussian states, giving them typical
quantum properties which Gaussian states lack, such as the possibility to manifest
many-particle interference. This is extensively discussed in the following chapter of
this dissertation.

7.6.5 Thermal States for Non-interacting Particles

The last standard set of states which we discuss has its origin in equilibrium statistical
mechanics, they are usually referred to as thermal states (Bratteli and Robinson
1997). For many-particle systems, it is common to use the grand canonical ensemble
to describe the equilibrium states at finite temperature 7 and chemical potential
(. In quantum mechanics, there is a standard way to express the grand canonical
ensemble states as a so-called Gibbs states, described via the density matrix (Bratteli
and Robinson 1997; Kardar 2007)

o= (F—pN) /Ky T

) 7.202
Z ( )

p:

where J{ is the Hamiltonian of the system and Z the partition function. It is common
in statistical mechanics to focus attention on this partition function, since one can
derive all other properties from it. Remember that, due to normalisation of the state,

Z.= tr(f”“m/"ﬂ). (7.203)

To calculate the partition function, we insert the system Hamiltonian, which in our
cases is chosen to describe non-interacting particles. The lack of interactions means
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that there can be no higher order terms that shift energy levels in many-particle situ-

ations, which implies that the Hamiltonian is a single-particle observable in second
quantisation. In other words, H{ = I'>/ (H) with H € B(H). This allows to rewrite

l“”*f<—(H—u]l)/k T)
Z=tre '

—tr E(e—m—ﬂn)/m)

(7.204)

where we used the exponential element (7.106), (7.107) as defined at the end of
Sect.7.5. Up to this point, no assumptions were made on the type of particles, all
steps were valid both for bosons and fermions. To proceed, there is, however, the need
to differentiate, because there are two useful identities that can be exploited: First, if
we assume A € H, it generally holds (Bratteli and Robinson 1997; Dereziriski 2006;
Dierckx et al. 2008) that

trE(A) =det(1 + A)  for fermions, (7.205)
trE(A) = det(1 — A)~!  for bosons. (7.206)

Using the identity (7.205) for fermions, we obtain that

Z — det (]]_ + e*(H*,u]l)/ka> _ 1—[ (1 + e*(ék*u)/ka) , (7.207)
k

with ¢ the eigenvalues of H. To uncover the statistics of the particle density, we use
the statistical mechanics result (Kardar 2007)

. 1 (02 1
(N) =k T~ <%)V = Xk: gy L (7.208)

which is the famous Fermi-Dirac statistics.
Finally, from the identity (7.206) for bosons, it can be seen that

= —(H—p1)/kyT _ v
Z = det (11 _ - H=p ky ) -T1 i (7.209)
k
such that |
W= g1 (7210)

which is the well-known Bose-Einstein statistics. From monotonicity arguments
which are applicable to such functions, we can ultimately derive the possibility to
form a Bose-Einstein condensate. Here we do not go into the full details, but refer
the reader to a particularly elegant argumentation presented in Verbeure (2011).
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We finally mention that in the case of non-interacting particles, the states given by
density matrices (7.202) also belong to the broader set of non-pure Gaussian states.
Thermal states, however, do not saturate the uncertainty relations,?” which makes
sense since they are by definition sensitive to additional thermal fluctuations. Still,
these states do lead to Wigner functions which describe a (multivariate) Gaussian
distributions.

7.7 Abstract Algebraic Description

Although the text contains many references to the algebraic description, most of this
dissertation can be understood using the Fock representation (i.e.the methods of the
previous sections). Since, however, the difference between bosons and fermions is
one of the main themes throughout Part I1l, this discussion is included to provide
extra depth. The C*-algebra framework clearly indicates that there is also a very
fundamental, mathematical difference between bosons and fermions. Moreover, this
section serves to stress that many-particle physics entails much more than Fock
space. Finally, this section also attempts to provide an accessible introduction to the
algebraic approach to quantum mechanics.

Up to this point, the whole chapter was constructed based on bosonic and fermionic
Fock space. However, it cannot be stressed enough that Fock space is in its very
essence a mostly empty space, only harbouring few particles, which became painfully
clear when we discussed the problems of normalisability of many-boson wave func-
tions (see Sect.7.3.1 above). The problems could be solved by using the Weyl opera-
tors (7.81) and coherent states (7.145) as fundamental objects rather than the number
states (7.132) when dealing with bosonic system. Nevertheless, in Chap.2, we dis-
cussed quantum probabilistic structures in a framework that goes beyond Hilbert
spaces and it is only logical to try and accomplish the same by describing many-
particle spaces beyond the limitations of Fock space. This leads us to the realm of
C*-algebras®® and many of the results discussed in the previous section can directly
be generalised to this framework.

The foundation of this approach lies in the idea that, ultimately, the algebra of
observables is the most fundamental structure available in our quantum mechanical
theory, and hence we describe our systems of bosons and fermions by a C*-algebra
A, in which all observables are contained. In standard quantum physics, one has
the habit of considering algebras of observables, which are composed of bounded
operators on a Hilbert space. This is however not necessary to reach a consistent
physical model. In Sect.2.3 we provided a brief introduction to C*-algebras and the
states living on them, here we explain why such structures are useful —and even
required— to describe general many-particle systems.

27In contrast to the coherent states of Sect.7.6.2.
28See Appendix A for several formal definitions.
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7.7.1 The CAR Algebra

Structure

First, we treat the fermionic structures, which are formally defined via the canonical
anticommutation relations (CAR), which we already came across in Sect. 7.4 as the
anticommutation relation for creation and annihilation operators. Now, rather than to
deal with creation and annihilation operators which act on a specific Fock space, we
simply consider them as abstract elements of a C*-algebra. The CAR algebra AAR
is defined on top of a single-particle Hilbert space H which provides the structure
on which a single particle lives. The algebra is unital, which implies the existence
of a unit element 1 € A®AR such that for all x € A“AR we obtain that 1x = x1 = x.
Apart from the 1, the algebra is completely generated by a class of elements given
by c(p) € AR, with ) € H, which are defined such that

c:H— AR 4> ¢(¢) is C-antilinear, (7.211)
{c@),c(®)} =0, ¥, peH, (7.212)
{c@), Py = (Y, o1, P, 9eH. (7.213)

These anticommutation relations can be abstractly defined to construct our alge-
bra and therefore are a generalisation of the creation and annihilation operators on
'/ (H). To obtain a well-defined C*-algebra, we must verify the boundedness of
these generators. From a quick calculation using the C*-property (see Sect. A.4), we
find

le@)I* = lle* eI = le* @) W)e@)ll
= l* @) U1 = *@e@)e@l = [Pl W)e@l (7.214)
= 1Y llle@)I?,

and therefore

le@)Il = 1yl (7.215)

This serves as a verification that the proposed structure correctly manifests the prop-
erties of a C*-algebra, such that we can consider observables o € AR, which must
have the property that o = o*, and thus a spectrum o(0) C R. However, before we
can associate elements of an abstract algebra to measurement outcomes, we require
additional structures: the quantum states on the algebra.

Structuring States

In the most rigorous formulation, quantum states are normalised, positive functionals
on a C*-algebra. Therefore we consider

w: AR 5 C, (7.216)
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such that
x € AMR s (x) is C-linear, (7.217)
wx*x) >0, forallx € AR, (7.218)
w) = 1. (7.219)

Formally, with these rules we have defined all possible states on ACAR However, such
definition is far from practical to perform actual calculations and therefore we again
(recall our discussion in Sect.2.3.2) emphasise the GNS-construction: For any pair
(w, A) there exists a unique Hilbert space K, vectors Q € K, and a representation
7w : A — B(K), such that

7(x*) = w(x)", forallx € A, (7.220)
wx) =(Q, 7(x)RQ), forallx € A, (7.221)
7(A)Q is dense in K. (7.222)

When we apply the GNS construction to any state w, we obtain the crucial fact
that (c(x)))" and 7(c(v))), for all ¢» € H, play the role of creation and annihilation
operators, respectively. Several applications of these operators can populate the whole
Hilbert space K. However, we must strongly emphasise that 2 as defined by the GNS
construction for a general state w is typically not the vacuum state, and K is generally
not the Fock space which was discussed in the first sections of this chapter!

When one considers the so-called Fock state, given by

wr(c* (1) ... c*Wn)c(Pm) ... c(¢1))r =0 for any monomial, (7.223)
it can be shown that the GNS construction connects (wr, AR) to I'f (H) such that
@) =a@) and Q=10000d--- 'V (H). (7.224)

However, there are states w on the CAR algebra which cannot be captured by the
Fock space formalism. Sadly, there is no formalism to describe all the states on the
algebra, but there are structures which are particularly useful to pursue this objective.

From elementary probability theory, we know that knowledge of a probability
measure is equivalent to knowledge of all moments (or correlation functions). Since w
is ultimately the quantum equivalent of a probability measure (Holevo 2001; Maassen
2010), we may consider an analogous method. To assess all correlation functions we
consider all Wick monomials® and calculate

w(c* @) ... @Wn)c(Pm) ... c(d1)), (7.225)

A Wick monomial is a monomial of creation and annihilation operators,

e.g. c*(W1)...c*Wn)c(Pm) - .. c(¢1) (Davies 1977).
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as we already did to characterise wr. One can show that positivity can be guaranteed
by the requirement

w(p*p) =0, for all polynomials p in ¢ and ¢* from (7.211). (7.226)

A remarkably useful construct to understand quantum states on such abstract algebras
are the truncated correlation functions (Bratteli and Robinson 1997),3° which are
defined as®!

(*@)r = wc @),

(@ @)1 = we @Dt @) — we @we® @),

(@i @) @)1 = wic @t @) @3)) — wic @t W)we @3))
+w(c @D @3)w(e® @) — w(c @Wwe* wa)c* (W),

(7.227)
where we must pay attention to the fact that ¢ and ¢* fulfil anti-commutation
relations. A useful relation is given by considering a partition P of {1, ..., n},

given by P = {Cy,...,C}, such that C; = {i;1,...,i;,,} with i;; <i;,;4 and
ij1 <ijy1,1. Assuming that [ # m, we additionally must demand that C; N C,, =
and | J, C; = {1, ...n}. This notation essentially expresses that we take an ordered
set of natural numbers and cut it into pieces, in such a way that every piece is again
an ordered set of numbers. The additional order of the different pieces is based the
smallest number they contain. It is necessary to keep track of the ordering due to the
anticommutation relations, which lead to minus signs. Hence we must do specific
sign bookkeeping, and therefore we define sign(’P) as the sign of the permutation
L,...,n= 011,012, .., 0105 12,1, - - . Ik.n, - This now finally allows us to write

w(e @Dt W) .. F @) = D sign(P) [ e W, s -5 @y, e (7:228)
P J

The expressions for general (c*(11); ¢*(1); ... ; ¢*(b,))7 can be obtained recur-
sively from (7.228). In what follows, we consider some specific classes of fermionic
quantum states, which are particularly useful and reasonably simple to describe.

Fermionic Gaussian States*

Gauge Invariant Quasi-Free States — The first class of states on our menu are states
which are gauge invariant, meaning that the statistics governed by the state does not
depend on phase factors in the single-particle Hilbert space. In order to understand

30Truncated correlation functions are the multivariate version of cumulants and are also regularly
referred to as “joint cumulants”.
3l bt

9

as a collective term to denote both “c” and “c*”, e.g. each ¢ in (7.227) can be replaced by

cor by c*.
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such states, we must start by defining the gauge transformation, a *-automorphism
ag + ACAR 5 ACAR which acts as’?

ag(ch)) = c(ey), e ™M, 0 el0,2n). (7.229)

A state which is gauge invariant is a functional w which has all properties of a state
and additionally follows the rule

woay=w forallf e [0,2r). (7.230)

This implies that for a gauge invariant state

W(Ee* @) ... c*@h)e(dm) - .. c(d1)) =0, whenever m # n. (7.231)

In addition, we want the states to be quasi-free, which mathematically implies that
(c*@);...;c*(y))r =0 whenever n # 2. (7.232)

Physically, this demand implies that we consider systems where all the correla-
tions between particles are negligible. Combining the two demands to obtain gauge
invariant quasi-free states, leads us to only one non-vanishing truncated correlation
function, of the form

(€ @); (@)1 = w(c@W)e() = (), Q). (7.233)

We can always associate an operator Q € B(H) on the single-particle space with a
state w to describe w(c*(1))c(¢)) such as done in (7.233). It is straightforward to see
that positivity of the state requires Q > 0, and the fact that we consider fermions leads
to O < 1. For a general state, Q alone would not provide a lot of useful statistical
information, apart for what can be interpreted as the second moment. For the gauge
invariant quasi-free states, however, all information about the state is encrypted in
Q. We already encountered examples of such states, most notably the Fock state wr,
but one may also construct an abstraction of the thermal state for non-interacting
fermions by defining

—1
Qrp = (11 +exp ((H — u]l)/ka)> , (7.234)

which defines a gauge invariant quasi-free state governed by Fermi-Dirac statistics.

32Technically, these are gauge transformations with respect to the group U (1), as commonly encoun-
tered in quantum electrodynamics (Cheng and Li 1984), where these gauge transformations refer
to different choices of vector potentials. In principle, we can define more general gauge transfor-
mations with respect to other groups (Bratteli and Robinson 1987, 1997), but when we here refer
to gauge-invariant states the relevant group is U (1).
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One can use (7.228) to conclude that

wo (" (@) . (@Wn)c(dm) - c(P1)) = by m detl{di, QV;)1- (7.235)

Considering terminology, it is common to refer to Q as the symbol (Dierckx et al.
2008; Helsen 2015). It can be proven that these states are pure states if (and only if)
their symbols are projectors such that 9> = Q. The case where Q = 1 can somehow
be interpreted as the Fermi-sea in which one does not create particles, but rather
vacancies, known as holes.

General Quasi-Free States — Dropping the demand that the state be gauge invariant
leads to additional properties. We still assume that w(c* (1)) = 0 for all ¢ € H,
however, we allow w(c(1)c(¢)) # 0. We characterise the state through

w(c*@)c(@) = (¢, Q) and  w(c*(W))c(9)) = (¢, RY). (7.236)

Again, 0 < Q < 1, but the conditions on R are more subtle, it must be a conjugate
linear map on ‘H and it must obey R = —R due to the anticommutation relations
(7.212). These conditions on Q and R simply make sure that the identities in (7.236)
make sense. However, they do not imply that w is a well-defined state. In order for
this to be the case, we must demand that for any choice of ¢, ¢ € H

w((c* (@) + c()) (c(d) + c* (w))) > 0. (7.237)
This leads us to the condition that

(0. Q¢) + (0. RY) + (R, ) + (¥, (1 = Q)¢) = 04, o € H, (7.238)

which implies that
0>0 and Q+RQO'R<IL (7.239)

We can consider all partitions of the form Pypr = {{il, Jits iy Juts - oo ik, jk}} of
{1, ..., 2n}, which are special cases of those used to obtain (7.228), and write

(e @ @) = Y sign(P)w(c Wit @) w(c Wi)et W)
P

(7.240)
which is consistent with the demand (7.232) used to define quasi-free states.

Bogoliubov Transformations for Fermions*

In Sect.7.6.3 we described the Bogoliubov transformations as a general form of
squeezing. However, these transformation are also fundamental from a mathematical
perspective, since they are the only x-automorphisms on AAR that consistently
map polynomials in ¢ to polynomials of the same order. More specifically, when
considering a monomial
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c#(wl) R C#(wn)9

it will be mapped to a sum of terms of the same length in ¢*. However, there typically
do arise terms with more ¢*’s and fewer c’s and the other way around.

These transformations are not only fit to describe squeezing, they can also be used
to describe other classes of states and dynamics. Let us start by defining the general
Bogoliubov transformation B, p : ACAR _ JCAR by means of its action on c()):

c(®) = c(AY) + c*(BY), ¢ eH. (7.241)

To define everything in a consistent fashion, we must demand that A € B(H) and is
therefore linear. On the other hand, B : H — H is considered to be antilinear and
therefore it holds that

(¢, B'Y) = (v, Bo), 4, ¢€H. (7.242)

For this to lead to a consistent automorphism on the algebra, we must demand that

forally, p € H

[Bap(c@). Baglca)} =0 and  {Bap(c) Ba s @)} =6.0).
(7.243)
respectively, leading to the general requirement that

A'B+B'A=0 and A*A+B*B=1. (7.244)

Because B, p is an automorphism, it should be invertible and the inverse should
be well-defined. An interesting trick, traced back to Araki (1971) is to consider a
class of transformations on the space H @ H*, where H* is the dual of H. The dual
space contains all functionals ¢* : H — C. Riesz showed in his classic representation
theorem (Conway 1997) that it is possible to relate ¢* € H* to ¢ € H by means of

') = (o, ¥), YeH. (7.245)

This implies two conjugate linear isomorphisms
IT-H—>H :¢pr— ¢ and J:H" = H: 9"~ o, (7.246)
and it directly follows that their combination leads to the identities 7 o Z = 14, and
7 o J = 1y+. We can equivalently express the Bogoliubov transformation (7.241)

in terms of a transformation on H @ H* by associating

v H®H — AR @ o* > () + (o). (7.247)
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The Bogoliubov transformation (7.241) is given by B4 3 =~ o U o~v~!, with U

given by
_ (A BJ
U= (IB IAJ) . (7.248)

Indeed, it is directly calculated that

Yo U oy N e@)) =70 UW @ 0) = 7(AY & T(BY) (AL ® (BY)*) = c(AV) + c* (B1)).
(7.249)

Invertibility comes for free when 7 is finite dimensional, but when it is not, we must
additionally impose that

AB"+BA"=0 and AA"+ BB =1. (7.250)
The inverse map is then given by
Bas (") = c*(ATY) +c(BTY), 1 eH. (7.251)

Combining (7.244) and (7.250), we obtain a quite extensive and formal definition of
these transformations.

In addition, we see that these transformations also form a group G,. When we
characterise the transformations B4 p as (A, B), we can define the group operation
oas

(A1, By) o (A2, By) = (A1Ay + B1 By, A{ By + B A»). (7.252)

Moreover, a group needs an inverse for each element (hence the effort to go through
Araki’s trick) and a neutral element. These are, respectively, given by

(A, B)~' = (A", BY), (7.253)
e=(1,0). (7.254)

The possibility to implement a group structure is of course crucial with possible
dynamical applications in mind. Let us stress that Z/(7{), the unitary group on the
single particle space H, can naturally be represented by

UelU(H)— (U,0). (7.255)

We conclude with the observation that the general quasi-free states remain general
quasi-free states under Bogoliubov transformations, or in other words

w isquasi-free = wo By p isquasi-free, (7.256)

and that the mapping B4 p can be described on the level of operators Q and R, that
describe the states, by means of
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O+ A"QA+ A'RB— B'RA+ B'(1 - Q)B,

B ' : (7.257)
R—> A"RA+B'1— 0)A+ A"QOB — B'RB.

Notice that gauge invariant states (R = 0) are generally not mapped into other gauge
invariant states. This is only the case when either B = 0 or A = 0. We may associate
these fermionic Bogoliubov transformations to a form of squeezing operations, and
as such we can also interpret the general quasi-free states with R 7% 0 as some form
of fermionic squeezed states. However, there are many problems in connecting such
notions from quantum optics to fermionic systems. Notice for example that

c()) = c(¥) + (¥, a) (7.258)

does not form a good x-automorphism on the CAR algebra because it does not
conserve the canonical anticommutation relations. Therefore it is extremely difficult
to define fermionic coherent states (Helsen 2015).

7.7.2 The CCR Algebra*

In the following chapters, all bosonic systems are treated in a specific representation
of the CCR algebra. Hence, these discussions can be understood without the formal
details presented in this section. This discussion on the formal structure of the CCR
algebra is included for completeness and context.

This discussion on the CCR algebra borrows many elements from Manuceau
(1968), Manuceau and Verbeure (1968), Petz (1990), Verbeure (2011). Throughout
this section, we will not enter details on more pathological cases. Unless explicitly
mentioned otherwise, we assume analytic states, non-degenerate symplectic forms,
et cetera.

Structure*

The abstract version of the bosonic algebra is in several ways more subtle than the
fermionic counterpart. We already discussed the relation between bosons and har-
monic oscillators in Sects.7.3.2 and 7.6.2. Also in Sect.2.2.1 we referred to the
canonical commutation relations (2.7) as the so-called “quantum condition”. It is
remarkable that so many different types of physics are essentially described by fun-
damentally isomorphic mathematics. The subtlety, however, arises when we study
the different expressions

PO - QP = L]l, 2.7)
2mi

[a' (1), a’ ()] =0 and [a(1),a’ (@)l = (b1, ¢2),  (7.77)
[Q(1), P(2)] = iRe (Y1, ¢h)  with ¢y, ¢p € H. (7.136)
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Starting from the first equation (2.7), we can see that it is impossible to fulfil the
relation by choosing either P or Q a bounded operator and the other one a trace class
operator: Under these assumptions, we may consider the trace of the full expression,
which implies that 0 = —ihtrl. This can only hold for 2 = 0. It turns out that we
can only fulfil these equations by using unbounded operators. Hence, these specific
operator forms cannot be used as a basic structure to construct an abstract C *-algebra.
To achieve this goal, we must follow a different path. However, we will ultimately
explain how this path leads to the above commutators.

The C*-algebra of the CCR is generally constructed on a symplectic space (S, o),
which in several physical applications would be the phase space. Here we consider S
a real Hilbert space and o the symplectic (or canonical) form o : S x S — R, such
that o(f, g) = —o (g, f) forall f, g € S. We also assume that the symplectic space
is non-degenerate, ergo if o(f, g) = O for all f € S, g must be the zero vector.

On top of this symplectic space (S, o), we define the objects w( f), with f € S,
which fulfil the Weyl-relations

w(f)*=w(=f), feS, (7.259)
w(Hw(g) = YPuw(f +g), f.geS. (7.260)

We can now consider the *-algebra A(S, o) generated by {w(f) | f € S}, which
becomes a C*-algebra upon completion under the norm topology. This latter state-
ment directly introduces the following problem: A priori, it is not obvious with which
norm A(S, o) is equipped. Already here, we see that the CCR algebra inherits most
of its properties by virtue of its representations (see Appendix A). Let us consider
R(S, o), the space of all representations 7 : A(S, o) = L(H,), with L(H) the
linear operators on a Hilbert space H, such that A € R — w(w(Af)) is weakly
continuous™ for all f € S. The space L (H,) is naturally equipped with a norm and
therefore the following definition makes sense (Manuceau 1968):

lall := supllT(@)ll, Ya e A(S, o). (7.261)
R

It can be proven that actually ||7(a)| = ||7'(a)| foralla € A(S, o) and all w, " €
R(S, o) (Manuceau 1968). Therefore, we may simply consider one specific rep-
resentation to construct the norm, i.e. |la|| = |7 (a)| for all a € A(S, o) and all
m € R(S, o). The C*-algebra for the CCR is now obtained upon completion for
this norm, which we denote A(S, o). A very important result (Slawny 1972) in this
context is the uniqueness of this algebra (up to x-isomorphisms), which implies that
it makes sense to refer to the C*-algebra of the CCR.

Although this structure is mathematically appealing, it is highly abstract and it
is far from obvious how it connects to the actual CCR (2.7), (7.77), (7.136). The
connection is facilitated by the fact that there is a unique representation 7 which

33For a definition, see the footnote on p. 39 or (Conway 1997; Pedersen 1989).
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maps A(S, o) to the operators of the type (7.81). In what follows, we make this
argument more explicit.

We now define the general Weyl system W : S — B(H) : f — W(f), where
W (f) follows the rules

W) =1, (7.262)
Wi(f) = W1, (7.263)
W(fOW(f2) =exp(ia(fi, ) W(fi + fo), (7.264)

clearly rendering these operators unitary. We define WW(S, o) as the set of all such
possible Weyl systems (so implying that we also consider all possible B(H) on which
these structures can be constructed).

In the representation 7 € R(S, o) anelement w(f) € A(S, o) is obviously given
by m(w(f)) = W(f) with W € W(S, o).>* However, what is more remarkable is
that any W € W(S, o) also gives rise to a unique m € R(S, o), such that W(f) =
m(w(f))forall f € S.Inother words, the set of representations of the C*-algebra is
isomorphic to the set of Weyl systems. This means that, for any representation 7, we
can find aunique W, such that 7 (w(f)) = W, (f), whichis always a unitary operator
on a Hilbert space. Invoking Stone’s theorem (Stone 1930, 1932; von Neumann
1932), we can always construct a set of hermitian operators ¢, (f) on the relevant
Hilbert space, such that W (tf) = exp(itq.(f)), forallt € R. These operators fulfil
the commutation relation

lg=(f). 4= (D) = =2io(f. 9), [f.g€S, (7.265)

such that the symplectic space (R2, ) allows us to choose two basis vectors e;, e,
with g, (e;) = Q and g,(ez) = P, such that

[0, P]=-2i. (7.266)

There is one thing that feels odd about the description, because we in the end want
to make the abstraction for bosonic systems. As we have seen, a bosonic system is
built upon a complex Hilbert space (the single-particle Hilbert space), rather than
upon a symplectic space. The reason is that a Hilbert space is actually a symplectic
space with additional structure, to end up with a positive definite sesquilinear form,
i.e. the Hilbert space’s inner product. The complex structure is crucial to define
creation and annihilation operators as we will see in Eq. (7.273). Let us therefore
elaborate on the connection between symplectic spaces and Hilbert spaces.

Given a Hilbert space Hs with inner product (., .), we may express

(¢, ) = Re (¢, ¥) +ilm (¢, ¢)

. (7.267)
= Ol((i)’ 77[’) + lO—(¢7 ?/1)’

34This directly follows from (7.259) and (7.260).
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where « is a symmetric, real bilinear form, whereas o is symplectic and real. We
can now think of the underlying (S, o) in the sense that Hs = S as sets (in the
same way as C = R? as sets) and o(.,.) = Im (., .). In other words, any Hilbert
space has an underlying symplectic structure. As it turns out, we can also extend
any symplectic space to a complex Hilbert space. Let us therefore define a complex
structure J : S — S with the properties

J2=-1 (7.268)
o(f,Jf) <0, feS8 (7.269)
oJf,Jg)=0(f,9), f.geS. (7.270)

We can turn S into a complex space by defining the scalar product as
t+is)f=tf+sJf, s,teR, feS. (7.271)
To turn it into a Hilbert space, we define the inner product

(f.9):=0(f, Jg) +io(f 9). (7.272)

The main reason why we can consider A(S, o) as the C*-algebra of the CCR
was in some sense already shown in Sect.7.4: The Weyl operators as defined for
a bosonic system only use the symplectic structure underlying the Hilbert space. If
we now define a complex structure J on (S, o), we can define the following two
operators in any specific representation 7:

. 1 1
a, (f):= E(QW(f) —iq:(Jf)) and a.(f):= 5(%(]‘) +ig-(Jf)), (1.273)

such that
lax(f),al(Pl = o(f. Jg) +io(f.9), f.geS (7.274)

or, in the more common Hilbert space notation,

[a-(#), al ()] = (¢, ). (7.275)

This leads to the well-known creation and annihilation operators. We can interpret
this in the following way: Equipping a symplectic space (such as phase space) with
the CCR C*-algebra and choosing a representation allows us to construct the quantum
analog of a classical system. If the symplectic space is on top equipped with a complex
structure, and is hence a complex Hilbert space, we can build a bosonic system on top.
Given that the creation and annihilation operators only make sense if constructed on
a Hilbert space, the term second quantisation is somewhat intuitive. For example, we
may start from a phase space (R?, o), build a C*-algebra A(R2, &) on it and choose
the appropriate representation. This representation gives rise to an associated Hilbert
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space ‘H and we can again construct a C*-algebra A(H, Im (., .)) on it, which under
an appropriate representation allows us to study bosonic systems.

The reason why we call A(S, o) the C*-algebra of the CCR is because any struc-
ture which fulfils the canonical commutation relations can ultimately be related to a
representation of A(S, o). Another important result, shown by von Neumann (von
Neumann 1931, 1932), is that, for dim S < oo, all these representations 7 are unitar-
ily equivalent.® This really means that for a finite number of phase space coordinates,
we can find position and momentum operators which are uniquely determined (up to
unitary transformations). However, for bosons in infinite-dimensional single-particle
Hilbert space, the creation and annihilation operators are no longer uniquely deter-
mined, and we are forced to choose the correct representation.

In the previous section, we have seen that states and representations go hand
in hand, given the importance of representations in studying the CCR. Let us now
consider the states on the C*-algebra of the CCR.

Structuring States™

As we consider the abstract mathematical description of many-boson systems, it is
logical to focus attention to the most feasible structure to describe these systems and
the states that live on them. We described any quantum observable in a consistent way
by defining the algebra of observables in terms of w (1)), as given by (7.259), (7.260).
Therefore, we describe states as normalised, positive functionals w on A (R4, 7). The
functionals are commonly understood in terms of the expectation values w(w(v))).

By means of (7.260), we can see that actually any element x € A(R%, o) is of
the form x = Zj ajw(f;) witha; € Cand f; € S. Due to linearity, one may realise
that a state is fully characterised by knowledge of

&f) =ww(f)), forall feS. (7.276)
The normalisation condition implies that
w(w(0)) =1, (7.277)

whereas positivity can be expressed by the demand
w'x) =Y @ e (S — £7) >0, (7.278)
ij

for any set of complex numbers {a;} and any set of vectors {f;}. Even though it is
sufficient to know the function £ : S — C as a characterisation of the state, it is not
trivial to verify that (7.278) holds.

35The consequence of this theorem is fundamental in the sense that it formalises the equivalence
of Schrodinger’s wave mechanics and Heisenberg’s matrix mechanics. Moreover, the fact that this
theorem only holds for dim S < oo implies that in quantum field theories this equivalence breaks
down.
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For the CAR algebra, we introduced the truncated correlation functions (7.228)
as useful tools to describe structures of quantum states. Let us try to import this idea
to the CCR setting. Obviously it does not make much sense to do so for products
of Weyl elements, but we may use a result originally derived by Robinson (1965).
However, to do so, we must choose a specific representation to work in. As we
have seen before in Chap. 2, the fact that we study states already fixes the relevant
representation by means of the GNS construction (7.220)—(7.222). For the state w,
we consider the GNS-triplet (7, H,, €2.,), such that it makes sense to consider the
related quadratures g, (1)) as discussed in the previous section.*®

To understand the connection between bosonic states and truncated correlation
functions, we first define the function

f@®) =wf)), teR, fes, (7.279)
for which it can be directly shown that

Tn

i n

Z

f@) =(Qu, e Q)=

n=0

(R ()" 2. (7.280)

By defining the bosonic truncation scheme as

(Qur qu(f) - qu () = D[ [l )i sa(fi, Ve (7.281)
P ok

we can now write that

o0 .n.n

f() =exp (Z lnt, (%(f)”)r)- (7.282)

n=1

This implies that, indeed, knowledge of all truncated correlation functions (7.281)
implies knowledge of the state. In what follows, we focus attention to a very specific
set of states, for which the truncated correlation functions have a very specific form.

Bosonic Gaussian States*

Let us start our study of quasi-free states without the use of their induced GNS repre-
sentation. We have argued in (7.276) that any state w on A(S, o) can be understood
in terms of the quantum characteristic function §~ : f € S+ z € C. Therefore, we
can identify a state by defining this function. When we now construct a symmet-
ric bilinear form « : § x & — R on the symplectic space (S, o), we can define a
bosonic quasi-free state through its quantum characteristic function

36Note that we introduced the quadratures (7.135) as induced by a specific representation. Since
each state naturally gives rise to a GNS representation, we may label the quadratures by the state w.
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- 1
) =ww(f) =exp( - Sadf. n). res. (7.283)

In order for a state to be well-defined, we must fulfil both conditions (7.277) and
(7.278). Condition (7.277) is obviously true, whereas (7.278) imposes an additional
condition on «. Indeed, we must choose « such that it fulfils the demand

o(f, 9 < alf, Ha(g, 9). (7.284)

When we now turn to the specific representation induced by the state w, we can see
that

(R0, 9.(f)9.(9)R0) = alf, 9) —io(f, g). (7.285)

The gauge-invariance can easily be broken by means of a specific class of -
automorphisms 7,, which describes a natural action of the functional x : S — R.
We define this x-automorphism via

nw(f)) = eXDw(f), fes. (7.286)

We can thus define a new state w’ := w o 7, such that the associated quantum char-
acteristic function reads

~ 1
¢ =w(r(wn)) =exp (= zaf H=ix(N). feS. 128D

Because 7, is a well-defined *-automorphism and w is a well-defined state, we
can conclude that w' is also a well-defined state. States characterised by quantum
characteristic functions of the form (7.287) can be seen as general bosonic Gaussian
states.

These new states w’ can be be understood via the representation of the quasi-free
state w. We consider the Weyl operators W,,(f) = 7, (w(f)) for all f € S and the
vector W, (c)S2,, for any given ¢ € S. This allows us to evaluate

(W, ()2, Ww(f)Ww(C)Qw) = (Q., Ww(f)gzw> eZia(f»C). (7.288)
Therefore, we can use the functional x. := —20(c, .), to obtain that
(7, (X)) = W (=) (x) Wr(c) (7.289)

for all x € A(S, o). Thus, we see that also in this more abstract framework, the
general Gaussian states can be seen as displaced quasi-free states and the Weyl oper-
ators obtained in the specific representation of the quasi-free state act as displacement
operators.
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When we use the GNS representation to define quadrature operators, we see that
bosonic Gaussian states are those states for which all truncated correlation functions
of orders n > 2 vanish. Hence, the only non-vanishing contributions are given by

(@(Nr = (Qu» qu(HRW) (7.290)
@(f):a@)r = (Ru, qu(fgu(9R0) — (R, (L) (R, 9 (9)R) -
(7.291)

This implies that all higher order correlation functions w(q( f1)...q( f,,)) can be
expressed as a sum of products of correlation functions of order at most two. We can
then use (7.282) and it turns out that

~ 1
§0) = exp (i (2ur (L) = 50000 47 )- (7.292)

It should not come as a surprise that this result is highly similar to the result obtained
in (7.201), up to the factor /2 difference in the definition (7.148) of the quadrature.
In the more structured case where the symplectic structure arises from a complex
Hilbert space Hs, with ¢ :=1Im (., .), and (., .) the Hilbert space’s inner product,
we can consider a special type of quasi-free state, the Fock state.?’ First of all, we
note that Re (., .) is in fact a symmetric linear form on Hs and that, moreover,

1DII* = (3, 9) = Re (¥, ¥). (7.293)

In the sense of (7.283), we can then define the Fock state wr as

G =) =exp (—3I01), veHs (729

When we now consider the GNS-triplet for the Fock state, we find
(mr, Qr, I'(Hs)), (7.295)
where 71 is referred to as the Fock representation, I'(Hs) is the well-known Fock

space (7.39) with vacuum Qr. Moreover, we can define creation and annihilation
operators a; (2) and ar (1)), using (7.273), such that

lar (¢), al-(0)] = (6, ¥), and [ar(d),ar()] =0, ¥, b€ Hs, (7.296)
ar()Qr =0, v € Hs. (7.297)

Thus we have recovered the Fock space I'(Hs) with vacuum Qr-.

37Let us directly note that the term “Fock state” in mathematical physics does not refer to the “Fock
state” in for example quantum optics. What quantum opticians refer to as a Fock state is rather a
number state with respect to the Fock representation.
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Note that the definition of a Fock state is in this case rather broad. For example,
for any Fock state wr, the *-automorphism

uy(w@)) == wUvy), UeB(H), U'U=UU" =1, (7.298)

defines the same Fock state w, := w o uy. We can extend this logic to a symplectic
transformation S, such that

ss() = w(Sy), Im (S, S¢) = Im (¥, ). (7.299)

The transformation sg is an alternative representation of the Bogoliubov transfor-
mations (7.180), (7.181), which we discussed earlier. They define a squeezed state
ws 1= wr o sg, with

~ 1
&) = wr(w(se) = exp (= SISUIP). ¥ e Hs. (7.300)

It can be shown (Petz 1990) that whenever (STS — 1)"(STS — 1) has finite trace,
we can find a unitary transformation U such that 7,(x) = U'np(x)U for all
x € A(Hs,Im (., .)). Thus, although the states are not the same, they are equiv-
alent up to unitary transformations (which are the representations of the Bogoliubov
transformations (7.299)). Finally we can also combine the Fock state wr with the
displacement 7, (7.286), where we can now associate the functional with an element
in Hg, such that we write

(W) = e w ), (7.301)

which leads us to the states w,. := wr o 7,, which are the Glauber coherent states.
Moreover, wr o sg o T, are the coherent squeezed states. Notice that all these states
are pure (Petz 1990).

Let us finally come back to the more general quasi-free states and now assume
a Hilbert space structure. We will here limit ourselves to considering the specific
GNS-construction (7.220)—(7.222) of the state and the identities defined there. In the
GNS representation, we can construct creation and annihilation operators (7.273)
by virtue of the Hilbert space structure. For these operators we write the resulting
bilinear forms as

(Qu, @l ()au(GR) == (¥, 0d), and (R, a,(P)au (PR == (b, Te).
(7.302)
We must now demand that Q € B(H) > 0, to guarantee that the state is positive and
T : 'H — 'H must be conjugate linear to fulfil the CCR. The conditions for positivity
then read
01+0Q)-T'T >0, (7.303)

which concludes our definition of bosonic Gaussian states.
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7.8 Concluding Remarks

In this chapter we provided a construction of many-particle quantum physics and
the way in which it is described. The formalism as developed in Sects.7.2-7.6 is
ultimately limited to systems which have either a finite number of particles or are
constructed on a finite-dimensional Hilbert space. A more general treatment leads
us more in the direction of algebraic quantum field theory, and here we see that the
treatment of bosonic systems, as described in Sect. 7.7.2, is completely different from
that of the fermionic counterparts, as described in Sect.7.7.1.

We learn in Sect.7.7 that not only the algebra, but also the state is crucial to
describe the problem. A state fixes a representation on a specific Hilbert space by
means of the GNS construction. In general, this Hilbert space is simply too small
to contain all the possible states on the algebra, hence the importance of the GNS
construction. In this sense, a Fock space is actually a very small space, which can
only harbour a finite amount of particles. The GNS construction teaches us, however,
that we can locally perturb states by creating and annihilating (quasi-)particles by
using the creation and annihilation operators in the relevant representation.

One of the most profound differences between the CAR and the CCR structure is
that the bosonic creation and annihilation operators are not even defined in an abstract
way. Due to the lack of boundedness, they cannot be contained within a C*-algebraic
structure. We did explain, however, that Stone’s theorem (Stone 1930, 1932; von
Neumann 1932) allows us to define a set of such operators in each representation,
i.e. for every state.

Studying a physical problem therefore does not only boil down to choosing the
correct algebra of observables, but also the specific state and hence a specific rep-
resentation. The importance of representations in systems with infinite-dimensional
mode spaces is implicitly shown by results such as (Chenu et al. 2015), where it is
claimed that thermal states cannot be represented by a convex mixture of coherent
states. This result appears to be in grave contradiction to our previous claims in
Sect.7.6.4. However, the single-particle Hilbert space that is considered in Chenu
etal. (2015) is infinite-dimensional, such that a typical thermal state is not contained
within the Fock representation. Hence, it should not come as a surprise that such a
thermal state cannot be represented by a mixture of coherent states in the Fock repre-
sentation. The algebraic approach provides solutions (Fannes and Verbeure 1975) for
such paradoxical results, which highlights its importance beyond mere mathematical
elegance. Often in fields such as quantum optics, the mode spaces are controlled suf-
ficiently well (Armstrong et al. 2012; Cai et al. 2017; Chen et al. 2014; De Valcarcel
et al. 2006; Gerke et al. 2015; Ra et al. 2017; Roslund et al. 2014; Su et al. 2012),
such that it is sufficient to consider the bosonic Fock representation. The work in
the following chapters is therefore typically conducted in the Fock representation.
Nevertheless, the central topic of study in Part IIT of this thesis is the difference
between the quantum mechanics of bosons and fermions and thus it is instructive to
also understand their fundamental difference on a deeper algebraic level.
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The structures which we discussed throughout this chapter form the basis of
Chaps. 8 and 9. In the former, we focus on the dynamical properties of of fixed number
of particles, i.e. the number states of Sect.7.6.1, and elaborate on many-particle
interference phenomena. In Chap. 9, the number of particles is allowed to fluctuate
and we investigate the behaviour of single-particle observables (recall Sect.7.5) in
the non-equilibrium steady state.
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Chapter 8 ®)
Many-Particle Interference e

“O brave new world!”
John in “Brave new World” (Huxley 1932)

8.1 Introduction

After the extensive discussion of bosonic and fermionic structures, we now dig deeper
into the dynamical properties of these particles. More specifically, we focus on the
concept of true indistinguishability and the additional interference effects arising
because of it—even in the absence of physical interaction between the particles
(Tichy 2011; Tichy et al. 2010, 2012). These many-body interferences are still rather
poorly understood and not too much research has been done on them. The reason
is that there are few many-particle systems with sufficient control that allow to treat
non-Gaussian states (e.g. number states), which are required to see such fundamental
quantum effects. For example, in well-controlled settings as photonics it is very
difficult to generate number states, since one usually starts out from coherent or
thermal light sources (Aspect et al. 1982; Ates et al. 2009; Eibl et al. 2003; Grice
et al. 1998; Grice and Walmsley 1997; Huang et al. 2011; Kwiat et al. 1995; Metcalf
et al. 2013; Mosley et al. 2008; Ou et al. 1999; Ra et al. 2013a; Santori et al. 2001,
2002; Tichy et al. 2011). On the other hand, ultra-cold atoms setups usually lack
sufficient control to resolve these interference effects, because they suffer from a lot
of decoherence (Anderson et al. 1995; Andrews et al. 1997; Bloch et al. 2008; Chu
2002; Davis et al. 1995; Deslauriers et al. 2006; Harber et al. 2003; Turchette et al.
2000). More recently, however, both photonics (Crespi et al. 2013; Metcalf et al.
2013; Peruzzo et al. 2010; Sansoni et al. 2012; Spagnolo et al. 2014; Spring et al.
2013) and ultra-cold atom (or ion) experiments (Ahlbrecht et al. 2012; Genske et al.
2013; Kohl et al. 2005; Leibfried et al. 2004; Miiller et al. 2011; Preiss et al. 2015;
Schneider et al. 2012; Sherson et al. 2010) have started to reach regimes where such
effects can be probed, urging also for deeper theoretical understanding.
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On the theory side, there has been some work in the context of the
Hong-Ou-Mandel effect (Hong et al. 1987). However, for a long time this remained
limited to a two-particle setting. There was never much interest in solving truly many-
body problems. Even though the condensed-matter and chemical physics communi-
ties deal with the dynamics of genuine many-body systems, they usually try to avoid
full-blown many-body calculations by using density functional theory (Burke et al.
2005) or Hartree-Fock (Alicki and Fannes 2001; Negele and Orland 1998). These
methods make approximations on the quantum states, and, in the latter case, push
them to the Gaussian realm.

Nevertheless, in the mathematical physics, quantum statistical mechanics, quan-
tum chaos, and quantum information communities interest has reached out to com-
plicated many-body states, via the development of, for example, finitely-correlated
states (Fannes et al. 1994, 1992; Verstraete et al. 2008). However, most of these
works focus on determining ground- and thermal states, rather than on dynamical
applications (Schuch et al. 2011; Verstraete and Cirac 2006). On the other hand,
several fields, such as nuclear (Benet and Weidenmiiller 2003; Benet et al. 2001;
Bethe and Bacher 1936) and atomic (Tanner et al. 2000) physics naturally deal with
genuine n-particle wave functions. Moreover, n-particle dynamics has been studied
in relation to quantum chaos, both for cold atoms (Buchleitner and Kolovsky 2003;
Kolovsky and Buchleitner 2003; Ponomarev and Kolovsky 2006; Ponomarev et al.
2006) and in a more abstract RMT setting (Kaplan and Papenbrock 2000). Recently,
attention for the dynamical properties of many-particle dynamics was boosted sig-
nificantly when topics such as quantum walks (Ahlbrecht et al. 2012; Genske et al.
2013; Hamilton et al. 2014; Hein and Tanner 2010; Peruzzo et al. 2010; Preiss et al.
2015) and boson sampling (Aaronson and Arkhipov 2013; Broome et al. 2013; Crespi
et al. 2013; Shen et al. 2014; Spagnolo et al. 2014; Spring et al. 2013; Tillmann et al.
2013) appeared on the stage.

Also from a fundamental quantum transport and complex systems point of view,
the dynamics in systems described by number states is remarkably interesting and fas-
cinating. The Hong-Ou-Mandel (HOM) effect, which we consider in detail through-
out Sect. 8.3.4, indicates that bosons which meet in a beamsplitter (see Sect.8.2.2)
always have an enhanced probability of coming out in the same direction, thus they
bunch. The opposite is true for fermions, which actually can never come out in
the same direction, hence two fermions antibunch. One therefore sees completely
opposite behaviour for two fermions and rwo bosons. This no longer holds when we
consider larger beamsplitter arrays in which more than two particles are injected. One
of the first systematic studies of these effects can be found in the PhD work of Malte
C. Tichy (Tichy 2011), where notably a suppression law was proven: In beamsplitter
arrays with specific symmetry properties, transitions from a given class of input states
to a given class of output states are completely suppressed (Tichy et al. 2010, 2014).
Intriguingly, there are events which are suppressed both for fermions and for bosons,
and, hence, although bosons and fermions clearly behave differently from each other,
they are not as complementary as the HOM scenario suggests. There is much more
to bosons than HOM-like bunching behaviour: One witnesses a wide range of novel
many-particle interference phenomena, exclusively due to the indistinguishability
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of the particles, and in the absence of any interaction between the particles
(Mayer 2012; Tichy 2014): These phenomena still lack a unified understanding,
which motivated this chapter of the current dissertation.

We explore the properties of many-body interferences in a complex systems setup,
and mainly focus on the unitary evolution or scattering of non-interacting particles,
either fermions or bosons. We start the chapter by reviewing some aspects of closed
system dynamics of non-interacting particles in the framework of Fock space,' and
we focus our attention on optical implementations. There are two different frame-
works how to deal with these many-particle interference effects: The one strongly
focusses on the initial and final wave function, treating the problem in a Schrédinger
picture, whereas the other focusses on the process of measuring the output event.
A measurement-inspired approach makes the logical connection to correlation func-
tions and decoherence. These aspects are crucial for the final purpose we are after:
the certification of boson sampling.

Apart from aspects presented in Sect. 8.4, and the results on the certification of
boson sampling in Sect. 8.5, the physics described in this chapter is known. However,
it is here treated in a slightly different, and original, mathematical framework, which
eases the treatment, for example, of non-orthogonal modes. Not only is this chapter
therefore complementary to much of what is known from the common atomic and
optical physics literature dealing with many-particle quantum systems. By sticking to
abasis-independent description as much as possible this text can also be considered a
generalisation of most of these known results to sets of particles with non-orthogonal
wave functions.

8.2 Dynamics of Non-interacting Particles

Throughout this chapter we consider a system that is closed and where the dynamics
or the transport of particles can therefore be treated as a unitary channel (recall (2.48)).
At the very foundations of such an approach lies a Hamiltonian equation of motion,
be it in Schrodinger, von Neumann or Heisenberg form. We first derive the formalism
to treat Hamiltonian dynamics, and later on divert to a more general picture. Since we
assume to deal with states containing a finite, well-controlled number of particles,
it is sufficient to limit ourselves to a Fock space description of the system and its
dynamics.

ILater in Chap. 9 we explore particle transport properties in open systems where the number of
particles is allowed to fluctuate.
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8.2.1 Unitary Dynamics

We start out by considering a single-particle Hilbert space H on which we construct
the Fock space I'"”// (H). As discussed in Chap. 2, we may consider the Hamiltonian
dynamics of any observable  (in this case acting on Fock space) as generated by
the Heisenberg equation of motion

d ,

Here, 3 is a self-adjoint, time-independent operator on Fock space, H = H*, which
we consider to be a polynomial in creation and annihilation operators.> Formally we
may solve equation (8.1) by defining a unitary map 4, : B(I'*/f (H)) — B(I%/f (H)),
which propagates observables according to the dynamics described by Eq. (8.1). This
mapping is given by

O U (©O) = exp(it[H, DO = &7 De 17, (8.2)

All relevant information about the dynamics is hidden in the unitary operator £l(¢) :=
e For a general Hamiltonian, the explicit evaluation of the action of such a
propagator can be expected to range from tricky to simply impossible, but under
given conditions, we can cast the object in a far more useful form: In this chapter we
deal with the dynamics of non-interacting particles, which considerably simplifies
both the Hamiltonian H{ and the unitary propagator $(¢).

Assuming that the particles are non-interacting implies that there can be no terms
in H which couple different particles. In other words, each particle sees exactly the
same Hamiltonian and this automatically brings us to the choice

H=T(H), HeB(H). (8.3)
Hence (recall (7.89) and (7.92) and our discussion in Sect.7.5), the Hamiltonian is a
single-particle observable in second quantisation.® This allows us to use the properties
of the second quantisation, more specifically the one captured in Eq. (7.115), to obtain

Ut) = e T = E (e71). (8.4)

This leads to the more general idea that a single-particle unitary channel on Fock
space, given by “8(;" . {1,”, can always be described by a propagator

W =EW), 8.5)

2Because the creation and annihilation operators are generators of the algebra of observables, this
requirement is logical.

3Since the derivations in this section hold both for fermions and bosons, we omit, for the time being,
the index f/b in the second quantisation operators I', originally defined in (7.89).
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where U is a unitary operator on H. We can perform a consistency check by using
(7.108)—(7.115) to obtain

WU = EU)'E(U) = E(U'U) = E(1y) = Trpy. (8.6)

Let us focus on the transformation of creation or annihilation operators under
(8.5). By virtue of (7.108)—(7.115), the unitary channel acts, for any ¢ € H, as

a' @) = W'a' (Wt = EUNa' @ EW) = a" (U EWUHEU) = a'(U'y)
(8.7)
Notice that a completely similar calculation leads to

a@) — a(UTY), o eH. (8.8)

We may now use (7.108)—(7.115) to directly generalise this mapping for any nor-
mally ordered monomial® of creation and annihilation operators. A simple calculation
shows that

EWNa'@n)...a'@ay) ...a@)EU)

=fww¢“dwwmwwwmuwMy@m
This implies that we can consistently identify such a single-particle unitary channel
with the *-automorphism a (1)) > a(U 1)), which is actually completely equivalent
to the Bogoliubov transformations (7.180) or (7.241)—depending on which particle
type we consider—with V = 0 or B = 0, respectively. To connect these results back
to the original idea of single-particle dynamics, generated by a Hamiltonian I'(H),
with H € B(H), we describe the evolution by means of the evolution of creation and
annihilation operators®

a* () = a* ("), (8.10)

or, equivalently, via the Bogoliubov transformation B, ( (recall (7.180), (7.181)
and (7.241)).

Alternatively, in the Schrodinger picture, we focus on the dynamics of functionals
on our relevant x-algebra of observables. This is typically a difficult task to accom-
plish, but under certain circumstances and for specific initial states, it turns out to
be a very suitable approach. Indeed, the single-particle unitary channels which we
consider throughout this chapter provide exactly such circumstances. The dynamics
of a wave function is generated by Schrodinger’s equation as

0 .
5w=ﬂnmu (8.11)

4“Normally ordered” (Davies 1977a) refers to monomials where all creation operators are ordered
on the left, whereas all annihilation operators are on the right.

SNote that a* is a collective term for a' and a, i.e. (8.10) holds for, both, creation and annihilation
operators.
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what implies '
(1) = exp(—itT'(H)) Wy = E(e ")y, (8.12)

such that we again find the familiar propagator. Instead of such continuous description
of the time evolution we can consider a general unitary channel® defined by the map

U LW, Wel(H), |¥| < oo. (8.13)

Now let us assume that our initial wave function describes an n-particle number state
given as
Wo=a' @) ...a"W,)R. (8.14)

We may again use property (7.113) to derive that
LWy = EW)a' () ...a" @W)Q =a"(Uy)...a"(Up)EWU)Q.  (8.15)

Let us now write the explicit expressions for E(U) and €2, according to (7.106),
(7.107) and (7.40), respectively, such that

E(U)Q = (1 SUS UV @...)(1 @0@0@9...) —Q. (816
Consequently, the channel’s action on the number state W, reads
Wy > Wy = a" (Uiy)...a" (U,)R. (8.17)
This implies that we can in principle also describe the dynamics as
a' @) a'(Uy), ¢ eH. (8.18)

The U in (8.18) appears to be in contrast to the U™ in (8.8). Note that, both, in
the Heisenberg and in the Schrodinger picture, we are able to connect a mapping
(8.8) or (8.18) of the creation and annihilation operators, depending on the picture,
to a transformation on the single-particle Hilbert space , given by 1 > U'1 in
the Heisenberg picture, and ¢ — U4t in the Schrodinger picture. This is exactly
what is needed, since the physically relevant objects are expectation values (O) of
observables. To obtain a physically reasonable mapping, we must make sure that it
consistently describes the transformation of () under ;:

(O) = (O)y,- (8.19)

To provide a plausible argument that (8.8) and (8.18) are indeed consistent, let us
consider a very simple example, which can easily be extended to more complicated

%In the Schrodinger picture.
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situations. Assume that we consider O = a’ (¢ Ya(1,)" and a state (.) generated by
the wave function a'(¢)Q. This implies that, in the Heisenberg picture,

(O) > (a" (@R, a"(UTY)aUT)a" (@)Q) = (6. Ut ) (UTn, ), (8.20)

whereas in the Schrodinger picture

(O) > (@ UKL, a" W)a@n)a (UPQ) = (U, v1) (¥, Ud).  (8.21)

Indeed, the two pictures are consistent, and the apparent contradiction between (8.8)
and (8.18) is actually a necessity for the consistency of both pictures.

8.2.2 Beamsplitters*

Beamsplitters are very standard in quantum optics, but to those not familiar with
this field there are several details which are easily overlooked. Because these details
are important to our discussion, we explicitly present them here. Ultimately, the key
result of this section is the structure of the complete Hilbert space (8.34), and the
beamsplitter’s action (8.35). Often the additional L£*(R) degree of freedom of the
beam is treated implicitly. However, these additional degrees of freedom are crucial
for our discussion on partial distinguishability in Sects. 8.3.4, 8.4.2 and 8.5.3.

We zoom in on one of the most important objects in (quantum) optics: the beam-
splitter. As the name suggests the main action of a beamsplitter on an electromagnetic
field is splitting it in two (Born and Wolf 1999; Stokes 1849). The incoming electric
field E is split in a reflected (under a given angle) component E, and a transmitted
component E;. We can denote that for the amplitudes

E,=RE and E, =TE, (8.22)

where R and T are the reflection and transmission coefficients, respectively. A sketch
of this process is presented in Fig. 8.1. Since the total energy in the beams should be
conserved if there is no absorption in the dielectric medium, we obtain the relation

|EP = |E.* +|E[*, andthus |T]>+|R* = 1. (8.23)

One may wonder how one can quantise such an operation in a correct way. A standard
way of doing this is to quantise the classical light field and derive the action of the
beamsplitter starting out from (8.22) (Campos et al. 1989; Grynberg et al. 2010;
Mandel and Wolf 1995; Schleich 2001). Alternatively, however, one may also start
from quantum theory and propose a reasonable model, which can later on be shown to

7Which is actually not an observable, but rather a coherence (between the particles in modes 1)
and 1/)2)
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Fig. 8.1 Sketch of a beamsplitter. An input beam may be injected from either side 1 or 2 (or from
both simultaneously) and will de divided in two outgoing beams, travelling on in both directions.
The amount of a beam which is reflected versus the amount that is transmitted is governed by the
transmission and reflection coefficients 7' and R, respectively (see main text)

be consistent with the classical approach. We opt for the latter method and omit rigour
for the time being. Notice that, since we consider an optics setting, we automatically
assume to be working with bosons, unless explicitly stated otherwise.

To reach a reasonable quantum mechanical model for the beamsplitter, we must
realise what it actually does: It divides a single beam of light into two outgoing
beams. The frequency of the electromagnetic wave typically remains the same for
the incoming and outgoing beam, as long as we assume that there is no additional
nonlinear optics involved, and the intensity of the incoming light beam is equal to the
sum of the intensities of the outgoing beam (in the absence of absorption and other
losses). Without going into quantum field theory, we ask the very basic question
what a beam of light intuitively is. Typically, this question is answered by saying
that a light beam is an ensemble of photons. The intensity of a light beam is then
proportional to the number of photons, which means that, when an ensemble of n
(with n >> 1) photons hits the beamsplitter, |7|* n of them are transmitted, whereas
|R|?> n of them are reflected. To reach the limit of classical light, we typically need
huge quantities of photons (hence n >> 1), but we might wonder what happens when
we make 7 smaller. The quantum nature of light makes sure that on average |T|* n
photons are transmitted, whereas | R|* n of them are reflected. Now going even further
down in particle number, we ultimately reach the regime with a single particle. What
happens as one single photon collides with the beamsplitter? It is either transmitted
or reflected, and quantum mechanically this means that a photon with the input wave
function 1 is transferred to

Vs + 1 P+ =1, (8.24)

where v, is the reflected wave function and 1); the transmitted one. We assume
that the two outgoing states are as different as they can be, such that (¢, 1) = 0.
This implies that we treat the photons as (Gaussian) wave packets with a well-
defined momentum. This is consistent to the picture of a beam which is confined in
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the transverse direction. In our effective description, (1), 1) = 0 thus implies that
outgoing wave packets in direction 1 do not have overlap with those in direction 2.
The whole process can be described using pure states and we work in a Schrodinger
picture. The quantum mechanical probability amplitudes » and # must now be such
that they consistently reproduce the classical behaviour (8.23) in the large n limit.

Approaching the large n limit can be done by lifting everything to a Fock space
description, hence describing the action of the beamsplitter as

a' () = d' iy + 1) =ral () +ta’ (@), (8.25)

which can be extended for a bunch of photons W = ﬁa*(w)"ﬁ to

L rat t N B e A W S S
\IJr—>m(ra(wr)-l-ta(wz))Q—mkg;(k)rz a W) at W) e,

(8.26)
which ultimately implies that the expected number (72,) of particles which is reflected
is given by  |r|?, where n is the total number of particles in the initial state. If we now
enter the regime of large n, the central limit theorem makes the fluctuations around the
average smaller and we recover that, indeed, |R|2 = |r|2, and, equivalently, |T|2 =
|1]?. However, one may wonder whether the description of a classical light field in
terms of a number state is really the correct classical limit. It turns out that this is not
really the case.

When introducing the Wigner representation in Sect.7.6.4, we argued that the
classical pure states are actually the Gaussian states. Due to its similarity to a point
in phase space, it can be argued that the coherent state is nearest to the typical
setting of classical physics. Therefore, Eq. 8.26 does not lead to the most classical
behaviour, because it does not start from the most classical input state.® Nevertheless,
we assume that relation (8.25) defines the action of the beamsplitter on a creation
operator. It follows from (7.71), (7.152) that a coherent pure state ¥, € b (H),
which is generated in the input mode of the beamsplitter, can be represented as

W, = e 12 exp (aa’ ()R, aeC. (8.27)

To make the discussion on beamsplitters more realistic, we must treat the problem
in terms of beams. A beam describes light with a clear direction of propagation,
whereas in the transverse direction, the intensity of the light is confined within a
given shape. We limit ourselves to Gaussian beams, where its transverse intensity
profile is described by a Gaussian with a given width. We assume that the waists
of the incoming and outgoing beams in Fig. 8.1 are small, such that outside of
the beamsplitter these beams do not interfere with each other. Having made this

81t will turn out that the output state of (8.26) describes very similar counting statistics to that of
the output state for coherent light (8.31). This is a straightforward consequence of the law of large
numbers.
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assumption, we will not go into further detail on the transverse spatial modes and
simply assume that these are the same for all photons in the beam.

Therefore, we may effectively model the structure of a beam by a single-particle
Hilbert space H = £2(R), describing the propagation degree of freedom. Because
we study two such beams, we effectively describe the full system as Hyo = LX(R) &
L£%(R), where the first term in the direct sum describes direction 1 and the second
term direction 2 of Fig. 8.1. Assuming there is only a beam injected from direction

1, we may rewrite Eq. (8.24) as
(%) > (; i) . (8.28)

This implies that the action of the beamsplitter on a coherent state
W, = e 2 exp (aa’ (W ®0))Q, aeC, (8.29)

is given by
W, > e exp fa(a’ -y @ 1)) ). (8.30)

We can now exploit the Fock space structure and the isomorphism I'’(£?(R) @
L2(R)) = T'’(L*(R)) ® T?(L*(R)), with the specific mappings (7.55) and (7.56).
To find an explicit description in terms of this tensor product structure, where each
component in the product relates to a beam in a different direction, we may write
that the beamsplitter actually acts as

U, > <e—|ta|2/2 exp {Oél‘aT('L/J)}Ql) ® (ef‘ralz/z exp {araT(w)}Qz) =V 0 @Y.

(8.31)
Notice that we simply split a coherent beam of light into a product of two coherent
beams of light. To finally check consistency of this action with the classical beam
splitter, we must understand how the energy is split. As the energy depends on the
intensity, which is the expectation value of the particle number in each beam, we
easily verify that the number of particles in the incoming beam is

A

(Nin) = lal?, (8.32)
whereas for the reflected and transmitted beams, we obtain
(N;) =1l lal*  and (N} = |t |af?. (8.33)

This indeed confirms that it is consistent to state that |r| = |R| and |t| = |T|. The
action of a beamsplitter is nothing else than a scattering process such as those
described in Sect.2.6. One should note that, in principle, in a microscopic derivation
(by considering the beamsplitter as a box potential for example) one obtains that ¢
and r are actually frequency-dependent. For perfectly monochromatic light, this is
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not problematic, but once we inject wave packets, one may see some effects. For the
bandwidths used in many optical experiments, these effects are typically negligible
for single beamsplitters.

Although the description using Hyo = £2(R) @& L*(R) for the Fock space is con-
venient, we can consider a different approach which is less spatially oriented and
more based on the actual degrees of freedom for the single particle. Notice that,
indeed,

L2R) @ L2(R) = C*® L(R), (8.34)

and we clearly have a Hilbert space that labels the beams (C?) and another Hilbert
space that describes the degree of freedom within the beam (£?(R)). We can extend
such a setup to so called multiport beamsplitters or beamsplitter arrays, which are
discussed later in this chapter, by choosing C™ rather than C2. On the other hand,
we may also replace the £>(R) side, which is unaffected by the beamsplitter, by
any other Hilbert space. The notation on the right hand side of (8.34) is particularly
interesting, because we can describe the action of the beamsplitter by means of an
operator B € M, (the space of 2 x 2 matrices),

tr
B = (r ﬂ) . (8.35)

No action is applied by (8.35) on the £?(R) space, meaning that a typical photon
travelling through the beamsplitter can be described by

(é)@sz(B@ﬂ){((l))@w}:(i)w_ 536)

If we now assume that the beamsplitter can be used from the two input directions
(labeled with 1 and 2 in Fig. 8.1) and also in the reversed direction, we obtain several
consistency rules, which can all be summarised by the requirement that

B'B = BB =1. (8.37)

In other words, the beamsplitter is described by a unitary transformation mixing the
different beams. In this sense, the beamsplitter is nothing more than a single-particle
unitary process, implying it is a special type of Bogoliubov transformation. This
allows us to not only define it for bosons, but also for fermions.

Notice that we may consider the action of the beamsplitter on bosons in various
equivalent ways:

a' @) — a"(BY), e C (8.38)
W () — W(Bv), 1 e C. (8.39)

We simplified the description somewhat, by ignoring the additional (spatial) degree
of freedom and simply focussing on the beamsplitter’s input modes C*.
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8.3 Many-Particle Interference: The Wave Function
Approach

Now that we have extensively discussed the dynamics and transformations of non-
interacting particles, and specifically studied beamsplitters as a paradigmatic example
coming from the optics community, we can understand the interference phenomena
which arise in such setups. There are essentially two methods for doing so, one is the
wave function approach (which is represented in the Schrodinger picture) and the
other, considered in the next section, is the measurement approach (which is treated
in the Heisenberg picture). To understand which pathways, or different probability
amplitudes, do interfere, we must consider a well-defined input and output state.” The
paradigmatic example for a single-particle interference process is Young’s double-
slit experiment. Classically, we expect the particle to go through one of the two slits
with a certain probability. However, in quantum mechanics, as shown in Figs. 1.1
and 1.2, the final probability distribution on the detection screen is not an incoherent
mixture of two probability distributions, but rather we see a spiked structure in
the intensity profile. Young (Young 1804) originally identified these fringes as an
unambiguous wave-like phenomenon which arises due to interference. The key point
of this section is to convince the reader that Young’s double slit experiment provides
insufficient phenomenology to understand the interference phenomena in many-
particle processes, even when the particles are non-interacting.

Throughout this chapter, we devote our attention to number states of the specific
type (7.116), which one may refer to as elementary tensors. In Appendix C we
highlight the changes when one considers more general types of number states. More
specifically, we show that, in this setting, some type of higher-order many-particle
interference appears.

8.3.1 From Single-Particle to Many-Particle Interference

In Sect. 2.5, we provided the mathematical introduction to the main topic of interest
in this dissertation: quantum interference. We learned that the phenomenology of
the double slit in Sect. 1.1 and of Example 2.5.1 in Sect.2.5, or the networks in
Chap. 4, are clearly influenced by such interference effects. In those specific cases,
the interferences occur between different single-particle pathways. This means that
a particle’s probability to be detected at a given position (or site) is not the same
as the sum of the probabilities of individual pathways. In the networks this implies
that we cannot add up different hopping processes, but have to solve Schrédinger’s
equation (recall (4.2)). In the scattering approach of Chap. 5, these pathways appear

9We were also confronted with this issue in Chap. 4, see e.g. p. 79.
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as contributions to the scattering matrix. In all those discussions, we finally projected
the system’s state on a specific measurement state vector, which was localised at a
specific position, and only then do we see the manifestation of interference effects
in the probability density.

There is no reason, however, to limit this approach to single-particle Hilbert
spaces. In what follows throughout this chapter, we focus on many-particle interfer-
ence, which implies that we must translate (2.73) to the Fock space setting. There-
fore, the initial state (.) is henceforth generated by a many-particle wave function
W e I'(H). The final projector P, is a projector on Fock space, which in Sect. 8.3 is
considered a projector on a single state vector & € I'(H). We specifically study the
influence of a single-particle unitary operation, as introduced in (8.5), on the interfer-
ence pattern which arises. The most subtle aspect is to formally define the projectors
{ Py}, which contrast the obtained transition probability to what is expected from
classical probability theory. We know that classically we can combine single-particle
processes to a many-particle process via combinatorics. This approach is exact for
distinguishable particles, as we will see in Sect. 8.3.4, but for indistinguishable par-
ticles additional interference terms appear. Rather than explicitly describing a set of
projectors { P, }, which render particles distinguishable, we will use the incoherent
mixture of combined single-particle probabilities to represent the expected outcome
in the absence of interference effects.

In concreto, we classically consider a set of occupied input modes I = {¢/y, ...,
1, } and a set of occupied output modes J = {£i, ..., &, }. Between these modes,
there are single-particle transition probabilities py, .¢;. Note that these probabilities
P —¢; generically contain single-particle interferences. To determine the classical
probability p?’% ; to transfer the particles from the input to the output modes, we
combine single-particle processes:

pfll—u = Z Por—&rty -+ + Piow—riny - (8.40)

TES,

In Sect. 8.3.4, we prove that this is the limit obtained for distinguishable particles.
However, when dealing with indistinguishable particles in the bosonic or fermionic
Fock space, additional interference terms show up. We find specifically that

pIIJLf ;= pi 7 + interference terms, (8.41)

and the remainder of the chapter is devoted to understanding the phenomenology
induced by these interference terms. Note also that this is yet another realisation of
the general relation (2.73).
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8.3.2 Many-Boson Interference

Since we work in a Schrodinger picture, the correct object to propagate is the wave
function that describes a given, (pure) quantum state in Fock space. When dealing
with bosons, there is a wide range of states that can be considered, most notably
the number states (7.132) and Glauber coherent states (7.145). We know that the
latter are Gaussian states which saturate the uncertainty relation in a symmetric way.
Therefore, they are the closest we can get to a point in phase space, and we do not
expect to see any strong interference effects for these states, as they are the closest we
can get to classical physics. If we were to see many-particle interference for coherent
states, this would imply that we can generate these effects with classical light, going
against the idea that this is a genuine quantum phenomenon. Number states, on
the other hand, have a very pronounced non-classical character and therefore are
expected to show more interesting interference properties. We start by discussing
the dynamical properties of number states, introducing many-boson interference in
a concrete fashion. Later we briefly comment on the lack of such interference effects
in Glauber coherent states.

Number States

Let us start with number states, which are expected to exhibit interesting quantum
effects since they do not belong to the class of Gaussian states (see Sect.7.6.4). We
thus use them as input for our interference setup. Note that we will focus on the
specific vector of type (7.116), a special class of number states. Hence, we prepare
the initial state

W= ;a"'(u}l)a*(%)g, with 1, 1, € C? (8.42)
perm G

and inject it into a beamsplitter:

1 T T
W =z (BY)a' (By)SQ. (8.43)

In relation to (8.41), we consider the probability to observe the particles in modes &;
and & € H, which is now given by the transition probability to the state

1]

1
= Wa*(&)a*(&m. (8.44)
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Thus we compute

b
Pug

<s2,a(&)a(&>a*(8w1>a*<3¢2)9>‘2

- perm G perm G’

_ 1

"~ perm G perm G’
1

- perm G perm G’

(2. a@)( (61, Bor) +a' Bunan)a' B[

(€. Bon) (2. a@)a’ (Bv2)9)

. 2
+{. a@a" Ben) (1, Boa) + ' (Baen)2)
1
- perm G perm G’

(€, B (2. a)a (B2)R) (8.45)

2
+ (€1, Ba) (2. a@)a’ (BynQ)|
_ 1
" perm G perm G’

(€., Bon (2, (&, Bua) +d' (Buna)e)

+ (6 8o (2. (162, Bon) +a' Bunace) )|
1

= —————— (&1, BYn) (&2, Bia) + (&1, Bun) (&2, BYD)I.
perm G perm G

Summarising everything in one simple expression, we find that

_ [perm [{&. Bu )1
~ permGperm G’

Py g (8.46)

To explicitly show that many-particle interference effects indeed show up, let us
finally express

Pyz = ;O(&, BN (&, BY) P + (61, B P 1(&a, B

perm G perm G’
+ (&1, B1) (v1. B'&) (&, BYn) (i, BTehy)

+ (&1, Bn) (¥, B'&) (&, Bay) (1)1, BWM))-
(8.47)
Upon comparison with (8.41), with the identification Pyt = |<§ iz Bwi) 2, the final
two terms are seen to represent the interferences.

To indicate how drastic these interference effects may be, let us assume that we
consider orthogonal wave functions, such that (1, 1) = O and (£, &) = 0. To con-
nect this to Fig. 8.1, it would imply for example that the particle with wave function
1) enters the beamsplitter from direction 1 and another one, with wave function v,
enters from direction 2. The final state on which we project (see Sect.8.3.1) repre-
sents the case where both particles exit the beamsplitter in different directions. Let
us assume that B is given by
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B_<(§1,B¢1>(fl,B¢2)>_<vl—A P
— (&, BYn) (&, Byn) A —VT=X

) , Ael0,1], (8.48)

such that expression (8.47) simplifies to
— b 2
Pi2i=pyg=CA-1". (8.49)

The notation p; » (Hong et al. 1987) implies the probability to observe a coincidence
measurement where one outgoing photon is detected in direction 1 and the other
one in direction 2. When we now consider the unbiased beamsplitter (A = 1/2), we
find that p;, = 0. This is in contrast to the result (8.40) obtained from classical
probability and combinatorics, which results in p; » = 1/2. Hence, the interference
terms in (8.47) cause the two bosons to bunch together while jointly travelling through
an unbiased beamsplitter.

The beamsplitter-scenario is naturally generalised to a generic n-particle setup,
with the initial state

R S TR SRR TS (8.50)
perm G

which is propagated by a single-particle unitary channel E(U), U € B(H) (recall
(8.15)). Setting up a measurement which allows us to detect the state

1
E= WJ(&)...J({")Q, (8.51)
gives us the transition probability
1 + . 2
Pyz= P P— (@€ ... a" R, a' U ...a" U

(8.52)
It is reasonably straightforward to see that the arithmetic of the calculation (8.45)
can be generalised for this setting. A stepwise treatment of such a computation was
also presented in Sect. 7.6.1, when we discussed the normalisation of number states.
Ultimately, one finds that

_ [perm (g, uw )1
~ perm G perm G’

Pyv—g (8.53)

what forces us to consider the permanent of ann X n matrix [(fi LUV )], which can be
interpreted as a sub-matrix of U. Just as in the previous setup with the beamsplitter,
we can rewrite the modulus-squared in (8.53) to make the interference terms explicit:
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1
Pyg = W(g (38 U%(1>>|2 (&2, U¢ﬂ(2)>|2 (S U%@)HZ
+ Z (&1 Uny) (W), UTGL) . (&0 Utbrany) (Yo UTfn))-
‘IT';TO':(TS,,
(8.54)

The sum in the second line runs over all pairs of unequal permutations and clearly
contains many interference terms, whereas the sum on the first line is expected
from combinatorics (8.40). Indeed, notice that when we consider just one-particle
transitions, we find

Pl = (@, a©a’ Q) = 1€, U P, (8.55)

thus the first term in (8.54) represents simply the result from classical probability
theory, as given by (8.40). The second sum in (8.54), however, runs over the permuta-
tions 7, o € S, of the selected output modes with ™ # ¢. This implies that there are
n!(n! — 1) interference terms that need to be taken into account. It should therefore
be stressed that these many-particle interferences are of paramount importance to
understand the propagation of many particles through unitary channels as (8.15).

Before we proceed to the discussion of (the lack of) many-particle interference
phenomena for coherent states, let us stress that a general single-particle unitary chan-
nel as (8.15) is far from an idealisation. At least in bosonic systems, it has been shown
(Reck et al. 1994) that any such single-particle unitary operation can be engineered
with the help of sufficiently many'® beamsplitters (with variable transmission and
reflection coefficients) and phase shifters. The latter simply actas a’ (1) = a®(e/%1)).
Figure 8.2 sketches such a setup for the specific case of a4 x 4 single-particle unitary
channel.

Glauber Coherent States*

This section shows that Glauber coherent states, in contrast to number states, do not
exhibit many-particle interference. This serves as an indication that many-particle
interference is a genuine quantum phenomenon which cannot be obtained from clas-
sical waves.

Let us now briefly study the behaviour of a general Glauber coherent state when
being transmitted through a beamsplitter (8.39). The action of a beamsplitter on a
coherent state is given by

U, = W(@)Q+—> W(BWQ = Vg, oecC? (8.56)
and in order to see interference effects, we follow (2.73) and evaluate the expectation

value of a projector on the Fock space. Let us, in analogy to the previous section,
choose a projector |®) (®|, with & given by

10More specifically (Reck et al. 1994) shows that this amount is N(N — 1)/2 when one wishes to
describe an N x N unitary operation.
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€4 Beam

es3 Beamsplitter
Phase-shifter ;

Input mode @

Particle detector ‘

Fig. 8.2 Sketch of a pyramid-shaped beamsplitter array. A total of four different input modes
are connected to four different output detectors. The maze of six beamsplitters (each described
by its own 2 x 2 unitary B, see (8.48)) and a set of additional phase-shifters provide a variety of
different pathways for the bosons to travel to the detectors. During this dynamical process, there are
single-particle interferences because of the multitude of different pathways, but also many-particle
interferences because of the bosonic, indistinguishable nature of the particles

_ ! toat
¢ = Jpem G (W)a' ()L, (8.57)

with ¢, ¢ € H. We want to find exactly one particle in state 1) and one in state ¢.
Therefore we must calculate

1
Pho= ——=|la'@W)a" (@) V)"

perm
e llal?

- 2
= Jperm G (¥ © ¢, Ba ® Ba)| (8.58)

a2
e lal

[, Ba)|* [{¢, Ba)|*.

- perm G

The calculation can easily be generalised to any single-particle unitary process, where
we compute the probability of finding a state a’(¢;) ... a" (1/,)2 and find that

_ 2
el ||a||2"

p— (W1, Uea)* .. 1{thn, Uea)|* (8.59)

« —
p¢1»-~~¢n -

with U a unitary operator in B(H) and e, = «/| «]|. Indeed, one does not find any
many-particle interferences, but simply a multiplication of probabilities: The factor
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2
e lal ||o¢||2"

perm G

is the probability to find n particles in the coherent state W,,, and the latter factors
|(1/J iU ea)|2 describe single-particle transition probabilities for these n particles to be
detected in the selected output modes. This is nothing but expression (8.40), where all
particles occupy the same initial mode e, additionally multiplied by the probability
to sample n particles from the coherent state.

8.3.3 Many-Fermion Interference

It should not come as a surprise, given what we already calculated throughout this
dissertation, that the technical details for fermions are very similar to those of bosons.
However, this does not imply that the resulting physical phenomenology is similar,
too. We have seen in the previous chapter that simply replacing commutators by
anticommutators results ultimately in algebras with quite different properties: Not
only do we witness Bose-Einstein condensation for bosons, in sharp contrast to
Pauli’s exclusion principle for fermions. We also learned that coherent states arise
naturally for bosons, whereas they are rather exotic for fermions (Helsen 2015). It
was shown that Glauber coherent states do not give rise to many-boson interference
effects. For fermions, we cannot generalise this line of thought, due to the profoundly
different nature of fermionic coherent states. In this sense, the only quantity which
allows for a consistent comparison between bosons and fermion is the transition
probability from number states to number states (where we limit ourselves to Slater
determinants—recall Sect. 7.6.1). Note, however, that Slater determinants are in fact
quasi-free states, which implies that mathematically they are expected to have more
controllable behaviour than the non-Gaussian bosonic number states. To explore this,
we again start from the easily tractable beamsplitter (i.e. a two mode system), which
we then generalise to a single-particle unitary channel.
We prepare our setup to initially describe a two-particle number state

®=a"W)a ()R, Y1, € C* (b1, 1) =0, (8.60)

that is injected into a beamsplitter. Because we are now considering fermions, the
creation and annihilation operators have to obey the canonical anticommutation rela-
tions (7.78). This also has the profound effect that the only possible way to reach a
two-particle state in C? is to prepare the particles in two orthogonal modes, because
a’(1)a’ (1) = 0 for any ¢ € C2. This orthogonal preparation condition automati-
cally takes care of normalisation.

To picture a fermionic beamsplitter, we can consider a matter-wave picture where
a beamsplitter is a device that splits such a wave in two parts. Thus, the device
mediates the following mapping
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W > a' (B’ (Byn)Q. (8.61)

Completely consistently with what was done for bosons, we now assume a measure-
ment setup that allows for a measurement in the number state

E=d"(€Nad" ()2 &.& €0 (&.8&) =0, (8.62)
and the transition probability is therefore given by

= |(Q, a(&)a(&)a’ (Byy)a' (Bl/lz)QH

— ((9 a(fz)( (€1, Biy) —aT(Bl/Jl)a(il))aT(Bl/Jz)QMZ 8.63)

= Idet[<&, By

The calculation is fully analogous to the one in (8.45), apart from the minus signs
that appear for fermions, as indicated in the one step of the calculation which we
explicitly state in (8.63). To highlight that interference terms indeed emerge in this
setup, let us rewrite

= [{&1, BY1) P (&, BUa) I + (&1, Bin) > (&, By
— (&1, Bir) (1, B'&) (&, Bao) (12, BToy) (8.64)
— (&1, Biha) (1, B'&) (&, Bayy) (01, BToy),

which ultimately seems very similar to the bosonic case (8.47), apart from the minus
signs. This may seem like an insignificant change, though actually has a considerable
impact, as directly evident from the determinant formulation in (8.63). Because we
automatically have our two-particle system prepared in an orthogonal basis, we
know that [<§i, By j)] is nothing more than B in this specific basis. Here the crucial
difference between the determinant and the permanent (obtained for bosons in (8.46))
pops up: The determinant is a unitary invariant, which follows directly from the fact
that, for X, Y € B(H), on any finite dimensional Hilbert space H,

det(XY) = det X detY. (8.65)
1

det(X 1) = —. 8.66

et( ) det X ( )

This directly has as the consequence that the determinant is nothing more than the
product of all eigenvalues in the case of a diagonalisable matrix. The permanents
acquired in bosonic interference problems do not exhibit any of these useful proper-
ties.

In the context of our present problem of two fermions transmitted through a
beamsplitter, this has the simple consequence that
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Pz = |detl{¢, BY;)I|” = |det B (8.67)

Of course, B is a unitary matrix, thus it is diagonalisable and its eigenvalues are
generically of the form u € C, with |u| = 1. We thus obtain

Py =1 (8.68)

Independently of which exact specific pair of orthogonal modes we choose on
output from the beamsplitter, we deterministically detect one particle in one, and
the remaining particle in the other mode. In other words, two fermions never leave
the beamsplitter in the same direction, an effect which is baptised antibunching. Of
course, this is not at all a dynamical effect, it is simply a manifestation of Pauli’s
exclusion principle. Notice the contrast with the bosonic case: There the bunching
effect was dependent on the details of the beamsplitter, such that it can actually be
understood as a dynamical effect. It is rather straightforward to see that this scenario
can easily be generalised to larger systems where the number of particles equals the
number of modes.

We now treat the generalisation of the beamsplitter to a generic single-particle
unitary channel E (U), with unitary operator U € B(H). Consider a general number
state W € '/ (H), given by

1 .
U= f a8, 8.69
«/Wa 1) ...a" () (8.69)

and mapped on

U > a'Uyy)...d"(UY)Q. (8.70)

1
Jdet G

If we measure in the output state

]

a'&)...a' )R, (8.71)

det G’

we again obtain, in a straightforward way,

2
;o _ & vl
Py—2 = 41 G det G (8.72)

It should be stressed that now, in general [(f,-, Uy j>] is a submatrix of U, rather than
the full operator. Repeating another one of the computations which we already per-
formed for bosons in Sect. 8.3.2, we can explicitly express the occurring interferences
by
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1 s 2 2 2
Pyz = W<W§ (€1 Ubna)[7[{€2, Ut [(6ns Umo |

+ Y sign(msign(o) (61 U (Yo UF1) - (60 Ui} (Yo U*sn)).
W;To;gn
(8.73)

Comparison of (8.54)—(8.73) shows that the terms in the first sum of both equations
are identical and reflect the classical summation (8.40), because also for fermions

ploe = (@, a©a’ U’ = 1€, U1 (8.74)

The second sum, however, is different from (8.54), due to the factor sign(7)sign(o).

The actual differences between bosons and fermions depend strongly on the speci-
ficities of the unitary operator U and on the specific input and output states. Essen-
tially the interference terms in (8.54) and (8.73) are given as products of matrix
elements of the unitary matrix U, whereas the difference between both is given by
the additional factors sign(m)sign(c) in (8.73). In the two-particle case, the only
interference terms in (8.63) appear with factor sign(rw)sign(c) = —1, leaving the
impression that many-boson interference and many-fermion interference are comple-
mentary effects (see e.g. also Fig. 8.5). In the many-particle case this is no longer the
case, since it is conceivable that the unitary operator U and the input state are chosen
such that in (8.73) only the terms with sign(m)sign(c) = 1 contribute to the interfer-
ence effect. This implies that for such unitary channel and that specific input state,
the many-fermion interference leads to exactly the same transmission probability as
many-boson interference. Ergo, in that specific case we find that pl{HE = pﬁ,ﬁa.
Even though such setup is in practice hard to engineer, examples can be found,
specifically in the case where U is highly symmetric, such as for the Fourier matrix
(Tichy et al. 2010, 2012).

8.3.4 Distinguishability and the Hong-Ou-Mandel Effect

Throughout the discussion on many-particle interference, we stressed that the phe-
nomenon is closely related to the indistinguishability of the particles. In the beginning
of Chap. 7, we mentioned that identical particles are not necessarily indistinguish-
able. A simple example may be given by two photons, both with vertical polarisation,
where one is on Venus and the other on Mars. Although internally these particles
are fully the same, obeying the same algebra of canonical commutation relations
(CCR) (7.77), they can easily be distinguished, simply by referring to their posi-
tion. Another external degree of freedom that can be exploited is time: Two identical
photons, that are detected by a human eye, can be told apart when the first one was
“seen” on Monday and the other one on Friday. Of course, once the photons differ
in their internal degrees of freedom, for example because of different polarisation
or frequency, we can always tell them apart, no matter how close we pack them in
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time and space. However, here we must enter a discussion on semantics, because one
would probably not call particles that differ in an internal degree of freedom identical
anymore. Nevertheless, the key message is that distinguishability can arise via any
degree of freedom (possibly an auxiliary one) where the particles are different. This
implies that, in order to see indistinguishability-induced effects, the particles must
get together in time and space (which is exactly what happens when they are jointly
travelling through a beamsplitter array). But this leads to an interesting question:
How “close” should these particles get, and how can the purely quantum mechani-
cal phenomenology of indistinguishable particles be continuously transformed into
that of the classical probability theory of distinguishable particles? It turns out that
measurement and, effectively, decoherence are crucial aspects for answering this
question.

Part of the transition from distinguishable to indistinguishable is baked into the
structure of Fock space and even in the CCR and CAR (canonical anticommutation
relations) algebras, although this interpretation is rarely spelled out.

Let us focus on bosons for the time being. The expression (7.77) indeed has
the transition from distinguishable to indistinguishable behaviour encrypted into it.
When the two states ¥, ¢ € H are parallel, the creation and annihilation operator
are as far away from commutation as possible, and therefore one may say that the
particles which they create manifest strong bosonic properties and are as indistin-
guishable as they can get. On the other hand, when ) and ¢ are orthogonal, their
creation and annihilation operators commute, implying that the particles are actu-
ally distinguishable. In other words, the distinguishability of two particles is simply
determined by the overlap of their single-particle wave functions,'' which directly
allows for a continuous interpolation between fully parallel and fully orthogonal
single-particle wave functions via the inner product.

To make this idea explicit, let us recall Sect. 7.3.2. Itis sometimes argued that indis-
tinguishable particles require symmetrisation or anti-symmetrisation of the compos-
ite tensor product structure, whereas distinguishable particles are simply described
by tensor products. It may immediately be argued that this is simply a consequence
of a misconception between identical and indistinguishable, but the reality is much
more subtle: All particles are either bosons or fermions and therefore all particles
are ultimately ruled by either the CCR or the CAR. To make this more concrete,
one may pose the question as follows: Consider two distinguishable particles, one
described by the single-particle wave function 1) € H, the other by ¢ € H, such that
(1, ¢) = 0. According to the previous paragraph, these particles are distinguishable,
but still their joint wave function in Fock space is described by

U =a"(®)a’(W)Q e T’ (H), (8.75)

which now implies that we can equivalently describe this state by

'Thus the concept of “exchange interaction” e.g. in the structure theory of helium (Madrofiero
2004).
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V=901 e H®. (8.76)

Where is the expected tensor product structure? The answer to this question is that
it is standing right in front of our nose, but we are simply treating the problem on
a wrong basis. Indeed, we already discussed in Sect.7.3.2 that the structure of the
single-particle space induces structure of the Fock space, more specifically we can
show that

I’(H) @ H2) 2 TP (Hy) ® TP (Ha). 8.77)

To stick to the specific example of two particles, we use the isomorphism

®2
<H1 @ H2> =H,® e (Hl ® Hz) ® HL®?, (8.78)

s

where all explicit constructions were already provided in Sect.7.3.2. The orthogo-
nality between v and ¢ now naturally defines a direct sum structure via a corollary of
the Hilbert projection theorem (Conway 1997; Pedersen 1989): Any linear subspace
K C 'H naturally defines an orthogonal complement - as

Kt={xeH]|(y,x)=0forall y € K}, (8.79)

and it can be shown that H = K @ K. Note that the proof is simple for finite
dimensional spaces;'? for general Hilbert space, the Hilbert’s projection theorem
(Conway 1997; Pedersen 1989) itself offers the outcome.

To come back to our specific two-particle system, without going into detail, we
thus can always define H; and H; such that ¢ € H;, ¢ € H, and H = H;| & Ho,
simply because (¢, 1) = 0. Formally, we may now make the direct sum structure
in the vectors explicit by writing ) € Hi —> ¢y @0 e Handp € Ho > 0D p e H
and this leads us to what we already derived in (7.54):

a'(@a’(W)Q eTP(H) = ¢ @ € Hi ® Ho. (8.80)

A more schematic representation of this equivalence is shown in Fig. 8.3. We must
stress that, in the case of fermions, the story is somewhat more subtle due to the
(—1)" in (7.57). However, in case of full distinguishability, these factors are of no
importance; they appear as an overall phase in a tensor product wave function, but
this will not have any measurable impact. Yet, when (¢, ¥) # 0, this is no longer an
issue of just a global phase. For the technical details, see Sect.7.3.2.

Now that we have understood that distinguishability is implied by orthogonality,
and that orthogonality can be understood in terms of a direct sum structure in the
single-particle Hilbert space, which, in turn, implies a tensor product structure on
the level of the Fock space, we may start wondering about the physical implications.

120ne can simply use that all spaces of equal, finite dimension are isomorphic (Igodt and Veys
2011).
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Particle 1
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particle “Pector

Fig. 8.3 Schematic representation of the possible ways to structure two-particle space H?z, with
a direct sum structure on the single-particle level H = | @ H;. The present example represents
H C L2(R). The single-particle wave functions of each particle differ in structure and by their
positions in space such that the particles are de facto distinguishable. The tensor product structure
of the state is made explicit as indicated by the blue with the filled frame. The terms indicated by the
boxes with the dashed frames contain a wave packet multiplied by the zero function, and therefor
vanish

In other words, how do we see this distinguishability arising and how does it impact
interferometric setups such as the ones we discussed in the context of many-boson
and many-fermion interference in Sects. 8.3.2 and 8.3.3?

The naive expectation, given the single-particle transition probabilities (8.55) and
(8.74), is that, whenever the particles are travelling through the beamsplitter array (or
whichever device is used to implement the channel) one after the other, implying a
sufficient separation in time to tell them apart, we can simply do classical probability
theory, and combine these single-particle transition probabilities as in (8.40). We
therefore expect that

Pz = |{&r Ut (& Uvne) - (& Uttnan) [ 8.81)

TES,

which ignores any many-particle interference all together. However, much more can
be said about (partial) distinguishability.

There is beautiful and elegant way to extrapolate from Eq. (8.81) to Eq. (8.54)
or (8.73), which is effectively via a decoherence process that specifically targets the
many-particle interference. The physics behind the presented results was recently
explored by several authors (Shchesnovich 2015a, b; Tichy 2015), but methods used
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in this dissertation to derive the final results are different from those found in these
works, thus our contribution here provides an interesting and complementary view
to what is already known in the literature.

The first step of our method is to extend the system by additional degrees of
freedom, all contained within a Hilbert space H,q4. They may either be internal, such
as spin or polarisation, or external, such as the £%(R) degree of freedom in (8.34),
which accounts for the particle’s motion along the beam axis in a beamsplitter setup.
In a setup with m modes (e.g. defined by the input modes of a beamsplitter array),
this implies that we have to consider the full single-particle Hilbert space

H =P Huaa = C" ® Haaa. (8.82)

j=1

The direct sum structure in the mode space implies that particles in different input
directions of such a beamsplitter array can actually be considered distinguishable.'3
They only have indistinguishable character when they simultaneously travel through
the channel and the modes get mixed. We will assume throughout our entire calcula-
tion that the mode degree of freedom is not entangled with the additional degrees of
freedom, hence that single-particle states are all of the form ¢); ® x;, where ¢; € C"
and x; € Haga. Thus, the total input state in the full Fock space reads

1
V= Nawl ®X1)---a (1hy ® Xn), (8.83)

where A/ denotes whichever necessary normalisation factor.

A crucial assumption is that the dynamics preserves the tensor product structure
(i.e. does not couple mode and additional degrees of freedom), such that the single-
particle unitary channel is seen to act as E(U ® U’) with U € B(C™) and U’ €
B(Hadq)- In other words, the channel acts as

W /\i/,aT(le QU'X)...a" (U, @ U'x,)R. (8.84)

Now let us start to calculate the probability to detect a specific output state

1 . .
E= ﬁa‘(a ®()...a (6 ®6G)Q, & eC”, ¢ € Hua- (8.85)

With (& ® G, U; ® U'x;) = (&, Uv;) (G, U'x;) . we can insert (8.84), (8.85) into
Eq. (8.54) or (8.73), because all we did was structuring the single-particle space. We
find, for bosons,

13This makes sense, because they can be told apart by the input direction they are following.



8.3 Many-Particle Interference: The Wave Function Approach 291

1 / /
Pooz= W( > e Ul [t U - fen. Utbmn)? liGn. Uxme )

TES

+ Z <§1, U1/)7T(1)>(’l/),7(1), U%'gl)- . -(5117 U’l/)n(n)><’l/)a(n)v UT511> (886)
T,0€S8,

TH#0

X ((1,U/X7r(1))<xa(1), U”Cl>~ A, U/Xﬂ(n)><XU(n)s UﬁCrz)),

and, for fermions,
| (G, U xw)

- 1
1’{1/—>3 = W( Z (1. Uvr)l” l{C1 U/Xﬂ(l))|2~~|(§n, Uthr(ny)

TeSy

+ ) sien(msien(@) (61, Uben) (v, UT6)- (60, Uran) (Yo, U'en)
T,0€8y

TH#O

x (1. U/Xﬂ-(l))<XU(l)v U/-I-C1> (N U/Xﬂ'(n))<XJ(n)’ U/-I-Cn>>-

(8.87)
So far, this only makes Eqgs. (8.54) or (8.73) look a little longer, but nothing new has
happened. However, this assumes that the measurement setup resolves both, the state
of the mode degree of freedom, and the specific state of all other degrees of freedom.
This is in contrast with a beamsplitter array where one simply mounts a photon
counter on each output mode. A realistic setup is always bound to finite resolution,
making it impossible to fully resolve all additional degrees of freedom (see e.g. the
supplementary material of Crespi et al. 2013). Therefore, there generally is some
structure H,qq left which is not resolved in the measurement. In other words, we
only measure in C" and have to effectively trace out H,qq4. To do so, we fix a basis
{ fi} of Haqq and sum over it. This needs to be done for each individual particle, and
results in

1 / | ’
P$~>E = NN’ Z ( Z |(‘£l’ U"/}W(I)HZ Kﬁla U Xﬁ(l))'z cee ‘({n» le'r(n)>|2 |<fi,l-, U er(n)>|2
i12i20in \TES,
+ Z (€1, U)oy, UTEL) .. A6, Utbrin)) (o, UT &) (8.88)
T,0€8,
T#O

X <Xa(1)’ U”fi.><fn U'X=))- - <Xa(n)’ U'-]-ﬁ,z><fi,,’ U’Xw(rr)))»

where every index i; runs over the entire basis.'* Our notation is not fully precise
here, in the sense that the sums over the i, may be finite or infinite. One can in
principle even sum over continuous bases, which implies that the sum would be and
integral. The essence of the expression is that we run over a full basis of H,qq and
thus sum up all possible measurement outcomes on the additional degrees of freedom
that are not resolved in the experiment. Now it remains to simply use that

14Note that in principle the normalisation factor A depends only on &1, .. . &, in this case, because

(fis f3) = 0.
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D i) (fioxa) = (i x2) - forany xi, X2 € Haaa, (8.89)

1

together with the normalisation of the ; and the unitarity of U’, to obtain

1
P\II;%E = W( Z |(€1» U¢Tr(1))|2 s |<§n» Uw‘/r(n)>|2

TES,

+ XE:S (€1 Utr)) (o), UTEL) - - (&0 Uthiny) (€ony» U ) (8.90)

TH#T

X (ch(l)7 Xﬂ‘(l)) s (er(n)v Xﬂ(n)>>~

Exactly the same computation can be done for fermions, where we find

|
P{z= W( 3 e Uyl Utbnan)?

TES)

+ Y sien(@sien@) (g1, Vo) (Yo UT&). (60 Ui (Yo Uta)
T,0€8y

T#o

X <er(1)v Xﬂ'(])) e <Xa(n)v Xﬂ'(l’l)))'
(8.91)
Notice that when (x;, ;) = d;;, and thus the different particles are fully distinguish-
able, we obtain

Pinz=Plz=Y_ [l6. Ul |6 Vsl (8.92)

TES,

which is exactly what we naively expected. Additionally, when (Xi’ X j> = 1 for all
i and j, we recover the results in Eqs. (8.54) and (8.73). However, all other possible
choices of inner products between the states describing additional degrees of freedom
lead to different probabilities and hence different interference phenomena.

The most straightforward example imaginable is that of the beamsplitter in which
two particles are injected (recall Sect. 8.2.2 and Fig. 8.1). We assume that the beam-
splitter is unbiased and that the particles are prepared in orthogonal modes which we
denote ¢;, e; € C2. Moreover, we assume that the detectors are also mounted on two
orthogonal output modes my, m, € C>. We can then describe the beamsplitter by

(my, Uey) (my, Ues) 1 (1 1>
B = = — . 8.93
((mz, Uey) (ma, Ue2>> VAU (8.53)
Eqgs. (8.90) and (8.91) were obtained under the assumption that we cannot resolve

any additional degree of freedom except that associated with the modes, upon detec-
tion. On the other hand, we do have to care about such additional degrees of free-
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dom for the initial state. As a realistic choice for Haqq We consider Haaq = L*(R),
i.e. we restrict the particles to move along a one dimensional “line”, which implies
that we fully ignore the transverse modes of our light beam and completely focus
on the longitudinal properties (a reasonable approximation when they are photons,
travelling through a waveguide or an optical fibre). Schematically, one may again
think of Fig. 8.1 and consider particles as freely propagating wave functions on
the lines depicted in blue. In the beamsplitter, the lines physically intersect, and
the thus induced coupling of the different modes creates all the interference effects
described so far. In this specific case of Fig. 8.1, the total Hilbert space is given by
H = C*> ® £*(R), and the measurement traces out £2(R).

By virtue of Egs. (8.90) and (8.91), it remains to specify the properties of the
wave functions xi, x2 € L2(R). We assume these wave functions to be Gaussian
wave packets which come in with a fixed time-delay Af. Moreover, since the single
photons are produced via parametric down-conversion (Hong et al. 1987), they have
uncertainty-related frequency distributions of w; and w,, which are correlated due to
energy conservation, since wj + w; = wy, with wy the pump frequency. With some
additional assumptions on the properties of wi, w,, and on the bandwidth Aw, such
as in Ra et al. (2013a), Tichy et al. (2011), we find that

2
(awan’y .99

|<><1(n),><2<r2>>|2=exp(_ -

which may be interpreted as the blue-shaded area indicated in Fig. 8.4. The insertion
of (8.94) in the expressions (8.90) and (8.91), gives the probability of a coincidence
event, i.e. the probability that one particle is simultaneously detected in each of the
two output modes. For bosons, we find

1 1 (AwAD)?
b _ - _\==T
Pi=3-5 exp( : ) (8.95)
and for fermions )
1 1 (AwA?)
fo_ 1.1 _
pl = 2+2exp( . ) (8.96)

As one may expect from the beamsplitter results (8.49) and (8.68), bosons and
fermions behave in opposite ways. However, once At becomes too large and the
overlap in Fig. 8.4 vanishes, the particles become distinguishable and the results
for fermions and bosons collapse onto the same result pf_l = 1/2 expected from
classical probability theory. This transition, shown in Fig.8.5, from bosonic (or
fermionic) interference to the statistics of distinguishable particles is called the Hong-
Ou-Mandel effect and has become a standard tool in quantum optics labs to certify
the preparation of pairs of indistinguishable photons.

In the literature the Hong-Ou-Mandel effect occurs frequently, but it is only very
recently that one started to consider more general instances of the transition prob-
abilities (8.90) and (8.91). As one rather unexpected result, it was shown that the
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Fig. 8.4 Schematic At
representation of the overlap
between two Gaussian wave
packets as described by

Eq. (8.94)
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Fig. 8.5 Bosonic, Eq. (8.95), and fermionic, Eq. (8.96), coincidence probability for the simultane-
ous detection of one photon in each of the output modes of a HOM setup (see Fig. 8.1)

transition from bosonic to distinguishable particles is no longer associated with a
monotonic dependence of generic (many-particle) interference patterns on Af once
one considers three or four particles instead of two (Ra et al. 2013a; Tichy et al.
2011).

Theoretical activities to formulate general transmission probabilities in the regime
of partial distinguishability are a rather recent development (Mayer et al. 2011;
Tamma and Laibacher 2014; Tan et al. 2013; Tichy et al. 2011) and were intensi-
fied in the context of the boson sampling debate (Shchesnovich 2015a; Tichy 2015).
The problem can be formulated in terms of permanents of rank-three tensors (Tichy
2015), or in a quantum optics-inspired language (Shchesnovich 2015a). The path-
way followed in this section remains close to the approach of Tichy (2015), but is
formulated in the language of Chap. 7. Many more results, e.g. on measures of distin-
guishability, are provided in Tichy (2015). Furthermore, several properties of partial
distinguishability have recently been observed experimentally (Menssen et al. 2017,
Raet al. 2013a,b).

8.3.5 Boson Sampling

Apart from the Hong-Ou-Mandel effect, the more general concept of many-particle
interference was not widely recognised in literature until recently. There have been
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efforts inspired by entanglement theory and quantum transport (Tichy et al. 2010;
Tichy 2011; Tichy et al. 2012, 2013; Tichy 2014) or in the context of transport on
discrete lattices, nowadays labeled quantum walks (Ahlbrecht et al. 2012; Mayer
etal. 2011; Mayer 2012; Peruzzo et al. 2010; Preiss et al. 2015; Sansoni et al. 2012).
A potential reason is that many groups working on many-particle systems usually
choose to consider systems of interacting particles, where the genuine dynamical
effects of indistinguishability are combined with the effects of interactions (Ahlbrecht
etal. 2012; Genske etal. 2013; Preiss et al. 2015). Up to the present day, there have not
been any studies where the combination of many-particle interference and particle
interactions was investigated in a systematic way. It is in general hard to obtain a
detailed understanding of the effects generated by interactions and therefore it is an
intricate task to disentangle the physical phenomenology in such systems.

The quantum optics and photonics community in principle had many of the desired
tools at hand, since one requires linear optics and single photons. It is, nevertheless,
far from straightforward to generate enough single photons, but it has been feasible
to go beyond two in a well-controlled way for quite a while (Eibl et al. 2003; Huang
et al. 2011; Ou et al. 1999; Ra et al. 2013a,b; Tichy et al. 2011; Yao et al. 2012).
The interest in the generation of many-photon number states was not only motivated
by fundamental physics questions; it got boosted by the prospect of applications in
metrology (Kok et al. 2002) and quantum computation (Knill et al. 2001).

The most recent boost of interest in many-particle interference came from the
computer science community. Even though there have been several proposals of
quantum algorithms which are better at solving specific problems than their classical
counterparts, e.g. prime factorisation (Shor 1997), it is far less clear how quantum
computing fits in formal complexity theory (Nielsen and Chuang 2010). Recent
advances (Aaronson and Arkhipov 2013; Bremner et al. 2010) have shed some light
on this debate. Specifically (Aaronson and Arkhipov 2013) made the explicit connec-
tion between this formal debate in complexity theory and many-boson interference
through the idea of boson sampling.

Because this dissertation focusses on the physics of many-particle interference
rather than complexity theory of quantum information, we restrict ourselves to a
brief sketch of the main result in Aaronson and Arkhipov (2013). We focus on the
aspects of the work which are of relevance from the physics perspective and avoid
the rigorous jargon of complexity theory.

The key ingredients in such a boson sampling setup are bosonic number states W
(8.50), a single-particle unitary channel &(; (8.5) and a selected output measurement
state & (8.51). The initial state is transferred via the unitary channel, at each output
mode, a photon counter is mounted and the photons are detected according to a
certain probability distribution (see also Fig. 8.6). The probability to detect a specific
set of output modes, determined by E, is given by the distribution pf’p_)a (8.54).
With the results obtained above on many-particle interference, we observe that, in
the absence of exploitable symmetries in the channel {;, brute force evaluation of
this probability distribution is unfeasible: The number of possible choices for output
states grows unpleasantly fast with the number of particles and the number of modes,
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Fig. 8.6 Schematic representation of the generic measurement setup. A set of initial input modes
{11, ...1y,} are connected to a set of output modes {¢1, .. ., &} via a single-particle unitary oper-
ation, given by E(U) as in (8.5). Each of these output modes is equipped with a counter, described
by a(¢;) = a*(ﬁj )a(&;), which measures the number of particles in the mode

and for each such choice P@»s itself scales in a very unfavourable way with the
number of particles.

In physics this type of problems are not uncommon, since we regularly encounter
ensembles for which partition functions, and hence probability distributions, are
hard to access. A popular way to circumvent these difficulties is via Monte Carlo
simulations (Landau and Binder 2009), which exploits the idea that it may still
be possible to faithfully sample from a distribution without actually knowing all its
details. When one approaches the boson sampling problem from a physics perspective
it seems natural to employ similar techniques, i.e. one simulates the sampling directly.
It is exactly on this level that the results of Aaronson and Arkhipov (2013) have their
impact: They “prove”!> that even a simulation of the sampling procedure for the
many-boson setup is a computationally hard problem.

In the context of computational complexity theory, this result is important because
it goes beyond the level of specific algorithms. Indeed, Aaronson and Arkhipov argue
that it is impossible to come up with any algorithm that lets a classical computer
efficiently simulate the boson sampling procedure.'®

For our work in this dissertation, an aspect of the boson sampling setup is the
requirement of a unitary m x m matrix (where m is the number of modes), which
describes the single-particle unitary channel 4(; (8.5), to be sampled from the Haar
measure.

15The proof relies on the “permanent-of-Gaussians conjecture” and on the “permanent anticoncen-
tration conjecture” (see Aaronson and Arkhipov (2013) for details). Therefore it is formally not
completely correct to refer to the result as a closed proof.

16In computational complexity theory jargon the result states that the existence of an efficient
simulation scheme for boson sampling implies a collapse of the polynomial hierarchy up to the
third order. For details on this statement, we refer the reader to Aaronson and Arkhipov (2013),
Moore and Mertens (2011). For the context of this dissertation, it suffices to know that this is a
complexity theorist’s way of stating that it is highly unlikely to be possible.
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In general, the Haar measure is defined as the natural uniform probability measure
1 on a compact topological group G, which is characterised (Conway 1997) by the
properties

w@) =1, (8.97)

w(O) > 0 for every non-empty open set O C G, (8.98)

wgM) = p(Mg) = p(M) for all g € G and every measurable set M C G.
(8.99)

In our specific context, the compact topological group G is the group of all m x m
unitary matrices, U (m)."”

To Aaronson and Arkhipov, the use of a random unitary matrix appears to be a
mathematical trick. For their proof to work, one must avoid any symmetries in the
unitary matrix, since they may be exploited to sample efficiently.'® Because of the
random choice of U, the probability that exploitable symmetries are present in the
system is negligible.

However, from a physics point of view, the choice of a unitary matrix from the
Haar measure makes a connection (Urbina et al. 2016) to the theory of scattering
in chaotic cavities (recall also Chap. 5). The combination of the structured inter-
play of many-particle interference amplitudes, combined with the random scattering
medium, moreover, allows us to treat the boson sampler as a genuine complex system
(recall Sect.3.1.1). Ergo, boson sampling is essentially many-particle interference in
complex systems (i.e. the setup as sketched (b) of Fig. 1.2). In addition, the connec-
tion to RMT allows us to use the tools and ideas of Sect. 3.3, which will be the basis
of our main results in Sect. 8.5.

Soon after the proposal of Aaronson and Arkhipov, several attempts of an exper-
imental implementation (though of rather modest size, i.e. far from the regime of
true complexity) followed (Bentivegna et al. 2015; Broome et al. 2013; Crespi et al.
2013; Shen et al. 2014; Spagnolo et al. 2014; Spring et al. 2013; Tillmann et al.
2013). Even though there recently were several innovations on the level of integrated
photonic circuits (Broome et al. 2013; Bunyk et al. 2014; Metcalf et al. 2013; Spring
etal. 2013), the main problem remains: The difficulty to generate and control number
states of a sufficiently large number of indistinguishable photons, which can be fed
into arbitrary initial modes. So far, experiments have provided good results for up
to four photons, and there have been reports of the productions of states with up to
eight photons, but this is still far away from the realm of boson sampling that lies
outside the reach of a classical computer. Recent advances in this direction include
scattershot sampling (Bentivegna et al. 2015), improved photon sources (Loredo et al.
2017; Wang et al. 2017), microwave photonics (Barends et al. 2013; Kelly et al. 2015;

7Tn random matrix theory (RMT), the set of unitary matrices equipped with its Haar measure is
also referred to as the Circular Unitary Ensemble (Akemann et al. 2011).

18 Think for example of Tichy et al. (2010), Tichy (2011), Tichy et al. (2014) to see that symmetries
can make many-boson interference much more tractable.
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Peropadre et al. 2016), and variations of Gaussian boson sampling (Chakhmakhchyan
and Cerf 2017; Chabaud et al. 2017; Hamilton et al. 2017). Nevertheless, it remains
an open question (Latmiral et al. 2016; Lund et al. 2017) at what point one may claim
to have realised a process that is intractable on a classical computer. This question
has even lead to the development (Clifford and Clifford 2018; Neville et al. 2017) of
better classical algorithms to simulate boson sampling.'’

Another problem lies in the construction of circuits with sufficiently many modes.
Here the problem is that the length of the pathways in the photonic circuit grows,
and therefore the setup gets more sensitive to losses and several types of decoher-
ence. Therefore, especially when we approach regimes which are really intractable
by simulations, we require tools to check that the devices actually work the way
they should. This bridges to the more general problem of certification of quantum
simulations. We ultimately address this issue in Sect. 8.5, but first we must slightly
alter the paradigm in which these problems were formulated. More specifically, we
claim that it is more useful to start from a measurement-based Heisenberg picture
than from a wave-function-based Schrodinger picture to make further progress.

8.4 Many-Particle Interference: The Measurement
Approach

In the previous section, we reviewed the central results on many-particle interference,
the distinguishability transition and finally boson sampling. These topics are usually
treated in the Schrodinger picture, investigating the dynamics of states and their
transition probabilities to other states. From a theoretical physics perspective, this is
all formally correct, but we argue that there is an alternative point of view: Rather
than focussing on the dynamics of the input state and considering “some projective
measurement” on the final output state, we shift focus to the measurement process.
The measurement is one of the most fundamental and well-controlled steps in the
experiment and it is our goal to gain better understanding of how such measurement
can be described. One of the big advantages of such treatment is that we can deal
with a broader range of initial states when working in the Heisenberg picture.

We start out with a measurement-based treatment of sampling experiments to
precisely formulate the questions which we want our theory to answer.

9Even though these algorithms still have an unfavourable scaling with increasing numbers of
particles, they are much more capable of simulating small systems. One can, for example, apply
them to simulate boson sampling with several dozens of particles on a normal laptop.
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8.4.1 Many-body Measurement*

The main purpose of this section is to shift the perspective to a more operational,
measurement-based framework, and to explain how this connects to the wave function
approach. To some readers, specifically those familiar with sampling experiments,
this section may be redundant. Nevertheless, it does also provide additional results,
such as (8.111), which evaluates the probability to find a specific number of particles
in a specific mode. This quantity is useful when we want to describe post-selection
experiments.

Initially, we assume that the extra degrees of freedom can be safely ignored and
all particles considered are in the same state on H,gq.

To correctly describe the measurement setup of a sampling experiment, we must
identify the relevant measurement operator. Since we stressed in Sect.7.4 that the
creation and annihilation operators generate the algebra of observables, we know
that the relevant operator must be a polynomial of these creation and annihilation
operators.

Describing a Counter

To come to a meaningful construction, it is useful to take one step back and focus
on the physical realisation of a measurement setup as sketched in Fig. 8.6. The main
goal is to detect photons in selected output modes, which essentially implies that we
mount a counter on each mode.?® We already treated the operator (7.100) that has
the required properties, the local number operator A(£) = a’(£)a(€) = T'(|€) (£)),
with £ € H. Indeed, this operator is exactly the mathematical tool that describes one
detector in the setup in Fig. 8.6.

The advantage of the operator 71(€) is that it is well-defined, no matter how many
particles are considered in the problem setup, which is also engraved in the fact that
it is a single-particle observable in second quantisation (recall Sect.7.5). It simply
counts the number of photons that it receives, independently of how many photons
landed in any other detector. Because we treat a single-particle unitary channel, and
n(&) is a dynamical object in the Heisenberg picture, it undergoes dynamics given
by

AE) — E(UDHAEEU) = aU'Y). (8.100)

This object can now be paired with the initial state in which the system is prepared.
This may be a number state such as in (8.50), but could just as well be any quantum
state (.) (see Eq.2.22). We can obtain the expected number of particles that are
detected by the particle counter at mode &, by evaluation of (A(U)). If (.) is
generated by a wave function with n; particles in the ith mode,

20Experimentally, such a counter is rather difficult to construct. Standard photodetectors just click
upon detection of one or more photons, e.g. the single-photon avalanche diodes (Cova et al. 1996)
that are commonly used cannot resolve the photon number at a given time. The number of photons
in a single mode is much harder to resolve, but efforts are being made (Humphreys et al. 2015). We
are somewhat ambitious in the text and assume that full counting is feasible.
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m T ni
U= ]_[ f_)') Q, (8.101)
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The reason for considering states where all particles are initialised in orthogonal
modes is a purely technical one. It turns out that counting statistics becomes substan-
tially more intricate once non-orthogonal modes are considered. A detailed treatment
of these initial states is left for Sect. 8.4.2.

Interestingly, a single-particle wave function a’ (1)), 1) € H, has an expected
count

AUTE)) = HE UP)* = pyose, (8.103)

ergo, the expected number of clicks in a single-particle experiment is given by the
single-particle transition probability. This implies naturally that we can interpret
(8.102) in the context of classical probability theory. When we choose n; € {0, 1},
the result (8.102) is identical for fermions, therefore such a single particle quantity is
not a good identification tool for bosonic and fermionic many-particle interference
in the transmission signal.

In the light of Chap. 2, we can understand much more using this observable
than only the expected number of particles in a given mode. We can also determine
moments of the probability distribution of possible outcomes, but, more fundamen-
tally, we may even understand the spectral properties of 71(§) as an operator on Fock
space, and use these to describe the full probability distribution. In an operational
language, this means that the state (.) and the spectral decomposition of 71(£) can be
used to describe the probability to obtain specific measurement outcomes.

The probability to measure n photons in mode ¢ in such a sampling experiment
is given by

Pue = (EQUN P EQU)), (8.104)

where E(U) is as in (7.106), (7.107) and

Pre := Z\%)(

|, W e (W eTl(H)| AW =nW). (8.105)

To understand the spectral properties of 71(£), and therefore the form of the W; which
enter (8.105), we consider the action of the operator in some simple examples. It is
straightforward to see that
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n(€)Q2 =0, (8.106)

and hence the vacuum is already an eigenstate of n(£) with eigenvalue zero. Addi-
tionally, we consider single-particle wave functions, thus

A©a’ )= (€)' ©OQ, YeH, (8.107)

where it is also straightforward to see that in general a' (1)) is not an eigenvector.
However, when (£, ¢) = 0, we do find that the wave function is an eigenvector with
eigenvalue 0; in the opposite extreme, where (£, v)) = 1, and essentially £ = ¢/, we
obtain that a¥(£)2 is an eigenvector with eigenvalue 1. Because 72(£) acts on the full
Fock space, we may also look for many-particle eigenvectors. In the two-particle
sector, this leads to

1 B
A©)a’ (@)a" ()R = = (€ ¢)a"(©a" D)2+ (£, ¥) a"(©a" (9)Q, ¢ €N,

N

(8.108)
which is, again, generally not an eigenvector. However, for (£, ¥) = (£, ¢) = 0,
(8.108) defines an eigenvector with eigenvalue 0. Alternatively, we may assume that
1 = ¢ = &, such that we obtain an eigenvector with eigenvalue 2. The last possibility
is to set (£, ¢) = 1 and (£, ¢) = O (or vice versa), where we obtain an eigenvalue
1. This can straightforwardly be generalised to the n-particle case: In general, any
n € N can be an eigenvalue and the corresponding eigenvectors are given by?!

1 nos
W, € span{ﬁa*(g) a' @) ...d" W) | v; e H{E ;) = 0}. (8.109)
When we assume that the system is prepared in a number state such as (8.101), we

must only consider other number states with the same number of particles? in the
sum (8.105). When we define the space

= eH | W, & =0}, (8.110)

2More formal proofs can be constructed in various ways. An appealing construction exploits the
equivalence of a bosonic system with a tensor product of harmonic oscillators (see Sect.7.3.2), to
explicitly construct eigenstates of a number operator acting on one of these oscillators.

221n principle, for each eigenvalue n, we obtain an enormous eigenspace on which to project. This
implies that we must consider all wave functions which have a non-zero component in the n-particle
sector. However, because we consider a projector on the whole eigenspace, we ultimately find that
the only wave functions which are relevant in the sum (8.105) are those which are n-particle wave
functions.
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we find that

1
Pre _“X:] N'nl . ony!
x [((@en)" ... (@' (em))" 2, (a" W) a'U'x;)...a" (Ux; )R,
(8.111)
where a lot of notational overhead is required: the set {x,} is a basis of £+, over which
is summed for each index ji. The label m denotes the total number of modes, and n;
is the number of particles in a given mode 7, ), n; is therefore the total number of
particles in the system. The label r is given by r = ( > ni) — n, the total number of
particles which are not detected in mode £. We can indeed calculate this probability
using the permanents (or determinants for fermions) discussed in Sect.8.3; wave
function approach and measurement approach essentially describe the same objects.
However, since we here describe only one single detector, we do not perform a full
sampling experiment. Indeed, we actually trace out r particles! In order to accurately
describe the full wave function approach, we need to come up with a treatment of
several detectors at a time.

Describing an Array of Counters

To describe sampling experiments, we want to interrogate several detectors at the
same time, and are specifically interested in finding the particles in predefined modes.
Combinations of several detectors can be formed in two ways: additive and multi-
plicative. In our context, the multiplicative route is the way to go, since we are asking
questions of the type “what is the probability to detect one particle in &; and one
particle in &7?”. Given that 71(§;) = F(|§ j>(§ ji) is a single-particle observable, it
directly follows that 72(&;) 4+ 7(&) = T(1&1) (€1l + 1&) (&2]) still is a single-particle
observable. However, 711(£1)7 (&) is clearly not a single-particle observable.

Now, let us start with a set f1. ..., f, € H,(fi, f;) = 6;;, and consider the mea-
surement operator

O =n(f)...a(f) =a'(f1)...a"(fa(f)...a(f1), (8.112)

where the last step is only valid because of the orthogonality of the f;. Expression
(8.112) now identifies £ as a clear n-particle observable. What we do in such an
experimental setting is literally multiplying the number of photons measured in the
selected detectors. Given that we consider n detectors, it is only logical that, for less
than n input particles, there is always at least one detector that does not detect any
particle. This implies a zero measurement for the product of all detectors.

Looking back at Sect.7.7, bearing many-particle correlation functions in mind,
a Wick monomial (definition on p. 243) as the one in (8.112) should immediately
seem familiar. Indeed, if we consider the dynamics

O EUNOEWU)=d" WU f)...a" U T f)aW' f,)...aU' fi) (8.113)
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and pair this object with a general quantum state (.), we obtain

(@ U f)...a" (U f)aU" f)...aU" f1) (8.114)
as the expected measurement outcome. This exactly probes the correlation between
outcomes in the different measurement modes, under a specific single-particle uni-

tary channel, for a specific initial state (.). The study of these objects is reserved for
Sect. 8.4.2. Here we focus on the connection to the wave functions approach.

To study the actual probabilities of given events, we must interpret the measure-

ment outcomes in the correct context, as we did in (8.105). To generalise Eq. (8.109)
to describe eigenvectors of £ as in (8.112), let us define

F :=span{fi, ..., fu}. (8.115)

The general eigenvalues of (8.112) are given by v := vjv, ... 1, with v; € N, with
the associated eigenvectors

1 121 v
W, ., € span{—aT(fl) Lt () ) L W) ., € P}.

N
(8.116)
However, this is not completely correct, in the sense that there are many choices
of vy, ..., v, that lead to the same measurement outcome v. This implies that the

measurement outcomes are as such highly degenerate. Therefore, simply considering
£ as in (8.112) may not always be sufficient.

It is, nevertheless, illuminating to interpret the scenario where we prepare the
system in an initial state

a'e)...a'(e)Q. (e e;)=dy. (8.117)

When we now measure the observable 7(f})...n(f,), and ask for the probability
to obtain measurement outcome 1, we find

pi=Y (EWUHPEQU)). (8.118)

i

where P; projects on all wave functions E € I" () with the property

o

n(f1)...n(fu)E = (8.119)
In the light of (8.109) this is a huge set, but when (.) describes a number state with
exactly n particles, where n is also the number of independent detectors considered,
only the projection on one specific ¥ € I'(H) gives a non-vanishing contribution to
Eq. (8.118). Due to the Hilbert projection theorem (see (8.79) and related discussion),
this non-vanishing contribution must come from an n-particle wave function with
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property (8.119). There is only one single wave function fulfilling this criterium,
given by
EW =4'(f)...d"(f)Q. (8.120)

Consequently, we find for bosons that

pi=|lae)...a' )R, "W fi)...a' U £)Q)]° = |perml(f;, Ue I,

(8.121)
which is exactly the transition probability p%, _ - from Eq. (8.53). Also for fermions
one obtains the familiar result

p1 = |detl(fi, Ue N> = pl_ s (8.122)

On the matter of interpretation, we may consider this situation to be special, in
the sense that we consider n specific detectors for an n-particle initial state. Since
the number of particles is conserved in the process, there are only two possible
measurement outcomes for observables £ (8.112): “0” or “1”. We interpret these
as “No” or “Yes” respectively, answering the question “Were the particles detected
by this specifically selected set of modes?”. This implies that the probability p; is
indeed exactly the probability to detect a particle in each of these specific modes
and therefore making p; equivalent to the previously obtained probabilities (8.54)
or (8.73).

There is one difficulty which was so far hidden under the rug: The case where
several particles are detected by the same mode. The logical suggestion is to consider
operators of the n-detector type, such as described by Eq. (8.112), and simply consider
eigenvalues which go beyond “1”. This, however, leads to a problem: Even for an
(n + 1)-particle number state and an n-detector setup, the eigenvalue 2 is n-fold
degenerate. We may use these operators to identify whether one of the n detectors
detected two particles, but we cannot determine which detector.

To adjust our interrogation technique for specific questions such as: “Did we
find exactly one particle in modes fi, ... fu—1, two particles in mode f,, and no
particles anywhere else?”, we may already feel the need for the construction of
specific operators with outcomes “0” or “1” (“No” or “Yes”) in the (n + 1)-particle
sector, because the question implies that we consider a setup with n + 1 particles.
The direct proposal is to simply consider an operator

O =a(fo)...al(fu—Da(f)nf), (8.123)

but there is a problem: The operator is not strictly an n + 1-particle operator. This is
traced back to

A(fOAf) = a'(falf) +a' (fa' (foa(f)a(f,),  (bosons)  (8.124)
A(fOAf) = a'(falf) —a' (fa' (foa(f)a(f,),  (fermions)  (8.125)
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which clearly contains a single-particle term. This issue immediately suggests an
alternative definition of £, since we see that the true n + 1-particle observable is
rather given by

O =a'(f)...a" (fuimna' (fa' (foa(fa(fa(fumr) . ..alf).  (8.126)

These are the formal operators which ask questions about specific (n + 1)-particle
events. Nevertheless, it is not obvious that one can simply generalise these results
to a set of general non-orthogonal modes, due to eigenvector structures which are
considerably more complicated. Although we formally know how to describe the
operators (8.126), we pay the price that we can no longer connect in an obvious
fashion the interpretation of such an operator to a physical detector array.

We established that observables and a concrete measurement-based description
are correctly reproducing the results of the wave function approach for sets of orthog-
onal output modes. However, as we showed, the measurement-based setup is capable
to address a broader class of questions: It provides a theoretical framework to study
moments, such as expectation values of the number of particles in a given mode, or
correlations between different independent modes. Moreover, it can in principle do
so for any initial state. Additionally, it allows us to investigate few-particle properties
of many-particle states; exactly this will prove crucial to gain a deeper understanding
of many-particle interference. Although, computationally, we cannot keep track of
complete sampling events,?® we can use few-particle and/or few mode observations
to probe many-particle properties.

8.4.2 Many-Body Correlations

Correlations functions are fundamental objects that allow us to learn a great deal
about quantum states and quantum systems in general. We discussed in Sect.7.7
that knowledge of all correlation functions implies knowledge of the full quantum
state. In the present section, we specifically follow this line of thought and describe
correlations between different detectors. Initially, we do not consider the additional
complication of additional degrees of freedom that are not detected, hence discard
Haaa- As a first step, we use the measurement based language to describe correlation
functions of orthogonal modes, and later we treat more general correlation functions
to emphasise some of the subtleties that arise due to the lack of orthogonality. In
Sect. 8.5, we use these quantities as the foundation of a practical certification scheme
for boson sampling setups.

Orthogonal Modes

As the observable to be measured, we consider n(f1)...7(f,), where f; are the
modes on which detectors are mounted. Action of the dynamical map upon this
observable leads to

23 And it is obviously unreasonable to hope to do so.
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ACA) .. Af) = AU ). AU L), fie H (fil fi) =0, (8.127)

such that we can combine this object with the initial quantum state (.) to obtain

(8.128)
These are exactly the correlation functions as treated in Sect. 7.7, for a general state
(.), buthere we consider the specific Fock space representation rather than the abstract
CCR or CAR algebras. Nevertheless, the correlation functions ¢, ., will serve to

characterise the state.

In principle, this approach is feasible for any possible input state (.), but we
choose to deal with number states and, more specifically, number states which are
of the form (8.101). This leads to the explicit expression

.....

cl = <ﬁ (aT(ei)>

m(aten)”
Q,dwWwt Tt T f <7S2
7= La" U ). d U faUT fy) .. caU fl)i_lj[l N >

(8.129)
The main technical difficulty in the evaluation of this quantity is the correct treat-

ment of the combinatorics. A brute force attack on this front would lack transparency
and therefore we first treat a simple example:

Example 8.4.1 The simplest possible example consists in only one initially occupied
mode and two detectors at modes f; and f;, such that we need to evaluate

1 - . . n + 3 + n
cij = ;(a(U'ﬁ)a(U‘fj)a'(ez) Q,aU" f)aU fa’ (e)) S2> (8.130)
To carry out the calculation, we need the crucial step

aU' faU’ fya' )" =ntn — 1) (fi, Uey) (f;, Ue)a' ()™
+a'(e)'aU' f)aU' f)

1 (8.131)

+n(fi,Uea'en aU'f))

n—1 -
+n(f;,Ue)a'(e)" aU'f).
Using this identity, we find that the final correlation is given by
n*(n—1)° 2 n—2
cii=———-"\{fi,Ue L Ue <Q,ae 2% (e Q>

J ! [(fi.Ue) (f;. Uel| (er) (er) (8.132)

2

El

=n(n— 1) (£, Ue)l* | £, Ue))

since only the first term in (8.131) survives the encounter with the vacuum.

Let us now assume that we are dealing with bosons. To make further progress on
(8.129), we consider the situation where the particles are prepared in different initial
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modes ey, ..., e, € H (for m modes in total), such that the wave function

m f
W= ]_[ (e) (8.133)

i=1
describes the state. The general expression (8.129) is actually an inner product of the

vector " "
(a®(en)”  (a'(em))™

NI Ny !

with itself. The problem is that the expression is a Wick monomial in anti-normal
order, which implies we must reshuffle it to cast it into normal ordering. This operation
is useful since in normal order only the terms without any annihilation operators
survive when acting on the vacuum 2 (see also Example 8.4.1). The canonical
commutation relations (7.77) imply that

aU'f,)...aU" fy) Q (8.134)

a(U' fya'(e;) = (U fi.e;) +a' (epaUT f), (8.135)

which implies that either creation and annihilation operators switch place, or they
disappear. Since we only deal with terms where there are no annihilation operators
left, it means that they have all paired up with a creation operator to form an inner
product, as schematically represented in Fig. 8.7. Of course, there are many ways of
pairing creation operators and annihilation operators and we must sum over all these
possibilities.

This procedure implies that we can rewrite (8.134), using additional notational
tools for index bookkeeping: We define the multiset®* D(W), for a specific U e
'’ (H) as given by (8.133), as

DOW)=(1,...,1,2,....2,....m,....m). (8.136)
——— —— ———
ni na R

We now consider sums over different indices as sums over different choices of sub-
sets. However, since elements in D(V¥) come with given multiplicities, it is crucial
to also count the number of different ways to construct these subsets. As a simple
example, assume that D(W) = {1, 1, 2, 2} and we want to consider the subset {1, 2}.
One clearly sees that there are four ways to do reduce {1, 1, 2, 2} to {1, 2}. Defining
Cy as the number of ways in which one can sample subset U from D (W), we find
that

24Multisets are very similar to sets, but are an extension in that sense that elements can occur several
times. For example {1, 2, 3} is a set, but {1, 1, 2, 3} is a multiset. For an overview of the theoretical
framework, see Blizard (1988)
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Fig. 8.7 Schematic representation of the pairing of creation and annihilation operators
as generated by (8.135), to rewrite (8.134). In this concrete case the Wick monomial
a(UTfl) . a(Uqu)aT(el) .. .aT(e,,) acts on the vacuum 2. Upon reordering to normal order,
the monomial will become a polynomial and all potential pairings of annihilation operators with
creation operators need to be considered. Each pairing of an annihilation and creation operator
ultimately leads to a factor which is given by the inner product of their arguments, multiplied by
the remaining creation operators

(a'(en)™ (aT(em))"'"Q
N iR

aU'f,))...aU" fr)

(8.137)
T > oeu) H fUe,) 1 dfens.
! UCD(V) res, r=1 keD(W)\U
[Ul=q " reu
Using this result in the general expression (8.129), we find ultimately that
1 q
b _ i
L = 00 11 Z Culu Z 1_[ <f” Uejw(,_))<ej;('_), u f’)
10Nyt WAUCDW) nocs, ’zh
e 11— Jr
|W|=IUl=¢q jrew
<( [] d'ena, [] dee
keDWN\W 1eDW)N\U

(8.138)
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It remains to gain deeper understanding of

< [ e J] aT<el)sz>

keD(W)\W leD(W)\U

= Z <ek1’ elwm) <ek2’ elwm) e <ekn—q’ elw(n—q;)

TESy—4

(8.139)

with n = ", n; the total number of particles. We labeled the indices such that
D)\ W = ki, ko, ..., ky—g} and D(W) \ U :={l1, l2, ..., lh—q}. In words this
notation means that the pairing of creation and annihilation operators lowers the
particle number of the total wave-function. However, since we do this pairing both
on the “bra” and on the “ket” side of (8.129), we need to consider what happens to the
remaining creation and annihilation operators. Obviously, when we take out a’(e;)
from the “bra” side, but leave an a(e ;) on the “ket” side, the orthogonality of all
other single-particle wave-functions kills the entire factor (8.139). Mathematically
formulated, due to the orthogonality conditions (e;, e;) = d;;, we obtain from (8.139)
that

DWH\U ##DW)\ U = < 1—[ a’(e), l_[ a*(el)52> =0.
keDW)\W 1eD(W)\U
(8.140)
This implies that the number of terms that have a non-zero contribution in (8.138)
drastically decreases.
We are discussing a multiset that does bookkeeping for indices, and this is nothing
else than a list of natural numbers. Since we only consider terms where

DWW\ U =DW)\ U, (8.141)
we only need to consider those terms where
U CcDW) =UCDW). (8.142)

Hence, the sum (8.138) can be rewritten as

q
C? """ ¢~ ; Z (Gu)2 Z 1_[ (f” Uejﬂ(")><ej(7(r)7 U-I-fr)

| |
Nit...Ny. UCD(Y) m,0€S, r=1
Ul=¢ srett
x < | | a‘h(Ek)SZ, | | aT(el)Q>'
keDWNU leD(W)\U

(8.143)
Let us introduce one final tool to simplify the expression (8.143). The multiplicity
M. (x) counts the number of times that an element x occurs in A, and we therefore
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may rewrite

M !
Cy = Mo (0! (8.144)

‘ 9
keUNN Moy )!

where we introduced the natural object U N IN: We directly interpret this U N N as
a subset of a set of indices U, which contains all the different elements of U, but
all occurring with multiplicity one.?> This notation, together with the orthogonality
conditions on the vectors e, € H, leads to

< [ e ] a*(e,)sz>= [T VYoww®r (8.145)
ke(

keD(W)\U leD(W)\U c ’D(lll))\"umh\l

and, ultimately,

M k)!
""" Z 1_[ MDl()\:)y\)li(l)C)v Z l_[ froUejy, eJUWU f’>

UCD (V) keUNN m,0€S8, r=1
Ui=q ! e

(8.146)
Specifically, for c¢; », with two selected modes f, f2, (8.146) turns into

= § nj]”h((flv Uej)ej. U fi)(fo. Uey) e, U f)
Jis 1262(‘1’)0”\1
J1F]2

+(f1.Ue;) (e, UTFi){f2. Uej ) e, U*ﬁ))
+ Z nj(nj—1)<f1,Ue_,-)(ej,UTf1)<f2, U€j><€j,UTf2>.

JEDW)NN

(8.147)

The results (8.146), (8.147) are identical to those obtained in Mayer et al. (2011),

Mayer (2012), although the techniques used here are slightly different. Also the

above multiset techniques to do the bookkeeping of indices are different from other
approaches.

In order to interpret these results in terms of many-particle interference, we com-
pare our final g-point correlation function (8.146) to the transfer probability (8.54)
from many-boson input state W to measurement state Z, upon transmission through
the unitary channel. We note that the correlation function (8.146) is essentially a sum
over over g-particle processes which connect a set of ¢ particles, which are selected
from the total of n input particles to the g selected output modes. In those cases with
multiple particles per input mode, additional combinatorics is required, as contained

in MD(q;) (k) !/MD(\p)\u (k)'

5To give a simple example, when we consider the set A = {1, 1, 2, 3}, then we find that ANN =
{1,2,3}.
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Let us finally touch upon the analogous scenario for fermions. One sees directly
that the above calculations can be repeated for fermionic systems. There is however
a huge advantage in fermionic systems: We can have no more than a single particle
per input mode, which avoids the need for multisets and combinatorics, but simply
allows us to consider sets. The price to be paid is additional sign bookkeeping, such
that we ultimately find, for n; € {0, 1},

(a®en)”  (a'(em))™ o
NS ny!
1

q
:ﬁ Z Zsign(w)ﬂ(fr,Uejm)> 1—[ aT(ek)Q.

M UCD(W) wEs, r= keD(PI\U
U|=q Jrelw

a(U'f)...aU" fr)
(8.148)

Repeating the reasoning for bosons leads us to the following final result for fermions:

q
o g= D . sien@sign(@) [ (£ Uey e US) (5149

UCD(V) m,0€$, r=1
|U|=¢ Jrel

and notably to the the specific two-point correlation function of modes f; and f>:

C{;2 = Z ((fl’ Uejl)<ejl’ U+f1><f2v U““’jz)(ejz7 UTfZ)
jlqj'zip(‘l/)
NFJ)2

—(fi.Ue;){en. UTFi)(fo. Uejy) (e U+f2>)~

(8.150)
Also these results are consistent with Mayer et al. (2011); Mayer (2012). Notice also
that whenever we prepare input states for bosons which have at most one particle per
mode, very similar results as in the fermionic case are obtained.

Non-Orthogonal Modes

In this section, we consider a setting where both the prepared state and the observable
are composed from non-orthogonal modes. As mentioned in Sect.8.4.1, this will
blur the immediate connection between the thus constructed observable and an actual
measurement setup. One may therefore consider this a mere theoretical generalisation
of our previous discussion on orthogonal modes. Nevertheless, we argued that one
requires all correlation functions of the form (7.225) or (7.281) in order to characterise
a state, hence the generalisation is important from a theoretical perspective.

Let us start with a general set of modes W = {£, ...}, {; € H, which we
correlate. We then must consider the correlation function (we, again, consider the
bosonic case)

ch = (a"(U'&)...a"(U'¢)aU'e,) . ..aUTE))). (8.151)
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The state (.) is again a bosonic number state, generated by a wave function with
particles prepared in a set of modes V = {11, ...y}, ¥; € H, such that the wave
function ¥ € I'?(H) is given by

U= ;af(wl)...a*(wn)sz. (8.152)

Vperm GV-V

Here we introduce a new notation for a slightly generalised Gram matrix,
G* = [(a;, B)l. «; € A, B € B, (8.153)

where A and B are n-tuples of elements from a Hilbert space, i.e. sets of non-
orthogonal modes which we select. While A = B = V in (8.152), the general case
A # B will become useful. Note that there are crucial properties that a Gram matrix

G*+4 has and G2 lacks, most notably positive semi-definiteness.
We insert the state given by wave function (8.152) into (8.151) and obtain

b (aU&)...aU e )a (@W1)...a" Wn)Q.aUE) ...aUEDa’ (@) ...a" (Wn)Q)
W perm G-V ’
(8.154)
To evaluate this expression, we must again re-express the Wick monomial in the
numerator of (8.154) in normal order. By virtue of expression (8.135)—analogous
to the derivation of (8.137)—we find

aU'¢,)...alUena’ @) ...a"@,)Q
= Z Z (51 ’ U¢j7r(l)) Tt <§41’ Uw_imq)) l_[ aT(wk)Q.

JloenJq=1 meS, k&1, n}
Ji >j2>~~~>jq

(8.155)
With this result, (8.154) turns into

C€V = ; Z < Z <1/}J}’7<1>’ UT£1><§I’ Uﬂ}jm))

j]’jl/v""jq’j(;zl 7T,O'€Sq
J1>ja>> g
Ji=iy>>Jg

T <¢j;<qw v T5‘1> (- Uw"”“”>>

x< [T dwe J] a*(wk>sz>.
i |

(8.156)
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We can now use (7.32) and the definition (8.153), to obtain

< [1 dwve T[] a*@m)9>=:panlcv“%f """ KRR
I¢{

i) K@Ut seees jn}
(8.157)

This is a generalisation of the discussion following (8.139) where the orthogonality

condition on the modes allowed us to conclude that perm G\ b VAW )

is zero whenever {¢j/, ..., ’(/Jj‘;} # {4, ..., ¥, }. This is no longer the case for
non-orthogonal modes 1) ;, and the final expression for (8.154) therefore reads

n

A = 2 < 2 <wf<;(1)’UT§1><§l’Uw"”“>>”'<w-"5<q>’U+£">(§q’uw‘iﬂ(")>)

1o} eendqui)=1 " ™0€Sy
J1>2>>Jgq
[
V(i LV st )
peemG 1 4 At
x

perm GV-V

(8.158)
No further simplification is possible unless additional assumptions are made on the
input and output mode tuples V and W, respectively. Note, however, that we can
apply the same interpretation as in our discussion on p. 310: The correlation function
is essentially a sum of all g-particle pathways that lead to the g elected output modes.
In other words, these correlation functions characterise all “sub processes” of order g.
Without going through the entire calculation, which is again fully analogous to
the bosonic case (see Appendix D), we also provide the result for the fermionic

correlation function:

n
= > ( > ﬁgnﬁﬂs&n&ﬂ<w¢m,UT@)@DIJ¢%m)
J1sdfseenndgndf=1 " T.0€S,
J1> 2> g
Ji= =,

s <wj</7(q)’ U‘€Q> (5‘1’ U’(/ij)>)
det GV\{VI{ ~~-'s’UL’_,'{; ]aV\['l/"jl """ 1/)fq}
X
det GV-V

(8.159)

Indeed, the transition from orthogonal to non-orthogonal modes very considerably
enhances the complexity of our transmission problem: Not only can we no longer
interpret the correlation functions cl;“,f as simple products of number operators on
given modes, we also find that computations become much more intricate. This is
seen from the fact that (8.158), (8.159) sum over a great quantity of terms, many of
which are zero due to the orthogonality condition (8.140) in (8.146), (8.149).
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Partial Distinguishability

Just as in Sect.8.3.4, we find that in the current setting of correlation functions,
the problem of (partial) distinguishability comes about when we consider additional
degrees of freedom which are not observed by the measurement apparatus.

Let us consider a similar setup as in our above discussions of orthogonal and non-
orthogonal modes, but now structure the single-particle Hilbert space as C" ® Haqq,
i.e. as a composite system which consists of a mode space garnished by additional
degrees of freedom. The measurement setup is constructed by a set of single-particle
wave functions W = {§; @ (1, ... & ® (4}, where §; € C™" and (; € Haga. Ata first
instance, we may simply calculate c%’ as given by (8.158) or (8.159), which is,
however, not yet what we are ultimately interested in. We assume that the detectors
are only observing the mode space C" and hence we must trace over H,qq4. In practice,
this implies the choice of an arbitrary orthogonal basis {7;} of H,qq (Which may be
infinite and even continuous), to evaluate

G = Y @ Wa U .a U ® U )

aU'e, @ U ;) ...aUle @ Un)), (8.160)

for any state (.) and a unitary channel, given by (8.84). In our setup, we will be
essentially interested in the case where (.) is a number state, and, more specifically,
we will focus on number states which are prepared such that the set of modes {1;}
and {{;} are orthogonal. In concreto, this implies that (.) is determined by a wave

function ¥ € I'?(C™ ® Haqa). given by

U=a'ler®xDa' (2 ®x2)...a" (e, ® )R, ¢ €C", X; € Haaa. (eir ej) =i,
(8.161)
such that we prepare at most one single particle per mode e;. This is mainly a choice
of simplicity, we later comment on the more general setup. We similarly also demand
that the detectors are mounted on orthogonal modes { f1, ... f;}. The calculation of

<umWﬁ®U%m~MWﬁ®U%wq

is known from (8.138): The tensor product structure is easily inserted in the setup,
but it remains relevant to evaluate

< [] deasoxwe J] aT(€1®X1)Q>,

keD(W)\U leD(W)\W

with D(W) as in (8.136) and U, U C D(W) as in (8.138). This evaluation is feasible
exactly because we have at most one single particle per orthogonal input mode,
which allows us to conclude that
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D<w>\uaéD(w)\u/:>< [T d@eoxe ] a*(ezmz)sz>=
keD(W)\U leD(W)\W
(8.162)
and also that
< [[ daowse [] a*(ez®x,)fz>=penn11=1. (8.163)

keDWN\U IeD(W)\U

Thus we obtain for the bosonic version of (8.160):

clv)V Z Z Z S, Ue/r(]) € U f1> (fqv Uej’rfqu)<ejn(q)’ Uﬁ.fa)

x <Xja(1) ’ U/TT],‘] > <Tli1 ? U/Xj”(“) e <Xja(q) ’ U/Tnitl) <niq ’ U/ij(q)>
Z Z <f1’ Uejw<l>)<efv<1>’ U-rfl) T (fqv Uejw(q)><eja(q>’ U'I'fq>

Jlseees Jq=1 m,0€S8,
J1>ja>x> g

X (on‘(])’ Xjﬂ(l)) cee <Xjn(q)’ ij(q)) ’
(8.164)

where the last equality follows from the completeness of the {7, }, such that we can
again exploit (8.89). For the pair of W = {f}, f»}, i.e. the two-point correlation
function, we obtain

= X (I veslf it vesl?

Ji:ja=1

+ [0 xa )l (f1: Uei e, UT i) o, Uey) e UTfZ))

(8.165)
The results for fermionic results are again computed completely analogously,
starting from (8.149), and therefore we simply provide the result

¢l = Z Z sign(m)sign(o) (f1. Ue;, ) e, U f1)- - (fy. Uejo,)
‘jl,.'..,jqzl‘ T,0€8,
J1> >y
X (eju(qw UTffI) (X.iv(l)’ ij)) e '(ijw ij))'
(8.166)
which for W = { f1, f>} reduces to
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b= X (v 15 ves)?

— |0 X )P (fro Ues) e U i) (2. Uep) e, UTfZ))'
(8.167)

Note that, in the limit where |(x;, x j)|2 = &;j, such that all particles are distin-
guishable by their additional degree of freedom, (8.164), (8.166) turn into

Z Z |(f1’Uejﬂ<1>>|2"'|<fq’Uejw(q>>|2

j1 ..... jq=1 7T€Sq
Ji>J2> >y

Yo > plesy = f) - plesy, = f)

Jlseees jq=1 7TES,,
Ji>j2> >y

d
Cw

(8.168)

This limitis reached both when starting initially from bosonic or fermionic correlation
functions. The result is consistent with the correlation function which one would
expect from basic classical probability theory.

When we allow several bosons in the same mode, we add an additional layer of
difficulty. In the above discussion we could assume that all particles were described
by mutually orthogonal single-particle wave functions. This is no longer the case
when we consider multiple particles in the same mode. For the input state, let us
therefore consider the n-tuple

V="_{e1®x11,--»e1 @ Xin:€2D X215+, & X2ns»---»€ @ Xrun, }

such that the total number of particles is given by n = ZZ‘:] n,. We still consider
the modes in which we measure to be orthogonal, such that W = {fi, ... f,}. We
can use (8.156) to calculate clv’v, since this is the most general result that one may
come up with. The trace over the additional measurement degrees of freedom is
straightforward and leads to the result

perm GV\V.V\V
)) perm GV-V

q

b T

w= Z ( Z l_[ <ei”(“’U fj><fj’Uei%(.f))(””(-”’X"/’ﬂ,f)
j=1

v.vV'cv T,0€8, _
[VI=|VI|=¢ ¢i; ®xi; €V

e"’,’ ® X,-//, eV’
' (8.169)
where we use the notation ¢;, ® x;, simply to indicate one of the g elements of V.
Notice, however, that it may be that ¢;, and e¢;, are one and the same vector. The
difficulty is now that the object perm G¥V\V-Y\V' /perm G"-V does not allow for a
simple expression. However, there is a considerable amount of structure in G"V,
since it is a block matrix,
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[(x1.0 Xx1.5)] 0 0

0 [{x2.i> x2.5)] - -+ 0
GV = , ( i . , , (8.170)

0 e [(Xnis Xr.j)]

where each block refers to a different mode. We can easily see that the permanent of
this matrix takes the form

r

perm GV = l_[perm [(Xk.is Xk 7)1 (8.171)
k=1
The structure of G¥\V-V\V' is a bit more complicated. In any non-vanishing contri-

bution, V \ 'V contains the same number of wave functions, the component in C” of
which is given by e; as V \ V'.%. In order to notationally grasp this, we exploit the
structure of the vectors in V, V and V'. For this purpose, we define the sets

Vi={ei®Xi1, -, ® Xinm} (8.172)
such that V = J; V;. This allows us to define
V;i:=V,NV and V;:=V,NV, (8.173)

suchthat V = | J; V; and V' = | J; V;. Given these conditions, terms with V| = | V|
contribute to the sum in (8.169). In these terms, we can rewrite

GV\VV\Y @ GVi\ViV\Vi (8.174)

G =ac", (8.175)
which transforms (8.169) into

o = Z ( Z li[ <ei”“f)’ U+fj><fj’ Uei%(j>><Xi”‘f)’ Xi%(j>>>

v, V'cv T,0€8, j=1
|VI=|VI=¢q ei; ®xi; €V

Wi‘:‘V”Vi ey @x; €V’
J J

VAV VAV

perm G
* l[_[ perm G"i-Vi

(8.176)
Although there are considerably less terms and more structure in (8.176) than in
(8.169), we do not gain much to provide a more explicit expression, or to ease the
intuitive understanding of the transmission signal.

26Were this not the case, we would find a row of zeroes in G VAV, VAV
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This concludes our section on many-particle correlations, a section that was
mainly intended to establish a broad range of mathematical tools which may be
employed to characterise many-particle interferometry experiments. However, we
also stressed that these correlation functions have a natural interpretation: The g-point
correlation function, between g selected output modes, summarises all g-particle
interference processes which send ¢ particles from the input state to the g selected
output modes. This interpretation makes it particularly useful to exploit these tools
in the following section, in our effort to certify boson sampling.?’ Ultimately, this
allows us to define accessible (i.e. scalable with system size) characteristics of many-
particle interference phenomena.

8.5 Certification of Boson Sampling

In Sect.8.3.5 we explained that the intractability of many-particle interference lies
at the heart of the bosons sampling problem. The important implication is that it
becomes practically impossible to predict the exact probability with which specific
many-particle events will occur. In other words, the interference pattern has a very
rich, complicated structure, which cannot be deterministically probed by standard
computational or analytical techniques. This leads us to the natural question: how do
we certify the functioning of a many-particle interferometer?

Certification is a delicate topic, partially because the terminology has a different
meaning to different communities. As physicists, we are typically concerned about
setting up experiments which are intended to function correctly. Certification of such
experimental devices implies avoiding unintended malfunction. This attitude is in
contrast with computer science, a field which is forced to avoid potential security
breaches (think for example about cryptography). To computer scientists, certifica-
tion also implies protection against intentional misconduct, i.e. a person who knows
the certification protocol should not be able to mislead it. In the original formu-
lation of the bosons sampling problem (Aaronson and Arkhipov 2013), the authors
focus on a problem in the theory of computational complexity, relating many-particle
interference to the context of quantum information. This has lead to mathematical
debates on the latter type of certification (Aaronson and Arkhipov 2014; Aolita et al.
2015; Gogolin et al. 2013), which tend to loose sight of the underlying physical prob-
lem. Moreover, a strong focus on rigorous, high-fidelity certification, as appropriate
for a rigorous computer scientific perspective, is overly restrictive and comes at the
price of impractical implementation. As a profound example, Aolita et al. (2015)
proposes an method which, for n particles in m modes requires the measurement
of O(m(4d* + 1)")?8 multi-particle correlation functions, the latter involving up to
2n + 1 modes. Even though this method allows for a highly accurate certification of

2TWhich actually implies finding benchmarks of many-particle interference.
284 < m is an integer which depends on the specific unitary scattering matrix.
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the output state, it still requires many, intricate measurements and has an unfavourable
scaling with the number of particles.

In contrast, we will here focus on the physics perspective of certification and add an
important ingredient: Statistics (Walschaers et al. 2016b). Indeed, one may argue that
adirect certification is obviously rather unfeasible, and that it therefore appears rather
absurd to attempt such certification in the first place, unless we consider very few
particles (which in turn would invalidate the complexity argument which motivates
boson sampling). Our method was inspired by the results of Mayer et al. (2011),
Mayer (2012) and touches upon the proposal of Aolita et al. (2015) in the sense that
we, too, exploit multimode correlation functions. Nevertheless, we drop the demand
of strict, deterministic certification that cannot be cheated upon and rather focus on
the physics of many-particle interference. The addition of statistical methods such
as RMT (recall Sect. 3.3) allow us to design more concrete, implementable schemes
for the certification of many-particle interference experiments (Giordani et al. 2018).
Similar methods have been applied in complementary work (Rigovacca et al. 2016)
to obtained bounds for the correlations in classical setups, that can be violated with
non-classical input states.

A treatment based on correlation functions has the enormous advantage of being
scalable. When we consider for example the correlation function in (8.146), there
is a sum over permutations that needs to be considered, making the object potentially
difficult to evaluate. However, these correlation functions provide a crucial difference
to the probability distribution (8.88): They consider permutations of g elements,
where ¢ is the number of detectors we monitor and ultimately correlate. In other
words, a bosonic g-point correlation function (at least of orthogonal modes) requires
us to calculate a sum of permanents of ¢ x ¢ matrices. We see that actually the
number of particles determines the number of terms in the sum (8.146), but it does
not lead to any contributions of higher complexity (Laibacher and Tamma 2015;
Mayer et al. 2011; Mayer 2012).

In concreto, we can interpret our method as the study of g-particle interference
sub-processes which are concealed within the full n-particle interference signal.
Because there are many such sub-processes, we can additionally obtain statistical
features by averaging over all of them. The question which we must now ask is
exactly what this value ¢ must be to obtain a sufficient amount of information to do
the certification. Throughout this section, we argue that it is sufficient to consider
sub-processes of only few (i.e. two or three) particles, and therefore correlations of
as many output modes. This implies that our method not only is implementable, but
also has a very favourable scaling with the number n of particles and the number m
of modes.

We start, however, by introducing an additional strategy for sampling which
uses fully distinguishable particles to mimic a particular bosonic phenomenology,
i.e. bunching.

20r any other correlation function that we derived for that matter.
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8.5.1 Bunching and Simulated Bosons

Certification procedures that rely more on physical properties of many-particle inter-
ference only appeared quite recently. One attempt suggested to use bosonic clouding
as a benchmark for many-boson interference (Carolan et al. 2014). This clouding
effect relies on the idea that there is a type of generalised Hong-Ou-Mandel effect,
which encourages the particles to bunch together: The events where the particles end
up in the same mode are statistically enhanced as compared to sampling distinguish-
able particles. Although the effect of bosonic clouding can indeed be observed in
experiments, it relies on the strong conjecture that there are no other particle types
that give rise to the same bunching-type effect when sampled over. This conjecture
was falsified by Tichy et al. (2014), where it was indicated that a mean-field sam-
pler (introduced in more detail in the following paragraph) can exactly reproduce all
effects related to bunching using distinguishable particles without any many-particle
interference. Hence, even though bunching is a consequence of many-particle inter-
ference, it is insufficient to be used as a hallmark since it can also be achieved without
many-particle interference. This highlights that many-particle interference is much
more subtle than mere bunching.

The mean-field sampler’s means of operation are strongly inspired by the litera-
ture on BECs, where one often uses a semiclassical®® mean-field model to describe
interfering condensates (Cennini et al. 2005; Hadzibabic et al. 2004). The main idea
of these methods is to assume distinguishable particles, which all occupy the same
single-particle wave function, but with random phases ascribed to them. In many
senses, this approach resembles the methods that are used to understand interference
between distinct beams of coherent light (Mandel 1964, 1983; Paul 1986; Pfleegor
and Mandel 1967; Rarity et al. 2005; Radloff 1971). These methods are capable of
reproducing the Hong-Ou-Mandel effect, but with a significantly reduced visibility
(with a maximal visibility proven to be 50%) (Ou 1988). In these works, the random
fluctuations in the phase of the laser impose a phase-averaging procedure that is
essential to obtain the final interference fringe.

To implement the mean-field sampler, we must consider a system with internal
degrees of freedom, such that H = C” ® H,qq. The core idea is to treat all particles
in the same way, ignoring intricate correlations between the particles. To simulate
the bosonic bunching signature of a state

U=a(e;, ®¢)...a"(e;, X, e,...,e; €C", &€ Haas (8.177)

we “macroscopically” occupy a single-particle state

1 n )
P = n ;exp(zej)e,-,, (8.178)

30The term “semiclassical” is here not interpreted in the same sense as in Engl et al. (2014). We
rather use the terminology in the same, mean-field sense as Gessner et al. (2016).
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which we use to construct a “mean-field” wave function

Upr i=a" (W @ x1)...a" () @ x,)R,

(8.179)

with Xj € Hadd» (x,-,xj) = (Sij.
A crucial additional element is that throughout the sampling procedure, we allow
the phases {6;} to vary. It can now be shown Tichy (2011); Tichy et al. (2014) that
the probability for a particle to travel to output mode ¢ in the mean-field sampler is
given by )

p;“f = Zeie/ <q, Ueif> . (8.180)

The particles are now classically correlated and gather where pg‘f is highest. In Mayer
(2012), Tichy (2011), Tichy et al. (2014) it was shown that this type of particles can
reproduce bunching effects.

To understand the procedure in some more detail, let us compute the probability
pf;;f 4, that the n particles are detected in modes g;, ..., g,. Because the particles
are distinguishable, we directly find that

Pyt o=n] e (8.181)
j=1

The factor n! must be included because it counts the number of different ways in
which we can distribute the particles over the selected modes. To simplify notation,
let us introduce

Urip = (fr. Ue), (8.182)

such that when we insert (8.180) into (8.181), we find®!

2 2

n n n
Paren = D Ugjexpl0))| Y Ugnjexp(i0))| ... |Y Uy, jexp(f))|
j=1 j=1 j=1
n! - 7 77 : ;
= > Ugji -+ Us=gujuUqiky - - - Uguky €Xp (l >0 —i Z9k1)~
Jlseesdnokt e ky=1 1 1
(8.183)
This result provides the probability that the particles are detected in modes ¢4, . . ., g,

for a fixed set of randomly sampled phases {6;}.

The following crucial step to simulate bosonic bunching effects is to evaluate
the average over these random phases. To do so, let us introduce the operation [Ey,
defined by

31To avoid indices of indices of indices, we simply write j rather than i ;j in the following step.
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[E(.)(X) =

2
d6,do, ...do,X. 8.184
@y /0 1d6> ( )

From a straightforward calculation, we find that

[Eg(f:Xp (i >0, —i Zak,)) > ot -+ Satis (8.185)
1 l

og€eS,

and thus it follows that

n' _
[Ee(l’ ..... = Z Z Ugji - - - Uguj Uqlo(jl) o Ugotin- (8.186)
TES, Jiseens Jn=1
When we now compare Ey( p ..... ) in (8.186)—(8.90), we see that the main difference
lies in the index set: In (8. 186) we sum over all possible jj, ..., j,, whereas in (8.90)

we are confronted with the additional demand that all indices be different from
each other. Note that, even though the averaging over the phases drastically reduces
the interfering terms as seen by comparing (8.183)—(8.186), there are additional
interference terms in (8.186) compared to (8.90). Even though this highlights the
similarities and differences between the boson sampling and mean-field sampling,
we refer to the results in Tichy et al. (2014) to see how the mean-field sampler
reproduces bunching effects.

Given that the mean-field sampler thus simulates bosons with distinguishable par-
ticles, an actual certification scheme for boson sampling should do more than simply
test for bunching. Indeed, the mean-field sampler is by construction free of any many-
particle inference effects and it nevertheless induces bunching. An effective method
which was proposed in Tichy et al. (2014) exploits the suppression law (Tichy 2011;
Tichy etal. 2012, 2010), for the (highly symmetric and non-random) Fourier matrix.
The authors propose to use the specific circuit that implements the Fourier matrix
in order to validate whether there is actual bosonic interference present. They show
that this method effectively distinguishes bosons from simulated bosons, obtained
from mean-field sampling, which makes their method far preferential over cloud-
ing. This has led to a range of additional works (Crespi 2015; Crespi et al. 2016;
Viggianiello et al. 2018; Dittel et al. 2018b, 2017) on totally destructive interfer-
ence in other setups. The disadvantage of any of these suppression law certification
schemes is that they strongly rely on the specific scattering law inscribed into a spe-
cific unitary transformation, and therefore cannot be directly related to the random
scattering setup (realised through a unitary scattering matrix distributed according
to the Haar measure (Aaronson and Arkhipov 2013)) of the original boson sampling
proposal. Consequently, more advanced methods, which can be directly implemented
on circuits that describe Haar measure unitaries, are required to certify boson sam-
pling. Moreover, we must make sure that such methods can successfully tell genuine
bosonic many-particle interference apart from the mere bunching effects which are
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observed for simulated bosons. In the remainder of this chapter, we propose such a
method, based on truncated many-particle correlation functions and RMT.

Let us also note that, even if one simply wishes to tell bosons apart from distin-
guishable particles, it is still very inefficient to use bunching-based methods such as
clouding. The reason is that, in systems where the number m of modes is significantly
larger than the number n of particles, events with several particles in the same output
mode (i.e. bunching events) can be considered rare events. To certify an enhanced
probability of these events, one must acquire a sufficient amount of statistics. The
related overhead can be expected to scale unfavourably,? because most measurement
outcomes do not contribute as the size of the problem increases.

8.5.2 Correlations meet Random Matrix Theory

Asindicated in Sect. 8.4.2, many-particle correlation functions contain specific infor-
mation that is closely related to many-particle interference. Indeed, the appearance
of a factor

q
Z 1_[ <fr’ Uejw(r)} (ejam ’ UTfr)

mo€S, r=1
Jrelu

in the correlation function (8.146) indicates that similar effects contribute also in
many-particle interference probabilities as, for example, given by (8.54). The appeal
of correlation functions in comparison to probability distributions, is that not only
the numbers of modes and particles appear as parameters, but also the order of the
correlation function.

It is well-known from probability theory that knowledge of all moments (or cor-
relation functions) of a distribution is equivalent to knowledge of the probability
distribution itself. However, this also implies that all correlation functions encrypt
information on the probability distribution. In many many-particle scattering setups
it may be feasible to obtain correlation functions of variable order, but not the entire
probability distribution. The boson sampling setup defines precisely such an instance,
and the relevant question is therefore up to which order we must know the correla-
tion functions (or which orders) in order to certify bosonic many-particle interference
(rather than bunching).

The intriguing aspect of the method we present in this section is that it only requires
low order correlation functions. As shown in (8.54) (and all its generalisations in
Sect. 8.4.2), these low order correlation functions contain many-particle interference

32As an example, consider the bunching event where all particles are detected in a single mode.
There are only m such events which can occur for a total of m!/n!(m — n)! possible outcomes. Even
with an enhanced probability, a lot of sampling is required to probe the relative frequency of such
events.
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Fig. 8.8 Schematic representation of the measurement setup (recall Fig. 8.6), with additional corre-
lators C;; that constitute the certification scheme (8.193)—(8.195). Modes on the left can be populated
with particles to form a many-particle input state, to be transmitted via the unitary channel E(U)
as in (8.5) to a set of output modes {£1, ..., &,}. Each of these output modes is equipped with a
counter, described by 7({;) = aT(g j)a(&;), which measures the number of particles in the mode.
We certify boson sampling by correlating the measurement outcomes of all pairs of detectors

pathways of low order.®® As a first step, we wonder whether it is possible to get
enough information from a single two-point correlation function to certify many-
boson interferometry (with n particles and m modes).

It turns out that the strict answer is negative, in the sense that we must not rely
on one specific two-point correlation function, but rather on all of them, as indi-
cated in Fig. 8.8. Indeed, a fundamental aspect of the study of correlations between
different pairs of modes is that we have m(m — 1)/2 combinations, which gives us
a large dataset. We baptise this statistical sample the C-dataset. The second fun-
damental ingredient in our certification protocol, next to the correlation functions
themselves, is the statistical treatment of this C-dataset. We handle this dataset using
analytical methods from RMT (Brouwer and Beenakker 1996; Collins and Sniady
2006; Berkolaiko and Kuipers 2010, 2011) to separate bosonic C-datasets from other
datasets.

In what follows, we assess the statistical features of C-datasets as robust tools to
certify boson sampling. Additionally, we investigate the potential to extract further
information from higher order correlation functions, by explicitly considering the
three-point case. To validate the sensitivity of these data for genuine (dynamical)
many-particle interference, we statistically compare the obtained C-datasets to those
generated by distinguishable particles and simulated bosons. Moreover, we compare
bosonic C-datasets to fermionic C-datasets, in an effort to enhance our understanding
of dynamical properties of fundamentally indistinguishable particles in quantum
mechanics.

Two-Point Correlation Functions

In order to certify with the help of two-point correlation functions, we first need to
specify the initial state and the measurement setup. To approach the experimental

33«Low” order is an order which is significantly smaller than the number of particles. In this
Dissertation, we focus on second and third order.
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setting in a realistic fashion, we choose input states of n particles prepared in orthog-
onal modes. To be able to compare bosonic to fermionic results, we populate each
input mode with at most one particle, i.e. we consider the initial state

U =a'(e)...a'(e;), (. e,)=0d. (8.187)

The measurement apparatus be mounted on two orthogonal modes f, and f. Because
this section is not as much about technical details and methods as the previous one,
we again use the notation (8.182) to express (8.147) as

n

Cfs = <ﬁ(fr)ﬁ(fv)> = Z |:Urik Uvi,ﬁrikvsi, + Urik Uvi/Urilﬁxiki|a (8188)
kl,(l:ll

and (8.150) as

C;{; = Z |:Urik Usi,Urikﬁsi, - Ul‘ik USi/vriIUSik]' (8'189)
k=1
k#l

For comparison, we will also consider the outcome (8.168) for particles which are
fully distinguishable, which reads

n
¢ =Y U U U U, (8.190)

k=1
k£l

As we see, the genuine many-particle contributions are hidden in the second (‘““cross”
term of cf’s and cfs (recall (2.73) and (8.41)), the first terms which sum products

of transmission probabilities |U,,-k |2 |US[, |2 are common to all these cases (8.188)—
(8.190). Therefore, a more logical certification quantifier for boson sampling actually
is ¢ — ¢?, which leaves the terms purely related to bosonic (two-particle) interfer-
ence (recall our discussion on p. 310). However, this quantity has a considerable
disadvantage: It cannot be extracted in one measurement run. One must either com-
pute ¢, numerically and do post-processing of the C-data, or one must do a separate
experimental run where the particles are made distinguishable. Therefore, it is inter-
estin%to wonder whether we can make the measurement more sensitive compared
to cfsf by simply using the data collected by the detectors while performing boson
sampling.

Such a procedure is possible and is naturally given by exactly the type of objects
discussed in Sect. 7.7, the truncated correlation functions34

34Keep in mind that these are multivariate analog of cumulants. They also occurs under the name
Jjoint cumulants, but we will follow the terminology of the quantum statistical mechanics community
(Bratteli and Robinson 1997).
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Crs == (AN (f9)) = () ()

. R (8.191)
= ¢y — (n(f:)) (n(f5))
which is perfect to perform the given task, since
AN RS =D Ui Usi, Upi Uiy (8.192)

k.l=1

These objects only differ from c?, by the index set of the summation. Notice that,
indeed, cfs has the additional constraint that k % [ in the sum. This implies

Cfs = Z Urik Uvi/ﬁrilvsik - Z Urik UxikUrikﬁsik, (8193)
k=1 k=1
k£l
Cifs. == Z Urik USiIUriIﬁSik - Z Urik Usikﬁrikﬁsiks (8.194)
k=1 k=1
k£l
Ch ==Y U,UqUUsg,. (8.195)
k=1

and even though the correlations from classical probability theory, i.e. cfs, are not

completely erased, they are considerably decreased in order,> compared to the many-
particle interference terms.

Letus now verify whether the C-datasets constructed from the C?, can convey use-
ful and unambiguous information on many-boson interference. We do so by choosing
a U from the Haar measure and subsequent generation of the C-dataset (which is a
computationally simple task, due to the low order of the considered correlation func-
tion). The result is portrayed as a histogram of events in Fig. 8.9, which indicates
that there is indeed a considerable difference between bosons and both fermions and
distinguishable particles: Apparently, truncated correlation functions for fermions

35The decrease in order is seen by the term

n
Z Urik Usik Urik Usik
k=1

which appears in all truncated correlation functions C,[.' § /4 This summation only contains n terms,
which is a considerable decrease compared to the n(n — 1) terms which appear in

n
Z Urik Usi[ Urik Usi[ s
k=1
k#l

. . b, f.d
for the correlation functions c,sf .
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Fig. 8.9 Normalised (as probability density function (PDF)) histograms of the correlator data built

from truncated two-point correlation functions Cf S/ frd (8.193)—(8.195) of six particles injected into
100 modes for all possible mode combinations. Bosons are compared to fermions and distinguish-

able particles. All histograms are obtained from one single circuit by evaluating C, fg/ I for all pairs
r and s of output modes, using the same input state W, given by (8.187). In particular this implies
that for distinct particle types the same components of U were used

and distinguishable particles can never be positive, whereas for bosons they can. For
distinguishable particles, this result is clear from the very expression of C fs (which
is just a sum over products of probabilities, garnished with a global minus sign), but
for fermions a further computation is required: We may rewrite

C,{y = - Z Url'kUYl'1ﬁrilﬁSik - Z Urik UsikUrikﬁsik

k=1 k=1
k#l

= - Z Urik Usi,Uri,ﬁsik = - Z UrikUsik Z Usi,vril (8'196)
k=1 k=1 =1

n 2
- U T, <0,
k=1

which proves that also C,J; < 0. This suggests that whenever we measure a C-dataset
from an unknown source, positive truncated correlations are a signature of bosonic
many-particle interference. This, however, turns out to be untrue. More specifically,
positive C-data actually appear to be a signature of bunching effects, since we will
show (see Fig. 8.10) that they also pop up in the mean-field sampler that simu-
lates bosonic bunching (but cannot—by construction (8.179)—exhibit interference
of many-particle transmission amplitudes).

The mean-field sampler’s correlation functions have not been specifically stud-
ied in the previous section, but they are easy enough to derive. At the basis lies a
combination of the correlation functions (8.158) for non-orthogonal modes with the
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Fig. 8.10 Normalised (PDF) histograms of the correlator data built from truncated two-point cor-

relation functions C ,bA/ mf (8.193), (8.200) of six particles injected into 100 modes for all possible
mode combinations. Bosonic many-particle interference is compared to bunching phenomena gen-
erated by the mean-field sampler. The histograms are obtained from the same circuit as used in

Fig. 8.9, evaluating C, f s/ "™ for all pairs r and s of output modes, using the same input state W, given
by (8.187). In particular this again implies that for distinct particle types the same components of
U were used

corresponding result (8.176) for partial distinguishability. Indeed, the situation is in
a sense opposite to that for actual bosons: Bosons are prepared in orthogonal modes
and are indistinguishable in all additional degrees of freedom,’® whereas simulated
boson are prepared in the same mode, but are distinguishable by their additional
degrees of freedom.

To derive the results for simulated bosons, we consider a state (8.179) such that
the components of the single-particle wave functions related to H,qq are orthogonal,
which leads to full distinguishability. However, the component of the single-particle
wave functions in C™ is the same for all particles. We insert this structure for the
single-particle wave functions into (8.176), and subsequently exploit the orthogo-
nality of the x; in (8.179), to obtain:

k=1
kAl

n 1 n
ol = Y WE UDP A U, ¥ = 7 Yo expifpe;  (8.197)
j=1

which, after insertion of the explicit expression for ¢ and with the notation of (8.182)
is cast into

36The full single-particle Hilbert space is described by H = C" ® Haqq. To observe interference
patterns of indistinguishable bosons in the interferometer, each particle much be described by the
same single-particle wave function in H,q4q. For an extended discussion, see Sect. 8.3.4.
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2
=Dy
C:yij,c{a} -~ a Z IR, U,
Jij2=1 (8.198)
n
05, +0; 9/ 9
=(l’l—1) Z l( e )Urz“Uvz/ZU)terzr-

JisJ2sii»ia=1

A crucial property of the mean-field sampler giving rise to (8.198) is to acquire
many different random phases {6}, such that, ultimately, the object of interest is given
by c',"sf =Ty (c'r"S{r {0}). In complete analogy to (8.185), a straightforward calculation

i(9jl +6j2 —(9,-]/ -0

shows that Ey(e By = 051,10 js + 0.0, j;- Inserting this result into

(8.198), we find

wf e omf L (=1 < — —
Crs = [e(cm,{ﬁ}) - n Z (Urijl USijz Uri_,'] USi/’z + U"i.fl USi.fz Urifz USi.i])
Jisi2=1
N#h
n—1) « —
+ T 2; Uri/ Usi_/- Uri_/- U‘vi/ )
J=
(8.199)
and for the truncated correlation function:
n—1 < — 1 < _
—— > U Ui, Uni, Usiyy = — 37 Upiy Usi, Ui, Ui, (8:200)
Ji,i2=1 Jisja=1
N#h

cr o=

Now that we have an expression for cl we can sample a unitary matrix U
from the Haar measure and compute the C-dataset. While, from expression (8.200)
and (8.193), cr and C!. are certainly different, they also contain many identical
terms (recall (8.186)). These terms, however, appear with slightly different weights,
and we thus wonder how different the associated C-datasets effectively are. Judging
from Fig. 8.10 they are very similar. Moreover, we see that both C-datasets contain
positive truncated correlations. As already mentioned earlier, we may relate positive
correlations to bunching rather than bosonic interference. Following the results (Ou
1988) for classical beams with random phases, it should not come as a surprise that the
mean-field sampler can reproduce a qualitatively similar set of correlations between
detectors. Therefore, we need more refined tools to quantify particle-type specific
signatures of genuine many-particle interference, and investigate the moments of the
C-dataset. Not only can we easily generate these moments numerically,’” we can also
analytically predict them. The machinery to be used for the analytical treatment is
RMT. However, while extremely successful and versatile, RMT does not allow us to
compute exactly what we want. The main issue with RMT is that it is built to evaluate

371n the sense that we can obtain them from a simulation of a circuit described by a random unitary
matrix U.
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averages over different realisations of the random matrix under consideration, tough
results for one single realisation is out of the theory’s reach. Nevertheless, from other
fields in physics where RMT is used, such as quantum chaos (Stockmann 2007), we
do know that, often, averages of the ensemble provide good estimates for properties
of a single matrix, sampled from the ensemble. An example was encountered in
Sect. 3.3.3, where we treated the normalised density of states p(E) and its ensemble
average (p(E)). For a randomly sampled GOE matrix, which is sufficiently large
(i.e. lives on a sufficiently large Hilbert space), we typically find that p(E), and
(p(E)) are very similar. Moreover, individual p(E) are typically similar for distinct
realisations, chosen from the same ensemble.

Our C-dataset is in many ways similar to the set of eigenvalues from which we
computed p(E) in Sect. 3.3.3. Notice that there is no mathematical equivalence, but
rather an approach which is similar in philosophy. Two-point correlation functions for
Gaussian ensembles in RMT neglect many higher order correlations inscribed in the
spectrum. Nonetheless, already this strongly coarse grained information contains
a significant amount of information on the specific RMT ensemble; we can, for
example, distinguish GOE from, GUE. Interestingly, we also know that the two-
point correlation function as obtained from a single GOE matrix is close to the
ensemble average, provided the matrix is large enough. We now follow a similar
type of reasoning for our boson sampling problem, which can be mathematically
described by unitary matrices distributed according to the Haar measure.

Objects which are easily accessible from an experimental point of view are the
low-order moments of the actual C-dataset. This implies an average of the C,; (we
omit the superscripts) over all possible choices of two distinct output modes r and
s. In concreto, the defining expressions read

mm——i—-mc (8.201)
1 - rs» .
m(m - 1) r,s=1
= el (8.202)
m(m - 1) r,s=1
2 m
P = Y cl (8.203)

T mm—=1) —

r=s

In this work, we limit ourselves to the first three moments and see how much infor-
mation can be obtained from them. The restriction to low-order moments is due to the
increasing overhead when the order is increased, which makes analytical computa-
tion tedious (see also Berkolaiko and Kuipers 201 1; Kuipers and Sieber 2008; Urbina
et al. 2016). For these lower order moments, we can derive analytical estimates with
the help RMT. Formally, one may write these analytical moments as
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m; = Ey (C) (8.204)
my =Ey (sz), (8.205)
ms =Ey (Crﬁ). (8.206)

The averaging procedure, even though straightforward, is technically tedious and
is therefore left for Appendix B; here we only present the main ideas of the computa-
tional procedure. There is a generally applicable technique for averaging products of
components of unitary matrices over the ensemble of all unitary matrices distributed
according to the Haar measure. At the heart of this computation lies the identity

[EU(Ual,bl .- ‘Uﬂn,anU(l,ﬂl cee Uanﬂn)

- 8.207
= Z V(o™ ') l_[5(ak — Q)6 (bk — Bry), ( )
k=1

o, TES,

which as such can be traced back to the representation theory of groups, and specifi-
cally to the Schur-Weyl duality (Collins and Sniady 2006; Hamermesh 1989). After
going through the computation, we finally obtain, for n particles injected into m
modes, and an initial state of the form (8.177) for bosons:

b nm+n—2)
my=———7r—-—,
m(m - 1)
2n(m2n+m2+9mnf 11m+n372n2+5n74)
a m2(m +2)(m +3) (m? — 1)

(8.208)

m;

(8.209)

b ) m3n2 4+ 15m3n + 2m3 + 3m2n3 4+ 6m3n2 + 213m?n — 222m? — 3mn*
m3 = —2n
3 m2(m + 1) (m +2)(m + 3)(m + 4 (m + 5) (m? — 1)

+45mn3 + 32mn? + 372mn — 464m + 3n> — 6n* + 4513 + 78n% + 168n — 288
m2(m + 1)(m +2)(m + 3)(m +4)(m + 5) (m*> — 1)

(8.210)
for fermions
g mnmm
T m =) 8.211)
_2n(n+1D(m—n)(m—n+1)
2T mAm+2)(m +3) (m>—1) "’ (8.212)
m! = 6n(n+ D(n+2)m —n)m —n + D(m —n +2) 5oty

Cm2(m A+ 1) (m +2)(m +3)(m + 4 (m + 5) (m?> — 1)’
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for distinguishable particles

J n
mj =————o:, (8.214)
m(m + 1)

d n(m2n+3m2+mn—5m+2n—2)

2 m2(m + 2)(m + 3) (m? — 1)

n (1112712 +9m?n + 26m? + 5mn® + 2lmn — 62m + 120> + 60n — 72)
m2(m +2)(m + 3)(m + 4)(m + 5) (m> — 1) ’

(8.216)

m

) (8.215)

3
SRS

and, finally, for the mean-field sampler, which simulates bosonic bunching though
no many-particle interference,

m = _nmtn—2) (8.217)

m (m2 - 1)
mf dmn —m — 14n° +8n — 2
My =-3 2
m?(m +2)(m +3) (m*> — 1) n
n 2m2n3 — m2n? + 4m?n — m? + 18mn® — 25mn? + 2n° — 4n* + 101>
m2(m +2)(m +3) (m? — 1) n

(8.218)

mf —2m3n’ — 21m3n* 4 30m3n3 — 41m3n? — 10m3n + 8m> — 6m?n® — 3m?n’
My = (m — Dm2(m + D2(m + 2)(m + 3)(m + 4)(m + 5)n?
—285m%n* + 261m2n3 + 75m?n® — 66m>n + 24m? + 6mn’ — 90mn® — 55mn’
(m — Dm2(m + 1)2(m + 2)(m + 3)(m + 4)(m + 5)n
—360mn* 4+ 591mn> + 8mn® — 128mn + 64m
* (m — Dm2(m + 12 (m + 2)(m 4 3)(m + 4)(m + 5)n*
—6n8 4+ 1207 —90n° — 1201 — 24n* + 39613 — 16812 — 48(n — 1)
(m — Dm2m + 1)2(m +2)(m + 3)(m + 4)(m + 5)n?

(8.219)

Before we continue to show that our approach is remarkably fruitful to acquire
statistical signatures of many-particle interference, we remark that the moments in the
above expression all scale with m and n, which is unpractical if we wish to compare
different system sizes. As a solution we use rescaled moments, which have leading
order terms independent of m and n. These moments are given by the Normalised
Mean N M, which we defined ourselves, and the Coefficient of Variation CV and the
Skewness S, which are common in the statistical literature and are narrowly related
to cumulants (Everitt 1998). The defining expressions read
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2
NM = [Eu(s)m (8.220)
o VEu (C?) — Ev(©)? (8.221)
Ly (C)
3y _ 2 3
g _ Ev(C) =30y (O)Ey(C?) +2Ey(C) (8.222)

(Ey(C?) — Ey(C)?)*?

Given the rescaled moments of the C-dataset, we can now compare the statistical
features of many-particle interference upon transmission across the boson sampler,
as done in Fig. 8.11. Different mode numbers are compared for an input state (8.177)
with six particles; the solid lines indicate the analytical predictions, whereas the error
bars indicate the standard deviation for a set of moments obtained from numerically
generated C-datasets derived from 500 distinct random unitaries. Clearly the numer-
ical results are spread around the analytical prediction. Importantly, however, we see
that in several cases the error bars do not overlap, indicating that the moments are
statistically well separated. More specifically, we observe that the first moment is
very effective to distinguish the interference structures as produced by the funda-
mental particle types of quantum statistics, but is completely useless to differentiate
bunching from many-boson interference (because we find that m”? = m’lnf ,and as a
consequence also N M coincides). This deficiency is compensated for by the second
and third rescaled moments CV and S, which do resolve the structural differences
of the interference patterns produced by true and simulated bosons (at least once we
consider circuits which are sufficiently large).

To indicate the functionality of the certification method, we show several scat-
ter plots in Fig. 8.12, which visualise how the moments of an actual C-dataset,
each obtained from a single random unitary chosen from the Haar measure, scatter
around the RMT result. As to be expected given Fig. 8.11, we see the spread of
the data points decrease with increasing mode number. Figure 8.12 indicates that,
indeed, the normalised mean N M is sufficient to distinguish bosons from fermions
and distinguishable particles. Again in agreement with Fig. 8.11, the coefficient of
variation C'V turns out to be a useful quantity to differentiate simplistic bunching
from genuine many-boson interference. The combination of CV with the skewness
S offers the clearest distinction of the interference patterns produced by the vari-
ous particle types. Also note the clear correlation between CV and S for different
C-datasets, which we have so far not elucidated.

As evident from Figs. 8.11, 8.12 and 8.13, our certification method produces
unambiguous results once the mode and particle numbers become sufficiently large.
This clearly is an important advantage, because this is exactly the regime where direct
certification of boson sampling becomes practically unfeasible because of the rapidly
increasing complexity of the multiple interference patterns in the transmission signal.
Since we observe that the spread of the different C-dataset quantifiers (8.220)—(8.222)
shrinks relative to the distance between the RMT predictions, we can conclude that
the RMT predictions become more accurate for growing mode number.
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Fig. 8.11 Theoretical RMT predictions (solid lines) as given in (8.220)—(8.222), with (8.208)-
(8.219), for the normalised mean (N M ; top), the coefficient of variation (C V; bottom left) and the
skewness (S; bottom right) of the C-dataset are compared to numerically generated N M, CV and
S values for the six-particle state (8.177) injected into a random scattering compound of a variable
number m of modes. For mode numbers m = 20, 40, ..., 300, we sampled over 500 matrices U.
For each of these, NM, CV, and S were calculated and their mean and standard deviation indicated
by marker (that depends on the particle type) and the error bars, respectively

Figure 8.13 indicates that our method of certification of many-particle interfer-
ence becomes more intricate once the numbers of modes and particles are reasonably
small. Even though N M still serves as a suitable quantifier to distinguish the funda-
mental particle types in this regime, the spread on CV and § is clearly too large to
extract unambiguous information from them. As a consequence, our method appears
to be unsuited to distinguish genuine bosonic many-particle interference from the
mere bunching effects generated by the mean-field sampler for small system sizes.

A first potential solution to this problem is depicted in Fig. 8.14 and boils down
to generating a full scatter plot for a single experiment. We show that averaging
over twenty CV — § data points for bosonic many-particle interference provides a
mean value which is significantly (as quantified by standard errors) closer to the
bosonic RMT result than to that of the mean-field sampler. Thus even in this regime,
genuine many-boson inference patterns contain a distinct fine-structure from patterns
generated by the mean-field sampler, and this difference is encrypted in the C-dataset.
Such full scatter plots can be achieved by either changing the scattering circuit, i.e. U,
or the initial state W (8.177), where we inject the particles in different initial modes
to obtain different data points.

Ultimately, however, the C-datasets for bosons and simulated bosons are very
similar (recall Fig. 8.10). The underlying cause for this similarity is that two-point
truncated correlation functions are strongly influenced by bunching effects. Remem-
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Fig. 8.12 Scatter plots indicating the normalised mean (N M; left), the coefficient of variation
(CV; left and right) and the skewness (S; right) as given in (8.220)—(8.222). For a six-particle state
(8.177), injected in 500 random unitary scattering compounds U of m = 20, 100 and 300 modes,
C-datasets are generated (8.193)—(8.195), (8.200) for interference patterns associated with different
particle types (“bosons”, “distinguishable”, “fermions” and “simulated bosons”). The numerically
achieved rescaled moments NM, CV and S with (8.201)—(8.203) are averaged (black circle) and
compared to the RMT predictions which make use of (8.208)—(8.219); red dot)

ber that two-point correlation functions essentially sum up all underlying two-particle
interference pathways in (see the discussion on p. 310) and we know from (8.49)
that bunching effects are very pronounced in two-particle processes. Therefore, the
natural next step is to determine a method which is more sensitive to many-particle
inference and effectively filters out these bunching effects. A potential way to do so,
is to treat higher order correlation functions.

Three-Point Correlation Functions

In our quest for a more sensitive method to distinguish genuine many-boson inter-
ference from bunching effects, the most straightforward step is to increase the order
of the correlation functions. From the techniques discussed in Sect. 8.4.2, we already
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Fig. 8.13 Scatter plots indicating the normalised mean (N M; left), the coefficient of variation
(CV; left and right) and the skewness (S; right) as given in (8.220)—(8.222). For a three-particle
state (8.177), injected in 100 random unitary scattering compounds U of m = 13 modes, C-datasets
are generated (8.193)—(8.195), (8.200) for interference patterns associated with different particle
types (“bosons”, “distinguishable”, “fermions” and “simulated bosons”). The numerically generated
rescaled moments N M, CV and S, with (8.201)—(8.203), are averaged (black circle) and compared
to the RMT predictions which make use of (8.208)—(8.219); red dot). The choice of particle and
mode number is motivated by state of the art experiments (Spagnolo et al. 2014)
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Fig. 8.14 Scatter plots indicating (small blue dots) the coefficient of variation (CV') and the skew-
ness (S) as given in (8.221), (8.222). For a six-particle state (8.177), injected in 20 random unitary
scattering compounds U of m = 20 modes, C-datasets are generated for many-boson interference
(8.193). The numerically generated rescaled moments C'V and S, with (8.202)—(8.203), are averaged
(red dot) and the regions associated with two and four standard errors are indicated (red circles).
The RMT prediction for bosons (large blue dot) is shown to be significantly closer to the numerical
average than the RMT prediction for the mean-field sampler (filled purple square). This figure is
taken from Walschaers et al. (2016b)
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have all the tools at hand. We again consider detectors mounted on orthogonal modes
fq, fr and f;, and moreover assume that the input states are of the form (8.187), such
that we can use expression (8.146), which for bosons translates into

b= Z Ugi, Uri,Usi;U 43, U 1, Uiy + Ugi, Ui, Ui U 4, U i, U,

ok I=1
kAl (8.223)

+ qu,v Urik Usi,ﬁqilvrikvsij + quj Uri1 UsikqukUri_;Usil

+ qu,’ Urik Usi,ﬁquUrijUsik + quj Urik USiIquk Uri, USij .

For fermions, we find

qu - Z th Urtk US‘L[ qu UrtkUm qu_,- Urik Uvi,ﬁqi_,-ﬁrilﬁsik

k=1
J#kA (8.224)

- quj Urik Usilﬁqil Urik Ublj th Urz, Ustkﬁ v v
+ quj Urik Usilﬁqilﬁrij Usik + quj Urik Uu, U U U

and for distinguishable particles we obtain

= Z Ugi, Uri, Ui, U i, U i, Uy, (8.225)

Jok, =1
kA

Just as for the two-point correlation function, the mean-field sampler imposes extra
subtleties due to the accumulated random phases. For a given set {#} of phases, the
three-point correlation function is given by

n
Z’rf: 0= Ul_l}:# o OjH0k+01=0 ;=0 — 91’)[_/ Ui Uy, U U”k U“z'
Jok, gk =1

(8.226)
Just as before, while we accumulate statistics of detector outcomes, we are effectively
averaging over the random phases. Again only those terms in the sum survive where
all terms cancel. These are the terms where the set of indices {i, j, k} equals the set
{j’, k', I'}. There are 3! ways to equate these sets, leading to the final result
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n-Hn-2)( ¢ = = = =z T =
L(r]nrj; = T Z (quj Urik Usiquij Urik U:i] + qu_]- Urik Usil quj Uril Usik
Jk,1=1

+qujU,,»kUs,-qu,»lU Usi; + Uqi; Ui Usiy Uqi ﬁ,,-jﬁsil

+ quj Urik Usil Uqll U Uslk + quj Uyi Uszl UqlkUri[Usij)
n
+ Z (quk Urik Usil + qul Urik Usik + quk Uril Usik)
k,l=1
k#l

X (qukvrikvsil +ﬁqilﬁrikﬁsik +ﬁqikﬁrilvsik)

ZUqllU”lUSll ql;UrilUsil>~
(8.227)
The correlation functions (8.223)—(8.227) lead to similar problems as already encoun-
tered with the two-point correlation functions; they contain genuine three-particle
interference-like terms:

qu,v Urik Usi1 quIUri,-Usik and U Uru US![ Uqlk Urtl Ust, ’

but they are also polluted by single-particle

qu/- Urik Uxi, qu- Urik U.vi, )

J

and two-particle contributions (i.e. all the remaining ones). To filter out the low-order
contributions we, again, resort to truncated correlation functions, as above, though
the resulting expressions are now considerably more cumbersome:

Cyrs = (A(fDASIA(fS)) = (ASHASDNASS)) — (AR (f)) (A fy)
— (n(fPA(fONAS)) + 2 (f)) A A(f))
= (A(fIR(fIA(fo) = Cor(a(f5)) — Crs(A(fg)) — Cos (A (1))

— () A A (f5)).
(8.228)
Because the number of terms in these expressions grows quickly, we introduce
some additional notation in order to keep the resulting expressions somewhat com-
pact.3® We start by considering sums over different indices, which have the specific

form

Z qu/ Ui, U-Yi/ﬁqin(/)vrin(k)ﬁsiﬂ/) ’ (3.229)

Jikd=1
JEkAl

38This notation was introduced by J.-D. Urbina and J. Kuipers in private communication.
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where 7 € S3 is a permutation. We split these terms in three classes: G, H, and
I, where G describes permutations with cycle® lengths are (1, 1, 1), H represents
permutations given by cycles (1,2) and I are those with cycle lengths (3). This
produces the terms

G = Z qujUrikUsi,qujUrik Usi,a (8230)

k=1
kA

H, = E qujUrikUsi,ﬁqijﬁri,vsiw (8.231)
k=1
e

n

H2 = Z quj UrikUsthikUrijUsila (8232)

H; = Z qu,- Urik UYi,qu,Urikﬁsi_,- y (8233)

Jok,I=1
kA

I = Z Uyi, Ui Usi,U 43, U i, Uiy, (8.234)

k=1
kA

L= § Ui, Ui Usi,Ugi Uy U, (8.235)
Jokd=1
kA

With this notation, we find that

hy=G+Y H+) I, (8.236)
cfy=G-=Y H+) I (8.237)
cdy=G. (8.238)

3The cycle notation of permutations is commonly used in abstract algebra and discrete mathematics
(Biggs 1989). A cycle of length n (i1, ..., i,) represents a cyclic permutation i| — ip — -+ —
i, — i1. It turns out that any permutation can be interpreted as combination of several cycles.
As an example, we may consider the set of three elements {a, b, ¢} and consider the permuta-
tion {a, b, ¢} — {a, b, c}, which can be written as a combination of three cycles of length one:
(a)(b)(c). As a second example, we consider {a, b, c} — {c, b, a} which is denoted by (b)(a, c) in
cycle nations. As a final example, {a, b, ¢} — {c, a, b} is written as (a, b, ¢) in cycle notation. In
representation theory, it is common to classify permutations based on cycle lengths (Hamermesh
1989). To use the examples of before, we could characterise (a)(b)(c) as a permutation with cycle
lengths (1, 1, 1), whereas (b)(a, c) has cycle lengths (1,2), and finally (a, b, c) has cycle length (3).
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Clearly, to deal with either mean-field sampling (8.227) or truncated correlation
functions of the form (8.228), we need additional terms, where some of the indices
coincide. This leads to classes of terms with only two distinct indices. We first find

Ji =Y UgUniUqUyi, Uy Uy, (8.239)
k=1
k£l

T = Z qufUrikUSiquijﬁrikUSij’ (8.240)
Jok=1
J#k

= Z Uai, UrikUXikqu/UrikUSika (8.241)
J.k=1
J#k

where the index on the left hand side always indicates which index is different from
the other two. Moreover, we must consider permutations of the remaining distinct
indices, leading to two additional classes, which each refer to a specific choice of
the repeated index*’: First,

Kl,l = Z quk Urik Usi,ﬁqikvri,_siks (8242)
k,l=1
]

K1 = Z Uyi, Ui Usi, U i, Ui U i, (8.243)

J.k=1

K;i= Z qu,»UrikUsikﬁqikﬁrikvsi,, (8.244)

and, second,

KI,Z = Z quk Urik Usi,ﬁqilﬁrik_sik 5 (8245)
k,l=1
ksl

Kk,Z = E qu/ Urik in/ﬁqi,-ﬁri/ﬁsik P (8246)
J.k=1
J#k

40L et us consider the difference between K, 1.1 and K; > in more depth to emphasise the idea: Both
K1 and K start from the index set {ix, ix, i;}, however to represent the permutation of k and
1, there are two possible choices for k. K; | represents the permutation {i, ix, i1} — {ik, i1, ik},
whereas K » represents {ix, ix, ij} — {ir, ix, ix}.
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n
K, = Z Ui, Uyi, Ucikqukﬁrijﬁsik~ (8.247)
Jik=1
J#k
The final class of contributions to C,, is given by the case where there is only one
free index to sum over,

L= UuUs,Usi,Uqi, U, Usiy (8.248)
J

such that we can now use all these terms to write

c?i:m_?l#(G+ZH+ZI+ZJ+ZK+L>. (8.249)

Intriguingly, the only genuine three-particle terms in all these expressions are those of
the /-type. They are the only terms which contain cyclic permutations of length three
(such permutations can be considered irreducible in the sense that it is impossible to
divide them in permutations of subgroups). It therefore is interesting to see whether
these terms are indeed more dominant in the truncated correlation function. After a
straightforward calculation where one groups the terms appropriately, we find that

Chy=Y1-> K+2L, (8.250)
Cly=) 1+ K+2L, (8.251)
c! =2L, (8.252)

qrs

for direct sampling from orthogonal modes. The result for mean-field sampling is
considerably more complicated:

C;;{:Zz-(%-%) (G+Zl>
—%(1—%)(ZH+21+2K)+%L-

We see that, in the mean-field sampler, all the different types of terms contribute
to the final, truncated correlation function, but they do so in different orders. More
specifically, in the limit of many particles, n — oo, we obtain that

(8.253)

Tim. crl = Z 1, (8.254)

which essentially implies that we do see signatures of three-particle trajectories
which are very pronounced. One may actually argue that these signatures are too
pronounced, since, in this limit, we completely overlook the Y K terms that express
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Fig. 8.15 Normalised (PDF) histograms of the correlator data built from truncated three-point

correlation functions Cgf{ /djmf (8.250)—(8.253) of four particles injected into ten modes for all

possible mode combinations. Bosons are compared to fermions and distinguishable particles (left),
and to the sampling from the mean-field sampler which simulates bunching effects, but not genuine

many-partial interference (right). All histograms are obtained from one single circuit by evaluating

C,l; {{/ /™I for all combinations q, r and s of three output modes, using the same input state W given

by (8.187). In particular this implies that for distinct particle types the same components of U were
used

the difference between bosons and fermions, as well as the L term, which essentially
gives the underlying classical truncated correlation.

To analyse the effectiveness of these three-point truncated correlation functions
to differentiate interference patterns of particle types, we again consider histograms
in Fig. 8.15. Notice that these histograms are obtained from a system with only
four particles and ten modes. This is a regime where it was impossible for the two-
point truncated correlation function to distinguish genuine bosonic interference from
bunching effects generated by the mean-field sampler (recall Fig. 8.13). However,
the right panel of Fig. 8.15 clearly highlights a considerable difference between the
two histograms, suggesting that certification is feasible.

To verify this qualitative hypothesis, inferred from the histograms, we again use
RMT as a tool for the derivation of moments. Interestingly, it turns out that the
first moment of the distribution of C,,, already provides a considerable amount of
information. To calculate the first moment, i.e. the average value of C,,, we exploit
the specific definitions (8.230)—(8.248) of all terms. Indeed, each different class of
terms leads to the same expectation value when we average over the Haar measure.
Using again the identity (8.207) and the functions V,,(c~'7) from Brouwer and
Beenakker (1996), we find

nn — D —2)(m? —2)

Ey(G) = o~ Dn? —4) (8.255)
_ nn—1mn-2)

ty(H) = D)’ (8.256)

£y (1) = =D =2) (8.257)

m(@m? — 1)(m? —4)’
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m(m 4+ 1)(m +2)°

These expressions can now straightforwardly be inserted in the expressions (8.250)—
(8.253) for the truncated correlation functions Cy,, to obtain the RMT expectation

values
2n(m? + 3nm + 2n* — 6m — 12n + 12)
Ey(Cl )= , 8.261
v(Cors) m(m? — 1)(m? — 4) (8.201)
2n(m?* — 3nm + 2n?)
Ey(C/l ) = , 8.262
v(Cor) = o = Dym? = 4) (8.262)
2n
Ey(C? ) = , 8.263
v Cor) = L F D 1 2) (8:263)
—3m2n? + 5m%n + 6mn? — 6mn — 6m + 4n°> — 18n% + 18n
Ey(ClY) = :

ars m(@m? — 1)(m? — 4)
(8.264)

which clearly predicts a profound difference between the mean-field sampler and
the other particle types, which is also expressed in Fig. 8.16, where we define the
normalised mean N M as

3

NM = Ey(Cory)—. (8.265)
n

Although it appears hard to separate boson sampling from the sampling of

fermions or distinguishable particles, by the three-point correlator, the latter is
remarkably distinctive when validating boson sampling against mean-field sampling.
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Fig.8.17 Scatter plotindicating the normalised means N M (8.220), (8.265) of C;5 (8.193)—(8.195),
(8.200) and Cys (8.250)—(8.253). For a four-particle state (8.177), injected in 500 random unitary
scattering compounds U of m = 10 modes, C-datasets are generated for interference patterns associ-
ated with different particle types (“bosons”, “distinguishable”, “fermions” and “simulated bosons”).
The numerically generated N M, with (8.201)—(8.203), are averaged (black circle) and compared
to the RMT predictions which make use of (8.208)—(8.219), (8.264); red dot)

Ergo, the three-point truncated correlation function is a useful tool to distinguish
bunching effects from genuine many-particle interference.

Remember that the normalised mean of the C-dataset of two-point truncated cor-
relation functions was a good certification tool for different particle types such that
we were able to efficiently distinguish bosonic- from fermionic interference and
from distinguishable particles’ statistics. Hence, we can use a combination of both
the normalised mean for the two-point truncated correlation functions and the nor-
malised mean of the three-point correlation functions. This combined information
leads to scatter plots as in Fig. 8.17, which presents data for only four particles
injected into no more than ten modes. Even in the regime which is haunted by finite
size effects (recall Fig. 8.13), we see that this combination of two- and three-point
truncated correlation data provides a very strong tool for certification. The clouds of
data points are so well separated that the RMT results have strong predictive power.
Consequently, the position of a single measurement point on such plot, combined
with just the RMT predictions should be enough for reliable certification!

We thus showed that statistical information on low order (second and third order)
correlations between output modes suffices to certify boson sampling for any numbers
of modes and particles. We must stress that these methods strongly rely on the random
matrix ensemble from which the unitaries are sampled, using both the notion that
such sampled random matrices are “generic”, and therefore statistical results can
successfully be applied to provide robust, analytical results. Unitaries which have
specific symmetries in them and therefore do not follow the Haar measure, lead
to very different C-datasets, such that the here derived RMT results are no longer
applicable. Therefore, the method which we provide is also suitable for verifying
whether an ensemble of devices (e.g. beamsplitter arrays, photonics waveguides, et
cetera) are correctly generated according to the Haar measure in the sense that they
manifest the correct statistical properties and hence the correct C-datasets.
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Fig. 8.18 Scatter plot indicating the normalised means NM (8.220), (8.265) of C,s (8.193)-
(8.195), (8.200), and Cyry (8.250)—~(8.253,) C-datasets. A four-particle state (8.177) is injected
in 100 random unitary scattering compounds U (dots) and the scatterer describe by the Fourier
matrix Ujx = exp(2mijk/m) (circle), both for m = 13 modes. For each scattering compound, the
C-datasets is numerically generated for interference patterns associated with different particle types
(“bosons”, “distinguishable”, “fermions” and “simulated bosons”). The numerically achieved N M
with (8.201)—(8.203) are averaged (black circle) and compared to the RMT predictions which make
use of (8.208)—(8.219), (8.264)—(8.264); red dot)

Nevertheless, C-datasets of low order correlation functions, in general, provide an
enormous amount of information about the system. This is even the case for the highly
symmetric Fourier matrix, whose components are given by U = exp(2wijk/m),
with m the number of modes. Indeed, in Fig. 8.18 we see that the normalised means®!
of C,s and C,,, datasets as induced by the Fourier matrix fall outside of scattered
data points obtained from random scattering unitaries chosen with respect to the Haar
measure. However, also in the scattering process generated by the Fourier matrix,
the normalised means associated with interference patterns generated by different
particle types are very distinct, which allows efficient certification of many-particle
interference types, also for scattering problems which are strongly dominated by
symmetries.

8.5.3 Partial Distinguishability and Correlation Spectroscopy

Now that we managed to certify the extreme cases of many-particle interference,
from bosonic to fermionic, compared to purely classical probability theory, set forth
by distinguishable particles, and learned how to differentiate between genuine many-
boson interference and simple bunching effects, we can treat transition regimes. It can
be argued that, from the physics perspective, there is only one relevant transition to
be considered: When discussing the concept of distinguishability in Sects. 7.3.2 and
8.3.4, we argued that, in essence, there are only two types of particles in nature (related

4 For the Fourier matrix, the normalised means of both C, and Cyrs are completely independent
of the chosen input state (8.177). The physical interpretation of this result is currently unclear to us.
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to two fundamental algebras), bosons and fermions. Alternations in the interference
patterns related to the distinguishability of particles is rooted in additional, often
external degrees of freedom which remain unresolved, thus destroying specifically
the coherence between them (and hence their capacity to interfere, as discussed in
Sect.8.3.4).

This distinguishability transition is, moreover, of considerable importance in
experimental settings, where one rarely reaches complete indistinguishability (see,
for example, the supplementary material of Spagnolo et al. 2014). Therefore, we
must understand how such partial distinguishability influences the interference pat-
terns which we study. More specifically, the sensitivity of our certification method
with respect to the distinguishability of the injected bosons is a profound point of
interest. Hence, in the current section, we focus on the specific transition from indis-
tinguishable bosons to fully distinguishable particles, and study how this transition
impacts the C-dataset.

The relevant two-point correlation function (8.165) was already derived earlier
and, using the shorter notation (8.182), is given by

Cfsd = Z Urik USiIUrikai] + | <Xk1 Xl> |2 Urik USijﬁriIUSl'k . (8'266)
kl;;é:ll

Moreover, by virtue of Eq. (8.164), we can also derive the three-point correlation
function

qus = Z UrlkU.Yl[Uql UrlkUSll + Xk XI)| Ugi Urkusle UrleSIk
Jidoi=1
A
+|(st X[)| U UrlkUSl/U [UrikU +|(Xj Xk)| U UHIUSlkUqlkUrljUU[
+<stXl)<kaXj><Xl Xk) Ugi UrikUs ﬁ Url]USlk
+(X] Xk)(Xk Xl)(Xl XJ>U Urik Us'iIUql UrtIUst_,

(8.267)

Converting the above expressions to the more sensitive truncated correlation func-
tions (see (8.191) and (8.228) above) is straightforward for the two-point case:

n

Crde = Z | (ka Xl Urtk Usl, Uru Sl Z Urtk USlk Urlk Ustk (8268)
k=1 k=1
k#l

For the three-point case, however, one must take into account that two-point terms,
which are also influenced by the degree of distinguishability, are subtracted. To
capture all these effects correctly, we define G’, H’', I, J', K', and L’ class terms,
the analogs of the terms (8.230)—(8.248) introduced in our earlier discussion (see the
previous section) on three-point truncated correlation functions. First, we can define



8.5 Certification of Boson Sampling 347

G/ =G = qu/- Urik Uxi, qu/- Urik U.vi, P (8269)
k=1
Ak
Hi = ) 10 X0 Ugi, UpiUsiyU i, Ui Usiy (8.270)
k=1
JFEkFEL
H2/ = |<va Xk>| U Urtk USll thk Url, Usllv (8271)
k=1
JF#kFL
_ N 2 = 7w
Hy= > |xj )| Ugi, Uri, Usi, Ui, U i, Ui (8.272)
k=1
JFEkFEL
I]/ = (X} ) Xl) <Xk’ X}> (XZ’ Xk) U Urlk Uszl Uql, Urtj Uazk s (8.273)
k=1
J#kFL
12/ = Z (va Xk) <ka Xl) (le X]) U Urtk Ustl quk UrtlUst, . (8274)
Jik,=1
kA

‘We now find that, indeed,
Hl=G+Y H+> I, (8.275)

but, to obtain the truncated correlation functions, we also need to consider the J’ and
K’ class terms. It is directly seen that J' = J because this term is governed only by a
product of single-particle transition probabilities, implying there is no many-particle
interference present.42 Therefore, we can restrict to the K’ class and obtain

K= 10t X P Ui Uni Usi U 41, U i, U (8.276)
k],(lzll

Kiv= > |06 xa)[* Ugi, U, Ui Ui Ui Ui, (8.277)
jk=1
J#k

K= 3 100 el Ui, Unis Ui Ui Ui Uy (8278)

jk=1
J#k

#2Mathematically, J = J’ simply follows because the factor associated with the factor related to
the additional degrees of freedom is of the type |(xx, xx) 12 (x1, x1), which is equal to one due to
normalisation.
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n

Kl/,z = Z |(Xka Xl)'z U‘Iik Urik Uvi;qu/vrikﬁsika (8279)
kl,(l:ll

KIL,Z = E }(st Xk>|2 quj Urik Usi,'ﬁqijﬁrijﬁsikv (8280)
jh=1
itk

/ - 2 =TT
Kj,z = Z |(Xj s Xk>| qu_, Urik Usik quk Uri_, Usik . (8281)
Jik=1
g
Finally, also L’ = L (for the same reason as J' = J) and a straightforward calcula-
tion, analogous to (8.250), leads to

crd = Z I — Z K' +2L. (8.282)

qrs
We note that, for (x;, x;) =1, for all i, j, (8.282) reduces to CJ,, and, when
<X[, Xj> = 6;j, we indeed find C;’”.

From the above considerations, it is clear that one needs a thorough understanding
of the additional degrees of freedom, i.e. the set {x}, of the incoming particles in
order to achieve anything. To illustrate the power of the certification method, using
the above truncated correlation functions, we will study specific choices for the set
{x;} The first choice, a sequence of Gaussian wave packets with a fixed time delay,
is considered for theoretical merit, as it builds intuition. This setup is slightly inspired
by non-linear spectroscopy (Mukamel 2009; Schlawin et al. 2012b) where one injects
pulses into a medium with a variable, controlled, time delay. The second choice for
{x;}, where random deviations from the expected arrival time at the detector are
considered, is intended to be closer to the interferometric experimental setting.

rs?

A sequence of particles with a fixed time delay is considered as a first specific
setup. Here, we focus on the situation where these particles (which we assume to be
photons) are Gaussian wave packets in Haqq = £2(R). This implies that one particle’s
internal wave function can be described by Ra et al. (2013a)

=1 d @=w0)® o 8.283
X]()_W/R WCXP(—W+I(+1)¢U>|W>, (8.283)

where we choose to work in the frequency-time domain rather than the position-
momentum picture. Note that ¢; in the expression can be related to an initial position,
which only becomes important when we consider several particles. When performing
an experiment, ¢; — #; is the difference between the times at which the particles j
and k are detected. We see that these different detection times not only (obviously)
physically, but also formally render distinguishability, since
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2 2
W — iwo(ty — l‘j)) = (x;(0), x«(0)).
(8.284)
Obviously, only the time delays between the different particles are relevant, such that
we can always take the first particle to trigger the detector and set the corresponding
arrival time ¢; = 0. This implies that, when we have n particles, there are still n — 1
time delays that are variable, which naturally leads to a wide range of possibilities.
In order to structure our discussion, we assume a train of particles, in the sense that
the particles are detected with fixed time intervals between them, or, in other words,
tjit1 —tj = At for j =1,...n — 1. This setup is convenient, since it allows us to
simply use AwAt as a measure for subsequent particles’ mutual distinguishability.

Indeed, Fig. 8.19 points out that increasing values of AwA¢ imply larger degrees
of distinguishability. Moreover, considering for example AwAt = 1, we see that
and x» have a strong overlap, whereas the overlap between x; and x¢ is negligible.
In this sense, we can expect two-particle interference processes between x; and x; 4
to have stronger contributions than three-particle interference processes, which are
on their turn dominant over four-particle interference processes, et cetera. Ergo, by
virtue of this sequence of wave packets, we can carefully investigate the importance
of each of these processes by varying AwA¢.

Because all the input modes are randomly coupled to all the output modes when
the unitary scattering matrix is sampled from the Haar measure, statistical features
of the interference pattern are not expected to depend on the modes in which the
particles are injected. In other words, the statistics of the C-dataset does not depend
on how the particles in Fig. 8.19 are distributed over the different input modes.

(x; (@), xk (@) = exp ( -

AwAt=4 AwAt=2 AwAt=1
L
Aw

AwAt=0.5 AwAt=0.125

A A

Fig.8.19 Gaussian probability distributions for the detection of bosons, described by single-particle
wave functions ;(f) € Haqa (8.283), at specific times. The wave packets are characterised by a
bandwidth Aw and are subject to fixed time delays At between mean detection times ¢; (for
particle with wave-function ;) and ¢; . The degree of indistinguishability is characterised by
the overlap of the probability distributions (8.284), which is fully determined by dimensionless
parameter AwA¢, which takes values AwAr =4,2,1,0.5,0.125 from very well distinguishable
to essentially indistinguishable, respectively
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Fig. 8.20 Normalised (PDF) histograms of the correlator data built from truncated two-point,
Cfs/d/pd (8.193), (8.195), (8.268; left) and three-point, C,];lf/pd, correlation functions (8.250),
(8.252), (8.282); right). Six partially distinguishable particles with wave packets x ; € Hada (8.283)
for the additional degrees of freedom are injected in twenty modes, with fixed time delay such
that AwAr = 1/2 (see Fig. 8.19) and are compared to bosonic interference (AwAt = 0) and to

the signal for fully distinguishable particles (AwAtr — o0). All histograms are obtained from one

single circuit by evaluating Cfg/ /74 for all pairs r and s, and C,}%g/ P4 gor all triplets g, r and s of

output modes. We always use the same input state W, given by (8.187)

All pieces are thus collected to study these C-datasets for the two-point and three-
point truncated correlation functions, and we can start with a comparison of the
histograms for a train of particles with AwAr = 1/2 (recall Fig. 8.19) to those which
we already know for bosons (A7 Aw = 0) and distinguishable particles (At Aw > 1).
InFig. 8.20 we see that the histogram for the train of mutually delayed particles indeed
exhibits a somewhat intermediate structure that shares features with both the bosonic
and the distinguishable case.

The story becomes much more interesting when we quantitatively analyse the
distributions in Fig. 8.20 through their lowest-order moments. The averaging proce-
dure of the unitary scattering matrices over the Haar measure is fully analogous to
the previous sections (see Appendix B), such that we find

n

m. (8.285)

1 n
Ey(CcP? =_—§ P —
v (CED) m(mz_l)kl_lHXk X1
kel

Comparing (8.285) to the earlier result (8.268), we see that each term related to a
two-particle interference process leads to the same average (see Appendix B) and that
I{xx, x:)|* provides a means of counting how many such two-particle interference
terms contribute to the correlation function. From Fig. 8.19, we can understand that
this implies counting the different pairings of wave packets, weighted by their degree
of overlap. For our specific choice of x;, (8.285) reduces to

2 n—1
Z(n — k)e R @wAn/2 _ n_
P m(m + 1)

Ey(CP

d —_—
s ) = moE 1) (8.286)
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After a much more complicated computation (following the same procedure as
Appendix B), we can also find the second moment expectation value

. (dez) _2A —2B(m —5)+2DQ2 + 6m —n +mn) + C(10 +m + m?)
Ulbrs 2 (m — Dm2(m + 1)(m + 2)(m + 3)
(m —2)(1 + 3m)n + 2n* + mn® + m*n?)
m—Dm2m+Dm+2)m+3)
(8.287)
with
2 2
A=Y e )l s xa)[ (8.288)
ki,ka 1yl
kyF#ka £l #D
2 2
B= " (e x| [0 xa)| (8.289)
k.,
kN £l
C=> 1wl (8.290)
o
D= Il x)f. (8.291)
kk;?e[l

For the three-point truncated correlation functions, we again consider the different
terms

2 n

- m(m? — 1)(m? — 4) j,kz’l; {0 xa) (e x) O xa) (8.292)
J#kF#L

2 n

mm® — 1)(m? — 4) jq;l (x5 xk) e o) (as xg) (8.293)
J#EkFL

Ev(I7)

Ey (1) =

1

N — 2
Ev(K) =~ T D) leZ:IHXk,xm (8.294)

k£l

n

bl = T D)

(8.295)
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from which we ultimately find that

4 n
Eu (CL) e Ty j;lReOXj, Xz)(xk,xj)<xl,xk>)
e (8.296)
6 ) 2n
P = Dn +2) k; e Xl S
ksl

The above expressions (8.285)—(8.287), (8.296) provide us with several quantities
that may be used for the characterisation of partial distinguishability. Fist, the ubiqg-
uitous appearance of inner products (X js Xk)» Jj # k, implies a strong dependence
on the exact structure of the wave functions in H,qq. Here we focus on the train
of Gaussian wave packets (8.283), with Aw At as a single-particle quantifier of the
degree of distinguishability (recall Fig. 8.19), and witness nice transitions from the
indistinguishable bosonic behaviour to fully distinguishable in Figs. 8.21 (for vary-
ing number 7 of particles) and 8.22 (for varying number m of modes), which depict
the RMT results (8.285)—(8.287), (8.296).

Let us first focus on Fig. 8.21, which explores the scaling behaviour of the nor-
malised means NM of both C,, and C,,, and the coefficient of variation C'V of
C,, for increasing numbers n of particles, for a fixed number m = 50 of modes. We
see, interestingly, that the visibility of the distinguishability transition in the nor-
malised means increases with the number n of particles. Specifically for (8.285) this
can directly be connected to the number of interference terms that contribute. The
contribution of the many-particle interference effects in (8.285) is given by (see also
Appendix B) the term

1 . 5
_mk; | Oxes X
i

such that the only influence of the particle number is contained in

> e x

k=1
k£l

Ergo, each interference term contributes in the same way to the RMT average, via a
term 1/m(m? — 1). The number of particles and their indistinguishability determines
how many of such contribution need to be counted, information which is encrypted
in (xk, xi1)-

Contrary to the change of visibility which we see in both N M plots in Fig. 8.21,
the C'V plot depicts a different behaviour. The visibility does not change significantly
upon increasing the number n of particles, but we do see the total shift of C'V to
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Fig.8.21 RMT results for the normalised means (N M) of two-point (C,; top; (8.220), (8.285) and
three-point (Cy,s; bottom right; (8.265), (8.296) truncated correlations functions, and the coefficient
of variation of the two-point truncated correlation functions (C V; bottom left; (8.221), (8.287). RMT
averages over random unitary scattering compounds of m = 50 modes are obtained for a sequence
of bosons, described by Gaussian wave packets X ; € Hada (8.283), as shown in Fig. 8.19, with
At Aw varied. The number of injected particles is varied n = 4, 5, ..., 20 (colour code). Visibility
increases with n for both N M plots, whereas no such significant effect is seen in CV

larger values. Nevertheless, the complicated structure of (8.287) makes it hard to
gain any specific intuition from this behaviour.

When we shift attention to Fig. 8.22, we observe the opposite effect when the
number m of modes is increased for a fixed number n = 6 of particles. The visibility
of the transition, seen in the normalised means N M of both C, and C,,,, decreases
for an increase in the number of modes. Mathematically, this is directly seen from
the structure of (8.285) and (8.296). This is a consequence of the random structure
of the scattering compound, which implies that the typical probability amplitude
decreases as the total number of accessible modes increases. Again, CV’s behaviour
is characterised by a shift in the curve (down to lower values of CV), rather than a
change in visibility.

In Figs. 8.23, 8.24 and 8.25, we, again (recall Fig. 8.11) compare the analytical
RMT predictions (8.285)—(8.287, 8.296) to data points obtained for single unitaries,
here with randomly chosen values of AwA¢ (which determine their position along
the plots’ x-axes).
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Fig.8.22 RMT results for the normalised means (N M) of two-point (C,; top; (8.220), (8.285) and
three-point (Cy,s; bottom right; (8.265), (8.296) truncated correlations functions, and the coefficient
of variation of the two-point truncated correlation functions (CV; bottom left; (8.221); (8.287)).
RMT averages over random unitary scattering compounds of m = 20, 30, ..., 200 modes (colour
code) are obtained for a sequence of bosons, described by six Gaussian wave packets x; € Hadd
(8.283), as shown in Fig. 8.19, with At Aw varied. Visibility decreases for growing m for both N M
plots, whereas no such significant effect is seen in CV

From Fig. 8.24, we conclude that in the regime of small mode numbers (e.g. here
m = 20) there is a considerable spread on the possible outcomes for variable (ran-
dom) U and thus different circuits. The first moments in Figs. 8.23 and 8.25 are
far less sensitive to changes of U, which is in agreement with Fig. 8.11 where we
observe a very small standard deviation for N M compared to the RMT predictions.
In Fig. 8.24, the spread in C'V gets smaller for the m = 100 data, but NM (Cy,,)
in Fig. 8.25 for m = 100 does not exhibit a clear transition in the data. The lack of
accuracy in this latter dataset arises because we consider only 200 randomly selected
combinations of three output modes to compute the C-dataset for the three-point
truncated correlation functions (8.282). However, since the two-point truncated cor-
relation functions already offer sufficient information in Figs. 8.23 and 8.24, there
is no problem with this lack of accuracy, at least with respect to this diagnostic pur-
pose. To indicate that such kind of data can be used to certify the degree of bosonic
behaviour, Fig. 8.26 displays a scatter plot, comparable to Figs. 8.12 and 8.13.
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Fig. 8.23 RMT results (solid line) for the normalised mean (N M; (8.220)) of the two-point trun-
cated correlation function C, (8.268). RMT averages (8.285) over random unitary scattering com-
pounds with m = 20 (top) and m = 100 (bottom) modes are obtained for an injected sequence of
bosons, described by six Gaussian wave packets x; € Hada (8.283), as shown in Fig. 8.19, with
At Aw varied. Data points (dots) correspond to the N M of a numerically generated C-dataset for a
scattering compound U, randomly chosen from the Haar measure, for Gaussian wave packets with
AwAt randomly chosen from the uniform distribution on [—4, 4]. RMT predictions for bosonic
interference (8.208) and for fully distinguishable particles (8.214) are indicated for reference

A sequence of particles with a random expected detection times is the second
example which we consider. In this case, we still consider x; € Haqq as Gaussian
wave packets, given by (8.283). However, the times ¢; around which these wave
packets are centred are now assumed to be randomly distributed according to a
normal distribution with mean zero and standard deviation 6¢. We again assume that
all wave packets have the same bandwidth Aw, such that we arrive at a scenario
as shown in Fig. 8.27, which depicts wave packets centred around randomly drawn
times, for different values of dz.

This setup is intended to describe an experimental setting where one aims to inject
all particles into the scattering compound at the same time 7, but is confronted with
an error, which is normally distributed (at least in approximation) and characterised
by dt. Because we are only interested in the overlaps <X s Xk> (8.284), j # k,between
the wave functions, we directly see that the result should not depend on 7y (which
we therefore set equal to zero).

We study the influence of the error on the moments of the C-datasets as a quantifier
for the bosonic many-particle interference. From the previous discussion about the
well-controlled sequence of particles with fixed time delay, it is to be expected that
small errors, ergo small §¢ (compared to the bandwidth Aw) keep the features of the
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Fig. 8.24 RMT results (solid line) for the normalised mean (CV; 8.221) of the two-point truncated
correlation function C,s (8.268). RMT averages (8.287) over random unitary scattering compounds
with m = 20 (top) and m = 100 (bottom) modes are obtained for an injected sequence of bosons,
described by six Gaussian wave packets x; € Haqa (8.283), as shown in Fig. 8.19, with ArAw
varied. Data points (dots) correspond to the C'V of a numerically generated C-dataset for a scattering
compound U, randomly chosen from the Haar measure, for Gaussian wave packets with AwA?
randomly chosen from the uniform distribution on [—4, 4]. RMT predictions for bosonic interference
(8.209) and for fully distinguishable particles (8.215) are indicated for reference

interference pattern intact. Figure 8.27 suggests a high degree of indistinguishability
in this case, which is consistent with this idea. To reach a quantitative description,
we, again, resort to RMT. Because we learned in the previous discussion, where we
considered fixed time delays, that the two-point truncated correlation functions C,
contain sufficient information for certification, we will not consider the three-point
correlation functions for this example.

To obtain the RMT prediction for this scenario, we can reuse the results (8.285) and
(8.287) of the sequence with fixed time delays. The quantities (X js Xk) are, however,
completely different in behaviour since they are also stochastic quantities. To gain
a statistical understanding of the moments of the C-dataset, we must therefore also
average over the normal distribution for the times ¢;. For the first moment (8.285),
we thus perform a direct integration to obtain

. -1
[&( > |<xk,xl>|2> _ D (8.297)
Py V14 2(Awdt)?

k£l
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Fig.8.25 RMT results (solid line) for the normalised mean (N M ; 8.265) of the three-point truncated
correlation function C ¢ (8.282). RMT averages (8.296) over random unitary scattering compounds
with m = 20 (top) and m = 100 (bottom) modes are obtained for an injected sequence of bosons,
described by six Gaussian wave packets x; € Haqa (8.283), as shown in Fig. 8.19, with ArAw
varied. Data points (dots) correspond to the NM of a numerically generated C-dataset for 200
randomly selected sets of three output modes of a random scattering compound U, for Gaussian wave
packets with AwAft randomly chosen from the uniform distribution on [—4, 4]. RMT predictions
for bosonic interference (8.261) and for fully distinguishable particles (8.263) are indicated for
reference

such that
nn—1) 1 n

mm? —1) /T + 2(bwor)?  mm+ 1)

For the second moment, we must average the different contributions (8.288)—
(8.291),which can again be done by direct integration:

(8.298)

Ey, (CPY) = —

nn—1)n—2)(n—3)

EA) = = Gmny (8.299)
E,(B) = nin— D —2) (8.300)
ST 1+ (Bwdn2/1 + 3(Awdn)? ‘
nn—1)
£ (C) = (8.301)

V1 +4(Awdt)?’
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Fig. 8.26 Scatter plots indicating the normalised means (N M ; (8.220), (8.265)) of two-point corre-
lators Cys ((8.193), (8.195), (8.268)) and three-point correlators Cy,s ((8.250), (8.252), (8.282)), and
the coefficient of variation (C'V; (8.221)) of C,s. Six partially distinguishable particles with wave
packets xj € Hada (8.283) for the additional degrees of freedom are injected in 100 random unitary
scattering compounds U with twenty modes, with fixed time delay such that AwAt = 1/2 (see
Fig. 8.19), AwAt = 0 (bosons) and AwAt — oo (fully distinguishable). Associated C-datasets of
C,s and Cy,s are numerically generated for each choice of U to evaluate N M and CV. The numer-
ically achieved NM and CV are averaged (black circle) and compared to the RMT predictions
which make use of ((8.285), (8.287), (8.296); red dot). We continuously vary At Aw to indicate (red
line) the transition from the RMT prediction for bosons to that for distinguishable particles

nn—1)

V14 2(Awst)?

k(D) = (8.302)

We now find that

,,dz) _2E,(A) — 2E,(B)(m — 5) + 2E,(D)(2 + 6m — n + mn) + E,(C)(10 + m + m?)
" (m — Dm2(m + 1)(m +2)(m + 3)
(m —2)(1 +3m)n + 212 + mn? + m2n2)
(m — Dm2(m + 1)(m + 2)(m + 3)

[EU,t(C

(8.303)
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Fig.8.27 Gaussian probability distributions for the detection of bosons, described by single-particle
wave functions x;(t) € Haqa (8.283), at specific times. The wave packets are characterised by
a bandwidth Aw and mean detection time #;. The mean detection times are randomly chosen
from a normal distribution (top right) of zero mean and standard deviation 7. The degree of
indistinguishability is characterised by the overlap of the probability distributions (8.284), which
is fully determined by dimensionless parameter Awd?, which is varied Awdt = 10, 5, 1, 0.5 from
essentially distinguishable to essentially indistinguishable, respectively

As important result, we obtain that the RMT predictions ((8.298), (8.303)) for
the moments only depend on three parameters: the numbers n and m of particles
and modes, respectively, and the quantity Awdt, which characterises the degree of
distinguishability (in agreement with the intuition of Fig. 8.27).

In Figs. 8.28 and 8.29 we investigate the dependence of the rescaled moments
NM (8.220) and CV (8.221) on variable particle and mode numbers, respectively,
according to the specific RMT results (8.298) and (8.303). We observe a phenomenol-
ogy which is very similar to Figs. 8.21 and 8.22, which show the same quantities for
sequences of wave packets with a fixed time delay. Again we see that the distinguisha-
bility transition is clearly visible upon changing the parameter which characterises
the degree distinguishability, here Awdt. Both in Fig. 8.28 and in Fig. 8.21, we see
an increase in visibility of the transition in N M when increasing the number of par-
ticles (for a fixed number of modes). For C'V the curves in both figures experience
a clear shift to higher values due to an increase in particle numbers. A comparison
of Figs. 8.29 and 8.22 shows in both cases that the visibility of the distinguishability
transition in N M decreases for increasing mode numbers, whereas we again see the
characteristic shift in the C'V curve.
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Fig. 8.28 RMT results for the normalised means (N M ; top; (8.220)) and the coefficient of variation
(CV; bottom; (8.221)) of two-point truncated correlations functions (Cy; (8.268)). RMT averages
((8.298), (8.303)) over random unitary scattering compounds with m = 50 modes are obtained
for a sequence of bosons, described by Gaussian wave packets x; € Hada (8.283), as shown in
Fig. 8.27. The mean detection times are randomly chosen from a normal distribution of zero mean
and standard deviation 07, and the parameter Awdr is varied. The number of injected particles is
also varied, n = 4,5, ..., 20 (colour code)
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Fig. 8.29 RMT results for the normalised means (N M ; top; (8.220)) and the coefficient of variation
(CV; bottom; (8.221)) of two-point truncated correlations functions (Cy; (8.268)). RMT averages
((8.298), (8.303)) over random unitary scattering compounds with m = 20, 30, ..., 200 modes
(colour code) are obtained for a sequence of bosons, described by six Gaussian wave packets
Xj € Hadd (8.283), as shown in Fig. 8.27. The mean detection times are randomly chosen from a
normal distribution of zero mean and standard deviation §t, and the parameter Awdr is varied

Figure 8.30 indicates that the RMT results (8.298) and (8.303) agree with the
numerical trend upon the choice of a random scattering matrix U and a random set
of times {¢;}. However, when we compare Fig. 8.30 to the earlier results in Figs. 8.23,
8.24 and 8.25, we observe larger scatter around the RMT prediction. We can clearly
conclude that this is a consequence of the fluctuations in arrival times. Be mindful,
the numerical C-dataset is computed for a fixed unitary and a fixed set of chosen {¢;},
which implies a structural error in the arrival times: To experimentally determine a
C-dataset, many measurements are required to accumulate statistics. Evaluating the
C-dataset for one set of chosen {z;} implies that the particles arrive with the same
time delays in each measurement.

Alternatively, when the particles arrive at different random times for each mea-
surement, the C-dataset for fixed unitaries already contains an average over the arrival
times, which decreases the scatter, as shown in Fig. 8.3 1. In this case, the time average
must be contained in each element C,, of the C-dataset, thus we must consider
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Fig. 8.30 RMT results (solid line) for the normalised mean (N M; top; (8.220)) and coefficient of
variation (CV; bottom; (8.221)) of the two-point truncated correlation function C,ﬁd (8.268). RMT
averages ((8.298), (8.303)) over random unitary scattering compounds of fifty modes are obtained
for an injected sequence of bosons, described by six Gaussian wave packets x; € Haqq (8.283), as
shown in Fig. 8.27. We average over the normal distribution of zero mean and standard deviation dz,
which describes the distribution of #;, and vary the parameter Awdz. Data points (dots) correspond
to the NM of a numerically generated C-dataset for a scattering compound U, randomly chosen
from the Haar measure, for Gaussian wave packets with six normally distributed mean detection
times ¢;, with zero mean and standard deviation §¢. For each data point the value Awdt is randomly
selected from the interval [0, 10]. RMT predictions for bosonic interference (8.208) and for fully
distinguishable particles (8.214) are indicated for reference (dashed lines)
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(8.304)
This leaves the RMT prediction (8.298) for the first moment of the C-dataset
unchanged, but changes the second moment because Ey E,(C,,*) # Ey (E/(Cyy)?).
A straightforward computation leads to
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Fig. 8.31 RMT results (solid line) for the normalised mean (N M; top; (8.220)) and coefficient
of variation (CV; bottom; (8.221)) of the time averaged two-point truncated correlation function
E; (Cf’sd) (8.304). RMT averages ((8.298), (8.305)) over random unitary scattering compounds
of fifty modes are obtained for an injected sequence of bosons, described by six Gaussian wave
packets x; € Haqq (8.283) which arrive at random times in each measurement. The parameter
Awdr describes the statistics of the overlaps of the wave functions <X i Xk> (8.284) and is varied.
Data points (dots) correspond to the N M of a numerically generated time averaged C-dataset for a
scattering compound U, randomly chosen from the Haar measure. Time averages are numerically
generated by averaging of C/, :i (8.268) for 100 sets of six mean detection times which are randomly
chosen from the normal distribution with zero mean and standard deviation dz. For each data point the
value Awdt is randomly selected from the interval [0, 10]. RMT predictions for bosonic interference
(8.208) and for fully distinguishable particles (8.214) are indicated for reference (dashed lines)
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Let us additionally emphasise that the RMT predictions shown in Figs. 8.21,
8.22, 8.28 and 8.29 all describe monotonous distinguishability transitions in the
moments of the C-dataset. The similarities in phenomenology for the sequence of
wave packets with fixed time delays and the sequence of wave packets arriving at
randomly distributed times leads to the conjecture that there may be a more general
measure (regardless of the specific details of {x;}) for the distinguishability of a
series of particles, which monotonously describes the distinguishability transition in
the moments of the C-dataset.

In addition, the accuracy with which the random matrix predictions describe ran-
dom scattering media in Figs. 8.23, 8.24, 8.25, 8.30, and 8.31, combined with the
monotonicity of the distinguishability transition, present our method as a useful
benchmark: the moments of the C-dataset serve as a many-particle and multimode
generalisation of the Hong-Ou-Mandel effect as a benchmark for the distinguisha-
bility of two particles. Therefore, the techniques we develop here are the first steps
towards what one may denote as multimode correlation spectroscopy.

D = (8.309)

8.6 Summary and Outlook

In this chapter, we introduced and discussed essential tools required for the study
of many-particle interference. Due to the intricate combination of many probability
amplitudes in the transmission signal, deferministic information on the fine-structure
of the interference patterns is intractable. However, we followed the philosophy of
the theory of complex systems (recall Chap. 3) and derived coarse-grained statistical
signatures of many-particle interferences.

First, we introduced many-particle interference in a wave function approach, asso-
ciated with the Schrodinger picture. After a review of known results, here translated
to the framework which we introduced in Chap. 7, we shifted gears to a measurement-
based approach. The main idea here was to treat the problem based on the detectors
that are placed on the output modes of the interferometer, and to consider the problem
in a Heisenberg picture. After explaining that both approaches produce equivalent
results, we implemented the measurement-based framework to consider many-body
correlation functions.

Not only did we considerably extend the known properties of correlation func-
tions of multiple output modes to non-orthogonal modes and partially distinguishable
particles, we also applied these correlation functions to boson sampling. The most
fundamental results in this chapter showed that two-point and three-point truncated
correlation functions of the particle numbers in different output modes provide a
sufficient amount of information to identify unambiguous and robust statistical sig-
natures of particle-type specific many-particle interference structures. This has direct
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applications for the certification of boson sampling (Giordani et al. 2018; Walschaers
etal. 2016b). We also showed that one can clearly exploit these truncated correlation
data to detect partial distinguishability. Exploring different sources of distinguisha-
bility, we employed the dataset of truncated correlation functions to emphasise the
potential of a novel type of multimode correlation spectroscopy (Walschaers et al.
2016a).

One paradigmatic example of many-particle interference effects is set by boson
sampling, as extensively discussed throughout the chapter. The results presented in
this chapter have also led to several new and interesting questions around the subject.

We showed that the truncated two- and three-point correlation functions of the
output modes beautifully show a transition from distinguishable to indistinguishable
particles. However, we only considered a specific choice of the wave functions in the
single-particle Hilbert space of additional degrees of freedom. We have presented
several arguments, e.g. the counting argument based on the structure of (8.285),
in favour of the existence of a more general measure of distinguishability which
describes the distinguishability transition inscribed in the moments of the C-dataset.
We believe that a considerable amount of mathematical tools required to achieve this
goal are already at hand (see those presented through this chapter and earlier work
(Walschaers 2011) on counting quantum states), and progress is already being made
(Tichy 2015; Tillmann et al. 2015).

More practical problems in the light of certification of boson sampling are effects
related to losses, although these may be solved by adding additional output channels
on which no measurements can be performed (Mayer 2012). Because we quantified
the dependence of the C-dataset’s moments on the total number of modes, our cer-
tification schemes may ultimately be used to identify the number of loss processes.
Nevertheless, a more structured study of such scenarios is required.

There are several potential generalisations and adaptations that fall outside the
scope of our current work: To begin with we focussed our attention on Gaussian
channels (i.e. the single-particle unitary channel (8.15)), which are formally defined
as channels which map Gaussian states*? into other Gaussian states. Physically this
property implies that no additional correlations between the particles are created upon
transmission through the channel. Furthermore, we restricted our discussion to pure
number states which already lead to highly non-trivial many-particle interference
phenomena. Hence, it is legitimate to wonder what happens when either of these
ingredients is changed.

An interesting field of study is that of more intricate non-Gaussian states. A pro-
found problem is that currently no theoretical or experimental tools are known to
characterise the full class of non-Gaussian states. Nevertheless, there are experi-
mental tools which can be used to consider well-known Gaussian states and slightly
manipulate them, for example by adding or subtracting particles (Averchenko et al.
2016; Ra et al. 2017; Walschaers et al. 2017b). This yields a setup similar to the
one considered here, since we can use the GNS construction to substitute the vac-

“3The most general definitions of Gaussian states are given in Sect.7.7. However, a simpler intro-
duction for states on the bosonic Fock space can be found in Sect.7.6.4.
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uum state for a more complicated vector on which we create quasi-particles. Efforts
have been made in this direction (although they do not consider sophisticated alge-
braic constructions as we just suggested here) (Lund et al. 2014; Olson et al. 2015;
Seshadreesan et al. 2015), but they strongly focus on the impact on computational
complexity. A thorough account on the physical properties of many-particle inter-
ference patterns induced by such states is still missing. In this context, it is also of
interest to consider homodyne detection (Grynberg et al. 2010; Roslund et al. 2014)
as a complement to photon counting in the setup, which recently led to several new
developments (Chabaud et al. 2017; Chakhmakhchyan and Cerf 2017).

This leads us to consider more minimalistic approaches and wonder when such
dynamical sampling problems become tractable in computer simulations. A partial
answer (Rahimi-Keshari et al. 2016) to this question was given, based on properties of
the phase space representations (see Sect.7.6.4) of, both, the input state that is sent
through the interferometer and the measurement on which we ultimately project.
This result suggests that one non-Gaussian research may already be sufficient to
render a sampling problem hard to simulate. This suspicion is confirmed by setups
where non-Gaussian photon-detectors are replaced by Gaussian homodyne detection
(Chabaud et al. 2017; Chakhmakhchyan and Cerf 2017), and by setups (Hamilton
et al. 2017) where one uses non-Gaussian detectors to sample from a multimode
Gaussian states. The latter is remarkable, given that we argued in Sect.8.3.2 that
Glauber coherent states do not give rise to many-particle interference. Indeed, the
Gaussian boson sampling setup (Hamilton et al. 2017) requires a certain amount
of squeezing (see Sect.7.6.3) to be computationally hard. However, the underlying
physical mechanisms of these setups are still ambiguous. In particular, it is not clear
whether we can interpret these results in the context of many-particle interference. A
potential route to answer this question is by exploring versions of the setup where the
channel is highly symmetric, such that interference effects become more pronounced
(Dittel et al. 2018a).

An alternative extension of these many-particle interference setups is to consider
different types of channels. Since all Bogoluibov transformations (i.e. multimode
squeezing, recall expressions (7.180), (7.181) in Sect.7.6.3 and the generalisations
in Sect.7.7) lead to Gaussian channels, the most challenging generalisation is to go
beyond this realm and investigate the impact on many-particle interference patterns.
One way to generate a non-Gaussian transmission channel is to consider systems
where the particles can interact with each other or, in an all optical setting, where
there are nonlinearities (Dufour et al. 2017). This leads us to an important open
question of many-particle physics: How to disentangling the dynamical contribution
of interference, induced by indistinguishability, from the dynamical contribution of
interactions within the transmission signal? However, this question is also notoriously
difficult to address: It is commonplace to approach systems of interacting particles
via perturbative or hierarchical techniques (Negele and Orland 1998), which quickly
increase the complexity of the problem. Recent developments (Gessner 2015) based
on coarse-grained descriptions may provide a fruitful alternative for studying statis-
tical signatures of many-particle dynamics.
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A more tractable route runs via the introduction of intricate forms of decoherence
and dephasing. In Sect. 9.6 of the next chapter we will introduce a class of dephas-
ing channels, which are shown to be non-Gaussian, but can can be handled. These
dephasing channels may lead to interesting many-particle interference phenomena,
on transient time scales.

In this chapter we extensively focussed on understanding interference phenomena
in many-particle systems with a fixed number of particles. In the following chapter
we investigate what happens when we allow systems to exchange non-interacting
fermions or bosons with particle reservoirs. We will introduce the concept of particle
currents which flow through the system and subsequently study their behaviour in
the non-equilibrium steady state. Once again, we will uncover that these currents
manifest profoundly different phenomenology, depending on whether the particles
are fermions or bosons.
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Chapter 9 ®)
Currents of Indistinguishable Particles oo

So we beat on, boats against the current, borne back ceaselessly
into the past

F. Scott Fitzgerald in “The Great Gatsby” (Fitzgerald 1925)

9.1 Open System Dynamics for Many-body Systems

This chapter is formulated in the algebraic framework of Sect.’1.7 and is somewhat
more abstract than the previous chapter. With this formulation, we intend to facilitate
generalisations to scenarios with infinitely many particles, e.g. systems in the ther-
modynamical limit. Furthermore, this more general setting also forces us to make
several assumptions more explicit, which highlights the mathematical limits of the
model and thus the physical setting which it can describe. Readers who are not
mathematically inclined may choose to picture a Fock space on a finite-dimensional
single-particle Hilbert space. In the fermionic case, this automatically guaranties
that all operators are matrices, which makes them bounded and trace-class.

In the previous chapter we used the many-particle framework of Chap. 7 to exten-
sively study new interference phenomena which were purely related to indistin-
guishability. These effects even manifested in the absence of any interactions between
particles. Even though we developed an understanding for the statistical signatures of
many-particle quantum interference, we have not yet addressed the issue of efficient
quantum transport in the many-particle context. Of specific interest is the question
whether the single-particle channels of Sect. 8.2, which describe the dynamics of
non-interacting particles, can be designed as optimal conductors.

In this chapter we treat this question by extending the model of Chap. 5 to a many-
particle setting. In the light of Chaps.7 and 8, it is crucial that our model grasps
the specific differences between bosons and fermions as contained in the canonical
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commutation and anticommutation relations, respectively. An implicit assumption
in Chap. 5 is some degree of control over the channels, in the sense that we are scat-
tering single particles on the system. We generalise this picture to the many-particle
setting by considering channels as particles reservoirs with which particles can be
exchanged. Once we have several such reservoirs we will typically see currents
flowing Landauer (1957), unless the system and all reservoirs are in equilibrium.
Hence, systems can be forced into a non-equilibrium setting by imposing thermody-
namic differences between the reservoirs, e.g. in chemical potential or temperature.
Such gradients induce currents through the system, i.e. constant fluxes of particles.
Because we specifically consider quantum systems, these currents are a clear quan-
tum transport phenomenon and thus efficient quantum transport is associated with
large currents.

The contributions in this chapter can be understood in the broader context of
currents in quantum mechanical systems. This topic is commonly considered within
the context of condensed-matter physics, where it is studied in a variety of settings,
e.g. in the framework of heat conduction (Asadian et al. 2013; Casati and Prosen
2003; De Roeck and Maes 2006; Dufour et al. 2017; Manzano et al. 2012; Ruelle
2000). A specific field of experimental applications is that of nanowires and molecular
junctions (Agrait et al. 2003; Nitzan and Ratner 2003; Petrov et al. 2011; Segal and
Nitzan 2002; Segal et al. 2003; Velizhanin et al. 2008), where both the transport
of heat and charge have been considered. Of interest in relation to Chap.6 is the
potential relevance for quantum transport in photosynthetic complexes (Jesenko and
Znidarié 2013; Manzano 2013; Witt and Mintert 2013). Finally, the framework is
also relevant for topics which are related to quantum optics, where one may study
currents of cold atoms through optical lattices (Ponomarev et al. 2006).

Let us briefly note that also more general advances considering non-equilibrium
steady states for spin-systems (Prosen and Znidari¢ 2009) and fermionic systems
(Prosen 2008) have been presented in recent years.

The connection between single-particle scattering and many-particle currents can
be made more explicit by recalling from Chap.5 that the general single-particle
framework was described in a Hilbert space Hion1 = Hs B, He—with H. C L*(R?)
the Hilbert space of a channel and H; the Hilbert space describing the system. In
Chap. 7, we introduced the Fock space I' (Hoa1) as a framework to describe finitely
many particles in a system. The discussion in Sect.7.3.2 now implies that

[ (Hioa) = T (H @ M) = 00 QT (o). ©.1)

This is the mathematical way of stating that a many-particle scattering problem allows
for an equivalent description in terms of a tensor structure, which is the common
framework of the theory of open systems (Alicki 1987; Breuer and Petruccione
2007). In this sense, we can now consider I'(Hy) as the system and I'(H,) as the
IeServoirs.
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To describe the system in a more formally correct way, we must be able to consider
the thermodynamic limit (at least for the reservoirs). This leads us to the formalism
of Sect. 7.7 which was historically developed to study quantum statistical mechanics.
Rather than considering Fock space, we formulate the problem in terms of algebras
of observables and throughout most of the chapter do so in the context of fermions.
Therefore, we consider the CAR algebra as introduced in Sect.7.7.1 and we will
exploit the Jordan-Wigner transformation (recall Sect.7.3.2) on the level of the C*-
algebras. From (Alicki and Fannes 2001) one obtains the equivalence

AR (7, DM, ) = ADRH) \ AR (), ©92)

where A“AR (H,) is the CAR algebra constructed on single-particle Hilbert space Hy,
and “A” is the graded tensor product." For our discussion the latter can be thought of
in the same way as a normal tensor product. The right hand side of (9.2) provides a
structure where we can accommodate infinitely many particles in the reservoirs and
describe the full dynamics. However, we here follow the program of open system
theory and proceed to a picture where the reservoirs AR (H,.) are integrated out.

The coarse-graining of the reservoirs can be done explicitly, for example in the
weak-coupling limit as in Alicki (1978). However, our goal is not to formally derive
a master equation starting from a Hamiltonian description, but rather we consider a
phenomenological, exactly solvable model (Alicki 1987; Davies 1977a). Therefore,
we simply focus our attention on the algebra of observables associated to the system
ACAR(H,) (henceforth denoted A“AR) and describe the systems dynamics in the
Heisenberg picture in terms of a one-parameter semigroup, which means that it is
completely irreversible, divisible, and memoryless (recall Sect.2.4.1). Because we
consider the dynamics of a C*-algebra, we must use Lindblad’s more general result
(Lindblad 1976) and describe a one-parameter semigroup of completely positive
dynamical maps A, = exp(tL), with

L(x) =V(x)+ Kx +xK*, forallx e AR, (9.3)
where K € A®AR and ¥ : A“AR — ACAR 3 CP map.

The model which we implement here (Davies 1977a), requires a specific CP-map
W and operator K € AR (9.3). We choose

1A definition and introduction to the use of the graded tensor product are provided in Sect. 6.2 of
Alicki and Fannes (2001). Here we restrict to simply stating that it shares many properties with the
normal tensor product, but guarantees that {c(¢ & 0), c(0 @ »)} = 0. If one uses a normal tensor
product, rather than a graded one, the CAR cannot hold because a normal tensor product leads
to [c(¢ @ 0), c(0 & 1p)] = 0. Because we will directly proceed to the dynamical one-parameter
semigroup, we will not elaborate further on this object.
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K = ! LTL 9.4
=3 Z ‘L, 9.4)

W(x) = ZL:‘H(x)Li, for all x € AR, 9.5)

where L; € AR and 6 is a x-automorphism, given by 6(c(1))) = —c (). This
leads us to the final master equation, which extends the previously considered von
Neumann equation (8.1)?

d 1
5= —i[[(H), x] + Z L¥0(x)L; — E{L?Li, x}, forallx € AR, (9.6)

Expression (9.6) is extremely close to the more well-know Lindblad equation (2.46)
(Lindblad 1976), the difference lies in the additional *x-automorphism 6, which is
necessitated by the CAR (Davies 1977a). Depending on the exact phenomenology
which we wish to describe, we must make an explicit choice for the operators L;.

On top of the coherent dynamics generated by a single-particle Hamiltonian,
we include dissipation and absorption of particles (from the system’s perspective).
We first specify the model and hence the choice of L; for this specific type of
dynamics in Sect.9.2. Then, in Sect.9.3, we treat the dynamics for single-particle
observables and the resulting currents in the non-equilibrium steady state. More
specifically, in Sect. 9.4 we derive a universal bound for these currents, which is valid
for all Hamiltonians without interactions, i.e. given by I'(H) with H € B(H) (recall
Sect.7.5). Sections9.5 and 9.6 are devoted to reaching this bound using various
possible methods. The final section deals with the translation of our results to a
bosonic setup, which requires few, but subtle changes.

9.2 Dissipation and Absorption

In Chap. 8 we introduced the dynamics of a fixed number of non-interacting particles
in Sect. 8.2 and explored the interference phenomena which may arise in such dynam-
ics. In this chapter, we extend this framework by allowing the number of particles
to change over time. However, we still restrict ourselves to non-interacting particles,
such that the system Hamiltonian given by I' (H) (recall (7.5)), with H € B(H), and
'H the single-particle Hilbert space. Hence, the generalisation extends (8.1) to (9.6).

The Lindblad operators L; are chosen such that the system absorbs and dissipates
particles, one at a time. It turns out that these operators can be stated as

2Note that in (8.1) we restricted ourselves to the Fock space, whereas here we extend this
to the more general framework of C*-algebras. This means that we now consider I'(H) =
Zi’j (ei, Hej)c*(e,-)c(ej), for any basis {e;} € H and c as in (7.211).
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LY =\ [y2c(5)), for dissipation from mode §; € H 9.7)
L} =\ /~ic* (), for absorption in mode «o; € H, 9.8)

with fyid’“ > 0 the rates at which these processes take place. We choose both the
Hamiltonian and the Lindblad operators to be time-independent, hence there are no
external driving forces.

Let us first consider the action of the generator £4: (9.3), as induced via one such
operator L;‘J’”, on c*(1)c(¢). With (9.7) we directly find that

1
£(c We(@) =7 (O 1e@)e®) = S O)e®). ¢ We@)}).  (99)
With the CAR (7.212, 7.213) it straightforwardly follows that

c*(0)c ()™ (P)e(@) = (0, ) " ()e(p) + c*(S)c* (¥)e(@)e(d), (9.10)
c*(WP)e(P)c™(§)c(d) = (@, §) " (P)c(d) + ™ (H)c™ (Y)e(@)e(d). O.11)
These terms in (9.9) give:
d

L @e(9) = —77 (0, 1) " (0)c(p) — (¢, 6) () (d). 9.12)

The absorption is dealt with in a strictly analogous manner, and (9.8) in (9.3, 7.212,
7.213) produces

1
LY c(@)c* (W) =~ (c(a)c(gzﬁ)c*(z/;)c*(a) - E{C(a)c*(a), C(¢)C*(¢)})- 9.13)
This can be compactified with the identities

c(a)c*()c(P)c* () = (@, a) c()c™ (@) + c(a)c(P)c* (W)™ (@), (9.14)
c(@)c*(P)c(a)c™ () = (a, ) c(@)c™ () + c()c(P)c* (P)c* (), (9.15)

to yield the final result

a a

L c(P)e* @) = —5 (6. ) c(a)c* () — % (a, ¥) c(d)c™ (). (9.16)

2

‘When combining the absorptive and the dissipative part of the open system dynamics
we still need the action of £¢ on the ¢*(1))c(¢) (as in (9.12)) rather than on ¢(¢)c* (1))
in (9.16):
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L (@W)e(@) = (b, 9) L (1) — L (c(d)c™ (1))
= —L(c(@)c* (W)

= 5 (6. 0) ()" @) + - (o ¥ @)™ (@)
— L (6. a) F@he(e) — L () ¢ (@)ed) + 7 (6, a) ().
(9.17)

Expressions (9.12) and (9.17) are the fundamental building blocks to describe the
overall dynamics of a normally ordered Wick monomial. The generalisation of (9.12)
reads

LYCH(P1) - .. M (Bn)c(Bnt1) - - - (Bnim))

d n+m ntm (9.18)
=——L Z (6, 0;) (Hc#(¢k)> c*(6;) 1—[ o) |
=j+1

where the # indicates either a creation or an annihilation operator, such that the
order of creation and annihilation operators of the original monomial is preserved.
The fact that the generator thus maps normally ordered monomials onto normally
ordered monomials of the same order will be crucial when we solve the dynamics
further down. Analogously, we obtain the generalised absorptive contribution:

Lc(d1) - .. ()™ (Put1) - - - € (Dpam))

R b (9.19)
=52 o 0)) ]'[c(@) c*(ay) H How) | -
j=1 =j+1

We can now generalise for n, absorptive and n, dissipative channels,> which we
group together in the operators A, D € B(H), respectively:

N _q nd o d
A=Y Lo (el D= 216 Gil. (9.20)
i=1 i=1

The dissipative part of the dynamics then reads

3Even limits n4, ngy — 00 can be accommodated. This scenario naturally arises for systems with
an infinite dimensional single-particle Hilbert space H, as treated in Davies (1977a). In principle,
one may even replace the sums by integrals, and use the spectral theorem to define A and D.
Mathematically, this implies that some care is required to ensure that the dynamics is well-defined
(Davies 1977b,1979; Holevo 2001). Physical examples where such treatment becomes relevant are
typically found in quantum field theory treatments of unstable particles (Alicki 1987): One may
think of fundamental particles or light nuclei, quantised electromagnetic waves in absorbing and
radiating media, quasi particles of condensed matter physics, or neutron diffusion (Davies 1977b).
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LYCH(P1) - .. (D) (Bnt1) - - - (Bnim))

n+m [fj—1 n+m
(9.21)
=—Z<1’[c#(¢k))c#<0¢,-) [] fer].
k

j=1 \k=1 k'=j+1
and the absorptive part

LYc(1) - .. () (Put1) - - . € (Pnsm))

n+m [j—1 n+m 9.22
=— Z (1_[ c#(¢k)> c#(A¢_,~) 1_[ o) |- ©.22)
k

j=1 \k=1 k'=j+1

Once again, (9.22) has to be rewritten in normal order for dynamics a la (9.6) with,
both, dissipative and absorptive channels, what adds another layer of computational
overhead.

In what follows, we will consider some specific applications of the thus formulated
theoretical framework, focussed on the dynamics of single-particle observables as
introduced in Sect.7.5.

9.3 Dynamics of Single-Particle Observables

9.3.1 Solving the Dynamics

The starting point of this section, where we analyse the dynamics of single-particle
observables, is the generator £ (9.6) of our dynamics, acting on a general single-
particle operator I'(B), B € B(H) and trB < oo, with

I['(B) = Z(e,», Bej)c*(e;)c(e;). (9.23)
ij

Our treatment and formulation will in many ways be similar to Alicki (1987, 1978).
We first use (9.21) and (9.22) to evaluate

L(c*(@)c@)) = i[[(H),c*()e@p)] + £ @) + LA(CH (@)e@))
=c*((iH — A — D)p)c(tp) + c*(p)c((H — A — D)tp) +2 (¢, Ap) 1.
(9.24)
With (9.23) and (9.24) we directly find

LT (B)) =T (i[H, B] — {P, B}) + 2tr(AB)1, (9.25)

where P := A + D. This tells that, because of the absorption of particles, a single-
particle operator is mapped onto a new single-particle operator and a multiple of
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the identity. Therefore the set X = {I"(B) 4+ z1 | B € B(H), z € C} is left invariant
under the dynamics and I'(B(#)) + z(#)1 can serve as ansatz for a solution:*

d
5, TEO) +z(0OD) = LT (B(1))) + z()L(D). (9.26)

Using that £(1) = 0 by (2.38),” and that £ is linear, this can be rewritten as
T'(B(t)) +2(1)1) =T (i[H, B(t)] — {P, B(t)}) + 2r(AB(1)1, 9.27)

which leads to two coupled differential equations:

B(t) = i[H, B(t)] — {P, B(t)}, (9.28)
2(r) = 2tr(AB(1)), (9.29)
with z(t =0) = z9, and B( =0) = By. (9.30)

These equations, and hence also (9.27) can be solved to find

t
A(T(Bg)) =T (&' =P Boe! TH=P)) 44 < f ds 2Ae”HP>fBOe“HP>S> 1,

0
(9.31)
which we will now use to determine the dynamics of several relevant quantities.

9.3.2 The Non-Equilibrium Steady State

We focus on single-particle observables (see Sect.7.5), and can therefore express
their expectation values in any state w using an operator Q € B(H)°®:

w(c*(P)e)) = (¢, QV). (9.32)

Thus, due to linearity of the state w, whenever we consider an operator B which is
trace-class,” i.e. B € 7 (H), we find

w(I'(B)) = tr(OB). (9.33)

Since, in addition, w(1) = 1 by definition (7.219), we obtain from (9.31) that

4£(X) C X and thus the generated dynamics can never make elements of X’ leave the set.
3 Alternatively, one may insert 1 in the right hand side of (9.6).

5This holds because w(c*(¢)c (1)) defines a sesquilinear form for ¢ and v (Bratteli and Robinson
1997).

7Recall the definition in Sect.2.3.2 or Conway (1997)



9.3 Dynamics of Single-Particle Observables 383
. ) t ) )

wo A (T'(By)) = tr (e’(’H_P)Boet(_’H_P)Q) T <Bo / ds ze(—’H—P)“‘Ae“H—P)S> . (9.34)

0

Typically,® in the limit where ¢ — oo, we arrive at

00 . .
lim wo A(I'(By)) = 2tr (BO/ ds e<—1H—P”‘Ae<’H—P>S> , (9.35)
1—00
0

such that we can define the non-equilibrium steady state (NESS) wngss 1= lim;_ oo
w o A;. It directly follows that

wness (" (P)c(¥)) = (¢, Ongss?)

with Qrss = 2/oods o(TTH=P)s g (H=P)s (9.36)
0

such that the expectation value of a single-particle observable in the NESS can be
described as

wnEss(I'(By)) = tr(By ONEss)- (9.37)

The physical content of (9.36) is that the expected number of particles in every single
particle state converges to a constant value. Given that the absorption and dissipation
rates {fy;‘} and {'y;l} are constant in time, i.e. do not fade away as t — 00, a current
must be flowing even in the NESS, which justifies the terminology.

9.3.3 Normal States

Our above discussion did not depend on any assumptions on the state w, but the prize
we had to pay was the requirement that the single-particle observable B € B(H) also
fulfils tr B < oo, or, in other words, B € 7 (H). Whenever this is not the case, we
risk to encounter problems in systems where the single-particle spaces H are infinite
dimensional. The problem lies in the fact that tr QB is generally infinite in this
case, and therefore £(I"(B)) would no longer be well-defined. Fundamentally, the
boundedness of B € B(H) cannot guarantee the boundedness of I'(B), and therefore
in general I'(B) ¢ ACAR_ A good example is the number operator N = I'(1), which
is clearly unbounded when the single-particle space H is infinite dimensional.
Physically, this situation corresponds to the thermodynamic limit, which is com-
monplace in statistical mechanics. One of the strengths of the algebraic approach to

8Formally, this depends on the spectrum of i H — P, which should not contain points which are
purely imaginary. Mathematically, the set of operators i H — P which do contain purely imaginary
points in their spectrum is negligible. Physically, phrased in the terminology of resonances, this
implies that each resonance should have finite width. Also from a physical perspective this demand
is typically satisfied, although there may be exceptions which in decoherence theory are termed
decoherence-free subspaces (Lidar and Whaley 2003).
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many-particle systems—which we introduced in Sect. 7.7—is that it also allows us to
describe such types of systems. Nevertheless, global observables (such as I'(1)) are
typically not suited to describe properties of such systems. This essentially implies
that such a system in the thermodynamic limit cannot be contained within one sin-
gle representation of the algebra. A typical method to deal with these systems uses
local sub-algebras to describe local observables. In the thermodynamic limit this
method induces a description in terms of densities. The relevant states to consider
are then referred to as locally normal (Bratteli and Robinson 1987, 1997). Impor-
tant applications of such techniques are found in the studies of BEC (Araki and
Woods 1963; Verbeure 2011), superfluidity (Robinson 1965a) and the BCS model
for superconductivity (Balslev and Verbeure 1968; Haag 1962).

We will restrict ourselves to a more straightforward way to avoid mathematical
difficulties: We limit ourselves to states which are normal with respect to the Fock
representation (Bratteli and Robinson 1997). In other words, these states can be seen
as well-defined density matrices in the Fock representation (recall Sect.2.3.2), which
implies that they are convex combinations of pure states with finite particle numbers
(in the expectation value). More specifically, they are the states w which satisfy

w(N) =Y w(e*(m)em)) < oo, (9.38)

where {7;} forms an orthogonal basis of the single-particle Hilbert space. Using
the result (9.32) that we can always find a Q € B(H) for which w(c*(¥)c(¢)) =
(¢, Q1) , we could also say that the normal states with respect to the Fock represen-
tation are those where this Q fulfils the constraint tr Q < oo.

It is not sufficient to limit ourselves to initial states which are normal with respect
to the Fock representation, but we must also make sure that this property is conserved
throughout the dynamics, i.e. in the Schrodinger picture we must map normal states
onto normal states. A necessary condition to achieve this goal is clearly thattrA < oo,
and the additional demand that trD < oo is sufficient to guarantee that the number
of particles in the system remains finite.

Let us remark that the above actually implies that the entire analysis can be carried
out in the Fock space representation I'/ ().’

9.3.4 Currents

To discuss in more detail the stationary currents that manifest in the non-equilibrium
steady state, we observe a particularly interesting meaning hidden in the generators
of the dynamics. In general, dynamics of the form

9Hence, the language of C*-algebras is not strictly necessary, but is here nevertheless used to
facilitate future extensions.
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d
ax(t) = L(x(1)) (9.39)

can be interpreted as a continuity equation. For a system with initial state w to ever
converge to a steady state, it must hold that

tlim wo L(x(t)) =0. (9.40)
For a single-particle observable I"(By) this is tantamount of

onss (V[T CH), T (Bo)T) + wness (£7(T'(Bo) ) + wness (£7(T'(Bo)) ) =0,
(9.41)
what we can rewrite, using (9.25) and the definition (9.36) of Ongss., as

itr([H, Ongss]Bo) = tr((2A — {A, Ongss})Bo) — tr({D, Ongss}Bo).  (9.42)

The left hand side of this equation grasps all the coherent contributions to the current
associated with observable By (Alicki 1976, 1979),'° and more specifically how this
current is distributed within the system. The right hand side accounts for incoherent
contributions, which stem from particle exchange with the reservoirs. The latter can
be understood in the sense that, for example, tr({ D, Ongss} Bo) is obtained by letting
£4(9.21) act on the observable I'(By) in wngss. Hence it literally describes how the
observable I'(By) is expected to change in time as consequence of the dissipation of
particles from the system.

Local Currents and Coherence

Local quantities are found via objects such as i1(¢) = I'(|¢) (¢]), which is the observ-
able that describes the number of particles occupying a given mode ¢ € H (recall
Sect.8.4). When we evaluate (9.42) for n(¢) and find

21m (9, HQ9) =2 (6. A¢) —2Re (6. AQ8) + (6. DQ9) ). (943)

where the lefthand side denotes the current flowing in and out of the state ¢ within
the system,'! and the righthand side takes into account all the particles that enter or
leave the system via state ¢. Let us consider a specific example:

Example 9.3.1 To acquire more insight, let us briefly adopt the network picture of
Sect.4.1. Recall that there the single-particle Hamiltonian was represented as

H = ZH,']' |€,‘) <e_,~ 5 (41)
iJj

10We can associate currents to several quantities, such as global particle number (By = 1), local
particle number (By = |¢) (1]), energy (Bg = H), et cetera.

'This is much like the probability current which arises in the single-particle Schrodinger equation,
only do we here consider a many-particle generalisation.
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with {e;} as orthogonal basis of the single-particle Hilbert space H, which we asso-
ciate with the nodes of a network.

We moreover assume that A and D are both diagonal in this mode basis, which
implies that each node in the network is connected to its own reservoir:

A=) 7 leie;|. and D=3 afle)e]- (9.44)
Y j

When we now locally study what happens in the kth node of the network, we
must choose ¢ = e;. When we combine (4.1), (9.44), and the orthogonality of {e;}
in (9.43), we obtain

Z 2ImHy; (ej, Qex) = 27{ (1 — (ex. Qex)) + 27 (ex, Oex) . (9.45)

J

Recall from (9.42) that the right hand side can be interpreted as a local change
in particle number, induced by Hamiltonian dynamics. Hence in the framework of
Alicki (1976, 1979) we consider

Jksj = 2ImHy; (e;. Qey) (9.46)

a local thermodynamic flux of particles from node k to node j. This current is not
only mediated by the coherent part of the dynamics, it is also directly proportional
to the coherence. Indeed, recall that, by virtue of (9.32), we obtain

(ej. Qex) = w(c*(e)c(er)). (9.47)

Therefore, (9.46) shows us that coherence and local currents go hand in hand.

Example 9.3.1 is not only relevant in relation to our discussion in Chap.4, it also
provides us with a simple intuitive picture to see how local currents are related to
coherence. Nevertheless, we needed to make several specific assumptions to arrive
at this picture. It is not hard to understand that the network is ultimately nothing
more than a mental picture to help us understand the dynamics when we express
the problem explicitly in the eigenbasis of A and D. In general, however, A and D
will not be diagonal in the same basis. When we then express the problem in the
eigenbasis of either A or D, we find additional terms in (9.43). Therefore, we will
also find currents related to the real part of w(c*(e;)c(er)). In the network picture
these are effective currents which are mediated by a reservoir that couples to multiple
nodes.

Putting aside subtleties related to specific choices of bases (which usually depend
strongly on the concrete physical problem which is considered), we can reach a
general conclusion: Whenever currents are flowing through a system, we will find
that a current from mode ¢ to mode ), for ¢, ¢ € H, is associated with a non-
vanishing coherence w(c*(¥)c(¢)). If, in addition, the single-particle Hamiltonian
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H is real (recall (9.46)), we can clearly associate the imaginary part of the coher-
ence w(c*(e;j)c(er)) to a current induced by coherent dynamics. The real part of
w(c*(ej)c(er)) corresponds to an incoherent current, mediated by the a particle reser-
VOir.

Depending on the exact questions we want to answer, these local currents may not
be the most practical objects to work with. However, because we consider systems
with finite particle numbers, we can also attempt to discuss the global current that
flows trough the system. Moreover, if an overall current flows through the system,
is must also induce currents on a local level. In this sense, a global particle current
implies that there are coherences present in the system, although we typically cannot
gain quantitative details on the individual coherences.

Total Particle Current

To describe the global particle current, the relevant choice of observable is the number
operator, N = I'(1) (recall (7.97) in Sect.7.5), and therefore By = 1. This reduces
(9.42) to

2tr(A(1 — Ongss)) = 2tr(D Ongss)- (9.48)

Equation (9.48) says that the total incoming particle current is equal to the total
outgoing particle current, the non-equilibrium steady state particle current J can
therefore be defined as

J :=2tr(DQOngss) = 2tr(A(1 — Ongss))- (9.49)

J can be interpreted as the rate at which particles are flowing out of the system
into the different output channels (as characterised by the eigenvectors of D) (Alicki
1976). This is an immediate consequence of the fact that J = wgss(£? (N )). An
explicit expression for J can be obtained with the help of (9.36):

[e.¢]
J=4 / ds tr(De(’iH’P)sAe(iH’P)s). (9.50)
0

We will now show that J can be bounded under very general conditions, and that
there are procedures to saturate this bound.

9.4 The Maximal Current

In this section, we study the characteristics of the total particle current J as given
by (9.50). Although (9.50) provides us with an exactly solvable expression for the
current, it is highly impractical to use: To study the current in detail, we must
solve an integral over operators, which is usually a tough task. Therefore we try to
gain a deeper understanding of the structural system properties which determine the
current J.
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The key result of these considerations will be a universal upper bound for the

current J12:
tr(D)tr(A)

_ 9.51)
tr(D) + tr(A)

The proof is slightly technical in the sense that the individual steps are in general not
necessarily physically motivated. First, we introduce the super-operator

G(X):=—i[H,X]+{P, X}, with P=A+D, (9.52)
and define the super-operators which describe left and right multiplication, £y and
Ry, respectively:

Ly(X):=YX and Ry(X):= XY. (9.53)
We can now split G into a sum of two commuting terms:

G=Lp_iu+Rpyin. (9.54)

Generically,"? G is invertible, and, for positive definite P,'*

G '(Xx) = f ds exp(—sG)(X)
0

= / ds exp(—sﬁp,,-H) o exp(—stHH)(X)
0

o0
= / ds e SP—iH) x p=s(PHiH) (9.55)
0
Furthermore, we compute
GXTX)—G(XHX - X'g(X) = -2X"PX <0, (9.56)

such that
GX'X) <G(XxHX + XTG(X). (9.57)

12For fermions, one may directly argue that J < 2trA (because ONgss > 0) and that J < 2trD
(because Ongss < 1). However, these bounds are never reached since the new bound, which we
will prove here, is strictly smaller than both 2trA and 2trD (unless trA = 0 or trD = 0, where all
these bounds coincide and there is simply no current).

13Recall the footnote on p. 382. In a mathematical sense, the set of super-operators G which are
defined according to (9.52) and are not invertible is negligible. Again, there may be physical models
(which are arguably often idealised) where H and P are such that G is not invertible and therefore
some extra care is required when attempting to apply our results in this context. We conjecture that
continuity arguments can be applied to extend the proof to the mathematically rare cases where G
is not invertible. Nevertheless, the details have not been rigorously studied.

14One way to obtain this identity is by considering the Laplace transform of exp(—sG).
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We now introduce a symmetrised version of the zero temperature Duhamel (or
Bogoliubov) inner product (Bratteli and Robinson 1997; Petz and Toth 1993):

(X,Y) = tr(x*g—l(y) +o'(xt )Y), (9.58)

with X and Y general operators. Positivity of (9.58) follows from the invertibility of
G, from G(X") = (Q(X))T, from (9.57), and from

rG(X'X) =tu{P, X"X} > 0. (9.59)
In the next step, we use the Cauchy-Schwarz inequality
(A, P)~|* < (A, A)~ (P, P)~ (9.60)

and evaluate the different factors. To do so, we observe that

Lpiig(1) +Rpgin(l) = 2P. (9.61)
This yields
(A, P). = trA, (9.62)
(P, P). =P, (9.63)
o . .
(A, A). =2 / ds tr(A s (P=ith) Ae—S<P+'H>). (9.64)
0

Inserting these results in (9.60), we obtain

(tr(4))” < (tr(A) — J/2)tr(A + D) (9.65)
and it then follows that
w(A) (D)
m = -Imax- (966)

Since this bound Jy,.x does not depend on the system Hamiltonian, but only on the
properties of the channels (particle reservoirs) A and D as defined in (9.20), it can
be considered universal.

Note that the Duhamel inner product (9.58) is fundamental for the above. Indeed,
this structure is a common tool in quantum statistical mechanics (Aizenman et al.
2004; Dyson et al. 1976, 1978; Fannes and Verbeure 1977a,b; Hohenberg 1967,
Kubo and Kishi 1990; Naudts and Verbeure 1976; Naudts et al. 1975; Roepstorff
1977), but none of these works investigates dynamical problems. The appearence of
a non-Hermitian operator, (P £ i H), in (9.55) is a serious complication: Because of
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this non-Hermiticity, the usual Duhamel inner product is no longer well-defined. It
is the very reason why we define a new, symmetrised version in (9.58).

Although the bound (9.66) is a rigorous mathematical result, this does not neces-
sarily mean that it is also sharp. More specifically, it is not clear whether the coherent
contributions, contained with the Hamiltonian H, have any impact on the current in
the NESS. To asses such impact, we introduce the continuous tuning parameter
X € R*, which controls the relative strength of Hamiltonian and incoherent contri-
butions in

o
J=4 / ds tr( De( TP 4 @N=0), (9.67)
0

In the following we will refer to the limit A — oo as the limit of dominantly coherent
dynamics, and to A — 0 as that of dominantly incoherent dynamics. Note that the
case A = 0 is well-defined and corresponds to

o0
Jro = 4 / ds tr(De_SPAe_sP). (9.68)
0

The proof of the bound (9.66) holds for J)—g, and this quantity is completely inde-
pendent of the Hamiltonian H. Based on continuity of J (9.67) in A\, one may argue
that for sufficiently small values of A, the current will remain close to Jy—o. In a
mathematical formulation, one may argue that “\ sufficiently small” can be gauged
against the operator norms || P|| and ||H||. Without rigorously evaluating limits,
A < |IP|I/IIH]| is a safe choice for obtaining currents near Jy—q."> Therefore, for
any typical P, independent of the Hamiltonian H € B(H), we may always find a
value A such that the influence of H is negligible. Physically, one may interpret
this argument based on time scales: Coherent dynamics is governed by oscillatory
dynamics contained in H, and the incoherent contributions contained in P damp
these oscillations. The parameter A sets an overall scale for the frequencies of oscil-
latory dynamics. Regardless of how H is designed, we can always choose A small
enough for all oscillatory frequencies to be significantly smaller than their damping
rates. In other words, coherence phenomena will never become expressed.

The opposite limit, where A — 00, is more subtle and will be discussed in more
detail throughout Sect. 9.5. Nevertheless, an unambiguous physical understanding of
how the coherent contributions influence the NESS behaviour of the system is still
lacking.

To verify whether physical systems described by the model (9.6), with (9.7, 9.8),
manifest and potentially saturate our bound, we perform additional numerical sim-
ulations: We generate random Hamiltonians by sampling matrices from the GOE
(recall Chap. 3), as given by (3.26), where we set the typical (i.e. root mean squared)
interaction between the different modes equal to v/+/m. From (3.46), we know that v
governs the width of the spectrum of Hamiltonian H. Because we consider a many-
particle setting, we again refer to the dimension of the single-particle Hilbert space

13Using spectral and perturbation theory, one may come up with more rigorous arguments.
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‘H as the number m of modes. Hence, throughout our numerical evaluations, H is an
m x m matrix. We model the reservoir couplings by random positive semi-definite
matrices A and D chosen from the Wishart ensemble (Akemann et al. 2011; Wishart
1928). The latter ensembles are solely determined by the numbers of absorption and
dissipations channels, m 4 and m p, respectively. For our numerical simulations, we
set

A=W'W,, and D= W)W, (9.69)

where W, and W, are m4 x m and mp X m matrices, respectively. They are gener-
ated by choosing random components according to

(Wa.a);; ~ Normal(0, 1), (9.70)

which generates random positive semi-definite matrices A and D, which act on the
single-particle Hilbert space H. A typical eigenvalue of A or D therefore is of the
order m 4 or m p, respectively.'® Finally, the parameter ) is varied randomly over ten
orders of magnitude according to:

A=10%, x ~ Uniform([-5, 5]). 9.71)

Alternatively, one may thus say that log;, A is uniformly distributed on the interval
[-5,5].

Although these choices allow an interpretation in the context of random networks
(recall Chap.4) and bear similarities to Fyodorov and Savin (2012), Haake et al.
(1992), we do not intend to model any specific type of systems, nor study any statis-
tical properties of the resulting currents. We merely use RMT methods to generate
systems where we can control the typical time and energy scales in absence of any
symmetries. The primary goal is to investigate whether we can find realisations
which closely approach the bound (9.66). As a secondary goal, we set out to gauge
the importance of coherent and incoherent effects in the dynamics.

Figures9.1, 9.2 and 9.3 show the first numerical results on the statistics of the
current under changes of A. Because the bound Jy,.x depends on A and D, we rescale
all currents with respect to Jnax. The quantity J/Jn.x can then be compared for
any choice of A and D. Qualitatively, all these plots indicate that a strong coherent
contribution is needed to saturate the bound (9.66).

16 A simple estimate can be obtained as follows: The mean eigenvalue of A is by definition given
by tr A/m (because the trace is the sum of all eigenvalues). Nevertheless, the trace is also the sum
of the diagonal entries of A and, according to (9.69), these are given by

my

A=Y ((Waaij)’.

j=1

Due to (9.70) these objects are distributed according to a x-distribution and hence their expectation
value is m 4. As a consequence, we may conclude that E(tr A/m) = mg.
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Fig. 9.1 Scatter plot which indicates the stationary current J (9.67) relative to the maximal current
Jmax (9.66). Variable A (9.67) controls the relative strength of the Hamiltonian and incoherent
contributions; for each data point log;, A is randomly chosen from the interval [—5, 5]. For each
realisation, Hamiltonians H in (9.67) are chosen from the GOE (3.26), with typical interaction
v/+/m between modes, with v = 1 and mode number m = 10, and the channels (9.20) A and D
in (9.67) are drawn from a Wishart ensemble (9.69), with m4 = 5 and mp = 10. Data points are
compared to the upper bound J = Jyux (horizontal line). The value A\ = m4 + mp is indicated
(vertical line) since it represents the typical incoherent rate as the mean eigenvalue of P = A + D
(see discussion of (9.69))
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Fig. 9.2 Scatter plot which indicates the stationary current J (9.67) relative to the maximal current
Jmax (9.66). Variable A (9.67) controls the relative strength of the Hamiltonian and incoherent
contributions; for each data point, log;( A is randomly chosen from the interval [—5, 5]. For each
realisation, Hamiltonians H in (9.67) are chosen from the GOE (3.26), with typical interaction v//m
between modes, with v = 1 and mode number m = 10. The channels (9.20) A and D in (9.67) are
fixed for all realisations. Therefore, A and D are initially drawn from a Wishart ensemble (9.69),
with mq =5 and mp = 10. Data points are compared to the upper bound J = Jpax (horizontal
line). The value A\ = m4 + mp is indicated (vertical line) since it represents the typical incoherent
rate as the mean eigenvalue of P = A + D (see discussion of (9.69))

In Fig. 9.2, the channel contributions A and D remain unchanged for all real-
isations of H, and there is definitely a significant effect on the current when the
Hamiltonian is changed. However, this effect is only seen in the regime where ) is
sufficiently large, i.e. A 3> my + mp (recall that m4 + mp is the typical incoher-
ent rate). This is logical, because in the limit A — 0 all influence of the coherent
dynamics must vanish.

In contrast, Fig. 9.3 investigates the case where the Hamiltonian remains fixed
for all random realisations of A and D. Even in the limit A > mp + m 4, and where
the coherent dynamics is strongly dominant, strong fluctuations are induced by A
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Fig. 9.3 Scatter plot which indicates the stationary current J (9.67) relative to the maximal current
Jmax (9.66). Variable \ (9.67) controls the relative strength of the Hamiltonian and of incoherent
contributions; for each data point log;, A is randomly chosen from the interval [—5, 5]. For each
realisation the channels (9.20) A and D in (9.67) are drawn from a Wishart ensemble (9.69), with
my = 5and mp = 10. The Hamiltonian H in (9.67) is kept fixed for all realisations and is initially
chosen from the GOE (3.26) with typical interaction v/./m between modes, with v = 1 and mode
number m = 10. Data points are compared to the upper bound J = Jpux (horizontal line). The
value A = my4 + mp is indicated (vertical line) since it represents the typical incoherent rate as the
mean eigenvalue of P = A + D (see discussion of (9.69))

and D. When we consider (9.67), this observation makes perfect sense: even for the
A — oo limit, the operators A and D still enter non-negligibly in (9.67).

It is natural to wonder whether we can identify some characteristic structure in the
Hamiltonians of those realisations that provide J ~ Jy,x. Or, more bluntly, whether
one can identify design principles that can guarantee to saturate the bound Jyax
(9.66). Recall we achieved this objective in the fully coherent setting of Chap.4. The
following two sections provide an affirmative answer to this question in the current
open system setting.

9.5 Symmetry Enhanced Current

In this section, we explain how to reach the upper bound on the fermionic current by
engineering the system Hamiltonian in a clever way. However, we argued, following
(9.68), that in the regime where A — 0 it is impossible to influence the current by
tweaking the Hamiltonian, because its contribution to the dynamics is completely
overshadowed by the incoherent dynamics generated by A and D. This mathematical
fact was partially confirmed in Fig. 9.2. Nevertheless, in the limit where A — 0, we
obtained a current Jy—g (9.68) which may still come close to Jy.x (9.66) upon suitable
choice of the channels contained in A and D,'” but this limit is obviously independent
of the Hamiltonian H . In other words, if we want to engineer the system Hamiltonian
such that the current is optimal, while still allowing fluctuations in A and D, we must
do so in the regime where ) is sufficiently large. In physical terms, this implies that

Mt is actually not clear whether or not the bound Ji,x (9.66) can be saturated by Jy—¢ (9.68).
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there are strong coherent contributions present in the dynamics and that the coherent
frequencies are much higher than the rate with which they are damped.

Mathematically, this implies that the regime of interest is that where A — oo,
such that we can treat the problem in perturbation theory. In this limit, rapidly oscil-
lating terms are generated in (9.67) by exp(—isAH), and, as a consequence of the
Riemann-Lebesgue lemma,'® many contributions to J cancel. We first write the
spectral resolution of the Hamiltonian

H =Y ER;. (9.72)
k

Here the Ej are the eigenvalues of H and R; the orthogonal projectors onto the
associated eigenspaces. Hence

Re=Rf =R} and Y R, =1. (9.73)
k

I first order perturbation theory and with (9.72) we can rewrite (9.67) as

lim J = lim 4 / ds tr{De—<P+"*”>SAe—<”—MH>S]
0

A—00 A—00

o (9.74)
= 24/ ds tr{DRke—kaPRkAe—SRkPRkRk}.
& 0

For given A and D, we therefore have to manipulate the Ry in order to maximise the
current.

Recall that the centrosymmetry, introduced as a design principle in Sect.4.4.1,
enhanced constructive interference between network nodes which where connected
through the symmetry operator (such as our input and output sites in Chap.4). This
argument motivates the introduction of a symmetry which couples the absorption
to the dissipation channels and hence enhances coherent transport between them. In
concreto, we propose to design the Hamiltonian part of the system such that it allows
for a symmetry, given by a unitary operator S, such that

[H, S] = 0. (9.75)

18The proof and rigorous formulation of the theorem can be found in most standard textbooks on
functional or Fourier analysis, e.g. Conway (1997), Pedersen (1989). The theorem comes in several
versions, applicable to either Laplace or Fourier transformations and in essence they all contain the
message: Rapidly oscillating terms vanish upon integration over a sufficiently large time interval.
The version of the theorem which we require states that for any function f € L!(R), we find that

o0
/ dse ™ f(s) > 0, as A — oo.
0
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In order for the symmetry to enhance the transfer, the operator § must also perform a
specific task on the channels. In connection to Chap. 4 this implies that each absorp-
tive channel should be partnered with a dissipative channel via the symmetry. More
practically, we require

STAS = D. (9.76)

Even though the mechanism s clearly based on our earlier work on enhanced coherent
transport, it does not grant us complete freedom in the choice of incoherent channels.
In other words, the symmetry enhanced transfer does impose constraints on A and
D. Furthermore, in this case, trA = trD, and, therefore, the bound (9.66) reduces to

J <trA. (9.77)

To understand the effect of the symmetry, we must go back to Eq. (9.74) and use
that

lim J = Z4f dstr { DRee KPR pe—sRPRR Y (9.78)

A—>00

—24/ dstr{e " RPRR DR R PReAY (9.79)

Now, we can use that S and H commute according to (9.75), what implies that § =
D, Sk is block-diagonal, with blocks living on the the eigenspaces of H. Therefore,
we find that

oo
lim J =4 / ds tr{e*SRkPRkS,ijARkSkeﬂRk”kA]. (9.80)
k 0

A—00

In the case where H is non-degenerate, all projectors Ry, are rank-one operators. This
also implies that H and S have the same eigenbasis, such that

Sy = €% Ry. (9.81)

In the limit A — oo, we therefore obtain, with (9.73) and (9.48),

[0}
tr(D Qngss) = 24/ dstr{eRPRR AR e R PRAL = tr(A Qngss)-
k 0

(9.82)
Equation (9.48) then leads to
lim tr(DQngss) = tr A —— lim J = Jyax, (9.83)
A—00 A—>00

and, thus, the bound (9.77) is saturated.
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To stress the importance of the non-degeneracy of H (as assumed right after
(9.80)), let us focus on the other extreme, which is mimicked by the fully degenerate
case H ~ 1. In that case, we find!® that

J = 4/oods tr{De_(P‘H)\ﬂ)SAe—(P—i)\]l)S]
0

o0
= 4/ ds tr{De_PSAe_PS} (9.84)
0

= Jy-o,

In other words, the current will always reach the same value, independently of H.
The intermediate regime between non-degeneracy and full degeneracy is much more
subtle to understand. Crucial, however, is that we cannot proceed beyond step (9.82).
As a rule of thumb, one may remember that all symmetries in the system must be
represented in the channels. Indeed, degeneracies in H can only arise due to an
additional symmetry in the system. If this symmetry also connects A to D, we can
re-apply similar logic as we did for a single symmetry to proceed beyond (9.82).2°
This is, however, a rather technical discussion, which we do not elaborate any further.

More relevant is the question at which finite value of \ are we sufficiently close
to the limit A\ — oo. In physics, limits can often be interpreted in terms of time- or
energy scales which are much larger or smaller than all other characteristic scales
of the system. In our specific setting, A — oo therefore means that the frequencies
generated by the Hamiltonian are much faster than all other rates and frequencies
in the system, which is exactly what triggered our use of the Riemann-Lebesgue
lemma for the evaluation of (9.74) above. Therefore, we expect to see the saturation
of the bound emerge once A is sufficiently large as compared to the eigenvalues of
A and D (which determine the other natural time scales of the system). Because the
average eigenvalue of A + D is ~ m 4 + mp, this limit is identified as the behaviour
for A > m 4+ mp (see discussion following (9.69)). We validate this intuition via
numerical simulations.

In order to conduct simulations, we must make a specific choice for the symmetry
operator. It is appealing to consider centrosymmetry, which was already central to
our work in Chaps.4 and 5. Therefore, we choose S a matrix such that

Si.j = Oim—j+1 (9.85)
with m modes (in other words, m is the dimension of single-particle Hilbert space
‘H). Moreover, we must then sample H according to (4.61). We can still choose a

random A from the Wishart ensemble (9.69), but must then construct

D = STAS. (9.76)

19Because 1 commutes with any operator.
20Ty some extent, this is analogous to finding a complete set of commuting observables.
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Fig. 9.4 Scatter plot which indicates the stationary current J (9.67) relative to the maximal current
Jmax (9.66). Variable A (9.67) controls the relative strength of the Hamiltonian and of incoherent
contributions. For each data point log; A is randomly chosen from the interval [—5, 5]. Each reali-
sation of the Hamiltonian H in (9.67) is chosen from the centrosymmetric GOE (4.61), with typical
interaction v//m between modes, with v = 1 and mode number m = 10. For each realisation the
absorption operator A (9.20) in (9.67) is drawn from a Wishart ensemble (9.69), with m4 = 10.
The dissipation operator D is determined by condition (9.76) with (9.85). Data points are compared
to the upper bound J = Jyax (horizontal line). The value A = m 4 4+ mp is indicated (vertical line)
since it represents the typical incoherent rate as the mean eigenvalue of P = A + D (see discussion
(9.69))

When the system is designed according to these design principles, we find scatter
plots as in Fig. 9.4: Indeed, in the regime A >> m4 + mp (which corresponds to A
significantly larger than the typical rates contained in P), all data points converge
towards J/Jmax = 1. In other words, the saturation regime as defined by suitably
designed symmetries (9.75,9.5), can be reached for finite . Let us also emphasise that
centrosymmetry, the importance of which was demonstrated numerically in Chaps. 4
and 5, now plays a rigorously understood role for the enhancement of currents in
the NESS. This implies that centrosymmetry is not only relevant for transient time
dynamics, it also optimises currents in the non-equilibrium steady state.

Although it was aesthetically appealing to choose the centrosymmetry operation
as a symmetry operator in (9.75, 9.76), this is certainly not the only possibility. A
more generic approach is to sample the symmetry operator from the Haar measure.
This implies that we deal with a random S, from which we can always obtain the

spectral decomposition
m

S = Ze"‘)k Ise) (sl - (9.86)

k=1

We now use this decomposition as the basis for the construction of the Hamiltonian,
which we define as

H = ecls) (sl ex ~ Uniform([—m/2, m/2]), (9.87)
k=1

where Uniform([x, y]) denotes the uniform distribution of the interval [x, y]. By
construction, it then follows that [ H, §] = 0. The choice of the uniform distribution
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Fig. 9.5 Scatter plot which indicates the stationary current J (9.67) relative to the maximal current
Jmax (9.66). Variable A (9.67) controls the relative strength of the Hamiltonian and of incoherent
contributions. For each data point log;y A is randomly chosen from the interval [—5, 5]. Each
realisation of the Hamiltonian H in (9.67) is generated according to (9.87), with mode number
m = 10 and random symmetry operator S from the Haar measure (recall Sect. 8.3.5). For each
realisation, the absorption operator A (9.20) in (9.67) is drawn from a Wishart ensemble (9.69),
with m4 = 10. The dissipation operator D is determined by condition (9.76). Data points are
compared to the upper bound J = Jyux (horizontal line). The value A\ = m4 + mp is indicated
(vertical line) since it represents the typical incoherent rate as the mean eigenvalue of P = A + D
(see discussion (9.69))

for the eigenvalues ey, is somewhat arbitrary; it simply serves to ensure that the typical
level spacing is independent of the system size m.?! We can now again sample A
from the Wishart ensemble (9.69), but we must account for the constraint (9.76)
on D.

This construction provides us with a generic way to verify that the bound is
saturated in the A — oo regime. Indeed, we see in Fig. 9.5 that the current approaches
the bound as predicted. The procedure proposed here can be generalised to multiple
symmetry operators, although this may lead to additional constraints on the channels.
For the time being, we just remark that, no matter how complex the system is, the
presence of one exploitable symmetry can lead to optimal currents. It remains a
goal for the future to fully characterise and understand the effects of more intricate
symmetries in such systems.

9.6 Dephasing Enhanced Current

Throughout Chap. 4, we noted several times that quantum effects are often not ben-
eficial for transport, especially in the presence of disorder and randomness (recall
specifically Sect.4.3.2). In Fig. 9.1, we see that randomness in the Hamiltonian is
also translated to fluctuations of the stationary current in the present setup. Neverthe-

2IThe density of states is given by p = 1/m, hence using (4.92), we find that A ~ 1/(mp) = 1.
Essentially this is mathematically nothing more than putting points in a box and increasing the size
of the box upon increasing the number of points such that the density of points remains the same.
One may then argue that for a uniform distribution also the typical distance between neighbouring
points remains unchanged under such a scaling.
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less, in the limit where coherent contributions can manifest themselves in the system
(A — 00), we see that currents are typically larger. In contrast to Sect. 9.5, where we
exploited coherent effects to our advantage by engineering the Hamiltonian, we now
investigate what happens when we destroy the phase coherence in the system.

Literature (Bliimel et al. 1991; Arndt et al. 1991; Cohen 1991; Stegmann et al.
2014; Scholak et al. 2010; Steck et al. 2000) teaches us that destructive quantum
interference, which leads to localisation phenomena, can be suppressed by dynamical
noise. Moreover, the many works (Benzi et al. 1981; Gammaitoni et al. 1998; Huelga
and Plenio 2007; Wellens et al. 2004) on stochastic resonance indicate that noise
can also be used to amplify weak periodic signals, which can be applied to the
coherences of quantum systems (Wellens and Buchleitner 2000). These effects were
already touched upon in Sect.6.2, where we discussed the model of dephasing-
assisted transport (Plenio and Huelga 2008). The goal of this section is to provide the
first steps towards understanding the potential, but also the problems of dephasing
in the model which we consider here.

9.6.1 Modelling Dephasing

In our dephasing model, we want phase information to be lost completely, thus the
dephasing process must be memoryless. This implies that the framework of one-
parameter semigroups and Markovian dynamics is appropriate to describe this type
of dynamical noise. The generator of the dephasing dynamics is therefore also given
by (9.6), and it remains for us to determine the operators L;.

In the language of open quantum systems (Cohen-Tannoudji et al. 1998; Loudon
2000; Scully and Zubairy 1997), where one uses qubits (two-level systems or spins),
dephasing is modelled by the operator oo ~, where o and ¢~ are the raising and
lowering Pauli matrices, respectively. When working with genuine spin systems, it
is also common to use the ¢° Pauli matrix. The crucial assumption here is that the
total energy in the system remains conserved, and only phase information is lost. A
generalisation to our many-particle setup is essentially given by the condition that
the number of particles in the system remains constant, while the phase information
should be destroyed, effectively rendering the dynamics more classical (Brouwer
and Beenakker 1997; Cohen and Imry 1999). The natural set of Lindblad operators,
inspired by (Kordas et al. 2015; Scholak 2011; Manzano et al. 2012; Manzano 2013;
Plenio and Huelga 2008; Witt and Mintert 2013), that satisfies these conditions is
given by {A(f1), ...7A(f,)}, where we assume that { f;} form an orthonormal basis
of the single-particle Hilbert space H (which we for simplicity assume to be finite
dimensional).

Let us verify that, indeed, the number of particles is conserved. First, notice
that N = ra) = Zj n(f;), where any basis of H can be used for the sum over
local number operators. We directly verify that [i( f;), A(f;)] = 0,and a(f)A(f;) =
n(fi). With these results, we insert the Lindblad operators 7(f;) in (9.3, 9.4, 9.5)
and obtain that
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N . "L 1 ~ R
L) = 37 (RUDNAGH) = S8 AR
! A ) (9.88)
=Y (AN —api) =0
J

and it follows that the number of particles is conserved.
Now we consider the evolution of a general Wick monomial: We start from the
simplest example, ¢*(1))c(¢), and compute the action of a single 72( f), such that

R 1
L @)e@) = 1(A(NWe@i(f) = Sl @e@).Af}).  (©9.89)
Analysing term after term, first we have

A W)@ (He(f) = (o, FYAF)T @)e(f) + A (Hc* @)e(@e(f)
= (¢, [YAHW)e(f) — (f, V) A (@) +A(f)c* @)e(e)

= {f, ) (&, FYAS) — (f, ) *(H)e(@) + (™ W)e(9),
(9.90)

and, secondly,

S W)eDAf) = W)@ (He(f)

N N o (9.91)
= (o, ) T @)e(f) = (£, ) " (Ne(d) +a (e @)e(d).

Equations (9.90, 9.91) in (9.89) yield

s 1 1
£ @)e@) =A( (1) 6. N A = 3 (LD (e@) = 5 (0. Ne*@e(n).  (9.92)

We can now define a dephasing operator F' € B(H) just as we defined A and D
earlier:

F:Z%M)(m. (9.93)
J

With this, we rewrite the generator (9.88) as

LEPM ()e(@) = —c* (FP)e(d) — c*@)c(F o) + Y v, (fi» )6, £1) AU
Jj

(9.94)

The dynamics as described by (9.94) can be generalised in a straightforward manner
to higher order monomials as
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LI (p1) ... * (D) (Pg1) - - - ¢ (Bngm))

n+m [ k—1 n+m
==Y |[Id6n | FFon | TT o
k=1 \j=I J'=k+1
n_mtn k-1 (9.95)
+D 00 D> i b (s ) ( I1 c*(as,i,))c*(fi)
i k=1l=n+1 Ji=1
-1 n+m
><< I1 c#(¢j2)>0(ﬁ)< I1 C(%)),
jo=k+1 J3=l+1

where {k, [} run over all the possible pairs of creation and annihilation operators.
In the remainder of the this section we choose to focus on the dynamics on single-

particle observables, in analogy to Sect.9.3. First, we consider the action of the

generator (9.94) on a general single-particle observable I"(B) (9.23), B € 7 (H):

LEPNT(B)) = —T((B, F}) + Y _ % (fir BfYT(f) (i), (9.96)

such that, for whichever state w, we can use (9.32) to write that

wo LYPNT(B)) = —tr({B, FYQ) + Y _ i {fi» Bf:) (i, Ofi) - (9.97)

Because N =T (1), (9.97) implies that w o £%Ph (1\7 ) = 0. Due to the conservation of
the total particle number, dephasing alone cannot induce a global particle current.?

The complete dynamics, subject to dissipation, absorption, dephasing, and coher-
ent dynamics, is, nevertheless, affected by the dephasing and so are the resulting
stationary currents. Indeed, with (9.25, 9.96) the general dynamics (9.6) for a single-
particle observable I'(B), B € 7 (H), now reduces to

d
3 T(B) = i[F(H). T(B)] + £4(T(B)) + LY (B)) + LYPM (T (B))

9.98
= F("[H’ Bl—{A+D+F, By + Y 7 (fi. Bfi) | f;) <ﬁ\)+ <2trBA) L O

These equations can be solved with the help of the methods described in Sect.9.3.1,
and we find that the mapping of any single-particle observable I'(By), By € 7 (H),
is given by

AT (By)) = T'(B(1) +z(1)1, (9.99)

where B(t) and z(¢) are solutions of the following set of equations:

22Recall that, in Sect.9.3.4, we introduced the global particle current as a flux of particles in and
out of the system, induced by a generator. No such flux is induced by the dephasing generator.
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B(t)=i[H,Bl—{A+D+F,BY+ > % (fi, B)If) (fil.  (9.100)

z(t):/ ds tr{ B(s)A}, (9.101)
0

z2t=0)=0, B =0)=B,. (9.102)

We now formally define a super-operator D, acting on B(H), such that

D(B) :=i[H,B]—{A+ D+ F,B} + Z% (fi» Bfi) 1fi) {fil . (9.103)

which leads to the formal solution of (9.100):
B(t) = ¢'PBy. (9.104)

In the limit  — oo, we then generically?? find that

oo
wiess(D(By)) = (w o lim At)(F(Bo)) =2 / ds tr{Ae”’Bo}
— 00 0
S ey
= 2tr{BO/ ds esD‘A} (9.105)
0
= tr(BoOness)-
Let us now use the identity of (9.55) to rewrite

e + JRRp—
Ongss = / dse'®24 = —D ' 24). (9.106)
0

Hence, with (9.103), Ongss can be interpreted as a solution of the equation
D'(Oness) +24 =0, (9.107)

which can be rewritten, with P = A 4+ D from (9.25), as

—i[H, Oness] — {P + F, Ongss} + Z’Yi (fir Oness fi) 1 fi) (fil +2A = 0.

(9.108)

Because we are not directly aware of an explicit and general solution to this equation,
we resort to numerics for any specific choice of Hamiltonian, and of the absorption-,

23 Again, this is a mathematical statement, intended to indicate that the result does not hold for some
pathological cases where decoherence-free subspaces are present. The set of systems for which the
result does not hold is, however, mathematically negligible. In this sense we can say that this result
holds for almost all systems.
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dissipation- and dephasing channels. However, once we know Ongss, we can use
it to investigate the current. Indeed, we find that the continuity equation (9.40) still
reads

wness © L(I'(1)) =0, (9.109)

which, in combination with (9.25, 9.96), again leads to the equation

2trD Ongss = 2tr(A — A QNESS>. (9.110)

The latter expresses a balance between total incoming and total outgoing current.
Therefore, we can again define

J = 2trD Ongss, (9.111)
where Ongss now obeys Eq. (9.108). Because we used the explicit form of Ongss

in the proof of (9.66), it is not obvious that the obtained bound is still valid. We
conjecture that the proof can be adjusted, with the redefinition

G(X) := —i[H, X1+ {P + F, X} = Y % {fi, X£:) | f:) (] 9.112)

in (9.52). However, we were unable to prove inequality (9.57) for (9.112).

To numerically assess the effect of dephasing, we consider the case where v; = ~
for all i. This gives rise to an overall dephasing which is the same for every mode in
the specific dephasing basis.

9.6.2 Numerical Results

Our numerical data are again generated from random matrix ensembles. We sample
H from the GOE (3.26), and A and D from the Wishart ensemble (9.69). With
v; = 7, the dephasing operator (9.93) takes the form

F=Z%|ﬁ><fi|=g1. 9.113)

Nevertheless, in (9.98) we find a second term which contributes to the specific dephas-
ing dynamics:

vy {fin Onessfi) L) (£l
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Therefore, even though F in (9.113) does not depend on the specific dephasing basis,
the full generator (9.98) of the dynamics does. We must, thus, make a specific choice
for the basis vectors f; € H. Because we want to make an “unbiased” choice, we
resort to the choice of a random basis. Inspired by Zyczkowski and Sommers (2001),
we select random bases by sampling a unitary matrix from the Haar measure. We
start with the standard basis {e;} of single-particle Hilbert space H and act on it with
the random U. The set {Ue;} now forms a new, orthonormal basis of H. The basis
{Ue;} naturally inherits statistical properties of the Haar measure.* Because {¢;} is
the standard basis, we can associate the vector Ue; := f; with the ith column of U':

U=|fr... fv]. 9.114)

These { f;} will form a random dephasing basis in every realisation, such that we can
rewrite (9.108) as

— IMH, Oness] = { P+ S 1. Onss | +7 Y (fir Oness fi) 1) (fil +24 = 0.

9.115)

Equation (9.115) defines a linear system of equations, with the components of
Ongss the unknowns, and can be solved numerically. The resulting Ongss are then
inserted in the definition (9.111) of J, to produce the data shown in Figs. 9.6 and 9.7.
Figure 9.6, is obtained for a uniform distribution of log,, A € [-5.5, ] and shows
the distribution of J/Jmax as function of the dephasing strength. We observe that
dephasing in a randomly selected basis enhances the current once the dephasing rate
~ is sufficiently large. For the parameters in Fig. 9.6, the enhancement is pronounced
from v ~ 100 onwards, which suggests that v > m4 + mp is a relevant limit, inde-
pendently of the values of A. We note that, based on these simulations, we cannot
falsify the conjecture that the bound (9.66) still holds in the presence of dephasing.
When we include the information on A in Fig. 9.7, we see that, mainly in the
regime where A, v > m4 + mp, the realisations really reach the bound J,,x. Thus
there is a benefit when combining coherent effects with a rather strong degree of
dephasing noise. One would of course expect naively that the dephasing destroys all
coherent effects on the long time scales which we consider. However, the presence of
the absorptive channel can be understood as a type of driving. Particles are constantly
being pumped into the system, which may counteract the destruction of coherence.

24Note that we are not specifically interested in the statistical properties of the thus generated
vectors. We here use random matrix ensembles as a tool to probe many different systems with no
specific symmetries built in.
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Fig. 9.6 Scatter plot which indicates the stationary current J (9.111, 9.115) relative to the maximal
current Jyax (9.66). Data points are compared to the upper bound J = Jpax (horizontal line). Every
realisation corresponds to a randomly chosen dephasing rate vy, dephasing basis { f; }, Hamiltonian
H, channels A and D, and coherence strength A: v, A in (9.115) are chosen randomly such that
logig A, logo € [—5, 5] are distributed uniformly. H in (9.115) is selected from the GOE (3.26)
with typical interaction v/./m between modes, with v = 1 and mode number m = 10, and the
channels (9.20) A and D in (9.111,9.115) are drawn from a Wishart ensemble (9.69), withm 4 = 5
and mp = 10. For each data point the dephasing takes place in a randomly chosen basis, generated
via the Haar measure (9.114). J is obtained by numerically solving (9.115) to obtain Ongss, which
can be inserted in (9.111). The value v = m4 + mp is indicated (vertical line) since it represents
the typical incoherent rate associated with the channels as the mean eigenvalue of P = A 4 D (see
discussion of (9.69))

105 0.01 10 104
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Fig. 9.7 Scatter plot which indicates the coherence strength A (9.115), the dephasing rate v (9.115),
and the stationary current J (colour code; 9.111, 9.115) relative to the maximal current Jyax (9.66).
Variables A, v are randomly chosen such that log;( A and log;, 7y are uniformly distributed over the
interval [—5, 5]. For each realisation, the Hamiltonian H in (9.115) is chosen from the GOE (3.26),
with typical interaction v/./m between modes, with v = 1 and mode number m = 10, and the
channels (9.20) A and D in (9.111,9.115) are drawn from a Wishart ensemble (9.69), withm 4 = 5
and mp = 10. The dephasing takes place in a random basis, generated via the Haar measure (9.114).
J is obtained by numerically solving (9.115) to obtain Ongss, wWhich can be inserted in (9.111).
The value A\, v = m4 + mp is indicated (grey lines) since it represents the typical incoherent rate
associated with the channels as the mean eigenvalue of P = A + D (see discussion (9.69)). This
figure was generated from the same data as Fig. 9.6

With the results of Figs. 9.6 and 9.7 we numerically demonstrated the mecha-
nism of dephasing enhanced currents. However, the underlying physical principles
responsible for this enhancement remain unclear to us.
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9.6.3 Quasi-Free and Dephasing Maps*

We end our section on dephasing dynamics with an observation which was made
during the development of our dephasing model. In what follows, we identify an
open problem which is specifically interesting from the mathematical point of view.

First, we briefly introduce a result which proves that the dynamics induced by
(9.21) and (9.22) maps quasi-free states (recall Sect.7.7.1) into quasi-free states.

This result is a corollary of the characterisation (Dierckx et al. 2008) of general
quasi-free channels %% s, mapping A“AR (H) on A“AR(K) (defined in the Heisenberg
picture, with /C another single-particle Hilbert space). It was proven (Dierckx et al.
2008) that such maps always have the following structure: The parameters R and S
are linear operators such that

R:H— K, (9.116)
S:H— H, 9.117)
0<S<1-R'R (9.118)

The action of the map itself on normally ordered Wick monomials is given (Dierckx
et al. 2008) by

Gr.s (c*(P1) ... (Dw)c(hm) ... c(ih))
= Z €162Ws (C*((ﬁkl) S c*((bkr)c(wlr) . C(l/)[l)) 9.119)

P1,pP2

X c*(Ry,) . ..c*(Rpi, )c(RYj, ) ...c(RYj),

where p; = {{i1, ..., in—}, {k1, ..., k. }} is a partition of {1, ..., n} and
p2={{jis--s jm—r}, {1, ..., 1 }} isapartition of {1, ..., m}. Because we are deal-
ing with fermions, sign-bookkeeping is necessary and therefore the factors €; and €,
describe the signs of the permutations associated with p; and p,, respectively.

Whenever a mapping in the Heisenberg picture is given by (9.119), with conditions
(9.116-9.118), the expectation value of x € A®AR(H), after transmision through the
channel, in the quasi-free state wg (%R, S(x)), can be written as wo(x). The map is
quasi-free because w is again a quasi-free state. Our dynamical map generated by
(9.21) and (9.22) obeys these conditions and leads to

t
R=¢0H"AD and §=2 / ds ¢t (H=A=D) ps(ZiH=-A=D) (9.120)
0

and, therefore, the channel is indeed quasi—free.25

25 A more extended discussion on the dynamics of quasi-free states in systems with absorption and
dissipation was already provided in Davies 1977a.
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The dephasing dynamics is interesting because it does not blow up the order in
creation and annihilation operators, whereas, according to (9.119), it is not a quasi-
free map. The second term in (9.95), which prevents it from being cast in the form
(9.119), destroys the quasi-free behaviour and makes sure that quasi-free states are
not mapped into other quasi-free states. To the best of our knowledge these dephasing-
type maps have not yet been characterised in a similar way as (9.119) characterises
the quasi-free maps. However, the fact that the order of creation and annihilation
operators remains conserved suggests intuitively that some analytical understanding
of the properties of such maps may be within reach.

9.7 Bosonic Systems

In Davies (1977a), the author mentions that one can construct a similar model for the
bosonic algebra of canonical commutation relations (CCR; recall Sect.7.7.2). Even
though this is formally correct, there are aspects that need to be taken into account.

A profound difference which we noted in Sect.7.7.2 is that we cannot define
bosonic creation and annihilation operators independently of the representation.
Recall that for the CAR algebra such a procedure is possible as we explicitly showed
in (7.211)—(7.213). This implies that we must construct our model in a specific rep-
resentation, induced by any initial state w. Nevertheless, in analogy to Sect.9.3.3
we limit ourselves to states which are normal with respect to the bosonic Fock rep-
resentation (Bratteli and Robinson 1997; Petz 1990), such that we avoid additional
technical difficulties.

Let us start by recalling the Fock representation of the CCR algebra on a single-
particle Hilbert space H, as given by the GNS construction (7.295)

(mr, @r, I'(H)), (7.295)

and in this representation consider the creation and annihilation operators
(7.296, 7.297):%

[a(¢).a” )] = (6. ¥) L. [a(¢),a()] =0, (7.296)

a()Qr = 0. (7.297)

With these creation and annihilation operators, we recall (7.92) in Sect. 7.5 and write
a single-particle observable as

26Because we always remain in the Fock representation, we denote the creation and annihilation
operators as at (1) rather than aff ().
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T(B) =) (mi, Bn;)a" (n)a()), 9.121)

iJj

with {n;} an orthonormal basis of the single-particle Hilbert space H. The normal
states w (with respect to the Fock representation) on the CCR can be represented as
a density matrix p,, which acts on the Fock space I"(H) and fulfils the condition:

w(N) = tr(p, T (1)) < oo. (9.122)

‘We must note that the notation is not completely rigorous, since I (1) is an unbounded
operator.?’

For dynamics to be well-defined, we must make sure that we remain within the
Fock representation. In terms of the dynamical map A, which governs the dynamics,
this implies the requirement

tr(pr,(]\A/)> <oo, forallt>0. (9.123)

In analogy to the fermionic case, let us describe our model in terms of the master
equation®®

%X = —i[['(H), X1+ LX) + £/(X), forall X € Lin(I'(H)),

d a/dty rad 1 a/dt ajd ©.124)
with £Y(X) =) " L{'" XL — S Xy

such that it remains to choose L; under the constraint that the dynamics forms a
completely positive map.
Assume that we again study dissipation and absorption mediated by Lfl =

ﬁa(éi) and LY = \/’y»;’aT(a,-), respectively. Let us note that, because the Lf’d are
unbounded, they are not captured by Lindblad’s work (Lindblad 1976). Semigroups
with unbounded operators have nevertheless been treated successfully in Davies
(1977b) and this specific model, (9.124) with L{ and L? as chosen here, was already
studied in Alicki (1987, 1978). Alicki explicitly derives the model from hamiltonian
principles and connects it to the framework of dynamical semigroups, hence we do
not elaborate on these matters here. We will, however, reduce the generator to a sim-
pler form for single-particle observables, in analogy to Sect.9.3.1 and Alicki (1987,
1978). This allows us to obtain the specific constraint (9.144) for the generators, in
order to satisfy (9.123).

27 A slightly more formal statement would be that p, is contained within the domain of I'(1). A
more elegant definition of a state on the CCR algebra which is normal with respect to the Fock
representation is contained in Theorem 5.2.14 in Bratteli and Robinson (1997), although it also
requires more mathematical background.

28We define this equation for all linear operators on Fock space, a set which we denote Lin(F (H)).
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Considering the action of the generator £¢ (9.124) associated with one single L;’
on a’(¥)a(), we find that

+ 1
£(a' Wa@) = (a' O’ Wa(@)a) - 5la'@aw).a'@)a)}).
(9.125)
which we rewrite, term by term as

a'(0)a(d)a’ W)a(p) = (5, 1)a’ ()a(p) +a’(§a’ (p)a(p)a(d), (9.126)
a'(Wya(p)a’(§)a©d) = (¢, 6)a’ (P)a(d) + a’(§)a’ ()a(p)a(s). (9.127)

These terms in (9.125) result in

d
L(a" W)a(e)) = —% (0,9)a’ ()a(p) — (¢, 8) a’ W)a(d), (9.128)

which exactly reproduces expression (9.9), because we had there picked up an even
number of extra minus signs as compared to (9.128). A very similar computation can
be performed for the absorption part, acting on the element a(¢)a (1)), and leads to

. 1
£(a@)a’ @) =7 (at@a(@a’ ¥a' (@) — S{a(@)a' (@), a@)a’ @))).
(9.129)
With

a(@a’(@a(p)a’ @) = — (¢, a)a(a)a’ () + a(@)a(p)a’ ()a’ (@),  (9.130)
a(@)a’(Pa(a)a’ (@) = — (o, ¥) a(@)a’ (@) + a(@a(p)a’ ()a’(a),  (9.131)

Equation (9.129) turns into

£(a(¢)a’ () = % (¢, a) a(a)a’ (@) + ”7 (. V) a(@a’(@).  (9.132)

Again, to merge absorptive and dissipative parts in one generator, we need to derive
the action of one generator £¢ on a’(¢)a(¢$) from (9.132). With (7.296), we obtain:

£(a Wa@) = — (¢, ¥) £*(1) + £ (a(d)a’ (1))
= La(d)a’ ()

2

2

= ”7 (¢, @) a’ (W)a(a) + ”/7 (o, ¥y a'(@)a(@) + 7 (¢, @) (a, ) .

,\/(1

(¢, @) a(e)a’ () + > (o, ¥) a(@)a’ (@) (9.133)

IS}

Notice that the expression of £ only minimally differs from the fermionic case
(9.17): The first two terms in the final step of (9.133) are positive, whereas their
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fermionic counterparts in (9.17) are negative. The full generator, with the identical
A and D as earlier in (9.20), is thus given by

L@ (@a@)) =a" ((H — D+ Ap)a@)) +a’(9)a((iH — D + A)yp) +2 (¢, Ap) 1

i + (9.134)
=a'((iH — Pp)a(p) +a'(p)a((iH — P)y) +2(¢, AY) 1,
where in the present bosonic case P is defined as
P:=D—A. (9.135)

Apart from a difference in the definition of P (compare (9.25)), the bosonic dynamics
is exactly the same as that of fermions. The different definition of P however has
profound impact: We know that A > 0 and D > 0, but this no longer implies that P
remains positive semi-definite, as was the case for fermions.

By virtue of (9.121, 9.134) the dynamics of a single-particle observable I"(B) for
B € B(H) is given by

%F(B) = F(i[H, B] - (P, B}) +2u(AB)1, (9.136)

which can be solved using the same methods as in the fermionic case (recall Sect. 9.3.1
and (9.28)—(9.30)), to find

B(t) = i[H, B(t)] + {P, B(1)}, (9.137)
z(t) = 2tr(AB(2)), (9.138)
72(t=0)=zp and B( =0)= By, (9.139)

with a final solution of the form

t
A/(T(Bp)) = T (¢! =P Bye! CiH=P)) 4 ( / ds 24 =P goe1H=Pi ) 1,
0

(9.140)
For any normal state w (with respect to the Fock representation), we can consider
the induced sesquilinear form on ‘H

tr(poa’ W)a(d)) == (¥, 0¢) (9.141)

which defines Q € 7 (H). The fact that w is a normal state in the Fock representation
directly implies that Q is trace-class, ergo tr Q < oo. It now directly follows from
(9.121) that

tr(pr(B)) =tr(Q0B), (9.142)
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where we stress that the trace on the right hand side runs over the single-particle
Hilbert space H and the trace on the left hand side over the Fock space I'(H). We
thus find

t

(w o A,)(F(Bo)) = tr(Qe’(iH_P)Boe’(_iH_P) + / ds 2Ae<"H—”>fBoe<—iH—P>f).
0

(9.143)

In the fermionic case (see discussion on p. 382), we then used that generically P > 0,
such that the first term on the right hand side of (9.34) disappears and the second term
is bounded. However, in absence of any further restrictions for the bosonic case, with
P = D — A, the analogous expression (9.143) may diverge in the limit t — oo. In
other words, the condition (9.123) is violated at + — co. This does not necessarily
mean that this corresponds to a physical problem, but it does defy the validity of
the mathematical model. Fock space is simply too small to describe infinitely many
particles in an accurate way. In other words, we need to dissipate at least as strongly as
we pump particles in to keep the particle number from tending towards infinity. This
is the only way to remain in the Fock space representation. Hence, for the dynamics
to be well-defined we must impose the condition

P>0 < D> A. (9.144)

It is no surprise that we encounter the above type of problems: Bosons have
the property that many particles can occupy the same mode and e.g. form a BEC
(Anderson et al. 1995; Davis et al. 1995; Verbeure 2011). This problem is similar to
the subtleties encountered for fermions in an infinitely large single-particle Hilbert
space as discussed in Sect. 9.3.3. Nevertheless, a violation of (9.144) for bosons leads
to more fundamental problems since the system will simply never reach a steady
state. Moreover, in Sect.9.3.3 we argued that infinitely large fermionic systems at
least allow for local control. When we abandon restriction (9.144), it appears that
even such local control of the system is unfeasible. Of course one may argue that in
a BEC, there are also macroscopically occupied states and that a violation of (9.144)
leads to a non-equilibrium BEC, comparable to Vorberg et al. (2013). However,
upon studying Bose—FEinstein condensation in a well-defined setting (Bratteli and
Robinson 1997; Verbeure 2011), we encounter the condition that at least the density
of particles in any mode must remain finite. Because a violation of (9.144) can lead to
modes where the local particle number grows exponentially in time,?° we can argue

291 et us briefly present the simplest example imaginable: We consider a harmonic oscillator, i.e. a
one-mode bosonic system. Expression (9.143) for the number operator N = I"(1) reduces to

t
(w o A,)(N) — ge 210" 4 / ds 2y%e= 207" (9.145)
0

where ¢ is the initial particle number, and 4 and ¢ the dissipation and absorption rates, respectively.
We clearly see a problem for v¢ > ~¢ as time grows. It is not difficult to see that this problem
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that one must be extremely careful since the setup may even be unphysical. Let us
proceed under the assumption that (9.144) is fulfilled.

We can again investigate the particle current by setting the single-particle observ-
ableI'(By) =T'(1) = N in (9.143), such that we study the dynamics of the number
operator. The current in the non-equilibrium steady state is determined by (recall
(9.40) and our discussion in Sect.9.3.4)

tlim wo L(I'(1)) =0, (9.146)
which, with (9.136), leads to
—tr({P, Ongss)) + 2tr(A) =0, (9.147)

which, with the definition (9.135) of P, can be rewritten as

2r(D Onpss) = 2(r(A) + tr(Oness A) ). 9.148)

Following the same logic as in the fermionic case (see Sect.9.3.4), combined with
the explicit requirement (9.144) P > 0, we find

o0
OnEss = 2 / ds TP A UH=P)s (9.149)
0

and, therefore,
o0
Ji=4 / ds tr{e<—fH—P>SAe<fH—P>-‘D}, (9.150)
0

which is formally identical to the fermionic expression (9.50), though with a different
definition (9.135) for P. Nevertheless, the main property of P, its positive semi-
definiteness must be imposed by (9.144), and, therefore, the “fermionic” proof of
Sect. 9.4 on the bound of J remains applicable, apart from the last step: We can still
define the symmetrised Duhamel product (9.58), and we can still use (9.60). We still
find that

(A, P). = trA, (9.151)
(P, P). =trP, (9.152)
o0
(A, A) =2 / ds tr(A s (P=it]) Aeﬂ“’“f“) — tr(AQngss),  (9.153)
0

but we can no longer use the very last step in (9.65), because the continuity equation
(9.148) and the definition (9.135) of P are different compared to bosons! We now

also appears in larger systems when we consider (9.143) the particle number in a single mode,

ie.a’(Wa@) =T (1Y) ().
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find that
(tr A)* < (J/2—trA)tr P, (9.154)
what implies
J
trA(trA +tr P) < EtrP, (9.155)
and, therefore,
trAtrD
—— = Juin. 9.156
D _A) min ( )

While the modifications in the derivation of the present bosonic result with respect
to the fermionic case may appear minor, they actually “invert” the final result: There
is a lower bound (9.156) to the bosonic currents, whereas we found an upper bound
(9.66) in the fermionic case. This also implies that by matching the absorption rates
closely to the dissipation rates, we can get enormous currents.

In Sect.9.5, we explained how to design the coherent dynamics to induce the
optimal current. However, for bosons, there appears to be no optimal current, but
rather a minimal current. Interestingly, this minimal current can be increased by
manipulation of the incoherent coupling agents encoded in A and D.

‘We must stress that it is currently unclear whether this model is sufficiently real-
istic to be experimentally realisable, specifically in the regime where tr(D — A) is
small and thus currents are large (9.156): This appears to be the regime where also
the number of particles in the system is enormous, which may impose physical dif-
ficulties. The large currents which can be achieved in our model can be achieved
because the bosons in the system do not experience, nor cause any resistivity due to
interactions. Interactions (or nonlinearities) are, however, expected to become impor-
tant once the density of particles in the system is sufficiently large. Examples are
ubiquitous, ranging from cold atoms (Davis et al. 1995), over excitons (Magde and
Mahr 1970) to even photons (Bulanov et al. 2010). Nevertheless, the fundamental
difference between bosons and fermions, even in the non-equilibrium steady state
for non-interacting particles, is striking.

We close this section by presenting numerical results on the currents, to verify
that, indeed, the bosonic bound (9.156) holds, and to understand where it is sharp
and where it is not. To gain better understanding of the influence of coherence on the
currents, we again introduce the parameter A to tune between dominantly coherent
(A = o0) and dominantly incoherent dynamics (A — 0):

o0
Ji=4 / ds tr{e(’MH’P)SAeU’\H’P”D}. (9.157)
0

In Fig. 9.8, we show simulations with randomly generated Hamiltonians from
the GOE (3.26), for an finite dimensional single-particle Hilbert space, with m =
dim H = 10 modes. To certainly satisfy (9.144), we choose A and P from the Wishart
ensemble (9.69), and set D = P + A such that (9.135) holds true. As an estimate for
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Fig. 9.8 Scatter plot which indicates the stationary current J (9.157) relative to the minimal current
Jmin (9.156). Variable X (9.157) controls the relative strength of the Hamiltonian and of incoherent
contributions; for each data point, log;o A is randomly chosen from the interval [—5, 5]. Hamil-
tonians H in (9.157) are chosen from the GOE (3.26), with typical interaction v/./m between
modes, with v = 1 and mode number m = 10. The channels P (9.135) and A (9.20) in (9.157)
are drawn from a Wishart ensemble (9.69), with m4 =5 and mp = 10. D in (9.157) is directly
obtained from (9.135). Data point s are compared to the lower bound J = Jyi, (horizontal line).
The value A = mp is indicated (vertical line) since it represents the typical incoherent rate as the
mean eigenvalue of P (see discussion (9.69))

the typical incoherent rate in the system, we can now use E(trP)/m = mp (recall
p. 390).

Based on Fig. 9.8 we cannot falsify the result (9.156), and, as was the case for the
fermions, we find that most realisations approach the bound in the regime for domi-
nantly coherent dynamics, i.e. A 3> m p. On the other hand, in the regime where the
dynamics is mainly incoherent, we find a much larger spread and observe currents up
to ten times as large as Jyin. This leads us to the conclusion that in random systems
coherent dynamics tends to negatively influence the stationary bosonic currents. Note
that from Sect. 4.3.2, a negative impact of coherent dynamics due to destructive inter-
ference may even be expected. This phenomenology is, however, in strong contrast
to what we saw for random fermionic systems in Fig. 9.1, where strong coherent
contributions to the dynamics are, in general, beneficial.

As a consequence of the many mathematical subtleties in our model (9.124) and in
bosonic systems in general, our results, in particular (9.156), are difficult to interpret.
Because the model is pushed to its mathematical limits (i.e. tr(D — A) small), it is
not clear whether results should be interpreted as prediction of interesting physics or
rather as mathematical artefacts. Hitherto we did not obtain an unambiguous physical
interpretation for the behaviour of these bosonic currents and thus leave it as an open
problem.

9.8 Summary and Outlook

In this chapter, we treated open systems, where identical particles are continuously
entering and leaving, ultimately leading to a steady state with non-vanishing cur-
rents. We focussed our attention on the dynamics of single-particle observables and
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specifically of the number operator. The latter was used to naturally define the cur-
rent of particles that arises in the non-equilibrium steady state. As our main result,
we have proven the existence of an upper bound (9.66) of this current for fermions,
and of a lower bound (9.156) for bosons. For fermions, we learned that the system
Hamiltonian can be specifically designed to saturate this bound, and that the nec-
essary design principles rely on the same types of symmetries that were invoked in
Sect.4.4.1. This is in accordance with recent developments in literature, which have
seen an increased interest in the role of symmetries to control quantum transport in
the non-equilibrium steady state (Manzano and Hurtado 2017; Thingna et al. 2016).
Furthermore, we set out to numerically understand the regime of dephasing enhanced
currents, which exists, but remains difficult to understand analytically. Similar effects
for bosons remain here unexplored.

In the numerical analyses presented in this chapter, we observed that, in randomly
constructed systems, dominantly coherent contributions to the dynamics are bene-
ficial for fermionic stationary currents (see Fig. 9.1). In contrast, they appear to be
detrimental for bosonic stationary currents (see Fig. 9.8). In relation to Chap. 4, where
we discussed that completely random systems are in general not optimal for efficient
transport, the result for bosonic currents may appear more natural. Nevertheless, it
may be both useful and feasible to understand in more detail how spectral properties
of the Hamiltonian influence the behaviour of these stationary currents.

Throughout this chapter, we employed the algebraic framework of quantum sta-
tistical mechanics that was introduced in Sect.7.7. Even though this approach is not
strictly necessary to obtain the results that were discussed here, it comes with the
advantage of being applicable to systems in the thermodynamic limit, i.e. systems
with a infinite-dimensional single-particle Hilbert space. It must be stressed that such
systems can generally not be described withint he common Hilbert space formal-
ism of quantum mechanics. An illustration of the power of the methods is found in
Walschaers et al. (2017), where the methods of this chapter are applied to an infinitely
large translation invariant system, the so-called quantum ribbon.

A future objective, which imposes a very considerable complication, is the intro-
duction of interactions between particles. In order to expand the model’s potential
realm of applicability, this is a necessary step. However, brute force approaches to
this problem quickly become unfeasible, both from the analytical and numerical per-
spective. These problems can be understood in terms of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy (Bogoliubov 1946)*°: Even to understand the
dynamics of a single-particle observable, one obtains enormous hierarchies of equa-
tions which couple sectors of different particle numbers. Modest first steps may focus
on Hartree-Fock type models®! or the use of finitely correlated states (Fannes et al.

30Qriginally the hierarchy was developed for classical systems by Yvon 1935. In connection to
many-particle quantum physics this mathematical construction is also referred to as the Bogoliubov
hierarchy, since Bogoliubov was the first to extend Yvon’s hierarchy to quantum systems.

31This was also suggested in Alicki (1978) when discussing the addition of interactions to the
specific model used in this chapter.
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1992) or other tensor network methods (Haegeman and Verstraete 2017) to keep the
computational complexity under control.

Let us finally consider the result in Dierckx et al. (2008) where quasi-free maps
are formally characterised. These maps are defined by the fact that they send quasi-
free states onto quasi-free states when treated in the Schrodinger picture. Because
a quasi-free state is a state for which the many-particle correlations factorise (as
was extensively discussed in Sect.7.7), we can interpret a quasi-free map’> as a
transformation that does not induce correlations between particles. It was already
known (Alicki 1987, 1978; Davies 1977a) that our model of Sect.9.2 generates a
dynamical map which is quasi-free. However, in Sect.9.6.3 we observed that, with
additional dephasing noise, our model no longer falls within this class. In other
words, our dephasing model does not map a quasi-free state onto another quasi-
free state. Given that from a quantum statistical mechanics point of view (Verbeure
2011) quasi-free states are the most classical states which are known, this result is
counter-intuitive; dephasing destroys phase coherence and is in that sense expected
to make systems more classical. To our knowledge, this perspective of dephasing
dynamics has never been studied in a structural way and therefore we identify it as
an interesting open problem related to the mathematical physics of this chapter.
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Chapter 10 ®)
Conclusions and Outlook Chack or

The way I see it, every life is a pile of good things and bad
things. The good things don’t always soften the bad things, but
vice versa the bad things don’t always spoil the good things or
make them unimportant. And we definitely added to his pile of
good things

The Doctor in “Doctor Who” (Campbell 2010)

Conclusions

This dissertation focussed its attention on quantum transport phenomena in “com-
plex” systems with a strong emphasis on the influence of quantum interference. In
Part I we introduced heuristics of complex systems and reviewed several attempts to
formally define what a complex system is. Complex systems presently are a highly
fashionable topic in both classical and quantum physics, but also in a wide range
of other fields ranging from economy to neuroscience. A formal definition of “a
complex system” which fully captures the desired heuristics is still out of reach. In
Sect.3.1.3 we therefore focussed specifically on understanding complex dynamical
quantum systems.

The dynamics of complex quantum systems can be a subtle topic; the skeptic is
tempted to argue that one is “just solving the Schrodinger equation”. Nevertheless, the
mere act of determining and understanding dynamics is often very tedious. It typically
requires effective descriptions and models, which can use a wide variety of tools:
There are master equations (Alicki 1987; Breuer and Petruccione 2007; Davies 1979;
Lindblad 1976), hierarchical equations (Bogoliubov 1946; Ishizaki and Tanimura
2005), semiclassical methods (de Almeida 1998; Doron and Smilansky 1992; Engl
et al. 2014; Fischer and Buchleitner 2015; Gaspard 2014; Gutzwiller 1971; Heller
1981), Green’s function methods (Kamenev 2011; Mahan 2000; Negele and Orland
1998), et cetera. It is regularly forgotten (particularly in the strongly reductionist
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quantum optics and quantum information context) that one does not always need to
model the system in a microscopically faithful manner;' an alternative is to rather
model the correct statistical properties of the system by using for example random
matrix theory (Beenakker 1997; Haake 2010; Jalabert et al. 1994; Stockmann 2007)
(in analogy to the program of classical statistical mechanics and thermodynamics).

This provides us with a conceptual framework in which to embed the formalism
of dynamical quantum systems as introduced in Chap. 2, and investigate “complex”
dynamical quantum system. We argue that complexity must ultimately be encrypted
in the spectral properties of the system Hamiltonian. In the context of statistical
properties, the latter can be related to spectral graph theory and random matrix
theory: We propose to connect typical spectral structures of the graphs which describe
complex networks to spectral properties of Hamiltonians. In concreto, in Sect.3.2
we identify power-law behaviour in the spectrum as a hallmark of complexity.

In Part IT we considered complex systems where a single excitation (a quantum of
energy, e.g. an exciton) is transported from an initial (input) state to a final (output)
state, and in Chap. 5 we additionally allowed for these states to have external channels
coupled to them. We challenged the common wisdom that quantum coherence in
combination with disorder is detrimental for the directed transfer of energy. Our
results, building on the work of Scholak (2011), Zech (2013), clearly show that this
dogma does not hold for finite size systems. In Sect.4.4 we presented a specific set
of design principles that lead to fast and highly efficient excitation transfer, while
still allowing a large degree of disorder.

These design principles, centrosymmetry (4.46) in the system Hamiltonian and a
dominant doublet (4.68) of eigenstates that mainly carries the excitation, engineer
a mechanism of statistical control in Sects.4.5 and 5.5: Rather than determining
one timescale and one efficiency, we control the shapes of the distributions of these
quantities for an ensemble of many disorder realisations. We identified that these
distributions can be controlled by typical spectral properties, such as the overall
average level spacing in the vicinity of the dominant doublet’s energy levels and
the average coupling strength between the initial and final state to the intermediate
states. Although we use random matrix ensembles in our derivations, these spectral
properties can in principle be extracted for any type of systems, and therefore the
model is applicable to a wide variety of settings, e.g. Rydberg gases (Scholak et al.
2014), photosynthetic biomolecular complexes (Walschaers et al. 2013), mesoscopic
system (Brouwer 1997), et cetera.

One of these settings is that of molecular biology, as discussed in Chap. 6, where
we studied the energy transport in the early stages of photosynthesis. In such systems,
itis of crucial importance that excitons are swiftly and efficiently processed, to avoid
that the harvested energy is lost (e.g. by recombination effects). In Sect.6.3 we
provided considerable indications that the design principles which we propose may
be present in the FMO complex, a molecular complex which transfers excitons from
the antenna complex to the reaction centre of green sulphur bacteria. Even though

!One may argue that in genuine complex systems faithful microscopic modelling is even impossible.
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our analysis is based on quantitative arguments, they do not yet approach the realistic
in vivo setting.

Exploring quantum mechanics in the realm of complex systems is of crucial impor-
tance to gain insight beyond overly simplified toy models. Specifically the regime
where these systems are genuinely complex, i.e. cannot be understood by microscopic
models, but are too small to be treated in the thermodynamic limit, remains largely
uncharted territory. On the one hand, the interplay between the system’s complexity
and quantum interference leads to interesting new insights in fundamental physics.
Localisation phenomena (Anderson 1958) and conductance fluctuations (Jalabert
et al. 1994) are striking examples of such typical quantum phenomena, but truly
complex systems tend to combine disorder with pattern formation. In our work we
use our design principles to induce these patterns and we do observe new transport
properties (Walschaers et al. 2015).

On the other hand, there are many technologies which ultimately rely on quan-
tum effects, with lasers (Schawlow and Townes 1958) and transistors (Bardeen and
Brattain 1948) as most important representatives since they are key elements in most
modern electronics devices. Even for these foundational examples, technological
developments have led to the realm of complex quantum systems, see e.g. random
lasers (Wiersma 2008) and the increasing importance of interference effects in micro-
electronics (Moors et al. 2015; Steinlesberger et al. 2002). Moreover, new technolo-
gies such as quantum cryptography (Bennett and Brassard 1984; Ekert 1991; Gisin
etal.2002) tend to exploit ever more intricate quantum effects.> Overall, with increas-
ing system sizes, these systems tend to become complex and it becomes relevant to
understand how this influences the (often dynamical) quantum effects which they
exploit. The main philosophy of the present dissertation is to use this complexity—
and the unavoidable disorder—to our advantage, rather than fighting it. Therefore,
the indications, in Sect. 6.3, that nature may also follows this philosophy (within one
or several instances of light harvesting complexes) are fascinating.

In the above discussion, we focussed on complexity in quantum systems which
is induced on the topological level, i.e. complexity contained in the single-particle
Hamiltonian. Part III of this thesis focusses on a different type of complexity which
also naturally appears in quantum systems: The complexity which arises due to
many-particle effects. As explained in Chap.7, quantum mechanics requires us to
consider these particles as fundamentally identical, although they may differ in prop-
erties. Particles which do not differ in any degree of freedom, must be considered
indistinguishable, hence it is impossible to tell which one is which. In Sect. 8.3,
we explain how this indistinguishability, even when the particles are not physically
interacting, can lead to highly non-trivial interference patterns, which are purely
dynamical many-particle effects. Extensive amounts of work have been done on this
topic, notably by Tichy et al. (Anger 2013; Mayer et al. 2011; Ra et al. 2013a,b;

2 Also on the level of science politics there is interest in the development of such new “quantum
technologies”, as indicated by several funding efforts in the EU and the USA which are specifically
intended to increase the research output in this direction. It is, however, noteworthy that there
are currently many theoretical developments and proposal in contrast to reasonably few actual
implementations.
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Schlawin 2011; Schlawin et al. 2012a; Tichy 2011, 2014; Tichy et al. 2013, 2011,
2014, 2010, 2012), which forms the foundational basis for the work in this dis-
sertation. Recently the topic gained increased attention due to the boson sampling
debate.

In this thesis, we did not per se study many-particle interference itself, but rather
the extent of its signatures. From the discussion in Sect. 8.3 it becomes clear that
it is extremely difficult® to understand these many-particle interference patterns,
although they are also highly structured. In the light of Chap. 3, such a many-particle
interferometer is a clear example of a complex system. This implies that it is to be
expected that a deterministic assessment of the interference pattern is unfeasible.
However, it also indicates that the problem may be suited for a statistical treatment,
in line with how complex systems are treated in statistical mechanics. In Sects. 8.4
and 8.5 we introduced a fruitful method to unambiguously discover the statistical
fingerprint of different types of many-particle interference by measuring correlation
functions between different modes. We emphasised the role of these methods as
a potential solution to the boson sampling certification problem. Furthermore, we
indicate that these methods are useful diagnostic tools to characterise the degree
of mutual distinguishability in a set of particles. More generally stated, statistical
signatures, encrypted in correlation functions, may provide a toolbox to handle the
very general problem of validation of quantum simulations.

Ultimately, in Chap. 9, we studied many-particle transport in the non-equilibrium
stationary state of open systems. We limited ourselves to non-interacting particles and
therefore could derive feasible expressions for the particle current that flows through
such systems in their non-equilibrium steady states. Remarkably, we managed to
prove that, for fermionic systems, there exists an overall upper bound for this current,
which is independent of the details of the system, but is determined by its environment
coupling agents. This setting is significantly different from Part I, because in Chap. 9
quantum statistical effects are included in the model. Nevertheless, centrosymmetry,
again, serves as a design principle: It generates particle currents which saturate
the bound and are in this sense optimal. Another intriguing result is the profound
difference between fermionic and bosonic steady state currents: We found that for
bosonic systems there is no upper bound for the particle current, but, remarkably, a
lower bound appears.

Outlook

We close this dissertation by briefly summarising what, from the author’s perspective,
are the most profound and intriguing challenges for related future research.

Let us start by considering the open problems related to the topics treated in Part
II:

e Obviously, the design principles presented in Sect.4.4 are not the only possible
scenarios. We believe that there lies a lot of potential in the more general scheme
of using back-bone structures (such as our dominant doublet) in combination with
additional constituents that never carry significant amounts of “population”, but

3 And according to the results in Aaronson and Arkhipov (2013) also computationally hard.
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nevertheless influence the energetics and hence the time scales of the system. We
may extend this scheme by also considering environment-related effects, which
can be Markovian noise, but also—and probably more interestingly—there is the
possibility of strongly coupled degrees of freedom that influence the system in
a coherent fashion (sometimes also dealt with in “non-Markovian” approaches).
Currently we are attempting to use Floquet theory to explore such scenario (Brug-
ger 2015).

e When we turn to quantum effects in biological systems (as discussed in Chap. 6),
there are several grand open problems. At first, there is a need to learn more about
the initial and final states of the transfer process. This implies both a deeper under-
standing of the light-matter interaction, and of the interaction between different
light harvesting complexes. A specific, long lasting debate which is still open,
is whether at all incoherent light can generate coherence in such photosynthetic
complexes. There are strong, skeptic views on this matter (Brumer and Shapiro
2012; Dodin et al. 2016; Pachén et al. 2017), but we feel that most arguments
remain too vague to be conclusive. When one models complex molecular systems,
one is bound to making several assumptions in order to gain an understanding,
it appears that the validity of such assumptions is not always clear. Many mod-
els of light-harvesting complexes consider an effective Hamiltonian to describe
the interactions between molecules and ignore the fact that these interactions are
themselves mediated by the electromagnetic field. To study light-matter interac-
tions which create the excitons in such coupled molecules, it appears to be relevant
to also consider the (often ignored) collective interactions between the molecules
and the electromagnetic field (Shatokhin et al. 2016). Ignoring such interactions
implies ignoring an energy current which persists in the long-time limit and there-
fore (see Chap. 9) a non-vanishing coherence. On transient timescales, the effect of
the initial state is also important. In our opinion, posing the question whether the
absorption of a photon from an incoherent bath can generate coherence, implies
that these events are resolved in time (Shatokhin et al. 2016). When one considers
the initial state to be a non-equilibrium steady state, one clearly studies a different
type of problem where individual photon absorption events are not registered.

e The previous point leads us towards another challenge which one must sooner or
later dare to address. Currently, the models that offer physical insight, including
our own, are still what one might mockingly call “toy models”: They do not
quantitatively predict outcomes of experiments. Therefore, we must find a smoking
gun to determine the direction in which to proceed. Especially it is important to
find a probe that may allow to identify unambiguously whether the transport of
energy is coherent or not. Additionally, one should be ambitious enough to attempt
to calculate useful quantities such as quantum efficiencies. During the final phase
of our research, it became clear that the “holy grail” for the future is ultimately
the quantitive prediction of these quantum efficiencies, based on tractable physical
models, where one can understand how the coherence impacts the functional level
of light harvesting.

e A final outlook on the matter of designed quantum transport, mainly in relation to
Chap.9, is related to many-particle effects. It is currently completely unclear how
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our models behave when more particles enter the system. Also in the context of
photosynthesis this is a relevant question, which is usually cast aside (Cheng and
Fleming 2009; Renger et al. 2001; Scholak 2011) in the study of energy transfer
where generally only the the single-exciton manifold is considered. It is well-
known that two-exciton effects are of relevance in 2D spectroscopy (Abramavicius
et al. 2008), but their potential role in the context of quantum transport remains
unclear. However, relevant progress on the level of spectroscopic tools to study
such questions is being made (Dorfman et al. 2016; Schlawin et al. 2012b, 2013).

Also in Part III several open problems and future prospects were identified. We
include a list of those which we consider most interesting:

e The most straightforward direction in future research lies in experimental realisa-
tions. There has been a considerable amount of progress in many-particle interfer-
ometry experiments, partially boosted by the debate on boson sampling and work
on quantum walks. Our proposed certification methods of Sect. 8.5, which use
truncated correlation functions, are directly implementable in such settings (Gior-
dani et al. 2018). With realistic applications in mind, we also included a study of
particle distinguishability in Sect. 8.5.3. However, it is reasonable to assume that
there are several other obstacles to be overcome in experiments, such as the limited
accuracy of detectors.

e In Sect.8.5.3, partial distinguishability of particles also raised a more fundamen-
tal question. We have shown several concrete instances of setups with partially
distinguishable particles and we found a very similar behaviour of the statistical
properties of truncated correlation functions as a function of the degree of distin-
guishability. It is a very interesting question to which degree such an approach can
be generalised. Specifically it is interesting to investigate whether or not there can
be an unambiguous measure of the degree of distinguishability for which the ran-
dom matrix prediction for the truncated correlation functions describe a monotonic
transition from fully distinguishable to genuinely indistinguishable behaviour. If
such a measure exists, it implies that the measurements of C-datasets of Sect. 8.5
could serve as diagnostic tool in a similar way as the Hong-Ou-Mandel effect is
used to benchmark the indistinguishability of two particles (recall Sect. 8.3.4).

e In Sect. 8.4, we devoted attention to the actual measurement operators for sampling
setups and used these as starting point for our analysis of the statistical fingerprints
of many-particle interference in Sect.8.5. An interesting, and potentially impor-
tant question is what happens when the measurement procedure changes. In a
quantum optics setup, one can also use homodyne detectors to do measurements
in the continuous variable regime (Chabaud et al. 2017; Chakhmakhchyan and
Cerf 2017), which is of particular interest for bosonic states which differ from
the number states considered throughout this dissertation. On the other hand, one
may also explore whether the methods of Sect. 8.5 are fruitful to certify Gaussian
boson sampling (Hamilton et al. 2017).

e Apart from the methods we described in Sect.8.5 to obtain information about
many-particle interference patterns, one could opt for completely different routes.
We have shown that C-datasets can be distinguished from each other via machine
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learning algorithms (Giordani et al. 2018). In general, one might wonder whether
such algorithms may be able to find (bosonic) patterns in sample data. A very
intriguing question is whether such an algorithm could be trained with simulated
data for few particles and applied for large particle numbers. Recently, one has
started to explore this direction of research (Agresti et al. 2017).

e In the realm of many-particle systems, we encountered several possibilities to go
beyond the typical Gaussian or number states. In Sect.9.6.3, we discussed that
a simple dephasing dynamics is sufficient to generate states which are no longer
Gaussian and we also mentioned experimentally available methods such as photon
addition and subtraction. These classes of new many-body states are still poorly
understood and not sufficiently characterised. We see a long and exciting road
ahead of us in this direction (Walschaers et al. 2017).

e Finally, also this part of the dissertation allows us to identify a direction which
is both a “holy grail” and a horrific prospect: Interacting particles. Interaction in
many-boson and many-fermion systems is usually extremely difficult to deal with,
hence the existence of methods such as Hartree-Fock and density functional theory,
or the development of finitely-correlated (e.g. matrix product) states. Itis important
to know how such interactions influence both many-particle interference effects,
and particle currents in the non-equilibrium steady state. In the debate of many-
particle dynamics, many-particle interference effects have rarely been explicitly
taken into consideration in combination with interactions between particles (see
Dufour et al. 2017; Geiger et al. 2012 for notable exceptions). It is a big open
question how these effects jointly contribute to many-particle dynamics and how
these contributions can be identified and, possibly, disentangled. In Sect. 8.5, we
showed that many-particle interference has signatures in the system’s correlation
functions. The same holds for interactions which even tend to induce more corre-
lations in the system, as can be seen in the BBGKY hierarchy (Bogoliubov 1946).
Therefore a starting point is to identify the effect of interaction on the C-datasets
of Sect.8.5.

With this set of inspiring problems which are open for future research, we conclude
this thesis.
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Appendix A
Basic Definitions of Mathematical Algebras

This appendix is partially based on the lecture notes of the course spectral theory
and operator algebras taught at the KU Leuven by Johan Quaegebeur and hence
follows the notation used there.

A.1 AlgebrasonC

The goal of the Appendix is to provide formal definitions of abstract algebras used
throughout this thesis.

It turns out that an associative algebra as such is already a highly structured object.
At its core lie three mathematical operations: the addition “+”, the multiplication *“-”
and the scalar product. In principle, one can consider R-algebras, where the scalar
product is defined for a general commutative ring R, but we only consider C-algebras
throughout this dissertation. Let us start by introducing the these operations and the
structure they generate.

A first demand is that the algebra A form a group for the addition

+:  Ax A— A, (A.1)

as determined by Definition 1.

Definition 1 A group is a set A equipped with an operation + with the following
properties

e Closure: Foralla,b € A, alsoa +b € A.

e Associativity: For all a, b, ¢ € A the identity (a + b) + ¢ = a + (b + ¢) holds.

e The existence of an identity element: There exists a0 € A such thatforalla € A
we find that0 +a =a + 0 =a.

e Invertibility: For every a € A there exists an element b € A such that a + b =
b+a=0.
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The group is called Abelian or commutative when for all a, b € A the identity
a+ b = b+ a holds.

Assuming that the set A equipped with + forms an abelian group, when we
additionally equip .A with a multiplication

G AXxA— A, (A.2)

it can acquire the structure of a ring as defined by Definition 4.

Definition 2 A ring is an abelian group (A, 4) equipped with an additional opera-
tion - with the following properties

e Closure: Foralla,b € A,alsoa-b € A.

e Associativity: For all a, b, ¢ € A the identity (a - b) - ¢ = a - (b - ¢) holds.

e Distributivity: For all a, b, ¢ € A the identities (a +b) -c=a-c+b-canda -
(b+c)=a-b+a-chold.

The ring is called unital if there exists an element 1 € A such that for all a € A
l-a=a-1=a.

Alternatively, an abelian group can acquire additional structure by equipping
it with a scalar multiplication, which turns it into a vector space as defined in
Definition 3.

Definition 3 A (complex) vector space is an abelian group (A, +) equipped with an
additional scalar multiplication with elements from C, with the following properties

e Closure: Foralla € Aand z € C, also za € A.

e Compatibility: For alla € A and y, z € C the identity y(za) = (yz)a holds.

e Distributivity for the group addition: For all a,b € A and z € C the identity
z(a + b) = za + zb holds.

e Distributivity for the addition of complex number: For alla € Aand y,z € C
the identity (y + z)a = ya + za holds.

All the above structures now allow us to define the algebras that are considered
throughout this thesis:

Definition 4 An associative complex unital algebra (from now on simply referred
to as “unital algebra”) is a ring (A, +, -) which also forms a vector space under
scalar multiplication with elements of C.

Throughout the dissertation, we commit the explicit mention of the operations and
simply talk about the unital algebra .A.
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A.2 Including Topological Structure

For most applications in physics, the algebraic structure is insufficient, since it is
not rich enough to do mathematical analysis. Analysis requires a notion of distance,
which implies the existence of a topological structure. The the most direct way of
adding such a structure to an algebra, is equipping it with a norm ||. ||, thus converting
it to a Banach algebra as defined in Definition 5.

Definition 5 A unital Banach algebra is a unital algebra A which is equipped with
anorm ||| : A — RT such that A is a Banach space (Definition 6) and

lab| < llall||bll foralla,b € A. (A3)

Definition 6 A Banach space is a complex' vector space X equipped with a norm
Il : A — R*, which is complete with respect to that norm. In other words, for any
Cauchy sequence {x,} in X, there is an x € X such that lim,_, »||x, — x| = 0.

Such Banach algebras are the basic structures on which much of spectral theory
is constructed (Conway 1997). However, for application in physics, we require an
addition layer of structure which is required to get a consistent notion of positivity.

A.3 Involutions

Algebras that are relevant in quantum physics are equipped with an involution, usually
often referred to as the *-operation, as defined in Definition 7

Definition 7 An algebra A can be equipped with an additional operation, which is
called an involution
TA—-> Aiar— a¥, (A4)

with properties

e Foralla € A, a** = a.

e Foralla, b € A, we find that (a + b)* = a* + b*.
e Forallz e Canda € A, (za)* = za*.

e Foralla,b € A, (a-b)* =b*-a*.

A unital algebra, equipped with an involution is called a unital x-algebra.

Itis no coincidence that the *x-operation shares its properties with the adjoint operation
(or hermitian conjugation) defined for linear operators on a Hilbert space. The goal
of this algebraic formulation is to make an abstraction of the basic mathematical

IComplexity is demanded because it fits the scope of our work. In is also possible to consider
Banach spaces on the real numbers.
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structure that is generated by such operators. Several types of elements in x-algebras
share terminology with linear operators in Hilbert spaces: a € A is called

Hermitian or self-adjoint if a* = a,
unitary if a*a = aa* =1,

normal if a*a = aa*,

a projection ifa* =aanda -a = a.

An important terminology which appear several times throughout the disser-
tation discusses mappings between algebras. Therefore, we formally define a x*-
homomorphism here in Definition 8.

Definition 8 A mapping ¢ : A — B, where both A and B as *-algebras, is called a
x-homomorphism if for a, b € A and 7z € C, we find that

o ¢a+b)=pa) + pb),
o ¢(a-b) = pa) - ¢(b),

e ¢(za) = z¢(a),*

o P(a*) = (¢(a)".

If the mapping has the above properties and maps .4 onto itself, such that ¢ : A — A,
it is referred to as a x-automorphism.

The final step towards the structures that are relevant in physics contains the
combination of this involution with the topological structure.

A.4 C*-algebras

In the previous section we defined x-algebras via the introduction of an abstract
adjoint operation. Generally, this structure can become quite wild and therefore
needs to be tamed by the correct introduction of topological constraint. This leads
us to the definition of Banach x-algebras and C*-algebras

Definition 9 A unital Banach algebra, which is equipped with the involution of

Definition 7 such that ||a*|| = ||a|| for all a € A is called a Banach x-algebra.

A unital Banach algebra, which is equipped with the involution of Definition 7,
such that it fulfils the stronger demand that |a*a| = ||a||? for all a € A is called a
C*-algebra.

The demand that ||a*a| = ||la||*> for all a € A is known as the C*-property. This
demand implies that ||a*|| = ||a|| and therefore one can say that any C*-algebra is

also a Banach =x-algebra, which on its turn is always a Banach algebra. This is fun-
damental because it implies that there is a well defined notion of a spectrum for a
C*-algebra. It turns out that there are several crucial results in spectral theory that
specifically apply to C*-algebras, such as the fact that self-adjoint elements of a
C*-algebra always give rise to spectra that are contained in R (Conway 1997).
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A final fundamental aspect of of formal algebra is representation theory. In gen-
eral, the main idea of representation theory is to consider an abstract algebraic frame-
work and embed it in a concrete space which makes it possible to do explicitly
computations. Because this is done both implicitly and explicitly throughout the
dissertation, we provide a formal definition for a representation of a C*-algebra in
Definition 10.

Definition 10 A representation 7 of a C*-algebra .4 on a Hilbert space H is a
x-homomorphism 7 : A — B(H).

A representation is called faithful if it is injective. It is non-degenerate if the
space

n

T(AH =D wlapy; IneNoan...an€ Aithr,.... b, €M (A.5)

j=1

is dense in H.

When there exists a vector 2 € H such that 7(A)Q is dense in H, we call the
representation cyclic and the vector €2 is called the cyclic vector.

A subspace K of H is called invariant if 7 (A)XC C K. A representation 7 is called
irreducible if the only closed invariant subspaces are {0} and H itself.

The GNS construction discussed in Chaps.2 and 7 connects representations to
states on the C*-algebra and more specifically, it shows that each state fixes a unique
cyclic representation.

Reference

J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96, 2nd edn.
(Springer, New York, 1997)
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Averaging over Random Unitary Matrices

Man! You guys should build a company and kick some ass
Juan-Diego Urbina — during e-mail exchange about this topic.

In this additional appendix chapter, we present a more technical introduction to the
methods used to average over the unitary group with respect to the Haar measure.
This outline is mainly based on the notes and work of Jack Kuipers.

To make the connection to more common random matrix language, we must stress
that the random matrix ensemble which we here consider, generated by the unitary
group with the Haar measure imposed on it, is also known as the circular unitary
ensemble (CUE). In a physical context, one might say that it describes the propagators
that are obtained from random Hamiltonians from the GUE (Akemann et al. 2011;
Mehta 2004).

Integration over the unitary group can be performed using methods of (Brouwer
and Beenakker 1996) or the slightly more general and rigorous frameworks of Collins
and Sniady (2006), which was for example also used in Gessner and Breuer (2013).
At the heart of these methods lies the identity

n
EvWay by --- Ua”,bnia,]’/al .. -ﬁnn,ﬂ,,) = Z Vin (O'_l7r) l—[ oax — a,,(k))(5(bk - ﬁw(k))~
o, mES, k=1

(B.1)
The Weingarten functions (Weingarten 1978) which we denote V,, (where m denotes
the number of modes and therefore the dimension of the matrix) can be evaluated
using the explicit expression of Collins and Sniady (2006) or with help of the tables
provided in Brouwer and Beenakker (1996). What remains is to consider permu-
tations and count the terms in the sum, on the righthand side of (B.1), which give
non-zero contributions.

Straightforward as the approach might seem, it is often highly impractical to go
over all permutations once the product gets longer. In practice, we used Maple scripts
to evaluate the functions of longer products of such components, but it is also possi-
ble to employ semiclassical techniques (Kuipers and Sieber 2008). The aim of this
appendix is to give a slight taste of how such an algorithm works, by studying rather
© Springer International Publishing AG, part of Springer Nature 2018 439
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simple examples and gradually considering slightly more complicated instances to
indicate where the difficulties lie.
Let us consider the bosonic correlator

Cfs = E UrikUvi/ﬁri,ﬁsik - E Urika‘ikﬁriAﬁsik’ (BZ)
k=1 k=1
k#l

where we must treat each term separately. For the first term, note that

ty E U, Ui, Ui, U, =E Ev (Ui, Ui, Ui Usi,), (B.3)
k=1 k=1
kA o

which means that we can focus on the computation of

Ev (Ui Usi, Ui Usi,).- (B.4)

Now, we must exploit that k # [ and r # s. The permutations over which we sum
in (B.1) are those in S, since we only consider two terms. This implies that there
are only two operation on the indices: either we exchange (e) them or we do nothing
(which is the identity map id). More formally, one might write e : (1,2) — (2, 1)
and id : (1,2) — (1, 2). Let us first of all see which of the operations lead to non-
zero terms in (B.1). Because the first index of the components is ordered and r # s,
we can safely drop the sum over these indices, since only the id permutation will
give non-zero contributions. We find that

Ev (Ui Usi,U i, Usi,) = Vi (id)8 i — i)y — ix) + Vi (€)S(ix — ix)d iy — iy)
=V (2)
(B.5)
We used explicitly that iy # i; and in the last step, we adopt the notation of Brouwer
and Beenakker (1996), where it is emphasised that the value of the Weingarten
function only depends on the lengths of the cycles that build the permutation. In this
case, the cycle for e has length 2.
The second term is given by

ty (Z Ui, Usikﬁrikvsik> = Z Ev(Uri,Usi Ui Usiy) (B.6)

k=1 k=1

In this case, there is only one index, so we find that
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Ev (Ui Usi, Ui Usiy) = Vi (id)(ix — i) 8k — i) + Vi ()i — i) d(ix — ix)
=V, (1, 1) + V,,(2).

(B.7)
We can combine (B.5) and (B.7) to obtain that
Fu(Cl) = 3 Vu@ = 3 (Va(l D+ Vu @)
yon = (B.8)
_ nim+n—2)
T om (m2 - 1) ’

where the final equality follows by using the tabulated values for the Weingarten
function as given in Brouwer and Beenakker (1996).

The random matrix results for the first moments for fermions, distinguishable
particles and the mean-field sampler are all obtained in a similar fashion. The first
moment of the three point correlator is also not too difficult: Once we have all the
structured expressions, separating terms where indices are repeated, we can simply
run over all permutation. For the three-point correlator, it should not come as a
surprise that these permutations are contained in Sj3.

Coming back to the two-point truncated correlation function, we also showed
results for the second and the third moment. These quickly become much more
difficult and here we only consider the second moment, which directly indicates
where the difficulties originate. We must calculate

[EU<( Z Ui, Uiy, Uriy Uiy, — ZUrikl Usi,, Uriy, xikl>

ki,l1=1 ki=1
ki#l
. . (B.9)
X ( E l]rik2 Usi,2 Uri,z Siky, E ljrik2 ljsi;\.2 Urikz Usikz >> )
ko, lr=1 ko=1

ka#l

where we know that k; # [} and k, # [, but we do not know anything about how the
indices with and index “1” compare to those with an index “2”. This implies that we
must consider a serious amount of different options. Just to make it more feasible to
keep the overview, we go over all these options by assuming that the indices all come
from the set (1, 2, 3, 4), this is the smallest possible set that offers enough diversity
to go over all options. Notice that now also the other index has changed, comparing
(B.1)—(B.9), we see thata = o = (r, 5, r, 5), which implies that there are also more
permutations that contribute here.

There are a total of four terms in C?, that need to be considered, the first one being
the longest:
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n n
Ly Z Uriy, Usiy, Urig, Usiyy Uiy Uiy Uiy, Ui, | - (B.10)
ki,l1=1ky,[b=1
ki#l ko#D

Now, since we know that k; # [, we can start our index bookkeeping by setting
ir, = 1 and i;, =2, which leads to the following different options and number of
terms per option

ip,=2 nn—1)

i, =3 n(n—1)(n-2)

. ipb=1 nn—-1)

[ik, —1 {i,, —2 iL=3 n(n—1)n—2)

ipb=1 nn—1)(1n-2)

i, =3 inhb=2 nn—1){n-2)

inb=4 n(n—1){mn-2)(n—-3)
(B.11)

Each of these options needs to be considered separately and on each one we have to

evaluate (B.1), afterward all these contribution have to be added up, with the correct

multiplicity (which is given on the far right side of (B.11)).

The following two terms can be considered jointly, since they are equivalent:

Ly Z Uriy, Uiy Uriy, Uiy Ui Uiy Ui Usiy, | (B.12)

ki,h=1 k=1
ki#l

where we can apply similar logic as for the previous terms. We again obtain a list of
options, each occurring with its own multiplicity:

i, =1 n(n—-1)
{ikl =1 [il, =2 i, =2 nn—1) (B.13)
ir, =3 nn—1)(n-2)

Yet again, we have to let identity (B.1) act on each to these terms. Even though it
might seem that this is less work, since there are fewer options, each of these different
options typically forces us to consider more permutations given that there are more
non-vanishing contributions for these terms due to the repetition of indices. Again,
after evaluation (B.1) for each options, the results have to be summed with the correct
multiplicity, this joint result now needs to be considered twice, since two of the four
terms in (C f’x)z contribute in this fashion.
The final term which we must consider is of the form
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Ly Z Uriy, Usiy, Uriy, Usiy, U viy, Uiy Uiy Usiy, | (B.14)
=1 k=1

and the different option can be listed as follows

ik2:1 n

i, =2 nn—1) (B.15)

i, =1

This also needs to be added to the other two results.

The difference between the different particle types lies mainly in how these terms
are added up. Some terms vanish for distinguishable particles and some signs are
different for bosons and fermions. It is clear that the situation becomes even more
complicated when higher moments are considered, which leads to ever more tedious
combinatorics. What needs to be done is nevertheless very straightforward, hence it
can be done by an algorithm, although the scaling of such algorithm is very unpleas-
ant, implying that such a method is only fruitful for lower moments. In our case, the
evaluations and combination of all these different terms were worked out by Jack
Kuipers, using his own script, written in Maple. The program essentially executes
all the steps such as they are described here and automatically runs over all possible
permutations. This ultimately leads to the RMT results as described in Sect. 8.5.

Once we are considering partial distinguishability, the multiplicities have to be
replaced with weighted sums that consider the distinguishability of the different
particles. With these remarks, we conclude this technical appendix on the evalua-
tions of RMT averages over the unitary group. The interested reader is referred to
Berkolaiko and Kuipers (2010), (2011), Brouwer and Beenakker (1996), Collins and
Sniady (2006) for more background.
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Appendix C
Higher-Order Many-Particle Interference

In this appendix, we present some brief comments on many-particle interference,
which extend the result of Sect. 8.3 to more general number states. For simplicity,
we limit this discussion to bosons, but the extension to fermions can be done in a
trivial manner.

Our discussions on many-particle interference in Chap. 8 were all based on “ele-
mentary tensors”, i.e. wave functions of the form

1
’_ il T
v = — (1) ...a (W) (C.1)

However, in Sect.7.6.1 we explicitly stressed that these vectors only form a basis
of a much broader class of number states, which is often overlooked in literature.
Indeed, a general number state is rather of the form

W= oW, (C.2)

where 3, |¢;|* = 1 and

;= ;a"wf)) at @, (C.3)

Vperm GY

Although this may seem like a pathological case which is only relevant to mathe-
matical purists, it most certainly is not. The most well-known example of such a
structure is probably a “NOON-state” (Kok et al. 2002). We can generate a two-
particle NOON -state with a Hong-Ou-Mandel setup, but for higher particle numbers,
this is no longer possible.

In general, states of the type (C.2) cannot be obtained via the propagation of
(C.1) through a single-particle unitary channel E(U), U € B(H). Hence, this is not
a completely trivial generalisation of the phenomenology studied in Chap. 8. In this
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appendix, we briefly show what happens when we transmit W in (C.2) trough such
a single-particle unitary channel and measure its transition probability to the state

1 .
g = —Wa'(go ~ad'(E)Q. (C4)

The action of the unitary channel on (C.2) is simply obtained via

Zc,\ll > ZC,E(U)\II —Zc,\/— ad' Wy . .a"UphHe.

perm G®
(C.5)

Of more interest is the detection probability

puvz = (E, E(U)W)
2

=) i (E EWU)Y)

=Y lcPE, EW)¥) P+ eic; (W), EUDE)(E, EWU)W;) .
i i#]

(C.6)
Note that all many-particle interference effects discussed in Chap. 8 are of the form
(2, E(U)Y;)|*. This implies that in the final step of (C.6), we have an incoherent
mixture of many-particle interference patterns as obtained for elementary tensors,
and in addition a whole set of completely new “higher-order” interference terms.
The latter is really an interference effect between the interference patterns induced
by the different terms W; (C.3). One may say that the terms

> cic; (W), E(UNDE)(E, E(U)W;)
i#]

are to many-particle interference what many-particle interference itself is to single-
particle interference.

It is needless to say that the interference patterns of as described in (C.6) are most
probably even harder to understand than the interference effects in Chap. 8 and, thus,
they clearly fall out of the scope of our present work.
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Fermionic Correlation Functions

In this appendix, we provide the derivation of Eq. (8.159).

Let us start from the general expression
ol ='Wt .. .d' U HaUTe,) .. .aUTE)). (D.1)

The state (.) is a fermionic number state, generated by a wave function with particles
prepared in a set of modes V = {1y, ... 4,}, ¢; € H, such that the wave function
¥ e I'/(H) is given by

1 .
U= Wg’(m)...d(wnm. (D.2)

We insert this wave function into (D.1) and obtain

(e ... aWTenat @)...at @2 aWiey) ...aUiENa WD) ..aT W)

ol =
w det GV-V

(b.a)

To evaluate this expression, we must again re-express the Wick monomial in the
numerator of (D.3) in normal order. By means of the fermionic identity

a(U' fya'(e;) = (U fi.e;) —a'(epa(UT f), (D.4)
we find

aU'e)...aU'¢Na’ @) ...a" ()R

Jig =1 TES, K{jiseerin}
J1>2>> g
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Expression (D.5) can be inserted in (D.3) to obtain

1 " _ .
= D > sign(m)sign(o) <'(/)j(’7“), UT§1><§1, Ui,
J1sdfsenndgrf=1 \T.0€S8,
Ji>ja>> g
jl’>jé>...>j(;

e <1/)j(/7(qj, Uqu>(€qv ijm)))

x< [T «woe. ] a*(wk>sz>.
1

Joil) k(o)
(D.6)

We can now use (7.31) to obtain

< l_[ a'f(wl)g’ 1_[ aT(wk)Q> — det GV\{U)j{ ..... Vi b VAW qu}’ (D.7)
I¢{ ]

Jloeesdin} kE{jtsesin}

which can be inserted in (D.6) and the final result for the fermionic correlation
function directly follows:

n

=) > sign(msign() (v, . U1 ) (61, Uy, )
Jiedlvengedy=1 \7m.0€S,
J1>ja>> g
iz i,

. <¢j;(q), UT§q> <§q’ U'(/]J'nw) >)

det GV\{wjl/ ..... p),{;},V\{v‘),-l ..... qu}
X
det GV

(8.159)



Glossary

Because of the reasonably broad topical range of this dissertation, some terminology
may be slightly ambiguous. Hence, some brief remarks on jargon are in order:

e Wave functions— It is the habit throughout this text to refer to any normalised
element of a Hilbert space, e.g. ¢ € H, as a wave function. This stands in contrast
to some fields where it is commonplace to only use the term wave function in
the context of specific representations in position or momentum basis. Note that
the elements of Hilbert space are also referred to as vectors, and when they are
normalised to characterise a quantum state we also refer to them as state vectors.
Ergo, the terms wave function and state vector are used interchangeably throughout
this dissertation.

e Quantum states— When referring to a quantum state we consider a positive,
normalised functional on the algebra of observables (see Sect.2.3.2). This is in
contrast to the habit of many physicists to use the term state for a density matrix
or a wave function.

e Quasi-Free vs. Gaussian— Throughout this work, we regularly refer to quasi-free
and Gaussian states (and channels). These terms are very closely related, but we
intend to make a slight difference: In the bosonic case, a Gaussian state is a state
with a quantum characteristic function (7.199) that is Gaussian (see Sect.7.6.4).
The more general definition, which also holds for fermions, states that a state is
Gaussian when its truncated correlation functions of order higher than two vanish
(see Sect.7.7). Both for bosons and fermions, a quasi-free state is in this sense
a special type of Gaussian state, where also the truncated correlation function of
order one vanishes and thus only the second order truncated correlation function
is non-zero. This implies that all quasi-free states are Gaussian states, but, for
example, Glauber coherent states (see Sect.7.6.2) are Gaussian states which are
not quasi-free (see also Sect. 7.6.2). Note that in the fermionic case it is uncommon
to consider Gaussian states which are not quasi-free, mainly because they are still
very poorly understood.

Gaussian (quasi-free) channels are channels which map Gaussian (quasi-free)
states onto other Gaussian (quasi-free) states. In some literature, one also encoun-
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ters the term linear channels instead of Gaussian channels (which is derived from
“linear optics”).

In physical terms, one may consider Gaussian states as states for which correlations
between different particles become negligible. They naturally arise as the thermal
states for many-particle systems of without interactions. As a consequence, they
are typically successful to describe dilute quantum gases and are also employed
in mean-field models. Gaussian channels are therefore operations or dynamical
maps which do not induce additional correlations in the system.
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